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Abstract

Multiword expressions are expressions consisting of two or more words that correspond to some

conventional way of saying things (Manning & Schutze 1999). Due to the idiomatic nature of

many of them and their high frequency of occurence in all sorts of text, they cause problems in

many Natural Language Processing (NLP) applications and are frequently responsible for their

shortcomings. Efficiently recognising multiword expressions and deciding the degree of their

idiomaticity would be useful to all applications that require some degree of semantic processing,

such as question-answering, summarisation, parsing, language modelling and language gener-

ation. In this thesis we investigate the issues of recognising multiword expressions, domain-

specific or not, and of deciding whether they are idiomatic. Moreover, we inspect the extent to

which multiword expressions can contribute to a basic NLP task such as shallow parsing and

ways that the basic property of multiword expressions, idiomaticity, can be employed to define a

novel task for Compositional Distributional Semantics (CDS). The results show that it is possible

to recognise multiword expressions and decide their compositionality in an unsupervised manner,

based on cooccurrence statistics and distributional semantics. Further, multiword expressions are

beneficial for other fundamental applications of Natural Language Processing either by direct

integration or as an evaluation tool.

In particular, termhood-based methods, which are based on nestedness information, are

shown to outperform unithood-based methods, which measure the strength of association among

the constituents of a multi-word candidate term. A simple heuristic was proved to perform bet-

ter than more sophisticated methods. A new graph-based algorithm employing sense induction

is proposed to address multiword expression compositionality and is shown to perform better

than a standard vector space model. Its parameters were estimated by an unsupervised scheme

based on graph connectivity. Multiword expressions are shown to contribute to shallow parsing.

Moreover, they are used to define a new evaluation task for distributional semantic composition

models.
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CHAPTER 1

Introduction and Motivation

Executive Summary

The notion of multiword expressions is introduced and its properties are discussed thor-

oughly. Its fundamental characteristics are formed into research directions and supported

by a discussion on motivation. Then, the objectives of our research are outlined and the

research hypothesis is formally stated. Finally, we present a chapter-by-chapter overview

of the thesis.

1.1 Multiword Expressions

Multiword expressions are expressions consisting of two or more words that correspond

to some conventional way of saying things (Manning & Schutze 1999). They are also

known as collocations; in an attempt to emphasise the frequent cooccurrence of their

components. Multiword expressions appear frequently in human language, in any kind

of text or speech. They can be noun phrases such as strong tea and weapons of mass

destruction, phrasal verbs such as make up, break up and give in and stock phrases such

as rich and powerful. The large variation that multiword expressions exhibit is a main

reason why there is no unified strict definition (Rayson et al. 2009). Some definitions

such as the one of Manning & Schutze (1999) focus on the usage of multiword ex-

17
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Figure 1.1: Multiword expression classification (Sag et al. 2002).

pressions. Other definitions focus on the frequency of occurrence: Baldwin et al. (2003)

define multiword expressions as sequences of words that tend to cooccur more frequently

than chance and are either decomposable into multiple simple words or idiosyncratic.

It is more convenient to approach the notion by spotting several characteristics of

multiword expressions and in parallel inspecting the fine-grained classification presented

in figure 1.1 (Sag et al. 2002). In figure 1.1, each multiword expression category is

accompanied with a brief description of its basic properties and some examples.

There is no unified phenomenon to describe but rather a complex of fea-

tures that interact in various, often untidy, ways and represent a broad con-

tinuum between non-compositional (or idiomatic) and compositional groups

of words (Moon 1998).

These features include various types and levels of idiomaticity (lexico-syntactic, se-

mantic, pragmatic and statistical), institutionalisation, situatedness, identifiability, fig-

uration and single-word paraphrasability (Baldwin 2006).
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Lexico-syntactic idiomaticity

Lexico-syntactic idiomaticity characterises fixed, immutable multiword expressions. They

defy grammar rules because their components do not occur in grammatically correct po-

sitions. For example, by and large consists of by, which occurs usually as preposition

and rarely as adverb, the coordinating conjunction and and the adjective large. Coordin-

ating conjunctions always join two words of the same parts of speech or phrases of the

same type. However, this rule is defied in the case of by and large. Other examples: ad

hoc, every which way, long time no see, be broke, be on the go, before long, Easy does

it!, get going, How come?, Was my face red!, would (’d) just as soon, would (’d) rather,

had (’d) better

Semantic or pragmatic idiomaticity

Semantic or pragmatic idiomaticity characterises multiword expressions whose semantics

or pragmatics significantly differ from the semantics or pragmatics of their components

appearing separately. Examples: under the weather, wet behind the ears, at the eleventh

hour, beat around the bush, couch potato, elbow grease, feel blue, in the black, jump all

over someone, keep one’s nose to the grindstone, let sleeping dogs lie, pull someone’s

leg.

Component words of idiomatic multiword expressions tend to cooccur with some

specific words, among a large set of synonyms. These selections are called selectional

preferences. Examples:

strong coffee, ??powerful coffee stiff breeze, ??rigid breeze, ??firm breeze

crash test, ??smash test pub quiz, ??bar quiz, ??tavern quiz

a quick study, ??a fast study sweet dreams, ??sugary dreams, ??kind dreams

Situatedness

Situated multiword expressions are associated with a fixed pragmatic point. In other

words, these expressions are said at a specific time, during a specific period, at a specific

place or by people that have a special property. Examples: good morning, all aboard,

Break a leg!, Cool it!
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Institutionalisation

Institutionalised multiword expressions are accepted as lexical items, through consistent

use over time. Examples: stiff breeze, ??stiff wind, broad daylight, ??narrow darkness,

a piece of cake, bite off more than one can chew, can’t make heads or tails of something,

make a mountain out of a molehill, rain cats and dogs, change one’s mind.

Non-identifiability

The meaning of non-identifiable multiword expressions cannot be predicted from the sur-

face form. The notion of non-identifiability is relevant to the notion of decomposability

(see below). Example: kick the bucket, fly off the handle, wet behind the ears, bent out

of shape, blow one’s top, by the skin of one’s teeth, drag one’s feet.

Figuration

Figurative multiword expressions express some metaphor, metonymy, hyperbole, etc.

Examples: bull market, beat around the bush, hit the sack, in the red, jump to conclu-

sions, lend someone a hand, leave well enough alone.

Single-word paraphrasability

Some multiword expressions have the same or very similar semantics to some single

words. Examples:

all right ≈ fair all right ≈ unharmed

be on the road ≈ travel down in the dumps ≈ depressed

get a move on ≈ hurry grab a bite ≈ eat

hit the books ≈ study once in a while ≈ occasionally

take it easy ≈ relax with bells on ≈ with additional ornament

Translatability

Multiword expressions are usually not-translatable in other languages. �

The above features, which interact with each other to define the degree of idiomati-

city of a multiword expression (Nunberg et al. 1994), can be best summarised under the

notions of compositionality and decomposability.
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Compositionality

Compositionality is defined as the degree to which the meaning of a multiword expres-

sion can be predicted by combining the meanings of its components. The general notion

can be split into syntactic and semantic compositionality. Syntactic compositionality is

binary: Non-compositional multiword expressions are fixed and institutionalised (e.g. by

and large). In contrast, semantic compositionality is continuous (Baldwin et al. 2003;

Baldwin 2006).

Decomposability is defined as the degree to which the meaning of a multiword ex-

pression can be ascribed to the meanings of its constituents. It should be noted that

although the notions of decomposability and compositionality are similar, they are not

exactly the same. For example, the idiosyncratic multiword expression “spill the beans”

is non-compositional but decomposable. Projecting the semantics of “spill” to “reveal”

and the semantics of “beans” to “secret” leads to its literal interpretation. If A is a de-

composable multiword expression consisting of i components, its similarity to all of its

components, sim(A,Ai), is expected to be high. In opposition to compositionality, de-

composability can only refer to semantics. As a feature, it appears in a continuum. More

examples of decomposable multiword expressions: don’t count your chickens until (be-

fore) they hatch (they’ve hatched), get a kick out of something, get one’s wires crossed,

hard feelings.

1.2 Motivation

Multiword expressions have attracted considerable attention from researchers both in

terms of theory and practice. Initially, linguists described multiword expressions the-

oretically (Nunberg et al. 1994; Jackendoff 1997; Sag et al. 2002; Manning & Schutze

1999). Then, researchers started experimenting with this knowledge practically (Man-

ning & Schutze 1999); however, identifying and treating multiword expressions properly

has proven to be a pain in the neck for Natural Language Processing (NLP), due to lack

of adequate resources such as manually annotated corpora in various languages. In re-

cent years, there has been a growing awareness in the NLP community about problems

related to multiword expressions (Sag et al. 2002). Several special interest workshops

have been organised and discussed issues ranging from identifying multiword expres-

sions and evaluation to their seamless inclusion in other NLP applications (Korhonen
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et al. 2003; Fellbaum 2006; Tanaka et al. 2004; Moirón et al. 2006; Rayson et al. 2006;

Grégoire et al. 2007, 2008; Anastasiou et al. 2009). Although there is substantial pro-

gress in multiword expression research, most real-world applications tend to ignore them

or address them simply by listing.

Successful inclusion of multiword expressions means successful identification and

treatment. For almost all NLP topics this is still not realised. In particular, this applies

to NLP applications which require some degree of semantic processing, such as ma-

chine translation, question-answering (query segmentation and expansion), summarisa-

tion, lexicography, terminology, statistical parsing, language generation, language mod-

elling in speech processing, word sense disambiguation and text simplification. The

effect of successful handling of multiword expressions within NLP applications depends

on the frequency of occurrence of multiword expressions. The improvement is expected

to be more significant for non-compositional multiword expressions due to the difference

in meaning between the multiword expression and its components.

1.3 Research Subjects and Analysis

As highlighted in the previous sections, identifying and treating multiword expressions

are important fields of Natural Language Processing. In this thesis we focus on the

following four main research directions:

• unsupervised recognition of multiword expressions

• unsupervised methods to decide compositionality of multiword expressions

• incorporating multiword expression knowledge into other NLP tasks

• use of multiword expressions for aiding research in other NLP tasks

Recognising multiword expressions is the fundamental task of the field. It could be

potentially successfully approached in a supervised way, i.e. using a manually annotated

training corpus to learn the characteristics (features) of multiword expressions as far as

their structure and contextual environment is concerned. In succession, this knowledge

would be used so as to locate multiword expressions that occur in another unannotated

text.

However, there are several reasons to believe that supervised multiword expression

recognition is of limited functionality and practical use. A major reason is that multiword
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expressions vary largely in different styles and types of text. For example, multiword

expressions of newswire articles are quite different to multiword expressions of biomed-

ical articles. Moreover, multiword expressions of colloquial, everyday speech are much

different to those occurring in some scientific text. Due to the idiomatic nature of multi-

word expressions it is debatable whether domain adaptation can be applied. As a result,

to successfully recognise multiword expressions of different domains one would need

large amounts of text annotated with multiword expressions for every different domain

and text style.

As discussed in section 1.1, multiword expressions are rarely translatable to other

languages. The morphological and contextual features of multiword expressions in a

specific language, would be very different to the features of multiword expressions in

another language. This limits the applicability of supervised multiword expression re-

cognition even further. One would need different training examples not only for every

different domain and text style, but also for every language of interest.

For these reasons, we focus on unsupervised multiword expression recognition. “Un-

supervised” here means that the methods do not need any pre-annotated text for training.

They are based on frequency statistics and other structural observations about multi-

word expressions. Some of these observations are not entirely language unspecific but

transferable to other languages, meaning that they could be easily adapted after trivial

modification. For example, many multiword expressions in English consist of an adject-

ive followed by a noun. In contrast, an adjective might occur immediately after a noun in

French. Given this fact, a system developed for English can easily be adapted to French.

Despite the arguments in favour of unsupervised term recognition, it should be noted

that in some cases supervised term recognition is valuable. In languages and domains

in which there are annotated data available and for applications in which language and

domain transferability is not an issue supervised methods are more suitable than unsu-

pervised ones, given that the former are usually shown to achieve more accurate results.

As discussed in section 1.1, the notion of compositionality can be seen as the char-

acteristic of multiword expressions that is mostly responsible for the similarity or di-

versity of their meaning from the composition of the meanings of their components.

In simple words, compositionality captures whether a multiword expressions should be

considered as idiosyncratic or not. In the previous section, we discussed a number of

NLP tasks which would be potentially improved by the inclusion of multiword expres-
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sion knowledge. However, for compositional multiword expressions this might not be

true; it is more likely that they would not affect the quality of the result either positively

or negatively: For example, knowing that computer science is a multiword expression is

highly likely not to affect how a parser would parse sentences containing this multiword

expression. In contrast, knowing that by and large is a multiword expression would al-

low a parser to accept it as a unit within which grammar rules are defied. In addition,

lexicographers are clearly interested in knowing which multiword expressions are non-

compositional so as to include them in lexicons and dictionaries, while they would not

be equally interested in compositional multiword expressions. For these reasons, it is an

issue of great importance to do research towards systems able to decide whether a given

multiword expressions is compositional or not.

Approaching the issue in a supervised way is of limited practical use for similar reas-

ons to those of recognising multiword expressions. One would need huge amounts of

human annotated data to cover all languages of interest and all domains and text styles in

each of these languages. Manually annotating multiword expressions for compositional-

ity requires expert or at least high-level knowledge and is therefore costly. Considering

annotation in languages that are not widely-known highlights the limited applicability of

supervised approaches to resolving the compositionality of multiword expressions. In-

stead, we choose to address the issue in unsupervised ways. We build on the definition of

compositionality by comparing the meaning of the multiword expression to the meaning

of its components. We mark as compositional multiword expressions the ones whose

meaning is similar to the meaning of their components or as non-compositional in the

opposite case.

Despite their disadvantages discussed above, supervised methods can be useful for

a variety of other tasks (e.g. for adjusting parameters). Commonly, supervised methods

are used for tasks where language and domain transferability are not important issues

and annotated data are available.

In general, for every research subject it is a major issue to show experimental results

supporting the contribution of this research to other fields, uses or applications. In the

case of multiword expressions, it is important to show that our intuitions and expecta-

tions about how multiword expressions knowledge would contribute to other NLP tasks

actually hold. The contributions should ideally be evaluated on tasks or applications that

are in wide and everyday use. The more important the application to the community the
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larger the significance of contributions.

The third research direction aims to inspect whether multiword expression recogni-

tion can contribute directly to other NLP tasks. Contrarily, the fourth research direction

aims to inspect indirect contributions of recognising multiword expressions and decid-

ing their compositionality to NLP research. Datasets annotated with special information

such as compositionality are useful to define evaluation frameworks for other NLP tasks

and assess the accuracy of different methods.

In section 1.1 we discussed the large variety of multiword expressions and suppor-

ted the presentation with numerous examples. Due to the diversity of characteristics of

multiword expressions relevant to either structure or semantics, it is extremely difficult

to address all four research directions for all multiword expression classes. Restricting

the multiword expressions of interest is useful because it widens the options of tools that

can be used for multiword expression recognition and treatment. For example, regu-

lar expression filtering can be applied to the part of speech sequence of text to identify

multiword expression candidates only if it is known beforehand that the multiword ex-

pressions of interest consist of some parts of speech appearing in some specific order.

We choose to restrict the range of multiword expressions taking into account only ex-

pressions whose constituents form uninterrupted sequences (Shimohata et al. 1997). For

example, the multiword expression head of computer science department is considered,

while the light verb construction give something a try is not, because there is a noun

phrase intervening between give and a try. Any further restrictions will be clearly stated

on occasion if hypothesised.

1.4 Research Objectives and Hypothesis

The research objectives of this thesis can be summarised as follows:

• Our first objective is to investigate state-of-the-art unsupervised approaches in

multiword expression recognition and assess them under a common evaluation

framework. Further, we intend to analyse each method into its components in

terms of distinct types of information that they take into account and assess these

components separately. This will make clear what source of information or com-

bination of sources best correlate with the probability that a candidate is an actual

multiword expression.
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• The second objective is to exploit the task of determining the compositionality of

a given multiword expression. Our inspection aims to propose an entirely unsu-

pervised method to address this task, evaluate its accuracy against gold-standard

data and discuss its behaviour.

• Thirdly, we aim to investigate how multiword expression knowledge can be in-

tegrated into systems performing other fundamental NLP tasks. In particular, we

intend to propose a method to incorporate multiword expressions into shallow

parsing and assess its improvement or decline.

• The last objective is to use properties of multiword expressions such as compos-

itionality so as to aid research in other NLP tasks. In particular, we explore the

idea that multiword expressions can provide an evaluation platform for approaches

to distributional semantics composition, a fairly new and interesting field of NLP

research.

To summarise the introductory part we attempt to express the research hypothesis of

this thesis as experimental procedure:

We hypothesise that the tasks of recognising multiword expressions and de-

ciding their compositionality can be addressed in unsupervised manners,

based on cooccurrence statistics and distributional semantics. Further, mul-

tiword expressions are beneficial for other fundamental applications of Nat-

ural Language Processing either by direct integration or as an evaluation

tool.

1.5 Thesis Organisation

The thesis is organised as follows:

Chapter 2 presents a detailed description of approaches to unsupervised multiword

expression recognition and unsupervised approaches to resolving compositionality. It

focuses on the limitations of current approaches to highlight the motivation for our re-

search. The chapter also includes a small review on composition of distributional se-

mantics. This part is necessary background to chapter 6, where the properties of mul-

tiword expressions serve as a platform to define an evaluation framework and help in
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exploiting the task of composition of distributional semantics. A review on distribu-

tional semantics and similarity metrics is also included, because this field is used as a

tool throughout our research.

Chapter 3 proposes an evaluation framework to assess different multiword expres-

sion recognition approaches. A number of approaches presented in chapter 2 as well as

the components into which they are analysed are assessed under this common frame-

work.

Chapter 4 presents an unsupervised approach to resolving compositionality of mul-

tiword expressions. It uses sense induction and distributional similarity. The evaluation

is done on a set of compositional and non-compositional multiword expressions, which is

in turn extracted from WordNet (Miller 1995) in a semi-supervised manner. The chapter

also investigated unsupervised ways to perform parameter estimation of sense induction

systems.

Chapter 5 proposes a framework to integrate multiword expression knowledge in

another fundamental NLP task, shallow parsing. Evaluation is performed in an unsuper-

vised manner, based on a classification of shallow parsing errors and on hypotheses that

describe the characteristics of successful shallow parses against unsuccessful ones.

Chapter 6 takes advantage of multiword expressions and the property of composi-

tionality to define an evaluation framework for composition of distributional semantics.

State-of-the-art approaches to this task are evaluated under this framework. Experi-

mental evidence spotlights the strengths and weaknesses of each approach. Moreover, a

supervised setting for composing distributional semantics is proposed, achieving super-

ior results.

Chapter 7 summarises the contributions of this thesis and presents the conclusions

along with a discussion of open issues and future research directions.



CHAPTER 2

Background and Field Review

2.1 Introduction

This chapter aims at presenting past and recent approaches relevant to the research ob-

jectives of this thesis. The presentation focuses on inspecting the limitations of ap-

proaches in the literature and highlights issues that strengthen the motivation for our

research and are addressed in the following chapters. This chapter is divided into four

parts:

• Multiword expression recognition

• Distributional similarity

• Multiword expression compositionality

• Distributional semantics composition

Section 2.2 presents a detailed survey on methods for multiword expression recog-

nition. We mainly focus on unsupervised methods aiming to identify multiword expres-

sions whose constituents occur successively to form a sequence. However, for complete-

ness we mention a few other important approaches.

We categorise the approaches in the literature in terms of the different types of

linguistic information that they take into account as linguistic, statistical, and hybrid.

28
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(a) Linguistic approaches use morphological, grammatical and syntactical knowledge to

identify multiword expression candidates or preprocess text. (b) Statistical approaches

analyse occurrence statistics of words or sequences. They are further classified into

termhood-based or unithood-based. Termhood-based approaches attempt to measure

the degree that a candidate multiword expression is a term; in other words, refers to a

specific concept. Unithood-based approaches measure the attachment strength among

the constituents of a candidate multiword expression. (c) Hybrid approaches efficiently

combine linguistic and statistical components so as to take into account as much inform-

ation as possible towards recognising multiword expression candidates.

In terms of evaluation, we discuss the extent to which direct comparison of different

approaches is possible. We conclude that the approaches take various different sources

of information into account that are not evaluated independently. Moreover, it is very

difficult to compare among different approaches because they are evaluated using in-

compatible evaluation settings and resources.

In section 2.3 we present a small review on distributional semantics and distribu-

tional similarity measures. Distributional semantics provides the connection between

the context of a target word and its meaning. The meanings of two target words can

be compared by comparing the representations of their contexts. We analyse important

issues of constructing context representations and review the most widely used measures

of distributional similarity. Although distributional semantics is not in primary focus, we

include this review because distributional semantics is used in most experimental settings

and evaluation procedures throughout this thesis. This review provides the reader with

the relevant background.

Section 2.4 focuses on approaches in the literature that attempt to decide composi-

tionality of multiword expressions. Due to the fact that this field of research is not very

explored these attempts are quite restricted. We focus on inspecting the limitations of

these approaches in terms of types of multiword expressions that they apply to (see fig-

ure 1.1) and we classify them in classes of addressing the issue from different points of

view. Also, we discuss the degree of supervision of these approaches.

In section 2.5 we present a survey on distributional semantics composition. This

fairly new research field attempts to compose the distribution of context features of a

sentence, phrase or syntactic unit, given the context distributions of its component words.

We focus on the intuitions behind the approaches in the literature and conclude that most
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approaches are weakly evaluated. We identify the lack of a framework able to provide

positive and negative evaluation instances. This framework would provide a basis to

estimate the accuracy of different methods and directly compare them.

2.2 Survey on Multiword Expression Recognition

Multiword expression recognition is a subfield of natural language processing research

that has been explored at a significant level. The nature of the task allowed for methods

and tools, that were developed earlier for other fields, to be applied for its purposes.

Collocation extraction, term recognition and keyphrase extraction were explored earlier

than multiword expression recognition and served as repositories of methods that could

potentially be modified and applied for this task.

Collocations are groups of words that tend to occur together in text more often than

by chance. Some examples are: New York, vice president, stock exchange. The notion

of collocation is different to the notion of multiword expression. Sometimes, these no-

tions are interchangeable in the literature, such as in Choueka (1988). They both refer

to strongly related words, but this relation focuses on different aspects: the definition of

collocations focuses at their increased cooccurrence frequency, while most of the defini-

tions for multiword expressions focus on their varying levels of idiomaticity. As a result,

the set of all potential collocations and the set of all multiword expressions are differ-

ent, but certainly overlapping. For example, New York is a collocation and a multiword

expression, because it refers to a different city than York, UK. In particular, excluding

closed class word sequences, most collocations are multiword expressions, because they

correspond to some conventional way of saying things (Manning & Schutze 1999). How-

ever, not all multiword expressions are collocations for all types of texts. For example,

some idiomatic expressions do not occur very often in scientific articles, e.g. crash test.

Due to the definition of collocations, plenty of statistical methods were used to assess

the statistical significance of the cooccurrences of word group or sequence candidates,

e.g. hypothesis testing. In subsection 2.2.2, we review the fundamental statistical ap-

proaches that are most widely used in multiword expression recognition.

Terms are words or sequences of words that verbally represent concepts of some

specific domain of knowledge, usually scientific of technical (Kageura & Umino 1996).

Multiword terms are a subset of multiword expressions because they consist of fre-

quently cooccurring components which are most of the times non-compositional, non-
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substitutable and non-modifiable. Some examples from the domain of biochemistry and

molecular biology are: cell cycle, kinetic assay and linkage map. Term extraction ap-

proaches can be used for multiword expression recognition. We review several of these

approaches in subsection 2.2.2.2.

Keyphrase extraction is the task of finding a set of words or phrases that represent

the core-concepts of the document or summarise it. Multiword keyphrases are clearly

collocations and also multiword expressions. Keyphrases can be either occurring in the

document itself or not; in the latter case, the keyphrase should be closely related to other

words in the document or a part of it. In the former case, keyphrase extraction methods

can be applied to multiword expression recognition (e.g. Witten et al. (1999); Turney

(2003)).

Term recognition and keyphrase extraction are based on the following basic prin-

ciples (Kageura & Umino 1996; Ananiadou 2001):

• Tokens that appear together most of the time are likely to constitute a collocation.

• A frequent word or sequence of words occurring in a document is likely to be a

term.

• A token which appears frequently in a domain is likely to be a term of this domain.

• A token which appears relatively more frequently in a specific class of documents

is likely to be a term for this class of documents.

• A token which appears relatively more frequently in a specific domain is likely to

be a term of this domain.

• A token whose occurrence is biased in some way to (a) domain(s) is likely to be a

term.

In subsection 2.2.1 we review a handful of linguistic components that are used

broadly in multiword expression recognition mainly as preprocessing components. In

subsection 2.2.2 we present statistical approaches for this task. Finally, in subsection

2.2.3 we discuss some hybrid systems that combine selected linguistic and statistical

components. The statistical components of some of these systems will be described in

detail in subsection 2.2.2.
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2.2.1 Linguistic approaches

Linguistic approaches for collocation extraction and term recognition include a handful

of linguistic processing components. Most of these components correspond to basic

Natural Language Processing tasks which were explored in the past and were solved

almost perfectly or at least adequately accurately. They aim to remove textual noise and

in general change the input raw text so as to make more substantial the frequency counts

that will be counted latter on this text.

Preprocessing methods range from very simple ones, such as turning all characters

of the text into lower-case, to sophisticated ones, such as resolving abbreviations and

NP syntax normalisation, the process of projecting different ways of forming a noun

phrase to one, e.g. e.g. activity of enzymes → enzyme activity. Below we introduce a

number of preprocessing components useful for collocation extraction and manipulation.

In particular, tokenisers, part of speech taggers, lemmatisers, parsers, and part of speech

filters. We also include a discussion about the role of context types and gazetteers.

2.2.1.1 Tokenisation

Sentence splitters and tokenisers are components that input text and separate its sen-

tences and words, respectively. Usually after tokenisation separate words are called

tokens. Sentence splitters output a list of separated sentences, while tokenisers output a

list of tokens for each input sentence.

Sentence splitting and tokenisation is the first step of corpus preparation or prepro-

cessing. Although is seems trivial, in many cases it needs special attention. For example,

splitting sentences at full stops would fail with sequences such as ’Dr. Who’. Tokenisa-

tion is by itself an important means of improving the frequency counts computed on a

corpus. Moreover, it is a prerequisite for other preprocessing components such as part of

speech tagging and parsing.

2.2.1.2 Part of speech tagging

Part of speech tagging is the task of assigning one part of speech tag to each token

of an input sentence. The part of speech tags are known beforehand. Part of speech

tagging as a field of research started being exploited some years ago. A lot of supervised

and unsupervised approaches have been proposed. The most successful ones are more
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WSJ corpus GENIA corpus
A tagger trained on the WSJ corpus 97.05% 85.19%
A tagger trained on the GENIA corpus 78.57% 98.49%
GENIA tagger 96.94% 98.26%

Table 2.1: GENIA tagger accuracy.

than 95% accurate per word. However, the problem cannot be considered as solved,

since per sentence accuracy remains poor. For example, the accuracy of GENIA tagger

(Tsuruoka et al. 2005) is shown in table 2.1. The accuracy of GENIA tagger is presented

in comparison with other taggers, trained on various corpora. GENIA tagger was trained

on the Wall Street Journal corpus (WSJ), on the GENIA corpus and on the PennBioIE

corpus. The former is a corpus of general-purpose text while the latter two are corpora

of the biomedical domain.

Part of speech tagging is an important part of corpus preprocessing. Essentially, it

provides classification of tokens into a small number of relatively large classes. Each

class represents a part of speech, such as nouns, verbs, or a finer-grained subclass, such

as nouns in plural and intransitive verbs. Based on this classification, sometimes re-

searchers chose to discard some classes and work with the remaining tokens. Moreover,

frequency of tokens of a specific class can be counted and used for various purposes of

statical processing, for example as a back-off model for unknown words.

2.2.1.3 Lemmatisation

Lemmatisation is the task of analysing words so as to remove any inflectional prefixes or

suffices and finally retrieve its basic form. For example, ’drivers drove cars’ would be

lemmatised as ’driver drive car’. Similarly to part of speech tagging, lemmatisation is

a fundamental task of natural language processing that has been very well solved in the

past.

Lemmatisation classifies tokens in far more fine-grained classes than part of speech

tagging. It results in many small classes of extremely relevant words; that come from the

same linguistic root. This is very useful in obtaining more reliable frequency counts by

alleviating the detrimental effects of data sparseness.
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Figure 2.1: Example parse tree.

2.2.1.4 Parsing

Parsing or syntactic analysis is the process of analysing text to determine its grammatical

structure with respect to a given grammar. Input text is tokenised and sometimes can be

lemmatised as well. For each input sentence a parser outputs an analysis of the underly-

ing structure of text. For example, the sentence “I have liked vivid colours since I was

a kid.” whose corresponding parts of speech sequence is “Personal pronoun, auxiliary

verb, verb, adjective, noun, subordinate conjunction, personal pronoun, verb, determ-

iner, noun” would be parsed as shown in figure 2.1.

There are several different kinds of parsers for natural language, exhibiting different

levels of detail of produced syntactic analysis and accordingly different levels of com-

putational complexity. Deep parsers fully analyse the input text and are usually compu-

tationally intense. Their output retains all information contained in the ideal parse tree,

e.g. figure 2.1, and is usually shown in some encoding as the following:

(Sentence

(Noun Phrase (Personal Pronoun I))

(Verb Phrase (Auxiliary Verb have) (Verb liked)
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(Noun Phrase (Adjective vivid) (Noun colours))

(Subordinate Clause (Subordinate Conjunction since)

(Sentence

(Noun Phrase (Personal Pronoun I))

(Verb Phrase (Verb was)

(Noun Phrase (Determiner a) (Noun kid))))))

(. .))

Another type of parsers, dependency parsers, aim to identify the relations between

the tokens of each given sentence instead of retrieving the whole syntactic tree. Depend-

ency parsers are computationally less intensive than deep parsers, but their output is less

informative. For example, the previous example sentence would be ideally analysed as:

I [1] - is subject of - liked [3]

have [2] - is auxiliary of - liked [3]

vivid [4] - is adjectival modifier of - colours [5]

colours [5] - is direct object of - liked [3]

since [6] - introduces an adverbial clause governed by - kid [10]

I [7] - is subject of - was [8]

kid [10] - is copula of - was [8]

a [9] - is determiner of - kid [10]

kid [10] - governs an adjectival clause governed by - liked [3]

The numbers within square brackets next to each token represent the position offset

of each constituent in the sentences to resolve possible conflicts.

A third type of parsers are shallow parsers also known as chunkers. They aim to

slice each input sentence into the phrases that it contains. In other words, they are only

resolving the shallow structure of the sentence, in contrast with deep parsers. Shallow

parsers retain even less information about syntax than dependency parsers, but are gen-

erally much less computationally intensive. The shallow parsing output of the previous

example would be:

Noun Phrase (Personal Pronoun I)

Verb Phrase (Verb have liked)

Noun Phrase (Adjective vivid) (Noun colours)
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Subordinate Clause (Subordinate Conjunction since)

Noun Phrase (Personal Pronoun I)

Verb Phrase (Verb was)

Noun Phrase (Determiner a) (Noun kid)

Parsers serve as components to multiword expression recognition and manipulation

systems. The state-of-the-art accuracy of deep and dependency parsers is around 90%

(Klein & Manning 2003). Parsing gives the opportunity to clean the context of a given

word much further than part of speech tagging and lemmatisation. In particular it allows

selecting from all context only words that are in some predefined relation with the target

word. In a number of research works of the literature, experiments are based on the

selectional preferences of a word. Selectional preferences are usually defined as the

nouns that appear in subject or object relation with some verb, or as the verbs that occur

in subject or object relation with a noun or a noun phrase. (Resnik 1993; Fazly et al.

2009; Mason 2004; Schulte im Walde 2003; McCarthy & Carroll 2003; Erk 2007; Wang

et al. 2007; McCarthy et al. 2007).

2.2.1.5 Part of speech patterns

Part of speech patterns are regular expressions based on part of speech tags. They are ap-

plied on the part of speech sequence of text, thus part of speech tagging is a prerequisite.

Part of speech patterns are used to identify subsequences of text that have some specific

part of speech structure. In the field of recognising multiword expressions they can be

used to identify candidates, given that the part of speech structure of desirable multiword

expressions is previously known.

Part of speech patterns were used to identify pairs of nouns or noun sets that are in

is-a relationship to each other (Hearst 1992, 1998). These patterns contain both parts of

speech and words in their surface form. For example sequences that satisfy the pattern:

NP0 such as NP1, NP2...(and|or)NPn (2.1)

imply that:

∀NPi, i ∈ [1, n] : hyponym(NPi, NP0) (2.2)
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Other part of speech patterns that recognise hyponyms of NP0 are:

NP1 is a (kind of) NP0 (2.3)

suchNP0 as NP, ∗ (and|or)NP (2.4)

NP (, NP )∗, (and|or) other NP0 (2.5)

NP0, including (NP, ) ∗ (and|or)NP (2.6)

NP0, especially (NP, ) ∗ (and|or)NP (2.7)

Part of speech patterns were also used in Justeson & Katz (1995), in an attempt to

identify domain-specific term candidates. Term candidates satisfy the following pattern:

( (A|N)+ | (A|N)∗ (NP )? (A|N)∗ ) N (2.8)

where N stands for Noun, A for Adjective and P for Preposition. The pattern accepts

sequences of adjectives and nouns that end with a noun. Optionally, the pattern accepts

pairs of the sequence described above joined with a preposition. Justeson & Katz (1995)

report that in the corpus they assembled from various technical terminology dictionaries

97% of the multiword noun phrases consist of nouns and adjective only, and more than

99% consist of nouns, adjectives, and the preposition “of”.

2.2.1.6 Context

In this subsection, we discuss the issue of choosing the aspects of context for multiword

expression recognition and manipulation. Exceptionally we present this discussion here,

although it does not refer to any linguistic component but a classification of different

context types. Séaghdha & Copestake (2007) identify three distinct types of context of

multiword expressions:

• Type context: The contexts in which instances of the multiword expression appear;

e.g. all sentences in the corpus that contain the target multiword expression “sweet

dreams”.

• Word context: The contexts in which instances of each constituent of the multi-

word expression appears; e.g. all sentences containing “sweet” or “dreams”.

• Relation context: The contexts in which both constituents of the multiword ex-
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pression appear; e.g. all sentences containing both “sweet” and “dreams” but not

necessarily in succession.

• Token context: The context in which the particular instance of the multiword ex-

pression token was found.

Each type of context can be used in multiword expression recognition and manip-

ulation for different purposes. Type context is used where all instances of a multiword

expression are treated in the same manner. In contrast, in the case that different in-

stances need to be classified into several different classes token context should be used.

For example, Fazly et al. (2009) argue that idiomatic expressions do not always appear as

idiomatic; but instead are idiomatic in some contexts only. They support a per-instance

view to the issue of compositionality of idiomatic expressions. Their argument strongly

depends on the fact that idiomaticity is not binary but appears in various levels. Con-

sequently, they measure the idiomaticity of an instance by quantifying how different the

token context distribution of the instance is from the corresponding type context.

The choice of context type is very important for all methods that use distributional

similarity, i.e. they describe a class of instances by the frequencies of occurrence of other

words in their context and then compare these descriptions to extract meaningful results.

Context types define the classes of instances that are unified to compute their context

distribution jointly. In chapter 2.3 we present distributional similarity measures of the

literature in detail.

2.2.1.7 Gazetteers

Gazetteers are repositories of multiword expressions. To go back to the first approaches

in recognising multiword expressions, previously populated lists were extensively used

to recognise instances in the input text. This technique was extensively used in many

tasks relevant to recognising instances or sequences of tokens with some specific prop-

erties.

However, using gazetteers creates a number of problems: they are expensive because

they require large amount of human effort to create and they are difficult to maintain be-

cause of the addition of new items. Gazetteers containing multiword expressions suffer

from an extra drawback; due to the syntactic flexibility of several multiword expression

classes, the gazetteers should not contain just the surface form of the expression but in-



Section 2.2 Survey on Multiword Expression Recognition 39

stead an encoding of it so as to be matched with parsing output. Consequently, gazetteers

are dependent on the output representation of a specific parser.

For these reasons, there was significant research effort to reduce the size of neces-

sary gazetteers using bootstrapping and extracting rules from few available instances

(Mikheev, Moens & Grover Mikheev et al.). Some systems use only a few seeds to ex-

tract from the web instances similar to the seeds and thus automatically create gazetteers

(Nadeau et al. 2006; Etzioni et al. 2004, 2005; Banko et al. 2007). Researchers have also

proposed encodings of multiword expressions that capture their syntactic flexibility and

are compactly represented (Villavicencio et al. 2004).

2.2.1.8 LEXTER (Bourigault 1992)

Bourigault (1992) presented an early, pure linguistic approach for recognising domain

specific multiword expressions. The approach works in two steps: (a) the first step

locates candidate multiword expressions by identifying boundary words, i.e. words that

are known to mark the beginning or the end of a multiword expression; and (b) the

second step parses each candidate to analyse it into subsequences.

In the first stage, the proposed system, LEXTER uses negative knowledge about the

desired multiword expressions, i.e. parts of speech that never occur in a valid multiword

expression. It applies part of speech patterns similar to those discussed in section 2.2.1.5,

but accepts as candidates all sequences on which the patterns do not apply. Such patterns

are regular expressions made of conjugated verbs, pronouns, conjunctions, and part of

speech sequences such as “preposition-determiner”, etc.

In the second stage, LEXTER parses candidate multiword expressions to analyse

them in subgroups which are possibly terms due to their grammatical structure and their

position in the maximal-length candidate. LEXTER uses its own parsing module, made

up of hand-written parsing rules.

2.2.1.9 Morpheme bootstrapping

Heid (1999) proposed a multiword expression recognition approach, that uses boosting

on domain-specific morphemes to overcome data sparsity in German. They combine lin-

guistic components with a statistical approach; relative frequency comparison, against a

reference corpus. The linguistic components perform tokenising, part of speech tagging,

lemmatisation and pattern matching with regular expressions.
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The linguistic bootstrapping approach consists of 3 steps. Step (1) uses relative fre-

quency to identify domain-specific morphemes; prefixed and suffixes. Step (2) identifies

single word candidates, by applying regular expressions that contain these morphemes.

Finally step (3) extracts multiword expressions by applying regular expressions that de-

scribe part of speech and lemma sequences. Then the single term candidates of step (2)

are used to filter out irrelevant sequences.

2.2.2 Statistical approaches

Statistical approaches for recognising and manipulating multiword expressions consist of

applications of various statistical tools. All these tools input frequency counts of words,

tokens, N-grams, cooccurrences of words, etc. and features that capture the context of

instances for various context types (subsection 2.2.1.7). Statistical approaches process

the frequency counts and context distributions in many diverse ways and output judges

that characterise candidate multiword expressions as such or output scores that quantify

useful features of multiword expressions, such as decomposability and compositionality.

Kageura & Umino (1996) define two important concepts relevant to term recogni-

tion. The first one, unithood, refers to the degree of strength of syntactic combinations

or collocations. The second, termhood, refers to the degree that a candidate term is

related to a domain-specific concept. For example, in an eye-pathology corpus, “soft

contact lens” is a valid term, which has both high termhood and unithood. However,

its frequently occurring substring “soft contact” will have a high unithood and a low

termhood, since it does not refer to a key domain concept. In the following subsec-

tions, we present the most important statistical approaches in the literature classifying

them as unithood-based (section 2.2.2.1) or termhood-based (section 2.2.2.2) (Kageura

& Umino 1996).

2.2.2.1 Unithood-based approaches

Unithood-based methods attempt to identify whether the constituents of a multiword

candidate term form a collocation rather than cooccurring by chance (Kageura & Umino

1996).
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2.2.2.1.1 Occurrence and cooccurrence frequency counts

The simplest method of finding collocations in a text corpus is by counting the frequency

of N-grams occurring in the corpus. It is useful for fixed collocations, only, meaning

that among the collocation words there cannot be other words that are not parts of the

collocation.

N-gram frequency is not very helpful when applied on unprocessed text, because it

cannot take into account word variation such as number or gender. For example, pub quiz

and pub quizzes would be counted as different collocations. Usually, N-gram frequency

is applied in combination with part of speech tagging, stemming and probably some part

of speech filter (see subsection 2.2.1).

In the literature, it is common to count frequencies of more than one word or N-

gram sequence and output system decisions which depend on statistics and computations

based on these counts. In these cases, we refer to these frequencies as cooccurrence

counts. Cooccurrence counts are usually employed to assess how strong the connection

between two words or concepts of language are. For example, suppose that jeans occurs

more frequently than suit in some corpus. However, if businessman cooccurs with suit

in more sentences than it does with jeans, then one can conclude that the connection

between businessman and suit is stronger.

Another statistical tool useful in collocation extraction is relative frequency. Relative

frequencies can be used to find collocations which are characteristic of a corpus, when

comparing to other corpora. If fi, ci and ni are the frequency of occurrence of a given

n-gram in corpus i, its count of occurrence and the total tokens of corpus i, respectively,

the relative frequency ratio is defined as:

r =
f1

f2
=

c1

n1
c2

n2

=
c1n2

c2n1
(2.9)

2.2.2.1.2 Mean and Variance

The mean and variance technique can be employed to capture collocations consisting

of words in a more flexible relationship to each other. It is able to capture collocations

which allow for other words to occur among their component words. For example:

knock on somebody’s door. This technique can be specified for different N-gram lengths.

Below, we present the computation for the bigram case:
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Suppose that a collocation candidate, consisting of two tokens, occurs n times in

some text corpus. Let di be the signed distance, or offset in other words, between the

collocation tokens in their ith occurrence. The mean is defined as the average of these

offsets:

d =

n∑
i=1

di

n
(2.10)

The variance measures how much the individual offsets deviate from the mean. Its

square root is the standard deviation of the offsets:

s =
√
s2 =

√√√√√√
n∑
i=1

(
di − d

)2
n− 1

(2.11)

Mean and variance can be used to discover collocations by looking for pairs with

high frequency and low deviation. The lower the deviation is, the more often the pair of

words occurs at about the same distance. The computational efficiency of this technique

clearly depends on the size of the collocational window, within which mean and variance

is computed. Computations can be very demanding for large window sizes.

2.2.2.1.3 Hypothesis Testing

Collocations are defined as sequences whose component words cooccur more frequently

than by chance. Hypothesis testing provides the statistical framework for comparing the

frequency of occurrence of an event with the frequency of it by chance. In other words,

various hypothesis testing methods assess whether or not something is a chance event.

The basic framework is the following: We first form the null hypothesis (H0). Then

we compute the probability, p, of the event if H0 was true and we reject H0 if p is too

low (typically beneath a significance level of p < 0.05, 0.01, 0.005 or 0.001).

For collocation and term extraction the null hypothesis is independence; defined as

the case that there is no association between the words, beyond occurrences by chance.

The hypothesis can be written for any given sequence length. Below, we focus on the

bigram case. Let w1 and w2 be the component words of a collocation candidate. The
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independence hypothesis is:

P (w1w2) = P (w1)P (w2) (2.12)

There are several different hypothesis testing methods. In this review we include the

most widely used ones and discuss their advantages and disadvantages.

2.2.2.1.3.1 The t test

This is a statistical test widely used for collocation extraction purposes. It is a function

of the difference between observed and expected means, scaled by the variance. The test

indicates the probability of getting a sample with the observed t test value (or one more

extreme), assuming that the sample is drawn from a distribution with mean µ.

If x is the sample mean, s2 is the sample variance, N is the sample size and µ is the

mean of the distribution, we compute the following statistic, whose values correspond to

confidence levels:

t =
x− µ√

s2

N

(2.13)

The basic disadvantage of the t test is that it assumes that probabilities are normally

distributed, which is never true, since they are bounded to be in the interval [0, 1]. How-

ever, probabilities can be approximately normally distributed which means that using

a t test may be reasonable in some circumstances. For example, consider the follow-

ing probability computation for words w1 and w2 which occur 15828 and 4675 times,

respectively, in a corpus of 14307668 words:

P (w1) =
15828

14307668
, P (w2) =

4675

14307668
(2.14)

The independence hypothesis computation gives:

H0 : P (w1w2) = P (w1)P (w2) ≈ 3.615× 10−7

The process of randomly generating bigrams and assigning 1 if the bigram is w1w2 or 0
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otherwise is a Bernoulli trial with:

p = µ = 3.615× 10−7, σ2 = p (1− p) ≈ p (2.15)

x =
8

14307668
≈ 5.591× 10−7, t ≈ 0.999932 (2.16)

The approximation about σ2 holds for small values of p. The value of t is not larger than

2.576, the critical value for α = 0.05, so the null hypothesis cannot be rejected.

2.2.2.1.3.2 The t test for differences

The t test can also be used to find words whose cooccurrence patterns best distinguish

between words. For example it can be used to find words that best differentiate the

meaning of strong, w1, and powerful, w2. For each candidate word, v, we count the

cooccurrences of it with w1 and w2, to create two independent normal populations. The

null hypothesis is now that the average difference is 0 (µ = 0), thus the numerator

becomes:

x− µ = x =
1

N

N∑
i=1

(x1i − x2i) = x1 − x2 (2.17)

For the denominator, we add the variances of the two populations, since the variance

of the difference of two independent random variables is the sum of their individual

variances.

t =
x1 − x2√
s2

1

n1
+
s2

2

n2

(2.18)

Using the approximation: s2 = p(1− p) ≈ p:

x1 = s2
1 = P (w1v), x2 = s2

2 = P (w2v) (2.19)

Assuming that C(x) is the count of occurrences of x in the corpus and N its size, t

becomes:

t =
P (w1v)− P (w2v)√
P (w1v) + P (w2v)

N

=

C(w1v)

N
− C(w2v)

N√
C(w1v) + C(w2v)

N2

=
C(w1v)− C(w2v)√
C(w1v) + C(w2v)

(2.20)
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w t cw cstrong w cpowerful w

computers 3.1622 933 0 10
computer 2.8284 2,337 0 8
symbol 2.4494 289 0 6

machines 2.4494 588 0 6
Germany 2.2360 2,266 0 5

...
...

...
...

...
support 7.0710 3,685 50 0
enough 6.3257 3,616 58 7
safety 4.6904 986 22 0
sales 4.5825 3,741 21 0

opposition 4.0249 1,093 19 1
...

...
...

...
...

Table 2.2: Words that occur significantly more often with powerful (the first five words)
and strong (the last five words) in the corpus used in (Manning & Schutze 1999).

For example, table 2.2 shows words that occur the most often with powerful or strong in

the corpus used in Manning & Schutze (1999). cx denotes the occurrence frequency of

x, while Cxy denotes the cooccurrence frequency of x and y together. Column t shows

the computed values of statistic t of equation 2.20.

2.2.2.1.3.3 Pearson’s chi-square test

This is an alternative test for dependence which does not assume normally distributed

probabilities. In essence, it compares observed values with the expected ones for in-

dependence. If the difference between observed and expected frequencies is large, the

null hypothesis of independence can be rejected. If Oij and Eij are the observed and

expected values, relevant to the cell (i, j) of the table of frequencies, the quantity X2 is

defined as:

X2 =
∑
i,j

(Oij − Eij)2

Eij
(2.21)

It can be shown that the quantity X2 is asymptotically χ2 distributed. χ2 values cor-

respond to confidence levels. Pearson’s chi-square test can be applied to any table of

frequencies. For example, the following contingency table shows cooccurrence and non-
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cooccurrence counts, in a text corpus of N = 14, 307, 668 tokens, to reflect the depend-

ence of occurrences of w1, new, and w2, companies:

Observed values w1 = new w1 6= new

w2 = companies 8 (new companies) 4,667 (e.g. old companies)

w2 6= companies 15,820 (e.g. new machines) 14,287,173 (e.g. old machines)

Expected values are computed from the marginal probabilities:

Eij =
1

N

N∑
j=1

Oij ×
1

N

N∑
i=1

Oij ×N =
1

N
×

N∑
j=1

Oij ×
N∑
i=1

Oij (2.22)

For example:

E11 =
1

N
× (8 + 4, 667)× (8 + 15, 820) ≈ 5.2 (2.23)

The expected values contingency table is:

Expected values w1 ¬w1

w2 5.2 4669.8

¬w2 15822.8 14287170.2

Thus, X2 ≈ 1.55, not greater than the critical value, 3.841, for a probability level of 5%

and one degree of freedom for a 2× 2 table, and the null hypothesis cannot be rejected.

In general, for collocation and term extraction, the differences between t and the

χ2 test do not seem to be large. However, χ2 test can be applied to a wider range of

problems, because it is also appropriate for large probabilities, for which the normality

assumption of t test fails.

2.2.2.1.3.4 Log-likelihood ratios test

Log-likelihood ratios test (Brown et al. 1988; Dunning 1993) proposes a different ap-

proach to hypothesis testing, which seems to perform better than the χ2 statistic when

applied on sparse data. It also has the advantage that it is more interpretable than the χ2

test; it shows how much more likely a hypothesis is than the other.

For collocation and term extraction, the usual hypotheses are the dependence and

independence ones. For a bigram consisting of tokens w1 and w2, they are:
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Hypothesis 1 (H1) Independence P (w2|w1) = p = P (w2|¬w1)

Hypothesis 2 (H2) Dependence P (w2|w1) = p1 6= p2 = P (w2|¬w1)

where Cx is the count of occurrences of wx in a corpus of size N and the probabilities

can be estimated as:

p =
C2

N
, p1 =

C12

C1
, p2 =

C2 − C12

N − C1
(2.24)

The process of randomly generating bigrams and assigning 1 if the bigram is w1w2 or 0

otherwise is a Bernoulli trial, following the binomial distribution. The binomial distri-

bution is the discrete probability distribution of the number of successes in a sequence

of n independent yes/no experiments, each of which yields success with probability x.

The probability of getting exactly k successes is given by the probability mass function:

b (k; n, x) =

(
n

k

)
xk (1− x)(n−k) (2.25)

where: (
n

k

)
=

n!

k!(n− k)!
(2.26)

The likelihoods of getting exactly the observed counts for w1, w2 and w1w2, for hypo-

theses 1 and 2 are respectively:

L (H1) = b (C12; C1, p) b (C2 − C12; N − C1, p) (2.27)

L (H2) = b (C12; C1, p1) b (C2 − C12; N − C1, p2) (2.28)

The logarithm of the likelihood ratio λ is:

log λ = log
H1

H2

= log
b (C12; C1, p) b (C2 − C12; N − C1, p)

b (C12; C1, p1) b (C2 − C12; N − C1, p2)

= logL (C12; C1, p) + logL (C2 − C12; N − C1, p)

− logL (C12; C1, p1)− logL (C2 − C12; N − C1, p2) (2.29)

where:

L (k; n, x) = xk (1− x)(n−k) (2.30)



48 Background and Field Review Chapter 2

OT w1 ¬w1

w2 n11 = 563 n12 = 702

¬w2 n21 = 1, 085 n22 = 57, 553

Table 2.3: Observed values table (OT). Bigram: “gene expression”

ET w1 ¬w1

w2 m11 = 35.44 m12 = 1, 229.56

¬w2 m21 = 1, 612.56 m22 = 55, 940.44

Table 2.4: Expected values table (ET). Bigram: “gene expression”

The log likelihood ratio λ can be used for hypothesis testing, since the quantity −2 log λ

is asymptotically χ2 distributed. A high log-likelihood means that observed and expected

values diverge significantly, indicating that the bigram constituents, w1 and w2, do not

cooccur by chance. Contrarily, a log-likelihood close to 0 indicates that the bigram

constituents, w1 and w2, cooccur by chance.

Equivalently, the log-likelihood ratio can be computed from contingency tables of ob-

served and expected values, discussed in the previous section. For example, tables 2.3

and 2.4 are the tables of observed and expected values for the bigram “gene expression”

occurring in GENIA.

Expected values are computed from the marginal probabilities of observed values.

Assuming that nij is the i, j cell of the table of observed values, and mij is the i, j cell

of the table of expected values, expected values can be computed as follows:

mij =

∑
∀k

nik ×
∑
∀k

nkj∑
i,j

nij
(2.31)

Finally, the log-likelihood ratio (λ) is computed as follows:

− 2 log λ = 2×
∑
i,j

nij × log

(
nij
mij

)
(2.32)

For N -grams, where N > 2, there are more than one hypothesised models to com-

pute expected values. For example, table 2.5 shows the different hypothesised models
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Model 1
P (w1w2w3)

P (w1) P (w2) P (w3)

Model 2
P (w1w2w3)

P (w1w2) P (w3)

Model 3
P (w1w2w3)

P (w1) P (w2w3)

Model 4
P (w1w2w3)

P (w1w3) P (w2)

Table 2.5: Hypothesised models for trigrams

for trigrams. We use the extended log-likelihood ratios algorithm (McInnes 2004), in

order to calculate log-likelihood ratios for each hypothesised model. For each model a

different table of expected values is computed, while the observed values table remains

the same for all. Then, the log-likelihood ratio corresponding to each model is calcu-

lated, as described in equation 2.32. The model with the lowest log-likelihood ratio is

chosen. This model best represents the N -gram, since when a model is a good fit the

observed values are close to the expected ones.

2.2.2.1.4 Pointwise Mutual Information

Pointwise Mutual Information (PMI) (Church & Hanks 1990) is a measure motivated by

information theory and can be used for collocation and term extraction. If x′ and y′ are

events, in our case the occurrence of particular tokens, PMI is defined as:

PMI
(
x′, y′

)
= log2

P (x′y′)

P (x′) P (y′)
= log2

P (x′|y′)
P (x′)

= log2

P (y′|x′)
P (y′)

(2.33)

PMI can be extended to accommodate more than two tokens (McInnes 2004). The

measure computes the amount of information increase we have about the occurrence of

y′ given that x′ has occurred. For example, PMI(w1, w2) = 20 can have the following

interpretations:

• Information about w1 occurring at position i increases by 20 bits, knowing that w2

occurs in position i+ 1.

• Uncertainty is reduced by 20 bits.
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# Name Formula

1. Joint probability P (xy)

2. Conditional probability P (y|x)

3. Reverse conditional probability P (x|y)

4. Symmetric conditional probability
P (xy)2

P (x∗)P (∗y)

5. Selectional Association
P (x|y)× PMI(x, y)

P (∗|y)× PMI(∗y)

6. Mutual dependency (MD) log
P (xy)2

P (x∗)P (∗y)

7. Log frequency biased MD log
P (xy)2

P (x∗)P (∗y)
+ logP (xy)

8. Mutual dependency (MD) log
P (xy)2

P (x∗)P (∗y)

9. Dice formula
2f(xy)

f(x) + f(y)

10. Normalised expectation
2f(xy)

f(x∗)f(∗y)

11. Mutual expectation
2f(xy)

f(x∗)f(∗y)
· P (xy)

12. Salience log
P (xy)2

P (x∗)P (∗y)
· log f(xy)

Table 2.6: Various other unithood measures

• We are much more certain that w2 is the current word, if w1 is the next one.

Unfortunately, decrease in uncertainty does not always correspond to an interest-

ing relation between events x′ and y′. Moreover, PMI does not perform well, when

frequencies are low. None of the measures we have seen sofar performs very well for

low frequency events, but there is evidence that data sparseness is a particularly difficult

problem for PMI. Daille et al. (1994) have shown experimentally that the log likelihood

ratio performs better than pointwise mutual information in the task of term recognition.

For N -grams of N > 2, there are more than one hypothesised models to com-

pare against the joint distribution of N -gram constituents. The process is similar to the

process followed in log-likelihood ratios. For each model different pointwise mutual

information values are calculated, and the one with the lowest pointwise mutual inform-
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ation value, i.e. the model which best represents the observed counts, is chosen. For

example, the pointwise mutual information formula for the ith 3-gram model of table

2.5 is log (Modeli).

Evert & Krenn (2001) have evaluated a handful of statistical measures in the task of

extracting collocational support verb constructions in German. In particular, they eval-

uated pointwise mutual information, Dice coefficient, Pearson’s chi-square, t test, log-

likelihood and cooccurrence frequency. The authors report that t test achieves the best

results, however none of the measures performed significantly better than cooccurrence

frequency.

2.2.2.1.5 Other Unithood-based statistical measures

Except from the measures presented in the previous paragraphs, more unithood-based

statistical measures can be used. Most of these are imported from other research fields

and are included here for reasons of completeness. Pecina & Schlesinger (2006) present

the largest collections of such measures in the literature. However, only a selection

of these measures is evaluated or combined using various methods (e.g. support vector

machines, neural networks, linear discriminant analysis etc.).

Let x and y be two words occurring in a corpus ofN bigrams. w̄ stands for any word

exceptw; f(w) for the frequency of word w and ∗ for any word. As defined in paragraph

2.2.2.1.3.3, the contingency table of observed frequencies for a bigram xy is:

O x x̄ Sums

y a = f(xy) b = f(xȳ) f(x∗)

ȳ c = f(x̄y) d = f(x̄ȳ) f(x̄∗)

Sums f(∗y) f(∗ȳ) N

The table cells are sometimes referred to as fij . The corresponding table of expected

values f̂(xy) = f(x∗)f(∗y)/N is:

E x x̄

y f̂(xy) f̂(xȳ)

ȳ f̂(x̄y) f̂(x̄ȳ)
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# Name Formula

13. Fisher’s exact test
f(x∗)!f(x̄∗)!f(∗y)!f(∗ȳ)!

N !f(xy)!f(x̄y)!f(x̄y)!f(x̄ȳ)!

14. z score
f(xy)− f̂(xy)√

f̂(xy)(1− (f̂(xy)/N))

15. Poison significance measure
f̂(xy)− f(xy) log f̂(xy) + log f(xy)!

logN

16. Squared log likelihood ratio −2
∑
i,j

log f2ij

f̂ij

Table 2.7: Various other unithood measures.

Tables 2.6 and 2.7 presents a variety of unithood measures that include: estimation of

joint and conditional bigram probabilities (1-4), mutual information and derived meas-

ures (5-11), statistical tests of independence (13-15), likelihood measures (16). Tables

2.8 and 2.9 presents various other heuristic association measures and coefficients.

2.2.2.2 Termhood-based approaches

Termhood-based methods focus on measuring how likely a candidate represents a spe-

cific concept, of general text or of some specific domain. These methods take into ac-

count nestedness information (Kageura & Umino 1996), i.e. they process frequencies of

candidate multiword expressions and the frequencies of their substrings. In this review

we present in detail C-value and NC-value (Maynard & Ananiadou 2000a; Frantzi et al.

2000), statistical barrier (Nakagawa 2000; Nakagawa & Mori 2002) and the method of

Shimohata et al. (1997).

2.2.2.2.1 C-value

C-value (Maynard & Ananiadou 2000a; Frantzi et al. 2000) is a statistical measure

of termhood for multiword expression recognition. The computation is based on in-

formation about occurrence of candidate terms as parts of other longer term candidates,

i.e. nestedness information. The C-value measure comes together with a computationally

efficient algorithm, which scores candidate multi-token terms according to the measure.

It takes into account:
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Name Formula Name Formula

Hamann
(a+ d)− (b+ c)

a+ b+ c+ d
Sokal-Michiner

a+ d

a+ b+ c+ d

Rogers-Tanimoto
a+ d

a+ 2b+ 2c+ d
Russel-Rao

a

a+ b+ c+ d

S cost log

(
1 +

min(b, c)

a+ 1

)− 1
2

Jaccard
a

a+ b+ c

Baroni-Urbani
a+
√
ad

a+ b+ c+
√
ad

1st Kulczynsky
a

b+ c

2nd Kulczynski
1

2

(
a

a+ b
+

a

a+ c

)
Odds ratio

ad

bc

U cost log

(
1 +

min(b, c) + a

max(b, c) + a

)
Yulle’s Q

ad− bc
ad+ bc

Confidence max [P (y|x), P (x|y)] T combined cost
√
U × S ×R

Braun-Blanquet
a

max(a+ b, a+ c)
2nd Sokal-Sneath

a

a+ 2(b+ c)

Michael
4(ad− bc)

(a+ d)2 + (b+ c)2
Mountford

2a

2bc+ ab+ ac

Simpson
a

min(a+ b, a+ c)
3rd Sokal-Sneath

b+ c

a+ d

Driver-Kroeber
a√

(a+ b)(a+ c)
Yulle’s ω

√
ad−

√
bc√

ad+
√
bc

Piatersky-Shapiro P (xy)− P (x∗)P (∗y) Klosgen
√
P (xy) ·AV

4th Sokal-Sneath
1

4

(
a

a+ b
+

a

a+ c
+

d

d+ b
+

d

d+ c

)
5th Sokal-Sneath

ad√
(a+ b)(a+ c)(d+ b)(d+ c)

Table 2.8: Various association coefficients

• the total frequency of occurrence of the candidate term in the corpus

• the frequency of the candidate term as part of longer candidate terms

• the number of these longer candidate terms

• the length of the candidate term (in number of tokens)

For example, consider the first two columns of table 2.10. The candidate string

basal cell carcinoma appears 13 times in the corpus, but 9 of them are as part of a

longer string. Thus, the frequency of candidate terms that appear as substrings of other
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Name Formula

Pearson
ad− bc√

(a+ b)(a+ c)(d+ b)(d+ c)

Fager
a√

(a+ b)(a+ c)
− 1

2
max (b, c)

Unigram subtuples log
ad

bc
− 3.29

√
1

a
+

1

b
+

1

c
+

1

d

R cost log

(
1 +

a

a+ b

)
· log

(
1 +

a

a+ c

)
Phi

P (xy)− P (x∗)P (∗y)

P (x∗)P (∗y)(1− P (x∗))(1− P (∗y))

Kappa
P (xy) + P (x̄ȳ)− P (x∗)P (∗y)− P (x̄∗)P (∗ȳ)

1− P (x∗)P (∗y)− P (x̄∗)P (∗ȳ)

J measure max [P (xy) log
P (y|x)

P (∗y)
+ P (xȳ) log

P (ȳ|x)

P (∗ȳ)
,

P (xy) log
P (x|y)

P (x∗)
+ P (x̄y) log

P (x̄|y)

P (x̄∗)
]

Gini index max [P (x∗)(P (y|x)2 + P (ȳ|x)2)− P (∗y)2+

P (x̄∗)(P (y|x̄)2 + P (ȳ|x̄)2)− P (∗ȳ)2,

P (∗y)(P (x|y)2 + P (x̄|y)2)− P (x∗)2+

P (∗ȳ)(P (x|ȳ)2 + P (x̄|ȳ)2)− P (x̄∗)2]

Laplace max

[
NP (xy) + 1

NP (x∗) + 2
,
NP (xy) + 1

NP (∗y) + 2

]
Conviction max

[
P (x∗)P (∗y)

P (xȳ)
,
P (x̄∗)P (∗y)

P (x̄y)

]
Certainty factor max

[
P (y|x)− P (∗y)

1− P (∗y)
,
P (x|y)− P (x∗)

1− P (x∗)

]
Added value (AV) max[P (y|x)− P (∗y), P (x|y)− P (x∗)]

Collective strength
P (xy) + P (x̄ȳ)

P (x∗)P (y) + P (x̄∗)P (∗y)
· 1− P (x∗)P (∗y)− P (x̄∗)P (∗y)

1− P (xy)− P (x̄ȳ)

Table 2.9: Various association coefficients.

candidates should be decreased. However, the nested frequency of a given candidate

term is not a reliable measure of its nestedness, since it does not take into account the

number of different candidate terms, in which it might appear as nested. For example,

consider the following terms in the domain of real time systems: “real time clock”, “real

time systems”, “real time group” and “real time expert system”. The fact that they all
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candidate string α f(α) |α| C-value(α)

W: adenoid cystic basal cell carcinoma 3 5 3 log2 5 ≈ 6.97

X: cystic basal cell carcinoma 1 4 1 log2 4 = 2

Y: ulcerated basal cell carcinoma 5 4 5 log2 4 = 10

Z: basal cell carcinoma 13 3 10 log2 3 ≈ 15.85

Table 2.10: C-value example

contain “real time” as substring, increases its possibility to be a term.

Consequently, the nestedness (NST ) of a candidate term (ct) is defined as the frac-

tion of its nested frequency over the number of distinct candidate terms, in which it ap-

pears as nested. Let Tct be the set of candidate terms, in which the target candidate term

(ct) appears as nested, P (Tct) be the cardinality of Tct and f(x) denote the frequency of

occurrence of x. Then, the nestedness (NST ) of a candidate term (ct) is:

NST (ct) =
1

P (Tct)
×
∑
b∈Tct

f(b) (2.34)

Towards computing a termhood value, Frantzi et al. (2000) subtract the nestedness

of the candidate term from its frequency of occurrence. The length of the candidate term

in tokens, |ct|, is also taken into account. The longer the candidate term is, the more

likely it is a valid term. The C-value score is defined as:

C-value(ct) =

 log2 (|ct|)× [f(ct)−NST (ct)] , if ct is nested

log2 (|ct|)× f(ct), otherwise
(2.35)

In case that the candidate term (ct) appears as nested, C-Value is defined by the upper

branch of equation 2.35. In the opposite case, i.e. that the candidate term never appears

as nested, it is assigned a value based on its length and frequency of occurrence (lower

branch of equation 2.35).

To return to the example of table 2.10, the C-values of the first three candidate terms

can be computed using the first branch of formula 2.35. For the last one, the computation
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is the following:

C-value(basal cell carcinoma) = log2 3 (13− 1

3
(3 + 1 + 5))

= 10 log2 3 ≈ 15.85 (2.36)

The C-value algorithm starts with part of speech tagging the corpus and applying

a predefined part of speech filter. Then, it extracts candidate terms that satisfy the part

of speech filter, a stop-list and a frequency threshold, which depends on the working

domain and on the type of terms that are accepted by the part of speech filter.

Subsequently, it computes the C-value of these candidate terms, starting from the

longest terms. After computing the C-value of each term, it computes the C-value of its

substrings. Finally, it filters out string with C-values lower than a predefined threshold

and sorts candidates in decreasing C-value order.

2.2.2.2.2 NC-value

The NC-value measure (Maynard & Ananiadou 2000a; Frantzi et al. 2000) is an exten-

sion of C-value so as to take advantage of contextual information, by assigning weights

to context words: nouns, verbs and adjectives. The NC-value algorithm takes as input the

candidate term list together with the C-value of each candidate and outputs a re-ranked

version of the same list. The final ordering is expected to include actual terms in higher

positions and thus improve term recognition results. The NC-value measure takes into

account:

• the number of terms a context word appears in

• its frequency as a context word

• its total frequency in the corpus

• its length

Initially, the NC-value algorithm creates a set of context words, Cw, by applying a

predefined window on the left and right context of the n highest ranked term candidates,

according to the C-value algorithm. The parameter n is defined beforehand, depending

on the desired computational complexity of the resulting algorithm. Then, it filters out
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Part of speech Context words

Adjectives pathologic [W(2), Z(3)], clinical [W(2), Z(2)],
cutaneous [X(1), Z(2)], micronodular [Z(3)],
epithelial [W(1), Z(1)], extraprostatic [W(1), Z(1)],
immunohistochemical [W(1), Z(1)], metastatic [W(1), Z(1)],
nodular [Y(1), Z(1)], odontogenic [W(1), Z(1)],
surgical [W(1), Z(1)]

Nouns diagnosis [W(2), Y(1), Z(2)], neoplasm [W(2), Z(2)],
prostate [W(2), Z(2)], report [W(2), Z(2)],
tumor [W(2), Z(2)], cancer [Z(3)],
condition [X(1), Z(2)], basal-cell [Z(2)], extension [W(1), Z(1)],
patient [W(1), Z(1)], skin [Z(2)], specimen [W(1), Z(1)],
treatment [W(1), Z(1)], biopsy [Z(1)], radiotherapy [Y(1)]

Verbs include [W(1), Z(2)], base [Y(1), Z(1)], characterize [X(1), Z(1)],
roll [Y(2)], warrant [W(1), Z(1)]

Table 2.11: Context words of the term candidates in table 2.10. The capital letters within
square brackets denote which candidate term the preceding context word occurs with
and the frequency of occurrence is within parenthesis.

Cw words other than nouns, verbs and adjectives and uses the following measure, which

assigns high weights to words that tend to appear with terms more frequently:

weight(w) =
t(w)

n
(2.37)

where w ∈ Cw, t(w) is the number of terms the word w appears with, and n is the total

number of terms considered. In the case that a context word (Cw) of a candidate term

was not encountered a context word of the top n candidate terms of the C-Value output

list, it is assigned a zero weight.

For example, table 2.11 shows the context words for the term candidates in table

2.10 hypothesizing that n = 4, i.e. the context of all four candidate terms is taken into

account1. Context words that occur with one, two or three candidates are assigned the

weights: 1
4 , 2

4 or 3
4 , respectively.

1For brevity, context word in table 2.11 are a subset of the context words of the term candidate oc-
curences, collected from the web.
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Subsequently, for each candidate term, ct = w1, w2, · · · , wk, the algorithm com-

putes C(ct), the set of distinct context words of α, which appear in Cw. The NC-value

corresponding to each candidate term, ct, is then computed as the linear interpolation of

C-Value and the context factor, as follows:

NC-value(ct) = 0.8× C-value(ct) + 0.2×
∑
b∈Cct

fct(b) weight(b) (2.38)

where b is a word in Cct and fct(b) is the frequency of b as a context word of α. NC-

value outputs the list of the same candidate terms as C-Value, sorted in decreasing order

of NC-value score.

For example, the NC-value of candidate term Y, ulcerated basal cell carcinoma in

table 2.10, can be computed taking into account its context words: nodular, diagnosis,

radiotherapy, base and roll (table 2.11):

NC-value(Y) = 0.8× C-value(Y) + 0.2×
∑
b∈CY

fY(b) weight(b)

= 0.8× 10 + 0.2{fY(nodular)× weight(nodular) +

fY(diagnosis)× weight(diagnosis) +

fY(radiotherapy)× weight(radiotherapy) +

fY(base)× weight(base) +

fY(roll)× weight(roll)}

= 8 + 0.2{1× 2

4
+ 1× 3

4
+ 1× 1

4
+ 1× 2

4
+ 2× 1

4
}

= 8 + 0.2× 2.5

= 8.5

Likewise, the NC-value of terms W, X and Z in table 2.10 is computed as 6.875, 1.75

and 15.03, respectively.

2.2.2.2.3 Statistical barrier

Statistical Barrier (SB) (Nakagawa 2000; Nakagawa & Mori 2002) similarly to C-value

and NC-value assumes that successful multiword candidates that have complex structure

are made of existing simpler terms. Thus, they first measure the termhood of single
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words, and then use it to measure the termhood of complex terms. The basic intuition

is that if a single word, N , expresses a key concept of a domain that a document treats,

then the author must be using N , not only frequently, but also in various ways. Thus,

there will be a number of valid terms containing N .

The basic intuition behind the method is that if a single word expresses a concept

of a domain, then it occurs not only frequently, but also in various ways. It is expec-

ted that a number of valid terms contain this single word. This potential relationship

between single words and multiword candidate terms is exploited to automatically re-

cognise terms.

In particular, after part of speech tagging a given corpus, Nakagawa (2000) extracts

a list of single words. LetR(N) and S(N) be two functions that calculate the number of

distinct words that adjoin N or N adjoins, respectively. Then, for each candidate term,

ct = N1, N2, . . . , Nk a score based on the geometric mean is calculated:

GM(ct) = 2k

√√√√ k∏
i=1

[(R(Ni) + 1)× (S(Ni) + 1)] (2.39)

For example, suppose the candidate term “basal cell carcinoma” (Z) and the statistics

shown in table 2.12. In some corpus, there are 20 distinct words occurring before “basal”

and 10 distinct words occorring after it. Thus, for this example, formula 2.39 can be

computed as:

GM(Z) = 2×3

√√√√ 3∏
i=1

[(R(Ni) + 1)× (S(Ni) + 1)]

= 6
√

(20 + 1)× (10 + 1) + (8 + 1)× (3 + 1) + (4 + 1)× (12 + 1)

= 6
√

21× 11 + 9× 4 + 5× 13

= 6
√

231 + 36 + 65

=
6
√

332

≈ 2.6315

Nakagawa (2000) notes that the frequency of independent occurrences of candidate

terms have a significant impact on the term recognition process. Independent occur-

rences are the ones, where the candidate term ct, is not nested to any other candidate
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candidate token N R(N) S(N)

basal 20 10

cell 8 3

carcinoma 4 12

Table 2.12: Numbers of distinct words that precede (R(N)) or follow (S(N)) the tokens
of the candidate term basal cell carcinoma.

term. To incorporate this, GM is multiplied by the marginal frequency, MF (ct), i.e. the

number of independent occurrences of ct:

SB(ct) = GM(ct)×MF (ct) (2.40)

For example, supposing that the candidate term “basal cell carcinoma” (Z) occurs inde-

pendently 10 times, its statistical barrier score is:

SB(Z) = GM(Z)×MF (Z) = 2.6315× 10 = 26.315

Statistical barrier outputs a list of candidates sorted in decreasing order of SB score.

2.2.2.2.4 Method of Shimohata et al. (1997)

Shimohata et al. (1997) propose another termhood-based method for recognising mul-

tiword expressions, especially domain specific ones. The method consists of two steps.

Firstly, it identifies sequences that are highly possible to be either multiword expressions

or components of multiword expressions. In succession, it takes into account nestedness

information to create multiword expressions by joining output candidates of the first step

that cooccur frequently, or by deleting candidates that are subsumed by others.

In the first step of the method, out of all N-grams of the input text, only the mean-

ingful ones are kept by applying an entropy threshold. For every N-gram the method

calculates the distribution of adjacent words preceding and following it. This is based on

the idea that adjacent words will be widely distributed if the N-gram is meaningful, and

they will be restricted if the N-gram is a substring of a meaningful string. The probability
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p(wi) of each possible adjacent word wi of an N-gram x is:

p(wi) =
f(wi, x)

f(x)
(2.41)

where f(x) is the frequency of N-gram x and f(wi, x) is the frequency that wi precedes

or follows x. The entropy of H(x) of N-gram x is defined as:

H(x) = −
n∑
i=1

p(wi) log p(wi) (2.42)

after calculating the entropy of both sides of the N-gram, the lowest is adopted as the

entropy of the N-gram and is thresholded by a tunable parameter Tentropy:

min (Hleft(x), Hright(x)) > Tentropy (2.43)

The maximum value of H(x) is log n and is taken if f(wi) = 1, ∀i. The minimum

value of H(x) and is taken if x occurs once (f(x) = 1). All N-grams that do not satisfy

the previous inequality are discarded, in an attempt to keep meaningful units such as

compound words, prepositional phrases, and idiomatic expressions.

In the second stage, the method joins frequently cooccurring N-grams, based on the

idea that there is some N-gram that is often used to introduce a multiword expression.

This introducing N-gram is called key. The method works as follows:

1. For every key k from the N-grams wi, i ∈ [1, n] retrieve sentences of the corpus

containing k.

2. Keepwi if the frequency of cooccurrence of k andwi exceeds a predefined threshold

Tfreq.

3. Examine every two N-grams x and y pairwise:

• Join x and y if:
freq(x, y)

freq(x)
≥ Tratio (2.44)

• Discard x if y subsumes it and:

freq(y)

freq(x)
≥ Tratio (2.45)
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4. Arrange accepted N-grams according to their order in the corpus.

Shimohata et al. (1997) illustrate with an example how the second stage works.

“Refer to” is identified as key for the underlined N-grams of the following instances:

Refer to the appropriate manual for instructions on ...

Refer to the manual for specific instructions.

Refer to the installation manual for specific instructions for ...

Refer to the manual for specific instructions on ...

Assuming Tfreq = 2 , the strings which cooccur with the key, k, more than twice are

extracted in the second step:

x freq(k, x)

the 4

manual 4

for specific instructions 3

on 2

Based on the intuition that longer N-grams are more significant if they are frequent

enough, the third step joins such N-grams. This process is repeated until no N-gram

satisfies the inequalities. Assuming Tratio = 0.75, “manual” and “for specific instruc-

tions” are joined together and subsequently removed from the list.

z freq(k, x)

the 4

manual for specific instructions 3

on 2

The fourth step arranges the N-grams of the list to construct the final multiword expres-

sion: “Refer to the ... manual for specific instructions on ...”, where “...” indicate gaps

that can be filled with any word.

2.2.3 Hybrid approaches

Hybrid approaches consist of linguistic and statistical components and possibly of other

components such as supervised and unsupervised classifiers (e.g. hidden Markov models,

support vector machines, decision trees, naive Bayes classifiers).
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In practice, most of the statistical approaches of section 2.2.2 use various levels of

linguistic preprocessing. Tokenisation (subsection 2.2.1.1) is used by all statistical meth-

ods and its performance clearly affects their results since statistical approaches are based

on frequency counts. Cooccurrence frequency counts (paragraph 2.2.2.1.1) can be com-

puted on tokenised text, but without any restriction to the length or the parts of speech

of the desired sequences the computation can become impractically demanding for large

corpora. Pointwise Mutual Information (paragraph 2.2.2.1.4) suffers from extremely

frequent function words, and is reported to perform better using a stoplist.

C-Value (paragraph 2.2.2.2.1), NC-Value (paragraph 2.2.2.2.2) and statistical bar-

rier (paragraph 2.2.2.2.3) methods take as input multiword expression candidates iden-

tified by part of speech patterns (subsection 2.2.1.5) which in turn hypothesise part of

speech tagging (subsection 2.2.1.2). The method of Shimohata et al. (1997) (paragraph

2.2.2.2.4) does not need any linguistic preprocessing other than tokenisation, but prob-

ably lemmatisation (subsection 2.2.1.3) would improve its results.

In this subsection, we will present a number of more complicated approaches in the

literature, which we call hybrid. Some of them identify multiword expression by context

and semantic information, e.g. SNC-value (Maynard & Ananiadou 2000b), while others,

e.g. Bannard (2007), by quantifying various properties of multiword expressions such

as syntactic flexibility. The tasks for which these methods were developed range from

identifying multiword expressions (Van de Cruys & Moirón 2007) to structuring data for

databases (Schulte im Walde 2003).

Hybrid methods for identifying various types of multiword expressions also appear

as components of bigger systems. For example, Feldman et al. (1998) propose a sys-

tem to structure domain-specific text documents for databases. Their system among

others contains a term generation stage where sequences of tagged lemmas are selec-

ted as potential term candidates. For this purpose they employ part of speech patterns

and association measures, such as cooccurrence frequency, pointwise mutual informa-

tion and log-likelihood test. Furthermore, Subramaniam et al. (2003) attempt to perform

information extraction from biomedical articles. Their term extraction component ap-

plies pattern rules based on stopwords and keywords at the shallow parse of input texts.

Then terms are recognised using machine readable dictionaries.
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2.2.3.1 SNC-value

TRUCKS (Maynard & Ananiadou 2000b,a) is a multiword expression identification sys-

tem that uses C-value and NC-value algorithms (discussed in paragraphs 2.2.2.2.1 and

2.2.2.2.2) as its first two layers and adds a third called Importance Weight (IW). Im-

portance Weight incorporates three types of contextual information: (a) syntactic (b)

terminological and (c) semantic knowledge.

Syntactic knowledge is based on identifying boundary words, i.e. words which occur

immediately before or after a candidate term. Boundary words were also incorporated

in LEXTER (section 2.2.1.7). Based on the idea that particular syntactic categories are

used to delimit candidate terms, boundary words are weighted differently, according to

their category. Experiments computing the relative likelihood of each syntactic category

occurring in the context of a multiword expression or not were conducted to compute the

syntactic weights, syn(d), where d is a context term. Results indicated that verbs should

be weighted as important (1.2), followed by preposition (1.1) nouns (9) and finally ad-

jectives (0.7).

Terminological knowledge concerns the terminological status of context words, i.e.

whether or not the context contains domain-specific multiword expressions that have

been recognised already. As context terms are considered candidate terms that were

highly ranked by NC-value, in the top third of the list. For each candidate, a context

term (CT) weight is computed based on its frequency of cooccurrence with other context

terms:

CT (α) =
∑
d∈Tα

fα(d) (2.46)

where α is a candidate multiword expression, Tα is the set of context terms of α, d is a

word from Tα, fα(d) is the frequency of d as a context term of α.

Semantic knowledge about context terms is obtained using the UMLS Semantic Net-

work, provided by U.S. National Library of Medicine (NLM). The similarity between a

candidate and its context terms is computed based on the distance between them in the

Semantic Network hierarchy. The computation depends on the vertical position and ho-

rizontal distance between the two term nodes n1 and n2. The closer they are, the larger

the similarity value. Let depth(n1) and depth(n2) be the distances of nodes n1 and n2

from the root respectively; and c the number of common ancestors. The similarity of
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two terms t1 and t2 is defined as:

sim(t1, t2) =
2× c

depth(n1) + depth(n2)
(2.47)

The importance weight incorporates the syntactic, terminological and semantic weights:

IW (α) =
∑
b∈Cα

syn(b) +
∑
d∈Tα

fα(d)sim(α, d) (2.48)

where α is the candidate term, Cα is the set of context words of α, syn(b) is the syntactic

weight of b, Tα is the set of context terms of α, fα(d) is the frequency of d as a context

term of α, and sim(α, d) is the similarity weight of d as a context term of α. The final

SNC-Value ranking is computed by adding the Importance Weight with the NC-Value:

SNC-V alue(α) = NC-V alue(α) + IW (α) (2.49)

where α is the candidate term, NC-V alue(α) is the NC-V alue of α and IW (α) is the

importance weight of α.

2.2.3.2 Combining extractors with Latent Semantic Analysis

Schone & Jurafsky (2001) evaluated a variety of unithood-based collocation extraction

approaches: frequency, pointwise mutual information (PMI), selectional association,

symmetric conditional probability, Dice formula, log-likelihood ratios, Pearson’s chi-

square, z score and t test. They showed that information-like approaches, particularly z

score, symmetric conditional probability, and chi-square perform better than the others

but in general results are very low. They also proposed two new approaches, based on

Latent Semantic Analysis (LSA), which combine the three most successful approaches

in an attempt to take advantage of non-compositionality and non-substitutability. They

conclude that LSA improved results, but very little compared to the effort required to

obtain the two LSA models.

2.2.3.3 Combining extractors with Adaptive Boosting

Vivaldi et al. (2001) used four extractors for domain specific terms: (a) a semantic-

based, (b) a Greek and Latin form analyser, (c) a context-based, and (d) a collocational

extractor. The semantic-based extractor exploits the idea that terms are made of other
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v det:NULL nsg v det:NULL npl
v det:a/an nsg
v det:the nsg v det:the npl
v det:DEM nsg v det:DEM npl
v det:POSS nsg v det:POSS npl
v det:OTHER [nsg,pl] det:ANY [nsg,pl] be vpas

Table 2.13: P : Patterns for recognising canonical forms. sg stands for singular number,
pl for plural, v for verb, n for nouns, pas for passive and det for determiner.

domain-specific terms. The extractor uses EuroWordNet to determine whether the term

candidate itself and its components belong to their chosen domain (medical) or not.

The Greek and Latin form analyser, splits candidates to their Greek and Latin com-

ponents, if they are made of such. Then it obtains the meanings of the components from

lexica and scores candidates, accordingly. The context based extractor uses SNC-value

(Maynard & Ananiadou 2000b,a) (section 2.2.3.1) with very small modifications. Fi-

nally, the collocational extractor uses unithood-based approaches, such as log-likelihood

ratios, mutual information, and cubed mutual information, MI3.

The extractors were evaluated separately, and then combined using simple voting

schemes or Adaptive Boosting. Results showed that using AdaBoost in the meta-learning

step, the ensemble constructed surpasses the performance of all individual extractors and

simple voting schemes, obtaining significantly better recall.

2.2.3.4 Canonical Forms

Fazly & Stevenson (2006) hypothesise that semantic idiosyncrasy is reflected in lexical

and/or syntactic behaviour. They also claim that lexical and syntactic flexibility can be

explained in terms of decomposability, which in turn is inversely related to idiomaticity.

For example, the highly idiomatic expression “shoot the breeze” is non-decomposable,

while the less idiomatic expression “spill the beans” is analysable with “spill” corres-

ponding to “reveal” and “beans” corresponding to “secret(s)”.

Fazly & Stevenson (2006) propose a set of patterns that can be used to recognise dif-

ferent syntactic forms of a given noun-verb construction (NVC); i.e. different canonical

forms of an NVC. They are proposed as a product of theoretic linguistic knowledge and

experimental results and are shown in table 2.13. The patterns mix parts of speech and
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Class Example I T IN IN NC
LIT They shot a bird. - + - - -
ABS They make a living singing. + - - + + ++
LVC They gave the lasagna a try. ++ - + ++ +
IDM they shot the breeze. +++ - - - + ++ ++

Table 2.14: Categorisation of NVCs in Fazly & Stevenson (2007).

specifications for various properties of the component words, such as number.

Fazly & Stevenson (2006) claim that idiomatic NVCs can be represented in a lexicon

using their one or more canonical forms. Using the predefined set of syntactical patterns

of table 2.13 they count the frequency, f(v, n, ptk), of each NVC, 〈v, n〉, occurring in

each one, ptk ∈ P . Then, they calculate the z-score for each 〈v, n〉 and each pattern ptk:

zk(v, n) =
f(v, n, ptk)− f

s
(2.50)

where f is the mean of frequencies and s the standard deviation.

2.2.3.5 Distinguishing Subtypes of NVCs (Fazly & Stevenson 2007)

Fazly & Stevenson (2007) propose statistical measures that can identify several linguistic

features of multiword expressions in English. They focus on multiword expressions that

consist of a verb and a noun, i.e. noun-verb combinations (NVCs). NVCs are classified

into four classes: literal constructions (LITs), abstract constructions (ABSs), light Verb

constructions (LVCs), and idiomatic expressions (IDMs). The classification is based

on the levels of the following properties that characterise multiword expressions and

were discussed in section 1.1: idiosyncrasy (I), translation (T), institutionalisation (IN),

lexico-syntactic fixedness (LF), and non-compositionality (NC). The proposed statistical

measures are used as features to train a decision tree induction system C5.0.

Table 2.14 presents four categories of NVCs: literal constructions (LITs), abstract

constructions (ABSs), light Verb constructions (LVCs), and idiomatic expressions (IDMs).

LVCs are multiword expressions because usually their overall meaning diverges from the

combined meanings of the constituents. In ABSs the meaning of the verbs is metaphor-

ical and the basic physical semantics are extended. For each class, table 2.14 shows

an example and an indication of the level of the above properties, ranging from “- - -”,
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which means that the property never occurs, to “+++”, which means that the property

occurs always.

Fazly & Stevenson (2007) argue that the above properties are not sufficient to de-

termine the class of a given NVC. Semantic properties of phrasal constituents, selec-

tional preferences of verbs and semantic category of nouns are specified in the parser

output and can be used as classification features.

Supposing that f(v, n) is the raw frequency of the verb-object pair (v, n), and ∗
represents a summation over all verbs or nouns that occur in the candidate multiword ex-

pressions list, the proposed measure of institutionalisation is computed as the pointwise

mutual information (PMI) of (v, n):

PMI(v, n) = log
P (v, n)

P (v) P (n)
≈ f(∗, ∗) f(v, n)

f(v, ∗) f(∗, n)
(2.51)

Separate measures are proposed for three kinds of fixedness: lexical, syntactical and

overall. Lexical fixedness is computed as:

Fixednesslex(v, n) =
PMI(v, n)− PMI

std
(2.52)

where PMI is the mean and std the standard deviation over the PMI of the target and

all its variants. Syntactical fixedness is defined as:

Fixednesssyn(v, n) = D(P (pt|v, n)‖P (pt))

=
∑
ptk∈P

P (ptk|v, n) log
P (ptk|v, n)

P (ptk)
(2.53)

where P is the set of patterns of table 2.13, P (ptk|v, n) represents the syntactic beha-

viour of the target and P (ptk) represents the typical syntactic behaviour over all verb-

object pairs. The dominant pattern can be determined by the following equation:

Patterndom(v, n) = argmax
ptk∈P

f(v, n, ptk) (2.54)

Overall fixedness is a linear combination of lexical and syntactical fixedness:

Fixednessoverall(v, n) = αFixednesssyn(v, n)+(1−α)Fixednesslex(v, n) (2.55)
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Fixednessadj quantifies the degree of fixedness of the target (v, n) combination with

respect to adjectival modification of the noun constituent:

Fixednessadj(v, n) = D(P (a|v, n)‖P (a)) (2.56)

where a is a pattern which marks the presence or absence of an adjectival modifier pre-

ceding the noun.

Fazly & Stevenson (2007) include in their feature set the verb itself and the semantic

category of the noun according to WordNet; the ancestor of its first sense. Composition-

ality can be measured by comparing the context of each multiword expression candidate,

t = 〈v, n〉, to the context of its constituents, n and v (see section 2.3). The context of

the target is a vector holding the frequencies of nouns cooccurring within a window ±5.

Based on the cosine similarity metric (see equation 2.72), they use as features the meas-

ures: cos(t, v), cos(t, n) and cos(t, rv), where rv is a verb morphologically related to n,

extracted from WordNet.

2.2.3.6 A Measure of Syntactic Flexibility of NVCs (Bannard 2007)

Bannard (2007) presents a measure of syntactic fixedness through which English NVCs

can be identified in corpora. The measure captures variation of multiword expression

candidates and is proposed as a tool for lexicographers. It is applied on the output of a

syntactic parser, RASP (Briscoe et al. 2006). The system is evaluated using dictionary-

published multiword expressions.

Three types of non-morphological variation are identified:

• Variation by addition or dropping of a determiner, e.g. run the show, run their

show

• Internal phrase modification, e.g. break the ice, break the diplomatic ice

• Passivisation, e.g. call the shots, the shots were called

Each kind of variation is associated with one component word. Passivisation is associ-

ated with the verb. Internal modification and determiner variation are associated with the

noun in object position.

Syntactic fixedness is interpreted as the extent to which the probability of variation

of an NVC, (v, n), deviates from the probability of variation of its components, v and
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n. Assuming that x denotes syntactic variation, syntactic fixedness is measured as the

conditional pointwise mutual information of the component y given the word z:

PMI(x; y|z) = H(x|z)−H(x|y, z)

= − log2 p(x|z)− [− log2 p(x|y, z)] = log2
p(x|y, z)
p(x|z)

(2.57)

In the case of passivisation z ≡ noun and y ≡ verb, whereas in the cases of de-

terminer variation and internal modification z ≡ verb and y ≡ noun. Overall syntactic

variation is computed as the sum of variations for the above categories:

SynV ar(W ) =
i∑
n

PMI(V erbV ari; Obj|V erb) +

+

i∑
n

PMI(ObjV ari; V erb|Obj) (2.58)

2.2.3.7 Semantics-based NVC Extraction (Van de Cruys & Moirón 2007)

Van de Cruys & Moirón (2007) propose a fully unsupervised method for large-scale

NVC extraction. They hypothesise that non-compositionality can be quantified by meas-

uring non-substitutability. For example, consider break the {vase, cup, dish} versus

break the {ice, ?snow, ?hail}. Their approach is evaluated on automatically extracted

data from Dutch Newswire corpora, using lexical resources. It uses dependency parsing,

clustering of semantically related nouns and statistical measures, to quantify selectional

preferences.

Noun clustering is realised by distributional similarity measures (see section 2.3), in

the following way: dependency triples are extracted and for each noun a feature vector

with the frequencies of the dependency relations, in which it participates, is created.

Then, frequency values are replaced by PMI scores. Finally, clusters are created using a

simple K-means clustering algorithm with cosine similarity.

The Kullback-Leibler divergence between the prior probability of a noun p(n) and

the probability of the noun given a verb p(n|v) is:

Sv =
∑
n

p(n|v) log
p(n|v)

p(n)
(2.59)
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Sv is used as a normalisation constant in most of the statistical measures, proposed by

Van de Cruys & Moirón (2007). The formula:

Av→n =

p(n|v) log
p(n|v)

p(n)

Sv
(2.60)

measures the unique preference of a verb to a noun. The ratio of verb preference for a

particular noun, compared to other nouns of the same semantic cluster, C, is given by:

Rv→n =
Av→n∑

n′∈C
Av→n′

(2.61)

The Kullback-Leibler divergence between the prior probability of the verbs p(v) and the

probability of the verbs given a noun p(v|n) is:

Sn =
∑
v

p(v|n) log
p(v|n)

p(v)
(2.62)

The unique preference of a noun to a verb is:

An→v =

p(v|n) log
p(v|n)

p(v)

Sn
(2.63)

The ratio of noun preference for a particular verb, compared to other nouns of the same

semantic cluster, C, is given by:

Rv→n =
An→v∑

n′∈C
An′→v

(2.64)

2.2.3.8 Identifying NVCs in Token Context (Cook et al. 2007)

Cook et al. (2007) address the task of identifying idiomatic NVCs on a per-instance

basis. Therefore the type of context they choose is token context (see 2.2.1.6). Their

approach uses informative prior knowledge about the overall syntactic behaviour of an

NVC (e.g. type context), syntactic fixedness measures and contextual information.

The basic idea is that idiomatic NVCs tend to be fixed with respect to their canonical

forms (CF), the syntactic configurations in which they occur. Table 2.15 shows two NVCs
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Idiom Canonical forms
(pull, weight) pull one’s weight
(hold, fire) hold fire, hold one’s fire

Table 2.15: Idioms and canonical forms example.

together with the canonical forms in which they mainly appear when used idiomatically.

The preferred patterns can vary across different idiom types, and can involve a num-

ber of syntactic properties: the voice of the verb, the determiner introducing the noun,

the number of the noun, etc.

Cook et al. (2007) assume that in most cases, idiomatic usages of a NVC tend to

occur in a small number of canonical forms for that idiom, while literal usages of it are

less syntactically restricted. Usages in syntactic patterns other than the canonical forms

are hypothesised to be literal.

Cook et al. (2007) use the automatically determined canonical forms in Fazly &

Stevenson (2006) (subsection 2.2.3.4) to compute the measures proposed in three differ-

ent settings: CForm, DiffI-CF,L-NCF and DiffI-CF,L-Comp. CForm uses knowledge of

canonical forms only, and classifies an NVC instance as idiomatic if it satisfies one of

the canonical forms, or as literal otherwise. The latter methods assume the distributional

hypothesis and are based on the computation of the following cooccurrence vectors:

• ~ve: frequencies of the words cooccurring with an NVC e.

• ~vt: frequencies of the words cooccurring with a single token t, part of some NVCs.

• ~vI-CF : cooccurrence vector for the uses of a NVC in its CFs, thus idiomatic.

• ~vL-NCF : cooccurrence vector for the uses of a NVC in its non-CFs, thus literal.

• ~vL-Comp: the result of summing and normalising vectors ~vt, of the NVC’s com-

ponents.

DiffI-CF,L-NCF compares cos(~vt, ~vI-CF ) with cos(~vt, ~vL-NCF ). In words, it quan-

tifies the distance between the similarity of the NVC with its components, in literal and

idiomatic cases. DiffI-CF,L-Comp compares cos(~vt, ~vI-CF ) with cos(~vt, ~vL-Comp), as-

suming that the literal uses of an NVC can be inferred by the uses of its components.



Section 2.2 Survey on Multiword Expression Recognition 73

Experiments showed that CForm performs best, comparably to a supervised baseline

approach.

2.2.3.9 An NVC Database

Schulte im Walde (2003) proposes a method to create an NVC database in German. The

method efficiently stores verbs according to their selectional preferences. For nouns, the

database stores their verbal selectional preferences and the most frequently cooccurring

adjectival and genitive noun phrase modifiers.

NVCs are located using a statistical grammar model, based on the framework of

head-lexicalised context free grammars. It computes the frequencies for any two lexical

items l1 and l2 cooccurring within a relationship r: f(l1, r, l2). The collocation strength

is based on the probabilistic cooccurrence counts and is determined by the lexical asso-

ciation measure log-likelihood. The system is trained on a German newspaper corpus.

2.2.4 Discussion

In this section we presented in detail many widely used linguistic and statistical compon-

ents for the task of multiword expression recognition. In parallel, we presented a large

variety of complete systems that address the task, taking into account various sources of

information. Linguistic systems consider the linguistic properties of text to decide which

sequences should be candidate multiword expressions. Statistical approaches quantify

the properties of the candidates and their context and score each candidate separately.

They are classified as unithood-based, if they assess the attachment strength of the con-

stituents of the candidates; or as termhood-based if they assess the degree that a can-

didate multiword expression refers to a specific concept. Hybrid systems efficiently mix

linguistic and statistic components and sometimes other machine learning tools such as

Latent Semantic Analysis, AdaBoost, and various classifiers.

To summarise the main disadvantages of this field, one should consider how all these

methods and components are evaluated. Although many information sources have been

explored, recognition approaches are evaluated separately, or in small groups, using dif-

ferent corpora and evaluation settings. Thus, it is impossible to directly compare these

methods. Below, we present evidence about this diversity in evaluation settings and cor-

pora, in order of presentation in the previous parts of this section. The first paragraph

below discusses evaluation details of linguistic and unithood-based approaches. The
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second and third paragraphs refer to termhood-based and hybrid approaches, respect-

ively.

Justeson & Katz (1995) evaluated their part of speech patterns on large text col-

lections on a variety of domains: metallurgy, space engineering, and nuclear energy.

Séaghdha & Copestake (2007) extracted 1443 compounds nouns from the 90 million

word written part of the British National Corpus (BNC), using the output of the RASP

parser (Briscoe et al. 2006). Manning & Schutze (1999) evaluated a handful of basic

unithood-based approaches (i.e. frequency counts, mean and variance, hypothesis test-

ing and PMI) on a 14 million words corpus from New York Times newswire: from

August to November 1990. Dunning (1993) evaluated log-likelihood ratios test on a

31777-word sample of text obtained from the Union Bank of Switzerland, describing

market conditions for 1986 and 1987, while Church & Hanks (1990) evaluated the same

test on the 1988 AP corpus, an unbalanced sample of American newswire of 44344077

words. Daille et al. (1994) extracted terminology from a 240000 words French corpus,

divided into 9541 sentences. 2400 term candidates that appear at least three times in the

text were scored using log likelihood ratio and pointwise mutual information. LEXTER

(Bourigault 1992) was evaluated on a corpus of 1200000 words in French. It consists of

1700 short papers describing short term projects of the Research Development Division

of Electricité de France.

Frantzi et al. (2000); Maynard & Ananiadou (2000a,b) evaluated C-value, NC-value

and SNC-value on a corpus of 800000 eye pathology reports, which had been tagged by

the Brill part of speech tagger (Brill 1992). From each record, the diagnosis and disease

description fields were kept, resulting in a corpus of 810719 words. Statistical Barrier

Nakagawa (2000); Nakagawa & Mori (2002) was evaluated on 8834 manually annotated

terms contained in 1870 abstracts from the NACSIS Academic Conference Database.

Shimohata et al. (1997) tested their method on a computer manual in English compris-

ing 120240 sentences and 1311522 words. Pecina & Schlesinger (2006) evaluate many

collocation measures and combinations of measures on data from the morphologically

and syntactically annotated Prague Dependency Treebank 2.0 containing about 1.5 mil-

lion words. 12232 dependency bigrams consisted the collocation candidates.

Schone & Jurafsky (2001) used a randomly-selected corpus consisting of a 6.7 mil-

lion word subset of the TREC databases (DARPA, 1993-1997). Vivaldi et al. (2001)

trained their system on a Spanish corpus taken from the IULA LSP corpus, that was



Section 2.3 Survey on Distributional Similarity 75

collected at the Institute for Applied Linguistics of the Universitat Pompeu Fabra. It

consists of abstracts of medical reports on asthma that amount to 100000 words, manu-

ally annotated. A shorter corpus of 10000 words was used for testing. Fazly & Stevenson

(2006, 2007); Fazly et al. (2009); Cook et al. (2007) evaluated the proposed measures

on verb-noun pairs from the British National Corpus (BNC). The BNC was parsed using

the Collins parser (Collins 1999). Syntactic dependencies were extracted using TGrep2

(Rohde 2004). Verb-noun pairs that fulfil frequency threshold constraints were kept and

information about their lemmas were enriched using WordNet (Miller 1995). Bannard

(2007) uses for evaluation 979156 unique verb-noun pairs of the BNC as identified by

RASP (Briscoe et al. 2006). Van de Cruys & Moirón (2007) tested their NVC extrac-

tion method on the 5000 most frequent candidates extracted from the Twente Nieuws

Corpus Ordelman (2002), a large corpus of Dutch newspaper texts (500 million words),

which has been automatically parsed by the Dutch dependency parser Alpino (van Noord

2006).

It is evident that there is need for an evaluation framework able to evaluate a vari-

ety of different methods under common settings and corpora. A limitation is that it is

not possible to evaluate under the same setting approaches that aim to recognise differ-

ent classes of multiword expressions. However, it is possible to define an evaluation

framework for a large number of these approaches, far more than the evaluations of the

literature. Results will be able to assess which are the best performing approaches and

which are the strengths and weaknesses of each one. Moreover, it is often the case that

the components which consist a multiword expression recognition system are not evalu-

ated separately. As a result, one is unable to assess the contribution of each component

to the final result.

2.3 Survey on Distributional Similarity

In this section, we briefly review the field of distributional representation of context, ac-

cording to the vector space model (Salton et al. 1975). We introduce the distributional

hypothesis which connects context representations with the notion of meaning and dis-

cuss how context representations can be compared. Finally, we present a variety of

distributional similarity measures in the literature.
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2.3.1 Representing Context

The context of all or some instances of a target word occurring in a corpus can be effi-

ciently represented as a vector (Salton et al. 1975). There is a variety of ways for this

representation, based on two main choices: (a) How context characteristics are represen-

ted as features. (b) What source of information relevant to the cooccurrence of the target

word with each feature will be represented by the vector values.

To decide about the former issue, one should consider what distinguishes good con-

text features from bad ones which in turn depends upon the characteristics of the target

words. For example, if the target words are nouns, features can be the verbs whose ob-

jects are the target nouns. Let the target words be the nouns: house, apartment and room;

and the features be the following verbs: buy, rent, sell and book. The following table

shows vectors of binary values.

buy/obj rent/obj sell/obj book/obj

house 1 1 1 0

apartment 1 1 1 0

room 0 1 0 1

A unary feature value means that the corresponding target noun appears as object of

the corresponding verb at least once in the corpus. A zero feature value designates the

opposite case. Parsing the corpus is necessary to induce this kind of vectors (section

2.2.1.4).

If the target words were verbs, prepositions or determiners, the above features would

not be at all informative; because words of these classes are never objects of verbs and all

feature values would be zero. Instead of predefining grammatical features for different

part of speech classes of target words, one could encode as features any possible relations

in which the target word participates together with a context word. This choice would

create a very informative feature space and as well very precise to the extent that accurate

parsers are available.

Based on the idea of selectional preferences (Resnik 1993), i.e. the fact that words

tent to have preferences for other words that they occur with in specific syntactic rela-

tions, a number of syntactic vector spaces have been introduced (Pado & Lapata 2007;

Baroni & Lenci 2009). Their common basis is that they represent the context of target

word occurences by encoding all or a selection of the syntactic relations that include
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the target word. The construction of a syntactic vector space usually uses a dependency

parser (discussed in section 2.2.1.4). For example the dependency parse of the sentence

“I have liked vivid colours since I was a kid.” is:
I (PRP) [1] - is subject of - liked (VBN) [3]

have (VBP) [2] - is auxiliary of - liked (VBN) [3]

vivid (JJ) [4] - is adjectival modifier of - colours (NNS) [5]

colours (NNS) [5] - is direct object of - liked (VBN) [3]

since (IN) [6] - starts an adverbial clause governed by - kid (NN) [10]

I (PRP) [7] - is subject of - was (VBD) [8]

kid (NN) [10] - is copula of - was (VBD) [8]

a (DT) [9] - is determiner of - kid (NN) [10]

kid (NN) [10] - governs an adjectival clause governed by - liked (VBN) [3]
The numbers within square brackets next to each token represent its position offset to

resolve possible conflicts and part of speech tags appear within parentheses. The strings

of the middle column in bold designate an alias for each relation. Based on the above

dependency parse, target words “liked” and “kid” can be represented as follows:

I/s
ub

j

ha
ve

/a
ux

co
lo

ur
s/

do
bj

ki
d/

ad
jc

l

ad
vc

l/k
id

co
p/

w
as

a/
de

t

ad
jc

l/l
ik

ed

liked 1 1 1 1 0 0 0 0

kid 0 0 0 0 1 1 1 1

To reduce data sparcity, relations can be defined over parts of speech instead of the

actual lemmas or surface representations, resulting in the following alternative vector

representation:

PR
P/

su
bj

V
B

P/
au

x

N
N

S/
do

bj

N
N

/a
dj

cl

ad
vc

l/N
N

co
p/

V
B

D

D
T/

de
t

ad
jc

l/V
B

N

liked 1 1 1 1 0 0 0 0

kid 0 0 0 0 1 1 1 1

Sometimes, syntactic vector spaces encode higher order of syntactic relations, i.e. syn-

tactic relation chains or paths starting from the target word or ending at it. For ex-

ample, the second order syntactic relations of “liked” in the previous sentence are:
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“vivid/amod/colours/dobj” and “since/advcl/kid/adjcl”. Words in these relations can po-

tentially be omitted or replaced by their parts of speech.

The major disadvantage of syntactic vector spaces is that the feature space is ex-

tremely sparse, consisting of a vast number of features. Due to this sparsity, huge

amounts of data would are needed to compute practically useful vectors.

For this reason, the bag-of-words approach is used in most of the literature. Ac-

cording to this approach, the context words within a window of ±n words are chosen

as features. Instead of a window, usually all words in the same sentence or paragraph

with the target word are represented as features. Sometimes, part of speech information

are employed to filter out of the feature set uninformative words. Closed part of speech

classes, i.e. prepositions, determiners, conjunctions and pronouns, are considered to be

the least informative, because they contain function words with no semantic content. As

far as the open classes are concerned, nouns are considered to be of higher discriminative

ability than verbs and adjectives (Agirre et al. 2006). The following table presents vec-

tors for target nouns: house, apartment and room and context noun features (the feature

set is small for demonstration purposes):

home flat rent bed

house 1 1 1 0

apartment 1 1 1 0

room 0 1 1 1

Note one of the features, “rent”, can be either a noun or a verb. Sometimes, this is an

important source of noise, especially in cases that the meaning of the verb is significantly

different to the meaning of the noun, e.g. the noun “park” and the verb “to park”. To

overcome this problem, part of speech information can be incorporated in the features as

follows, given that the corpus is part of speech tagged: home/noun, flat/noun, rent/noun

and bed/noun.

The second, equally important decision for representing context in vectors is about

the source of information that are represented by the vector values. Binary feature vec-

tors, which were discussed previously, are among the least informative representations.

It is indicative that in the previous table, almost all values are unary. Instead of bin-

ary feature values, it is common to use as feature values the counts of cooccurrence

of the corresponding target word and feature word. Extending the previous example,
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the following table shows cooccurrence counts feature vectors for target words: house,

apartment and room.

home flat rent bed

house 50 60 5 0

apartment 60 200 7 0

room 0 40 100 9

The target word “house” cooccurs 50 times with “home” within some predefined win-

dow. The remaining values can be interpreted in the same vein.

Cooccurrence counts feature values are more informative than binary values, because

the indicated the level of relevance of the corresponding feature to the current word.

However, cooccurrence counts feature vectors are not directly comparable to each other,

especially when the words under comparison appear with significant different frequen-

cies. To overcome this deficiency, counts can be normalised by the counts of target word

occurrences. The resulting vectors of frequencies of cooccurrence are directly compar-

able to each other. Given that “house” occurs 150 times in the corpus, “apartment” 300

times and “room” 150 times, the corresponding frequency vectors are:

home flat rent bed

house 0.333 0.400 0.033 0.000

apartment 0.200 0.667 0.023 0.000

room 0.000 0.267 0.667 0.060

The table reveals that “home” is more common in the context of “house” than in the

context of “apartment”, although the counts in the previous tables would suggest the

opposite.

Further than frequencies, tf -idf can be employed to distinguish the most discrimin-

ative features for each target word. Originally, tf -idf provides a way to weight features

so as to reflect how important a word is to a document in a corpus. tf stands for term

frequency and idf for inverse document frequency. It should be noted that term is used

in this context in a different sense than the subclass of multiword expressions. Here,

term refers to a word occurring in some document. Term frequency, tf , of a word, w,



80 Background and Field Review Chapter 2

occurring nw,d times in a document, d, is defined as:

tf(w, d) =
nw,d∑

i∈d
ni,d

(2.65)

The denominator is the sum of all word counts occurring in document d.

Inverse document frequency, idf , of word w in a corpus, c, containing |c| documents

is defined as:

idf(w) = log
|c|

|{d : w ∈ d}|
(2.66)

The numerator is the number of documents in the corpus and the denominator is the

number of documents which contain the word w. tf -idf is defined as the product of tf

and idf :

tf -idf(w, d) = tf(w, d)× idf(w) (2.67)

tf -idf can be modified to reflect the importance of a context word (feature) for a

target word. Term frequency, tf , is modified as the cooccurrence count nw,cw of target

word, w, and context word, cw. Inverse document frequency, idf , now measures the

importance of a context word cw for the set of target words W .

tf(w, cw) = nw,cw (2.68)

idf(cw) = log
|W |

|{w ∈W : cw context of w}|
(2.69)

Extending the previous example, the importance of context word “buy” for target

word “house” is:

tf -idf(house, buy) = tf(house, buy)× idf(buy)

= nhouse,buy × log
|W |

|{w ∈W : buy is context of w}|

= 50× log (
3

2
)

≈ 8.80

It is worth noting that if a context word cooccurs with all target words then idf is

zero for this context word. Thus, only discriminating features are non-zero. The full

tf -idf table of the previous example is the following:
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tf-idf vectors home flat rent bed

house 8.80 0.00 0.00 0.00

apartment 10.57 0.00 0.00 0.00

room 0.00 0.00 0.00 4.29

The table reveals that “bed” is a characteristic feature for “room”, while rent is not im-

portant for any of the target words, since it cooccurs with all of them.

In the literature, instead of cooccurrence counts, cooccurrence frequencies and tf -idf

feature values, other ways of measuring the relation of each context word to the target

word have been used. It is common to compare the target word with each feature word

using pointwise mutual information, t-test and log-likelihood values. Potentially, any

unithood-based multiword expression extraction approach (section 2.2.2) could be used

to compute feature values.

2.3.2 Distributional Hypothesis

In the previous section we discussed ways to present the context of target words in vec-

tors. The distributional hypothesis, introduced in Harris (1954), allows using context

vectors as a representation of semantics (meaning):

The meaning of entities, and the meaning of grammatical relations among

them, is related to the restriction of combinations of these entities relative to

other entities.

The underlying idea that “a word is characterised by the company it keeps”, or in other

words that “similar words share similar contexts” was popularised by Firth (1957).

Although it is not obvious from the distributional hypothesis, it is widely hypothes-

ised in the literature that the contexts of semantically different words are dissimilar.

Thus, comparing the context vectors of two words can judge if the words are semantically

similar. Lexical distributional semantics has been largely used to model word meaning

in many fields as computational linguistics (McCarthy & Carroll 2003; Manning et al.

2008), linguistics (Harris 1964), corpus linguistics (Firth 1957), and cognitive research

(Miller & Charles 1991). Recently, the distributional hypothesis has been operationally

defined in many ways in the fields of physicology, computational linguistics, and inform-

ation retrieval (e.g. Li et al. (2000); Pado & Lapata (2007); Deerwester et al. (1990)).
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The underlying assumption is that contextual distributional similarity correlates with

semantic similarity (Miller & Charles 1991). There are cases that this assumption does

not hold entirely; mainly in the case that two words are semantically similar but appear

in different contexts.

This happens sometimes with pairs of words in hyponymy relation. For example,

texts about motorbikes rarely contain the word vehicle, although motorbike is a vehicle.

Moreover, the distributional hypothesis does not hold when a word, w1, is similar to

some other word, w2, only in some sense of word w1 other than its major sense. Ma-

jor sense is the most frequently used sense of a word. For example, the major sense of

“chip” is “computer chip”. Thus, although the “potato chip” sense is semantically sim-

ilar to “snack”, we would expect the contexts of “chip” and “snack” to be semantically

dissimilar.

Distributional similarity can be simply extended to cover multiword expressions

(Schone & Jurafsky 2001; Baldwin et al. 2003; McCarthy et al. 2003; McCarthy 2006):

If a multiword expression is compositional, it occurs in similar context with

its components. Otherwise, its context will be significantly different to the

context of its components.

2.3.3 Measuring distributional similarity

The distributional hypothesis, discussed in the previous section, poses an important issue

about the way that two given distributional vectors can be compared. In the relevant lit-

erature, several distributional similarity measures are proposed (e.g. Lee (1999); Dagan

et al. (1999)). In this subsection, we will discuss a number of distributional similarity

measures of the literature, ranging from fundamental ones such as Euclidean distance

and cosine similarity to more complicated ones, such as the measure of Lin (1998a).

One of the simplest distributional similarity measures is Hamming distance (or L1

norm). The measure computes the sum of absolute differences of the values of two n-

dimensional vectors. It is usually applied to compare vectors of the same dimension and

of binary values. Assuming two vectors ~v and ~u of dimension n, Hamming distance,

L1(~v, ~u), is computed as:

L1(~v, ~u) =
∑
i∈[1,n]

|v(i)− u(i)| (2.70)
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where v(i) and u(i) are the ith dimensional values of vectors v and u, respectively.

Euclidean distance (or L2 norm) of two n-dimensional vectors ~v and ~u measures the

length of the line between points ~v and ~u in the n-dimensional space:

L2(~v, ~u) =

√ ∑
i∈[1,n]

(v(i)− u(i))2 (2.71)

where v(i) and u(i) are the ith dimensional values of vectors v and u, respectively.

Hamming and Euclidean distance are usually applied to compare vectors of the same

dimension and of binary or real values.

One of the most usual distributional similarity measures is cosine similarity (Salton

& McGill 1986). The measure is inspired from geometry and calculates the angle

between two n-dimensional vectors in the n-dimensional space. Cosine similarity sup-

ports real feature values and vectors of the same dimension. Assuming two vectors ~v

and ~u of dimension n, their cosine similarity cos(~v, ~u) is computed as:

cos(~v, ~u) =

∑
i∈[1,n]

v(i)× u(i)

√ ∑
i∈[1,n]

v(i)2 ×
∑
i∈[1,n]

u(i)2
(2.72)

where v(i) and u(i) are the ith dimensional values of vectors v and u, respectively. The

geometric properties of cosine guarantee that the computed value lies in [−1, 1].

Jaccard similarity coefficient, J , is a combinatorial measure that computes the simil-

arity of two sets as the cardinality of their intersection over the cardinality of their union

(Salton & McGill 1986). It is a common measure for computing the distributional sim-

ilarity of binary vectors of any dimensions. The intersection of two vectors ~v and ~u of

dimensions n and m, respectively, is defined as the number of their common non-zero

features, and their union as the number of their distinct non-zero features:

J(~v, ~u) =
|{i ∈ [1, k] : v(i) 6= 0 ∧ u(i) 6= 0}|
|{i ∈ [1, k] : v(i) 6= 0 ∨ u(i) 6= 0}|

(2.73)

v(i) and u(i) are the ith dimensional values of vectors v and u, respectively, and k =

max(n,m). Jaccard similarity coefficient always lies in [0, 1].

Another usual combinatorial measure is Dice similarity coefficient, dice. Dice sim-
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ilarity coefficient is computed as double the intersection cardinality over the sum of

cardinality of two sets (Lin 1998a,b). Similarly to Jaccard similarity coefficient, this

measure accounts for binary feature vectors, i.e. the existence or inexistence of a feature.

Given two vectors ~v and ~u of dimensions n and m, respectively, and k = max(n,m),

the measure is defined as:

dice(~v, ~u) =
2× |{i ∈ [1, k] : v(i) 6= 0 ∨ u(i) 6= 0}|

|{i ∈ [1, k] : v(i) 6= 0}| × |{i ∈ [1, k] : u(i) 6= 0}|
(2.74)

Dice similarity coefficient always lies in [0, 1]. van Rijsbergen (1979) showed that Jac-

card’s and Dice similarity coefficients are monotonic in each other.

Kullback-Leibler divergence,KL, is a measure of similarity from information theory

(Cover & Thomas 1991). It is also known as information divergence, information gain or

relative entropy. It is a non-symmetric measure of the difference between two probability

distributions, P and Q. Kullback-Leibler divergence measures the expected number

of extra bits required to code samples from P when using a code based on Q, rather

than using a code based on P . Typically, P represents the “true” distribution of data

(i.e observations) or a precise calculated theoretical distribution. Q represents a model,

a description, or an approximation of P .

Kullback-Leibler divergence can be applied to compute vector similarity, by using

vectors as discrete distributions. Given two vectors ~v and ~u of the same dimension n, the

measure is defined as:

KL(~v‖~u) =
∑
i∈[1,n]

v(i) log
v(i)

u(i)
(2.75)

v(i) and u(i) are the ith dimensional values of vectors v and u, respectively. Kullback-

Leibler divergence is not symmetric, KL(~v‖~u) 6= KL(~u‖~v), and always non-negative,

KL(~v‖~u) ≥ 0.

A major deficiency of Kullback-Leibler divergence is that it can only be applied if

v(i) > 0 ∧ u(i) > 0, ∀i ∈ [1, n], due to the logarithm part of the formula. Taking into

account that features i for which v(i) = 0 ∧ u(i) = 0 should not contribute to the sum,

a new measure is proposed to cover features for which v(i) > 0 ∨ u(i) > 0, i ∈ [1, n].

This measure is Jensen-Shannon divergence, JS, and is symmetric and normalised (Rao

1982; Lin 2002):

JS(~v, ~u) =
1

2
[KL(~v‖1

2
(~v + ~u)) +KL(~u‖1

2
(~v + ~u))] (2.76)
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Lee (1999); Dagan et al. (1999) proposed α-skew divergence (sα), a generalisation

of Kullback-Leibler divergence that uses a trainable parameter α:

sα(~v, ~u) = KL(~v‖α · ~v + (1− α) · ~u) (2.77)

α can be thought as the degree of confidence in the distribution described by ~u or, equi-

valently, (1− a) can be thought of as controlling the amount by which ~u is smoothed by

~v.

Confusion probability measures the degree to which a word w1 can be substituted

into the contexts in which w2 appears. It has been originally used in language modelling,

to smooth word cooccurrence probabilities (Essen & Steinbiss 1992). Let ~v and ~u be

two n-dimensional vectors representing the context of words w1 and w2, respectively,

and P (w) be the frequency of word w. Then confusion probability, conf , is defined as:

conf(~v, ~u, P (w1)) =
∑
i∈[1,n]

v(i)× u(i)× P (w1)

P (i)
(2.78)

Confusion probability is not symmetric: conf(~v, ~u, P (w1)) 6= conf(~u,~v, P (w2)).

Kendall’s τ looks for correlation between the feature values of two vectors. It is a

non-parametric measure that only considers the order of features for each vector sorted in

decreasing order of the corresponding feature values. Thus, this measure is meaningful

when applied on real valued feature vectors. Kendall’s τ has been used for evaluating

a system that aims to devise clusters of synonym adjectives (Hatzivassiloglou 1994).

Assuming that ~v and ~u are two n-dimensional vectors, it is defined as:

τ(~v, ~u) =
∑

i,j∈[1,n]

sign [(v(i)− v(j))− (u(i)− u(j))]

2

(
|n|
2

) (2.79)

The intuition behind Kendall’s τ is: if sorting the n features by feature values in ~v yields

exactly the same ordering as that which results from sorting them according to ~u, then

τ(~v, ~u) = 1; if it yields exactly the opposite ordering then τ(q, r) = −1.

Different vector representations (e.g. pointwise mutual information, t-test and log-

likelihood values) combined with the distributional similarity measures presented above

or other similar, lead to more complicated measures of the literature. For example, Lin

(1998a) applies Jaccard similarity coefficient on the positive valued features of PMI
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vectors, simJ+PMI . Given vectors ~v and ~u of n and m features representing words

w1 and w2, respectively, and k = max(n,m):

simJ+PMI(~v, ~u) =
|{i ∈ [1, k] : PMI(w1, i) > 0 ∧ PMI(w2, i) > 0}|
|{i ∈ [1, k] : PMI(w1, i) > 0 ∨ PMI(w2, i) > 0}|

(2.80)

Similarly, Lin (1998a) proposes another measure based on positive valued PMI vec-

tors:

simLin(~v, ~u) =

∑
PMI(w1, i) ≥ 0 ∧ PMI(w2, i) ≥ 0,

i ∈ [1,min (n,m)]

PMI(w1, i) + PMI(w2, i)

∑
PMI(w1, i) > 0,

i ∈ [1, n]

PMI(w1, i) +
∑

PMI(w2, i) > 0,

i ∈ [1,m]

PMI(w2, i)
(2.81)

Further work in distributional similarity exploits transitive measures. For example,

Karov & Edelman (1998) propose a measure that judges “taste” as similar to “eat”, even

if they never occur together, given that “taste” cooccurs with “banana”, “eat” cooccurs

with “apple” and “banana” cooccurs with “apple”. Pecina & Schlesinger (2006) presents

a big collection of distributional similarity measures. The ones that were not discussed

above are presented, for reasons of completeness, in table 2.16.

2.3.4 Discussion

Several research works evaluated different distributional similarity measures on various

tasks, attempting to find if there is a superior one. Lee (1999); Dagan et al. (1999) eval-

uated many widely used distributional similarity measures on the task of choosing the

correct one between two nouns to be object of a verb in some sentence. Their goal was

to improve probability estimation of unseen cooccurrences. From the existing measures,

Jaccard similarity coefficient achieved the best performance. Except for evaluating ex-

isting distributional similarity measures, α-skew divergence was proposed and achieved

superior results. However, there seems to be no universally best distributional similarity

measure; instead the choice of a measure primarily depends on the application.

For that reason, Weeds et al. (2004); Weeds & Weir (2005) propose a theoretical

framework which generally describes distributional similarity measures, using a number
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Name Formula

Cross entropy −
∑

i∈[1,min (n,m)]

v(i) log (u(i))

Reverse cross entropy −
∑

i∈[1,min (n,m)]

u(i) log (v(i))

Reverse confusion probability
∑

i∈[1,min (n,m)]

v(i)× u(i)× P (w2)

P (i)

Cosine of PMI

∑
i∈[1,min (n,m)]

PMI(w1, i)× PMI(w2, i)√ ∑
i∈[1,n]

PMI(w1, i)
2 ×

√ ∑
i∈[1,m]

PMI(w2, i)
2

Reverse KL divergence
∑

i∈[1,min (n,m)]

u(i) log
u(i)

v(i)

Reverse skew divergence KL(~u‖α · ~u+ (1− α) · ~v)

Table 2.16: Various distributional similarity measures

of options for feature values and parameters which control the evaluation metrics in an

information retrieval precision-recall basis. Various distributional similarity measures of

the literature are described when specific combinations of feature values and parameter

setting are chosen. Thus, the framework allows the user to know the internal statistical

and linguistic properties of each measure and thus, predict, before any experimental

evaluation, the appropriate measure for a given application.

The authors analysed the neighbour sets returned by seven distributional similar-

ity measures. They classified measures in three classes: (a) measures that select high

frequent neighbours regardless of the frequency of the target noun (e.g. cosine, Jensen-

Shannon divergence, AMCRM2-Recall (Weeds et al. 2004)); (b) measures that select low

frequency neighbours regardless of the frequency of the target noun (AMCRM-Precision

(Weeds et al. 2004)); and (c) measures that select neighbours of similar frequency to the

target noun (simLin, simJ+PMI (Lin 1998a) and Jaccard similarity coefficient).

The results can be interpreted in terms of distributional generality (Weeds et al.

2004). The first class of measures selects high frequency neighbours that have occurred
2Additive, mutual information-based, cooccurrence retrieval model: The feature values are the PMI of

the target cooccurring with the corresponding feature. Only, the existence or inexistence of a feature is taken
into account when computing similarity.



88 Background and Field Review Chapter 2

in more contexts than the target noun has (high recall), i.e. neighbours that can be con-

sidered as distributionally more general than the target noun. Methods identifying hy-

pernyms of words could exploit this type of measures. In contrast, the second class of

measures selects low frequency neighbours that have occurred in fewer contexts than the

target noun has (high precision), i.e. neighbours that can be considered as distribution-

ally less general than the target noun. In the same vein, methods identifying hyponyms

of words could exploit this type of measures. The third class of measures tends to select

neighbours of a similar distributional generality, both high recall and precision. Methods

identifying co-hyponyms could exploit this class of measures.

Ingram & Curran (2007) integrated multiword expression recognition, using t-test

and log-likelihood ratios, in a distributional similarity-based shallow parser and evalu-

ated its performance in finding synonyms of the multiword expressions. They report

negative results, arguing that the multiword expressions do not occur that often so as to

extract significant context vectors for them. However, they state that in some cases the

synonyms were of higher quality when multiword expression recognition was included.

2.4 Survey on Multiword Expression Compositionality

In this section, we focus more on the notion of compositionality of multiword expres-

sions and present a review of the relevant literature. In particular, we only review ap-

proaches in the literature that address the task of quantifying multiword expressions’

compositionality. These approaches exhibit in general much overlap with the techniques

developed to recognise multiword expressions, that were presented in section 2.2.

Recall that compositionality is a property of multiword expressions that indicates

whether the meanings of the components of a given multiword expression can be com-

bined to predict the meaning of the whole multiword expression. For example, lemon

tree is compositional, because the multiword expression refers to a tree that produces

lemons. In contrast, black maria is non-compositional, since it does not refer to some-

body that is called Maria and has black skin colour. Black maria refers to a special police

van for transporting prisoners and also to the first American movie production studio in

West Orange, New Jersey.

Most approaches in the literature are developed on the following basic idea that

emerges from the definition of compositionality: The meaning of a given multiword ex-

pressions should be compared to some combination of the meanings of its components.
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The multiword expressions should be characterised as compositional if the meanings are

similar or as non-compositional if the meanings are dissimilar.

The above general approach to address the task poses several research questions

which at the same time are the basic research directions of this field: (a) How can the

meaning, i.e. the semantics, of a given multiword expression and its components, be

represented? (b) How can the meanings of the multiword expressions components be

composed to a single representation? (c) How can we compare the similarity of the mul-

tiword expression meaning representation to the combined meaning representation of its

components? Except for these technical directions, approaches in the literature explore

the task of resolving compositionality for different multiword expression classes. As

expected, various properties of each class impose restrictions on the approaches them-

selves.

The majority of approaches in the literature addresses questions (a) and (c) in the

straightforward way of distributional representations and distributional similarity, re-

spectively. As discussed in section 2.3, the semantics of a target word or sequence

occurring in a number of sentences can be represented as a vector whose dimensions

are some of its context words and whose values are computed by some function over the

counts of cooccurrence of the target word or sequence with the corresponding dimen-

sion context word (Schone & Jurafsky 2001; Bannard et al. 2003; Baldwin et al. 2003;

McCarthy et al. 2003; Katz & Giesbrecht 2006).

One of the first works based on employing the distribution of context was Tapanainen

et al. (1998). Hypothesising that “if an object appears only with one verb (or few verbs)

in a large corpus we expect that it has an idiomatic nature” the authors proposed distrib-

uted frequency of object as a measure to determine the non-compositionality of verb-

noun collocations. Let fj be the frequency that object o is governed by verb vj . The

distributed frequency (DF ) of object o in a corpus of n triples 〈fj , vj , o〉 with fj > C is

defined as:

DF (o) =

n∑
j=1

faj
nb

(2.82)

where a, b and C are constants that depend on the corpus and the parser employed.

A number of approaches in the literature address the issue in a different way. They at-

tempt to capture non-compositionality indirectly, through capturing non-substitutability.

In other words, they base their compositionality judgement on the variety of different
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words with which the components of the multiword expression cooccur; or on the likeli-

hood of replacing a component with some other distributionally similar word (Lin 1999).

As discussed in sections 2.2.3.4 and 2.2.3.5, Fazly & Stevenson (2006), Fazly &

Stevenson (2007) and Fazly et al. (2009) used statistical measures of syntactic behaviour

to estimate the probability of a verb and noun combination being an idiom. Although

these approached do not specifically detect compositionality, they argue that there is a

strong correlation between non-substitutability and semantic idiosyncrasy.

The approach of Cook et al. (2007), discussed in section 2.2.3.8, exploits the idea that

the same verb-particle construction appears sometimes as compositional and sometimes

as non-compositional. Authors argue that non-compositional usages tend to occur in a

small number of canonical forms, while compositional usages of it are less syntactically

restricted. Using the automatically determined canonical forms of Fazly & Stevenson

(2006) (subsection 2.2.3.4) they distinguished the context of compositional versus non-

compositional usages and compared them in three different settings. Some of these

settings assume that the literal uses of an noun-verb construction can be inferred by the

uses of its head verb.

Several datasets accompanied with human judgements for compositionality have

been made available:

1: light verb constructions (LVC) (McCarthy et al. 2003)

2: verb-particle constructions (VPC) (Venkatapathy & Joshi 2005)

3: verb-noun phrases (VNP) (Cook et al. 2008)

2.4.1 Lin (1999)

Lin (1999) performs automatic identification of non-compositional phrases indirectly,

via detecting non-productive phrases. The authors hypothesise that non-productive ex-

pressions are non-compositional. They use distributional models, statistical measures

and dependency triples. The statistical measures are based on the idea that the pointwise

mutual information of non-compositional phrases differs significantly from the point-

wise mutual information of phrases obtained by substituting each of their components

with the 10 most similar words according to a corpus derived thesaurus (Lin 1998a).

Pointwise mutual information is computed over frequencies of dependency triples. A

collocation is expressed by a dependency triple (Head (H), Type (T ), Modifier (M))

and is treated as the conjunction of three events: A ≡ (∗T∗), B ≡ (H ∗ ∗) and C ≡
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(∗ ∗M). Pointwise mutual information (PMI) of a collocation is computed as:

PMI(H,T,M) = log
P (A,B,C)

p(B|A) p(C|A) p(A)

= log

|HTM |
| ∗ ∗ ∗ |

| ∗ T ∗ |
| ∗ ∗ ∗ |

|HT ∗ |
| ∗ T ∗ |

| ∗ TM |
| ∗ T ∗ |

= log
|HTM | × | ∗ T ∗ |
|HT ∗ | × | ∗ TM |

(2.83)

The above computation is combined with a condition to judge 216 object-verb taken

from a collocation database; in particular, noun-noun and adjective-noun pairs as com-

positional or not. The frequency count of a candidate is a random variable following

binomial distribution. For large frequency counts, it can be approximated by normal dis-

tribution. If |HTM | = k and | ∗ ∗ ∗ | = n, then p̃ =
k

n
falls with N% chance within the

interval:

k

n
± zN

√
p̃(1− p̃)

n
=
k

n
± zN

√
k(1− k

n)

n
≈ k ± zN

√
k

n
(2.84)

Let α be a candidate and β be the result obtained by substituting the head of the modifier

of α with a similar word. The candidate α is judged as non-compositional if there is

no overlap between the 95% confidence interval of the pointwise mutual information of

α and β. The results are evaluated manually and also using the Longman dictionary

of English idioms (LDOEI). The results of manual evaluation are 15.7% for precision

and 13.7% for recall. Against the Longman dictionary of English idioms the results are

39.4% for precision and 20.9% for recall.

2.4.2 Schone & Jurafsky (2001)

Schone & Jurafsky (2001) employ distributional similarity to resolve compositionality

of multiword expressions. They compared the distributional vector of each multiword

expression candidate to the weighted sum of the distributional vectors of the multiword

components. The comparison was done using the cosine similarity measure. The authors

evaluated their results against a gold-standard list extracted from WordNet and other

machine readable dictionaries and reported that their results were extremely poor. A

possible reason is that the coverage of multiword expressions in WordNet is very limited
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(Baldwin 2006; Laporte & Voyatzi 2008).

Moreover, Schone & Jurafsky (2001) tried to capture non-compositionality indir-

ectly; through non-substitutability. They used latent semantic analysis models to score

non-substitutable multiword expression candidates higher. The results were positive but

the authors felt that what is captured by this technique is already handled by collocation

extraction statistics.

2.4.3 Bannard et al. (2003)

Bannard et al. (2003) approach the issue of resolving compositionality by assessing how

much the semantics of the components of a verb-particle construction, i.e. the verb and

the particle, contribute to the semantics of the verb-particle construction itself. They

define four different tasks, formed below as questions:

1: is a given verb-particle construction compositional?

2: does one of the components contribute the meaning of the verb-particle construc-

tion?

3: does the verb contribute the meaning of the verb-particle construction?

4: does the particle contribute the meaning of the verb-particle construction?

40 verb-particle constructions, extracted from the British National Corpus (BNC), and

their components were represented using distributional models. The authors propose

four different methods, each of which is able to answer the four tasks discussed above:

1: An adaptation of the method of Lin (1999)

2: Similar to (1) but instead of using a thesaurus based on Lin (1999), this method

uses a knowledge-free approach to create the context space.

3: Bannard et al. (2003) argue that the method of Lin (1999), which uses substitution

of component words of a multiword expression with semantic neighbours, cap-

tures multiword expressions of limited productivity, but not necessarily of com-

positionality. Their main counter-example is institutionalised expressions, such as

frying pan, since they are compositional but exhibit a non-productive behaviour

similar to non-compositional expressions. To cover this weakness they propose a

new substitution-based approach. Instead of computing the context similarity of

the original verb-particle construction to the one formed by substitution, they em-

ploy corpus-based semantic similarity. A verb particle construction is judged as
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compositional if an expression formed by substitution occurs among the nearest

100 verb-particle items to the original, or as non-compositional otherwise.

4: The authors argue that method (3) still confuses institutionalisation with non-

compositionality. To overcome this confusion they propose a new method based

on measuring how much semantic content the verb and the particle contribute to

the semantics of a verb-particle construction. They used their knowledge-free se-

mantic similarity measure (used in method (2)) to compute the cosine similarity

of the verb-particle construction to the verb and to the particle, independently.

The classification performed by the above 4 methods for each of the 4 tasks was com-

pared against a gold-standard classification from 26 judges on the same data. Results

showed that on all tasks at least one of the methods improves in precision over the

baseline of assigning the most frequent label to all items. The methods perform bet-

ter as far as the contribution of the particles of verb-particle constructions are concerned.

2.4.4 Baldwin et al. (2003)

Baldwin et al. (2003) attempted to resolve compositionality of noun-noun compounds

and verb particle constructions (phrasal verbs). They used LSA, as a construction-

inspecific model to represent compound, phrasal verbs and their components and to

reduce dimensions. Using the cosine measure they computed the similarity of each mul-

tiword expression to its head word. Higher similarity scores are hypothesised to indicate

more compositional multiword expressions. Evaluation was done against WordNet sim-

ilarity scores. The results showed a moderate correlation between LSA and WordNet

scores, lower for noun-noun compounds. The authors reported that the LSA technique

performs better on the low-frequency items than on more frequent items.

2.4.5 McCarthy et al. (2003)

McCarthy et al. (2003) attempt to resolve compositionality of phrasal verbs by comput-

ing the degree of overlap between the set of the most similar words to the phrasal verb

and the set of the most similar words to the head verb itself (phrasal verb without the

particle). Their approach is based on the idea that compositional phrasal verbs are ex-

pected to have similar neighbours as for their head verb, while non-compositional phrasal

verbs should have different neighbours from their head verb.
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Instead of characterising phrasal verbs as compositional or not, McCarthy et al.

(2003) assign a score to each phrasal verb that shows how compositional it is. Test

verb-particle constructions were extracted from the parse output of the British National

Corpus (BNC). A variety of measures based on the nearest neighbours idea were tested

and some of them are reported to exhibit significant correlation to human annotation

judgements. In particular, the correlation of the proposed measures to human judge-

ments is higher that the correlation of collocation measures, such as pointwise mutual

information, to human judgements.

2.4.6 Venkatapathy & Joshi (2005)

Venkatapathy & Joshi (2005) attempt to capture the relative compositionality of multi-

word expressions that consist of a verb and a noun. They evaluate a number of collocation-

based (1-5, below) and context-based measures (6-7, below):

1: Candidate frequency

2: pointwise mutual information (Church & Hanks 1990)

3: least mutual information difference with similar collocations, i.e. the method of

Lin (1999) using the original thesaurus of Lin (1998a) for obtaining the similar

collocations.

4: Distributed frequency of an object, i.e. the average frequency of occurrence of

an object over all verbs cooccurring with the object more frequently than a pre-

defined threshold.

5: Distributed frequency of an object using the verb information, i.e. the similarity

of the target verb and the verbs cooccurring with the target object more frequently

than a pre-defined threshold.

6: Dissimilarity of the context of the verb-object pair to the context of its constituent

verb, representing context using latent semantic analysis (LSA) (Baldwin et al.

2003)

7: Similarity of the verb-object pair with the verbal form of the object, using the

above context representation.

As test data, they used 800 verb-noun collocations extracted from the British Na-

tional corpus (BNC). 2 human annotators scored these candidate as far as composition-

ality is concerned to create the gold-standard rating. Venkatapathy & Joshi (2005) show
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that measures 3, 5 and 7 in the above list, correlate with human judgements better than

the others. In particular, measure 7, which captures support verb constructions, e.g. give

a smile, achieves the best correlation. Moreover, Venkatapathy & Joshi (2005) integrate

the above 7 measures as support vector machine (SVM) features to compute a candid-

ate ranking function. They show that the SVM-based ranking function correlates with

human judgements significantly better than single features do.

2.4.7 Katz & Giesbrecht (2006)

Similarly to Baldwin et al. (2003), Katz & Giesbrecht (2006) used latent semantic ana-

lysis (LSA) to model the local context of multiword expressions and their components.

To decide compositionality, they compute an approximation of the compositional mean-

ing of each multiword expressions and compare it with its meaning as it is used on the

whole. They characterise the multiword expression as compositional if the cosine simil-

arity score is higher than a threshold or non-compositional otherwise.

The LSA model was trained on a local German newspaper corpus, Süddeutsche Zei-

tung for 2003, with about 42 million words. For evaluation they used the manually

annotated preposition-noun-verb (PNV) dataset of Krenn (2000). Results showed that

the threshold, above which multiword expressions are judged as compositional, much

affects the correlation with human annotated data.

2.4.8 Piao et al. (2006)

Piao et al. (2006) employed a semantic field taxonomy based on Lancaster English se-

mantic lexicon to address the problem of resolving compositionality. They propose

a measure which retrieves semantic information from the taxonomy about the target

phrasal verb and its components and then compares them based on this semantic inform-

ation. Their approach is evaluated on 89 phrasal verbs from the data set of (McCarthy

et al. 2003). The authors employed the Spearman correlation coefficient, which only

compares the order of items in two lists and not the actual scores.

The results showed that the system ordering for the vast majority of the test data

correlates strongly with the human annotations. In the system’s output list, some test data

instances are ranked in very different order than in the human annotation list. However

the authors argue that the overall correlation is comparable or better than the correlation

using other measures and state that the proposed taxonomy-based approach could be
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used in cooperation with other measures.

2.4.9 McCarthy et al. (2007)

McCarthy et al. (2007) explore the use of selectional preferences for detecting non-

compositional verb-object combinations (VPC). In particular, they propose three models

which focus on argument types instead of tokens and use as representation classes the

WordNet hierarchy or entries from a distributional thesaurus. The components of each

target verb-object combinations are classified in some class of the employed selectional

preferences model and thus probabilities are much more significant, effectively address-

ing data sparsity.

The authors used the manually annotated dataset of Venkatapathy & Joshi (2005)

and show highly significant correlation between the human annotations and measures

based on their proposed selectional models. In particular, their model based on the dis-

tributional thesaurus exhibits higher correlation with the human judgements than any of

the features used in Venkatapathy & Joshi (2005). Moreover, they combined their most

successful model with the four most successful features of Venkatapathy & Joshi (2005)

(features 1, 2, 3 and 7 in the list of section 2.4.6) using a support vector machine (SVM).

The resulting classifier achieves the highest correlation published for the dataset in use.

2.4.10 Villavicencio et al. (2007)

Villavicencio et al. (2007) attempt to classify multiword expressions of various types, in

a task specific setting. They aim to include non-compositional multiword expressions

as new lexical entries in the English Resource Grammar (ERG), a broad-coverage pre-

cision Head-Driven Phrase Structure Grammar (HPSG), so as to increase its coverage

and accuracy. The authors argue that non-compositional multiword expressions can be

recognised by their statistical properties, and evaluate three statistical measures for this

task: (a) pointwise mutual information, (b) Pearson’s chi-square test, and (c) permuta-

tion entropy. Let wx be a word of some corpus and x its index within the corpus. The

probability of a trigram w1w2w3 can be estimated from the number of occurrences (n)

of each permutation:

p(w1w2w3) =
n(w1w2w3)∑

∀i,j,k
n(wiwjwk)

(2.85)
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Permutation entropy (PE) is defined as follows:

PE = −
∑
∀i,j,k

p(wiwjwk) ln [p(wiwjwk)] (2.86)

An interesting difference from the rest of the literature is that this approach evaluates

whether the above measures can distinguish non-compositional multiword expressions

from a pool of N -grams, which can be compositional or non-compositional multiword

expressions or just sequences of words. Villavicencio et al. (2007) concluded that point-

wise mutual information and permutation entropy seem to differentiate between com-

positional and non-compositional multiword expressions.

2.4.11 Discussion

In this section, we reviewed most of the literature that addresses the issue of resolving

compositionality of multiword expressions. Authors proposed a large variety of meth-

ods, applied them on various types of multiword expressions and evaluated their results

mainly on manually annotated data. The methods can be coarsely classified between

those based in context distributions and those based on substitutions.

The former compare the context distribution of the target multiword expression to

the context distribution of one of its components, or to a combination of the context

distribution of its parts. These methods constitute the majority of the relevant literature.

Substitution-based methods quantify how rigid a target multiword expression is. Hy-

pothesising that non-compositional expressions are more rigid than compositional ones,

substitution-based methods can indirectly decide compositionality.

All methods but Fazly & Stevenson (2007) and Fazly et al. (2009) ignore that the

same multiword expression might occur both as compositional and non-compositional,

in different contexts. Fazly & Stevenson (2007) and Fazly et al. (2009) support a per-

instance view to the issue of compositionality of multiword expressions. They hypothes-

ise that non-compositional occurrences are less syntactically flexible than compositional

ones and employ the canonical forms of Fazly & Stevenson (2006) to distinguish com-

positional versus non-compositional instances. However, there is much space for devel-

oping methods addressing the problem of per-instance compositionality. Sense induction

can be employed to partition the context vector of a target multiword expressions and its

components.
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Most methods were applied on light verb constructions (LVC), verb-particle con-

structions (VPC), or verb-noun phrases (VNP). For these classes of multiword expres-

sions, datasets with human annotations have been made available. We observe that the

compositionality of multiword expressions that consist of adjectives and nouns or nouns

only is much less exploited.

2.5 Survey on Distributional Semantics Composition

In section 2.3, we discussed ways that the context of a target word can be represented as

a vector. In subsection 2.3.2, we explained the distributional hypothesis (Harris 1954),

which allows using context vectors as the representation of meaning of the corresponding

target words.

As distributional semantics has proven over the years to be a viable solution to de-

scribe word meaning, it has been extended to word sequences. Two different ways to ad-

dress this issue have been proposed: (a) by reformulation of the distributional hypothesis

to cover word sequences (Lin & Pantel 2001); and (b) by definition of compositional dis-

tributional semantics (CDS) models (Mitchell & Lapata 2008; Jones & Mewhort 2007).

On the one hand, (a), Lin & Pantel (2001) propose a redefinition of the distributional

hypothesis for patterns, i.e. word sequences representing partial verbal phrases. The ex-

tended hypothesis is called pattern distributional hypothesis and it has been defined for

determining inference rules, i.e. equivalent patterns describing similar meanings. The

distributional vectors representing the meaning of these patterns is derived directly by

transforming into vectors their occurrences in a corpus. The major problem created

by this decision is data sparsity. Patterns of different length appear with very differ-

ent frequencies in the corpus. This fact detrimentally affects the statistics and makes

comparisons difficult.

On the other hand, (b), compositional distributional semantics (CDS) propose mod-

els that are able to compute the distributional semantics of a sequence by composing the

distributional vectors of the component words of the sequence (Mitchell & Lapata 2008;

Jones & Mewhort 2007). This approach succeeds in overcoming the sparsity problem of

the extended distributional hypothesis, since the distributional meaning of sequences of

different length is obtained by composing distributional vectors of single words.

However, there are several issues relevant to CDS models that should be investigated.

The proposed CDS models have not been explored in detail, since many of the models
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have a large number of parameters. In the experimental part of Mitchell & Lapata (2008)

only a selection of parameter values is evaluated.

Evaluation in Mitchell & Lapata (2008) is based on a word sequence similarity test

(Kintsch 2001): CDS models are used to compose vectors for given verb-noun pairs, in

which we know that the verb is ambiguous. However, the noun disambiguates the use of

the verb in the pair. There are also two other verbs available for each pair, one of which

matches the disambiguated meaning of the pair. Then, evaluation decides whether the

composed vector is closer to the disambiguating verb than the other option. For example,

“ran” means “gallop” if its subject is “horse”, while it means “dissolve” if its subject is

“colour”. Given the pair (“horse”,“ran”), CDS models compose a vector for it and then

the similarity between this and “gallop” is expected to be higher than its similarity to

“dissolve”.

The proposed CDS methods do not satisfactorily correlate with human annotated

data mainly because the human inter-annotation agreement is low. As a result, it is

not clear from the evaluation whether or not the resulting vectors for word sequences

successfully represent their distributional semantics (Lenci 2008).

In the remainder of this section, we discuss the extension of the distributional hypo-

thesis to word sequences, its implications and several related issues about representing

context (subsection 2.5.1). Subsequently, we introduce a generic CDS model (subsec-

tion 2.5.2), and then present several CDS models of the literature. Finally, we discuss

the shortcoming of this research field.

2.5.1 Modelling the Context of Word Sequences

Representing context distributions of words was discussed in section 2.3. In succession,

the distributional hypothesis of Harris (1954) was presented in section 2.3.2. It can be

operationally defined as: “similar words share similar contexts”, which means that the

distribution of the context of a word in some corpus is closely related to its semantics.

Similarly to the distributional hypothesis for words, the distributional hypothesis for

word sequences can be defined:

Similar word sequences share similar contexts.

In other words, the context of occurences of a sequence of words in some corpus is

closely related to its semantics. Contexts of different sequences of words can be com-

pared to decide whether the sequences are semantically similar or not. Although, the
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distributional hypothesis for word sequencies deals with similarity or relatedness, it can-

not be used for more complex tasks such as textual entailment.

The above hypothesis poses issues about what should be considered as context and

how it should be represented. Similarly to the distributional hypothesis for words, a

number of different approaches have been proposed for modelling context. Usually,

words that occur within a window before and after the target sequence are considered

as context. This approach describes a bag-of-word vector space (Li et al. 2000). The

context of word sequences of any length is defined as being in the same context space

as the context of words (Mitchell & Lapata 2008). Two word sequences, s = ws
1 . . .w

s
k

and t = wt
1 . . .w

t
m, k 6= m, can be compared via their context distributions, ~s and ~t

respectively, as follows:

s ≈ t⇔ ~s ≈ ~t (2.87)

Alternatively, the sentence in which the target sequence occurs can be parsed and

context words together with the syntactic relations that connect them to the target se-

quence can be used as features. This approach is based on the idea of selectional pref-

erences (Resnik 1993) and describes a syntactic vector space (Pado & Lapata 2007;

Baroni & Lenci 2009). In the same vein, Lin & Pantel (2001) have extended the distri-

butional hypothesis to patterns, i.e. sequences of words with two arguments representing

a relation, e.g. “X is the director of Y ”. This augmented hypothesis is called pattern

distributional hypothesis. Context words are fillers of the arguments of the patterns and

context is modelled according to the observed syntactic structures. For example, the

context words of pattern “X is the director of Y ” are the fillers of variables X and Y in

some corpus.

Moreover, document vector spaces (Deerwester et al. 1990) have been proposed as

possible models for context, based on Latent Semantic Analysis (LSA). LSA (Deer-

wester et al. 1990) has been proposed in Information Retrieval to find efficient ways of

storing and retrieving documents. As the original aim was to compress the vector space

of documents, LSA is not a direct application of the distributional hypothesis. Contexts

of words are defined differently; as documents. However, the idea is similar: in LSA,

words are considered similar (or related) if they occur in similar documents. The major

problem in combining this representation with the distributional hypothesis foe word se-

quences is that context consists of documents and these documents are single units that

cannot be analysed into components.
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Several approaches propose to use tensor algebra for composition and interpreta-

tion of word sequence meaning (Smolensky 1990; Clark & Pulman 2007). In tensor

algebra, the definition of context space for word sequences depends on the length of the

word sequences: vectors for words, bi-dimensional matrices for 2-word sequences, tri-

dimensional matrices for 3-word sequences, on so on. This poses a serious issue, because

the representation allows comparing sequences of the same length, only. However, there

are several advantages of these approaches against the dominant bag-of-words approach:

Firstly, sequences that consist of the same words in different order are successfully rep-

resented by different context matrices (Clark & Pulman 2007). For example, the context

representations of “John likes Mary” and “Mary likes John” are different. Secondly,

the representation accommodates a natural way to compare two word sequences of the

same length. For example, suppose two word sequences: s=“man reads newspaper” and

t=“woman browses magazine”. Using the following property of tensor algebra:

(w1 ⊗ w2).(w3 ⊗ w4) = (w1.w3)× (w2.w4) (2.88)

the similarity between word sequences s and t can be calculated by simply comparing

the respective pairs multiplying the inner products:

−−→man.−−−−−→woman×
−−−→
reads.

−−−−−→
browses×−−−−−−−→newspaper.

−−−−−−−→
magazine (2.89)

where ~w stands for the context vector of word “w”.

Despite the advantages of semantic composition approaches based on tensor algebra,

that were discussed above, we choose not to pursue them in this thesis. There are several

reasons for this decision. Firstly, in these approaches, sequences of different length are

not by any means comparable. Secondly, the fact that the number of features increases

exponentially with sequence length creates data sparsity, thus one needs vast amounts

of data to reliably compose representations of long sequences. Thirdly, the resulting

representations of tensor algebra composition models cannot be directly compared with

gold-standard representations for the same sequences. This inability leads to indirect

evaluations of semantic composition models, which we intend to avoid.



102 Background and Field Review Chapter 2

2.5.2 A generic compositional distributional semantic model

A compositional distributional semantic model is a function � that derives composi-

tionally the distributional vector for a sequence of words. Given a sequence of words

s = w1 · · ·wn, a compositional distributional semantic model computes the distribu-

tional vector �(s) that describes the sequence by combining the distributional vectors

~wi of the component words wi. This general definition of compositional distributional

semantic models can be formally expressed as:

� (s) = �(w1 . . .wn) = ~w1 � · · · � ~wn (2.90)

A good compositional distributional semantic model should be able to define a func-

tion � that produces a good distributional meaning for any word sequence. This generic

model has been fairly well studied and many different models have been proposed and

tested. In the following subsections we will present in detail three compositional distri-

butional semantic models: (a) a model building on basic vector operations, i.e. weighted

addition and multiplication; (b) a model based on selectional preferences of the com-

ponents of sequence s proposed in (Erk & Padó 2008); and (c) a model that projects

all vectors into the same dimensional space, called BEAGLE and proposed in (Jones &

Mewhort 2007).

2.5.2.1 Mitchell and Lapata Model

Mitchell & Lapata (2008) introduce a general setting for compositional distributional

semantic models. Their setting instantiates a class of all compositional distributional

semantic models of equation 2.90. They deal with 2-word sequences s = xy and the

proposed equation is still general and need further specification:

� (s) = �(xy) = f(~x, ~y,R,K) (2.91)

~x and ~y are the distributional vectors of x and y, R is the particular syntactic and/or se-

mantic relation connecting x and y, and, K represents the amount of background know-

ledge that the vector composition process takes into account.

This general compositional distributional semantic model is then realised in three

different models: an additive, a multiplicative and a combined one. The generic additive
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CDS model sums the vectors of the components of the sequence ~x and ~y in a new vector

~z which represents the composed distributional semantics of sequence s:

� (s) = ~z = A~x+B~y (2.92)

A andB are two square matrices which capture the relationR and the background know-

ledge K, of equation 2.91. The fact that A and B are matrices and not vectors allows

the value of the ith dimension of ~z to depend upon all dimensions of vectors ~x and ~y.

The model of equation 2.92 is still a general model because matrices A and B should be

further defined.

In Mitchell & Lapata (2008), only one additive model is explored: the basic additive

model (BAM), for which A and B are instantiated as unary scalars. The resulting model

is a linear combination of the vectors which represent the components of sequence s:

� (s) = ~z = α~x+ β~y (2.93)

Following a simplistic parameterisation, in (Mitchell & Lapata 2008) two versions of

this model are evaluated. One in which the scalar parameters are unary: α = β = 1, and

a trainable one in which the parameters are trained on a small held-out set.

The generic multiplicative CDS model is based on the tensor product between the

two component vectors ~x× ~y:

� (s) = ~z = C × ~x× ~y (2.94)

C is a tensor of rank 3 that projects the tensor ~x× ~y in the original space. Equation 2.94

presents a generic multiplicative model, because the construction of C, which represents

the syntactic and/or semantic relation R and the background knowledge K of equation

2.91, needs to be explained.

Mitchell & Lapata (2008) exploit a simplified instantiation of C in equation 2.94.

Their basic multiplicative model (BMM) assumes a unary scalar in the position of the

tensor C:

� (s) = ~z = ~xT~y (2.95)

The equation assumes that vectors ~x and ~y are row vectors, so that the transposition

creates a column vector.
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vector dimensions
between gap process social two

close < 27, 3, 2, 5, 24 >

interaction < 23, 0, 3, 8, 4 >

Table 2.17: Example frequency vectors of the components of s = “close interaction”

The combined model computes a linear combination of the basic additive and multi-

plicative models:

� (s) = ~z = α~x+ β~y + γ~xT~y (2.96)

α, β and γ are again trainable parameters.

Below we explain how the basic additive model (BAM) and the basic multiplicative

model (BMM) work using the example vectors of table 2.17. The table shows a vector for

each of the words “close” and “interaction”. The representation uses only five indicative

features: “between”, “gap”, “process”, “social” and “two”. These features are among the

most frequent features for the target words in the British National Corpus. The values

are scaled down, keeping their proportionality.

Supposing the vectors of Table 2.17, the basic additive model and the basic multi-

plicative model are computed as:

�BAM (close interaction) = < 27, 3, 2, 5, 24 > + < 23, 0, 3, 8, 4 >

= < 50, 3, 5, 13, 28 > (2.97)

�BMM (close interaction) = < 27, 3, 2, 5, 24 >T< 23, 0, 3, 8, 4 >

= < 621, 0, 6, 40, 96 > (2.98)

2.5.2.2 Erk and Pado Model

Erk & Padó (2008) proposed a model able to disambiguate the distributional meaning of

a word w in the context of the sequence s. Given the general distributional vector ~w of

a word w and a sequence s, the model computes a vector ~ws that represents the specific

distributional meaning of word w occurring in s. Although this model was originally

developed to address this setting, it can be modified into a compositional distributional

semantic model. The model has been tested on a lexical substitution task and on the

experimental setting of Mitchell & Lapata (2008). The authors report significant im-
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provement over the state-of-the-art on the former task and insignificant improvements

on the latter.

To express the model formally we introduce the following operator, �:

~ws = �(w, s) (2.99)

The following properties of operator � explain its functionality:

• � computes a different vector for each word wi in the sequence s = w1 . . .wn:

� (wi, s) 6= �(wj , s), ∀i, j ∈ [1, n] : i 6= j (2.100)

• � computes different vectors for a word wi appearing in different sequences sk
and sl:

� (wi, sk) 6= �(wi, sl), for k 6= l (2.101)

The model of equation 2.99 can be modified to compose the distributional meaning

of a sequence s, based on the semantic head word of the sequence (c.f. Pollard & Sag

(1994)). The modification hypothesises that the meaning of a sequence s is shaped by

the word that governs the sequence. For example, the meaning of the word sequence

“eats mice” is governed by the verb, “eats”. Assuming that h is the semantic head word

of s, the model of Erk & Padó (2008) can be modified into a compositional distributional

semantic model:

� (s) ≈ �(h, s) (2.102)

This model is significantly different to the model of Mitchell & Lapata (2008), presen-

ted in subsection 2.5.2.1. The generic additive model of equation 2.92 and the generic

multiplicative model of equation 2.94 integrate the information provided by the relation

R and the background knowledgeK of the general equation 2.91 into matricesA andB,

and tensor C, respectively. The model of Erk & Padó (2008) (equation 2.102) uses the

relation R and the background knowledge K more explicitly; by exploiting the relation

of the sequence s with the head word h.

Supposing a sequence that consists of two words, s = xy, the model of Erk & Padó

(2008) uses the selectional preferences of each word and the syntactic and/or semantic

relation that links the two words. The two words x and y are related with an oriented
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syntactic relation r (e.g. r=adjectival modifier, r=noun object). The syntactic relation

can be integrated into the notation of the sequence: s = x r←− y.

To keep track of its selectional preferences, each word w is represented with a triple:

(~w,Rw, R
−1
w ) (2.103)

~w is the distributional vector of word w, Rw is the set of the distributional vectors that

represent the direct selectional preferences of the word w, and R−1
w is the set of vectors

that represent the indirect selectional preferences of the word w. In particular, given a

set of syntactic relation types R, the sets Rw and R−1
w contain respectively a selectional

preference vector Rw(r) and Rw(r)−1 for each r ∈ R.

Erk (2007) proposes a way to compute the selectional preferences of a word w. Let

the triple (w′, r,w) denote the cooccurrence of w′ and w in oriented syntactic relation

r. f(w′, r,w) denotes the frequency of the triple (w′, r,w) in the corpus and N =

|{(w′, r,w) : f(w′, r,w) > 0}|. The distributional vector that represents the direct

selectional preferences of word w when occurring in some relation r is:

Rw(r) =
1

N

∑
w′

f(w′, r,w) ~w′ (2.104)

Accordingly, the distributional vector that represents the indirect selectional preferences

of word w when occurring in some relation r is:

R−1
w (r) =

1

N

∑
w′

f(w, r,w′) ~w′ (2.105)

Taking into account the above definitions, the model of Erk & Padó (2008) can be

further specified. If x is the semantic head of sequence s = x r←− y:

� (s) = �(x, x r←− y) = ~x�Ry(r) (2.106)

Otherwise, if y is the semantic head:

� (s) = �(y, x r←− y) = ~y �R−1
x (r) (2.107)

Operator � can be realised using any chosen compositional distributional semantic

model, e.g. the basic additive model or the basic multiplicative model of Mitchell &
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Lapata (2008) discussed in subsection 2.5.2.1.

The following example explains the functionality of the model of Mitchell & Lapata

(2008) in practice. We will use it to compute the distributional vector of a sequence of

two words, s = xy, where the first word, x, is an adjective and the second word, y, is a

noun. The semantic head of the sequence is the noun, i.e. y. Given the syntactic relation

type r = adjectival modifier ∈ R that is oriented from the noun to the adjective, the

sequence can be rewritten as: s = x r−→ y. The distributional vector representing the

meaning of the sequence can be computed as:

� (xy) = �(y, y r−→ x) = ~y �Ra(r) (2.108)

Following the example of table 2.17 and hypothesising that the adjectival modifier re-

lation between “close” and “interaction” occurs 5 times, between “close” and “gap” 3

times and between “close” and “process” 2 times:

Rclose(adjectival modifier) = 5 · −−−−−−→interaction + 3 · −→gap + 2 · −−−−→process

2.5.2.3 BEAGLE

Jones & Mewhort (2007) present a compositional distributional semantic model called

BEAGLE, in which all distributional vectors are of the same dimension. The feature

space in which each distributional vector is represented is defined independently of the

features that have been discussed sofar: bag-of-words, selectional preferences and syn-

tactic features. The idea of this new feature space which is called environmental feature

space, makes the model of Jones & Mewhort (2007) substantially different to the other

models.

To explain the way that context is represented in the environmental feature space, we

hypothesise some initial representation of context. For simplicity, context is defined as a

bag-of-words, i.e. given a target word w, each feature i of its contextual vector ~w repres-

ents a word wi. Jones & Mewhort (2007) define a signature vector ~e(i) of dimension D

(called environmental vector) for each context word wi. The environmental vector, ~e(i),

is the representation in the new feature space of each context word, wi, i.e. feature of the

initial feature space. Environmental vectors are obtained from random distributions. In

particular each dimension e(i)
j , j ∈ [1, D] is a randomly extracted value from a Gaussian

distribution with mean µ = 0 and variance σ = 1/
√
D where D is defined beforehand.
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We provide an example to explain the mapping of the initial feature space to the

environmental feature space. Firstly, we choose a value for the dimensions of the envir-

onment feature space, D = 16. Usually, this value is some power of 2. Subsequently,

we define a Gaussian random generator G(µ, σ) fixing µ = 0 and σ = 1√
16

= 0.25. For

each context word, wi, of the target word, w, the model defines a vector ~e(i) of 16 values.

Each one of these values v is generated from the Gaussian random generator G(µ, σ):

~e
(i)
j = v, j ∈ [1, 16] (2.109)

Given the contextual vector ~w of a word w in the initial feature space, the contextual

vector ~w of this model in the new feature space is obtained by summing up the signature

vectors of the words found in the contexts of w:

~w =
∑
i

wi~e
(i) (2.110)

where wi is the value of the i-th feature of the original contextual vector ~w.

In Jones & Mewhort (2007) composition is realised using circular convolution. Each

feature value zi, i ∈ [1, D] of the composed distributional vector ~z depends not only on

the corresponding environmental vector values xi and yi of the components of sequence

s = xy. In contrast, all environmental feature values in vectors x and y contribute in

the computation of every feature value zi, i ∈ [1, D]. The following equation explain

how this dependencies are realised in the circular convolution multiplicative model with

environmental vectors:

zi =

n∑
j=1

xjydi−je (2.111)

di− je =

 i− j, if i > j

n+ i− j, if i ≤ j

Below, we include an example to clarify the computation of circular convolution.

However, the example is performing the computation on vectors in the initial bag-of-

words feature space, and not the environmental one. For s = close interaction and using
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the feature vectors of table 2.17, the composed vector can be computed as:

�CCMM (s) = �CCMM (close interaction)

= < 27 · 4 + 3 · 8 + 2 · 3 + 5 · 0 + 24 · 23,

27 · 23 + 3 · 4 + 2 · 8 + 5 · 3 + 24 · 0,

27 · 0 + 3 · 23 + 2 · 4 + 5 · 8 + 24 · 3,

27 · 3 + 3 · 0 + 2 · 23 + 5 · 4 + 24 · 8,

27 · 8 + 3 · 3 + 2 · 0 + 5 · 23 + 24 · 4 >

= < 108 + 24 + 6 + 0 + 552,

621 + 12 + 16 + 15 + 0,

0 + 69 + 8 + 40 + 72,

81 + 0 + 46 + 20 + 192,

216 + 9 + 0 + 115 + 96 >

= < 690, 664, 189, 339, 436 >

2.5.3 Discussion

There are three major issues identified in this review as potential fields of further re-

search. (a) The general additive and multiplicative CDS models in Mitchell & Lapata

(2008) define several parameters. This parametric space is not exploited to a great extent.

(b) Evaluations of the proposed models in Mitchell & Lapata (2008) and Jones & Me-

whort (2007) suffer drawbacks so that it is not clear whether the models perform well or

badly, especially in comparison with each other. (c) Although combinations of the mod-

els proposed in Mitchell & Lapata (2008), Erk & Padó (2008) and Jones & Mewhort

(2007) are straightforward to define, they are not exploited yet.

In equations 2.92 and 2.94 we presented the general additive and multiplicative CDS

of Mitchell & Lapata (2008). The general additive CDS model uses two matrices A and

B which control the contributions of the component words into the composed vector

of sequences. However, in the experimental stage of Mitchell & Lapata (2008) only a

simplistic substitution of these matrices with scalars is evaluated: a version with unary

scalars (i.e. all features are considered to contribute equally to the composed sequence

vector) and a version where the scalars are trained on a small corpus. The general mul-
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tiplicative CDS model uses a tensor of rank 3 to project the tensor ~x× ~y on the original

feature space. Again, in terms of evaluation, this tensor is oversimplified to a unary

scalar. Thus, there is substantial space for further exploiting these parametrisations.

Moreover, the possibility of a supervised setting in which the matrix parameters could

be trained is not exploited.

Evaluation of the CDS models in Mitchell & Lapata (2008) is based on a word se-

quence similarity test (Kintsch 2001). In particular, the similarity of the composed vector

representing a sequence is compared with the vector of each of two given alternatives.

The most similar of these alternatives is chosen, and then it is compared with the gold-

standard choice. BEAGLE (Jones & Mewhort 2007) was evaluated on a widely-used

evaluation setting for semantic models; the synonym section of the TOEFL (Landauer &

Dumais 1997). Each item consists of a target word and four alternative words; the task

is to select the alternative that is most similar in meaning to the target.

Thus, the task of composing distributional meaning of sequences is evaluated as a

multiple selection task. It is difficult to assess the contribution of the model to the final

result, given data sparsity issues. Moreover, the human inter-annotation agreement is

low (0.40) for the Mitchell & Lapata (2008) dataset.

It is worth exploring combinations of various components of the CDS models. For

example, the basic additive model of Mitchell & Lapata (2008) could be used to compose

the environmental vectors of BEAGLE. In the same vein, circular convolution could be

tested as a CDS model over the bag-of-words feature space.

2.6 Summary

In this chapter, we presented an elaborate literature survey on several issues relevant to

multiword expressions and to some useful tools of the field of semantics. In particular,

we started with reviewing methods and approaches for recognising multiword expres-

sions and multiword terms; i.e. domain-specific multiword expressions. In succession,

we presented an introduction to context distributions, similarity and measures. Then,

we presented several methods that attempt to capture the compositionality of multiword

expressions and finally, we presented the field of distributional semantics composition

and discussed several state-of-the-art models.

Methods for multiword expression recognition were classified as linguistic, statist-

ical or hybrid. Linguistic methods are based on linguistic properties to decide for mul-
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tiword expressions, statistical methods use occurrence counts and context while hybrid

methods comprise various combinations of linguistic and statistical components and pos-

sibly machine learning tools. Statistical methods were divided into unithood-based and

termhood-based ones. The former assess the attachment strength of the constituents of a

multiword expression candidate, while the latter assess the degree that a candidate mul-

tiword expression refers to a concept. The basic research direction emerging is towards

evaluation methods that will allow comparing among recognition methods and possibly

assess the contribution of each informative source to the result.

Context distributions appear to be the fundamental tool for exploiting the semantics

of words and sequences. In section 2.3 we introduced the vector space model, i.e. the

standard way of representing context distributions into vectors and discussed several

variations concerning feature selection, feature values, etc. Then, the distributional hy-

pothesis, which allows accepting context distributions as a representation of meaning,

was presented. Finally, we discussed a multitude of distributional similarity measures

and commented on their performance as reported in the literature.

In section 2.4 we review literature that addresses the problem of resolving multiword

expressions’ compositionality. This review was placed in a separate section, since this

problem is identified as being really important for the applications of multiword expres-

sions to other Natural Language Processing tasks. Literature methods were classified

in those that are based on comparing context distributions and to those based on sub-

stitutions. The latter approach the task indirectly; hypothesising that non-compositional

multiword expressions are more rigid than compositional ones. The state-of-the-art lacks

methods that take into account the fact that the same multiword expression might have

compositional and non-compositional uses. Moreover, not many methods are evaluated

on noun phrases consisting of nouns or adjectives and nouns.

In section 2.5 we reviewed several state-of-the-art methods for composing context

distributions. Several research directions emerged. Firstly, CDS models are evaluated

indirectly; on tasks that are not originally developed for this purpose. Thus, it is unclear

which model performs best. Moreover, some CDS models can be further evaluated ex-

perimentally as far as their parameters are concerned. Also, the basic additive model and

the basic multiplicative model could be combined with a model for selectional prefer-

ences.



CHAPTER 3

Analysing Automatic Term Recognition Methods

Executive Summary

Terms are sequences consisting of one or more words that represent domain specific

concepts. Multiword terms are the domain specific subset of multiword expressions.

Multiword term recognition was introduced long time ago and a plethora of approaches

have been proposed. Not only typical collocation extraction methods have been used

for this task, but also more sophisticated methods have been proposed, attempting to

quantify how likely candidates refer to domain specific concepts. In particular, unithood-

based approaches come from collocation extraction and measure the attachment strength

of candidate term constituents. Termhood-based approaches are developed for automatic

term extraction and measure the degree that a candidate term refers to a domain specific

concept.

Despite the large variety of automatic term recognition methods in the literature,

there is significant lack of a common evaluation framework that would allow compar-

ing across different methods. The methods have been evaluated using different, often

incompatible evaluation schemes and datasets. In this chapter we propose an evaluation

framework which allows comparable experimentation with automatic term recognition

methods. Under this framework we evaluate thoroughly a handful of state-of-the-art

automatic term recognition methods and we show that termhood-based methods achieve

112
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in general superior performance.

Further, we attempt to investigate which is the most successful manner of captur-

ing nestedness; the property of some terms or term candidates to occur as subsequences

of other terms or term candidates. Nestedness information comprises a more effective

criterion, for distinguishing valid terms from a candidate list, than the strength of associ-

ation among the constituents of a multiword candidate term. We analysed the termhood-

based methods, that were evaluated earlier, into their basic components, each of which

captures different sources of information and we evaluated these components, separately.

Results revealed that the marginal frequency of candidate terms, i.e. the number of inde-

pendent occurrences of a candidate term is the most effective source for estimating term

nestedness, improving automatic term recognition performance.

3.1 Introduction

As discussed in 2.2, terms are words or sequences of words that map to concepts of some

specific domain of knowledge, usually scientific of technical (Kageura & Umino 1996).

A terminology bank is a vocabulary that contains all terms; i.e. all words and sequences

which refer to the concepts of a domain. Constructing such a vocabulary is crucial,

because it is the starting point for many applications such as machine translation, index-

ing, knowledge organisation and ontology learning (Kageura & Umino 1996). Manual

construction is time-consuming, error-prone and labour-intensive. In many cases, annot-

ators need to be experts of the field and this makes the annotation even more expensive.

More importantly, manually constructed terminologies need to be maintained over time;

so as to deal with the rapid growth of the number of technical terms. Automatic term

recognition is the task of recognising domain-specific terms automatically, and focuses

at addressing the above obstacles.

Multiword terms comprise a subclass of multiword expressions. Due to the fact

that automatic term extraction can directly serve other scientific domains, research in

this field started before research on general text multiword expressions. However, there

is large overlap between the methods that have been employed to extract multiword

terms and multiword expressions. A detailed survey on proposed methods for extracting

terminology and multiword expressions was presented in section 2.2.

Statistical approaches for automatically recognising multiword expressions and terms

analyse occurrence statistics of words or sequences. According to Kageura & Umino



114 Analysing Automatic Term Recognition Methods Chapter 3

(1996), they can be divided into two broad categories: unithood-based and termhood-

based ones. Unithood refers to the attachment strength of the constituents of a candidate

multiword expression or term. Termhood refers to the degree that a candidate term is

related to a concept. For example, in an eye-pathology corpus, “soft contact lens” is

a valid term, which has both high termhood and unithood. However, its frequently oc-

curring substring “soft contact”, has high unithood and low termhood, since it does not

refer to a key domain concept.

Unithood-based methods were initially developed for extracting collocations, which

are defined as words that cooccur together more frequently than chance. Methods such

as t-test, χ2-test, log-likelihood ratios test (LL) (Dunning 1993) and pointwise mutual

information (PMI) (Church & Hanks 1990), have been thoroughly evaluated for the task

of collocation extraction (Dunning 1993; Evert & Krenn 2001; Dias et al. 2001; Pecina

& Schlesinger 2006).

In contrast, termhood-based methods, such as statistical barrier (Nakagawa 2000),

C-Value and NC-Value (Frantzi et al. 2000) were originally developed for identifying

words of sequences that map to domain-specific concepts; i.e. terms. Usually, termhood-

based methods can as well recognise terms that consist of a single word, however, in this

chapter we focus in analysing them as far as their ability to extract multiword terms is

concerned.

Unithood-based and termhood-based methods have been evaluated using different

technical corpora, under different evaluation frameworks, with different set of para-

meters depending on the domain and test corpus (Frantzi et al. 2000; Dunning 1993;

Church & Hanks 1990; Nakagawa 2000). There were some efforts to comparably eval-

uate small numbers of unithood-based methods. For example, Dunning (1993); Evert

& Krenn (2001) showed that log-likelihood ratio performs better than t-test, Pearson’s

chi-square test and pointwise mutual information due to its milder tendency to overes-

timate rare events. However, there is no published work on comparing unithood-based

and termhood-based methods under a common evaluation framework, i.e. a standard

evaluation method and evaluation corpus.

Given that unithood-based and termhood-based methods capture different types of

information, it is still unclear whether the former are able to perform better than the

latter methods, such as C-Value (Frantzi et al. 2000) and Statistical Barrier (SB) (Nak-

agawa 2000). This lack of a common evaluation scheme complicates the interpretation
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of results. It is unclear which are the strengths and weaknesses of each method, mak-

ing unmanageable the choice of an appropriate automatic term recognition method as a

starting point for other applications.

In this chapter, we define an evaluation framework appropriate for comparable ex-

perimentation with methods for extracting multiword terms. Putting the framework

into practice, we extensively compare state-of-the-art approaches, so as to identify the

strengths and weaknesses of each. Experimenting with part-of-speech patterns (dis-

cussed in section 2.2.1.5) showed that accepting adjective and noun sequences as term

candidates achieves the best combination of precision and recall compared to patterns

that accept less or more parts of speech. This outcome is clearly related to the properties

of the employed domain-specific corpora.

We experimentally show that termhood-based approaches, which take into consider-

ation the nestedness of a candidate term into others, such as C-Value (section 2.2.2.2.1),

NC-Value (section 2.2.2.2.2) and statistical barrier (section 2.2.2.2.3), have in general su-

perior performance over methods which measure the strength of association among the

tokens of a multi-word candidate term, such as log-likelihood ratio (section 2.2.2.1.3.4)

and pointwise mutual information (section 2.2.2.1.4).

In further experiments we analysed the components of which the termhood-based

methods consist and evaluated them separately. The main focus of these experiments is to

find which approach for capturing nestedness performs best. We show that the marginal

frequency is the most effective source of nestedness information. Marginal frequency

is the number of independent occurrences of a term, i.e. the number of occurrences on

its own, without being nested within others candidate terms. Marginal frequency clearly

improves the performance of automatic term recognition methods, in this evaluation

setting.

The rest of the chapter is structured as follows: In section 3.2 we present an over-

view of the proposed evaluation framework, and explain its functionality in high level.

In section 3.3 we briefly review linguistic filtering, based on parts of speech. Section

3.5 presents the proposed evaluation scheme in detail, including the experimental setting

(subsection 3.5.1), our experimental results and discussion (subsection 3.5.2). Further

experiments towards finding the best way to capture nestedness are presented in subsec-

tion 3.5.3. Finally, section 3.6 summarises this chapter.
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Figure 3.1: Evaluation framework overview

3.2 Evaluation framework overview

Figure 3.1 presents a block diagram of the proposed evaluation framework. The scheme

consists of a manually annotated corpus, and an evaluation method which assesses the

performance of automatic term recognition methods at a fine-grained scale; i.e. incre-

ments of 0.5% of the candidate term ranked list, based on the one proposed in Wermter

& Hahn (2004).

The framework utilises a manually annotated corpus of some scientific or technical

domain. Any corpus could be used as long as it comprises annotations of multiword

terms or multiword expressions. For the experiments of this chapter we used two Eng-

lish domain-specific corpora: the GENIA corpus (Gu 2006) and the PennBioIE corpus

(Kulick et al. 2004). More information about the nature, statistical properties and an-

notations of these corpora are discussed is section 3.5.1.

Initially, the manual corpus annotations are separated from the corpus text. The

annotations are useful to create the gold-standard; a list of word sequences which are

domain-specific terms. The gold-standard is used at the final evaluation stage so as to

know whether terms accepted by the term recognition system under inspection are actual

terms or not.

A linguistic filter is applied on the corpus text to identify candidate terms. Linguistic

filters are part of speech patterns which apply as regular expressions on text. They are

discussed in section 3.3. In succession, a statistical method is employed to rank the

candidates identified by the linguistic filter. The output of this step is a candidate term

list in decreasing order of scores.

The evaluation scheme compares the statistical method output list to the gold-standard

terms, generated by the corpus annotation. Information retrieval metrics, precision, re-

call and F-score towards the gold-standard list are computed for portions of the ranked
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candidate term list always starting from the top. Portions start from 0.5% of the ranked

candidate list and grow incrementally, in 0.5% increments. The evaluation scheme and

the visual presentation of results is presented in detail in section 3.5.1.

3.3 Linguistic filters

Initially, automatic term recognition research focused on exploiting the parts of speech

of multiword expression constituents. Based on the fact that terms usually consist of

some specific parts of speech, different pattern-based models were proposed to identify

terms. A number of these models, also known as linguistic filters, was presented and

discussed in section 2.2.1.5.

The choice of linguistic filter depends on the language and the domain of the corpus

and the application (Frantzi et al. 2000). If the target is to identify terms with high recall

a lenient filter should be used, i.e. a filter that verifies many candidates. Towards high

precision terms, a strict filter rejecting many lower-quality candidates is appropriate.

In this chapter, four lenient part of speech filters are employed to capture as many

terms as possible. Their performance is compared experimentally. The most basic,

Nouns, accepts sequences of nouns (N) only, since terms mainly consist of nouns:

N+ N (3.1)

The second, A&N, applies on sequences consisting of adjectives (A) and nouns ending

with a noun:

(A|N)+ N (3.2)

The third linguistic filter, J&K was introduced by Justeson & Katz (1995) and has been

widely used:

( (A|N)+ | (A|N)∗ (NP )? (A|N)∗ ) N (3.3)

Its first part is identical to A&N, whereas the second applies on sequences which start

with one or more nouns or adjectives, continue with a noun followed by a preposition

and end with zero or more nouns or adjectives followed by a noun. Justeson & Katz

(1995) used this filter to extract multi-word terms from large text collections in a variety

of domains -metallurgy, space engineering and nuclear energy- reporting coverage of

97% or 99% when prepositions are allowed.
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Nouns, A&N and J&K extract sequences of adjectives, prepositions and nouns. How-

ever, inspecting GENIA annotations revealed that approximately 6% of GENIA gold-

standard terms contain numbers. To capture those, we extended the linguistic filter of

Justeson & Katz (1995) (J&K) to J&K+Ns, so as to accept numbers (#) whenever it

accepts nouns or adjectives.

( (A|N |#)+ | (A|N |#)∗ (NP )? (A|N |#)∗ ) N (3.4)

The part of speech filter of equation 3.4 is more lenient than the one of equation 3.3,

because it also applies on numbers (#) and prepositions (P).

3.4 Statistical Automatic Term Recognition Approaches

Approaches to automatic term recognition have been largely based on statistical inform-

ation. However, most of them include some linguistic part; usually a linguistic filter, to

produce a list of candidate terms, as discussed in section 3.3. The statistical part assigns

to each candidate term a score indicating how likely the candidate is a valid term. The

simplest statistical measure is frequency of occurrence, which captures terms occurring

frequently in the corpus. Frequency of occurrence is used as a baseline in our evaluation,

since automatic term recognition approaches are expected to achieve superior perform-

ance than this simple technique.

Kageura & Umino (1996) define two important concepts relevant to automatic term

recognition. The first one, unithood, refers to the degree of strength of syntagmatic com-

binations or collocations. The second, termhood, refers to the degree that a candidate

term is related to a domain-specific concept. For example, in an eye-pathology corpus,

“soft contact lens” is a valid term, which has both high termhood and unithood. How-

ever, its frequently occurring substring “soft contact”, will have a high unithood and a

low termhood, since it does not refer to a key domain concept.

In the experimental part of this chapter, the termhood-based methods C-Value (sec-

tion 2.2.2.2.1), NC-Value (section 2.2.2.2.2) and statistical barrier (section 2.2.2.2.3),

and the unithood-based methods log-likelihood ratio (section 2.2.2.1.3.4) and pointwise

mutual information (section 2.2.2.1.4) are evaluated under the proposed framework, and

their performance is compared.
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3.5 Evaluation

In this section, we discuss the setting of the proposed evaluation framework under which

the previously discussed termhood-based and unithood-based automatic term recogni-

tion methods are evaluated. The experimental setting subsection (3.5.1) contains details

about the chosen corpora and their characteristics, a presentation of the employed eval-

uation metrics and an overview of the experiments executed. In succession, subsection

3.5.2 shows a number of representative experimental results and discusses the perform-

ance of automatic term recognition methods under evaluation. Finally, in subsection

3.5.3 we present an analysis of the termhood-based methods into their components,

which capture different sources of information about candidate terms. Results of sep-

arate evaluation of these components under the proposed framework are presented and

discussed to identify the most successful way of capturing nestedness.

3.5.1 Experimental setting

GENIA1 and PennBioIE2 were chosen for experimentation. They are widely used cor-

pora of the biomedical domain, freely available for research purposes. Both corpora con-

sist of abstracts from MEDLINE, a very large collection of biomedical articles, and terms

are manually annotated. GENIA (Gu 2006) contains 2, 000 abstracts. PennBioIE (Kulick

et al. 2004) contains 2, 257 coming from two biomedical domains: 1100 abstracts are

about inhibition of the cytochrome P450 family of enzymes, and 1157 abstracts are about

molecular genetics of cancer. In PennBioIE, quantitative values and units are separately

annotated, but these annotations were ignored for this evaluation. Table 3.1 shows stat-

istics of these two corpora that indicate their size in sentences, tokens and terms. As term

types, it reports the number of different categories in which the terms are classified. For

GENIA, these are classes of the GENIA ontology, while for PennBioIE they defined in

the annotation guidelines of the UPenn Biomedical Information Extraction Project.

Figure 3.5.1 shows an example sentence from the GENIA corpus. Term annotation

uses two xml attributes in parallel, the lexical attribute (lex), and the semantics attribute

(sem). Annotation attributes are presented in green, while their values in red colour. The

actual GENIA text is printed in blue.

1www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi
2bioIE.ldc.upenn.edu
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GENIA PennBioIE
sentences 18,546 32,692
tokens 454,848 712,551
terms 97,876 76,535
distinct terms 35,947 13,759
term types 36 22

Table 3.1: GENIA and PennBioIE corpus statistics

In contrast to PennBioIE, GENIA annotation terms are not part of the text, but of

separate xml attributes. Thus, GENIA gold-standard is created by collecting these xml

values and cleaning most non-alphanumerical characters. We observed that in a few

cases annotation tokens are not lemmatised (e.g. “activators of transcription”, “activating

function”) or erroneous (e.g. “latent proviru”). However, we hypothesise that a corpus

with low level of noise is acceptable for our purposes. The text of both GENIA and

PennBioIE was similarly cleaned. Then, both corpora were tokenised and part of speech

tagged using the GENIA tagger3.

Tables 3.2 and 3.3 show for various term lengths gold-standard term counts and

candidate term counts separately for the four linguistic filters introduced in section 3.3,

i.e. Noun (N), Adjective Noun (A&N), Justeson and Katz (J&K) or Justeson and Katz

+ Numbers (J&K+Ns). The first columns of tables 3.2 and 3.3 show gold-standard term

counts of GENIA and PennBioIE, respectively. The following columns present candidate

term counts, identified by each linguistic filter. Linguistic filters are shown in order of

descending strictness. For example, the A&N filter identified far fewer candidates than

the J&K. However, even the most strict filter, Nouns, creates more candidate terms than

the valid ones. Note that, for each column, the count of candidates of any length (in the

first row of tables 3.2 and 3.3) is not equal to the sum of allN -grams, because candidates

of any length include sequences up to 12 tokens long.

The standard information retrieval evaluation metrics precision and recall (Mikheev,

Moens & Grover Mikheev et al.; Radev et al. 2003) were used for evaluating automatic

3www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger
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<sentence>
<cons lex=“IL-2 gene expression” sem=“G#other name”>

<cons lex=“IL-2 gene” sem=“G#DNA domain or region”>
IL-2 gene

</cons>
expression

</cons>
and
<cons lex=“NF-kappa B activation” sem=“G#other name”>

<cons lex=“NF-kappa B” sem=“G#protein molecule”>
NF-kappa B

</cons>
activation

</cons>
through
<cons lex=“CD28” sem=“G#protein molecule”>

CD28
</cons>
requires reactive oxygen production by
<cons lex=“5-lipoxygenase” sem=“G#protein molecule”>

5-lipoxygenase
</cons>
.

</sentence>

Figure 3.2: Example GENIA sentence

term recognition statistical methods:

precision =
# correctly identified terms

# identified terms
(3.5)

recall =
# correctly identified terms

# gold-standard terms
(3.6)

F-Score is defined as the weighted harmonic mean of precision and recall:

F-Score = 2× precision× recall
precision + recall

(3.7)
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GENIA
Length GS N A&N J&K J&K+Ns

Any 28,142 29,751 69,457 85,978 138,251
2-grams 12,654 17,103 33,021 33,021 36,866
3-grams 9,051 8,813 21,401 28,071 37,146
4-grams 3,839 3,199 9,356 15,204 29,803
5-grams 1,559 1,020 3,699 6,339 18,099
6-grams 606 297 1,317 2,239 9,005

Table 3.2: Gold-standard (GS) term counts and candidate term counts per linguistic filter
and term length in the GENIA corpus.

PennBioIE
Length GS N A&N J&K J&K+Ns

Any 7,447 46,519 80,205 99,194 178,939
2-grams 4,034 28,489 44,072 44,072 58,086
3-grams 1,820 11,421 22,530 31,930 49,570
4-grams 821 4,157 8,629 14,945 35,746
5-grams 388 1,486 3,070 5,447 20,019
6-grams 207 694 1,172 1,822 9,105

Table 3.3: Gold-standard (GS) term counts and candidate term counts per linguistic filter
and term length in the PennBioIE corpus.

F-Score favours for roughly equal values of precision and recall, which is meaningful

for the automatic term recognition task.

Tables 3.4 and 3.5 show precision and recall for every linguistic filter for candidates

of any length andN -grams for both corpora. A first observation is that all liguistic filters

achieve in these corpora much lower recall than previously reported for the J&K filter.

Justeson & Katz (1995) reported a recall of 99% in a large text collection in a variety of

domains. Secondly, we observe that the less strict a filter is, the higher the recall and the

lower the precision. A&N achieve the best compromise between recall and precision.

Statistical methods for automatic term recognition re-rank the list of candidates, aiming

to output the real terms higher than non-term candidates. Thus, considering the whole

list, the performance of all statistical methods is the same as the corresponding value of

table 3.4 or 3.5, with respect to the employed corpus, candidate term length and linguistic
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GENIA
Nouns A&N J&K J&K+Ns

Length R P R P R P R P

Any 35.4 33.5 80.2 32.5 80.2 26.3 85.4 17.4
2-grams 48.1 35.6 88.0 33.7 88.0 33.7 90.6 31.1
3-grams 31.9 32.8 80.4 34.0 80.5 25.9 84.5 20.6
4-grams 21.3 25.5 67.0 28.7 70.4 17.8 78.9 10.2
5-grams 14.9 22.7 63.8 26.9 64.2 15.8 77.0 6.6
6-grams 9.2 18.9 54.5 25.1 54.5 14.7 71.0 4.8

Table 3.4: Recall (R) and precision (P) percentages (%) per linguistic filter and length of
candidate term in the GENIA corpus.

PennBioIE
Nouns A&N J&K J&K+Ns

Length R P R P R P R P

Any 37.2 6.0 63.1 5.9 63.7 4.8 76.1 3.2
2-grams 52.6 7.5 78.1 7.1 78.0 7.1 90.6 6.3
3-grams 26.8 4.3 60.7 4.9 61.6 3.5 73.1 2.7
4-grams 15.8 3.1 42.8 4.1 45.2 2.5 56.5 1.3
5-grams 4.7 1.2 17.1 2.2 18.7 1.3 38.3 0.7
6-grams 3.9 1.3 13.0 2.3 13.5 1.5 24.6 0.6

Table 3.5: Recall (R) and precision (P) percentages (%) per linguistic filter and length of
candidate term in the PennBioIE corpus.

filter.

As discussed in subsection 2.2.2.1.3.4, the log-likelihood ratios method can only be

applied separately for sequences of a specific length. We implemented the extended

log-likelihood ratios algorithm for N -grams, N ∈ [2, 6]. There are only 433 GENIA

gold-standard terms and 177 PennBioIE gold-standard terms longer than 6 tokens, very

few to experiment with. The results of the log-likelihood ratios algorithm for different

values of N are not comparable to each other. Thus, we set separate experiments up for

each value of N ∈ [2, 6].

For example, for 2-grams we first apply a linguistic filter to identify candidates of

which we keep 2-grams only. Then, 2-grams are re-ranked according to one of the
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Length

Any
2-grams
3-grams
4-grams
5-grams
6-grams

Linguistic filter

Nouns
A&N
J&K

J&K+Ns

Statistical approach

C-Value
NC-Value

PMI (N -grams only)
LL (N -grams only)

SB (Nouns and A&J only)

Table 3.6: Executed experiments

implemented statistical methods: pointwise mutual information, log-likelihood ratio, C-

value, NC-Value or statistical barrier. Evaluation is performed towards the 2-gram gold-

standard terms. Experiments for the other values of N were set up identically.

Except forN -grams, we ran experiments taking into account sequences of any length,

equal or higher than 2. For each one, candidate terms are identified using one of our four

linguistic filters: Nouns, A&N, J&K or J&K+Ns. Then, one of C-Value, NC-Value or

statistical barrier re-ranking method is applied. The results are compared against the

whole gold-standard term set. Note that the statistical barrier method makes sense only

when it follows the Nouns or the A&N linguistic filter. Table 3.6 summarises all ex-

ecuted experiments, referring to the combination of length of candidate terms, filtering

and statistical approach used.

The NC-Value algorithm takes as input a list of candidates, ranked by the C-value

algorithm and is subject to two parameters: the percentage of the list, starting from the

top, that it will take into account to identify context terms and the size of the context

window. We experimented using values 5%, 7.5% and 10% for the former one and 2, 4,

6, 8, 10 for the latter.

To visualise the results, we employed an approach similar to the one defined in Wer-

mter & Hahn (2004). Recall and precision values were calculated at 0.5% increments of

the candidate list and plotted on graphs, such as figures 3.3 and 3.4. For each increment

on the list, precision refers to the ratio of true positives over the overall number of can-

didates and recall refers to the ratio of true positives over the number of gold-standard

terms. The x-axis shows the percentage of the list taken into account. Frequency of

occurrence is used as baseline.

Intuitively, the precision curve of a bad performing method would be relatively ho-
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rizontal indicating that the true positives were dispersed uniformly throughout the list

rather than pushed towards the top. Contrarily, the precision curve of a well-performing

method would be 100% until the percentage point at which all gold-standard terms would

have been retrieved, where a sharp decrease would occur (McInnes 2004).

3.5.2 Results

Figure 3.3 shows the 2-gram precision and recall curves of NC-Value for all 15 para-

meter combinations using the J&K linguistic filter on GENIA corpus. We observe that

different combinations do not significantly alter the results. This behaviour remains the

same for all linguistic filters and for all term lengths. Interestingly, for all the above ex-

periments the performance of C-Value and NC-Value is almost identical, both for GENIA

and PennBioIE.

Figure 3.4 shows the F-Score curves for 3-gram candidate terms of GENIA and Pen-

nBioIE as identified by the Nouns linguistic filter. We observe that termhood-based

methods outperform unithood-based ones. Statistical barrier, C-Value and NC-Value

perform similarly with statistical barrier having a slightly better F-Score on GENIA,

where statistical barrier achieves superior performance followed by C-Value and NC-

Value, for all 0.5% increments of the candidate list up to 60%. After that point their

performance is similar. The ranking of automatic term recognition methods remains the

same as in figure 3.4 for any N -gram using both the Nouns and the A&N linguistic filter,

on both corpora.

Pointwise mutual information curves are below the baseline on both corpora. On

the contrary, log-likelihood ratio outperforms the baseline of frequency of occurrence

on PennBioIE but not on GENIA. The main reason for pointwise mutual information

performing worse than log-likelihood ratio is that the former overestimates rare events,

which seem to dominate the candidate lists created by any linguistic filter. For example,

according to table 3.2 A&N identifies 69, 457 GENIA candidate terms. 52, 998 occur

only once, and 16, 459 twice. Log-likelihood ratio also overestimates rare events, but

its overall behaviour is better than pointwise mutual information (Manning & Schutze

1999).

Figure 3.5 shows the precision and recall curves for 3-gram candidate terms of

GENIA as identified using by the J&K+Ns linguistic filter. The performance forN -gram

candidate terms as identified by J&K and J&K+Ns demonstrate the following trends: On
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Figure 3.3: NC-Value results on GENIA 2-grams. J&K filter. Precision, recall and F-
Score.
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Figure 3.4: Statistical methods on GENIA and PennBioIE 3-grams. Noun filter. F-Score.

GENIA the highest performance is achieved by statistical barrier, C-value and NC-Value

methods throughout the plots. The remaining methods in order of decreasing F-Score

are: frequency of occurrence, log-likelihood ratio and pointwise mutual information.

The bigger N is, the closer raw frequency, log-likelihood ratio and pointwise mutual

information curves are to each other.

In PennBioIE, the performance differences between frequency of occurrence, log-

likelihood ratio, C-value, NC-Value and statistical barrier are insignificant, while point-

wise mutual information clearly performs worse. In this corpus we observe that termhood-



128 Analysing Automatic Term Recognition Methods Chapter 3

Figure 3.5: Statistical methods on GENIA 3-grams. J&K+Ns filter. Precision, recall and
F-Score.
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based methods have a comparable performance with the baseline. 6-gram results follow

the same trends in general, but they are not very reliable due to the small number of

candidates.

On both corpora for candidates of any length identified by Nouns and A&N, statistical

barrier, C-Value and NC-Value methods exceed the baseline of frequency of occurrence,

achieving similar levels of performance. Using the J&K and J&K+Ns, the performances

of C-Value, NC-Value and frequency of occurrence are similar for increments up to

10% of the candidate list for both corpora. In GENIA, for increments between 10% and

30%, frequency of occurrence performs better than C-Value and NC-Value. The same

behaviour happens in PennBioIE for increments between 10% and 50%. After 30% in

GENIA and 50% in PennBioIE, C-Value and NC-Value perform better than frequency of

occurrence.

3.5.3 Further Experiments and Results

In the previous section, results show that termhood-based methods re-rank the candidate

list equally well or better than unithood-based methods, irrespective of the length of the

candidate terms and the linguistic filter used. A possible reason is that unithood-based

methods measure the strength of attachment of the candidate term constituents, in effect

assigning high scores to candidate terms, which might not refer to domain specific con-

cepts. For example, in GENIA, “allergic inflammatory”, substring of the term “allergic

inflammatory disease”, occurs at least equally often as the term, although the former

is not a term itself. In contrast, unithood-based methods do not consider that although

substrings of multiword terms might occur often, they might not be actual terms.

The only setting in which a unithood-based method, in particular log-likelihood ra-

tio, performed equally well to the termhood-based methods was when using J&K or

J&K+Ns to extract N -gram candidates from PennBioIE. A possible explanation for this

peculiarity is the limited amount of nestedness information in PennBioIE, which de-

grades the performance of termhood-based approaches. Particularly for 3-grams the

average nested frequency in PennBioIE is 1.03, while in GENIA is 1.16. Note that Pen-

nBioIE is almost double the size of GENIA.

C-Value and NC-Value exploit nestedness information, in the sense that the more

often a candidate appears as nested, the less likely it is a valid term. Statistical barrier

considers this information indirectly; through marginal frequency counts. NC-Value
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attempts to improve C-Value ranking, by exploiting contextual information. However,

NC-Value appears unsuccessful under our evaluation scheme. To investigate this, we

executed an experiment, in which we adjusted the interpolation constant of equation

2.38 to assess the contribution of the context factor (CF ) only.

Precision curves are almost uniform across most of the plot. Our results appear

in apparent contradiction with the results of Frantzi et al. (2000). It is reported that

NC-value successfully rearranges the term candidate list and leads to a 5% increase in

precision close to the top of the list. Frantzi et al. (2000) used for their experiments a

corpus consisting of eye-pathology medical records. Our experiments showed that NC-

Value achieves exactly the same precision as C-value. A possible reason for this outcome

might be the nature of the corpora, in which contextual information are possibly not

strong enough.

Statistical barrier exploits two sources of information: firstly, GM (equation 2.39),

assumes that complex terms consist of existing simple terms. Secondly, MF (equation

2.40), refers to the marginal frequency counts. To evaluate the contribution of each, we

executed two experiments, which re-rank the candidate term list taking into account GM

and MF, separately.

The resulting precision, recall and F-Score plots on GENIA are shown in figure 3.6.

Interestingly, precision of GM is roughly uniform. This means that it contributes neg-

atively to statistical barrier throughout the plot. On the contrary, marginal frequency

successfully redistributes candidates towards the top of the list. Thus, the corresponding

precision curve is higher than the curve of statistical barrier in the x-axis interval [0%,

30%]. The same experiments on PennBioIE verified these results.

Our results contradict with the results of Nakagawa (2000), who used the NTCIR1

TMREC test collection for their experiments. They compared GM to SB and concluded

that it performs slightly worse, especially close to the top of the term candidate list.

For our data, this difference appears to be large. However, no experimental comparison

between MF and either GM or SB is reported.

The C-Value algorithm hypothesises that the more frequently a candidate term ap-

pears as nested the less likely it is a valid term. It also considers that a candidate oc-

curring as substring of many distinct candidates is possibly a valid term itself. Hence,

C-Value calculates a weighted version of marginal frequency, which we call here modi-
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Figure 3.6: GENIA sequences of any length, Nouns filter, various methods, Precision,
Recall and F-Score.
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fied marginal frequency. Recall the definition of C-Value score:

C-value(ct) =

 log2 (|ct|)× [f(ct)−NST (ct)] , if ct is nested

log2 (|ct|)× f(ct), otherwise

NST (ct) is the ratio of the frequency of the candidate as nested over the number of

distinct terms, in which it appears nested. In the previous equation, modified marginal

frequency (MMF) is defined as:

MMF (ct) = f(ct)−NST (ct) (3.8)

To examine the effect of modified marginal frequency in C-Value, we replaced mod-

ified marginal frequency in the C-Value equation with marginal frequency. Results show

that the new version of C-Value, using marginal frequency, outperforms the original

C-Value. Thus, marginal frequency captures nestedness better than modified marginal

frequency, in this evaluation setting. However, figure 3.6 shows that marginal frequency

outperforms even this modified version of C-Value, for increments up to 25% of the

candidate list.

3.6 Summary

In this chapter we proposed an evaluation framework for evaluating automatic term re-

cognition methods under common terms, so as to be able to compare their performance.

The framework consists of the evaluation corpora, chosen evaluation metric and visu-

alisation of the results. Two freely available, widely used, manually annotated corpora

of the biomedical domain were used: GENIA and PennBioIE. To assess performance

the standard information retrieval metrics were adopted: precision, recall and F-Score.

Results are plotted at a scale of 0.5% increments of the candidate term ranked list, the

output of the statistical method under evaluation.

Using the proposed evaluation framework, we thoroughly evaluated a handful of

state-of-the-art linguistic filters and statistical automatic term recognition methods. We

discussed and compared the results to identify the strengths and weaknesses of each

method and experimentally showed that termhood-based approaches, which are based

on nestedness information, outperform unithood-based methods, which measure the
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strength of association among the constituents of a multiword candidate term.

Secondly, further experiments which evaluated separately each component of the

termhood-based methods showed that marginal frequency comprises the most effective

source of nestedness information for automatic term recognition. Marginal frequency

is defined as the number of independent occurrences of a term, i.e. not nested in other

candidate terms. Marginal frequency clearly improves the performance of C-Value and

statistical barrier. Even more interestingly, it performs by itself better that these more

sophisticated termhood-based methods, under the current evaluation framework.



CHAPTER 4

Resolving Compositionality

Executive Summary

In this chapter we propose a new unsupervised approach to decide compositionality of

some classes of multiword expressions: compound nominals, proper names and adjective-

noun constructions, in English. The approach attempts to exploit the contribution of

sense induction towards this purpose. Partitioning the context distribution of a multi-

word expression and its semantic head before comparing them is expected to enhance

the ability of judging it as compositional or not. The reason is that in many cases, a mul-

tiword expression is ambiguous; it sometimes occurs with compositional senses while

sometimes with non-compositional ones.

The evaluation set was extracted from WordNet. A semi-supervised algorithm that

minimises human effort is proposed to add compositionality judgements to the multi-

word expressions test set. Results showed that sense induction can assist in identifying

compositional multiword expressions when estimating parameter values manually.

In the second part of this chapter, we propose an unsupervised scheme for estimating

the parameters of graph-based sense induction systems. It exploits several measures

which assess how well connected are the induced clusters that represent the senses of a

multiword expression or semantic head. These clusters correspond to partitions of the

corresponding context distributions. Experiments show that graph connectivity measures

134
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are able to identify useful differences regarding the degree of connectivity of induced

clusters for different parameter combinations. Hence, they be can successfully applied

since they achieve comparable performance with manually choosing the best performing

parameters.

4.1 Introduction

This chapter presents our research in resolving the compositionality of multiword ex-

pressions. The notion of compositionality was discussed in section 1.1. It refers to the

degree to which the meaning of a multiword expression can be predicted by combining

the meanings of its components. For example, black maria is non-compositional, since

it does not refer to a person called Maria whose skin is black. Black maria refers to a

special police van for transporting prisoners and also to the first American movie pro-

duction studio in West Orange, New Jersey. In contrast, parking brake is compositional,

since it is a brake that is in use while a vehicle is parked.

Semantic compositionality is continuous (Baldwin 2006) and, thus exhibits various

levels. For example fish finger is a non-compositional expression, because it does not

refer to the finger of a fish. However, it refers to finger-shaped food which contains fish.

One can observe that the semantics of black maria are more dissimilar to the semantics

of its components than the semantics of fish finger to the semantics of its components.

Another example is high jump, which is also non-compositional because it refers to the

Olympic sport and not to any case of jumping high. However, the sport includes exactly

what the expression says; jumping high. Thus, one can argue that high jump is less

non-compositional than fish finger and much less non-compositional than black maria.

In section 2.4 of the literature survey of this thesis, we reviewed a number of ap-

proaches attempting to decide compositionality of various types of multiword expres-

sions. In general, methods can be classified as context distribution-based or substitution-

based. Context distribution-based methods build on the distributional hypothesis and on

the definition of compositionality. They compare a combination of the context distribu-

tions of the constituents of the target multiword expression to the context distribution

of the target multiword expression itself. Substitution-based methods address compos-

itionality in an indirect way; they substitute one or more components of a multiword

expression candidates and decide how syntactically rigid is the candidate by looking at

how probable the result of the substitution is. High syntactic rigidity characterises insti-
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tutionalised expressions and substitution-based methods hypothesise that most of them

are non-compositional, as well. This assumption has been largely criticised in the liter-

ature (Bannard et al. 2003).

We identified that only very few methods take into account the fact that some mul-

tiword expressions appear both as compositional and non-compositional. For example,

green light is non-compositional in most cases, because it refers to acceptance, a signal

to continue or approval. However, in the sentence “The traffic lights were not work-

ing because a technician was replacing the green light bulb” the multiword expression

appears as compositional. Fazly & Stevenson (2007) and Fazly et al. (2009) support a

per-instance view to the issue of compositionality of multiword expressions. They hypo-

thesise that non-compositional occurrences are less syntactically flexible than composi-

tional ones and employ the canonical forms of Fazly & Stevenson (2006) to distinguish

compositional versus non-compositional instances.

In this chapter, we inspect the extent to which sense induction can serve as a com-

ponent to decide multiword expression compositionality in a unsupervised manner. In

particular, sense induction is employed to partition the context distribution of a target

multiword expressions and its governing component.

We propose a novel unsupervised approach that compares the major senses of a mul-

tiword expression and its semantic head using context distributions and distributional

similarity measures to decide multiword expression compositionality. The senses under

comparison are induced by a graph-based sense induction system. The method partitions

the context space and only uses the major senses, filtering out minor senses.

Secondly, we propose an unsupervised manner to estimate the free parameters of

graph-based sense induction systems. It explores a number of graph connectivity meas-

ures, which are able to assess the quality of the induced senses. Given a parameter set-

ting and the associated induced clustering solution, each induced cluster corresponds to

a subgraph of the original unclustered graph. A graph connectivity measure scores each

cluster by evaluating the degree of connectivity of its corresponding subgraph. Each

clustering solution is then assigned the average of the scores of its clusters. Finally,

the highest scoring solution is selected, without any need of manually tagged data. The

above unsupervised parameter tuning scheme is then applied to estimate the parameters

of the proposed system for resolving compositionality.

The proposed method is evaluated on compound nominals, proper names and adjective-
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noun constructions. We propose a semi-supervised approach for distinguishing com-

positional versus non-compositional multiword expressions extracted from WordNet, to

decrease annotation cost.

The results show that, firstly, sense induction can assist in identifying compositional

multiword expressions. Secondly, unsupervised parameter tuning, employing graph con-

nectivity measures, results in accuracy that is comparable to the best manually selected

combination of parameters.

The remaining of this chapter is structured as follows: In section 4.2 the proposed

method is described in high level. It is followed by subsections 4.2.1, 4.2.2, 4.2.3, 4.2.4

each of which describes one of the components of the system. Subsection 4.2.2 describes

the employed sense induction component, although the proposed method is able to co-

operate with any other sense induction component. The only restriction is that is should

be based on graphs, so that the unsupervised parameter scheme of section 4.6 can be

applied. Section 4.3 discusses how the multiword expression test set was constructed. It

includes a semi-supervised algorithm able to construct a set with compositionality an-

notation with minimum human intervention. In section 4.4 we describe all evaluation

setting details and in section 4.5 we present and discuss the evaluation results, when

estimating parameter values manually. Section 4.6 present an unsupervised parameter

tuning scheme based on graph connectivity measures and section 4.7 shows the results

of applying the scheme for the current task. Section 4.10 summarises the chapter.

4.2 Sense induction for resolving compositionality

Let us consider an example multiword expression to aid explaining the functionality of

the proposed system in high level. The non-compositional multiword expression “red

carpet” mainly refers to a strip of red carpeting laid down for dignitaries to walk on.

However, it is possible to encounter instances of “red carpet” referring to its minor sense;

any carpet of red colour. The context distribution of a multiword expression, created

over the contexts of all its instances in a corpus, is the sum of the context distribution

of its senses and represents them all together. The context distribution of “red carpet”

represents both the non-compositional and compositional senses, concurrently.

According to most methods found in the literature, one can decide compositionality

of a multiword expression by comparing its context distribution to a combination of the

context distribution of its components. Given that a compound nominal, proper name
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or adjective-noun construction is compositional, its semantics can be approximated by

the semantics of its semantic head. Words of the multiword expression other than the

semantic head most likely modify the semantics of the head. Combining the above, mul-

tiword expression compositionality can be decided by comparing the context distribution

of the multiword expression to the context distribution of its semantic head.

Returning to the example, the context distribution of “red carpet” should be com-

pared to the context distribution of “carpet”. Given that the former represents both the

non-compositional and compositional senses of the multiword expression together, the

comparison will result in a lowest value than it would if the context distribution of “red

carpet” was representing its non-compositional sense, only. In other words, if a multi-

word expression occurs both with non-compositional and compositional senses, then the

context distributional methods to decide compositionality are likely to fail. The more

frequent the compositional sense of the multiword expression is, the more likely distri-

butional methods are expected to fail.

To address this problem, we propose to partition the context distribution of the mul-

tiword expressions and of its semantic head before comparing them. In contrast to Fazly

& Stevenson (2007) and Fazly et al. (2009), we choose to address the problem of resolv-

ing compositionality on a type-basis; i.e. we intend to develop a system that will be able

to decide compositionality of a given multiword expression independently of context.

Thus, we assume that when people listen to a multiword expression they decide whether

it is compositional or not according to its most frequent sense (major sense). For ex-

ample, we assume that the question “Is red carpet compositional or not?” will in general

be answered positively, since its major sense is non compositional.

Consequently, our approach partitions the context distributions of the multiword ex-

pression and its semantic head and in succession compared their major induced senses

to decide whether the multiword expression is compositional or not. The more di-

verse the major induced senses are, the more possibly the multiword expression is non-

compositional. Figure 4.1 shows an overview of the proposed system.

The proposed algorithm consists of 4 steps:

4.2. 1: Corpora collection and preprocessing

4.2. 2: Sense induction of the multiword expression and its semantic head

4.2. 3: Comparison of their major induced senses

4.2. 4: Determining compositionality of the target multiword expression
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Figure 4.1: System overview

4.2.1 Corpora collection and preprocessing

The proposed approach receives as input a multiword expression, for example “red car-

pet”. The input multiword expression is passed to Stanford Parser (Klein & Manning

2003). Its dependency output is inspected to locate the multiword expression’s semantic

head. This semantic head identification is shown on the left side of figure 4.1.

In most cases, locating the semantic head of a compound nominal or a proper name

in English is easy, since it is usually the last word. However, there are cases that this is

not true; for example in the multiword expression “prince Albert”. Moreover, this is not

true in other languages, such as in French.

Two different corpora are collected; one containing instances of the multiword ex-

pression and one containing instances of its semantic head. Each corpus consists of

webtext snippets of length 15 to 200 tokens. Most search-engines return 1000 urls per

query, which is some cases provides insufficient data for the task. Thus, we employed

WordNet to expand the target multiword expression or its semantic head into a larger set

of queries.

Given a multiword expression, a set of queries can be created as follows: All syn-
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onyms of the multiword expression in WordNet are collected. The multiword expression

is paired with each synonym to create a new queries. For example, the synonyms of “red

carpet” are “rug”, “carpet” and “carpeting”, creating the following queries:

1: “red carpet”

2: “red carpet” rug

3: “red carpet” carpet

4: “red carpet” carpeting

In succession, an html-parser is employed to extract web-text snippets of length 15 to

200 tokens from each url returned by Yahoo!. The union of all snippets produces the

multiword expression corpus. The corpus for a semantic head is created equivalently.

To keep the computational time reasonable, only 3, 000 snippets of medium length

are kept from each corpus. The corpora corresponding to each multiword expression and

semantic head pair are part of speech tagged using the GENIA tagger. In common with

Agirre et al. (2006), only nouns are kept and lemmatised, since they are more discrimin-

ative than verbs adjectives and adverbs, which may appear in many different contexts.

4.2.2 Sense Induction

The senses of a word or a multiword expression are traditionally represented as a fixed-

list of definitions of a manually constructed lexical database. The fixed-list of senses

paradigm has several disadvantages. Firstly, lexical databases often contain general

definitions and miss many domain specific senses (Agirre et al. 2001). Secondly, they

suffer from the lack of explicit semantic and topical relations between concepts (Agirre

et al. 2001). Thirdly, they often do not reflect the exact content of the context in which

the target word or expression appears (Veronis 2004). Automatic sense induction aims

to overcome these limitations of hand-constructed lexicons.

Practically, any unsupervised approach able to derive a set of senses of a given ex-

pression can be used as a component of our algorithm. Sense induction methods can

be broadly divided into vector-space models and graph based models. In vector-space

model SI, each context of a target word is represented as a feature vector. The dimen-

sions of feature vectors are usually cooccurring words and the corresponding values are

the cooccurrence frequencies. (For more details on this issue see subsection 2.3.1). Con-

text vectors are clustered and the resulting clusters represent the induced senses.
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Recently, graph-based methods have been used for sense induction (Dorow & Wid-

dows 2003; Veronis 2004; Agirre & Soroa 2007b). Typically, graph-based approaches

represent each word cooccurring with the target expression, within a pre-specified win-

dow, as a vertex. Two vertices are connected via an edge if they cooccur in one or more

contexts of the target expression. Once the cooccurrence graph has been constructed,

different graph clustering algorithms are applied to induce the senses. Each cluster (in-

duced sense) consists of a set of words that are semantically related to the particular

sense (Veronis 2004).

Sense induction methods are evaluated under the SemEval-2007 framework (Agirre

& Soroa 2007a). The potential advantage of graph-based methods is that they can com-

bine both local and global cooccurrence information (Agirre et al. 2006). The latest

effort to systematically evaluate sense induction systems took place in SemEval-2007 -

Evaluating Word SI and Discrimination Systems task (Agirre & Soroa 2007a)1. Parti-

cipants were asked to induce the senses of words in an unlabelled corpus and to cluster

their instances. Systems were evaluated according to an unsupervised and a supervised

scheme.

We reviewed all sense induction systems that were evaluated under this framework

and chose the best performing one. Klapaftis & Manandhar (2008) propose a graph-

based system that exploits the limited polysemy of collocations and small world proper-

ties of collocational graphs. It is shown to perform consistently well in both evaluation

schemes, mainly because it represents context as collocations, which are much less am-

biguous than single tokens. It usually induces a few more clusters than the gold-standard

senses, but due to their small size their effect on F-Score is minor. The method leads

to a skewed distribution of instances that the induced senses disambiguate, similar to

the power law, that describes the gold-standard senses. However, using collocations as

context is more vulnerable to data sparsity than using single words.

Figure 4.2 presents a running example, which describes an overview of the applic-

ation of the chosen sense induction system for the multiword expression “red carpet”.

The left side of part I shows the nouns of each of the four input snippets A-D of a really

small corpus. In this work, a collocation is defined as a pair of nouns cooccurring within

a snippet. Part II shows the collocations created by pairing the nouns of the example

snippets in the left side of part I. The right side of part I shows the set of collocations that

1The Word Sense Induction task of SemEval-2010 is running as this thesis is being written
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Figure 4.2: “red carpet”, sense induction example

corresponds to each snippet A-D. The sense induction method consists of 3 stages:

4.2.2. 1: Locating semantically important nouns

4.2.2. 2: Graph creation

4.2.2. 3: Graph clustering

4.2.2.1 Locating semantically important nouns

The target of this stage is to inspect the paragraphs of the base corpus, i.e. the corpus

collected for a multiword expression or its semantic head, so as to determine which

nouns are related and filter out the remaining. Kept words, topically and potentially

semantically related to the target multiword expression or semantic head, will form the

collocations in the next stage.

For filtering out common nouns which are noisy; i.e. contextually not related to the

target, a large reference corpus is employed for frequency comparisons. We used Web
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1T 5-gram Corpus (Brants & Franz 2006) as a reference corpus. Initially, the target

multiword expression or the semantic head is removed from the base corpus. Then, log-

likelihood (Dunning 1993) is employed to compare the distribution of each noun in the

base corpus to its distribution in the reference corpus. The null hypothesis is that the

two distributions are similar. Let n be a noun, b the base corpus and c the reference

corpus; then the null hypothesis can be written as: p(n|b) = p(n|r) The smaller the

log-likelihood value, the most similar these two distributions are. If the log-likelihood

value is less than a predefined threshold, P1, and the corresponding noun is removed.

The log-likelihood filtering process identifies nouns that are more indicative in the

base corpus than in the reference corpus and vice versa. However, we are only interested

in nouns which have a distinctive frequency in the base corpus. To filter out nouns with

a distinctive frequency in the reference corpus relative frequency can be used. Target

nouns cw whose relative frequency in the base corpus is less than their frequency in the

relative corpus are filtered out. At the end of this stage, each snippet in the original base

corpus is transformed into a list of nouns which are assumed to be contextually related

to the target multiword expression or semantic head. In the running example of figure

4.2 the left side of part I shows the selected nouns for each snippet A-D.

4.2.2.2 Graph creation

Graph creation consists of choosing the vertices and edges of the graph and computing

edge weights. A collocation is defined as a pair of nouns cooccurring within a snippet

of the base corpus. Each noun within a snippet is combined with every other, generating(
n
2

)
collocations. For our running example, the collocation set corresponding to each

snippet is shown on the right side of part I in figure 4.2. Part II explains the collocation

numbering.

Each collocation is assigned a weight, measuring the relative frequency of the two

cooccurring nouns. Let collocation cij consist of nouns i and j. Let fx be the number of

paragraphs in which noun x occurs, and fxy the number of paragraphs in which nouns

x and y cooccur. The weight, wij , corresponding to collocation cij is defined as the

average of conditional probabilities of nouns i and j:

wij =
1

2
[p(i|j) + p(j|i)] =

1

2

[
fij
fj

+
fij
fi

]
(4.1)
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For example, see w9 in part III of figure 4.2.

In contrast to Klapaftis & Manandhar (2008), the computation of these conditional

probabilities was not based on frequency counts of i and j in the base corpus. Using col-

locations as context suffers from data sparsity and thus frequency counts obtained from

web-corpora are very weak to depend upon. Instead frequencies of nouns or collocations

were estimated as the number of web-pages, in which they occur together with the target

expression according to the Yahoo! search engine.

Only collocations whose frequencies and weights are greater than the prespecified

thresholds P2 and P3, respectively, are represented as graph vertices. In the example of

figure 4.2, “bedroom entrance”, was filtered out. This filtering appears to compensate for

inaccuracies in the log-likelihood threshold, and for low-frequency distant collocations

that are ambiguous.

Collocations which survive the previous thresholds are represented as graph vertices.

Two vertices are connected with an edge, if they cooccur, in one or more snippets of the

base corpus. The weight, wab, of an edge connecting vertices va and vb that correspond

to collocations a and b is computed as the maximum of their conditional probabilities,

p(a|b) and p(b|a):

wab = max [p(a|b), p(b|a)] = max

[
fab
fb
,
fab
fa

]
(4.2)

Frequencies of collocations and collocation pairs were again estimated by the number

web-pages returned by Yahoo!. As a collocation weight example, see w8,12 in part III

of figure 4.2. Only, the largest connected component of the resulting graph was kept.

Possible smaller disconnected components were discarded, such as the component con-

sisting of collocations 10, 11 and 16 in figure 4.2. The output of this stage is a connected

graph consisting of weighted vertices which represent collocations and weighted edges

which represent collocation cooccurrences.

4.2.2.3 Graph clustering

In this stage, the collocational graph is clustered to produce the senses of the target

word. Each cluster correspond to a sense. In part III of figure 4.2 the coloured clouds

correspond to different clusters or in other words induced senses.

The clustering method employed is Chinese Whispers (Biemann 2006). Chinese
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Whispers is a randomised graph-clustering method, time-linear to the number of edges.

It offers the advantage that it does not require any input parameters, since the number of

clusters it produces is automatically inferred. It is not guaranteed to converge, but exper-

imentation showed that very few changes occur after a small number of iterations, such

as 20. Thus, 200 was adopted as the maximum number of iterations for the experiments

of this chapter, a number that seems more than enough to cover any extreme cases.

Chinese Whispers works as follows: Initially, it assigns all vertices to different

clusters. Each vertex is processed for a number of iterations and inherits the strongest

cluster in its local neighbourhood in an update step. Local neighbourhood is defined as

the set of vertices which share an edge with the current one. In each iteration for the

current vertex i, each cluster, cl, receives a score equal to the sum of the weights of

edges (i, j), where j has been assigned to cluster cl. The maximum score determines the

strongest cluster. In case of multiple strongest clusters, one is chosen randomly. Clusters

are updated immediately, meaning that a vertex can inherit from its local neighbourhood

clusters that were introduced in the same iteration.

Evaluation of Chinese Whispers has shown that it suits sense induction applications

well, because the class distributions are often highly skewed. Our experiments showed

that Chinese Whispers produces less clusters using a constant mutation rate (5%). Thus,

we adopted this mutation rate for all experiments.

Our experiments agree with Klapaftis & Manandhar (2008) where it is reported that

Chinese Whispers produces larger number of clusters than expected. To reduce it we

exploit the one sense per collocation property (Yarowsky 1995) to develop a cluster

merging technique. Given two clusters li and lj , we compute the sets of snippets Si and

Sj that contain at least one collocation of li and lj , respectively. Clusters li and lj should

be merged if Si ⊆ Sj or if Sj ⊆ Si. In other words, two clusters are merged if the set of

snippets that one of them disambiguates is a subset of the set of snippets disambiguated

by the other.

4.2.3 Comparison of major induced senses

We used two techniques to measure the distributional similarity of the major senses of

the multiword expression and its semantic head. “Major sense” denotes the cluster of

collocations which disambiguates the most snippets in the base corpus, i.e. the cluster

whose collocations occur in the most snippets. In all our experiments, the major sense is
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the cluster that consists of the most collocations. For example in part III of figure 4.2 the

left side cluster in red is the major sense while the right side cluster in yellow is a minor

one.

Both techniques are based on Jaccard coefficient which was discussed in section

2.3.3. A comparison of different similarity measures shows that Jaccard coefficient per-

forms better than other symmetric similarity measures such as Cosine, Euclidean dis-

tance, Jensen-Shannon divergence, etc. (Lee 1999). Jaccard coefficient is a combinator-

ial measure that computes the similarity of two sets as the cardinality of their intersection

over the cardinality of their union. The first distributional similarity measure that we use

is Jaccard coefficient on sets of collocations: Let A and B be two sets of collocations.

Then, Jaccard coefficient on sets of collocations, Jc, is defines as:

Jc = J(A,B) =
|A ∩B|
|A ∪B|

(4.3)

Usually, the major use of the head of the multiword expression is much larger in

number of collocations than the major use of the multiword expression itself. Thus,

Jaccard coefficient on sets of collocations is usually very close to 0, restricting its dis-

criminating ability. To overcome this problem we used a second distributional similarity

measure, Jaccard coefficient on snippets. It computes similarity based on the number of

snippets that are tagged by the induced senses. Let Ki be the set of snippets in which

at least one collocation of the sense i occurs. Given that j and k are the major uses

of the multiword expression and its semantic head, respectively, Jaccard coefficient on

snippets, Jsn, is computed as:

Jsn = J(Kj ,Kk) =
|Kj ∩Kk|
|Kj ∪Kk|

(4.4)

4.2.4 Determining compositionality

At this stage, the major sense of the each multiword expression has been compared to

the major sense of its semantic head. For this comparison, either Jaccard similarity on

sets of collocations or Jaccard similarity on disambiguated snippets has been employed.

The result of this comparison should be used to judge the corresponding multiword ex-

pression as compositional or not.

For this purpose we introduce a threshold. A multiword expression is considered
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as compositional, if the corresponding distributional similarity measure value is above a

parameter threshold, sim. Otherwise, it is considered as non-compositional. sim mainly

depends on the quantity of data available for the multiword expression and its head.

4.3 Test set of multiword expressions

To the best of our knowledge there are no noun compound datasets accompanied with

compositionality judgements available. Thus, we developed an algorithm to aid human

annotation in adding compositionality judgements to multiword expressions extracted

from WordNet 3.0 (Miller 1995). WordNet 3.0 contains 52, 217 multiword expressions.

For each occurrence of each multiword expression in some synset we collect:

1: all its synonyms, i.e. the items of the same synsets.

2: all its hypernyms

3: its sister-synsets, within distance 3

4: synsets that are in holonymy or meronymy relation to it, within distance 3.

All these words or sequences are put in a different set for each sense of the current

multiword expression, i.e. for each of its occurrences in WordNet. We choose to call

these sets sense neighbourhoods of the target multiword expression.

The definitions of the latter two items of the above list use a distance threshold.

Locating sister-synsets at distance D implies ascending D steps within the WordNet hier-

archy and then descending D steps, so that the destination is at the same level with the

origin. In the case of locating sister-synsets these steps follow hypernym relations when

ascending and hyponym relations when descending. Locating synsets in holonymy or

meronymy relations to the target in distance D, implies that the steps follow holonymy

relations when ascending and meronymy relations when descending.

Evidence about the compositionality of each sense of a given multiword expression

in WordNet can be collected according to the following criterion: If the semantic head of

the multiword expression occurs in the sense neighbourhood of the multiword expression

then this sense of the multiword expression is likely to be compositional. Otherwise it is

likely that the corresponding sense of the multiword expression is non-compositional.

Using the above algorithm, 6, 287 multiword expressions were judged as potentially

non-compositional. The vast majority of them, 5, 489, appear in one WordNet synset,

only. 294 appeared in more than one synsets and were in all occurrences judged as
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Non-compositional multiword expressions
B M A B M A

agony aunt 7 X X black maria X X X

dead end X X X dutch oven 7 7 X

fish finger X X X fool’s paradise 7 X X

goat’s rue X X X green light X X X

high jump X X X joint chiefs 7 X 7

lip service X X X living rock X X X

monkey puzzle X X X motor pool X X X

prince Albert X X X stocking stuffer X X X

sweet bay X X X teddy boy X X 7

think tank X X X

Compositional multiword expressions
B M A B M A

box white oak 7 7 7 cartridge brass X 7 7

common iguana X 7 X closed chain 7 7 7

eastern pipistrel 7 7 7 field mushroom 7 7 7

hard candy X 7 7 king snake X 7 X

labor camp X X X lemon tree 7 7 7

life form X X X petit juror X X X

parking brake X 7 X taxonomic category 7 7 X

relational adjective X 7 7 tea table 7 7 7

telephone service X X X parenthesis-free 7 7 7

upland cotton X X X notation

Table 4.1: Test multiword expressions with compositionality annotation and information
about whether their compositionality was successfully detected by the 1c1word baseline
(B), manual parameter selection (M), and average cluster coefficient (A).

potentially non-compositional. 504 appeared in more than one synsets and at least one

of these occurrences was judged as potentially non-compositional.

We randomly chose 19 potentially non-compositional multiword expressions and

checked them manually. Those that were compositional were replaced by other randomly

chosen ones. The process was repeated until we ended up with 19 non-compositional

examples. Similarly, 19 potentially compositional multiword expressions were collected.
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Parameter Description Range
P1 log-likelihood filter 5.0, 10.0, 15.0

P2 Collocation frequency 102, 103, 104, 105

P3 Collocation weight 0.2, 0.3, 0.4

Table 4.2: Chosen parameter values.

The upper part of table 4.1 shows the chosen non-compositional multiword expressions,

while its lower part the compositional ones.

4.4 Evaluation setting

The sense induction component of the proposed algorithm depends upon 3 parameters:

1: in corpus preprocessing, P1 is the log-likelihood threshold below which noun are

removed from corpora

2: in graph creation, P2 thresholds collocation frequencies

3: in graph creation again, P3 thresholds collocation weights

The system can potentially work for any parameter values, given that the corres-

ponding threshold constraints are fulfilled by some nouns, collocations and collocation

weights. We choose to evaluate the proposed system in the parameter subspace shown

in table 4.2. The log-likelihood values for confidence levels of 95%, 99%, 99.9% and

99.99% are 3.84, 6.63, 10.83 and 15.13, respectively. The values of parameter P1 were

chosen to cover this range. Parameter P2 thresholds Yahoo! web-page counts and para-

meter P3 thresholds conditional probabilities. Values for parameters P2 and P3 have

been chosen empirically.

To assess the performance of the proposed algorithm we compute accuracy, the

percentage of multiword expressions whose compositionality was correctly determined

against the gold-standard. We compared the system’s performance against a baseline,

1c1word, that assigns all vertices to a single cluster and no graph clustering is performed.

This baseline is also used in SemEval-2007 (Agirre & Soroa 2007a). 1c1word is a sens-

ible baseline for this task, since it corresponds to a vector space model for words. It

considers the whole contextual vector, while the proposed system considers the largest

partition of it. Baseline 1c1word helps in showing whether sense induction can assist
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Figure 4.3: Proposed system and 1c1word accuracy.

determining compositionality, since it represents applying exactly the same procedures

except sense induction.

4.5 Evaluation results

The proposed method was evaluated for each 〈P1, P2, P3〉 combination and similarity

measures Jc and Jsn, separately. Given a similarity value to threshold the decision of

compositionality, we chose the best performing parameter combination manually. In

all experiments, Jsn outperforms Jc. Figure 4.3 shows the comparison of the proposed

system against the 1c1word baseline for all similarity values (sim), at a scale of 0.5%

increments. The system line shows the accuracy achieved by the best performing com-

bination of parameter values 〈P1, P2, P3〉 using Jsn to compare the major senses of each

multiword expression and its semantic head. The best combination of parameter values

is 〈10.0, 102, 0.3〉 for the multiword expressions and 〈10.0, 102, 0.4〉 for semantic heads.

The initial hypothesis holds; sense induction improves multiword expression com-

positionality detection, since the proposed system outperforms the baseline for all dis-

tributional similarity threshold values. The best results for manual parameter selec-

tion were obtained for sim = 95% giving an accuracy of 68.42% for detecting non-

compositional multiword expressions. Columns B and M of table 4.1 show for each

multiword expression of the test set whether its compositionality was predicted correctly

by the baseline and the system using manual parameter selection, respectively.

In table 4.1, all systems appear to predict non-compositional expressions more suc-
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cessfully that compositional ones. As far as the baseline system and the manual para-

meter selection system are concerned, the table shows results for sim = 95%, since this

is the best performing value. Recall that sim is the threshold contextual similarity value

above which a multiword expression is judged as compositional. For threshold values

close to 100%, as the one showed in table 4.1, it is very unlikely to judge a multiword

expression as compositional. This is the main reason for the tendency observed in table

4.1.

4.6 Unsupervised parameter tuning

In this section we investigate unsupervised ways to address the issue of choosing the

parameter values for graph-based sense induction systems. For this purpose, we employ

a variety of graph connectivity measures, which measure the relative importance of each

vertex and assess the overall connectivity of the corresponding graph. These measures

are average degree, cluster coefficient, graph entropy and edge density (Navigli & Lapata

2007; Zesch & Gurevych 2007).

The approach employed by Klapaftis & Manandhar (2008) as well as the majority

of state-of-the-art word sense induction systems estimate their parameters either empir-

ically or by employing supervised techniques. The SemEval-2007 word sense induction

task (SWSI) participating systems UOY and UBC-AS used labelled data for parameter

estimation (Agirre & Soroa 2007a), while the authors of I2R, UPV SI and UMND2 have

empirically chosen values for their parameters. This issue imposes limits on the unsuper-

vised nature of these algorithms, as well as on their performance on different datasets.

More specifically, when applying an unsupervised word sense induction system on

different datasets, one cannot be sure that the same set of parameters is appropriate for

all datasets (Karakos et al. 2007). In most cases, a new parameter tuning might be

necessary. Unsupervised estimation of free parameters may enhance the unsupervised

nature of systems, making them applicable to any dataset, even if there is no tagged data

available.

Graph connectivity measures quantify the degree of connectivity of the produced

clusters (subgraphs), which represent the senses of the target word for a given parameter

setting and the corresponding clustering solution. Each clustering solution (parameter

setting) is assigned a score according to each graph connectivity measure and the highest

scoring setting is then selected. Higher values of graph connectivity measures indicate
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Figure 4.4: An example undirected weighted graph

subgraphs (clusters) of higher connectivity. Given a parameter setting, the induced clus-

tering solution and a graph connectivity measure, each induced cluster is assigned the

resulting score of applying the graph connectivity measure on the corresponding sub-

graph of the initial unclustered graph. Each clustering solution (parameter setting) is

assigned the average of the scores of its clusters, and the highest scoring one is selected.

For each graph connectivity measure, we developed two versions. An unweighted

one, that considers the edges of the subgraph corresponding to each cluster but not the

edge weights, and a weighted one, which considers subgraph edge weights, as well. In

the following discussion, terms graph and subgraph are interchangeable.

Let G = (V,E) be an undirected graph (induced sense), where V is a set of vertices

and E = {(u, v) : u, v ∈ V } a set of edges connecting vertex pairs. Each edge is

weighted by a positive weight, W : wuv → [0,∞). The maximum edge weight in the

graph is:

mew = max
(u,v)∈E

wuv (4.5)

Figure 4.4 shows a small example to explain the computation of graph connectivity

measures. The graph consists of 8 vertices, |V | = 8, and 10 edges, |E| = 10. Edge

weights appear on edges, e.g. wab = 1
4 . The maximum edge weight in the graph of

figure 4.4 is: mew = 1.

4.6.1 Average Degree

The degree (deg) of a vertex, u, is the number of edges connected to it:

deg(u) = |{(u, v) ∈ E : v ∈ V }| (4.6)
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2

1

4
0
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1
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1

10

3
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1

5

3

20

3
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1
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1
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en(u)× 100 33 33 41 46 41 41 33 22

wp(u)
1

16

1

20

1

8

9

80

7

80

3

40

3

40

1

80

we(u)× 100 25 22 38 35 31 28 28 8

Table 4.3: Computations of graph connectivity measures and relevant quantities on the
example graph of figure 4.4

The average degree (AvgDeg) of a graph can be computed as:

AvgDeg(G(V,E)) =
1

|V |
∑
u∈V

deg(u) (4.7)

The first row of table 4.3 shows the vertex degrees of all vertices in the example graph of

figure 4.4. Average degree is the mean of all vertex degrees: AvgDeg(G) = 20
8 = 2.5.

4.6.2 Average Weighted Degree

Edge weights can be integrated into the computation of vertex degrees. The weighted

degree (w deg) of a vertex is defined as:

w deg(u) =
1

|V |
∑

(u,v)∈E

wuv
mew

(4.8)
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Average weighted degree (AvgWDeg), similarly to AvgDeg, is averaged over all vertices

of the graph:

AvgWDeg(G(V,E)) =
1

|V |
∑
u∈V

W deg(u) (4.9)

The second row of table 4.3 shows the weighted degrees of all vertices. Average

weighted degree in this graph is: AvgWDeg(G) = 48
36 ' 1.33.

4.6.3 Average Cluster Coefficient

The cluster coefficient of a vertex quantifies how strongly the neighbours of the vertex are

connected with each other. It is defined as the number of edges between the neighbours

of the vertex over the maximum number of edges that could exist between its neighbours.

Let u be a vertex with ku = deg(u) neighbours. The number of edges between these

neighbours can be computed as follows:

Tu =
∑

(u,v)∈E

∑
(v,x)∈E
x 6=u

1 (4.10)

If the graph defined by all ku neighbours of vertex u was fully connected, there would

be 2−1ku(ku − 1) among them. Thus, the cluster coefficient (cc) of a vertex u can be

computed as:

cc(u) =
2× Tu

ku × (ku − 1)
(4.11)

Average cluster coefficient (AvgCC) is averaged over all vertices of the graph.

AvgCC(G(V,E)) =
1

|V |
∑
u∈V

cc(u) (4.12)

The computations of Tu and cc(u) on the example graph are shown in the third and

fourth rows of table 4.3. Consequently, AvgCC(G) = 9
16 = 0.5625.
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4.6.4 Average Weighted Cluster Coefficient

Weighted cluster coefficient takes edge weights into account. Thus, the sum, WTu, of

edge weights between the neighbours of u is computed as:

WTu =
1

mew

∑
(u,v)∈E

∑
(v,x)∈E
x 6=u

wvx (4.13)

Weighted cluster coefficient (wcc) can be computed as:

wcc(u) =
2×WTu

ku × (ku − 1)
(4.14)

Average weighted cluster coefficient (AvgWCC) is averaged over all vertices of the graph.

AvgWCC(G(V,E)) =
1

|V |
∑
u∈V

wcc(u) (4.15)

The computations of WTu and wcc(u) on the example graph of figure 4.4 are shown in

the fifth and sixth rows of table 4.3. In the example graph, the average weighted cluster

coefficient is: AvgWCC(G) = 67
8×24 ' 0.349.

4.6.5 Graph Entropy

Entropy measures the amount of information, or alternatively the uncertainty, in a ran-

dom variable. For a graph, high entropy indicates that many vertices are equally import-

ant and low entropy that only few vertices are relevant (Navigli & Lapata 2007). The

probability, p(u), of a vertex, u, can be determined by the degree distribution:

p(u) =

{
deg(u)

2|E|

}
u∈V

(4.16)

Then, following the original definition of entropy, the entropy (en) of a vertex, u, can be

defined as:

en(u) = −p(u) log2 p(u) (4.17)
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Entropy is undefined for isolated vertices, due to the logarithm definition2. Graph en-

tropy (GE) is computed by summing all vertex entropies and normalising:

GE(G(V,E)) =
1

log2 |V |
∑
u∈V

en(u) (4.18)

Returning to the example graph of figure 4.4, the seventh and eighth row of table 4.3

show the computations of p(u) and en(u), respectively. Consequently, the graph entropy

is: GE ' 0.97.

4.6.6 Weighted Graph Entropy

The weighted probability, wp(u), of a vertex, u, can be computed as:

wp(u) =

{
w deg(u)

2×mew × |E|

}
u∈V

(4.19)

Similarly to the previous graph connectivity measures, weighted entropy (wen) of a ver-

tex u is a weighted generalisation of entropy:

we(u) = −wp(u) log2wp(u) (4.20)

Weighted graph entropy (WGE) is computed by summing the weighted entropies of all

vertices and normalising:

WGE(G(V,E)) =
1

log2 |V |
∑
u∈V

we(u) (4.21)

The last two rows of table 4.3 show the computations of wp(u) and we(u) on the ex-

ample graph. Consequently, the weighted graph entropy is: WGE ' 0.73.

4.6.7 Edge Density

Edge density (ed) quantifies how many edges the graph has, as a ratio over the number

of edges of a fully connected graph of the same size, A(V ):

A(V ) = 2

(
|V |
2

)
(4.22)

2However, this never occurs in this work, since the largest connected component is kept during the graph
creation stage discussed in section 4.2.2.2.
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Edge density (ed) is a global graph connectivity measure; it refers to the whole graph

and not a specific vertex. It is defined as follows:

ed(G(V,E)) =
|E|
A(V )

(4.23)

In the example graph of figure 4.4: A(V ) = 2
(

8
2

)
= 28. Consequently, edge density is:

ed(G) = 10
28 ' 0.357.

4.6.8 Weighted Edge Density

Weighted edge density (wed) is defines as a portion of edge density as large as the sum

of all edge weights:

wed(G(V,E)) =
1

A(V )

∑
(u,v)∈E

wu,v (4.24)

In the example graph of figure 4.4:
∑
wu,v = 6. Consequently, weighted edge density

is: wed(G) = 6
28 ' 0.214. �

The use of the aforementioned graph connectivity measures allows the estimation of

a different parameter setting for each multiword expression and semantic head. These

parameters affect how the collocational graph is constructed, and in effect the quality of

the induced clusters.

4.7 Evaluation results of unsupervised parameter tuning

The graph connectivity measures of the previous subsection are used to choose a set of

parameters 〈P1, P2, P3〉 for each multiword expression and each semantic head, sep-

arately. In all experiments, Jsn performs better than Jc. Figures 4.5 and 4.6 present

a comparison between the unweighted and weighted versions of all graph connectivity

measures, respectively, for all similarity values (sim), at a scale of 0.5% increments,

using Jsn as distributional similarity measure.

Unweighted versions of graph connectivity measures perform in general better than

weighted ones. Average cluster coefficient performs better or equally well to the other

graph connectivity measures for all sim values up to 80%. The accuracy of aver-

age cluster coefficient is equal (68.42%) to that of manual parameter selection, which
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Figure 4.5: Unweighted graph connectivity measures.

Figure 4.6: Weighted graph connectivity measures.

was plotted in figure 4.3 and discussed in section 4.5. The second best performing un-

weighted graph connectivity measure is average graph entropy. For weighted graph con-

nectivity measures, average graph entropy performs best, followed by average weighted

clustering coefficient.

Figure 4.7 presents a comparison between the following systems:
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Figure 4.7: Comparison of manual parameter tuning and the two best performing graph
connectivity measures.

1: the basic system using manual parameter selection, as described in subsection 4.5.

2: the basic system using the best performing unweighted graph connectivity meas-

ure, average cluster coefficient, to automatically estimate parameter values for

each multiword expression and semantic head, separately.

3: the basic system using the best performing weighted graph connectivity measure,

average weighted graph entropy, to automatically estimate parameter values.

The plot shows that average cluster coefficient performs closely to manual parameter

selection and better than average weighted graph entropy.

For sim values greater than 80% manual parameter selection outperforms average

cluster coefficient. In this region, manual parameter selection leads to clustering solu-

tions consisting of few clusters of large size. High values of sim mean that the system

judges a multiword expression as compositional only if the set of snippets tagged by its

major sense is too similar to the set of snippets tagged by the major sense of its semantic

head.

In contrast, average cluster coefficient favours solutions consisting of many small

clusters. Average cluster coefficient assigns high scores to graphs whose number of

edges is comparable to the number of edges of the corresponding fully connected graph.

Hence, average cluster coefficient assigns high score to a clustering solution with many

small clusters and correspondingly lower score to a clustering solution containing a few
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large clusters. This is more possible to happen for a solution consisting of many small

clusters than for a solution consisting of few large clusters. For sim values greater

than 80% average cluster coefficient selects different parameter combinations to the best

performing ones. The higher accuracy achieved by average cluster coefficient for sim =

65% is equal to the maximum manual parameter selection accuracy for sim = 95%

(68.42%).

4.8 Evaluation on a larger dataset

The evaluation results that have been presented sofar look promising. However, there are

concerns about the statistical significance of the improvement in terms of accuracy that

the system achieves over the baseline. We employed two non parametric statistical tests:

Fisher’s exact test and McNemar’s test. The latter is not suitable for small contingency

table values, while the former one is. The values in the contingency tables representing

the current experiments are marginal; thus, we applied both statistical significance tests.

According to Fisher’s exact test, the proposed system with manually estimated para-

meters performs significantly better than the 1c1word baseline for some similarity values

(sim), only: 15%, 40%, [50%-55%], and [70%-95%] (see figure 4.3). In contrast, accord-

ing to McNemar’s test the same improvement is statistical insignificant for all similarity

values (sim). Our intuition about this result is that most possibly the size of the dataset

is very small.

To inspect whether the proposed system actually performs better than the baseline,

we created a bigger dataset, shown in table 4.4. It consists of 100 multiword expressions,

half of which are compositional and half non-compositional. This dataset is a super-set

of the previous one.

On this new dataset, we evaluated the proposed system using exactly the same eval-

uation settings as before. Figure 4.8 presents a comparison between the accuracies

achieved by the 1c1word baseline, the system with manually estimated parameters, and

the system with parameters automatically estimated by the best performing weighted and

unweighted graph connectivity measures. We observe that for the meaningful range of

similarity values (sim), [20%, 95%], the system with manual selected parameters per-

forms better than the 1c1word baseline. According to Fisher’s exact test, this increase in

accuracy is statistically significant for the whole range. In contrast, according to McNe-

mar’s test, the increase in significant for: [20% ,45%], 65%, and 90%.
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Compositional multiword expressions
action officer basic color car battery box white oak
cartridge brass checker board closed chain common iguana
corn whiskey corner kick cream sauce cubic meter
eastern pipistrel field mushroom flight simulator graphic designer
hard candy honey cake ill health jazz band
jet plane king snake labor camp laser beam
lemon tree life form love letter luggage van
male parent medical report memory device mythical monster
parking brake petit juror red fox relational adjective
sausage pizza savoy cabbage surface fire taxonomic category
tea table telephone service thick skin touch screen
toxic waste upland cotton water snake water tank
wood aster parenthesis-free notation

Non-compositional multiword expressions
agony aunt air conditioner black maria dead end
dutch oven fire brigade fish finger fool’s paradise
goat’s rue golden trumpet green light high jump
joint chiefs lip service living rock magnetic head
monkey puzzle motor pool oyster bed palm reading
paper chase paper gold paper tiger personal equation
personal magnetism petit four picture palace pill pusher
pink lady pink shower powder monkey prince Albert
public eye quick time rat race red devil
red dwarf red tape road agent round window
sea lion small beer small voice spin doctor
stocking stuffer sweet bay teddy boy think tank
vegetable sponge winter sweet

Table 4.4: Test multiword expressions with compositionality annotation
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Figure 4.8: Comparison of baseline system, manual parameter tuning and the two best
performing graph connectivity measures

As far as automatic parameter tuning is concerned, the best performing unweighted

and weighted graph connectivity measures are average graph entropy and weighted av-

erage graph entropy. They perform very similarly to each other and it is not clear which

one is best. However, both systems with automatically tuned parameters perform signi-

ficantly better than the baseline for a meaningful range of similarity values (sim), [20%,

95%], according to both statistical significance tests.

Interestingly, most values of the four systems in figure 4.8 for similarity values in

[0%, 75%] are less than 50%. However, the dataset consists of an equal number of

compositional and non-compositional multiword expressions. There are several reasons

why accuracy for all systems happens to be lower than 50%. A major one is that small

similarity values are expected to judge most multiword expressions as compositional. At

the same time, some vectors are very noisy, since the data is downloaded from the web.

Due to the great differences in frequency of the multiword expressions, different settings

are mostly suitable for each. This is only taken into account by the parameter estimation

scheme that employs graph connectivity measures.

Figures 4.9 and 4.10 show the accuracy achieved by the systems using unweighted

and weighted graph connectivity measures for automatic parameter estimation, respect-

ively. We observe that the worst performing ones, average degree and weighted average
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Figure 4.9: Unweighted graph connectivity measures.

Figure 4.10: Weighted graph connectivity measures.

degree are still not much worse than the others. The remaining ones, unweighted and

weighted versions of average cluster coefficient, edge density, and average graph entropy

perform similarly. Average graph entropy and weighted average graph entropy achieve

the highest accuracy value.

Experimentation on this expanded dataset proved that the proposed system is signi-



164 Resolving Compositionality Chapter 4

ficantly better than the 1c1word baseline. Also, it was shown that in some cases a system

whose parameters are automatically tuned can perform better than one whose paramet-

ers were chosen manually. The reason is that during manual parameter estimation the

best “universal” parameter combination was chosen. This means that for all multiword

expressions and their corresponding semantic heads the parameters are the same. In

contrast, the automatic parameter estimation scheme, that was presented in section 4.6,

selects a different parameter setting for each word or multiword expression whose senses

are induced.

4.9 Further evaluation of unsupervised parameter tuning

The automatic parameter estimation scheme presented in section 4.6 was used in further

experiments, so as to exploit the extent to which they are useful for graph-based sense

induction systems. Both the weighted and unweighted graph connectivity measures were

used to choose the parameters of the approach of Klapaftis & Manandhar (2008) evalu-

ated on the nouns of the word sense induction task (SWSI) of SemEval-2007. The results

showed that:

1: all graph connectivity measures estimate a set of parameters which significantly

outperform the worst performing parameter setting in both SWSI evaluation schemes,

although they are below the best performing parameter setting.

2: all graph connectivity measures estimate a set of parameters which outperform the

Most Frequent Sense baseline by a statistically significant amount in the super-

vised evaluation scheme.

3: The best performing graph connectivity measures, average degree and weighted

average degree, estimate a set of parameters that performs closely to a set of para-

meters estimated in supervised manner.

All of these findings, suggest that graph connectivity measures are able to identify useful

differences regarding the degree of connectivity of induced clusters for different para-

meter combinations, in effect being useful for unsupervised parameter estimation. In

this subsection we briefly summarised this evaluation, since it is not relevant to multi-

word expressions. Below, we describe in short the corpus and evaluation schemes used

for the SWSI task. More details can be found in Korkontzelos et al. (2009).
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The collocational word sense induction approach Klapaftis & Manandhar (2008)

was evaluated under the framework and corpus of SemEval-2007 word sense induction

task (SWSI) (Agirre & Soroa 2007a). The corpus consists of some text from the Wall

Street Journal corpus, and is hand-tagged with OntoNotes senses (Hovy et al. 2006). The

evaluation focuses on all 35 nouns of the Semeval-2007 task. SWSI task employs two

evaluation schemes.

In unsupervised evaluation, the results are treated as clusters of contexts and gold-

standard senses as classes. In a perfect clustering solution, each induced cluster contains

the same contexts as one of the classes (homogeneity), and each class contains the same

contexts as one of the clusters (completeness). F-Score is used to assess the overall

quality of clustering. Entropy and purity are also used, complementarily. F-Score is a

better measure than entropy or purity, since F-Score measures both homogeneity and

completeness, while entropy and purity measure only the former. In the second scheme,

supervised evaluation, the corpus is split in a training and a testing part. The training

part is used to map the induced clusters to gold-standard senses. The testing part is then

used to measure word sense disambiguation performance.

4.10 Summary

In this chapter, we started with the hypothesis that sense induction can assist in identi-

fying compositional multiword expressions and exploited the extent to which this hypo-

thesis holds. Following the context distributional approach to decide compositionality,

we developed a novel unsupervised system that employs a graph-based sense induction

component. This component is useful to partition the context distribution of a target

multiword expressions and its semantic head. Given the partitioned context distribu-

tions, the proposed method locates the major ones for the multiword expression and its

semantic head, respectively, and compares them using distributional similarity measures.

It is expected that the major sense of a word or multiword expression describes what is

meant when it occurs without context. Finally, the similarity value of the major senses

of the multiword expression and its head is compared with a threshold to judge if the

expression is compositional or not.

The proposed method was evaluated on adjective-noun constructions, compound

nominals and proper names, in English. The test set is extracted from WordNet. We

propose a semi-supervised approach for adding compositionality annotation to its mul-
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tiword expressions, that minimises human effort. It is shown that the initial hypothesis

holds when the parameters of the system are estimated manually, i.e. that sense induction

can assist in identifying compositional multiword expressions.

In succession, we propose an unsupervised scheme for estimating the parameters of

graph-based sense induction systems. It is based on connectivity properties of graphs

and attempts to distinguish high quality graphs exploring a number of graph connectiv-

ity measures. The scheme scores the partition output (clustering) of context distributions

corresponding to each parameter setting; and thus indirectly scores each parameter set-

ting. The highest scoring parameter setting is selected, without any need of manually

annotated data.

Then, this unsupervised parameter selection scheme is used to estimate the para-

meters of the proposed system for resolving compositionality. The results show that

the scheme for unsupervised parameter tuning achieves comparable accuracy to the best

manually selected combination of parameters.



CHAPTER 5

Multiword Expressions and Parsing

Executive Summary

This chapter presents our research towards evaluating the contribution of multiword ex-

pression knowledge into shallow parsing. We adopt a simple but effective way of encod-

ing multiword expression annotation into the input text and compare the performance of

the shallow parser with or without this extra information. We analyse the contribution

of shallow parsing for each type of multiword expressions, separately, as far as parts of

speech and compositionality are concerned. The evaluation set of multiword expressions

is derived from WordNet and the textual data are downloaded from the web.

To evaluate whether the shallow parser output improves or not after supplying mul-

tiword expression information, we exploit an automatic approach. The approach allows

experimenting on large amounts of unannotated data keeping human contribution to a

minimum and is based on two naturally emerging hypotheses, which are also manually

tested on a small dataset. Differences in the shallow parse output are classified into a

number of change classes; while the properties of each class allow assessing its contri-

bution to the final result as positive or negative. Experiments show that knowledge about

multiword expressions leads to an increase of between 7.5% and 9.5% in accuracy of

shallow parsing in sentences that contain these multiword expressions. As expected, the

contribution of multiword expression knowledge is larger for non-compositional than for

167
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compositional multiword expressions and for adjective-noun sequences than for noun-

noun sequences. Change classes aid in exploiting the types of changes that are mainly

responsible for the result so as to explain it.

5.1 Introduction

As discussed in the introductory chapter of the thesis, we believe that direct integration

of multiword expression information, especially for non-compositional ones, into other

fields and applications of NLP is equally important to multiword expression research,

itself. Approaches that utilise the outcomes of research relevant to multiword expres-

sions as parts or components of other NLP applications are very limited in the literature.

However, the vast majority of publications that exploit various multiword expression

tasks identify as their motivation the potential contribution of multiword expressions to

syntax and semantics-related tasks, such as deep and shallow parsing.

Baldwin et al. (2004) report coverage results for the English Resource Grammar

(ERG), a broad-coverage precision Head-Driven Phrase Structure Grammar (HPSG).

Among others, they have parsed a random sample of 20,000 strings from the written

component of the British National Corpus (BNC), to investigate the causes of parse

failure. Missing constructions accounted for 39% of the errors, while missing multiword

expressions for 8%. The percentages clearly indicate that there is space for improving

parse coverage by integrating multiword expressions.

On the other side of the issue, the state-of-the-art parsing systems seem to ignore

the fact that treating multiword expressions as syntactic units would potentially increase

parsers’ accuracy. To the best of our knowledge there are two approaches of integrat-

ing multiword expression knowledge in deep parsing. Zhang et al. (2006) adopted a

“word with spaces” model (Sag et al. 2002); i.e. represented each multiword expres-

sion as a new lexicon entry. They judged multiword expressions candidates using as

frequency indicator the number of pages returned by Google when querying for exact

match. 311 multiword expressions candidates occurring in 6248 BNC sentences were

judged as being multiword expressions. For each distinct occurrence type of each of the

311 multiword expressions occurring more than 5 times an entry was added to the parser

lexicon; resulting in 373 entries. Adding these entries led to an increase of 14.4% in

coverage.

Villavicencio et al. (2007) argue that although the “word with spaces” approach of
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Zhang et al. (2006) enhances parser coverage, the quality of the parser output is linguist-

ically less interesting. Instead, the authors adopt a constructional approach of integrating

non-compositional multiword expressions in the parser (Sag et al. 2002). For the head

word of each multiword expression one lexical entry is added; e.g. for “foot the bill” a

new entry is added to allow the reading of “foot” as a transitive verb. Villavicencio et al.

(2007) evaluated this approach on 30 multiword expressions that were previously tested

to be non-compositional. This set was accompanied by a set of 674 sentences, each

of which contained at least one of the 30 multiword expressions. To cover these non-

compositional multiword expressions, 21 new lexical entries were added to the parser.

The parse output before and after adding the new entries was manually evaluated. Gram-

mar coverage increased by 15.6% and grammar accuracy increased by 14.3%. The au-

thors highlight that they achieved an increase in coverage similar to the one achieved by

Zhang et al. (2006) by adding significantly less entries per multiword expression; 0.7

versus 1.2.

The result that non-compositional multiword expressions can increase grammar cov-

erage and accuracy agrees with our intuition. However, there are several disadvantages

of the approach of Villavicencio et al. (2007): multiword expressions are judged as com-

positional or not by combining the scores of mutual information, χ2 and permutation

entropy. These measures are reported to correlate well with non-compositionality but

imperfectly. Instead we use the method presented in section 4.3 that helps manual an-

notation of multiword expressions as compositional or non-compositional. Manually

annotating parse outputs as correct or wrong is an expensive process and thus the num-

ber of multiword expressions in Villavicencio et al. (2007) is kept small, 30. Moreover,

the participating multiword expressions are of various types, e.g. phrasal verbs, nom-

inal compounds, institutionalised phrases, making difficult to explain the increase in

accuracy; in other words what is happening before adding multiword expressions. We

propose an unsupervised evaluation based on classifying the changes before and after

adding multiword expression information; allowing for (a) large scale experiments, and

(b) analysing the reasons of increase or decrease in accuracy. The classification is based

on two intuitional hypotheses that are evaluated on a manually annotated set of instances.

Apart from the approach of Villavicencio et al. (2007), there are several attempts to

integrate other forms of lexical semantics into parsing. Bikel (2000) merged the Brown

portion of the Penn Treebank with SemCor, and used it to evaluate a generative bilex-
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ical model for joint word sense disambiguation and parsing. Penn Treebank is a corpus

whose sentences are manually deep-parsed and SemCor is a collection of texts semantic-

ally annotated with WordNet senses. Similarly, Agirre et al. (2008) integrated semantic

information in the form of semantic classes and observed significant improvement in

parsing and prepositional phrase attachment tasks.

Two successful applications of word sense information to parsing are reported in

Xiong et al. (2005) and Fujita et al. (2007). Xiong et al. (2005) integrated first-sense and

hypernym features in a generative parse model applied to the Chinese Penn Treebank

and achieved significant improvement over their baseline model. Fujita et al. (2007)

extended this work by implementing a discriminative parse selection model, incorpor-

ating word sense information and achieved great improvements as well. There are also

several attempts to integrate into parsing selectional preference information (Dowding

et al. 1994; Hektoen 1997). Selectional preferences are a representation of semantics, as

discussed in subsections 2.2.1.4 and 2.5.1.

In this chapter, we perform an experimental investigation attempting to estimate the

contribution of integrating multiword expressions into shallow parsing. We focus on

multiword expressions in English that consist of two successive tokens; in particular,

compound nominals (e.g. lemon tree), proper names (e.g. prince Albert) and adjective-

noun constructions (e.g. red carpet). The reason for this choice is that the majority of

multiword expressions in WordNet are of these three classes. In section 5.3, we dis-

cuss a variety of ways to automatically evaluate the task and conclude to use a bank of

multiword expressions (WordNet) as the starting point of the evaluation setting.

We conclude that even a very simple way of integrating multiword expressions leads

to an increase of between 7.5% and 9.5% in accuracy of shallow parsing of sentences

containing these multiword expressions. Increase percentages are higher for multiword

expressions that consist of an adjective followed by a noun (12% to 15%); and even

higher for non-compositional multiword expressions that consist of an adjective and a

noun (15.5% to 19.5%). Our experimental outcome that non-compositional multiword

expressions clearly improve shallow parsing agree with Villavicencio et al. (2007).

The remaining of this chapter is structured as follows: In Section 5.2 we present

how multiword expressions can be annotated in text and used by any shallow parser. In

Section 5.3 we present an overview of the evaluation procedure. Section 5.4 explains

how the set of target multiword expressions and textual corpora were created. In Section
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5.5 we present and discuss the results of the experimental process. Finally, section 5.6

summarises the chapter.

5.2 Annotating multiword expressions

Deep or shallow parsing should treat multiword expression as units that cannot be di-

vided in any way. For non-compositional multiword expressions this is very easy to

accept due to the fact that the semantics of the multiword expression is different from

the semantics of its components. If the components of a multiword expression were

assigned to different phrases in the shallow parsing output, then the semantics of the

expression would be replaced by the semantics of the components.

For compositional multiword expressions the argument that if its components are

assigned to different phrases then the semantics of the multiword are altered does not

hold. However, multiword expression components are still expected to be assigned to

the same phrase, since the union of them is not based on semantics, only. A possible

assignment of the components of a multiword expression in different phrases would

mean that each component is more closely related to the other words in the phrase that

it is assigned to and not to the other component. From this point of view, it makes sense

to force the shallow parser to assign multiword expressions tokens in the same phrase.

However, this choice is incorrect if we consider adding multiword expressions as new

units in some lexicon because semantics of compositional multiword expressions are not

significantly different from the semantics of their components. For these experiments,

we see all multiword expressions derived from WordNet as single units, and we expect

the results to verify that this decision is more meaningful for non-compositional than

compositional multiword expressions.

Based on the previous arguments we can adopt the following way of integrating

multiword expressions annotation into the input text: We replace the multiword expres-

sion tokens with a special made up token, i.e. the multiword expression constituents

joined with an underscore. In other words we externally force the components to be as-

signed to the same phrase. For example, we replace all occurrences of “lemon tree” with

“lemon tree”. This approach is similar to the “words with spaces” approach proposed in

Sag et al. (2002).

Our choice introduces a new word, that does not exist in the dictionary of the part of

speech tagger. This is quite important, because it will trigger whatever special way the
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parser has to treat unknown words. Some parsers use back-off models to estimate the

probabilities of unknown words. Part of speech taggers usually assign to an unknown

words the part of speech that best fits to it with respect to the parts of speech of the words

around it and the training data. This expected behaviour of both the part of speech tagger

and the parser is desirable for our purposes.

The experimental results of our study quantify the differences between the shallow

parsing output of a big number of sentences after the replacement and the shallow parsing

output of the same sentences before the replacement. The comparison is done ignoring

changes of parts of speech, assigned by the part of speech tagger, since these changes

are due to another component.

5.3 Evaluation

The target of the evaluation procedure is to evaluate whether replacing the multiword

expression tokens with a single token, unknown to the part of speech tagger, improves

shallow parsing accuracy. The ideal way to perform this evaluation would be to use

a corpus with manual annotation about parsing and multiword expressions. Given this

corpus we would be able to measure the accuracy of a shallow (or deep) parser before

and after replacing multiword expressions. However, to the best of our knowledge there

is no corpus available to include this type of annotations in English.

Instead, there are two options: Firstly, we can use treebank data, where manual

parsing annotation is readily available, and manually annotate multiword expressions.

The advantage of this approach is that results are directly comparable with other results

of the literature, due to the use of benchmark data. Manual annotation of multiword

expressions is a very time- and effort-consuming process due to the large size of most

treebanks. Alternatively, multiword expression annotation could be done using a method

of recognition. Annotating the multiword expressions that appear in WordNet could be

a safe decision, in terms of correctness, however, WordNet is reported to have limited

coverage of multiword expressions (Baldwin 2006; Laporte & Voyatzi 2008).

Secondly, we can use a set of multiword expressions as a starting point and then

create corpora that contain instances of these multiword expressions. In succession,

these sentences need to be manually annotated in terms of parsing, and this requires

huge human effort. Alternatively, we can parse the corpora before and after replacing

the multiword expression and then compare the parsing output. This is the evaluation
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Figure 5.1: Evaluation process

procedure that we follow, and is shown in Figure 5.1.

The chosen evaluation approach compares the parse outputs of the same sentences

before and after replacing the multiword expressions which they contain. As a result,

it is only able to retrieve instances where the replacement of the multiword expression

leads to a different parse output, a different allocation of tokens to phrases. It cannot spot

instances where the parsing output remains unchanged after the replacement, no matter if

they were correct and remained correct, or they were wrong and remained wrong. Since

we are interested in measuring if replacing multiword expressions with a single token

improves parsing accuracy, we are not interested in instances that remain unchanged.

Example parse outputs before and after the replacement are presented in two-column

format. The left column presents the parse output before the replacement and the right

column the parse output after the replacement. Both parses are presented as numbered

lists, where B stands for “Before the replacement” and A stands for “After the replace-

ment”. Each line consists of either a phrase, within square brackets, or a word that is not

assigned to any phase in the shallow parsing output. We call the latter words “leaves”.

Tags outside parentheses denote phrase names: NP stands for “Noun Phrase”, VP for
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“Verb Phrase”, PP for “Prepositional Phrase”, PRT for “Particle”, etc.1 Tags inside par-

entheses denote the part of speech of the following word. Part of speech tags whose

first letter is N or V denote nominal or verbal forms, respectively. The following letters

denote some subclass of nominal and verbal forms, e.g. VBD tags the past form of the

verb “be” and NN tags common noun. DT stands for determiners, IN for prepositions,

etc.2

Suppose the following example sentence3:

They jumped over a bonfire and rolled a fire wheel.

Its parse outputs before and after the replacement of the multiword expressions are:

B 01: [NP (PRP they) ]

B 02: [VP (VBD jumped) ]

B 03: [PP (IN over) ]

B 04: [NP (DT a) (NN bonfire) ]

B 05: (CC and)

B 06: [VP (VBD rolled) ]

B 07: [NP (DT a) (NN fire) (NN wheel) ]

B 08: (. .)

A 01: [NP (PRP they) ]

A 02: [VP (VBD jumped) ]

A 03: [PP (IN over) ]

A 04: [NP (DT a) (NN bonfire) ]

A 05: (CC and)

A 06: [VP (VBD rolled) ]

A 07: [NP (DT a) (NN fire wheel) ]

A 08: (. .)

We observe that the only difference between the left and the right column is the re-

placement of the multiword expressions tokens (B07) with a special single token (A07).

This means that the parse output has not been affected by the replacement.

In contrast, the sentence:

The blades ignited and he threw the fire wheel up into the air.

produced the following shallow parse outputs:

B 01: [NP (DT the) (NNS blades) ]

B 02: [VP (VBN ignited) ]

B 03: (CC and)

A 01: [NP (DT the) (NNS blades) ]

A 02: [VP (VBN ignited) ]

A 03: (CC and)

1A complete list of phrasal tags can be found in Bies et al. (1995), section 2.1.1.
2The complete list of part of speech tags, CLAWS-5, can be found at:

http://ucrel.lancs.ac.uk/claws5tags.html
3All examples of this chapter are taken from real data that were collected following the method described

in section 5.4
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B 05: [NP (PRP he) ]

B 06: [VP (VBD threw) ]

B 07: [NP (DT the) (NN fire) ]

B 08: (WRB wheel)

B 09: (RP up)

B 10: [PP (IN into) ]

B 11: [NP (DT the) (NN air) ]

B 12: (. .)

A 05: [NP (PRP he) ]

A 06: [VP (VBD threw) ]

A 07: [NP (DT the) (NN fire wheel) ]

A 08: [PRT (RP up) ]

A 09: [PP (IN into) ]

A 10: [NP (DT the) (NN air) ]

A 11: (. .)

We observe that before the replacement fire was assigned to an NP together with the

preceding determiner the (B06). The second component word of the multiword expres-

sion, wheel, is wrongly part of speech tagged and then remains unassigned to any phrase

(B07). Also, the particle up of the phrasal verb threw up is a leaf (B08). Replacing

the multiword expression with a single token, fire wheel, corrects all the above errors

(A06,A07).

The evaluation approach focuses on instances whose parse output changed when the

multiword expression components are replaced with a special single token. Given that

the correct parse output is unique for a given sentence, each sentence either (a) was at

first parsed correctly and then parsed wrongly, or (b) was at first parsed wrongly and then

correctly, or (c) was parsed wrongly before and after the replacement.

Manually classifying input sentences into the above three categories requires large

amounts of effort and expertise, and thus it is very expensive. Alternatively, based on

two intuitional hypotheses about the form of correct parse outputs compared to erroneous

ones, we identify a number of parse output change classes under which we classify all

sentences. Each change class is restricted enough, so as to know whether its instances

should be classified under (a), (b) or (c), above.

5.3.1 Shallow parsing change classes

In this section, we present a classification of cases where the shallow parsing output of

the sentence is different from the parsing output of the same sentence after replacing the

multiword expression with a single token. Secondly, we discuss whether the specific

form of each change class can lead to a safe conclusion about whether the parsing output

of the sentence under discussion: (a) was wrong before the replacement and was then

corrected, (b) was correct before the replacement and was then made wrong, or (c) was
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Change classes Set 1 Set 2 Set 3 Set 4 Set 5
P2LMw 80% 100% 100% 100% 100%
P2L 100% 90% 100% 90% 80%
L2PMw 100% 100% 100% 100% 100%
L2P 100% 80% 90% 90% 100%
PL2P 90% 90% 80% 80% 70%
P2PL 80% 80% 80% 70% 90%
P2P 90% 100% 90% 90% 90%
MwA 100% 100% 100% 100% 100%

Set average 93% 93% 93% 90% 91%

Total average 91.75%

Table 5.1: Cross validation datasets assessing the validity of both hypotheses together.

wrong before the replacement and remained wrong. For this discussion we hypothesise

that among the possible output shallow parses for a given sentence the correct one has

(a) the smallest number of phrases, and (b) the smallest number of tokens not assigned

to any phrase.

Hypothesis 1: Among the possible output shallow parses for a given sen-

tence the correct one has the smallest number of phrases.

Hypothesis 2: Among the possible output shallow parses for a given sen-

tence the correct one has the smallest number of leaves.

These hypotheses are based on a number of theoretical intuitions for shallow parsing.

Generally, words that are not assigned to any phrase in the parse output, i.e. leaves, are

not desirable. They indicate that the corresponding full parse trees are partial and hence

should not be preferred over complete parse trees. Also, in phrasal level mistaken parse

trees are generally larger, with more phrases.

To strengthen the intuitional arguments, we checked the hypotheses by manually

annotating 400 randomly chosen instances; 50 for each change class (see below). We

used 5-fold cross validation; i.e. 5 disjoint sets of 10 instances per change class (table

5.1). We counted as positive towards the verification of both hypotheses sentences whose

shorter parse output, in terms of phrases or leaves, was manually checked as correct.

In contrast we counted as negative sentences whose correct parse output was not the
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Class Name Short description Contribution

P2LMw a Phrase transformed into 7

Leaves that include the Multiword expression
P2L a Phrase transformed into 7

Leaves excluding the multiword expression
L2PMw Leaves transformed into X

a Phrase including the Multiword expression
L2P Leaves transformed into X

a Phrase excluding the multiword expression
PL2P Phrases or Leaves transformed into a Phrase X

P2PL a Phrase transformed into Phrases or Leaves 7

PN Phrase label Name change ?
PoS Part of Speech tags change ?
P2P Phrases transformed into less Phrases X

MwA Multiword expression Allocation change X

Table 5.2: Summary of the basic change classes. Xor 7 denote change classes that count
positively or negatively towards improving shallow parsing. ? denotes classes that are
treated specially.

shortest one. The total accuracy is 91.75%, thus, the two hypotheses together are judged

as marginally correct, and can be used as a basis for this unsupervised evaluation method.

Table 5.2 summarises all basic change classes, briefly describes each one and shows

the contribution of each one towards the final result, improvement in parsing. Change

classes that describe changes that lead to shorter shallow parses have a positive contri-

bution while change classes whose changes lead to longer parses have a negative contri-

bution. Below, we present change classes one by one, accompanied with examples.

5.3.1.1 Change class P2LMw

This change class includes sentences whose corresponding parse is shorter before the re-

placement, thus the sentences are counted negatively towards shallow parsing improve-

ment using multiword expression information. Before replacing the multiword expres-

sion sequence with a single token, the multiword expression is assigned to some phrase,

possibly together with other words. After the replacement, the components of that phrase

are not assigned to any phrase, but instead appear as leaves. The class name stands for
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Figure 5.2: Change class P2LMw.

“a Phrase was transformed to Leaves which include the Multiword expression”. Figure

5.2 represents the change class following the notation of Bille (2005). Triangles denote

phrases and uppercase bold letters V...Z denote phrase labels. Lowercase letters k...n

denote parsing leaves. As an example of change class P2LMw, suppose the following

input sentence:

The action officer logistic course is designed to educate and train military and ci-

vilian personnel in the logistics staff processes from translation of requirements t

set army logistics goals through development of plans, programs and acquisition of

the army’s equipment.

Part of speech tagging and shallow parsing this sentence before and after the replacement

leads to4:

B 01: [NP (DT the) (NN action) (NN officer)]

B 02: [NP (JJ logistic) (NN course)]

B 03: [VP (VBZ is) (VBN designed)]

B 04: [VP (TO to) (VB educate)]
...

A 01: (DT the)

A 02: (NN action officer)

A 03: [NP (JJ logistic) (NN course)]

A 04: [VP (VBZ is) (VBN designed)]

A 05: [VP (TO to) (VB educate)]
...

We observe that after replacing the multiword expression, the noun phrase that con-

tains the determiner and the multiword expression tokens disappeared (B01,A01-A02).

Thus, a phrase that includes the multiword expression transformed in leaves.
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Figure 5.3: Change class P2L.

5.3.1.2 Change class P2L

The class name stands for “a Phrase was transformed to Leaves which exclude the multi-

word expression”. Similarly to change class P2LMw, this class contains sentence whose

parse is longer after the replacement or consists of more phrases and less leaves, so these

sentences contribute negatively to the final result. Before the replacement, some suc-

cessive tokens excluding the multiword expression itself are assigned to some phrase.

After the replacement, the components of that phrase appear as leaves (figure 5.3). For

example, suppose the following sentence:

The agreement on the action officer in Armenia was signed on may 11th 2005.

Before and after the replacement, the sentence is parsed as follows:

B 01: [NP (DT the) (NN agreement)]

B 02: [PP (IN on)]

B 03: [NP (DT the) (NN action) (NN officer)]

B 04: [PP (IN in)]

B 05: [NP (NN Armenia)]
...

A 01: [NP (DT the) (NN agreement)]

A 02: [PP (IN on) ]

A 03: [NP (DT the) (NN action officer)]

A 04: (IN in)

A 05: [NP (NN Armenia)]
...

We observe that the prepositional phrase containing preposition in (B04) turned into

a leaf (A04).

4Three dots in vertical alignment within parse output lists are used to designate that there is more output
but it is omitted, since there is no change in the parse output of this part before or after incorporating
multiword expression information.
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Figure 5.4: Change class L2PMw.

5.3.1.3 Change class L2PMw

The changes covered by this class are the opposite changes of change class P2LMw. The

class name stands for “a number of Leaves were transformed to a Phrase which includes

the Multiword expression”. The parse output of the sentences of this class is shorter after

the replacement, thus it answers positively to whether multiword expressions improve

shallow parsing. Before the replacing the multiword expression sequence with a single

token, the multiword expression sequence is not assigned to any phrase possibly among

other words. After the replacement, the multiword expression is assigned to a phrase

(figure 5.4). Suppose the following phrase:

“affirmative action officer” AAO refers to the regional affirmative action officer,

director, or designee, whichever reference is applicable.

It is shallow parsed before and after the replacement as follows:

B 01: (“ “)

B 02: (JJ affirmative)

B 03: (NN action)

B 04: (NN officer)

B 05: (” ”)

B 06: [NP (NN aao)]

B 07: [VP (VBZ refers)]

B 08: [PP (TO to)]

B 09: [NP (DT the) (JJ regional) (JJ affirmat-

ive) (NN action) (NN officer)]
...

A 01: (“ “)

A 02: [NP (JJ affirmative) (NN ac-

tion officer)]

A 03: (” ”)

A 04: [NP (NN aao)]

A 05: [VP (VBZ refers)]

A 06: [PP (TO to)]

A 07: [NP (DT the) (JJ regional) (JJ affirmat-

ive) (NN action officer)]
...
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Figure 5.5: Change class L2P.

Three leaves including the multiword expression (B02-B04) were after the replace-

ment assigned to a noun phrase (A02).

5.3.1.4 Change class L2P

The class name stands for “a number of Leaves were transformed to a Phrase which ex-

cludes the Multiword expression”. Similarly to change class L2PMw, before the replace-

ment, one or more successive tokens excluding the multiword expression itself appear

as leaves. After the replacement, these tokens are assigned to a phrase (figure 5.5). The

class members contribute positively towards the result, because the shallow parse after

the replacement is shorter or consists of more phrases and less leaves. The following

sentence:

The action officer usually delivers the execution orders to each of the implementing

service operations, whether it be a theatre commander or a task force operator such

as the admiral in charge of a carrier battle group.

corresponds to the following shallow parses before and after the replacement:

B 01: [NP (DT the) (NN action) (NN officer)]

B 02: (RB usually)

B 03: [VP (VBZ delivers)]

B 04: [NP (DT the) (NN execution) (NNS or-

ders)]
...

A 01: [NP (DT the) (NN action officer)]

A 02: [ADVP (RB usually)]

A 03: [VP (VBZ delivers)]

A 04: [NP (DT the) (NN execution) (NNS or-

ders)]
...

The adjective usually which was initially a leaf (B02), was assigned to an adverbial

phrase after the replacement (A02).
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Figure 5.6: Change class PL2P.

5.3.1.5 Change class PL2P

The class name stands for “a number of Phrases or Leaves were transformed to a single

Phrase”. After the replacement, the tokens of more than one phrases or leaves are as-

signed to a single phrase (figure 5.6). Due to the reduction in number of phrases, the

sentences of this class contribute positively towards improving shallow parsing accuracy

using multiword expression knowledge. Suppose the following phrase:

The university of Texas-pan American encourages any person who believes that he

or she has been subjected to discrimination to immediately report the incident to

the equal opportunity and affirmative action officer.

The crucial part at the end of the sentence is parsed as follows before and after the

replacement:

...

B 01: [NP (DT the) (NN incident)]

B 02: [PP (TO to)]

B 03: [NP (DT the) (JJ equal) (NN opportun-

ity)]

B 04: (CC and)

B 05: [NP (JJ affirmative) (NN action) (NN

officer)]

B 06: (. .)

...

A 01: [NP (DT the) (NN incident)]

A 02: [PP (TO to)]

A 03: [NP (DT the) (JJ equal) (NN opportun-

ity) (CC and) (JJ affirmative) (NN ac-
tion officer)]

A 04: (. .)

The constituents of the noun phrases in lines B03 and B05 as well as the leaf in line

B04 are correctly assigned to a single noun phrase, in line A03.
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Figure 5.7: Change class P2PL.

5.3.1.6 Change class P2PL

In contrast to change class PL2P, in this class the tokens of one phrase either are assigned

to more than one phrases or appear as leaves after the replacement (figure 5.7). The class

name stands for “a Phrase was transformed to a number of Phrases or Leaves”. The

sentences of this class contribute negatively to the overall result, since the number of

phrases and leaves in the parse output are more after the replacement. For example,

suppose the following sentence:

The action officer shall prepare and transmit within five working days an evaluation

report addressed to the assistant ombudsman for public assistance and corruption

prevention office through the bureau of resident ombudsmen for appropriate action.

As shown below, after the replacement, the constituents of the verbal phrase in line B02

are assigned to two verbal phrases in lines A02 and A04 or appear as leaves, in line A03:

B 01: [NP (DT the) (NN action) (NN officer)]

B 02: [VP (MD shall) (VB prepare) (CC and)

(VB transmit)]

B 03: [PP (IN within)]
...

A 01: [NP (DT the) (NN action officer)]

A 02: [VP (MD shall) (VB prepare)]

A 03: (CC and)

A 04: [VP (VB transmit)]

A 05: [PP (IN within)]
...

5.3.1.7 Change class PN

This change class does not describe a change in the structure of the parse output but in-

stead a “Phrase label Name change”. After replacing the multiword expression sequence

with a single token, one phrase appears with a different phrase label, although it retains

exactly the same component tokens (figure 5.8). Since this type of change is not covered
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Figure 5.8: Change class PN.

by the hypotheses about comparing parse outputs in terms of the length and structure,

we leave the sentences of this class out of the final result computation. In a best case

scenario, all phrase label changes would be correct while in a worst case scenario all

changes would be wrong. Suppose the following sentence:

Captain Rasmussen, a 1996 graduate of land O’Lakes High School in Land O’Lakes,

Florida, is an action officer for the JTF-CS communications directorate, lending his

expertise for a February JTF-CS communications exercise with local emergency re-

sponders.

The parse outputs before and after the replacement are:

...

B 01: [VP (VBZ is)]

B 02: [NP (DT an) (NN action) (NN officer)]

B 03: [PP (IN for) ] [NP (DT the) (NNS jtf-

cs) (NNS communications) (NN direct-

orate)]

B 04: (, ,)
...

...

A 01: [VP (VBZ is)]

A 02: [NP (DT an) (NN action officer)]

A 03: [SBAR (IN for) ] [NP (DT the) (NNS

jtf-cs) (NNS communications) (NN dir-

ectorate)]

A 04: (, ,)
...

We observe that the prepositional phrase (B03) after the replacement is tagged as a

clause introduced by a subordinate conjunction, SBAR (A03).

5.3.1.8 Change class PoS

This class contains sentences whose shallow parses before and after the replacement

are the same in terms of structure. However, after replacing the multiword expression
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Figure 5.9: Change class P2P.

sequence with a single token, one or more tokens appear with a different part of speech.

The class name stands for “Part of Speech change”. Suppose the following sentence:

He helps the beaten student get to the school’s security officer or “youth action

officer”.

The parse outputs before and after the replacement for this sentence are:

...

B 01: (CC or)

B 02: (“ “)

B 03: [NP (JJ youth) (NN action) (NN of-
ficer)]

B 04: (” ”)

B 05: (. .)

...

A 01: (CC or)

A 02: (“ “)

A 03: [NP (NN youth) (NN action officer)]

A 04: (” ”)

A 05: (. .)

We observe that before the replacement youth is tagged as an adjective, JJ (B03),

while after the replacement it is tagged as noun, NN (A03).

This change class accounts for changes that depend entirely on the part of speech

tagger. The shallow parser is not affected by these changes. Since the scope of this study

is to quantify the improvement in shallow parsing accuracy only, we do not include the

changes of this class towards the final result. However, in the results section we show a

size estimate of this class.

5.3.1.9 Change class P2P

The class name stands for “some Phrases were transformed to less Phrases”. After re-

placing the multiword expression sequence with a single token, the component tokens of
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more than one successive phrases α are assigned to a different set of successive phrases

β. However, it is always the case that phrases α are less than phrases β (|α| < |β|) (figure

5.9). Due to this inequality, sentences of this change class are counted positively towards

the improvement in shallow parsing after integrating multiword expression knowledge.

As an example, suppose the following sentence:

Rabbi, as a past action officer and command and control and intelligence commu-

nications inspector on the joint staff for six years above top secret, I have some

critical and timely information for you. The parse outputs before and after repla-

cing the multiword expression tokens are the following:

B 01: [NP (NNS Rabbi)]

B 02: (, ,)

B 03: [PP (IN as)]

B 04: [NP (DT a) (JJ past) (NN action) (NN

officer)]

B 05: (CC and)

B 06: (NN command)

B 07: (CC and)

B 08: (NN control)

B 09: (CC and)

B 10: [NP (NN intelligence) (NNS commu-

nications) (NN inspector) ] [PP (IN on)]
...

A 01: [NP (NNS Rabbi)]

A 02: (, ,)

A 03: [PP (IN as)]

A 04: [NP (DT a) (JJ past) (NN ac-
tion officer) (CC and) (NN command)

(CC and) (NN control)]

A 05: (CC and)

A 06: [NP (NN intelligence) (NNS commu-

nications) (NN inspector) ] [PP (IN on)]
...

One noun phrase (B04) and 4 successive leaves (B05-B08) in the parse output before the

replacement are transformed into one noun phrase (A04).

5.3.1.10 Change class MwA

The class name stands for “Multiword expression Allocation change”. Before replacing

the multiword expression sequence, the multiword expression constituents are assigned

to different phrases (figure 5.10). Clearly, before the replacement the shallow parse out-

put violates the rule that the constituents of the multiword expressions consist a semantic

and syntactic unit. Therefore, the sentences of this change class contribute positively to-

wards the final result. Suppose the following sentence:
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Figure 5.10: Change class MwA.

The campus affirmative action officer serves as the liaison between the Parkers-

burg campus and West Virginia University, providing campus supervision of hiring

processes and providing a central point of contact for claims of discrimination.

The shallow parse outputs before and after replacing the multiword expression tokens

with a single one are:

B 01: (DT The)

B 02: (NN campus)

B 03: (JJ affirmative)

B 04: (NN action)

B 05: [NP (NN officer)]

B 06: [VP (VBZ serves)]
...

A 01: [NP (DT The) (NN campus) (JJ affirm-

ative) (NN action officer)]

A 02: [ VP (VBZ serves) ]
...

We observe that 4 leaves (B01-B04) and a noun phrase (B05) in the parse output

before the replacement are assigned to a single noun phrase (A01) after the replacement.

The multiword expression tokens, action and officer, were not assigned to the same

phrase, initially. �

To summarise, change classes are introduced to simplify quantifying the improve-

ment that multiword expression integration causes to shallow parsing (table 5.2). Ac-

cording to our hypotheses, change classes with sentences whose parse after the replace-

ment is shorter or contains more phrases and less leaves than before the replacement

contribute positively towards the result. These change classes are: L2PMw, L2P, PL2P

and P2P. In contrast, change classes with sentences whose parse is longer after the re-

placement or contains more leaves and less phrases contribute negatively. These change
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classes are: P2LMw, P2L and P2PL. The instances of change class PN can be either

correct or wrong after the replacement, since they are not covered by the evaluation

hypothesis. They are treated specially in the computation of the result.

5.3.2 Shallow parsing complex change classes

During the inspection of instances where changes occur in the shallow parsing output

when replacing the multiword expression with a special token, we came across a number

of instances that could be classified in more than one of the classes of the previous

subsection. In other words, two or more change classes were happening at the same time.

For example, in a number of instances, before the replacement, the multiword expression

constituents are assigned to different phrases (change class MwA). After the replacement,

the tokens of more than one phrases are assigned to a single phrase (change class PL2P).

These instances consist of new complex changes and are named as the sum of names

of the participating classes. The instances of the example above consist the complex

change class PL2P+MwA. In the result section, we present separately statistics about

two complex change classes that occurred in the data, PL2P+MwA and P2P+MwA.

Sentences classified under these classes are considered as positive towards the result,

because both the simple change classes that they consist of contribute positively as well.

5.4 Target multiword expressions and corpora collection

We created an experimental set of multiword expressions using WordNet 3.0 (Miller

1995). WordNet 3.0 contains 52, 217 multiword entries from which 120 were randomly

chosen. Keeping the ones that consist of two tokens resulted in the 116 expressions of

tables 5.3 and 5.4. Manually inspecting these multiword expressions proved that they

are all compound nominals, proper names or adjective-noun constructions.

To annotate each multiword expressions for compositionality, we follow the proced-

ure presented in section 4.3. To summarise it briefly, the semantic head of each multi-

word expression was located. Then the synsets within a neighbourhood of the synsets

in which the multiword expression occurs were inspected. Finding the semantic head in

the neighbour synsets gives evidence that the expression is most likely compositional.

Otherwise, the multiword expressions is tagged as potentially non-compositional. Fi-

nally, the above annotations are manually checked. Tables 5.3 and 5.4 show the chosen
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Compositional Multiword expressions (Noun - Noun sequences)
action officer (3119) beach towel (1937) bile duct (21649)
car battery (3726) cartridge brass (479) checker board (1280)
corn whiskey (1862) corner kick (2882) cream sauce (1569)
field mushroom (789) flight simulator (5955) honey cake (843)
jazz band (6845) jet plane (1466) key word (3131)
king snake (2002) labor camp (3275) laser beam (16716)
lemon tree (3805) life form (5301) love letter (3265)
luggage van (964) memory device (4230) potato bean (265)
power cord (5553) prison guard (4801) sausage pizza (598)
savoy cabbage (1320) surface fire (2607) tea table (62)
telephone service (9771) torrey tree (10) touch screen (9654)
upland cotton (3235) water snake (2649) water tank (5158)
wood aster (456)

Compositional Multiword expressions (Adjective - Noun sequences)
basic color (2453) cardiac muscle (6472) closed chain (1422)
common iguana (668) cubic meter (4746) eastern pipistrel (128)
graphic designer (8228) hard candy (2357) ill health (2055)
kinetic theory (2934) male parent (1729) medical report (3178)
musical harmony (1109) mythical monster (770) red fox (10587)
relational adjective (279) parking brake (7199) petit juror (991)
taxonomic category (1277) thick skin (1338) toxic waste (7220)
universal donor (1454) parenthesis-free notation (113)

Table 5.3: 60 compositional multiword expressions randomly chosen from WordNet; 37
Noun - Noun sequences and 23 Adjective Noun sequences. The size of the respective
corpus in sentences appears within parentheses.

multiword expressions together with information about their compositionality and the

parts of speech of their components.

For each multiword expression we created a different corpus by downloading sen-

tences from the web. Each corpus consists of webtext snippets of length 15 to 200 tokens

in which the multiword expression appears. Snippets were collected following the pro-

cess presented in 4.2.1. In brief, given a multiword expression, a set of queries is created:

All synonyms of the multiword expression extracted from WordNet are collected. For

example, the synonyms of “red carpet” are “rug”, “carpet” and “carpeting”. The multi-
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Non-Compositional Multiword expressions (Noun - Noun sequences)
agony aunt (751) air conditioner (24202) band aid (773)
fire brigade (5005) fire wheel (480) fish finger (1423)
lip service (3388) monkey puzzle (1780) motor pool (3184)
oyster bed (1728) pack rat (3443) palm reading (4428)
paper chase (1115) paper gold (1297) paper tiger (1694)
picture palace (2231) pill pusher (924) pine knot (1026)
powder monkey (1438) prince Albert (2019) rat race (2556)
road agent (1281) sea lion (9113) spin doctor (1267)
vegetable sponge (806) winter sweet (460)

Non-Compositional Multiword expressions (Adjective - Noun sequences)
black maria (930) dead end (5256) dutch oven (4582)
golden trumpet (607) green light (5960) high jump (4455)
holding pattern (3622) joint chiefs (2865) living rock (985)
magnetic head (2457) missing link (5314) personal equation (873)
personal magnetism (2869) petit four (1506) pink lady (1707)
pink shower (351) poor devil (1594) public eye (3231)
quick time (2323) red devil (2043) red dwarf (6526)
red tape (2024) round window (1380) silent butler (332)
small beer (2302) small voice (4313) stocking stuffer (7486)
sweet bay (1367) teddy boy (2413) think tank (4586)

Table 5.4: 56 non-compositional multiword expressions randomly chosen from Word-
Net; 26 Noun - Noun sequences and 30 Adjective Noun sequences. The size of the
respective corpus in sentences appears within parentheses.

word expression is paired with each synonym to create a set of queries. For each query,

snippets are collected by parsing the web-pages returned by Yahoo!. The union of all

snippets produces the multiword expression corpus. In Tables 5.3 and 5.4, the number of

collected corpus sentences for each multiword expression are shown within parentheses.

GENIA tagger (Tsuruoka et al. 2005) was used as part of speech tagger.

The state-of-the-art SNoW-based Shallow Parser of Munoz et al. (1999) was used for

shallow parsing. Sparse Network of Winnows (SNoW) is a learning architecture based

on a sparse network of linear functions over a pre-defined or incrementally learnt feature

space. It is particularly useful for learning in domains with sparsity; where there is a vast

number of features but only a small number of them is active in each instance. This is
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because the number of examples required to learn a linear function grows linearly with

the number of relevant features and logarithmically with the number of total features.

The SNoW network consists of predictors, i.e. computations of simple relations over the

input sentence, that can be chained and combined together to produce an estimate of the

function of interest. Learning is online and mistake-driven.

The shallow parser uses as features the surface forms of the words in the input sen-

tence and their parts of speech. The predictors are used to decide for each word whether

it belongs to a phrase or not (inside/outside predictors). This approach to shallow parsing

is reported to compete favourably with other approaches in the literature. Error analysis

showed that its accuracy decreases while the length of phrases increases. Moreover, the

authors argue that most mistaken predictions happen in cases of conjunctions, gerunds,

adverbial noun phrases and some punctuation marks.

Our experiments of integrating multiword expressions into shallow parsing are po-

tentially compatible with any shallow parsers available. However, since the internal

structure of a shallow parser affects the quality of its results, using a poor-performing

parser can lead to different results in terms of numbers.

5.5 Experimental results and discussion

The corpora collecting procedure of section 5.4 resulted in a corpus of 376, 007 sen-

tences, each one containing one or more multiword expressions. In 85, 073 sentences

(22.75%), the shallow parsing output before the replacement is different to the shallow

parsing output after the replacement. The corresponding percentage is larger for non-

compositional than compositional multiword expressions; 25.33% and 18.17%, respect-

ively. Likewise, more changes happen for adjective-noun than for noun-noun multiword

expressions; 28.76% and 16.06%, respectively. All change percentages are presented in

the third and fourth column of table 5.5.

7.20% of all 85, 073 change instances are due to one or more parts of speech changes,

and are classified to change class PoS. In other words, in 7.20% of cases where there is a

difference between the shallow parses before and after replacing the multiword expres-

sion tokens there is one or more tokens that were assigned a different part of speech.

However, excluding parts of speech from the comparison, there is no other difference

between the two parses. The focus of this study is to quantify the effect of unifying

multiword expression tokens in shallow parsing. Part of speech tagging is a component
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of our approach and parts of speech are not necessarily parts of the parsing output. We

included them in the examples for presentational reasons, mostly. For this reason, we

chose to ignore part of speech changes, the changes of change class PoS. Below, we

present our results for all other change classes.

Let ‖X‖ be the function that returns the number of instances assigned to change

class X . With respect to the discussion of subsection 5.3.1 about how the instances of

each class should be counted towards the final results, the number of sentences whose

parsing was corrected after the replacement is the sum of sentences of the change classes

that contribute positively, according to the evaluation hypotheses:

positive = ‖L2PMw‖+‖L2P‖+‖PL2P‖+‖P2P‖+

‖PL2P+MwA‖+‖P2P+MwA‖ (5.1)

In contrast, the sum of sentences of change classes that contribute negatively towards to

result according to the evaluation hypotheses is:

negative =‖P2LMw‖+‖P2L‖+‖P2PL‖

To compute the minimum improvement in shallow parsing, positively contributions

classes are computed positively, negatively contributing classes are computed negatively

and the undecidable class PM negatively as well:

min = positive− negative−‖PN‖ (5.2)

For the maximum improvement, the undecidable class PM is computed as contributing

positively:

max = positive− negative+‖PN‖ (5.3)

Table 5.5 summarises experimental results for adjective-noun and noun-noun se-

quences, either compositional or non-compositional. The table also presents average

statistics for multiword expressions of the same parts of speech independently of their

compositionality and of the same compositionality independently of parts of speech. The

third column shows the number of sentences of each class in the corpus. For each one
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Multiword Shallow Parsing
expressions improvement

class PoS sentences changed minimum maximum

Compositional N N 143,229 15.74% 4.48% 5.47%
Non-Compositional N N 77,812 16.67% 4.39% 5.84%
Compositional J N 68,707 23.24% 7.34% 9.21%
Non-Compositional J N 86,259 33.15% 15.32% 19.67%

Any N N 221,041 16.06% 4.45% 5.60%
Any J N 154,966 28.76% 11.78% 15.03%

Compositional Any 211,936 18.17% 5.41% 6.68%
Non-Compositional Any 164,071 25.33% 10.14% 13.11%

Any Any 376,007 21.30% 7.47% 9.49%

Table 5.5: Summary of experimental results. “PoS” stands for parts of speech, “N N”
for noun noun sequences and “J N” for adjective noun sequences.

of the classes of table 5.5, the fifth and sixth columns show the minimum and maximum

improvement in shallow parsing, respectively, caused by unifying multiword expression

tokens. It should be noted that this improvement are computed on corpora whose all sen-

tences contain at least one known multiword expression. To project this improvement on

any general text, one needs to know the percentage of sentences that contain known mul-

tiword expressions. Then the projected improvement can be computed by multiplying

these two percentages.

On average of all multiword expressions, unifying multiword expression tokens con-

tributes from 7.47% to 9.49% in shallow parsing accuracy. Both for noun-noun and

adjective-noun multiword expressions, non-compositional ones improve accuracy more

than compositional ones do, due to the idiosyncratic nature of non-compositional mul-

tiword expressions. However, the improvement is much larger for non-compositional

adjective-noun multiword expressions.

Recall that the shallow parser accuracy is reported to decrease as the length of

phrases increases. For this reason, we expect some increase in parsing accuracy due

to the fact that we reduce by one the length of the phrases which contain the multiword

expressions. To assess the level of accuracy improvement due to this phrase length de-

crease, we introduce the following baseline. Using the corpora already collected, we
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Random sequences Shallow Parsing
with same PoS improvement

PoS sentences changed minimum maximum

N N 221,041 10.83% 3.21% 3.96%
J N 154,966 16.49% 5.26% 5.76%

Any 376,007 13.17% 4.05% 4.70%

Table 5.6: Summary of experimental results - Baseline of random sequences. “PoS”
stands for parts of speech, “N N” for noun-noun sequences and “J N” for adjective-noun
sequences.

assess the improvement in shallow parsing when we replace a random two-word se-

quence of specific parts of speech with a special made-up token. In noun-noun multi-

word expressions corpora we replace a random noun-noun sequence in each sentence. In

adjective-noun corpora we replace a random adjective-noun sequence in each sentence.

Table 5.6 presents the results of the baseline. We observe that the improvements are

as expected smaller than the improvements when multiword expressions are replaced.

The differences among the improvements for random noun-noun sequences, composi-

tional noun-noun multiword expressions and non-compositional noun-noun expressions

are not large, thus integrating noun-noun multiword expressions does not improve shal-

low parsing significantly. The difference is also small between random adjective-noun

sequences and compositional adjective-noun multiword expressions. In contrast, there is

large increase in accuracy between compositional and non-compositional adjective-noun

multiword expressions, thus adjective-noun non-compositional multiword expressions

are clearly worth considering.

Figure 5.11 shows the percentage of each change class over the sum of sentences

whose parse output before unifying multiword expression tokens is different for the pars-

ing output after the replacement. The ravdogram shows percentages for compositional

and non-compositional noun-noun sequences, adjective-noun sequences and on aver-

age. The most common change class for all multiword expression categories is PL2P,

accounting for 34.03% of the changes. It contains instances where after replacing the

multiword expression with a single made-up token a number of phrases and leaves are

assigned to a single phrase. This class contributes positively to the result according to the

evaluation hypothesis. Classes of medium frequency, around 10%, are P2LMw, P2PL,
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Figure 5.11: Change percentages per change class on average and per multiword ex-
pressions category. “N N” stands for noun-noun sequences and “J N” for adjective-noun
sequences.

PL2P+MwA and P2P. In contrast, P2L, L2PMw L2P, PN and P2P+MwA are infrequent,

around 5%.

In figure 5.11 we observe that compositional and non-compositional noun-noun se-

quences do not differ much in any change class. This explains why there is no significant

increase on the overall improvement between these multiword expressions. The distri-

bution of changes is very different for adjective-noun sequences; P2LMw and PL2P

account for 10% and 20% more changes for compositional against non-compositional

adjective-noun multiword expressions, respectively. In opposition, PL2P+MwA and

P2P+MwA account for 20% and 10% more changes for non-compositional against com-

positional adjective-noun multiword expressions, respectively. This shows that non-

compositional adjective-noun multiword expressions behave differently than composi-

tional ones.
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Since there are 10% more changes happening for non-compositional adjective-noun

multiword expressions (table 5.3), the change distribution differences can explain why

this class of multiword expressions leads to the largest improvement. The components of

non-compositional adjective-noun multiword expressions are commonly assigned into

different phrases (change class MWA), and this mistake is corrected after the replace-

ment of the multiword expression with a single token.

Recall that Munoz et al. (1999) reported that the shallow parser is commonly mis-

taken when the phrases contain conjunctions, gerunds and adverbial noun phrases. Our

results agree since there is one gerund among compositional adjective-noun multiword

expressions, i.e. parking brake against 4 among non-compositional adjective-noun mul-

tiword expressions, i.e. holding pattern, living rock, missing link and stocking stuffer.

Moreover, error analysis revealed that conjunctions between two noun phrases are very

common among instances of change classes PL2P and PL2P+MwA.

5.6 Chapter Summary

In this chapter, we presented an experimental study attempting to estimate the contribu-

tion of information about multiword expressions into shallow parsing. The integration

was realised by replacing the multiword expression components with a single made-up

token, unknown to the part of speech tagger and the shallow parser.

The evaluation is done based on 116 multiword expressions extracted from Word-

Net 3.0 that consist of two successive components and are compound nominals, proper

names or adjective-noun constructions. In particular, the above multiword expressions

set consists of 26 non-compositional and 37 compositional noun-noun sequences and 30

non-compositional and 23 compositional adjective-noun sequences. For each multiword

expression we collected sentences that contain it from the web. These corpora were part

of speech tagged and shallow parsed before and after integrating multiword expression

information.

The outputs were compared employing a detailed classification of changes. Based

on two intuitionally emerging hypotheses, whose validity is manually checked, each

change class is considered as correcting erroneous parses or as making correct parses

incorrect. This classification of changes in the parse output contributes in two ways: (a)

it allows overcoming human annotation of parse outputs but still being able to quantify

if multiword expression information improve shallow parsing accuracy. (b) it provides
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with statistics of changes useful to trace where the increase or decrease in accuracy

comes from.

We presented experimental results about how often instances of each change class

occur on average and for each multiword expression category, separately. Change class

frequency counts are combined to estimate the overall improvement in shallow parsing

accuracy with respect to compositionality and the parts of speech of multiword expres-

sion components. Integrating multiword expression information leads to an increase

of between 7.5% and 9.5% in shallow parsing accuracy of sentences that contain these

multiword expressions. Increase percentages for compositional noun-noun sequences

are between 4.5% and 5.5%, for non-compositional noun-noun sequences between 4.4%

and 5.8%, for compositional adjective-noun sequences between 7.3% and 9.2% and for

non-compositional adjective-noun sequences between 15.3% and 19.7%.

It is reported that the decrease in phrase length can by itself increase shallow parsing

accuracy (Munoz et al. 1999). Therefore, this increase should not be considered as a

contribution of multiword expressions. To estimate the size of this increase we intro-

duced a baseline: In each sentence we replaced a random noun-noun or adjective-noun

sequence and estimated the increase in shallow parsing accuracy as previously. The

increase for random noun-noun sequences was computed between 3.2% and 4.0% and

for random adjective-noun sequences between 5.3% and 5.8%. Comparing the baseline

improvements to the multiword expression ones reveals that the increase is statistically

significant for adjective-noun multiword expressions, only, according to McNemar’s test

and Fisher’s exact test.

In our analysis, we excluded the contribution of part of speech tagging in the final

result. In other words, our analysis does not conclude what part of the increase is due to

improvements in parts of speech tagging and what part is due to parsing improvement.

In some cases, the parse output might improve because some words were assigned a

different part of speech during part of speech tagging. It would be interesting to divide

the increase into separate part of speech tagging and shallow parsing contributions.

Another extension could be to perform the same experiments using a different shal-

low parser. This would help to assess the extent to which the outcomes of this research

generalise and how much they depend on the chosen shallow parser. However, the fact

that the shallow parser in use is among the state-of-the-art guarantees that the results will

not be detrimentally different. Similarly, it would be interesting to adapt the proposed
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evaluation procedure to deep parsing.

As far as multiword expressions are concerned, we could use our evaluation method

to assess the contribution of longer multiword expressions into shallow parsing. One

would expect that due to their size, a wrong interpretation of their structure would affect

the shallow parsing output more than it does for multiword expressions consisting of two

words. Thus, unifying multiword expressions longer than two words would potentially

contribute more to shallow parsing accuracy.



CHAPTER 6

Distributional Semantics Composition

Executive Summary

In distributional semantics studies, there is growing attention in determining the mean-

ing of word sequences. The distributional meaning of word sequences is obtained by

combining the distributional meanings of component words. State-of-the art models for

compositional distributional semantics (CDS) are evaluated on word sequence similarity

tests, such as (Kintsch 2001), and lexical substitution tasks. CDS models are reported to

show low correlation with human annotated data, for which inter-annotation agreement

is also low. This fact reveals that there is need to define a new task for evaluating CDS

models.

In this chapter, we propose a novel framework for investigating compositional distri-

butional semantics (CDS). In this framework, a well performing CDS model is expected

to compose distributional vectors of multiword expressions that: (a) are similar to the

distributional vector of the multiword expression occurring as a whole, given that the

multiword expression is compositional; and (b) are dissimilar to the distributional vector

of the multiword expression occurring as a whole, given that the multiword expression

is non-compositional.

Evaluating existing CDS models on this framework show that it suffers from sparsity;

i.e. the chosen multiword expressions occur as a whole very rarely to extract reliable

199
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distributional vectors. To address this problem we propose a new method for extracting

evaluation instances. Each instance consists of a word and a sequence. For positive

examples, the compositional meaning of the sequence is expected to be similar to the

meaning of the word. For negative examples, the compositional meaning of the sequence

is expected to be dissimilar to the meaning of the word. Instances were extracted from

suitable dictionary definitions.

A large number of state-of-the-art CDS models are evaluated under the proposed

evaluation framework. Results indicate that simple addition of the distributional vectors

that correspond to the component words of a sequence shows potential. However, there

is still space for improvement since the accuracy of existing CDS models highly depends

on parameter settings.

In succession we propose an estimation method for the parameter of the basic ad-

ditive CDS model, based on regression models for multiple dependent variables. The

equation system is solved using approximated solutions based on the Moore-Penrose

pseudo-inverse. Experiments demonstrate that the CDS model whose parameters are

estimated according to the proposed approach outperforms existing CDS models.

6.1 Introduction

In section 2.3 of the literature survey, we presented an introduction to representing con-

text distributions of words. Then, in section 2.3.2, we presented the distributional hy-

pothesis of Harris (1954) which can be operationally defined as: “similar words share

similar contexts”. The distributional hypothesis allows considering that the distribution

of the context of a word in a large corpus is closely related to its semantics. Semantics

of the context words within the distribution can securely describe the semantics of the

target word. In section 2.3.3, we described various measures that can be employed to

compare context distributions and compute whether and how much semantically related

the corresponding words are.

Lexical distributional semantics has been largely used to model word meaning in

many fields as computational linguistics (McCarthy & Carroll 2003; Manning et al.

2008), linguistics (Harris 1964), corpus linguistics (Firth 1957), and cognitive research

(Miller & Charles 1991). Recently, this hypothesis has been operationally defined in

many ways in the fields of physicology, computational linguistics, and information re-

trieval (e.g. Li et al. (2000); Pado & Lapata (2007); Deerwester et al. (1990)).
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In section 2.5 of the literature survey, we discussed two ways to extend distributional

semantics for words to cover word sequences: (1) via the extension of the distributional

hypothesis for specific word sequences (Lin & Pantel 2001); and (2) via the definition

of compositional distributional semantics models (Mitchell & Lapata 2008; Jones &

Mewhort 2007).

Lin & Pantel (2001) propose the pattern distributional hypothesis that extends the

distributional hypothesis for specific patterns, i.e. word sequences representing partial

verb phrases. The distributional meaning for these patterns is derived directly from

looking at their occurrences in a corpus. Due to data sparsity, patterns of different length

appear with very different frequencies in the corpus, affecting their statistics detriment-

ally. Subsection 2.5.1 discussed a variety of issues posed by the generalisation of the

distributional hypothesis to cover sequences of words.

To overcome the data sparsity problem caused by the generalised distributional hy-

pothesis, compositional distributional semantics models have been proposed (Mitchell

& Lapata 2008; Jones & Mewhort 2007). Compositional distributional semantics (CDS)

argue that the distributional meaning for sequences of any length can be obtained by

composing the context distributions of the single words in the sequences. Context distri-

butions are generally realised as vectors.

A general framework for compositional distributional semantics models proposed by

Mitchell & Lapata (2008) was discussed in subsection 2.5.2 of the literature survey. In

succession, subsections 2.5.2.1, 2.5.2.2 and 2.5.2.3 discussed in detail the CDS models

proposed in Mitchell & Lapata (2008), Erk & Padó (2008), and Jones & Mewhort (2007),

respectively: (a) a model building on basic vector operations, i.e. weighted addition and

multiplication; (b) a model based on selectional preferences of the components of the

sequence; and (c) a model that projects all vectors into the same dimensional space,

called BEAGLE.

There are several problems mostly related to the evaluation of CDS models. In

Mitchell & Lapata (2008), evaluation is based on a word sequence similarity test (Kintsch

2001): The proposed CDS models are employed to compose vectors for given verb-noun

pairs, in which we know that the verb is ambiguous. However, the noun disambiguates

the use of the verb in the pair. There are also two other verbs available for each pair,

one of which matches the disambiguated meaning of the pair. Then, evaluation decides

whether the composed vector is closer to the disambiguating verb than the other option.
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For example, “run” means “gallop” if its subject is “horse”, while it means “dissolve”

if its object is “colour”. Given the pair (“horse”,“run”), CDS models compose a vector

for it and then the similarity between this and “gallop” is expected to be higher than its

similarity to “dissolve”. The proposed CDS methods are reported to unsatisfactorily cor-

relate with human annotated data mainly because the human inter-annotation agreement

is low. As a result, it is not clear from the evaluation whether or not the resulting vectors

for word sequences successfully represent their distributional semantics.

Moreover, despite the fact that Mitchell & Lapata (2008) propose a general CDS

model, they only evaluate experimentally a couple of simplistic parametrisations. The

proposed CDS models contain a large number of parameters, however there are no meth-

ods to estimate them. Most of the CDS models of the literature are not evaluated com-

parably, so it is not clear which model performs best for a potential application.

In this chapter, we propose a novel framework for investigating compositional distri-

butional semantics (CDS). The proposed framework uses the notions of compositionality

and non-compositionality that characterise multiword expressions to define a new task

for evaluating CDS models. The basic idea consists of the following two parts:

1: Given a compositional multiword expression, a CDS model is expected to com-

pose the context distributions of the multiword expression components into a dis-

tribution identical or at least similar to the context distributions of the multiword

expression.

2: Given a non-compositional multiword expression, a CDS model is expected to

compose the context distributions of the multiword expression components into a

distribution dissimilar to the context distributions of the multiword expression.

We experiment with existing CDS models (Mitchell & Lapata 2008; Erk & Padó 2008;

Jones & Mewhort 2007) with respect to this new evaluation framework.

Giesbrecht (2009) and Guevara (2010) have proposed similar evaluation tasks for

assessing CDS models. Giesbrecht (2009) employed a variety of CDS models to estimate

the meaning of 19 non-compositional German verb-noun combinations. Then, the author

compared this composed vector with the vector of the expression as it is used on the

whole. Giesbrecht (2009) conclude firstly that tensor products lead to better results than

simple additive models as described in Mitchell & Lapata (2008), and secondly that

further exploration of CDS models is needed. The framework presented in this chapter

is different since CDS models are considered good not only if they perform well for



Section 6.1 Introduction 203

non-compositional instances but also for compositional ones.

Guevara (2010) presents a new CDS model employing Partial Least Squares Regres-

sion. The method is compared against existing CDS models on the task of composing

meaning of compositional English adjective-noun sequences extracted from the British

National Corpus (BNC). Since the proposed CDS model is a trainable one, 1000 se-

quences were used for training and 380 for testing. The authors report that the proposed

method performs better than the simple additive and simple multiplicative models. A

second evaluation setting is proposed; it compares against a gold standard created from

the 10-nearest neighbours of each adjective-noun instance of the test set. In this set-

ting the basic additive model is reported to perform better than the proposed trainable

CDS model. The framework presented in this chapter is different since it also takes into

account non-compositional instances.

In addition, we propose an estimation model that exploits compositional and non-

compositional multiword expressions examples, to estimate parameters for additive com-

positional distributional semantics models. The model determines an equation system

that represents a regression problem with multiple dependent variables. A solution to this

equation system is estimated using the Moore-Penrose pseudo-inverse matrices (Penrose

1955). The estimation model and its solution were realised in close cooperation with the

authors of Fallucchi & Zanzotto (2009). We experiment with this model to assess if

more complicated parameter estimation can improve over simplistic parametrised addit-

ive models.

The results show that the multiword expressions used for experimentation do not ap-

pear frequently enough as sequences within the employed corpus; the British National

Corpus BNC. To overcome this data sparsity problem, we propose a new method for

extracting compositional distributional semantics examples and counter-examples. We

used the same idea of compositionality but this time between single words and their

definitions in dictionaries, instead of multiword expressions. Dictionary definitions are

word sequences expressing the meaning of a word. Then, the word represents the com-

positional meaning of the definition; e.g. contact ≈ close interaction. Thus, dictionary

definitions can make up the positive examples for evaluating CDS models.

In contrast, for creating negative, “non-compositional” examples, we use composed

words that are etymologically derived from very old or ancient words, and over the years

their meaning has deviated from the combination of the meaning of their constituents.
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For example, the word philosophy derives from two Greek words philos (beloved) and

sophia (wisdom) but it now means something different to the compositional meaning.

Pairs of old composed words and their etymological constituents can be extracted from

special etymological lexica such as Wiktionary.

Two different sets of positive and negative examples were collected. The first set

consists of examples whose definitions or etymological constituents are adjective-noun

or noun-noun sequences, while the second set of examples whose definitions or etymo-

logical constituents are verb-noun sequences. The results have shown that simplistic

parametrisations of known CDS models do not prove to address this experimental set-

ting successfully. In opposition, the parameter estimation method for the additive model

performs significantly better and its accuracy increases as the number of singular values

taken into account increases.

The rest of the chapter is organised as follows: In section 6.2 we describe our method

for estimating parameters of CDS models. Section 6.3 describes in detail the construc-

tion of our two experimental datasets, one consisting of multiword expressions (sub-

section 6.3.1) and one consisting of single words (subsection 6.3.2). In section 6.4,

we evaluate a large number of state-of-the-art CDS models on the proposed evaluation

framework. Finally, section 6.5 summarises the chapter.

6.2 Estimating Additive CDS Models from Data

In this section, we propose a model that estimates the parameters of additive compos-

itional distributional semantics (CDS) models shown in equation 2.92. This is a su-

pervised method, since it uses training instances whose compositionality is previously

known. As will be discussed in section 6.3, in the first set of experiments the model

was trained on multiword expressions examples and in the second set on pairs of single

words and their definitions. The estimation model and its solution were realised in close

cooperation with the authors of Fallucchi & Zanzotto (2009).

The generic additive model composes a new vector ~z as a function of the component

vectors ~x and ~y. It is described in the following equation:

� (s) = ~z = A~x+B~y (6.1)

A and B are not vectors but instead square matrices, allowing each dimension of the
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vector dimensions
between gap process social two

contact < 11, 0, 3, 0, 11 >

x: close < 27, 3, 2, 5, 24 >

y: interaction < 23, 0, 3, 8, 4 >

Table 6.1: Example context vectors for the words of the definition: “contact ≡ close
interaction”

resulting vector ~z to depend upon all dimensions of ~x and ~y. In this specialisation of

equation 2.91, matrices A and B are used to capture the relation R and the background

knowledge K.

Matrices A and B are very large to compute and store, posing restrictions that affect

the applicability of the generic additive model. Estimating these matrices is neither a

simple classification learning problem nor a simple regression problem. It is a regres-

sion problem with multiple dependent variables. Fallucchi & Zanzotto (2009) propose a

method to estimate these matrices A and B using singular value decomposition, Moore-

Penrose pseudo-inverse and a set of training examples. In this section this estimation

method is briefly presented and in succession used in the experimental section 6.4.

Let s be a sequence of two words, x and y; i.e. s = x y. Suppose that ~s, ~x and ~y are

the distributional vectors corresponding to words s, x and y, respectively. Let e be the

triple of vectors (~s, ~x, ~y), and E be a set of training examples each of which is a triple of

vectors, e.

Note that an ideal perfectly performing compositional distributional semantics model

� is expected to output ~s as the composition of ~x and ~y; i.e. ~s = �(xy). However, in

general the expected vector ~s is not guaranteed to be equal to the composed one, ~z =

�(xy). Table 6.1 shows an example triple t = ( ~contact, ~close, ~interaction), together

with the corresponding distributional vectors in an example feature space, consisting of

5 context features: between, gap, process, social, and two. Feature values are occurrence

counts within some corpus.

Using table 6.1 as a running example, subsection 6.2.1 formulates the problem as a

system of linear equations. Subsection 6.2.2 presents the solution of Fallucchi & Zan-

zotto (2009).
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6.2.1 Setting the linear equation system

This subsection describes how the regression problem with multiple dependent variables

described above can be solved with a linear equation system. In the experimental section,

we refer to our model as the estimated additive model (EAM).

The matrices A and B of equation 6.1 can be joined in a single matrix:

~z =
(
A B

)~x
~y

 (6.2)

For the example triple t of table 6.1, equation 6.2 is:

~contact =
(
A B

) ~close

~interaction

 (6.3)

and it can be rewritten as:



11

0

3

0

11


=
(
A5×5 B5×5

)



27

3

2

5

24

23

0

3

8

4



(6.4)

The matrices in equation 6.2, can be transposed as follows:

~zT =

(A B
)~x

~y

T

=
(
~xT ~yT

)AT
BT

 (6.5)
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In the current setting, matrix
(
~xT ~yT

)
is a known quantity and matrix

AT
BT

 is to be

estimated. For our running example t, this equation is:

(
11 0 3 0 11

)
=
(

27 3 2 5 24 23 0 3 8 4
)AT5×5

BT
5×5

 (6.6)

Equation 6.5 serves as prototype for the final equation system. The larger the matrix(
AB
)

to be estimated, the more equations like 6.5 are needed. Given that the train-

ing examples set E contains n triples (~s, ~x, ~y), we can write the following system of

equations: 
~zT1

~zT2
...

~zTn

 =



(
~xT1 ~yT1

)
(
~xT2 ~yT2

)
...(

~xTn ~yTn

)


AT
BT

 (6.7)

The vectors derived from the triples can be seen as two matrices of n rows, Z and
(
XY

)
related to ~zTi and

(
~xTi ~yTi

)
, respectively. The overall equation system is then the fol-

lowing:

Z =
(
X Y

)AT
BT

 (6.8)

This equation system represents the constraints that matrices A and B have to satisfy

in order to be a possible linear compositional distributional semantics model that can at

least describe seen examples. We will hereafter call Λ =
(
A B

)
and Q =

(
X Y

)
.

The system in equation 6.8 can be simplified as:

Z = QΛT (6.9)

As Q is a rectangular and singular matrix, it is not invertible and the system in equa-

tion 6.8 has no solutions. It is possible to use the principle of Least Square Estimation

for computing an approximation solution. The idea is to compute the solution Λ̂ that
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minimises the residual norm, i.e.:

Λ̂T = arg

[
min
ΛT
‖QΛT − Z‖2

]
(6.10)

One solution for this problem is the Moore-Penrose pseudo-inverse (Penrose 1955).

In linear algebra, the pseudo-inverse A+ of a matrix A is a generalisation of the inverse

matrix and is primarily applied to compute a least squares solution estimate of systems

that lack a unique solution. The pseudo-inverse can be defined and is unique for all

matrices whose items are real or complex numbers. It can be computed using singular

value decomposition. The pseudo-inverse A+ of an m × n matrix A is defined as the

unique m× n matrix satisfying all of the following four criteria:

1: A A+ maps all column vectors of A to themselves; i.e. AA+A = A

2: A+ is a weak inverse for the multiplicative semi-group; i.e. A+AA+ = A+

3: AA+ is Hermitian; i.e. (AA+)∗ = AA+; and

4: A+A is also Hermitian; i.e. (A+A)∗ = A+A

In the above descriptions, A∗ is the Hermitian transpose of a matrix A. For matrices M

whose elements are real numbers the Hermitian transpose equals the matrix transpose,

M∗ = MT .

Using the Moore-Penrose pseudo-inverse,Q+, as a solution for equation 6.10 results

in the following final equation:

Λ̂T = Q+Z (6.11)

The pseudo-inverse matrix, Q+, can provide an approximated solution even if equation

6.10 system has no solutions.

6.2.2 Computing Moore-Penrose pseudo-inverse

In this subsection we discuss how the Moore-Penrose pseudo-inverse, Q+ in equation

6.11, can be computed using singular value decomposition (SVD), following (Fallucchi

& Zanzotto 2009). Singular value decomposition (SVD) is widely used in computational

linguistics and information retrieval for reducing dimensions of feature spaces, or in

other words reduce the number of features (Deerwester et al. 1990).
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Moore-Penrose pseudo-inverse (Penrose 1955) is computed as follows: Let the ori-

ginal (input) matrix Q of dimensions n×m be of rank r. The singular value decompos-

ition of the original matrix Q is:

Q = UΣV T (6.12)

Σ is a square diagonal matrix of dimension r. Then, the pseudo-inverse matrix that

minimises equation 6.10 is:

Q+ = V Σ+UT (6.13)

The square diagonal matrix Σ+ of dimension r is the transposed matrix of Σ having as

diagonal elements the reciprocals of the singular values of Σ, i.e. 1
δ1
, 1
δ2
, ..., 1

δr
. Singular

values are defined as the absolute values of the eigenvalues.

Using SVD to compute the pseudo-inverse matrix allows for different approxim-

ations (Fallucchi & Zanzotto 2009). The algorithm for computing the singular value

decomposition is iterative and able to stop at a given k less than the real rank r (Golub &

Kahan 1965). The property of singular values, i.e., δ1 ≥ δ2 ≥ ... ≥ δr > 0, guarantees

that initially derived dimensions have higher singular values, i.e. the first k are bigger

than the discarded r − k. High singular values correspond to dimensions of the new

space where examples have more variability whereas low singular values determine di-

mensions where examples have smaller variability (Liu 2007). Thus, higher dimensions

k are more informative than low dimension k′ > k, and discarding a number of low-

est dimensions can potentially increase discrimination ability. We can consider different

values for k to obtain different SVD for the approximations Q+
k of the original matrix

Q+ in equation 6.13), i.e.:

Q+
k = Vn×kΣ

+
k×kU

T
k×m (6.14)

where Q+
k is a matrix n by m obtained considering the first k singular values.

6.3 Building positive and negative examples

As explained in the previous section, a set of training data is essential to estimate the

parameters of additive CDS models. Similarly, a set of test instances is needed to
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evaluate all models that were presented in this section. Obviously, the choice of these

data is very crucial, since the data sets the task on which the models will be evaluated,

i.e. defines what distinguishes a well performing CDS model from an unsuccessful one.

In the introduction of the present chapter, section 6.1, and in the summarising discussion

of the literature survey, section 2.5.3, we identified that the tasks, on which CDS models

were evaluated, do not clarify how well the models perform. In this section we propose

a different paradigm for evaluating CDS models.

Training or testing instances can be presented in the format of triples. Supposing

that s is a sequence of two words or a single word; and x, y single words, then a triple e

consists of the vectors that represent their context distributions in some corpus, i.e. e ≡
(~s, ~x, ~y) Data triples can either encode multiword expression instances or single word

instances. In the former case, s is a sequence of two words, the multiword expression

itself. x and y are its first and second component word, respectively. In the case that a

data triples encodes a single word, its first part, s, encodes the single word itself while

x and y encode a sequence of two words related to the single word s. The example of

table 6.1 corresponds to triple, (contact, close, interaction) The definition of the general

distributional hypothesis, described in section 2.5.1, allows comparing word sequences

of different length.

Both the multiword expression dataset and the single word dataset contain positive

and negative instances. For positive instances, (~spos, ~xpos, ~ypos) , a good CDS model

is expected to compose the second and third part, i.e. ~xpos and ~ypos, into a new vector

z = �(s) similar to ~spos. An ideal, perfectly performing CDS model would com-

pose a vector, ~z, identical to ~spos, i.e. ~z ≡ ~spos. In contrast, for negative instances,

(~sneg, ~xneg, ~yneg) , the composition z = �(s) of the second and third part of the triple,

i.e. ~xneg and ~yneg, is expected to be significantly different that ~sneg. An ideal, per-

fectly performing CDS model would compose a vector, ~z, totally dissimilar to ~sneg,

i.e. ~z 6= ~spos. The positive and negative instances can be employed to determine whether

a CDS model is good or not and also to compare different CDS models.

The dataset of Mitchell & Lapata (2008) consists of instances (v,n1, v1,n2, v2). v

is an ambiguous verb. When combined with n1, v is disambiguated in one of its senses,

similar to v1. When v is combined with n2, it is disambiguated in a different sense,

similar to v2. For example, ( ran, horse, gallop, colour, dissolve ). The verb ran means

gallop if its subject is horse, while it means dissolve if its subject is colour.
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This dataset poses a different task, closer to disambiguation than to distributional

semantic composition. Moreover, it contains 60 tuples, very few to split in testing and

training part for our experiments. To the best of our knowledge, there are no other

suitable sets available.

We induced two datasets, one containing multiword expressions and one single words.

The latter was created after experiments on the former finished. The results showed that

the multiword expressions of the dataset were very rare in the corpus that we employed

to extract context distributions; the British National Corpus (BNC). The set containing

single words was developed so as to address this data sparsity problem.

6.3.1 Dataset containing multiword expressions

In the previous section, we discussed a novel evaluation framework to assess and com-

pare compositional distributional semantics (CDS) models. In this subsection, we will

describe how the general dataset definition of the previous section can be specified to

contain multiword expressions that consist of two words. As explained, each data triple,

(~s, ~x, ~y), encodes the context distributional vector of a multiword expression, s, and the

the context distributional vector of the multiword expression components, x and y.

The multiword expressions dataset needs to be divided into two parts: one containing

positive instances and one containing negative ones. The notion of compositionality suits

perfectly to be used as a distinguishing factor.

Positive instances of the dataset are the instances that encode compositional multi-

word expressions. According to the definition of compositionality, the meaning of com-

positional multiword expressions can be computed as a combination of the meanings of

its component words. This is exactly what it is expected from the positive instances of

the dataset of the proposed evaluation framework. For example, the compositional mul-

tiword expression tea table is encoded to the following triple within the positive part of

the dataset: ( ~tea table, ~tea, ~table).

As far as negative instances are concerned, the restriction forced by the proposed

framework is that the context distribution representing the meaning of the multiword

expression should be significantly different to combinations of the context distributions

of the component words. It would be possible to create negative instances by replacing

the component words of positive examples with other random words, i.e to take a pos-

itive triple, (~spos, ~xpos, ~ypos), created from a compositional multiword expression and
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replace ~xpos and ~ypos with random words ~xrandom and ~yrandom. Due to data sparse-

ness, the probability that the combination of the meaning of random words, ~xrandom and

~yrandom, is totally unrelated to the meaning of the multiword expression, ~spos, is very

high. However, this method to construct negative instances will result in instances that

are too generic to be interesting cases. In particular, the component words, ~xrandom and

~yrandom, are expected to be too loosely related to the multiword expression, ~spos.

Instead we prefer to encode non-compositional multiword expressions as the neg-

ative instances of the dataset. This way of constructing negative instances is directly

comparable to the way that positive instances were constructed. For example, the non-

compositional multiword expression fish finger can be encoded to the following triple

within the negative part of the dataset: ( ~fish finger, ~fish, ~finger).

6.3.2 Dataset containing single words

As will be discussed in detail in the experiments section, experiments on the multiword

expressions dataset showed that neither standard CDS models nor the trainable CDS

model can perform significantly better than the random baseline. Inspecting the dataset

showed the most possible reason for this failure. Multiword expressions occur rarely

in the chosen corpus, so that no reliable context distributions can be extracted. The

lengthier a sequence of words is, the rarer it becomes and the lower the reliability of

its distributional vector is. A dataset of single words instead of multiword expressions

seems ideal to address the sparsity problem.

Positive instances, (~spos, ~xpos, ~ypos), should consist of the distributional vectors of

a single word, s, and two other words, x and y, whose meaning in combination should

be similar to the meaning of s. Such equivalences can be found in dictionaries, nat-

ural repositories of equivalent expressions. Words that are defined in dictionaries are

declared to be semantically similar to their definition sequences. This holds for at least

some sense of the defined words. For example, consider the dictionary definition con-

tact ≡ close interaction. Since a single word, contact, is declared to be semantically

similar to a two-word expression, close interaction, it can be used as a positive instance:

( ~contact, ~close, ~interaction) Such dictionary definitions can be extracted from any dic-

tionary, e.g. WordNet.

Negative instances, (~sneg, ~xneg, ~yneg), should consist of the distributional vectors of

a single word, s, and two other words , x and y, whose combination of meanings is
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dissimilar to the meaning of s. As discussed for the negative instances of the multiword

expressions dataset, single word negative instances could be created in a random way.

However we noticed that randomly created negative instances can be too generic and too

loosely related to be interesting cases.

Instead, we use the following idea: Many composed words are etymologically de-

rived from very old or ancient words. These words consist of components which are in

general not related to their meaning. For example, the word philosophy derives from two

Greek words philos and sophia, which mean beloved and wisdom, respectively. How-

ever, the use of the word philosophy in not related to the uses of beloved and wisdom.

The word has lost its original compositional meaning. Other examples are municipal

whose Latin components translate into receive duty, and octopus whose Greek compon-

ents translate into eight foot. As the above examples suggest, composed words consist-

ing of old or ancient Latin or Greek components are mostly non-compositional and can

be used to create negative instances for the single words dataset. The above examples

can be encoded into the following negative instances: ( ~philosophy, ~beloved, ~wisdom),

( ~municipal, ~receive, ~duty), and ( ~octopus, ~eight, ~foot). Negative instances can be extrac-

ted from dictionaries containing etymological information such as Wiktionary1.

The proposed way of extracting positive and negative instances has the following

desirable properties:

Property 1: Since the dataset contains definitions and etymological relations of single

words, we can extract stable and meaningful distributional vectors for them. Then,

these vectors can be compared to the distributional vectors obtained using the CDS

model under evaluation. This new dataset successfully tackles the sparsity prob-

lem of the dataset containing multiword expressions.

Property 2: The second and third parts of data instances, x and y following the previous

notation, exhibit a wide variety of different syntactic structures, e.g. adjective-

noun, noun-noun and verb-noun. This allows training and testing CDS models

that take into account syntax, such as the model of Erk and Pado discussed in

section 2.5.2.2. Table 6.3.2 presents the distribution of the most frequent syntactic

structures in the definitions of WordNet 3.0 (Miller 1995). Definitions were parsed

using the Charniak parser (Charniak 2000).

1http://www.wiktionary.org
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Frequency Structure
2635 (FRAG (PP (IN) (NP (DT) (JJ) (NN))))

833 (NP (DT) (JJ) (NN))
811 (NP (NNS))
645 (NP (NNP))
623 (S (VP (VB) (ADVP (RB))))
610 (NP (JJ) (NN))
595 (NP (NP (DT) (NN)) (PP (IN) (NP (NN))))
478 (NP (NP (DT) (NN)) (PP (IN) (NP (NNP))))
451 (FRAG (PP (IN) (NP (NN))))
419 (FRAG (RB) (ADJP (JJ)))
375 (S (VP (VB) (PP (IN) (NP (DT) (NN)))))
363 (S (VP (VB) (PP (IN) (NP (NN)))))
342 (NP (NP (DT) (NN)) (PP (IN) (NP (DT) (NN))))
341 (NP (DT) (JJ) (JJ) (NN))
330 (ADJP (RB) (JJ))
307 (NP (JJ) (NNS))
244 (NP (DT) (NN) (NN))
241 (S (NP (NN)) (NP (NP (NNS)) (PP (IN) (NP (DT) (NNP)))))
239 (NP (NP (DT) (JJ) (NN)) (PP (IN) (NP (DT) (NN))))

Table 6.2: Top 20 syntactic structures of WordNet definitions

6.4 Experiments

This section presents results of experimentation with the proposed novel framework to

evaluate compositional distributional semantics (CDS) models. The aim is firstly to

determine if existing CDS models can discriminate between the positive and negative

instances of a given dataset, as described in section 6.3. CDS models can be compared

with respect to their ability of detecting a statistically significant difference between

positive and negative instances of a dataset.

Specifically, we evaluate the following existing CDS models:

1: basic additive model (BAM)

2: basic multiplicative model (BMM)

3: circular convolution multiplicative model (CCMM)

4: basic additive model with environmental vectors (BAM-E)

5: basic multiplicative model with environmental vectors (BMM-E)

6: circular convolution multiplicative model with environmental vectors (CCMM-E)
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7: basic additive model with selectional preferences (BAM-SP)

8: basic multiplicative model with selectional preferences (BMM-SP)

9: circular convolution multiplicative model with selectional preferences (CCMM-

SP)

10: basic additive model environmental vectors and selectional preferences (BAM-E-

SP)

11: basic multiplicative model with environmental vectors and selectional preferences

(BMM-E-SP)

12: circular convolution multiplicative model with environmental vectors and selec-

tional preferences (CCMM-E-SP)

Most of these models were discussed in subsection 2.5.2 of the literature survey.

The remaining models are combinations of those of subsection 2.5.2 and are explained

below:

The circular convolution multiplicative model (CCMM) is inspired from BEAGLE

(Jones & Mewhort 2007), which was described in section 2.5.2.3. It uses circular con-

volution to compose vectors ~x and ~y:

zi =

n∑
j=1

xjydi−je (6.15)

di− je =

 i− j, if i > j

n+ i− j, if i ≤ j

The circular convolution multiplicative model with environmental vectors (CCMM-

E) is the original BEAGLE model. The basic additive model and the basic multiplicative

model with environmental vectors (BAM-E and BMM-E) compose environmental vec-

tors by addition and multiplication, respectively. BAM-E can be expressed as follows:

� (s) = ~z = α~x+ β~y (6.16)

where α and β are two scalar parameters. BMM-E can be represented as:

� (s) = ~z = ~x
T~y (6.17)

Vectors ~x and ~y are assumed to be row vectors. The dimension of enviromental vectors,
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D, was set to 1024 for the experiments of this chapter.

The basic additive, multiplicative and circular convolution multiplicative models

with selectional preferences (BAM-SP, BMM-SP and CCMM-SP) are different imple-

mentations of selectional preferences, described in equations 2.106 and 2.107, following

addition, multiplication and circular convolution, respectively.

Models combining environmental vectors and selectional preferences are a further

combination of the environmental vectors of BEAGLE and the model of Erk and Pado.

These models work exactly as the selectional preferences models of equations 2.106 and

2.107 but the all vectors are beforehand mapped in the environmental feature space.

Recall equation 2.93 which describes the basic additive model (BAM):

� (s) = ~z = α~x+ β~y

All the above models based on BAM, i.e. BAM, BAM-E, BAM-SP and BAM-E-SP, are

evaluated for unary values of the scalar parameters: α = β = 1; and also for increments

of 0.1 of scalar α and at the same time β = 1− α.

The second target of this experiments is to investigate whether and to what extent

estimating the parameters of additive CDS models from data is helpful towards this task,

i.e. whether the additive CDS model with estimated parameters (EAM) performs better

than existing CDS models. In particular, EAM, which employs the parameter estima-

tion that was presented in section 6.2, is directly comparable only to BAM, since EAM

estimates the parameters of it.

The whole datasets of multiword expressions or single words were used for testing

purposes for comparison among existing CDS models, since none of this models needs

any kind of training. In contrast, to compare between BAM and EAM, the datasets were

divided into a training and a test part, 50% each.

In subsection 6.4.1 we present the setting of conducted experiments. We discuss the

adopted distributional similarity measure and evaluation measure and we provide con-

struction details of the multiword expressions dataset and the single words dataset. In

subsections 6.4.2 and 6.4.3 we present and discuss the evaluation results on the multi-

word expressions dataset and the single words dataset, respectively.
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6.4.1 Experimental setting

In this section, we describe the chosen measure of distributional similarity, a measure

to assess whether a given CDS model can differentiate between positive and negative

instances, and finally details about dividing the multiword expressions and single words

dataset in a training and a testing part. Cosine similarity was employed as a measure to

compute distributional similarity. Let s be a word or a sequence of words and x, y two

words which consist a sequence related to s. For positive instances, s is compositional

and the context distribution of xy is expected to be identical to the context distribution

of s. For negative instances, s is non-compositional and the context distribution of xy

although related is expected to be significantly different from the context distribution of

s. Suppose that ~s, ~x and ~y are the distributional vectors corresponding to words s, x

and y, respectively. Cosine similarity compares the context vector ~s to the composed

vector ~z = �(xy). As discussed in subsection 2.3.3, the cosine similarity cos(~v, ~u) of

two n-dimensional vectors ~v and ~u is defined as:

cos(~u,~v) =
~u · ~v
‖~u‖ ‖~v‖

· is the dot product and ‖~a‖ is the magnitude of vector ~a computed using the Euclidean

norm.

Cosine was the best performing distributional similarity measure for this task among

a large variety of measures that have been tested: Hamming distance, Euclidean distance,

Jaccard coefficient, Dice coefficient and cosine similarity. Binary and weighted versions

of these measures were implemented. The former assume unary values for all non-zero

vector dimensions, while the latter take the actual vector values into account.

We have specified how to compute the semantic similarity of the composed vector to

the target word vector. In succession, we need to assess if the similarity values of posit-

ive instances are significantly different from the similarity values of negative instances.

For a good CDS model, the distribution of similarities sim(~s,�(xy)) over all positive

instances should be significantly different from the same distribution of similarities over

all negative instances.

For this purpose we used Student’s t-test for two independent samples of different

sizes. Student’s t-test hypothesises that the two samples are normally distributed. The

null hypothesis states that the means of the two samples are equal, µ1 = µ2. Student’s
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t-test takes into account the sizes N1 and N2, means M1 and M2, and variances s2
1 and

s2
1 of the two samples to compute the following value:

t =
M1 −M2√
2(s2

1 + s2
2)

df ×Nh

(6.18)

where: df = N1 +N2 − 2

and: Nh = 2× N1 ×N2

N1 +N2

df stands for the degrees of freedom and Nh is the harmonic mean of the sample sizes.

Given the statistic t and the degrees of freedom df , we can compute the probability

that the two samples derive from the same distribution. This probability value is referred

to as p-value and is formally defined as the probability of obtaining a t statistic value

at least as extreme as the one that was actually observed, assuming that the null hypo-

thesis holds. The null hypothesis can be rejected if p-value is below the chosen threshold

for statistical significance (usually 0.1, 0.05 or 0.01), otherwise it is accepted. In our

case, rejecting the null hypothesis means that the similarity values of positive instances

are significantly different from the similarity values of negative instances and the cor-

responding CDS model performs well. Accepting the hypothesis denotes insignificant

differences and the corresponding CDS model is unable to differentiate between posit-

ive and negative instances. As a result, p-value can be used as a performance ranking

function for CDS models.

The dataset consisting of multiword expressions was described in subsection 6.3.1.

The procedure described in section 4.3 is able to derive evidence about the composition-

ality of a given multiword expression that occurs in WordNet (Miller 1995). WordNet

3.0 contains 52, 217 multiword expressions of which 6, 287 multiword expression were

judged as non-compositional. Multiword expressions that contain prepositions or consist

of more than two components were filtered out. Only adjective-noun or noun-noun multi-

word expression were kept. This filtering procedure resulted in 5000 non-compositional

multiword expressions which consist the negative instances of the multiword expression

dataset. The positive instances are 5000 multiword expressions randomly chosen from

the pool of multiword expressions that were judged as compositional by the procedure

in subsection 4.3.

The dataset consisting of single words was introduced in subsection 6.3.2. Posit-
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ive instances were extracted from WordNet and negative instances from Wiktionary. We

chose to collect two different categories of single target word instances: (a) instances

containing adjective-noun or noun-noun sequences (NN single word set); and (b) in-

stances containing verb-noun sequences (VN single word set).

This distinction is expected to aid in exploiting models with selectional preferences,

i.e. BAM-SP, BMM-SP and CCMM-SP. Capturing different syntactic relations, the two

sets can support that our results are independent from the syntactic relation between

the words of each sequence. While implementing these models we used as semantic

heads the second word of each sequence of NN single word instances, and the first word

of VN single word instances. The corresponding models of implementing selectional

preferences were described in equations 2.106 and 2.107, respectively. For NN single

word instances, we considered the syntactic relation adjectival modifier. In contrast,

for VN single word instances, we manually tagged each sequence with either relation

noun subject or noun object depending on the semantics of the sequence.

The NN single word set contains 1065 positive and 377 negative instances, while the

VN single word set contains 161 positive and 111 negative instances. As already men-

tioned, positive instances were extracted for WordNet and negative ones from Wiktionary.

The size of the VN single word set is small due to the fact that verb-noun sequences are

quite rare in WordNet and Wiktionary. Frequency vectors for all multiword expressions

and single words occurring in both the multiword expressions dataset and the single

words datasets were constructed from the British National Corpus using sentences as

contextual windows and words as features.

6.4.2 Results on the dataset of multiword expressions

In this subsection, we present the results of all experiments on the multiword expressions

dataset as described previously. The first experiment compares existing models for Com-

positional Distributional Semantics (CDS) on the whole dataset. The second experiment

compares the basic additive model (BAM) with the estimated additive model (EAM)

that was proposed in section 6.2. Since EAM needs training data for the estimation of

matrices, positive and negative instances were split into two halves to consist the train-

ing and testing parts. In both experiments, CDS models are judged according to their

ability to distinguish between positive and negative instances of the dataset. This ability

is measured by the probability of confusing positive and negative instances; i.e. Stu-
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CDS model MWE dataset CDS model MWE dataset
BAM (α=β=1) 0.92915 BAM-E (α=β=1) 0.26178
BMM 0.54831 BMM-E 0.28529
CCMM 0.76071 CCMM-E 0.62764
BAM-SP (α=β=1) 0.37726 BAM-E-SP (α=β=1) 0.62304
BMM-SP 0.27555 BMM-E-SP 0.44186
CCMM-SP 0.07760 CCMM-E-SP 0.90381

Table 6.3: Probability of confusing positive and negative instances of the multiword
expressions dataset when composing with existing CDS models

Figure 6.1: Probability of confusing positive and negative instances of the multiword
expressions dataset when composing with existing CDS models

dent’s test p-value. As discussed in subsection 6.4.1, the level of statistical significance

is usually set to 0.1%, 0.05% or 0.01%. We adopt 0.05% for this discussion.

Table 6.3 presents the results of the first experiment. We observe that no method

successfully distinguishes between positive and negative instances. The best perform-

ing model is the circular convolution multiplicative model with selectional preferences

(CCMM-SP), however its probability of confusing positive and negative instances is

slightly larger than the statistical significance threshold 0.05%.

In table 6.3 BAM-based models are evaluated for unary values of parameters α and
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CDS model MWE dataset
BAM (α=β=1) 0.12891
EAM (k=1) 0.61469
EAM (k=10) 0.58602
EAM (k=20) 0.66433

Table 6.4: Probability of confusing positive and negative instances of the multiword
expressions dataset when composing with BAM and EAM

Figure 6.2: Probability of confusing positive and negative instances of the multiword
expressions dataset for BAM and EAM and for various values for parameter α (where
β = 1− α)

β, only. Figure 6.1 investigates further the parametrisation of BAM-based models. The

y-axis represents Student’s test p-value for all values of α in 0.1 increments; at the same

time β = 1−α. The basic observation remains the same; no CDS model can distinguish

between positive and negative instances. The basic additive CDS model with environ-

mental vectors (BAM-E) appears to be the most dependent upon the values of parameters

α and β.

BAM-based models depend on the two parameters α and β (equations 2.93 and

6.16). Table 6.4 presents the results of the second experiment. It shows the p-values of

BAM and three versions of EAM, each of which takes different number of eigenvalues

(k) into account to compute the Moore-Penrose pseudo-inverse, as explained in sub-
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section 6.2.2. No CDS model successfully distinguishes between positive and negative

examples.

The picture is the same in figure 6.2 where the same EAM models are compared

against a different parametrisation for BAM. Again, the p-values achieved by BAM for

all values of α in 0.1 increments and β = 1− α are plotted. The representation focuses

on the performance of BAM with respect to different α values. The performance of

EAM for different k values is represented with horizontal lines. Probabilities of different

models are directly comparable. The dashed line represents the threshold of statistical

significance; the value below which the detected difference between the positive and

negative instances becomes statistically significant.

BAM performs well only when α = 0.9 or α = 1, i.e. when the CDS composed vec-

tor is equal to the context vector of the first component of each multiword expression.

This result motivated us to inspect the data to explain why. The majority of multiword

expressions do not occur in the BNC or occur once. Usually, the first component word is

also very infrequent in the BNC, so its context is very similar to the context of the multi-

word expression, and this is captured by BAM. As a result, experiments on the dataset of

multiword expressions indicate that no CDS model can successfully accomplish the task.

This is basically because the multiword expressions occur rarely in the chosen corpus,

and thus the dataset should be changed to consist of more frequent word sequences.

6.4.3 Results on the dataset of single words

The dataset of single words was induced to reduce the data sparsity that the multiword

expressions dataset suffered. As discussed in subsection 6.4.1, the single words dataset

was divided into two sets: an NN set, whose sequences consist of two nouns, and VN

set, whose sequences consist of a verb and a noun. Table 6.5 reports the results of

evaluating existing CDS models on the NN and VN single words dataset. CDS models

are scored by the probability p that positive and negative instances of the dataset are

similarly distributed. In this first experiment the whole dataset is used for testing.

In general, we observe that it is rather difficult to find a good CDS model in both

the NN and VN single words dataset. There are 4 CDS models that distinguish well

between positive and negative instances of the NN dataset, but not for the VN dataset.

For example, BAM seems to be a good candidate as the null hypothesis can be rejected

for NN experiments, but it fails in VN experiments. There is only one method that
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Single words datasets
CDS model NN VN
BAM (α=β=1) 0.02585 0.80129
BMM 0.10808 0.95079
CCMM 0.01428 0.71929
BAM-SP (α=β=1) 0.13857 0.19061
BMM-SP <1.00E-10 0.00050
CCMM-SP <1.00E-10 0.18177
BAM-E (α=β=1) 0.94686 0.37125
BMM-E 0.30468 0.31580
CCMM-E 0.40191 0.27970
BAM-E-SP (α=β=1) 0.63673 0.90745
BMM-E-SP 0.80022 0.41503
CCMM-E-SP 0.17627 0.25803

Table 6.5: Probability of confusing positive and negative instances of single words data-
sets NN and VN when composing with existing CDS models

performs well on both datasets: BMM-SP, and thus seems to be a good candidate for a

general CDS model. In contrast, CDS models for which the null hypothesis cannot be

rejected cannot be considered as good models.

In succession, we attempt to explore whether the parameters of BAM-based CDS

models can play an important role. Figure 6.3 reports Student’s t-test p-values with

respect to α for 0.1 increments. To reduce two parameters to one β was set to 1− α.

A first observation for the NN dataset is that BAM-based models with selectional

preferences can discriminate between positive and negative instances when α = 0. This

is not evidence that the CDS models perform well because when α = 0 there is no

real composition happening; we are considering only the second component word of the

sequence. Whenever the vectors of the two words are really composed (alpha < 1 and

beta < 1), the values of the probability are far from being satisfactory. Yet, especially for

models employing environmental vectors the p-values change dramatically for different

values of parameter α, for both datasets.

For the NN dataset, BAM seems to be able to successfully distinguish between pos-

itive and negative instances for α > 0. In contrast, for the VN dataset, all CDS model

tend to confuse positive and negative instances much more than tolerable. Even if these
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Figure 6.3: Probability of confusing positive and negative instances of NN (up) and VN
(down) single words datasets when composing with existing CDS models and for various
values for parameter α (where β = 1− α)

plots do not give the possibility to select the correct α, they suggest that although the

additive CDS models can be useful, there is also need to scale to more complex additive

models.

The second experiment compares BAM with three versions of EAM, each one con-

sidering different number of eigenvalues for computing the Moore-Penrose pseudo-inverse
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Single words datasets
CDS model NN VN
BAM (α=β=1) 0.05690 0.50753
EAM (k=1) 0.11735 0.22306
EAM (k=10) <1.00E-10 0.16452
EAM (k=20) 0.00431 0.00453

Table 6.6: Probability of confusing positive and negative instances of single word data-
sets NN and VN for BAM and EAM.

matrix. Results are shown in table 6.6. We observe that in contrast to BAM, some EAM

models succeed in separating positive from negative examples for both sets. For the NN

single words dataset this happens for k = 10 and k = 20, while for the VN single words

dataset for k = 20, only.

Figure 6.4 shows the results of investigating whether simple parameter adjustment

of BAM can perform better than EAM. Plots show the basic additive model (BAM) with

different values for parameter α, where β = 1 − α, and EAM computed for different

approximations of the Moore-Penrose pseudo-inverse matrix, i.e. with different values

of k.

Experimental results show some interesting facts: While BAM for α > 0 perform

better than EAM computed with k = 1 in the NN set, it does not perform better in the VN

set. EAM with k = 1 has 1 degree of freedom corresponding to 1 parameter, the same as

BAM. The parameter of EAM is tuned on the training set, in contrast to α, the parameter

of BAM. Increasing the number of considered dimensions k of EAM, estimated models

outperform BAM for all values of parameter α. Moreover, EAM detect a statistically

significant difference between the positive and negative instances for k = 10 and k = 20

for the NN set and the VN set, respectively. Simple parametrisations of a BAM do not

outperform the proposed estimated additive model.

6.5 Summary

We proposed a novel framework to investigate compositional distributional semantics

(CDS) models, since existing CDS models have been investigated only with respect to

word sequence similarity tests and lexical substitution tasks. The framework defines a
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Figure 6.4: Probability of confusing positive and negative instances of NN (up) and VN
(down) single words datasets when composing with BAM and EAM and for various
values for parameter α (where β = 1− α)

new task to evaluate CDS models. According to this task, a good CDS model is expected

to compose the context distributions of the components of a compositional sequence to

produce a distribution similar to the context distribution derived from the occurrences of

the sequence as a whole. At the same time, for non-compositional sequences, a good

CDS model is expected to construct distributions significantly different from the context
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distribution of the occurrences of the sequence as a whole.

The results of evaluating a number of state-of-the-art CDS models showed that none

can perform well; but this was found to be on account of the fact that sequences appear

very infrequently as a whole. Thus, no reliable context distributions can be derived. To

tackle this data sparsity, we created new positive and negative examples from suitable

dictionary entries. These instances work exactly as the multiword sequences, since their

functionality is still based on the notion of compositionality. The only difference is that

instead of comparing the composition result against the context distribution of the occur-

rences of a sequence, it is compared towards the context distribution of the occurrences

of a single word.

Experimenting with this new evaluation set showed that several existing CDS mod-

els perform well on this new task: a basic model that employs selectional preferences

and multiplies the distributional vectors of sequence constituents and more evidently a

model that simply adds the distributional vectors of sequences constituents. The per-

formance of CDS models is shown to depend highly on parameter values. In succession

a new method for estimating the parameters of the basic additive model is proposed.

The estimation problem is formed as a regression problem with multiple dependent vari-

ables. An approximate solution is computed using singular value decomposition and

Moore-Penrose pseudo-inverse. Experiments showed that the CDS model that uses this

parameter estimation method is highly competitive with respect to state-of-the-art mod-

els for compositional distributional semantics.



CHAPTER 7

Conclusion and Future Work

Executive Summary

This final chapter summarises the research work that was accomplished in this thesis. It

discusses whether and to what extent the research hypothesis was fulfilled. Moreover, it

presents a handful of open issues relevant to the subjects of the previous four chapters

and proposes several directions for future work.

7.1 Thesis Summary

In this section, the basic research directions that were identified in the literature survey

are summarised. In succession, we briefly describe the ways that these directions were

explored in our research and the corresponding research outcomes and experimental res-

ults.

7.1.1 Literature Summary

In the literature review of this thesis, we performed a detailed survey of the research work

in four major issues concerning the phenomenon of multiword expressions in natural lan-

guage processing: (a) multiword expression and term recognition, (b) compositionality,

(c) direct application to shallow parsing, and (d) indirect application to compositional

228
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distributional semantics as a source of instances with desirable properties to build an

evaluation framework.

Methods for extracting multiword expressions and terms, i.e. domain specific mul-

tiword expressions, were classified into linguistic, statistical and hybrid ones; the latter

combine linguistic and statistical components and possibly other tools. Statistical meth-

ods quantify the properties of multiword expression candidates and their context and

score each candidate separately. They are classified as unithood-based or termhood-

based. The former assess the attachment strength of the candidate constituents, and

the latter assess the degree that a candidate multiword expression refers to a specific

concept. The state-of-the-art lacks an evaluation framework that will allow comparing

between different methods. Although many methods have explored a variety of informa-

tion sources, evaluation is usually done separately or against a few other methods found

in the literature using different corpora and incompatible evaluation settings.

We then reviewed the literature that addresses the issue of deciding the composition-

ality of a given multiword expression. Methods were classified into those that compare

the context distributions of the multiword expression and its components and to oth-

ers based on substitutions. The latter are fewer than the former and address the issue

indirectly: hypothesising that non-compositional multiword expressions are more rigid

than compositional ones. All but two approaches, Fazly & Stevenson (2007) and Fazly

et al. (2009), do not address the fact that the same multiword expression might have non-

compositional and compositional uses. Fazly & Stevenson (2007) and Fazly et al. (2009)

judge each instance of a multiword expression as compositional or not by comparing its

context distribution to the context distribution of all instances together. Most methods

found in the literature are evaluated on light verb constructions, verb-particle construc-

tions, or verb-noun phrases. In contrast, multiword expressions consisting of adjectives

and nouns are much less exploited.

The next objective of this thesis is to investigate how multiword expressions can be

integrated into shallow parsing and whether and to what extent this integration contrib-

utes to shallow parsing accuracy. There is very limited work published on this issue,

since most parsers ignore multiword expressions. There are two approaches of integrat-

ing multiword expressions in deep parsing. Zhang et al. (2006) adopted a “word with

spaces” model (Sag et al. 2002), represented each multiword expressions as a new lex-

icon entry and showed a significant increase in coverage. Villavicencio et al. (2007)
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argued that although the “word with spaces” approach of Zhang et al. (2006) enhances

parser coverage, it affects the quality of the parse output detrimentally. Instead, they

propose to integrate non-compositional multiword expressions, only, and achieved an

increase in coverage similar to the one in Zhang et al. (2006) but added significantly less

entries.

We located several disadvantages of the above approaches: Firstly, multiword ex-

pressions that were used in these experiments were judged as compositional or not using

measures for extracting collocations. These measures correlate well but imperfectly with

compositionality. Secondly, evaluations are small in size due to the cost of manually an-

notating parse output. Thirdly, there is no distinction among different types of multiword

expressions, thus it is unclear which types affect parsing accuracy and coverage.

The last area of literature investigation in this thesis is distributional semantics com-

position. Several models addressing this task have been reviewed and three major issues

were identified as potential fields of further research. Firstly, model parameters have not

been exploited extensively. For example, the additive model in Mitchell & Lapata (2008)

is evaluated hypothesising that always all features of a component word of a sequence

contribute equally to the composed context distribution of the sequence. Secondly, state-

of-the art models of the literature are evaluated on word sequence similarity tests, such

as (Kintsch 2001), and lexical substitution tasks. They show low correlation with human

annotated data, for which inter-annotation agreement is also low. These facts reveal that

there is need to define a new task for evaluating CDS models. Thirdly, the models of the

literature consist of various components and require a number of choices when imple-

mented, such as the feature space of the context distribution. However, the models of the

literature are usually evaluated following one of these options. It would be interesting

to see if others can perform better. For example, the basic additive model of Mitchell &

Lapata (2008) could be used to compose the environmental vectors of BEAGLE.

7.1.2 Research Summary

To address the limitations of the literature relevant to extracting multiword expressions

and multiword terms, in chapter 3 we proposed an evaluation framework that allows

comparing extraction methods under common settings. The framework consists of two

evaluation corpora of the biomedical domain: GENIA and PennBioIE, evaluation metrics

and a way to visualise the results.
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Using this framework, several methods for linguistic filtering and for extracting col-

locations and multiword terms were evaluated. Termhood-based methods were shown

to outperform unithood-based ones. This result should be assessed considering the fact

that the corpora were domain-specific. In succession, termhood-based methods were

analysed into components, each of which takes into account a source of useful inform-

ation for term extraction. These components were evaluated separately to assess their

contribution. Marginal frequency, i.e. the count of independent occurrences of a term, is

shown to perform better than other more sophisticated termhood-based methods, under

the current evaluation framework. In addition, marginal frequency is shown to improve

performance of C-Value and Statistical barrier when integrated in the corresponding al-

gorithms.

In chapter 4, we proposed a new method to address the problem of identifying

whether a multiword expression is compositional or not. We focused on developing

a method that takes into account that a multiword expression might have idiomatic (non-

compositional) and non-idiomatic (compositional) uses. The method employs graph-

based word sense induction to induce the senses of the multiword expression and its se-

mantic head. Comparing the major senses of the multiword expression and its semantic

head is adopted as an indicator of compositionality. We hypothesised that the major

sense of a word or expression captures the sense that one thinks of when encountering it

without context.

The proposed method was evaluated on English adjective-noun constructions, com-

pound nominals and proper names, extracted from WordNet. We proposed a semi-

supervised approach for resolving compositionality of multiword expressions occurring

in WordNet that minimises human effort. It is shown that when the parameters of the

system are estimated manually, sense induction can assist in identifying compositional

multiword expressions. In succession, we propose an unsupervised scheme for estimat-

ing the parameters of graph-based sense induction systems. The scheme employs graph

connectivity measures to score the clustering output in which a given parameter setting

results. Using this scheme to estimate the parameters of the proposed system achieved

comparable accuracy to selecting parameters manually.

In chapter 5, we investigated whether knowing which sequences are multiword ex-

pressions and of which type can contribute to shallow parsing. We adopted a “word with

spaces” approach to integrate 116 multiword expressions extracted from WordNet 3.0; in
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particular compound nominals, proper names or adjective-noun constructions. For each

multiword expression we collected sentences from the web. In succession, they were

part of speech tagged and shallow parsed.

The parse outputs before and after integrating multiword expression information

were compared employing a detailed classification of changes. Every change that oc-

curred in the parse output was assigned to a class, and for each class it was known

beforehand whether the corresponding changes improve or deteriorate the parse output.

The results showed that integrating non-compositional multiword expression informa-

tion improves the shallow parse output more than integrating compositional ones. In

particular, the contribution is shown to be significant for non-compositional adjective-

noun multiword expressions.

In chapter 6, we proposed a novel framework to investigate compositional distribu-

tional semantics (CDS) models. The framework defines a new task, according to which

a CDS model performs well if: (a) for each compositional sequence, it composes a dis-

tribution similar to the distribution derived from the occurrences of the sequence as a

whole; and (b) for each non-compositional sequence, it composes a distribution differ-

ent to the distribution of the occurrences of the sequence as a whole. The framework

was tested on two datasets: the first one contains compositional and non-compositional

multiword expressions and the second contains compositional and non-compositional

equivalences between single words and sequences, extracted from suitable entries of

WordNet and Wiktionary. The advantage of the latter dataset is that the original distri-

bution, which is compared with the composed distribution, represents a single word and

thus suffers less data sparsity.

Several state-of-the-art CDS models were evaluated under the proposed framework.

On the dataset containing multiword expressions no CDS model performed well due

to data sparsity. On the dataset containing equivalences of single word and sequences

several existing CDS models perform well: a basic model that employs selectional pref-

erences and multiplies the distributional vectors of sequence constituents and more evid-

ently a model that simply adds the distributional vectors of sequence constituents. How-

ever, performance highly depends on parameter values. For this reason, a new supervised

method of estimating the parameters of the basic additive model based on singular value

decomposition and Moore-Penrose pseudo-inverse is proposed. Experiments showed

that the resulting CDS model is very competitive with respect to existing CDS models.
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7.2 Contributions

In the introduction of this thesis we stated the following hypothesis:

The tasks of recognising multiword expressions and deciding for their com-

positionality can be addressed in unsupervised manners, based on cooc-

currence statistics and distributional semantics. Further, multiword expres-

sions are beneficial for other fundamental applications of Natural Language

Processing either by direct integration or as an evaluation tool.

The hypothesis is stated so as to capture all four aspects that correspond to four im-

portant directions of this research relevant to multiword expressions. We believe that

applications are equally important to the original tasks of multiword expressions, re-

cognition and compositionality, because applications highlight the importance of the

linguistic phenomenon to the other sub-fields of Natural Language Processing (NLP).

Certainly, the evaluation results, that were summarised in the previous section, show

that the hypothesis holds, i.e. that there are unsupervised ways of taking cooccurrence,

nestedness, context and other types of information into account to recognise multiword

expressions and decide for their compositionality and that multiword expressions can be

beneficial for other NLP applications.

In the context of recognising domain-specific multiword expressions, we have shown

that unithood-based measures, that use statistic tests and are originally developed to ex-

tract collocations, perform under the proposed evaluation framework worse than termhood-

based measures, which are specially developed for domain-specific multiword expres-

sions. Thus, extracting terms is significantly different to extracting collocations and

requires special methods that carefully consider a wider range of information sources

than statistical tests and cooccurrence frequencies. The proposed evaluation framework

is designed to accommodate as many of the methods found in the literature as possible,

even more than those that have already been evaluated. The contribution of this part of

our work is mainly the conclusion that marginal frequency is a very efficient heuristic

for extracting domain-specific multiword expressions, despite its simplicity.

Secondly, we have shown that there is much space for further work in the field of

multiword terminology extraction, since methods found in the literature do not outper-

form marginal frequency. State-of the art methods have not yet succeeded in taking

advantage other sources of information, such as context. NC-Value, the algorithm that
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inputs the C-Value ranked list of candidate multiword terms and re-ranks it according to

context information, did not achieve significantly different results than C-Value for both

evaluation corpora. Moreover, the NC-Value output does not seem to be much affected

from changing its parameter values. As a result, the method does not verify experiment-

ally the theoretical intuitions on which it is based. This is a conclusion that holds for the

proposed evaluation framework, and is a matter of further experimentation to investigate

whether it generalises to other corpora and evaluation settings.

As far as the problem of deciding the compositionality of multiword expressions is

concerned, we have shown that taking into account the different senses of multiword

expressions and their components achieves an improvement over the standard approach

of directly comparing the corresponding context distributions. The contribution is in-

line with a broad variety of research works which argue that partitioning the context

distribution into separate distributions for each sense of the target word or sequence

leads to a more accurate representation of context and better accuracy in various NLP

tasks; e.g. Klapaftis (2008).

A separate contribution to research relevant to multiword expressions is the algorithm

that estimates the compositionality of multiword expressions in WordNet. It can serve as

a tool to minimise human effort in compositionality annotation, it is very easy to imple-

ment and also applicable to any synset hierarchy similar to WordNet, such as WordNets

for languages other than English. Thus, it can be employed by researchers to develop

their own datasets containing multiword expressions of any desirable parts of speech,

given that they occur in some synset hierarchy; such as noun phrases containing prepos-

itions, e.g. Commission on Human Rights.

Our attempt to integrate knowledge about multiword expressions in shallow parsing

led to several contributions. As expected, we showed that shallow parsing can improve

knowing about non-compositional multiword expressions while this is not the case for

compositional ones. More evidently, non-compositional adjective-noun sequences are

shown to contribute more than noun-noun sequences. These results are useful to the

research community, especially to research relevant to parsing.

A second contribution from our experimentation with shallow parsing is the defini-

tion of change classes, which can provide statistical evidence useful for any further error

analysis. Except for the application of change classes to evaluate the contribution of

multiword expression in shallow parsing, they can serve to evaluate any other change
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in the input or the implementation of the parser. Consequently, change classes can be

seen as a more general tool for comparing the output of a shallow parser before and after

some kind of change. This is straightforward, since change classes, as implemented and

used in chapter 5, are agnostic of the event that occurred between the two shallow parses

under comparison.

The contribution of our research to Compositional Distributional Semantics (CDS) is

two-fold. Firstly, we proposed a new task for evaluating CDS models specially designed

for this purpose, in contrast to previously employed evaluation tasks. This new task

provides an excellent opportunity to facilitate the connection between theoretical CDS

models and experimental evaluations. Despite the fact that the evaluation presented in

this thesis considers sequences of two words only, the task is straightforwardly extensible

to longer sequences. Of course, this extension requires new datasets of compositional

and non-compositional sequences of the chosen length.

Secondly, we evaluated several state-of-the-art models of the literature and shown

that the basic additive model and the basic multiplicative model with selectional pref-

erences exhibit interesting potential. We have also shown that there is evident need to

abandon simplistic parameterisations and instead estimate the parameters of CDS mod-

els. In specific we proposed a trainable CDS model, which is shown to perform better

than existing CDS models. In general, we have structured the task of CDS modelling

and opened a new direction in developing more efficient CDS models.

7.3 Future Work

In this section, we propose several directions for future work for each of the four major

parts of this thesis. Directions mainly emerge from inspecting the contributions of the

previous section and searching for ways to strengthen them.

7.3.1 Multiword expression Recognition

As discussed in the previous section, our evaluation on multiword term recognition

showed that state-of-the-art methods do not successfully integrate context information.

Thus, there is much space for developing new methods towards this direction. In addi-

tion, since domain-specific term extraction is proven to be a task significantly different

to general-domain multiword expression recognition, it might be interesting to attempt
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to integrate other sources of information in the recognition process, such as resolving

abbreviations.

The proposed evaluation framework, although designed to accommodate as many

approaches in the literature as possible, is still unable to accommodate some of them. For

example, it hypothesises that candidate multiword expressions are generated by applying

some linguistic filter on raw text. However, there are methods that skip linguistic filtering

and apply directly on text. It would be interesting to investigate ways that these methods

could also be comparably evaluated under the framework.

7.3.2 Compositionality analysis

The main disadvantage of the proposed system for resolving compositionality of a given

multiword expression is its time deficiency. For each multiword expression, the system

collects two corpora from the web: for the expression itself and for its semantic head. In

a latter stage, it queries a web search engine to collect cooccurrence statistics useful to

construct the graph. Both these processes are extremely time-consuming mainly due to

network transfer delays.

Evidently, there is need to exploit clever ways to avoid collecting large web corpora

and retrieving cooccurrence counts from web search engines. Potential success would

allow speeding up the unsupervised process of deciding compositionality of a given mul-

tiword expression. Then, the system would be efficient enough to comprise a component

in other Natural Language Processing tools, e.g. in a shallow parser with parallel non-

compositional multiword expression recognition.

Another direction for future work emerges from the fact that the proposed system

only uses the major senses of the input multiword expression. It would be interesting to

investigate the other senses as well and output a list of the senses together with indica-

tions about the compositionality of each one.

7.3.3 Multiword expressions and shallow parsing

In our experimentation with integrating multiword expressions in shallow parsing, we

followed a simple approach: we replaced the tokens of each multiword expression with

a special made-up token consisting of the same tokens joined with underscores. It would

be interesting to relax this hard-wiring heuristic. For example, one could inspect the

possibility of assigning a probability that a sequence is a multiword expression and then
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letting the shallow parser decide whether the most probable parse should include the

sequence as a multiword expression or not. This approach to the problem is very relevant

to the discussion in the previous subsection about integrating a multiword expression

compositionality component in a shallow parser. If the component can be improved

in terms of time-efficiency, multiword expression candidates of various lengths can be

assessed for compositionality, and the distributional similarity value can be used as a

compositionality estimate.

The extent to which our results generalise could be investigated further. A similar

analysis could be performed using other shallow or possibly deep parsers. In the case of

deep parsers the contribution of knowledge about multiword expressions is expected to

be larger, since deep parsing is a more complicated task than shallow parsing.

7.3.4 Compositional distributional semantics models

In chapter 6, we proposed a novel method to estimate the parameters of the additive

Compositional Distributional Semantics (CDS) model. Evaluation results for the CDS

model whose parameters are estimated using the proposed method are very encouraging.

Thus, it would be very interesting to exploit similar trainable parameter estimation mod-

els for the basic multiplicative CDS model and CDS models with selectional preferences.

For these models, evaluation with simple parameterisations showed promising results.

Finally, a direction for extending the proposed evaluation framework is to invest-

igate automatic methods for creating counter instances. In our framework, the posit-

ive instances of the multiword expression dataset consist of compositional multiword

expressions while the positive instances of the single words dataset consist of equi-

valences of single words and compositional sequences. Negative examples consist of

non-compositional multiword expressions and equivalences of single words and non-

compositional sequences, respectively. The bottleneck in constructing the datasets is

that negative instances are rare. However, choosing random equivalences is not suit-

able, since the sequences are expected to be totally unrelated to the single word, due to

sparsity. It would be interesting to exploit other ways of creating negative instances in

order to overcome the data sparsity problem.
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Grégoire et al. (2007), 22
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