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Abstract 
Urban surface sediment is a major source of pollution as it acts as a transport medium 

for many contaminants. Accurate modelling of sediment wash-off from urban surfaces 

requires an understanding of the effect of variability in the external drivers such as 

rainfall on the wash-off process. This study investigates the uncertainty created due to 

the urban-scale variability of rainfall, in sediment wash-off predictions. Firstly, a 

rigorous geostatistical method was developed that quantifies uncertainty due to spatial 

rainfall variability of rainfall at an urban scale. The new method was applied to a unique 

high resolution rainfall dataset collected with multiple paired gauges for a study 

designed to quantify rainfall uncertainty. Secondly, the correlation between calibration 

parameters and external drivers - rainfall intensity, surface slope and initial load- was 

established for a widely used exponential wash-off model using data obtained from 

new detailed laboratory experiments. Based on this, a new wash-off model where the 

calibration parameters are replaced with functions of these external drivers was 

derived. Finally, this new wash-off model was used to investigate the propagation of 

rainfall uncertainty in wash-off predictions. This work produced for the first time 

quantitative predictions of the variation in wash-off load that can be linked to the 

rainfall variability observed at an urban scale. 

The results show that (1) the assumption of constant spatial rainfall variability across 

rainfall intensity ranges is invalid for small spatial and temporal scales, (2) wash-off 

load is sensitive to initial loads and using a constant initial load in wash-off modelling 

is not valid, (3) the level of uncertainty in predicted wash-off load due to rainfall 

uncertainty depends on the rainfall intensity range and the “first-flush” effect. The 

maximum uncertainty in the prediction of peak wash-off load due to rainfall uncertainty 

within an 8-ha catchment was found to be ~15%.   

Keywords: sediment wash-off, sediment build up, model uncertainty, exponential 

wash-off model, rainfall variability 
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1. Introduction 

1.1 The bigger picture 

Urban surface sediment is a major source of pollutants in the urban environment which 

contributes to the degradation of urban water quality, mainly due to its ability to act as 

a transport medium for many contaminants (Guy, 1970; Collins and Ridgeway, 1980; 

Mitchell et al., 2001; Lawler et al., 2006). For example, Collins and Ridgeway (1980) 

found that in urban storm events, sediment smaller than < 63µm transported more than 

50% of the total pollutant load. In addition, transported sediment can also contribute to 

urban flood risk by depositing in urban drainage systems and consequently reducing 

their hydraulic capacity (Delleur, 2001; Ivan, 2001). Sediment deposition also causes 

problems such as early and more frequent overflows, larger pollutant discharges and 

costly removal (Ashley et al., 1992; Delleur, 2001; Heal et al., 2006). The erosion of 

sediments in sewers can also release pollutants in high concentrations from combined 

sewer overflows that exceed the levels found in the various contributing sources of the 

sediments and pollutants (Ashley et al., 1992). Hence, the importance of accurate 

modelling of sediment transport from urban surfaces (also known as sediment wash-

off) is important in water quality and flood risk based decision making. But, modelling 

sediment wash-off is not a straightforward exercise as it requires the understanding of 

complex interactions between external drivers with a highly variable nature associated 

with rainfall, catchment surface and particle characteristics (Sartor and Boyd, 1972; 

Deletic et al., 1997; Egodawatta and Goonetilleke, 2008). Due to difficulty in 

modelling this complex interactions using first principals, most widely used wash-off 

models that are empirically derived using limited laboratory and field experimental 

data (e.g. Sartor and Boyd, 1972; Egodawatta et al., 2007; Francey et al., 2011). The 

inherent shortcoming of these empirical methods is that the calibration parameters in 

these models do not have a strong physical meaning and therefore applicability and 

transferability of these parameters to other catchments is questionable. The absence of 

any commonly accepted look-up tables/chart of these calibration parameters in the 

literature and inconsistency in the previous estimations makes it even harder for the 

accurate prediction of wash-off using these models. 

Among the external drivers, rainfall data is an essential input in the prediction of 

sediment wash-off (Sartor and Boyd, 1972; Egodawatta et al., 2007). However, due to 
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the highly variable nature of rainfall over a wide range of scales, it is not always 

possible to measure rainfall with an appropriate temporal and spatial resolution 

required by hydrological modelling applications such as sediment wash-off modelling. 

Hence the effect of rainfall variability in such resolution is often neglected in these 

modelling applications. This is common in both rural and urban catchments. But urban 

areas are characterised by smaller catchment sizes with a higher proportion of 

impervious area than rural catchments. These factors result in faster catchment reaction 

times and higher surface run-off volumes than rural catchments. Hence, inadequate 

representation of any spatial and temporal variability of rainfall can be a  source of 

uncertainty in urban runoff predictions and in any other urban hydrological predictions 

which are driven by rainfall and/or runoff such as sediment wash-off  (Al and Elson, 

2005; Segond et al., 2007; Gires et al., 2012; Ochoa-Rodriguez et al., 2015). For 

example, Ochoa-Rodriguez et al. (2015) showed that the error in peak pipe discharge 

predictions due to inadequate representation of rainfall spatial variability is up to 250%  

for drainage areas of the order of 1 ha and up to 50% for drainage areas of ~800 ha. 

Rainfall intensity, in addition to being the main input in existing widely used wash-off 

empirical models, also affect the calibration parameters of these models  as the wash-

off process is physically driven by rainfall and runoff (Sartor and Boyd, 1972; Deletic 

et al., 1997; Egodawatta et al., 2007). Hence, any unrepresented rainfall variability 

would have a direct effect on sediment wash-off prediction. For instance, when spatial 

and temporal aggregation is used and variability is neglected, the rainfall intensity 

peaks get smoothed out and these reduced peaks would result in an underestimation in 

the prediction of sediment wash-off. Hence, it is important to get a measure of this 

uncertainty in the prediction of wash-off due to this unaccounted variability of rainfall. 

However, sediment wash-off has not been explored much in terms of the effect of small 

scale rainfall variability. 

The question of why the effect of rainfall variability has not been investigated in depth 

for sediment wash-off predictions may have multiple answers, but most of them can be 

brought under two major reasons. (1) The challenges in accurately representing the 

small-scale rainfall variability in lumped (a single spatial unit) sediment wash-off 

models which are the most widely used wash-off model type. (2) Current model 

structures of sediment wash-off models are not complex enough to adequately describe 

the key physical processes and the model structures do not have provision to study the 
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propagation of uncertainty due to variability of rainfall. The main challenge with 

representing the small-scale rainfall variability in lumped catchment models is that such 

representation requires a method such as geostatistics with demanding data 

requirements to account for spatial configuration of measurement locations and to 

correctly quantify uncertainty due to spatial variability. The major challenge with 

current sediment wash-off modelling is that it still needs an in-depth investigation on 

the calibration parameters so as to understand how these calibration parameters 

responds to variability in external drivers such as rainfall. This essentially means that 

the nature of this PhD requires individual and in-depth investigations of two different 

areas: small scale rainfall variability and sediment wash-off modelling; both areas pose 

their own challenges. Hence, the PhD is compartmentalised into three major parts. The 

first part investigates small scale rainfall variability and develops a rigorous stochastic 

method which can be used in lumped catchment models including sediment wash-off 

models to represent this small scale rainfall variability. The second part focuses on 

developing better understanding of the sediment wash-off process and then to improve 

current wash-off models by establishing the correlation between the calibration 

parameters and external drivers including rainfall. The final part uses a comprehensive 

uncertainty analyses method and the findings from first two parts to study propagation 

of different sources of uncertainty in the improved sediment wash-off model including 

uncertainty due to rainfall variability. The aims and objectives of this PhD, described 

in section 1.2 provide more details on these three major parts. 
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1.2 Aims and objectives 

The overall aim of this PhD is to investigate the effect of uncertainty due to small-scale 

variability of rainfall in predicting urban sediment wash-off. Sub-aims and 

corresponding objectives are presented in Table. 1.1  

Table 1.1: Sub-aims (1-3) and corresponding objectives (a-c) 

Sub-aims Corresponding objectives 

• Develop a computational 

method to estimate the 

areal rainfall and 

corresponding uncertainty 

due to small-scale 

variability of rainfall that can 

be used in lumped urban 

hydrological models 

including sediment wash-off 

models 
 

1a. Select suitable spatial and temporal scales and 

identify a suitable computational method and 

associated data requirements to quantify the 

uncertainty associated with areal estimation of 

rainfall due to its variability at the selected scales 

1b. Collect data from a catchment with spatial and 

temporal resolution required by the scale defined in 

(1a)  

1c. Develop a procedure to apply the computational 

method identified in (1a) to calculate areal rainfall 

estimates and associated uncertainty for the 

catchment selected in (1b) 

• Improve understanding of 

sediment wash-off 

processes from urban 

surfaces and establish the 

correlation between model 

calibration parameters and 

external drivers in the 

current wash-off model  

2a. Identify the limitations of current sediment wash-off 

modelling practice with regards to its applicability 

for different catchment conditions 

2b. Design and carry out a series of experiments to 

overcome the shortcomings identified from (2a) 

2c. Apply results from (2b) to establish the correlation 

between model calibration parameters and 

external drivers in wash-off modelling 

• Investigate propagation of 

different sources of 

uncertainty including rainfall 

uncertainty in improved 

sediment wash-off 

modelling. 

3a. Select a comprehensive uncertainty analyses 

method to study uncertainty propagation through 

sediment wash-off modelling 

3b. Improve/refine the sediment wash-off model 

developed in (2c) further to be able to investigate 

propagation of different sources of uncertainty  

3c. Use the improved sediment wash-off model from 

(3b) and uncertainty analyses method selected in 

(3a) to identify, quantify and separate different 

sources of uncertainty including model input 

uncertainty due to rainfall variability quantified in (1) 
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1.3 Thesis format and structure 

1.3.1 Structure 
This thesis consists of five other chapters in addition to the introduction chapter. 

Chapter 2 is a literature review followed by three core technical chapters (Chapter 3- 

5) each of which is clearly linked to one of the sub-aims mentioned in Table 1.1 in the 

same order. Table 1.2 provides short descriptions of Chapters 2-5. Chapter 6 is the final 

chapter which provides an over-arching summary and conclusion of the work described 

in the thesis.  

1.3.2 Format 
This thesis is prepared in a format where core chapters (Chapter 3- 5) consist of 2 

journal publications and a manuscript partly prepared for publication as listed below. 

These papers are formatted to fit the format of this thesis and figure, table and equation 

numbers are changed to aid continuity within this thesis. Written permission from 

Faculty of Engineering to submit a thesis in this format is attached in Appendix  

1. Chapter 3: Paper 1 (published): Muthusamy, M., Schellart, A., Tait, S. and 

Heuvelink, G. B. M. (2017) ‘Geostatistical upscaling of rain gauge data to 

support uncertainty analysis of lumped urban hydrological models’, Hydrology 

and Earth System Sciences, 21(2), pp. 1077–1091. doi: 10.5194/hess-21-1077-

2017. 

 

2. Chapter 4: Paper 2 (published): Muthusamy, M., Tait, S., Schellart, A., Md, N. 

A. B., et al. (2018) ‘Improving understanding of the underlying physical process 

of sediment wash-off from urban road surfaces’, Journal of Hydrology, 557C, 

pp. 426–433. doi: https://doi.org/10.1016/j.jhydrol.2017.11.047. 

 

3. Chapter 5: Part of this chapter is a pre-print version of the publication:  

Muthusamy, M., Wani, O., Schellart, A. and Tait, S.: Accounting for variation 

in rainfall intensity and surface slope in wash-off model calibration and 

prediction within the Bayesian framework, Water Res., 

doi:https://doi.org/10.1016/j.watres.2018.06.022, 2018. 

 

 



 

 

Table 1.2: Chapters and corresponding objectives 

 
Objectives 

1a 1b 1c 2a 2b 2c 3a 3b 3c 

Chapter 2 - Literature review 

This chapter presents a review of the literature on (a) small-scale variability of rainfall and its 

representation in urban hydrology and (b) Modelling and associated challenges of urban sediment 

transport including uncertainty analysis to understand the research gaps that needs to be 

addressed in this PhD 

ü   ü   ü   

Chapter 3 – Geostatistical Upscaling of Rain Gauge Data to Support Uncertainty Analysis 

of Lumped Urban Hydrological Models  

This chapter presents the development and application of a stochastic computational method that 
rigorously accounts for spatial configuration of rainfall measurement locations and correctly 

quantifies uncertainty due to spatial variability of rainfall at a selected scale  

ü ü ü       

Chapter 4 – Improving Understanding of the Underlying Physical Process of Sediment 

Wash-off from Urban Road Surfaces 

This chapter presents the experimental results and consequent mathematical interpretation of 

these results to report on the development of an improved form of wash off model. The chapter 

then develops the correlation between calibration parameters and external drivers found in the 

current wash-off model 

   ü ü ü    

Chapter 5 – Accounting for uncertainty propagation in enhanced sediment wash-off 

modelling within a Bayesian framework  

This chapter presents the comprehensive uncertainty propagation analysis of improved sediment 

wash-off model developed using results from Chapter 4 to identify, quantify and separate different 

sources of uncertainty including rainfall uncertainty obtained from chapter 3.  

      ü ü ü 
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1.3.2.1 Authorship  

I hereby confirm that I am the primary contributor in the writing of each of listed paper 

including the design and conduct of the reported research in each paper.  

1.3.2.2 Copyright  

I hereby confirm that all the necessary permissions have been obtained from relevant 
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2. Literature review 

2.1 Small-scale rainfall variability and its representation in 
urban hydrology 

2.1.1 Background: The what and the why 
Urban catchments, in comparison to rural catchments, are associated with smaller 

catchment sizes with higher proportion of impervious area and smaller catchment 

response time resulting in a larger proportion of rainfall being converted to surface 

runoff which then reaches the catchment outlet faster.  Hence, inadequate 

representation of any spatial and temporal variability of rainfall is can be one of the 

main sources of uncertainty in urban runoff predictions and any other urban 

hydrological prediction which is driven by rainfall and/or runoff such as sediment 

wash-off  (Al and Elson, 2005; Segond et al., 2007; Gires et al., 2012; Ochoa-

Rodriguez et al., 2015). For instance, for a completely impervious surface, any 

uncertainty in rainfall estimation will result in a similar level of uncertainty in runoff 

prediction peaks, according to the well-established rational formula (Viessman and 

Lewis, 1995) which is still widely used for estimating design discharge in small urban 

catchments.  

Figure 2.1, extracted from Schilling (1991), presents the spatial and the temporal scales 

of interest in hydrology. The spatial scales of interest in urban hydrology can go from 

as small as 10 m2 to the order of 108 m2. The variability of the rainfall at a scale in the 

order of > 106 m2 (highlighted in green) is comparably well studied in the literature, 

thanks to the increased number of rain gauge networks and improved radar technology. 

But the spatial scale in the order of < 1 km2 (highlighted in red with darker gradient 

indicating the decreasing number of literature) is something that has received attention 

only very recently. But nevertheless, representation of the rainfall variability at this 

scale (< 1 km2) was found to be important in urban hydrology especially when the 

catchment size gets smaller.  For example, Ochoa-Rodriguez et al. (2015) showed that 

the error in peak pipe discharge predictions due to inadequate representation of rainfall 

spatial variability is up to 250%  for drainage areas in the order of 1 ha and up to 50% 

for drainage areas of ~800 ha. Gires et al. (2012) quantified the uncertainty on urban 

runoff associated with the unmeasured small-scale rainfall variability i.e. rainfall at a 

resolution finer than 1 km x 1 km x 5 min. They used downscaling of C-band radar 
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network data for the 900 ha urban catchment of Cranbrook in London, UK to derive 

the rainfall fields at scales up to 125 m × 125 m × 1.25 min and showed that the 

uncertainty due to this rainfall variability on the simulated peak flow in conduits is 

significant, reaching for some conduits +/-25% and +/-40% for frontal and convective 

events respectively. Muthusamy et al. (2015) analysed even finer scale of rainfall 

measurements from an urban catchment of 8 ha and showed that neglecting the rainfall 

variability at this scale can cause up to around 20% of the variability in the runoff peak 

prediction. These studies showed that the uncertainty due to the unknown small-scale 

rainfall variability (<1 km2) should not be neglected in urban hydrology especially for 

small urban catchments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Typical catchment area and flow time for urban hydrology (horizontal lines) versus 
general hydrology (vertical lines) (Schilling, 1991).  
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The main challenge to study the variability of rainfall at sub-kilometre scale is the lack 

of rainfall data. It is an uncommon practice to measure rainfall data at a sub-kilometre 

scale even for urban catchments, due to financial and practical (e.g. maintenance and 

data collection) difficulties. For instance, UK urban drainage guidelines (WaPUG, 

2002) suggest a rain gauge resolution of 1 gauge/2km2  for flat terrain and 1 gauge/ 

km2 for hilly terrain. Although fulfilling this guideline is already very challenging, this 

guideline apparently neglects any variability in rainfall at sub-kilometre scale. It is not 

possible to study this variability at every catchment financially and practically. One 

possible solution is to investigate this variability for a few selected catchments per 

region with similar climate conditions and to transfer this knowledge to other 

catchments in the region using measures such as a variance reduction factor (VRF) 

(Krajewski et al., 2000; Villarini et al., 2008; Peleg et al., 2013a). In this regard, there 

have been a few studies, which focus on visualising and quantifying the sub-kilometre 

rainfall variability. These studies will be discussed further in section 2.1.3. The next 

section provides a critical overview of measurement methods used to measure rainfall 

at sub-kilometre scale.   

2.1.2 Rainfall measurement 
When it comes to measuring rainfall at the sub-kilometre scale, x band radar and rain 

gauge measurements are the common methods reported in the literature. Radar 

provides areal estimations of rainfall and rain gauges provide point measurements. The 

transformation from point estimation to areal estimation or vice versa is possible 

through upscaling or downscaling techniques respectively as explained in Fig. 2.2. In 

addition to point and areal measurements, commercial microwave links have also been 

used recently to estimate path integrated rainfall measurement (Brauer et al., 2011; 

Overeem et al., 2011), but this method has not been as widely tested compared to radar 

and point measurement methods.  
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Figure 2.2: Downscaling and upscaling processes (from Cristiano et al. 2016) 

 

Thanks to the advancement in radar technology, X-band radar is able to provide rainfall 

estimates up to 100 m grid resolution which can be put to use in investigating spatial 

variability given these predictions are accurate enough for this purpose. But the main 

problem with radar rainfall data is that the rainfall intensity is estimated based on an 

indirect relationship using the reflectivity of radar signals (Berne and Krajewski 2013; 

Cristiano et al. 2016). Hence the radar rainfall estimation needs to be calibrated using 

direct measurements such as rain gauge data. In this regard, various techniques have 

been proposed in the literature to calibrate and to merge radar data with direct point 

measurements (Wood et al. 2000; Gires et al. 2014; Cole and Moore 2008; Smith et al. 

2012). Studies also showed that radar data generally underestimate rainfall intensity 

compared to rain gauges (Overeem et al., 2009; van de Beek et al., 2010; Smith et al., 

2012). In addition to this main weakness of radar data, various other sources of 

uncertainties such as the interaction between beam propagation and topography and 

hardware issues are discussed in detail in Berne and Krajewski (2013).  Hence despite 

the possible availability of radar data at sub-kilometre scale, the accuracy of the 

corresponding rainfall estimation that are required by the nature of the study (i.e. 

investigation of sub-kilometre variability of rainfall) will not be as good as direct 
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measurements such as data obtained from rain gauges (Berne et al., 2004; Jensen and 

Pedersen, 2005; Gires et al., 2012; Peleg et al., 2013b; Cristiano et al., 2016). This 

prompted some researchers to use and recommend dense networks of point 

measurements to study the spatial variability at sub-kilometre scale (Jensen and 

Pedersen, 2005; Villarini et al., 2008; Cristiano et al., 2016). In this regard, Table 2.1 

presents some of the important studies which analysed spatial variability of rainfall at 

sub kilometre scale using such dense network(s) of point rainfall measurements. 

Although point measurement using rain gauge data are considered to be more accurate 

and even taken as “ground truth” when calibrating and merging radar data, rain gauge 

measurements also contain uncertainty due to measurement errors caused by various 

sources depending on the location and rain gauge types. The conventional vessel type 

rain gauges include tipping bucket gauges, pluviographs and weighing gauges (Lanza 

and Vuerich, 2009). Among these, the tipping bucket type is the most widely used rain 

gauge for a wide range of applications mainly due to its reliability, cost and widely 

accepted technology (Lanza and Vuerich, 2009). The conventional vessel type rain 

gauges are subject to errors due to wind, wetting, evaporation, and splashing (Sevruk 

and Hamon, 1984; Fankhauser, 1998; Dingman, 2015). Modern recording gauges such 

as optical gauges and disdrometers which do not use a collecting vessel have also been 

used recently to minimise these errors (Jaffrain and Berne, 2012; Dingman, 2015). In 

addition to measurement errors, counting based rain gauges such as tipping bucket 

gauges are also subject to errors due to its sampling mechanism which varies against 

accumulation time and rainfall intensity (Habib et al., 2001). Habib et al. (2001) 

investigated the sampling error of tipping bucket type rain gauges and concluded that 

this error decreases with increasing accumulation time and increasing rainfall intensity. 

They showed that this sampling error can be as high as 100% for rainfall intensities 

measured at 1 min accumulation time using a bucket size of 0.254 mm. 

Although it is impossible to completely remove the measurement and sampling errors, 

it is important to minimise them especially when higher accuracy data are required. For 

instance, Ciach and Krajewski (2006) used a paired rain gauge set-up as a quality 

control measure to filter out any unreliable measurements as their objective of 

analysing small-scale variability of rainfall data required high accuracy rainfall data.   
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2.1.3 Lessons learned from studies based on a dense network of point 
rainfall measurement  

Table 2.1 provides a summary of findings from studies based on a dense network of 

point rainfall measurement to study sub-kilometre rainfall variability. 

Table 2.1: Studies on sub kilometre spatial variability of rainfall using a dense network of point 
measurements 

Network information Reference 
Relevant observation(s) and finding(s) to 

this thesis 
25 paired stations over  

3×3 km2  

(Tipping bucket type rain 

gauges) 

(EVAC PicoNet), 

Airport area in 
Oklahoma, USA 

(Ciach and 

Krajewski, 

2006) 

(i) The larger the accumulation time the 

better the spatial correlation  

(ii) The type of dependence of spatial 

variability on rainfall intensity depends 

on the threshold value which 

separates weaker and stronger rainfall 
types. 

16 stations at  

1 × 1 km2 

(Disdrometers) 

Lausanne Campus, 

Switzerland 

 

(Jaffrain and 

Berne, 2012) 

(i) The larger the accumulation time the 

better the spatial correlation   

(ii) The error associated with the use of 

point measurements as areal 

estimates at larger scales increases 

with the size of the domain.  

(iii)  At a domain of 1000 x 1000 m2, this 
error corresponds to rainfall intensity 

estimates at 1 min accumulation time 

is on the order of 25%  

2 networks of 8 stations at  

2 × 2 km2  

(Tipping bucket type rain 

gauges) 

(Part of HYREX 

network) 
Brue basin, UK 

(Villarini et 

al., 2008) 

(i) The larger the accumulation time the 

better the spatial correlation  

(ii) The measurement errors and the 

small-scale variability of rainfall 

substantially decrease for 

accumulation times larger than five 
minutes. 
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Network information Reference 
Relevant observation(s) and finding(s) to 

this thesis 
9 stations at  

500 × 500 m2 

(Optical drop-counting 

and tipping bucket type 

rain gauges) 

Farm and Estuary in 

Aarhus, Denmark 

 

(Jensen and 

Pedersen, 

2005) 

(i) The measured event based 

accumulated rainfall indicates up to a 

100% variation for some events 

between neighbouring rain gauges 

within 500 x 500 m2   

(Pedersen et 

al., 2010) 

(i) The coefficient of variation (CV) values 

decrease with increasing rainfall 

depths, indicating that the largest 
variability (up to 77%) is in events with 

a rainfall depth of less than 5 mm 

14 paired stations at 4 

km2 

(Tipping bucket type rain 

gauges) 

Coastal area in Kibbutz 

Galed, Isreal 

(Peleg et al., 

2013a) 

(i) Measurement error increases with 

accumulation time 

(ii) The variance reduction factor (VRF), 

representing the uncertainty from 

averaging a number of rain stations 

over 1000 x 1000 m2, ranged from 

1.6% for the 1 min timescale to 0.07% 
for the daily scale. 

 

The above studies explore various aspects of the spatial variability of rainfall at sub-

kilometre scales as well as measurement and sampling errors used for the analyses.  In 

summary: 

• The main findings centered on the pattern of spatial rainfall variability and the 

behaviour of measurement and sampling errors at sub-kilometre scales. The 

minimum spatial scale studied in the above studies is 100 × 100 m, thus the 

spatial variability of rainfall at < 100 m still needs to be investigated. 

• Tipping bucket type rain gauges are used in most of the cases, hence findings 

on measurement and sampling error are mostly relevant to tipping bucket type 

rain gauges.  

As previously stated the sampling error decreases with accumulation time and 

found to be reduced substantially for accumulation times more than 5 min. A 

few studies used paired rain gauges in their network to effectively filter out any 

unreliable measurements 
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• With regard to spatial variability of rainfall, one of the most common and 

obvious observation is that spatial variability decreases with increasing 

accumulation time. Although the actual quantification of this variability varies 

between studies, it is shown to be significant (25% - 100%) when the 

accumulation time is less than 5 min. 

The above summary clearly indicates that attention should be paid to sub-kilometre 

spatial variability in urban hydrology due to two reasons. First, as discussed at the 

beginning of this chapter, for urban catchments any uncertainty in rainfall estimation 

will have significant effect on runoff predictions due to a high proportion of impervious 

area. Second, time steps used in urban hydrologic and hydrodynamic modelling can be 

as small as 1 min where the level of uncertainty in rainfall intensity can be as high as 

100% as shown in the above studies. Since it is impossible to avoid this uncertainty 

completely, it is important to somehow represent this uncertainty in urban hydrologic 

and hydrodynamic modelling. This information will help to differentiate input 

uncertainty from total uncertainty thereby helping to understand other sources of 

uncertainty due to model parameter and model structure. This estimate of the relative 

importance of uncertainty sources can help to avoid false calibration and force fitting 

of model parameters (Vrugt et al., 2008). Although some of the above studies provide 

quantification of uncertainty in upscaling of rainfall data due to spatial variability and 

measurement errors, these measures are mostly derived by simply calculating the 

variance between the measurements which apparently ignores the effect of the spatial 

correlation structure of the rainfall data and the spatial configuration of the rain gauge 

locations. Further, the uncertainty in upscaling has not been thoroughly investigated 

against different time scales or/and different rainfall intensity ranges. Investigation of 

these research gaps requires a review of the literature on available upscaling methods 

of point rainfall data.  

2.1.4 Rainfall upscaling  
The main purpose of rainfall upscaling is to derive the areal estimate of the rainfall 

volume/ or intensity from point measurements as most of the widely used modelling 

software products (e.g MIKE, InfoWorks) for water quantity and quantity predictions, 

including prediction of urban sediment run-off and wash-off, use a lumped catchment 

model structure (LCM). Hence, upscaling of rainfall data is a standard practice in both 

academic studies and industrial projects. There are a number of interpolation methods 
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available and several different techniques have been used in  software packages to 

upscale point rainfall data. The simplest interpolation method is to take the arithmetic 

average (Chow, 1964) of the point observations within the catchment. But this does not 

account for the spatial correlation structure of the rainfall data and the spatial 

configuration of the rain gauge locations. Another commonly used method in 

hydrological modelling is the nearest neighbour interpolation (Chow, 1964; Nalder and 

Wein, 1998) which leads to Thiessen polygons. In this method, the nearest observation 

is given a weight of one and other observations are given zero weights during 

interpolation. But again this method also assumes a homogeneity of rainfall for a 

certain spatial extent. There are also other interpolation methods of varying complex 

levels including inverse distance weighting (Dirks et al., 1998), polynomial 

interpolation (Tabios III and Salas, 1985), and the Moving Window Regression (Lloyd, 

2005). The performance of the  methods was found to be catchment dependent and no 

single method has been shown to be optimal for all catchments and rainfall conditions 

(Ly et al., 2013). But one common drawback with all the above methods is that they 

do not provide any information on certainty and accuracy of the predictions as they all 

are deterministic approaches. As discussed before the quantification of this uncertainty 

is important in urban hydrological and hydraulic modelling.  

Geostatistical methods such as kriging present a solution to this problem by providing 

an estimate of a spatially representative value and a measure of prediction error. In 

addition to this capability, these methods also take into account the spatial dependency 

structure of the measured rainfall data (Mair and Fares, 2011; Ly et al., 2013). This is 

the main reason why studies focussed on rainfall variability, including the studies listed 

in Table 2.1, use geo-statistical measures. In the following sections, an introduction to 

geostatistical methods is provided followed by a discussion on its challenges and 

potential solutions.  

2.1.5 Geostatistical methods 

2.1.5.1 Measures of rainfall variability used in geo-statistics 

Measures such as the variogram (Berne et al., 2004; Jaffrain and Berne, 2012; Bruni et 

al., 2015), correlogram (Ciach and Krajewski, 2006; Peleg et al., 2013a; Jewski et al., 

2016) and covariance function (Gebremichael and Witold F Krajewski, 2004) are used 

for visualisation of the spatial correlation of rainfall. In addition, they can also be used 



 

17 
 

to define the weights of individual measurements when geo-statistical methods such as 

kriging are used for spatial interpolation. Among these three measures, the variogram 

requires a less restrictive statistical assumption on the stationarity of the spatial 

property being sampled (Baecher and Christian, 2003). Hence, the variogram is 

preferred over the other measures described above.  

2.1.5.1.1 Variogram 

The semivariogram function, !(ℎ), was originally defined by Matheron (1963) as half 

the average squared difference between points separated by distance ℎ. It can be 

formulated as, 

!(ℎ) =
1

2|)(ℎ)| *(+, − +.)/
0(1)

										(2.1) 

Where )(ℎ) is the set of all pairwise Euclidean distances 4 − 5 = ℎ, |)(ℎ)|is the 

number of distinct pairs in )(ℎ), and +,	 and 	+. data values at spatial locations 4 and 5 

respectively. The above formulation is for the omnidirectional semivariograms where 

ℎ represents a distance measure with magnitude only and not direction. Sometimes, it 

might be desirable to consider directional semi-variograms where ℎ will be a vector 

(6) with both magnitude and direction.  

Once valid empirical estimates of the theoretical semivariance are given by Eq.(2.1), it 

is then necessary to choose a type of theoretical variogram1 model based on that 

estimate. Commonly used theoretical variogram shapes rise monotonically as a 

function of distance and this shape is typically characterised in terms of three 

parameters namely nugget, sill and range (Isaaks and Srivastava, 1989). These 

parameters are depicted on the generic variogram model shown in Fig. 2.2. They are 

defined as follows:  

• Nugget - The nugget is the value of the semi-variance at a near-zero distance. 

It is often greater than zero because of random measurement error and micro-

scale spatial variation.  

• Range: The range is the distance beyond which the data are no longer spatially 

correlated.  

                                                
1 Although by definition variogram is 2γ(h), terms variogram and semivariogram are often used 
interchangeably.  For conciseness we refer γ(h)  as variogram throughout this thesis. 
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• Sill: The sill is the maximum variogram value and equal to the variance of the 

variable of interest  

Some of the most commonly used theoretical variogram types include exponential, 

Gaussian, power and Spherical (Journel and Huijbregts, 1978; Christakos, 1984; 

Cressie, 1993). The Nugget variogram is a specific case of the variogram model when 

the range is zero, i.e. there is no spatial correlation even at zero distance. Typically, a 

more suited model is selected to fit the empirical variogram in an automated manner 

using methods such as least square, maximum likelihood, and robust methods (Cressie 

and Hawkins, 1980). Alternatively, a suitable model can also be selected based on 

visual inspection of the empirical semi-variogram (Cressie and Hawkins 1980a).  

 

 

Figure 2.3: A generic variogram model 

2.1.5.2 Geostatistical upscaling 

A geostatistical model of rainfall intensity r at any location x can be written as (Isaaks 

and Srivastava, 1989):  

7(8) = 9(8) + ;(8)										(2.2) 

where 9(8) is the trend (explanatory part) and ;(8) is the stochastic residual 

(unexplanatory part). The stochastic term	; is spatially correlated and characterised by 

a variogram model. Solving the above equation and obtaining the areal estimation of 

rainfall together with associated uncertainty using spatial stochastic simulation is 
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explained in detail in Chapter 3. The following section describes some of the common 

challenges in applying geostatistical upscaling methods to point rainfall data. 

2.1.5.3 Challenges associated with Geostatistical method 

Even with the advantages discussed previously, geostatistical methods such as block 

kriging are rarely used in areal rainfall estimation in LCM due to their complexity and 

demanding data requirements. Since these methods are heavily statistical based 

encompassing multiple parameters, the amount of spatial data required for model 

inference is much higher compared to the simpler deterministic methods (Dawson and 

Gerritsen, 2013). For instance, the precision of any variogram estimation to model 

spatial correlation strongly depends on the number of observations, i.e. the number of 

spatial data points of the study area. Webster and Oliver (2007) recommended around 

100 measurement points to accurately estimate an anisotropic variogram. But 

catchments, especially those at small urban scales, do not contain as many 

measurement locations as the above recommendation.  

In addition to the above requirement on the amount of data, geostatistical approaches 

especially kriging methods works better when the data is approximately normally 

distributed (Matheron, 1973). In particular, quantile and probability maps created using 

kriging assume that the data comes from a multivariate normal distribution. The 

assumption of normality of rainfall intensity data, like any other hydrological data, is 

not realistic and they are often positively skewed  (Hirsch and Slack, 1984; Cecinati et 

al., 2017). If the empirical distribution of the data is skewed then the kriging estimators 

are sensitive to a few large data values (Matheron, 1973). Further, when data is skewed 

or has extremely high or low values, estimated variograms often exhibit erratic 

behaviours (Gringarten and Deutsch, 2001). Various alternatives to the traditional 

variogram, such as madograms, rodograms, general and pairwise relative variograms, 

have been proposed in the literature (Genton 1998; Cressie and Hawkins 1980b), but 

these alternative measures cannot serve as input for subsequent estimation or 

simulation algorithms (Gringarten and Deutsch, 2001). Instead, it is recommended to 

transform the data to the Gaussian domain before performing variogram calculations 

(Gringarten and Deutsch, 2001; Cecinati et al., 2017). Among the transformation 

methods, Normal Quantile Transformation (NQT, also known as normal scaling 

transformation, Goovaerts (1997)) is a widely used method to map a variable to the 

Gaussian distribution. It has been applied in many hydrological applications (Bogner, 
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Pappenberger, and Cloke 2012, Montanari, A., & Brath 2004,  Bogner, Pappenberger, 

and Cloke 2012).  The concept of NST is to match the p quantile of the data distribution 

with the p quantile of the standard normal distribution as shown in Fig.2.4. Detailed 

description of NST including the steps involved can be found in  Bogner et al. (2012); 

Van der Waerden (1953);and Weerts et al. (2011). The  advantages of using such a 

transformation are (1) the difference between extreme values is reduced and (2) after 

the transformation the theoretical sill is known to be 1 making it easier for comparison 

of variograms (Gringarten and Deutsch, 2001).  

 

Figure 2.4: Sketch showing the transformation procedure for the normal quantile transformation 
(from Wilde 2010) 

2.2 Urban sediment transport: Modelling and associated 
challenges   

2.2.1 Background: The what and the why 
Urban non-point sources are one of the major causes of pollution of surface water 

bodies (Guy, 1970; Collins and Ridgeway, 1980; Mitchell et al., 2001; Lawler et al., 

2006). Such pollution consists of a complex mixture of materials including sediments, 

hydrocarbons, heavy metals, salts and nutrients. Among these pollutants, sediment 

washed off from the urban surfaces is one of the major causes of water quality issues 

of inland water bodies in urban areas mainly due to its ability act as a transport medium 

to many contaminants (Guy, 1970; Collins and Ridgeway, 1980; Chiew and Vaze, 

2004). Collins and Ridgeway (1980) found that in urban storm events, sediment smaller 

than < 63µm itself transported more than 50% of the total pollutant load.  Table 2.2 



 

21 
 

modified from Mitchell et al. (2001) discusses sources of urban sediment and effects 

in receiving waters in detail.  

Table 2.2: Source, characteristics and effect of urban surface sediment. Modified from Mitchell 
et al. (2001) 

Sources and characteristics of urban 
catchment surface sediment 

Effect in  
receiving waters 

• The major sources of sediment in the 

urban environment are atmospheric 

deposition, natural weathering, and 

construction sites.  

• Atmospheric deposits range from large 

colloids such as windblown sand to 

small particulates such as PM10 

(smaller than 10 µm) arising from 

vehicle emissions.  

• Other sources include particulates 
deposited from vehicles (e.g. rust, 

rubber), abrasion of the road and 

building surfaces, permeable urban 

surfaces such as gardens and parks, 

application of de-icing salts, organic 

detritus, litter and a range of other 
wastes. 

• Particle size highly varies between sites. 

e.g.   

o 200-1000 µm with a d50 of about 

300-400 µm - based on a literature 

review on sediment size by 
Bertrand-Krajewski et al. (1993) 

o 63 µm – 6mm with a d50 of around 

400 µm – based on sediment 

collected from six different road 

sites in London, UK by Butler and 

Clark (1995) 

• Sediments are an important 

mechanism for the transport of other 

pollutants which may cause problems 

related to toxicity, eutrophication, and 
suitability for recreational or portable 

use. 
• Particle size is important as half the 

pollutant load may be transported 

bound to particles of < 63μ, around 6% 

of the total sediment load. 
• Sediments can be detrimental to water 

quality even when chemically inert. 

They cause turbidity, inhibit visual 

feeders, blanket fish spawning sites 

and feeding areas, eliminate prey 

organisms, reduce light penetration 
and photosynthesis of aquatic plants, 

cause gill abrasion and fin rot, and 

scouring causes destruction of bed 

and bank habitat. 

  

In addition to the effect on receiving water bodies, large amounts of sediment wash-off 

can also contribute to urban floods by depositing in drainage systems and reducing the 

hydraulic capacity of these systems that are designed to rapidly carry water away from 

roads and properties (Ivan, 2001). Sediment deposition will also cause problems such 
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as pipe surcharge, early overflows, large pollutant discharges and costly removal 

(Ashley et al., 1992; Delleur, 2001; Heal et al., 2006). The erosion of sediments in 

sewers can also release pollutants in concentrations that exceed the levels found in the 

various contributing sources of the sediments and pollutants (Ashley et al., 1992). 

Hence accurate modelling of sediment wash-off from urban surfaces is important in 

water quality and flood risk based decision making for an urban catchment. 

2.2.2 Modelling of urban sediment transport processes 
Modelling sediment transport from urban catchment surfaces is not a straightforward 

exercise as it needs an understanding of complex underlying physical processes which 

involves parameters with highly variable nature associated with characteristics of 

rainfall, catchment surface and sediment particles. Hence most of the models which are 

in practice to predict sediment transport from urban catchment surfaces are developed 

from the results from experimental data with empirical parameters. With regards to the 

complexity, the modelling approach ranges from simple event mean concentration 

calculations (EMC models, Debo and Reese 1995) to more sophisticated BUWO 

(Build-Up and Wash-Off, Sartor and Boyd 1972) models.   

2.2.2.1 Event mean concentration (EMC)  

The EMC is the total mass of pollutant discharged for a given runoff event, divided by 

the runoff volume for that event (Debo and Reese, 1995). Assessments made using the 

EMC method have a low cost, and often can address a reasonable range of pollutants, 

and are sufficiently flexible to address a number of development scenarios (Mitchell et 

al., 2001). Many EMC values are also provided with measures of variance (e.g. 

coefficient of variation), hence the associated uncertainty can be calculated (Novotny 

and Olem, 1994). But the major drawback of EMC models is that the intra-event 

dynamics in pollutant load cannot be captured.  

2.2.2.2 Build-Up and Wash-Off (BUWO) models 

There are mainly two stages involved in the process of sediment transport from urban 

surfaces (Sartor and Boyd, 1972). They are: 

1. Build up – is the stage in which sediment accumulates on impervious surfaces 

2. Wash-off – is the stage by which accumulated sediment is removed from the 

impervious surfaces and incorporated in the flow by the actions of rainfall and 

runoff.  



 

23 
 

A more sophisticated modelling approach of modelling sediment transport from the 

urban surfaces is by using BUWO models where sediment build-up is modelled first in 

order to subsequently model wash-off. Hence two separate equations, often empirical, 

are employed in this approach. This approach was first suggested by Sartor and Boyd 

(1972) based on wash off experiments conducted during the summer of 1970 in 

Bakerfield, California, USA which is considered to be the earliest controlled street 

experiments on wash-off.  The tests used artificial rainfall and were conducted on 

concrete and old and new asphalt. Amongst their most important conclusion was that 

the build-up and the wash-off processes should be treated separately. In this regard, the 

following sections review the most commonly used build-up and wash-off models.  

2.2.3 Modelling of build-up process 
Sartor and Boyd (1972) found that the majority of sediments accumulated within a 

metre of the curb, and they estimated curb loadings for residential, commercial and 

industrial land-uses. According to their findings, the accumulated load of sediment 

(commonly known as build-up) exponentially varies against antecedent dry days and 

at one point it reaches its maximum where an equilibrium between the supply of 

pollutant and their removal by wind effects, traffic, street sweeping, and the natural 

degradation of solids. This relationship is written as (Alley and Smith, 1981):  

<=
<> = ?@ − ?/=										(2.3) 

Where, = is the amount of sediment on impervious areas (g), ?@ is a constant rate of 

sediment deposition (g/day), ?/	is a rate constant for sediment removal (day -1), and t 

is time in days. The parameter ?/	can account for losses due to wind and vehicles as 

well as the biological and chemical decay.  

Integration of Eq. (2.3) yields 

= = B[1 − exp(−?/G)]										(2.4) 

Where A (=?@/?/) is the maximum amount of sediment on the impervious areas (g) 

and T is time since last period of street sweeping or storm runoff (accumulation time, 

days). ?@ and ?/ need to be calibrated for each catchment.  

Although this approach of modelling build-up process as a function of the number of  

antecedent dry days has been used in some models (e.g. Bertrand-Krajewski et al., 
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1993), it has also been criticised, especially in recent studies (Charbeneau and Barrett, 

1998; He et al., 2010; Shaw et al., 2010). Among these studies,  Shaw et al. (2010) 

found that the mass of washed-off particulate matter during a storm event is not 

strongly related to the time between storm events. This was confirmed by He et al. 

(2010) as they also could not find any relationship between the event mean values of 

total suspended solids and the length of the  antecedent dry weather period for a semi-

arid, urban residential catchment in Calgary, Alberta. Shaw et al. (2010) also pointed 

out that the build-up process is highly dynamic due to unpredicted occurrences of 

activities like construction work or the input of wind-blown   debris from storms and 

argued that assuming that the build-up process was continuous and a simple function 

of antecedent dry days will not capture the dynamic nature of the sediment build up 

process. Shaw et al. (2010) even questioned the necessity of modelling build-up 

separately as he claimed a constant (initial) load model produced very similar 

predictions of wash-off loads. In summary, the criticisms of modelling sediment build-

up processes as a function of antecedent dry days have been provided with supporting 

evidence from a range of catchments. But, on the other hand, to answer the question of 

whether there is a need to model build-up at all, raised by the above studies, particularly  

Shaw et al. (2010), a more detailed investigation is required. It is because one would 

expect a variation in wash-off load corresponding to a variation in initial load (modelled 

using a build-up model) and it is conceptually hard to accept that a constant (initial) 

load model would produce acceptable wash-off predictions under varying catchment 

and rainfall conditions. In fact, according to the most widely used exponential model 

to predict wash-off, discussed in the next section, the wash-off load varies 

proportionally against the initial load.  

2.2.4 Modelling of wash-off process 
Wash-off loads have been estimated by using variables such as: 

1. Total runoff volume (e.g. Characklis et al. 1979),  

2. Total event rainfall (e.g. Reinertsen 1981) 

3. Runoff rate (e.g. Wischmeier 1969) 

4. Rainfall intensity (e.g. Coleman 1993) 

Or a combination of these variables  

But out of these variables aggregate measures such as total runoff volume, and total 

event rainfall will not be able to predict intra-event load dynamics and will not be suited 
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to study the effect of spatial and temporal variability of rainfall on sediment loads. 

Between rainfall intensity and runoff rate, modelling approaches using rainfall intensity 

has been found to produce a better prediction of wash-off (Vaze and Chiew, 2003). It 

can partly be due to rainfall intensity data’s added ability to capture the effect of the 

impact energy of rainfall drops on sediment mobilisation (Shaw et al., 2010), although 

not necessarily explicitly included in the wash-off equations. Another advantage of 

using rainfall data is that it provides a practical means of predicting pollutant loads as 

it is one of the most readily available data (Francey et al., 2011).  

Unlike the build-up process, the wash-off process has been investigated relatively 

extensively in the literature due to its direct link to urban water quality modelling. 

Hence, there have been more than one model recommended in the literature. They are 

discussed in detail in the following section.  

2.2.4.1 The exponential model 

The exponential wash-off model, originally proposed by (Sartor and Boyd, 1972), is 

the most widely used method to predict the sediment wash-off. The original exponential 

wash-off equation proposed by Sartor and Boyd (1972) is given below  

 

=J = =KL1 − MNO,JP										(2.5) 

 

where =J	is transported sediment load after time t, =K is initial load of the sediment on 

the surface; i is rainfall intensity; and k is the wash-off coefficient. Several authors have 

refined and/or adapted these equations for a range of software in order to get better 

calibration and simulation of experimental data. Table.2.3 summarises selected studies 

focused on the improvement of original exponential wash-off model. However, most 

of the these refinements are very site-specific and not easily generalised. Also, most of 

these studies paid attention to one single parameter in isolation, thereby ignoring the 

effect and interactions of the other parameters. For instance, although the multiplication 

of a capacity factor suggested by Egodawatta et al. (2007), has been shown to be a 

meaningful modification, it has only been investigated against rainfall intensity. Hence 

the effect of multiple parameters and their interaction in the underlying processes of 

sediment wash-off still need to be investigated in a systematic and an integrated way. 

Considering the influencing parameters, another interesting observation is the lack of 

attention given to the surface slope in the above studies. Two processes that drive 
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sediment mobilisation are impact energy from rainfall drops (Coleman, 1993) and shear 

stress from the overland flow (Akan, 1987; Deletic et al., 1997) both of which are 

sensitive to surface slope, especially the latter. With the exception of Nakamura, (1984) 

none of the above studies paid attention to the effect of the slope. Nakamura (1984) 

results show that k increases with surface slope, but this study was based only on two 

randomly selected slopes and was not extensive enough to be used in subsequent 

studies or in practical applications. 

Table 2.3: Summary of the selected studies focused on the improvement of original exponential 
wash-off model 

Reference Modification/Suggestion Effect/Reason  
(Ammon, 1979; 

Sonnen, 1980; 

Nakamura, 1984) 

k needs to be calibrated for 

surface characteristics, rainfall 

and runoff characteristics and 

particle size  

-  

(Huber and 

Dickinson, 1992) 

Suggestion of k value of 4.6 in.-

1 (0.18 mm-1) 

To replicate that the first one-

half inch of total run-off in one 

hour would wash-off 0.9 

fraction of the initial load 

 

(Huber and 
Dickinson, 1992) 

Introduction of an exponent w 

for rainfall intensity, ranging 

from 0.8 to 2 and with mean 

values about 1.4 to 1.8 

Better prediction of peak 
values 

 

(Zug et al., 1999) Introduction of two terms in the 

expression of k with different 

exponent values 

Better calibration in general  

(Alley, 1981; 
Egodawatta et al., 

2007) 

multiplicative capacity factor on 
the right side of the Eq.(2.5) 

which varies with rainfall 

intensity 

To redefine the maximum 
available sediment to be 

washed off 

 

 

2.2.4.2 Other models 

Apart from the most widely used exponential wash-off, there are also some other 

modelling equations proposed by a few authors. Among these models, the power model 

originally proposed by Duncan (1995) has been used in a number of studies. The 

original form of this model is given below 
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=J =*R@STU
V

,W@

										 (2.6) 

Where I = rainfall intensity as recorded in each of the n time steps over a period t; and 

b1 and b2 = calibration coefficients; n = number of time steps over a period t. I is 

calculated by assuming that total rainfall depth, recorded in one-time step, occurred 

just within that very time step. Therefore, I strongly depends on the resolution of 

rainfall records. The above model was formulated based on the regression modelling 

approach and the cumulative nature of this model represents the ongoing input of 

energy produced by raindrop impact (Francey et al., 2011). The applicability of this 

model or a very similar approach (e.g.: Σ runoff rate models, square of the rainfall 

intensity) has been tested in a few studies (Vaze and Chiew, 2003; Brodie, 2007; 

Francey et al., 2011). But, in comparison to the exponential model this model has not 

been tested under a wide range of catchment conditions. Similarly, a few other 

modelling approaches such as  MOSQITO (Moys et al., 1988) and P/r Model (Zhao et 

al., 2015) have also not been widely tested and proven better than the exponential 

model for a wide range of catchment conditions in comparison to the exponential wash-

off model. Among these models, MOSQITO, although explicitly includes effects of 

both rainfall and runoff in the wash-off process, the results, however, did not show 

much of an improvement compared to the exponential model mainly due to the lack of 

knowledge about the calibration parameters (Bertrand-Krajewski, 2006). 

2.2.4.3 Effect of spatial variability of rainfall in urban sediment wash-off 
modelling 

To study the effect of the spatial variability of rainfall on urban sediment wash-off there 

could possibly be two ways. A more sophisticated and comprehensive way is to 

develop a 2D sediment transport model of the catchment/surface of interest where areal 

rainfall can be used as an input. This way the spatial variability of rainfall over the 

catchment/surface can be explicitly captured (Shaw et al., 2010).  But the problem with 

this method is the application of the most commonly used sediment transport models 

discussed in sections 2.2.4.1 and 2.2.4.2 have not been widely tested with 2D grid type 

models, hence their performance is still unknown. Further, a 2D model would need a 

significantly higher computational power compared to a lumped catchment models 

without necessarily adding any significant improvement in the predictions. These 

issues lead to the other way to study the effect of spatial variability of rainfall in 
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sediment wash-off models which is capturing the spatial variability in a stochastic way 

and use that information in lumped catchment models. The use of the geo-statistical 

methods to capture the uncertainty due to spatial variability in an aerial estimation of 

rainfall has already been discussed in section 2.1.  Once such estimation is obtained an 

uncertainty propagation method can be employed to investigate the effect on the wash-

off prediction. This approach needs a comprehensive and holistic uncertainty analysis 

where different sources of uncertainty in wash-off modelling can be identified, 

investigated and separated. In this regard, previous literature on uncertainty analyses 

of sediment wash-off is discussed in the following section. 

2.2.5 Uncertainty analyses in modelling of urban sediment transport 
Urban sediment wash-off models, like any other mathematical models, represent only 

a part of reality which leads to uncertain results. Since the complete elimination of this 

uncertainty is not possible (Beck, 1987) it is important at least to quantify it in order to 

measure the reliability of the model results. This information can be used in risk-based 

decision making in water quality control measures. In this regard, adequate treatment 

of uncertainties in model calibration and prediction is currently a heavily researched 

issue in hydrology. However, there are limited studies on uncertainty specifically 

focusing on wash-off modelling. In this regard, Dotto et al. (2012) compared a number 

of uncertainty analysis techniques in urban stormwater quality modelling and found the 

Bayesian approach (using a sampling technique, such as Markov Chain Monte Carlo 

(MCMC) sampling), although computationally demanding, to be one of the preferable 

techniques. The following section provides an overview of the application of Bayesian 

inference in urban sediment wash-off modelling in literature.  

2.2.5.1 Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling 

Bayesian inference is a method of statistical inference in which Bayes' theorem is used 

to update the probability for a hypothesis as more evidence or information becomes 

available (Halls-Moore, no date). During a Bayesian calibration, the joint probability 

density of parameter and model results, the product of the prior of the parameters and 

the likelihood, is conditioned on the data (Del Giudice et al. 2013).  

The analytical evaluation of Bayesian inference becomes more challenging when the 

models require a large number of parameters, as is often the case in hydrology (Dotto 

et al., 2012; Del Giudice et al., 2013). To cope with this, numerical techniques such as 
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Markov Chain Monte Carlo (MCMC) simulations have widely been used (Dotto et al., 

2012; Del Giudice et al., 2013; Bonhomme and Petrucci, 2017). Further, Bayesian 

inference requires the definition of the likelihood function and the prior distribution of 

the parameters. The prior distribution of parameters is usually derived from relevant 

literature and by using practical constraints. Likelihood functions (also known as the 

sampling model) often formulated as a combination of a deterministic model (e.g. Eq 

(2.7)) and probabilistic error models (Del Giudice et al., 2013). Identically independent 

distributed (IID) error is the most commonly used form of error model in urban 

hydrology (Freni et al., 2009; Dotto et al., 2011; Breinholt et al., 2012; Bonhomme and 

Petrucci, 2017) mainly because of its simplicity. When the error model is assumed to 

be IID the observed system output Y (e.g. measured wash-off) can be formulated as  

Y(x,ω, s<. ]) = y(x, ω) + ](_<. ])										(2.7) 
 

Where x is external driving forces (e.g. rainfall intensity), ω is deterministic model 

parameters (e.g. wash-off coefficient, k),  y	 is the deterministic model output (e.g. 

predicted from Eq. (2.5)). _<. ] is standard deviation of IID error to account for 

measurement noise of the system response, E. The main drawback of IID model is that 

it requires an absence of the serial correlation in error distribution, which can lead to 

underestimation of uncertainty and biased parameter estimates (Del Giudice et al., 

2013). This makes IID less robust for different urban hydrological applications. Hence, 

recent studies show an autoregressive bias error model, as shown in Eq (2.8), is a better 

representation of the error process observed in many hydrological processes.  

 
Y(x,ω, s<. a, b, _<. ]) = y(x,ω) + a(_<. a, b) + ](_<. ])										(2.8) 

 

Where _<. a, b are the standard deviation and correlation length which characterise the 

autoregressive stationary random process which accounts for errors due to model 

structural deficit (also known as model bias,	a ) in addition to measurement noise, E 

modelled as IID. An autoregressive error model represents model structural deficit 

better than IID as it accounts for the “memory” in error time series (Del Giudice et al., 

2013).  This autoregressive bias error model was originally suggested in generic 

statistical applications (Craig et al., 2001; Kennedy and O’Hagan, 2001; Higdon et al., 

2004; Bayarri et al., 2007) and later adapted for environmental engineering applications 

(Reichert and Schuwirth, 2012).  
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A few previous studies applied Bayesian inference in sediment wash-off modelling to 

assess the build-up/wash-off model performance by using long-term continuous road 

runoff turbidity measurements (Bonhomme and Petrucci, 2017), to compare different 

error model and sampling technique in the calibration of wash-off modelling 

(Egodawatta et al., 2014; Sage et al., 2016) and to  assess build-up/wash-off model 

performance at the scale of the urban catchment  (Bonhomme and Petrucci, 2017). The 

most striking feature of the Bayesian approach which has been used in these studies is 

that it helps to identify different sources of uncertainty such as parameter uncertainty, 

model bias and measurement error and consequently, helps to separately analyse them, 

though it requires knowledge about the error process (Dotto et al., 2012). This estimate 

of the relative importance of uncertainty sources can help to avoid false calibration and 

forced fitting of model parameters (Vrugt et al., 2008). Furthermore, it helps to better 

understand the propagation of uncertainty in external drivers (e.g. rainfall uncertainty) 

through the model which is also an area that has not been explored in depth with regards 

to wash-off modelling.  

2.3 Summary of findings  

Inadequate representation of the spatiotemporal variability of rainfall has been found 

to be one of the main sources of uncertainty in urban runoff predictions and other urban 

hydrological predictions which are driven by rainfall and/or runoff due to higher 

impervious area and smaller catchment response time associated with urban 

catchments(Al and Elson, 2005; Segond et al., 2007; Gires et al., 2012; Ochoa-

Rodriguez et al., 2015). The variability of the rainfall at a scale in the order of > 106 m2 

is comparably well studied in the literature, thanks to the increased number of rain 

gauge networks and improved radar technology. But the spatiotemporal variability of 

rainfall at the sub-kilometre scale has not been investigated in detail in comparison to 

larger scales mainly due to lack of data, but there have been number of studies which 

show that this variability should not be neglected in urban hydrology especially for 

small urban catchments in the order of < 10 km2. In this regard, it is shown in literature 

that despite the possible availability of radar data at sub-kilometre scale, the accuracy 

of the corresponding rainfall estimation that are required for the investigation of sub-

kilometre variability of rainfall will not be as good as direct measurements such as rain 

gauges (Berne et al., 2004; Jensen and Pedersen, 2005; Gires et al., 2012; Peleg et al., 
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2013b; Cristiano et al., 2016). Consequently, high-density point measurement 

networks at sub kilometre scale have been recommended in the recent literature to study 

spatial variability of rainfall. There have been a limited number of studies in which sub-

kilometre rainfall variability is analysed based on point measurement networks. From 

these studies it can be concluded, 

o The spatial variability of rainfall at < 100 m still needs to be investigated. 

o Geostatistical measures such as the variogram have been the most preferred 

way to present the spatial correlation structure of rainfall.  

o The spatial variability needs to be investigated at shorter temporal averaging 

interval (< 5 min) as the variability increases with decreasing temporal 

averaging interval 

o Since the investigation of sub-kilometre rainfall variability requires high 

accuracy data it is important to give attention to measurement and sampling 

errors.  

o Tipping bucket type rain gauges have been the most widely used rain gauges 

in many studies and the corresponding sampling error decreases with 

accumulation time. Since this error is as significant as spatial variability at 

shorter temporal averaging interval (< 5 min), this error need to be taken 

into account at these at such temporal averaging intervals.  

o Although the actual quantification of the uncertainty due to spatial 

variability and measurement error varies between studies, it has been shown 

to be significant (25% - 100% CV in intensity predictions) at shorter 

temporal averaging interval (< 5 min). 

 

Since it is impossible to avoid the uncertainty due to sub-kilometre variability and 

measurement and sampling error completely, it is important to represent this 

uncertainty in urban hydrological predictions which are driven by rainfall and/or 

runoff. Urban sediment transport is also a process that is mainly driven by rainfall 

impact energy (Coleman, 1993) and runoff shear stress (Akan, 1987b; Deletic et al., 

1997) and it is one of the major source of pollutants in an urban environment as 

sediment  act as a transport medium to many contaminants. Urban sediment deposition 

also causes problems such as pipe surcharge, early overflows, large pollutant 

discharges and costly removal (Ashley et al., 1992; Delleur, 2001; Heal et al., 2006). 

Since rainfall is the main physical driver of sediment transport any uncertainty in 
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rainfall estimation is very likely to have a direct impact on sediment transport from 

urban surfaces. However, the effect of rainfall uncertainty has not been investigated in 

detail in the literature. One of the main reasons being that the quantification of the 

uncertainty in upscaling rainfall in a stochastic way that is representable in urban 

sediment transport modelling has not been investigated in depth in the literature. In this 

regard, geo-statistics is an appropriate computational tool mainly due to its ability to 

estimate the uncertainty associated with upscaling of rainfall data by taking into 

account the spatial correlation structure of the rainfall data. But the application of geo-

statistical methods such as kriging to rainfall data is challenging mainly due to the non-

normality of rainfall data and data scarcity. A transformation of rainfall data to the 

Gaussian domain is necessary as quantile and probability maps created using kriging 

assume that the data comes from a multivariate normal distribution. In this regard, 

Normal Quantile Transformation was shown to be a suitable method to transform 

rainfall data to the Gaussian domain to overcome the problem of non-normality.  

 

Another reason why the effect of rainfall variability has not been investigated in urban 

sediment transport is the poor understanding of how the calibration parameters in the 

widely used empirical models to predict urban sediment transport are linked with the 

underlying physical processes. Hence, before investigating the effect of small scale 

variability of rainfall sediment transport predictions, it is important to understand the 

limitations of current modelling approach of sediment transport. It has been shown in 

the literature, that there are mainly two processes involved in sediment transport from 

an impervious surface, Build-up in which sediment accumulates and Wash-off where 

the accumulated sediment gets removed by rainfall and runoff. Traditionally build-up 

which is essentially the initial load for wash-off prediction has been modelled mainly 

using antecedent dry days, but it has also been criticised recently as recent literature 

shows that wash-off loads are relatively insensitive to the time between storm events. 

Despite these criticisms, the effect of build-up on wash-off modelling has not been 

investigated in detail for various catchment conditions. Hence the question of whether 

there is a need to model build-up at all, raised by the recent studies, still remains 

unanswered and so needs further investigation. 

 

Among the modelling approaches of wash-off, the exponential model has been the most 

widely used and tested model for a wide range of catchment conditions associated with 
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characteristics of sediment, surface and rainfall intensity. Although numerous studies 

focused on improving/redefining the original exponential model (Eq. (2.5)) one of the 

major drawbacks in most of these studies is the lack of an integrated and systematic 

approach. Such approaches are vital because of the complex interaction between the 

influencing parameters associated with the characteristics of rainfall, sediment and 

catchment surface.  Considering the influence of surface slope on the main underlying 

processes of sediment wash-off which are impact energy (from rainfall) and shear stress 

(from runoff), there have only been one study which focuses on the surface slope in 

sediment wash-off modelling. Hence, the effect of surface slope on sediment wash-off 

needs further investigation. Due to difficulty in modelling this complex interactions 

using first principals, most widely used wash-off models are empirically derived using 

laboratory and field experimental data (e.g. Sartor and Boyd, 1972; Egodawatta et al., 

2007; Francey et al., 2011). The inherent shortcoming of these empirical methods is 

that the calibration parameters in these models (e.g. k in Eq 2.5) does not have much 

physical meaning and therefor applicability and transferability of these parameters to 

other catchments is limited. In general, these parameters are estimated for different 

catchments by using a combination of empirical look-up tables/charts and 

interpolation/extrapolation of existing data. However, with the absence of such 

commonly accepted look-up tables/chart in the literature and inconsistency in the 

previous estimations of the calibration parameters, the modellers are forced to use a 

constant value for parameters regardless of catchment conditions. This calls for an 

alternative and a more transparent way of estimating the calibration parameters 

 

Commonly used wash-off models have not widely been tested in 2D models. Hence, 

as discussed before, the other potential way of studying the effect of spatial variability 

on sediment wash-off is capturing the spatial variability of rainfall in a stochastic way 

and then use that information in a lumped catchment sediment wash-off model together 

with an error propagation method. This approach needs 

a.  A stochastic method developed to capture the rainfall variability for a spatial 

scale of interest 

b. A comprehensive uncertainty analysis where different sources of uncertainty in 

wash-off modelling can be identified, investigated and separated. 

Among the uncertainty methods used in urban water quality models, the Bayesian 

approach although computationally demanding has been shown to be comprehensive 
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as it helps to identify different sources of uncertainty such as parameter uncertainty, 

model bias and measurement error and consequently helps to separately analyse them. 

The Bayesian approach requires, in addition to prior knowledge, the definition of the 

likelihood function. Likelihood functions often formulated as a combination of a 

deterministic model and a probabilistic error model. Although identically independent 

distributed (IID) is the most used form of error model in hydrologic application due to 

its simplicity, recent studies show that the autoregressive bias error model, although 

more complicated, is a better representation of the error process observed in 

hydrological modelling. 
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Abstract 

In this study, we develop a method to estimate the spatially averaged rainfall intensity 

together with associated level of uncertainty using geostatistical upscaling. Rainfall 

data collected from a cluster of eight paired rain gauges in a  

400 × 200 m2 urban catchment are used in combination with spatial stochastic 

simulation to obtain optimal predictions of the spatially averaged rainfall intensity at 

any point in time within the urban catchment. The uncertainty in the prediction of 

catchment average rainfall intensity is obtained for multiple combinations of intensity 

ranges and temporal averaging intervals. The two main challenges addressed in this 

study are scarcity of rainfall measurement locations and non-normality of rainfall data, 

both of which need to be considered when adopting a geostatistical approach. Scarcity 

of measurement points is dealt with by pooling sample variograms of repeated rainfall 

measurements with similar characteristics. Normality of rainfall data is achieved 

through the use of Normal Score Transformation. Geostatistical models in the form of 

variograms are derived for transformed rainfall intensity. Next spatial stochastic 

simulation which is robust to nonlinear data transformation is applied to produce 

realisations of rainfall fields. These realisations in transformed space are first back-

transformed and next spatially aggregated to derive a random sample of the spatially 

averaged rainfall intensity. Results show that the prediction uncertainty comes mainly 

from two sources: spatial variability of rainfall and measurement error. At smaller 

temporal averaging intervals both these effects are high, resulting in a relatively high 

uncertainty in prediction. With longer temporal averaging intervals the uncertainty 

becomes lower due to stronger spatial correlation of rainfall data and relatively smaller 

measurement error. Results also show that the measurement error increases with 

decreasing rainfall intensity resulting in a higher uncertainty at lower intensities. 

Results from this study can be used for uncertainty analyses of hydrologic and 
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hydrodynamic modelling of similar sized urban catchments as it provides information 

on uncertainty associated with rainfall estimation, which is arguably the most important 

input in these models. This will help to better interpret model results and avoid false 

calibration and force-fitting of model parameters. 

Keywords: Geostatistical upscaling, spatial stochastic simulation, areal average rainfall 

intensity, hydrological modelling, uncertainty 

3.1 Introduction 

Being the process driving runoff, rainfall is arguably the most important input 

parameter in any hydrological modelling study. But it is a challenging task to accurately 

measure rainfall due to its highly variable nature over time and space, especially in 

small urban catchments. Despite recent advances in radar technologies rain gauge 

measurements are still considered to be the most accurate way of measuring rainfall, 

especially at short temporal averaging intervals (< 1 h), which are of most interest in 

urban hydrology studies (Ochoa-Rodriguez et al., 2015). However, many commonly 

used urban hydrological models (e.g. SWMM, HBV) are lump catchment models 

(LCM) where time series of areal average rainfall intensity (AARI) are needed as model 

input. Therefore, point observations of rainfall need to be scaled up using spatial 

aggregation in order to be fed in to a LCM. There are a number of interpolation methods 

available for spatial aggregation and used in the various LCM to scale up point rainfall 

data. The simplest method is to take the arithmetic average (Chow, 1964) of the point 

observations within the catchment. But this method does not account for the spatial 

correlation structure of the rainfall and the spatial organisation of the rain gauge 

locations. Another commonly used method in hydrological modelling is the nearest 

neighbour interpolation (Chow, 1964; Nalder and Wein, 1998) which leads to Thiessen 

polygons. In this method the nearest observation is given a weight of one and other 

observations are given zero weights during interpolation, thereby ignoring spatial 

variability of rainfall to a certain extent. There are also other methods, with varying 

complexity levels, including inverse distance weighting (Dirks et al., 1998), 

polynomial interpolation (Tabios III and Salas, 1985) and moving window regression 

(Lloyd, 2005). The predictive performance of the above methods are found to be case-

dependent and no single method has been shown to be optimal for all catchments and 

rainfall conditions (Ly et al., 2013). One common drawback with all the above methods 
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is that they do not provide any information on the uncertainty of the predictions of 

AARI as all the methods are deterministic. The uncertainty in prediction of AARI 

mainly comes from two sources; uncertainty due to measurement errors and uncertainty 

associated with spatial variability of rainfall. The characteristics of measurement errors 

can vary depending on the rain gauge type. For example, errors associated with 

commonly used tipping bucket rain gauges range from errors due to wind, wetting, 

evaporation, and splashing (Sevruk and Hamon, 1984; Fankhauser, 1998) to errors due 

to its sampling mechanism (Habib et al., 2001). In addition to measurement  errors and 

since rainfall can vary over space significantly, any spatial aggregation method for 

scaling up the point rainfall measurements incorporates more uncertainty (Villarini et 

al., 2008). The magnitude of the uncertainty depends on many factors including rain 

gauge density and location, rainfall variability, catchment size, topography and the 

spatial interpolation technique used. Quantification of the level of uncertainty is 

essential for robust interpretation of hydrological model outputs. For instance, the 

absence of information on uncertainty can lead to force fitting of hydrological model 

parameters to compensate for the uncertainty in rainfall input data (Schuurmans and 

Bierkens, 2006).  

Geostatistical methods such as kriging present a solution to this problem by providing 

a measure of prediction error. In addition to this capability, these statistical methods 

also take into account the spatial dependence structure of the measured rainfall data 

(Mair and Fares, 2011; Ly et al., 2013). Although these features make geostatistical 

methods more attractive than deterministic methods, they are rarely used in LCM due 

to their inherent complexity and heavy data requirements. Since they are statistical 

methods encompassing multiple parameters the amount of spatial data required for 

model inference is higher compared to deterministic methods. In addition the 

underlying assumption of geostatistical approaches typically requires data to be 

normally distributed (Isaaks and Srivastava, 1989). In general, catchments, especially 

those at small urban scales, do not contain as many measurement locations as required 

by geostatistical methods.  Furthermore, rainfall intensity data are almost never 

normally distributed, especially at smaller averaging intervals (< 1 h) (Glasbey and 

Nevison, 1997). Despite these challenges geostatistical methods can provide 

information on uncertainty associated with predicted AARI. This capability can be 

utilised in uncertainty propagation analysis in hydrological models. In literature, 

geostatistical methods have been used to analyse the spatial correlation structure of 
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rainfall at various spatial scales (Berne et al., 2004; Ciach and Krajewski, 2006; 

Emmanuel et al., 2012; Jaffrain and Berne, 2012), however its application to support 

uncertainty analyses of upscaling rainfall data has not been  explored.  

In this paper we present a geostatistical approach to derive AARI and the level of 

uncertainty associated with it from observations obtained from multiple “paired” rain 

gauges located in a small urban catchment. The proposed approach presents solutions 

to the above described challenges of geostatistical methods. First, it uses pooling of 

sample variograms of rainfall measurements at different times but with similar 

characteristics to increase the number of paired observations used to fit variogram 

models. Second, a data transformation method is employed to transform the rainfall 

data to obtain a normally distributed data set. The level of uncertainty in the prediction 

of AARI is then quantified for different combinations of temporal averaging intervals 

and intensity ranges for the studied urban catchment. We focused on a small urban 

catchment with a spatial extent of less than a kilometre given the findings of recent 

research on the high significance of unmeasured spatial rainfall variability at such 

spatial scales, especially for urban hydrological and hydrodynamic modelling 

applications (Gires et al., 2012; Ochoa-Rodriguez et al., 2015)  

3.2 Data collection 

3.2.1 Location and rain gauge network design 
The study area is located in Bradford, a city in West Yorkshire, England. Bradford has 

a maritime climate, with an average yearly rainfall of 873 mm recorded from 1981-

2010 (MetOffice, UK). The rain gauge network, used in this study was located at the 

premises of Bradford University (Fig. 3.1) and rainfall data were collected from paired 

tipping bucket rain gauges placed at eight locations covering an area of 400 × 200 m2.  

Data used in this study were collected from April, 2012 to August, 2012 and from April, 

2013 to August, 2013. These stations were located on selected roofs of the university 

buildings, thereby providing controlled, secure and obstruction-free measurement 

locations. Each station consists of two tipping bucket type rain gauges mounted 1 m 

apart. On each roof the paired gauges were placed such that the height of the nearest 

obstruction is less than two times the distance between the gauges and the obstruction 

The rim of each rain gauge was set up around 0.5 m above the surrounding ground level 

following UK standard practice (MetOffice, UK). An example of the measurement 
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setup (Station 6) is also shown in Fig. 3.1. A histogram of the inter-station distances of 

the rain gauge network is presented in Fig. 3.2. Lag distances covered in this network 

are distributed between 21 m (St. 4-St. 5) and 399 m (St. 1-St. 3). 

 

 

 

 

 

 

 

Figure 3.1: (Left) A aerial view of - rain gauge network covering an area of 400 × 200 m2 at 
Bradford University, UK. (Right) A photograph of paired rain gauges at station 6.  

 

 

Figure 3.2: Histogram with class interval width of 100 m showing frequency distribution of inter-
station distances (m) 

 

All rain gauges are ARG100 tipping bucket type with an orifice diameter of 254 mm 

and a resolution of 0.2 mm. Dynamic calibration was carried out for each individual 

gauge before deployment and visual checks were carried out every 4-5 weeks during 

the measurement period to ensure that the instruments were free of dirt and debris. Data 

loggers were reset every 4-5 weeks during data collection to avoid any significant time 

drift. Measurements (number of tips) were taken every minute and recorded on 

TinyTag data loggers mounted in each rain gauge. 
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Quality control procedures were performed prior to statistical analysis, taking 

advantage of the paired gauge setup to detect gross measurement errors. The paired 

gauge design provides efficient quality control of the rain gauge data records as it helps 

to identify the instances when one of the gauges fails, and to clearly identify periods of 

missing or incorrect data (Ciach and Krajewski, 2006). During the dynamic calibration 

of all rain gauges in the laboratory before deployment, it was identified that the highest 

and lowest values of the calibration factors for the tipping bucket size are 0.196 mm 

and 0.204 mm. The gauges were recalibrated in the laboratory after the first period of 

measurement and it was found that the largest change in calibration factor for any gauge 

was a maximum of 4% of the original calibration factor. Therefore a maximum 

difference of 4% in volume per tip was assumed to be caused by inherent instrument 

error. It was therefore decided that this is the maximum acceptable difference between 

any pair of gauges. Sets of cumulative rainfall data corresponding to specific events 

from the paired gauges were checked against each other and if the (absolute) difference 

in cumulative rainfall was greater than 4%, that complete set was identified as 

unreliable and removed from further analysis. 

3.2.2 Characteristics of the data  
The total average network rainfall depth for the summer seasons of 2012 and 2013 are 

538 mm and 207 mm, respectively. Figure 3.3 shows time series of daily rainfall 

averaged over the network for 2012 and 2013. There is a significant difference in 

cumulative rainfall between 2012 and 2013. This is because 2012 was the wettest year 

recorded in 100 years in the UK (MetOffice UK, 2016) and 558 mm of rainfall during 

2012 summer was unusually high. An average rainfall of only 360 mm was recorded 

during April to September over the 1981 - 2010 period at the nearest operational rain 

gauge station at Bingley, which is around 8 km from the study site with a similar ground 

elevation (MetOffice UK, 2016). 
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Figure 3.3: Time series of network average daily rainfall in the two seasons of 2012 and 2013 
with vertical dashed lines indicating the events presented in Table 3.1 

 

The data set for 2012 and 2013 contains 13 events yielding more than 10 mm network 

average rainfall depth each and lasting for more than 20 min. A summary of these 

events is presented in Table 3.1. Note that this event separation is only used for the 

presentation of results in chapter 4. Hence it does not leave out any data from the 

development and calibration of the geostatistical model as presented in chapter 3. Table 

3.1 shows that the total event duration ranges from 1.5 h to 11.4 h while the event 

network average rainfall intensity varies from 1.79 mm/h to 7.96 mm/h. Table 3.1 also 

includes summary statistics of peaks of events (temporal averaging interval of 5 min) 

for the eight stations within the network. Although the spatial extent of the area is only 

400 × 200  m2, it is clear that there is a considerable difference in rainfall intensity 

measurements indicated by the standard deviation and range of peaks observed in the 

individual events. The maximum standard deviation between peaks of individual 

events is 9.27 mm/h for event 8, which is around 12.5% of the mean network peak 

intensity of 74.4 mm/h. This variation provides evidence of the potential importance of 

analysing uncertainty in the estimation of AARI even in such a small urban catchment. 
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Table 3.1: Summary of events which yielded more than 10 mm rainfall and lasted for more than 
20 min with summary statistics of event peaks (derived at 5 min temporal averaging interval) from 
all stations. 

Event 
ID. 

Date 

Network 
average 
duration 

(h) 

Network 
average 
intensity 
(mm/h) 

Network 
average 
rainfall 
(mm) 

Summary statistics of 
peaks between different 

stations (mm/h) 

Mean 
Std. 
Dev 

Max Min 

1 18/04/2012 6.33 2.20 13.9 5.10 0.550 6.02 4.74 

2 25/04/2012 6.42 2.55 16.3 7.05 0.751 8.32 5.92 

3 09/05/2012 8.92 1.79 16.0 5.10 0.537 5.97 4.74 
4 14/06/2012 6.83 1.99 13.6 5.25 0.636 6.04 4.74 

5 22/06/2012 11.4 2.39 27.3 12.7 1.72 15.4 9.67 

6 06/07/2012 4.42 5.31 23.4 38.5 4.52 42.9 30.5 

7 06/07/2012 3.25 3.23 10.5 7.20 0.679 8.46 5.93 

8 07/07/2012 1.50 7.84 11.8 74.4 9.27 86.5 61.9 

9 19/07/2012 3.08 3.35 10.3 12.7 2.01 14.5 9.74 

10 15/08/2012 2.00 7.96 15.9 43.0 3.69 47.8 37.5 

11 14/05/2013 7.92 2.14 17.0 8.08 1.20 9.55 6.09 
12 23/07/2013 1.75 6.51 11.4 37.7 2.09 42.6 35.7 

13 27/07/2013 8.17 4.34 35.5 26.6 1.23 27.5 23.8 

 

3.3  Methodology 

Figure 3.4 summarises the procedure of geostatistical upscaling of the rainfall data 

adapted in this study in a step-by-step instruction followed by the detail descriptions of 

each step. This complete procedure was repeated for temporal averaging intervals of 2 

min, 5 min, 15 min and 30 min in order to investigate the effect of temporal aggregation 

on the prediction of AARI. The entire ten months of collected data were used for the 

development and calibration of the geostatistical model.  

 

 

 

 

 



 

43 
 

 

Figure 3.4: Step by step procedure developed in this study to predict AARI and associated level 
of uncertainty. Boxes highlighted in dots indicate the steps to resolve the problem of scarcity in 
measurement locations, blue boxes show the steps introduced to address non-normality of rainfall 
data.  

 

 

9. Inverse standardisation of mean prediction (=AARI) and standard 
deviation (uncertainty measure) using S-1

8. Estimation of the mean prediction (mean of the aggregates) 
and  standard deviation (standard deviation of the aggregates) 

7. Spatial aggregation of each of the back-transformed simulations

6. Back-transformation of all realisations using NST-1

5. Spatial stochastic simulation producing a large number of realisations
of  rN

4. Calibration of geostatistical model for rN in the form of a variogram

3. Normal score transformation of standardised intensities, 
rN= NST(7̃)

2. Standardisation of rainfall intensities, 7̃= S(r)

1. Pooling of sample variograms of time instants using predefined range of 
rainfall intensities,  r
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3.3.1 Step 1: Pooling of sample variograms 
The rain gauge network contains eight measurement locations. These eight 

measurement locations give 28 spatial pairs at a given time instant which yields too 

few spatial lags than would normally be used in geostatistical modelling. For example, 

Webster and Oliver (2007) recommends around 100 measurement points to calibrate a 

geostatistical model. The procedure adapted in this study increases the number of pairs 

by pooling sample variograms for time instants with similar rainfall characteristics. 

With n measurement locations and measurements taken at t time instants, the pooling 

over t time instants creates t × ½ × n × (n-1) spatial pairs. Although this procedure 

increases the number of spatial pairs by a factor t, the spatial separation distances for 

which information is available will be limited to the original configuration of the n 

measurement locations.  

The underlying assumption of this pooling procedure is that the spatial variability over 

the pooled time instants is the same. Therefore, it is important to pool sample 

variograms of rainfall measurements with similar rainfall characteristics. Since the 

spatial rainfall variability is often intensity-dependent (Ciach and Krajewski, 2006), the 

characteristics of a less intense rainfall event may not be the same as that of a high 

intensity rainfall event. Hence to make the assumption of consistency of spatial 

variability, the range of rainfall intensity over the pooled time instants should be 

reasonably small. On the other hand, one should also make sure that there are enough 

time instants within a pooled subset to meet the data requirement to calibrate the 

geostatistical model. Based on the above two criteria, three rainfall intensity classes 

were selected. The maximum threshold value was limited to 10mm/hr to have enough 

time instants for the highest range (i.e. > 10 mm/hr) in order to produce stable 

variograms even at 30 min temporal averaging interval. It was then decided to divide 

the 0 – 10 mm/hr class to two equal subclasses (i.e. < 5mm/hr and 5-10 mm/hr). This 

resulted in three subclasses, which is a reasonable number given the size of the data set 

and computational demand. The number of time instants (t) within each rainfall 

intensity class is presented for three temporal averaging intervals in Fig. 3.5. The 

natural characteristic of rainfall data results in the dominance of lower intensity rainfall 

(0.1-5.0 mm/h) over the recording period. In addition, the number of time instants t 

obviously reduces with increasing temporal averaging intervals due to the aggregation 

process. As a consequence there are only seven time instants for the intensity range > 
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10 mm/h at the 30 min temporal averaging interval. This limits the maximum temporal 

averaging interval to 30 min for our analyses. For a catchment of this size (400 × 200 

m2) it is very unlikely to have a response time of more than 30 min. Hence, from a 

hydrological point of view consideration of temporal averaging intervals longer than 

30 min would not be sensible. Note that although there are only seven time instants, 

the pooling procedure will produce 196 (=7×28) points to calculate and calibrate the 

geostatistical model for that intensity class. 

 

Figure 3.5: Number of time instants for each temporal averaging interval and rainfall intensity 
class combination. 

 

3.3.2 Step 2: Standardisation of rainfall intensities  
Having chosen the rainfall intensity classes to create pooled time instants, there can 

still be inconsistency in spatial variability between time instants within a class and 

therefore assuming a single geostatistical model for the whole subset may not be 

realistic. To reduce this effect to a certain extent, all observations within an intensity 

class were standardised using the mean and standard deviation of each time instant as 

follows: 

 

7̃,e =
7,e − f,

_<,
										(3.1) 

 

1

10

100

1000

10000

100000

2 5 15 30

Nu
m

be
r o

f t
im

e 
in

st
an

ts

Temporal averaging interval (min)

< 5.0 mm/hr 5.0-10.0 mm/hr > 10 mm/hr



 

46 
 

where 4=1… t, 8=1… n; 7̃,e is standardised rainfall intensity at a time instant i and 

location x; 7,e is rainfall intensity at time instant i and location x and; f,, _<, are mean 

and standard deviation of rainfall intensities at time instant i, respectively. Further steps 

were carried out on the standardised rainfall intensity. 

3.3.3 Step 3: Normal transformation of data 

The upper part of Fig. 3.6 shows the distribution of standardised rainfall intensity for a 

temporal averaging interval of 5 min derived using Eq. (3.1). From the figure it is clear 

that the data are not normally distributed. Distributions for other temporal averaging 

intervals (i.e. 2 min, 15 min and 30 min) show a similar behaviour. But the geostatistical 

upscaling method to be used is based on the normal distribution. This requires the 

rainfall data to be normally distributed prior to the calibration of the geostatistical 

model. The Normal Score Transformation (NST, also known as normal quantile 

transformation (Van der Waerden, 1953)) is a widely used method to transform a 

variable distribution to the Gaussian distribution. It has widely been applied in many 

hydrological applications (Bogner et al., 2012; Montanari andBrath, 2004; Todini, 

2008; Weerts et al., 2011).  The concept of NST is to match the p-quantile of the data 

distribution with the p-quantile of the standard normal distribution. Consider a 

standardised rainfall intensity 7̃ with cumulative distribution	ghi(7̃). It is transformed 

to a 70	value with a Gaussian cumulative distribution	ghj(70)  as follows: 

70 = ghj
N@Lghi(7̃)P										(3.2) 

Detailed description of NST including the steps involved can be found in Bogner et al. 

(2012),  Van der Waerden (1953) and Weerts et al. (2011). The lower part of Fig. 3.6 

shows the transformed standardised intensity for the temporal averaging interval of 5 

min.             
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Figure 3.6: Distribution of standardised rainfall intensity for different rainfall intensity classes at 
a temporal averaging interval of 5 min before (upper part) and after (lower part) normal score 
transformation (NST). 

          

3.3.4 Step 4: Calibration of Geostatistical model 
A geostatistical model of (normalised) rainfall intensity 70 (derived from Section 3.3.3) 

at any location x can be written as:  

70(8) = 9(8) + ;(8)										(3.3) 

where 9(8) is the trend (explanatory part) and ;(8) is the stochastic residual 

(unexplanatory part). Considering the availability of data, small catchment size and 

scope of this study, it was assumed that the trend is constant and does not depend on 

explanatory variables (e.g. topography of the area, wind direction). The stochastic 

term	; is spatially correlated and characterised by a variogram model. A variogram 

model typically consists of three parameters; nugget, sill and range (Isaaks and 

Srivastava, 1989). The nugget is the value of the semi-variance at near-zero distance. 

It is often greater than zero because of random measurement error and micro-scale 

spatial variation. The range is the distance beyond which the data are no longer spatially 

NST 
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correlated. The sill is the maximum variogram value and equal to the variance of the 

variable of interest (Isaaks and Srivastava, 1989) 

3.3.5 Step 5: Spatial stochastic simulation 
The assumption of a constant trend makes that the spatial interpolation can be solved 

using an ordinary kriging system (Isaaks and Srivastava, 1989): 

*=k
V

kW@

!ek − l = !em						∀	8 = 1,… , p										(3.4) 

*=e =
V

eW@

1										(3.5) 

where =e, 8 = 1,… , p are ordinary kriging weights, !ek	 is the semivariance between 

rainfall intensities at locations	8	and	t ,!em is the semivariance between rainfall 

intensities at location 8 and prediction location +, and l is a Lagrange parameter. 

Once the ordinary kriging weights are calculated using Eq. (3.4) and Eq. (3.5), point 

rainfall intensities can be predicted using point kriging at any given point by taking the 

weighted average of the observed rainfall intensities, using the =e as weights. In this 

case we need a change of support from point to block as our intention is to predict the 

average rainfall intensity over the catchment. This is usually done by predicting at all 

points inside the catchment and integrating these over the catchment. This procedure is 

known as block kriging (Isaaks and Srivastava, 1989), which also has provisions for 

calculating the prediction error variance of the catchment average. But the procedure 

of NST as explained in Section 3.3.3 also involves back-transformation of kriging 

predictions to the original domain at the end (Step 6). Since this transformation is 

typically non-linear, the back-transform of the spatial average of the transformed 

variable that is obtained from block kriging is not the same as the spatial average of the 

back-transformed variable; we need the latter and not the former. In principle, we could 

predict at all points within the block, back-transform all and next calculate the spatial 

average, but standard block kriging software implementations do not support this and 

neither is it possible to compute the associated prediction error variance. Hence block 

kriging cannot be applied. The alternative used in this study is to apply a 

computationally more demanding spatial stochastic simulation approach, which 

involves generation of a larger number of realisations and spatial averaging of these 
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realisations. Unlike kriging, spatial stochastic simulation does not aim to minimize the 

prediction error variance but focuses on the reproduction of the statistics such as the 

histogram and variogram model (Goovaerts, 2000). The output from spatial stochastic 

simulation is a set of alternative rainfall realisations (‘possible realities’). The mean of 

a large set of realisations approximates the kriging prediction, while their standard 

deviation approximates the kriging standard deviation. We used the sequential 

Gaussian simulation algorithm which involves the following steps (Goovaerts, 2000):  

i. Define a prediction grid (a 25m × 25m regular grid in this case); 

ii. Visit a randomly selected grid cell that has not been visited before and 

predict the transformed rainfall intensity at the grid cell centre using 

ordinary kriging, this yields a kriging prediction and a kriging standard 

deviation; 

iii. Use a pseudo-random number generator to sample from a normal 

distribution mean equal to the kriging prediction and standard deviation 

equal to the kriging standard deviation and assign this value to the grid cell 

centre; 

iv. Add the simulated value to the conditioning data set, in other words treat 

the simulated value as if it were another observation; 

v. Go back to step ii and repeat the procedure until there are no more unvisited 

grid cells left.   

The five steps above produce a single realisation. This must be repeated as many times 

as the number of realisations required (500 in this study). It must also be repeated for 

each time instant, which explains that the computational burden can be high. 

Implementation of these steps with the gstat package in R (Pebesma, 2004)  is 

straightforward. 

The grid size and number of simulations (i.e., the sample size) were selected 

considering the spatial resolution of available measurements and computational 

demand. It was observed that neither a finer grid nor more simulations improved the 

results significantly. Increasing the resolution to 10 m × 10 m only reduces the standard 

deviation of the prediction by less than 5% in most cases while making the 

computational time six times higher (a summary on computation power is presented in 

Appendix 3B).  
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3.3.6 Step 6-9: Calculation of AARI and associated uncertainty 
Once the realisations have been prepared these are back-transformed by applying the 

inverse of Eq. (3.2) to all grid cells (step 6). Some values derived from spatial stochastic 

simulation were outside the transformed data range. Hence during back transformation 

(step 6) of these values linear extrapolation was used. These linear models were derived 

using a selected number of head and tail portion of normal Q-Q plot. This is one of the 

simplest and most commonly used solutions for NST back-transformation (Weerts et 

al., 2011; Bogner et al., 2012). Considering the scope of this study and the relatively 

small number of data which had to be extrapolated, other extrapolation methods were 

not explored. After step 6, the back transformed realisations are spatially averaged one 

by one (step 7). This yields as many spatially averages as the number of realisations 

that had been generated in step 5. This set of values is a simple random sample from 

the probability distribution of the catchment average rainfall. Thus, the sample mean 

and standard deviation provide estimates of the mean and standard deviation of the 

distribution, respectively (step 8). Finally, by doing the inverse standardisation of the 

mean and standard deviation of the distribution to account for step 2, the AARI and 

associated uncertainty measure (standard deviation) were derived (Step 9).                        

3.4 Results and Discussion 

3.4.1 Calibration of the geostatistical model of rainfall  
As explained in Section 3.4, the geostatistical model of transformed rainfall data were 

calibrated using variograms for three different intensity ranges. This procedure was 

repeated for temporal averaging intervals of 2 min, 5 min, 15 min and 30 min. 

Exponential models were fitted to empirical variograms.  The resulting variograms are 

presented in Fig. 3.7.  
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Figure 3.7: Calculated variograms for each intensity class within each temporal averaging 
interval 

 

The variograms illustrate two properties of the collected rainfall measurements; spatial 

variability of rainfall, and measurement error. One of the main parameters which 

characterises these properties is the nugget. Theoretically at zero lag distance the 

variance should be zero. However most of the variograms exhibit a positive nugget 

effect (generally presented as nugget-to-sill ratio) at zero lag distance. This nugget 

effect can be due to two reasons; random measurement error and microscale spatial 

variability of rainfall.  Unfortunately we cannot quantify these causes individually 

using the variograms. But there is a consistent pattern of nugget against both rainfall 

intensity class and temporal averaging interval which helps to interpret the variograms.  

Considering the behaviour of nugget-to-sill ratio against rainfall intensity class, it can 

be observed that the smaller the intensity the higher the nugget-to-sill ratio, regardless 

of temporal averaging interval. For example, at 2 min averaging interval the nugget-to-

sill ratio increases from zero to almost one (nugget variogram) as the rainfall intensity 

class changes from > 10 mm/h to < 5 mm/h. The pure nugget variogram at < 5 mm/h 

means that either there is no spatial correlation at the regarded distance, or the spatial 

correlation of the field cannot be detected by the measurements because of the 
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measurement error. Looking at the behaviour of nugget-to-sill ratio against temporal 

averaging interval, Fig. 3.7 shows that the smaller the averaging interval the higher the 

nugget-to-sill ratio, regardless of rainfall intensity class. For example, for rainfall 

intensity class 5.0–10.0 mm/h the nugget-to-sill ratio decreases from almost one to zero 

as the temporal averaging interval increases from 2 min to 30 min. Overall these 

observations show that the combined effect of random measurement error and 

microscale special variability of rainfall characterised by nugget-to-sill ratio decreases 

with increasing (a) rainfall intensity class and (b) averaging interval.  

Regarding the behaviour of the nugget-to-sill ratio against averaging interval, it is 

expected that with the averaging interval the (microscale) spatial correlation of rainfall 

would increase, which partly explains the observed pattern. The increase in spatial 

correlation of rainfall intensity with increasing temporal averaging interval agrees with 

other similar studies (e.g. Ciach and Krajewski, 2006; Fiener and Auerswald, 2009; 

Krajewski et al., 2003; Peleg et al., 2013; Villarini et al., 2008). For example, Krajewski 

et al. (2003) observed in their study on analysis of spatial correlation structure of small-

scale rainfall in central Oklahoma a similar behaviour using correlogram functions for 

different temporal averaging intervals. But commenting on the decreasing trend of the 

nugget-to-sill ratio against intensity class, it cannot be attributed to improvement in 

microscale spatial correlation as it is neither natural nor proven. In fact, in Fig. 3.7 the 

behaviour of spatial correlation against rainfall intensity class does not show a 

distinctive trend except at the origin, i.e. the nugget effect. The absence of any 

consistent trend of spatial variability against intensity class was also observed in  Ciach 

and Krajewski, (2006). Meanwhile this decreasing trend of nugget-to-sill ratio against 

rainfall intensity corresponds well with measurement errors of tipping bucket type rain 

gauges caused by its sampling mechanism (hereafter referred as TB error). This is due 

to the rain gauges’ inability to capture small temporal variability of the rainfall time 

series. The behaviour of TB error against rainfall intensity as seen from Fig. 3.7 

complements results from previous studies (Habib et al., 2001; Villarini et al., 2008). 

These studies also show that the TB error decreases with temporal averaging interval.  

Habib et al. (2001)  found similar behaviour of TB error with increasing intensity (0-

100 mm/h) and also with increasing averaging interval (1 min, 5 min and 15 min). 

Although the bucket size used in their study (0.254 mm) is slightly different from our 

rain gauge bucket size of 0.2 mm, the characteristic of the TB error against rainfall 

intensity for different averaging interval is consistent in both cases.  In summary, the 
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behaviour of nugget-to-sill ratio of the variograms against temporal averaging interval 

can be explained by the combined effect of microscale spatial variability of rainfall and 

TB error, while the behaviour of nugget-to-sill ratio against intensity range can mainly 

be attributed to the latter. 

In addition to the nugget-to-sill ratio, another parameter that characterises the 

variograms is the range, i.e. the distance up to which there is spatial correlation. At 

lower temporal averaging intervals (≤ 5 min) the variograms for all rainfall intensity 

classes reach the variogram range very quickly (< 100 m). But at averaging intervals ≥ 

15 min, the range has not been reached even at a maximum separation distance, 

showing the improvement in spatial correlation. High spatial variability of rainfall at 

shorter temporal averaging interval (≤ 5 min) is an important observation in the context 

of urban drainage runoff modelling, as the time step used in such models is generally 

around 2 min for small catchments.  

The fact that the data set covers only 10 months of data from two years with varying 

climatology is something that need to be acknowledged. However, for previous studies 

using such a dense network the duration of data collection is similar (e.g.: 15 months - 

Ciach and Krajewski, 2006; 16 months - Jaffrain and Berne, 2012). These time periods 

are reflection of the practical and funding issues to maintain such dense networks 

operating accurately for extended periods. The characteristics of our data are 

comparable with (Ciach and Krajewski, 2006; Fiener and Auerswald, 2009) as these 

studies also used rainfall data from warm months to investigate the spatial correlation 

structure. Despite the fact that the data cover only 10 months all derived variogram 

models are stable and reliable. Webster and Oliver (2007) suggested around 100 

samples to reliably estimate a variogram model. Even in the case of 30 min temporal 

averaging interval and > 10 mm/hr (where we had the fewest number of observations) 

we had a total of 196 spatial lags to calculate the variogram. Furthermore, we 

demonstrated that all derived variogram models are stable and reliable by examining 

sub-sets of the data. We randomly selected 80% of the data from each intensity class 

and reproduced the variograms to compare them with the variograms presented in Fig. 

3.7. We had to limit the subclass percentage to 80% to give enough time instants to 

reproduce variograms for all subclasses. We repeated this procedure a few times. 

Comparing these variograms with Fig. 3.7 shows that these variograms are very similar. 

One set of the variograms computed from 80% of the data are presented in Appendix 



 

54 
 

3A. This analysis supports our claim that the variograms shown in Fig. 3.7 are stable 

and an adequate representation of the rainfall spatial variation for each intensity class 

and temporal averaging interval.  

One of the assumptions we made during the pooling procedure is that the spatial 

variability is reasonably consistent within a pooled intensity class. We acknowledge 

that with narrower intervals the assumption of consistency in spatial variability would 

be more realistic. But with the available data we had to find a compromise with the 

number of time instants. We believe that using three intensity subclasses is a reasonable 

compromise. Further we also introduced step 2 (section 3.2) that standardises the 

rainfall for each time instant within a subset. Although variograms are derived only for 

the whole subset, step 2 (before geostatistical upscaling) and step 9 (after geostatistical 

upscaling) ensure that the probabilistic model is adjusted for each time instant 

separately. Effectively, we assume the same correlogram for time instants of the same 

subclass, not the same variogram. Although this does not justify the assumption of 

similar spatial correlation structure within the pooled classes, it at least relaxes the 

assumption of the same variogram within subclasses. To compare the behaviour of 

variogram models for a narrower intensity interval, we produced variograms for 

narrower intensity classes ranging from 0 to 14 mm/hr for the 5 min averaging interval. 

The highest intensity class is limited to ≥12 - <14 mm/hr as for further narrower ranges 

(i.e ≥14 - <16 mm/hr and so on) there are not enough sample points to produce a 

meaningful variogram. Narrower intensity classes means that the assumption of similar 

spatial variability within a pooled subset is more realistic.  Comparing Fig. 3.8 with 

Fig. 3.7, we conclude that the variograms shown in Fig. 3.7 are accurate representations 

of the average spatial variability conditions for corresponding intensity classes. 
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Figure 3.8: Calculated variograms for a narrower range of intensity at 5 min averaging 
interval. 

 

3.4.2 Geostatistical upscaling of rainfall data 
Having calculated all variograms, the next step is to apply spatial stochastic simulation 

for the time instants of interest followed by steps 6 to 9 in Fig. 3.4 to calculate the 

AARI together with associated uncertainty. This procedure was carried out for all 

events presented in Table 3.1. The following sections present and discuss the predicted 

AARI and associated uncertainty levels derived from step 9. 

3.4.2.1 Prediction error vs AARI 

The scatter plot in Fig. 3.9 shows the coefficient of variation of the prediction error 

(CV, refer Eq. (3.6)) plotted against predicted AARI at 5 min averaging interval for all 

time instants of all events presented in Table 3.1.  

uv =
BBwS	97M<4x>4yp	M77y7	_>?p<?7<	<Mz4?>4yp

{7M<4x>M<	BBwS 	× 100%										(3.6) 
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Figure 3.9: AARI prediction error CV (%) values against predicted AARI for averaging interval 
of 5 min. 

 

The uncertainty level in the prediction of AARI represented by the CV is due to the 

combined effect of both spatial variability of rainfall and TB error in the rainfall data. 

It can be seen here that there is a clear trend of decreasing CV with increasing AARI. 

The CV values are as high as 80% when the AARI is smaller than 1 mm/hr and they 

get reduced to less than 10% when AARI is larger than 10 mm/hr. In a previous study 

by Pedersen et al. (2010) using rainfall measurements from similar tipping bucket type 

rain gauges, they also found  that the uncertainty in prediction of mean rainfall depth 

decreases with increasing mean rainfall depth, but due to the limited information in 

their results they could not analyse this observation in detail. But here it is clear that 

this observation corresponds well with what we already observed in variograms in Fig. 

3.7. These variograms show higher nugget-to-sill ratio at lower intensity due to high 

TB error consequently causing higher uncertainty in the prediction of AARI. At 

intensity class 0-5 mm/hr the nugget-to-sill ratio was almost one (nugget variogram) 

and as a result the derived CV values are significantly higher than other two intensity 

classes. It is interesting to note that, in the range of 1- 10 mm/hr, there are few points 

that are separated from the larger cluster with almost zero CV. It shows a consistent 

rainfall measurement over the area at these time instants, which results in a very small 

CV in the predicted AARI.  

The above discussion is based on results from 5 min temporal averaging interval. The 

following section discusses the effect of temporal averaging interval on prediction 
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error. Further, although CV in Fig. 3.9 gets as high as 80%, the corresponding AARI 

is less than 1 mm/hr, thus the prediction error has a very less significance in urban 

hydrology. Hence we also analysed the prediction error associated with rainfall events’ 

peaks in the last section.  

3.4.2.2 Prediction error vs temporal averaging interval 

Having analysed the behaviour of the prediction error CV against predicted AARI, this 

section presents the effect of temporal averaging interval on the prediction error of 

AARI. Figure 3.10 shows the kriging predictions with 95 % prediction intervals derived 

from the prediction standard deviation for temporal averaging intervals of 2 min, 5 min, 

15 min and 30 min for event 11.  Event 11 has average conditions in terms of event 

duration and peak intensity. Prediction errors of other events against the temporal 

averaging interval follow the same pattern of behaviour.   

 

Figure 3.10: Predictions of AARI (indicated by points) together with 95 % prediction intervals 
(indicated by grey ribbon) for rainfall event 11 for different averaging intervals. 

 

While short time intervals are of greater interest in urban hydrology, they also lead to 

large uncertainties. Figure 3.10 shows the smaller the temporal averaging interval, the 

larger the prediction interval and the larger the level of uncertainty. This is due to the 
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combined effect of higher spatial variability and larger TB error at lower temporal 

averaging interval as seen from Fig. 3.7.  When the averaging interval is larger than 15 

min the prediction interval width becomes negligible. But temporal scales of interest in 

urban hydrology of similar sized catchment can be as low as 2 min where there is still 

considerable uncertainty. The 95 % prediction interval shows around ± 13 % of error 

in rainfall intensity corresponding to a prediction of peak rainfall of 47 mm/h at 2 min 

averaging interval. While temporal aggregation decreases uncertainty, it obviously 

leads to a significant reduction of the predicted peaks of AARI. For example, the peak 

of event 11 gets reduced to around 20 mm/h from around 50 mm/h when averaging 

interval increases from 2 min to 30 min. Hence a careful trade-off between temporal 

resolution and accuracy in rainfall prediction is needed to decide the most appropriate 

time step for averaging point rainfall data for urban hydrologic applications. 

The decreasing trend of uncertainty in the prediction of AARI with increasing temporal 

averaging interval agrees with a previous study by Villarini et al. (2008). Although the 

spatial extent of their study is much larger (360 km2), their results also show that the 

spatial sampling uncertainties tend to decrease with increasing temporal averaging 

interval due to improvement in measurement accuracy and improved  spatial 

correlation. 

3.4.2.3 Prediction error Vs peak rainfall intensity 

In addition to rainfall event durations, rainfall event peaks are also of significant 

interest in urban hydrology as most of the hydraulic structures in urban drainage 

systems are designed based on peak discharge which is often derived from peak 

rainfall. Hence it is important to consider the uncertainty in prediction of peaks of 

AARI. Figure 3.11 presents predicted peaks of AARI for all 13 events presented in 

Table 3.1, together with labels indicating corresponding CV (%) values. The peak 

intensities range from 6 mm/h to 92 mm/h at 2 min averaging interval and this range 

narrows down to 3 mm/h – 21 mm/h at averaging interval of 30 min as a result of 

temporal aggregation. As expected, temporal aggregation from 2 min to 30 min also 

results in the reduction of CV. The highest CV at 2 min averaging intervals is 13% for 

event 4 and reduces to 1.7% at 30 min averaging interval. But it can also be noted that 

events 5, 6, 8 and 11 show their highest CV at 5 min averaging interval and not at 2 

min averaging interval. Tracking back these events, they indeed show more spatial 

variation over 5 min period compared to 2 min period around the peak.  
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Figure 3.11: Predictions of event peaks of AARI (indicated by points) together with labels 
indicating corresponding CV (%) values. 

 

As discussed in section 4.2.1, CV decreases with increasing predicted rainfall peaks 

and this effect is dominant when the averaging interval is at the lowest, i.e. 2 min. This 

is when the TB error is at its highest. When the temporal averaging interval is 30 min 

where the TB error is at its lowest, the difference between CV for lower (< 10 mm/h) 

and higher (> 10 mm/h) intensity becomes smaller. At 30 min averaging interval the 

mean CV below and above 10 mm/h are 1.7 % and 1.2 % respectively, but they increase 

to 6.6 % and 3.5 % at 2 min averaging interval. The maximum CV at 2 min averaging 

interval are 13 % and 6.8 % for lower (< 10 mm/h) and higher (> 10 mm/h) rainfall 

intensity respectively. Even though these values are significantly less than what we 

observed from Fig. 3.9 when the rainfall intensity is less than 1 mm/hr, they are still 

high considering the required accuracy defined in standard guidelines of urban 

hydrological modelling practice. For example, the current urban drainage verification 

guideline (WaPUG, 2012) in the UK defines a maximum allowable deviation of 25 % 

to -15 % in peak runoff demanding more accurate prediction of rainfall which is the 

main driver of the runoff process in urban areas. A 13% uncertainty in rainfall will 

result in a similar level of uncertainty in runoff prediction for a completely impervious 
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surface according to the well-established rational formula (Viessman and Lewis, 1995) 

which is still widely used for estimating design discharge in small urban catchments.   

3.5 Conclusions 

Geostatistical methods have been used to analyse the spatial correlation structure of 

rainfall at various spatial scales, but its application to estimate the level of uncertainty 

in rainfall upscaling has not been fully explored mainly due to its inherent complexity 

and demanding data requirements. In this study we presented a method to overcome 

these challenges and predict AARI together with associated uncertainty using 

geostatistical upscaling. We used a spatial stochastic simulation approach to address 

the combination of change of support (from point to catchment) and non-normality of 

rainfall observations for prediction of AARI and the associated uncertainty. We 

addressed the issue of scarcity in measurement points by using repetitive rainfall 

measurements (pooling) to increase the number of spatial samples used for variogram 

estimation. The methods were illustrated with rainfall data collected from a cluster of 

eight paired rain gauges in a 400 × 200 m2 urban catchment in Bradford, UK. The 

spatial lag ranges from 21 m to 399 m. As far we are aware these are the smallest lag 

ranges in which spatial variability in rainfall is examined in an urban area using point 

rainfall measurements. We defined intensity classes and derived different geostatistical 

models (variograms) for each intensity class separately. We also used different 

temporal averaging intervals, ranging from 2 to 30 min, which are of interest in urban 

hydrology. To the best of our knowledge this is the first such attempt to assign 

geostatistical models for a combination of intensity class and temporal averaging 

interval. Finally, we quantified the level of uncertainty in the prediction of AARI for 

these different combinations of temporal averaging intervals and rainfall intensity 

ranges.  

A summary of the significant findings are listed below: 

• Several studies (e.g. Berne et al., 2004; Gebremichael and Krajewski, 2004; 

Krajewski et al., 2003) used  a single geostatistical model in the form of 

variogram/correlogram for the entire range of rainfall intensity. The current 

study shows that for small time and space scales the use of a single geostatistical 

model based on a single variogram is not appropriate and a distinction between 
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rainfall intensity classes and length of temporal averaging intervals should be 

made.  

• The level of uncertainty in the prediction of AARI using point measurement 

data essentially comes from two sources; spatial variability of the rainfall and 

measurement error. The significance and characteristics of the measurement 

error observed here mainly corresponds to sampling related error of tipping 

bucket type rain gauges (TB error) and may vary for other types of rain 

gauges. 

• TB error decreases with increasing rainfall intensity. As a result of that, the 

prediction error decreases with increasing AARI. At 5 min averaging interval 

the CV values are as high as 80% when the AARI is smaller than 1 mm/hr and 

they get reduced to less than 10% when AARI is larger than 10 mm/hr   

• At smaller temporal averaging intervals, the effect of both spatial variability 

and TB error is high, resulting in higher uncertainty levels in the prediction of 

AARI. With increasing temporal averaging interval the uncertainty becomes 

smaller as the spatial correlation increases and the TB error reduces. At 2 min 

temporal averaging interval the average CV in the prediction of peak AARI is 

6.6 % and the maximum CV is 13 % and they are reduced to 1.5 % and 3.6 % 

respectively at 30 min averaging interval.    

• TB error at averaging intervals of less than 5 min, especially at low intensity 

rainfall measurements, is as significant as spatial variability. Hence proper 

attention to TB error should be given in any application of these measurements, 

especially in urban hydrology where averaging intervals are often as small as 2 

min.  

Although the spatial stochastic simulation method used in this study needs more 

computational power (a summary on computation power is presented in Appendix 3B) 

than block kriging, it is a robust approach and allows data transformation during spatial 

interpolation and aggregation. Such data transformation is important because rainfall 

data are not normally distributed for small temporal averaging intervals. The pooling 

procedure used in this study helps provide a solution to meet the data requirements for 

geostatistical methods as it extends the available information for variogram estimation. 

Commenting on the minimum number of measurement points needed to employ this 

method is difficult, because like any other geostatistical interpolation method, the 

efficiency of this method also heavily depends on reliable estimation of the 
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geostatistical model (variogram). Hence, it basically comes down to the question of 

whether or not a given measurement network can produce a meaningful variogram. As 

mentioned, Webster and Oliver (2007) advised that around 100 measurement points 

are needed to adequately estimate a geostatistical model. But there is no single 

universal rule to define the minimum number of bins and the number of samples for 

each bin to produce a reliable variogram. Further, since pooling sample variograms of 

repeated measurements would produce a multiplication of spatial lags, the size of the 

available data set would also play a role in deciding the minimum number of 

measurement points. 

An urban catchment of this size needs rainfall data at a temporal and spatial resolution 

which is higher than the resolution of most commonly available radar data (1000 m, 5 

min).   In addition the level of uncertainty in radar measurements would be much higher 

than that of point measurements, especially at a small averaging interval (< 5 min, Seo 

and Krajewski, 2010; Villarini et al., 2008), which are often of interest in urban 

hydrology. Hence, experimental rain gauge data similar to the ones used in this study 

are crucial for similar studies focused on small urban catchments. 

Results from this study can be used for uncertainty analyses of hydrologic and 

hydrodynamic modelling of similar sized urban catchments in similar climates as it 

provides information on uncertainty associated with rainfall estimation which is 

arguably the most important input in these models. This information will help to 

differentiate input uncertainty from total uncertainty thereby helping to understand 

other sources of uncertainty due to model parameter and model structure. This estimate 

of the relative importance of uncertainty sources can help to avoid false calibration and 

force fitting of model parameters (Vrugt et al., 2008).  This study can also help to judge 

optimal temporal averaging interval for rainfall estimation of hydrologic and 

hydrodynamic modelling especially for small urban catchments. 

Data availability 

“The rainfall intensity data used in this study are freely available at 

https://doi.org/10.5281/zenodo.291372” 
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Appendix 

 

3A: Calculated variograms for each intensity class within each temporal averaging interval using 
randomly selected 80% of the data 

 

3B: Summary of computational power required for spatial stochastic simulation. 

Computer 
used 

Area (m2) 
Grid size 

(m2) 
number of 

simulations 
Computational time per 

time instant (s) 
Core i5, 1.7 

GHz, 4 

processers , 8 

GB RAM 

200 × 400* 25 × 25* 500* 10* 

200 × 400 25 × 25 1000 20 

200 × 400 10 × 10 500 60 

*This configuration is used in this study.  

 



 

64 
 

4. Improving understanding of the underlying physical 
process of sediment wash-off from urban road 
surfaces   

Manoranjan Muthusamy1, Simon Tait1, Alma Schellart1, Md Nazmul Azim Beg2, Rita 
F. Carvalho2, João L.M.P de Lima2 
1  Department of Civil and Structural Engineering, University of Sheffield, Sheffield, S1 3JD, UK 

2 Marine and Environmental Sciences Centre, Department of Civil Engineering, University of Coimbra, 
Coimbra, 3030–788, Portugal 

Correspondence to: Manoranjan Muthusamy (m.muthusamy@sheffield.ac.uk) 

Abstract 

Among the urban aquatic pollutants, the most common is sediment which also acts as 

a transport medium for many contaminants. Hence there is an increasing interest in 

being able to better predict the sediment washoff from urban surfaces. The exponential 

wash-off model is the most widely used method to predict the sediment wash-off. 

Although a number of studies proposed various modifications to the original 

exponential wash-off equation, these studies mostly looked into one parameter in 

isolation. This parameter is often the rainfall intensity thereby ignoring the interactions 

of other parameters corresponding to catchment surface and sediment characteristics. 

Hence in this study we aim (a) to investigate the effect of rainfall intensity, surface 

slope and initial load on wash-off load in an integrated and systematic way and (b) to 

subsequently improve the exponential wash-off equation focusing on the effect of the 

aforementioned parameters. A series of laboratory experiments were carried out in a 

full scale setup, comprising of a rainfall simulator, a 1 m2 bituminous road surface, and 

a continuous wash-off measuring system. Five rainfall intensities ranging from 33 - 

155 mm/hr, four slopes ranging from 2 - 16 % and three initial loads ranging from 50 

- 200 g/m2 were selected based on values obtained from literature. Fine sediment with 

a size range of 300 – 600 µm was used for all of the tests. Each test was carried out for 

one hour with at least 9 wash-off samples per test collected. Mass balance checks were 

carried out for all the tests as a quality control measure to make sure that there is no 

significant loss of sand during the tests.  Results show that the washed off sediment 

load at any given time is proportional to initial load for a given combination of rainfall 

intensity and surface slope. This indicates the importance of dedicated modelling of 

build-up so as to subsequently predict wash-off load. Further, results also show that the 

wash-off fraction increases with both rainfall intensity and surface slope. The negative-
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inverse-exponential (NIE) trend due to the effect of a first flush is more pronounced at 

combinations of catchment slopes steeper than 8% and rainfall intensities higher than 

75 mm/hr. It was also observed that the maximum fraction that is washed off from the 

surface increases with both rainfall intensity and the surface slope. This observation 

leads to the second part of the study where the existing wash-off model is modified by 

introducing a capacity factor which defines this maximum fraction. This capacity factor 

is derived as a function of wash-off coefficient making use of the correlation between 

the maximum fraction and the wash-off rate. Values of the modified wash-off 

coefficient are presented for all combinations of rainfall intensities and surface slopes, 

which can be transferred to other urban catchments with similar conditions. 

4.1 Introduction 

Pollutant wash-off is the process by which non-point source pollutants including 

sediment, nutrients, bacteria, oil, metals and chemicals are removed from urban 

surfaces by the action of rainfall and runoff.  Among the transported pollutants, the 

most common is sediment which plays a major role in water quality issues of inland 

water bodies in urban areas (Guy, 1970; Collins and Ridgeway, 1980; Chiew and Vaze, 

2004). Sediment also contributes to urban floods by filling up drainage systems and 

reducing the hydraulic capacity of these systems that are designed to rapidly carry water 

away from roads and properties (Ivan, 2001). Hence, accurate modelling of sediment 

wash-off is important for water-quality-based decision-making. But modelling 

sediment wash-off is not a straightforward exercise as it often involves empirically 

calibrated equations containing parameters with a highly variable nature such as 

rainfall, catchment surface and particle characteristics. There are two main processes 

involved in the transport of sediment from an impervious surface: Build-up and Wash-

off. Build-up is a process in which sediment accumulates during dry weather. Wash-

off is the process where accumulated sediment deposition is removed from impervious 

surfaces by rainfall and runoff and then incorporated in the run-off flow over the surface 

(Francey et al., 2011). Modelling of pollutant wash-off ranges from simple EMC 

(Event Mean Concentration) (Charbeneau and Barrett, 1998; Kayhanian et al., 2007) 

to more sophisticated BUWO (Build-up Wash-off models).  

One of the earliest studies on sediment wash-off was carried out by Sartor and Boyd 

(1972). They derived separate build-up and wash-off functions based on an 
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experimental study of runoff pollution in eight US cities. The original exponential 

wash-off equation proposed by Sartor and Boyd (1972) is given below  

=J = =KL1 − MNO,JP										(4.1) 

where =J	is transported sediment load after time t, =K is initial load of the sediment on 

the surface; i is rainfall intensity; and k is the wash-off coefficient. This equation is 

widely used in several models with or without modifications. These modifications are 

mainly focused on k. It has been shown that k needs to be calibrated for each catchment 

as it depends on many parameters corresponding to surface characteristics (Sonnen, 

1980; Nakamura, 1984), rainfall and runoff characteristics (Ammon, 1979; Sonnen, 

1980; Nakamura, 1984) and particle size (Ammon, 1979; Sonnen, 1980).  Apart from 

refinement in the estimation of k, some studies also suggest other forms of 

modifications. For instance, a power term to i was suggested to be able to predict the 

increase in concentration that corresponds to an increase in rainfall rate during an event 

(Huber and Dickinson, 1992). Another major modification suggested by Egodawatta et 

al. (2007) is the inclusion of a multiplicative capacity factor on the right side of the 

Eq.(4.1) varies with rainfall intensity for a better modelling of sediment removal. 

However, most of the above-mentioned refinements are very site specific and not easily 

transposed or generalised. Also most of these studies paid attention to one single 

parameter in isolation, thereby ignoring the effect and interactions of other parameters. 

For instance, although the introduction of a capacity factor by Egodawatta et al. (2007), 

is shown  to be a meaningful modification, has only been investigated against rainfall 

intensity. An integrated approach which is lacking in these studies is necessary to 

investigate the combined effect of dominant parameters associated with rainfall 

characteristics, surface characteristics and sediment characteristics. Another interesting 

observation is the lack of attention given to the surface slope in the above studies. Two 

processes that drive sediment mobilisation are impact energy from rainfall drops 

(Coleman, 1993) and shear stress from overland flow (Akan, 1987; Deletic et al., 1997) 

both of which are sensitive to surface slope especially the latter. With the exception of 

Nakamura, (1984) none of the above studies paid attention to the effect of slope. 

Nakamura (1984) results show that k increases with surface slope, but this study was 

based only on two randomly selected slopes and was not extensive enough to be used 

in subsequent studies or in practical applications.  
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In addition to the calibration of parameter k, another important input to the exponential 

washoff equation is the initial load =K. Sartor and Boyd (1972) provided an exponential 

equation to calculate the build-up load, which is essentially the initial sediment load in 

the wash-off prediction. They modelled sediment build-up against antecedent dry days. 

Although this approach of modelling build-up mainly using antecedent dry days has 

been used in some models (Bertrand-Krajewski et al., 1993), it has also been criticised, 

especially in recent studies (Charbeneau and Barrett, 1998; He et al., 2010; Shaw et al., 

2010). Among these studies,  Shaw et al. (2010) provided an overview of a number of 

studies which indicated that the mass of washed-off particulate matter during a storm 

event is relatively insensitive to the time between storm events. This was confirmed by 

He et al. (2010) who studied the quality of storm-water runoff from a semi-arid, urban 

residential catchment in Calgary, Alberta. They could not find any relationship between 

the event mean values of total suspended solids and the antecedent dry weather period. 

Despite these criticisms, the effect of build-up on wash-off has not been explored in 

depth in any of the above studies. Hence the question of whether there is a need to 

model build-up remains unanswered.  

Considering the above gaps and room for improvements in sediment wash-off 

modelling we designed and carried out a series of laboratory experiments to: 

• Study the effect of three dominant parameters corresponding to rainfall, 

surface and sediment characteristics in an integrated and systematic way. 

These parameters are, rainfall intensity (i), surface slope and initial load (=K) 

respectively. , and 

• Improve Eq. (4.1) using the experimental results focusing on the effect of the 

above three parameters.   

4.2 Methodology 

4.2.1 Experimental set up 
Experiments were conducted in a full scale laboratory setup, described in Fig. 4.1, 

comprising of a rainfall simulator (used in, for example, Carvalho et al. 2014; de Lima 

et al. 2013; Isidoro and Lima 2013; Montenegro et al. 2013), a 1 m2 bituminous road 

surface and a continuous wash-off measuring system. Steady artificially simulated 

rainfall was employed in order to eliminate the dependency on naturally occurring 
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rainfall. This approach provides better control over influential variables such as rainfall 

intensity and duration. Consequently, the use of simulated rainfall enables the 

generation of a large volume of data in a relatively short period of time (Herngren et 

al., 2005). 

.

 

Figure 4.1: Sketch of the experimental setup 

 

Figure 4.2: Photographs of (a) Experimental set up during data collection (b) Bituminous road 
surface with grids and (c) Nozzle with pressure gauge during the experiment 
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A typical urban road surface of 1 m2 was prepared for the experiments by using 

bituminous asphalt concrete (Fig. 4.2b). The surface was tested for texture and 

impermeability before the experiments. Surface texture was measured using sand patch 

tests (Highway Department UK, 1989) on 16 equally divided grids. The mean texture 

depth index is 0.4 mm with a standard deviation of 0.03 mm. This surface texture is an 

average representation of wide ranges of impervious urban surfaces where the mean 

texture depth index varies from ~0 (tiled pavements) to ~1.0 mm (road surfaces). Mass 

balance of surface runoff was carried out to check the impermeability and the results 

show that the surface is completely impermeable. This surface was fixed on a metal 

support structure with adjustable slope as shown in Fig. 4.1.  

The rainfall simulator (Fig. 4.1) has a pressurised hydraulic system comprised of: (i) a 

steady downward oriented full-cone nozzle (1/4-HH-14W FullJet from Spraying 

Systems Co., USA), with 3.58 mm orifice diameter, positioned 2.2 m above the 

geometric centre of the surface; (ii) a hydraulic system attached just in front of the 

nozzle to eliminate pressure fluctuations (more details in Isidoro & Lima, (2013); and 

(iii) a submerged pump (76.2 mm SQ from Grundfos Holding A/S, Denmark), installed 

in a constant head reservoir supplied with tap water. This system allows a steady 

operating pressure at the nozzle to produce rainfall with consistent intensity, with a 

spray angle of 120° (wide angle). The pressure at the nozzle is adjusted to change the 

rainfall intensity. D10 and D90 of the sand used in the experiment are 300 µm and 600 

µm respectively. It is a washed, dried and accurately graded sand, free from organics, 

clay, silt or metallic inclusions and has a sub-angular to semi-rounded shape. This 

sediment size is selected to provide a well characterised sediment as this reduces the 

potential for size sorting and so allows us to link the wash-off behaviour to a particular 

sediment size. Further, the D50 is around 450 µm which is similar to the mean D50 of 

road sediments reported in e.g. Butler and Clark (1995) and Bertrand-Krajewski et al. 

(1993).   

The effect of three parameters: rainfall intensity, surface slope and initial sediment load 

on sediment wash-off were tested. Five intensities ranging from 33-155 mm/hr, four 

slopes ranging from 2-16 % and three initial loads ranging from 50 - 200 g/m2 were 

selected. These upper limits cover the extreme values derived from literature. For 

example, the highest ever recorded one hour (note that all simulations were carried out 
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for one hour, Table 4.1) rainfall intensity in UK is 92 mm/hr (MetOffice UK, 2016). 

Further the UK Department of Transport suggests a maximum gradient of 10% for most 

types of the road other than in exceptional circumstances (Manual for Streets, 2009). 

Finally, the average of ̀ ultimate` sediment loads found in 8 selected urban sites located 

in Lambeth, UK is 172 g/m2 (Butler and Clark, 1995). The lower limits were selected 

using trial simulations to be able to produce a measurable amount of wash-off. 

Sampling times are adjusted based on the corresponding intensities and at least nine 

samples were collected for each simulation, see Table 4.1. Note that for the 2% slope 

the wash-off load was found to be less than 2% of initial load even for the highest 

intensity of 155 mm/hr; hence only simulations with an initial load of 200 g/m2 were 

carried out for this slope. All wash-off samples were collected using numbered foil 

containers and then these foil containers were dried using standard laboratory moisture 

extraction ovens until they are completely dry. All dried samples were then weighed 

using a high precision (accuracy of 0.1 g) laboratory measuring scale.  

4.2.2 Quality control 
The bituminous road surface was sub divided into 16 equal grid squares (Fig. 4.2b) to 

aid distribution of the sediment uniformly over the surface. Initially trial tests were 

repeated with the same conditions (rainfall intensity, surface slope and initial load) to 

confirm that the experimental setup gave consistent results. Comparing results from 

these repeated tests showed that the difference was within ±2%. At the end of both the 

trial and the actual tests the remaining sand from the surface was collected by washing 

off the surface to carry out a mass balance check. In all cases the mass loss was found 

to be less than 2% of the original sediment load ensuring that there is no significant 

loss of sand during the tests. 

Table 4.1: Summary of experimental conditions and sampling frequency 

Slope (%) Initial load (g/m2) Sampling times (min) 

2% 200 5, 10, 17, 25, 31, 38, 45, 52, 60  

[for intensities 33 mm/hr and  47 mm/hr] 
2, 5, 8, 13, 19, 25, 31, 38, 45, 52, 60  

[for intensities 75 mm/hr, 110 mm/hr and 155 mm/hr] 

4% 50,100,200 
8% 50,100,200 

16% 50,100,200 
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4.3 Results and Discussion 

4.3.1 Experimental results 
To compare the results from different initial loads on a common scale, we used a 

normalised measure, the wash-off fraction (g�) which is a ratio between transported 

sediment load after time t (=J) and initial load of the sediment (=K) (Eq. 4.2). Figure 

4.3 shows the wash-off fraction plotted against the duration for all of the tests 

summarised in Table 4.1. 

g� =
=J
=K
										(4.2) 

The most interesting observation is the effect of initial load on g�. Initial load does not 

affect g�	until the slope gets steeper (8% and 16%). Even in the case of 8% slope, initial 

load has an effect only when the rainfall intensity is higher than 110 mm/hr. In these 

cases, there is an increasing pattern of values of g� with increasing initial load. These 

combinations of high rainfall intensity and steep slope where the initial load has an 

impact on g� are very rare in reality (MetOffice UK 2017; Manual for Streets 2009). It 

implies that the effect of initial load on g� is negligible for most general combinations 

of rainfall intensity and surface slope. This essentially means the actual mass of 

sediment washed off at any given time (=J) is proportional to initial load for a given 

rainfall intensity and surface slope. Hence the prediction of build-up is perhaps the most 

preferred way to subsequently predict wash-off compared to the methods presented in 

recent studies (e.g. Shaw et al. 2010). But on the other hand, as Shaw et al. (2010) 

correctly pointed out, it is a challenging task to model the build-up process due to 

unpredicted occurrences of activities like construction work or the input of vegetative 

debris from wind storms. Despite these challenges the strong correlation observed 

between build-up load and wash-off load indicates the importance of modelling the 

build-up process. This observation does not necessarily invalidate the criticisms on the 

build-up model of Sartor and Boyd (1972) by Charbeneau and Barrett (1998), Shaw et 

al. (2010) and He et al. (2010) as their criticism is mainly on the use of antecedent dry 

days as the main parameter controlling the build-up process. Rather this finding calls 

for more attention to be paid on modelling of build-up process taking more parameters 

(Wijesiri et al. 2015; Morgan et al. 2017) into consideration in addition to antecedent 

dry days.  
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Looking at the effect of intensity and slope, for a given intensity, g� increases with 

increasing slope regardless of initial load. Similarly, for a given slope, g� increases 

with increasing intensity regardless of the initial load. At 2% slope the wash-off load 

is negligible for all the rainfall intensities with a maximum g� of 0.018 at the highest 

rainfall intensity of 155 mm/hr. The highest g� after one hour is ~0.9 for the extreme 

case where intensity, slope and initial load are 155 mm/hr, 16% and 200 g/m2 

respectively.  

Another important observation from Fig. 4.3, especially at steeper slopes (8% and 

16%), is that only a certain fraction of the available sediment is mobilised during a 

simulated rain event before the curve becomes almost flat and this maximum fraction 

increases with rainfall intensity and surface slope. This behaviour suggests a rainfall 

event for a given surface slope has the capacity to mobilise only a fraction of sediment 

from the road surface and once it reaches that capacity, as observed during the 

experiments, wash-off becomes almost zero even though a significant fraction of the 

original sediment is still available on the surface. Although at milder slopes (2% and 4 

%) the wash-off fraction has not reached its maximum value within the duration of the 

test, it would have reached this value if the tests were long enough. This trend was also 

observed in a similar study by Egodawatta et al. (2007) in which they analysed this 

maximum fraction against rainfall intensity. Hence there are two parameters which 

characterise these curves; wash-off rate and maximum fraction both of which increase 

with increasing slope and increasing intensity.  The negative inverse exponential 

pattern (NIE) of these curves can mainly be attributed to the first flush effect. The 

concept of first flush is that the initial period of storm flow carries most of the pollutant 

including sediments from the urban surface (Helsel et al., 1979; Sansalone and 

Buchberger, 1997; Bertrand-Krajewski et al., 1998). The most common value of k - 4.6 

in.-1 (0.18 mm-1) in Eq. (4.1) is basically derived from the concept that the first one-half 

inch of total run-off in one hour would wash-off 0.9 fraction of the initial load (Huber 

and Dickinson, 1992).  

But such generalisation is not valid for all the conditions as can be seen in Fig. 4.3 

where the strength of first flush changes with rainfall intensity and surface slope. We 

believe, in addition to rainfall intensity and surface slope, surface texture and sediment 

size also plays a major role in deciding the strength of the first flush. Fig. 4.3 shows the 

effect of first flush is negligible during smaller intensities and milder slopes. This can 
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mainly be attributed to the surface texture depth and/or sediment size used in the 

experiments. If it is a smoother surface typically associated with roofs, the effect of the 

first flush will possibly be magnified (Farreny et al., 2011). Also with a smaller 

sediment size one would expect a more pronounced first flush and a higher wash-off 

fraction. For instance Egodawatta & Goonetilleke, (2008) in their study found that the 

most of the sediment that is washed off initially is the finer sand (<200 µm). But it can 

be noted that the range of sediment sizes used in Egodawatta and Goonetilleke (2008) 

is much wider (0-1000 µm) compared to the sediment size used in this study which 

also explains the higher wash-off fractions they observed in a similar experimental set 

up. Although we would expect an increase in wash-off fraction with smaller sediment 

size there is also a possibility for smaller sediment to get trapped in the pores of the 

surface due to the surface roughness and so significantly reduce their mobility. But on 

the other hand, if the sediment size is bigger than the surface texture depth, it might be 

too large for the rainfall impact to mobilise the particles and for the runoff process to 

transport it especially on mild surface slopes. When the surface is rougher similar to 

the one used in this study the interaction between sediment size and texture depth 

becomes complicated and it needs to be explored in depth.  
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Figure 4.3: Wash-off fraction for all combinations of rainfall intensity, surface slope, and initial load 
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4.3.2 Model improvement 
We attempt to modify Eq.(4.1) based on the experimental data discussed in Section 3.1.  

From Fig. 4.3 and the corresponding discussion, it is clear that the effect of initial load 

on the wash-off fraction is negligible for most cases. Hence the effect of initial load has 

not been considered in this section and a modification in Eq. (4.1)  is proposed based 

only on experimental results from a constant initial load of 200 g/m2.  

As discussed in the previous section, only a certain fraction of the available sediment 

is mobilised during a simulated rain event before the curve becomes almost flat and 

this fraction increases with rainfall intensity and surface slope. To replicate this 

behaviour in the modelling of wash-off, Egodawatta et al. (2007) introduced a new 

parameter called the capacity factor (CF), ranging from 0 to 1, into Eq. (4.1) as shown 

in Eq. (4.3).  

!"
!#

= %&'1 − *
+,-".										(4.3) 

But due to the limitations of their study, they concluded that CF primarily varies with 

rainfall intensity, disregarding the effect of other parameters such as slope. But from 

Fig. 4.3 it is clear that this fraction of sediment which a rainfall event has the capacity 

to wash-off also strongly depends on the surface slope in addition to rainfall intensity. 

This implies CF needs to be adjusted based on surface slope too. Hence CF which is the 

maximum fraction available and k which defines the wash-off rate both need to be 

calibrated for all combinations of rainfall intensities and surface slopes.  From Fig. 4.3 

it can also be noted that the higher the maximum fraction, the faster the 56 reaches the 

maximum fraction meaning these two parameters are dependent. Figure. 4.4 is a 

simplified version of the experimental results to illustrate this concept where the 

maximum wash-off fractions are indicated by 567, 568, and 569 and the time taken to 

reach these fractions are indicated by t1,t2 and t3 respectively. This figure shows that 

567< 568< 569 and consequently t1 > t2 > t3. Applying this concept in to Eq. (4.3) 

suggests that CF and k are dependent. Therefore, it was decided to make CF a function 

of k as shown in Eq.(4.4) instead of introducing a new CF altogether as in Egodawatta 

et al. (2007).  This gives more physical meaning to this empirical equation and also 

avoids the compensation of two independent parameters in order to over fit the 

experimental results. Such compensation between two independent parameters could 

lead to identifiability problems (Sorooshian and Gupta, 1983).    
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= :(;)'1− *+,-".										(4.4) 

 

 

Figure 4.4: Variation of maximum wash-off fraction and corresponding duration 

 

Having introduced a new CF in the form of f(k), the next step is to estimate this f(k) and 

subsequently estimate the k values for each combination of slope and intensity. The 

following steps explains the procedure to estimate f(k) and k values. 

 

1. The first step is to find f(k) which best fits the experimental results. To keep the 

new equation as simple as possible, f(k) is assumed as a factor of k which leads 

to the following equation: 

 

!"
!#

= <;′'1 − *+,>-".										(4.5) 

 

Where c is a constant with a unit of mm as unit of k’ is mm-1. Note that k is 

changed to k’ since the new values for k’ will be different from conventional k 

values.  
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2. The next step is to estimate the value of c (constant) and k’ (varies with slope 

and intensity) which gives the smallest residual sum-of-squares between the 

fitted models and experimental results. Hence for a given value of c, the residual 

sum-of-squares are calculated for 20 fitted curves derived from 20 k’ values 

each corresponding to a combination of a slope and an intensity. The objective 

function is to minimise the sum of all residual sum-of-squares derived from 

these 20 curves for different c values. There are two constraints. The first 

constraint is that both c and k’ cannot have negative values and the second 

constraint is that the product of c and k’ cannot exceed the maximum possible 

fraction which is 1. 

  

Figure 4.5 shows the sum of residual sum-of-squares plotted against the range of c.  It 

can be seen that the sum of residual sum-of-squares is at its minimum when c is 20. 

The corresponding fitted curves with different k’ are shown in Fig. 4.6 for all the 

combinations of intensity and slope where the initial load is 200 g/m2. The sum of the 

residual sum-of-squares for all these fitted curves is only 0.13 which shows the model 

fits well with the experimental results.  

The k’ values derived from the fitted models corresponding to a c value of 20 are plotted 

against intensity for each slope in Fig. 4.7 (a). Fig. 4.7 (b) shows the surface plot that 

is obtained by linearly interpolating k’ values over the domain. From both plots, it can 

be noted that the rate of change in k’ values against slope increases with increasing 

rainfall intensities. At 2% slope the change of k’ against rainfall intensity is negligible 

due to the negligible difference in the wash-off fraction against rainfall intensity at this 

slope. At 8% and 16% slopes the rate of change in k’ values after 110 mm/hr shows a 

drop. This is a reflection of the similar drop in the increase in the wash-off fraction as 

can be seen in Fig. 4.6.  The k’ values range from 2.6×10-3 to 4.2×10-2 which gives a 

range of 0.05 to 0.84 for CF (= 20 k’). The highest CF of 0.84 corresponds to the extreme 

case where intensity and slopes are 155 mm/hr and 16% respectively.  

When transferring these c and k’ values to other catchments other parameters has to be 

taken into account especially the sediment size and surface texture. Both the capacity 

factor (c×k’) and wash-off rate (represented by k’) would most likely increase with 

decreasing sediment size and/or decreasing surface texture depth. Nevertheless, the 

improved model as shown in Eq. (4.5) is expected to perform well for any sediment 
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size and surface texture as the underlying physical processes will be the same as those 

on which the equation was developed.  

 

Figure 4.5: Total sum of residual-sum-of-squares plotted against c values ranging from 0 to 100, 
the dashed line shows the c value at which the total residual sum-of-squares is minimum  
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Figure 4.6: Measured wash-off fraction (points) and corresponding fitted curves (lines) derived 
from Eq.(4.5) (for c = 20 and k’ values as shown in Fig 4.7.) for all combinations of rainfall intensity 
and surface slopes where initial load is 200 g/m2 
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Figure 4.7: (a) Derived k’ values for all the combinations of rainfall intensity and surface  slope 
and (b) raster image of interpolated k’ values over the domain   

4.4 Conclusions 

In this study, we investigated the effect of rainfall intensity, surface slope and initial 

load on sediment wash-off using an artificial rainfall generator and a typical urban road 

surface of 1 m2. There has not been a previous experimental study which explored the 

effect of all the above three dominant parameters on wash-off in an integrated and 

systematic way.  

(a) 

(b) 
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The experimental results show that:  

• The effect of initial load on wash-off fraction at any given time is negligible for 

most general combinations of rainfall intensity and surface slope. This 

essentially means that the washed off load at any given time is proportional to 

initial load for a given combination of a rainfall intensity and a surface slope. 

Hence, a dedicated modelling approach to predict build-up to help subsequently 

predict wash-off, despite the challenges mentioned in Shaw et al. (2010) should 

not be overlooked.  

• The negative-inverse-exponential (NIE) trend due to the effect of first flush is 

clearly observed at combinations of catchment slopes steeper than 8% and 

rainfall intensities higher than 75 mm/hr. For combinations of milder slope and 

lower rainfall intensity the effect of first flush becomes negligible.  

• A rainfall event has the capacity to mobilise only a fraction of sediment from 

the road surface and once it reaches that capacity, as observed during the 

experiments, wash-off becomes almost zero even though a significant fraction 

of sediment is still available on the surface. The maximum fraction that can be 

washed off from the surface increases with both rainfall intensity and the 

surface slope. 

This final observation above led us to the second part of the study where the existing 

wash-off model is modified by introducing a capacity factor which defines the 

maximum fraction. This capacity factor is derived as a function of wash-off coefficient 

making use of the correlation between maximum fraction and the wash-off rate. This 

new improved equation is expected to perform better compared to the original equation 

as it models the underlying physical process better. Values for the wash-off coefficient 

are derived for combinations of rainfall intensity and slope which can be transferred to 

other urban catchments with similar conditions. In the future, in addition to the initial 

load, rainfall intensity and surface slope, it would be interesting to examine the effect 

of surface texture and sediment size on the wash-off process. This way a complete 

matrix of values for capacity factor and wash-off coefficient can be derived which can 

be transferred to any urban catchments.  
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Abstract 

Exponential wash-off models are the most widely used method to predict sediment 

wash-off from urban surfaces. In spite of many studies, there is still a lack of knowledge 

on the effect of external drivers such as rainfall intensity and surface slope on the wash-

off prediction and this consequently leads to the lack of knowledge on the effect of 

uncertainty in external drivers on the wash-off predictions. In this study, a more 

physically realistic “structure” is added to the original exponential wash-off model 

(OEM) by replacing the invariant parameters with functions of rainfall intensity and 

catchment surface slope, so that the model can better represent catchment and rainfall 

conditions without the need of lookup table and interpolation/extrapolation. In the 

proposed new exponential model (NEM), two such functions are introduced. One 

function describes the maximum fraction of the initial load that can be washed off by a 

rainfall event for a given slope and the other function describes the wash-off rate during 

a rainfall event for a given slope. The parameters of these functions are estimated using 

data collected from a series of laboratory experiments carried out using an artificial 

rainfall generator, a 1 m2 bituminous road surface and a continuous wash-off measuring 

system. These experimental data contain high temporal resolution measurements of 

wash-off fractions for combinations of five rainfall intensities ranging from 33-155 

mm/hr and three catchment slopes ranging from 2-8 %.  Bayesian inference which 

allows the incorporation of prior knowledge is implemented to estimate parameter 

values. Explicitly accounting for model bias and measurement errors, a likelihood 

function representative of the wash-off process is formulated, and the uncertainty in the 

prediction of the NEM is quantified. Finally, the propagation of rainfall uncertainty 

through NEM is investigated in detail using sub-kilometre rainfall data with uncertainty 

due to spatial variability and measurement error. The results of this study show: 1) even 
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when the OEM is calibrated for every experimental condition, the NEM’s performance, 

with a parameter values defined by functions, is comparable to the OEM. 2) 

Verification indices for estimates of uncertainty associated with the NEM suggest that 

the error model is able to capture the uncertainty well. 3) The level of uncertainty in 

the prediction of wash-off load due to rainfall uncertainty can be smaller, similar or 

higher to the level of uncertainty in rainfall depending on the intensity range and the 

“first-flush” effect.  

5.1 Introduction 

Urban surface sediment’s ability to act as a transport medium to many contaminants 

makes it one of the major source of pollutants in an urban environment (Guy, 1970; 

Collins and Ridgeway, 1980; Mitchell et al., 2001; Lawler et al., 2006). Hence there is 

an increasing interest in being able to better predict the sediment washoff from urban 

surfaces. But, modelling sediment wash-off is not a straightforward exercise as it 

requires the understanding of complex interactions between external drivers with a 

highly variable nature such as rainfall, catchment surfaces and particle characteristics 

(Sartor and Boyd, 1972; Deletic et al., 1997; Egodawatta and Goonetilleke, 2008). 

Currently, the most widely used wash-off models are originally developed using 

laboratory experiments and consequently include empirical parameters without clear 

physical interpretations. The exponential wash-off equation (Eq.(5.1)) proposed by 

Sartor and Boyd (1972) is one such model whose performance is highly dependent on 

the accurate estimation of parameter k: 

!" = !#'1 − *
+,-".														(5.1) 

Where !"	is the total transported sediment load up to time t; !# is initial load of 

sediment on the catchment surface; i is rainfall intensity; and k is an empirical wash-

off coefficient. Equation (5.1) has widely been used in several software packages (e.g. 

SWMM) with or without modifications (e.g. Zug et al. 1999; Huber and Dickinson 

1992). Recently,  Egodawatta et al. (2007) suggested a multiplication of a capacity 

factor for improved modelling of sediment removal which gives a more physical 

interpretation to the empirically calibrated original model shown in Eq.(5.1).   

According to Eq.(5.1), if the rainfall continues for long enough regardless of the rainfall 

intensity, it can wash off all the sediment available at the beginning of the event. In 
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other words, the maximum wash-off fraction (!" !#@ ) is always one. But Egodawatta 

et al. (2007) showed that a storm event has the capacity to wash-off only a fraction of 

sediments available and once this maximum fraction is reached the wash-off becomes 

almost zero, even though a significant fraction of sediment is still available on the 

surface. They suggested the introduction of an additional term referred to as the 

‘capacity factor (%&) to replicate this finding in the model equation. With the inclusion 

of %& Eq. (5.1) becomes  

!"
!#

= %&(1 − *
+,AB)															(5.2) 

Although the above modification was shown to be a meaningful refinement, %& was 

investigated against rainfall intensity in isolation in Egodawatta et al. (2007). 

Muthusamy et al. (2018) further showed that %& also varies with catchment surface 

slope in addition to rainfall intensity. In spite of the modifications suggested by various 

studies including Egodawatta et al. (2007) and Muthusamy et al. (2018), the calibration 

parameters k and the newly introduced %& still need to be calibrated for the conditions 

of each catchment. In general, this is achieved by using a combination of look up 

tables/charts and interpolation/extrapolation of existing data.  

Furthermore, none of the abovementioned studies include any information on the 

uncertainty in the estimation of the calibration parameters and their dependency 

structure which needs to be accounted in the prediction of wash-off using these 

parameters.  Although adequate treatment of propagation of uncertainties in model 

prediction is a currently heavily researched area in hydrology, there are only a few 

studies on uncertainty related to wash-off modelling. In this regard, Dotto et al. (2012) 

compared a number of uncertainty techniques applied in urban water storm water 

quality modelling and found that a Bayesian approach, although computationally 

demanding, to be one of the preferable uncertainty assessment technique. A Bayesian 

approach helps to identity different sources of uncertainty such as parameter 

uncertainty, model bias and measurement noise and consequently helps to separately 

analyse them, though this requires knowledge about the error process (Dotto et al., 

2012). This estimate of the relative importance of uncertainty sources can help to avoid 

false calibration and forced fitting of model parameters (Vrugt et al., 2008). 

Furthermore, it also helps to better understand the propagation of error in external 

drivers through the model. Among these external drivers, rainfall data is an essential 
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input in the prediction of sediment wash-off. But due to highly variable nature of 

rainfall over a wide range of scales, it is not always possible to measure rainfall at an 

appropriate temporal and spatial resolution which is required by specific hydrological 

modelling application including sediment wash-off modelling. This is common case in 

both rural and urban catchments. But the effect of inadequate representation of rainfall 

variability is magnified in urban areas which are characterised by smaller catchment 

size with a higher proportion of impervious area resulting in a smaller catchment 

reaction time and higher surface run-off (Al and Elson, 2005; Segond et al., 2007; Gires 

et al., 2012; Ochoa-Rodriguez et al., 2015; Muthusamy et al., 2015). For example, 

Ochoa-Rodriguez et al. (2015) showed that the error in peak discharge predictions due 

to inadequate representation of rainfall variability is up to 250%  for drainage areas in 

the order of 1 ha and up to 50% for drainage areas of ~800 ha.  Furthermore, Ochoa-

Rodriguez et al. (2015) and  Muthusamy et al. (2017) also showed that measurement 

and sampling error associated with rainfall is as significant as spatiotemporal variability 

of rainfall at temporal averaging interval of less than 5 min which is typically the 

timescale of interest in sediment wash-off modelling. Since the wash-off process is also 

mainly driven by rainfall and runoff (Sartor and Boyd, 1972; Deletic et al., 1997; 

Egodawatta et al., 2007), any uncertainty in rainfall would have a direct effect on 

sediment wash-off predictions as well. This demands more attention to be paid to the 

investigation of rainfall uncertainty propagation in wash-off prediction which is also 

an area that has not been explored in depth. This can be mainly attributed to the lack of 

knowledge of the variability of calibration parameters against rainfall intensity or 

volume.   

Considering the above research gaps, in this study, first, the exponential wash-off 

model presented in Eq.(5.2) was further developed to add a more physically realistic 

structure by replacing the calibration parameters with functions of external drivers 

associated with catchment surface and rainfall characteristics. This will not only avoid 

the need of such empirical look up table/charts and interpolation/extrapolation of data, 

but it will also introduce some transparency in the parameter estimation which is 

otherwise a “black box” approach. Second, the uncertainty due to model bias, 

parameters and measurement noise was separately estimated as all of them need to be 

accounted in the prediction of wash-off. Further, replacing the invariant calibration 

parameters with functions of external drivers (i.e. rainfall intensity and surface slope) 

makes it easier to investigate the propagation of errors in the external drivers (e.g. 
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rainfall intensity) as these external drivers will now be explicitly defined in the new 

equation. Finally, by taking advantage of this feature, the propagation of rainfall 

uncertainty through the new improved model developed in this study was also 

investigated.  

5.2 Material and Methods 

5.2.1 Wash-off Data 
The data used in this study was collected from a series of laboratory experiments 

carried out using an artificial rainfall generator, a 1 m2 bituminous road surface and a 

continuous wash-off measuring system. Data were collected from experimental 

conditions with different combinations of rainfall intensity, catchment surface slope 

and initial sediment load. Five intensities ranging from 33-155 mm/hr, four slopes 

ranging from 2-16 % and three initial loads ranging from 50 - 200 g/m2 were tested. 

More details on the experimental set up and data collection can be found in  Muthusamy 

et al. (2018). As reported in Muthusamy et al. (2018) the effect of initial load on wash-

off process was found to be negligible. Hence in this study, experimental results from 

a constant initial load of 200 g/m2 as presented in Fig. 5.1 are used. This figure shows 

the variation of cumulative wash-off fraction (56 =
!" !#@ ) against rainfall intensity 

and surface slope.  

Note that the 16% slope was eliminated from the data, given that such slopes on road 

surfaces are extreme scenario and exist only in rare locations. For example, the 

Department of Transport in UK suggests a maximum gradient of 10% for roads other 

than in exceptional circumstances (Manual for Streets, 2009). Since one of the aims of 

the study is to develop a single model with a fixed set of parameters, inclusion of results 

from such an extreme scenario in the calibration may affect the performance of the 

model for more general cases.     
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Figure 5.1: Selected results from Muthusamy et al. (2018): Variation of wash-off fraction for 
different combinations of rainfall intensity and surface slope 

5.2.2 The modified wash-off model structure and its rationale 
The main objective is to replace the calibration parameters in Eq. (5.2) with functions 

of surface slope and rainfall intensity, consequently adding a more physically realistic 

structure to the model. This should make the model robust to new combinations of 

rainfall intensity and surface slope. To do so the properties of the model that are 

sensitive to such parameters need to be identified and understood. From Eq. (5.2) there 

are two parameters which define the characteristics of a wash-off curve. The first 

parameter, %&, defines the highest wash-off fraction for a given combination of rainfall 
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intensity and a slope. The second, k, defines how fast the wash-off curve reaches the 

maximum fraction for a given surface slope and rainfall intensity, and hence reflects 

the erosion rate from the catchment surface. Hence, %& and k are proposed to be 

replaced with functions of surface slope and rainfall intensity, as shown in Eq. (5.3) 

and Eq. (5.4). 

%& = <7DE
FGHFI										(5.3) 

; = <JH														(5.4) 

Where <7, . . , <J are constants2, DE	is the representative rainfall intensity of a rainfall 

event,	H is the catchment surface slope. The following criteria were considered when 

defining Eq. (5.3) and Eq. (5.4), while also trying to keep these functions as simple as 

possible to reduce the number of constants:  

• %&– as explained before %& is a capacity factor which defines the maximum 

fraction from the initially available sediment that can ever be washed off 

from a rainfall event for a given slope. Hence, %& ranges from 0 to 1 and 

increases with both surface slope and (representative) rainfall intensity of the 

event. When either of the representative rainfall intensity or slope is zero %& 

is zero.   

• ; – ; defines the wash-off rate and it also increases with rainfall intensity 

and surface slope. But it should be noted that L" in the exponential term is 

cumulative rainfall depth at time t, i.e. D"M which is already a function of 

average rainfall intensity over time t, D". Hence ; was taken as a (linear) 

function of slope only.  The complete exponential term reads as  <JHD"M which 

is function of both rainfall intensity and surface slope.  

Hereafter this new exponential model will be referred as NEM and the original 

exponential model as shown in Eq. (5.1) will be referred as OEM.  

5.2.3 Estimation of model parameters and associated uncertainty  
Bayesian inference was used  to estimate the parameter probability distribution, which 

allows prior knowledge on the parameters to be incorporated in the estimation and also 

formally quantifies uncertainty in the estimation.  In addition, it also helps to capture 

                                                
2 Although <7, . . , <J are constant, in Bayesian inference they are referred to as model parameters to aid 
the readers follow the procedure easily.  
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the dependence structure between parameters. Bayesian inference requires the 

definition of the likelihood function and the prior distribution of the parameters. 

5.2.3.1 The likelihood function  

In addition to finding the best estimate of the parameters, we are also interested in the 

uncertainty associated with the parameter estimation and consequently the uncertainty 

in the prediction of wash-off fraction. One way of doing this is to include the error 

terms which represent the dominant sources of uncertainty explicitly in the likelihood 

function.  We used an error model which accounts for errors due to model structural 

deficit (model bias,	NO ) and measurement noise (P). NO is modelled as an 

autoregressive stationary random process and P modelled as an independent identically 

distributed (IID) process. Hence, an observed output, Y can be formulated as 

Y(x, θ, ψ) = y	(x, θ) + NO(W,ψ	) + P(ψ)								(5.5) 

Where x	is the external drivers,	θ	 is deterministic model parameters, ψ error model 

parameters and y	(x, θ)	is deterministic model output. In this case,	Y is observed wash-

off fractions (Fw) and y	 is the deterministic model output predicted from NEM (fw ). x 

represents rainfall intensity and surface slope.	θ  is HZ. N,	HZ. P and [  are error model 

parameters (ψ) in which HZ. N and [ are standard deviation and correlation length 

respectively which characterise the autoregressive stationary random process 

and,	HZ. P is the standard deviation of the measurement noise. Given the error 

description of Eq. (5.5), we define N\ as a multivariate Gaussian distribution with 

covariance matrix ∑(W, ^) and P(ψ) as independent, identical normal noise. Therefore, 

the analytic formulation of the likelihood function with n number of observation can 

be formulated as  

_(`|x, θ, ψ) = 	
(2b)+

c
8

ddet	(∑(^, W))
exp i−

1

2
[` − y(k, W)]mn(^, W)

+7
[`

− y(k, W)]o										(5.6) 

An autoregressive error model represents model structural deficit better than IID as it 

accounts for the “memory” in the error time series (Del Giudice et al., 2013).  This 

autoregressive bias error model was originally suggested in other generic statistical 

applications (Craig et al., 2001; Kennedy and O’Hagan, 2001; Higdon et al., 2004; 
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Bayarri et al., 2007) and later adapted for environmental engineering applications 

(Reichert and Schuwirth, 2012). 

5.2.3.2 Prior distribution of parameters and constraints  

Since the introduced parameters <7, . . , <J are all new, there is no previous estimation of 

the exact parameters, but a range for each parameters can be derived using our 

knowledge of the wash-off process, observational data, and the prior belief about values 

of %&  and ;. 

Values of <J were derived from previous estimations of k as <J equals to k/s. The list 

of k values derived from previous studies is given in Table. 5.1. From the table the 

range of 0 – 10 were selected for k. In the absence of any information on slope in most 

of these studies same range for <J	 was used considering a minimum slope of 1%.  

Hence a uniform prior with the range 0-1000 was used as a prior distribution for <J. A 

uniform prior distribution of model parameters is recommended when there is not 

enough evidence available to choose a different type of distribution (Freni and 

Mannina, 2010; Dotto et al., 2012) 

Table 5.1: k values from literature 

Reference Land use/catchment type Value k (mm-1) 
Alley (1981) 

Nakamura (1984) 

Huber and Dickinson (1992) 

Millar (1999) 
Egodawatta et al. (2007) 

Urban catchment 

Various 

General 

Residential 

Concrete and asphalt roads 

0.036-0.43 

0.05-10 

0.04-0.4 

0.21 

5.6 ×10-4– 8.0 ×10-4 

 

As discussed previously the range of  %&  is 0-1. This leads to the constraint 0 ≤

<7DE
FGHFI ≤ 	1	. However, implication of this constraint in the definition of prior 

probability is not straightforward, hence this constraint was used in the estimation of 

likelihood probability.  

It is challenging to define prior distributions for the error model parameters 

(HZ. N, HZ. P	stZ	[) especially in the case of wash-off modelling as examples from 

such applications in literature are currently lacking. Out of the three parameters, some 

information on the measurement noise represented by HZ. P can be obtained by 

frequentist tests, i.e. repeating the experiments sufficiently large number of times. But 
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it is not always possible given the limitation in allocated resources and time. In the 

absence of much information on any of the error parameters, a uniform prior with the 

range from 0 to 1(= maximum wash-off fraction) was used for both	HZ. N, HZ. P and a 

uniform prior with the range of 0 – 200 min was used for correlation length. This range 

is selected as error correlation is expected to be insignificant beyond such time length. 

5.2.3.3 Bayesian inference 

Once the prior distributions (the probability of deterministic and error model 

parameter,	θ	and	ψ without considering the observed output, Y), _(k,ψ),	and the 

likelihood function (the probability of seeing the observed output, Y, as generated by a 

model with deterministic and error model parameter,	θ	and	ψ), _(`|x, θ,ψ)	,	are 

defined, the posterior distribution of the deterministic and error model parameters (the 

conditional probability of θ	and	ψ  once the observed output, Y  has been taken into 

account) can be formulated as, 

_(k, ψ|`, W) =
_(k, ψ)_(`|W, k,ψ)

∫ _ (`|k, ψ)_(W, k,ψ)ZkZψ
										(5.7) 

Since the direct analytical calculation of _(k,ψ|`, W) is generally not possible, 

numerical techniques such as Markov Chain Monte Carlo (MCMC) simulations have 

to be applied. MCMC techniques generate a random walk through the parameter space 

which will converge to the posterior distribution. In this study we used robust adaptive 

Metropolis MCMC sampler  presented in Vihola (2012) which is implemented in a R 

package, adaptMCMC (Scheidegger, 2017) 

5.2.4 Propagation of rainfall uncertainty 
Since rainfall is the main external driver of the wash-off process, rainfall uncertainty 

propagation through the NEM is investigated in this section. The rainfall data used in 

this study is obtained from Muthusamy et al. (2017). Muthusamy et al. (2017) presented 

areal rainfall intensities and associated uncertainty for 13 rainfall events estimated 

using geo-statistical upscaling of high resolution point measurements collected from 8 

stations within an area of 200 × 400 m in Bradford, UK. The main sources of 

uncertainty in rainfall estimation was shown to be due to sub-kilometre spatial 

variability and measurement error. More detail on the estimation of areal rainfall 

intensity together with associated uncertainty can be found in Muthusamy et al. (2017). 

Further, they provided each event data for different temporal averaging interval ranging 
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from 2 min to 30 min. This information is used here to investigate the effect of temporal 

aggregation of rainfall, in addition to spatial aggregation, on the prediction of wash-off 

fraction. Table 5.2 provides summary of the rainfall events together with the coefficient 

of variation (CV) associated with the prediction of peak rainfall intensity of each 

events. All 13 events are presented in Appendix 5A. 

Table 5.2: Summary of rainfall events and  associated uncertainty presented in Manoranjan 
Muthusamy et al. (2017) 

Event 
ID. 

Network 
average 
duration 

(h) 

Network 
average 
intensity 
(mm/h) 

Network 
average 
rainfall 
(mm) 

Predicted Event peak (mm/hr) / 
Uncertainty in event peak prediction 

(CV %) 
2 min averaging 

interval 
30 min averaging 

interval 
1 6.33 2.20 13.9 5.7/6.6 3.9/1.1 

2 6.42 2.55 16.3 9.9/4.6 5.1/1.3 

3 8.92 1.79 16.0 5.6/6.3 3.0/1.2 

4 6.83 1.99 13.6 7.7/13 4.1/1.7 

5 11.4 2.39 27.3 22/3.8 4.8/3.6 

6 4.42 5.31 23.4 61/2.3 13/1.7 

7 3.25 3.23 10.5 9.8/5.2 4.3/2.1 

8 1.50 7.84 11.8 92/2.9 21/0.9 

9 3.08 3.35 10.3 21/5.0 9.1/1.6 

10 2.00 7.96 15.9 48/6.8 19/1.2 

11 7.92 2.14 17.0 9.5/3.7 4.9/1.4 

12 1.75 6.51 11.4 41/2.2 1.2/1.0 

13 8.17 4.34 35.5 29/1.6 15/1.3 

5.3 Results and discussion 

5.3.1 Model performance and associated uncertainty 
Figure 5.2 shows the model output with the optimal values for <7, . . , <J (Table. 5.3) 

with maximum posterior probability density, i.e. the most probable values given the 

prior and observed data. This model performance is compared against the performance 

of the OEM described in Eq. (5.1). Experimental data with 2% and 8% slopes are used 

for calibration and the data from the 4% slope used for verification. The k value of the 

OEM is calibrated for each and every combination of surface slope and rainfall 

intensity during the calibration stage and during the validation stage k values are 

derived by using interpolation. It can be seen from Fig. 5.2 that with calibration data, 
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NEM with fixed values of parameters <7, . . , <J performs as well as the OEM which was 

calibrated for each and every combination of surface slope and rainfall intensity 

separately. From Table 5.4, it can be seen that the difference in sum of root mean square 

error (RMSEOEM - RMSENEM) from the ten calibrated set of data is -0.07 (Wash-off 

fraction). However, the robustness of NEM over OEM can be seen during the 

verification stage where the NEM performs better than the OEM in several cases. The 

difference in sum of root mean square error (RMSEOEM - RMSENEM) from 5 sets of 

data during verification stage is 0.09 (Wash-off fraction).  The drawback with OEM is 

that for a set of new catchment conditions where OEM has not been calibrated before 

k value needs to be calculated using interpolation/extrapolation. This might lead to the 

underperformance of OEM during validation stage as shown in the Fig. 5.2. 

Considering the overall performance, the NEM with only 4 parameters	(<7, . . , <J) 

performs better than OEM with 15 parameters (k1,…,k15). Hence, the NEM does not 

only avoid the need of interpolation to predict the calibration parameter values, it also 

performs as well as the calibrated OEM.  

Table 5.3: Optimal values of constants of Eq. (5.3) and Eq. (5.4)3 

c1[(mmhr -1)-0.672] c2 [-] c3 [-] c4 [mm-1] 

3.99 0.672 1.99 0.208 
 

Table 5.4: Performance of OEM and NEM 

Model 
Sum of root mean square error (RMSE) 

Calibration Verification 
OEM 0.11 0.20 

NEM 0.18 0.11 

 

                                                
3 Note that the unit of c1 depends on the optimal value of c2 
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Figure 5.2: Comparison of the model performance  

5.3.1.1 Parameter distribution and correlation  

This section discusses the posterior distribution of parameters and their multivariate 

behaviour. Figure 5.3 shows posterior distributions and bivariate matrix of the 

deterministic and error model parameters. The most likely value of HZ. N and HZ. P are 

0.02 (2%) and 0.002 (0.2%) respectively, showing that most of the uncertainty in the 

wash-off estimation can be explained by the model bias and that uncertainty due to 

measurement noise is negligible. Although these are approximate representations of the 

actual system and corresponding uncertainty, we believe that the experiments were 

conducted with as high a quality as possible. This is one of the reason why a road 
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surface as small as 1 sq.m was selected as it gives a better control over the experimental 

set-up. For example the smaller surface area keeps the spatial variability of the rainfall 

to the minimum. Furthermore, it also keeps the sediment loss during the experiment to 

insignificant. The maximum sediment loss observed during an experiment was less 

than 2% which is an indication of the good quality control.  

Looking at the bivariate plots, there is a strong positive correlation between parameters 

<7and <9 which indicates that these two parameters compensate each other in order to 

maximise the posterior probability. This can also be seen between parameters <8 and 

<9, but to a lesser extent. Similarly, the strong positive correlation between HZ. N and [ 

means that these parameters compensate each other in order to fit the autoregressive 

error model	NO. Bayesian inference helps resolve such identifiability issues by 

allowing for informative priors. Therefore, for real cases, where we have reasons to 

believe that one of the two parameters should be more constrained, the other parameter 

value will automatically come out to be constrained after joint inference. 

 

Figure 5.3: Parameter distribution and bivariate correlation 
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5.3.1.2 Estimation of parameter and predictive uncertainty  

Figure 5.4 shows the uncertainty associated with the estimation of wash-off fraction. 

These uncertainty bands are estimated by drawing samples from the posterior 

multivariate distribution. Parameter uncertainty was estimated by using deterministic 

model (y	(x, θ)) runs and predictive uncertainty was estimated by using the 

deterministic model together with error model components(Y(x, θ,ψ)). Since the latter 

includes the uncertainty due to model bias and measurement noise these bands are 

wider than the parameter uncertainty. The total predictive uncertainty which accounts 

for both model bias and measurement noise accounts for ~ 0.1 (10%) uncertainty in the 

wash-off fraction. This constant trend of predictive uncertainty is a reflection of the 

fact that the error model used here is not explicitly input-dependent bias model, but 

rather it is a constant bias (variance) model. On the other hand, parameter uncertainty 

increases with increasing wash-off fraction as the variance of parameter uncertainty 

proportionally increases with mean prediction. The parameter uncertainty accounts for 

a maximum of 0.06 (6%) wash-off fraction when 95% predictive interval is considered.  
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Figure 5.4: Uncertainty associated with the estimation of wash-off fraction 

 

To check the reliability of the uncertainty estimation, prediction interval coverage 

probability (PICP, Ref Eq.(5.8) ) which measures the probability that the observed 

values lie within the estimated prediction intervals (Shrestha and Solomatine, 2006) 

was used.  
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Where, _Ä"Å, _Ä"É 	are upper and lower boundary of the considered prediction interval at 

time t for a given slope and rainfall intensity, Ç" is corresponding measured wash-off 

fraction at time t. For a better performance PICP should be close to the considered 

prediction interval, which is 95% in this case. The calculated PICP during validation 

stage is 82%, so corresponding accuracy of the uncertainty estimation is around ~ 85% 

which essentially means that the error model is able to predict the uncertainty 

reasonably well.   

5.3.2 Effect of rainfall uncertainty in wash-off prediction 
Figure. 5.5 presents propagated uncertainty through the NEM for event 11 with a 

surface slope of 4%. The effect of changes in the slope is discussed later in this section.  

Event 11 has average conditions in terms of event duration and peak intensity. 

Prediction errors of other rainfall events follow the same pattern of behaviour and they 

are presented in Appendix 5A. Figure 5.5 shows predicted values and associated 

uncertainty in rainfall intensity (first row of the plot), instantaneous wash-off fraction 

(second row of the plot), cumulative rainfall (third row of the plot) and cumulative 

wash-off fraction (fourth row of the plot). Further, each column shows the variation of 

predicted values and associated uncertainty for temporal averaging intervals of 2 min, 

5 min, 15 min and 30 min.  

It can be seen from Fig.5.5 that the instantaneous wash-off fraction varies almost 

proportionally against rainfall intensity. The variation in cumulative wash-off fraction 

plotted against cumulative rainfall also validate this observation. This observed 

proportional change of instantaneous wash-off fraction against the rainfall intensity 

throughout the event is due to fact that the ‘first-flush’ effect is negligible for this event. 

The concept of “first flush” is that the initial period of storm flow carries most of the 

pollutant including sediments from the urban surface (Helsel et al., 1979; Sansalone 

and Buchberger, 1997; Bertrand-Krajewski et al., 1998; Muthusamy et al., 2018). This 

observation is in agreement with the observed wash-off fraction (Fig. 5.1 and Fig. 5.2) 

where the wash-off pattern shows a proportional change against smaller rainfall 

intensities.  As seen from Fig.5.1 and as stated  in Muthusamy et al (2018) the negative-

inverse-exponential trend in total cumulative wash-off fraction due to the effect of first 

flush is clearly observed at combinations of catchment slopes steeper than 8% and 

rainfall intensities higher than 75 mm/hr lasting longer than 30 min. But in reality such 

higher rainfall intensity events are rare and therefore the wash-off is expected to behave 
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as presented in Fig. 5.5 for a similar sediment size and surface roughness condition. In 

fact none of the events  from Muthusamy et al. (2017) show the effect of ‘first-flush’.  

To demonstrate the effect of “first flush” and to check if the NEM is able to capture the 

effect of ‘first-flush’, a synthetic rainfall event is created by using rainfall event 11 and 

a rainfall multiplier of 6 was used to provide sufficiently large intensities. This 

synthetic rainfall event is created based on extreme scenario recorded in UK. The 

highest ever recorded 5 min rainfall intensity in UK is 384 mm/hr (MetOffice UK, 

2016) hence the peak of the synthetic rainfall event is kept within 300 mm/hr. Further, 

a surface slope of 8% is used. This rainfall intensity and surface slope conditions are 

able to produce a well pronounced “first-flush” effect as shown in Fig. 5.6. This figure 

shows the peak wash-off fraction corresponds to the first peak of the rainfall event 

becomes more dominant compare to the next peak due to the more pronounced “first- 

flush” effect.  

Since instantaneous wash-off fraction varies almost proportionally against rainfall 

intensity, uncertainty in instantaneous wash-off prediction also varies proportionally to 

uncertainty in rainfall intensity. At 2 min temporal averaging interval where the 

uncertainty in rainfall prediction is the highest, ~7% CV of peak intensity resulted in 

a~8% CV on the prediction in instantaneous wash-off fraction peak. The uncertainty 

associated with the cumulative rainfall at the event at 2 min temporal averaging interval 

is 1.7% CV and it resulted in a 2.7% CV in the prediction of cumulative wash-off 

fraction at the end of the event. At 30 min interval the since the uncertainty in the 

rainfall intensity is negligible, the corresponding uncertainty in the prediction in the 

wash-off fraction becomes negligible. But note that as mentioned before, this 

uncertainty is only due to spatial variability and measurement error of rainfall which 

are negligible for temporal averaging interval of 30 min. But on the other hand, due to 

temporal aggregation there is a significant reduction in peak wash-off load due to the 

corresponding reduction in the rainfall intensity peaks. Temporal aggregation of 

rainfall intensity from 2 min to 30 min reduced the peak rainfall intensity by ~65% and 

this resulted in ~ 70% reduction in peak of instantaneous wash-off fraction. Although 

there is not much reduction in cumulative rainfall due to temporal aggregation, there is 

still a ~20% reduction in corresponding cumulative wash-off fraction. This shows the 

sensitivity of cumulative wash-off fraction to rainfall peaks and why aggregation 
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measures such as total rainfall and total runoff often result in under- prediction of wash-

off loads.  

 

Figure 5.5: Variability in wash-off fraction (instantaneous and total) corresponds to uncertainty 
in rainfall (intensity and total) for different temporal averaging intervals 
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Figure 5.6: Demonstration of “first flush” effect on wash-off using a synthetic rainfall event 

 

Figure 5.7 shows predicted values and associated uncertainty (CV %, shown in labels) 

in rainfall event peaks and corresponding wash-off fraction peaks for temporal 

averaging intervals 2 min and 30 min of all13 actual rainfall events. As already seen 

from Fig.5.5, temporal aggregation of rainfall intensity from 2 min to 30 min reduces 

prediction of peaks of wash-off fraction significantly. The highest peak which 

corresponds to event 8 reduced from 0.024 h-1 to 0.0048 h-1 showing ~80% of reduction 

in wash-off fraction due to similar level of reduction in rainfall peaks. On the other 

hand since the temporal aggregation reduces the uncertainty of rainfall peaks, it 

consequently reduces the uncertainty in the prediction of wash-off peak as well. The 

highest uncertainty in the wash-off fraction peak is from event 4 in which the 

uncertainty in wash-off fraction reduced from 15% to ~2% corresponds to similar 

amount of reduction of uncertainty in rainfall peak.  
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Figure 5.7: Uncertainty in peak wash-off fraction corresponding to the uncertainty in peak 
rainfall intensity of all 13 events presented in Table 5.2 

 

Figure. 5.8 where CV of predicted instantaneous wash-off (CVw , applicable to both 

load and fraction) plotted against CV of rainfall intensity (CVR) for all the data from 

13 events at 2 min temporal averaging interval at surface slope of 2%, 4% and 8%. 

Further, to check if there is an effect of “first-flush” we divided the data into two 

portions; uncertainty corresponds to rainfall intensities at the start of the event (initial 

period) and uncertainty corresponds to rainfall intensities from the following period 

(following period). The division is based on duration of each events. The initial period 

is the first 10% of the total event duration and the following period is remaining 90% 

of the event. For example, if the total duration of the rainfall event is 100 min then 

initial period is first 10 min and following period is remaining 90 min.  

First of all, looking at the trend of CVw against the CVR, it clearly shows that there is a 

linear trend (i.e. similar level of uncertainty in instantaneous wash-off due to a certain 

level of uncertainty in rainfall intensity) up to around 40%. After that CVw shows a 

clear decreasing trend against CVR and around 100% of CVR, CVw becomes almost 

constant against CVR. The linear trend is expected due the proportional change in 

instantons wash-off against rainfall intensity as there is no “first-flush” effect as already 
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discussed. The decreasing trend of CVw after 40% means that the change in the 

instantaneous wash-off against rainfall intensity is less than proportional. The only 

reason could be that the rainfall intensities with CVR > 40% are not as high as rainfall 

intensities with CVR < 40% to produce a proportional change in the instantaneous 

wash-off. From Fig. 5.9 it is indeed clear that  CVR > 40% belongs to rainfall intensities 

that are smaller than 5 mm/hr which will produce a very little wash-off, hence the 

corresponding variability due to the uncertainty in rainfall intensities that are less than 

5 mm/hr will be much lesser than higher rainfall intensities where CVR is > 40%. The 

reason of high CVR for rainfall intensities less than 5 mm/hr was shown due to the 

higher measurement error in Muthusamy et al. (2017).  

Looking at the effect of different duration of the rainfall event (initial period and 

following period), there is no visible difference in the trend indicating the absence of 

the “first-flush” even at 8% slope. We tried with different initial periods (First 5 %, 

20% and 50 % duration of the total duration of the events), but the behaviour was same 

and there was no visible difference in the trend for any cases.  

 

Figure 5.8: CV of predicted wash-off peaks plotted against CV of rainfall peaks 
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Figure 5.9: Rainfall intensity and corresponding uncertainty at 2 min temporal averaging interval  
for all the events presented in Table 

 

5.3.3 General discussion  
Note that in addition to rainfall intensity and surface slope, other parameters such as 

sediment size and surface texture will also affect the sediment wash-off, but due to the 

limitations in the data used in this study, the NEM does not include the effect of these 

parameters. With smaller sediment sizes and smoother surfaces the wash-off is 

expected to be higher and this will also effect the occurrence of “first-flush”.  For 

example, Egodawatta et al. (2007) in a similar experimental study used a smaller sized 

sediment resulting in a relatively higher wash-off fraction. Hence the application of the 

NEM, like the OEM needs to be checked against different sediment sizes and surface 

textures. Inclusion of the effect of these parameters explicitly might introduce more 

complexity in the equation, but nevertheless such an equation can be applicable 

globally regardless of individual catchment conditions. This is one of the research areas 

in sediment wash-off modelling that requires to be investigated in detail. 

IID is the most commonly used form of error model in urban hydrology (Freni et al., 

2009; Dotto et al., 2011; Breinholt et al., 2012; Bonhomme and Petrucci, 2017) mainly 

because of its simplicity. But it requires absence of a serial correlation in the error 

distribution, which can lead to underestimation of uncertainty and biased parameter 
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estimates (Del Giudice et al., 2013). This makes IID less robust for different urban 

hydrological applications. The autoregressive bias error model used in this study, 

although more complicated, does not have these requirements and is more robust. We 

assumed a constant bias to keep the autoregressive error model simple, but it is also 

possible to describe it as an input – dependent bias (Del Giudice et al., 2013) where 

bias can be a function of both slope and intensity. The advantage of such bias 

description still needs to be investigated in the uncertainty analysis of wash-off 

modelling in the future.   

5.4 Conclusions 

In this study, first, we proposed an improved exponential wash-off model by replacing 

the calibration parameters of the original exponential model with functions of rainfall 

intensity and surface slope, making the model more robust to a new set of catchment 

conditions. This will not only avoid the need of look up tables or charts and 

interpolation or extrapolation, but it will also introduce some transparency in the 

parameter estimation which is otherwise a black box approach. This new exponential 

model (NEM) was calibrated and verified using the experimental data collected for 

different combinations of surface slopes and rainfall intensities. Bayesian inference, 

which allows the incorporation of prior knowledge, is implemented to estimate the 

distribution of the parameters of the newly introduced functions. Second, by 

statistically describing model bias and measurement noise, predictive uncertainty in the 

prediction of NEM was estimated. Finally, the propagation of rainfall uncertainty due 

to sub-kilometre spatial variability and measurement error of rainfall through the NEM 

was investigated in detail. 

Although during the calibration stage OEM performs better than NEM, it has to be 

taken into account that OEM had to be calibrated for each and every experimental 

condition separately. Further, at the validation stage, NEM performance improved over 

OEM, reflecting the ability of the new exponential model to perform better under a 

range of new catchment conditions. Verification measures show the uncertainty 

estimates associated with the NEM predictions are plausible, indicating that the use of 

two error terms, autoregressive error and independently identically distributed error, to 

represent model bias and measurement noise respectively was a reasonable 

representation of the error process associated with sediment wash-off modelling. The 
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total predictive uncertainty which accounts for both model bias and measurement noise 

accounts for ~ 0.1 (10%) uncertainty in wash-off fraction when 95% predictive interval 

is considered out of which a maximum of 0.06 (6%) comes from the parameter 

uncertainty.  

The effect of uncertainty in rainfall intensity in sediment wash-off can be concluded as 

below 

1. CVR>CVW 

This is where the rainfall intensities are too small to produce a proportional 

change in the instantaneous wash-off against the corresponding change in the 

rainfall intensity, hence the uncertainty in rainfall intensities (CVR) will cause 

a lesser level of uncertainty in wash-off fraction (CVW) 

 

2. CVR=CVW 

This is the most commonly observed case where the change in the instantons 

wash-off is proportional to change in the rainfall intensity, hence any 

uncertainty in rainfall estimation would produce a similar level of uncertainty 

in the prediction of instantaneous wash-off.  This is when there is no effect of 

“first-flush” 

3. CVR<CVW 

When there is an effect of “first-flush”, then most of the sediment will be 

washed off at the beginning of the event and corresponding instantaneous wash-

off will be larger than previous two cases, therefore a certain level of 

uncertainty in a rainfall intensity would produce a larger level of uncertainty in 

corresponding predicted instantaneous wash-off at the beginning of an event.  

 

None of the measured rainfall events from Muthusamy et al. (2017)  produced “first 

flush” effect, hence for most common rainfall and surface slope conditions it was found 

that any uncertainty in rainfall estimation would produce a similar level of uncertainty 

in the prediction of instantaneous wash-off (CVR=CVW). Consequently, the maximum 

uncertainty in the peak instantaneous wash-off fraction due to measurement and 

sampling error and spatial variability of rainfall within a spatial extend of 8 ha found 

to be 13% when a temporal averaging interval of 2 min is considered.  
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It should be noted that the occurrence of “first-flush” is sensitive to optimal values of 

c1,..,c4 in NEM and these values needs to be checked against different sediment sizes 

and different surface roughness as these are two other major external drivers which 

would affect the sediment wash-off. Nevertheless, the model structure of NEM would 

be applicable for any sediment size and surface texture as the underlying physical 

processes will be the same as those on which the model structure of NEM was 

developed 
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Appendix 

5A: Figures showing propagated uncertainty through NEM for all 13 events mentioned 

in Table 5.2 for temporal averaging intervals of 2 min and 30 min.  
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6. Summary, Discussion and future works, 
conclusions  

6.1 Overarching summary  

The main aim of the research was to investigate the effect of uncertainty caused by 

rainfall variability at a selected urban scale in order to improve sediment wash-off 

predictions from urban catchment surfaces. This research work was carried out in three 

parts.  

The aim of the first part of the study was to obtain a stochastic description of urban-

scale spatial variability in rainfall in a way that can be used in lumped sediment wash-

off models. Through literature review, it was found that (1) uncertainty due to rainfall 

variability at a sub-kilometre scale is significant in the modelling of any hydrological 

process that is driven by rainfall and runoff such as sediment wash-off and (2) 

geostatistical methods, despite their challenging data requirements, can be modified 

and developed to study the spatial variability of rainfall. This is due to their capability 

to take into account the spatial correlation structure of rainfall data and their ability to 

provide quantification of uncertainty in upscaling.  Taking into account these findings, 

a geostatistical method was developed to estimate the spatially averaged rainfall 

intensity together with the associated level of uncertainty. High spatial resolution 

rainfall data collected from a cluster of eight paired rain gauges in a 400m × 200m 

urban catchment was used to develop this methodology. The spatial lag of the rain 

gauge network ranges from ~20 to ~400 m. As far as the author is aware, this is the 

smallest spatial scale in which the variability in rainfall has been examined using high 

temporal resolution point rainfall measurements in urban hydrology. Unreliable data 

which were detected by making use of the paired rain gauge set up were omitted prior 

to geo-statistical analyses. Variogram, which is a widely accepted geo-statistical 

measure, was used to illustrate the spatial variability of rainfall for different 

combinations of the temporal averaging interval (2 min, 5 min, 15 min and 30 min) and 

different range of rainfall intensities (< 5 mm/h, 5-10 mm/hr and > 10 mm/h). This was 

the first time that geostatistical models such as variograms have been assigned to a 

combination of rainfall intensity ranges and temporal averaging intervals. These 

variograms were then used in spatial stochastic simulations to obtain spatially averaged 

rainfall intensities together with associated uncertainties for the same combinations. 
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The two main challenges typically associated with rainfall data in an urban catchment 

addressed in this study were the scarcity of rainfall measurement locations and non-

normality of rainfall data, both of which needed to be considered when adopting a 

geostatistical approach.   

The aim of the second part was to improve the understanding of sediment wash-off 

from urban surfaces and to establish the correlation between calibration parameters and 

external drivers in the current wash-off model. From the literature, it was understood 

that the current wash-off models still need to be improved in terms of representation of 

the interaction between the external drivers associated with rainfall, catchment surface 

and sediment characteristics. It was also noted that the current sediment wash-off model 

structure needs to be improved in order to be able to differentiate and quantify different 

sources of errors and their propagation, a feature that will be required when rainfall 

error propagation is investigated. Hence, before investigating the propagation of 

rainfall error quantified in the first part of the thesis, the widely used exponential wash-

off model currently in practice was improved. Taking the research gaps identified 

through literature review into consideration, laboratory experiments were conducted to 

investigate the effect of three selected external drivers, rainfall intensity, surface slope 

and initial load on wash-off load, in an integrated and systematic way. The 

experimental set-up comprised of a rainfall simulator, a 1 m2 bituminous road surface, 

and a continuous wash-off measuring system. Five rainfall intensities ranging from 33 

to 155 mm/h, four slopes ranging from 2 to 16% and three initial loads ranging from 

50 to 200 g/m2 were selected based on values obtained from the literature. Fine 

sediment with a size range of 300–600 µm was used for all of the tests. This was the 

first time where the effect of all the above three dominant parameters on wash-off load 

is investigated in an integrated and systematic way. Using the experimental results the 

original exponential equation which is still in practice was improved by establishing 

the correlation of two calibration parameters, capacity factor and wash-off coefficient, 

against rainfall intensity and catchment surface slope.  

In the final part of the study, the propagation of different sources of uncertainty, 

including rainfall uncertainty, in improved sediment wash-off modelling was 

investigated. This task was carried out in three steps. First, the wash-off model derived 

from the second part was improved further by replacing the calibration parameters with 

functions of rainfall intensity and surface slope making the model more robust to new 
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catchment conditions. Further, replacing the invariant calibration parameters with 

functions of external drivers (i.e. rainfall intensity and surface slope ) made it easier to 

investigate the propagation of errors in the external drivers (e.g. rainfall intensity) as 

these external drivers are now explicitly defined in the new equation. Bayesian 

inference, which allows the incorporation of prior knowledge, was implemented with 

Markov Chain Monte Carlo (MCMC) sampling method to estimate the posterior 

probability distribution of the parameters of the newly introduced functions. In the 

second step, different sources of error in the prediction of this newly improved 

sediment wash-off model were separately quantified. Uncertainty due to model bias 

and measurement noise was separately quantified by explicitly modelling them as an 

autoregressive bias term and an independent error term respectively in the likelihood 

function of the Bayesian framework. In the final step, the propagation of rainfall 

uncertainty obtained in the first part of the study was propagated through the new 

improved wash-off model and its impact was investigated. This uncertainty 

propagation was investigated (1) for different temporal averaging intervals (2) for 

different surface slope conditions and (3) for different periods of the rainfall events. 

6.2 Discussion and future works 

Rainfall uncertainty analysed in this study essentially comes from two main sources: 

Natural spatial variability of rainfall and measurement and sampling error. Quality 

control measures such as paired gauges were used in this study are able to limit the 

measurement errors of rainfall measurement. However, it is impossible to completely 

avoid measurement error (and sampling error in case of tipping bucket type rain 

gauges). Hence, in this study, the effect of spatial variability is studied together with 

the inherent measurement and sampling error associated with tipping bucket type rain 

gauges. Although variograms provide information on the total measurement error and 

microscale spatial variability (the nugget effect), it does not have provision to 

separately quantify them. However, in Chapter 3 it was seen that when the rainfall 

intensities are higher (> 10 mm/hr) nugget effect becomes smaller indicating smaller 

measurement and sampling errors. This implies that most of the total uncertainty in this 

rainfall intensity range is due to natural spatial rainfall variability.  Hence, the 

uncertainty in wash-off peaks caused by rainfall intensity peaks which are mostly for 

rainfall intensities > 10 mm/hr is strongly related to the natural variability of rainfall. 
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Separating uncertainty caused by measurement and sampling error from uncertainty 

caused by natural spatial variability is not a straightforward task. Such separation needs 

quantification of measurement and sampling error associated with tipping bucket type 

rain gauges and this quantity also depends on other factors such as rainfall intensity 

range and site conditions. This makes the exact quantification of measurement and 

sampling error of point rainfall data an area which needs to be investigated on its own 

merit. Such a detail investigation would help to separately quantity the two major 

sources of uncertainty in upscaling of rainfall data which are its natural variability and 

measurement and sampling error. However, it is clear from the nugget values indicated 

in the field data set that at the higher intensities that the measurement and sampling 

uncertainty dropped and that the effect of the natural rainfall variability increased.  

As seen from Chapter 3, a distinction between intensity classes is important when 

analysing the spatiotemporal variability of rainfall. In this study, the entire rainfall 

intensity range was divided into three classes considering the available data. Another 

possible extension could be to develop different geo-statistical models based on rainfall 

type in addition to intensity range. Convective, transitional, and frontal are three 

different rainfall types which can be separated and since the nature of each rainfall type 

is different, the variability of rainfall is expected to be different even for the same 

intensity range (Jaffrain and Berne, 2012). By doing so, the uncertainty due to rainfall 

variability can be derived for different rainfall types which could be useful when 

uncertainty propagation of separate rainfall events in a hydrological prediction is 

investigated.  

The inclusion of capacity factor in sediment wash-off modelling is based on the finding 

from previous studies (Egodawatta et al., 2007; Egodawatta and Goonetilleke, 2008)  

that a rainfall event can remove only a fraction of sediment from the surface and once 

a rainfall event reached the capacity, there is no more wash-off even when there is a 

significant amount of sediment is remaining on the surface. The underlying physical 

interpretation is that a rainfall event can mobilise only the particles that are smaller than 

a specific size and this size increases with increasing rainfall intensity.  In this PhD, in 

addition to rainfall intensity, the effect of surface slope on capacity factor was 

investigated. The surface slope was chosen as the underlying physical processes of 

wash-off - rainfall drop impact and shear stress from runoff - are both functions of the 

surface slope. Hence, one of the hypotheses of chapter 4 was that the surface slope will 
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have an effect on capacity factor. Results also showed that the hypothesis was correct 

and slope indeed has a significant effect on capacity factor and consequently on wash-

off load.  

Regarding the sediment size used in this study, a D50 of ~450 µm was selected based 

on field observations on urban road sediment size distribution (Bertrand-Krajewski et 

al., 1993; Butler and Clark, 1995). Further, the range of 300 µm (D10) - 600 µm (D90 ) 

was selected so as to provide a well-characterised sediment as this removes the 

potential for size sorting and so allows us to link the wash-off behaviour of a particular 

sediment size to the rainfall driver. It also provides the possibility to compare with the 

effect on the physical wash-off process of another different well-defined sediment size 

in the future. However, it is acknowledged that the sediment size chosen would have 

had an effect on the results. It is expected that the transport capacity would be linked 

with particle size and that the relative size of the particle to catchment surface 

roughness would affect the amount of available sediment and the threshold of motion.  

Most of the sediment wash-off tests were not run long enough to observe a plateau in 

the cumulative sediment wash-off fraction (Fig 4.6) when the event reaches the 

maximum capacity.  However, most of the tests indicated that the gradient of the 

cumulative sediment wash-off had decreased very significantly towards the end of the 

tests and extrapolation of the data indicated that this gradient was trending to a plateau. 

This extrapolation indicated that some of the tests would take more than 10 hours to 

reach the maximum available sediment capacity. For example, the test with rainfall 

intensity of 47 mm/hr and slope of 4% would have taken around 15 hours to reach the 

maximum capacity according to the Eq.4.5. There were 50 tests altogether and running 

tests around 15 hours each would have significantly reduced the number of tests and 

would not have permitted the study of the three external parameters that were found to 

be dominant. Nevertheless, all the experiments were run for at least an hour longer than 

most of the experiments reported in previous studies which investigated sediment 

wash-off using similar experiments (e.g. Egodawatta et al., 2007). Further, when the 

rainfall intensity is 155 mm/hr and the surface slope 16% it can be seen that the 

cumulative wash-off fraction almost reaches a plateau (percentage change of ~2% over 

the last 8 min compare to overall change of ~86% over an hour)  even though more 

than 10% sediment remains in the surface. This shows that even with the most extreme 

conditions in the experimental series (steepest slope and most intense rainfall) some of 
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the sediment was not washed off implying the other experimental cases with smaller 

rainfall intensity and smaller surface slopes would also have reached a smaller 

maximum capacity if they were run for long enough, as the driving physical processes 

would be the same. However, it is acknowledged that it would have been better if a few 

experiments were run long enough to physically observe the plateau.  This would have 

given a better justification of the inclusion of capacity factor. Hence, this needs to be 

taken into account when deciding the duration of tests in the future wash-off 

experimental studies.  

In Fig. 4.6, in a few cases where rainfall intensity is > 110 mm/hr there is a distinct 

pattern of underestimation of the model especially after 30-40 min (Eq. 4.5). This 

underestimation could possibly be due to underestimation of the capacity factor in 

Eq.4.5. However, this has been resolved when using NEM as presented in Fig 5.2 where 

there is no distinct behaviour of underestimation or overestimation. Although there is 

an underestimation in the verification stage when rainfall intensity is > 110 mm/hr, the 

prediction is still better than OEM where there is a systematic overestimation in all 

verification cases.   

Rainfall intensities used in the experiments ranged from ~30 mm/hr to ~150 mm/hr 

which is on the higher side of most rainfall intensities observed in the UK. However, 

the minimum intensity of ~ 30 mm/hr was chosen based on the trial experiments to 

produce measurable sediment wash-off amounts from the surface. For example, at 2% 

slope, even the rainfall intensity of 155 mm/hr produced only 6g wash-off total wash-

off at the end of 60 min. Although a smaller sediment size (and possibly smoother 

surface, refer Al Ali et al., 2017) could have produced more sediment wash-off, as 

mentioned earlier this sediment size was chosen based on previous findings from field 

case studies. In addition to sediment size and surface roughness, surface size also a 

deciding factor in the amount of washed off sediment as the larger surface will have a 

proportionally higher initial sediment load.  On the other hand, unlike sediment size 

and surface roughness, surface size does not affect the underlying physical process and 

as a result, the wash-off fraction (= washed off load/initial load) will remain same. This 

provides the flexibility in choosing the surface size for similar wash-off experiments.  

The small surface size such as the one used in this PhD (1 × 1 m2) provides a degree of 

flexibility to change the experiment conditions (e.g. surface slope, initial load) and 

makes it possible to run such a large number of experiments. Also, it helps to keep the 
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rainfall intensity fairly uniform over the surface. Similar sized experimental surfaces 

have been used in recent studies to take advantage of the above-mentioned points 

(Egodawatta et al., 2007; Al Ali et al., 2017). However, the trade-off is the physically 

lesser amount of washed off sediment from the surface and consequently the limitation 

in testing very mild rainfall conditions in these experiments. Hence, an optimal surface 

size needs to be chosen in future studies which take into account the flexibilities in the 

experimental setup and the minimum rainfall intensity that can produce a physically 

measurable sediment wash-off with limited measurement error.  

Rainfall intensities used in these experiments are also comparable to rainfall intensities 

used in similar previous wash-off studies. For example, Egodawatta et al., (2007) used 

a rainfall intensity range of 40 mm/hr - 133 mm/hr and 20 mm/hr  - 133 mm/hr in their 

experiments to study the wash-off behaviour. Recently Al Ali et al., (2017) used a 

constant rainfall intensity of 120 mm/hr in similar experimental settings to study the 

wash-off behaviour from different surfaces. One of the reasons why such experimental 

rainfall intensities are widely used is that the pattern of experimental observations 

indicate that the underlying physical transport process of wash-off are the same within 

the rainfall intensity range as it includes well-developed transport. Due to the practical 

difficulty in covering a large range of rainfall intensity in an experimental program, 

extrapolation of the equation/model outside the experimental conditions is often used. 

Even the OEM was originally developed for much narrower intensity range of 8 mm/hr 

– 20 mm/hr (Sartor and Boyd, 1972)  and has been used widely for rainfall intensities 

that are well outside this range. Similarly, in this PhD, the experimental rainfall 

intensities based on which NEM was developed were much higher than the rainfall 

intensity collected during a limited period from the urban catchment in Bradford. 

Hence, NEM was applied to rainfall intensities that were well outside the experimental 

rainfall intensities. In addition, NEM was also used for a synthetic rainfall event to 

present the effect of ‘first-flush’ effect. This event was also well outside the calibrated 

rainfall intensity range. Although the application of the wash-off models in 

extrapolated rainfall conditions has been a common practice in the past for the reasons 

mentioned before, this assumption should be verified in future studies.  With such 

verification, the evidence of the finding in this PhD regards to the rainfall uncertainty 

propagation in wash-off modelling would have been stronger.   However, there was no 

available data from field studies to verify the performance of NEM outside the 

experimental intensity range as such verification data will also need information on a 



 

123 
 

surface slope. In previous literature, surface slope data has neither been collected 

together with wash-off data nor included in the analysis. Hence, verification of NEM 

outside the intensity range used in the current experiments was not possible and 

presently, this is a limitation of this study.  

Another challenge in the experimental set up in terms of replicating the real rainfall 

event is the variability within a rainfall event. NEM was developed based on 

experimental results which were obtained from rainfall events with constant rainfall 

intensity throughout the duration of an event.  Keeping the rainfall intensity constant 

makes it easier to understand the physical wash-off process and to consequently modify 

the wash-off model. In fact, most of the previous studies used a constant intensity 

rainfall event to understand the wash-off process and consequently apply the results to 

develop and improve the wash-off equations. These studies include Sartor and Boyd 

(1972) where the exponential model was originally proposed and Egodawatta et al. 

(2007) where the capacity factor was first introduced in the exponential wash-off. 

However, constant intensity rainfall events are never the case in reality. Nevertheless, 

equation proposed by Sartor and Boyd (1972) and consequent refined version (e.g.  

Egodawatta et al., 2007) were all shown to be applicable for real case studies too. In 

this regard, NEM also needs to be checked against temporal data collected in wash-off 

events resulted from real-time varying rainfall events.  

Figure 6.1 shows the change in the maximum fraction against the initial load, rainfall 

intensity and slope so as to provide a quantification of how each of these variables 

affects the maximum wash-off fraction after an hour. From the figure, it is clear that 

the sensitivity of wash-off fraction against a variable is not constant and it depends on 

the remaining variables. For instance, at 2% slope, the sensitivity of maximum wash-

off fraction against rainfall intensity is much smaller than the cases when the slope is > 

4%. Similarly, the sensitivity of maximum wash-off fraction to slope change from 8% 

to 16% is comparably smaller than to other slope changes (i.e. 2% - 4% and 4%-8%).  

It can also be seen that except in extreme scenarios (when rainfall intensity exceeds 

more than 110 mm/hr and surface slopes exceeds more than 8%), the maximum change 

on wash-off fraction affected by the initial load is smaller than 5% most of the time. 

NEM was developed without the slope 16% to avoid extreme scenarios. From the rest 

of the results only when the slope is more than 8% and the rainfall intensity is more 

than 110 mm/hr, the effect of the initial load becomes significant. These are considered 
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extreme scenarios.  The inclusion of initial load in the NEM just to account for these 

extreme conditions would introduce more parameters which makes the equation more 

complicated without contributing to an equal improvement in the prediction of wash-

off for most practical conditions. Hence, considering the added complexity initial load 

would introduce, it was not considered in the derivation of NEM. Further, as discussed 

before, conceptually the fraction of sediment washed off during a rainfall event is 

dependent on the particle size distribution of the initial load. This particle size 

distribution does not depend on the amount of sediment Hence, the washed off fraction 

expected to be the same regardless of the initial load within the common catchment and 

rainfall conditions as seen from most of the experiments.  

 

Figure 6.1: Variation in the maximum wash-off fraction against the initial load, rainfall intensity 
and slope 

The above observation also means that the actual mass of sediment washed off at any 

given time (!") is proportional to initial load for a given rainfall intensity and surface 

slope. Hence the prediction of build-up is perhaps the most preferred way to 

subsequently predict wash-off compared to the methods presented in recent studies 

(e.g. Shaw et al. 2010). On the other hand, as Shaw et al. (2010) correctly pointed out, 

it is a challenging task to model the build-up process due to unpredicted occurrences of 

activities like construction work or the input of vegetative debris from wind storms. 

Despite these challenges, the strong correlation observed between build-up load and 
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wash-off load indicates the importance of modelling the build-up process. This 

observation does not necessarily invalidate the criticisms on the build-up model of 

Sartor and Boyd (1972) by Charbeneau and Barrett (1998), Shaw et al. (2010) and He 

et al. (2010) as their criticism is mainly on the use of antecedent dry days as the main 

parameter controlling the build-up process. Rather our finding recommends for more 

attention to be paid on modelling of build-up process accurately, taking more 

parameters (Wijesiri et al. 2015; Morgan et al. 2017) into consideration in addition to 

antecedent dry days. 

In the improved NEM, c1,….., c4 are all constants, unlike the OEM where the parameter 

k has to be calibrated for each case separately. This is the important advantage of NEM 

over OEM. Hence, although the structure of the NEM looks more complicated than 

OEM, it avoids the need of any lookup table/plot to estimate the value of the calibration 

parameter as the external drivers- rainfall intensity and surface slope- are now explicitly 

included in the NEM as functions. This also introduces some transparency in the 

parameter estimation which is otherwise a black box approach. Further, replacing the 

invariant calibration parameters with functions of external drivers (i.e. rainfall intensity 

and surface slope) makes it easier to investigate the propagation of errors in the external 

drivers (e.g. rainfall intensity) as these external drivers are now explicitly defined in 

the new equation. In summary, as NEM tries to incorporate the form of the physical 

processes, it will always be superior to a simple parsimonious model which in fact 

merges all physical processes together and so neglects interactions between the external 

drivers as the catchment conditions change. However, it should be noted that optimal 

values of c1,..,c4 needs to be checked against different sediment sizes and different 

surface roughness as these are two other major external drivers which would affect the 

sediment wash-off. Any variation in particle size distribution (sorting during an event) 

will have a direct effect on these parameters. Similarly, mobilisation capacity of a 

rainfall and runoff will also be expected to change with surface roughness. Hence, these 

values will be different for a surface with different roughness. Nevertheless, the model 

structure of NEM would be applicable for any sediment size and surface texture as the 

underlying physical processes will be the same as those on which the model structure 

of NEM was developed. 

Bayesian inference is more useful when more prior information is available. 

Unfortunately, the information available on parameter k in literature is not consistent 
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and a wide range of values have been used in the past. This is one of the motivation 

why it was intended to replace the calibration parameter with external drivers in the 

NEM. Due to the inconsistency in k values in previous studies, a uniform distribution 

was chosen for c4. Further, as stated in chapter 5, since, the other parameters, c1, c2 and 

c3 are all new and there was no previous literature on these parameters. Hence, uniform 

distributions were used for other parameters too. This limits the usefulness of Bayesian 

inference. A more informative prior in the form of normal distribution or truncated 

normal distribution would have enhanced the usefulness of Bayesian inference and in 

such case, the uncertainty in the posterior distribution of the parameters is expected to 

be smaller.   However, the Bayesian inference is capable of using any prior information 

available including uniform distributions and a number of previous studies have utilised 

this strategy (e.g. Dotto et al., 2012; Freni and Mannina, 2010). In addition, Bayesian 

inference also helps to capture the dependence structure which is also one of the other 

reasons why Bayesian inference was used in this study. Further, it helps to predict 

different sources of uncertainty as demonstrated in chapter 5 and the uncertainty 

estimation predicted using Bayesian inference were found to be reasonably accurate 

(85% accuracy). Optioned values of c1,..,c4 from this study can be used as prior 

information in the future and this way a more informative prior can be obtained. This 

leads to the next discussion point: the inter-correlation between the parameters c1,..,c4. 

it was observed that some of the parameters are correlated (c3 against c1 and c2). 

Bayesian inference helps resolve such identifiability issues by allowing for informative 

priors. Therefore, for real cases, where we have reasons to believe that one of the two 

parameters should be more constrained, the other parameter value will automatically 

come out to be constrained after joint inference. As stated already, this is the time first 

time some of the parameters are introduced and therefore prior information is limited. 

This is one of the limitations of the model now, however, when more information on 

these parameters becomes available, the identifiability problem can be solved. Further, 

a strong correlation between two parameters also reduces the added value of one of 

those parameters. If the relationship between these parameters is known, one of the 

parameters can be reduced. Again, due to lack of prior information on any of these 

parameters, obtaining such relationship in advance was not possible. However, this can 

be possible in the future when more information becomes available on these 

parameters.   
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In this PhD, the uncertainty in the rainfall intensity which is the main hydrological 

driver of the wash-off process has been investigated. In addition to uncertainty from 

rainfall variability, other parameters such as sediment size and surface texture are also 

expected to contribute to the uncertainty in the prediction of wash-off considering their 

highly variable nature. However, these parameters have not been explicitly included in 

any wash-off models yet. Hence, prior to investigating the propagation of uncertainty 

due to these parameters, first and foremost, these parameters need to be included in the 

wash-off models either explicitly or at least in the form of calibration parameter(s).   In 

addition, the complex interaction between sediment size and surface texture also need 

to be taken into account when these parameters are investigated. This calls for more 

integrated experimental studies similar to the one employed in this PhD which is 

perhaps the only way to investigate these complex interactions.  

   

6.3 Conclusions 

6.3.1 On uncertainty in areal rainfall estimation due to sub-kilometre 
rainfall variability and measurement and sampling error 

Spatial variability of rainfall at a sub-kilometre scale was found to be intensity-

dependent in the case of the Bradford rainfall data. Hence the assumption of constant 

spatial variability across intensity ranges, which is a  commonly found assumption in 

previous studies (e.g. Berne et al. 2004; Krajewski et al. 2003), was found to be invalid 

in the case of the Bradford rainfall data. Hence such assumptions need to be validated 

in future studies. The uncertainty in the upscaling of rainfall data using point 

measurements essentially comes from two sources: spatial variability of the rainfall and 

measurement error. The significance and characteristics of the measurement error 

observed here mainly corresponds to sampling related error of tipping bucket type rain 

gauges (TB error) and may vary for other types of rain gauges. TB error at averaging 

intervals of less than 5min, especially at low-intensity rainfall measurements, is as 

significant as the spatial variability. Hence, proper attention to TB error should be given 

in any application of these measurements, especially in urban hydrology, where 

averaging intervals are often as small as 2min. At smaller temporal averaging intervals, 

the effect of both spatial variability and TB error is high, resulting in higher uncertainty 

levels in the areal rainfall estimation, up to 13% at 2 min temporal averaging intervals. 
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With increasing temporal averaging interval, the uncertainty becomes smaller, i.e. up 

to 3.6% at 30 min, as the spatial correlation increases and the TB error reduces. 

6.3.2 On adapting a geo-statistical method to rainfall upscaling 
Although the spatial stochastic simulation method used in this study needs more 

computational power (a summary on computation power is presented in the Appendix 

3B) than block kriging, it is a robust approach and allows data transformation during 

spatial interpolation and aggregation. Such data transformation is important because 

rainfall data are not normally distributed especially for small temporal averaging 

intervals as was shown in this study. Further, the pooling procedure used in this study 

helps provide a solution to meet the data requirements for geostatistical methods as it 

extends the available information for variogram estimation. 

6.3.3 On improving the understanding of wash-off process  
The wash-off load was found to be proportional to initial load irrespective of rainfall 

intensity and surface slope. Hence, a constant initial load model suggested by Shaw et 

al. (2010) is not a valid assumption for all catchment and rainfall conditions. Therefore, 

a dedicated modelling approach to predict build-up to help subsequently predicted 

wash-off, despite the challenges mentioned in Shaw et al. (2010) should not be 

overlooked. Furthermore, a rainfall event has the capacity to wash-off only a fraction 

of initial load, represented by the capacity factor, and once that fraction is washed off 

from the surface there is no more wash-off even if the rainfall event continues. The 

maximum fraction that can be washed off from the surface increases with both rainfall 

intensity and the surface slope.  

The effect of the interaction of different variables in the wash-off process was clearly 

observed. For instance, for a rainfall intensity of 75 mm/hr the wash-off fraction after 

an hour is only 0.13 when the surface slope is 4%, but this increased 0.42 when the 

slope was changed to 8%. This clearly indicates the advantages of integrated 

experimental studies which investigates the effect of multiple variables together over 

isolated studies where only one variable is investigated (e.g. Egodawatta et al. 2007) in 

developing better understanding of the wash-off process. 

6.3.4 On new exponential wash-off model  
The calibration parameters of the exponential model (Eq. 5.2), capacity factor and 

wash-off coefficient, are both sensitive to the surface slope and rainfall intensity but 
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are not sensitive to initial load. Hence, in the new exponential model, these calibration 

parameters have been replaced with functions of rainfall intensity and slope. Although 

during the calibration stage, original exponential model performs better than the new 

exponential model, it has to be taken into account that the original exponential model 

has to be calibrated for each and every experimental condition separately. Further, at 

the validation stage, the new exponential model performance improved over the 

original exponential model, reflecting the ability of the new exponential model to 

perform better under new catchment conditions. 

6.3.5 On uncertainty associated with new improved wash-off model 
Verification measures show the uncertainty estimates associated with the new 

improved wash-off model predictions were plausible, indicating that the autoregressive 

error model accounting for the structural deficit with constant bias accounting for 

measurement noise was a reasonable representation of the error process associated with 

sediment wash-off modelling. The 95% predictive uncertainty shows a maximum of 

10% variability in the prediction of a total wash-off fraction out of which 6% comes 

from parameter uncertainty and the remainder came from the structural deficit and 

measurement noise.  

6.3.6 On the effect of rainfall uncertainty in wash-off prediction 
The level of uncertainty in the prediction of wash-off load due to rainfall uncertainty 

can be smaller, similar or higher to the level of uncertainty in rainfall depending on the 

intensity range and the “first-flush” effect as explained in detail below. When the 

rainfall intensities are too small to produce a proportional change in the instantaneous 

wash-off against the corresponding change in the rainfall intensity, a certain level of 

uncertainty in rainfall intensities would cause a lesser level of uncertainty in wash-off 

fraction. When rainfall intensities are bigger, but still not big enough to produce a “first-

flush” effect then the change in the instantaneous wash-off is proportional to change in 

the rainfall intensity, hence any uncertainty in rainfall estimation would produce a 

similar level of uncertainty in the prediction of instantaneous wash-off.  When the 

rainfall intensities are big enough to produce a “first-flush”, then most of the sediment 

will be washed off at the beginning of the event and corresponding instantaneous wash-

off will be larger than previous two cases, therefore a certain level of uncertainty in a 

rainfall intensity would produce a larger level of uncertainty in corresponding predicted 

instantaneous wash-off at the beginning of an event i.e. during the “first-flush”. 
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None of the measured rainfall events from Chapter 3 produced a “first flush” effect, 

hence for most common rainfall and surface slope conditions, it was found that any 

uncertainty in rainfall estimation would produce a similar level of uncertainty in the 

prediction of instantaneous wash-off. Consequently, the maximum uncertainty in the 

peak instantaneous wash-off due to measurement and sampling error and spatial 

variability of rainfall within an 8 ha catchment in Bradford found to be 13% when a 

temporal averaging interval of 2 min is considered. Although at 30 min temporal 

averaging interval, maximum uncertainty in the peak instantaneous wash-off fraction 

was reduced to 4%, the temporal aggregation, on the other hand, reduced the prediction 

of peak instantaneous wash-off up to 80%.  

These figures demand that both spatial and temporal variability of rainfall at sub-

kilometre scale together with measurement and sampling error needs to be taken into 

account in the prediction of wash-off.  
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Appendix 
Written permission from Faculty of Engineering to submit this thesis in an alternative 

format is attached below 
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