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Abstract

Introduction: This thesis discusses the importance of the target effect size (ES)

used in clinical trials of health interventions. It investigates the common methods of

eliciting the target difference and whether target values are optimistic or unrealistic.

Regression to the mean (RTM) is shown for trials in sequence, which is assessed

through simulations and an adjustment developed to adapt for this bias.

Research Question: Investigating currently used methods for eliciting the

target difference and optimal methods for adjusting for RTM.

Methods: Firstly, a review of the Health Technology Assessment (HTA) journal

trial reports of parallel-group randomised controlled trials (RCTs) was performed.

The standardised observed and target ES were compared for various clinical areas

and elicitation methods. Second, performing simulations of trials in sequence to

investigate the effect of RTM. A mathematical solution was evaluated to confirm

these simulated results.

Results: A review of 107 HTA reports showed the median standardised tar-

get ES is 0.30 (mean= 0.30), and the median standardised observed ES is 0.11

(mean= 0.19). Use of previous research was the most common method of elicita-

tion. Simulations showed RTM occurs for trials in sequence, an adjustment method

has been developed and proven mathematically, which depends only on the power

of the first trial.

Conclusions: This thesis demonstrates the most common method of target

difference elicitation is the use of previous research. This method leads to RTM

of the observed ES. An adjustment based on the power used in the initial trial

power and the progression criteria in pilot studies has been developed and tested.

If trialists adopt this adjustment then trial sample sizes, though slightly inflated,

would potentially provide more realistic estimates of the target ES.
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1. Introduction

1.1 Introduction

Controlled experiments have been used informally since the 1930s in research areas

such as medicine, education and social welfare (Shapiro and Louis, 1983), with the

first randomised clinical trial in the ‘modern’ sense being reported in 1948 (Forbes

and Holt, 1948; Julious and Zariffa, 2002). In a medical context, these controlled

experiments are more commonly known as controlled clinical trials and are usually

performed with human participants (Bland, 2000). Trials are used to assess how

well a particular health technology or treatment works, as well as the safety of the

treatment (Durham, 2008). However, controlled experimental trials can be expensive

and time consuming, and in some cases are not feasible to conduct (Shapiro and

Louis, 1983).

The main purpose of a clinical trial it to get an unbiased, reliable assessment of

a treatment or therapy (Julious, 2010b). This is achieved with a number of de-

sign features. These include randomisation of participants (Guideline, 1995; Lewis,

1999), blinding of participants and/or trialists, and the inclusion of a control group

to quantify the response of the experimental treatment (Julious and Zariffa, 2002).

The first documented case of randomisation was in 1948 by Austin Bradford Hill

(Bradford-Hill, 1990; Forbes and Holt, 1948; Yoshioka, 1998), and it is now part of

the International Conference on Harmonisation (ICH) guidelines (ICH-E9) recom-

mendations for clinical trials (Lewis, 1999). With the number of trials in the United

Kingdom in the set-up or recruiting stages exceeding 5500 (2015), according to the

UK Clinical Research Network (UKCRN) there is a constant need to use suitable

methodology in the design and analysis of these trials (Network, 2015).

1.1.1 Chapter Aims

This chapter aims to introduce the various types of clinical trial available, as well

as introducing a standard sample size calculation which is used in the design of the

trial. Each variable in the calculation will be defined and it will be briefly discussed
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which variable is most sensitive to change. This will inform the basis of the research

aims for this PhD project.

1.2 Background Information

1.2.1 Types of Clinical Trial

There are a number of considerations when designing a clinical trial. First, the

research question needs to be established and the outcomes of interest specified

(Julious, 2010b). There are broadly three main types of outcome; these are continu-

ous outcomes, binary (or survival) outcomes and ordinal outcomes (Julious, 2010b).

A more specialised type of outcome is used in survival data, where the outcome is

time-to-event. A continuous outcome is assessed on a scale where the measurement

takes a number which can vary by the precision of the instrument taking the reading.

For example, systolic blood pressure is a continuous outcome because it can be any

number, though there are certain ranges which are implausible or the instrument

cannot measure more accurately. A binary outcome is categorical and can take one

of two possible values, for example a participant could be alive or dead, they could

have responded or not responded to treatment. Ordinal data is, like binary data,

categorical data; however it has a set order to the categories. There are a number

of different aims for clinical trials (Flight and Julious, 2016) which can be grouped

into three main objectives:

• Superiority Trials to show that one therapy or treatment is better than an-

other,

• Equivalence Trials to show the treatments or therapies are equal,

• Non-Inferiority Trials to show that one therapy or treatment is no worse than

another.

Finally, there are two main study designs, namely parallel group designs and crossover

designs. These designs will be discussed further in chapter 2. In pharmaceutical clin-

ical research there are four main stages, known as phases (Durham, 2008). These

are called Phases I-IV which are further defined in chapter 3, but Phase III trials

are the major large scale comparative investigations used to assess a treatments effi-

cacy compared to other treatments (Altman, 1999; Durham, 2008). Phase III trials

are investigating a formal hypothesis, whereas the focus of the preceding phases is

assessing dosage, safety and determining if the trials are worth continuing
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Figure 1.1: A standard sample size formula

1.2.2 Sample Size Calculations

Once the type of trial to be performed has been determined, the next consideration

is the calculation of the sample size. This is an important step in the trial design as

a study which recruits too many or too few participants may be deemed unethical

(Altman, 1980). A study which recruits too many participants runs the risk of

reaching the study goal before the trial has completed, therefore exposing more

participants to a treatment which is less effective (Altman, 1980). A study which

has recruited too few participants has a high chance of failing to meet the study

aims, putting participants through the trial when there would be no benefit of doing

so as no conclusive results could emerge (Altman, 1980).

A sample size calculation for a continuous outcome measure can be estimated from

an equation of the type seen in Figure 1.1 (Brush, 1988; Durham, 2008). It consists

of 5 different variables;

• the population standard deviation for the outcome of interest (σ),

• the target population difference between the treatments (d),

• the Normal value for the power (Z1−β) of the trial,

• the Normal value for the significance of the trial (Z1−α/2)

• and the allocation ratio between the groups (r) (Brush, 1988; Fleiss, 1986).

These variables will be further defined in chapter 2. All the variables in the sample

size calculation are fixed through design in the case of r, β and α, and estimated in

the case of σ. The only exception to this is d (Friedman, 2010), which is dependent

on the intervention and the results from elicitation, to be discussed in section 1.2.3.

The most sensitive part of the sample size formula is the target difference, d; if

the target difference is halved whilst the remaining parameters are unchanged, the
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Figure 1.2: The impact that the effect size has on the sample size for 90% power
and 5% significance level.

19



required sample size is multiplied by four (Fayers and Machin, 1995).This shows that

this variable is extremely sensitive in the calculation and it should be chosen with the

utmost care. This can also be seen in Figure 1.2, which clearly shows as the effect

size gets smaller the sample size required increases dramatically. This sensitivity

to d will form the basis of the PhD. If the target difference is over-estimated, the

sample size will be smaller and this could potentially result in an under-powered

trial (Fayers and Machin, 1995; Friedman, 2010). This means that even if there

is a true effect to be observed, the trial is not powered highly enough to observe

this effect. Studies with low power run the risk of rejecting treatments which are

beneficial (Friedman, 2010).

There are two main approaches which can be used to lessen the likelihood of having

a low-powered trial, these are to increase the number of participants or to increase

the significance level (Cohen, 1973). These approaches have their own associated

problems, such as a trial becoming too expensive if more participants are needed,

or have a Type I error rate undesirably high (Cohen, 1973).

1.2.3 Determining the Target Effect Size

The task of determining d for trial design is difficult, with a number of different

methods used. These will be discussed in further detail in chapter 3. There is the

consideration that the method used to estimate the target effect size could cause a

bias depending on the method chosen. The definition of the type of bias which will

be discussed in this document is “Any experiment, study or measuring process is

said to be biased if it produces an outcome that differs from the truth in a systematic

way” (Everitt and Palmer, 2010). Bias may occur when moving from one trial to

the next, conditional on observing encouraging results in the first trial. In order for

there to be no bias, the second trial would be performed irrespective of the results of

the first trial. However, in practice, this would not occur as if the results of the first

trial were not encouraging then the second trial would usually not be performed.

The effect of this bias will be investigated further in chapter 4.

1.3 Research Aims and Questions

Having illustrated the potential implications of over-estimating the estimated effect

size, it prompts the question of how many trials are actually achieving their target

or estimated effect size used in the original sample size calculation.

Effect sizes are known to vary across research areas, with areas such as nutrition and

genetics consistently reporting extremely small effect sizes (Siontis and Ioannidis,

2011). If it is in fact true that trialists are over-estimating the target effect size in
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their sample size calculations, it would be useful to know, given a particular disease

area or research area, a range of plausible effect sizes. This could be used to assist

trialists when designing trials for which there is no previous research or data. The

discussion in this chapter leads to the following research questions

1. How are effect sizes quantified in the design of clinical trials?

2. Are observed effect sizes similar to a priori (target) effect sizes? Is this effect

size clinically important?

3. What range of observed effect sizes are being seen in different clinical areas or

populations?

4. Are there more optimal methods for quantifying the effect size?

5. Are there more optimal methods to adjust for the bias of moving from one

trial to the next?

The term “similar” that is used in research question two will be formally defined

later in the thesis. The research questions numbered one to three aim to investigate

what is the current situation with regards to observed effect sizes in clinical trials,

particularly focusing on whether trialists are being overly optimistic or pessimistic

with the target effect size when designing the trial, and in which clinical areas is

this more likely to occur.

Research questions four and five will aim to investigate methods to adjust for the

potential bias which can occur when moving from the early trial to a later stage

trial based on the early results. This question focuses primarily on the scenario of

moving from one trial to the next, moving on to investigate the scenario of a pilot

to a main trial. There are other designs which are outside the scope of this thesis,

such as surrogate end-points and other more complex trial designs. These are briefly

discussed throughout the thesis and discussed in more detail in chapter 8.

Once the current situation is known, it will allow for practical advice to be formed

for those designing trials based on prior results. The fourth and fifth research

questions will be investigated using simulations to test different scenarios, in order to

propose an adjustment method for the target difference when moving from one trial

to the next. There is also the opportunity to test this adjustment mathematically,

along with determining the adjustment through the use of algebra. The proposed

adjustment has also been tested on real data to assess its validity in comparison to

simulated data.
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1.3.1 Further details of Research Questions

It is vital for any research to consider the importance of performing the research

itself, and the importance of the research questions. This section will explain why

each research question is important and also the methods which are to be used to

derive a solution.

• Are the observed effect sizes similar to a priori (target) effect sizes?

The target difference can be defined as the difference which the trial is aiming to

observe. This can be further sub-categorised as shown below, though there are many

other distinctions available (Cook et al., 2014; Harris et al., 2017).

• Target Difference - the value which is used in the sample size calculation.

It could be larger than the clinically important difference, it is the value

which would prompt a change in clinical practice. Alternatively, it could

be the difference by which a drug shows superiority to other similar drugs

on the market. The target difference can be further categorised as follows:

– Minimum Clinically Important Difference (MCID) - the small-

est value which you could accept that the treatment actually works

or has clinical benefit (Andrews et al., 2011; Lenth, 2001).

– Sufficiently Important Difference (SID)- the smallest benefit

that an intervention would require to justify costs and risks (Barrett

et al., 2007)

– Minimum (statistically) Detectable Difference (MDD) - the

minimum value which is statistically detectable at the pre-specified

type I error rate (Hanson et al., 2003a; Piva et al., 2004).

This question considers two main contexts. The first context is that the target

difference is set to be the minimum clinically important difference (MCID). The

second context is that the target or anticipated difference is chosen based on previous

research, or is unjustified. These two contexts need to be considered separately, since

the premise of each is very different.

The reason this research question is of interest is that there are a number of articles

(and it is the common belief) that researchers are overly optimistic when choosing

the anticipated effect size for a sample size calculation (Campbell, 2013; Fayers and

Machin, 1995; Friedman, 1985). If these anticipated effect sizes are consistently

22



overly optimistic, then there is the possibility that they need to be re-assessed if

they are not being achieved. This leads to the need to have to consider the method

by which the anticipated difference is chosen.

If the anticipated difference is chosen as a MCID, then it cannot be deemed to be

overly optimistic if that is truly the minimum important difference. If it is a true

MCID then the interventions which are shown not to be achieving the MCID may

be truly clinically ineffective. If the MCID is optimistic, however, then this leads us

to ask the question of where the MCID came from.

Consideration will be given to whether the target difference is based on well-founded

and advised methods of elicitation, such as opinion-seeking or review of the current

evidence (Cook et al., 2018) or whether it has been set arbitrarily or is unjustified.

All these factors will influence whether the target difference is deemed realistic or

not. There are many reasons why the target difference could be unrealistic, there

could be a need to re-evaluate it if it is unachievable.

Another reason could be that currently it is unachievable but it is truly the minimum

clinically important difference so should still be used as different interventions are

developed. This could lead to the need to determine whether it can be re-evaluated

or whether it is set as the MCID because it truly is the MCID.

For the trials which are not based on a MCID, a question to consider is where are

these anticipated differences coming from. To be able to identify which methods are

commonly used to elicit the target difference would be useful, as well as investigating

whether particular methods producing higher estimates of effect size. As highlighted

earlier it should also be considered that there is the possibility that a trial is not

statistically significant (P ≥ 0.05) and the MCID is not met, this could be due to

the MCID being accurate but the treatment simply not being effective enough to

reach the pre-specified minimum clinically important difference. The assessment of

the methods used to determine the MICD could be used to establish whether certain

methods are providing unrealistic or unachievable MCIDs or target effect sizes.

Trials of a common clinical condition, diabetes, consistently fail to demonstrate the

identified MCID. In informal correspondence with Professor Simon Heller, a chief

investigator at the University of Sheffield who receives substantial NIHR funding

for research in this area, he raised concerns that funders will start refusing funding

because the treatments are deemed to be not effective enough in diabetes, yet funding

is needed to continue to work towards treatments which are effective. There is also

empirical evidence of the MCID falling over time in trials for the treatment of

depression (Voehringer and Ghaemi, 2011).

• What range of observed effect sizes are being seen in different clinical areas,

populations or interventions?
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This research question stems from the previous question and they are linked together.

It would be useful to be able to demonstrate plausible ranges of target effect sizes

for various interventions or clinical areas.

Summary of Questions 1 and 2

The key things which will be taken away from these two questions are the dif-

ferent methods used to elicit the target difference when designing the trial, the

anticipated and observed effect sizes, the sample size, target power and signifi-

cance. It is also interesting to stratify the results to explore differences in these

factors by: clinical area; outcome measure and intervention type. It is known

that half of all publicly funded trials have a non-significant P -value (Sully et al.,

2013), therefore it is target that at least half of the trials included in this review

will have a non-significant P -value. This does not mean that those interventions

are ineffective, simply that there was not enough evidence to show there is an

effect there. The methods which are planned to research these questions are

discussed in more detail in chapter 4.

This part of the research will focus on informing what the current situation is.

This is an important area of research, demonstrated by the fact that the MRC

has recently called for research into quantifying effect sizes and the Medical

Statistics group at ScHARR have been successful in its co-application for this

funding. The research done in these two research questions will contribute to

this research.

• Are there more optimal methods for specifying the anticipated effect size?

This question is important because it should lead to providing advice for trialists

with regards to eliciting an appropriate target effect size when designing future

trials. A common design which is used in ScHARR and other research groups is

basing a large trial on a proof-of-concept trial, or similar published studies. These

specifically focus on target effect sizes, and are not necessarily based on the MCID.

This question will be dependent on the results discovered in questions 1 and 2. Based

on which methods are most commonly used and which ones provide a ‘close’ estimate

of the effect size compared to the observed effect size. It would be interesting to

know if there are differences in the sample sizes used based on the methods applied

for elicitation of the anticipated difference. This research question will aim to reflect

and evaluate the results from questions 1 and 2, as well as make recommendations

for future trials. It would also be interesting to assess the relationship between the

method used and whether the anticipated effect size is an over- or under-estimation

of the observed effect size.
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• Are there more optimal methods to adjust for the bias of moving from one

trial to the next?

This question is of interest, as it will allow us to provide some advice for future

trialists. This research question is important because it will bring all the recom-

mendations and advice from the previous questions and aim to produce a method

which can be used in practice. The methods used for this question are discussed in

chapter 7; however the main consideration is the evolving nature of this question.

Chapter 6 discusses the methods which are currently published, as well as the lim-

itations of these methods. They will then be compared to methods developed in

chapter 7 for trials in sequence. The context of the trials in sequence is determined

by the most commonly observed methods of target difference elicitation found in

chapter 4. For example, if it was observed in chapter 4 that the most common

method of target difference elicitation reported were pilot study to main trial, then

the development of another method to adjust for the bias will focus on the context

of pilot study to main trial. It is key to tailor this question to contexts which will

prove most useful for trialists in the future.

1.4 Development since Start of the PhD

Following the commencement of this PhD, the Medical Statistics group in the School

of Health and Related Research (ScHARR) acquired a grant from the MRC as co-

applicants to research the area of choosing the target effect size (Cook et al., 2017).

There are 5 research questions stipulated in the grant proposal which focus on review

of the current guidance provided by funders to identify any key methodological

developments or changes in practice. The objectives are, amongst other things, to

determine the scope of the guidance required that would aid researchers and address

funders needs in terms of determining a target effect size for sample size calculations.

The research in this PhD contributed to the study by performing the review of the

HTA monographs to establish how effect sizes are chosen.

As part of the process of the research for this MRC grant funded study, the work

presented in chapter 4 was presented at the Society for Clinical Trials (SCT) con-

ference in Montreal as part of a structured session. This work, along with work

from chapter 6, has also been presented at the SCT-MRC conference (Liverpool,

2017), the PSI conference (London, 2017), JSM conference (Baltimore, 2017) and

the Royal Statistical Society seminar (Sheffield, 2017).
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1.5 Chapter Summary

This introduction has provided a brief overview of clinical trials and sample size

calculations, as well as details about the proposed research questions outlined in

section 1.3 and their relevance to the fields of medical statistics and clinical trials.

The work presented in this thesis will follow a frequentist framework only, since

Bayesian methodology does not include the use of a target difference in the same

context as the frequentist methodology.

The format for each chapter will be a brief recap of previous chapters in each in-

troduction, followed by the chapter aims and the chapter content. They will then

finish with discussion and conclusions in the context of work already covered and

signposting work which is to be covered in later chapters.

The different sample size calculations used for different trial designs will be discussed

in chapter 2, with the methods commonly used to determine the target difference, d,

will be discussed further in chapter 3. Chapter 4 will present a review of the Health

Technology Assessment journals, showing the most common methods of elicitation,

as well as considering possible problems with these methods in terms of potential

bias. This bias is further explored in a literature review in chapter 5, setting the

context for simulations in chapter 6. From this, a discussion and possible avenues

for further work are described in chapter 8.
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2. Background to Sample Size

Calculations

2.1 Introduction

Chapter 1 highlighted the importance of design in clinical trials, as well as the

fundamental components of a typical sample size calculation. This chapter will

discuss the various sample size formulae used for different trial designs and outcome

measures, as well as discussing the sensitivity of the calculation to the anticipated

effect.

The sample size calculation is an important part of a trial protocol. The calculation

estimates the minimum number of patients needed in the trial for a given power and

significance level for a pre-specified clinically meaningful difference between the two

treatments (d).

The clinically meaningful difference is important for a number of reasons- both clini-

cal and statistical. The difference in treatments could be, for example, the difference

in the proportion of patients surviving on an experimental treatment compared to

the standard treatment, or the expected change in systolic blood pressure on an

experimental treatment compared to an active control treatment. It could be ar-

gued that the sample size calculation is most sensitive to the target difference. If

the difference is halved then the sample size quadruples (Fayers and Machin, 1995).

This is a serious consideration since very large sample sizes may not be achievable

due to cost, time or other resources.

2.1.1 Chapter Aims

This chapter will describe the sample size calculations for parallel group trials, focus-

ing on superiority studies. Brief discussion of equivalence and non-inferiority studies

is included, along with crossover trials, binary outcome measures and cluster trials.

This thesis chapter is based on a book chapter written by myself in my first year of
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this PhD which has been accepted for publication (Rothwell et al., 2018a), which

draws heavily on work by Julious (Julious, 2004).

This chapter also aims to show the importance of d in each calculation as well as

how the effect size impacts on the sample size for the various trial types. In this

context (and in context for the PhD) before we can truly understand the sensitivity

of the sample size calculation to d, we need to understand its operational impact on

the calculations.

2.2 Types of Trials

For the purpose of this chapter we shall be focusing on trials comparing two treat-

ments in the form of a parallel group trial.

2.2.1 Parallel Group Trials

In a parallel group trial, patients are randomly assigned to one of two treatment

groups. The ideal scenario is that all other baseline characteristics of the patients

are roughly similar in each group (i.e. equal number of males and females, location

of hospital, patient ages). If we consider a diagram of the trial, it would look like

Figure 2.1.

Figure 2.1: Illustration of a typical randomisation for a parallel group trial.

Each group is given a different intervention (e.g. treatment versus placebo, ex-

perimental treatment versus current standard treatment) then the two groups are

compared directly with each other. There are a number of considerations when a

randomisation occurs, one of which is what type of randomisation method will be

employed. There is simple randomisation, which is similar to tossing a coin and

assigning each patient based on the outcome of the coin (Tails = Group A, Heads

= Group B). However, due to the random nature of this method, there could be an

imbalance in the number of patients in each group. The size of this imbalance is

larger in small trials compared to large trials, thus having a bigger impact on the

power. One method to ensure there are equal numbers of patients in each group is
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to use blocked randomisation. This is best illustrated using an example. Consider

the basic case of two treatment groups. The aim is to randomly allocate the patients

to either Group A or Group B. If we consider a block size of 4, we would need to

know that at the end of each block there had been allocations to each of the groups.

Consider creating a randomisation list by tossing a coin. We would allocate Group

A to heads (H) and Group B to tails (T). Now in our block size of 4, we need to

ensure there are 2 heads (Group A) and 2 tails (Group B) after 4 tosses of the coin.

The blocks would look like those shown below.

Block 1 A B A B

Block 2 A A B B

Block 3 A B B A

Block 4 B A A B

The first patient would then be randomly allocated within a block, with the following

three patients also being allocated within that block. This ensures that after each

block has been completed there are equal patients in Group A and B.

Another randomisation method is to use stratification. This method is similar to

blocking but whilst the blocking method ensures balance with defined block sizes,

stratification also ensures balance by strata. These strata are subgroups of clinical

importance and are usually patient characteristics, for example, age or gender. Once

again we shall illustrate this using an example. Suppose we are tossing a coin to

create the randomisation list. For this randomisation, not only are we trying to

ensure equal numbers of patients in the two groups, but we are stratifying by gender

so there will be two strata. We then generate the randomisation list separately for

each stratum. An example of this is

Stratum 1

Block 1 AB AB BA BA

Block 2 AB BA AB BA

Block 3 BA BA AB AB

Block 4 BA AB BA AB

Stratum 2

Block 1 BA AB AB BA

Block 2 AB BA BA AB

Block 3 AB BA AB BA

Block 4 BA AB BA AB

Now, in this artificial example, after 16 recruited or randomised participants we can

see that there is balance in terms of overall group allocation as well as a balance in

group allocation by strata. This method is commonly used for crossover trials which

are discussed below.
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2.2.2 Crossover Trials

The aim for this type of trial is that all patients experience all treatments. This is

done by randomly allocating the patients to different treatment sequences. For two

period crossover studies these would be AB or BA. Thus, each group has a different

order of treatments assigned to it. This is illustrated in Figure 2.2.

Figure 2.2: Illustration of a typical randomisation for a crossover trial

The key point for this trial is that all patients get all treatments; the order in which

they are given is random. Once the first treatment has been given, the groups usually

have a washout period in order for a patient to clinically return to baseline, therefore

providing a constant base on which to test each of the subsequent treatments.

Crossover trials enable within-patient analysis since each patient has experienced

both treatments. Once again we can consider an example to illustrate how the

crossover trial is formed. The two period (AB/BA) design is the simplest type of

crossover trial, which simply compares treatment A with treatment B. The subjects

will be randomised to either have treatment A in period 1 followed by treatment B

(AB sequence), or treatment B in period 1 followed by treatment A in period 2 (BA

sequence). Subjects are randomly assigned to either sequence AB or BA, and as in

parallel group trials, blocking can be used to ensure balance.

If we continue with the examples from earlier, with a block size of 4, instead of A

and B being separately assigned to heads and tails, now the sequences AB and BA

are assigned to heads or tails, which would look something like:

Block 1 AB BA AB BA

Block 2 AB AB BA BA

Block 3 AB BA BA AB

Block 4 BA AB AB BA

There are two main assumptions when performing a crossover trial, namely that

the order the treatments are received does not affect the patients response to the

treatment, and that all patients return to baseline prior to the second treatment.

This type of trial is best suited to long-term stable conditions such as eczema or

asthma and less so for conditions where the patient is likely to get worse over time

(degenerative conditions).
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Null hypothesis is actually
Decide to

Reject Null Hypothesis Correct Decision Type I Error (α)
Power of test (1− β)

Not Reject Null Hypothesis Type II Error (β) Correct Decision

Table 2.1: Type I and Type II Errors and Power

2.3 Continuous Outcomes

This section will focus on trials with continuous outcomes. Within each outcome

type, the trial designs will be discussed separately.

2.3.1 Superiority Trials

Superiority trials focus on providing statistically significant evidence against the

null hypothesis that the two treatments in question are the same with respect to the

comparison of interest (i.e. mean response time). The null and alternate hypotheses

are as follows:

• H0: µA = µB (The two treatments are the same)

• H1: µA 6= µB (The two treatments are different)

The two types of errors which can occur when testing the null hypothesis are Type

I and Type II errors (Julious and Walters, 2014; Neyman and Pearson, 1928a,b,

1933a,b). These errors are shown in Table 2.1 in terms of the decision made at the

end of the trial and whether the null hypothesis is really true or not, but are also

summarised below.

• Type I Error : Rejecting H0 when it is true

• Type II Error : Not rejecting H0 when it is false

The sample size calculation takes these errors into consideration and aims to estimate

the sample size whilst minimising them. The type I error is conventionally fixed at

a two-sided level of 0.05 which is also the significance level of the trial. The type II

error is usually fixed at 0.1 but can be as high as 0.2.

A type I error is deemed more serious in both medical and financial terms. From a

medical perspective, a type I error would mean an ineffective treatment being shown

to be effective when it is not the case. Giving a patient an ineffective treatment
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would be unethical, as it may be preventing the patient from receiving an effective

treatment, and could result in the condition of the patient deteriorating. From

a financial perspective, money may be spent to change treatments and medical

practice unnecessarily if the new treatment were not more effective than the current

treatment.

A type II error is less costly both clinically and financially. A type II error would

not result in a change in medical practice, although the patients may be deprived of

an effective intervention, and is therefore seen as the lesser of two evils. It is because

a type II error is deemed not as costly as a type I error that it can be set at a higher

level.

It is more common to think not in terms of the Type II error but in terms of the

power of a trial (power= 1 − β = 1−Type II Error). The power of a trial can be

understood as the probability of rejecting H0 when a specific alternative is true, so

getting the result correct. Therefore the higher the power of a trial is, the more

likely that a significant result will be declared if there is truly a difference. It is

the chance that the study will provide a conclusive result. If we consider the null

hypothesis for a superiority trial, it can be seen that there are two ways in which

the null can be rejected. This can occur if µA < µB or if µA > µB. It is due to these

two chances that this type of test is referred to as a two-tailed test. This simply

means that the Type I error is split equally between the two instances, so each tail

has a 0.025 probability of occurring under the null hypothesis. Superiority trials are

normally used when comparing a treatment to a control. This control could be a

placebo (negative control) or a current treatment (active control).

2.3.1.1 Parallel Group Trials

As mentioned earlier in the chapter, a parallel group trial consists of two groups with

the sample size for group B being able to be written as a multiple of the sample size

for group A (rnB = nA) where r is the allocation ratio. A preliminary sample size

calculation for the population would be (Brush, 1988)

nA =
(r + 1)(Z1−β + Z1−α/2)2σ2

rd2
S

, (2.1)

where r is the allocation ratio, dS is the target difference between the treatments,

Z1−β and Z1−α/2 are the Normal values for power (1− β) and significance (α), and

σ2 is the population variance.

For the variances of each treatment group A and B (σ2
A, σ2

B) respectively, the assump-

tion is σ2
A = σ2

B = σ2 (homoscedasticity). This will be the assumption throughout

the chapter. Each part of the sample size formula is important; however there is one
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component to which it is most sensitive. This is the target difference dS. It can be

shown that if the target difference is halved, the required sample size will quadruple

(Fayers and Machin, 1995)

nA =
2σ2(Z1−β + Z1−α/2)2

(0.5dS)2
=

2σ2(Z1−β + Z1−α/2)2

0.52d2
S

=
2σ2(Z1−β + Z1−α/2)2

0.25× d2
S

. (2.2)

Rearranging this equation gives

4× nA =
2σ2(Z1−β + Z1−α/2)2

d2
S

, (2.3)

This highlights the sensitivity of the sample size to dS, as discussed in chapter 1.

A consideration for parallel group trials is when the trial is cluster randomised and

we have a cluster effect. This results in a slightly different sample size formula and

calculation. This topic is discussed in further detail in Appendix A.5.

The sample size calculation is based on the population variance estimate; there-

fore the Normal distribution values can be used. However, when a trial has been

conducted and the data collected, the population variance σ2 is considered to be

unknown and the sample variance estimate from the trial, s2, is used instead. As

a result of this, the Normal distribution and by extension the Z- values cannot be

used so the t-distribution and t-values are used (Brush, 1988; Chow et al., 2002;

Senn, 1993). This gives us the following equation, where nA is the smallest integer

value that satisfies it

nA ≥
(r + 1)(Z1−β + t1−α/2,nA(r+1)−2)2σ2

rd2
S

. (2.4)

However, it is noticeable that this equation does not give a direct estimate since

nA appears on both sides of the equation. The best method to deal with this is to

re-write the equation in terms of the power and solve using an iterative technique

1− β = Φ

(√
rnAd2

S

(r + 1)σ2
− t1−α/2,nA(r+1)−2

)
. (2.5)

Here, Φ(.) is the cumulative density of a Normal distribution. When the sample

variance is being used instead of the population variance, Senn describes how instead

of using the Normal distribution, the power should be estimated from the non-central

t-distribution with nA(r+ 1)− 2 degrees of freedom and a non-centrality parameter√
rnA

(r+1)
(Senn, 1993). This is due to the power being estimated under the alternative

hypothesis, which states d 6= 0 therefore the corresponding t -distribution would be
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non-central. The two distributions (t- and Normal-) are very similar, with the t-

distribution being slightly fatter than the Normal distribution (Julious, 2010b). The

equation above can then therefore be rewritten as follows, using the non-central t-

distribution

1− β = 1− T−1

(
t1−α

2
,nA(r+1)−2, nA(r + 1)− 2,

√
rnAd2

S

(r + 1)σ2

)
, (2.6)

where T−1(. . . ) is the cumulative density function of a non-central t-distribution.

To allow for the Normal approximation to the non-central t-distribution a small

correction factor can be added to (2.1) so it better approximates to (2.6) as follows

(Guenther, 1981; Julious et al., 1999):

nA =
(r + 1)(Z1−β + Z1−α/2)2σ2

rd2
S

+
Z1−α/2

4
. (2.7)

There are a number of quick results which are shown in Appendix A.2. These

are conservative estimates for the sample size calculations for superiority, crossover,

non-inferiority and equivalence trials.

Table 2.2 shows how the sample size changes as the standardised difference, d
σ

= d,

changes for a parallel group, two-armed, superiority trial. It can be seen that as the

effect size δ increases, the sample size required decreases rapidly. If δ = 0.05, the

required sample size is 8407, compared to if δ = 0.10 when the sample size is 2103.

Again it is clear that the sample size has fallen four-fold when the effect size has

doubled. This shows that the sample size used in a trial is extremely sensitive to

slight changes in the target or target difference.

2.3.1.2 Crossover Trials

In order for us to be able to estimate a sample size for a crossover trial, we need

to first estimate the within-subject standard deviation, σw. This can be extracted

from the residual line of the analysis of variance (ANOVA) model; it evaluates the

variation which occurs through repeated measures on the same patient. The within-

subject variability from the ANOVA model is directly related to the variability

around the difference, σd, from a paired t-test as σ2
d = 2σ2

w. The sample size can be

calculated using the within-group standard deviation and the effect size, the sample

size calculation can be attained by a similar method as in the parallel group study

(Guenther, 1981),

n =
2(Z1−β + Z1−α/2)2σ2

w)

d2
S

+
Z1−α/2

2
, (2.8)
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Allocation Ratio (r)
δ 1 2 3 4

0.05 8407 6306 5605 5255
0.10 2103 1577 1402 1314
0.15 935 702 624 585
0.20 527 395 351 329
0.25 338 253 157 211
0.30 235 176 115 147
0.35 173 130 89 108
0.40 133 100 70 83
0.45 105 79 57 66
0.50 86 64 47 53

Table 2.2: Sample size requirements for one group, nA (where nB = rnA), with
various standardised differences (δ = dS

σ
) and allocation ratios, r, for a parallel group

trial. This table has been calculated for a 90% power and a two sided type I error
rate of 5%. These sample sizes are calculated from the non-central t-distribution.
(Julious and Campbell, 2012; Rothwell et al., 2018a)

where n is the total sample size. Similar to parallel group trials, an additional factor

of
Z(1−α/2)

2
can be added to allow for the approximation to the Normal distribution.

The non-central t-distribution result with n−2 degrees of freedom and non-centrality

parameter
√

nd2S
2σ2
w

is given by (Senn, 1993)

1− β = 1− T−1

(
t1−α/2,n−2, n− 2,

√
nd2

S

2σ2
w

)
. (2.9)

As in the superiority parallel group case, Table 2.3 shows how the sample size

varies as the standardised difference changes for the superiority crossover case. If

we compare Table 2.2 and Table 2.3 (Julious and Campbell, 2012; Rothwell et al.,

2018a), we can see that the sample sizes are similar for r = 1 in Table 2.2. This

confirms that the formulae and the results are similar. The results are similar

irrespective of whether the trial is parallel group or crossover design. Tables 2.2 and

2.3 also show how rapidly the sample size decreases as the standardised difference

increases, highlighting the sensitivity of dS. As the target difference increases the

sample size decreases.
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δ n
0.05 8408
0.10 2104
0.15 936
0.20 528
0.25 339
0.30 236
0.35 174
0.40 134
0.45 106
0.50 87

Table 2.3: The total sample size (n) for a crossover study for various standardised
differences (δ = dS

σw
) with 90% power and a two sided type I error rate of 5%. These

sample sizes are calculated from the non-central t-distribution.
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2.4 Binary Data and Other Trial Objectives

The sample size calculations for non-inferiority and equivalence trials are similar to

those described earlier in this chapter, see Appendix A.1. Whilst for the superiority

design there is a target difference which the trialists’ are aiming to reach, for the non-

inferiority and equivalence designs there is a non-inferiority or equivalence margin.

This equivalence/non-inferiority margin is the limit which, by showing the treatment

difference is less than, we can conclude the treatments are clinically the same. Often

these limits are defined in reference to dS.

The calculations for binary outcome measures for all the trial designs mentioned here

are similar to those discussed in this chapter; they are all extremely sensitive to the

target difference, therefore emphasising the importance of its careful determination.

More details regarding the different trial designs and binary outcome measures can

be found in the book “Handbook of statistical methods in randomised controlled

trials”(Rothwell et al., 2018a).

2.5 Chapter Summary

This chapter has demonstrated the sensitivity of the target difference dS for all

trial designs and outcome measures. Due to the sensitivity of the target difference

parameter, dS, it is imperitive to have a good estimate. The sample size tables in

this chapter have shown that as the target or estimated effect size increases, the

sample size decreases dramatically which highlights the sensitivity of dS once again.

Further calculations can be found in the Appendices (A) for extensions from the

parallel group, continuous case discussed in this chapter.

2.6 Discussion

Throughout the work completed for this chapter, it has been shown that there are

many different sample size calculations and trial designs used. These calculations

are all quite similar, extensions of the parallel group, superiority case. As a result of

this, it was decided to focus on parallel group superiority trials. One reason for this

is that crossover trial calculations are an extension of those for the parallel group

case.

As mentioned earlier, σ2
w is the variance for the crossover trial, which as a function

of the variance of a parallel group trial, σ2, can be written as σ2
w = σ2(1 − ρ).

In this expression, ρ is the correlation between the two measures in period 1 and

period 2 (Julious, 2010b). Owing to this difference in the variance, and by extension
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the standard deviation, for the same mean difference the standardised difference

will be quite different for parallel group and crossover trials. Due to this large

difference, crossover trials are excluded from the review of randomised controlled

trials in chapter 4. This is also justified by the nature of crossover trials themselves

being restricted by therapeutic area; some areas such as oncology are not suitable

for crossover trials. It is preferable to include as many clinical areas as possible.

Also, many Health Technology Assessment (HTA) publicly funded trials are parallel

group superiority trials, therefore these shall be the focus of this thesis (Rothwell

et al., 2018b).

Another aspect which needs discussion is estimands. These are similar to parameters

of interest in a trial, however they also take the study population into account

(Council, 2010). An addendum to the ICH E9 guidance was commissioned in 2014

(ICH-E9, 2014). These estimands will impact on the analysis population. Whilst

this is an area of interest and does impact the research questions in this thesis, they

will not be researched in the scope of this PhD.

As has been mentioned throughout the thesis thus far, the estimated difference dS

is the most sensitive part of the sample size calculation. As briefly discussed in

chapter 1, there could be an inherent bias introduced when moving from one trial

to the next, such as when moving from Phase II to Phase III trials in industry,

or pilot/systematic review to main trial in academia. Chapter 3 will review the

methods used to elicit the target effect size, d, and will move on to chapter 4 which

will aim to investigate which of the methods discussed in chapter 3 are reported in

the Health Technology Assessment reports.
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3. Review of Methods for

Quantifying the Target Difference

3.1 Introduction

As discussed in chapters 1 and 2, the target difference is the most sensitive part

of a typical sample size calculation. The methods of choosing the target difference

have been discussed for a number of years, recently becoming quite a popular topic

amongst statisticians and trialists (Beaton et al., 2002; Cook et al., 2014; Wu et al.,

2011). The importance of the target difference is due to the effect it has on the

sample size calculation, which in turn impacts the cost and the elapsed time of a

trial as the more people you need the more expensive a trial generally is to run. The

purpose of this chapter is to set the scene for the next chapter, to provide definitions

and background which is useful for subsequent chapters.

3.1.1 Chapter Aims

This chapter aims to discuss the various methods which are used to elicit the target

effect size. A scoping review of the literature was undertaken, which shows the

different methods, as well as the advantages and disadvantages of using each method

of elicitation.

3.2 Background to Quantifying the Effect Size

Research has been done to determine how trialists and clinicians are choosing the

clinically meaningful difference for their trials including the DELTA review pub-

lished in 2014 which describes the various methods used to choose the minimum

clinically important difference (MCID), as well as providing advice for the different

methods (Cook et al., 2014). This review shall be discussed in further detail in this

chapter. As discussed briefly in the previous chapter, the most sensitive part of the

sample size calculation is the anticipated effect size. It is primarily at the discretion
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of the trialists what this value takes, with some choosing the actual target differ-

ence between the treatments, and some choosing the minimum clinically important

difference (MCID), so the smallest change that will be worthwhile for the patients

or lead to change in clinical practice (Jaeschke et al., 1989). Other similar names

for this difference include the sufficiently important difference (SID) and the target

difference or the minimum important difference (MID) (Barrett et al., 2005a). This

section will focus on the target difference, denoted d. This is to be defined as the

target effect size the trial is powered to detect.

A description of the various terms used to describe the target difference and their

meanings can be found in section 1.3.1. An illustration of how the target difference,

MCID and detectable difference are associated is shown in Figure 3.1. This diagram

shows that the target difference, which is the difference the trial is powered to

observe, is all-encompassing and the MCID can be the same or smaller than this.

The detectable difference is smaller than both of these other differences as it is the

smallest difference which will result in a statistically significant P -value.

Figure 3.1: Illustration of the relationship between the target difference, the MCID
and the detectable difference.

3.2.1 Quantifying an Effect Size

The estimated difference is commonly called the minimum clinically important dif-

ference (MCID), as this terminology encompasses not only the estimate or target

difference for a new treatment, but also the difference which will cause an impact on
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the patient population; a difference that is deemed clinically meaningful. This was

first described by Jaeschke, though the definitions have broadened since (Jaeschke

et al., 1989). The original DELTA review identified seven commonly used methods

for choosing an important and/or realistic difference. These are as follows: (Cook

et al., 2014)

1. The anchor method,

2. The distribution method,

3. The health economic method,

4. The opinion-seeking method,

5. The pilot-study method,

6. The review of evidence base method,

7. The standardised effect size method.

The anchor, distribution, health economic and standardised effect size methods can

be used to specify an important difference, whilst the pilot study method can be used

for specifying a realistic difference. The opinion-seeking method and the review of

evidence base can be used for specifying a realistic or important difference, or both

simultaneously. Each of these methods has its own advantages and disadvantages,

which shall be discussed briefly here.

A Medical Research Council (MRC) funded project is currently researching this

in more detail, to which this PhD work has contributed. The DELTA2 project is

currently underway and these categories mentioned above shall form a recurring

comparison throughout this thesis. More details about the DELTA2 project and

how this research fits in is given in Section 3.2.4.

3.2.1.1 Anchor Method

This method takes the form of two parts. The first part is establishing the anchor by

calculating a mean change in score for patients who have expressed that a minimum

clinically important difference or change has occurred in the context of quality-of-life

measures (Jaeschke et al., 1989; Zhang et al., 2015). The patients who have expressed

that they have experienced a change in their quality of life are then asked to quantify

that change. This would not be asked of those patients who did not express that

they had observed a change. This change in their quality of life measure can then

be evaluated and used as a clinically important difference in future trials using the

same outcome measure.

41



The second part is to implement the MCID found in the first part. The MCID will

change depending on the measure being used. So for any subsequent study which is

being performed on a similar population, all those patients who express a change in

their quality of life greater than the MCID are shown to have improved (assuming

the changes are positive). This MCID can also be used in sample size calculations

when using that particular outcome measure in a trial. Another example is to

consider the scenario where previous studies indicated if patients were able to walk

100 yards after a particular surgery, they would have reached the target change.

This would be a clinical anchor based on retrospective data. The anchor questions

can be posed solely to the patient or the clinician, or both if it is of interest to assess

the agreement between patient and clinician.

Another variation of this method is to ‘anchor’ a new outcome measure to a previ-

ously used outcome measure, when both measures are correlated (DeRogatis et al.,

2009; Khanna et al., 2009). This works by mapping a known validated measure to

a new measure, enabling direct comparison between the current and new measures.

An example of this would be trying to implement a new QoL measure or subscale,

and anchoring it to a generic QoL questionnaire.

3.2.1.2 Distribution Method

The distribution method uses the imprecision value of the measurement in question

(how reliable is the measurement) and results in the MCID being a value which is

larger than this imprecision value, therefore being likely to represent a meaningful

difference (Wyrwich et al., 1999). A common approach is to use test-retest data for

an outcome (Cook et al., 2014). This can help specify the size of the difference due

to random variation in the measurement of the outcome.

3.2.1.3 Health Economic Method

This method endeavours to take into account not only the MCID, but also the cost of

the treatment and any other factors which are deemed to be important when deciding

whether to run a trial. This method aims to establish a threshold value which is

deemed acceptable for the cost per unit increase in health (Torgerson et al., 1995).

It estimates the relative efficiency of the treatments which can then be compared

directly. This method is not commonly used in practice, with the 13 papers which

used this method to establish the MCID using hypothetical data sets (Cook et al.,

2014). The focus is on the health economics, as the name implies, of a treatment

rather than the MCID alone, including data on the costs in terms of harms (side-

effects or adverse events) and financial aspects of the treatment (Torgerson et al.,

1995). One trial, published in 2011 which investigated the cost-effectiveness of
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yoga for lower back pain did use a cost-effectiveness ratio from a previous trial to

determine the sample size (Tilbrook et al., 2011).

3.2.1.4 Opinion-seeking

This method is perhaps one of the more intuitive methods, based on determining a

value, or a range of values, for the clinically meaningful difference by asking clinicians

or experts in the relevant fields to provide a professional opinion. From another

angle, the experts could be patients who have been suffering from a particular illness,

as they would have a better idea of what they deem a minimum clinically important

(or realistic) difference (Allison et al., 2010; Barrett et al., 2005b). Another method

is to use a combination of clinicians and patients (McAlister et al., 2000; Stone et al.,

2004).

3.2.1.5 Pilot Study

A pilot study is a small version of the trial which is being planned (Hulley, 2013;

Thabane et al., 2010a). It is conventionally used to assess the feasibility of the main

trial, though information can be collected for use in the sample size calculation such

as the effect size and population standard deviation (Julious, 2010b; Salter et al.,

2006). The effect size observed in a pilot study can be used as a starting point to

help determine the MCID (Cook et al., 2014). With regards to trials of complex

interventions, pilot trials are normally used to make inferences about whether the

true value of the effect size will lie, which in turn can be used in the development of

stop/go criteria. The important point about these studies is that they are usually

small and are not usually aiming to test a formal hypothesis. However, since there

are only a small number of people involved, the estimates of the standard deviation

and effect size will be imprecise (Samsa et al., 1999; Wang et al., 2006). This method

is commonly used but not often reported (Cook et al., 2014).

3.2.1.6 Review of Evidence Base

This method collates and summarises all the existing evidence about the treatment

or disease in question to allow researchers to choose an important or realistic dif-

ference based on previous trials and research (Johnston et al., 2009; Thomas et al.,

1997; Woods et al., 2001). The optimum method used to do this is meta-analysis

(Cook et al., 2014), however trialists should be wary of possible publication bias.

Publication bias occurs when trials which are significant get published and therefore

cited more, this results in a skew of positive results for published work. Another

problem with this method is that the effect size from another study may not be ap-

plicable to the current trial due to differences in the study population or treatments
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(Barbui et al., 2000; Cranney et al., 2001; Ravelo et al., 2009). It has been reported

that these methods are commonly used, more recently in quality-of-life measures

(Cocks et al., 2011).

3.2.1.7 Standardised Effect Size

The standardised effect size is scale-invariant, which means that it can be generalised

across a variety of clinical areas, it has no units of measurement (Cook et al., 2014).

For continuous outcomes, this is calculated by taking the difference in means and

dividing by the pooled standard deviation (Cohen, 1988). If we let the difference

between the two groups be d, and the pooled population standard deviation be σ,

the standardised effect size (δ) can be calculated as δ = d
σ
.

The size of the standardised effect is used to establish whether an important differ-

ence has occurred, which are conventionally 0.2 for a small effect, 0.5 for a moderate

effect and 0.8 for a large effect (Cohen, 1988). The benefits of this method are that

it is simple to calculate and allows for comparisons across different outcomes, trials,

populations and disease areas (Cook et al., 2014). The sample size formula can be

rewritten in terms of δ as oppose to d.

3.2.2 Discussion of Methods for Determining Target

Difference

The following table details some comments and possible problems which are asso-

ciated with the various methods of elicitation of the target effect size (Cook et al.,

2014). These are based on the DELTA review and are not absolute.

These comments have been raised in the DELTA document and further discussed

at the DELTA2 workshop in Oxford, 2016. However, whilst some of these will be

discussed in more detail throughout the thesis, not all will be covered in the scope

of this research.
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Method Comments

Anchor Method

• Patient- or clinician-centric so subjective in nature,

• Other factors like length of illness come into play,

• Useful in quality of life studies (Crosby et al., 2003;
Hays and Woolley, 2000; Wyrwich et al., 1999).

Distribution Method

• Not commonly used but can be used alongside anchor
method (Copay et al., 2007; Oxberry et al., 2012; Wu
et al., 2011),

• Difficult to establish what is meant by ‘important’,
which can result in underestimating the MID (Guyatt
et al., 1987)

Health Economic
Method • Speculation that patients and clinicians are against

modelling techniques involving cost as a factor (Cook
et al., 2014),

• These methods can require strong assumptions and
are complex in terms of modelling (Cook et al., 2014)

• The HTA reports health economics as co-primary

Opinion-seeking
Method • Surveys most common method but low response rates

or missing data common (Cook et al., 2014)

• This method is likely to produce realistic differences
by clinicians and important differences by patients
(Jaeschke et al., 1989)

Pilot Study Method

• Example of method could be using pilot to imitate
trial

• Focus primarily on feasibility of trial, not assessing
intervention.

• Could be used to assess response rates for a question-
naire or survey.
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Method Comments

Review of Evidence
Based Method • This method could be used to estimate target effect

size based on prior information

• This is investigated further in chapter 5

Standardised Effect Size
Method • Different combinations of values can result in the same

standardised effect size (Cook et al., 2014)

• One of the most common methods found in the
DELTA review and can be observed in a number of
different research areas (Hill et al., 2008; Kazis et al.,
1989)
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3.2.3 Further Discussion of Methods Determining and

Reporting the Target Difference

One part of the original DELTA review involved sending out a survey to establish

what methods were being used currently and what factors influenced the choice of

method. The results confirmed that there was some degree of reverse-engineering

in choosing the target or target difference (Cook et al., 2014). In these cases, there

was already a set number of participants available and the sample size calculations

were re-arranged to select a target effect size in order to result in that sample size.

However, this is not disclosed in the trial protocols although a number of responders

in the survey admitted to having done this (Cook et al., 2014). This could be due to

the availability of funding, time or participants themselves if the outcome was rare.

This method of determining the sample size is known as a convenience sample size

calculation (Kraemer et al., 2006).

The initial review resulted in a second publication by the same authors (Cook et al.,

2015) which formed a set of guidelines for researchers when choosing their target

effect size. However, the article focused primarily on the improvement needed in

reporting the justifications used to choose a target difference.

Relevant to this subject area is the difference between statistical significance and

clinically meaningful changes. Statistical significance is used to describe the likeli-

hood that the results are due to chance (Fethney, 2010; Goodman, 1999). Clinical

significance describes the practicality of the results of a study, whether the results

show a clinically important effect (Jacobson et al., 1984). Many studies in the past

focused solely on statistical significance, without considering the difference in a clin-

ical context (Cocks et al., 2008; Johnson et al., 2013), with the use of point estimates

and confidence intervals being criticised for not including the clinically meaningful

effect (Fethney, 2010; Kieser and Hauschke, 2005). The intense concentration of

high-impact journals on statistically significant results with P -values less than 0.05

is well known and results in publication bias (Dickersin et al., 1987; Ioannidis et al.,

2014; Tressoldi et al., 2012). However, P -values and the test statistics from which

they arise are affected by the sample sizes being used in the study (Hedges, 2008).

So P -values are useful in informing how reliable a difference between treatments

is, but they do not provide any information on the size of the effect observed (van

Tulder et al., 2007).

The issues which surround basing the choice of the target difference on clinical or

patient opinion stem from the highly subjective nature of this method. The most

important consideration of this method is the perspective of the group designated

with setting the minimum clinically important difference (Beaton et al., 2002). Pa-

tients who have been experiencing discomfort or pain for a long period of time may
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have the opinion that a larger difference is needed to be clinically important com-

pared to patients who have only been ill for a short period of time, or compared to

the clinician (Beaton et al., 2002).

Clinicians will have differing opinions to patients, as patients will see the difference

from an extremely personal perspective whereas clinicians are more likely to be

pragmatic about it; there could be an issue with the opinion not being generalizable

(Allison et al., 2010). An example of this method being subjective is if the outcome

measure of interest is number of days in recovery from a cold, one would expect

there would need to be a larger difference to be clinically significant for the patient

compared to an outcome measure related to survival from cancer, where even the

smallest improvement in survival time may be considered to be clinically significant

from the perspective of the patient.

Using information from early phase trials in the sample size calculation for the

current trial results in a biased estimate of the target effect size or target difference

(Kraemer et al., 2006). This bias is the results from the theory that a test should

not be based on the results from another test, so the fact that the second trial or

confirmatory trial would not take place without a promising pilot or phase II trial

implies that this will automatically lead to biased results. These issues will be built

upon in chapter 5. The target effect size will also change depending on the type of

trial being performed, whether it is a public health study or a pharmaceutical trial

and the outcome of interest.

It has been debated that researchers are often overly optimistic when choosing a

target difference for their sample size (Fayers and Machin, 1995; Friedman, 2010). If

this is the case, the observed effect size would be vastly different from the predicted

effect size used in the sample size calculation. This, in turn, leads to the study

being under-powered (Friedman, 2010). However, consideration must be placed on

establishing a method to estimate which null effects (P > 0.05) are truly non-

effective interventions and which are due to the trial being underpowered. If a trial

is underpowered then there still could be a true effect, and indeed the observed

effect could be the true effect, where there just was not enough participants to get a

statistically significant result. On the other hand, if the intervention is not effective,

then any target effect size would be deemed overly-optimistic and the methods used

to get that target would need to be investigated. Since one can never truly know

what the true effect is, we need to develop a protocol to follow to estimate the

proportion of true “null” effects.

Different methods are more appropriate for different contexts. Contexts, in this

sense, are whether the difference is important or realistic. The box below shows

which methods can be used to specify the differences by context, along with Figure

3.2.
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• Important Difference

– The anchor method

– The distribution method

– The health economic method

– The standardised effect size method

• Realistic Difference

– The pilot-study method

• Important or Realistic Difference

– The review of evidence base method

– The opinion-seeking method

Figure 3.2: Illustration of methods of quantification of the target difference by
context.

3.2.4 DELTA2 Project

The DELTA2 project is a research collaboration funded by the Medical Research

Council. It concentrates on developing a guidance document for trialists, researchers
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and statisticians about eliciting the target difference. This project started after the

commencement of the PhD and JCR became part of the research team. It included

the opportunity to present work at conferences and workshops and allowed the

collaboration with experts in this field of research from other institutions as well as

industry. The work in this thesis forms part of the research used in this guidance

document and JCR has assisted in writing the document. Being part of this reseach

project has allowed JCR the opportunity to travel for conferences and the work to

be presented in Oxford, Montreal, London and Baltimore (sadly JCR was unable to

attend the conference in Baltimore) throughout the course of the PhD.

3.3 Chapter Summary

This chapter has described the most common methods for determining the estimated

effect size, or target difference, d. All the methods have advantages and disadvan-

tages, however only some of the methods are based on previous work. These include

the anchor method, the distribution method, the pilot study method, the review of

the evidence base method and it has been shown that the health economic method

can be based on previous work (Tilbrook et al., 2011). However, the health economic

method is a more specialised area of statistics which is outside the scope of this re-

search. In the context of two powered up studies in sequence, if the current trial is

being based on previous information this would imply that the previous work was

shown to be promising. If trials were unbiased, the second trial would be performed

regardless of the results of the previous trials. Therefore, it would seem that there

could be a form of bias when basing one trial on the results of others, which will

be further investigated in chapter 5. This leads us to question whether this bias is

ever adjusted for or accounted for, which will be discussed in chapter 4. To investi-

gate this further, a review of published randomised controlled trials from the Health

Technology Assessment programme is completed and discussed in chapter 4. This

review demonstrates the most commonly used and reported methods of elicitation.

50



4. Review of Reports by the Health

Technology Assessment

4.1 Introduction

In previous chapters it was highlighted that there are a number of different ways to

elicit a target difference for a sample size calculation. In chapter 2 it was demon-

strated how sensitive a standard sample size calculation is to the target difference

for a variety of trial designs. Due to this sensitivity, it is important to consider care-

fully the chosen target difference. This chapter will explore what are currently the

most common methods used to estimate the target effect size in Health Technology

Assessment (HTA) funded trials.

A major funder of research into clinical interventions in the UK and the most inte-

grated clinical research system in the world is the National Institute of Health Re-

search (NIHR) (of Health Research, 2010c), and the largest programme within that

is the Health Technology Assessment (HTA) (of Health Research, 2010a). The HTA

programme funds commissioned and researcher-led health related research including

randomised controlled trials of clinical interventions in the UK (of Health Research,

2010a).

In order to answer the research questions described earlier in chapter 1, we should

consider the current state of reporting of clinical trials. In particular, it would be

interesting to establish what particular methods of elicitation for the target effect

size are being used.

As mentioned in chapter 3, if trials are being designed and powered using observed

effect sizes from previous research, there could be a bias introduced similar to regres-

sion to the mean. This would result in the observed effect size being considerably

less than expected, even if the treatment worked. This bias occurs when using the

results from one trial to design the next.

It was reported in the DELTA publication (Cook et al., 2014) that the methods

of elicitation which were commonly used could be broadly categorised into seven

distinct groups, which are described in brief detail in chapter 3. It would be of
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interest to explore whether the methods used do fall into these broad categories

and to explore whether there are some of these methods which are more commonly

applied.

The seven DELTA elicitation categories are

• Anchor method;

• Distribution method;

• Health-economic method;

• Opinion-seeking method;

• Pilot study method;

• Review of evidence base method;

• Standardised effect size (SES) method.

4.1.1 Chapter Aims

The aim of this chapter is to investigate, through a review of the Health Technology

Assessment reports, what methods are most commonly being used and reported to

quantify the target effect sizes. This will provide the groundwork for which methods

will be best to focus on for the simulations of common trial designs. Chapter 6 will

focus on those designs which are more often reported to be able to provide the most

useful advice for trialists. It is also of interest to know whether particular methods

are more common for various clinical areas or outcome measures.

As stated, the primary objective of this part of the research is to establish which

methods of elicitation for the target difference are most commonly used. This is to

show that if many reports indicated that previous research was used to estimate a

target effect size, there may be a significant problem as in these cases the sample

size calculation and resulting trial could be biased due to regression to the mean.

4.2 Methods

In order to fully assess the current methods used to elicit the target effect size,

a review of the HTA journal reports (of Health Research, 2010b) was conducted.

The HTA journal was chosen because it is one of the largest funders in the UK

(of Health Research, 2010a). A criteria upon receiving funding from the HTA is
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that the trial is published in the HTA journal, which means that the HTA publish

all trials it funds, irrespective of the statistical significance achieved. This reduces

the likelihood of publication bias and justifies the use of a single journal in this

review. Some of these trials are also published in other leading journals, such as

the Lancet, the New England Journal of Medicine and the British Medical Journal.

Strict inclusion criteria is implimented which is primarily based on the discussion

from chapter 2, focusing on parallel group, superiority trials. Based on personal

correspondence with a statistician in the clinical trials unit, 95% of trials in Sheffield

are publicly funded by the NIHR so this research is of local importance.

4.2.1 Scoping Review

Initially a general scoping review was undertaken for a recent volume of the journal.

This was done to assess the number of eligible trials and refine the inclusion and

exclusion criteria. The scoping review used volume 18, published in 2014. The

inclusion criteria for this review were that the trial was a randomised controlled trial.

Reports were excluded if they focused on systematic review or pilot, observational

or cohort studies. Details of the inclusion of reports can be seen in Figure 4.1. It

can be seen that on the initial assessment of this volume there were 12 trials which

were eligible for inclusion. It was assumed that if this was representative of the

average number for each volume, it was estimated that there would be 216 reports

in the final review. However, it was expected that due to time contraints this would

not be feasible to complete within the time of the PhD, so it was decided to limit

the inclusion to a 10 year period from 2006 to 2016, section 4.2.2 describes the

criteria decisions in more detail. This resulted in a potential 120 reports meeting

the eligibility criteria.

4.2.2 Final Inclusion and Exclusion Criteria for

the Full Review

The inclusion criteria for the full review were as follows:

• Randomised controlled trial (RCT)

• Parallel-group, superiority trial design

• Not a cluster trial

Superiority trials with a parallel group design are the simplest and most common

type of trial performed. The selection process consisted of a number of stages; the

titles of journal reports were initially read to establish relevance and reports which
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Figure 4.1: A flow chart to show inclusion of reports from Volume 18 in scoping
review.
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were not RCTs were excluded. The titles were read initially but if this was not

sufficient to determine eligibility then the abstract was read as well to inform the

decision.

The exclusion criteria consisted of excluding

• Pilot, feasibiliity or observational studies

• Systematic reviews

• Cost-effectiveness studies

• Methodological reports

• Vaccination trials

4.2.2.1 Reasons for Exclusion

Reports were excluded if, during the title and abstract reading phase, their focus was

a systematic review, feasibility study, cost-effectiveness study, pilot study or the trial

being observational as opposed to a RCT. Methodological reports were also excluded

for this reason. During the data extraction phase it became apparent that for some

trials which were RCTs it proved difficult to extract the correct information. An

example of this is vaccination trials, which had multiple primary end-points, making

data extraction challenging owing to the number of primary end-points and results

provided.

Trials with more than 3 arms tended to be more complex due to the number of

comparisons being made. It was difficult to decipher the sample size justifications

for these trials due to missing information or there being more than one primary

outcome of interest. This finding resulted in these types of trials becoming exclusion

criteria.

Trials with non-inferiority or equivalence objectives were also excluded due to the

target difference not being specified for these trials. Instead, a non-inferiority or

equivalence margin is given to determine the required sample size, as described in

chapter 2. The hypothesis for these types of trial are slightly different to that for

superiority trials as they are not aiming to show a particular size of difference,

rather that they are aiming to show the difference is the same, almost the opposite.

Hence, these trials were excluded as well as crossover trials. Whilst the crossover

sample size calculation is similar to the parallel group sample size calculation, as

discussed in chapter 2, the observed effect sizes which are reported can be different.

Also discussed in chapter 2 that the standardised effects are larger for crossover

trials since the variance is the pooled variance σ2
w, not the individual, σ2. Due

to time constraints it was decided to exclude these reports. Finally, trials which
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implemented a factorial design were excluded due to the sample size justification

being too complex for extraction and the information required for extraction being

incomplete or missing. The trials which did contain the relevant information tended

to have co-primary endpoints which made extraction more difficult as there were

multiple target effect sizes, and the sample size justifications were unclear which

one was used as the initial sample size target effect size.

It was determined that a time frame should be included in the selection criteria

due to the consuming nature of a review this large, as well as there being only one

data extractor (JCR). Since the CONSORT guidelines were implemented in 2010

for HTA reports, it was discussed that it may be useful to compare the reports from

pre- and post-CONSORT. Therefore, reports were excluded if they were published

prior to 2006 and after 2016, which left 10 years’ of reports to review. This was

confirmed to be a justified choice at the start of extraction since there were very few

RCTs published in early volumes, and those which were published did not contain

enough information for full extraction.

4.2.3 Data Extraction

The data was extracted using a series of Microsoft Excel spreadsheets. This was

first completed for title and abstract reading, then a new workbook was used for

the data obtained from reading the full report. All categorical variables were coded

prior to the completion of data extraction and a record of the coding kept separately

to the extraction sheet.

The data extraction was completed by one person (JCR) over a period of 9 months.

A full list of variables which were extracted can be found in Appendix B.1, which

includes:

• Study title, corresponding and lead author

• Publication year, Volume, Issue and ISRCTN numbers

• Trial design detail (including multicentre, randomised, type of trial)

• Clinical area

• Trial population of interest and setting

• Detail about the primary end-point, intervention and control

• Target, achieved and evaluable sample sizes

• Target power and significance level

• Target difference, elicitation method, MCID?
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• Observed treatment differences and effect size

• P -value, 95% Confidence interval

• Further comments

Any particularly interesting phrases or comments about the results of the trials were

documented in the extraction sheet as free text; good and bad examples of reporting

were also recorded for the possibility of discussion. Free text was also used for any

further details about each variable. The interesting case studies have been discussed

later in the chapter.

4.2.4 Categorisation

A number of variables could be classified into several categories. In the event of a

categorical variable which was subjective in nature, such that it was unclear to JCR

which of the categories they fitted into best, advice was sought. This occured for

two of the variables, the elicitation method used and the clinical area. Each of these

were managed in a different way.

4.2.4.1 Elicitation Categories

As discussed in chapter 3, the original DELTA project formed seven broad categories

for methods frequently used to determine the target difference which are

• Anchor method

• Distribution method

• Health economic method

• Opinion-seeking

• Pilot study

• Review of evidence base

• Standardised effect size (SES).

Whilst these categories are not absolute, they do condense the wide variety of meth-

ods into manageable units. The various methods of elicitation could have been cat-

egorised in two different ways. The first being in categories designed by JCR. These

categories were based on JCR’s experience of the whole range of approaches iden-

tified up to that point and provided more detail about the previous research which
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had been used in elicitation. During data extraction, JCR attended a DELTA2 con-

sensus workshop in Oxford (27th − 28th September 2016) and presented the intial

results. In this presentation of the results, JCR used the elicitation categories she

had devised herself (as mentioned above). The workshop delegates advised that it

would be useful for JCR to develop the categorisation process so that her categories

were reduced in number and mapped onto the DELTA categories to enable direct

comparison. The two sets of categories are shown in Table 4.1.

Dissertation Defined Categories DELTA Categories
Previous research -

Review of Evidence

(excluding pilot study, systematic review,
meta-analysis and Cochrane review)

Systematic Review
Cochrane Review

Meta-analysis
Pilot Pilot

Expert consensus Opinion-Seeking
SES SES

Other Anchor
(including Anchor, Distribution, Distribution

Health Economic methods) Health Economic
Other

No mention No mention

Table 4.1: The two sets of elicitation categories, demonstrating how they match up.

The original categories provided more detail about the review of evidence and pre-

vious research, which was needed for another aspect of the research. However, from

an analytical perspective it was decided to use the DELTA categories. These cate-

gories are useful since they allow direct comparison with the findings of the DELTA

survey, where trialists were asked which methods they commonly used to elicit the

target effect size. Therefore, both were included in the final data extraction.

It was also discussed in the DELTA report that a mixture of methods was commonly

used (Cook et al., 2014). This resulted in the development of a Mixed category

as well. One category which needs further explanation is the Previous Research

category in the dissertation defined categories. This category included the use of

previous published research which was not consistent with the other categories of

systematic review, meta-analysis, Cochrane review or pilot studies. This included

observational or cohort studies, or one previous trial which the trialists’ used as a

reference.
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4.2.4.2 Clinical Categorisation

The opinion of a clinical doctor, Dr Zhe Hui Hoo, was sought to assist with putting

the clinical areas documented in the reports into categories. The initial categories

were set by JCR, however as she has no clinical background she struggled to identify

and categorise some of the conditions into clinical areas. The clinical areas them-

selves are based on the disease or condition being assessed. Prior to clinical guidance

from Dr Hoo, there were 15 categories in total with a considerably large “Other”

category. After clinical guidance this had increased by 5 categories, resulting in a

comprehensive list of clinical categories all of which are commonly recognised clinical

areas and can easily be differentiated.

Categories
Initially Used Medically-Advised Post-hoc Condensed

Mental Health Mental Health Mental Health
Oncology Oncology Oncology

Orthopaedics Orthopaedics Orthopaedics
Obstetrics and Gyn. Obstetrics and Gyn. Obstetrics and Gyn.

Cardio-vascular Cardio-vascular Cardio-vascular
Gastro-intestinal Gastro-intestinal Gastro-intestinal

Respiratory Respiratory Respiratory
Stroke Stroke Stroke

Diabetes Diabetes Diabetes
Dermatology Dermatology Dermatology
Immunology Immunology Immunology
Neurology Neurology Neurology
Paediatrics Paediatrics Paediatrics

Haematology Haematology
OtherPrimary Care Primary Care

Other

Emergency Care
Renal/Urology Renal/Urology

Geriatrics Geriatrics
Critical Care Critical Care

Lifestyle Lifestyle

Table 4.2: The two sets of clinical categories, demonstrating the changes at each
stage of extraction.

Table 4.2 shows the various clinical categories used at each point of extraction. The

clinical advice was useful for cases where the reviewer (JCR) was unsure which

category to put some trials in if they had more than one possible category. For ex-

ample, for a trial investigating childhood asthma, it was advised to categorise this as

paediatrics as opposed to respiratory. One category which could constitute a multi-

tude of other clinical areas is Primary Care. This category was not used frequently,

however it specifically referred to trials which directly involved GP practices and

care-pathways involving the GP.

59



Once extraction had been completed it became apparent that three clinical cate-

gories were only used for one reported trial, so these were condensed back down

post-hoc to form a considerably smaller “Other” category. This is detailed in Table

4.2.

4.2.5 Analysis

Descriptive statistics and plots were used, with a variety of summary statistics being

used dependent on distribution shape. Means and standard deviations were used

for data which were Normally distributed, whilst median and inter-quartile ranges

were used for any variables which were skewed or count data.

4.2.5.1 Standardisation of Effect Sizes

It was anticipated that a wide variety of measures would be reported, and these

would depend on the outcome of interest and method of analysis used in the trial.

It was assumed that these may include mean differences, regression coefficients, odds

ratios, relative risks or difference in proportions. A discussion was held between JCR

and her supervisors on how to make the results comparable. It was agreed that the

results should all be presented on the same scale. One way to do this is to use a

scale-independent measure of effect, such as the standardised effect size. Based on

the variables which were to be extracted, some manipulation of equations could be

completed in order to standardised all the effect sizes, both the observed and target.

The observed effect sizes were standardised using two methods to confirm accuracy,

the first method by using the extracted observed effect size and confidence interval

to calculate the test statistic, as shown in Table 4.3. The second method simply

took the inverse of the P -value as shown in Equation 4.1. If only a P -value was

provided then the second method was used alone.

δobserved = Φ−1
(
P − value)×

√
1

nA
+

1

nB
(4.1)

where δobserved is the standardised observed effect size, Φ−1(. . . ) is the Normal inverse

of the P -value and ni is the sample size in arm i.

These results were compared and then used to assess the observed effect sizes in

various clinical areas, as well as allow a direct comparison of observed and target

standardised effect sizes.

The target effect sizes were calculated by re-arranging the sample size formula (as

shown in Equation 4.2) using the target sample size, the target power and signifi-

cance level, all provided in the report.
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Re-arrangement
Observed Effect Z-statistic for Standardised

Type Calculation Observed Effect

Mean

Z = d
SE(d)

δobserved = Z ×
√

1
nA

+ 1
nB

Difference
Difference

in Proportions
Regression
Coefficient

Absolute Risk
Reduction

ANOVA/ANCOVA
coefficients

Odds Ratio Z = ln[OR]
SE(ln[OR])

Risk Ratio Z = ln[RR]
SE(ln[RR])

Hazard Ratio Z = ln[HR]
SE(ln[HR])

Table 4.3: The methods used to estimate the standardised observed effect size.

δtarget =

√
2×

(
Z1−β + Z1−α/2

)2

nA
(4.2)

where δtarget is the standardised target effect size, Z1−β and Z1−α/2 are the Normal

values for the power and significance of the trial, respectively, and nA is the sample

size per arm.

These standardised values were assessed using simple summary statistics and plots

to provide a visual display of the results.

4.2.5.2 Minimum Detectable Difference

Another aspect of the standardised differences which can be analysed is the minimum

detectable difference (Wu et al., 2011). This is further detailed and utilised in chapter

7. The minimum detectable difference is the difference that is the smallest difference

under the set parameters of the trial which is detectable. This can be calculated by

setting the power to be 50%, such that Z1−β = 0 in the sample size equation 2.1.

Doing this shows the minimum value that the confidence interval around the point

estimate will exclude the null value.

The minimum detectable difference (MDD) can be used to show that if a trial

recruits the required target sample size, thereby achieving the planned power, the

difference which is needed to observe a P -value of 0.05 is 0.6d for 90% power and
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Year Volume Frequency
2016 20 20
2015 19 19
2014 18 12
2013 17 11
2012 16 8
2011 15 6
2010 14 8
2009 13 10
2008 12 2
2007 11 3
2006 10 8

Total 107

Table 4.4: Frequencies of included trials by year and volume.

0.7d for 80% power. These results are used in sub-analysis (See section 4.3.5.1) to

determine whether the observed effect size is larger than the detectable difference.

4.3 Results

4.3.1 Report Selection

In total there were 994 reports available between 1998 and 2016, after restricting

the publication dates to 2006 − 2016 this became 684. Once the initial exclusion

criteria were imposed (excluding systematic reviews, feasibility trials, observational

trials and methodology reports) this was reduced down to 175 reports which were

taken forward to full reading.

Of the 177 reports which were taken forward, 75 were excluded which resulted in 102

being included in the analysis, corresponding to 107 randomised controlled trials.

This was due to there being 5 reports which documented 2 trials. Two of these

trials consisted of 3 arms, where comparisons were made between control and each

of the intervention arms. The remaining three reports had two separate 2 armed

studies in the same clinical area but with different interventions. Since the reporting

of each trial was separate, it was decided to consider these trials as separate also.

Therefore, for the remainder of this chapter the results will be presented by trial as

opposed to by report. The reasons for excluding 73 of the reports was that they

were of a complex trial design. These included factorial, non-inferiority, equivalence

or cluster trials, as well as those reports which were not RCTs. It is of note that

11 of the reports were excluded due to not containing enough information or data.

Table 4.4 shows the number of RCTs included for each of the volumes between 2006

and 2016 and Figure 4.2 shows the inclusion of trials at each point of assessment.
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Figure 4.2: A flow chart to show inclusion of reports.
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4.3.2 Study Characteristics

The reports which were included were all superiority parallel group trials. As stated

there were 5 reports which documented multiple RCTs, each of the RCTs were docu-

mented separately if it was possible to distinguish clearly between the trials. Figure

4.3 shows the various clinical areas which were selected. These were broadly as-

signed during data extraction with additional relevant details noted. The categories

were confirmed by a clinician once extraction was complete.

For example, if considering a trial investigating asthma treatments, it was cate-

gorised as respiratory and confirmation was sought once data extraction was com-

plete. This was particularly useful for disease areas like sleep apnoea, which were

intially categorised as “Other” but subsequently categorised by the clinician as res-

piratory.

Table 4.5 shows the frequencies and percentages of study characteristics. There

are a large number of trials reported in the area of mental health in the past 10

years by the HTA, with 16% of included reports being in mental health. This was

followed closely by cardiovascular (9.5%) and paediatrics (8.6%). 49% of reports

were categorised as trials taking place in hospital settings, with 23% in primary

or secondary care. This category included whole NHS trusts and specialist clinics.

The majority of included reports were two-arm trials (78%) and had standard care

(79%). Further plots can be found in Appendix B.

4.3.3 Elicitation of Target Effect Size

Figure 4.4 shows there are nearly 47% of reports used a review of evidence to es-

timate the target effect size. It was noted in a free text entry that all trials which

reported using mixed elicitation methods all used review of evidence as part of the

combination of methods. The reports which were categorised as “Mixed” methods

all used the review of evidence in combination with other methods. Combining re-

view of evidence methods, mixed methods and pilot methods demonstrate that any

use of previous research resulted in 57.2% of trials within this combined category.

This shows that since the frequency of trials using previous research to base their

sample size calculations or justifications is so high, without an adjustment being im-

plemented then a large proportion of trials could be inherently under-powered and

observe an effect size which is less than expected, even if there is a true treatment

effect present.

We can see the relationship between the elicitation methods used and the clinical

area, as shown in Figure 4.6. Mental health and cardiovascular show the greatest

proportion of reports which use the review of evidence (8.3% and 6.5% respectively).
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Characteristic Count %

Clinical Area

Cardiovascular 11 10.3%
Critical Care 2 1.9%
Dermatology 9 8.4%

Diabetes 3 2.8%
Gastrointestinal 9 8.4%

Geriatrics 2 1.9%
Immunology 2 1.9%

Lifestyle 5 4.7%
Mental Health 18 16.8%

Neurology 4 3.7%
Obstetrics and Gynaecology 2 1.9%

Oncology 4 3.7%
Orthopaedics 6 5.6%
Paediatrics 9 8.4%

Renal/Urology 6 5.6%
Respiratory 7 6.5%

Stroke 5 4.7%
Other 3 2.8%

Number of Arms
2 84 78.5%
3 23 21.5%

Setting

Hospital 51 47.7%
General Practice 16 15.0%

Mixed 7 6.5%
Community 6 5.6%

Primary/Secondary Care 25 23.4%
Other 1 0.9%

Missing 1 0.9%

Intervention

Drug 20 28.0%
Therapy 41 38.3%
Surgical 11 10.3%

Education 2 1.9%
Complex 5 4.7%

Other 18 16.8%

Control Type
Active 85 79.4%

Placebo 22 20.6%

Primary Endpoint Measure

Continuous 49 45.8%
Proportion 41 38.3%

Time to Event 10 9.3%
Count 4 3.7%
Other 3 2.8%

Table 4.5: Frequencies for study characteristics.
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DELTA Elicitation Method
Anchor Distribution Health Opinion Pilot Review of SES Mixed No Other

Economics Seeking Evidence Mention

Clinical
Area

Mental Health 2 9 1 4 2
Oncology 1 1 1 1
Orthopaedics 2 2 1 1
Obs. and Gyn. 1 1
Cardiovascular 1 7 2 1
Gastrointestinal 1 3 1 4
Respiratory 2 3 2
Stroke 1 1 2 1
Diabetes 1 2
Dermatology 1 2 2 2 1 1
Immunology 2
Neurology 1 3
Lifestyle 2 2 1
Paediatrics 1 5 1 1 1
Renal/Urology 4 2
Geriatrics 1 1
Critical Care 1 1
Other 1 1 1

Table 4.6: Elicitation methods for each clinical area with the most commonly used highlighted. Empty cells were zero counts.
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4.3.4 Target and Observed Effect Sizes

Another aspect of this research was to establish whether particular clinical areas

were over- or under-estimating their target effect size. If the estimated effect sizes

are standardised, we are able to see the variation across the different clinical areas.

Whilst this variation could be attributed to the different interventions and outcome

measures, it is still of interest. The estimated effect sizes were standardised by

rearranging the sample size formula to give the standardised effect size using the

target power, sample size and significance levels.

Table 4.7 shows the average estimated and observed standardised effect sizes for

each clinical area and overall, both for all trials and the statistically significant

trials. These were calculated as described in section 4.2.5. It can be noticed that for

all trials the average estimated effect size is around 0.30, which indicates that those

trialists’ who seek to observe a “moderate-large” effect size (using the definitions

by Cohen (Cohen, 1988)) of greater than 0.6 are being unrealistic in their trial

design. Recall that the boundaries set by Cohen are 0.2 for a small effect, 0.5 for

a moderate effect and 0.8 for a large effect. For the statistically significant trials

(N = 35, 32.7%), the results are still slightly skewed as the mean and median are

not similar. The median target standardised effect size is 0.31 compared with the

median observed effect size of 0.34. This is as expected, since the observed effect

size would by similar to the target in order to reach statistical significance.
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All Results Statistically Significant Trials Only
Target SES Observed SES Target SES Observed SES

Clinical Area Count Mean Median* Mean Median* Count Mean Median* Mean Median*
Cardiovascular 11 0.228 0.171 0.133 0.050 2 0.113 0.113 0.236 0.236
Critical Care 2 0.151 0.151 0.016 0.016 0
Dermatology 9 0.343 0.368 0.111 0.061 0

Diabetes 3 0.308 0.316 0.220 0.166 1 0.431 0.431 0.446 0.446
Gastro-intestinal 9 0.306 0.295 0.311 0.343 5 0.363 0.360 0.487 0.410

Geriatrics 2 0.290 0.290 0.331 0.331 1 0.261 0.261 0.220 0.220
Immunology 2 0.509 0.509 0.432 0.432 1 0.258 0.258 0.432 0.432

Lifestyle 5 0.295 0.300 0.118 0.065 1 0.433 0.433 0.243 0.243
Mental Health 18 0.360 0.332 0.227 0.165 6 0.430 0.386 0.346 0.358

Neurology 4 0.330 0.270 0.177 0.056 1 0.577 0.577 0.596 0.596
Obstetrics and Gyn. 2 0.252 0.252 0.341 0.341 1 0.299 0.299 0.628 0.628

Oncology 4 0.256 0.255 0.139 0.143 1 0.212 0.212 0.273 0.273
Orthopaedics 6 0.349 0.331 0.160 0.164 4 0.359 0.344 0.220 0.237

Other 3 0.180 0.180 0.041 0.041 1 0.051 0.051 0.041 0.041
Paediatrics 9 0.338 0.362 0.359 0.230 5 0.414 0.410 0.584 0.543

Renal/Urology 6 0.271 0.296 0.095 0.019 1 0.114 0.114 0.070 0.070
Respiratory 7 0.248 0.229 0.128 0.099 3 0.263 0.251 0.247 0.241

Stroke 5 0.263 0.284 0.109 0.133 1 0.145 0.145 0.028 0.028

Overall 107 0.302 0.300 0.190 0.112 35 0.336 0.309 0.363 0.343

Table 4.7: Summary statistics for the standardised estimated and observed effect sizes. SES = Standardised Effect Size. * Median used
due to skewed observed effect size distribution.
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4.3.4.1 Minimum Clinically Important Difference

Only 20 reports made a direct comment about either using or not using the minimum

clinically important difference (MCID), with 25% of those reports stating they were

using the MCID as the target effect size. Figure 4.5 shows that whilst there appears

to be a linear trend between the target and observed effect sizes, there seems to be

no association between whether the target effect size was based on the MCID and

the size of the target and observed effect sizes.

There is also no obvious association between the use of the MCID and the signif-

icance of the trial, as seen in Figure 4.6. However, since there were so few trials

which reported this detail the initial conclusions are limited.

4.3.4.2 Clinical Areas

It can be seen in Figure 4.7 shows the large variation which occurs, as well as

the median target effect size being 0.300. There is considerable grouping around

certain values for different clinical areas. There appears to be a cluster around 0.4

for dermatology, whereas the mental health cluster is slightly lower at around 0.30.

Cardiovascular is also exhibiting a clustering around the lower end of the scale. The

scale of this plot ends at 0.8 which indicates that none of the trials expected an

effect size larger than that. If we compare this to the Cohen boundaries (Cohen,

1988), then none of the trials expected a large effect size.

Figure 4.8 shows the standardised observed effect sizes for each clinical area along

with the average for each clinical area. There are differing extents of variation

between clinical areas.

The difference between the standardised target and observed effect sizes can be seen

in Figure 4.9. This plot shows that there are some extreme differences, yet the

majority lie around 0.1 which is a small difference.

In Table 4.8 it can be observed that the pre- and post-2010 standardised effect sizes

are slightly different both overall and when split by clinical area.

4.3.4.3 Standardised Target and Observed Effect Sizes

If these standardised target effect sizes are compared to those observed, as shown in

Figure 4.10, it is clear to see that it is rarely the case where the target and observed

are similar. The significant results can also be seen on this plot. The line on the

plot indicates the point where the target and observed effect sizes are equal. The

blue points to the left of the line are trials where the observed effect size was larger

than the target, yet the trial remained not significant. The green points to the right
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Estimated Standardised Effect Size
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Figure 4.5: The standardised estimated and observed effect sizes split by whether
the estimated was the MCID or not.
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Figure 4.6: The standardised observed effect sizes split by whether the estimated
was the MCID or not and significance of the trial.
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Standardised Expected Effect Size
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Figure 4.7: The standardised estimated effect size used in the sample size calculation
across various clinical areas. The dashed line indicates the mean estimated effect
size (0.302) and the solid line represents the median (0.300).
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Standardised Observed Effect Size
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Figure 4.8: The standardised observed effect size across various clinical areas.
The dashed line indicates the mean estimated effect size (0.191) and the solid line
represents the median (0.113).
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Figure 4.9: The difference in standardised target and observed effect size by clinical
area and statistical significance.
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Pre-2010 Post-2010
Clinical Area Target Effect Size Observed Effect Size

Count Mean Median Count Mean Median
Cardiovascular 1 0.100 0.069 10 0.179 0.034
Critical Care 0 0.000 0.000 2 0.151 0.016
Dermatology 4 0.324 0.059 5 0.371 0.157

Diabetes 1 0.316 0.166 2 0.304 0.247
Gastro-intestinal 3 0.229 0.410 6 0.328 0.264

Geriatrics 1 0.261 0.220 1 0.319 0.443
Immunology 2 0.509 0.432 0 0.000 0.000

Lifestyle 0 0.000 0.000 5 0.300 0.065
Mental Health 5 0.463 0.166 13 0.309 0.164

Neurology 0 0.000 0.000 4 0.270 0.056
Obstetrics and Gynaecology 0 0.000 0.000 2 0.252 0.341

Oncology 1 0.362 0.115 3 0.212 0.171
Orthopaedics 0 0.000 0.000 6 0.331 0.164

Other 0 0.000 0.000 3 0.180 0.041
Paediatrics 3 0.274 0.579 6 0.376 0.180

Renal/Urology 0 0.000 0.000 6 0.296 0.019
Respiratory 1 0.162 0.009 6 0.240 0.144

Stroke 1 0.169 0.051 6 0.240 0.144
Overall 23 0.316 0.135 84 0.299 0.105

Table 4.8: Pre- and Post-2010 summary statistics for the observed and target effect
size. * Median used due to skewed observed effect size distribution.

of the line are the trials which observed a smaller effect size than the target, yet

were statistically significant.

Table 4.9 shows that continuous endpoints are most common, followed by propor-

tions. The three endpoints in the ‘Other’ category are two trials which used area

under the curve and one which had an ordinal endpoint.

Table 4.10 shows the movement between Cohen categories. The red cells indicate

trials where a moderate or large effect size was estimated and a smaller effect size

was observed. There are 32 trials which had a target effect size greater than the

observed effect size, compared to 57 trials which were similar in terms of the target

and observed effect sizes, with either a small or moderate effect size. A total of

Primary Standardised Target Standardised Observed
Endpoint Effect Size Effect Size
Measure Count Mean Median Mean Median

Continuous 49 0.375 0.353 0.277 0.219
Proportion 41 0.224 0.198 0.115 0.048

Time to Event 10 0.291 0.312 0.147 0.065
Count 4 0.250 0.245 0.045 0.048
Other 3 0.295 0.295 0.169 0.186

Table 4.9: Standardised effect sizes by type of primary endpoint.
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Standardised Expected Effect Size
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Figure 4.10: The standardised observed and estimated effect sizes, categorised by
statistical significance.
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Standardised Target Total
Effect Size

Small Moderate Large Very Large

Standardised
Observed
Effect
Size

Small 37 31 1 0 69
Moderate 7 20 0 0 27
Large 2 7 0 0 9
Very Large 0 1 0 0 1

Total 46 59 1 0 106

Table 4.10: The standardised estimated and observed effect sizes, categorised by
Cohen’s values.

17 trials had smaller target effect sizes than observed effect sizes. One trial was

excluded due to not reporting an observed effect size.

A plot was created (Figure 4.11), similar to a Bland-Altman plot, which shows the

average of the standardised observed and estimated effect sizes against the difference

between them. This plot also shows whether the results were significant or not. This

plot should show a random scatter if there is no relationship or association between

the difference and the average of the estimated and observed effect sizes. As seen

in the figure, there appears to be a relationship, as the average of the observed

and target effect sizes gets larger, the difference between the two also gets larger.

The points above the black line are over-estimated effect sizes and the points below

the black line are under-estimations. As expected, the over-estimated effect sizes

are mostly non-significant whereas the majority of under-estimations are significant.

The limits of agreement are the standard 95% confidence interval around the mean

difference. The plot is split by those trials which under-recruited by more than 10%

and those which achieved a sample size within 10% of their target.
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Figure 4.11: A Bland-Altman plot to show the differences between the target and
observed standardised effect sizes.

80



4.3.5 Subgroup Analyses

Some considerations for subgroup analysis are detailed in this section. From the

standardisation methods detailed in section 4.2.5.1, one is able to calculate the

standardised observed 95% confidence interval and the detectable difference.

The standardised 95% confidence interval will allow further investigation to estab-

lish how many non-significant trials found the target difference in the observed 95%

confidence interval. There were 7 trials which did not include all the required infor-

mation to fully answer this research question.

Of the 100 included trials, 84% of them overall found the standardised target dif-

ference within the limits of the standardised observed 95% confidence interval. As

discussed earlier in the chapter, the propotion of trials which were non-significant

is around two thirds (71/106, 67%). The proportion of trials which are both non-

significant and saw the standardised target within the bounds of the standardised

observed 95% confidence interval is 56% (N = 100).

4.3.5.1 Detectable Difference

As discussed in section 4.2.5.2, the minimum detectable difference is calculated for

the target power of each study. These values are then multiplied by the original

standardised target effect size to investigate whether the observed effect sizes are

detectable.

The results show that 33.96% of studies had a standardised observed effect size

larger than the MDD. It should be noted that one study had data missing, so the

total number of studies in this subgroup analysis is 106. This value is similar to the

proportion of studies which reached statistical significance (32.7%), though 18.9%

of the trials had opposing results, such that they were either statistically significant

but did not reach the MDD or vice versa.
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4.4 Case Studies

There were a number of reports which were noted as having well-explained examples

of the target difference elicitation or examples of other methods used.

4.4.1 Example of Well-Justified Target Effect Size

4.4.1.1 TITRe2 Trial

One report which was published in 2016 by Reeves et al. provided a thorough

justification of the target effect size (Reeves et al., 2016). It used a variety of

methods to gather as much information as possible in order to estimate the target

effect size, including using observational data to estimate the prevalence of eligible

participants, as well as to estimate conservatively the transfusion rates for each

group in the trial.

“The trial was designed to answer superiority questions. The following steps

were taken to calculate the sample size.

• From observational data, we assumed that approximately 65% of patients

would breach the threshold of 9g/dl and 20% would breach the 7.5g/dl

threshold. Therefore, with complete adherence to the transfusion protocol,

we assumed that transfusion rates should be 100% in the liberal group and

≈ 30% (0.20/0.65) in the restrictive group.

• In the observational analysis, 63% of patients with a nadir haematocrit

between 22.5% and 27%, and 93% of patients with a nadir haematocrit

below 22.5%, were transfused. Therefore, in combination with the propor-

tions of patients expected to breach the liberal and restrictive thresholds,

these figures were used to estimate conservative transfusion rates of 74% for

the liberal group and ≤ 35% for the restrictive group. These percentages

reflected the rates of transfusion documented in the observational study

(Figure 1) and assumed non-adherence with the transfusion protocol of

approximately 26% in the liberal group and 5% in the restrictive group.

• The observational frequencies of infectious and ischaemic events for trans-

fused and non-transfused patients were adjusted to reflect the estimated

transfusion rates in the two groups (i.e. 74% and ≤ 35%), giving event

rates for the proposed composite outcome of 17% in the liberal threshold

group and 11% in the restrictive threshold group. A sample size of 1468

was required to detect this risk difference of 6% with 90% power and 5%
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significance (two-sided test), using a sample size estimate for a chi-squred

test comparing two independent proportions (applying a normal approxi-

mation correction for continuity) in Stata version 9.

• The target sample size was inflated to 2000 participants (i.e. 1000 in

each group) to allow for uncertainty about non-adherence and the esti-

mated proportions of participants experiencing the primary outcome. We

regarded these parameter estimates as uncertain because (1) they were

estimated from observational data, (2) they were based on the red blood

cell transfusion rate only in Bristol, (3) they were based on routinely col-

lected data, using definitions for elements of the composite primary out-

come which are not identical to those proposed for the trial, and (4) they

were based on any compared with no red blood cell transfusion, rather

than on the number of units of red blood cells likely to be transfused in

participants who breach the liberal threshold. No adjustment was made

for withdrawals or loss to follow-up, as both rates were expected to be very

low.

We expected approximately two-thirds of participants to breach the haemoglobin

threshold for eligibility. Therefore, we predicted that we needed to register ap-

proximately 3000 participants into the study as a whole to allow 2000 partici-

pants to be randomised into the main study.

The main outcome measure for the economic evaluation was quality-adjusted

life-years (QALYs), which are derived from EQ-5D-3L utilities measured on a

continuous scale and time under observation. The analysis of QALYs required

baseline utility to be modelled as a covariate; the correlation between baseline

and 3-month EQ-5D-3L utilities was assumed to be ≥ 0.3 With a total sam-

ple size of 2000, the trial had more than 95% power to detect a standardised

difference in continuous outcomes between groups of 0.2 with 1% significance

(two-sided test). This magnitude of difference is conventionally considered to be

‘small’.”

This discussion of the sample size calculation is extremely detailed, including the

process the trialists implemented to use previous research, along with possible cau-

tions and limitations of the calculation. The sample size was inflated to allow for

uncertainties, which included that the estimates were based on observational data

and there were differences in the composite end points for the observational data

and the proposed trial (Reeves et al., 2016).
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Following personal correspondence with the primary author, he stated that the

process was truly “prospective”, such that they spent a lot of time working up the

trial and trying to think how it would work - in particular, agonising over whether

we could recruit and randomise before the operation and only include in the analysis

population the patients who breached 9.0 g/dl.

“What you have described is comprehensive, I think. I can also confirm that

the process was truly “prospective” - we spent a lot of time working up the trial

and trying to think how it would work - in particular, agonising over whether we

could recruit and randomise before the operation and only include in the analysis

population the patients who breached 9.0 g/dl. I am just so glad we stuck to

randomising at the time of breaching the liberal threshold (even though there

were considerable logistical challenges) - since there were instances of deviations

to do with randomisation that, otherwise, we would have spent hours discussing!

I find that ”target difference” is an alien concept to many clinicians - and I often

fall back on my original education as a experimental psychologist, employing a

”bracketing” method to home in on the ”threshold” difference that a clinician

believes to matter. In an application (currently under review), we wrote in

defence of a non-inferiority margin: ”Instead, we estimated the non-inferiority

margin using a bracketing technique. The trials unit investigators asked the

surgeon investigators to consider how they would act on differences of different

magnitudes; they were first asked to consider a large difference (expected to be

unanimously judged as importantly different, namely (absolute difference of 3%,

e.g. 7% vs. 10%, RR= 1.43). Surgeons were then asked to consider a small

difference, expected to be judged non-inferior, namely 0.5% (e.g. 7% vs. 7.5%,

RR= 1.07). Intermediate differences were postulated, alternating large then

small, converging on a threshold difference where the surgeons were equivocal

(1.5%).”

One aspect of this sample size calculation was my decision to inflate the sam-

ple size - by quite an arbitrary amount, really - to take some account of the

uncertainty. This probably reads as a better ”story” than it really was. It re-

flects an unquantifiable degree of uneasiness I felt (mainly because I knew the

observational dataset inside out) and I would be hard pressed to defend or ”op-

erationalise” the decision in other contexts. I guess I like target sample sizes

that are round numbers (because I don’t believe that sample size calculations

warrant the precision that are usually described as having). It is also interesting

to consider whether a NIHR funding board would accept this rather broadbrush

reasoning now - some older trialists might but I am less sure about younger
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statisticians who are often responsible for the very precise calculations that are

often reported.”

4.4.2 Examples of target effect sizes larger than those

previously observed

There were three useful examples of an apparent over-estimation of the target effect

size. These are the PD REHAB trial by Clarke et al., NIC-PIP trial by Tickle et al.

and the BoTULS trial by Shaw et al.

4.4.2.1 PD REHAB trial

For the Clarke study, the trial investigated the effect of physiotherapy and occupa-

tional therapy on patients with Parkinsons’ disease (PD) (Clarke et al., 2016).

“In stroke patients, the MCIC in NEADL is 1-2 points. However, such a small

change may be of only little benefit to PD patients; a clinically meaningful

change in NEADL for PD patients is likely to be around double this, at 2.5

points. A 2-point change on the NEADL represents becoming inde-

pendent in one item (e.g. stair climbing, crossing roads or feeding

onself) or improvement in two items (e.g. from being dependent on

another person with help to being fully independent). To detect a 2.5-

point difference in NEADL at 3 months (using the observed SD from the PD

OT trial of 10.1 points; p < 0.05 two-tailed; 90% power) required 340 patients

in each group, increased to 750 participants (375 per group) to allow for around

10% non-complaince and dropout.”

They aimed for a difference of 2.5 on the NEADL score which was the primary

outcome, but observed changes of 1 and 1.5 in each of the groups in the trial. The

target was elicitated based on what was deemed to be clinically meaningful to the

population of interest (PD patients), since the original basis was that the minimum

clinically important change (MCIC) of 1-2 points on the NEADL scale was based on

stroke patients. There was no further discussion in the report regarding the choosing

of 2.5 and whether or not this was overly-ambitious. However, it was discussed that

the majority of the trial population had “mild disease with near normal NEADL

scores. This may have led to a floor effect, as the NEADL score could not improve

much from such a good baseline score.” (Clarke et al., 2016).
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Correspondance with the trial statistician resulted in some discussion that the high-

lighted section in the above extract implied that the method of elicitation was based

on opinion-seeking from experts (both clinicians and patients).

It should be noted that whilst the target effect size was not met, this does not mean

that it was an over-estimate of the effect size. It could be that the intervention

was not successful in meeting the effect size, or, more likely in this case, that the

population selected were too healthy so large improvements were not possible.

4.4.2.2 NIC-PIP trial

The Tickle study aimed to measure effects of a dental regime for young children(Tickle

et al., 2016). This study based the target effect size on a previous similar study which

observed a difference in proportions of 0.08; they expected to see a larger difference

in their trial so used 0.10 in the sample size calculation.

“The principal outcome measure is conversion from a caries-free state to caries-

active state in the primary dentition. The sample size is therefore based on

measuring an absolute difference between the intervention and control groups in

the proportion of children who are free of the disease at 3 years. In the sample

size calculation, we expected to see an absolute difference in the proportion

of children with caries after 3 years of 0.1 between intervention and control

groups. This expectation was based on the findings of a public health trial

of toothpaste containing 1450 p.p.m. of flouride, on preschool children in the

north-west of England, which reported 0.08 absolute difference in the proportion

of children with caries active between the intervention and control groups. In

this proposal, as fluoride-containing toothpaste was supplemented with biannual

applications of fluoride-containing varnish, we expected to see a larger effect size

and, therefore, a 0.1 absolute difference in proportions.

The best data on the event rate for the practice-based population in Northern

Ireland came from the Business Services Organisation database rather than epi-

demiological studies on other populations. Business Services Organisation data

collected in 2008, at the time of planning the study, showed that 75% of 2− and

3−year olds in Northern Ireland who were registered with a dentist were caries

free at first attendance. over a 3−year period, this reduced to 40% of 5− to

7−year-old children being caries free. Therefore, a further 35% of children were

expected to develop caries active over a 3−year period. Based on these data and

selecting caries-free children for inclusion in the trial, it was estimated that 47%

would develop caries active over the 3 years. A two-group chi-squared test with

a 0.05 two-sided significance level would have 90% power to detect the difference
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between a proportion of 0.47 and a proportion of 0.37 [odds ratio (OR) of 0.662],

if the sample size in each group is 510.”

The observed proportion was actually 0.05 which did not reach statistical signifi-

cance. This is an example of an over-estimation of the effect size. In the discussion of

this report it was mentioned that the estimate was also based on what would change

clinical practice, as well as the previous data. They performed post-hoc analyses

to confirm that the study was not underpowered to detect the original estimate of

0.10, but they clearly state that “one could argue that we set an ambitiously high

effect size” (Tickle et al., 2016).

After discussion with the primary author, some further information regarding the

journey to estimate the target effect size was provided. The target effect size was

based on 3 factors. These were as follows

1. “a large trial of fluoride toothpaste sent to children in the same target age

group conducted previous to the trial reported an effect size of 0.8. NIC PIP

was a trial of a composite intervention comprising of providing fluoride tooth-

paste and fluoride varnish to the children. As fluoride has a well documented

dose response relationship to caries we expected that the two interventions

would have an additive effect.

2. we took soundings from primary care dentists about what would be a clini-

cally important difference which would convince them to change their practice

or would convince policy makers that an investment in the intervention was

worthwhile - and there was consensus that a 10% or more absolute reduction

would influence clinicians behaviour and policy. In hindsight it would have

also been helpful ask what threshold would convince policy makers or clin-

icians that the intervention was not justifiable in terms of continuing NHS

funding.

3. sample size - a sample size larger than 1500 - would have increased costs

dramatically and the trial may not have been funded by the HTA. ”

They also stated that

“Out of the 3 factors I think the issue of clinical and policy importance is the

most important factor in determining effect size - but this should be informed

by current evidence (1) and take into account logistical and financial aspects of

running a trial (3). ”
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4.4.2.3 BoTULS trial

Another report which stated they were overly ambitious in the design of the trial

was by Shaw et al. (Shaw et al., 2010). This trial aimed to asses the treatment of

upper limb spasticity casued by a stoke with a drug.

“A power calculation was performed at the start of the study using prognosis

based methodology. A clinically important treatment effect was defined as a

difference in good outcomes between intervention and control groups of 15%

where a good outcome was defined as listed above for each ARAT group; it was

expected to see 20% of the control group achieve good outcomes and 35% of the

intervention group achieve good outcomes. Using Fleiss’s method for a binary

outcome and inflating the sample size by 10% to allow for attrition, we needed

to recruit a total sample of 332 participants to give 80% power to detect a 15%

difference in good outcomes assuming a two-tailed test and a significance level

of 5%.”

The study observed a difference of 5.6%, compared to the 15% which was originally

set as the target. In the discussion they stated

“The study achieved the prespecified sample size of 332 participants so we can

be confident that we have not missed an important treatment effect upon out

primary outcome measure. However, it could be argued that our prespecified

level of successful treatment was too ambitious.” (Shaw et al., 2010).

This honesty and transparency to the possibility that the original estimate was

overly ambitious is not frequently seen, though has become more common in recent

years. It can be calculated that the 95% confidence interval for the difference in

proportions is −3.41% to 14.75% which also doesn’t include the target difference of

15%, therefore the trialists’ were possibly overly ambitious with their target estimate.

Following contact with the lead author and sending the 95% confidence intervals

calculated above, further details about the power calculation were highlighted.

“Our power calculation was looking for a 15% difference in good outcomes and

we observed a 5.6% difference.

When we presented our results to patient groups and study participants, their

view was that any improvement in function was potentially an important differ-

ence.
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Thank you for sending the 95% CI for difference in proportions, on reflection an

absolute difference of 15% was perhaps ambitious.

The scientific basis on which clinically important differences are defined is an

interesting area, and perhaps in the future there will be consensus for how this

is decided”

This correspondance emphasises the importance of this work alongside the DELTA2

project.

4.4.3 Example of Using a Pilot Study to Aid Elicitation

4.4.3.1 CADET Trial

One trial which reported using a pilot study to aid the elitication of the target ef-

fect size was by Richards et al. (Richards et al., 2016). This study was a cluster

trial, therefore it was excluded from the full review. However, initially cluster trials

were being included since they are an extension of individual RCTs so data extrac-

tion was completed on this report. The trial was investigating the effectiveness of

collaborative care for depression in primary care.

“We powered the trial at 90% (alpha= 0.05) to detect an effect size of 0.4, which

we regarded as a clinically meaningful difference between interventions. This

figure was within the 95% confidence interval (CI) of the effect predicted from

data collected during our pilot work (effect size 0.63, 95% CI 0.18 to 1.07). To

detect this difference would have required 132 participants per group in a two-

armed participant-randomised trial. For our cluster trial, with 12 participants

per primary care cluster and an intracluster correlation (ICC) of 0.06 from our

pilot trial, the design effect was 1.65 leading to a sample size of 440. To follow

up 440 participants, we aimed to randomised 550 participants (anticipating 20%

attrition).”

The trial observed an effect size of 0.26 but reached statistical significance (p =

0.009). The discussion section in the paper details that whilst the observed effect size

was less than the one which the study was powered on, the 95% confidence interval

around the observed effect size included the target effect size. It also discussed

that the observed effect size was also within the confidence interval of the smallest

meaningful difference in a recent meta-analysis.

Conversation with the trial statistician and corresponding author, the trial was based

on a clinically meaningful effect size of 0.4 which was independently identified. This
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was demonstrated in the trial protocol (Richards et al., 2009) which references two

trials, a review and clinical opinion to elicit the target.

“We did not use merely one rationale. I think this sort of triangulation of trial,

review and clinical opinion data makes these decisions more secure.”

The pilot study was used to demonstrate that a UK version of collaborative care

might be likely to acheive such an effect, in line with collaborative care interventions

elsewhere, mainly in the USA.

It was also clarified that the discussion about the observed effect size being in line

with other published work was mainly to comment about the level of uncertainty

around the observed effect size and the meta-analysis of other trials.

4.4.4 Conservative estimate

A number of reports discussed choosing a conservative estimate for the target effect

size. The initial estimate could be based on previous research or various expert

opinions, then the trialists’ have made a slight informal adjustment to this estimate

in order to be more conservative.

4.4.4.1 3CPO Trial

The 3CPO trial in particular used a conservative estimate and explained it clearly.

It was a trial published in Volume 13 of the HTA journal which reported a trial

investigating two methods of ventilation for sleep apnoea (Gray et al., 2009). The

sample size justification was split into two parts, each referring to a separate research

question.

“The trial addresses two distinct questions:

1. Is non-invasive ventilation superior to standard oxygen therapy?

The primary end point was 7-day mortality. Seven previous studies of acute

cardiogenic pulmonary oedema (n = 11 − 50 per treatment group) at the time

of protocol development had assessed standard facial oxygen therapy in com-

parison to CPAP ventilation, with only two further available studies assessing

NIPPV ventilation. The pooled data shows a mortality rate of 21% (38/181)

in patients receiving standard facial oxygen and 9% (16/173) in those receiving

CPAP ventilation.
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In this trial we aimed to be able to detect a 6% absolute difference in mortality,

which is half the effect size previously reported. To have an 80% chance of

detecting a 6% difference (9% versus 15%) using a two-sided signficance level of

0.05 we needed approximately 400 patients to be randomised to standard facial

oxygen therapy and 800 patients randomised to either CPAP or NIPPV.

2. Which form of non-invasive ventilation is the most efficacious?

. . . With 400 patients in each of the CPAP and NIPPV arms the trial aimed to

have 80% power using a two-sided significance level of 0.05 to detect an absolute

difference of approximately 7% in the composite end point (18% versus 11%)

and of approximately 6% in mortality (12% versus 6%). ”

This was just one example of trialists using an adjustment to result in a smaller

target effect size. The results of the trial indicated that there was no significant

difference in the primary end-point of 7-day mortality nor the primary composite

end-point. The discussion included reference to these results being contradictory

to recent meta-analyses, which indicated that patients treated with non-invasive

ventilation reported up to a 47% reduction in mortality.

Communication with the author of this paper was achieved but due to the amount

of time that has elapsed since the trial, he was uncertain of the various methods

used to choose the target difference.

4.4.4.2 Ulceration in Diabetes

Another trial which used a conservative estimate was a trial by Jeffcoate et al.

(Jeffcoate et al., 2009). They observed data from previous trials which ranged from

24% to 89% healing rates, but chose to power based on a 20% difference after

reviewing the evidence. Both the Intention to Treat (ITT) and Per Protocol (PP)

analyses at 24 weeks showed no statistically significant difference between the groups.

There was no discussion about the target effect size or the observed effect size in

relation to each other.

As healing was the primary objective, this was the basis for the calculation

of sample size. Calculation of sample size was difficult because of the paucity

of data on the healing rate of different types of ulcer, and although data are

available for neuropathic ulcers on the plantar surface, they are inconsistent.

Thus, Katz et al. reported 61−89% healing of plantar neuropathic ulcers within

12 weeks, while an earlier meta-analysis of the control arm of published trials
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of similar (but not all identical) ulcers reported only 24% healing with accepted

good clinical practice by 12 weeks, and 31% at 20 weeks. Moreover, neuropathic

ulcers with good vascular supply form a minority of ulcers cared for in the UK

and, despite the lack of much published information, it is accepted that they heal

more quickly than other types. The experience at the City Hospital, Nottingham,

was that of all 449 individuals referred in the 4 years between January 2000 and

December 2003, only 55% of index ulcers healed without amputation within

6 months of referral. It is on these bases that we calculated that in order to

demonstrate a 20% difference in healing between groups, with 80% power, and

with alpha= 0.05, and allowing for 25% dropout, 300 recruits were required. This

was based on equal distribution of the sample to the three arms of the study,

with an anticipated healing rate of 30%. The size was powered to indicate a 20%

increase in healing for those in the Inadine group (50% healed at 24 weeks), and

a 25% increase for those receiving Aquacel (55% healed at 24 weeks).

4.4.5 BeST Trial

One report by Lamb et al. provided an excellent discussion about choosing the

Minimum Clinically Important Difference (MCID) based on previous trials (Lamb

et al., 2010). This trial was investigating a primary care-based treatment for low

back pain using a cognitive behavioural programme. The primary outcomes were

commonly used continuous clinical measures.

“Deciding the minimal clinically important difference (MCID) between groups

was problematic, particularly for the RMQ. Previous trials (including the UK

BEAM, Oxfordshire Low Back Pain Trial and York Back Pain and Exercise Trial)

adopted a clinically significant difference between groups of 2.5 RMQ points,

based on the views of an expert group of clinicians and researchers. This equates

to a large standardised effect size of 0.65, assuming an SD of 4.0. Differences of

this magnitude had not been observed in several large trials (effect sizes were 0.35

for BEAM and 0.36 for the York Low Back Pain Trial). Careful back tracking

through trials (reviewed by Bombardier et al.) suggested that the MCID had

been derived from a few studies of short-term benefits (< 8 weeks) of therapies

in LBP. This is the stage at which one would expect to see the largest differences

between the groups because of the natural history of LBP. Powering a trial on

the short-term clinical benefit was unlikely to be sufficient to monitor longer-

term impacts of public-health significance. The majority of outcomes reported

for CBA suggest moderate benefits at 1 year, with a between-group effect size of
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approximately 0.35 for the majority of outcomes reported in efficacy trials. This

equates to a between-group difference of approximately 1.4 change points on the

RMQ disability score (i.e. new treatment approaches are approximately half as

good again as the comparative treatment at reducing disability). We therefore

considered that an effect size of 0.35 would be a suitable target for the CBA to

be worthwhile.”

The sample size discussion focused on the difficulties with choosing a MCID for

one of the measures, the RMQ. It also detailed the calculation of the sample size to

adjust for cluster effects and economic analyses. The observed treatment effects were

1.1, 1.4 and 1.3 at 3, 6 and 12 months respectively, all of which reached statistical

significance.

After contact with the lead author of this paper, it was discussed that the main

issue faced during the recruitment of this trial, along with many other pragmatic

trials, is the issue of non-compliance. However, since this is not the primary focus

of this research, it is discussed as further work in chapter 8.

4.5 Discussion

This chapter has presented the results from a large review of the HTA reports. It

has been demonstrated that the most commonly reported method of target dif-

ference elicitation is the review of evidence method (45.8% when reported as the

primary method, 52.3% when including use of multiple methods including review

of evidence). There was no clear difference between which endpoint types used this

method more commonly, nor clinical areas.

The median standardised estimated effect size was 0.300, whilst the median stan-

dardised observed effect size was 0.112. These both corresponded to “small” effects

when compared to the Cohen categories (Cohen, 1988). This was not unexpected, as

67.3% of the trials did not reach statistical significance. The largest estimated effect

size was 0.76 and the largest standardised observed effect size was 1.18, though this

was only one of two trials which observed values greater than 0.66.

As part of the results of this review, several case studies were extracted to observe

examples of good practice in reporting the target effect size elicitation. It was noted

that many of the examples had used previous research also (part of the review of

evidence method) and some had used multiple methods of elicitation to estimate a

reasonable target difference.
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One example of good practice is the TITRe2 trial (Reeves et al., 2016) in section

4.4.1.1. This report demonstrated the many aspects which this complex trial team

had to consider and showed transparency in their reporting of it.

Another comment about the case studies was the number of reports which used a

conservative estimate to base the target difference on. The included trials are a

snapshot of well-reported trials or trials which used the MCID as part of the elici-

tation. It is known that secondary trials are not performed unless the results of the

previous trial are promising, otherwise there would not be a need for the secondary

trial. Using previous research for estimating the target difference is therefore diffi-

cult since the previous research available is mainly the trials which were published

or reached statistical significance. This would result in an inflated estimate of the

difference if based on the observed difference. This issue would result in subsequent

trials possibly observing smaller differences, which sounds similar to a phenomenon

observed in before-after trials called regression to the mean. This is discussed further

in chapter 5.

4.5.1 Limitations

There were a number of challenges with this research. There is a large quantity of

information reported in the documents which resulted in a large number of variables

and data to extract. There was only one reviewer (JCR) which is a limitation of

this work as it could not be quality-assured along the way.

There were some intial problems with the categorisation of the elicitation methods.

The use of the seven DELTA categories was the product of a face-to-face discussion

at a DELTA2 workshop which JCR attended; the initial set of categories (based on

experience of JCR) were added to as the research progressed. These initial categories

provided more detail and as understanding increased as to how trialists were choosing

their effect sizes, this allowed the design of more representative simulations further

down the line. The use of the seven DELTA categories allowed better comparison to

the original DELTA document (Cook et al., 2014) and ensured the categories were

not unmanageable.

There were a considerable number of reports which didn’t mention any method of

elicitation (19.6%). These reports were evenly distributed across the volumes, not

just from those pre-2010 as would be expected based on the requirements of the

CONSORT document which outlined the requirements for publication, including a

sample size justification (CONSORT, 2010).
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4.6 Conclusions

The overall conclusions of this chapter are that previous research is the most common

method which is reported for eliciting the target effect size. Trialists’ are using this

method alone or in tandem with other methods to get the best, most appropriate

target effect size possible for their study.

The most common type of endpoint is a continuous endpoint, though proportion

follows closely behind. Based on the findings in chapter 2, these are similar in their

sample size calculation and therefore their use of the target effect size.

The case studies demonstrate some examples of good practice with regards to re-

porting the elicitation of the target difference. Transparency of the methods used

to elicit the target difference is important, for trialists’, clinicians and funders. The

use of multiple methods to establish the best possible estimate appears to be best

practice, as recommended in the DELTA2 guidance for target difference elicitation

(Cook et al., 2018).

Since previous research is the most commonly used method of elicitation, chapter 5

will investigate further methods used to adjust for the possible bias which is intro-

duced when using previous trial results or research to design a new trial. This will

lead into chapter 6 where the findings of chapter 5 are tested through simulations.
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5. Regression to the Mean

5.1 Introduction

As discussed in chapter 1, d is the most sensitive part of the conventional sample size

calculation. Chapters 2 and 3 described how there could be a bias introduced when

using the result from one trial to design the next, since the second trial would not

occur unless the first trial had a significant result (for Phase II trials) or promising

results (for pilot studies). During general scoping of the literature, whilst trying to

determine if this bias is recognised, the term “regression to the mean” arose (Fayers

and Hays, 2014; Novack and Crockett, 2009). In order to get more information

about this phenomenon, a systematic searching of the literature was performed.

Regression to the mean (RTM) “refers to the likelihood that an outcome variable

will show a significant change depending upon how much baseline values depart from

the mean”, as defined by McCall et al. (McCall et al., 2011). This definition will be

demonstrated in chapter 6. If only the ‘promising’ trials are taken forward to Phase

III from Phase II, the average of the Phase III results will be less than the average

of the ‘promising’ Phase II trials, due to an expected truncated distribution. This

is caused by trials in Phase II having to exceed a pre-specified criteria to move to

Phase III. The left-truncated Normal distribution results in a higher mean difference

for that group, which subsequently dropped back to the average mean difference in

study 2 which would not be truncated.

There are two points where regression to the mean could occur; those are when

multiple measurements are being taken on the same patients (this can be defined as

within-study) and when there are similar trials being conducted (this can be defined

as between-study). This literature review will also try to investigate whether both

these types are being considered when making adjustments to trials to reduce the

effect of RTM.

5.1.1 Chapter Aims

The primary purpose of this systematic review is to improve understanding of re-

gression to the mean and investigate what methods are used to adjust for it, both
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generally and in the context of trial design. A secondary interest is for which disease

area or intervention types are adjustments for the effect more frequently used. It

is also of interest to establish whether there are any articles stating that the same

issue could occur for trials in sequence, compared to using the literature.

This review will detail what regression to the mean is, along with when it occurs.

Some details have been placed in Appendix C as they were part of the initial system-

atic review, however as the thesis progressed, the focus of the review narrowed to a

method more targeted with investigating the current adjustments used in the con-

text of clinical trials. This was primarily researched using a pearl-growing method

for reviewing the literature.

5.2 Background of Clinical Trials

In drug trials, randomised controlled trials are used to establish the efficacy and

safety of new treatments before they enter the medical market. The process for a

new drug or treatment to reach the open market is extremely long and expensive,

on average lasting over 10 years from the compound discovery to product approval

(Research and of America, 2015) and costing in excess of $18 million a year (Holland,

2013). This process is made up of multiple sections called phases, ranging from pre-

clinical phases to Phase 4. Each phase has a particular purpose and the drug or

treatment is unable to pass to the subsequent phase without being deemed successful

in the previous phase. The phases are as follows (Friedman, 1985; Meinert, 1986;

Schwartz, 1980)

• Preclinical phases: the drug under investigation is tested on non-human sub-

jects, both in-vitro and in-vivo. The aim is to gather information on efficacy,

toxicity and pharmacokinetics.

• Phase 0: this phase is sometimes omitted. The aim is to investigate the

pharmacokinetics and pharmacodynamics of the drug. This would be the first

test on humans, so a very low dose is used and only on a small number of

participants. This phase cannot impart information on safety and efficacy due

to the dosage being so low.

• Phase I: this phase is the real start of the clinical phases, with the drug being

tested on healthy human participants to investigate the range of doses which

are safe to test in future phases. It also investigates the tolerability, as well as

the pharmacokinetics and pharmacodynamics.

• Phase II: this is when the drug is tested on a larger number of people (up

to 300 typically) to test the efficacy and safety after the dosing ranges have
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been established in the previous phase. This is the turning point in the trials

process, if a drug is not showing efficacy the trials are stopped. The same

safety assessments from Phase I trials are continued throughout the remaining

phases.

• Phase III: this phase is the largest phase before drug-approval (typically re-

cruiting 300-3000 participants). It is tested on ill patients to further confirm

efficacy, effectiveness, safety and consumer acceptability. If the drug is shown

to be effective, approval is sought.

• Phase IV: this phase is a continual process of post-marketing surveillance. It

is to detect the long term effects of the drug and any previously unknown

side-effects.

The most important phases in terms of this research are Phase II and Phase III,

since a promising result in Phase II will lead to a large Phase III confirmatory

study. Since the progression through the process is predicated by the drug being

successful at each stage, it becomes clear that there is some form of bias which can

occur, as shown in chapter 6. In general, bias occurs when there are conditions on

performing a particular experiment or test. If all phases were unbiased, they would

all be performed irrespective of the results from the other phases. Since this is not

the case, a bias must occur when moving from one phase to the next.

As seen in chapter 1, there are two common methods of eliciting the target effect

size, δ, which depend on prior information. These are the pilot study method

and the review of the evidence base method. Publicly funded trials commonly get

the initial results from previous work, such as a pilot study or a Cochrane review

(of Health Research, 2010b). This is closely mirrored by the moving from Phase II

to Phase III in the drug trial pathway, where the phase II trial can be seen as a

pilot study (Wang et al., 2006). Therefore if this research can lead to adjustments

for moving from Phase II to Phase III trials then it could potentially be applied to

publicly funded trials as well, if the pilot study or Cochrane review is set to be the

Phase II study. The information gathered from these previous trials is then used to

design the main trial, including the choosing of the target effect size. Since these

two methods are the commonly used and are based on prior information, these will

be the methods considered to help answer the research question. As discussed in the

clinical area of heart failure, (Krum and Tonkin, 2003) a large number of Phase III

trials fail even though the Phase II trials indicated a positive clinical effect. When

performing a general scoping of the literature for anything which resembles this

change towards the true mean difference, the phenomenon called “regression to the

mean” was highlighted which appears to explain this bias (Krum and Tonkin, 2003;

Morton and Torgerson, 2005; Novack and Crockett, 2009). In order to understand

this phenomenon further, a systematic review was performed.
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5.2.1 Introduction to Regression to the Mean

According to the paper by Morton and Torgerson, regression to the mean occurs

when “an extreme group is selected from a population based on the measurement

of a particular variable.” (Morton and Torgerson, 2005). The paper continues to

comment that if another measurement of the same variable is taken from this same

group, the mean of the second measurement will be “closer to the population mean

than the first measurement.” This definition could be thought of as similar to what

happens when moving from a Phase II to Phase III trial, or when using results from

a Cochrane review or meta-analysis to design a large publicly funded trial. The first

result must be “encouraging”, the definition of which will be discussed later, if the

second trial is to commence. So in this situation, the extreme group contains all

the trials which are “encouraging” though the results observed will likely decrease

towards the population mean at the next trial. This highlights the importance of

investigating current methods for adjusting for regression to the mean which could

be applied to the case of moving from one trial to the next. Along with current

methods, it would also be of interest in this review to research other definitions of

regression to the mean and establish whether it has been linked with moving from

one trial to another in sequence.

5.3 Searching Methods

5.3.1 Inclusion and Exclusion Criteria

It is important for any systematic review to clearly state the inclusion and exclu-

sion criteria. An article would be included in the review if the title and/or abstract

specifically mentioned “regression to the mean”. Variations of this phrase were ac-

ceptable at the discretion of the reviewer, such as “regression toward mediocrity” or

“regression towards the mean”. This could be either in an explanatory context or in

an analytical context, so the search could capture not only trials where adjustments

have been made, but also papers which provide methodologies and explanations of

the phenomenon itself. The term of truncated normal distribution was included as

a synonym for regression to the mean, as that is the resulting distribution when

regression to the mean occurs.

As discussed previously, the main focus was on methods used to adjust for regression

to the mean in randomised controlled trials, but another aim for the review was to

improve knowledge of the phenomenon itself and how it impacts trials. If any titles

or abstracts were vague, or the reviewer was unsure as to their relevance, the full
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article was retained and read to establish its relevance. Upon further reading of the

full articles, they were deemed to be acceptable if they did any of the following:

• Explained or illustrated what regression to the mean is;

• Adjusted for it in a randomised controlled trial;

• Described a method for adjusting for it.

Articles would be excluded if, upon further reading, they did not contain any refer-

ence to the phenomenon (either directly or indirectly), if they were not written in

English, if regression to the mean was used as a justification for their results with-

out any further investigation. Articles were also excluded if they were a conference

abstract due to too little information being provided or a letter to the editor as

these are not peer-reviewed. Articles which are not related to clinical trials were

also excluded.

5.3.2 Systematic Searching

There were not a large number of search terms used in this review, and synonyms

were not of interest as the main focus was to locate randomised controlled trials only,

and investigate the effect of regression to the mean. The databases of PubMED,

StarPlus and the Cochrane Library were searched using key terms as follows:

1. Regression to the mean

2. Truncated normal distribution

3. Randomised controlled trial$

4. (1 OR 2) AND 3

5. AND

(a) Phase 2 to phase 3

(b) Phase II to phase III

(c) Trials in sequence

(d) Clinical development

(e) Development plan

(f) Sequential meta-analys$

(g) Early phase trial$

(h) Pilot study
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Figure 5.1: Systematic Searching Results.
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The initial searches used were 4 AND each of 5 (a-h), however these yielded very

few results. The results of this search have been illustrated in Figure 5.1.

This produced 148 titles which were read, along with the abstracts, to determine

their relevance to the research question. Many articles mentioned regression to the

mean as a justification for their results (Brand et al., 2001; Burnham et al., 1994;

Cooper et al., 1988; Elton et al., 1994) but did not attempt to account for it in

the analysis. In total, 73 articles were taken forward for full reading, as well as 22

through reference searching. Unfortunately, 13 articles in the systematic searching

and 7 articles in the reference searching could not be located so were omitted. This

resulted in 75 articles being included in the review.

Regression to the mean was used as a justification of results in 30 articles without

discussing possible adjustments which can be made in the analysis stage of the

study. A few articles appear to be focused on the ‘placebo effect’ which one article

has dissected to be a combination of regression to the mean, the Hawthorn effect

and expectancy (McCall et al., 2011). Other explanations of the placebo effect were

the natural history of the disease (or the cyclic nature of the disease), which can

also contribute to regression to the mean (Burneo et al., 2002; Conboy et al., 2006;

Enck and Klosterhalfen, 2005). Some of these placebo effect-related articles were

not relevant to the research question of investigating regression to the mean (Burneo

et al., 2002; Klosterhalfen and Enck, 2006).

5.3.3 Pearl-Growing Method

Another method which was used to enhance the review is the pearl-growing method.

This method uses one useful resource and searches citations of and in that resource

for other relevant resources. Citation pearl-growing is useful because some papers

were not found through the systematic searching, instead they were discovered

throughout the course of this research at conferences and through other relevant

reading of articles.

5.4 Regression to the Mean

5.4.1 What is regression to the mean?

As mentioned previously, the problem of regression to the mean has been around

for a long time, first being recognised by Francis Galton during the study of humans

(Galton, 1886). He found that whilst studying the offspring of various heights, that

the offspring did not tend to grow to the mean height of the two parents, but to

actually be more similar to the population mean height. If the parents were tall,
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the offspring tended to be smaller, and the converse was also true. He subsequently

called this phenomenon “regression towards mediocrity” which is now known as

the more familiar term of regression to the mean. He also realised through his

experiments that the further the parents were from the population mean, the more

likely the child would be closer to that population mean (so would be smaller if the

parents were extremely tall compared to the population mean).

More recently, the phenomenon is commonly seen with measurements like blood

pressure, cholesterol levels and test scores in before-after designs. Consider the

example of cholesterol, patients with high cholesterol are deemed high risk, and

they are more likely to be recruited to a study in the reduction of cholesterol levels

due to having higher levels. Regression to the mean would be observed if there was

a lowering in the mean cholesterol level of the population of interest without any

intervention occurring. The converse is also true, if a group of participants in a trial

were selected based on low values of a biological marker, regression to the mean

would result in the mean level increasing without intervention or treatment (Yudkin

and Stratton, 1996).

The focus of this chapter is regression to the mean in randomised controlled trials,

though this effect is commonly observed in observational trials over time (Cummings

et al., 2004; Heather, 2014; Martinez-Yelamos et al., 2006; McCambridge et al., 2014;

Victora et al., 1998).

One particularly interesting example of this was an observational study by McCam-

bridge et al. which consisted of 976 college students in New Zealand being given

an alcohol consumption questionnaire at baseline and again 6 months later. The

purpose of the study was to show that regression to the mean was occurring, since

in many alcohol intervention studies a reduction in alcohol consumed is observed

in both intervention and control groups, implying that perhaps simply getting the

participants to think about their drinking results in a reduction in consumption.

It used an AUDIT questionnaire to assess how much alcohol was being consumed

on average by the students, and tested different cut-off levels which have been used

previously in alcohol intervention studies. The results of this study showed that

the higher the cut-off level, the larger average reduction was observed in AUDIT

score. This was useful as these cut-off levels have been used to recruit participants

to studies in the past, so it shows that the studies with higher recruitment threshold

levels would show more of a reduction simply through regression to the mean.

Other situations where regression to the mean can occur have been found in this

systematic review. However, their relevance to the context of the research question,

which is focused on moving from one trial to the next, is limited. Due to this reason,

the details have been placed in Appendix C.
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5.4.2 In what clinical areas is it common?

Whilst this question was posed at the start of the systematic review in the protocol,

as the research has developed and the research question has become more refined,

this question has become less relevant to the context of the research. Therefore, the

details of this section have been moved to Appendix C. The main outcome of this

question was that there is no set clinical area which appears to observe regression

to the mean. There was no literature which indicated that regression to the mean

occurs more frequently for particular conditions or clinical areas. It seems to be

rather dependent on the design of the experiment.

5.4.3 What trial designs does regression to the mean

commonly occur?

Regression to the mean is most commonly observed in randomised controlled trials.

Since observational studies cannot have control groups in the regular sense as in

randomised controlled trials, the observed effect in these studies is a combination

of the treatment or intervention effect and other statistical factors like regression

to the mean. However, Wolfe et al. states that the regression to the mean effect

may be less in observational studies than randomised controlled trials (Wolfe et al.,

2004).

One article states that regression to the mean is not just related to within-trial

measurements, but can occur in meta-analyses and moving from phase II to phase

III trials (Finney, 2008). This is similar to the definition formed at the beginning

of this section for between-study regression to the mean. This article is extremely

important as it is the only article to discuss that regression to the mean could occur

in the context of moving from trial to trial, which is the primary focus of this PhD.

5.4.4 In what areas is regression to the mean adjusted for?

As discussed in Section 5.4.2, there was not a specific area or set of clinical areas

which observed regression to the mean. This also applied to the adjustment of

the phenomenon. There is no clinical area found in this systematic review which

regularly adjusts for regression to the mean. It appears to be dependent on the

design of the trial. Further details of this can be found in Appendix C.
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5.5 Vanishing Treatment Effect

It has been reported that large treatment effects are often not replicated in future

trials (Pereira et al., 2012). There are a number of plausible explanations for this,

for example the trial may have been on a small sample size and when replicated on

a larger sample the effect decreases in size (Ioannidis, 2008). Small or early trials

which report observing very large treatment effects are then progressed to larger

trials or later stage trials. These trials are then “failing” (Krum and Tonkin, 2003)

when the main trial does not demonstrate an effect size close to that estimated in

the smaller, early phase trial. Regression to the mean has been discussed as being

a possible reason for this (ChuangStein and Kirby, 2014; Julious, 2010a; Krum and

Tonkin, 2003), however, it could also be attributed to problems like publication bias

and poor early phase trial design. The impact of publication bias would be that

only the “positive” trials would get published, and are published more quickly, which

leads to the possibility of a lot of seemingly positive evidence when actually there is

a lag of the negative trials published work. With regards to the design of the phase

2 or pilot studies, if a phase 2 trial is well-designed, this could reduce the impact of

regression to the mean, however it is unlikely to eradicate the issue completely. The

occurrance of regression to the mean in the context of trial design and moving from

one trial to the next needs careful management.

5.5.1 Bias in Sequential Trials

A paper by Kirby et al. discusses two sources of bias which can occur in phase III

trials when using the results from phase II (Kirby et al., 2012). The first source is

based around the populations used in phase II compared to those used in phase III.

The populations used in phase II, a confirmatory phase, are usually more heteroge-

neous than those in phase III. The second source of bias comes from the selection of

promising or optimistic results at phase II, using these results as the basis of treat-

ment effect in phase III trial design (Kirby et al., 2012). The general advice from

Kirby et al. is to reduce the observed effect size for a phase II trial by at least 10%

to give a more accurate estimation of the treatment effect which will be observed in

phase III.

5.6 Methods of Adjustment for Trials in Sequence

According to Zhang et al., proposed methods of adjusting for overestimation of

the treatment effect are not regularly implemented (Zhang et al., 2012). There

have been adjustment methods developed as early as 1990 for group sequential
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designs (Emerson and Fleming, 1990; Pinheiro and Demets, 1997), yet as described

in chapter 4, they are either not being reported or not being used in the context of

previous research.

Some papers found in the review discuss methods of adjustment for data from early

phase trials to use in later phase trials. These articles were further investigated and

pearl-growing was used to collect the relevant articles.

The paper by Wang et al. (Wang et al., 2006) proposes a method of adaptation

for the sample size calculation when using data from phase II trials. The context

of this adaptation is industry-based (Phase II to Phase III, or early-phase to late-

phase) and considers the use of surrogate endpoints in phase II trials to be one of

the causes for a high failure rate of phase III trials. This could be, for example, the

use of tumour shrinkage as the end-point for the phase II trial when the primary

outcome is survival in the phase III trial. Another example could be using a 1 month

outcome in the early phase trial when the main trial requires a 6-12 month outcome.

This paper is focused on the calculation of the sample size for phase III trials based

on either the point estimate from the phase II trial or the lower confidence limit. It

recommends, based on simulation results, to have a bias adjustment of

∆̂− 1× s.e(∆̂) (5.1)

where s.e is the standard error and ∆̂ is the point estimate from the phase II trial.

This result can lead to very small estimated effect sizes and therefore not many

phase III trials being started.

Following from this result, Kirby et al. developed an adjustment method which

was tested on the scenarios used by Wang. This method is a multiplicative adjust-

ment (Kirby et al., 2012) which is based on the concept of assurance. The general

adjustment is

∆̂× 0.9. (5.2)

These methods of adjustment could be applied to the context of previous research

to main trial which, as found in chapter 4, is the most common method of target

difference elicitation. However, these methods currently are not being applied to

this context. They are also unlikely to be generalisable to other scenarios such as

the use of pilot data.
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5.7 Discussion

This chapter has defined the phenomenon known as regression to the mean. It has

investigated the areas which this can occur and how it arises. There are methods

of adjustment developed for phase II to phase III trials, which adjust the observed

treatment effect from the phase II trial to use in the design of the phase III trial.

This is analogous for publicly funded trials moving from pilot study to main trial.

However, chapter 4 highlighted that there are no formal methods of adjustment

being implemented or reported for trials which use previous research to estimate

the target difference. Some trials did report that they used a conservative estimate,

though these appeared to be rough adjustments applied to the previously observed

effect sizes.

Reviewing the literature has highlighted that whilst there are adjustment methods

for phase II to phase III data (Kirby et al., 2012; Wang et al., 2006), these methods

are generic to aid ease of use. It could be argued that more specific methods could

be developed to be used in specific scenarios such as the use of previous research like

systematic reviews, meta-analyses or previously published trials in a similar area,

or pilot studies.

The adjustment proposed by Wang could have sensitivity issues, since it is based

on the standard error which is influenced by the sample size. As the sample size

increases for larger powers and effect sizes, the standard error will decrease, causing

the adjustment to get less strict. However, for lower powers the adjustment will be

too severe. The adjustment proposed by Kirby is a flat rule which does not account

for the differences in trial designs or power.

Both Wang et al. and Kirby et al. use simulations to assess their adjustments.

Chapter 6 will also use simulation methods to show the bias which results when

moving from one trial to the next, as well as the scenario of moving from a pilot study

to a main trial. These scenarios are commonly occurring, with the first scenario

being similar to the use of previous research to elicit a target difference for a current

trial.

The two methods of adjustment discussed in this chapter will be compared with the

method developed in chapter 7.

5.7.1 Limitations

The limitations of this systematic review are based primarily on only having one

reviewer. This opens up the potential for certain articles to be missed. There

could have been more databases searched, however this would have taken up a

considerable amount of time. Another limitation is the exclusion criteria of articles
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being in languages other than English, as there were 6 articles in the initial search

which were in other languages, two of which were potentially of interest based on

the abstracts.

5.8 Conclusions

There were a number of randomised controlled trials which adjusted for the sta-

tistical artefact of regression to the mean within a trial. However, many of them

appeared to do this after the results had been published, as an additional consid-

eration. Since this phenomenon occurs frequently, it is rather surprising that there

are not more trials which adjust for it, particularly in outcome variables which are

known for causing the problem more frequently such as cholesterol levels or blood

pressure measurements. It is clear that there is not one main research area which

regression to the mean occurs in, it appears to occur in a wide variety of fields

not limited to medical or clinical trials; it occurs in education as well. There does

not appear to be one method which is deemed superior to others, it is very much

subjective to the authors preferences, whether they prefer methods like ANCOVA

or multiple regression to make the adjustment or if they feel more comfortable per-

forming simulations.

A considerable number of papers used the issue of regression to the mean to justify

why the control groups in their trials exhibited a response, but made no attempt

to adjust for it. This could be down to factors such as time or cost, however it

should really have been considered at the design stage to establish whether it could

potentially be an issue further down the line.

The focus of this research is the occurance of regression to the mean between trials in

sequence. A few papers discuss adjustments for regression to the mean in the context

of phase II to phase III trials, but they are more focused on industry-based trials.

Publicly funded trials tend to use previous research then perform the main trial, or

use a pilot-to-main trial design. As seen in chapter 4 there are no formal adjustments

being implemented and reported, yet informal adjustments of previously observed

treatment effects are being used. Since it is still a common problem which is being

overlooked, this prompts the need for further research particularly in this context.

The adjustments by Wang and Kirby both have their merits, but there appears to

be scope for a new adjustment, which will be developed in the following chapters.

From this systematic review, the effect of regression to the mean appears to be one

explanation for the bias which can occur when using the results of previous trials

to design the next. Therefore, this research shall also focus on trying to establish

an adjustment method which can be applied to the context of trials in sequence for

commonly occurring scenarios found in chapter 4.
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6. Simulations of Commonly Used

Trial Designs

6.1 Introduction

As seen in chapter 2, the target difference d is the most sensitive part of a standard

sample size calculation. Chapter 2 also stated that the focus for the research is

based on superiority, parallel group trials, with exntensions to other trial designs

discussed in chapter 8. Chapter 3 demonstrated that there are a number of methods

which can be used to elicit the target difference for designing a trial. The commonly

used methods were the review of the evidence base, seeking expert opinion and

pilot studies (Cook et al., 2014). However, as seen in chapter 4 it is the review

of evidence base or previous research method which is reported around 50% of the

time in Health Technology Assessment journal reports. Chapter 5 demonstrated the

existence of a phenomenon called “regression to the mean” which could occur when

using results from previous research to design a new trial, as with the review of

evidence method. It also presented some general adjustments for the bias, however

these adjustments are constant. This chapter will investigate the effect of this bias

on the results of simulated trials, both for using previous research such as a Phase II

trial and using a pilot study to inform the future trial. It will also begin to develop

an adjustment method specific to using previous data. This will lead on to chapter

7 where a possible method of adjustment is discussed and compared with current

methods.

6.1.1 Chapter Aims

This chapter will develop simulation methods for some common sequential trial de-

signs. The context for the simulations is of vital importance, it is key to establishing

commonly occuring elicitation methods for the target difference and base the con-

text of the simulations on these. The simulations need to be context specific, as this

allows more focused results and will lead to various adjustment methods in chapter

7. The reason for performing simulations is to emulate a scenario under some set
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conditions to observe what occurs when moving from trial to trial. These simulations

are performed under ideal conditions, starting with the simplest case and moving

on to a more complex elicitation method. It aims to assess the distributions which

arise from trials in sequence where the second design is based on the first result.

6.2 Initial Simulations

Based on the research in chapter 5, it has been indicated that a similar effect to

regression to the mean could be occurring when moving from early-phase to late-

phase trials. One way this could be investigated is through simulating a large number

of trials and investigating the effect of this regression.

Consider the simplest trial design of Study 1 followed by Study 2 (Julious et al.,

2007). This can be illustrated as shown in Figure 6.1. From this figure it can be

seen that Study 2 would not occur without a “positive’ result in Study 1. This

example could relate to many different scenarios, including but not limited to Phase

II to Phase III studies, pilot studies to main studies, or systematic reviews to a

new study. All these scenarios are using information gained in a previous study

to aid with the next one. In the context of trials in sequence, the continuation

criteria would be that there was a significant result in Study 1 (P < 0.05) in order

to proceed to Study 2. The mean of the first study will, on average, be higher than

the “true” mean, towards which the second study mean will regress. This will be

further demonstrated in this section. In the context of a pilot study to a main trial,

the continuation criteria can vary and should not be based on the P -value of the

pilot study. An example of the continuation criteria for a pilot study to main trial

context could be that the mean treatment difference is above zero and a pre-specified

confidence interval includes (or is greater than) the MCID (Lee et al., 2014a), or

that the one-sided confidence interval includes the target point estimate which is to

be used in the main trial (Cocks and Torgerson, 2013).

Figure 6.1: Illustration of the simplest scenario of moving from one trial to the next.
The continuation criteria will differ depending on context.
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The aim for the initial simulations is to investigate whether a bias is occurring when

only the significant studies are taken forward to the second trial.

6.2.1 Methods for Initial Simulations

A study will usually not occur unless there have been “promising” or statistically

significant results in earlier work. This automatically introduces a bias of the re-

sults from the first study; if there were no bias then the second study would occur

irrespective of the result of the first. This bias is introduced through the selection of

significant studies as predecessors of the new study, for example, Phase II to Phase

III trials as described in chapter 5. Figure 6.2 shows that the significant Phase II

studies will continue onto Phase III, they will have a P -value less than 0.05.

There are two scenarios which could occur in this section, the first being that all

results are included irrespective of the result of the first trial, whilst the second

being that only trials with a significant result in trial 1 (T1) are taken forward to

trial 2 (T2). Both of these scenarios are considered in this section to investigate and

compare the bias level and the distributions which arise from these two scenarios.

A trial will be deemed to be encouraging if the results are statistically significant,

as shown in Figure 6.2. As discussed in earlier chapters, this is not always the case

in reality, particularly when considering pilot studies which do not test a formal

hypothesis therefore do not result in a P -value. The simulations which follow in

this section are focusing on the situation where the results of the initial trial are

used to design the following trial. This situation can occur not just with moving

from Phase 2 to Phase 3 trials, but when results are used from systematic reviews or

previously published clinical trials in a similar area. The simulations are performed

in R (Version 3.1.2).

In order to perform the simulations, the design of the simulated trials needed to be

considered. As discussed in chapter 2, the focus of this thesis is on parallel group

superiority trials, further confirmed by those being the most common design found in

the review in chapter 4. This design will be used in the simulations, for a continuous

outcome as the results from chapter 4 indicate that these are more commonly used

than other outcome types (45.8%) (Rothwell et al., 2018b). The more simulations

performed, the less error that occurs in the results and the more accurate the results

are in reflecting the “true” outcome.

The null and alternate hypotheses are as follows (with d = µ1 − µ2)

• H0 : d = 0

• HA : d 6= 0
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Figure 6.2: Illustration of a standard Normal distribution

The methods for this initial set of simulations is shown in Figure 6.3. Each simu-

lation set represents a trial consisting of 2 × n participants, where n is the sample

size per arm. The sample size is calculated using Equation 2.6 from chapter 2. This

set of simulations were performed twice, once with all results from the first study

being included in the second study (the unbiased case) and once with only the ‘en-

couraging’ or significant results from the first study resulting in a second study (the

plausible case). The power levels were then varied followed by the mean difference

being varied to change the observed effect size.

The assumption that the patients follow a standard Normal distribution is imple-

mented. Therefore, for both study 1 and study 2 the patients’ results will come

from a Normal distribution with means m1 and m2 respectively, and a common

standard deviation. These simulations will be performed under the assumption of

the alternative hypothesis, so the “true” mean for group 2 is equal to m2.

Figure 6.3: Flow chart of the methods used in the initial simulations.

Once the two studies have been simulated from the appropriate Normal distribu-

tions, the next step is to perform t-tests between the two groups of independent

patients for each simulation set. This will give us a mean difference and P -value for

each simulation set.
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For example, there were 100 simulation sets, or simulations performed, then there

would be 100 mean differences and P -values. From these results we are interested in

the simulations where study 1 has a P -value of P < 0.05. These studies would have

been statistically significant and would have lead on to a second trial; the simulations

with P ≥ 0.05 would not have resulted in a second study. The simulations which

have a significant P -value for the first study can be extracted from the results and the

original results for those significant simulations can be presented. These significant

results are then plotted and compared with the results if these simulations were not

removed.

This method results in a visual difference in the distributions of the simulations and

trial data, dependent on whether the significant results were used or whether all

results were used. It is of interest whether the mean difference for the Phase II and

Phase III studies in these two different scenarios are similar or whether an effect

mimicking regression to the mean is evident.

These initial simulations demonstrate the bias in the most simple case; using the

sample target difference for both T1 and T2. Further simulations in section 6.4.1

will consider the case where the observed effect size in T1 is used to design T2.

Section 6.4.2 will investigate the scenario more commonly used in publicly funded

trials of a pilot study to a main trial.

6.2.1.1 Phase II to Phase III - Part 1

Two studies were simulated 10, 000 times, with one ‘preceding’ the other. Each

simulation is a trial. First, using a standard continuous end-point sample size cal-

culation was used to determine the number of patients needed for each study. This

was calculated using a mean difference of 10, population standard deviation of 50,

power of 80% and significance level of 5%, which resulted in the sample size being

393 patients per arm per simulation.

This sample size was used as the sample size for each arm in each simulation for

each of the two studies, resulting in an extremely large data set of randomly sampled

data from a Normal distribution using m1 = 0 for arm 1 and m2 = 10 for arm 2 for

each of the two studies, and a standard deviation of 50 for both studies. This results

in a random set of data for two arms and two studies. From this point forward, the

assumption will be that the Phase II and Phase III trials are the same size.

These simulations were repeated for various powers and effect sizes, the results of

which are shown in section 6.2.2.
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Figure 6.4: Distribution of the two studies with 80% power if all results included -
The unbiased case.

Unbiased Case Biased Case
Power Sample Size Mean Difference (SE) Mean Difference (SE) Ratio of Mean

(N) Trial 1 Trial 2 Trial 1 Trial 2 Differences
80% 393 10.02 (3.57) 10.03 (3.56) 11.24 (2.75) 10.03 (3.56) 1.121
85% 450 10.04 (3.36) 9.94 (3.34) 10.97 (2.70) 9.96 (3.33) 1.101
90% 526 10.00 (3.09) 9.95 (3.08) 10.63 (2.58) 9.95 (3.09) 1.068
95% 651 10.02 (2.75) 10.01 (2.78) 10.31 (2.49) 10.00 (2.78) 1.031
99% 920 10.00 (2.33) 10.01 (2.34) 10.06 (2.26) 10.01 (2.34) 1.005

Table 6.1: The results from simulations with constant effect size (0.2) and vari-
able power.

6.2.2 Results for Initial Simulations

Figure 6.4 highlights the assumption of no bias if all the results from the first study

lead to a following study. The two distributions are similar, symmetrical and Nor-

mally distributed.

Figure 6.5 shows the distributions when the significant results from study 1 are taken

forward to study 2. This can be considered because the Phase III trials would not

usually occur if there were not signficant results at the Phase II stage. From Figure

6.5 it can be seen that when the significant results are taken forward, the resulting

distribution for the first study appears to resemble a truncated Normal distribution.

From Table 6.1 it can be seen that as the power increases, the sample size increases.

It is also clear that as the power increases the difference between the two trials for
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Figure 6.5: Distribution of the two studies with 80% power if only the significant
trials continue to next phase - the biased case.

Unbiased Case Biased Case
Effect Size Sample Size Mean Difference (SE) Mean Difference (SE) Ratio of Mean

(N) Trial 1 Trial 2 Trial 1 Trial 2 Differences
0.2 393 10.02 (3.57) 10.03 (3.56) 11.24 (2.75) 10.03 (3.56) 1.121
0.3 175 14.92 (5.37) 14.98 (5.43) 16.83 (4.10) 15.03 (5.45) 1.120
0.4 99 19.95 (7.19) 19.96 (7.03) 22.49 (5.50) 20.00 (7.03) 1.125
0.5 64 24.85 (8.75) 24.99 (8.84) 27.89 (6.68) 24.97 (8.85) 1.117
0.6 45 29.92 (10.65) 29.87 (10.63) 33.58 (8.24) 29.77 (10.58) 1.128
0.8 26 40.01 (13.79) 40.00 (13.79) 44.58 (10.72) 40.01 (14.08) 1.112

Table 6.2: The results from constant power (80%) and varying effect size.

the significant simulations results decreases, indicating that the truncation point

is becoming smaller as the power increases. This prompts an interesting problem:

since the minimum aim for power is 80%, if trialists are overestimating their effect

sizes when calculating their sample sizes and recruiting for that target sample size,

their study will not reach 80% power. If the power does decrease when the trial is

completed and that particular trial is an early phase trial then the distribution will

be extremely truncated and the potential regression to the mean effect will be very

large when the following trial is performed, if the results from the current trial are

used to design the future one. The relative mean difference is the ratio of the two

mean differences, which decreases as the power increases.

Table 6.2 shows the impact of changing the effect size on the results of the sim-

ulations. Since the effect size was adjusted by altering the target means for each

arm in the trials, the values of the mean differences themselves in Table 6.2 are not
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comparable; however the relative difference can be calculated, which is the ratio of

the two mean differences. When the relative mean difference is calculated, we can

see that it remains approximately constant as the effect size increases. This shows

there is no change in bias. Since observed effect sizes can be quite small (Siontis

and Ioannidis, 2011) the truncation would not be so extreme although it would still

be there and regression to the mean would still occur. This would result in seeing

lower mean differences between the groups of the second trial compared to the first

trial.

6.2.3 Conclusions of Initial Simulations

Based on the simulation work in this section, it has been demonstrated that when

moving from one trial to the next, there is a bias in the results which possibly leads

to the phenomenon known as regression to the mean. This is where the mean of

the second study is lower than that of the first. This bias only occurs when the

encouraging results from study 1 are taken forward to study 2. It is shown by

the distribution of the significant results for study 1 forming a truncated Normal

distribution. This section has also shown that as the power of a trial increases, the

truncation point of the distribution for Trial 1 becomes less extreme, resulting in

the distributions for Trial 1 and Trial 2 becoming more analogous. As the effect

size increases, the truncation point becomes more extreme, although this could also

be affected by the significant decrease in the number of participants required as the

effect size increases.

This effect, which resembles regression to the mean, could cause problems when

designing a trial based on another trial. It also highlights further that the effect size

is the most sensitive part of the sample size calculation. The work in this section

is only the simplest type of trial design with two separate studies, not considering

other potential factors such as multiple end-points or time points, or surrogate end-

points which complicate the simulations further. These situations are common in a

pilot setting, which is one of the situations being concentrated on in this research

(Lee et al., 2014b). If an adjustment could be made when considering a biomarker

for example, instead of the primary end-point in the first study, then perhaps money

and resources could be preserved further during the early phase development. This

work also compounds the need for the third and fourth research questions described

in chapter 1

• Are there more optimal methods for quantifying the effect size?

• Are there more optimal methods to adjust for the bias of moving from one

trial to the next?

117



If this bias is occurring when moving from one trial to the next trial based on en-

couraging results in the first trial, there should be an adjustment made to counter

this issue and reduce the occurrence of regression to the mean. The term “en-

couraging results” is described by Lee et al. as a result where the 95% confidence

interval includes the minimum clinically important difference (Lee et al., 2014b).

This potential adjustment would not only reduce the propensity of regression to

the mean, but provide a more accurate target difference for use when designing the

second trial. Another consideration would be similar to using a Cochrane review to

base the estimated effect size on, but using the results from a systematic review or

meta-analysis, though this is outside the realms of this thesis.

The initial simulations shown thus far emulate moving from one trial to the next

(Phase II to Phase III), as illustrated in Figure 6.1. This work forms the foundation

from which the other simulations are built. These initial simulations were performed

under the alternate hypothesis and were based on changing the power of a trial, and

changing the effect size used in the sample size calculation. They were performed

based on the theory that if a result is deemed non-significant at the Phase II level,

the trial will not be progressed to the Phase III level. This results in a bias being

introduced, if there were no bias then all studies from Phase II would progress to

Phase III. This is why it has been documented that Phase III trials are failing to

see target effect sizes close to that from previous early phase trials (Chuang-Stein

and Kirby, 2014; Krum and Tonkin, 2003). It can be extended further to interim

analyses, which will be discussed later in the chapter (Counsell et al., 2017). The

effect of regression to the mean would also impact on surrogate end-points, this is

discussed further in chapter 9.

When increasing the power of a trial, the sample size increased. The initial simu-

lations showed that as the power increases, the truncation point of the distribution

reduced. Taking the relative mean difference for the significant results only, it was

seen that for an 80% powered trial the relative mean difference was 1.14 compared

to 1.00 for a 99% powered trial (Table 6.1). This shows that as the power increases,

the effect of regression to the mean became less pronounced.

As the target effect size increases, the sample size decreases dramatically. However,

whilst it appeared as though the regression to the mean effect was getting larger,

this was countered by the mean effects themselves increasing as well. When the

relative mean difference between the significant trials was considered, it was around

1.12, indicating that there is an over-estimation of around 12% if the mean from

trial 1 is used to design trial 2 (as seen in Table 6.2).

This highlights that changing the effect size does not have a drastic impact on the

relative mean difference, the mean difference observed in trial 2 is consistently around

12% lower than the observed mean difference in trial 1. This allows us to begin to
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develop an adjustment for this over-estimation and test it through simulations. This

adjustment can then be checked for the commonly used powers and adapted where

necessary.

The target difference used in the sample size calculation for T2 is the same as that

for T1. In section 6.4.1, the case is considered where the average observed effect size

in T1 is used to design T2.

Figure 6.6: Distribution of the two studies with 80% power if only the significant
trials continue.

6.2.4 Truncated Normal Distribution

The distribution observed in Figure 6.6 appears to follow a truncated Normal dis-

tribution. This will be further defined and utilised in chapter 7, however, it can be

noted that as the power increases to 99% in Figure D.2 from the 80% shown in Figure

6.6, the point of truncation moves further away from the mean of the distribution,

resulting in a less extreme truncated Normal distribution. For the 99% power plot,

the distribution is tending towards the full non-truncated Normal distribution.
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Figure 6.7: The distributions for trials with 99% power if only the significant trials
move on to study 2.

6.3 HTA Review Results

As seen in chapter 4, the most common method for elicitation of the target difference

is using previous results and evidence. This could be from a variety of different study

types, including pilot studies, meta-analyses and systematic reviews, and previous

trials in similar populations. Since nearly 50% of the reports included in the review

stated the use of previous studies or evidence, it is logical to base the simulations on

this elicitation method to allow full exploration of the topic area rather than brief

research on a large number of methods. The most common end-point type found

in chapter 4 is a continuous end-point, therefore the main distribution used for the

simulations shall be a Normal distribution.

As chapter 4 showed, the category of “previous research” could be broken down into

the various categories of trials, including trial in sequence (for example, Phase II to

Phase III) or pilot studies. These are the main categories which have been chosen

for simulation due to their application to current practice and to the Clinical Trials

Research Unit in Sheffield, who partially fund this research.

6.3.1 Simulation Plan

The work completed for the initial simulations demonstrated the scenario of a Phase

II trial moving onto a Phase III trial. This was demonstrated by changing the power
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and the effect size, it simulated the simplest case which can be extended to other

common scenarios in trial design. These cases are described as follows:

1. Case 1a - Phase II to Phase III trials, identical target effect sizes for T1 and

T2. This was completed in the initial simulations.

2. Case 1b - Phase II to Phase III trials, observed effect sizes in T1 used in

design of T2.

• For the Phase II to Phase III scenarios, the ultimate aim is to solve these

two cases mathematically and find the truncation point for commonly

used powers (80% and 90%) and different target effect sizes. Once this

truncation point is found, an adjustment can de developed to reduce the

effect of the truncation, or the regression to the mean, resulting in a less

biased effect size to use in other sample size calculations and trial designs.

This will be developed in chapter 7.

3. Case 2 - Pilot Studies.

• Whilst the results from a pilot study don’t necessarily impact the target

sample size since the studies are used to assess feasibility and provide

estimates of parameters such as the population standard deviation, the

results still need to be deemed “encouraging”. Therefore, instead of using

a P -value in the simulations, the 95% confidence interval for the observed

effect size can be used. This, along with a positive effect size, will form

the basis for progression to main trial. The main trial would not occur if

there were a negative observed effect. Another method could be to use a

one-sided 80% or 90% confidence limit to ensure the sample size is large

enough to include the postulated effect size for the main trial.

The reason pilot studies need to be included in the simulations is that

even though it is not recommended to use pilot studies to elicit the MCID

or target difference, based on the results from chapter 4, it does occur.

Pilot studies are also included in meta-analyses so need to be considered

in their own right.

4. Alongside these scenarios, it would be useful to simulate the case where the

observed difference is used in the sample size calculation for the second trial.

This will result in a distribution of sample sizes as opposed to mean differ-

ences. The distribution of sample sizes will show that they are either over- or

under-estimated and under-powered. This emphasises why the adjustment is

important in the simulated context as well as re-iterating the issues discovered

in the HTA review in chapter 4.
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6.4 Methods

If two 2-armed studies were randomly simulated many times using the Normal dis-

tribution, one could investigate the means of each arm in each study from two

perspectives: if the first study formed a Normal distribution as in the unbiased case,

or if the first study formed a truncated Normal distribution, as is expected if only

the significant results are taken forward (the biased case). The biased case is to be

considered for the remainder of this chapter. The simulations are performed in R

(Version 3.3.3).

6.4.1 Phase II to Phase III - Part 2

From section 6.2, the initial simulations demonstrated the bias when T1 and T2 were

designed and executed using the same target effect size, d = 10. This highlights the

bias in the most simple case.

The second part of the scenario for Phase II to Phase III is based on the first trial

(T1) being designed on a set target difference, whilst the second trial (T2) is designed

using the observed difference from each simulated T1.

The method used in this set of simulations is similar to that used in section 6.2,

however the sample size for T2 is recalculated using the observed effect size for each

T1 simulation. This results in 10, 000 separate sample sizes for T2. As with the

initial simulations, the non-significant trials at T1 stage are removed and the means

compared for T1 and T2. These simulations were completed for various powers and

effect sizes.

For example, T1 is designed using a mean difference of 10, but had an observed

difference of 11.5 when the significant trials are selected for progression. T2 is then

designed using 11.5 as the target effect size. This scenario development mirrors the

findings of the HTA review in chapter 4.

6.4.2 Pilot Studies

Another context which needs considering is the context of pilot study to main trial.

This is commonly used in publicly funded trials (Thabane et al., 2010b), though was

found to be used sparingly in chapter 4. However, this method is used in tandem

with other methods, so should be considered in its own right.

The simulations to be performed under the context of pilot studies to main trial are

similar to those performed previously. However, contrary to the method used up

to this point, the pilot study does not have a formal power calculation to establish
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the appropriate number of participants needed. This is because pilot studies are

not formally testing a hypothesis, they are demonstrating how the main trial will

work, on a small scale (Whitehead et al., 2014). There are various theories on

determining the number of participants for a pilot study, with some being rules of

thumb methods (Browne, 1995; Julious, 2005; Teare et al., 2014). There are other

methods which have more mathematical foundations, based on imprecision in the

estimates of variance in the pilot study (Kieser and Hauschke, 2005), however, since

the focus of this research is the moving from one trial to the next, as opposed to the

intricacies of pilot study design, the rule of thumb methods will be used.

The rules of thumb methods have a set sample size for the pilot study, and based on

that the parameters needed to design the main trial can be estimated. This results

in a greater sample size overall irrespective of the size of the main trial (Whitehead

et al., 2016). If the pilot study sample size is dependent on the main trial suggested

sample size, as discussed by Whitehead et al., then the sample size for the pilot

study can vary slightly depending on the given parameters of the main trial, the

significance (α) and the power (1 − β). The variables which are not fixed are the

power (set between 75% and 95%) and the standardised effect size, which is to be

set to match those used in previous scenarios for consistency (0.2, 0.3, 0.4, 0.5, 0.6,

0.8). Due to there being various methods to determine the sample size for a pilot

study and a limited amount of time available for this research, it was decided to

focus on the method proposed by Whitehead et al. (Whitehead et al., 2016). This

decision was based on there being a lower limit to the size of a pilot study, yet the

pilot study size altered depending on the target effect size of the main trial (and the

planned sample size of the main trial).

There is no set criteria for a pilot study to be deemed “encouraging”, though there

is some advice in the literature. For all the simulations, the pilot study would not

lead to a main trial if the effect was not positive, so all effect sizes must be positive

to be included for continuation to a main trial.

The simulation plan will be similar to that used in the Phase II to Phase III sim-

ulations. The first set will be based around the same mean difference for both the

pilot and the main. The second set will be based around the observed mean from

the pilot study being used in the main trial. It is not advised, but to provide a

baseline for comparison of the simulation results, the point estimate from the pilot

study shall be taken only if the point estimate is positive.

Lee et al. define an encouraging pilot trial to be when the 85% confidence interval

for the pilot study effect size contains the target effect size or MCID planned for

the main trial (Lee et al., 2014b). This will be used as one of the possible pro-

gression conditions, along with some commonly used conditions. These conditions

were gathered after personal discussions with trialists throughout the course of the
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PhD. Therefore, for these simulations there will be 5 different progression criteria

separately. These are as follows:

1. Basic Case - If dpilot > 0,

2. Lee condition - if dpilot > 0 and dtarget is in the 85% confidence interval,

3. Conventional condition - if dpilot > 0 and dtarget is in the 95% confidence

interval,

4. Conservative Condition - if dpilot > 0.5× dtarget

5. Strict Condition - if dpilot > 0.5× dtarget and dtarget is in the 95% confidence

interval.

Methods of adjustment have been considered in chapter 7.

6.5 Results

This section presents the results of the simulations. It is separated in to two sections,

the first being the results when the observed effect size is used to design the second

trial for Phase II to Phase III or trials in sequence. The second section is for the

scenario of pilot study to main trial.

6.5.1 Phase II to Phase III results

Consider Table 6.3, it can be seen that for trials with larger power, the difference

observed in the average sample size for T2 increases. This could be due to the

sample sizes producing a skewed distribution, which becomes slightly more skewed

for higher powers, thereby raising the average for higher powered trials. These plots

can be found in Appendix D The sample sizes for the second trial (T2) when varying

the power are greater than the sample size for T1. However, the opposite is true

when the effect size increases, which follows what was demonstrated in chapter 2,

that as the effect size increases the sample size decreases.

The ratios of the mean differences appear to follow a similar pattern to those ob-

served in Table 6.1 in section 6.2. The ratio of mean differences tends towards 1

as the power increases, indicating that the truncation point of the distribution is

becoming less extreme and therefore has less of an impact on the results.

Table 6.4 also follows a similar pattern to Table 6.2 in section 6.2, with an approx-

imately constant ratio of mean differences of 1.12 − 1.14. In this case of varying

effect size, the average sample size for T2 is less than that used in the first trial, T1.
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Biased Case
Power Sample Size Average SS Mean Difference (SE) Ratio of Mean

(N) for T2 (N) Trial 1 Trial 2 Differences
80% 393 364 11.30 (2.75) 10.01 (4.14) 1.129
85% 450 456 10.85 (2.68) 10.05 (3.70) 1.080
90% 526 556 10.64 (2.59) 10.05 (3.39) 1.059
95% 651 736 10.30 (2.48) 9.99 (2.94) 1.031
99% 920 1074 10.06 (2.24) 10.00 (2.41) 1.006

Table 6.3: The results from simulations with constant effect size (0.2) and vari-
able power for simulations where T2 target effect size is based on T1 average.

Biased Case
Effect Size Sample Size Average SS ‘True’ Mean Mean Difference (SE) Ratio of Mean

(N) for T2 (N) Difference Trial 1 Trial 2 Differences
0.2 393 364 10 11.30 (2.75) 10.01 (4.14) 1.129
0.3 175 164 15 16.85 (4.09) 15.01 (6.25) 1.123
0.4 99 92 20 22.49 (5.48) 19.86 (8.19) 1.132
0.5 64 60 25 28.01 (6.82) 24.65 (10.19) 1.136
0.6 45 42 30 33.40 (8.10) 29.82 (12.52) 1.120
0.8 26 24 40 44.48 (10.67) 39.86 (16.24) 1.116

Table 6.4: The results from constant power (80%) and varying effect size for
simulations where T2 target effect size is based on T1 average.

This is to be expected as the target difference used for designing T2 is larger than

that in T1, resulting in an increased sample size.

6.5.2 Pilot Studies results

The following results are based upon 10, 000 simulations for the pilot study to main

trial scenario. There are 5 progression conditions which are investigated separately,

as mentioned in section 6.4.2. These will be briefly described in each section. The

lowest number of participants in the pilot study (per arm) was 10 (Whitehead et al.,

2016).

6.5.2.1 Basic Case

The basic case is that a pilot study will progress to a main trial if dpilot > 0. This is

the simplest scenario since if there was a negative observed effect in the pilot study

then the likelihood of it progressing to a main trial is extremely small. There would

be little justification to perform a trial for placebo versus new active treatment if

the placebo showed evidence in the pilot phase for being superior.

Table 6.5 shows the results for 10, 000 simulations for the basic case where the only

condition is that the pilot study has shown a positive effect of any size. It can be

seen that the level of bias decreases as the effect size increases. This was confirmed

with a truncated Normal distribution where the truncation point is forced to be at
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Basic 80% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 20 412 16.96 (11.43) 10.03 (3.48) 1.691
0.3 14 188 22.06 (14.53) 15.04 (5.11) 1.467
0.4 11 108 26.81 (16.89) 19.96 (6.73) 1.343
0.5 10 70 30.33 (18.18) 24.97 (8.49) 1.215
0.6 10 49 34.05 (19.10) 30.00 (10.31) 1.135
0.8 10 28 41.61 (20.49) 39.91 (13.29) 1.043

90% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 28 552 15.08 (9.95) 10.01 (3.01) 1.506
0.3 19 252 20.20 (12.84) 15.08 (4.46) 1.340
0.4 15 145 24.95 (14.84) 19.98 (5.90) 1.249
0.5 12 95 29.46 (17.19) 25.04 (7.27) 1.177
0.6 11 68 33.83 (18.83) 30.13 (8.62) 1.123
0.8 10 39 41.72 (20.66) 40.05 (11.38) 1.042

Table 6.5: The results of 10, 000 simulations when moving from pilot study to main
trial, dependant on the observed effect in the pilot study (dpilot) being greater than
0.

0 due to the condition of progression. As the effect size increased, the distribution

moved further from 0, resulting in less bias caused by the introduction of dpilot > 0.

6.5.2.2 Lee Condition

The condition which shall be referred to as the Lee condition, as described by Lee

et al., states that other confidence interval widths should be used when assessing

the potential success of a trial based on a pilot (Lee et al., 2014b). As discussed in

section 6.4.2, this shall be based on an 85% confidence interval.

The results of this condition of progression can be seen in Table 6.6. It can be

observed that the Lee condition results in a lower ratio of means compared to the

basic case as it is more strict than the basic case.

6.5.2.3 Conventional Condition

The results for these simulations are presented in Table 6.7. The conditions for

progression to main trial are that the target difference of main trial, dtarget, is within

the 95% confidence interval of the pilot trial and that dpilot > 0. Again, these results

appear to be slightly more strict than the previous two conditions. All the ratio of

means for each condition will be compared in section 6.5.3.
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Lee 80% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 20 412 16.10 (10.16) 10.03 (3.46) 1.605
0.3 14 188 20.87 (12.84) 14.98 (5.18) 1.393
0.4 11 108 25.11 (15.13) 19.93 (6.85) 1.260
0.5 10 70 29.37 (16.71) 24.95 (8.49) 1.177
0.6 10 49 32.93 (17.75) 29.99 (10.04) 1.098
0.8 10 28 40.63 (19.25) 39.95 (13.43) 1.017

90% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 28 552 14.27 (8.86) 9.93 (3.01) 1.437
0.3 19 252 19.09 (11.51) 15.00 (4.45) 1.273
0.4 15 145 23.68 (13.57) 19.97 (5.88) 1.186
0.5 12 95 28.19 (15.73) 24.97 (7.28) 1.129
0.6 11 68 32.32 (16.88) 29.97 (8.53) 1.078
0.8 10 39 40.98 (19.15) 40.15 (11.34) 1.021

Table 6.6: The results of 10, 000 simulations when moving from pilot study to main
trial, dependant on the dpilot being greater than 0 and dtarget being within the 85%
confidence interval of the pilot study results.

Conventional 80% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 20 412 15.85 (10.06) 10.00 (3.49) 1.585
0.3 14 188 20.82 (13.00) 15.02 (5.18) 1.386
0.4 11 108 25.26 (15.02) 20.00 (6.85) 1.263
0.5 10 70 29.16 (16.80) 25.03 (8.51) 1.165
0.6 10 49 33.07 (17.74) 29.87 (10.16) 1.107
0.8 10 28 40.95 (19.25) 40.10 (13.43) 1.021

90% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 28 552 14.54 (8.94) 10.03 (3.03) 1.450
0.3 19 252 19.09 (11.39) 14.94 (4.41) 1.278
0.4 15 145 23.55 (13.67) 19.94 (5.92) 1.181
0.5 12 95 28.17 (15.54) 24.94 (7.26) 1.300
0.6 11 68 32.51 (17.12) 30.05 (8.49) 1.082
0.8 10 39 40.71 (18.95) 40.05 (11.36) 1.016

Table 6.7: The results of 10, 000 simulations when moving from pilot study to main
trial, dependant on a positive observed effect in the pilot study and the 95% confi-
dence interval containing the target effect.
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Conservative 80% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 20 412 19.55 (10.26) 9.93 (3.51) 1.969
0.3 14 188 25.55 (12.92) 15.03 (5.16) 1.700
0.4 11 108 31.04 (14.68) 19.96 (6.88) 1.555
0.5 10 70 35.42 (15.89) 25.02 (8.41) 1.416
0.6 10 49 39.46 (16.26) 29.99 (10.02) 1.316
0.8 10 28 46.89 (17.03) 40.13 (13.27) 1.168

90% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 28 552 17.58 (8.99) 9.93 (3.01) 1.770
0.3 19 252 23.85 (11.43) 15.04 (4.43) 1.586
0.4 15 145 29.10 (12.84) 20.01 (5.86) 1.448
0.5 12 95 33.96 (14.66) 24.84 (7.31) 1.367
0.6 11 68 38.68 (15.74) 30.05 (8.49) 1.287
0.8 10 39 46.81 (17.08) 39.96 (11.50) 1.171

Table 6.8: The results of 10, 000 simulations when moving from pilot study to main
trial, dependant on the observed effect in the pilot study being greater than 0.5dtarget.
This is more conservative.

6.5.2.4 Conservative Condition

The conservative condition dictates that the observed effect size in the pilot study is

greater than 0.5× dtarget; the results of which are shown in Table 6.8. These results

are far larger than those presented in the previous tables, yet all the results have

the same pattern of becoming more similar as the standardised effect size increases.

6.5.2.5 Strict Condition

The strict condition is dpilot > 0.5 × dtarget and dtargetbeing contained within the

95% confidence interval of the pilot study. These results are presented in Table 6.9.

These results are the most inflated, indicating that the strict condition pushes the

truncation point further towards the true mean, inflating the observed mean.
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Strict 80% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 20 412 18.57 (9.01) 10.01 (3.53) 1.855
0.3 14 188 24.53 (11.35) 14.95 (5.11) 1.641
0.4 11 108 29.68 (13.08) 20.00 (6.76) 1.484
0.5 10 70 34.30 (13.96) 25.00 (8.48) 1.372
0.6 10 49 38.02 (14.96) 30.03 (9.93) 1.266
0.8 10 28 46.08 (15.80) 40.07 (13.28) 1.150

90% Powered Main Trial
Standardised Pilot Main Pilot Trial Main Trial Ratio of
Effect Size Study SS Trial SS Mean (SE) Mean (SE) Means

0.2 28 552 16.62 (7.78) 10.05 (3.01) 1.654
0.3 19 252 22.71 (9.83) 14.99 (4.49) 1.515
0.4 15 145 27.80 (11.37) 19.90 (5.83) 1.397
0.5 12 95 32.87 (12.97) 25.05 (7.34) 1.312
0.6 11 68 37.93 (14.31) 30.10 (8.58) 1.260
0.8 10 39 46.21 (15.77) 39.98 (11.26) 1.156

Table 6.9: The results of 10, 000 simulations when moving from pilot study to main
trial, dependant on the observed effect in the pilot study being greater than 0.5dtarget
and the 95% confidence interval containing the target effect.
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Ratio of Means Constant Effect Size (0.2)
Power Initial Trials in Sequence

80% 1.121 1.29
85% 1.101 1.080
90% 1.068 1.059
95% 1.031 1.031
99% 1.005 1.006

80% Powered Main Trial
Effect Size Initial Trials in Sequence

0.2 1.121 1.129
0.3 1.120 1.123
0.4 1.125 1.132
0.5 1.117 1.136
0.6 1.128 1.120
0.8 1.112 1.116

Table 6.10: The ratio of means (level of bias) for the trials in sequence simulation
scenarios.

6.5.3 Ratio of Means

The simulations performed in this chapter can be compared using the ratio of means

presented in each table. These have been collated and can be seen in Tables 6.10

and 6.11. When displayed in this way, the differences between the levels of bias can

be seen more clearly.

With trials in sequence (Table 6.10) both sets of simulations show that the level of

bias decreases with increasing power, yet remain relatively stable when the effect

size changes. Recall that the initial trials are those which are defined in section 6.2,

whilst the trials in sequence are presented in section 6.5.1

The pilot study to main study simulations show the varying levels of bias for the

different progression conditions, as shown in Table 6.11. The two conditions with

the least bias appear to be the condition advised by Lee et al., and the conventional

condition. This can be explained by the inclusion of a confidence interval in the

condition. The first three conditions begin with dpilot > 0, however the Lee and

conventional conditions also state that dpilot must be observed in a pre-specified

confidence interval. This has the potential to reduce the upper tail of the distribu-

tion, thereby countering the bias imposed with the lower truncation and reducing

the inflation of the observed mean.

The conservative condition provides the highest level of bias for varying power and

effect size. This can be attributed to the condition which it imposes, that dpilot >

0.5 × dtarget. Since dtarget > 0, then 0.5 times this value will force the truncation

point above 0 and create a greater level of bias and more inflated observed mean.
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Ratio of Means 80% Powered Main Trial
Effect Size Basic Lee Conventional Conservative Strict

0.2 1.691 1.605 1.585 1.969 1.855
0.3 1.467 1.393 1.386 1.700 1.641
0.4 1.343 1.260 1.263 1.555 1.484
0.5 1.215 1.177 1.165 1.416 1.372
0.6 1.135 1.098 1.107 1.316 1.266
0.8 1.043 1.017 1.021 1.168 1.150

90% Powered Main Trial
Effect Size Basic Lee Conventional Conservative Strict

0.2 1.506 1.437 1.450 1.770 1.654
0.3 1.340 1.273 1.278 1.586 1.515
0.4 1.249 1.186 1.181 1.448 1.397
0.5 1.177 1.129 1.130 1.367 1.312
0.6 1.123 1.078 1.082 1.287 1.260
0.8 1.042 1.021 1.016 1.171 1.156

Table 6.11: The ratio of means (measure of bias) for the pilot to main trial
simulation scenarios.
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6.5.4 Standardisation of Observed Effects

The results in this chapter have demonstrated the bias which occurs when moving

from one trial to the next based on various target effect sizes or powers. It is easier

to compare the effect sizes if they are all on the same scale, so 40 is not being

compared with 10. One way to do this is to use the ratio of means, as presented in

the results tables and previous section. Another way to compare the observed effect

sizes is to standardise them, similar to the technique used in chapter 4. This is done

by dividing the observed mean difference by the standard deviation for each set of

simulations.

Table 6.12 shows the standardised observed effects for the Phase II to Phase III

results. Similarly to the results seen with the ratio of means, the standardised

observed effect sizes show that the results for T1 are higher than T2, though they

become more similar as the power increases. The standardised observed effect is

fractionally higher for trials in sequence context than the initial simulations context

for T1, but lower for T2. There is still evidence that as power increases the bias or

difference between the means reduces, whilst the changing effect size with constant

power does not deviate much.

Table 6.13 shows the standardised observed effect sizes for the various progression

conditions for pilot study to main trial context. It can be observed that the lowest

standardised observed effects are for the basic progression conditions, when dpilot >

0. Since this is the minimum condition which would be deemed as “encouraging”,

this result shall be taken forward to the adjustment stage in chapter 7.

As the progression conditions intensify (from left to right in Table 6.13) it can be

seen that the discrepency between the pilot and main trial results increase. This is

due to the extra progression conditions imposing a more severe truncation point in

the distributions for the pilot studies.
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Constant Effect Size (0.2)
Initial Sims Trials in Sequence

Power T1 T2 T1 T2
80% 0.225 0.201 0.226 0.200
85% 0.219 0.199 0.217 0.201
90% 0.213 0.199 0.213 0.201
95% 0.206 0.200 0.206 0.200
99% 0.201 0.200 0.201 0.200

Constant Power (80%)
Initial Sims Trials in Sequence

Effect Size T1 T2 T1 T2
0.2 0.225 0.201 0.226 0.200
0.3 0.337 0.301 0.337 0.300
0.4 0.450 0.400 0.450 0.397
0.5 0.558 0.499 0.560 0.493
0.6 0.672 0.595 0.668 0.596
0.8 0.892 0.802 0.890 0.797

Table 6.12: The standardised observed effect sizes for trials in sequence simula-
tions.
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80% Powered Main Trial
Basic Lee Conventional Conservative Strict

Effect Size Pilot Main Pilot Main Pilot Main Pilot Main Pilot Main
0.2 0.339 0.201 0.322 0.201 0.317 0.200 0.391 0.199 0.371 0.200
0.3 0.441 0.301 0.417 0.300 0.416 0.300 0.511 0.301 0.491 0.299
0.4 0.536 0.399 0.502 0.399 0.505 0.400 0.621 0.399 0.594 0.400
0.5 0.607 0.499 0.587 0.499 0.583 0.501 0.708 0.500 0.686 0.500
0.6 0.681 0.600 0.659 0.600 0.661 0.597 0.789 0.600 0.760 0.601
0.8 0.832 0.798 0.813 0.799 0.819 0.802 0.938 0.803 0.922 0.801

90% Powered Main Trial
Basic Lee Conventional Conservative Strict

Effect Size Pilot Main Pilot Main Pilot Main Pilot Main Pilot Main
0.2 0.302 0.201 0.285 0.199 0.291 0.201 0.352 0.199 0.332 0.201
0.3 0.404 0.302 0.382 0.300 0.382 0.299 0.477 0.301 0.454 0.300
0.4 0.499 0.400 0.474 0.399 0.471 0.399 0.582 0.402 0.556 0.398
0.5 0.589 0.501 0.564 0.499 0.563 0.499 0.679 0.497 0.657 0.501
0.6 0.677 0.603 0.646 0.599 0.650 0.601 0.774 0.601 0.759 0.602
0.8 0.834 0.801 0.820 0.803 0.814 0.801 0.936 0.799 0.924 0.800

Table 6.13: The standardised observed effect sizes for pilot study to main trial simulations.
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6.6 Discussion

The results presented in this chapter demonstrate that there is a regression to the

mean effect when moving from one trial to the next. This is due to only significant

trials or encouraging results moving forward to the next trial.

In its simplest form, the case of moving from one trial to the next (i.e. Phase

II to Phase III) invokes a bias of around 12%, so the mean observed in trial 1 is

inflated by that amount compared to the “true” mean. As the power increases, the

bias decreases. This is highlighted by the movement of the truncation point of the

distribution of T1 further from the mean, thereby reducing the average treatment

effect for T1. For a 99% powered trial there is almost zero bias introduced.

A trial which targets 90% power is more likely to meet its target recruitment than

a 80% powered trial (Sully et al., 2013). Studies with 80% power are less likely to

recruit, and based on the results seen in this chapter they also have the most biased

results. If a study is designed to have 80% power but fails to recruit the target

sample size, it is likely that the resulting power of that study to be less than 80%.

From personal discussion with trialists, investigators tend to use 80% power because

they are aware that there will be problems in recruiting the sample size if the study

were powered to 90%. The use of 80% is often an indication that recruitment will

be difficult. This is then compounded by 80% powered trials experiencing problems

with recruitment, thus becoming underpowered. Due to trials failing to meet 80%

power, there is concern that any point estimates from previous work used in current

sample size calculations are largely biased. Therefore, a power-based adjustment

method could be useful for those trialists using previous research to design studies.

The changing of standardised target effect size had no effect on the bias, it remained

constant dependent solely on the power of the studies. These simulations were

completed under the alternative hypothesis, that there is a true treatment difference.

When the treatment effect from T1 is used to calculate the sample size required for

T2, the bias increases fractionally to between 12− 14%.

For the pilot to main trial simulations, these demonstrated what is already deemed

common knowledge, that the point estimate of a pilot study should not be used as

the target effect size for designing a main trial. It can be clearly seen from each of

the pilot study cases that the pilot study mean is far greater than that observed in

the main trial for smaller to moderate effect sizes. If this overly ambitious mean

were to be used to design the main trial, whilst the required sample size would be

reduced the chance of seeing an effect size that large is incredibly small.

One difference between the results for the sequential trials and the pilot study simu-

lations is that a change in effect size appears to have an impact on the level of bias for

the pilot study simulations. As the effect size increases, the level of bias decreases.
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This contrasts with the results observed for the sequential trials, which showed only

slightly shifting in the bias when effect size changed. This could be attributed to the

sample sizes for the pilot and main trials becoming more similar as the standardised

effect size increases. It would also occur due to the “true” mean which the trial is

being simulated around getting further away from zero. This would impact all the

simulations where the condition is based on a positive observed treatment effect.

The level of bias observed in the pilot to main trial cases is greater than that observed

in the Phase II to Phase III cases. This can be seen clearly in Tables 6.10 and 6.11.

A limitation of this research is that the pilot study to main trial sample sizes have

been based on only one method of sample size estimation for pilot studies. This was

primarily due to the time each simulation took. The implications of this include the

possibility that the results for the bias are not generalisable to the other methods

of pilot study sample size estimation. Therefore, these results should be interpreted

with caution.

The pilot study simulations show a variety of progression conditions, with all other

than the basic condition detailing a form of ‘sufficient encouragement’. The basic

case shall be taken forward to chapter 7 for an adjustment method to be developed

and tested. This is due to the differing nature of each individual progression condi-

tion, yet all pilot studies must show a positive effect if they are to be moved on to

a main trial.

6.7 Conclusions

This chapter has demonstrated that there is a regression to the mean effect which

occurs when moving from one trial to the next. The level of bias varies depending

on the power of the trials, as well as the design of the pilot study.

From the results, it is clear than an adjustment would be beneficial to allow trialists’

to use previous data in a non-biased way to design future trials. This adjustment

would be dependent on the power of the initial trial in the context of trials in

sequence, as well as the design of the trials. This means whether it is previous

research moving to a second trial, or a pilot study to main trial. Since pilot studies

are not powered, the adjustment would be dependent on the continuation criteria,

such as the observed effect size being positive.

In chapter 7, an adjustment which has been developed from the work presented in

this chapter is further developed and compared with current adjustment methods

discussed in chapter 5. These adjustment methods are rules-of-thumb, which whilst

they are easy to recall and apply, could run the risk of being overly sensitive for
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higher powers. The requirement of a new method stems from the varying levels of

bias depending on trial design as outlined in this chapter.
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7. Development of Adjustment

Methods

7.1 Introduction

A review of the literature in chapter 5 indicated that when using results from one

trial to design the next, a phenomenon known as regression to the mean could be

occuring. There are some general adjustments which have been developed (Kirby

et al., 2012; Wang et al., 2006), however these are rule-of-thumb methods so could

be overly sensitive to certain parameters such as sample size of trial. Regression to

the mean was demonstrated in chapter 6, where a series of simulations showed the

effects of regression to the mean in two common scenarios, trials in sequence and

pilot study to main trial.

In this chapter, pilot studies will be considered under the context that they are

deemed ‘successful’ if they observe dobs > 0 only.

7.1.1 Chapter Aims

This chapter aims to show that the distributions observed in chapter 6 are consistent

with a truncated Normal distribution. Conditional on this result, this chapter will

mathematically confirm the results observed in chapter 6 and develop an adjustment

by which the observed effects can be refined. The developed adjustment will be

compared with two other adjustments identified from the review in chapter 5 and

all three applied to the observed effect sizes in the first trial to assess whether the

bias is reduced.

7.2 Normal Distributions

This section will focus on the standard Normal distribution and then progress to

the truncated Normal distribution.
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7.2.1 The Normal Distribution

The Normal distribution for random variable X is denoted X ∼ N(µ, σ2) for mean µ

and variance σ2. The standard Normal distribution occurs when µ = 0 and σ2 = 1,

such that X ∼ N(0, 1).

The probability density function (pdf) for a standard Normal distribution is denoted

φ, given by

φX(x) =
1√
2π

exp

(
−x2

2

)
. (7.1)

for −∞ < x <∞.

The cumulation distribution function (cdf) for the standard Normal distribution,

denoted Φ(x), is given by

Φ(x) = P (X ≤ x) =

∫ x

−∞
φ(w)dw (7.2)

where w is a dummy variable. The cdf gives the probability that X ≤ x for some

value x in the domain.

The distributions observed in practice, however, are not usually standard Normal

distributions. The standard Normal distribution can be transformed to represent

known mean µ and variance σ2, denoted X ∼ N(µ, σ2). The probability density

function (pdf), φ(x), is given by

φX(x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (7.3)

This is based on the domain X ∈ (−∞,∞).

The expectation for a Normal distribution is given by

E[X] = µ (7.4)

and the variance is given by

V ar[X] = σ2. (7.5)

These results will be used in the next section to demonstrate mathematically the

cause of regression to the mean.

7.2.2 Truncated Normal Distribution

The truncation Normal distribution is the general Normal distribution bounded by

a random variable from either above, below or both. This could occur if there was

140



a floor- or ceiling-effect with the data, for example if blood-pressure values had to

be above or below a pre-specified threshold to enter into a trial, there could be a

truncation at that threshold.

7.2.2.1 Two-sided Truncated Normal

Suppose X ∼ N(µ, σ2) and let Y be a truncated Normal, denoted TN(µ, σ2, a, b)

where (a, b) are restrictions on the domain of X (−∞ ≤ a < b ≤ ∞) (Johnson and

Thomopoulos, 2002). These results are the two-sided results, such that there is a

truncation point on either side of the distribution.

The probability density function of a truncated Normal distribution is given by

f
(
y|(a, b)

)
=

1
σ
φ
(
y−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) (7.6)

for a ≤ y ≤ b and f(y) = 0 otherwise.

The probability of X lying within the interval of (a, b) is given by

Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)
(7.7)

where Φ(..) is the cumulative distribution function described in Equation 7.2.

The expectation for the truncated Normal distribution is given by (Kortum, 2002;

Olive, 2015),

E(Y ) = µ+

[
φ
(
a−µ
σ

)
− φ
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)]σ (7.8)

and the variance is given by

V AR(Y ) = σ2

[
1 +

(
a−µ
σ

)
φ
(
a−µ
σ

)
−
(
b−µ
σ

)
φ
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) ]
− σ2

[
φ
(
a−µ
σ

)
− φ
(
b−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)]2

.

7.2.2.2 One-sided Truncated Normal

The results for a left-truncated Normal distribution are as follows, such that b→∞.

The probability density function of a truncated Normal distribution is given by

f
(
y|(a, b)

)
=

1
σ
φ
(
y−µ
σ

)
1− Φ

(
a−µ
σ

) (7.9)

for a ≤ y and f(y) = 0 otherwise.
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The probability of X lying within the interval of (a,∞) is given by

1− Φ

(
a− µ
σ

)
(7.10)

where Φ(..) is the cumulative distribution function described in Equation 7.2.

The expectation for the truncated Normal distribution is given by (Kortum, 2002;

Olive, 2015), if we let E(Y ) = µ∗ where µ∗ is the expectation of the truncated

Normal distribution,

E(Y ) = µ∗ = µ+

[
φ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

)]σ (7.11)

and the variance is given by

V AR(Y ) = σ2

[
1 +

(
a−µ
σ

)
φ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

) ]− σ2

[
φ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

)]2

.

This section has presented the pdf, cdf, mean and variance for a truncated Normal

distribution. However, for this thesis the focus is primarily on the mean, since this

can lead to the estimation of the target effect size. Thus, from this point onwards,

the focus shall be on the equation for the mean.

As observed in chapter 6, the distribution which occurs when only the significant

trials are taken forward is a one-sided truncated distribution. Due to this, the focus

of the chapter will remain on the one-sided distribution.

7.2.3 Truncation Point

Based on the results observed in chapter 6, the truncation point of each distribution

appears to be related to the power of the trial. This is also demonstrated in the

previous section. Recall that power is 1 - the probability of making a Type II error,

and in the simulations the power of each trial is known.

From the expectation equation (7.11), if we define µ∗ to be the expectation of the

truncated Normal distribution, and let b→∞, this equation becomes

µ∗ = µ+ σ
φ(A)

1− Φ(A)
(7.12)

where A = a−µ
σ

, µ is the expection or mean of the underlying Normal distribution

(the untruncated Normal distribution) and σ is the population standard deviation.

It can be observed that µ∗ > µ since σ φ(A)
1−Φ(A)

> 0, so when the distribution is left-

truncated, the mean is higher than the standard Normal expectation. This confirms
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the observations in chapter 6 where the mean in the initial trial (whether it was a

pilot trial or phase II trial) is higher than the mean of the second trial. If one is

able to find the truncation point, then it is possible to calculate the mean for the

distribution if it were not truncated.

As shown in chapter 6, our data for the initial trial is left-truncated, i.e. it has a

truncation point on the left side of the distribution and none on the right. This

means that equation 7.7 for the probability of X lying in the area greater than a

becomes

P [X > a] = 1− Φ

(
a− µ
σ

)
(7.13)

since b→∞. This equation looks similar to the expression for the power of a trial

(1 − β). Recall β is the probability of making a Type II error, whilst the power of

a trial is the probability of observing a difference if there truly is a difference to be

observed (i.e. if the alternative hypothesis is true).

As we have deduced that the truncation point and the power are connected based

on the results observed in chapter 6, one should be able to calculated the truncation

point based on the power of a trial.

7.2.3.1 Finding the Truncation Point

Let us consider a Truncated Normal distribution with mean, µ = 10, variance

σ2 = 502 and truncation points a and ∞. This forms a left-truncated Normal

distribution, as shown in Figure 7.1.

A method to establish the truncation point depends on knowing the proportion of

the distribution which has been ‘cut off’. If we consider the simulations performed

in chapter 6, for 80% power and a 5% significance level, it corresponds that the

proportion of results which had a P -value< 0.05 is close to the power of the trial.

Therefore, one could estimate the truncation point by taking the inverse of the cdf

at the proportion β.

For a Normal distribution, this is given by Φ−1
(
p
)
, where p is the proportion of the

distribution to the left of the cut-off, or truncation. Since in chapter 6 there were

10, 000 simulations to begin with, after the selection process subject to the condition

that P < 0.05, we can calculate the proportion of trials still included as follows

p =
Number of Trials from T1 with p < 0.05

Total Number of Trials (Simulations)
. (7.14)

This value is approximately equal to the power of the trials, since the trials are

simulated under the alternative hypothesis.
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Histogram of Truncated Normal Distribution
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Figure 7.1: Histrogram showing a truncated Normal distribution.

This approach depends on the results of the trial, however, the truncation point can

be calculated a priori. In chapter 6, the data which arises from the t-tests form a

t-distribution. The results for a t-distribution of t-statistics, given by

t =

(
x̄1 − x̄2

)
−
(
µ1 − µ2

)
s/
√
n

(7.15)

We can define d = x̄1 − x̄2. Under the null hypothesis, µ1 − µ2 = 0 so the equation

becomes

t =
d

s/
√
n
. (7.16)

If the number in each group can be assumed to be equal, the degrees of freedom

are 2n− 2. Therefore, the truncation point can be given by the proportion of trials

excluded due to having P ≥ 0.05 corresponding to the value t2n−2,1−α/2. Therefore,

the truncation point for small samples (n < 30) could be calculated by taking the

inverse cdf of a t-distribution with mean d, standard deviation s and 2n− 2 degrees

of freedom.
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For large sample sizes (n ≥ 30), the t-distribution approximates to a standard

Normal distribution, therefore the adjustments posed in this chapter which are based

on the Normal distribution hold.

Back in chapter 2, it was shown that the power of a trial can be calculated using a

non-central t-distribution as

1− β = 1− T−1

(
t1−α

2
,nA(r+1)−2, nA(r + 1)− 2,

√
rnAd2

S

(r + 1)σ2

)
, (7.17)

where T−1(. . . ) is the cumulative density function of a non-central t-distribution,

with non-centrality parameter
√

rnA
(r+1)

(Senn, 1993). In this chapter, the focus is on

two-arm trials with r = 1 and the non-centrality parameter becomes

√
n

2

d2
S

σ2
. (7.18)

Chapter 2 also stated the justification for the t-distribution being non-central since

the power is estimated under the alternative hypothesis, therefore the distribution

would be non-central.

The simulations presented in chapter 6 were also performed under the alternative

hypothesis, hence a non-centrality parameter should be introduced as described

above. It can be observed that √
d2
S

σ2
(7.19)

is the standardised effect size, which can be denoted ES. Therefore, the non-

centrality parameter becomes

ES ×
√
n

2
. (7.20)

The distribution of the effect sizes multiplied by
√
n/2 gives a Normal distribution

N(ES
√
n/2, 1).

Let E(Y ) be deonted µ∗, which is the mean of the truncated Normal distribution.

Since the truncation point, a, can be calculated using t2n−2,1−α/2, and the truncated

mean µ∗ is known, using equation 7.12 and re-arranging in terms of the true mean

µ, gives

µ = µ ∗ −σ φ(A)

1− Φ(A)
(7.21)

where A = a−µ
σ
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7.2.3.2 Power-based Truncation Point

The results from section 7.2.3.1 can be used as a method of investigating the trun-

cation point which is based on the concept of the minimum detectable difference

used in chapter 4. The minimum detectable difference (MDD) is the smallest dif-

ference that can be statistically detected in a particular study (Cook et al., 2014)

and is related to the truncation point. There are a number of published methods

to calculate the minimum detectable difference, a few of which are outlined in this

section.

Valk and colleagues (Valk et al., 2000), along with Pijls and colleagues (Pijls et al.,

1999), described the “smallest detectable difference” for two measurements (test-

retest) for a single group as √
(Zα + Zβ)× σ2

n
(7.22)

where α is the significance level, 1− β is the statistical power, σ2 is the variance of

the within-person differences and n is the number of observations.

Another method, used for two independent groups (equal size and variance), is given

by (Bridges, 1997; Hanson et al., 2003b)

√
2
(
tα,ν + tβ,ν

)SD√
n

(7.23)

where tα,ν (and tβ,ν respectively) are the 100(1− α) percentile of the t-distribution

with ν degrees of freedom, n is the number of observations per group and α and β

are the significance level and Type II error.

One intuitive way to calculate it is when the power is set to 50%, this gives the

minimum value that the 95% confidence interval around the point estimate will

exclude the null value. Using the simplified equation from chapter 2,

n =
2σ2
(
Z1−β + Z1−α/2

)2

d2
(7.24)

with the power is set to 50%, the term Z1−β becomes equal to 0. If this is rearranged

to be in terms of d, it becomes

ddet =

√
2σ2Z2

1−α/2

n
(7.25)

where ddet is the detectable difference, α is the significance level, n is the sample

size per arm and σ2 is the variance.
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Power x
80 0.700
81 0.691
82 0.682
83 0.673
84 0.663
85 0.654
86 0.645
87 0.635
88 0.625
89 0.615
90 0.605
95 0.544
99 0.457

Table 7.1: The adjustment values for the detectable difference. Note: x is the
value by which the target difference d should be multiplied.

If the P -value achieved in the trial is equal to 0.05, and the sample size is achieved,

then the ratio of the detectable difference to the target difference can be calculated

by

ddet
d

for various powers. This will provide an adjustment value for the target difference,

d, showing the minimum detectable difference. The results can be seen in Table 7.1.

The values in Table 7.1 are the values of the detectable difference. If a trial has

a P -value of 0.05, for 80% power then the value of the detectable difference would

be 0.7d, where d is the target difference. These values are linked to the truncation

point described earlier in the chapter, since the truncation point is the value at which

the P -values become significant and the detectable difference is the proportion of d

which will observed a P -value of 0.05.

7.2.4 Comparison of Simulation Results and

Truncation Results

It is now possible to compare the results observed in the simulations in chapter 6

with those calculated in Section 7.2.3, both in terms of the truncation point and the

ratio of bias between the observed (truncated) and true mean.

The results of the truncation point calculations is separated into two sections. The

first intermediary section is presented in Appendix E. The final results are presented

in Table 7.2 and Table 7.3. Each of the variables shall be further explained to ensure

clarity. Since the values we are interested in are ratios, they are scale-independent.
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These calculations are based on a significance level α = 0.05. The results presented

in this section are the results for the standardised effect size, where the effect size in

the tables in the Appendix are multiplied by
√

2/n. These tables demonstrate that

the truncation point based on the t-distribution, a, matches the truncation point as

calcuated using Table 7.1. The results in the Appendix are for µ = ES
√
n/2 where

ES is the effect size and σ = 1.

Each variable in the results tables (Tables 7.2 and 7.3) are described below. The

values for µ are those of the true effect sizes and µ∗ show the biased mean estimate

on the standardised scale.

• Sample size per arm (n) is set to the same values calculated in chapter 6

• µ is the mean difference, based on the non-central t-distribution. Thus µ = ES

where ES is the effect size.

• adet is calculated by x.µ, where x is the associated value from Table 7.1

• a is the mathematical truncation point calculated as a = t2n−2,1−α/2

• µ∗ has been calculated using Equation 7.12.

The ratios for the chapter 6 bias are brought forward from Tables 6.3 and 6.4 and

calculated by taking the inverse of the ratio. The ratio of µ/µ∗ is calculated from

the data in Table 7.2 and Table 7.3. It can be observed that adet ≈ a, indicating that

the truncation point as calculated mathematically (a) is equivalent to the truncation

point calculated by the detectable difference (adet).

The difference between µ∗ and µ shows the amount of bias which occurs from the

truncation of the underlying distribution, with µ∗ being the mean of the truncated

distribution (or the observed mean) and µ being the mean of the untruncated dis-

tribution (the ‘true’ mean’).

The observed ratio from chapter 6 is approximately the same as the ratio of the

mathematical means (µ/µ∗).

These results confirm the observations from chapter 6, and provide a mathematically

sound solution for the truncation which occurs for trials in sequence.
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Trials in Sequence
Effect Size = 0.2

Sample Truncation Mean Difference Ratio
Power Size (n) adet a µ µ∗ Ch 6 Bias µ/µ∗

80 393 1.962 1.963 0.200 0.225 0.885 0.889
85 450 1.962 1.963 0.200 0.218 0.926 0.916
90 526 1.962 1.962 0.200 0.212 0.945 0.943
95 651 1.963 1.962 0.200 0.206 0.970 0.971
99 950 1.960 1.961 0.200 0.201 0.994 0.994

Table 7.2: A comparison of mathematically calculated truncation points and ratios
of mean differences with simulated values for various powers, having multiplied the
Effect Sizes (ES) by

√
2/n.

Trials in Sequence
Power = 80%

Sample Truncation Mean Difference Ratio
Effect Size (n) adet a µ µ∗ Ch 6 Bias µ/µ∗

0.2 393 1.962 1.963 0.200 0.225 0.886 0.889
0.3 175 1.962 1.963 0.300 0.338 0.891 0.889
0.4 99 1.962 1.963 0.400 0.450 0.884 0.889
0.5 64 1.962 1.963 0.500 0.561 0.880 0.891
0.6 45 1.962 1.963 0.600 0.672 0.892 0.892
0.8 26 1.962 1.963 0.800 0.893 0.896 0.896

Table 7.3: A comparison of mathematically calculated truncation points and ratios
of mean differences with simulated values for various effect sizes, having multiplied
the Effect Sizes (ES) by

√
2/n.
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7.2.5 Pilot Study to Main Trial

For the pilot study to main trial results, the adjustment can be solved mathemati-

cally by setting the truncation point, a, equal to zero. This is based on the premise

that a pilot study will continue to a main trial if the observed effect is positive,

which is the least strict condition of continuation discussed in chapter 6 (the basic

case). The results are presented in Tables 7.4 and 7.5.

It can be observed that the ratio of mean differences observed from the simulations

in chapter 6 are similar to the ratio of mathematical mean differences developed in

this chapter. This confirms the results observed in chapter 6 and the mathematical

bias are the same.

Pilot to Main Trial
Main Trial Power = 80%

Sample Truncation Mean Difference Ratio
Effect Size (n) a µ µ∗ Ch 6 Bias µ/µ∗

0.2 20 0 0.200 0.340 0.591 0.588
0.3 14 0 0.300 0.440 0.682 0.682
0.4 11 0 0.400 0.533 0.745 0.751
0.5 10 0 0.500 0.610 0.823 0.820
0.6 10 0 0.600 0.680 0.881 0.883
0.8 10 0 0.800 0.837 0.959 0.955

Table 7.4: A comparison of mathematically calculated truncation points and ratios
of mean differences with simulated values for various effect sizes for pilot study to
main trial.

Pilot to Main Trial
Main Trial Power = 90%

Sample Truncation Mean Difference Ratio
Effect Size (n) a µ µ∗ Ch 6 Bias µ/µ∗

0.2 28 0 0.200 0.304 0.664 0.657
0.3 19 0 0.300 0.403 0.747 0.745
0.4 15 0 0.400 0.493 0.801 0.812
0.5 12 0 0.500 0.587 0.850 0.853
0.6 11 0 0.600 0.669 0.891 0.897
0.8 10 0 0.800 0.837 0.960 0.955

Table 7.5: A comparison of mathematically calculated truncation points and ratios
of mean differences with simulated values for various effect sizes for pilot study to
main trial.

These tables show that the mean which occurs under the truncated Normal distir-

bution (µ∗) is more inflated than both the ‘true’ mean (µ) and the corresponding

observed mean from Tables 7.2 and 7.3.

In contrast with the trials in sequence results, where the ratios remained approx-

imately constant as the effect size varied, the ratios presented in Tables 7.4 and
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7.5 increase as the effect size increases. This is due to the ratio of the pilot study

sample size and main trial sample size. As the effect size increases, the main trial

sample size decreases dramatically but the pilot study sample size is capped at a

minimum of 10 participants per group. Therefore as the effect size increases, the

ratio of PilotSampleSize/MainSampleSize increases.

These adjustments appear to be more extreme than those in Table 7.6, which is due

to the inflated mean observed in the pilot studies. This inflated mean is due to the

very small sample size used in pilot studies.

As the effect size increases the strength of the adjustment required decreases, with

the adjustment for an effect size of 0.8 being equal irrespective of whether the power

of the main trial is 80% or 90%.

As previously discussed in chapter 6, the pilot study sample sizes are based on

recommendations by Whitehead et al. (Whitehead et al., 2016), however this section

has demonstrated that the results of the mathematical solution for this context

actually depend on the conditions set for moving forward with the main trial. For

example, these results are all based on a truncation point occurring at 0 since if d < 0

then the intervention is assumed to be not promising. Therefore, whilst it is true

that there was limited generalisability of the simulation results, the mathematical

results presented and used for the remainder of the thesis are independent of this

and depend only on the condition of a promising pilot study. This will ensure that

the adjustment is not restricted to one particular method for sample size calculation

relating to a pilot study-main trial context.
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7.3 Development of the Adjustment Method

This section will detail the possible adjustment method which has been developed

based on the results from chapter 6 and the results seen thus far in this chapter.

For simplicity, the adjustment method developed in this chapter will be referred to

as the Rothwell adjustment.

7.3.1 Rothwell Adjustment

An adjustment to be applied to the results of trial 1 (T1) can be taken from Table

7.2 and Table 7.3. This adjustment, which is the ratio of µ ∗ /µ in the table, is

calculated by taking the inverse of the ratio of means, thereby providing the level

of bias by which to adjust the results from trial 1.

Trials in Sequence

Effect Size = 0.2
Power Rothwell Adjustment (x)

80 0.89
85 0.92
90 0.94
95 0.97
99 0.99

Power = 80%
Effect Rothwell Adjustment (x)

0.2 0.89
0.3 0.89
0.4 0.89
0.5 0.89
0.6 0.89
0.8 0.90

Table 7.6: The Rothwell adjustments for trials in sequence for various powers
and effect sizes. Note: x is the value by which the observed difference dT1

should be multiplied.

For the trials in sequence, it was shown in chapter 6 that a change in standardised

effect size had little impact on the bias, it was more affected by the change in power.

Since the simulation results from chapter 6 are validated using the mathematical

results shown in Table 7.2, the associated Rothwell adjustments shall be taken from

the mathematical solution and are shown in Table 7.6. Therefore, the results pre-

sented in Table 7.6 are for a constant effect size of 0.2. Results are given to 2 decimal

places where appropriate for ease of use. All the tables containing adjustment values

in this chapter are showing the value by which the observed effect size or difference

in Trial one should be multiplied. This gives a more unbiased estimate of the ‘true’

effect size.
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Pilot Study to Main Trial
80% Powered Main Trial

Effect Size x (Rothwell)
0.2 0.59
0.3 0.68
0.4 0.74
0.5 0.82
0.6 0.88
0.8 0.96

90% Powered Main Trial
Effect Size x (Rothwell)

0.2 0.66
0.3 0.75
0.4 0.80
0.5 0.85
0.6 0.89
0.8 0.96

Table 7.7: The adjustment values for pilot study to main trial designs. Note:
x is the value by which the observed effect dpilot should be multiplied.

The results from the simulations and the mathematical solution shown earlier in this

chapter demostrate that irespective of the value of µ, where µ is the ‘true’ mean,

as long as the power of trial 1 is known then the adjustment can be applied to the

observed effect size from Trial 1. The value of the adjustment depends solely on the

power of trial 1, thus as long as the power of the trial is known, and the observed

effect size µ∗, then the result can be adjusted as appropriate for the values shown

in Tables 7.6 and 7.7. From this point forwards, the adjustment values will be as in

Table 7.6 for trials in sequence and Table 7.7 for pilot to main trial.

As discussed in the previous section (section 7.2.5), the adjustment for trials in

sequence is dependent on the power of the first trial. The adjustment for the pilot

study to main trial context is dependent on the continuation criteria imposed on

the pilot study, for example this could be that the observed effect size was positive

(dpilot > 0) or that the 90% confidence interval contains the MCID.
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7.4 Comparison of Other Methods

This section compares the adjustment developed in this chapter with adjustments

described in chapter 5. For the context of trials in sequence, the adjustments can

be compared with those proposed by Wang and Kirby. For the pilot to main trial

context, since there is no discussion in the Wang and Kirby papers about the appli-

cation of their respective adjustments to pilot studies, only the Rothwell adjustment

will be applied to the simulation data and the results discussed.

Recall, the first of the previous adjustments is a subtractive method proposed by

Wang et al. (Wang et al., 2006),

∆̂− 1× s.e(∆̂) (7.26)

where ∆ is the observed difference and s.e(∆̂) is the standard error of the observed

difference from the first trial .

The second method is a multiplicative method which was proposed by Kirby et al.

(Kirby et al., 2012), it provides a more general rule-of-thumb,

∆̂× 0.9. (7.27)

7.5 Adjustments for Trials in Sequence

Thus far in the chapter, the various adjustments have been discussed in detail. In

order to fully compare these adjustment and assess their individual merits, each

adjustment is applied to the simulated data and the results discussed.

7.5.1 Methods

The simulation results in chapter 6 have been used, with the observed mean dif-

ferences in trial 1 having each adjustment method applied. The values which form

the various adjustment methods are presented in Table 7.8. It can be seen that the

Kirby adjustment is constant, the Wang adjustment is sensitive to high effect sizes,

and the Rothwell adjustment varies slightly but remains constant for increasing ef-

fect size. There are two point at which the adjustments can be applied, the first

being to the overall average results across the 10, 000 simulations, the second being

during each individual simulation. Both applications are presented in this section,

with the methods for both being near idenitical except for the point of adjustment.
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Trials In Sequence
Varying Power, Constant Effect Size

Power x (Rothwell) x (Kirby) y (Wang)
80 0.89 0.90 0.139
85 0.92 0.90 0.126
90 0.94 0.90 0.113
95 0.97 0.90 0.097
99 0.99 0.90 0.074

Varying Effect Size, Constant Power
Effect x (Rothwell) x (Kirby) y (Wang)

0.2 0.89 0.90 0.139
0.3 0.89 0.90 0.309
0.4 0.89 0.90 0.551
0.5 0.89 0.90 0.853
0.6 0.89 0.90 1.207
0.8 0.90 0.90 2.093

Table 7.8: All adjustment methods results for trials in sequence by power. Note: x
is the value by which the observed difference dT1 should be multiplied. y
is the value which the observed difference from T1 should be subtracted
by.

7.5.2 Results

The results for the implementation of the adjustments for bias are given in this

section for trials in sequence. As there were two possible points at which to introduce

the adjustment, both have been presented.

7.5.2.1 Application to Average Trial 1 Results

These adjustments have been applied to the average results from T1 across the

10, 000 simulations, presented in Table 7.9. It can be seen that the Rothwell adjust-

ment produces consistent results as the power varies, with the adjusted T1 value

being close to the ‘true’ effect. The Kirby adjustment functions well for 80% power

and varying effect size with constant power of 80%, however, as the power increases

the adjustment becomes more severe. From the opposite side, the Wang adjustment

appears to be conservative for varying effect size and only begins to function well

for very high powers.

7.5.2.2 Application to Individual Trial 1 Results

The results for the trials in sequence are shown in Table 7.10. The effect of these

adjustments is that the truncated distributions observed in chapter 6 are shifted

by a fixed amount, causing the mean to more closely follow that for the second

trial. It can be observed in the table the effect of implementing the adjustments to
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Trials In Sequence - Adjusted Average Mean Differences
Effect Size= 0.2 Adjusted T1 Mean Difference

Power Rothwell Kirby Wang
80 10.06 10.17 11.16
85 9.98 9.77 10.72
90 10.00 9.58 10.53
95 9.99 9.27 10.20
99 9.96 9.05 9.99

Power= 80% Adjusted T1 Mean Difference
Effect Rothwell Kirby Wang

0.2 10.06 10.17 11.16
0.3 15.00 15.17 16.54
0.4 20.01 20.24 21.94
0.5 24.93 25.21 27.16
0.6 29.73 30.06 32.19
0.8 40.03 40.03 42.39

Table 7.9: The adjusted average means from T1 using each method, with the ‘true’
difference shown.

individual trial data. For the individually adjusted data, the Kirby adjustment does

not appear to perform as well as it did for the average mean adjustment, whilst the

Rothwell adjustment again proves to be relatively stable when compared with the

‘true’ effect. The Wang adjustment works well for high powers, but does not reduce

the bias enough for lower powers.

These results can be seen in Figures 7.2 and 7.3. Figure 7.2 shows that the Rothwell

adjustment follows the ‘true’ mean difference more closely than the other adjust-

ments, with the Kirby adjustment moving away from the ‘true’ difference as the

power increases. Opposing this, the Wang adjustment and the unadjusted differ-

ence get closer to the ‘true’ mean difference as the power increases.

Figure 7.3 shows that as the effect size increases with constant power, the unad-

justed mean difference and the Wang adjusted values move away from the ‘true’

value, whereas the Kirby and Rothwell methods remain constantly close to the

‘true’ difference.
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Trials In Sequence - Individually Adjusted Mean Differences
Effect Size= 0.2 Adjusted T1 Mean Difference

Power Rothwell Kirby Wang
80 10.06 9.70 10.72
85 10.16 9.83 10.43
90 9.99 9.54 10.13
95 10.01 9.26 9.90
99 9.96 9.04 9.72

Power= 80% Adjusted T1 Mean Difference
Effect Rothwell Kirby Wang

0.2 10.06 9.70 10.72
0.3 15.03 15.19 15.58
0.4 19.96 20.20 20.25
0.5 25.35 25.25 24.55
0.6 30.02 30.26 28.60
0.8 39.97 40.02 35.86

Table 7.10: The average of individually adjusted means in T1 using each method,
with the ‘true’ difference shown.
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Figure 7.2: A line plot showing the various adjustment methods for trials in se-
quence compared with the unadjusted values and the ‘true’ value for different
powers.
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Figure 7.3: A line plot showing the various adjustment methods for trials in se-
quence compared with the unadjusted values and the ‘true’ value for different effect
sizes.
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7.6 Adjustment for Pilot Study to Main Trial

As previously discussed in this chapter and chapter 6, it is not advised to use the

point estimate from a pilot study due to the sample size being very small, it was of

interest to see the contrast between the adjustment presented for this context and

the one for trials in sequence. The Rothwell adjustment was the only adjustment

to be considered for this context due to there being no discussion in the papers by

Kirby and Wang of using their adjustments for pilot study data. The values of the

adjustments for pilot study results can be seen in Table 7.7.

7.6.1 Methods

The Rothwell adjustment was applied to the data from chapter 6 under the context

of a pilot study to main trial. Once more, this adjustment could be applied at two

different points of the simulations, with each being presented in turn.

7.6.2 Results

The results of adjusting for a regression to the mean effect for a pilot study to main

trial context have been split in two sections by at which point the adjustment was

implemented. These results should be taken with caution, as mentioned earlier.

7.6.2.1 Average Initial Trial Results

The results when the adjustment displayed in Table 7.7 is applied to the observed

mean of a pilot study can be seen in Table 7.11. The adjustment does appear to

work well in this scenario, providing a closer estimate of the ‘true’ mean difference

than that observed in the pilot study.

7.6.2.2 Individual Initial Trial Results

The adjustments were also applied to each simulation, to assess whether on a trial

by trial basis they reduce the truncation effect of the results. Figure 7.4 shows the

adjusted results for various effect sizes and power for the pilot study to main trial

scenario. The adjustment implemented is the one detailed in Table 7.7. It can be

seen in the graph that the adjusted values from the pilot studies are inflated when

compared with the ‘true’ mean. The Rothwell adjustment for pilot studies shows

that the observed effect size can be modified to follow more closely the ‘true’ effect

size. This could be a useful adjustment for point estimates in pilot studies to allow

them to be used more effectively in designing the main trial.
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Pilot Study to Main Trial
80% Powered Main Trial

Effect Size ‘True’ Mean Adj. Pilot Mean (Rothwell)
0.2 10 10.01
0.3 15 15.00
0.4 20 19.84
0.5 25 24.87
0.6 30 29.96
0.8 40 39.95

90% Powered Main Trial
Effect Size ‘True’ Mean Adj. Pilot Mean (Rothwell)

0.2 10 9.95
0.3 15 15.15
0.4 20 19.96
0.5 25 25.04
0.6 30 30.11
0.8 40 40.05

Table 7.11: The adjusted average means from the pilot study, by power and effect
size.

Pilot Study to Main Trial
80% Powered Main Trial

Effect Size ‘True’ Mean Adj. Pilot Mean (Rothwell)
0.2 10 10.10
0.3 15 14.97
0.4 20 19.58
0.5 25 24.90
0.6 30 29.93
0.8 40 40.16

90% Powered Main Trial
Effect Size ‘True’ Mean Adj. Pilot Mean (Rothwell)

0.2 10 10.16
0.3 15 14.93
0.4 20 19.66
0.5 25 24.90
0.6 30 30.00
0.8 40 40.52

Table 7.12: The average adjusted individual means from the pilot study.
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Figure 7.4: A line plot showing the various adjustment methods for pilot study to
main trial compared with the unadjusted values and the ‘true’ value for different
effect sizes.
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7.7 Effect on Sample Size

As discussed in early chapters, the sample size calculation is very sensitive to the

target difference, d. If the adjustments discussed in this chapter are applied to the

observed mean in the initial trial, then the sample size for T2 is calculated, they

will be very different to those sample size calculations which would be based on the

unadjusted mean difference observed in T1.

To assess this difference, Table 7.13 shows the unadjusted sample sizes for T2, along

with the sample sizes based on each adjustment method. It can be observed that all

the adjustments result in a higher sample size for T2 than that of T1. This is not

unexpected, since all the adjustments reduce the observed mean difference, and as

described in chapter 2 as the target difference decreases the sample size increases.

As the power increases, the adjustment by Kirby results in a much greater sample

size than that used in T1.

Trials In Sequence
Varying Power, Effect Size= 0.2. Adjusted Sample Size (T2)

Power SS T1 Unadj. SS T2 Rothwell Kirby Wang
80 393 364 460 490 406
85 450 456 519 554 491
90 526 556 633 691 610
95 651 651 782 913 800
99 920 1074 1096 1333 1158

Varying Effect Size, Power= 80%. Adjusted Sample Size (T2)
Effect SS T1 Unadj. SS T2 Rothwell Kirby Wang

0.2 393 364 460 490 406
0.3 175 164 206 201 191
0.4 99 92 116 114 114
0.5 64 60 72 73 77
0.6 45 42 52 51 57
0.8 26 24 30 30 37

Table 7.13: The average sample size per arm for T2 based on the adjusted mean
differences from T1.
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7.8 Worked Examples

This section will briefly provide two worked examples to demonstrate how the Roth-

well adjustment is to be implemented.

7.8.1 Trials in Sequence Context

In this example, let us consider a trial of a new treatment to reduce systolic blood

pressure compared with an existing drug. The effect size is the reduction in systolic

blood pressure. The first trial (the Phase II trial) has been performed and produced

an average observed effect size of 12 mmHg which we wish to use to guide the

planning for the Phase III trial. In order to properly adjust this effect size to reduce

the effect of regression to the mean, one must first consider the power planned of

the Phase II trial. Suppose this is 90%. Therefore, the adjustment will be 0.94,

which will give an adjusted target effect size of 11.28. This value could be used as

possiblye plausible effect size for the sample size calculation for the Phase III trial.

7.8.2 Pilot Study Context

Let us consider a trial investigating the effect of group therapy on depression. The

outcome measure is the self-reported PHQ-9 questionnaire. A reduction of 10 points

is deemed clinically important. The pilot trial observed an effect size of 16 point

reduction after 3 months of therapy. Then designing the pilot trial, the study design

of the main trial was considered using the approach of Whitehead (Whitehead et al.,

2016). The main trial is planned to have a power of 80%, and using a standardised

expected effect size of 0.2 (assuming a standard deviation of 50). Due to this a

sample size of 20 was used for the pilot trial. It was decided that the main trial

would start if dpilot > 0. For this decision rule, an adjustment of 0.59 would be used.

Therefore, using the effect observed in the pilot trial, a plausible estimate of the

treatment difference would be 16× 0.59 which is 9.44. This is also around the value

that is of clinical importance. This gives reasonable confidence and justification to

use 10 as a clinically important effect in the sample size calculation for the main

trial. The power planned for the main trial, per the Whitehead method, has an

effect on the sample size used for the pilot study. If the power is planned for 80%,

this would result in a smaller sample size used in the pilot study compared to a

main trial of 90% power, therefore increasing the standard deviation.
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7.9 Discussion

This chapter has explained what a truncated Normal distribution is, as well as dis-

cussed some possibly solutions to find the point of truncation in the distribution. The

truncation point has been shown mathematically to match up with the detectable

difference calculation, and the ratio of bias observed in chapter 6 matches the ratio

of the truncated and true means. All this shows that the simulations performed in

chapter 6 hold true and the results have been mathematically confirmed.

The adjustments for the early data found in chapter 5 were compared to one devel-

oped in this chapter based on the simulations in chapter 6. It has been shown that

the adjustments by Kirby and Rothwell work well on simulated data for a variety

of powers and effect sizes. However, the Kirby adjustment seems to be too con-

servative for higher powers compared to the Rothwell adjustment proposed in this

dissertation. The Rothwell adjustment is relatively stable across the various powers

and effect sizes, with the Kirby adjustment performing similarly well for various ef-

fect sizes and the Wang adjustment being too affected by the sample size for higher

powers, resulting in the adjusted mean differences being too conservative for lower

powers.

With regards to the sample size for T2 based on the results from T1, there needs to

be some consideration about the trade-off between the number required per arm and

the chance of ‘success’ of the trial. Based on the results in Table 7.13, it can be seen

that the Kirby adjustment results in needing generally more participants than the

Rothwell adjustment, however, the proportion of trials at T2 which show P < 0.05

is fractionally greater for the Kirby adjusted samples than the other samples. This

could be chance, or due to the increased number of participants. Sometimes it is not

feasible to increase the number of participants by that great an amount, therefore

this could become a problem with regards to implementing in practice.

In the next chapter, the Rothwell adjustment shall be assessed on a large real data set

to test its robustness on the variability of real-life data as opposed to the simulated

data.

7.9.1 Limitations

The limitations of this section fall largely with the time constraint of writing this

thesis and the computer power required for each set of simulations when assessing

how well each adjustment performs. However, since the results have also been proven

mathematically this mitigates this factor considerably. For further work, it would be

important to test the adjustments on more simulations and a wider variety of powers

and effect sizes to provide a comprehensive table of adjustments which trialists can
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refer to. The table would contain each combination of power and effect size, with

the associated adjustment value. This could be useful for trialists when designing

studies based on previous work to ensure that the regression to the mean effect was

reduced.

Another important limitation is this work has assumed other trials have the same

endpoint. This is not always the case, in fact it is common for the initial trial to be

performed on a surrogate end point.

The chapter has focused on the mean of the one-sided truncated Normal distribution.

The results could be extended to both the two-sided distribution and the variance,

however this is outside the scope of this thesis. It could be considered for further

work.

7.10 Conclusion

This chapter has shown that the work completed in a simulated context in chapter

6 can be demonstrated mathematically, and the results for both are similar. There

does exist a bias when the results from the first trial come from a truncated Normal

distribution, which leads to the adjustments further developed in this chapter being

required.

The adjustment developed in this chapter has been applied to simulated data, which

emulates a ‘perfect’ trial scenario. The Rothwell adjustment performed well on the

simulated data sets, and was more consistent at higher powers than the Kirby or

Wang adjustments. However, there is a practical consideration with this adjustment,

as the likelihood of trials having greater than 90% power is small.

The Rothwell adjustment would be useful for trialists when designing trials based on

previous research. Once the power and approxiamte target effect size are known, the

appropriate adjustment could be applied to the previous data to reduce the possible

effect of regression to the mean. This could, in the long term, reduce the number

of trials which do not achieve statistical significance if there is truly a difference

between treatments. It is always possible that the previous work were anomalies,

uncharacteristically high differences even if there is no difference in treatments. It

can not be said that any adjustment will avoid this problem, that is the nature

of clinical trials. However, all these adjustments have the potential to provide a

less inflated estimate of the treatment effect and improve the statistical accuracy of

the sample size calculation for future trials, therefore reducing long-term cost and

unnecessary further trials.
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8. Application to Real Data

8.1 Introduction

The adjustment developed in chapter 7 has been shown to work well for simulated

data. This simulated data are data which occurs under ideal conditions, yet data

collected in real-life trials is rarely from ideal conditions. In order to fully assess the

adjustments from the previous chapter, hereafter called the Rothwell adjustment,

its impact on real data should be investigated.

8.1.1 Chapter Aims

This chapter builds on the results from chapter 7 and applies the Rothwell adjust-

ment to a real data set. The structure of the data set is described, along with the

methods implemented to put the data in the same contexts as those used in chapters

6 and 7. These are the trials in sequence scenario and the pilot study to main trial

context.

8.2 Data

This section briefly describes the data set being used in this chapter. The full data

set is described in a dissertation by Ho Ching-Ping (Ching-Ping, 2016), therefore a

summary is presented here to aid understanding.

8.2.1 Description of Data Set

The data set being used is from Unilever, a company which develops a number of

products including antiperspirants. This data comes from a series of antiperspirant

trials at Unilever’s Research and Development department in Leeds. The data has

been provided to the University for a Masters dissertation and used in this thesis to

demonstrate the implementation of the Rothwell adjustment on real data.

167



There are two different objectives for the trials, one being a test product versus

a placebo and the second being a head to head comparison with the test product

being compared with a second antiperspirant currently on the market. There are 262

trials in the data set, of which 94 are placebo-controlled and 168 are head-to-head

comparisons. All the trials are crossover trials, with each product being investigated

randomly assigned to a side of the participants’ body. All the trials are designed

with 80% power and 5% significance level.

In order for a product to be classed as an antiperspirant, it must show some capacity

to reduce underarm sweat production. This is tested using a Hot Room, which puts

participants in a room with increased temperature and humidity.

The primary outcome of these trials is sweat reduction percentage, which is skewed

data. Originally, during the analysis of these studies, the data were log-transformed.

However, for the purpose of this chapter the data are kept on the original scale. This

is partly to enable clear interpretation of results and ensure the focus of the chapter

is the testing of the Rothwell adjustment, not the results of the trials themselves.

In order for a product to be deemed “effective”, it must demonstrate the log mean

sweat reduction being at least 15%, therefore the overall target effect size is −0.15

for a product to be deemed successful.

The results from the trials are expressed as a percentage of the sweat weight reduc-

tion of one treatment relative to another. This is calculated as

SWR = mean(I)−mean(C)

where SWR is sweat weight reduction percentage, I is the investigational product

and C is the control product.

8.2.2 Structure of Data

In the full data set there were 263 trials, however, one was removed due to all sweat

records being missing, so there were 262 studies in the initial data set. The total

number of participants was 8979. Table 8.1 shows the summary statistics for the

sample sizes in the whole data set.

Sample Size
Mean Median Minimum Maximum

34 34 26 43

Table 8.1: Summary statistics for sample sizes in full data set of 262 studies.

In the next section, a subset of the full data set is described. This subset was the

data used in this chapter.
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8.3 Methods

The data which is used in this analysis is a subset of the data set described thus

far. The method used to determine the subset is described in this section, as well

as further details of the selection of trials and implementation of the adjustments

developed in chapter 7 and shown in Table 8.2.

Effect Size = 0.2
Power Rothwell Adjustment (x)

80 0.89
85 0.92
90 0.94
95 0.97
99 0.99

Table 8.2: The Rothwell adjustments for trials in sequence for various powers as
shown in chapter 7. Note: x is the value by which the observed difference
dT1 should be multiplied.

8.3.1 Selection of Subset

As described in earlier sections, the full data set contained 262 trials. Each trial

had two paired arms, with each pair being the left arm or the right arm. The pairs

were randomly allocated either a placebo control or active control, and the active

treatment. There were 94 trials which were placebo-controlled and the remaining

168 were head to head comparisons.

Trial subjects were removed if there were no sweat records available for either arm

(56 subjects), and if the control axilla sweat weight was less than 100mg, though

this did not occur in this data set.

To enable direct comparison to the context of trials in sequence, a subset of this

large data set was extracted to consist of only trials where comparisons had been

made on the same products. For example, if there were two different trials both

comparing a placebo and a particular treatment, these were included.

Doing this allowed the trials to be treated as if they were in sequence, mimicking

the context used in previous chapters. Of the 262 trials in the full data set, 135

trials compared the same products, 40 were placebo-controlled and the remaining

95 were head-to-head comparisons.

There were 19 occurences of trials which compared the same products more than

twice, 15 of which had three comparisons of the same products and 4 which had

four comparisons.
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Set Trial ID Product 1 Product 2 T1 or T2? Included?
1 A Placebo R1 1 Yes
1 B Placebo R1 1 No
1 C Placebo R1 2 Yes
2 D S1 R1 2 Yes
2 E S1 R1 1 Yes
2 F S1 R1 1 Yes
2 G S1 R1 2 Yes

Table 8.3: An illustrative example of the trial matching. For the Placebo vs. R1
trial, T1 was randomly selected from trials A and B.

8.3.1.1 Trial Matching

Since the aim was to use the trials as if they were sequential, one trial had to be

set as Trial 1 whilst the other was allocated as Trial 2. For the occurrences where

there were 3 trials comparing the same products, the trials were randomly allocated

either the number 1 or 2. The trials which compared the same products and were

allocated the same trial order number were then randomly selected such that there

were only two trials comparing each set of products.

In the cases where there were 4 trials comparing the same products, these were also

randomly allocated either 1 or 2 but all were included because each trial could be

matched to a second trial.

Table 8.3 provides an illustrative example of this allocation process, so each Trial ID

is an individual comparison with each product displayed. The trials were separated

into Sets, which were defined as trials comparing the same products. Thus, set 1

contains trials A, B and C all of which compared a placebo with an active product

(R1). Set 2 consisted of trials D-G which compared active control S1 to active

product R1. Each trial was randomly allocated to T1 or T2, with the condition

that at least one trial in each set is allocated T1 and at least one to T2. The final

stage of selection for the subsetted data was to randomly select pairs of T1 and T2

from each set. If there were an odd number of trials in a specific set, one trial was

randomly excluded such that there were matched trials in T1 and T2.

A total of 60 trial pairs were included in the subset for analysis, 17 placebo-controlled

pairs of trials and 43 head to head pairs of trials. There were 15 trials which were not

selected due to the random trial number selection process described earlier. There

were 8090 observations in total, 4045 for each axilla. These are from 120 distinct

trials, 34 placebo-controlled trials and 86 head to head comparisons.
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8.3.1.2 Structure of Subset

The subsetted data set was used as the primary data set for the rest of this chapter.

The summary statistics for the work described in this chapter are in Tables 8.4 and

8.5. These trials are to be analysed in the context of trials in sequence (T1 to T2).

Since the sample sizes are already relatively small, it was decided to not use this

data for the pilot to main trial context.

Sample Size
Mean Median Minimum Maximum

Placebo-Controlled 33 33 27 41
Head-to-Head 33 34 26 41

Table 8.4: Summary statistics for sample sizes in the subsetted data.

Placebo-Controlled Head-to-Head Total
Frequency 34 86 120

Table 8.5: The frequency of placebo and head-to-head trials in the subsetted data.

8.3.2 Analysis

The purpose of this chapter was to assess how robust the Rothwell adjustment is

when applied to real data. This was evaluated by applying the Rothwell adjustment

to the observed mean difference of statistically significant trials. Up to this point, it

has been discussed how the data was formatted to emulate trials in sequence. The

data set used from this point forward was the subsetted data of the paired trials,

as described in section 8.3.1.1. These trials were completed within-person, so each

person had one product on the left axilla and another on the right. The statistical

tests used to compare the two treatments was a paired t-test, since each person

acted as their own control and the trials were all crossover trials. The trials were

powered at 80% with a 5% significance level.

The paired t-tests were performed on the data, with the non-signficant Trial 1 studies

being excluded and not proceeding to Trial 2. This mirrors the pathway used in the

simulations in chapter 6.

The target mean difference is calculated by rearranging the sample size equation for

a crossover trial, as shown in chapter 2. This equation can be rearranged to get

δ =

√
2×

(
Z1−β + Z1−α/2

)2

n
, (8.1)

where δ is the standardised target difference and n is the sample size.
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The average standardised target effect size is 0.68 for both the placebo and active

controlled trials, which is a large effect size as defined by Cohen (Cohen, 1988).

Even though the target effect size is large, the adjustments have been demonstrated

to not be affected by the size of the target effect size, only the power. Therefore,

the adjustment values in Table 8.2 are suitable. Chapter 6 demonstrated that the

different effect sizes made little impact on the level of adjustment required. Since

these trials are crossover trials, whilst the target effect size is large it is known that

the standard deviation will be lower than those seen in parallel group trials.

The second stage of this analysis was to repeat the t-tests on the pairs of trials

and then apply the Rothwell adjustment to the observed mean difference from each

significant T1. This provides the adjusted mean differences for significant T1 and

these can be used to estimate the required T2 sample size, allowing direct comparison

to the true T2 sample size. It will also allow comparison of the adjusted T1 mean

difference with the observed T2 mean difference, to assess whether the Rothwell

adjustment performs as well on real data compared to simulated data. The simulated

data showed that the Rothwell adjustment provided a mean difference closer to that

of the ‘true’ mean difference, as opposed to the inflated mean difference observed in

trial 1.

These results are presented separately for the placebo controlled trials and the head

to head comparisons, since it would be expected that the observed difference is

greater for the placebo controlled trials. The results are then assessed by the ratio
Active
Control

. If this ratio is greater than 1, the control treatment reduces the sweat rate

more than the active treatment. This ratio is scale-independent and thus allows

direct comparison with the results from chapters 6 and 7.

8.4 Results

The results for the placebo controlled trials and head to head comparisons are pre-

sented in this section. Within each of these categories, the unadjusted results are

presented as well as the results after application of the Rothwell adjustment. These

trials are only being used to investigate the trials in sequence context, not the pilot

study to main trial context.

Consider the full data set, before any subsetting. If paired t-tests are performed on

each trial, 70 out of 120 trials would be statistically significant, such that P < 0.05.

The data described in section 8.3.1 is the subsetted data to be used in this analysis,

and the results will be presented separately for placebo comparisons and head-to-

head comparisons.
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Average Mean Diff All Results Sig Only
Comparison T1 T1* T2 Ratio Inverse Ratio* Inverse*

Placebo Controlled 0.899 0.899 0.871 1.03 0.97 1.03 0.97
Head-to-Head 0.118 0.510 0.279 0.68 1.48 1.83 0.55

Table 8.6: The average mean differences for T1 and T2 and the statistically signifi-
cant (*) T1 trials, and the ratio of both T1 values over T2.

8.4.1 Placebo Controlled Trials

For the placebo controlled trials, it would be expected that the difference between

the active treatment and control treatment would be large. All 34 placebo controlled

trials are statistically significant when tested individually. The average mean differ-

ences are calculated using the absolute values. The overall average mean difference

for these trials is 0.885, whilst the average mean difference for the trials allocated

T1 is 0.899 and trials allocated T2 is 0.871, as shown in Table 8.6. This table also

shows the ratio of T1 over T2, for both the placebo controlled trials and the head-to-

head comparisons. The placebo controlled results show a higher ratio of difference

between T1 and T2 average observed mean differences, which could be expected due

to the nature of placebo-controlled trials.

The results of each trial set are shown in Table 8.7. In this case no adjustment

has been implemented on the results of the trials. All the trials are statistically

significant, the trials where the mean difference is positive show that the active

treatment is less effective at reducing sweat than the control.

The second set of results (Table 8.8) show the observed treatment effect and the

adjusted treatment effect in T1, as well as the implications this has on the sample

size for T2. Recall that the Rothwell adjustment, as shown in Table 8.2, in this case

is to multiply the observed difference by 0.89 due to the trials being 80% powered.

Since all the trials in the placebo controlled subset are statistically significant, the

adjustment is applied to all T1 trials.

As the studies are powered to 80% and there are 17 trials, even if d was true one

would expect 20% of the trials to not be statistically significant. Since the studies

are powered at 80%, it would be expected for there to be approximately 4 studies

which did not reach statistical significance due to the Type II error. This does

not occur with the placebo-controlled trials, all studies were statistically significant.

This results in the implementation of the Rothwell adjustment potentially causing

an over-adjustment, it is inducing an adjustment based on 80% power when in actual

fact the studies are behaving as though they are powered at over 90%, where it would

be expected to observe approximately 2 non-significant studies. The standardised

target effect size, as calculated from the sample size calculation, is around 0.68

yet the average standardised observed effect size is 6.11 for T1 and 4.95 for T2.
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Product Trial 1 Trial 2
Comparison Mean Diff (SD) P-value Mean Diff (SD) P-value

1 0.91 (0.14) < 0.001 0.94 (0.20) < 0.001
2 0.91 (0.25) < 0.001 0.87 (0.18) < 0.001
3 0.86 (0.13) < 0.001 0.88 (0.14) < 0.001
4 0.97 (0.24) < 0.001 1.38 (0.20) < 0.001
5 0.84 (0.15) < 0.001 0.82 (0.20) < 0.001
6 1.34 (0.25) < 0.001 0.82 (0.19) < 0.001
7 0.81 (0.12) < 0.001 0.82 (0.13) < 0.001
8 1.08 (0.14) < 0.001 0.84 (0.17) < 0.001
9 1.02 (0.16) < 0.001 0.64 (0.20) < 0.001
10 0.94 (0.16) < 0.001 0.96 (0.28) < 0.001
11 −0.89 (0.10) < 0.001 −0.81 (0.12) < 0.001
12 −0.76 (0.13) < 0.001 −0.84 (0.37) < 0.001
13 −0.83 (0.09) < 0.001 −0.85 (0.10) < 0.001
14 −0.78 (0.20) < 0.001 −0.99 (0.25) < 0.001
15 −0.89 (0.27) < 0.001 −0.80 (0.29) < 0.001
16 −0.74 (0.10) < 0.001 −0.70 (0.14) < 0.001
17 −0.71 (0.10) < 0.001 −0.85 (0.14) < 0.001

Table 8.7: The results from the initial paired t-tests for placebo controlled trials in
sequence. Performed under the assumption of no bias.

Therefore the adjustment is potentially likely to be too conservative for these trials

since they are observing a difference much higher than that which they are powered

for.

Table 8.9 shows the average sample size used in T1 and T2, compared with the

average sample size for T2 if the adjusted mean differences had been used to calculate

it. The adjusted sample size for T2 is lower than that which was used (20 vs. 34).

This table also shows the average ratio of T1 mean over T2 mean separately for the

unadjusted T1 mean and the adjusted T1 mean. As discussed earlier in this section,

the adjustment is shown to be too conservative for this data as the trials are powered

to a target standardised effect size of 0.68 but are observing standardised effect

sizes greater than this. It can be observed that the average ratio when using the

unadjusted T1 is higher than the ratio which occurs when the Rothwell adjustment

has been used on the T1 mean differences.
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Product Trial 1 - Mean Diff Trial 2 Ratio
Comparison Unadj Adj Mean Diff Unadj Adj

T1/T2 T1/T2
1 0.91 0.81 0.94 0.97 0.86
2 0.91 0.81 0.87 1.04 0.93
3 0.86 0.77 0.88 0.98 0.88
4 0.97 0.86 1.38 0.71 0.63
5 0.84 0.75 0.82 1.02 0.91
6 1.34 1.19 0.82 1.62 1.44
7 0.81 0.72 0.82 1.00 0.89
8 1.08 0.96 0.84 1.29 1.15
9 1.02 0.91 0.64 1.59 1.41
10 0.94 0.83 0.96 0.97 0.87
11 −0.89 −0.79 −0.81 1.09 0.97
12 −0.76 −0.68 −0.84 0.91 0.81
13 −0.83 −0.74 −0.85 0.98 0.87
14 −0.78 −0.69 −0.99 0.79 0.70
15 −0.89 −0.79 −0.80 1.12 0.99
16 −0.74 −0.66 −0.70 1.06 0.94
17 −0.71 −0.63 −0.85 0.83 0.74

Table 8.8: The results from the paired t-tests for placebo controlled trials in se-
quence, having adjusted for bias in Trial 1.

Average Sample Size Average Ratio T1/T2
Comparison T1 T2 - Adj** T2 - Unadj Unadj Adj

Placebo-controlled 33 20 34 1.06 0.94

Table 8.9: The average sample size per arm for T2 (using the unadjusted and ad-
justed mean difference from T1) and average ratio of T1 over T2. **SS calculated
using significant T1s only.
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8.4.2 Head to Head Comparison Trials

There are 36 out of 86 trials which are statistically significant (42%). The average

difference in sweat production for the trials allocated Trial 1 is 0.19, which is con-

siderably smaller than the observed average mean for the placebo controlled trials.

This average indicates that the active products do not reduce sweat production con-

siderably when compared with active controls. The average observed effect for the

significant T1 trials is 0.510, whereas the average observed effect size for all the T2

trials was 0.279, which again shows the bias which occurs when moving from T1 to

T2.

The average standardised observed effect size for all T1 trials is 0.92 and for the T2

trials is 1.76. For the statistically significant trials in T1 the average standardised

observed effect size is 2.42 and for the T2 trials which followed these significant

results is 1.12, again demonstrating a regression to the mean effect.

As shown in Table 8.6, it can be observed that the average for the statistically

significant results in T1 is higher than the average for T2. The ratio shows that

the statistically significant results of T1 give an inflated mean difference of around

83%, which is considerably higher than the bias demonstrated in chapter 6 and the

mathematical solution of chapter 7. The inverse of this ratio is 0.55, therefore the

average difference in the results from trial 1 and trial 2 is more than the expected

bias of 0.89.

Table 8.10 shows the results for the 43 pairs of trials. If T1 gives a non-significant

result, then that pair is stopped. Out of the 43 trials performed as T1, there were

15 (35%) which were statistically significant, therefore these products would be

progressed to the next stage, T2. Of these 15 trials at the second stage, only 7

(47%) were statistically significant, which corresponds to 16.2% of the total number

of trials performing a head to head comparison.

It can be observed that the adjusted T1 values are identical to 2 decimal places to

the unadjusted T1 values, when close to 0. However, these values would typically

not result in needing the adjustment as they would not have a significant P -value,

therefore the adjustment would not be implemented. It is also noticable in Table

8.10 that though the comparisons are of the same products for each row, the mean

differences are very different for T1 and T2. Some of the trial pairs switch from

showing the active product is superior to showing the placebo is superior, in partic-

ular trial pairs 7 and 24 which show a swapping of result and both results reaching

statistical significance.

Table 8.11 compares the unadjusted mean differences for T1 with the Rothwell-

adjusted mean differences from T1 and the observed differences for the progressed

T2 results. Trial 2 only occurs if Trial 1 was statistically significant, as shown in
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Product Trial 1 Trial 2
Comparison Mean Diff P-value Mean Diff P-value

(SD) (SD)
1 0.08 (0.19) 0.025 0.03 (0.13) 0.200
2 0.07 (0.25) 0.129
3 −0.001 (0.03) 0.780
4 −0.94 (0.17) < 0.001 0.02 (0.44) 0.804
5 0.02 (0.25) 0.629
6 −0.05 (0.24) 0.241
7 1.00 (0.28) < 0.001 −0.10 (0.18) 0.001
8 −0.03 (0.21) 0.496
9 −0.11 (0.26) 0.023 0.07 (0.35) 0.265
10 0.01 (0.13) 0.527
11 −0.02 (0.20) 0.626
12 1.78 (0.26) < 0.001 −0.05 (0.18) 0.103
13 0.95 (0.14) < 0.001 −0.06 (0.17) 0.057
14 −0.08 (0.33) 0.129
15 −0.11 (0.21) 0.007 0.91 (0.20) < 0.001
16 0.01 (0.20) 0.825
17 0.65 (0.57) < 0.001 0.20 (0.15) < 0.001
18 −0.001 (0.21) 0.968
19 0.07 (0.22) 0.051
20 0.01 (0.17) 0.757
21 −0.01 (0.17) 0.841
22 −0.01 (0.14) 0.751
23 0.04 (0.14) 0.179
24 −0.86 (0.24) < 0.001 0.96 (0.39) < 0.001
25 0.11 (0.23) 0.009 −0.17 (0.25) < 0.001
26 −0.22 (0.28) < 0.001 0.97 (0.19) < 0.001
27 0.82 (0.18) < 0.001 −0.07 (0.24) 0.150
28 0.01 (0.02) 0.003 −0.003 (0.03) 0.364
29 −0.002 (0.03) 0.694
30 −0.01 (0.02) 0.012 0.01 (0.02) 0.008
31 < 0.001 (0.03) 0.848
32 −0.001 (0.03) 0.846
33 < 0.001 (0.02) 0.812
34 0.004 (0.03) 0.308
35 −0.002 (0.03) 0.700
36 < 0.001 (0.03) 0.882
37 −0.002 (0.01) 0.311
38 0.01 (0.03) 0.013 0.001 (0.02) 0.689
39 0.01 (0.02) 0.129
40 0.001 (0.02) 0.760
41 −0.004 (0.02) 0.227
42 0.003 (0.02) 0.405
43 0.003 (0.02) 0.399

Table 8.10: The results from the paired t-tests for active-controlled trials in sequence.
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Table 8.10. Some of the results appear to go from being statistically significant

in favour of the active treatment to statistically significant in favour of the control

treatment (See Comparison 24 in Table 8.11). Recall that if the mean difference is

negative, that indicates that the active treatment caused less sweat production than

the control treatment.

Table 8.12 shows the sample sizes used for T1 and T2, compared with the calculated

sample size for T2 based on the significant results from T1. It also presents the

average ratio of T1 mean difference over the T2 mean for each the unadjusted and

adjusted T1 mean differences. This only occurs for the significant T1 results. The

results show that due to the variance in the magnitude of the observed differences

for T1, the new adjusted average sample size for T2 is 495, which is much larger

than the average of 34 participants for T2. However, this ranges from 13 per arm

to over 2500 per arm.

The products that the trials were matched upon were identical, and all coding was

thoroughly assessed for errors throughout this research. However, the protocols

for each trial was not available, therefore whilst every effort was made to match

the trials appropriately, it could be that there are other factors which makes the

matched trials not identical. For example, the two trials could be testing the same

product but under different conditions. This is further discussed in section 8.5.
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Product Trial 1 - Mean Diff Trial 2 Ratio
Comparison Unadj Adj Mean Diff Unadj Adj

1 0.08 0.07 0.03 2.99 2.66
2 0.07 0.06
3 −0.001 −0.001
4 −0.94 −0.84 0.02 −43.84 −39.02
5 0.02 0.02
6 −0.05 −0.04
7 1.00 0.89 −0.10 −9.56 −8.51
8 −0.03 −0.02
9 −0.11 −0.09 0.07 −1.52 −1.36
10 0.01 0.01
11 −0.02 −0.01
12 1.78 1.58 −0.05 −34.57 −30.77
13 0.95 0.85 −0.06 −16.04 −14.27
14 −0.08 −0.07
15 −0.11 −0.10 0.91 −0.12 −0.11
16 0.01 0.01
17 0.65 0.58 0.20 3.17 2.82
18 −0.001 −0.001
19 0.07 0.06
20 0.01 0.01
21 −0.01 −0.01
22 −0.01 −0.01
23 0.04 0.03
24 −0.86 −0.76 0.96 −0.89 −0.79
25 0.11 0.09 −0.17 −0.62 −0.55
26 −0.22 −0.20 0.97 −0.23 −0.20
27 0.82 0.73 −0.07 −12.15 −10.82
28 0.01 0.01 −0.003 −3.59 −3.19
29 −0.002 −0.002
30 −0.01 −0.008 0.01 −0.85 −0.76
31 < 0.001 < 0.001
32 −0.001 < −0.001
33 < 0.001 < 0.001
34 0.004 0.004
35 −0.002 −0.002
36 < 0.001 < 0.001
37 −0.002 −0.002
38 0.01 0.01 0.001 11.17 9.94
39 0.01 0.005
40 0.001 0.001
41 −0.004 −0.004
42 0.003 0.003
43 0.003 0.003

Table 8.11: The results from the paired t-tests for active-controlled trials in sequence,
having adjusted for bias in Trial 1.
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Average Sample Size Average Ratio T1/T2
Comparison T1 T2 - Adj** T2 - Unadj Unadj Adj

Head-to-Head 33 495 34 −7.11 −6.33

Table 8.12: The average sample size per arm for T2 (using the unadjusted and ad-
justed mean difference from T1) and average ratio of T1 over T2. **SS calculated
using significant T1s only.
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8.5 Discussion

This data set has been used to illustrate the practical application of the adjustment.

Whilst the adjustment functioned well for the simulated data in chapter 7, it was

more difficult to manage when implemented on the real data set used in this chapter.

There are a number of observations which will be discussed here.

For the placebo-controlled trials, all the trials were statistically significant when

analyzed individually, which was not unexpected. This is due to the target effect

size for a placebo controlled trial to be larger than that expected in a head-to-head

comparison. Simply, placebo-controlled trials are aiming to show efficacy, whereas

a head-to-head comparison aims to conventionally build upon efficacy and show

superiority compared to another similar product.

If the T1 mean difference is adjusted using the Rothwell adjustment and this ad-

justed mean difference is used in the sample size calculation for T2, it has been shown

that the sample sizes required for T2 are lower than those used. The limitations of

this application are discussed in the next section.

The adjustment was only implemented on the real data under the context of trials

in sequence. It would be worth doing further work in the context of pilot study to

main trial, where the adjustment is tested on a real data set to assess its accuracy.

The studies were powered at 80% based on an average standardised target effect

size of 0.68.

The average absolute observed effect size for T1 in the placebo-controlled trials

was 0.899, compared to 0.871 in the T2 trials. Since all the T1 trials reached

statistical significance and the observed standardised effect size of 6.11 is much

greater than the target standardised effect size of 0.68, this could indicate that the

placebo-controlled trials were over-powered. For the head-to-head comparisons, the

target was also 0.68, but the observed for the statistically significant T1 trials was

0.510. This was not unexpected since the difference for active-controlled trials is

usually smaller than placebo-controlled trials. The observed effect size for the T2

trials which would have occurred (those which had a successful T1 trial) was 0.242,

considerably lower than the T1 result. Again this shows that regression to the mean

is occuring. However, the problems with the sign-swapping in the head-to-head

results leads me to conclude that this data was perhaps not the best example to test

the Rothwell adjustment.

It can be concluded that whilst this exercise was worth doing to demonstrate the

adjustment, it did not prove to be as helpful as initially expected. The observation

that in some of the head-to-head comparisons the sign of the observed mean differ-

ence swaps from negative to positive (or positive to negative) yet both results are

181



reaching statistical significance indicates that these trials are possibly not as similar

as originally thought. This is discussed further in the limitations section.

Another possible explanation for the sign-swapping observed in the head to head

comparisons is that this is real life data and thus these things can just occur due

to real life variation. The sample sizes of these trials are relatively small, with the

average achieved sample size being around 33 participants. Each participant acts as

their own control due to the crossover design (as discussed in chapter 2), resulting

in a smaller variance and therefore a smaller sample size.

The data used in this chapter are based on trials with 80% power. The trials were

powered on a target standardised effect size of 0.68, yet for the placebo-controlled tri-

als the average observed standardised effect was 6.11. None of the placebo-controlled

trials had P ≥ 0.05. In fact, the probability of all 17 placebo-controlled trials being

statistically significant is 0.8017 = 0.023, therefore the probability of seeing at least

one trial with P ≥ 0.05 is 0.977. It would be expected under 80% power that 3

trials would be not significant. This gives evidence to support the conjecture that

the trials have been overpowered.

8.5.1 Limitations

There are a number of limitations which must be considered when discussing the

work in this chapter. Each will be discussed, along with potential implications and

considerations.

The data used in this chapter is based on a series of crossover trials performed on

a variety of products. Whilst the Rothwell adjustment should, in theory, be trans-

ferable to various designs of trials, it was designed based upon parallel group trials.

As discussed in chapter 2, the theory of sample size calculations for parallel group

trials is similar to that for crossover trials, and can be extended to non-inferiority

and equivalence designs. However, since this adjustment has been developed under

the parallel group setting, it can not automatically be assumed to function as well

under a different design. It would be expected to be robust as the adjustment has

been developed based on a truncated Normal distribution, which would still be the

distribution for the other trial designs, but further research is needed to explore this

further.

Another potential limitation of this real data application is the fact that the trials

were not designed as trials in sequence, they are all individual trials. Alongside

this fact, they are all trials on a variety of different products. So whilst the trials

put in sequence are testing the same products, grouping these trials together and

summarising the data should be done with caution as there are some contradictory

results. Some trials are showing that the investigational product is superior and
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some showing that the placebo or control is overwhelmingly superior. This is most

noticable for the placebo-controlled trials, though is also applicable to the head to

head comparisons.

The individual protocols for the trials could not be accessed, therefore the analysis

in this chapter has been completed under the assumption that these trials could be

paired up as described in section 8.3.1. Given this, there is no way of determining

if the studies which were comparing the same products were performed exactly

the same way. They could be on different populations, different genders or under

different test conditions. The method of inducing sweat production could vary, for

example one study could be performed on stationary participants and another study

comparing the same products could be conducted on participants whilst walking.

Other ways that the studies could differ even when testing the same products include

differing levels of fitness of the participants or different ages of participants. The data

provided were the sweat production rates and subject, there is no other demographic

or study information. It was decided to not use this data for the pilot to main trial

context due to not having enough information about the similarity of the paired

trials.

The adjustment was designed under the alternate hypothesis, therefore it is assumed

for an 80% powered trial there will be 20% of trials which will not reach statistical

significance. However, in the placebo-controlled trials with real-data all the trials

were statistically significant. This results in the Rothwell adjustment causing an

over-adjustment, because T1 are designed with 80% power and achieve a much

higher power than that. As the adjustments depend on the power of the first trial,

realistically the appropriate adjustment required for the placebo-controlled T1 trials

would be close to 1.00 as opposed to the 0.89 adjustment which was used. The

use of 0.89 actually introduces an adjustment when one of this magnitude is not

necessarily required. It would be worth considering whether the adjustment should

be associated not only with the planned power of T1, but also the achieved power

of T1.

Since all the trials are independent, the comparison of the sample sizes for the

second trial based on the results from the first should be taken with caution. There

is no way to know which of these trials occurred first in real life, it was randomly

allocated in this chapter to demonstrate the application of the Rothwell adjustment,

and highlight its advantages for trials in sequence.

8.6 Conclusion

This chapter has centred around the application of the Rothwell adjustment to a

large set of real data, consisting of multiple trials. The aim was to determine whether
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it is robust to the nuances of real data. Whilst the Rothwell adjustment performed

well against the Kirby and Wang adjustments on simulated data in chapter 7, further

work would be useful to apply it to more real data sets to fully assess its validity.

The Rothwell adjustment has been shown to be useful thus far, as it has validated

the results of the simulations and been proven mathematically. It would be a useful

tool for trialists to consider when designing trials based on previous research. Once

the power and approximate target effect size are known, the appropriate adjustment

can be applied to the previous data to reduce the possible effect of regression to the

mean. In the long term this has the potential to reduce the number of trials which do

not achieve statistical significance if there is truly a difference between treatments.

It is always possible that the previous work were anomalies, uncharacteristically high

differences even if there is no difference in treatments. It can not be said that any

adjustment will avoid this problem, that is the nature of clinical trials. However,

what all these adjustments can do is provide a less inflated estimate of the treatment

effect and improve the statistical accuracy of the sample size calculation for future

trials.

The work in chapter 6 and earlier in this chapter were based on simulated data,

which is an ideal condition. When the data is from real life, more variation occurs.

The adjustment performed well in terms of reducing the observed effect size from T1

and therefore reducing the ratio of bias in the placebo trials, however, for the head-

to-head trials the observed effect sizes which reached statistical significance were

sometimes small. The data sometimes did not behave as one would expect, such

as getting a statistically significant positive result at T1 then getting a statistically

significant negative result at T2.

The adjustment did not perform as well with the real data as it had done previously

with the simulated data. Whilst this was expected due to the higher amount of

variation in real life data, it highlights the need for further work to assess the

Rothwell adjustment when applied to real data. The adjustment did not appear to

function as well as anticipated, as it did not have an effect for many of the observed

mean differences in the head-to-head comparisons due to some having very small

observed effect sizes. However, these trials reached statistical significance because

the target effect size for these trials was large (0.68) yet the standardised observed

effect sizes were larger. Recall that only the statistically significant trials in T1 would

be progressed to a confirmatory trial (T2), hence for all the statistically significant

T1 trials the adjustment did reduce the observed mean difference, therefore it did

have an effect and perform as desired.
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9. Discussion and Recommendations

9.1 Introduction

There is a lot of uncertainty about the choice of the target difference in clinical trial

design, and a growing trend of seemingly positive primary trials failing to reach

statistical significance at the secondary stage. This impacts not only the chances of

a drug getting onto the market but also the finances of trial units and pharmaceutical

companies.

This thesis aimed to investigate the commonly used methods of choosing the target

difference in clinical trial design, as well as establish a range of plausible target effect

sizes to assist funding bodies in reviewing grant applications. It also investigated the

effect of regression to the mean on trials in sequence, and develop an adjustment to

be applied to the observed treatment effect in the first trial or collection of previous

research to better estimate the target effect size to be used for the second trial.

This chapter aims to collate the research completed in the process of writing this

thesis, summarising the results and discussing the potential implications and prac-

ticalities of this work. The format of the chapter will be to recap the research

questions, then to discuss the associated research aimed at answering those ques-

tions. Finally, an overall summary of the thesis is presented along with limitations

of the research as a whole and suggestions for further work.

9.1.1 Research Aims

To recap the research questions presented in this thesis, each question will be dis-

cussed separately. The questions were as follows:

1. How are effect sizes quantified in the design of clinical trials?

2. Are the reported target effect sizes similar to a priori effect sizes? Is this effect

size clinically important?

3. What range of observed effect sizes are being seen in different clinical areas or

populations?
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4. Are there more optimal methods for quantifying the effect size?

5. Are there more optimal methods to adjust for the bias of moving from one

trial to the next?

9.2 Discussion of Research

This section will discuss each of the research questions in detail, as well as link the

questions to the appropriate chapters in the thesis and, by extension, the associated

work within those chapters. Each of the questions is discussed in terms of the

implications of the research conducted, as well as the limitations, which are discussed

throughout the chapter. The research conducted solved all the research questions

posed at the start of the thesis, to the best of my knowledge.

9.2.1 Quantifying Effect Sizes in the Design of

Clinical Trials

The first research question aimed to establish how effect sizes are quantified in

clinical trials. This was investigated through the review in chapter 4, which showed

that a variety of methods were used to elicit the target effect, however the most

common method was the review of evidence, either in isolation or in conjunction

with other methods. According to Cook et al. (Cook et al., 2014), the review of

evidence method is used to “specify an important and/or a realistic difference”, as

mentioned in chapter 3.

The discussion in chapter 4 about whether there are more optimal methods for

quantifying effect sizes is based around the findings of the HTA review and the work

completed with the DELTA2 group (Cook et al., 2018).

The choice of the target difference depends on the research aim and the question.

Are we looking for an important effect, or a realistic effect, or both? Each of these

questions result in a different ‘optimal’ method for target difference elicitation, the

context of the trial and its aims are of vital importance.

Chapter 3 provided a list by Cook et al. (Cook et al., 2014), which identified

different methods of elicitation under the categories of important difference, realistic

difference and an important and/or realistic difference.

A realistic effect would be estimated using previous work; if an effect size, x, has

been seen in one trial, it would be reasonable to expect that a similar effect would

be observed again, so long as the trial was performed on a comparable population

and intervention. The quantification of an important difference depends on the
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context in which the question is being asked. A clinician may have a very different

perspective of an important difference compared to a patient.

As far as I am aware, I am the first person to perform this review and gather data on

the target and observed effect sizes. This work has shown that the most commonly

used and reported method of target difference elicitation is the review of evidence

base, which is the use of previous research to inform estimates for the current trial.

The use of multiple methods to establish a more accurate estimate is advised, and

the case studies in chapter 4 show examples of good practice. The median target

effect size was shown to be 0.30 from the review in chapter 4. This result may be

useful for future trial design and funding bodies, as it could be used as a bench-mark

for the target effect size.

9.2.2 Comparison of Target Effects with Observed Effects

by Clinical Area

Having illustrated the potential implications of over-estimating the target effect size,

it prompted the question of how many trials are actually achieving their target or

estimated effect size used in the original sample size calculation.

Effect sizes are known to vary across research areas, with areas such as nutrition and

genetics consistently reporting extremely small effect sizes (Siontis and Ioannidis,

2011). If it is in fact true that trialists are over-estimating the target effect size in

their sample size calculations, it would be useful to know, given a particular disease

area or research area, a range of plausible effect sizes. This could be used to assist

trialists when designing trials for which there is no previous research or data.

The review detailed in chapter 4 indicated that for publicaly-funded parallel group

superiority trials, the median target standardised effect size is 0.30 and the median

observed standardised effect size is 0.11. These values would provide trialists and

funding bodies with a baseline by which to compare proposed target effect sizes

in grant applications. Though there are some large effects being observed, there

are also a large proportion which are very small. On average, the target effect size

was greater than the observed effect size. As discussed in chapter 4, this is not

unexpected.

These results have not been found prior to this, as far as I am aware, and they could

prove useful in the design of trials in the future.
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9.2.3 Optimal Methods for Quantifying the Target Effect

Size

The other important finding from chapter 4 was that the most common method of

elicitation of the target effect size is the use of previous research. This was either

as the primary method to estimate the target difference or in tandem with other

methods. There are some inherent issues with using this approach, the first of which

being based around publication bias. If trialists’ are using information from previous

trials to estimate a target effect size for their trial, the original trial could potentially

be a ‘random high’, therefore an over-estimation of target effect size would occur

and the trial could be under-powered to detect a difference even if one truly exists.

The second issue with this method is that a regression to the mean effect could be

introduced. This is further discussed in chapter 5, and forms the justification for an

adjustment to be developed to reduce the observed effect size to account for this.

The case studies presented in chapter 4 provide examples of good practice. The

importance of transparency when discussing the estimate for the target effect size

is highlighted. It would be more useful for reviewers and funding bodies to see fully

where the estimate comes from, in order to establish whether it is realistic. If an

adjustment has been provided to down-weight the estimate, or to account for other

uncertainties about the parameter estimates in the sample size calculation, this need

to be clearly explained. The use of multiple methods of elicitation is also discussed

as being optimal, since the more information that the trialists’ base the estimate of

target effect size on, the more accurate the estimate should be.

The benefit of using the HTA trial reports for the review was that part of the

requirements of funding from the HTA is that all trials are reported, irrespective of

the statistical significance of the trial. This enhances the results of the review as

whilst only one journal was used, which could be seen as a limitation, there is not

publication bias in the sense of the journal only publishing statistically significant

trials. Also, these trials are considered some of the best in the UK, with trials

being published in high-impact journals such as The Lancet, New England Journal

of Medicine and the British Medical Journal as well as being published in the HTA

journal.

9.2.4 Optimal Methods of Adjusting for Bias

There were four chapters which investigated the question of optimal methods for

adjusting the bias which occurs for trials in sequence. Each one built up to the

development of the Rothwell adjustment and then assesses the robustness of this

adjustment. This section will discuss each chapter and how it lead to the develop-
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ment of the Rothwell adjustment that is proposed, as well as discussing briefly the

limitations of the work presented and any potential implications of this research.

9.2.4.1 Regression to the Mean

Chapter 5 presented a systematic review with regression to the mean as the key

component. It also detailed the other currently available methods to adjust for this

effect for trials in sequence, the first method by Wang et al. which was based on

the standard error of the first trial (Wang et al., 2006), and the second method by

Kirby et al. which was a rule-of-thumb adjustment to down-weight the observed

effect size by 10% (Kirby et al., 2012). These methods were tested on simulated

data and appeared to perform well, though as discussed in the chapter they were

generic methods and there had been little discussion in the respective papers on the

generalisability of these methods and application to other trial designs.

9.2.4.2 Simulations of Trials in Sequence

The phenomenon of regression to the mean was shown to occur for trials in sequence

in chapter 6, demonstrating that for trials with 80% power and any effect size, the

approximate over-estimation of the effect size is 12−13% compared to that observed

in the second trial. The amount of over-estimation varies depending on the power

of the studies, and is not affected by the effect size used in the design of the study.

The bias is determined by taking the ratio of the trial 1 result over the trial 2 result,

which is scale-independent. Also, since the ratio is the number of interest, it is not

influenced by the numerical value of µ∗, where µ∗ is the observed effect size.

The distribution of trial 1, when only the statistically significant results are pro-

gressed to trial 2, is a left-truncated Normal distribution. This follows through logic

as well, since if trials are stopped if P < 0.05 then for trials which observe an effect

smaller than the critical value at which P < 0.05, they will not continue so there

is a cut-off point on the left of the distribution. The knowledge that this distri-

bution follows that of a left-truncated Normal is used to confirm and validate the

development of the Rothwell adjustment, discussed later in the chapter.

9.2.4.3 Development of Adjustment

The research presented in chapter 7 demonstrates the methods which are currently

in the literature and compared them with a new method developed by JCR from the

simulation results in chapter 6. This adjustment was then proven mathematically in

chapter 7 for both trials in sequence and pilot study to main trial contexts, demon-

strating that the results from the simulations held for any value of µ. The adjustment
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varied depending on the power of the initial trial, to the best of my knowledge there

is no other research which presents this. This adjustment was different to all the

adjustments found in chapter 5 and provides a more stable adjustment (as shown

in chapter 6) to be applied to the results of previous trials.

This result means that if a trialist knows the planned power of the first study, they

can apply the appropriate adjustment to the observed effect from the first trial to get

a more accurate estimate for the effect size. This, in turn, provides a more accurate

estimate for the sample size calculation. The application of the adjustment will

inevitably increase the sample size required for the second trial, however this needs

to be balanced with the more accurate estimate for the target difference and the

cost of the trial. There will be cases where the cost of the adjusted trial may be

too large, but this needs to be considered with improvements in transparency of the

estimated outcome.

The systematic review in chapter 5 demonstrated that this is an important area of

research. There were documented investigations of the phenomenon of regression to

the mean, and some adjustments provided by Wang et al. and Kirby et al., however

the adjustment developed in this thesis is a considered refinement.

The adjustment by Wang was shown in chapter 7 to be relatively unstable, function-

ing well for high powered trials but dependent on the standard error of the initial

trial, therefore extremely varied in performance. The Kirby adjustment was a flat

adjustment, which initially appeared to perform well, however was shown to over-

adjust the initial trial result when the power was not 80%. For low-powered trials, it

would follow that the Kirby adjustment would not adjust the results enough, since

the Kirby adjustment was constant at 0.90 and the Rothwell adjustment was 0.89 for

trials with 80% power but increased (decreased) as the power increased (decreased).

The proposed Rothwell adjustment is based on a truncated Normal distribution and

has been validated with simulations. This is the first method, to the best of my

knowledge, which takes the power of the initial trial into consideration, as well as

the first method to be implemented in the pilot study context.

The adjustments which have been proposed are dependent on the truncation point

of the distribution of the first trial. The truncation point is affected by the power

of T1 for trials in sequence, and for pilot study to main trial scenarios it is affected

by the progression criteria of the pilot study.

9.2.4.4 Application of Rothwell Adjustment

The adjustment was developed in chapters 6 and 7, and tested on the simulated

data in chapter 7. For the simulated data, the Rothwell adjustment consistently

reduced the bias and resulted in a target effect size for Trial 2 which was closer to
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the target and ‘true’ effect size. It proved to be more stable than the Kirby and

Wang adjustments.

The next step in the development process was to test the adjustment on a real data

set. The problems which usually occur with real data are that it rarely behaves

as you hope it will, there is also an issue when there is a large quantity of missing

data. Luckily, with the real dataset available there was not much missing data. The

adjustment was used on a subset of the data which were matched to emulate trials

in sequence. The real data were from a series of crossover trials with a continuous

endpoint. Though the adjustment was developed based on a parallel-group design,

it can be used for a crossover design since, as shown in chapter 2, the crossover

design is simply an extension of the parallel-group design. The adjustment reduced

the observed effect size towards the target effect size for placebo-controlled trials in

chapter 8.

It would be useful to test the adjustment on a wider variety of real data to assess

its robustness to the nuances of real life data. Further work would be recommended

in this area.

9.3 Implications of Research

The research conducted and presented in this thesis demonstrated the occurance of

regression to the mean for trials in sequence. This will have an impact on all trials

which are sequential, even if they are not planned as such.

From the context discussed in this thesis of trials in sequence and pilot study to

main trial, the context of trials in sequence can be broadened to include interim

analyses, systematic review results being used to design a new trial, meta-analyses

results or the meta-analysis itself. A limitation of the research is that an assumption

of identical end-points has been made. It could occur that the end-point used in the

first trial or pilot study is a surrogate, with the primary end-point for the second

trial being a secondary end-point in the initial trial. Further work could extend to

apply adjustments for secondary endpoints.

In terms of the meta-analysis itself, a meta-analysis would not occur unless some of

the results of the trials to be included were providing positive indications.

Choosing a smaller target effect size could cause a trial to become infeasible. For

example, if a smaller, more realistic, target effect size results in a sample size which

is too large and therefore causes the trial to be too costly, one solution for the

trialists’ is to choose another endpoint which is important. This alternative end-

point could result in a smaller sample size and therefore make the trial affordable.

However, consideration must be given to the association between the original and
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alternate endpoints to ensure the trial aims are still met. A surrogate endpoint

could result in a lower required sample size as well. Another possible solution to

a trial being financially infeasible is to consider a multi-site trial, or to collaborate

with other researchers if there is no appropriate alternative endpoint to increase

potential funding.

If trialists are aiming too high with their target effect size, they could have a reduced

sample size for the trial but this can result in an under-powered trial. If a trial is

underpowered, it is less likely to observe an effect when one truly exists, thus if

there is truly a difference between treatments the chance of the trial observing this

is reduced. Consideration should be given to the cost of a potential increase in initial

target sample size versus the cost of extending the trial or having an underpowered

trial. The implications of having an underpowered trial are fairly serious; if the

drug truly works and would be beneficial to patients but can not reach statistical

significance due to being underpowered, another trial would have to possibly be

performed to confirm efficacy or the drug would never reach the market. A second

trial would be inevitably more costly than correctly increasing the sample size of

the initial trial, and the implications of the drug never reaching the market are that

patients do not benefit.

It would be useful to extend the work presented in this chapter to the context where

one study is powered on a surrogate endpoint and the second study is powered on

a different primary endpoint, which could have been a secondary endpoint in trial

1. If the power for trial 1 is high, the bias should be minimized as shown by the

Rothwell adjustment not being as strict as the power increases.

9.4 Overall Summary

This thesis has provided evidence of a regression to the mean effect when using the

results of previous research to design future trials. It has used this information to

design an adjustment to apply to the results of the previous research to reduce the

potential bias resulting from regression to the mean.

Currently, in UK publicly funded trials the median target effect size is 0.30, which

corresponds to a small effect under the Cohen categorisation (Cohen, 1988). This

provides evidence for trialists and funding bodies that trial teams claiming to target a

large effect size (above 0.5 on the standardised scale) could be being overly optimistic

as this large an effect is rarely seen. The fact that this research has shown an average

effect size of 0.30 provides a good starting point for trialists when discussing the

design of a trial.
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Advice for funding bodies based on this research would be that trialists’ presenting

grant applications with target effect sizes (when standardised) greater than 0.3 are

being optimistic, as compared to those extracted from chapter 4 the average target

standardised effect size is 0.3 and the average observed standardised effect size is

0.11, which is much lower and provides possible evidence as to why 66% of trials are

not reaching statistical signficance. There is the consideration that the treatment

truly does not work, which needs to be included in any evaluation of statistical

insignificance before concluding that the target effect size was overly optimistic.

The Rothwell adjustment has proven to be mathematically sound and has worked

well under simulated conditions. Further testing of the adjustment is required when

working with real data of different types, of particular interest would be its func-

tionality with results from systematic reviews and meta-analyses, as well as other

more complex trial designs.

Systematic reviews were not considered as part of this research, however logically

an adjustment should be considered when using the results of those to design a

new, confirmatory trial. Whilst one would hope that the effect of regression to the

mean be reduced by the systematic review, since these reviews aim to collate all

existing evidence to provide an overall estimate of treatment effect, one can not

rule out the effect of publication bias on this. If the systematic review is based

on only published trial results, there could be publication bias introduced, which

compounded with regression to the mean could result in a very high target effect

size.

9.4.1 Further Work

The potential for further work stemming from this research is quite large. It is still a

current area of interest and this thesis documents only a small portion of the various

trial designs and primary outcome measures. This is strictly a frequentist approach,

as stated in chapter 1.

This research could be developed to different trial designs, including but not limited

to non-inferiority trials, equivalence trials and adaptive designs. It could be par-

ticularly useful for adaptive designs, and could be evaluated at an interim analysis

point to determine whether the adjustment is providing a more accurate estimate of

the effect size. Another aspect which was mentioned earlier is when the first trial is

powered on another endpoint and the secondary endpoint in trial 1 is the primary

endpoint in trial 2.

Non-inferiority and equivalence trials are not designed in terms of a target difference,

they are based on a non-inferiority or equivalence margin, as described in chapter 2.

However, the same issue with regression to the mean could occur in this context as
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well. The non-inferiority/equivalence margin comes from what is deemed clinically

meaningful, which is similar to the target difference.

The work presented in this thesis is primarily focused on continuous end-points, so

there is an avenue to develop the adjustment for binary end points as well. Survival

endpoints are slightly different and their associated trials are complex, therefore it

could be that a different adjustment is required for these trials and endpoint.

The Rothwell adjustment has been demonstrated on a real data set, however it

would be useful to confirm its efficacy and robustness through further analysis of

various trial designs and real data which is from trials in sequence, such as Phase

II to Phase III trials. If the adjustment performs well in this context, it could be

further developed to the context of meta-analyses and systematic reviews.
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A. Chapter 2

The work in this appendix refers to chapter 2. Since the focus of the thesis has

been on parallel group superiority trials, it was decided that whilst these sections

are relevant to the wider context, they are not directly relevant to the path of this

research.

A.1 Non-Inferiority and Equivalence Trials

A.1.1 Non-Inferiority Trials

Non-inferiority trials are undertaken when there is an active control, such as a

current treatment on the market. The aim for this trial is to show that the trial or

new treatment is as good as the current treatment. This could be sufficient when the

side effects are less with the new treatment, or the cost is less. An example of this

type of trial being useful would be to investigate whether doctors could be replaced

with nurses for performing a specific therapy or treatment. If the nurses were better

it would be an added bonus. This is different to equivalence trials where, in effect,

we would wish to show both that nurses were as good as doctors and that doctors

were as good as nurses.

A visual representation of this trial is shown in Figure A.1. If the difference is less

than −dNI , non-inferiority cannot be assumed. Non-inferiority trials have similar

problems to superiority trials, since the non-inferiority limit is based on professional

opinion which is subjective.

Figure A.1: Non-Inferiority Limit

The hypotheses for these trials are given by

• H0: The given treatment is inferior with respect to the mean response,
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• H1: The given treatment is non-inferior with respect to the mean response.

This is usually written in terms of the clinical difference, dNI

• H0: µA − µB ≤ −dNI

• H1: µA − µB > −dNI .

In this context −dNI is the non-inferiority limit. Non-inferiority trials are tested us-

ing a one-sided hypothesis test, equivalent to testing just one part of the two parts of

the two one-sided test (TOST) procedure in the equivalence trials. Realistically this

is the same principle as getting a (1− 2α)100% confidence interval and concluding

non-inferiority if the entire interval is greater than −dNI .

A.1.1.1 Parallel Group Trials

The methods required to arrive at the sample size calculation follow closely with

those from previous sections and have not been included here. These formulae are

similar to the formulae for the superiority trials. The sample size for a parallel group

non-inferiority trial is

nA =
(r + 1)(Z1−β + Z1−α)2σ2

r
(
(µA − µB)− dNI

)2 (A.1)

The non-central t-distribution result is

1− β = 1− T−1
(
t1−α,nA(r+1)−2, nA(r + 1)− 2, τ

)
(A.2)

where

τ =

∣∣∣∣∣
(
(µA − µB)− dNI

)√
rnA√

(r + 1)σ2

∣∣∣∣∣ (A.3)

is the non-centrality parameter.

It is worth noting that if dNI = 0 in Equation A.1, the formula becomes the same

as Equation 2.1 for superiority trials. This shows that the parallel group superiority

formula is a special case of the non-inferiority formula.

Appendix A.3 shows various sample sizes needed for different standardised effect

sizes and percentage mean differences.
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A.1.1.2 Crossover Trials

For the crossover design in non-inferiority trials, we need to include the within-

subject standard deviation for the population (σw). The general formula for sample

sizes in crossover trials is (Julious, 2004)

n =
2σ2

w(Z1−β + Z1−α)2

((µA − µB)− dNI)2
(A.4)

The non-central t-distribution formula for the power is (Chow et al., 2002)

1− β = 1− T−1
(
t1−α,n−2, n− 2, τ

)
(A.5)

where

τ =

∣∣∣∣∣
(

(µA − µB)− dNI
)√

n√
2σ2

w

∣∣∣∣∣ (A.6)

is the non-centrality parameter.

The quick result can be found in Appendix A.2

A.1.2 Equivalence Trials

Equivalence trials are carried out to determine whether two interventions produce

the same results for the patients. An example of an equivalence trial is comparing

dihydrocodeine and methadone in the treatment of heroin addiction. These are

two different substances which are being tested to determine if they have the same

effect on the patient. It could be that one method of treatment is cheaper than the

other, or easier to formulate. The hypotheses being tested for equivalence trials are

(Julious, 2004):

H0 : µA 6= µB

H1 : µA = µB

This is usually written in terms of the clinical difference, de

H0 : µA − µB ≤ −de or µA − µB ≥ de

H1 : −de ≤ µA − µB ≤ de

Both parts in the null hypothesis need to be rejected in order for a complete rejection

of the null hypothesis. This is an example of an intersect-union test. In these tests,

each component is tested at an level and this gives a composite test which is also of

significance level, α (Berger and Hsu, 1996). Usually we do the two one-sided tests

218



(TOST) which tests each component of the null hypothesis. This is operationally

the same as a (1− 2α)100% confidence interval, where equivalence is established if

each end of the confidence interval falls within the region (−de,de). In other words

the 95% confidence interval (CI) must lie within (−de,de) in order for the treatments

to be deemed equivalent at a 2.5% significance level (Jones et al., 1996).

One consideration for both equivalence and non-inferiority trials is the equivalence

or non-inferiority margin. The setting of this can be rather controversial and has

been defined as the largest difference that is clinically acceptable, so that a difference

bigger than this would matter in practice (for the Evaluation of Medicinal Products,

2000). Commonly used methods to establish the margin are clinical judgement and

statistical reasoning. Usually the margin is set at a fraction of the limit of the

placebo effect (Kaul and Diamond, 2006; Rothmann et al., 2003).

Often the decision on the equivalence limit is based on some comparison to placebo.

The following steps (Agostino et al., 2003; Wiens, 2002) should be considered when

determining the limit:

1. We must be confident that the active control would have been different from

placebo had one been employed.

2. We should be able to determine that there is no clinically meaningful difference

between investigative treatment and control.

3. Through comparing the investigative treatment to control we should indirectly

be able to determine that it is superior to placebo.

This limit needs to be established on a study-by-study basis with advice from the

relevant agencies involved in the trial. The issues raised for equivalence limits are

the same as for non-inferiority limits discussed earlier in the chapter. Figure A.2 is

a diagram of how confidence intervals can be used to test the different hypotheses

of superiority, equivalence and non-inferiority trials (Julious, 2004).

Figure A.2 represents the area which the 95% confidence interval needs to lie in

order to reject the null hypothesis. Notice for the equivalent and non-inferiority

trials there is a pre-defined region or value which is close to zero.

A.1.2.1 Parallel Group Trials

General Case

For equivalence trials the sample size cannot be derived directly for the general case

where the expected true mean difference is not zero. This is due to there being two

one-sided tests being performed, as mentioned above. This results in two chances
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Figure A.2: Illustration of the aims for each trial design

of making a type II error. Hence, the sample size cannot be derived directly for the

case where the expected true mean difference is not zero (µA − µB 6= 0) since the

type II error must be split between the two tests.

The power can therefore be written as (Julious, 2004)

1− β = Φ

(√√√√rnA

(
(µA − µB)− de

)2

(r + 1)σ2
− Z1−α

)

+ Φ

(√√√√rnA

(
(µA − µB) + de

)2

(r + 1)σ2
− Z1−α

)
− 1 (A.7)

This equation is then iterated until the desired power is achieved. As for the supe-

riority trials, when the variance is unknown the Z− values can no longer be used,

so the equation is rewritten as (Julious, 2004)

1− β = Φ

(√√√√rnA

(
(µA − µB)− de

)2

(r + 1)σ2
− t1−α,nA(r+1)−2

)

+ Φ

(√√√√rnA

(
(µA − µB) + de

)2

(r + 1)σ2
− t1−α,nA(r+1)−2

)
− 1 (A.8)

Again this uses the non-central Normal-distribution to calculate the type II error

rate and power. For the sample size calculations, the approximation below is used.

The non-central t-distribution gives (Chow et al., 2002; Hauschke et al., 1992; Owen,
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1965)

1−β = T−1
(
−t1−α,nA(r+1)−2, nA(r+1)−2, τ2

)
−T−1

(
t1−α,nA(r+1)−2, nA(r+1)−2, τ1

)
(A.9)

Where

τ1 =

(
(µA − µB) + de

)√
rnA

(r + 1)σ2
(A.10)

and

τ2 =

(
(µA − µB)− de

)√
rnA

(r + 1)σ2
(A.11)

are the non-centrality parameters.

If we simplify this calculation for an initial sample size for the iterations, we get

(Julious, 2004)

nA =
(r + 1)σ2(Z1−β + Z1−α)2

r((µA − µB)− de)2
(A.12)

Special Case (no treatment difference)

If there is no treatment difference (µA − µB = 0), then Equation A.12 becomes (S.

A. Julious, 2004)

nA =
(r + 1)σ2(Z1−β/2 + Z1−α)2

rd2
e

(A.13)

The reason that 1− β/2 is now used as oppose to 1− β is that the type II error is

split between the two one-sided tests. However, as the mean difference is now zero

the Type II error is split equally so we can have a direct estimate of the sample size.

The non-central t-distribution result for the power is (Julious, 2004)

1− β = 2× T−1
(
− t1−α,nA(r+1)−2, nA(r + 1)− 2, τ

)
− 1 (A.14)

Where

τ =
−√nA × rde√

(r + 1)σ2
(A.15)

is the non-centrality parameter.
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A.1.2.2 Crossover Trials

A.1.2.3 General Case

As in previous sections, the power can be estimated using (Julious, 2004)

1− β = Φ

(√
n((µA − µB)− de)2

2σ2
w

− Z1−α

)

+ Φ

(√
n((µA − µB) + de)2

2σ2
w

− Z1−α

)
− 1 (A.16)

When the population variance is unknown, this equation can be rewritten as

1− β = Φ

(√
n((µA − µB)− de)2

2σ2
w

−−t1−α,n−2

)

+ Φ

(√
n((µA − µB) + de)2

2σ2
w

− t1−α,n−2

)
− 1 (A.17)

This shows that the methodology for crossover trials is similar to that for parallel

group trials for equivalence studies (Chow et al., 2002; Hauschke et al., 1992; Owen,

1965). The non-central t-distribution result for the power is given by (Julious, 2004)

1− β = T−1(−t1−α,n−2, n− 2, τ2)− Probt(t1−α,n−2, n− 2, τ1) (A.18)

where

τ1 =

(
(µA − µB) + de

)√
n√

2σ2
w

(A.19)

and

τ2 =

(
(µA − µB)− de

)√
n√

2σ2
w

(A.20)

are the non-centrality parameters.

For a quick calculation (for µA − µB > 0)(Julious, 2004)

n =
2σ2

w(Z1−β + Z1−α)2(
(µA − µB)− de

)2 (A.21)
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For quick calculations at a 90% power and 2.5% type I error rate (Julious, 2004):

n =
21σ2

w(
(µA − µB)− de

)2 (A.22)

Special case of no treatment difference

For the special case where there is no treatment difference (µA− µB = 0) the direct

estimate of the sample size is (Julious, 2004)

n =
2σ2

w(Z1−β + Z1−α)2

d2
e

(A.23)

The quick calculation is (for a 90% power and a 2.5% type I error) (Julious, 2004)

n =
26σ2

w

d2
e

(A.24)

A.2 Quick Results for Sample Size Calculations

A.2.1 Superiority Trials, Continuous Outcomes

A.2.1.1 Parallel Group

If a quick estimate is required for a sample size, we can use the quick results in each

section of this chapter. It simply estimates the (r + 1)(Z1−β + Z1−α/2)2 part of the

equation with their values from the Normal tables for the type I and type II errors.

For 90% power, equal allocation, 2-sided significance level the sample size per arm

can be calculated by (Julious, 2004)

nA =
21σ2

d2
S

(A.25)

where dS is the target difference between the treatments, σ2 is the population vari-

ance. This equation comes from the following equation when r = 1:

nA =
10.5(r + 1)σ2

rd2
S

. (A.26)

If there was not equal allocation, (nB = rnA), then this would be the quick result

to use. The value 10.5 arises from the (Z1−β + Z1−α/2)2 part of Equation 2.1,
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it is an estimate as oppose to the exact value when Z1−β = Z0.9 = 1.282 and

Z1−α/2 = Z0.975 = 1.96.

For 80% power, equal allocation, 2-sided significance level (equal allocation) we can

use

nA =
16σ2

d2
S

(A.27)

where dS is the target difference between the treatments and σ2 is the population

variance. Again, the value of 16 arises from r = 1, Z1−β = Z0.8 = 0.842 and

Z0.975 = 1.96. A more accurate result would have 15.7, not 16, so this result would

be a little more conservative.

Both the quick results give reasonable estimates of the sample size required and

could be used as initial sample size estimates.

A.2.1.2 Crossover Trials

For a 90% power and a two-sided 5% type I error the sample size calculation is

n =
21σ2

w

d2
S

(A.28)

Where σ2
w is the within-subject variance, ds is the target difference and n is the total

sample size.

A.2.2 Non-Inferiority Trials

The quick calculation at 90% power and a 2.5% type I error rate for a parallel group

design is

nA =
10.5σ2(r + 1)

r
(

(µA − µB)− dNI
)2 (A.29)

The quick formula (at 90% power and 2.5% type I error rate) for a crossover design

is (Julious, 2004)

n =
21σ2

w(
(µA − µB)− dNI

)2 (A.30)
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A.2.3 Equivalence Trials

For a quick calculation with 90% power and type I error rate of 2.5% (Julious, 2004)

nA =
10.5σ2(r + 1)

r
(

(µA − µB)− de
)2 (A.31)

This quick calculation only applies for differences which are close to de.

For a quick result with 90% power and a type I error rate of 2.5% (Julious, 2004)

nA =
13σ2(r + 1)

rd2
e

(A.32)

This provides a direct estimate for the sample size per arm. Note that the coefficient

in Equation A.32 is different to that in Equation A.31. This is because the Type II

error is not allocated symmetrically when the population mean is non-zero.

A.3 Sample Size Tables

A.3.1 Non-Inferiority Trials

Tables A.1 (Julious and Campbell, 2012; Rothwell et al., 2018a) and A.2 show the

various sample sizes needed for different standardised effect sizes and percentage

mean differences for parallel group and crossover designs, respectively. As the target

effect size increases the sample size decreases, as in previous tables. It is also clear

that as the percentage mean difference increases, the required sample size increases.
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Percentage Mean Difference
δ −25% −20% −15% −10% −5% 0% 5% 10% 15% 20% 25%

0.05 5381 5839 6358 6949 7626 8407 9316 10379 11636 13136 14945
0.10 1346 1461 1590 1738 1908 2103 2330 2596 2910 3285 3737
0.15 599 650 708 773 849 935 1036 1155 1294 1461 1662
0.20 338 366 399 436 478 527 584 650 729 822 935
0.25 217 235 256 279 306 338 274 417 467 527 599
0.30 151 164 178 194 213 235 260 290 325 366 417
0.35 111 121 131 143 157 173 235 213 239 270 306
0.40 86 93 101 110 121 133 173 164 183 207 235
0.45 68 74 80 87 96 105 116 130 145 164 186
0.50 55 60 65 67 78 86 95 105 118 133 151

Table A.1: This table shows different sample sizes (nA) for one arm of a parallel group design for a non-inferiority trial with an allocation
of r = 1 (equal allocation) for various standardised non-inferiority limits (δ = dNI

σ
). It shows the sample sizes for different true mean differences

as a percentage of δ for a 90% power and type I error rate of 2.5%. These sample sizes are calculated from the non-central t-distribution.
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Percentage Mean Difference
δ −25% −20% −15% −10% −5% 0% 5% 10% 15% 20% 25%

0.05 5382 5840 6359 6949 7627 8408 9316 10380 11637 13137 14946
0.10 1347 1462 1591 1739 1909 2104 2331 2597 2911 3286 3738
0.15 600 651 709 774 850 936 1037 1156 1295 1462 1663
0.20 337 367 400 437 479 528 585 651 730 823 936
0.25 218 236 257 280 307 339 375 418 468 528 600
0.30 152 165 179 195 214 236 261 291 326 367 418
0.35 112 122 132 144 158 174 193 214 240 270 307
0.40 87 94 102 111 122 134 174 165 184 208 236
0.45 69 75 81 88 97 106 117 131 146 165 187
0.50 56 61 66 72 79 87 96 106 119 134 152

Table A.2: This table shows different total sample sizes (n) of a crossover design for a non-inferiority trial for various standardised non-
inferiority limits (δ = dNI

σ
). It shows the sample sizes for different true mean differences as a percentage of δ for a 90% power and type I error

rate of 2.5%. These sample sizes are calculated from the non-central t-distribution.
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A.4 Binary Outcomes

This section will discuss the sample size calculations required for the various trial

objectives (specifically superiority, equivalence and non-inferiority) for trials with

a single binary end-point. This end-point could be, for example, a pre-specified

outcome of a condition (for example, pain or death). The main superiority trial

design is included in this section, however the calculations for non-inferiority and

equivalence trials are included in Appendix A.4. Each part of this section will discuss

the hypotheses used for the sample size calculations along with a worked example.

The examples will be completed both using the formulae and using sample size

tables. For this outcome we have assumed that the reader is already familiar with

Type I and Type II error rates, as discussed earlier in the chapter. One potential

source of confusion for this section on binary outcomes is the alternating between π

and p. To clarify the difference, π is used as the known population estimate for the

absolute risk, whereas p is taken to be the sample estimate of π, which is estimated

from the trial.

A.4.1 Superiority Trials

A.4.1.1 Parallel Group Trials

The parallel group superiority trial is investigating whether two different treat-

ments/interventions are different in terms of their proportion of patients with a

particular outcome.

Let πA and πB be the proportion of adverse events in groups A and B respectively.

The two hypotheses of interest would be

• H0: There is no difference between the two treatment effects in terms of odds

ratio (πA = πB)

• H1: There is a difference between the two treatment effects in terms of odds

ratio (πA 6= πB)

Consider Table A.3 (Julious and Campbell, 2012; Rothwell et al., 2018a), a summary

table for a typical clinical trial with a binary end-point or outcome.

Let pA be the proportion of responses in group A and pB be the response in group

B, with nA and nB be the total number of patients in groups A and B respectively

such that n = nA + nB is the total number of patients in the study and

p̄ =
nApA + nApB
nA + nB

(A.33)
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Outcome
Treatment 1 0 Total

A pA 1− pA nA
B pB 1− pB nB

Overall Response p̄ 1− p̄ n = nA + nB

Table A.3: A summary table for a typical clinical trial with a binary outcome.

is the average response across the treatments.

There are two methods for getting a sample size calculation for this type of outcome,

one of which is using the anticipated responses under just the alternative hypothesis

and the other is using the responses under both the null and alternative hypotheses.

Method 1 using anticipated responses under the alternative hypothesis

This method is a relatively simple calculation to get an approximate sample size

relatively quickly. With this method we get a sample size calculation of (Campbell

et al., 1995; Julious, 2010b; Julious et al., 1999)

nA =

(
Z1−β + Z1−α/2

)2(
πA(1− πA) + πB(1− πB)

)
(πA − πB)2

(A.34)

This formula is for the case of equally sized groups (i.e. nA = nB)

Quick Results Method 1

Two formulae can be used to quickly calculate a sample size estimate for a superiority

trial with a binary outcome. For a 90% power and type I error rate of 5% we get

(Julious, 2010b)

nA =
5.25

(πA − πB)2
(A.35)

For an 80% power and a two-sided type I error rate of 5% we can estimate a sample

size using (Julious, 2010b)

nA =
4

(πA − πB)2
. (A.36)

Both these quick methods will provide a conservative maximum sample size esti-

mation. This is because the maximum sample size would be when π̄ = 0.5 (where

π̄ = πA+piB
2

) (Julious, 2010b) and this is the response assumed in the derivation

of the results. These results are conservative outside the rage of (0.3, 0.7) for π̄

(Julious and Campbell, 2012). These results are for equal allocation between treat-

ment groups, there are a number of other extensions to these results depending on

the type of design, such as fixed allocation between groups (Campbell et al., 1995)
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or random allocation between groups (Ambrosius and Mahnken, 2010). These re-

sults also assume that there is a single end-point, multiple-end points are discussed

elsewhere (Senn and Bretz, 2007; Sozu et al., 2010; Yeo and Qu, 2009).

Method 2 using anticipated responses under both the null and alternative

hypotheses

The alternative method used for calculating the sample size uses the responses under

the null and alternative hypotheses. This method arose because in method 1 the

variances under each hypothesis are assumed to be equal, when in practice this is

unlikely to be the case. Under the null we have πA = πB and under the alternative

we have πA 6= πB. The adjusted sample size calculation is as follows (Fleming, 1982)

nA =

(
Z1−α/2

√
variance under null + Z1−β

√
variance under alternative

)2

(πA − πB)2
. (A.37)

This means the sample size can be estimated using the following formula (Julious

and Campbell, 2012)

nA =

(
Z1−α/2

√
2π̄1(1− π̄1) + Z1−β

√
πA(1− πA) + πB(1− πB)

)2

(
πA − πB

)2 (A.38)

where

π̄1 =
πA + πB

2
(A.39)

.

One final consideration for parallel group trials with a binary end-point is whether

a continuity correction needs to be implemented. This test was proposed when

computing power was not as great as it is today. A continuity corrected chi-squared

test was undertaken if the chi-squared assumptions did not hold, for example if

there were small or zero cell counts. Today in the same circumstances a researcher

may undertake a Fishers exact test. The formula for this sample size is used once

the initial sample size has been calculated using one of the previous formulae, the

corrected sample size is (Campbell et al., 1995)

ncc =
nA
4

[
1 +

√
1 +

4

nA × (πA − πB)

]2

(A.40)

This result can also be used to provide an estimate for the sample size when the data

will be analysed using a Fisher’s exact test. This estimate is a little conservative

(Julious and Campbell, 2012).
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Treatment B
Treatment A 1 0 Total

1 n11 n10 nA1

0 n01 n00 nA0

nB1 n1B n

Table A.4: A summary table of a crossover trial. An example summary of a hypo-
thetical crossover trial, where nxy are the number of responses in cell xy. The end
row and column give the total responses for each treatment. These overall responses
are the numbers expected to be seen if it were a parallel group trial.

Treatment B
Treatment A 1 0 Total

1 λ11 λ10 pA
0 λ01 λ00 1− pA

pB 1− pB 1

Table A.5: A summary table of a hypothetical crossover trial where λxy = nxy
n

,
pA = nA1

n
and pB = nB1

n
. The marginal totals are found in the end row and column

and each cell shows the proportion of responses for each treatment combination or
outcome.

A.4.1.2 Crossover Trials

Cross over trials with binary data are quite different to anything that has been

discussed up to this point. However, they are very similar for each of the three trial

types (superiority, equivalence and non-inferiority). There are two main summary

measures used in these designs, which are odds ratios or the difference in proportions.

If we first consider Table A.3, for a crossover trial the only cells of interest are the

discordant cells (the cells ‘01’ and ‘10’). The reason for this is that the concordant

cells in a superiority trial agree with the null hypothesis that there is no differ-

ence between the treatments, whereas the alternative hypothesis is stating that one

treatment is preferable.

Table A.4 (Julious and Campbell, 2012; Rothwell et al., 2018a) can be re-written in

terms of the proportions of responses, giving Table A.5.

The trial can then be summarised in an odds ratio using the discordant cells by

Ψ = λ10
λ01

. This can sometimes be difficult to interpret, therefore an approximate

odds ratio can be gathered from the marginal totals of Table A.5 where (Royston,

1993).

Ψ =
pA(1− pB)

pB(1− pA)
(A.41)

The discordant sample size can be estimated using the odds ratio, then from this

value the total sample size required for the trial can be calculated. The discordant

sample size, nd, is deemed useful since it does not contain any unknown values, it is
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purely based on the odds ratio (Ψ), Z1−α/2 and Z1−β (Connett et al., 1987; Fleiss and

Levin, 1988; Julious et al., 1999; Royston, 1993; Schlesselman and Schneiderman,

1982)

nd =
Z1−α/2(Ψ + 1) + 2× Z1−β ×

√
Ψ)2

(Ψ− 1)2
(A.42)

The total sample size can then be estimated using (Connett et al., 1987; Julious

et al., 1999; Royston, 1993)

Ntotal =
nd

λ01 + λ10

(A.43)

A.4.2 Non-Inferiority Trials

A.4.2.1 Parallel Group Trials

As in Appendix A.1, recall that the null and alternative hypotheses for non-inferiority

trials are (Julious, 2010b)

• H0: A treatment is inferior in terms of the risk response (πA ≥ πB)

• H1: A treatment is non-inferior in terms of the risk response (πA < πB)

The two hypotheses for this type of trial can be rewritten in terms of a pre-specified

clinical difference, dNI (Chan, 2003; Chen et al., 2000; for the Evaluation of Medic-

inal Products, 2000).

H0 : πA − πB ≤ dNI

H1 : πA − πB > dNI

where dNI is the non-inferiority limit. This means that the null hypothesis, H0, is

that a given treatment is deemed inferior and the alternate hypothesis, H1, states

that the given treatment is not inferior. The setting of the non-inferiority limit is

not easy, however it is defined as the largest difference that is clinically acceptable

such that a larger difference than this would matter in clinical practice (for the

Evaluation of Medicinal Products, 2000).

This type of study can be treated as a one-tailed study; therefore the α value we

use is 0.025.

If nA = nB then a direct estimate of the sample size is (Dunnett and Gent, 1977)

nA =
(πA(1− πA) + πB(1− πB))(Z1−β + Z1−α)2(

(πA − πB)− d
)2 (A.44)

where πA is the assumed proportion of responses is expected in subjects on treatment

A and πB is the assumed proportion of responses expected on treatment B.
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A quick method, using 90% power and two-sided significance level of 5%, is (Julious

and Campbell, 2012)

nA =
5.25(

(πA − πB)− d
)2 (A.45)

A quick method, using 80% power and a two-sided significance level of 5%, is (Julious

and Campbell, 2012)

nA =
4(

(πA − πB)− d
)2 (A.46)

Like for superiority trials earlier, both these quick methods will provide a conserva-

tive maximum sample size estimate.

A.4.2.2 Crossover Trials

A number of other articles have covered this issue (Julious, 2010b). The methods

used are just extensions of the methods for superiority crossover trials and parallel

group non-inferiority trials. It is recommended to use the same methodologies as

for the parallel group trials to form an estimate of the total sample size for a non-

inferiority crossover trial. This is done by taking the sample size per arm to be the

total sample size.

A.4.3 Equivalence Trials

A.4.3.1 Parallel Group Trials

As discussed in Appendix A.1, there are occasions when it is not necessary to prove

superiority. Sometimes it is preferable to show that two different treatments are

equivalent. For example, comparing a drug with a cream when the cream is cheaper,

it may be of clinical interest to show that the cream is as effective as the drug. An-

other example would be comparing a surgical technique with intensive physiotherapy.

General Case

The two hypotheses for this trial are (Julious and Campbell, 2012)

• H0: The two treatments are different in terms of their risk difference. (πA 6=
πB)

• H1: The two treatments are not different in terms of their risk difference.

(πA = πB)
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Normally these hypotheses are written not in terms of the risk difference, but in

terms of the clinical difference, de. They become

• H0: πA − πB ≤ −de or πA − πB ≥ +de

• H1: −de < πA − πB < +de

These hypotheses, as with the continuous outcome equivalence and non-inferiority

trials, are intersection-union tests. With these tests, as previous discussed, each

component of the null hypothesis is tested at the level α (Berger and Hsu, 1996;

Julious, 2004, 2010b). The sample size for a parallel group equivalence trial is

(Julious and Campbell, 2012)

nA =
(Z1−β + Z1−α/2)2

(
πA(1− πA) + πB(1− πB)

)
(|πA − πB| − de)2

(A.47)

Special Case (No treatment difference)

If there is no anticipated treatment difference (πA − πB = 0), a direct sample size

estimate can be obtained from the following formula (Julious and Campbell, 2012)

nA =
2× (Z1−β + Z1−α/2)2 × π̄(1− π̄)

d2
e

(A.48)

A.4.3.2 Crossover Trials

A number of other articles have covered this issue (Julious, 2010b) the methods

used are just extensions of the methods for superiority crossover trials and parallel

group non-inferiority trials. It is recommended that the same methodologies are

used as for the parallel group trials to form an estimate of the total sample size for

a non-inferiority crossover trial. This is done by taking the sample size per arm to

be the total sample size.

A.5 Cluster Trials

Cluster parallel group trials for both continuous and binary data need to be consid-

ered separately, as a design effect needs to be included in the sample size calculation

(ICC). Cluster trials occur when it is not always possible or feasible to randomise

patients at an individual level only. Cluster randomisation is therefore undertaken

when, instead of the individual patients being randomised to a treatment or therapy,

the entire unit (for example the hospital, GP surgery or school) is randomised to the
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interventions. The reason that cluster trials may be used is to avoid contamination

of the treatment group. This is particularly important, for instance with educational

studies it may not be realistic to give the intervention to one subject without others

at the same unit (school, surgery) being exposed as well. A vital consideration for

a clustered-randomised trial design is the intra-cluster correlation coefficient (ICC).

This quantifies the extent of similarity between individuals within a cluster, that is,

the more similar individuals are in a cluster, the higher the ICC will be. The ICC

can be calculated using

ζ =
σ2

σ2
B + σ2

w

(A.49)

where σ2 is the overall response variance, σ2
B is the between-cluster component of

the variance and σ2
w is the within-cluster component of the variance. Note that

σ2 = σ2
B + σ2

w and σ2
w = σ2(1− ζ).

A.5.1 Parallel Group Superiority Trials

The sample size calculation for superiority trials with a clustered parallel group

design and a continuous end-point is as follows. nA is the number of subjects per

intervention.

nA =
2σ2
(
Z1−α/2 + Z1−β

)2[
1 + (m− 1)ζ

]
md2

(A.50)

This equation is similar to that from Section 2.3.1 but also includes ζ which is the

ICC, m which is the average sample size per group or cluster. This equation is

again an extension of the parallel group superiority case, with an inflation factor of

1 + (m− 1)ζ. Another variation of this sample size calculation is to determine the

number of clusters, k, for each intervention.

k =
2σ2
(
Z1−α/2 + Z1−β

)2[
1 + (m− 1)ζ

]
md2

(A.51)

These methods can be extended to non-inferiority and equivalence designs.
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B. Chapter 4

The extraction variables used in the HTA review in chapter 4 have been included in

this appendix. The list is quite long and whilst it is useful to display the variables,

it is not vital for them to be included in the main body of the thesis. There are also

two plots which are interesting but not vital to the results displayed in section B.2.

B.1 Extraction Variables

A full list of the variables which were extracted from the reports is provided here.

• Study ID

• Study acronym (if provided)

• Full study title

• Lead Author

• Corresponding Author

• Publication Year, Volume, Issue

• ISRCTN

• Trial type and design

• is the trial randomised?

• is the trial multicentre?

• What clinical area is the trial investigating?

– Full list in section 4.2.4.2

• number of arms

• trial population

• setting
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– Hospital

– GP

– Mixed

– Community

– Primary or Secondary Care

– Other

• primary end point and measure type

• intervention type

– Drug

– Therapy

– Surgical

– Education

– Complex

– Other

• Control type

– Missing

– Active

– Placebo

– Not Applicable

• Target (unadjusted) and final target sample size

• Achieved and evaluable sample size

• Target power and significance level

• Target difference and standard deviation (if provided)

• Target effect size

• Elicitation method

– Previous research

– Pilot

– Systematic review

– Cochrane review

– Expert consensus
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– Meta-analysis

– Other

– No mention

• Is the target effect size the MCID?

• If previous study used to elicit target, what was result observed in study?

• DELTA categories of elicitation

– Anchor

– Distribution

– Health economics

– Opinion-seeking

– Pilot

– Review of evidence

– SES (standardised effect size [Cohen] (Cohen, 1988)

– Mixed

– No mention

– Other

• Observed treatment effects in each arm

• Observed effect size

• Observed effect size type

– Mean difference

– Relative Risk

– Odds ratio

– Hazard ratio

– Difference in proportions

– Regression coefficient

– difference in score

– General Linear Model coefficient

– Other

• P -value

• Is the P -value significant?
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• Lower and upper 95% confidence interval boundaries

There were sections provided for free text about the following areas

• trial design,

• early comments from initial reading,

• trial population,

• clinical area,

• intervention type,

• primary end-point,

• sample size,

• target difference elicitation,

• treatment difference,

• observed effect size,

• if the P -value was non-signficant for a MCID, was MCID re-evaluated?

• further comments.
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Figure B.1: The individual observed effect sizes with the mean target effect
size for each clinical area.

B.2 Extra Plots
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C. Chapter 5

The research presented in this appendix was initially completed during the first year

of the PhD. Since then, the research question was refined and this information was

surplus to requirements. It did not enhance the thesis, yet it is representative of the

quantity of work conducted during the course of this PhD.

C.1 Overview of Methods of Adjustment

There are a number of documented methods to adjust for regression to the mean

which occur either in the design stage of the trial or the analysis stage (Barnett et al.,

2005). There does not appear to be one that is superior to the other methods, with

all the trials read for this review demonstrating use of a wide variety of methods.

The use of a control group appears to be the most logical method, as it allows the

trialists to observe how much of the treatment effect can be attributed to regression

to the mean and the natural course of the illness or problem. However, there are a

number of situations where having a control group is not deemed ethical, so other

methods have to be applied. If a control group is used, this will help to control

the within-study regression to the mean, however it will not adjust for the between-

study regression to the mean. The between-study regression to the mean is the

focus of this PhD. There are more methods for adjusting for this phenomenon in

the analysis part of the trial compared to the design.

C.1.1 Design Stage Methods

The inclusion of a control group (or more specifically a non-intervention group)

seems to be the simplest method used to adjust for regression to the mean. This

is set out in the design of the trial and, subject to no ethical complications, works

fairly effectively. The theory behind it is that the control group are representative

of the intervention group if the intervention group had not received treatment. Any

change in the control group is therefore solely attributed to natural fluctuation and

regression to the mean (Greineder et al., 1999; Whitney and Von Korff, 1992; Yudkin

and Stratton, 1996). The average change observed in the control group can then
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be subtracted from the average observed change to determine the true treatment

effect (Cummings et al., 2004; Lipman et al., 2006; Maltby et al., 2005; Martinez-

Yelamos et al., 2006; Moebus et al., 2006; Osterbrand et al., 2007; Rose et al., 1980;

Sanders-van Wijk et al., 2014).

Since the main focus of this PhD is randomised controlled trials, there will always

be a control group present. Therefore, the focus will be on analysis stage methods

as oppose to design stage methods. The design stage methods work well for trials

with before-after measurements, however they do not seem to be applicable to the

context of this research.

C.1.2 Analysis Stage Methods

As previously discussed, there are two points at which an adjustment can be made,

the design and analysis stages of the clinical trial. Sometimes it is not practical to

make an adjustment during the design stage; in these situations one can make the

necessary adjustments in the analysis stage. Consider a trial with measurements

made at two time points and an experimental and placebo group. One method is to

use a regression equation for the placebo patients to get expected untreated value at

second time point conditional on baseline values, then subtract the expected value

from the observed value to adjust for RTM (Lubsen et al., 2007). This method is

similar to the adjustments made in regression techniques such as linear regression or

analysis of variance. There are regression based methods like analysis of covariance

(ANCOVA), analysis of variance (ANOVA) and multiple linear regressions which

can also be used. These methods can be implemented a number of different ways

but ultimately do the same thing. The idea behind these methods is to control for

baseline differences between the treatment groups by including the baseline values

as a covariate or variable in the analysis (Barnett et al., 2005; Bernstein et al., 2009;

Crawford et al., 2012; Finney, 2008; Qouta et al., 2012; Twisk and de Vente, 2008;

Vickers and Altman, 2001; Whitney and Von Korff, 1992). Twisk puts forward

another method since ANCOVA has problems and other autoregressive techniques

assume all groups are equal at baseline which is not always the case. Twisk describes

residual change combination method and analysis of covariance combination method

in general detail, but the methods are not applied to an example.

In a similar vein, these differences in baseline measurements are controlled in the

method of multiple regression (Allison et al., 2009; Bernstein et al., 2009; SW, 1984;

Victora et al., 1998; White et al., 1997). Multiple regression can be performed on

both the treatment and control groups; the difference between the two equations is

the effect of switching between treatment and control groups. The regression to the

mean is controlled by the regression equations (Osterbrand et al., 2007).
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The adjustment made to results is dependent on the type of outcome variable,

whether it is continuous or binary. For continuous outcome variables there are three

methods traditionally used, namely analysis of covariance (ANCOVA), the change

from baseline to follow-up measurements could be used or a method called resid-

ual change which is not commonly used. ANCOVA is similar to a linear regression

analysis, however the follow-up measurements are treated as the outcome variable

and the baseline measurement is selected as a covariate. This provides an adjust-

ment for the differences in baseline between the groups (Twisk and Proper, 2004).

The advice given in this article is to use ANCOVA for continuous variables as the

coefficients are easier to interpret than in the residual change method. For binary

or dichotomous outcome variables, the preferred method to adjust for the statistical

artefact is multinomial logistic regression adjusting for baseline effects. One is able

to use logistic ANCOVA; however the interpretation of this is more complex and

does not provide as much information as logistic regression.

C.1.3 Simulation and Graphical Methods

There are a number of simulations based methods which are used to adjust for

regression to the mean. The methods are fairly complex though one is more intuitive

than the others. The graphical methods vary in terms of their applicability to

the adjustment of regression to the mean. The three main methods found in this

literature review seem to focus on showing that regression to the mean is occurring,

as opposed to being a method of adjustment. Due to this, they are unlikely to be

useful in the context of this PhD.

C.2 Detailed Methods of Adjustment

This section will briefly discuss a method which is used to adjust for regression to

the mean and would be applicable to this research area. A number of other methods

were extracted and discussed in this literature review; however they did not appear

to be applicable to the research problem.

C.2.1 Shepard and Finison Method

A method which was described in a paper by Shepard and Finison but not used in

any trials in the review is based on the scenario where a potential participant to

the trial must have an outcome measurement higher than a pre-defined threshold

at multiple visits to the clinic (Shepard and Finison, 1983). This method appears

to be analogous to the aim for this research, as it depends on the initial outcome
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measurement being higher than a specified value, such as having encouraging results

at an initial trial. The method defines a model which aims to provide an average

outcome measurement, having adjusted for regression to the mean. The model

comes from Equation C.1

ˆ̄C = (x̄full − ȳfull)− [(1− Ĝ)(x̄full − x̄pot)] (C.1)

Where ˆ̄C is the adjusted outcome variable,x̄full and ȳfull are the average outcome

measurements for baseline and follow-up time points, respectively. The full subscript

denotes that these values are calculated using all the potential participants who

completed the trial. The variable x̄pot denotes the mean baseline measurement for

all potential participants, so any participants who meet the entry criteria for the

trial at the screening test. Ĝ is the coefficient of reliability for that measurement

type, for example blood pressure. The interpretation of this value is dependent on

the context of the intervention. In the paper they use the example of aiming to

reduce blood pressure, so a positive value for ˆ̄C would indicate that the intervention

is successful and the average blood pressure has been reduced. Another extensive

formula-based method which is used as the basis for other methods is by Gardner

and Heady (Gardner and Heady, 1973). This method can be used to predict the

expected regression effect, therefore providing a method to estimate the treatment

effect on its own without the inclusion of the regression effect.

C.2.2 Other causes of regression to the mean

Another instance which can cause regression to the mean is where there are differ-

ences at the baseline value between the intervention and control groups. In theory,

this should not occur when the patients are randomised because all the participants

come from the same population. However, variations can occur by chance, and it

is this difference in baseline measurement which can result in observing a response

in both groups irrespective of which one was the intervention group (Twisk and

de Vente, 2008). Regression to the mean commonly occurs when there are ceiling-

or floor-effects in the data, for example a test score in education will be limited by

the minimum mark of 0 and the maximum mark available. The reason that this

effect occurs in these situations is simply because if a student gets an extremely

high (or low) score then they only have one direction in which to go for the retest,

so will normally get a lower (or higher) score upon the retest. This is an example

of regression towards the mean as the subjects of interest with the extreme scores

will likely regress towards the mean score of the population taking the test. It has

also been discussed that regression to the mean will occur when there is a nega-

tive correlation between the baseline measurement and the change in measurement
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(Cannito et al., 2012; Rocconi and Ethington, 2009). Negative correlation would

occur if the baseline measurements were particularly high in a group. For example,

Cannito et al. discovered a high negative correlation between pre-treatment baseline

and change in Sentence Intelligibility Test (SIT) scores in patients with Parkinsons

disease (Cannito et al., 2012).

This meant that the patients who scored higher pre-treatment showed less change

than those who scored lower. Knowing this could be useful in tackling the issue and

realising before the full analysis begins in a trial that there may be some other effects

occurring. However, one problem with using this test is that there is an inherent

negative correlation between the baseline value and the change, so this may not be

the most appropriate solution (Campbell, 1990).

Missing data is another potential cause of regression to the mean. When the data

is not missing at random, so there is the possibility that there is an association

between the specific variables that are missing, this phenomenon is more likely to

occur (Suissa, 2008). A number of other factors contribute to regression to the

mean, such as having small sample sizes or investigating a disease which is cyclic in

nature (Enck and Klosterhalfen, 2005).

C.2.3 What clinical areas does regression to the mean oc-

cur?

After looking through the literature to establish if there were any particular disease

areas or intervention types for which regression to the mean was adjusted for, it

became apparent that there was no obvious link between adjustment and disease

or intervention type. Since it is most commonly discussed as affecting blood test

measurements, a lot of cardiology interventions made various adjustments for it

which are described in further detail later in the review (Asmar et al., 2001; Lubsen

et al., 2007; Okin et al., 2001; Palmieri et al., 1999; Sanders-van Wijk et al., 2014;

Stewart et al., 2000; White et al., 1997).

Other common disease areas were: diabetes (Manley et al., 2000; Persu et al.,

2014); oncology (Sagar, 2008); pulmonary conditions (van Schayck et al., 1995);

pain (Bjorkedal and Flaten, 2011; Mbizvo et al., 2015; van Schayck et al., 1995;

White et al., 2004); osteoporosis (Chapurlat et al., 2001; Cummings et al., 2000);

immunology (Lin and Hughes, 1995, 1996) and mental health (Allison et al., 2009;

Lipman et al., 2006; McCall et al., 2011; Qouta et al., 2012). A number of different

treatments were used in these specific randomised controlled trials, which varied

from medical drugs, surgery, homeopathic remedies, and holistic approaches like

acupuncture or lifestyle interventions such as diet and education.
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C.2.3.1 In what areas is it adjusted for?

There does not appear to be a specific area or set of areas where regression to the

mean is regularly adjusted for. It is only mentioned in the areas discussed above, and

even then it is not always adjusted for in those areas. This was discovered during the

literature searching, with a large number of articles mentioning it as a justification

for why the placebo group in that particular trial also exhibited a treatment effect

(Bjorkedal and Flaten, 2011; Martinez-Yelamos et al., 2006; Ryvicker et al., 2011).

Some papers adjusted for the effect but did not go into detail as to which method

they used (Manley et al., 2000; Palmieri et al., 1999) whilst some interventions, by

their nature, make it infeasible to have a control group such as educational inter-

ventions James (1973). This follows because once the education has been provided

it cannot be unlearned and it could cause the participant to alter their behaviour.

C.2.4 Other Design Stage Methods of Adjustment

A consideration when adjusting for regression to the mean is the natural history of

the disease or illness, or natural fluctuations in measurements of interest. This can

be adjusted for in a similar way as including a control group, which is to include a

no intervention arm. This is useful if there is already a control group which receives

current or standard treatment, and an experimental group which is receiving the

new treatment of interest (Conboy et al., 2006). Randomisation should mean that

baseline variations are approximately equally split between the intervention and

control groups; therefore the change observed in the control group can be used as

an estimate for the effect of regression to the mean in both groups (Barnett et al.,

2005).

A method used in one trial was to give patients a run-in period of no treatment,

then a second period of usual treatment before randomisation to the treatment or

placebo groups. The effect was analysed by taking the baseline responses from the

usual treatment period, having had a wash out period. These baseline responses

were then compared with the previous deterioration in the no-treatment period to

give an estimate of regression to the mean (Burge et al., 2003). A similar method

used in crossover trials is to give the patients a run-in period of no treatment, and

then randomised to either treatment or no treatment groups. After that time period

the two groups swap treatment. Regression to the mean is assessed by comparing

the mean baseline values prior to randomisation with the end measurements of the

no-treatment groups (Asmar et al., 2001). Variations of this method have been

documented, though they are trial and intervention specific (Stewart et al., 2000).

Alternatively, one could design a trial which aims to take multiple measurements at

baseline, then base participant selection on the average of these measurements. For
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example, if participation in a clinical trial is based on individuals presenting with an

outcome of interest higher (or lower) than a pre-specified threshold value or cut-off

point, taking the average of a number of measurements would reduce the chance of

regression to the mean by adjusting for extreme values or measurements for each

individual (Barnett et al., 2005; Denke and Frantz, 1993; Lin and Hughes, 1995;

McDonald, 2003; Yudkin and Stratton, 1996). This method aims to get a better,

more accurate estimate of the baseline values (Cannito et al., 2012; Chapurlat et al.,

2001). This method is fairly common, for example in a hypertension trial by Okin et

al, multiple measurements were taken prior to treatment and eligible patients were

recorded as being hypertensive at all of these measurement time points (Okin et al.,

2001).

In a similar vein, one could assess patients blood pressure or cholesterol levels to

determine if they are potentially eligible for recruitment, then instead of using this

measurement as a baseline value, one could take another measurement to use as the

baseline measurement (Yudkin and Stratton, 1996).

A less commonly used method is to combine the baseline measurements with other

risk factors for the outcome of interest, however this is not frequent as it could

be rather expensive to implement since it could involve taking many more mea-

surements or using more resources to extract the measurements (Chapurlat et al.,

2001). For example, if the baseline measurement is a simple blood biomarker then

that would be relatively inexpensive compared with the addition of minor surgery

or further blood testing. One could compare the change in each measurement of

interest between time points. The method used to adjust for the regression to the

mean effect is described in a paper by Irwig; however this paper is one of those that

could not be located (Irwig et al., 1990).

C.2.5 Detailed Methods of Adjustment

This section will detail a few different methods used for adjusting for regression to

the mean. The purpose is to get a better idea of how a few of these methods work.

C.2.5.1 Value-Added Method

One method used is called the value added method (Heimendinger and Laird, 1983;

Walker et al., 1996). The way this method works is to estimate the outcome mea-

surement if there were no intervention, then use this to calculate how much value the

intervention added. This is commonly seen in interventions where natural growth

needs to be adjusted for as well as factors like regression to the mean. For example,

if the intervention was investigating how much a supplement aided childrens growth,

one would have to take how much the child would have grown naturally into account.
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This leads onto a formula developed by Lord in 1956 which simplifies regression to

the mean (Lord, 1956). The formula is given in Equation C.2.

Ẑ2 = E(Z2|Z1) = ρ12Z1 (C.2)

Where Ẑ2 is the estimate of the outcome at time t2, Z1 and Z2 are the observed

outcomes at times and respectively, and ρ12 is the correlation between Z1 and Z2.

This is under the assumption that both Z1 and Z2 are standardised outcomes or

scores at times t1 and t2, and that the measurements were taken on one participant.

By standardised, it indicates that these variables have a mean of zero and a standard

deviation of 1, they are also known as Z-scores. This formula provides an estimate

of the outcome measure at time point 2, having adjusted for the correlation between

the baseline and subsequent measurements as well as the baseline measurement

itself.

Another extensive formula-based method which is used as the basis for other meth-

ods is by Gardner and Heady (Gardner and Heady, 1973). This method can be used

to predict the expected regression effect, therefore providing a method to estimate

the treatment effect on its own without the inclusion of the regression effect.

C.2.6 Likelihood-based Methods

An alternative adjustment which has been used in the past is constructed using the

Likelihood-based method (Lin and Hughes, 1996; Senn et al., 1985). It builds on

the work by James (James, 1973) and adjusts for the fact that he has not taken

the effect that the truncation point will have on the variance of the population into

account in his model. He has also not acknowledged that there will be a covariance

effect between the two values for the different time points or measurements.

C.2.6.1 Davis Method

A method which is also used is based on an equation by Davis which adjusts for

regression to the mean (Davis, 1976; van Schayck et al., 1995). There are a series of

equations involved in this adjustment. Let us assume that xi is the i-th measurement

of the outcome of interest, and that it is normally distributed with mean µ and

standard deviation σ, ρij is the correlation between measurements i and j. The

intermediate equations have been omitted but the final estimate of the regression is

given by Equation C.3.

RTMeffect = c1σ(1− ρ12) (C.3)
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Where c1 = φ(a1)/[1− φ(a1)] , a1 is the cut-off point, σ is the population standard

deviation, ρ12 is the correlation between measurements 1 and 2, and µ is the observed

mean value. Estimates of these variables can be gathered from the study data or

using external estimates. The second method discussed in this paper is based on

the results discussed in James article (James, 1973) which consists of equations to

estimate the values for this equation using the current data as opposed to using

external estimates.

C.2.6.2 Method of Moments

James describes a method called the method of moments (James, 1973) which has

been used as the foundation for a number of other methods. It is rather complicated

but is based around a series of formulae leading to a calculation to estimate the

proportion of reduction in a variable (like cholesterol level) which is due to solely

regression to the mean. This formula is given in Equation C.4.

Proportion reduction = 1− ρ (C.4)

This leads to being able to calculate the proportion of reduction which is based on

regression as a fraction of the total proportion of reduction (Equation C.5.

prop.reductionregression
total.propreduction

=
1− ρ

1− γρ
(C.5)

The details of this method can be found in the article, along with a worked example

(James, 1973).

C.2.6.3 Other Methods

A method discussed in a paper on substance-use disorders is based on methods by

Campbell and Kenny (Campbell and Kenny, 1999; Finney, 2008). They discuss that

the expected regression to the mean effect without any intervention effect can be

calculated using Equation C.6.

effect = bxy(x−mx) +my (C.6)

Where mx is the mean of the pre-intervention variable, my is the mean of the post-

intervention variable and bxy is the regression coefficient, x is the pre-treatment score

for an individual or the average score for a group of individuals. One paper used a

rather unconventional method to make an adjustment for the effect, which was to

remove the two patients which were thought to be causing a skew in the data, so

the two patients with the highest scores of a particular biomarker
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This is the only mention of this method and as a statistician we are advised not

to remove data without a good reason. It does not appear that this method is

widely adopted, perhaps because it is not deemed to be sound methodology. One

can adjust the initial measurement taken once a negative correlation has been es-

tablished between the initial measurement and the follow-up measurement. Rocconi

and Ethington have described an adjustment formula which alters the initial mea-

surement, and then traditional methods of analysis can be performed on this new

adjusted value. This method does not eliminate RTM but does reduce it (Rocconi

and Ethington, 2009).

C.2.6.4 Simulation Based Methods

There are a number of simulation based methods which aim to adjust for regression

to the mean (Bajard et al., 2009; Farlow et al., 2005; Krause and Pinheiro, 2007;

Ross, 1995). They are complicated but one can see how they would be useful. The

easiest method to understand is based on simulating to get a reference distribution

of P -values (Krause and Pinheiro, 2007). he simulations are based on having a

first measurement,x0 , which is greater than a threshold value for entry to the trial,

along with a second measurement, x1, which is not guaranteed to be greater than

the threshold value. This method emulates the outcomes of moving from Phase II to

Phase III trials. These values are simulated many times to produce two distributions

for the two time points. The mean for the x0 distribution will be greater than the

mean in the x1 distribution. The method used in this paper determines a model

for the treatment effect as a whole (including regression to the mean and other

statistical artefacts) to describe the response of interest as best as possible. Using

this model, a null model is created which removes treatment effect. The same

believed cause of regression to the mean in the trial itself is then applied to this

model and the simulated data (for example, the fact that selection is based on a

threshold value could have caused regression to the mean). These simulated null data

sets are they analysed in exactly the same way as the observed data were, which

produce simulated test statistics and, by extension, a distribution of associated

P -values. This is the reference distribution. The observed P -value is compared

with this reference distribution. The resulting adjusted P -value is calculated as the

percentage of simulated P -values which are equal or less than the observed p-value.

This approach appears to be fairly logical, yet not widely adopted.

C.2.6.5 Graphical Methods

A useful way to see if regression to the mean is occurring is to look at plots or

graphs. These provide a visual interpretation of the issue which can be illuminating
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Figure C.1: An example of a Galton Squeeze diagram for a clinical trial testing the
effect of a treatment.

for the reader. One type of plot is called a Galton Squeeze diagram, an example of

which is shown in Figure C.1.

The Galton Squeeze diagram is plotted using the standardised difference between

each individual observation and the overall mean value for that variable or measure-

ment prior to randomisation, and also the difference at the end of the treatment

period needs to be calculated. If the standardised difference before treatment is

plotted against the standardised difference after treatment for each participant, one

is able to assess whether regression to the mean is present. If the plot exhibits a

funnel shape, regression to the mean is occurring (GL Burrell, 2010; McCall et al.,

2011). Another graphical method is to plot the baseline measurement of an outcome

variable against the mean change observed for each individual. If the plot exhibits

a negative trend then regression to the mean is occurring (Bhorade et al., 2009;

Whitney and Von Korff, 1992).

One final graphical method to illustrate regression to the mean is to calculate the

difference between each time point for each individual, and use this to calculate the

difference between the pre-treatment measurements and the post-treatment mea-

surements. This is plotted against the mean change overall for the group. If there

is a negative y-intercept then there is no change due to treatment, if there is a neg-

ative y-axis value when there is no treatment effect, then regression to the mean is

evident. This method is based on having 4 different time points; 2 before treatment

and two after the treatment (Ederer, 1972).
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D. Chapter 6

This appendix provides extra plots which arose from the simulations conducted in

chapter 6. Due to the quantity of plots and the fact that they are relatively similar

in nature, it was decided to include them in an appendix for reference.

D.1 Initial Simulations

This section considers the same method of simulations as used in Section 6.2, how-

ever for these simulations the power levels and effect sizes are varied. First, the

observed difference is fixed to be 10, with the same standard deviation of 50 and

same significance level of 5%. If the power is changed to be 85%, 90%, 95% and

99%, it would be interesting to know what these distributions look like.

D.1.1 Varying Power

The plots for various powers can be seen in Figures 6.6 to 6.7. It can be seen

in these Figures that as the power increases, the truncation point of the Normal

distribution moves further from the mean. When the power is 99%, the truncated

Normal distribution looks extremely similar to the standard Normal Distribution.

This indicates that the effect of the bias decreases as the power increases also.

D.1.2 Varying Effect Size

A common effect size called Cohen‘s d (Cohen, 1973) (Cohen, 1973) can be calculated

as

d =

∣∣∣∣∣x1 − x2

s

∣∣∣∣∣ (D.1)

Where x1 and x2 are the means for groups 1 and 2, and s is the pooled standard

deviation for the groups given by

s =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(D.2)
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Figure D.1: The distributions for trials with 85% power. The truncated Normal
distribution for study 1 appears to have a higher truncation point as the power
increases.

where s2
1 and s2

2 are the sample variances for each group, n1 and n2 are the sample

sizes in each group. Sometimes this formula for δ can be calculated without the −2

in the denominator, as other authors may prefer (McGrath and Meyer, 2006).

The standard levels of Cohen‘s d are 0.2 (small effect), 0.5 (moderate effect) and

0.8 (large effect). From the equation above it is clear to see that the x̄1 − x̄2

part of the equation is similar to the dS part of the sample size equations from

chapter 2. Also in that chapter there was mention of being able to substitute the

standardised difference or effect size into the equation, effectively putting Cohens

d into the sample size formula. Since these two d values are linked, it follows that

they are both extremely sensitive in terms of sample size calculation. If we take

the population standard deviation to be 50 for both groups, this results in being

approximately 50 if the sample size in each group is equal. The effect size used in

the simulations up to this point can be calculated as

d =
10

50
= 0.2

This effect size is classified as a small effect; however it is interesting to simulate

what would happen if the effect size was larger. Consider now different values of

the effect size, with x̄1 = 0 and x̄2 ranging from 20 to 40 and s1 = 50, s2 = 50

for 80% and 90% power. The corresponding effect sizes being simulated are 0.3,
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Figure D.2: The distributions for trials with 90% power. The truncated Normal
distribution for study 1 appears to have a higher truncation point as the power
increases.

0.4, 0.5, 0.6 and 0.8. These effect sizes have been included to show the change in

distributions as well as including the standard levels of effect sizes for reference. The

histograms of the distributions and the mean differences for the simulations shall

be displayed in Figure D.5 for 80% power. As in Section 6.2, it is still noticeable

that the difference in means decreases as the power increases. Due to this already

being shown, the focus shall now be on 80% power. As the power remains constant

it will allow further investigation of the impact the different effect sizes have on the

means.

Figures D.5 to D.9 show the variation in the truncation point for changing effect

sizes.
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Figure D.3: The distributions for trials with 95% power. The truncated Normal
distribution for study 1 appears to have a higher truncation point as the power
increases.

Figure D.4: The distributions for trials with 99% power. The truncated Normal
distribution for study 1 appears to have a higher truncation point as the power
increases.
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Figure D.5: The distributions for trials with 80% power and effect size of 0.3. The
truncation point is noticeable.
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Figure D.6: The distributions for trials with 80% power and effect size of 0.4.
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Figure D.7: The distributions for trials with 80% power and effect size of 0.5.
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Figure D.8: The distributions for trials with 80% power and effect size of 0.6.
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Figure D.9: The distributions for trials with 80% power and effect size of 0.8.
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D.2 Sample Size Distributions for Part 2 Simula-

tions

Figure D.10: The distribution and histrogram of Sample Sizes with 80% power and
constant effect size.
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Figure D.11: The distribution and histrogram of Sample Sizes with 85% power and
constant effect size.

Figure D.12: The distribution and histrogram of Sample Sizes with 90% power and
constant effect size.
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Figure D.13: The distribution and histrogram of Sample Sizes with 95% power and
constant effect size.

Figure D.14: The distribution and histrogram of Sample Sizes with 99% power and
constant effect size.

264



Figure D.15: The distribution and histrogram of Sample Sizes with constant power
and effect size of 0.2.

Figure D.16: The distribution and histrogram of Sample Sizes with constant power
and effect size of 0.3.
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Figure D.17: The distribution and histrogram of Sample Sizes with constant power
and effect size of 0.4.

Figure D.18: The distribution and histrogram of Sample Sizes with constant power
and effect size of 0.5.
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Figure D.19: The distribution and histrogram of Sample Sizes with constant power
and effect size of 0.6.

Figure D.20: The distribution and histrogram of Sample Sizes with constant power
and effect size of 0.8.
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E. Chapter 7

The tables included in this appendix are from chapter 7. They are the intermediary

tables for the mathematical solution of the truncation point. Whilst they are useful,

there was a concern that they would overshadow the true results tables and increase

confusion. Thus they are placed in this appendix.

E.1 Mathematical Truncation Point Intermediary

Tables

Below are two tables which show the intermediary results for section 7.2.4. Due to

the use of the non-central t-distribution, the non-centrality parameter from Equation

7.18 is used as described in chapter 2. The standardised differences are being used,

therefore the standard deviation, σ, equals 1. If the non-centrality parameter is

used, then the variance becomes the unit variance and equals 1 and thus is easier to

work with. These results are for when the variance is equal to 1, which makes the

calculations more simple.

• σ is set to equal 1 for simplicity

• Sample size per arm (n) is set to the same values calculated in chapter 6

• µ is the mean difference, based on the non-central t-distribution. Thus µ =

ES
√
n/2 where ES is the effect size.

• adet is calculated by x.µ, where x is the associated value from Table 7.1

• a is the mathematical truncation point calculated as a = t2n−2,1−α/2

• µ∗ has been calculated using Equation 7.12.

The ratios for the chapter 6 bias are brought forward from Tables 6.3 and 6.4 and

taking the inverse of the ratio. The ratio of µ/µ∗ is calculated from the data in

Table E.1 and Table E.2.
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Effect Size = 0.2
Sample Truncation Mean Difference Ratio

Power Size (n) adet a µ µ∗ Ch 6 Bias µ/µ∗
80 393 1.962 1.963 2.804 3.154 0.885 0.889
85 450 1.962 1.963 3.000 3.274 0.926 0.916
90 526 1.962 1.962 3.243 3.439 0.945 0.943
95 651 1.963 1.962 3.608 3.717 0.970 0.971
99 950 1.960 1.961 4.290 4.316 0.994 0.994

Table E.1: A comparison of mathematically calculated truncation points and ratios
of mean differences with simulated values for various powers.

Power = 80%
Sample Truncation Mean Difference Ratio

Effect Size (n) adet a µ µ∗ Ch 6 Bias µ/µ∗
0.2 393 1.962 1.963 2.804 3.154 0.886 0.889
0.3 175 1.962 1.963 2.806 3.157 0.891 0.889
0.4 99 1.962 1.963 2.814 3.164 0.884 0.889
0.5 64 1.962 1.963 2.828 3.175 0.880 0.891
0.6 45 1.962 1.963 2.846 3.189 0.892 0.892
0.8 26 1.962 1.963 2.884 3.220 0.896 0.896

Table E.2: A comparison of mathematically calculated truncation points and ratios
of mean differences with simulated values for various effect sizes.
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