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Abstract

The aim of this PhD project is to develop an approach to particle damper modelling

based on Gaussian process regression trees (GPRTs). Developing validated particle

damper models is a prerequisite for being able to optimise their performance when

applied, for example, in the damping of various components and assemblies for a

range of frequencies. The objective of the model is to make a credible prediction of

damper behaviour for a given set of design parameters and input excitations.

Particle damper modelling may be approached in one of three ways: analytically

from first principles; numerically using finite or discrete element methods; or ex-

perimentally, with the structure and parameters of a reduced-order model inferred

from measured data. This project focuses on the third of these approaches, with

low-order, physics-based models being combined with experimental training data.

The aim is to both identify the model structure that most accurately captures the

behaviour of the damper and to infer the model parameters. The model can then be

used to predict damper behaviour for design parameters and excitation conditions

that have not been tested experimentally. This is made more challenging by the fact

that particle dampers will in general, display nonlinear dynamic behaviour which

can lead, for example, to switching behaviour in the observed responses.

Gaussian process (GP) regression has emerged as a powerful and adaptable approach

for modelling experimental data. The basic GP is, however, best suited to modelling

outputs that vary smoothly as a function of input values - something that is em-

phatically not the case for switching behaviour. An alternative is to develop a treed

model which partitions the input space into regions that display smooth behaviour

and to infer a separate GP model within each partition. This project will focus on

the application of these approaches to particle damper modelling, including inves-
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tigation of the contributing statistical techniques; impact of experimental design;

and validation of developed models for previously unseen conditions. In addition to

the works associated with the particle damping, in the later chapters of the thesis,

the developed statistical model has also served an application to Structure Health

Monitoring (SHM) problems, via which the generality of such a model has been

demonstrated.
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Chapter 1

Introduction

Number is the within of all Things. —Pythagoras 570BC-495BC

Figure 1.1: 1Pythagoras with his pyramid.

Although not among the seven sages, nor the three greatest, as an illustrious philoso-

pher, Pythagoras is widely recognised for his almost superstitious obsession with

numbers. His idealistic realm dilapidated during his own time at the attack on irra-

tional numbers. His belief was then largely treated with ridicule by many spectators

sitting in history. If really Number is the whithin of all things, the number alone

should be able to function as a tool that could piece the phenomenons together

to unveil its hidden rules. The classic era of science didn’t provide a stage for its

chance to happen. But vicissitude is the eternal ingredient of time; entering the

21th century, a modern Neopythagorean trend is gathering tides in computer sci-

1Source: http://www.famousmathematicians.net/pythagoras/
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1.1. UNCERTAINTY ANALYSIS 2

ence. this trend is in the rising of Machine Learning (MA). Machine Learning is a

branch of computer science. By its name, machine learning allows the computer to

analogously learn like human beings at being given a certain form of training [1].

It has a close affinity with statistics, thus the study of machine learning is entirely

data or number based with no direct involvement of real physical insights. Machine

learning in the 21st Century flourishes mostly in developing artificial intelligence;

its power now gradually permeates to other fields, and engineering is definitely one

of them. The specific machine learning technique discussed in this thesis is a statis-

tical regression model called Treed Gaussian Processes (TGP). Given training data,

such a model can learn the hidden rules inside the data according to a series of

criteria, essentially give predictions to the data space. Such a fact means that even

if the data has physical meaning, such as output measurements from experiments,

no physical insight is required to model the relation between the input and output

in the data space. A corner of Pythagoras’ realm is revealed here.

1.1 Uncertainty Analysis

The TGP is a state-of-the-art machine learning technique which is still, to some

degree, in its experimental stage. It has not yet been formally applied to solving

any industrial problems; while, all its applications are mostly subject to academical

analysis to test its performance. As a derivation from the well applied Gaussian

Process, the TGP is theoretically capable of dealing with any type of problems that

a conventional GP is adapted to. The GP is a classic statistical model dealing with

uncertainty in terms of either regression or classification. In the envelop of the main

interest of this project, the regression, in most of the scenarios, the uncertainty as

generally manifested as in a form of noise, can be accommodated properly by the

conventional GP, if the noise level maintains uniform throughout the data. However,

real world problems are not always benign in this respect; in fact, non-uniform noise

propagation is a commonplace. The TGP offers the capability in dealing with the

type of uncertainty whose property is subject to variation throughout the data

space, which in statistical parlance, it is called non-stationary regression. In the

broad context of structural dynamics, the rise of non-uniform uncertainty is often

contributed by the change of physical properties inside the system. In this project,

such a statement will be illustrated by two major examples, where the effectiveness

of the TGP will be tested and studied.
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1.2 Motivation from the Particle Dampers

Damping is a conventional engineering property describing the ability to attenuate

vibrations in the system. As vibration represents a transfer of energy, the damp-

ing can be equivalently regarded as the ability of dissipating the energy involved in

the vibration (potential energy and kinetic energy). In the real world, structural

deformation will always incur energy loss due to friction between molecules at the

microscopical scale, thus all materials do possess a certain level of damping. If a

component is specifically designed for attenuating vibration, based on such appli-

cation, in this way it is called a damper. The application of dampers is pervasive.

One of the typical examples is the dashpot shown in Figure 1.2, which is a classic

simple linear damper. It can often be seen in the shock absorber (Figure 1.3), one of

the indispensable components in vehicles. The shock absorber is a classic paradigm

for traditional spring-damper system design (the shock absorber is a bilinear spring-

damper system).

Figure 1.2: 2Classic dash pots.

In contrast, a particle damper (PD) (Figure 1.4) comprises granular solids encapsu-

lated in a container which can be attached separately or embedded in the vibrating

structure. Because the microstructure of the PD can occur in many different con-

figurations, the damping behaviour of the PD exhibits high levels of uncertainty.

The particle damper has been extensively studied by researchers in recent decades

because it is highly effective if applied correctly but is difficult to optimise. Dif-

ferent from conventional polymeric damping materials, the particle damper energy

dissipating mechanism relies on particle-to-particle and particle-to-wall friction and

inelastic impact [2]. The major advantage of the particle dampers compared to tradi-

tional damping methods is that the performance of the particle damper is insensitive
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Figure 1.3: 3Classic shock absorber.

to temperature, which makes the PD a better fit to harsh working conditions.

For example, the PD has been applied to an electronic package installed on a space-

craft in the Indian Space Research Organisation(ISRO) satellite centre, so as to

mitigate the vibration during the launching process where high temperature is def-

initely a considerable issue [3]. Another industrial application is that the PD has

been used in steering control system in the automotive industrial to reduce the noise

and vibration of the electric motor [4].

From the industrial point of view, the advantage in resisting harsh conditions is

doubtlessly a practical virtue. However, PDs are not in common use in engineering

applications; indeed their use even in specific applications that appear aligned to

their properties is limited. The main imputation goes to their highly nonlinear and

uncertain behaviours which make them difficult to model and control.

Because the physics inside the PD is an entangling complication of multiple physical

interactions, including particle collisions, inter-particle friction etc; to study the true

detailed physics at a microscopical scale is unattainable in theory, considering the

behaviour is rather chaotic and implicated with many factors. Using Finite Element

based methods will also be too excessively demanding in computational power, con-

sidering the size of the particles needing to be modelled. To study at a macroscopic

scale through equivalently treating the PD as a simplified system with the aid of

appropriate assumptions will lose generality and reliability. Therefore, instead of

2Source: http://airpot.com/product-category/product-lines/dashpots-shock-absorbers/airpot-
precision-dashpots/

3Source: http://www.roshfrans.com/cambia-el-alternador-de-tu-vehiculo/
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dealing with all the difficulties in the physics, the machine learning technique is

used to bypass such problems.

Figure 1.4: 4A particle impact damper.

1.3 The selection of the Treed Gaussian Processes

There are numerous machine learning techniques that can be employed to model the

PD. To select the statistical modelling tool, the Treed Gaussian Processes (TGP),

is motivated by the characteristics of the behaviour of the PD during vibration.

The PD exhibits three general phases at different levels of vibration amplitudes and

frequencies as pointed out by Saluena et al. [5] (more details in Chapter Literature

review). Such a fact indicates that the damping from the PD should hold piecewise

characteristics. The TGP stands out, because it is built on a decision tree framework

which, in the end, can generate regions in the data space, and these regions might be

able to associate relations with the piecewise behaviour of the PD. Ideally the TGP

model can identify these piecewise behaviours by producing corresponding regions

through partitioning the data space. The TGP is a state-of-art model that has not

yet been applied to the PD data, thus it is also worthwhile to explore its effectiveness.

Moreover, the TGP used in this project is a new developed one of its type by the

author. Therefore, this project is not merely about borrowing present statistical

tools to apply to novel cases, but more importantly about the development of a new

statistical tool which has its own novelty and uniqueness. It can be expected that

the TGP model can apply to other problems in the broad engineering circle. In this

thesis, the TGP model will also be applied to solving problems in Structural Health

Monitoring.

4https://www.etronixab.se/2017/03/30/pid%C2%A0particle-impact-damper-34665129
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1.4 Objectives

The TGP itself was first introduced by Robert Gramacy in 2004, since when concept

of the TGP is almost patented under his name. However, the functions of the TGP

can be achieved through different mathematical approaches. In this project, the

chief objective of this thesis is to develop a brand new Treed Gaussian Process which

has never been studied before, in contrast with one developed by other researchers

(Gramacy), and then demonstrate its performance in applications to real engineering

problems. Then such a brand new TGP will be applied to studying the behaviour

of the particle damping, where no TGP has ever been used. To fulfil these purposes

the following sub-objectives have been set:

• Fully absorb and understand the present TGP.

This will involve a comprehensive study of the present TGP, followed by im-

plementations of this in MATLAB.

• Develop a new TGP model that will function with advantages over the present

TGP.

This will involve a comprehensive study of decision tree models, Bayesian

analysis etc.

• Design and conduct an experiment on particle damping.

The aim of designing and conducting the particle damping experiment is to

acquire data encoding typical particle damping behaviours, so that it could be

used as a general example to demonstrate the TGP’s effectiveness.

• Apply the TGP on the data measured

• Extra applications of the TGP in other engineering fields to demonstrate gen-

erality.

In order to demonstrate the generality of the PD, more data are needed. In

this case some Structure Health Monitoring data will serve the purpose.
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1.5 Summary of Chapters

Chapter 2

Chapter 2 contains a literature review focusing on particle damping and the de-

velopment and application of treed Gaussian processes. The review on the particle

damping generally focuses on the traditional modelling methods, mainly to highlight

their drawbacks. The review on the TGP focuses on its history of development and

its applications.

Chapter 3

Chapter 3 establishes the extensive mathematical background to the TGP task. It

builds from ground to top as intending to show how the new TGP evolves from the

old. This chapter also addresses inks on some side mathematics whenever necessary.

Chapter 4

It is a benchmarking chapter for the new TGP against the present one. The bench-

marking will be done in two respects, the performance and the computational cost.

These two items are quite universal on any algorithm-based benchmarking.

Chapter 5

The design and process of the particle damper experiment will be shown here. It

includes the design of the method of measurement, the choice of materials and

components as well as their parameters. The results will also be shown here and

discussed on the grounds of general physical insights.

Chapter 6

The TGP will performed on the PD data, the result will be discussed in terms of both

mathematics and physics. Some efforts will be made to link the pure mathematical

results with the physical insights to show that the TGP has a potential to aid the

physical exploration of the PD rather than completely overwriting it.

Chapter 7

Presents a new case study on bridge data. The primary purpose is to demonstrate

the general applicability of the TGP algorithm. This study is within the scope of
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Structure Health Monitoring, thus a completely different role for the TGP to adapt

to.

Chapter 8

Conclusions for all chapters.



Chapter 2

Literature Review

2.1 Chapter Overview

In this chapter, the review of the past literature will be segregated into primarily

two parts, namely the review on the particle damping (PD), and on the relevant

machine learning (ML). As the raw initial motivation, the reviews on the particle

damping will focus on its modelling history with methods from various different

departments of engineering, this will lead eventually to the avant-garde innovative

thoughts brought by the machine learning from which the Gaussian process stems.

The review of the TGP relevant content will focus on its predecessors, considering

the Treed Gaussian Processes is a comparatively state-of-the-art statistical modelling

technique. Some reviews on its industrial and engineering applications will be also

addressed.

2.2 Particle Damping

While the damping behaviour of particle dampers has been studied intensively dur-

ing the last two decades, the first reported use of a particle damper traces back over

70 years, to when Lieber and Jensen were attempting to suppress aircraft flutter

related vibration by introducing a single particle damper [6]. However, note that

sand bags have been used to reduce the shock from artillery for much longer. It is

9



2.2. PARTICLE DAMPING 10

simply that nobody considered this as a particle damper - although that is exactly

how they were working. Initial development of particle dampers focused on the

design of a separate supplementary component to the primary vibrating structure.

In 1989, Panossian [7] first introduced the concept of the Non-Obstructive-Particle-

Damper (NOPD) which is a category of built-in damping component of the vibrating

structure by filling particles in structure holes or cavities at desired locations.

2.2.1 Analytical Modelling Methods

For the purpose of applying particle dampers pragmatically, it is required that the

nature of particle dampers is investigated, so that the performance of the particle

damper can be controllable and adjustable. Against the inconvenience brought by

high nonlinearity, researchers have exploited many different models to characterise

particle dynamics experimentally, theoretically and numerically. Using the fact that

a standard particle damper is the derivative of single particle impact damper, Masri

in 1970 introduced an equivalent model for particle dampers by considering the

particle bed as a single equivalent moving particle subjected to two equi-spaced

symmetric impacts [8]. Though his early theory was refuted by Bapat (1983) due

to inapplicability in a gravity field, many researchers have conducted subsequent

investigations based on the heuristic of the single equivalent impact damper idea [9]

[10] [11]. Liu et al. (2005) attempted to model the nonlinear PD damping system

as an equivalent viscous damper through taking linear snapshots at different lev-

els of excitation when studying a disk geometry particle damper [2]. Most of these

analyses of particle dampers have provided good agreement with experiment results.

However, the application of the models is rather limited to prerequisite conditions

such as certain frequency ranges, free vibration, and particular types of input exci-

tation. Besides, the damping performance of particle dampers shows at least three

highly different types of behaviour with correspondingly different levels of damping;

this implies that none of these theoretical equivalent models is universal[5]. More-

over, many studies of the equivalent particle damper only consider the friction and

impact between the particle and container walls with no consideration of the inter-

nal energy transfer between particles, indicating a non-compatibility with the Three

Phase states of particle dampers.

Apart from the equivalent impact damping models, many authors have addressed

other solutions to characterise particle dampers. Chen et al [12] developed a tech-
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nique which used a restoring force surface for the characterisation of particle dampers,

and their results agree with some of the findings discovered by other researchers.

Wu et al. [13] proposed a theoretical model of the granular particle damping in

transient vibration-based on the multiphase flow theory of gas particles. The the-

ory originates from the work of Fan and Zhu [14], where they illustrated that the

granular particles contained in a cavity of a vibrating structure can be regarded as

a multiphase flow of gas particles with low Reynolds number. According to their

theory, the momentum transfer between particles is governed by the pseudo-shear

stress and the viscosity of particle interactions. The theory is validated by reason-

able agreement with experimental data acquired from a cantilever beam attached

with a particle damper. However, the functionality of this model is restricted by a

number of assumptions (e.g. moderate particle damping ratio).

Martin et al. [15] managed to associate the particle damping system with fluid me-

chanics by introducing the hydrodynamic model for a vibrofluidised granular bed.

The model is an analogous process to relate the dynamic properties of a granular

system to the thermodynamic properties of gas. By such an analogy, the mean

fluctuation kinetic energy of the particles is also known as the granular tempera-

ture. The model is validated by the comparison of granular temperature with the

experimental data. However, as a prerequisite, the use of a hydrodynamic model is

restricted to simulate the fluid phase of particle damping systems, and a number of

assumptions such as a Maxwell-Boltzmann distribution also determine the area of

applicability.

2.2.2 Discrete Element Methods

For the purpose of obtaining full scale understanding of the particle damper, a

reasonable modelling technique is more likely to take place at the particle scale level.

During recent decades, making use of developments in computational techniques, the

Discrete Element Method (DEM) has been considered as an adequate solution to the

modelling of particle damper systems. The pioneering work of DEM was proposed

by Cundall [16] in the 1970s for considering the study of rocks. As an explicit-

based process, the DEM computes resultant forces subjected to each particle in the

system with small time iterations. Generally, the DEM can be classified into two

categories, which are known as soft sphere and hard sphere models. Hard sphere
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models allow no overlap between particles and therefore do not model the complex

contact/interaction mechanisms. The simulating computation only relies on the

coefficient of restitution along with particle and container dimensions. As each of

the variable time steps indicates a new collision, the hard sphere DEM is also named

as an Event-Driven simulation method [17]. Apparently, the computation executes

relatively faster by assuming no deformation mechanism, but such simplification

could lead to a reduction in the accuracy of the simulation results as well as a lack of

meaningful understanding of energy dissipation by inelastic deformation of particles

during collisions. McNamara and Young [18] reported a phenomenon associated

with inelastic particle collision modelling (mostly in the hard sphere model), which

is known as inelastic collapse. Such a phenomenon can often be observed when the

number of collisions among a group of particles tends to approach infinity during a

finite amount of time (finite time singularity). The inelastic collapse can cause the

relative particle velocities to approach zero exponentially during their collision. In

their subsequent work [19], they proposed a solution to the inelastic collapse problem

called the quasi-elastic limit which sets limit values for the coefficient of restitution

and the number of particles.

For soft spheres, the contact mechanism specifying the normal and tangential inter-

actions needs to be discussed in the models [20]. Normally, the contact concerned

with particles and walls will be modelled by springs and friction interface. Since

there are more specifications in the soft sphere model to simulate, in conjunction

with the large number of particles, it is necessary for one to make a decent trade-off

between computational cost and accuracy.

The DEM is highly computationally consuming. Though both methods provide

computation over millions of particles in an individual simulation, it is still debatable

to consider such a system as macroscopic. Some authors such as Vermeer et al. [21]

and Poschel et al. [22] carried out efforts to develop a micro-macro transition method

so that the relative microscopic simulation can be used to predict and study the

true macroscopic dynamic system within the framework of a so-called macroscopic

continuum theory. Benefiting from the use of the DEM method, researchers have

made significant progresses in characterising the particle dynamic system.

Saluena et al. [5] in 1999 published a paper (widely cited since then) where they

expounded the three phases encountered by the particles at different levels of ex-

citation amplitude and frequency. With the aid of molecular-dynamics simulation,

they arrived at a final summarising diagram known as the particle damper phase
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diagram (the three phase states), and the diagram is shown in Figure 2.1.

Figure 2.1: Particle damping phase diagram, see [5].

As indicated in the diagram, the state of the particle damper during vibration could

be classified into three phases known as the Glass state, Liquid State (visually as

convection rolls in particle view, so the name convection rolls, see [5] for more infor-

mation) and Gas state. The presence of the exact state depends on both excitation

amplitude and frequency. As one can imagine, for a constant frequency, the particles

in the container will stay in contact with each other at low amplitude excitation,

and gradually start to bounce around with the increase of amplitude indicating a

gas-like state.

In terms of the damping performance at different phases, they also defined a pa-

rameter b referring to the ratio between the averaged dissipated power per cycle

and the mean translational kinetic energy of the system. By plotting the effective

acceleration Γ = Aω2/g against the damping parameter b, one can arrive at Figure

2.2. (A is the excitation displacement amplitude, ω is the angular frequency, g is

the gravity constant, and b is a ratio between the cyclic energy dissipation rate and

the translational kinetic energy in the system, for more detail, see [5])

The different symbols in the diagram correspond to different frequencies. The glass

transition point is defined at Γ = 1 , below which the parameter b varies significantly

with less correspondence to the Γ. In the glass state phase, the energy dissipation is

strongly governed by the packing configuration of the particles. During this phase,

since almost all the particles remain in situ, the inter-friction between particles and

between particle and wall will dominate the dissipation of energy. At the fluidised
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Figure 2.2: Effective damping vs effective acceleration, see [5].

states (convection rolls and gas), the energy dissipation is governed by a combi-

nation of collision and friction. Peculiarly, in the gas state, where the collision (or

impact)-based dissipation overwhelms the friction-based dissipation, the total energy

dissipation is perceived to be proportional to the collision frequency of unbounded

particles.

Equipped with DEM, Mao et al. [23] made a successful characterisation of parti-

cle dampers with comparisons with both dry-friction damping and impact damping

models. The specific damping capacity with a maximum instantaneous value of

near 50% can be reached by the corresponding particle damper accordingly. A typ-

ical vertically-vibrated closed particle damping system was studied by Sánchez and

Carlevaro with the implementation of DEM [24]. The study was analytically in-

vestigated in a manner of chaotic dynamics. Both Poincáre maps and maximum

Lyapunov exponents were employed to distinguish regular from chaotic orbits for

both the primary system and granular bed. Through the simulation and analysis,

they showed that the particle grains gradually switch from a periodic motion to

chaotic motion with the increase of excitation frequency. Damping was found to

be small at low frequency excitation due to lack of relative motion between par-

ticles. Chaotic behaviour has been confirmed in high frequency excitation, which

shows good agreement with Saluena’s work. There are signs indicating the chaotic

transition from quasi-periodicity. The optimum granular damping is achieved at fre-

quencies close to the resonance of the primary system as well as revealing a window

of periodicity according to the Poincare map. The decline of damping performance

when entering the chaotic state does comply with Saluena’s work.
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The influences of a number of system properties on the particle damping perfor-

mance have also been studied using DEM. Saeki in 2001 [25] investigated the gran-

ular damping in a horizontally-vibrated system. The agreement between DEM and

experiment shows that the increase of mass ratio will enhance the damping perfor-

mance and high values of particle radius and mass ratio will lead to an increase in

the optimum cavity length.

Wong et al. (2007) [26] set out to improve characterisation for the particle damper

by carrying out both experiment and DEM simulation on a vertically-vibrating poly

methyl methacrylate (PMMA) column filled with granular materials. They focused

on studying particle damping at different values of coefficient of restitution, coeffi-

cient of friction and particle stiffness. Though results have shown that the major

part of the primary system energy is dissipated by friction, the actual coefficient of

friction does not seem to have a significant effect on the energy dissipation in most

cases. A promoted role for the coefficient of friction could be observed when the

coefficient of restitution is greater than 0.9. Large changes of contact stiffness were

also confirmed to be a factor affecting the energy dissipation.

2.3 Treed Gaussian Processes —the stochastic Mod-

elling

Particle dampers may exhibit different dynamic behaviour during operation due to

the Three Phase States. Such characteristics of particle dynamics has made most of

the predicting models fail or be restricted to a certain limited applicability. However,

recently researchers came up with idea to detour the inherent physical complexity of

particle dampers by predicting their behaviour utilising machine learning techniques.

Possible data acquisition experiments could be done on particle dampers to collect

necessary data which is used as training data sets for predicting the untested data

of interest (eg. amplitude & frequency).

The advancement of computational capacity in recent decades has housed the prac-

ticability of many numerically-based simulations. Not only DEMs or their close

correlative, the Finite Element Methods (FEMs), have been extensively used and

voluminously published on. Somehow those old ideas regarding sampling-based

speculating derived from old gambling tables have gained their strength for much
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more extensive applications. Statistical modelling, or more precisely the statistical

inference, is what is being spoken here. Statistical inference is a purely data-based

mathematical model, that by itself, contains no direct physical insight to its appli-

cation. It could be said, given a set of data, the statistical model is used to infer

out the statistical property (e.g. p-value, mean and variance) of that data system

based on some certain rule. For example, given a set of data, through a proper

statistical modelling, one could be able to give predictions to the behaviour of the

data through providing a predictive curve characterised by the mean and variance.

On the gambling table it is like given a number of trials of dice casting, and make

a prediction on its next incident. To the particle damping modelling, one could

picture the measured data are actually observations (such as numbers on a dice) to

a hidden unknown rule (behaviour of the data such as trend), and the statistical

modelling focuses at constructing that rule with the mean and variance.

The two main porticoes supporting the statistical inference are the classical Frequen-

tist statistics, and Bayesian statistics [27]. Frequentist statistics is not the subject

of study in this thesis, despite its dominance in the last century. Its debate with

the Bayesian statistics has formed a series of remarks in statistical history [27], a

further discussion on it will deviate the thesis away from its main theme. However,

Bayesian statistics once lived in a long shadow cast by the frequentist statistics. Its

rehabilitation generally started from 1980s as attributing to its coalescence with the

Markov Chain Monte Carlo (MCMC) and the growth of the computational power

which in general allow the samples to be drawn faster and more efficiently. In 1990s,

the Bayesian statistics came in confluence with the rising trend of machine learning

techniques, and discovered its crucial place there [28]. Many approaches could be

associated with the Bayesian machine learning which is built on the framework of

Bayesian inference.

One of them is the Gaussian Process Regression Tree (GPRT), also known as the

Treed Gaussian Process (TGP). The TGP is a recently produced mathematical

model developed by Gramacy [29]. The essence of the TGP is the amalgamation of

the Gaussian Processes (GP) and the Classification and Regression Trees (CART).

Tersely speaking (more details in the chapter on theory), the GP is a statistical

regression model used for making predictions on a provided data space, while the

CART model is a binary tree generation process which is used for dividing the data

space into a group of sub-spaces.

The GP is not a recently invented mathematical method, the first application of
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the GP refers to Kriging (1951) [30]. However, it is only a recent event for the GP

to be used in the scope of machine learning. As a stochastic process, the Gaussian

Process is a collection of random variables, any finite number of which have a joint

Gaussian distribution [31]. The Gaussian process is specified by its mean function

and covariance function. In a sense of simplification, any function can be perceived

as a very long vector assembled by data points, at each data point; there is an input

and output pair (X, Y ). The Gaussian Process defines that at every such point there

is a Gaussian distribution over output Y with a mean function m(x) and covariance

function k(x, x′) which establishes relations to other points in the function. In the

field of supervised machine learning, analogous to the traditional Bayesian study, the

prediction of function (regression) is determined by the posterior which is derived

via Bayes Rule (for more information see [31], briefly, the posterior is proportional

to a prior times a likelihood) with specified Gaussian Prior as well as the provided

training data information. This can be roughly explained in a pictorial way:

Figure 2.3: (a) prior sampling (b) posterior distribution, see [31].

Figure 2.3 depicts a naive but comprehensive way to explain the prediction of func-

tion via stochastic machine learning. Imagine that there are initial prior beliefs in

the form of the function under prediction (e.g. Gaussian), then sample such func-

tions with such belief in the prior space. If some of the data points of the function

are known (Figure 3(b) shows 2 given data points), with the correlation between

points specified by the covariance function, the posterior space will be conditioned

and produce the confidence interval. Clearly, the increase in the number of known

data points will further condition the posterior with more fixed points and a more

concentrated confidence region.

Gaussian Process Regression has proved to be a reliable solution in machine learning,
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but limitations show that if the relations between input and output are governed by

multiple functions, the performance of GP will deteriorate. Considering the Three

Phase behaviour of particle dampers, one is certainly expecting to partition the

input space into regions for better use of GP. Such expectation sets a journey to the

application of the Classification and Regression Tree (CART).

The CART model recursively partitions the predictor space into regions (leaves)

to form a binary tree structure whose leaves contain more homogeneous datasets.

Several generations of the CART have been developed in the past. The earliest

conceptual formation of the prototype of its type dates back to 1959, when Belson

[32] stated the biological matching process could be equivalently treated as a pre-

diction process, and he illustrated such with a tree in Figure 2.4. In 1963, Morgan

and Sonquist introduced the Automatic Interaction Detector (AID) algorithm for

growing a binary tree [33], which gained contemporary popularity. The AID is a

binary tree developed for piecewise constant regression. Unlike the later more ro-

bust tree models, the AID can only progressively make splits rather than removing

splits in the process. The AID had been richly applied during that period to a

number of problems in practice; most of those applications are in the field of social

science which is the common natural fit for statistical experiments. As one of the ex-

ception, Cellard et al. (1967) pioneeringly extended its application into engineering

where they used the AID to study the effects of environmental and technical factors

on the gripping of locomotive engines. Messenger and Mandell (1972) introduced

the first classification tree known as THAID based on the AID [34].

Breiman et al. (1984) first introduced the Prune operation into the construction of

the binary tree in place of the stopping criterion in the AID and THAID [35]. This

is considered as a big leap in the development of the binary tree models, because the

introduction of the Prune substantially improved the robustness of constructing the

tree. This was proved beneficial in the later stochastic treatment of the construction

of the tree [36]. In their revolutionary paper, they also first introduced randomness

into the tree model that the linear splits could be obtained by random search.

Quinlan et al. (1992) [37] first developed the tree for stepwise linear regression, which

greatly inspired the later researchers like Torgo (1997) [38] to install function models

in tree leaves.

Chipman et al. (1998) [36] applied the Bayesian framework to stochastically con-

struct the tree. Such an approach was later known as the Bayesian CART (BCART).
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Figure 2.4: Belson’s tree for Biological classification, see [32].

This BCART is also the foundation for the TGP developed in this project. The

BCART is generally comprised of two parts: prior specification and stochastic

search. Basically, Bayesian CART intend to achieve more promising CART models

via a stochastic search guided by the posterior distribution. At the end of the search,

a number of selections could be made upon these tree models based on a variety of

criteria like maximum likelihood etc. In contrast to the traditional greedy algorithm

used by other authors [18], the search strategy involved in the Bayesian CART is

a fully sampling based one that requires a much higher computational power to

implement in practice.

Breiman et al. (2001) made another striking effort in this area by embedding the

idea of random forest into the tree model. The random forest allows large set of

CART trees to be constructed from bootstrap samples [39](Bootstrapping is a classic

estimating method for systematic statistical properties based on random sampling

with replacement).

Kim and Loh (2003) [40] innovatively introduced the idea of multiple sub-nodes for

classification trees, which allows more than two sub-nodes to be generated from one

node through growing the tree.

The sprouting of these new, or once new, ideas in the development of the tree model

has indeed made it more applicable and adaptive to various different problems, and

naturally demonstrated its capability and reliability. Later in the union of the GP

and the tree model by Gramacy, the potential of the GP regression has been more

effectively exploited with the aid of the decision tree-based model which provides

better data space for the GP to exert its power.

Currently, there is a lack of applications of the TGP in practice. Its reliability in
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dealing with real world problems has not yet been demonstrated. But it is highly

promising to expectantly see a good performance from an industrial application of

the TGP, since the decision tree model has plenty of practical experiences with

the combination with other regression models, such as linear regression, logistic

regression etc.

Here are some examples. Yusuf et al. (2007) used the classic CART model in

Zoology to study the weaning weight in farm animals [41]. Druedahl and Munk-

Nielsen(2017) did a study on the Danish national income data with a regression

tree equipped with a generalised linear model, and they did arrive at a satisfying

modelling of the income’s uncertain behaviour exhibiting high-order dynamics [42].

Hecker and Kurner (2007) published a paper on applying a linear regression tree to

predicting the mobile terminated call for the study of the cellular traffic in the area

of Braunschweig and Hannover. They latter found the use of the CART improved

the overall predictive accuracy compared to the more traditional approach of Linear

Multiple Regression Analysis [43].

Likewise, the decision tree models have made a wide presence to many research

fields. It could also be sensed in these researches that the primary heuristic for

using the decision tree-based models is the existence of characteristic changes in the

data space. Therefore in the same vein, the three phase based characteristic change

in the PD has raised enough enticement to the application of the decision tree based

models.

2.4 Conclusion

The modelling of the particle damping is traditionally based on analytical approxi-

mation and computational discrete element methods. The analytical modelling has

been voluminously studied from the middle of the 20th century, during which nu-

merous assumptions, equivalent treatments and relevant theories have made their

efforts of attempting to decipher the hidden physical rules hidden inside the particle

damping system. However, no matter these methods made their presence in a sense

of succession with improvements or innovation with amendments, all failed to serve

their original purpose, being a general approach to model the PD. The later coming

discrete element method unveiled its power in realistically modelling the real world

PD system, but is limited heavily by the computational power. The recent exploding
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spreading of the machine learning methodology has introduced a new dimension for

the researchers to jump over the aforementioned predicaments in modelling the PD.

The TGP is one of the approaches offered, whose mathematical property offers a

natural solution to modelling the PD. However, to apply the TGP in the context of

particle damping is an engineering area currently not dabbled in by the researchers.

In fact, even stepping back to an even broader range, the application of a regres-

sion tree model on modelling engineering uncertainty has rather limited presence

under the scope of either academics or industries. Despite the lack of abundance

in relevant researches, both the GP and the decision tree based models have been

under research for decades; their capabilities are doubtless. Also considering the

recent resurgence of Bayesian statistics over the last two decades, one could take a

positive outlook on the future of machine learning. To study the TGP on the PD

is definitely a small spot in the research area, which no one dabbled in before, but

also a strengthened one at the edge of the development, pushing and expanding.



Chapter 3

Theory —Treed models and

Gaussian Processes

3.1 Chapter Overview

It is not rare to observe physical systems that exhibit piecewise behaviour where

the quantification or qualification of system factors could be modelled in a discrete

fashion as allocating regions.

When it comes to the case of particle damping or some SHM scenarios, behaviours

on both the physical or pure mathematical account, can feature a sense of shifting

or switching of phase. For example, as introduced in the literature review, particle

damping has been reported to behave in analogy to a form of Gas, Liquid or Solid.

There is obvious switching of phase in terms of physical observations. In SHM,

for example, the Z24 bridge has one switching dependence on the environmental

temperature as a result of the stiffening of asphalt [44].

In the cases mentioned above, the treed model offers a natural solution derived from

its structure which could be equivalently viewed as a process of allocating regions.

In order to allocate regions with reasoning based on the case, the treed model has

to be implanted with a ’brain’ which defines its functionality, criteria, principle etc.

For the particular concern of this project, the treed model is intentionally developed

for the very purpose of regression-based analysis. Therefore, the treed model will

be comprised of mainly two parts, namely the tree structure and the regression

22
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sub-model.

As subject to both parts, there are a series of versatile options to select for both

the purpose of better satisfying the requirements from the real case. For the tree

structure, the essential idea shines light on its dynamical manipulation of the struc-

ture so to find the very structure fitting the data space best. This manipulating

process could be executed in either a probabilistic or deterministic way. This option

of being probabilistic or deterministic also remains as an availability for the regres-

sion sub-model as well. Eventually, this leads to the Gaussian Process as the main

consideration for this project, and this nomination is discussed briefly in the coming

paragraph. More detailed discussion will be seen in other sections of this chapter.

A Gaussian Process (GP) is a nonparametric regression model (NPRM). Nonpara-

metric regression models are inherently well-suited for modeling real world scenarios

in which unknown nonlinearity dominates the associated physics. The literal expres-

sive terminology ’nonparametric’, to some degree, is a bit misleading, considering

that a nonparametric model still has to contain modelling parameters to guide the re-

gression. Differing from a parametric model, the parameters within non-parametric

model could be specified as informative of the change of characteristic within the

data (more details later).

The Gaussian Process (GP) as a branch of NPRMs can provide generality, robustness

and reliability to cases with different degrees of nonlinearity. The GP bases its

inference on a full Bayesian framework. By specifying different covariance functions,

the predictions could be made vastly versatile.

In this chapter, a rather intuitive progress will be taken to unfold the development

of a TGP through a simple deterministic tree. As to form the completeness of

the argument, any related side mathematical theories will also be addressed and

expounded in detail to a certain extent.

3.2 Decision Trees

The aforementioned tree structure, for the use on this particular project, refers to a

Binary Decision Tree (BDT). A decision tree is a logical mapping process through

which the elements of a given input space will be assigned into different groups rep-

resented by leaves of the tree based on a series of criteria [45]. A binary tree basically
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means the criteria take the form of a simple choice of YES/NO, thus branching the

underlying space into two sub groups. Through repeated application of this unit

process, a tree structure will be established. Figure 3.1 shows a typical BDT. In

brevity, the BDT may be thought of as a tangible representative framework for par-

titioning a set of data. From the pictorial presentation of the tree, the vertex on the

top is the root of the tree (decision trees grow from the top towards the bottom). All

the inequalities are known as the splitting rules which specify whereabout to place

the split or partition in the data space. Excluding the root, those nodes without

being marked with letters are internal nodes of the tree which is unobservable in

the data space. At last, the nodes marked with letters (A,B,C,D,E) are leaf nodes

(or just leaves or external nodes), they are the characteristic regions as intended by

the purpose of the decision tree.

Figure 3.1: Typical Binary Decision Tree.

Because of the possession of an intrinsic binary mapping, the BDT naturally requires

a logical sequential construction of the tree structure. This sequential construction

is schemed in a rather fixed form, in which splits are supplied through proposing

YES/NO questions to all the leaves in the current tree. Generally in two ways, the

structure of the treed framework could be established, namely: deterministic and

probabilistic. For a deterministic treed framework, mostly referred to as the Greedy

Algorithm (GA), the algorithm will set forth the Y/N questions to each existent

leaf by the order of its node number. On the contrary, a probabilistic tree structure

generates splits in a random manner, it could either add splits or remove splits or

alter the existent splits. Using which execution to perform on the tree is a pure

stochastic matter. One thing worthy of notice is that whether the tree structure is
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deterministic or probabilistic, it does not necessarily mean the same thing to the

whole treed model. The definition of the treed model will be addressed later.

The construction of the tree cannot accomplish without the proper settings on the

splitting rule. Basically the rule takes its format in a way of whereabout to place the

split within the data space. However, to deploy such a split requires a certain set

of splitting criteria for the sake of logical reasoning. The criteria here are basically

a global metric to evaluate the quality of the tree, and it is completely akin to the

regression sub-model in use. Or in other word, the regression sub-model decides the

type of criteria. Depending on the type of regression sub-model chosen, the treed

model could be further classified into 3 categories, namely: fully-deterministic, semi-

probabilistic, and fully-probabilistic.

Fully-deterministic refers to the treed model with deterministic treed framework

incorporated with a deterministic splitting criterion. The corresponding criteria

could be, for example, Mean Square Error (MSE).

A semi-probabilistic treed model establishes its framework on the probabilistic basis,

but reasoning the partitioning of the space with a deterministic criterion.

A fully-probabilistic model basically encodes the whole treed model in a probabilistic

manner, in which the treed framework and the splitting criterion will be arranged

as probabilistic and remain mutually influential.

In the following sections of this chapter, with respect to all the three types of treed

models, exemplary models are subject to detailed investigations for the purpose

to compare and contrast, and more importantly, presents a logical tour for the

evolutionary process of building the current TGP model.

3.3 Deterministic Trees

The treed model, at its very simplest, could explore the splits in the data space

via a deterministic way. The primary principle inside a deterministic tree is the

Greedy Algorithm. The terminology Greedy Algorithm is decently descriptive to its

character whose greediness aims at reaching a global optimum through a series of

steps of satisfying the local optimum. The quantity to be optimised in this particular

circumstance for a simple parametric regression usually refers to error measurement
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or sum of Bayesian posterior probability of the tree. For this particular project, the

deterministic tree developed in pertinence to arriving at the final TGP, is a simple

linear regression tree featuring a greedy algorithm and a Mean Square Error (MSE)

splitting criterion.

A MSE metric for measuring the quality of a linear curve fitting is almost the most

conventional curve fitting strategy. From the mathematical perspective, the MSE

is the sum of all the squared vertical deflections of each data points from the fitted

curve. The general expressive form is,

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 (3.1)

where

n = number of training data points;

Ŷi = predictive Yi due to curve fitting;

The MSE is the second moment of the error, and judging from its expression, it is

intuitive that such a metric reflects both the influence of predictive mean and the

variance. As qualified to be a decent choice for a treed model, the MSE stands out

for its neatness and simplicity. More specifically, the essential part is that the local

error at each training data point will not lose its generality across leaves, thus is

eligible as a standard metric to evaluate the prediction from a treed model.

The specific mechanism of the linear deterministic regression tree could be epito-

mised into the following procedures:

1. Grow the selected leaf of the tree by placing the split to the corresponding data

space (root corresponds to the entire data space);

2. To place the split, the algorithm will sweep through all possible splitting locations,

and at each of these locations, it will place down a pseudo-split;

3. Evaluate the sum of MSE from the generated left and right leaves under that

pseudo-split, record this MSE in an array [MSE];

4. Repeat the evaluation and record for all the pseudo-splits at all the possible

splitting locations in the selected leaf;
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5. Find the lowest MSE from array [MSE], and identify its splitting location, and

this splitting location will be the splitting rule for that leaf;

6. Repeat the procedures one to five for the next leaf whose selection is conveyed in

ascending order in terms of node number in the tree;

7. A leaf will cease to split, if the lowest MSE is not less than the previous MSE if

the leaf remains unsplit;

8. The entire process will stop when all leaves cannot be further split.

By the large, a deterministic tree gains its effectiveness from believing the global

optimal could be approached through a series of local optimal steps. Under this

presumed premise, encoding its core with a simple deterministic splitting criterion

can substantially reduce the computational cost, though essentially it is wired with

deliberate redundancy in exhaustive evaluation. However, still as a non-sampling

based method, it can provide great accuracy, and extricate one from issues such as

bad convergence rate etc.

The defective aspects of the deterministic tree are considered to be mostly inevitable.

As it has been already addressed that, the greediness of the encroaching way to

reach the global optimum, at its truest sense is entwined with ’Discreditability’ and

’Profligacy’. ’Discreditability’ basically refers to the false or inaccurate ultimate

global optimum it eventually obtained. The theoretical viability of the Greedy Al-

gorithm is established on the theoretical belief that any discontinuity on the general

trend of the data will induce a conspicuous rise in the MSE. This theory holds its

own in most scenarios with a decent tolerance on the accuracy of the exact place-

ment of splits. However, there are some cases where the Algorithm completely fails

its fulfillment by giving splits at apparent faulty locations.

’Profligacy’ refers to the fact that since every possible splitting locations will be eval-

uated, this fact could be considered as an implication of great loss in the efficiency.

And also because of this inefficiency, a deterministic tree will not be practically fea-

sible to collaborate with splitting criteria encoded with probabilistic inference, or

equally speaking, it is best to be applied for parametric regression where analytical

solutions or simple numerical solutions to the regression function do exist.



3.4. PROBABILISTIC TREES 28

3.4 Probabilistic trees

To start with the probabilistic tree, the first model to be set under scope will be

something preeminent for its achievements in pioneering and expanding the field.

This particular model is the Bayesian Classification and Regression Tree (BCART)

for constant regression introduced by Chipman et al. in 1998 [36].

3.4.1 Bayesian Classification and Regression Tree (BCART)

The BCART essentially is a semi-probabilistic model, as a matter of the fact that the

splitting criterion is deterministic conveyed through a probabilistic optimisation pro-

cess. On the behalf of the formation of the tree structure, the process is completely

probabilistic by taking its form in a Markov Chain Monte Carlo (MCMC)-based

random walk.

In the context of statistical theories, a Markov chain, formally debuted in the early

20th century, is a stochastic process to simulate the random walk among states

whose inter-relations are presented as the probability of commuting from one state

to another. The following picture Figure 3.2 shows a typical Markov Chain. The

circles represent the state in the Markov space, and the Capital Pij next to the

arrows indicate the transition probability.

Figure 3.2: 1Typical Markov chain.

In the current BCART model, the tree structure along with its splitting rule (ba-

sically this combination is referred to as the tree) will be represented as a state

in the Markov chain. Hence, the construction process of the treed model is, in a

1Source: http://www.scipy-lectures.org/intro/numpy/exercises.html
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certain sense, tantamount to the random walk in the Markov space, and the chief

objective for the random walk is to expediently discover the states satisfying the

splitting criterion (in a global sense) best. Accordingly, the random walk will per-

form in a guided way which embodies in two aspects: 1. The alteration of the tree

structure, which is equivalent to the pace of the walk in the Markov space. 2. The

Metropolis-Hastings Algorithm.

For the first point, to represent the entire tree as a Markov state is somewhat a

bit abstract and intricate, because any nuance made to a tree (e.g. same structure,

different splitting location) will give birth to a complete different tree requiring to be

treated as a different Markov state. In this sense, the Markov space will be populated

with an enormous number of states. It could be further demonstrated through this:

if a one dimensional data space contains n data points, there could potentially be

n − 1 splits at its maximum. If one split is put down, there are n − 1 different

partitioned space; if two splits are presented, there are (n − 1)(n − 2)/2, which is

equivalent to (n−1)!/(2!(n−3)!); for 3 splits, the number will be (n−1)!/(3!(n−4)!);

hence for n − 1 splits, it is (n − 1)!/(n − 1)!(0!) = 1. And each partitioned space

with m splits will have m! trees possible to be fitted to it, considering the difference

in the splitting order. Thus the total number of possible states will be,

Number of possible states = (n− 1)!
n−1∑
i=1

1

(n− 1− i)!
(3.2)

Then according to convergence property of the sum of the reciprocal series of facto-

rial,
inf∑
n=0

1

n!
= e (3.3)

Hence if the n is large enough(eg.n > 20) ,the number of possible states will be nigh

(n − 1)!e, which leads to great difficulty in exploring the Markov space. Therefore

the pace of the random walk must be, to some degree, efficient enough to travel

around the Markov space within a reasonable amount of steps, and it also should

be partially trackable, as the newly reached state as a tree, should be a derivation

or modification based on the previous state. In association with these requirements,

Chipman gives the following tree alteration executions (or jumping criterion in the

Markov space).
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• Grow : Add one partition by splitting one leaf node of the tree

• Prune: Remove one partition by joining two sibling child nodes

• Change: Relocate an existent partition by changing splitting rule in the tree

• Swap: Find two internal nodes who are mutually parent and child, and swap

their splitting rules

Grow and Prune are basically the pair of executions to determine the optimal num-

ber of splits. Change is set for finding the optimal location of the partitions, and

Swap is intended to find the most promising tree structure based on the depth of the

tree. Hence each execution has its own distinguishable character, which preserves a

certain uniqueness in the context of the alteration of the tree.

Guiding the pace of the random walk will improve the agility of the MCMC walk,

but not yet the efficiency of it in terms of moving towards the desired region in the

Markov space. Therefore, more guidance targeting at the walking direction needs to

be set. In the statistical community, this guidance could be led by the application

of a Metropolis-Hastings Algorithm (MHA).

An MHA is a sampling strategy dedicated to sampling from probability distribution

whose profile unknown or conforms to no known PDFs which allows a compar-

atively direct way for sampling (e.g. Box-Muller Transformation based sampling

for the normal distribution with accessible uniform sampler [46]).Even though the

type of sampling probability distribution can be directly sampled from (eg. Normal

distribution) , the loss of information such as normalising constant (eg. marginal

likelihood constant in Bayesian inference) can still cause troubles to sampling pro-

cess. Bridging with the BCART model, each state in the Markov chain has a related

posterior as inferred from Bayesian inference, and the entire collection of all the pos-

teriors forms a discrete probability distribution of the tree. Apparently, it is more

than the non-quantitativeness of the tree can inflict predicament on establishing a

regular probabilistic distribution for the posterior. The MHA offers a route to simu-

late the sampling through a series of acceptance or rejection decisions on suspending

states sampled from simple distributions.

The mechanism operates in the way below:

1. Randomly choose an execution option from Grow,Prune,Change,and Swap;
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2. Walk to a new tree state by altering the tree according to the selected execution,

and infer out the optimum posterior for that tree, record this posterior as P ∗;

3. Then evaluate the Metropolis-Hastings ratio A;

4. Compare a uniformly sampled random number a in [0,1] with A, if a < A, accept

this new tree state. Otherwise, abort the alteration.

In this 4-step process, the Metropolis-Hastings criterion has undertaken a crucial

responsibility for the decision making on the acceptance of the walked new state.

This criterion has the following mathematical expression,

A =
P (T ′)

P (T ∗)

Q(T ∗;T ′)

Q(T ′;T ∗)
(3.4)

Where T’ denotes the current state of tree.

Q is the transition probability between states, and P is the posterior probability for

the corresponding state.

The transition probability for any pair of tree states of the BCART model, if mu-

tually accessible, is defined by the specific execution chosen to commute between

both states. As the execution is uni-directional, which only defines the probability

of transferring towards the next state, but the backward travel does not share the

same probability. For example, assume there are two tree states A and B. If A to B

is conducted by Grow, thus B to A is Prune to form a counterpart. In notational

form,

Q(A,B) = Q(Grow);Q(B,A) = Q(Prune)

Q(A,B) = Q(Prune);Q(B,A) = Q(Grow)

Q(A,B) = Q(Change);Q(B,A) = Q(Change)

Q(A,B) = Q(Swap);Q(B,A) = Q(Swap)

(3.5)

Then further details on the relationship between the transition probability and the

executions are explained by the following equations,
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Q(Grow) =
1

4
p(terminal node of grow)

Q(Prune) =
1

4
p(internal node of prune)

Q(Change) =
1

4
p(internal node of change)

Q(Swap) =
1

4
p(internal node of swap)

(3.6)

For Grow and Prune, they are mutually reversed executions to each other, thus the

choice of either will result in the numerator and denominator of Q becoming a pair

of Q(Grow) and Q(Prune). And Q(Grow) refers from number of of total terminal

nodes as a contrast to the number of internal nodes for the Prune. This contrast will

nullify the cancellation of the Q ratio, which is valid for Change and Swap where

both executions are reversed executions to themselves.

The posterior probability of each sampled tree is basically the product of the pos-

teriors from each of the leaves in that tree. This probability is the key quantity

and metric to reflect intuitively how likely the tree could be rated as the tree pro-

ducing promising predictions to the data space. Its source of reliability stems from

the traditional Bayesian analysis. The central part of the Bayesian analysis is the

well-known Bayes rule taking in the form,

posterior =
likelihood× prior
marginal likelihood

(3.7)

In terms of a treed model, the performance of the prediction on the data space is

purely dependent on the specific partitions presented by the tree, if other factors,

such as the type of regression, are considered to remain fixed during the entire

inference process. Consequently as the only global variable, the tree will be of the

chief interest to be inferred out its highest posterior. However, as a non-quantitative

factor, its prior specification has to associate with other features. Particularly for

a geometric structure, the natural choice will be the depth of the tree. Therefore

a decent assumption on the prior of the tree could be that this specification shall
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set preferences favouring the tree with less complexity or less depth. The following

prior specification set forth by Chipman, serves this assumed purpose well,

prior = p(T ) = α(1 + d)−β (3.8)

Where α defines the initial base acceptance probability and β defines the decay rate

with the increase of the depth of the tree; d refers to the depth of the tree.

This neat and succinct specification of the prior of the tree does encode the initial

preference over the trees with less depth. Once the prior has been set, the likelihood

in a form of p(θ|T ) could be treated as a conditional posterior on the present tree.

Therefore, this leads to a sub-Bayesian inference centred at the predictions on the

data in each leaf,

p(θn|Dn, T ) =
p(Dn|θn, T )p(θn|T )

p(Dn|T )
(3.9)

Where Dn= (X, Y )n refers to the data in each leaf n, and θn is the regression

parameter in leaf n. In an equivalent expression,

p(θn|Xn, Yn, T ) =
p(Yn|Xn, θn, T )p(θn|T )∫
p(Yn|Xn, θn, T )p(θn|T )dθn

(3.10)

In evaluating the posterior from a Bayesian analysis, the fact of reasoned speculation

requires an initial specified type of probability distribution on both the likelihood

and prior. The marginal likelihood on the denominator is a constant completely

determined by the likelihood and prior. However, not every pair of specifications on

the prior and likelihood can collaterally yield an analytically obtainable marginal

likelihood, as owing to the common predicaments in analytically evaluating intricate

integrals. Thus, a convenient way to resolve this problem is to use a conjugate prior.

A conjugate prior is a relation-wise specification of the prior and likelihood pair, so

that the resulted posterior distribution possesses the same form of the distribution of

the prior. This type of special conjugate relation entitles the arrival of the posterior

without the computation of the marginal likelihood term on the denominator. It is

somewhat a bit analogous to using trial method to solve the Ordinary Differential

Equations such like ay′′+ by′+ c = 0, where the special form of y = C1e
r1x +C2e

r2x

suffices as the general form of the solution to y.

In the BCART model, for the purpose of simplicity in both Bayesian deduction and
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generality, the choice of the conjugate prior will be a Normal Inverse Gamma (NIG)

distribution coupled with a Gaussian likelihood. In the spirit of a model for constant

regression, the conjugate prior and likelihood pair could be specified in two ways

as in compliance to the users preference, namely a Mean shift model (MSM) and a

mean-variance shift model (MVSM).

The prior part of the mean shift model below, in the spirit of an NIG distribution, is

essentially a separate specification of a Normal and an Inverse Gamma distribution.

The NIG distribution is formally defined by the multiplication of the Normal and

Inverse Gamma distribution.

µ1, µ2..., µb|σ, T i.i.d. ∼ N(µ̄, σ2/a) (3.11)

σ2|T ∼ IG(v/2, vλ/2)(↔ vλ/σ2 ∼ χ2
v) (3.12)

where as a constant regression, µ is the predictive constant; v and λ are the IG

parameters which are treated as known; The conversion sign in the bracket shows

vλ/σ2 could be sampled from the v Degree of Freedom (DOF) Chi-square distribu-

tion.

Of the part of likelihood, the specification below encodes that the y value in each

leaf is identically distributed in a manner of Gaussian distribution with a conditional

mean and fixed variance across all leaves.

yi1, yi2..., yini |θi i.i.d. ∼ N(µi, σ
2) i = 1, 2, ..., b (3.13)

The Mean variance shift model is a minor modification of the mean shift model in

terms of the expressive mathematical form,

µi|σi ∼ N(µ̄, σ2
i /a) (3.14)

σ2
i ∼ IG(v/2, vλ/2) (3.15)

In comparison of the conjugate prior of both MSM and MVSM, the indication of
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the distinction has been completely undertaken by the subscript of the σ. This

subscripted denotation manifests that the MVSM, in contrast to the MSM which

unifies the σ across leaves, allows each leaf to retain its own distinguishable character

in the σ. This individual independence brings the advantageous impartation of

robustness and generality of a certain degree to the algorithm. And correspondingly,

the likelihood will be specified as,

yi1, yi2..., yini |θi i.i.d. ∼ N(µi, σ
2
i ) i = 1, 2, ..., b (3.16)

The conjugate specification above, according to the conjugate property, will con-

sequence a posterior analytically derivable. For NIG conjugate prior to Normal

likelihood, the posterior for the MSM and MVSM are given below,

p(Y |X,T ) =
cab/2∏b

i=1(ni + a)1/2
× (

b∑
i=1

(si + ti) + vλ)−(n+v)/2 (3.17)

p(Y |X,T ) =
b∏
i=1

π−ni/2(λv)v/2
√
a√

ni + a

Γ((ni + v)/2)

Γ(v/2)
× (si + ti + vλ)−(ni+v)/2 (3.18)

where c is the generated constant from the deduction, which is independent on T;

si=(ni-1)var(Yi); ti = [nia/(ni + a)](ȳi − µ̄)2.

The set of parameters(v,λ,µ̄,a) are treated as known prior to the implementation of

the algorithm. The choice of values for this parameter set could be led by reasons

with the knowledge of observed Y values as the guidance and trace. In depth, for the

MSM, the knowledge of the observed Y values is equivalently the same as knowing

the standard deviation of the data space(denote as s∗). Since the presence of a Treed

model is intended to better fit the data, thus its standard deviation σ should be less

than the natural dispersion of the data as quantified by s∗. Then in consideration

of the deterministic tree in the upper section, its exhaustive searching behavior, in

many cases, will consequence a partition space prone to over-fitting which features

a standard deviation s∗ lower than majority of the σ as related to other partition

patterns in the data space. Thus it is reasonable to arrive at the presumption of

the inclusion in the interval [s∗, s∗] for the σ. Accordingly, v and λ could be tuned
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to accommodate the majority of the PDF of σ in this interval. Further guidance on

µ̄ and a could be achieved subsequent to the choice of v and λ, as to ensure that

the prior of µ will cover the whole range of Y values within a reasonable probability

level.

For the MVSM, this guidance preserves its effectiveness, except with a little adjust-

ment in terms of the guiding direction for σ. Different from the MSM, the MVSM

has an inclination to over explain the variance in the data space. Because each of

the leaves preserves a complete freedom in possessing its own σ, this could basically

be translated as that the MVSM has the potential of fitting each leaf with extremely

high resolution, which sometimes could be unrealistic. As interpreted in mathemat-

ics, the σ tends to approach the left end of the interval [s∗, s∗]. To deploy against

this potential unrealistic fitting, the v and λ are tuned in such way that the σ has

a concentration of probability spanning the centre range of the interval.

For a broad consideration, the choice of either model should entitle the dependence

of the selection of v and λ on the complexity of the tree, as the depth of the tree

does lead to finer partitions where over-explanation of variance is more common to

occur.

The existence of analytical evaluation of the curve fitting posterior, with the fully

established prior model for the tree structure, forms the basis for Bayesian inference

for the entire tree,

p(T |X, Y ) ∝ p(Y |X,T )p(T ) (3.19)

Since there is no conjugate relation traversed between the likelihood and prior, the

evaluation of the marginal likelihood constant cannot be detoured, and of course

cannot afford simple integration methods. Thus the foregoing MH algorithm is used

here to reveal the posterior probability of each Markov state in a tentative fashion

whose spirit of guided experimental process will encourage the arrival at the high

posterior trees.

3.4.2 Gaussian processes

Before entering the discussion of the Treed Gaussian Processes, it is necessary to

expand the details of the Gaussian processes. As having already been addressed

briefly in the chapter overview, the Gaussian process is a nonparametric model built
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on the foundation of a full Bayesian framework.

Hence, the best starting point for examining the GP is the traditional Bayesian

linear regression. Since the fundamental element for any Bayes-based inference is

the Bayes Rule as described in equation (3.7). The Bayesian linear regression also

will belong to the tier of parametric regression model. Therefore the predictive

curve must preserve a closed expressive form which contains geometrically inter-

pretable parameters to settle down the type of regression. In the linear regression,

the Bayesian analysis begins by defining the type of regression. This naturally yields

the following predictive form,

f(x) = xTw y = f(x) + ε (3.20)

where x and y are the input and output vector sets; w is the linear parametric vector

set and ε is the noise.

It is rather convenient and reasonable to consider the noise to be modelled essentially

by a Gaussian distribution whose form accommodates the universal noise.

ε ∼ N(0, σ2
n) (3.21)

Since the regression performance is fully decided by the choice of the w, thus the

Bayesian inference assigns a prior over it. For the purpose of convenience in analysis

and conservativeness in generality, again a Gaussian distribution will be assigned to

it.

w ∼ N(0,Σp) (3.22)

where the Σp is a p× p covariance matrix.

Both the specifications of the noise and prior are conditioned on a broad sense

(a priori according to human experience), logically plausible, but observationally

less evidenced. The specification of the likelihood will intensify the strength of

reasoning from the Bayesian framework by encoding the observational data. For

a linear model, if the prior at each input point is Gaussian distributed, to reflect

how likely a certain selected set w could yield a curve that fits the training data

space well, the likelihood will also be nominated as Gaussian distributed over the
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function y with the parametrisation of w. This parametrisation sets the mean of

the function response y at its corresponding given location x on the predictive curve

XTw (X is the vector set of all x locations), implying that higher likeliness occurs

when the predictive curve could effectively be treated as an averaged interpretation

of the training data space. The general mathematical expression goes as,

p(y|X,w) =
1

(2πσ2
n)n/2

exp(− 1

2σ2
n

|y −XTw|2) = N(XTw, σ2
nI) (3.23)

Both the likelihood and the prior are subject to active definition by the user. The

marginal likelihood is a passive factor fully defined by the likelihood and the prior.

Not in every circumstance will the marginal likelihood will be attached with a closed

form, and in fact in most scenarios, the evaluation of the marginal likelihood can

raise substantial nuisances. More details will be addressed in the later content of

this chapter. At least for simple Bayesian linear regression, the knowledge of the

marginal likelihood is not peremptory. Through correct mathematical operations,

the posterior will be presented as,

p(w|X, y) ∼ N(w̄ =
1

σ2
n

A−1Xy,A−1) (3.24)

Where A = σ−2n XXT + Σ−1p .

Though the posterior of the w is derived, it is still required to integrate out the

dependence on the w to give out the prediction, thus,

p(f∗|x∗, X, y) =

∫
p(f∗|x∗, w)p(w|X, y)dw = N(

1

σ2
n

xT∗A
−1Xy, xT∗A

−1x∗) (3.25)

As a parametric regression model, the Bayesian linear regression bears comparatively

higher precision (statisically say, precision is not a rigorous term) in producing the

linear predictive curve fitting than the more basic and standard least squares method

by accounting for other possible choices of w. In addition to providing the predictive

fitting, the Bayesian based inference also conveys the benefits of being less absolute

at the presence of confidence intervals.

However in the real world, the compliance to pure linearity is scarcely to be seen.
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And also in its most commonness, the scenario would either be the absence of

knowledge of the exact closed form for regression or the absence of the existence of

a closed form. This predicament gives rise to multiple countering solutions, such as

high-order polynomial fitting, linear approximate fitting, nonparametric regression

etc.

The Bayesian linear regression, although being parametric, its rudimentary basis, the

Bayes rule has enough potential to frame an inference scheme for the nonparametric

regression. The Bayesian linear regression is parametric, it is because the regression

model splits the entire inference processes into two parts. The first part involves

a Bayesian inference targeting at the linear regression parameter set w, and to

marginalise the prediction conditioned by the w will characterise the second part.

This could be comprehensively encapsulated as giving predictions to a data space

via a prediction on a parameter set based on the information from the data space.

In this sense, it appears like this process suffers a certain degree of redundancy, if

the prediction is possible to be directly given based on the data space.

The Gaussian Process perfectly fits in this crack, because the GP essentially is a

Bayesian inference directly performed on the function itself whose posterior distribu-

tion is entirely and directly conditioned on the training dataset. The term ’function’

is used to describe the immanent relations between the input and output among the

data space. This relation is not necessarily accessible for mathematical expressions

with closed forms. In the GP, the prior will directly be incarnated in the function

as a multivariate Gaussian distribution over all the data in the space. It is unlike

the Bayesian linear regression whose prior specification is assigned to w.

The prior of the GP goes,

f(x) ∼ Np(m(x), k(x, x′)) (3.26)

where p is the total number of data points for both the training and testing dataset.

m(x) is the multivariate mean and k(x, x′) is the covariance.

To further explore this specification, it is conducive to conducting a well clarified

analysis through separating the training and testing dataset. Then the prior bears

the form below,
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[
f

f∗

]
= N(0,

[
K(X,X) + σ2

nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

]
)

Where N stands for the multivariate normal distribution, X is the training input

data and X∗ is the test input data, K(.) is the covariance matrix.

The GP is a special version of Bayesian inference whose prior specifies not only the

initial preference on the output y (y = [f, f∗]) at each input entry, but also encodes

the mutual correlations among each pair of data points via the presence of a Co-

variance matrix. The covariance matrix, whose entries are output from a covariance

function pre-selected by the user, does command the GP likelihood as it determines

the predictive function at the given training data space. From the perspective of

mathematical neatness and simplicity, the GP is extremely advantageous for analyt-

ical derivation of the posterior, simply because the prior in such a matrix form allows

the inference of the posterior through the matrix operations without the knowledge

of the expressive form of both likelihood and marginal likelihood (detailed derivation

see appendix),

f∗|X, y,X∗ ∼ N(f̄∗, cov(f∗)), where

f̄∗ , E[f∗|X, y,X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y,

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (3.27)

By definition the covariance matrix is constructed to reflect the statistical variation

at each input entry as a result of resultant covariance with other data points in the

space. Because the influence between points is reciprocal, thus the covariance matrix

is completely symmetrical matrix whose elements are all scalar values. Below shows

a typical covariance matrix,

COV =


k11 k12 · · · k1n

k21 k22 · · · k2n
...

...
. . .

...

kn1 kn2 · · · knn

 (3.28)

where the kij as an abbreviated form of k(xi, xj), represents the covariance between
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two points xi and xj.

In the covariance matrix above, it could be observed that each row or each column

describes the variance interaction between one point (ith or jth if it is the row or

column being picked) with other points (including itself) in the dataset.

The parametric model has a fixed pattern to reason the prediction through the hu-

man a priori assumption of the predictive form. As a nonparametric model, the

GP specifies no fixed form to accommodate the prediction. Its own basic reasoning

relies on the generating criterion of the covariance matrix, which is the covariance

function as mentioned formerly. In the broad sense, the GP is so powerful for that

it could, to some degree, imitate the recognition system of human-beings through

specifying the covariance function. When a person is giving predictions to an in-

put entry in a certain dataset, the recognition system instinctively will estimate

the prediction roughly through the data points around that entry regardless other

distant data points unless there exists obvious signs from the general trend. In this

case, specifying a covariance in association with the distance will definitely be highly

reasonable and beneficial to encode the logic of inference. This distance based co-

variance specification is known as the distance covariance function. For the GP, the

standard and most commonly used distance covariance functions are the Squared

Exponential (SE) covariance function (or alternatively the SE kernel in other name)

and the Matérn family of covariance functions. The corresponding expressions are

listed below,

kSE(r) = exp(− r
2

2l2
) (3.29)

kMatern(r) =
21−v

Γ(v)
(

√
2vr

l
)vKv(

√
2vr

l
) (3.30)

where r is the distance between two mutually influential data points, l is the distance

influence weighing parameter, and Kv is the modified Bessel function [47]. All the

parameters in the covariance functions are known as the hyper-parameters.

Both the SE and Matérn class kernels are designed to convert the idea of short-

distance reasoning into mathematical relations. Therefore, they both share the

similarity of assigning lower influential factor to more distant points from the under-

influenced point. The SE kernel is considered to be more common than the Matérn
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class in terms of the usage. The SE kernel is more academically desirable, because

its configuration is rather simple and easy to adjust and track its properties. In

addition, the SE covariance function is infinitely differentiable that its presentation

in a form of predictive curve will be perfectly smooth. The Matérn class adds

more versatilities in the smoothness of the final curve fitting, and essentially it is

considered to be more realistically representative for real world scenarios where an

extremely smooth curve might not be the greatest idea. In the current thesis, all the

simulations with either the TGP or GP will be based on the use of the SE kernel,

because computational-wisely the SE kernel is more parsimonious. To set scope on

the Matérn kernel, as well as other kernels, will be an object in the future work.

The GP is also versatile as the covariance function does not have to be distance

covariances. For example, the GP also allows the covariance function to be set in

relation to the axial coordinates as to plug in a fixed curve form for the regression

fitting. Hence the GP could also be applied as an alternative approach to conduct

linear regression etc. From a more general angle, the covariance function could be

specified in some way to conduct non-stationary regression as well. However, the

analysis on such GP will be accompanied with various mathematical difficulties.

Looking back to the inference of the posterior of the GP, it could be perceived that

just the same as any Bayesian inference, the final stage of the prediction is to select

the most suitable prediction from the posterior. For the Bayesian linear regression,

it is extremely simple, as firstly the linear curve parameter w has been integrated out

leaving a posterior predictive distribution that accounts for all possible predictions.

Thus to select the best fitting is just the selection of the fitting corresponding to the

highest probability from the posterior predictive distribution. Even if the w cannot

be integrated out simply, a reasonable selection could still be made under the Max-

imum A Posteriori (MAP) criterion which selects the prediction by evaluating the

highest probability of the posterior. In the GP, the analytical posterior predictive is

conceptually the same as its counterpart in Bayesian linear regression, and it is com-

monly addressed with the name ’Gaussian Process Marginal Likelihood (GPML)’.

The GPML describes the likelihood of prediction with the accounts for all possible

predictions as weighed by their corresponding probabilities. Since given the training

data and the covariance function, the GPML is a measure of the reliability of the

prediction w.r.t a set of pre-selected hyperparameters. The Maximum Likelihood

(ML) criterion selects the predictions parametrised by the hyperparameter values

which maximise the GPML as the appropriate interpretation of the data space. The
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ML analysis suffers from the exasperated analytical and computational difficulties

compared to the MAP of the Bayesian linear regression due to the complexity of

the GPML function where its function profile as related to the hyperparameters is

vacant to the probe of direct differentiation analysis.

In fact, the statement of the problem is rather simple and clear that given a function,

the objective is to find its global extremity. This particular type of problem has a

long cast in the history of mathematics. Its internal concept is rather coherent

to any simple problems such as finding the extremity of a parabola. However its

external expression varies and is much more complicated and intricate. In the GP,

by the ML criterion, the objective function is the logarithmic GPML,

log p(y|X, θ) = −1

2
yTK−1y y − 1

2
log |Ky| −

n

2
log 2π, (3.31)

where all the hyper-parameters are contained in the covariance Ky.

Given a new data space, the actual graphical profile of the equation above is mostly

unavailable unless the data space is well organised, expressing an extremely obvi-

ous behaviour. To search for its maximum, there are a number of difficulties to

encounter. First at different selections of the covariance function, the number and

the type of the hyper-parameters could be radically different. Thus this gives rise to

the difficulties in constructing general analytical models for the optimisation. The

next problem is that the presence of the Ky also implies the whole dataset will act

as a dynamic influential factor imposed on the equation, thus leading to stacked

complexity in operating matrices, especially matrix inversions. The impediments in

the computational and operational cost are already very demanding to the math-

ematical manipulations as well as computational efficiencies, but the problem of

multiple local extrema is even worse for trapping the optimisation away from the

global extremity. Both the academies of algebraic and numerical mathematics do

offer solutions to carry out this optimisation, and they will be explained in depth in

the later sections of this chapter.
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3.4.3 Gramacy’s TGPs

General overview

The BCART model is considered to be the first successful and mature attempt

to wire the idea of decision trees with the Bayesian learning for the purpose of

statistical classification and regression. The Treed Gaussian Processes introduced

by Robert Gramacy is built on the raw idea of Chipman’s CART, but its theory

and application have its own sense of origin.

Before the full course of detailed explanations of the Gramacy’s TGPs (GTGP), it

is worthwhile to address its internal relation with the BCART in terms of genealogy

and variation. As having been explained in the BCART, the amalgamation of the

binary decision tree and the Bayesian based inference will lead to the algorithm

being compartmented into two parts: the alteration of the tree structure and the

corresponding inference under that structure. This character in general will hold

firmly for all types of treed Bayesian based inferences. The GTGP complies to

this character with a certain degree of variation. In the first place the GTGP

has borrowed the whole fraction of the tree structure alteration from the BCART,

and made its adaptation on it. This hereditary sense of borrowing remains as the

closest similarity between the BCART and the GTGP. For the inference part, the

difference is considerable and drastic due to the totally unique specifications of the

prior. Because of this difference, the GTGP allows a dual-sampling system in which

both the tree structure and the parameter space could be altogether included in the

same stochastic sampling space where a Gibbs sampling is used for exploration. For

the purpose of a better compare and contrast, recalling that in the BCART, at each

sampled tree structure, the hyper-parameters will be optimised to find the MAP of

that particular tree structure. However, in the GTGP, the parameter space, instead

of being explored separately on a leaf basis, are sampled along with the sampling

of the tree structure in the joint stochastic space, where the high joint posterior of

all sampling participants is what requires the significant attention. Conceptually,

the BCART could be properly considered as a statical MAP optimisation process of

the trees, whose sampling space is effectively a local sampling of the tree structure,

whereas the GTGP is more dynamic, whose sampling space has rather a global sense

across over various different quantities.
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Hierarchical prior

The foundational distinction between the BCART and GTGP comes from the spec-

ification of the priors. In fact, it is not quite an equitable comparison between

BCART and GTGP on this ground, because BCART is used for constant function

parametric regression, while the GTGP is designed for nonparametric regression.

The GTGP of course will surely be superiorly more complicated. The GTGP spec-

ifies the prior in a hierarchical structure.

Zv|βv, σ2
v ,Kv ∼ Nnv(F vβv, σ

2
vKv)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

βv|σ2
v , τ

2
v ,W , β0 ∼ NmX (β0, σ

2
vτ

2
vW )

σ2
v ∼ IG(ασ/2, qσ/2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

β0 ∼ NmX (µ,B)

τ 2v ∼ IG(ατ/2, qτ/2)

W−1 ∼ W ((ρV )−1, ρ)

(3.32)

where any subscript v denotes the vth leaf.

Zv is the function value set (the response variable of the function, or training out-

put)

F v is the design matrix in conventional linear regression model

βv is the linear regression characteristic parameter set

Kv is the covariance matrix

σv is the function variance

τv is the function variance for β

W is the covariance matrix for β

ρ and V are the parameters of Wishart distribution

The hierarchical framework is comprised of three layers, on the foundational layer
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lies the direct prior specification on the function itself, which is of the tradition

to the Gaussian Process, where the prior is imposed directly on the function itself.

The parameters of this particular association is known as the hyperparameters. The

second layer is an expansion in the sense of the coverage of the prior belief. Basically

the parameters in the base layer are allowed for sampling as well. Thus rather than

making speculations on the Z directly, the sampling of its parametrization intends to

shift the greater uncertainty in guessing Z into a guessing with comparatively lower

uncertainty. The parameters parametrising the hyperparameters are recognised as

hyper-hyperparameters. Then the last layer is where the hyper-hyperparameters are

defined as probability distributions. The distributions of the hyper-hyperparameters

are treated known in completeness.

By analysing this hierarchical prior structure, from the first layer, it could be ap-

parently seen that the algorithm holds the initial belief of a preferred compliance

to a linear manner for the fitting curve. This presumed compliance serves a prag-

matic industrial standard where simplicity is always of the priority at a reasonable

concession of the accuracy. And this deliberate setting of a linear mean has a more

deliberate purpose for the introduction of the limited linear model by Gramacy,

where the algorithm automatically selects whether to perform a traditional GP fit-

ting or a linear fitting. In all the parametrisations, the parameters could be primarily

classified into two groups:

1. Local parameters: θv = [βv, σ
2
v ,Kv, τ

2
v ] which is entirely associated with the local

region (or leaf). The first three parameters in the set are also known as the GP

parameters as in the parametrisation of the GP prior.

2. Global parameters: θ0 = [β0,W ] which has the property to influence the sampling

in each leaf across the entire data span. These two parameters plus the last one in

the local parameters are also known as hierarchical parameters.

The presence of fully defined distributions for the hyper-hyperparameters is nec-

essary considering the sampling of the hyperparameter βv. Albeit the posterior

analysis could exist without the specifications in the third layer of the hierarchical

priors. To assign probability distributions to the hyper-hyperparameters has its own

significance and considerations as designated at the performance of the prediction

by the algorithm. It will be expounded later in this section.

The foregoing context addressed the compare and contrast between the BCART
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and the GTGP. The most significant advantage that the GTGP carries is the dual-

sampling scheme where the tree structure and the parameters are jointly sampled in

the same sampling space. Now denote the tree structure as T and the total volume

of parametrisations as θ = [θv, θ0], applying basic Bayesian analysis on T and θ

individually, the following relations arrive,

p(T |θ) ∝ p(Kv|T )p(T )

p(θ|T ) ∝ p(T |θ)p(θ)

(3.33)

The best performance of the fitting combined with partitions by the GTGP is de-

cided by the Maximum A Posteriori criterion. The posterior space macroscopically

is bipartite of T and θ, thus the joint posterior p(T, θ) is where the MAP criterion

is imposed. As conditioned that mutual conditional posteriors are analytically ac-

cessible as shown above, a Gibbs sampling strategy could be utilised to simulate the

draws from the joint sampling space by sampling iteratively from the conditional

posterior distributions p(T |θ) and p(θ|T ).

On the part of sampling the posterior of the tree structure T as conditioned on the

θ, the prior is defined in a way same as in the BCART model as equation (3.8).

For its likelihood part, the fact as a conditional PDF on the T allows an equivalent

view of the T likelihood as the quality of prediction under that tree across all its

leaves. To reflect such quality, one could use the classic GP posterior as equation

(3.27) for MAP evaluation, or alternatively the log GPML equation (3.31) for ML

evaluation. In terms of the GP performance evaluation, the log GPML (whether

should be logarithmic depends on whether all other derivations are conducted in the

logarithmic environment) weighs more preference over the direct GP posterior for

being less bias by taking into account all possible predictions. Hereby because the

covariance Kv, as part of the GPML, is the predominant factor to its output. The

GP from its traditional sense is a process, where given the data the covariance is well

set and given, to produce a fitting on the data according to the setting of covariance

(more specifically the setting of the covariance hyperparameters). The backward

search for the optimal covariance setting leads to the optimsation of the GPML. In

the GTGP, since the sampling space wires everything together, and everything if
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whose joint distribution with others is not mathematically available in closed form

or whose closed form of possible existence but is impossible to sample directly from,

it should be able to fit into a Bayesian inference framework for deriving the condi-

tional PDF condistioned on each other, thereby the Gibbs sampling strategy could

simulate the joint sampling of the random space. For the fullness of establishing the

Gibbs sampling and arriving at conditional distributions in closed form for all the

parameters, here the GPML has to pair with the prior of Kv to make the p(Kv|T )

effectively the posterior of the Kv (one should distinguish between the posterior of

Kv and the posterior of the GP).

For the sampling of the conditional posterior for parameters, the multi-dimensional

posterior sampling space is entangled in sufficient complexity to impede simple sam-

pling strategies. Again, the Gibbs sampling scheme is utilised to break down the

complexity into multiple simple localised uni-variant sampling with mutual condi-

tions. Through a series of rigorous mathematical operations, the conditional poste-

riors for all the parameters could be obtained as below:

For the βv,

βv|rest ∼ N(β̃v, σ
2
vV β̃v

)

V β̃v
= (F T

vK
−1
v F

T
v +W−1/τ 2v )−1,

β̃v = V β̃v
(F T

vK
−1
v Z

T
v +W−1β0/τ

2
v )

(3.34)

Similarly β0,

β0|rest ∼ N(β̃0,V β̃0
);

V β̃0
= (B−1 +W−1

r∑
i=0

(σvτv)
−2)−1,

β̃0 = V β̃0
(B−1µ+W−1

r∑
i=1

βv(σvτv)
−2).

(3.35)
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Then τ ,

τ 2v |rest ∼ IG((ατ +m)/2, (qτ + bv)/2)

bv = (βv − β0)TW−1(βv − β0)/σ2
v .

(3.36)

And Wishart covariance matrix,

W−1|rest ∼ W (ρV + V T̃ , ρ+ r)

V T̃ =
r∑
i=1

1

(σvτv)2
(βv − β0)(βv − β0)T .

(3.37)

And σ2
v ,

σ2
v |dv, g, β0,W ∼ IG((ασ + nv)/2, (qσ + Φv)/2)

(3.38)

At last the covariance Kv is obtained,

p(Kv|tv, β0,W , τ 2v ) =

(
|V β̃v

|
(2π)nv |Kv||W |τ 2mv

)1/2
(qσ/2)ασ/2

[(qσ + Φv)/2](ασ+nv)/2
Γ[(ασ + nv)/2]

Γ[ασ/2]
p(Kv)

Φv = ZT
vK

−1
v Zv + βT0W

−1β0/τ
2 − β̃v

T
V −1

β̃v
β̃v.

(3.39)

As seen from the equations above, it is observable that, excluding the Kv and σ2
v ,

all the other parameters do hold the full conditions. Because for the purpose of

efficient sampling, it is possible to achieve further marginalisation of parameters
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through mathematical manipulations for Kv and σ2
v . Excluding Kv, all the other

parameters are available for sampling from integrated samplers provided by most of

the programming softwares. The Kv is beyond any common means of sampling in a

sense of direct availability, since its closed form is too much analytically complicated.

Analysis on the Kv

In the expression, there includes a prior term for Kv which has not been addressed

above. Because the covariance matrix is completely parametrised by the hyperpa-

rameters in the covariance function acting on a fixed dataset, to specify the prior for

Kv is identical to specify the prior for the covariance hyperparameters. The GTGP

uses a classic SE kernel to explain the hidden relations in the data space. With the

infliction of the noise, the SE kernel will in addition contain a hyperparameter g

(alternatively known as nugget) representing the noise variance. Thus,

KSE(i, j) = −(xi − xj)2

2d
+ gδij (3.40)

where d is the distance hyperparameter and g is the noise variance hyperparameter;

δij is the delta function whose value is 1 at i = j and elsewhere δij = 0.

For these two covariance hyperparameters, there are various ways to define their

probability distributions. The definitional domain for both d and g stretches from 0

to +∞, and drastically different choices of the d or g yields different interpretations

of the data space. Therefore the scale of the values for the covariance hyperparame-

ters does not necessarily imply the quality of the prediction out from this particular

hyperparameter setting. For example, a small choice for the value of p results in a

prediction that tends to go through all the data points, while the large value choice

explains the whole data volume as noise and generates a neutral predictive curve

passing through the middle of the entire dataset bed. Therefore the user needs to

pay extra attentions to the preference specified on the prior distributions particu-

larly of d and prudently of g. From a conventional perspective towards the prior

specification of g, a meaningful, pragmatic and informative fitting requires in gen-

eral that the data space should be presumably adequately self-evidenced that the

prediction produced could be considered as a decent interpretation of the entangling

relations hidden in the data rather than roughly consider everything results from an

event of noise. Thus it would be reasonable to assign a exponential distribution to
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the g,

g ∼ EXP (−p) p > 0 (3.41)

This prior specification for the g has a marginal limit of 1 towards the left end of the

g on the coordinate (g → 0), which prevents extremely unrealistic overfitting; and

towards the right end (+∞) the prior assigns infinitely low probability to discredit

the heavily noisy model.

The setting on the d prior can raise potential arguments, because priorly plainly

given the dataset, it still remains obscure which approximate choice of the d will be

appropriate to interpret the dataset well without incurring overfitting. And more

perplexing is that the setting of d does affect the influences of the g to the prediction,

despite it does not necessarily oblige that d and g are correlated. The choice of d

should avoid being too small. Because any data acquisition process, though could be

recorded in a continuous fashion (e.g. record vinyl CDs), is always computationally

processed in a certain level of precision which is absolute discrete, in this condition

extremely small d will eliminate the presence of realistic noise and mathematically

causing matrix singularity as well. Normally the d hyperparameter is specified in a

way of Gamma distribution or a mixture of multiple Gamma distributions. Because

Gamma distribution has 0 probability for very small d and also 0 value for very

large d, plus that the mixture of Gammas allows multiple fitting curve characters

to be encoded in the prior. For example the dual-mixture with some setting can

consequence a wavy or smooth fitting out from the GP. The prior for d is given like,

d ∼ 1

n

n∑
i=1

[Gamma(αn, βn)] (3.42)

The joint prior distribution for d and g is naturally Bayesian related to the corre-

sponding individual distributions of d or g,

p(d, g) = p(d|g)p(g) = p(g|d)p(d) (3.43)

For the purpose of simplicity and efficiency, it is technically sensible and practically

desirable to assume d and g are independent for their own prior specifications, so to
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make the joint prior above reduces to,

p(d, g) = p(d)p(g) (3.44)

The coalescence of the prior Kv with the tedious mathematical expressions at front,

resorted the thinking on iterative sampling methods whose performance is at great

reliance on the artificial computational power. Here again, the Metroplis-Hastings

method is introduced for sampling from analytically unidentifiable probability dis-

tributions. To establish full Gibbs sampling for the holistic parameter space, theo-

retically it is required for the MH sampling of the p(Kv| ∼) to reach the statistically

stable state through enough iterations. Here one cheat could be trumped as is al-

lowed based on the true purpose of sampling of the parameter space. Though the

Gibbs sampling here is commissioned to simulate the joint sampling of all partici-

pants in the sampling space, the ultimate goal that brings its meaning is to search (or

reach in another sense) for the highest probable tree in the Markov space. Therefore

it means any method that could accelerate this searching process should be taken

into consideration regardless it potentially could breach the strict Gibbs sampling.

Because in the MH sampling, especially when it is done in a logarithmic scale, the

large contrast between the proposed and current state will almost ensure any ac-

cepted state will be probabilistically superior. Meanwhile the other parameters are

not at the most optimal values, the iterative completeness in the MH process for

the p(Kv| ∼) will not mean too much as compared with just one iteration. Overall

the single step MH sampling for p(Kv| ∼) will generally be sufficient to make global

convergence toward the high posterior region in the Markov space, plus not mention

that by doing so could substantially reduce the wasteful computations.

Summarising the GTGP

Then look back to the three-layer hierarchical prior structure, by associating it

with the set of conditional posteriors, the necessity of the priors for the hyper-

hyperparameters could be revealed. They actually act as grease in the sampling

parameter space to glue the tree structure information with the individual parameter

sampling in each leaf.

In general the process of the GTGP could be summarised as the follows:
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• Propose a new treed structure by randomly choosing one from the four execu-

tions:Grow, Prune, Change, Rotate;

• Based on this proposition, make single-iteration MH sampling for all the Kv;

• sum up all the logarithmKv and add the tree prior (3.8) to obtain the proposed

global logarithm posterior;

• compare the proposed and current global logarithm posterior using the MH

criterion;

• make decisions to the acceptance of the proposition and record necessary in-

formation tagged as current;

• Make draws for the global parameters based on their conditional posterior

distribution;

• Make draws for all the leaf parameters except Kv from their corresponding

conditional posterior distributions;

• return to step one.

The performance of the GTGP will be discussed in details with benchmarking

against the Chipman based TGP in the later discussion chapters.

3.4.4 Chipman-based TGP

The central concern of this thesis is more toward the side of Chipman-based TGP

(CTGP) than anything else. The Chipman-based TGP suggests a TGP model

completely springs from the raw ideas of Chipman’s BCART model (Chipman him-

self hasn’t done any extended work for TGP model, his work stopped at Bayesian

CART). The GTGP is by any means a true innovative model out from the BCART,

but this is not the main focus. The CTGP compared with the GTGP is more or-

thodox in the respect of pedigree to BCART. Chipman et.al. are not the pioneers

of developing any TGP models. Therefore Gramacy is indubitably recognised as

the founder of the TGP. However the GTGP made massive modifications on the

statistical mechanism inside, thus to some extent, deviates itself from the BCART

conceptually from its idiosyncratic full stochastic properties. The CTGP discussed

here is a true semi-stochastic model resembling the BCART. Because each proposed
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tree will strictly be subject to an optimisation process to evaluate the true MAP

of the tree, while the dual-sampling scheme in the GTGP allows everything being

sampled in an ensemble fashion, hence that the MAP evaluated at each step of the

GTGP is conditioned on transient parameter values which are performing their own

random walking in the Markov space in a guided fashion, therefore such conditional

MAP is iteratively true but holistically uncertain.

The basics of the CTGP is extremely straightforward in conveying the spirit of the

BCART. As the same as the GTGP, the CTGP also inherits the entire sampling

strategy for the tree structure by using the 4 tree structure alteration executions in

conjunction with the MH algorithm. In details, the CTGP borrows the complete

scheme from GTGP which differs from the BCART by replacing the Swap in the

BCART with the Rotate. This has not been addressed in the content above. The

Rotate execution as introduced by Gramacy is an amelioration for the Swap in

the BCART. The Swap occasionally generates leaves with zero elements, while the

Rotate only changes the order of placing the existent partitions in the data space

so that no damage is made to the leaf elements. In the CTGP, there is no scheme

such like dual-sampling scheme to weave a complete stochasticity, instead the MAP

evaluation principle is a mixture of simplicity and inflexibility that each proposed

tree structure is subject to a GP hyperparameter optimisation process as to find

the exact ML (or MAP if hyperparameter priors are assumed) of that tree. This

optimisation process could be achieved in either stochastic or nonstochastic way, but

its spirit of deterministicity is inexorable. Whatever approach to take does comply

with the general inference pattern:

p(T |X, Y ) ∝ p(Y |X,T )p(T )

p(Y |X,T ) =
b∏
i=1

p(Yi|Xi)

(3.45)

Where T is the tree, (X, Y ) are the training input and output, and b is the number

of leaves in the tree.

From the equations above, it could be seen that the CTGP breaks down the overall
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GP of the entire data space into b mutually isolated sub-GPs. Each of these sub-GPs

does uphold the traditions of the classical GP. The second equation above tells the

likelihood of the tree p(Y |X,T ) is effectively the total product of all the GPMLs

from all individual leaves. The track naturally goes to the optimisation of these

GPMLs. To apply either of the two general aforementioned optimisation methods

to the GPML function equation (3.31) yields two different types of CTGP, namely:

the CTGP with stochastically based optimisation and the CTGP with numerically

based optimisation.

The comparison between both CTGPs yields no obvious inclination towards either.

The numerically based CTGP apparently possesses the advantages of fast conver-

gence rate in search of the maxima of the GPML, where the entire searching process

is schematically tractable. The defective aspect of this type of optimisation results

from its incapability of dealing with the complexity characterised by multiple local

extrema (here is the maxima for GPML). Because the optimisation of the GPML

belongs to the category of non-convex optimisation where the local minimum is not

necessarily the equivalence to the global minimum. As the numerically based opti-

misation is mostly gradient-based, whose searching mechanism relies on detecting

the geographical information (gradient and derivative of gradient) of the function

at a given point, that thereby a reasonable approaching to the target point could

be made accordingly. If multiple extrema do exist, it is nearly impossible for the

search to escape from the effective region of a non-global local minimum once the

search is trapped there. On the same ground, the stochastically based optimisation

offers a different solution to counter the multiple maxima of the GPML through ran-

domly visiting function coordinates according to certain specified criteria. The fact

of random visits suffers much less constraints in its iterative update of the searching

point than as being a numerical optimisation tracing the gradient information which

makes its update rather deterministically confined in the effective region of the local

minima. However, trade-offs on the computational cost have to be compromised

for more uncertainties in the searching process as well as the larger searching span

possibly reachable through the random walk. The following two sections expounds

the detailed insights on both optimisation methods.
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Stochastically-based Optimisation

The GPML at equation (3.31) obtains its mathematical form based on a multi-

dimensional parametrisation whose actual dimensionality attributes to the selected

GP kernel. At the choice of the standard SE kernel as equation (3.29), the optimisa-

tion will deal with 3 dimensions θ = [σ2
f , l, σ

2
n], namely [function variance, influential

distance, noise variance].

k(xp, xq) = σ2
f exp(−(xp − xq)2

2l2
) + σ2

nδpq (3.46)

The σ2
f and σ2

n are not the inherent parameters in the classical SE kernel, because ei-

ther of them does not encode anything into the covariant relation in the data space.

However they are indispensable for the outcome of the inference. The function

variance σ2
f is a tuning mass to the covariant intensity as implied by the mathe-

matical expression. Its graphical interpretation in the data space is manifested by

the vertical offset of the predictive curve to the data cluster. Thus it is more like

a calibration factor for the inference. The noise variance σ2
n only models the local

variance as a result of noise in complete segregation against other information in

the data space. The inclusion of the noise variance is twofold essential. In the first

place, noise is ubiquitously objectively existent, thus to model noise is natural and

indubitable. On the second part, the presence of σ2
f in the matrix computation

act as a lumped uncertain mass in each diagonal entry of the covariance matrix to

prevent the covariance matrix from being singular. Therefore the covariance will be

positively definite.

In this three dimensional function space, a multidimensional modified uniform sam-

pling strategy is employed to simulate the sampling from the marginal likelihood.

The name suggests a modification of the traditional uniform sampling. What is not

superimposed with the traditional uniform sampling here is something could term as

’arbitrary window’. The arbitrary window basically means the uniform sampling will

be implemented within a certain bounded range whose size is essentially alterable.

There are chiefly three window sizes to account for three types of searching, namely:

refined window, normal window and large window. The specific size for each de-

pends on the given training data, as the complexity of the data space proportionally

influences the complexity of the optimisation.

There are quite a number of selections of sampling strategies could be applied at this
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particular instance. Sampling strategies like multidimensional Metropolis-Hastings

algorithm should also suffice the requirements. The reasons for the preference goes

toward modified uniform sampling hold a sense of idiosyncrasy specially dedicated to

the particularity characterised by the Treed model. Uniform sampling, as a means of

optimisation or stochastic simulation for unknown distributions, is criticised heavily

for being highly inefficient, especially in dealing with high dimensionality. Because

in those cases requiring high dimensional simulations, according to mathematical

analysis, the number of samples demanded to hit the target proximity (e.g. high

GPML region) could be egregiously large, which practically put the method into

severe discouragement. However this inherent deficiency of uniform sampling is not

generalisable in the treed model. Because one of the essential benefits from the

treed model is dissembling the complexity of the input space through partitioning

the data into multiple regions where the behaviour of the data could be modelled in

a much simpler fashion. Premised in this, it could be assumed with fine reason that

of each partitioned leaf, the GPML function surface in terms of its hyperparameters

would not suffer too much from badly skewed and distorted profile. It could also

be further assumed the profile of the function at each dimension preserves a decent

degree of parabolic property where the curvature does not change drastically and

abruptly.

In general, using a modified uniform sampling at this case gains two advantageous

points over the MH algorithm:

First for pragmatic reasons, given an unknown function in many occasions, there is

no obvious sign (eg. monotonousness) to indicate whereabout of the global extremity

in a domain protracting to both ends of infinity. What is most likely known by the

user is a bounded broad range within which there exists with high chance a plausible

global extremity whose global extremeness is not absolute but practically acceptable.

In the GP, this kind of scenario is of a common consideration. To exhaustively

explore the infinitely large hyperparameter domain of the GPML seems probably

inefficient and practically impossible. Thus the best expedient plan is to constrain

the search within a certain set of boundaries.

The second merit is that if even though a fully unbounded continuous proposition

PDF is applied to convey the MH sampling, for example a simple multi-variant

normal distribution, to set the parameters for such PDF can still lead to arguments.

Because the parameter setting for the proposition PDF determines the pace of the

search. However to decide this pace is not as easy as it seems to be, because
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the correlative relation among the hyperparameter space is not explicit, plus the

matching of the pace with the terrain of the function’s profile is also problematic to

conduct. In this sense, simple bounded uniform sampling can heavily reduce such

complexity.

Numerically-based Optimisation

Numerically-based optimisations generally use line search methods (LSM) to find

the target extremity of the function. When it comes to the line search method,

the selection of choices is quite diverse. There appear to be three commonly-used

methods to carry out such a task. As an LSM, there is no extrication from the use

of knowledge about the gradient of the target function, as the gradient of function

generally characterises the function extrema. In many LSMs, the matrix of the 2nd

derivative of the function (Hessian matrix) is also required for computation. The

knowledge of the Hessian forms the main differentiating feature while distinguishing

among the three methods. Before introducing any of the three methods, it is worth-

while to advance the general line search criterion first. Briefly a line search method

is to approach one unknown extremity of the function in multiple iterative steps

by visiting and evaluating multiple locations of the function. The general iterative

criterion goes as,

xk+1 = xk + tkPk (3.47)

where tk is the search step at the kth iteration, Pk is the search direction at the kth

iteration. The update of the search location x from the equation above envisages an

approaching towards the target extrema. The choices of the t and P characterise

different line search methods.

The first applicable line search method is pervasively studied and used for optimi-

sation problems, and is prominently known as Newton’s method. The theoretical

foundation of Newton’s method is to collect the Jacobian (gradient vector) and Hes-

sian matrix information through differentiating the target function, then use this

information to guide the search of the extremity. The idea springs from setting

the derivative of the Taylor expansion to zero, where the general form of Newton’s

method can be obtained. Such form is shown below for the kth iteration:
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xk+1 = xk +H−1k Of(xk) (3.48)

where H is the Hessian matrix and Of(xk) is the gradient vector of f at xk.

The major advantage signified by Newton’s method is its comparatively fast conver-

gence rate. Because Newton’s method has access to the closed form of the Hessian

matrix, it means the Newton’s method is internally wired with the mechanism to

adjust the search step size automatically based on the gradient and the change rate

of the gradient; thus if convergence is ensured, it should occur with less iterations.

However the downside is that Newton’s method naturally demands analytically dif-

ferentiating the target function twice, which for some rather complex functions is

hard to do, and also for some functions the Hessian computation in terms of com-

putational expenditure is rather burdensome, for the inverse of Hessian matrix has

to be performed for each iteration. Thus, Newton’s method is advantageously parsi-

monious of iterations, but it does not necessarily mean it is overall computationally

faster. Another problem associated with the Newton’s method is the attraction of

saddle points, which has been addressed by many scholars in numerous articles. In

high-dimensional optimisation problems, a saddle point is a location on the function

profile where there is both a maximum and a minimum jointly with respect to each

dimension of the function. In a two dimensional space, the saddle point imitates a

saddle (figure 3.3) which makes the coinage of the name. The problem with saddle

point is a subject commonly to be encountered in high dimension non-convex op-

timisations [48]. The basic Newton’s method has no riposte to a saddle point, but

the evaluation of Hessian could act as an indicator of the wrongful approach toward

a saddle point, as mathematically the determinant of the Hessian at a saddle point

is negative.

The gradient and Hessian evaluation shows the Gaussian Process Marginal Likeli-

hood (GPML) has no exemption from the nuisance of the presence of saddle points.

To what extent the GPML suffers from this requires further study. Aside from

this, to apply Newton’s method to the GPML also suffers the pain from the tedious

derivation of the Hessian matrix. Thanks to Mardia and Marshall [49], based on

their derivations, one could arrive at the following key quantities by denoting the

logarithmic GPML as L,

2Source: https://en.wikipedia.org/wiki/Saddle point
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Figure 3.3: 2Saddle point in two dimensional space.

OiL(θ) = −1

2
tr(K−1

∂K

∂θi
)− 1

2
Y ′
∂K−1

∂θi
Y (3.49)

where Oi is the gradient on the ith dimension in a v-dimensional hyperparameter

space, thetai is the ith hyperparameter from the covariance function defining each

entry of the K

For finding the inverse derivative one can use the following relation,

∂K−1

∂θi
=
∂K−1

∂θi

dK

dK
= −K−1∂K

∂θi
K−1 (3.50)

The closed form of the GPML Hessian is as follows,

H =


O1O1L O1O2L · · · O1OvL

O2O1L O2O2L · · · O2OvL
...

...
. . .

...

OvO1L OvO2L · · · OvOvL

 (3.51)

where OiOjL = ∂2L
∂θi∂θj

Then,
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OiOjL = −1
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∂θi∂θj
+
∂K−1

∂θi
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∂θj
) + Y ′
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Again, there is an associated relation between the K−1 based derivative and the K

based derivative,

∂2K−1

∂θi∂θj
= K−1(

∂K

∂θi
K−1

∂K

∂θj
+
∂K

∂θj
K−1

∂K

∂θi
− ∂2K

∂θi∂θj
)K−1 (3.53)

The access to the full set of function, gradient and Hessian allows the Newton’s

method in equation (3.48) to be enforced.

The second viable solution to the optimisation is the Quasi-Newton method (QNM).

Generally the QNM is a complementary method to Newton’s method. It is used

where the Hessian of the function is not explicit or too costly to compute. The

QNM still requires a Hessian in the line searching process; however this Hessian

is an approximation whose derivation relies not on the analytical analysis of the

function but on an iterative update through a certain criterion [50]. The QNM

bears heavy resemblance to Newton’s method. In equation (3.48), The second term

on the RHS, which is the search direction, goes as,

Hkhk = −Of(xk) (3.54)

The Newton’s method computes the inverse Hessian to infer the search direction

hk for the kth iteration. The QNM just directly uses an approximate Hessian Bk

(strictly say an approximate inverse Hessian) to make:

hk = −BkOf(xk) (3.55)

The update of Bk forms the key feature of the QNM. In general the search rule of

the QNM could be summarised as (for searching the minimum as a custom):

1. Make initial guess for both x0 and B0.

2. Compute the gradient Of(xk) and set the searching direction as hk = −BkOf(xk).

3. Update the x by xk+1 = xk + t∗hk, where t∗ minimises f(xk + thk).
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4. Update B by setting Bk+1 = Bk + Uk, where Uk is an updating matrix based

on a certain criterion.

The update of the Hessian bears a structure-wise strictness to regularise the approx-

imate Hessian to be absolute positive definite, and of course, symmetric. There are

quite a few updating functions could be selected. The most recent trending is at the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [51],

Uk = (1 +
∆gTkBk∆gk

∆xTk∆gk
)
∆xk∆x

T
k

∆xTk∆gk
− Bk∆gk∆x

T
k + (Bk∆gk∆x

T
k )T

∆xTk∆gk
(3.56)

where ∆gk = gk+1 − gk, ∆xk = xk+1 − xk.

From the updating method, one can also observe that the approximation of the

Hessian is based on the information of the function and gradient before and after a

line search step.

Apart from the updating matrix, there is another technical issue to solve, which is

the search for the t∗ value. The t∗ value is the t which maximises the f(xk + thk).

The available knowledge of the closed form of the target function enables a eval-

uation of the derivative function for finding the t∗. However, there are practical

issues; the evaluation of the derivative function is subject to severe mathematical

difficulty. The evaluation of the derivative function of the GPML serves as a typical

example, where the operations regarding the K (e.g. compute the determinant of

K) introduce great complexity to the solution of the t. One could briefly picture

that for an Square Exponential (SE) kernel-based GPML, the final expression for

the GPML derivative is a mixed entangled combination of exponential and poly-

nomial functions. Because for an n × n matrix, its corresponding determinant is

a n! term polynomial expression where each term is a n-element product of the

selected entries from the matrix. Therefore it is nearly impossible to obtain direct

solutions to t analytically, whose solutions are encrypted in such complicated fash-

ion. Fortunately, aside from making direct analytical solutions, it is viable to seek

an expediency to indirectly accommodate the problem by not directly finding the

t∗ but, compromisingly, an inexact t∗, notated as t∗ which ensures an approaching

to the target extrema and also ensures an approach to zero for the gradient. The

very method for inexact line search here is known as Wolfe conditions [52]. The

principle of Wolfe conditions is rather simple. Principally, there are two conditions

constraining the search based on the function and the function gradient respectively.
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If a minimum is to be searched (Wolfe conditions normally apply to search for the

minimum). The first condition ensures the t∗ at least descends the search in the

function space for a certain amount:

f(xk + tkPk) ≤ f(xk) + c1tkP
T
k Of(xk) (3.57)

where Pk is the search direction, and c1 is a constant manually set based on the

user’s preference.

The second condition guarantees that the gradient will decrease at least for a certain

amount after making the step t∗,

−P T
k Of(xk + tkPk) ≤ −c2P T

k Of(xk) (3.58)

where c2 is another constant defined by the user; but it should be that 0 < c1 <

c2 < 1.

Normally for QNM integrated with Wolfe conditions, Wright and Nocedal [53] give

out reference values for c1 = 10−4 and c2 = 0.9. The Wolfe conditions are not

exclusive to QNM. They have multiple applications to almost all line search methods.

Despite the wide applicability, Wolfe conditions are much disadvantaged for two

major internally correlated reasons. One is that using Wolfe conditions generally in

another way means increasing the iterative steps to the target minimum. The other

is that t is actively chosen to check its validity to the Wolfe conditions, thus a loop

for t is also required to update t to the satisfying value. Such an updating process

could be extremely unstable. Because at different function locations, the required t

could be massively different, which on the trivial side, increases the number of loops

required, on the harsh side, drives the loop into endless cycles. This issue will be

discussed through multiple case studies in this thesis.

The last numerical optimisation method discussed here is another extensively-used

line search method known as the Non-linear conjugate gradient method (NLCGM).

There is an obvious derivation of the NLCGM from the Linear Conjugate Gradient

Method (LCGM).The heuristic basis of the CGM stems from the ground of what

is known as the steepest descent method (SDM). Both the SDM and the LCGM

are designed for quadratic optimisation. The NLCGM is generalised for a broader

application. To serve in any GP related fields, mainly both the LCGM and NLCGM

have roles to fulfil. Their applications are aiming differently, but are affinitive to each



3.4. PROBABILISTIC TREES 64

Figure 3.4: slice of the 2d quadratic gives a 1d quadratic.

other inherently, and sometimes are somewhat confounding incidentally. Briefly, the

LCGM is used for approximating the maximum of the GPML, and the NLCGM is

used for the GPML optimisation. Deeper content will be included in the later

section.

Starting from the SDM, If given a quadratic function in a form f(x) = 1
2
xTAx −

bTx + c, it is directly perceivable that the location of the minimum point could be

obtained by solving the simple linear derivative Ax = b of the quadratic function

f(x). If the characterising matrix A is positive definite, it ensures monotonicity in

every direction radiating from the minimum location. It is also a property of the

quadratic function that any directional slice parallel to the function axis f(x) which

is N -dimensional arrives at a N − 1-dimensional quadratic function in that sliced

plane whose minimum could be evaluated from the linear relation addressed before

(for illustration, see equation (3.4)).

Therefore one could naturally come up with such a thought that starting from any

point on an unknown quadratic function surface, randomly given a search direction

(equivalently making a slice), the minimum in that direction could be found through

Ax = b. Then one takes this minimum point as the next iterative point, by repeating

this process, one should be able to arrive at the final minimum. The iterative update

will take the classic updating scheme at the kth iteration xk+1 = xk+t∗Pk. One could

easily notice the reappearance of the same updating procedure as in the QNM. To use

Wolfe conditions again is not disputable. However, the SDM offers another routine as

provided by its second crucial property, the orthogonality property, which associates

tightly with the CGM to be expounded later. In the SDM, the search direction is
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Pk = −Of(xk), which is the negative gradient of the function. By the definition of

gradient, the gradient is the direction setting the function to greatest change at a

given location, which exactly shares the same meaning as the steepest descent if the

function profile is descending. The gradient at the k+1th iteration is df(xk+1)

dt
, by the

chain rule, it gives df(xk+1)

dt
= f ′(xk+1)

T dxk+1

dt
= f ′(xk+1)

TPk. By setting the derivative

to zero, thus f ′(xk+1)
TPk = 0 = Pk+1Pk. Hence every pair of adjacent iterations has

a pair of mutually orthogonal search directions. As interpreted in a graphical way,

the orthogonality between search directions indicates these directions are mutually

perpendicular to each other. Using this property, the following deduction arrives,

P T
k+1Pk = 0

(b− Axk+1)
TPk = 0

(b− A(xk + tPk))
TPk = 0

(b− Axk)TPk = t(APk)
TPk

P T
k Pk = tP T

k APk

t =
P T
k Pk

P T
k APk

(3.59)

Because the SDM search process is orthogonally directed as shown in Figure 3.5, it

could be alternatively viewed as a process of decomposing the initial displacement

from the starting point to the target minimum into several segments in two general

directions perpendicular to each other. This fact realises one important message

that the local guidance as directed by the negative gradient direction is somewhat

inefficient, as the holistic search has to incessantly adjust itself to approach the

destination. If the rule of strict rectangular angled search could be crossed, might

there be any chance a freer combination of search directions could result in a process

with far less steps? This question irrigates the emergence of the LCGM. The LCGM

is a search process resembling the SDM whose search directions are mutually A-

orthogonal to each other.

Simple orthogonality is represented by uTv = 0 in symbolic form, the graphical

representation is two mutually perpendicular vectors. It has been proved by mathe-
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Figure 3.5: 3steepest descent as described in graphs.

matical deduction that the adjacent two search directions are mutually orthogonal.

Here is a more intuitive explanation which is forthwith more illustrative for the

A-orthogonality. At the kth step of the SDM search the gradient along the kth

direction at xk+1 has to be zero (that is how it is derived). Thus the resultant gra-

dient (the negative of the next search direction) should decompose no component

to the kth direction, which in other words means that the next (k + 1)th direction

is perpendicular to the kth. Although searching in orthogonal directions makes no

collateral search in either direction due to directional decomposition, it is not neces-

sarily indicative that the searches in a pair of orthogonal directions are completely

disparate. In fact, the search in either of a pair of orthogonal directions will still

cause collateral effects on the change of gradient to its orthogonal direction. To

completely eliminate the collateral effect, one should make the change of gradient

in the v direction orthogonal to u. The change of gradient in the v direction could

be represented as δv(Of(x)) = Av. Thus the orthogonality is what could be termed

as A-orthogonality,

uTAv = 0 (3.60)

Being A-orthogonal is the same as being orthogonal in the reciprocity, which means

3Source: http://komarix.org/ac/papers/thesis/thesis html/node10.html
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that u and v are mutually A-orthogonal to each other. This relation is also termed

as u is conjugate to v (this is how the name of CGM arises).

Because the A-orthogonality ensures high efficiency on each of the search directions,

the LCGM converges within far less iterations than the SDM. In fact for a perfect

quadratic optimisation problem, the LCGM at most converges to the destination

in n steps, where the n is the dimensionality of the characterising matrix A. The

following graph illustrates the difference in the mechanism of SDM and LCGM.

Figure 3.6: 4LCGM vs SDM.

Unlike the SDM where the search directions are naturally −Of(xk), the search di-

rections in the LCGM require a special technique to generate. All the generated

directions in the entire search process are required to hold conjugacy with the direc-

tions generated before. There is more than one way to construct such a collection of

directions. The traditional LCGM uses what is known as Gram-Schmidt conjugacy,

and it gives the following generative form,

Pk = rk −
∑
i<k

P T
i Ark

P T
i APi

Pi (3.61)

where Pk is the search direction, and rk is the negative gradient. However, remem-

ber that all these mathematical derivations and assumptions are based on the func-

tion in quadratic whose first derivative is a linear function and whose second deriva-

tive is a constant. The GPML does possess a quadratic form, but that quadratic

4Source: https://en.wikipedia.org/wiki/Conjugate gradient method
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form is terms of prediction Y , which means the LCGM optimisation used here is

to maximise the GPML w.r.t the Gaussian predictive mean of Y at a given set of

hyperparameters. Hence such LCGM optimisation for the GPML is not a parallel

to the Newton method and the QNM discussed in this chapter. More specifically,

such kind of application of the LCGM is used for approximating the maximum of

the logarithmic GPML to straightly give out the best prediction in the data space.

The advantage by doing the line search for the most probable predictions over the

more expressively straight matrix handling is that the LCGM offers the opportunity

of finding the target prediction without the need of computing the matrix inverse

[54]. The comparative benefit by doing so is proportional to the dimensionality and

size of the training dataset.

The optimisation against the hyperparameters is a different story. There is no

quadratic association between the logarithmic GPML with its hyperparameters.

Therefore the traditional LCGM can no longer be effective here. Such fact of nulli-

fication gives rise to the NLCGM.

The major characterising difference of the NLCGM from the LCGM is that, rather

than involving the A matrix in the algorithm, the NLCGM replaces A with an

approximation from the gradient Of(x). It’s an analogous relation between the

LCGM and NLCGM to the relation between Newton’s method and QNM. The

NLCGM still holds firmly the conjugacy property. To ensure the conjugacy, there

are several ways to generate the search directions. The popular choices are the

Fletcher-Reeve and Polak-Riberie conjugacy. The search direction in the NLCGM

is computed by:

pk = −Of(xk) + βkpk−1 (3.62)

where β is the scalar to ensure conjugacy.

The update of β with Fletcher-Reeve [55]:

βk+1 =
OfTk+1(Ofk+1 − Ofk)

||Ofk||2
(3.63)

To determine the search step t in the NLCGM is not as simple as in the LCGM.

There is no definite linear function to solve. One should again search the aid from

Wolfe conditions in equation 3.57 and 3.58. More details will be explained in Chapter
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4.

3.5 Conclusion

This chapter has taken a step-by-step process to associate inner relations among

the relevant mathematical models and unravel their mechanisms accordingly. The

Decision Tree forms the basis and framework, where multiple models could fit into

the picture for piecewise regression. The Gaussian Process serves as the outline to

lay down what specific regression picture one can imagine out from such a process.

The further filling of such an outline bifurcates into the Gramacy and Chipman

based Treed Gaussian Processes. Some-side related mathematical knowledge has

also been added to complement the argument, such as the Markov Chain, Wolfe

conditions etc. The gist of this chapter is to explain rather than to juxtapose,

thus no massive content here is used for comparing which TGP is better. Standing

upon the perspective of the theory, the TGP indubitably has a stout and rigorous

mathematical basis. But, one should still bear in mind that the TGP is set on

the Bayesian framework indicating its intrinsics of uncertainty. Using uncertain

probabilistic models modelling against the practical physical uncertainty mostly is a

pure solution provided by mathematics, completely devoid of any physical insights.

This could be observed from the content in this chapter, where not one equation

nor one symbol is related to physics.



Chapter 4

Benchmarking of the CTGP

against the GTGP

4.1 Chapter Overview

The last chapter has spent some paragraphs covering the relation between the CTGP

and GTGP. The GTGP developed by Gramacy has already proved itself as an

effective statistical model through its applications on various datasets including both

synthetic and practical data. The CTGP, stemming from the same mathematical

ground as the GTGP, is proposed to be at least equally effective, or with a high

chance to perform better than the GTGP, given the advantages from its dedicated

exhaustive search for the local hyperparameter optimum in each leaf.

In this chapter, the popular Motorcycle Accident Data (MAD) [56] will be used for

a case study to verify the effectiveness of the CTGP. The MAD is also the dataset

Gramacy used for verifying the GTGP [57]. Thus it naturally suggests that the

GTGP could be used here as a reference to benchmarking the CTGP in terms of

a number of criteria such as prediction reliability, computational cost etc. The

GTGP, as introduced by Gramacy, was programmed in and made exclusive to the

language R; the current CTGP is developed in Matlab. If the benchmarking is

made across the languages, it will be unfair and pointless. Therefore, a simplified

version of the GTGP has been developed in the Matlab for this very purpose. The

simplified GTGP in Matlab, as compared to the full version of the GTGP in R, is

70
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considered to be a strategic replication which retains all the essences and ingredients

to form a GTGP, while discarding the Limiting Linear Model (LLM) introduced by

Gramacy [57]. The LLM is a technical sub-algorithm which adds robustness and

smartness into the GTGP model. It can automatically evaluate the necessity to

perform a full GP analysis for a selected leaf. If a linear modelling of the selected leaf

meets a certain performance evaluation criterion, it will be preferred over applying

a full GP modelling. Therefore, in this way, the computational burden could be

substantially allayed. Because the LLM is more of an auxiliary type of optimisation

to the GTGP, the exclusion of the LLM in the simplified GTGP will not impose

malignant damages to the structure of the GTGP. Then, through such comparison

between two TGPs all together in Matlab, one could not only intuitively perceive the

strength of the CTGP under each criterion, but also take a comprehensive insight

of its mathematical mechanism in sampling, inference etc.

4.2 Data Explanation

In the statistical community, the MAD has a good reputation for testing the per-

formance of nonstationary regressions [31]. It gains its popularity from its high

contrast in variance in a piecewise manner. The MAD measures the acceleration

of the motocyclist’s head in terms of the time right after a crash [56]. The data is

comprised of 94 data points, but features an explicit behaviour of heteroscedasticity.

In Figure 4.1, it is shown that the MAD approximately holds four regions based on

the change of piecewise variance, or five regions by matching it with linear trends.

Either way is reasonable, and both of them could find the corresponding reasoning

criteria in the kernel of a GP. The recognition criterion based on the variance could

be linked to the noise variance hyperparameter σ2
n; while the later criterion based

on linearity could be manifested through the length scale hyperparameter l2. In the

human recognition system, the predictions are often given based on the most evident

feature observed from the data. If the observation is confounded by more than two

equally weighing features such as observable linearity and contrasted variance, the

brain tends to fail in coordinating both criteria to produce a decent fused prediction.

Therefore the MAD offers itself as a visual perspective through which one can take

a clinical view on the advantage of the TGP over pure human recognition.

Back to the data itself, to simplify the explanation on the data, the data is pre-
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Figure 4.1: Motocycle Accident Data.

sumed to contain four regions based on the variance difference. The first region

is indubitably displayed as a extremely distinguishable flat line within the inter-

val [0,16], where the dispersion level of the data points are restrained tightly. The

second region is a bit arguable to human’s visual recognition. It lies across [16,30],

where a consistent medium level of variance could be observed. The third region sits

approximately on [30,40]. It features the most drastic variance in the whole plot.

It is hard to accurately bound its range, because the consistency in the variance is

violated by the gradual shrinkage of the variance in [38,43]. The last region could

ostensibly be modelled as a flat line with a much greater variance than the first flat

line region.

It is highly expectable to see at least 3 regions to be identified from both TGP

models. The partition between the stated region II and III is a bit tricky to observe

visually, whose identification can directly demonstrate the capability of the TGP.
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4.3 Benchmarking on the Performance

4.3.1 MAD with the GTGP

Although both types of TGP are jointly built from the foundation of Breiman’s treed

model for constant regression, the GTGP with its unique dual sampling scheme can

sample significantly faster than the CTGP with the more traditional mono sampling

scheme. However, the faster sampling rate benefited from the dual sampling scheme

trades off with the number of iterations required to search for the MAP of the tree.

Through many runs of experiments, it has been found that for the MAD, it takes

on average 20000 MCMC steps for the GTGP to converge to a rather stable state.

In general it gives the following predictive view of the data space,

Figure 4.2: GTGP performed on the MAD (95% CI).

N.B. Regions are marked as I, II, III, IV from left to right, the same numbering

order applies to all the following figures.

From Figure 4.2, it is shown that the GTGP tends to explain the data space with

four regions which agrees with the four region assumption from the observation.

The GTGP successfully captures the linear behaviour at the beginning of the data.

The following region II, captures a linear behaviour of the data rather than the con-

sistency in the variance as described in the presumed region II. The prediction from
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the GTGP is still thoughtfully a reasonable one, because the GP makes predictions

based not only on the hyperparameter σ2
n which describes the variance, but also

the length scale l2 which models the smoothness of the prediction. The variance is

also evidently contrasted between Region II and its following region III. A smoother

prediction is always preferred by the GP, which means the turning of the predic-

tive curve will decrease the Gaussian Process Marginal Likelihood (GPML) to some

degree. Hence to place a partition at 20 is still highly acceptable and reasonable.

The third region is modelled with a slightly bended curve approximating a linear

trend, but it could be argued such an interpretation of the data space is a bit

rough and inaccurate. As there is a relatively clear discontinuity in the variance

at around point 30 in the MAD dataset. The predictive curve captured the trend

well in this region, but entailed a residual trouble to its exit at point 39, where

a rather sizeable discontinuity has obstructed the smooth flow from the region III

to region IV. The in-depth cause of the discontinuity descends from the high noise

variance hyperparameter σ2
n that the GTGP used to describe the region. Apparently,

such a description also inappropriately explained the point at 39 as noise, which

occupies the crucial position to transiently and smoothly join region III and region

IV together.

The last region to the far right end produced by the GTGP shows an excellent

agreement with the presumed fourth region. Apart from this figure, which only

shows four typical regions given by the GTGP, it has also been frequently observed

that the GTGP makes a partition at points 18 and 25 at the removal of the partition

at point 20 in Figure 4.2 to highlight the joint part between region II and region

III. The variance in the interval [18,25] does inflict a lumped inconsistency to the

seemingly uniform variance in the presumed region II. Overall the GTGP has shown

its sensitivity to both the trend and variance of the data.

As has been addressed before. the GTGP developed by the author as a replica

of the raw Garamacy’s TGP in R are not exactly the same. Gramacy’s TGP has

more additional features such as limiting linear model etc. In order to show the

difference in the result between the GTGP and Gramacy’s TGP in R, Figure 4.3 is

borrowed from Gramacy’s paper [57] to illustrate the difference. Figure 4.3 shows

that Gramacy’s original TGP in average makes two partitions in the data space.

The GTGP also does occasionally make the same partitions, but the three-partition

result is more common.
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Figure 4.3: Gramacy’s TGP coded in R performed on the MAD (95%
CI).

4.3.2 MAD with the CTGP Optimised Stochastically

Now, applying the CTGP with stochastic optimisation to the MAD, 300 MCMC

rounds (the CTGP requires much less number of MCMC rounds to converge) will

give out a prediction as in Figure (4.4). The four regions produced by the CTGP

also show a strong agreement with the four presumed regions described before.

The CTGP and GTGP are unanimous at putting partitions at points 16 and 39.

The only difference is about the second partition which yields the different modelling

in the regions II and III.

Unlike the region II by the GTGP, the region II in the CTGP, rather than putting a

partition at 20 to stress on the sharp turning in the trend, modelled the turning in

a sense of mildness. It could be seen there is a general consistency in the variance in

this region. Although at the bottom there is a slightly discordant rise of the variance

which could occasionally be captured by the GTGP, there is no strong evidence to

support a region to be assigned at the trade of losing the capture of the consistent

variance; besides, its presence is short lived considering the scale of the data space.
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The region III produced by the CTGP complies with the presumed region III ex-

tremely well. The dispersion level there is significantly larger than the other regions.

Despite assigning an equally large belief in the variance, the CTGP successfully ac-

commodated the decreasing trend, and established a nice and natural connection

with the last region. However, as has been stated before, in the interval [35,45] there

features a gradually decreasing variance which suggests a continuous heteroscedas-

ticity. Hence, where to put the last partition could be less strict. To put it at point

39 will yield the highest contrast in the variance between region III and region IV,

in which case the linear behaviour in region IV will extend at its maximum to the

left.

Figure 4.4: CTGP performed on the MAD.

In general, through comparing the GTGP and the CTGP in terms of the quantitative

analysis based on the Mean square error (MSE), it has been found that the CTGP

with a stochastic optimisation has an overall MSE value of 1513, while the GTGP

has a larger value of 1665. The MSE for the middle two regions in the interval

[14,40] given by the GTGP is 1466, while the CTGP gives a value of 1322. In the

remaining two regions, the MSE levels are both similar for the CTGP and GTGP.

The Figure 4.5 shows the details of the squared error of both the GTGP and CTGP

at each data point. It shows clearly that the higher predictive error produced by the

GTGP accumulates from the two regional joints at points 20 and 39. It also could

be easily noticed the CTGP has a greater error around point 36, which is reflected

in the prediction as an underestimation at that place.
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It could be sensed that the GTGP is more sensitive to the change of the direction

of the trend, while the CTGP is more sensitive to the difference in the variance.

Besides, the GTGP has a general taste in favour of interpreting the data in a linear

fashion, which could be partially derived from its sensitivity to turning points. Since

both models are built on the same Bayesian framework as well as the same GP

inference, such a difference is highly likely to result from the difference in their

sampling schemes.

Figure 4.5: MSE comparison between the GTGP and CTGP.

Figure 4.6 shows the variation of the logarithmic posterior of the tree during the

50000 MCMC steps in the Markov space. The mechanism of the dual sampling

scheme will unfold a fully randomised space for the tree as well as all its hyperpa-

rameters to explore. Therefore the variation of the logarithmic posterior bears a

cluttered look with very limited predictability and traceability. However, the inter-

twined Gibbs samplings among the sampling participants will carefully guide such

search towards the regions containing high MAP trees without violating the ran-

dom behaviour too much. Hence it could be seen in the figure, approximately every

10000 steps the search will enter the high posterior region. In an MH-based MCMC

sampling, it is not common to see the log posterior could drop for over 5 units at

a logarithmic scale, which requires a very small acceptance ratio of less than 10−5.

In the figure, such a drop is pervasive, and even a plummet by over 50 units does

occasionally take place. Such a non-ordinary behaviour is an ordinary outcome from

the dual sampling scheme. In the dual sampling scheme, a pair of bridging Gibbs
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Figure 4.6: Variation of the log posterior during 50000 MCMC steps for
the GTGP.

samplings is established between the tree structure and the hyperparameter space,

namely p(T |θ) and p(θ|T ). Every time when a new tree structure is accepted, ran-

dom draws will be made across all leaves to update the hyperparameters. However

good or bad these draws are, they will be unconditionally accepted without passing

the check of the MH criterion like the tree structure did. Therefore, there could be

a massive drop in the posterior. To unconditionally accept the draws of the hyper-

parameters is a contradictory matter with coexisting advantages and disadvantages.

Its advantage is in the pertinence to the completeness of the sampling space. The

unconditional acceptance allows the tree structure and the hyperparameters to form

combinations with infinite possibilities, thus theoretically the search of the MAP

tree through the GTGP should be more comprehensive and exhaustive. It also

prevents those bad leaves from enhancing their hyperparameters too much, which

could potentially trap the search process. The disadvantage is equally remarkable

that those good splits will also suffer from its side effect.

Figure 4.6 shows the same plot for the CTGP optimised stochastically in a run

for 300 MCMC steps. The figure shows clearly the convergence of the logarithmic

posterior through the CTGP process. There is no major drop by over 5 units in

the logarithmic scale. Such a well behaved posterior convergence, to some extent,

manifests the CTGP’s semi-stochastic nature. In the mono-sampling scheme of the
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CTGP, the only sampling participant in the Markov space is the tree structure

whose hyperparameter setting will be almost deterministically evaluated through

either a stochastic or numerical optimisation. Since each tree is fully optimised, the

difference between different trees in the posterior will be drastic. A good partition

could gain an increase of over 10 units in the overall logarithmic posterior as shown

in the figure (around the 100th iteration). Thus there is nearly no chance for a

tree with bad partitions to outstrip a better tree during the MH check, unless the

two trees strongly resemble each other. Hence the CTGP ensures a convergence in

the posterior. However theoretically the strict convergence could potentially be a

factor that negatively influences the search of the MAP; it resembles the general

problem faced by using a greedy algorithm in regression [58]. Simply speaking, an

assigned partition, if too informative, could mask other distinguishable characters

in the behaviour of the data space. An example is shown in Figure 4.8, that if the

initial partition was not put at point 28 like in Figure 4.4, the CTGP will eventually

produce the partitions to separately model the lumped data at the bottom. It

definitely suggests that the CTGP partitioning relies on the sequence of putting

the partitions. Through a number of experiments, it has been found the locations

around points 14 and 39 have the strongest attraction to partitions. In Figure 4.7,

the first major escalation at the 7th iteration and the second major escalation at

the 88th iteration correspond to these points respectively. From many experiments,

it has been found that these two partitions are almost always the first two to be

discovered by the CTGP, while in the GTGP the order might vary. Thus it could be

said, although the tree is constructed from sampling in the CTGP, its final partition

view is rather deterministic. While in the GTGP, the final partition view has more

chance to vary, which could be argued as one essential advantage over the semi-

stochastic CTGP.

4.3.3 MAD with the CTGP Optimised Numerically

The CTGP with the stochastic optimisation has the advantage of being more accu-

rate in terms of inference. However, its high computational cost is limiting, although

there are solutions to relatively allay the computational repetition to some extent.

To substantially reduce the computational repetition for the CTGP, the stochastic

optimisation may be replaced by the numerical optimisation for the hyperparame-

ters. The basic theories about the three approaches used in the numerically-based

optimisation have been introduced in the last chapter: the Newton’s method (NM),
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Figure 4.7: Variation of the log posterior during 300 MCMC steps for
the CTGP.

Figure 4.8: Partitioning the MAD in the interval [14,32] (95% CI).

the Quasi-Newton method (QNM) and the Nonlinear Conjugate Gradient method

(NCGM). The three methods will in order be applied to the MAD. The predictive

result from the NM is shown in Figure 4.9. The number of MCMC rounds for

the CTGP with any numerically-based optimisation is the same as the CTGP with

the stochastically-based optimisation. Since the numerically optimised CTGP runs
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much faster, 300 rounds are assigned for an enhanced convergence.

Newton’s Method

Figure 4.9: CTGP with the Newton’s method on the MAD (95% CI).

The result from Figure 4.9 agrees with the prediction given by the stochastically

optimised CTGP shown in Figure 4.4. The almost exact coincidence in the partitions

is to some extent, beyond the expectation. The predictive result via a numerical

optimisation process will chiefly suffer from two inherent problems: the multiple

local maxima (or minima, depends on the target function) issue and the attack

from saddle points. The prediction in the region IV has revealed that the issue

with the local minima definitely has its role played during the optimisation process.

The staggering predictive curve in region IV indicates a local maximum for the

logarithmic GPML with a small length scale hyperparameter l2. But as one can see

from the result, despite the overstress on the l2 providing the prediction in region

IV, which still seems reasonable considering the lack of data points there, no other

disastrous negative effect has shown its presence at least in this particular case study.

In fact through repeatedly experimenting on the NM with the MAD, it has been

found the treed model itself is a natural counterbalance to the negative effect from

the attack of the saddle point. The multiple local maxima will be the only dominant

force to influence the search of the global optimum. The isolated experiment on the

dataset consisting of the first 25 data points in the MAD is used to clarify this
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intriguing phenomenon.

Figures 4.10 and 4.11 show the inference on the experimental data by the stochastic

and NM optimisation respectively. Apparently the inference with the NM failed to

capture the trend of the data. Rather than arriving at a local maximum, it is trapped

by a saddle point (because at its optimum hyperparameter set, the Hessian matrix

of its logarithmic GPML function has both positive and negative eigenvalues).

Figure 4.10: inference with the GP optimised stochastically.

It has been found that the searching process will be attracted by the saddle point

for 40 times on average out of 300 MCMC steps; but there is good news. It has

also been found that most of the attractions take place in ill-conditioned regions

featuring an abrupt change of trend such as in Figure 4.10. Since such regions are

less desirable to be accepted, a reduced GPML induced by the saddle point does

unintentionally help the algorithm to reject the trees with those bad leaves.

Multiple local maxima for the logarithmic GPML function is another classic prob-

lem which can cause the NM method to generate inferior predictions within a leaf.

But the inferior predictions within the leaf could be resolved by re-performing a

stochastic optimisation to find the global optimum.

There is one additional issue worthy of one’s attention apart from these two classical

problems, which could also trouble the performance from the NM optimisation. It is

the stopping criterion of the NM optimisation. To choose a good stopping criterion
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Figure 4.11: inference with the GP optimised by the NM at a saddle
point with bad length scale l2.

is not merely an issue concerned with the NM, but a general essential procedure in

all the numerical optimisation methods. Hence the criterion used in the NM will

have the chance to apply to the QNM and NLCGM as well. The choice pool for

the stopping criteria is enormous, but to find one that fits well to the data space is

non-trivial [59][60]. Because usually a criterion monitored by a static threshold that

tries to capture the onset of the convergence fails to be effective in a complex data

space, especially those high dimensional function spaces containing multiple local

modes (maxima or minima). Since different local modes have different extremity

values and curvatures, the convergence rate and the final convergence precision

could be drastically different. In a treed model, things are even worse. The regions

generated from the partitioning yield separate new GPML function spaces subject

to the individual optimisation, which means a good threshold for region A might

be an extremely bad one for region B. Thus the common choices for the stopping

criteria shown below will all fail in the treed model.
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|xn+1 − xn| < ε

|xn+1 − xn|
xn

< ε

|f(xn)| < ε

(4.1)

where xn is the nth input vector during the optimisation search, and f(xn) is the

nth target function value and ε is the threshold.

In fact, the second criterion shown above does contain the concerns on the dynamic

behaviour of the function characters across the regions, but it still fails at times.

It is because a good ε of the second criterion for a large scale region still might

be a bad one for being too greedy and demanding in another much smaller scale

region, where the same ε will drive the optimisation search to a point evincing

matrix singularity problems where the determinant of the characteristic matrix is

exceedingly small (more details in the discussion part of Chapter 6). The Figure

4.12 shows an example of the failure of the optimisation in a region due to l2 being

too small. The determinant of the Hessian here dropped below 10−16.

An extremely small hyperparameter can cause the convergence to collapse, as does

an extremely large one. The presence of an extremely oversized hyperparameter set

at a scale of 1020 could also happen during the search if the stopping criterion is

not operated properly. An extremely large hyperparameter set encodes the belief

of the algorithm towards the data space that all the data are interpreted as a form

of noise. Through the second derivative test, it has been found that the large scale

hyperparameter region in the GPML function space is a high dimensional plane,

as the second derivative test presents a 3 × 3 (SE kernel) Hessian matrix whose

entries are all extremely small value close to zero and all the partial gradients are

close to zero as well. It is rather reasonable, because everything is interpreted as an

extremely high level noise, the data pattern will have little effect on the GPML. The

problem of being dragged into the large scale hyperparameter plane is caused by the

fact that the convergence is not fast enough to reach below the threshold before it

enters that plane. Once the search entered that plane, because both the gradient
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Figure 4.12: optimisation collapses when l2 is too small.

and the slope of the gradient become flat, the actual step required to the next point

will increase rather than decrease (for mathematical proof, check equation (3.48)).

Hence it will diverge if criterion one or two is used. The third criterion could resist

this problem to some level. Because the third criterion could use the first Jacobian

vector (gradient information) as the standardised target function, and set its ε to

a positive value close to zero to stop the divergence process. However, it has been

found the third criterion suffers from the sporadic presence of an exceedingly small

hyperparameter. Because the convergence rate for each parameter is not identical,

sometimes it could be too demanding to repress one hyperparameter under a certain

threshold, which could collaterally cause the other hyperparameters becoming too

small.

Considering these two major causes that collapse the optimisation, one could sense

that either a set of exceedingly small or large hyperparameters does not suffice a

good prediction. Therefore, as long as the optimisation exits safely without collapse

due to matrix singularity, the trees containing the bad predictions will eventually get

rejected by the Metropolis Hasting algorithm. Thus here a hybrid stopping criterion

is used,
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max(abs(Jacobian)) < 0.001

abs(det(Hessian)) < 10−16

(4.2)

Where Jacobian is the first Jacobian vector of the logarithmic GPML function,

and det(Hessian) is the determinant of the Hessian matrix, abs means to take the

absolute positive value.

Quasi-Newton Method

Figure 4.13: MAD with the QNM optimised CTGP (95% CI).

Figure (4.13) shows the typical performance from the QNM with Wolfe conditions

incorporated (for reasons why Wolfe conditions must be applied here, see the last

part of Chapter 3). One can observe from the figure that the algorithm captured the

trend in the first and last region well, but the prediction in the middle region does

not conform well with the trend of the data. It failed in modelling the sharp turning

at the bottom of the middle region. The confidence interval at the beginning also

seems a bit larger than those presented in the former figures. The general cause of
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such inaccurate modelling ascribes to the incorporation of Wolfe conditions. In a line

search-based optimisation incorporated with Wolfe conditions, a suitable value for

the additional variable t (the step scale between the two adjacent search points in the

line search) in equation (3.57) must be assigned so that the search could approach

the local minimum at an effective rate. However, to find an appropriate value for

t is not a simple task, especially in a complex function space such as the negative

logarithmic GPML which could become extremely intricate when the data space is

in a disordered fashion. The current way of finding the t is to use the bisection

method to gradually locate the area where a good t lies [61]. However it has been

found that there are situations where the the bisection method can never locate a

good t, or it could be said there exists such a local minimum whose proximity is

highly non-quadratic. Through tracking the history file of the failed search of t,

some weird behaviours have been spotted. The first weird behaviour is associated

with the distance between the tentative search point θ∗n+1 (∗ indicates a tentative

search point) and the current nth search point θn (equation (4.3) ) shown in Figure

4.14.

θ∗n+1 − θn = t× h (4.3)

Where h is the search direction, which remains as a constant depending on the

current θ, t× h is the tentative step size.

As shown in Figure 4.14, the Y axis describes the difference between the θ∗k+1 and the

current θk (step size at kth search point) in a logarithmic scale. The continuous linear

drop of the step size has been found related with the consecutive failure in satisfying

of the first Wolfe condition equation (3.57). For the Quasi-Newton method, the t

has a natural starting value of 1 to initialise the search [62]; this is considered to

be a sufficiently large value of t for the tentative search to pass the region which

satisfies Wolfe conditions. Then every time the first Wolfe condition is not satisfied,

the smaller value for t will be assigned (bisection shrinking) to gradually locate an

adequate t. However in this figure, a drop of th to a level of 10−13 (t alone will drop

to a level below 10−16, this value varies with the initial choice of the approximate

Hessian matrix) still failed to find an adequate t. At the step number 44 (the 44th

loop in search of t), the sharp unnatural turning indicates a round-off issue, where

the MATLAB cannot handle a smaller scale of the value but rounds it off to stay

at a level of 10−13 (the relative machine precision in MATLAB is 2.2204 × 10−16,

remember the t alone will drop below the limit 10−16, thus the step size t × h will



4.3. BENCHMARKING ON THE PERFORMANCE 88

stay at a level below the limit). Since the step size is so small and Wolfe’s first

condition still stay unsatisfied, there must be something special about the local

geographic profile of the function in that area. It could be further proved from

the weird behaviour in Figure 4.15, even without the round off issue, there is no

chance for the search to match Wolfe 1st condition. Figure 4.15 shows Wolfe first

condition residual (δwolfe1 = fGPML(θtentative)− fGPML(θcurrent)− c1thOθcurrent) on a

logarithmic scale. The first condition is satisfied by a negative value of the residual.

Figure 4.14: Tracking of θ in a failed Wolfe condition.

In the figure, apart from the aberration in the behaviour after point 40 due to a

round off issue, the curve exhibits a linearly declining trend when the computation

is properly operated. The residual in the normal scale stays above zero before point

40. Recall the general relation between the gradient of the log y and normal y with

respect to x, d ln y
dx

= d ln y
dy

dy
dx

= 1
y
dy
dx

(It does not matter to have ln in place of log, the

residual will be absorbed into a constant, the linear behaviour will uphold). Then

let y be the first Wolfe condition residual, and x be the loop number, it could be

obtained that, before y reaches zero, the dy
dx

= y d ln y
dx

will be strictly positive, and

at y = 0, the gradient will be zero. Hence the y = 0 is the asymptote for y, thus

y < 0 is unattainable. Hence Wolfe conditions will fail completely to regulate the

descending towards the minimum.

However Wolfe conditions have been rigorously proved to be effective; their failure

in the GP is not an exposure of an inherent fallacy, but mainly a reveal of the
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Figure 4.15: Tracking of Wolfe first condition difference.

complexity of the GPML function space. It has been found that Wolfe conditions fail

at those hyperparameter positions in the GPML function space where the gradient

and the approximate Hessian are both extremely large at a scale over 103. The

extremely large slope with a bad guess of Hessian will give the Wolfe conditions

a false signal that the actual minimum is distant from the current search point.

Because the Wolfe conditions ensure a sufficient approach to the target, the satisfying

threshold on the RHS of equation (3.57) will be dynamic with the change of t.

Hence, what happened in a failed search of t is that, based on the gradient and the

approximate Hessian, the Wolfe conditions falsely believe the actual minimum is

always far beyond the tentative search point. This issue is illustrated in a simple 2D

example in Figure 4.16, where any search on the curve is dynamically above Wolfe

threshold. From the illustration, it could also be derived that the occurrence of a

failed Wolfe condition is most likely to take place in the proximity of those badly

behaved GPML minima featuring abrupt sharp changes which badly violates the

quadratic property.

Currently no solution has been found to counter such inevitable failure of the Wolfe

conditions. The endless loop in search of the t has to be terminated at some points

when it shows clearly no chance of discovering that t could happen. This fact will

cause the hybrid stopping criterion used in the NM to be rarely fulfilled in the QNM

as well as the NLCGM. Thus expediently, the stopping criterion is monitored by
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Figure 4.16: Illustration on the failure of Wolfe conditions.

the increasing rate of the logarithmic GPML, when the increasing rate dropped to

a certain level, such as: logGPMLn+1 − logGPMLn < 0.1, it will terminate. The

side effect from this stopping criterion is its reduced accuracy for modelling the data.

It is also why the algorithm failed to put a partition around point 30, as well as

making an unreliable prediction in the middle region.

Nonlinear Conjugate Gradient Method

Finally the NLCGM presented an extremely bad modelling of the data in Figure

4.17. Except in the first region, the confidence intervals in other regions are so large

that they exceeded the bound of the plot. It is caused by an extremely bad t value.

For the NLCGM, the starting point of searching for t is arbitrary rather than a

fixed 1 in the QNM. Thus the search for t is even more complex than in the QNM.

Considering so many drawbacks in using Wolfe conditions, nothing really could be

done to remedy the problem; because it is a strict inexact line search problem in

the absence of the explicit Hessian matrix for the QNM and NLCGM. A direct
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approach for the NM method will not be attainable in either QNM or NLCGM.

Apart from Wolfe conditions, one can still apply backtracking line search which

is based on the Armijo-Goldstein condition [63]. However the Armijo-Goldstein

condition is a special case of Wolfe conditions, it shall not work either. Hence the

QNM and NLCGM must be abandoned, which makes the Newton method the only

valid numerical optimisation in this thesis.

Figure 4.17: Failure of the NLCGM on the MAD.

4.4 Benchmarking of the computational cost

The computational expense is always among the chief concerns for any mathematical

modelling subject to practical implementations. In the context of the TGP, the

computational cost mainly consists of two parts: the sampling rate and the sampling

size. In the TGP, the sampling rate describes how fast the algorithm produces a new

state of the tree in the Markov space. The sampling size is the necessary number of

samples required to find the MAP of the tree.

At the beginning of this chapter, it has been mentioned that the GTGP has ex-

tremely high sampling rate. During one second running on the MAD, the GTGP

could evaluate approximately more than 100 candidate trees (depends on the com-

plexity of the tree) and produce approximately 10 valid MCMC states of the tree.



4.4. BENCHMARKING OF THE COMPUTATIONAL COST 92

Figure 4.18: GTGP tree alteration history during 10000 MCMC steps.

Figure 4.19: CTGP tree alteration history during 10000 MCMC steps.

Figure 4.18 shows the typical tree alteration history during 10000 MCMC steps. The

numbers on the Y axis have no quantitative meaning, they represent the 4 tree al-

teration executions plus the rejection of the tree: 1=Rejection; 2=Grow ; 3=Prune;

4=Change; 5=Rotate. In this generalisable particular figure, out of 10000 MCMC

steps, 8889 times a proposed new tree state will be rejected, which gives a rejec-
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tion rate about 89%. The Figure 4.19 shows the same plot with regard to the

CTGP optimised stochastically in 300 MCMC steps. It is also generalisable to the

CTGP optimised numerically by the NM, since the NM gives similar posterior as

the stochastic process. It has been found the rejection rate for the CTGP is 66.8%.

Provided that 300 MCMC steps take on average 400s for the stochastically opti-

mised CTGP to run, thus for one second the stochastically optimised CTGP can

produce 0.25 valid MCMC trees. For the NM optimised CTGP whose 300 MCMC

steps approximately take 130s, in one second it could produce 0.8 valid MCMC

state. Overall the GTGP has a sampling rate at least 12 times faster than the NM-

optimised CTGP and 40 times faster than the stochastically-optimised CTGP. In

fact, it is comparatively straightforward to improve the sampling rate for the CTGP,

since the high computation cost is fully commanded by the evaluation of the GPML

with the exhaustive optimisation involved. For the stochastically-optimised CTGP,

the current default choice for the number of samples in the optimisation is set to 900

for all three hyperparameters. Figure 4.20 as a typical example, shows that posterior

convergence occurs normally before 300 iterations, thus it is possible to theoretically

save 2/3 time for the stochastically optimised CTGP. For the numerically-optimised

CTGP, the stopping criterion could be slightly slackened to allow the optimisation

search to stop at a higher gradient. However by doing so for either CTGP, the

hidden risk of missing the convergence will rise. Other methods for optimising the

computational cost could also be found under the title of efficiently handling matrix

manipulations, such as using the Coppersmith algorithm for matrix inversion [64]

etc. Such areas are rather broad and also require specialised skills in Mathematics.

For the sampling size, it has been reiterated for several times in the former content,

that the GTGP requires a much larger sampling size to glean sufficient number of

trees to find the MAP. It has been found that the required size is around 30000

MCMC steps for the MAD (30000 is a conservative number, normally 20000). It

will take approximately 95s for the GTGP to run through. The sampling size for

the CTGP is around 300 MCMC steps. Although being considerably smaller in the

sampling size, the CTGP with the stochastic optimisation still requires over four

times the running time to achieve a steadily converged state of the posterior (the

GTGP does not converge, but 30000 steps is more than enough to hit that poste-

rior). Superficially say, it is because the sampling rate for the CTGP is much lower

than the GTGP. There is deeper insight than such from direct observations. In fact

it is an inherent deficiency for the stochastically-optimised CTGP that its sampling

efficiency is substantially lower than the GTGP if its mono-sampling scheme is con-
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Figure 4.20: The posterior convergence in the optimisation of the hy-
perparameters.

sidered as a mono-sampling scheme with subordinate samplings. The optimisation

process for hyperparameters is aimed at functioning as an exhaustive search. Thus

at any tree in the Markov space, the subordinate samples of the hyperparameters

is subject to peremptory enforcement. This leads to a problem that if the current

tree is a rather bad one, what is the point of doing the same number of sampling

for a tree that has no further contribution to the search for the MAP (bad trees

will be rejected from the MH check, only good trees can remain their posteriors).

Such a fact also means the 2/3 rejected trees, in terms of computational cost, are

accompanied with great waste. While it could be said that the GTGP is parsimo-

nious, where every bit does count in the sampling space (In the GTGP, drops in

the posterior are a natural way to escape local minima). The CTGP with the NM

optimisation also suffers from such unnecessary optimisations in unpromising trees.

However the harm incurred is not as heavy as in its stochastic counterpart, where

the stochastic optimisation is much more expensive.
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4.5 Conclusion

The MAD, as expected, is made full use of in its statistical characters to successfully

form a benchmarking ground that highlights the differences in the GTGP and the

CTGP. The performance of the GTGP and the CTGP are both reasonable enough to

demonstrate their capability in dealing with the data containing heteroscedasticity.

Their nuance in the sensitivity to the variance and trend switching, signifies their

characters well. Not a general bad or good, nor worse or better could form a solid

and unanimous verdict for either model. The CTGP does hold some advantages like

ensured convergence, stable final prediction etc. However neither of these advantages

is absolute without also bringing some disadvantages for the model. Likewise the

hugh advantage in the computational cost on the side of the GTGP is also a double-

edged sword which debases its predictive reliability. It is frustrating to see the

failures of the QNM and NLCGM optimisations with Wolfe conditions involved,

although the cause of failure has been spotted. At last in summary, the following

figures give a qualitative comparison and contrast between the GTGP and the CTGP

in terms of various criteria (DOF stands for Degree Of Freedom).

Models Accuracy Stability DOF

GTGP High High High
CTGP (Stochastic) Very High High Low
CTGP (Numerical) High Very High Very low

Table 4.1: Comparison base on performance

Models running time sampling rate sampling size

GTGP Very fast Very fast Very large
CTGP (Stochastic) Slow Very Slow Small
CTGP (Numerical) Slow Fast Small

Table 4.2: Comparison based on computational cost



Chapter 5

Experimental measurement and

data analysis on the Particle

damping

5.1 Chapter Overview

This chapter is mainly about the configuration of the experiment and the discussions

on the results. It starts from justifying the measurement objects, the loss factor.

Then the experiment configurations and procedures will be explained followed by

the analysis of the experiment results. The measurement theory and other issues

concerned with data post-processing will also be included along the way.

Measuring the loss factor η is a common way to assess the damping performance of a

vibrating system. For particle damping, the literature regarding such measurements

is large. The traditional measurement for loss factor is to perform a standard FRF

analysis on the target system, by equivalently treating it as a SDOF (Single Degree

Of Freedom) spring-damper system. However, since the damping property for a

particle damping system is not constant throughout varying the vibration conditions

(e.g. change the excitation power or frequency), thus such an approach requires

the measurement to be taken close to the resonant frequency so as to enhance its

reliability. Poising against such a drawback from the classical damping test, Yang

[65] proposed a power-based approach to measuring the damping, which is used in

96
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this project.

The damping property in a particle damping system has a rather wide range of

influencing factors, which could generally be classified into internal and external

factors. The internal factors refer to the class of factors remaining unaltered dur-

ing the experiment, such as filling ratio, material friction and mass. The external

factors are basically the factors subject to alteration during the experiment, such

as vibration amplitude and frequency as a result of change of excitation power and

frequency. For the current consideration of the experiment, the chief concern is fo-

cused on the variation of the damping at different levels of vibration frequency and

amplitude (the amplitude of the acceleration is studied, thus the acceleration used

in the following content refers to the amplitude of the acceleration).

5.2 Quantification of Damping

To measure the damping performance of a particle damping (PD) system, is the

chief experimental focus here. The damping is a quantifiable property which could

be generally reflected in the following three measurable quantities [66]:

• resonance amplitude reduction,

• incremental decay of free vibration,

• cyclical energy loss in forced vibration.

Thus a suitable quantification for the damping must show capability of fitting well

with all the three quantities above. The two most prevailing quantifications for

damping are the damping ratio (ζ) and the loss factor (η).

The damping ratio is a conventional description for the damping of a Single Degree

of Freedom vibration system of the viscous type. It is taken as:

ζ =
c

cc
(5.1)

where c is the damping coefficient or actual damping and cc = 2
√
km is the critical

damping, k is the stiffness and m is the mass. To use such a quantification, the sys-

tem should be approximately regarded as a SDOF vibration and a general viscosity
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also should be assumed. Therefore, using damping ratio as a damping measurement

is rather restricted.

Using the loss factor as a general damping measurement gains a prevailing popularity

tracing back decades [67]. The tenability of using the loss factor is premised by an

a priori assumption of viscoelasticity. The loss factor was initially introduced as,

η =
E ′′

E ′
= tan(φ) (5.2)

The equation above describes the loss factor as a ratio between two moduli E ′′ and

E ′, which are both intrinsic properties held by the material. For more explanations

of the symbols, one could refer to ISO standard 6721 [68]. For more intuitive un-

derstanding of the loss factor, it is an alternative to associate loss factor with the

energy theory,

η =
D

2πU
(5.3)

where D is the energy dissipation per oscillating cycle and U is the stored vibration

energy per oscillating cycle in the system. In fact the term vibration energy is too

general to describe the energy of vibration, and thus provides little insight into why

the loss factor is a suitable general measure for damping.

To intuitively explain the energy composition for vibration energy U , it is worthwhile

to introduce the idea of a hysteresis loop. The hysteresis loop itself is not exclusive

to the field of dynamics, it is more widely recognised and used in the theory related

to magnetic engineering. But the usage in each case has a common conceptual

ground. Hysteresis means delay and retention, thus such loop is used to describe

a physical behaviour with a dependence on the history of its states. In dynamics,

since universal materials are in fact an assembly from micro-structure of atomic

alignments, it is inevitable to concede energy loss during deformation as a result of

friction in micro-structural displacement. Because deformation absorbs energy, the

strain of the material will be delayed to reach the value corresponding to the stress

in action, this phenomenon is called hysteresis. It is well known for a spring-damper

system; the hysteresis loop can be approximately treated as an ellipse below on the

force-displacement Figure 5.1,

According to Lazan’s pioneering work [67], he suggests to define the U as either of
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(a) (b)

(c)

Figure 5.1: Three types of definitions for the loss factor (for text de-
scription, see below).

the following three definitions, each of which corresponds to the shaded area in the

hysteresis loop in Figure 5.1:

(a) energy stored during loading (stress from zero to maximum);

(b) energy released during unloading (maximum strain to zero stress);

(c) maximum deformation energy stored (elastic energy).

For lightly damped systems (η < 0.1), the three quantities hold well in balance, and

are close in value. For less lightly damped systems, typically with the involvement of
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elastomers, drastic differences in value could invalidate the alternatives in defining U

from the three, and one must be selected. Over decades of investigations, the third

choice above gained a prevalence over the other two. The definition (c) is a static

energetic quantity which solely depends on the elastic strain energy stored during

the loading. Therefore, under such a definition, the U could also be effectively

considered as the total energy,

U =
1

2
k′X2

0 (5.4)

Lazan [67] also shows that, if the governing behaviour is linear, the stiffness could be

defined as a complex term to describe the viscoelastic damping system equivalently

as a classic simple spring-damper system. Henceforth, the following derivation could

be established,

η =
D

2πU
=

πk′′X2
0

2π 1
2
X2

0k
′ =

Edissipated
Emaximum

(5.5)

The above derivation successfully shows a union of equations (5.2) and (5.3) through

the scope of energy dissipation, though they are grounded in two separate initial

definitions. such intersection of definitions reflects the generality of the loss factor

η as a common measure for the damping.

5.3 The Damper’s Configuration

The last section fortified the choice of measuring the loss factor as the experimen-

tal objective. The next stage is to establish the concrete experiment plan. The

paramount issue here is not a selection of the specific material, nor a design of the

damper’s shape and etc. In fact recalling Saluena [5], the classic particle damping

is characterised by three phases: solid, liquid and gas, which itself is an intrinsic

property of particle damper. It is natural to expand generality of the experiment by

covering all the three phases (Figure 5.2). But one crucial point worthy of attention

is that, Saluena’s paper has generalised the three phase characteristics of the par-

ticle damping, but not Figure 5.2. Figure 5.2 only applies to Saluena’s experiment

where the PD was tested horizontally.
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Figure 5.2: Phase map for particle damping re-plotted for fast referenc-
ing.

To facilitate the fulfilment of such a purpose, a simple dome shaped damper with a

spherical cavity made from polycarbonate (Density: 1200kg/m3) is used. Because

polycarbonate is transparent, such a choice of material is generally for the purpose

of observing the behaviour of the particles during the test.

To cover the three phases, the test will be conducted in a frequency-guided fash-

ion. Measurements will be taken from 50 to 500Hz incremented by 25Hz. At each

frequency, the acceleration amplitude will be increased uniformly to cover all three

phases which are discerned from visual observation on the particle bed.

Although damping could be quantified by the loss factor, the loss factor is not a

physical property subject to direct measurement like speed, temperature etc. It is

more abstract, since it is an embodiment and also a related calculation of power dis-

sipation which associates with force and velocity. Therefore, it is natural to choose

a force transducer and laser-based velocity measuring sensor to take measurements

of the aforementioned two quantities. In vibration tests, since the motions are com-

monly sinusoidally or co-sinusoidally characterised along with the time, there are

extremely simple mutual conversions among the displacement, velocity and accelera-

tion through differentiation and integration. It follows that either a measurement of

displacement or a measurement of acceleration could be used in lieu of the velocity

measurement. Circumstantially, the accelerometer gains a preference over the other

two. Because the measurements of displacement and velocity both use laser equip-

ments; however, the vibration amplitude shrinks drastically with the increase of the
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frequency for a given fixed power supply, which means more resolution in the laser

equipment is required to capture the details of the motion. Frankly, such high reso-

lution laser meter is available on the market, but that cost massive amount of money.

For parsimonious reasons, the accelerometer is chosen as the chief motion capture

sensor. The laser is still mounted to measure the velocity under 100Hz, which serves

as a supplementary measurement to validate the acceleration measured. Figure 5.3

shows a sketch for the damper’s configuration along with its measuring units at-

tached. Figure 5.4 shows the specific dimensions of the cylindrical and domed parts

of the damper. The total weight of the damper filled with particles (The particle

material is discussed in the next paragraph) is 167g.

Figure 5.3: Configuration of the damper’s measurement system.

The choice of particle material will be the simple spherical steel particles (Density:8050kg/m3,

diameter: 2mm). The spherical steel particles entail a damping system where the

energy will be predominantly dissipated through the friction between particles. It

is a conservative choice without adding too much complexity into the model such

as large deformation energy absorption from rubber particles, or high uncertainty
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Figure 5.4: testing damper with steel particles.

from irregular particle shapes, etc.

The filling ratio will be around 90%, which intends to allay the complexity poten-

tially introduced by chaotic collisions in the gas state of the particle bed.

5.4 Experiment Planning and Components

In some vibration tests, to maintain the sinusoidal form of the motion is essential,

because the subsequent processing of the data, such as computing the power dissi-

pation, is built on the assumption of ideal trigonometrical behaviour of the motion.

To achieve the enforcement of sinusoidal behaviour, a control loop could be designed

to monitor the measurement. Because a control loop is a global design for the mea-

surement systems, it also partially determines the composition and choices of test

components. The design of control systems is rather multifarious. The simplest way,

and also the most cost efficient, is to use the Proportional-Integral-Derivative (PID)

controller. A PID control loop, like other control loops, is an input-output moni-

toring process where the output signal is subject to adjustment, such as truncation

and reparation, based on the output feedback to meet the pre-set level.
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The PID controller requires a manual tuning of its three parameters (P,I,D) to

achieve a decent performance. Such a procedure is interfaced by LabviewTM in the

PC. The detailed tuning rules are included in the later sections.

Taking a global look at the effect of incorporating the PID control system into the

test on particle damping, it consequently results in a measurement system which

can be depicted in the block diagram in Figure 5.5.

Figure 5.5: Test block diagram.

Most of the equipment involved in this experiment is typical in vibration-based tests:

The shaker (Figure 5.6 [a]) is used for imposing direction excitation to the damper.
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It is the direct source of vibration.

The power amplifier (Figure 5.6 [b]) is directly connected to the shaker to magnify

the level of vibration. It supplies the high-current signal to drive the shaker.

The signal conditioner (Figure 5.6 [c]) for an accelerometer (sensitivity: 9.5mV/g)

or force transducer (sensitivity: 21.67mV/kN) changes the electrical displacement,

generated when the piezoelectric plates in the sensor are deformed under vibration,

into a voltage signal that is measurable on a scope. The laser signal conditioner is a

very different device. It depends on the type of laser you are using. If it is a velocity

laser, the changes the doppler signal read by the light sensors into a voltage that is

proportional to velocity of the measured object.

The PicoscopeTM (Figure 5.6 [d]) is a data acquisition device used in pair with

its companion software on the PC. In this way, the PC works as an interface to

supervise the real time data acquisition, and meanwhile send set point data to the

controller.

5.5 Measurement Procedures

Following the test objective, which is to measure the damping at different levels of

frequency and acceleration, the procedure could be macroscopically encapsulated

as:

1. Choose a frequency for testing

2. Take measurements of the force and acceleration (velocity measurement from

the laser is optional) signals at different levels of acceleration amplitude based

on controlled acceleration under that frequency

2.1. At the beginning of each measurement, set a set point for the acceleration

amplitude to be measured.

2.2. After the set point is defined, tune the PID parameters in Labview to ensure

a reaching of the set point level and the maintaining of a sinusoidal form for

the acceleration measured.

2.3. During each measurement, allow the Picoscope to record data for 5s after the

signal is stabilised from the effect of tuning and settling.
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(a) (b)

(c) (d)

Figure 5.6: Test components:(a) Shaker (b) Amplifier (c) Signal condi-
tioner (d) Picoscope.
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3. After the set of tests done for a given frequency, increase the frequency by an

increment of 25Hz and repeat from step 1.

5.5.1 The Use of the Butterworth Filter

It is rather a pity that the current PID control system failed its fulfilment to maintain

a sinusoidal acceleration with a good quality, thus it eventually had to be abandoned.

It is not a strict failure due to irremediable inherent defects of the controller itself.

In fact, it is more of failure due to impracticability. The basic PID control requires

a manual tuning of the parameters. The general procedure for tuning the PID is

simple. The main operation to take is to increase P slowly to approach the set

point, if any overshoot takes place, increase the I, and if the convergence collapses

as out of control, stop the process and increase D, then increase P from 0. Although

it is theoretically viable to achieve the correct performance through such a tuning

process, the problem ingrained here is that such a process is highly uncertain and

inefficient in the particle damping test. There are a number of issues which can be

addressed as causes. Primarily the tuning process is highly sensitive to the change of

P value. This yields a frequent loss of control of the acceleration level which can be

manifested by a divergence from the set point. If the D is increased to counteract

the negative effect of divergence from a large P , the convergence process will be

substantially increased. Another potential problem is from the nonlinearity of the

system. The control of the particle damping system is in general not a simple linear

control, because the controlled quantity (e.g. acceleration) is also an influencing

factor to the damping which reciprocally affects the acceleration itself. Such fact

will introduce complexity in the tuning process and also reduce the effectiveness of

changing the PID. Through many sets of tuning, it turns out that it could often

take more than 1 hour to tune the PID for one measurement at a given amplitude

and frequency. There are also cases where it does not seem to converge for any set

of PID values. In this sense, the original plan of PID control has to be abandoned;

but the experimental design of the measurement in Figure 5.5 does not need to alter,

because even though the PID no longer functions, the loop still could be treated as

an open loop system where the amplifier directly magnifies the uncontrolled signal

from the PC and sends it to the shaker for excitation.

Without an effective control, the measured acceleration will present a distorted

sinusoidal profile which approximates a sinusoid but resembles rather badly in the
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vicinities of the peak. Figure 5.7 illustrates the distortion in the sinusoidal signal.

It can be observed from the figure, that in the vicinity of the peaks, the desired

sinusoid is distorted by the irregular presence of vertical spikes. This issue is mainly

caused by the impact between the particles and the damper’s inner wall as a result

of inertia de-synchronisation.

(a) Unconverted data from the accelerometer at 100Hz.

(b) same plot zoomed at the peak.

Figure 5.7: Unconverted data from the accelerometer at 100Hz.

Even though direct PID control does not function satisfactorily, it is still possible to

apply post-processing on the measured data to expediently get a clean measurement.

Here a Butterworth filter is designed to eliminate the high frequency response from

the data. Because the spikes are rather dense compared to the general sinusoidal
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trend, an appropriate low-pass filter should be able to obtain a clean sinusoid at the

main oscillating frequency without suffering too much from the residual effect from

the frequency cut-off process. The residual effect refers to the inevitable loss over

the entire frequency span due to the cut off. After applying the Butterworth filter,

Figure 5.8 could be plotted.

(a) Filtered data with lag by Butterworth.

(b) Zero lag filtered data from modified Butterworth.

Figure 5.8: Eliminating the phase lag induced by the Butterworth fil-
tering.

Figure 5.8(a) shows the filtered data against the raw data through direct application

of the Butterworth filter. However, it could be easily captured that after processing

the data through the filter, though the redundant spikes have been culled, there has
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been a development of a phase lag relative to the raw data. Phase lag is a typical

phenomenon not exclusive to Butterworth filter, but ubiquitously dwells in general

filters, amplitudes and etc. To eliminate the phase delay, one could pass the signal

twice both forward and backward through the filter to correct the phase delay. The

Figure 5.8(b) shows the outcome from a zero-lag Butterworth filter.

5.6 Yang’s Approach

In the chapter overview, it has been briefly addressed that Yang’s power-based

approach has been used in calculating the loss factor. In Yang’s theory, the average

power flow is estimated as:

P =
1

2
FpkV

∗
pk (5.6)

Where F and V denote the complex force and velocity respectively, the index pk

stands for peak value, V ∗ is the complex conjugate of V .

In harmonic motion, the term root-mean-square is commonly used, which corre-

sponds to 1/
√

2 of the peak value of the harmonic signal. Therefore the equation

above could also be written as:

P = FrmsV
∗
rms (5.7)

Recalling that the loss factor could be defined as a ratio between two complex

energy terms (5.5). Both the dissipated energy and the maximum energy stored in

the system on a cyclical basis are the real part and the imaginary part of the complex

power respectively. In this sense, the loss factor eventually could be expressed in

terms of all the measured quantities.

η =
Real{P}
Imag{P}

(5.8)

5.7 General Data Analysis

By applying Yang’s approach to the acquired data, the following 2D contour plot

for the loss factor η against both acceleration and frequency could be obtained, as
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shown in Figure 5.9.

Figure 5.9: contour plot for the loss factor.

First, it is necessary to explain the shape of the plot. It appears that the measure-

ments taken at each individual frequency have been bounded in different ranges of

the acceleration amplitudes. For the two tests at 50Hz and 75Hz, the maximum level

of the acceleration amplitude has been limited to under 5g which forms an evident

contrast against the rest of the tests at higher frequencies. The reason for this is

related to the physical insight of the experiment. At lower frequencies, to generate

the same amount of shaking level as represented by the vibration displacement am-

plitude, less power is required when compared to those tests at higher frequencies.

If the excitation acceleration is higher than 5g, the actual vibration displacement

amplitude will be so strong as being visually observed. This could on the one hand

be a potential threat to damage the damping component and on the other hand

introduce more interfering horizontal vibration into the system.
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When it enters the frequency range over 100Hz, there is a steady descending of

the acceleration amplitude with the increase of frequency level. Such an issue is a

consequence of the limitation in the power supply. Under the current combination

of shaker and amplifier, the power can only drive the damping system to reach a

level of acceleration amplitude as shown in the graph at each frequency. Since more

power is required to reach the same level of excitation with the increase of frequency,

the end point in the acceleration amplitude at each frequency will decrease gradually

as the frequency increases if the power cannot be increased.

Another rather interesting observation from the plot is the heavily negative loss

factor concentrated at the bottom around 225Hz (as represented by a blue region.

from the colour bar); the concentrated blue at the regional centre corresponds to a

value as low as −0.4, which is definitely an uncommon value for loss factor and in

a sense could be an indication of erroneous measurement. Several sets of repetition

have been done for this particular frequency range, they all show agreement to such

a strong negative value. Because a negative loss factor indicates an introduction

of energy into the system, the real part of the complex power, which represents

the energy dissipation, must be negative. The composition of the real part of the

complex power by definition could be expressed as,

Real(P ) = Real(Frms)×Real(V ∗rms) + Imag(Frms)× Imag(V ∗rms) (5.9)

On the right hand side of the equation, the first term in the expression of a real

part multiplication, represents the actual power flowing into the damping system.

The second term for the imaginary part multiplication is somewhat abstract at its

physical meaning. It could be effectively considered to be the mixture of induced

strain energy and kinetic energy as a result of the application of external force. To

get a better insight into the relation, it is possible to make a better intuition by

looking at the Frequency Response Function:

Vrms
Frms

=
iω

k − ω2m+ iωc
(5.10)

Such a relation gives the opportunity to represent Frms or Vrms with respect to one

or the other. Thus,
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Frms = Vrms(c+
(ω2m− k)

ω
i) (5.11)

Hence the energy dissipation term 5.9, after some mathematical manipulations, be-

comes extremely simple (detailed derivation, see the appendix):

Real(P ) = c(Real(Vrms)
2 + Imag(Vrms)

2) = c|Vrms|2 (5.12)

The expression above implies that the energy dissipated out of the system is linearly

related to the magnitude of the velocity, if all conditions and assumptions hold well.

Here the requisite premise is that the equation (5.10) must hold. The FRF relation

itself is a linear relation specifying that the ratio between the magnitude of force

F and velocity V must be a constant under the circumstance of fixed k (effective

Hooke’s constant), c (effective damping coefficient), m (effective mass) and ω. As in

particle damping, different vibration levels in terms of acceleration amplitude and

frequency yields different k, c, and m, the ratio between force and velocity will not

be a constant. At low amplitude excitation, the system can be effectively treated

as a linear spring-damper system, where the linearity holds between F and V if the

frequency is fixed. The expression is as follows,

F/V =

√
c2 +

(ω2m− k)2

ω2
(5.13)

Because in most of the particle damping, c and k, especially at low excitation level,

will be substantially lower than ω2m, the relation above could be reduced to F/V =

ωm. Therefore, if the excitation level is low, the ratio F/V will solely depend on

the frequency (effective mass m can be approximately treated as constant). This

gives theoretically, the frequency vs F/V plot should give a straight line at a given

fixed amplitude. At an excitation level of 0.6g, from 100Hz to 300Hz, the plot of

frequency vs F/V gives Figure 5.10.

By observing Figure 5.10, it is easy to detect an underestimation deviated from the

linear behaviour at 225Hz, which indicates that at 225Hz the same force can induce

more response in terms of velocity than expected. In addition, its neighbouring

frequencies of 200Hz and 250Hz are both only minimally influenced. Thinking an

amplifying effect concentrated around a certain frequency is very commonly observ-



5.7. GENERAL DATA ANALYSIS 114

Figure 5.10: Excitation frequency vs F/V at 0.6g.

able in the event of resonance, therefore, the probable cause could be very likely

linked to a resonance in the system such as a resonance in the amplifier caused by

the phase lag in the sensor. However, to locate the exact cause requires a sepa-

rate dedicated experiment which can be included in the future work of this project.

Despite the lack of the knowledge of the exact cause, since negative loss factor is

undoubtedly an unacceptable result, the entire test at 225Hz will be completely

nullified.

After culling the nullified data, as the colour bar indicates, the highest loss factor

as induced by the vibration is in general between 4g and 5g. Figure 5.11 shows the

2D plot for the loss factor directly against the acceleration amplitude with selected

frequencies stacked on the plot. The frequencies lower than 100Hz are removed for

lacking of enough data points. Above 100Hz, frequencies in every 50Hz are plotted

for the purpose of clarity. It is much easier to perceive a picture of the general trend

of the curve. The figure shows that at low acceleration (0-1.5g), the loss factor is in

general mildly at a constant level at each set of frequencies. Such fact evinces at the

low excitation level, everything in the system could be approximated properly as

a simple linear spring-damper system. According to the visual observation, all the

tests across the entire frequency span did remain in the solid state within excitation

level (0-1.5g), where most of the particles remained stationary and only very few in

slight shaking (at top) or rolling (below top) can be sporadically observed.
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Figure 5.11: loss factor against acceleration amplitudes at different fre-
quencies.

Slightly negative loss factors are common at this stage due to measurement errors

and post processing with filters. Alternatively, they can be treated as a mark of a

negligible damping level. There are exceptions at 100Hz and 200Hz, but they are

still too small to signify distinctions.

In raising the excitation level, there is a clear increasing trend for the loss factor till

it culminates within the range of 4g to 5g. Through carefully tracking of the trend,

the acceleration at 4g could be characterised as a turning point, before which the

increasing trend is steady for all frequencies, and after which there is an evident

change in the slope. From the visual observation, it has been found before 4g, a

quite noticeable portion of the particles are stimulated. The stimulated particles

mostly are shaking or rolling at their original positions, and some particles move

slowly within a small range (4g is not the exact number applicable to all frequencies,

it could be smaller or large for tests at different frequencies. 4g is an approximate

one, all tests exit this stage before 4.5g). Between 4g and 5.5g, large convectional

motion of the particles can be observed, where the particles at the edge exhibit

conspicuous fluid-like motion.

Within the peaking window, Figure 5.11 shows that almost all the curves peak

coincidentally within the interval of 4.5 to 5g regardless of the frequency. Therefore,
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the occurrence of the maximum loss factor in terms of the excitation level only

associates loosely with the frequency level.

In the high excitation region space (5g to 7.5g), all the frequencies behave congru-

ously with an exception at 100Hz which sets a clear distinction from the rest. This

phenomenon does agree with Saluena’s phase diagram for their PD test (Figure 5.2),

which shows at lower frequencies, higher acceleration are required to enter the gas

state. According to the visual observation, at 100 and 125Hz, the PD enters the

gas state around 5.5g (it is very difficult to distinguish the exact point of entering

the gas state), which is a bit later than the tests at higher frequencies (at higher

frequencies, they enter before 5g approximately). Thus the prolonged high damping

level might be a result of the lack of records in higher acceleration ( greater than

7g), where the same decreasing trend might happen. The gas state has an atten-

uating effect on the level of damping which has been agreed by the tests at other

frequencies. In the gas state, there is a convex-like dependency for the loss factor

on the frequency, which shows the loss factor at both ends (100Hz and 500Hz) is

higher than in the middle (300Hz).

The convex-like dependence of the loss factor on the frequency at its physical in-

terpretation is theoretically reasonable to be explained in terms of the means of

dissipating the energy. It is well known and easy to perceive that the damping

induced by the particle bed in vibration has two dominant sources. The first is

the friction between particles, whose dominance signifies at lower excitation levels

in terms of the combination of amplitude and frequency. The second source is the

inter-collision between particles as well as the impact between the particle bed and

the damper’s interior wall. The energy discharge through impact could be largely

classified into two categories. The first category has an almost exclusive association

with the high amplitude vibration at low frequency, where only the solid state of the

particle bed exists. In such situations, a high excitation level will cause the entire

particle bed moving as a lumped integrity which will impact with the interior wall

of the damper with a certain frequency. Apparently, such a type of impact possesses

macroscopic sense for the entire particle bed; but such a scenario is not part of

the current experiment. The second category is the microscopic particle-to-particle

impact, which is more attached to the spirit of particle damping. At those more

common stages in particle damping, the energised particle bed is subject to chaotic

motions. Especially in the gas state, the particles fly around in the damper and

randomly make impacts with each other.
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The highest damping is supposed to be achieved at certain ratio between the en-

ergy dissipation through the friction and impact. Therefore, at a fixed frequency,

the gradual increase of the excitation power, which naturally increases the acceler-

ation, will at first increase the level of damping by introducing the means of energy

dissipation into the system in both ways of friction and impact. The damping as

represented by the loss factor peaks when the combining ratio between the friction

based and impact based energy dissipation is at its optimum. The further increase

of excitation level will vaporise the particle bed, and the system enters the gas state.

At a fixed frequency, in the gas state, the increase of vibration amplitude is tan-

tamount to increasing the distance for particles to move in the same direction. It

means a reduction in the amount of impacts between particles, thus there is an ob-

vious decrease in the level of damping in the high excitation power level. However,

if the acceleration amplitude is held fixed, with the increasing of frequency in the

gas state, the loss factor will decrease first and then rise again (convex dependency

as mentioned before). It is because at lower frequencies, there is still quite a consid-

erable amount of energy dissipated from friction between particles. But the further

increase of frequency will set a more chaotic environment inside the damper, where

friction based dissipation declines, and the impacts in the system is not yet drastic

enough to uphold the damping level, thus there is a reduction in the loss factor. If

the frequency still keeps increasing, the chance of impacts between particles as well

as between particle and the interior wall will increase, since higher frequency vibra-

tion means more chances for two random particles to move in opposite directions.

Therefore, a resurgence of the loss factor will eventually unfold through keeping

increasing the frequency.

5.8 Conclusion

Overall from the 2D plot for the loss factor, it is by far reasonable, and strongly

putative, to arrive at a conclusion that the loss factor is primarily influenced by the

acceleration, compared with which the influence of frequency is duly subordinate.

This biased dependence of the loss factor on the acceleration gives the chance to

simulate the data all at once using any of the algorithms in Chapter 3.

On the implementation of the experiment, there are a number of points worthy of

emphasis. Overall, the current set-up of experiment has generated data with decent
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quality with the adding of a digital filter in the post-processing step. However, the

digital filter is after all a makeshift solution to the absence of good control over the

measurement process. Besides, through the filter, even the primary signal which

is set to maintain will still suffer from the excessive cut-off from the filter to some

degree, which suggests a loss of information. Therefore, it is strongly recommended,

in the future, to perform a refined version of the current experiment with a reliable

and more sophisticated controlling system.

Despite some drawbacks in the experiment, the data acquired does exhibit piecewise

behaviours in terms of the data variance and trend. Therefore, to use such a data

for demonstrating the efficacy of the TGP model is eligible.



Chapter 6

Case study on the particle

damping data

6.1 Chapter Overview

In the last chapter, via Yang’s method in conjunction with some proper post-

processing steps such as digital filtering, the 3D and 2D data of the loss factor

against the acceleration amplitude and frequency could be obtained. To analyse

such data composition, it is optional to perform the regression algorithm in either

a 3D or 2D space. To perform a 3D analysis provides the advantages of explicitly

establishing the relations between the output axis with all the input axes all from

one single run of the algorithm, while to achieve the same amount of details in per-

forming a 2D analysis, one should run it multiple times with respect to each axis.

However, it is a treed model to be implemented, which means that the data space is

subject to partitions parallel to the axis. Such a character of partitioning the data

space parallel to the axis will cause trouble in performing simple high dimensional

regression. As shown in Saluena’s phase plot (Figure 2.1), the actual boundaries

separating regions are not by any means parallel to either axis. Therefore, the ideal

performance from a 3D regression is not possible to realise through any of the algo-

rithms discussed in this thesis. As shown in the 2D plot in Figure 5.11, the variation

of the loss factor with respect to the frequency is comparatively trivial in contrast to

that with respect to the acceleration. Such a fact entitles a simplified analysis to be

enforced on the data, where one single application of the TGP model on the whole
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2D space could be performed in lieu of the separate applications at each frequency.

In this chapter, Figure 6.1 will be studied through performing both the traditional

Gaussian Process model as well as the CTGP model on the 2D dataset of the loss

factor vs vibration acceleration amplitudes regardless of the frequencies.

Figure 6.1: loss factor against acceleration amplitudes at different fre-
quencies.

Because data from all the frequencies now form one single set, the partitions and

regressions on such set in terms of physical interpretations intend to establish an

averaged predictive relation between the loss factor and the acceleration if the exci-

tation frequency is not given.

6.2 PD Data with the Traditional GP

Before applying the traditional GP model on the PD data, it should be reiterated

that the GP model is a method that makes a mathematical statement in the form

of predictive curves on the data space at a given set of hyper-parameters. It means

that the GP model itself is not responsible for the inference of the optimal values for

the hyper-parameters, thus the GP model for practical applications is always incor-

porated with an optimisation method for the choice of the hyper-parameters. This

optimisation method could either be stochastically based or numerically based. In
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this section, both the two optimisation methods will be included with benchmarking

between each other.

The first application of the GP model will not be directly performed on the entire

dataset of the 2D loss factor plot. Instead, a preliminary application in a tentative

sense will be performed on several sets of loss factor data measured at individual

frequencies. By doing so, one could gain a refined and more accurate interpretation

of the data space, moreover, to study the behaviour of the damping in detail with

more intuitive understandings. Figure 5.11 has shown that the test at 100Hz is an

exception to the general trend compared to the rest of the dataset. From the figure,

the test at 275Hz also possesses a certain distinctiveness in the curve profile where

it features an abrupt change of behaviour at 4g. In fact, all the other curves also

features a switching of behaviour more or less at the similar acceleration; however

the test at 275Hz stands out for behaving more abruptly at that turning point. In

terms of the application of the GP model, such abrupt turning offers a technically

rich ground to study how well the algorithm deals with discontinuity in the behaviour

of the curve. Therefore, tests at 100Hz and 275Hz will be selected to undergo the

application from the GP model.

Figure 6.2: GP regression for loss factor at 100Hz.

The first application of the GP model on the data measured at 100Hz in Figure 6.2

shows the GP model has a disposition to interpret the data space in an approximate

fashion of linearity through setting the predictive curve traverse all the data points
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from the middle. Although the general trend has been successfully captured by the

GP model, the data less than 3.7g are overestimated, and the data over 3.7g are

underestimated.

Figure 6.3: GP regression for loss factor at 275Hz.

For the data measured at 275Hz, again, the GP model presented a prediction in an

averaged way by overlooking the details of the data. It is hard to say the algorithm

succeeded in grasping the general trend, since the characterising feature of the data,

the turning at 4g, has not been embodied in the predictive curve. The existence of

the abrupt turning also exasperates the underestimation issues above 4g as a result

of the sudden rise of the data after the turning.

Both figures above feature a comparatively wide confidence interval, which implies

a diffidence in estimating the potential variability or uncertainty of the data. It

indirectly suggests a lack of sufficient number of data points as evidence to enhance

the credibility of the prediction. Such a fact also forms the motive for performing

the algorithms on the full dataset as shown in Figure 5.11. Figure 6.4 shows the

prediction from the GP regression on the complete PD data space.

As one can observe from the graph, with the increase in the number of data points,

the space between the upper and lower bound are more densely occupied by the data

bed when compared to the previous two figures. Such densely packed confidence

interval states a much higher belief that the 95% percent of the chance for the

predictive loss factor will fall within the interval.
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Figure 6.4: GP regression results for the complete PD data space.

The profile of the predictive curve does to some degree still maintain a resemblance to

the curves in the previous two figures. The curve provided by the GP model for the

data space is partially informative on the general trend of the data. It successfully

located where the peak will take place (5g). The linear increasing period from 1.5g

to 4g has also been modelled well, as well as the approximate linear decreasing stage

after 5g. However, it is a crude modelling by treating the flat stage at the beginning

as the inception stage for the linear increasing period. There also dwells a notable

deficiency in such a way of predicting the data; the issue is with heteroscedasticity.

Although the confidence interval has bounded tightly to invest high belief in the

uncertainty in the data, such a consistent way of assigning the confidence interval

uniformly along the axis is an inappropriate treatment of the data,0 where the

change of variability of the data in terms of the location cannot be encapsulated in

such models.

It is crucial for the algorithm to be able to model against heteroscedasticity in the

particle damping data, because the heteroscedasticity among the data does encode

important physical insight into the particle damping. The flat stage at the beginning

is associated with a strict solid state of the particle bed where only a modicum

of particles are excited to move. The narrow concentration of data around 4.6g

does associate tightly with the achievement of maximum damping, and in terms

of the physical observations, there is a constant behaviour of combined rolling and
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bouncing motion in the particle bed at this acceleration level across all frequencies.

The declining stage at the end, which features a rather wide spreading, represents

the drop of damping in the gas state. If all these differences in the variance could

be captured by the algorithm, it is definitely conducive to establishing a better

understanding of the physics in the particle damping by studying purely from the

perspective of mathematics. Another advantage benefited from modelling against

the heteroscedasticity is to selectively predict at locations of low variance.

6.3 PD Data with the CTGP Optimised Stochas-

tically

Figure 6.5 shows the partitions of the data space as well as the predictions through

500 iterations of the CTGP,

Figure 6.5: CTGP regression for loss factor (95% CI).

The algorithm has been run for multiple times, the partition scheme as shown in the

figure is the most common result from the CTGP. There are rare occasions when

another split will be put around 4g to more precisely separate out the nearly pure

linear trend between 1.5g and 4g. In general, the CTGP did well in identifying the

solid, liquid and gas states of the particle damping. In each of the regions, the exact

predictive performance differs a lot.
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In the first region, the CTGP does give credit to modelling the data as a flat line

at a value of zero for the loss factor. Considering the physical insight of the particle

damping, such a way of interpreting of the data at low acceleration is appropriate

and reasonable. Because the assembly of polycarbonate container with the steel

particles filled inside, maintains as a rigid body with all particles being still relative

to the damper, there will be extremely low damping. From the confidence interval,

one could also tell that the two points at the bottom, as deflected from the main

stream of the data cluster, have been excluded as outliers from the first region. It

is one essential advantage of using a TGP model. Because the outlier behaviour is

relatively much more evident in the local region compared to the entire dataset, it

allows the local variance to reveal its existence.

The second region features a curve resembling that which appears in the GP predic-

tion. As mentioned before, the algorithm does occasionally put a partition around

4g to separate out the linear behaviour at lower accelerations. It also can be found

that the variance between 1.5g and 4g is significantly lower than the variance after

4g, which putatively suggests such an additional partition. However, through exam-

ining the likelihood before and after the placement of that partition, the partitioned

state only gains a slight margin over the un-partitioned state. Therefore, either to

remain a complete region II or bipartite region II is not heavily one sided.

The last region is also modelled as a flat predictive line. This a somewhat prob-

lematic, because clearly as judging from the trend, at least it should be a declining

straight line. However it is still reasonable to interpret in this way. Because the

behaviour at 100Hz does not conform to a general trend exhibited at other fre-

quencies. It is more linear and flatter, thus counterbalancing the declining trend at

higher frequencies. Because of such a counterbalancing effect, the confidence inter-

val in the last region is significant wider than in the previous two regions. Overall,

such prediction is technically reasonable but practically inappropriate.

There are expected discontinuities between regions as well. Between region II and

region III, the discontinuity does not cause massive trouble. But between region

I and region II, the discontinuity is drastic with a severely disrupted appearance.

It is troublesome, because if one wishes to predict in the vicinity of the split, the

prediction will be embroiled in issues with high uncertainty.

Despite some drawbacks of using the CTGP, overall its performance is superior to

the GP model in terms of prediction reliability, heteroscedasticity countering and
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linkage with physical insights. Among these three advantages, the heterosedasticity

countering dominates. Because in the modelling of sparse data, high variances are

ubiquitous, and it does inflict pains through introducing heteroscedasticity. That

means the actual prediction at a given location is not so important since the poten-

tial variability for that prediction is high. For example, at the region I in Figure 6.5,

although the prediction given at 1g is almost identical to the prediction at the same

place in Figure 6.4, the tightened confidence interval does increase the reliability

of such predictions. But there is a great advantage of using the GP model —the

computational cost. The TGP is built on a series of GP applications on the data,

it is definitely much more expensive; the expense is proportional to the number of

iterations used. For this particular case study of particle damping, the TGP shall

take time around 100 times more than the simple GP model to arrive at such a

partition of the data space. But considering it purveys a linkage to physical insight

of the particle damping from pure mathematical treatment of the data, such cost is

worth a higher consideration. Obviously there are ways to alleviate the computa-

tional burdens, just like the replacement of stochastically based optimisation with

a numerically based one.

6.4 PD Data with CTGP Optimised Numerically

The running results from the CTGP optimised numerically, exhibit uncertainty in

terms of the predictive curve and partitions. Because a numerically-based optimi-

sation is a deterministic approach to optimise a given function, its results will be

affected by the initial condition of the optimisation search (eg. the starting loca-

tion for the hyperparameters). Such dependence on the initial condition is, in fact,

ironically an oxymoronic benefit, it is both inevitable and indispensable. This is

because the reasoning of the numerical search for the optimum relies on the profile

of the function, and it is the profile of the function that inflicts such dependency.

The influence from the initial conditions will be exemplified later.

If say, the initial condition encumbers the searching process for the optimum, there

is one issue that could potentially totally break down the optimisation. It is more

of an elementary issue ingrained in the common ground of any numerical compu-

tations —the resolution issue. Unlike in the analytical approach, any computation

conducted in a numerical environment is always subject to round-off and bounded
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limits for its size, like numbers could not be too big or contain too many decimal

digits. All these issues do contribute to a notorious problem in matrix operation,

which is known as matrix singularity. A singular matrix does not have an inverse if

its determinant is zero. However, even sometimes a matrix with a non-zero deter-

minant still cannot be inverted in the computational environment. The inverse is

theoretically obtainable, but practically non-approachable, because the determinant

is too small for the computer to handle without exceeding its limit in the storage or

without losing a great deal of accuracy. In most cases the problem can be prevented

by adding a random nugget term in the diagonal entries of a matrix. For the GP, if

the SE kernel is selected, the third additional hyperparameter σ2
n not only describes

the noise level of the data, but prevents the matrix from ill-conditioned for the ma-

trix inverse. If the value of σ2
n is too small, the singularity issue will emerge. In the

particle damping data, as seen in Figure 6.4, the data is strictly bounded between

[-0.1,0.5]. In this sense, the variance, for example at the beginning of the data,

will be rather small, thus during the numerical search, the algorithm will try to fit

a small σ2
n to model the low variance, which collaterally generates the singularity

problem. The only way to counter the problem is by magnifying the data space.

The traditional way of data space resizing in the statistical community is the z-score

normalisation [69].

z =
y − ȳ
σ

(6.1)

where y is the output dataset, ȳ is its mean and σ is its standard deviation.

Such a way of rescaling the data space will bound the data in [-1,1]. However,

its new size is still not big enough to obliterate the matrix singularity problem.

In the principle of magnification, one could naturally come up with the idea of

multiplying the whole dataset with a number λ. But one should bear in mind that

the choice of the λ will influence the final prediction. Therefore, the λ becomes a

factor or even a hyperparameter involved in the simulation. However, in such a way,

if the λ is modelled in the simulation, the model will be too complex. The current

thought on the choice of λ will not be too harsh, that any λ that removes the matrix

singularity is equally a good choice. Although such a treatment on the λ is not

rigorous to the spirit of science, its applicability is reasonable. As mentioned before,

the numerical optimisation depends on the initial conditions. Since the profile of

the function is retained through magnification, ideally the initial condition with
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the rescaling forms a bound subject to relativity: It is equivalent to say to change

the initial condition while keeping the scale is same to rescale while keeping the

initial condition fixed. Technically, from the perspective of rigorous mathematical

proof, such an equivalence is not tenable, because the gradient will change due to

rescaling only for the output. But it can hold its ground in considering in terms

of the searching destination. Theoretically, a certain initial condition will guide

the search to a certain local optimum based on the function profile, if the function

profile is retained in rescaling, that means in a certain scale any convergence from

an initial condition to a local destination could find its resembling search in other

scales. Hence, the λ rescaling is adopted. For the particle damping data, λ = 100

is found to be a good choice.

To see the influence of the initial conditions on the final prediction for a single GP,

the 2D loss factor plot is used as an experimental subject.

Figure 6.6: GP prediction at initial hyp setting [1,1,1].

Before analysing the performance, from the graph, one thing needs to be addressed

first. The rescaling process is built to the algorithm, before plotting the graph, the

prediction will be resized back to fit its original size. Therefore, no change will be

made to the output size in the final plot.

Through comparing Figure 6.6 with 6.7, one could see at a small specification of

the hyperparameter set, the search primarily moves in the dimension of σf and σn

(check the title of the figure, which shows the final values for the hyperparameters).
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Figure 6.7: GP prediction at initial hyp setting[5,10,1].

However, in the case of much larger initial hyperparameter values, the search arrives

at a place far from its starting location in every dimension. The small initial con-

dition explains the entire dataset in a microscopic fashion by capturing its details

in the function profile with the upper and lower bounds. The large initial condition

explains the data in a macroscopic fashion by treating the dataset as a straight line

as a result of a large scale length l2. The dependence on the initial conditions for

the search is rather obvious here.

As the purpose of applying a TGP model on the data is purely to differentiate

region from region based on the details of the regional behaviour (e.g.variance), it

will be reasonable to specify a small initial condition for the TGP model. If the

same initial condition [1,1,1] is chosen for the hyperparameters σf , l, and σn, the

following splitting space arrives in Figure 6.8.

Figure 6.8 shows an excellent agreement with the one derived from the stochastically-

optimised CTGP. The running time for the numerically-optimised CTGP is on aver-

age around 500s for 200MCMC rounds, while for the stochastically optimised CTGP,

it will take 1200s on average. The computational time also depends on the change

of initial conditions. If large initial conditions [5,10,1] are selected, it takes less time,

which averages around 340s. Its predictive space is given below in Figure 6.9.

The predictions and partitions given in Figure 6.9 are not beyond expectation, be-
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Figure 6.8: CTGP prediction at initial hyp setting[1,1,1].

Figure 6.9: CTGP prediction at initial hyp setting[5,10,1].

cause it has been said before that the large initial condition will try to explain the

input space as noise perturbing a linear trend; therefore, there are partitions at

3.2g and 3.7g. Obviously such a type of interpretation does not meet the desired

expectation derived from visual observation of the data. Therefore, extra cautions

must be paid in the selection of the initial conditions. Fortunately it has been found

that small differences (e.g. change [1,1,1] to [1.5,1.5,1.5]) in the initial conditions do
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not cause a drastic difference in the final prediction, which means there is a healthy

tolerance in guessing a good initial condition. To guess a good start point at a given

rescaled data, one could use a stochastic approach to optimise the dataset first, and

use its outcome as guidance for the guessing.

6.5 Conclusion

The behaviour of the loss factor in the particle damping is almost one-sidedly domi-

nated by the acceleration. Such a phenomenon entitles a direct application of the GP

and TGP models on the 2D data space of the loss factor vs acceleration. The direct

application of the GP model on such a data space has shown the typical GP style

of interpretation, where the predictive curve exhibits great smoothness and conti-

nuity. However, just as expected, the intrinsic problem with the heteroscedastity

does set back the reliability and practicality of the GP model, for the variance of the

data does hold important physical meanings. The application of the CTGP model

has shown enough evidences in dealing with heteroscedasticity of the data, it has

successfully identified different regions with different characters in terms of variance

and trend. On the grounds of performance, one could firmly say the CTGP is in-

dubitably superior to the GP model in modelling the particle damping; however,

the inevitable significant rise of the computational cost must be endured in order

to achieve such performance. Since the PD data and the MAD are two completely

different case studies, it is highly expectable to see the CTGP capable of dealing

a wider range of problems The next chapter will show the power of the CTGP in

dealing with another completely different type of problem. In the end, the true

practical significance of applying the CTGP model on the PD data needs to be

clarified. As the current application is performed on single input and single output

space which is easily visually observable, the more important benefits from applying

the CTGP is that, the CTGP can provide more accurate confidence intervals than

the traditional GP model. Therefore, such confidence intervals can help the user

to identify measurement outliers which is potentially subject to high measurement

error, or even is a signal of systematic faults.



Chapter 7

Z24 bridge data analysis

7.1 Chapter Overview

The Z24 data case study offers the opportunity for the CTGP to show its capability

in dealing with Structure Health Monitoring (SHM) problems. The SHM data

measured in the Z24 study presents a great example of how a switch of physical

property in the system influences the behaviour of the data, and how such physical

switches could be identified through pure statistical modelling as offered by the

CTGP. In the last two chapters regarding the particle damping, the CTGP is given a

task to identify the different stages of the particle damping in terms of the behaviour

of the particles. It could be said the case study on the particle damping placed

the CTGP in a somewhat duplicated role as the Z24 data case study does, where

both case studies are dealing with physical switches. However, in this study of

the Z24 data, the data space will be more complicated in terms of the pervading

high dispersion level across the entire data space. It challenges the CTGP on its

capability of dealing with a scenario involving a high global variance. There are

other interesting features dwelling in the Z24 data, which will be revealed later. By

any means, it is a new field to test the performance of the CTGP in terms of the

practical application, robustness etc.
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7.2 SHM and Z24 Data

7.2.1 General SHM

Structure Health Monitoring (SHM) is an engineering discipline for estimating and

supervising the state of health of a system (mainly structures) from data acquired

from sensors permanently mounted on the system [70]. The health of structures,

such as bridges, buildings etc, often could be evaluated from its dynamical behaviour

in a form such as the acceleration response. The acquired data do contain the

information indicating the potential risk of structural failure, because issues such as

crack propagation and incipient damage can affect the dynamical behaviour of the

structure. But to detect those subtle indicators of the damage in the vast data space

is not a simple task, especially when those indicators are always concealed in the time

domain of the measurement. To counter such a predicament, it is common in SHM

to construct something termed as ’features’, which are a series of low-dimensional

vectors sensitively influenced by the damage. The common-vibration based SHM

often uses the subject structure’s natural frequencies or resonance frequencies as

the features, where the damages caused by the unexposed cracks could be revealed

through being modelled into the frequency, because the presence of crack induces

a reduction in the local stiffness. The processing of the raw time-domain data to

gain the damage associated frequency domain information is a typical way of feature

extraction which is often undertaken in pattern recognition or machine learning [70].

The identification of the damage sensitive features allows the SHM inference engine

to perform subsequent data analysis comprehensively in ways of both diagnosing

and prognosing the health of the structure.

The straightforward schematic frame, when it comes to implementation, is not as

straightforward as it seems. There are various impediments against the process of

the feature extraction. The problem of confounding influences is the most common

and notorious among those. As a systematic quantity, most of the features rarely

associate exclusively with the damage. They could also show abundant responses

to other benign changes in the system such as switch of mechanism, temperature

change, wind speed etc. Influences attributing to these environmental or mechanical

factors tend to adulterate the response of the feature, leading to confounding or

concealment of the true damage-related change in the feature space. The natural

frequency, as a common feature whose commonness as not only showing general
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sensitivity to the damage, but also shows a general dependence on the ambient

temperature [71]. Against the problem of confounding influences, it is an alternative

to either extract out features that bounds tightly and one-sidedly with the damage,

or project out the confounding influence from the feature. Such a process is termed

as data normalisation.

There are a large population of techniques currently feasible to conduct such data

normalisation [72]. The criterion of choosing from these techniques is largely de-

cided by the characteristic relation held by the feature with the different confound-

ing influences. In vibration-based SHM, the measured time domain quantity (e.g.

acceleration) does always exhibit a changing manner in a short time scale which as-

sociates its frequency with tens of Hertz. While, those confounding influences, such

as ambient temperature and traffic loading, present their change in a much larger

time scale, which associates with hours or days. Such a distinctive behaviour, when

interpreted in the plot of the response surface for the time domain quantity, could

be observed as a global-to-local contrast, where the confounding influences conduct

the global cyclical behaviour of the response surface and the damage commands the

local small variation of a noise type. If a conventional type of regression model is

performed on such type of time domain data, it is almost certain that the model

will overlook the local small variation and devote its inference in dedication to the

general trend shaped by the confounding influences. Then this inference can be sub-

tracted from the subsequent data to arrive at a new set of data that only depends

on the damage.

The performance of the subtraction technique relies strongly on the reliability of the

inference. Therefore, what the conventional regression techniques suffer from will

become the primary concerns among which the problem of heteroscedasticity again

will prosper, and it is where the TGP will show its power.

The presence of the heterocedasticity in such a context is mostly caused by the

switching of operating mechanism or certain physical properties. Thus it suggests

a piecewise heteroscedasticity which will fit perfectly into the bracket of the TGP.

But one thing worth the emphasis is that, when compared with giving predictions

to the data space, with no particular reason, the modelling of the regional piece-

wise variance is always considered as secondarily important unless the prediction

is heavily disturbed by the existence of the heteroscedasticity. As has been stated

in the chapter overview, the heteroscedasticity is modelled through identifying the

location where the switching of data behaviour takes place. Such a location can
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always be paired with an important switching of physical property in the structure

system. Again, it has physical significance just as in the modelling of the particle

damping. But here, in the scope of the data normalisation in SHM, the identification

of the switch brings another important advantage: It opens the chance of applying

simplified fitting submodels (e.g. linear) within the individual region to generate

predictions. For example, a selection of simple linear regression models could be

applied to model the partitioned data space in stead of making a complicated global

polynomial fitting which has a disposition to overfitting. Such simplified models are

called parsimonious models. Parsimonious models serve the purpose of industrial

simplification for pragmatic application; they trade off the prediction accuracy at a

tolerable extent, but gain considerable improvements in flexibility, robustness and

cost saving. The parsimonious model could either be achieved through the TGP

or through a more generic idea, the Classification and Regression Tree (CART)

equipped with linear regression. Worden and Cross have done some researches on

the exact same case study with the original GTGP and the BCART models [44].

In the following sections, the current CTGP model will combat against both on the

grounds of performance.

7.2.2 Z24 Case Study

The Z24 bridge is of significant importance in the context of SHM analysis. Prior

to its retirement in the late 1990s, it had undertook a SHM campaign as a part of

the ’SIMCES project’ to explore the influence on the bridge from multiple environ-

mental factors [73]. Through experimenting on the Z24, various influences on the

structural health; such as wind speed, environmental vibration, temperature etc,

could be set under the scope for investigation [74]. Of the current demonstrative

case study, the feature of interest will be the natural frequency which is subject to

confounding influences from the ambient temperature. The real physical scenario

reveals a qualitative change in the asphalt as a source of confounding influence due

to the stiffening of asphalt as a result of temperature variation. This change, al-

though features a gradual transient process, could be interpreted as a switching of

general curve behaviour in the input data space.

Figure 7.1 shows the four natural frequencies measured at 5652 samples. These

samples are basically measured by the order of time spanning nearly a year from

winter to late autumn. The dashed line at the point 4918 indicates the initiation
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of the damage. It has been found the second natural frequency (GREEN) is both

sensitive to the damage as well as the temperature, and it is selected to study the

performance of the CTGP in detecting the damage.

Figure 7.1: Z24 4 Natural frequencies.

The original data is comprised of 5652 samples, but some of them are void due to

measurement failure. After culling out the failed measurements, 5277 samples are

valid to use. The last 2000 samples, which contains the damage, will be used as the

test data, and the starting 3277 samples will form the training data space.

The figure 7.2 shows the 2nd natural frequency as the feature against the confound-

ing influence temperature in the training data space. Because the behaviour of the

trend is rather mild and fluent, not all the 3277 samples are needed to conduct the

learning. Therefore the data space is reduced to 820 data points through removing

points uniformly across the data space. It is clear to see the data space presents

a bilinear behaviour. The two linear trends could be presented in an explicit way

through putting down a partition approximately at 0Co. The switching behaviour

is expected at the prior awareness of the physical change in the asphalt. As the

temperature decreases, the asphalt becomes stiffer, which consequences the increase

in the natural frequency according to f =
√

k
m

. One should bear in mind that,

after the switching point, the stiffness of the asphalt will maintain at a generally

steady level. This is a crucial requisite premise to the validity of the whole method-

ology. Because the relation between the natural frequency and the temperature will
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generally remain unaltered, the modelled predictive curve could be eligibly used to

make predictions on the data outside of the range of the training data. Therefore in

this sense, the TGP model is used for the extrapolation of the data with high prior

predictability.

Figure 7.2: Z24 second natural frequency as a function of temperature.

As a customary way of unfolding the performance of the CTGP, the single GP will

take a preliminary analysis on the data space giving Figure 7.3.

The prediction given by the GP, as can be seen in Figure 7.3, has made a seemingly

perfunctory capture of the general trend of the data. Although the majority of the

data points are well modelled by such a predictive curve, there are decisive defi-

ciencies that could invalidate such prediction. The first problem is a comparatively

minor one, taking place at the left end of the data space. The GP fitted an arch

there attempting to explain the slight curved feature in that area. However it is

an erroneous treatment to the data, superficially due to the lack of local data to

reference. But more deeply it transpires that the GP has underestimated the length

scale l2 in the SE kernel. Such a fact could also be testified by the mildly undulating

curve in the region above 0oC, where a straight fitting line is more appropriate at the

absence of informative traces from the data. Such an exaggerated interpretation by

the l2 connotes a deeper relation to a more severe problem in the confidence intervals

(CI). The CI in the context of SHM is often used for detecting aberrant behaviours

which can be the signs of damage. Thus to model the CI correctly is paramount. In
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Figure 7.3: Z24 second natural frequency data with the GP in training
temperature domain.

the figure, it can be perceived that the variance in the hotter region is higher than

the colder region below 0oC. The GP modelled the variance between [-3,0] well, but

failed to remain confident in the left end and the hotter region. The inadequate CI

at the left end is not as important as the one in the hotter region. However, the

CI in the hotter region will directly influence the CI in the extrapolation of the test

data which directly follows the training data after 25oC.

Figure 7.4 shows the prediction from the GP on the test data in comparison with

the measured data. The onset of the damage occurs at point 945 (the lowest spike

in between [800,1000]). In the figure, the red predictive line represents the ideal

relation between the frequency and the time without the presence of damages. Any

excursions outside of its CI will carry the suspicion of being associated with dam-

age. Although the development of the damage caused a gradual declination in the

frequency, which eventually dropped outside of the CI, the onset of the damage still

remains undetected at point 940. The reason is as addressed in the paragraph above,

the CI is inappropriately modelled.

When the CTGP is applied to the data, it has been found 100 MCMC rounds are

sufficient to produce the very partitions that indicate the physical switch. Two

partitions are generated in the proximity of 0 oC, which yields three regions with

distinctive variance levels. The left region is modelled with a curve exhibiting a
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Figure 7.4: GP prediction on the test data in comparison with the mea-
sured data.

Figure 7.5: TGP prediction in the training temperature space.

gradual departure from the linearity from left to right. The curvature at the left

end shows a partial agreement with the prediction given by the GP. However the cur-

vature in the TGP prediction is very much moderated, which shows the advantage of

segregating the data space to make the local data more informative. The middle re-

gion is considered to be a transient region featuring a short flat line prediction with
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a comparatively wide CI. From the standpoint of the statistical behaviour of the

data, it could be sensed that between [-1,3], there features a gradual decrease in the

variance level, which suggests a scenario of continuous heteroscedasticity. Although

the decision tree model is not a natural fit to modelling continuous heteroscedastic-

ity, to be able to identify the transient part still has reflected the effectiveness of the

CTGP. The right region features a strict linear prediction of the data. Its contrast

in the variance with the other two regions is rather distinguishable. Compared to

the CI given by the GP in the same region, the considerably tightened CI encom-

passes the data in a more compatible fashion. It is definitely a better modelling of

the local variance than the one the GP presented, as manifested by the CI’s local

consistency. Also, as benefited from the partitions, the undulating behaviour in the

GP is banished completely in the results from the CTGP. Using such a modelling

to predict the test data, the Figure 7.6 arrives,

Figure 7.6: CTGP prediction on the test data in comparison with the
measured data.

One can easily pick out that the predictive CIs in the test data domain have shrunken

as a result of the same shrinkage in the last region of the training data space.

Because the predictive model produced by the CTGP for the temperatures above

1.3oC is a perfect flat line, that means the model holds a theoretical belief that

the natural frequency is invariant with the temperature in the higher temperature

domain. The 2000 data points in the test set are all measured outside of winter,

hence the prediction is served as a flat line. The effectiveness of the CTGP is
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manifested at the damage initiating point 940, which has been successfully identified

by narrowed CI produced by the CTGP. However, there is one problem one should

bear in mind. Because the CI has been shrunken, that means the chance of false

detections will rise. From the figure, it could observed before point 940, there are

several times when the undamaged data fell outside of the CI, which shows an

excessive sensitivity from such a model to the damage.

7.3 Introducing the CTGP with Pre-Partitions

The GP is notorious for its computational expensiveness. It is strongly discouraged

to still apply the GP when the data space consists of over 104 data points, unless

some processing have been done on the data. Because the GP is adamant on the

matrix inversion which will cost n3 operations to compute. In the CTGP, things

get even worse, because the CTGP is a sampling process, where each sampling step

requires a new set of matrix inversion involved in the hyperparameter optimisation.

In this case study of the Z24 data with 820 data points, it has been found at least

200 MCMC rounds are required to optimise the hyperparameters for each MCMC

step in the Markov space of the tree. At least 100 MCMC steps are required to

search the MAP tree in the Markov space. Thus it means there are at least 20000

times of matrix inversion required for a 820 × 820 matrix, not mention that some

other minor matrix inversions are required along the process. In the MATLAB, it

takes averagely 1.5 hours to solve the case.

There are a number of ways to alleviate the computation burden. Here the strategy

of pre-partitioning is introduced, which is innovatively introduced and developed by

the author. The pre-partitioning, as the name suggests, will make pre-partitions in

the data space before the real CTGP process starts. Fundamentally, each matrix

inverse cost n3 operations, if the full dataset is separated evenly into two n/2 sub

datasets, the total computation cost will become 2 ∗ (n/2)3 = n3/4. If the dataset

could be evenly separated into k subsets, the computational cost will be ideally

reduced to n3/k2. At this point, one with an experience in statistics or familiar with

the idea of Fast Fourier Transform (FFT) would probably think of partitioning the

data space by orders of odd and even. However, this is not what is introduced here,

instead the pre-partitioning strategy does not take a FFT-style partitioning scheme,

rather conversely, it partitions the data space into k evenly spaced regions. These
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pre-partitioned regions rather than impairing or disrupting the data space, actually

will be strongly beneficial. Because the treed model is a partitioning model, there

ought to be partitions. Postulating that some pre-partitions exist in the data space,

if that pre-partition is benign, it is good to have it. If it tends out to be a malignant

one, it can still be pruned out through computation.

Figure 7.7: Illustration of the pre-partitioning strategy.

All the pre-partitions will stay fixed before the pruning stage, and the CTGPs will

be applied to each individual pre-partitioned region to produce results there. In this

way, not only the number of matrix inverse-related operations is reduced, but also

the number of MCMC steps as well, because each pre-partitioned region contains less

data. After all these have been done, there comes the procedure of diagnosing the

bad partitions which will be pruned out from the space. The Figure 7.7 illustrates

the concept of the pre-partitioning strategy.

To illustrate the performance of the pre-partitioning, the second natural frequency

data against the temperature again is used (Figure 7.8). But a small modification is

made to the data that the temperature is cut to be less than 15oC for the purpose

of better illustration (in this case there will only be one split which is easier to
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(a)

Figure 7.8: Pre-partitioning results: (a) result at 1PP

(b)

Figure 7.8: Pre-partitioning results: (b) result at 3PPs
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(c)

Figure 7.8: Pre-partitioning results: (C) result at 5PPs

(d)

Figure 7.8: Pre-partitioning results: (d) result at 7PPs
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explain). Ideally, there is one or two partitions to make in the interval [-1,1]. Figure

7.8 displays the four final partitioning results at four different initial pre-partitioning

specifications. It is easy to observe that, although all the four results do only produce

one partition in each, the location of the partition varies. It is easy to identify if

this partition is the pre-partition or the generated partition through referring to the

number marks on the x-axis (data are in [-5,15], the grid indicates four intervals, one

can easily locate where the pre-partitions are accordingly). In fact, apart from the

last result at seven pre-partitions, all the final partitions that finally stand are all

generated partitions, which definitely shows the effectiveness of the strategy. The

results at seven pre-partitions failed to identify the physical switch. It is because

too many pre-partitions are allocated, the prediction in each pre-partition region

is also worsened due to the local shortage of training data. Therefore, these pre-

partitions or generated partitions are prone to be pruned off. For the first three

results, the variation of the location of the final partition reveals a major drawback

from such a strategy, partitions can only be approximately located close to their

optimal locations depending on the initial pre-partitioning. It is not a huge problem

for those cases featuring transient regions whose variance is continuously changing,

because there is inherently no best partitioning location but an approximate one.

However, if the case is like the Motorcycle accident data in Figure 4.1, such a

strategy cannot be applied, simply because the miss of the partition at 15 can be

legitimately considered as an error. The advantage of the pre-partitioning strategy

is summarised in Table 7.1 shown below:

No. of PPs total time(s) Time per region (s) Pruning time (s)

0 6672 6672 0
1 2278 1011 256
3 984 172 296
5 856 56 520
7 898 24 706

Table 7.1: Table illustrating the time consumption at different number
of PPs.

From Table 7.1, one can see a massive drop in the total computation time at the pres-

ence of one pre-partition. By further introducing more pre-partitions, the algorithm

can achieve a further reduction in the time before seven pre-partitions are allocated.

At seven pre-partitions, the total computational time rose again. This phenomenon

could be explained by observing the pruning time. When more pre-partitions are

introduced, indeed the computational time for each region will drastically reduce,
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but more partitions will be subject to the pruning process. The pruning process is

not cheap, because it is an exhaustive process, where the removal of a partition will

merge two adjacent regions into one whose boundary partitions will be subject to

further pruning as well, and it will be more costly since the merged region is more

sizeable and requires more computation. Besides considering the performance, as

illustrated in Figure 7.8, starting from five pre-partitions, the model has generally

lost a good tracking on the optimal partitioning location. Therefore in this particu-

lar case study with one split involved, the three pre-partitions produced the optimal

balance between the computational cost and inference accuracy.

7.4 Conclusion

The application of the CTGP is certainly an effective way to detect the onset of

the damage in the Z24 study. It could be considered as a successful showcase of the

generalisable applicability of the CTGP. Speaking of the case study itself, although

the CTGP shows an advantage over the single GP in being more sensitive to the

damage, the predictive result is still not unanimously flawless. The problem with

the CTGP in the study of the Z24 bridge is that it is tends to be over-sensitive

and normal fluctuations of the frequency due to temperature sometimes could be

misdiagnosed. It is not in the same vein with saying the CTGP is incapable of

distinguishing the confounding influences, since the CTGP did manage to subtract

the confounding influence from the data. The white-noise behaviour in the residual

approved the assumption of the theory. The problem seems a bit hard to explain

at the current stage. At last the short introduction of the pre-partitioning strategy

has proved to be useful at substantially reducing the computational cost. But it

has a rather limited applicability. Future works are on the way to fully exploit its

capability.



Chapter 8

Conclusion and future works

Referring back to the objectives of the thesis in the introduction, it could be con-

cluded that the goals of all the objectives have been well met.

This thesis has successfully presented a new variation of the treed Gaussian pro-

cesses, the CTGP, based on a more genuine and straightforward idea from the classic

Bayesian classification and regression tree. Specifically four CTGPs are developed,

but only two (stochastically-optimised CTGP and the Newton’s method-optimised

CTGP) are adopted, and the other two (the Quasi-Newton method-optimised CTGP

and the Nonlinear Conjugate gradient method-optimised CTGP) are abandoned.

The failure of the later two is due to the failure of Wolfe conditions which are

practically indispensable and irreplaceable in these two models.

To fully understand the present TGP developed by Gramacy, the GTGP, is not a

simple task. It has been shown in the chapter theory that the GTGP is a fully

stochastic model subject to perfect randomness for both the tree structure and

the hyperparameters. Its hyperparameter space is highly complex, which naturally

shapes the complexity of the sampling system. It is definitely one of the essential

successes in this thesis to replicate the GTGP in MATLAB in the absence of any

detailed insight into Gramacy’s code in R.

The benchmarking on the CTGP against the GTGP has successfully demonstrated

that the power of the CTGP chiefly lies on the grounds of predictive accuracy

(or reliability). It has been shown in the benchmarking chapter that the partitions

produced by the CTGP evinces a higher sensitivity to the difference in variance than
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the GTGP which shows a general inclination towards putting partitions at turning

points. Such a fact indicates that the CTGP performs better than the GTGP in

countering the heteroscedasticity of the data. It is an advantage that could connect

to a wide range of practical applications. The later two case studies on the particle

damping and the Z24 bridge are typical examples where the heteroscedasticity is

encoded with physical meanings. Apart from this, it cannot be predicated that the

CTGP transcends the GTGP in every way in terms of the performance, because the

sensitivity towards trend turning can be an advantage in some different applications.

In terms of the computational cost, the GTGP leads by a large margin against the

stochastically-optimised CTGP. The convergence rate of the posterior also shows

the stochastically-optimised CTGP has potentials to further improve its efficiency

considerably. The NM-optimised CTGP has a running speed almost at the same

level as the GTGP, and its posterior inference quality is only a touch behind the

stochastically-optimised CTGP, and its performance on the Motorcycle Accident

Data (MAD) is highly commendable. However, when the CTGP is applied to the

particle damping (PD) data, its drawbacks finally transpire. The NM-optimised

CTGP could be highly dependent on the initial conditions for the optimisation,

and the scale of the data space also could be vitally consequential. Without a

comprehensive knowledge of the data space, the application of the NM optimised

CTGP must be handled with caution.

The experiment on the PD has successfully generated valuable data in both respects

of presenting the PD’s physical characters and data’s statistical peculiarities. It has

been found for the current PD setup, that the damping loss factor is one-sidedly

dependent on the excitation amplitude over the frequency. It entitles the problem of

performing a 2D regression model on the PD data to be reduced to a 1D application

of the model concerned with the single input variable, the excitation amplitude.

Speaking of the process of the experiment, it could be said that the experiment is

well designed to meet a high standard with the incorporation of the control loop,

but is fulfilled at a lower level due to the failure of the control loop. It has been

shown by the results after the post-processing from the filter that the acquired data

still upholds a certain good level of quality in the absence of a functional control

loop. But one should bear in mind that the filter is only a makeshift for the missing

of a proper control of the system; it has irremediable drawbacks. First the filter will

induce inevitable residual loss spanning the entire frequency range, thus causing

undesirable damage to those good frequencies. Although the filter can clear the

high frequency noisy signal, it cannot be used to adjust the deviations from the
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sinusoid shape which is at times happening when the excitation level is too high.

The application of the CTGP on the PD data managed to identify the three phases

of the PD as described by the former researchers. The confidence interval in the

prediction proved the statistical heteroscedasticity is an indicator for the physical

change in the PD. The CTGP is the correct tool to use for the modelling of the PD.

The application of the CTGP on the Z24 bridge data in the context of SHM has

demonstrated the versatility of applying the model. In the case study, it has been

shown that the variance could be used as the quantity that indicates the onset of

the damage. This naturally requires the accurate modelling of the variance, which

stressed the importance of applying the CTGP again. Because the CTGP partitions

the input space into regions with local consistent variance level which is more reliable

and accurate.

8.1 Future Works

The future works could be generally directed towards two respects: namely, the

future work on the PD and the future work on the CTGP.

8.1.1 Future works on the Particle damping experiment

The future work on the PD experiment will establish its interest on the ameliora-

tion and refinement of the current experimental defects. There are a number of

things that could fit into this bracket. As has been addressed with emphasis in the

former content of the thesis, the primary defect that depreciates the quality of the

measured data is the absence of an effective control loop. The main issue with the

current functionless PID control loop is that the manual tuning of the PID is either

impractically inefficient or egregiously complicated against the some time turbulent

dynamics of the PD system. In fact this issue belongs to a rather definitional do-

main in the control theory, namely the control of nonlinear systems. The PID is

established on the basis of linear control theory, but it does not necessarily mean

the PID cannot perform well in a nonlinear control environment. The studies on the

nonlinear control with the PID are bounteous in the area of the automatic control.

The existent solution could be as simple as linearising the system by approximation
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[75] or as complicated as designing a module integrated with multiple controllers

[76]. However, in either the simple or complex way, it is no longer within the scope

of mechanical engineering, but a classic study object in the scope of the automatic

control. Apart from the major flaw in the control loop, the experiment did not cover

the lower end of the frequency, which is the frequency under 50Hz. The current test-

ing frequency range has shown the variation of frequency has insignificant effect on

the loss factor. However within the extremely low frequency range, the behaviour

of the PD can change drastically. Because in that frequency range the PD could

experience a new vibration mode associated exclusively with the impact between

the particle bed and the damper’s wall. A sudden switch of behaviour is almost

guaranteed to be observed there, which means the power of the TGP model could

be released more completely. Another potential improvable issue is quite similar to

the one with the frequency. At the lower frequencies (e.g. 100Hz), the power supply

from the shaker is not enough to drive the PD system into the stage of decreasing

loss factor. A simple and direct solution is to use a more power shaker.

8.1.2 Future Works on the CTGP

The future work on the CTGP could be massive. The current version of the CTGP

is more or less a prototype. Multifarious features could be developed and embedded

into the CTGP. The CTGP is a highly robust model compared to the GTGP, because

it is straightforward amalgamation between the generic CART and the GP. There is

no complexity in either the hyperparameter space and the sampling scheme, which

makes the CTGP a portmanteau receptacle to various different regression models.

For example, if one wants to perform a piecewise generalised linear model (PGLM),

one just needs to replace the current GP module with the PGLM, while the GTGP

has to do massive adaptations to make it happen. Further down this route, one great

potential held by the CTGP could be conjectured: A mixed piecewise regression

model is made possible by the framework of the CTGP. It is definitely worthy

of the investigation, considering that the GTGP is in incorporated with a similar

idea, the limiting linear model (LLM). But the GTGP can only switch its inference

method between the LLM and the GP as a result of being restricted by its prior

specifications. If the CTGP could switch its inference method among a group of

models, undoubtedly it will benefit both the performance and the computational

cost.
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Apart from changing the regression models, it is also feasible for the CTGP to change

the regression kernel inside the GP. The current choice of the kernel is the standard

SE kernel. It has been stated by some researchers that the SE kernel is unrealistically

smooth for modelling real world events [31]. Thus it would be highly intriguing to

change the SE covariance function to the Matern class (more realistic for real world

data modelling), and then apply it to real world problems. The covariance function

also determines the reasoning factors of the GP inference. For example, in the

SE kernel, there are only three hyperparameters, σ2
f , l

2 and σ2
n according to which

three the GP can generate different predictions. In the benchmarking chapter, the

partitions are reasoned also based on these three hyperparameters so to produce

regions containing homogeneous local hyperparameters. Therefore, it will be highly

exploitable to develop new covariance functions to guide the partitioning in different

ways based on the user’s preference.

The current CTGP is only capable of dealing with 1D problems. To make it func-

tional for higher-dimensional problems is not difficult. Because, during the develop-

ment of the TGP, the treed linear regression model is built as well, which features

the multi-dimensional applicability. The reason why it is not yet introduced into

the CTGP is generally due to two reasons. The first reason is the CTGP for the

1D application has already been considered to be cumbersome in terms of the com-

putational cost. For higher dimensions, more data points are needed to specify the

distinctiveness of each region. The 1D application of the CTGP has already been

arduously struggling for a reduction in the computational cost, the 2D implementa-

tion will be unreachable from the grasp of practical applications. The second point

shares the same concern, the computational cost. Although the computational cost

of inferring the tree’s posterior does not vary much with the dimensionality (the

cost is N3 + DN2, where D is the dimensionality), the cost will be aggrandized

immensely in the sampling space of the tree. It means the introduction of a new

dimension will substantially raise the complexity in the partitioning results, thus

the sampling size will grow almost explosively. Therefore, before making the CTGP

functional for higher dimensional implementations, the foremost task is to reduce

the computational cost.

In general, the approaches to reducing the computational cost could be divided into

two categories. The first category encompasses the approaches that retain exact

inference, while the second category allows the approaches based on approximation

of the inference.
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For the first category, future works could be done on investigating and developing

other tree construction methods that could accelerate the MCMC search to find

the MAP tree. In the same vein, the stochastic optimisation process for the hyper-

parameters could also be accelerated through introducing more efficient sampling

schemes. The case study of the MAD has shown the well-balanced nature of the

NM-optimised CTGP between the predictive accuracy and the computational cost.

However for wide range practical applications, it is heavily disfavoured due to its

sensitivity to initial conditions as exposed in the case study on the PD data. Despite

such a negative fact, the NM optimisation could be used in combination with the

stochastic optimisation to form a hybrid optimisation approach. The hybrid opti-

misation theoretically could take advantages from both sides, where the stochastic

system could be used to help the NM to escape from local minima.

Whatever method taken from the first category can only gain comparative improve-

ments in the speed. The overall cost will be still expensive as long as the exact

posterior inference remains unaltered. In order to achieve further significant reduc-

tion in the computational cost, approximate approaches must be considered. In

Bayesian statistics, it is common to encounter the rise of non-trivial distributions

from the marginal likelihood which cannot be modelled by any simple probabilistic

density functions (PDF) that allow direct sampling. The current GP is a good ex-

ample, where the hyperparameters in the marginal likelihood can only be sampled

through guided sampling strategies such as MCMC. The involvement of MCMC

sampling is almost an announcement that the inference will be computational ex-

pensive. In recent years, Variational Inference (VI) has been favourably studied by

many researchers, and has proved to be effective to a wide selection of inferences

based on the Bayesian framework [77]. Briefly say, the principle of the VI is to posit

a family of approximate distributions to fit the intractable complex PDF. For exam-

ple if the marginal likelihood of the GP can be approximated by a simple PDF such

as a normal distribution, the optimal values of the hyperparameters can be easily

obtained rather straightforwardly. Some authors have already developed VI for the

GP [78], and proved its generalisability in such applications. It will be definitely

worthwhile to investigate into its details in the future.

Apart from these two categories which both focus on making changes inside the al-

gorithm, although on different grounds their focuses are laid; in fact, other methods

can also exist outside of the algorithm itself. The pre-partitioning strategy intro-

duced in the end of Chapter seven is an example, which shows that the data space
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could be studied and reasonably modified to lessen the computational burden. The

pre-partitioning strategy definitely has a good potential, which is worthy of being

studied along with other methods of its kind, in the future.



Appendix A

PD experiment-related

mathematical derivation

Based on the properties of harmonic motions, then postulating that,

Frms = |Frms|(a1 + a2i), a21 + a22 = 1

Vrms = |Vrms|(b1 + b2i), b21 + b22 = 1

V ∗rms = |Vrms|(b1 − b2i)

(A.1)

then,

P = FrmsV
∗
rms = |Frms||Vrms|[(a1b1 + a2b2) + (a2b1 − a1b2)i]

Preal = |Frms||Vrms|(a1b1 + a2b2)

(A.2)

Now given,

Frms = Vrms(c+
(ω2m− k)

ω
i) = Vrms(c+ λi) (A.3)
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where λ = (ω2m−k)
ω

, one has,

pairing these two equations,

Frms = |Frms|(a1 + a2i)

Frms = Vrms(c+ λi)

(A.4)

Now, because Vrms = |Vrms|(b1 + b2i),

Frms = Vrms(c+ λi) = |Vrms|[(b1c− b2λ) + (b2c+ b1λ)i] (A.5)

Equalising the coefficients with respect to the real and imaginary parts; the following

relations arrive,

|Frms|a1 = |Vrms|(b1c− b2λ)

|Frms|a2 = (b1c− b2λ) + (b2c+ b1λ)

(A.6)

Now, a1 and a2 can be represented in terms of b1 and b2; substituting them in

Preal = |Frms||Vrms|(a1b1 + a2b2), the following relations can be obtained,

Preal = |Frms||Vrms|(a1b1 + a2b2)

= |Frms||Vrms| ×
|Vrms|
|Frms|

[(b1c− b2λ)b1 + (b2c+ b1λ)b2]

(A.7)

The λ terms are all cancelled out, also with b21 + b22 = 1 a simple expression is
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achieved,

Preal = |Vrms|2(c(b21 + b22))

= c|Vrms|2

(A.8)



Appendix B

CTGP Pseudo-code

In this Appendix, the Pseudo-code for the CTGP is presented.

Initial condition specifications
for Main loop number < specified number do

Tree alter op = Randomise(GROW,PRUNE,CHANGE,ROTATE);
Tree proposed = Construct tree(Tree alter op, Tree current);
Posterior proposed = Posterior eval(Tree proposed, Tree alter op);
Posterior ratio = Posterior proposed

Posterior current
;

if Posterior ratio < Rand(1) then
Tree current = Tree proposed;
Posterior current = Posterior proposed;
Parameter history(Main loop number) =
Record(Tree proposed, Posterior proposed, parameters proposed);

else
Tree current = Tree current;
Posterior current = Posterior current;
Parameter history(Main loop number) =
Record(Tree current, Posterior current, parameters current);

end
Main loop number = Main loop number + 1;

end
Optimal tree = Choose max(Parameter history);
plot&output
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Appendix C

GTGP Pseudo-code

In this Appendix, the Pseudo-code for the GTGP is presented.

Initial condition specifications
for Main loop number < specified number do

Tree alter op = Randomise(GROW,PRUNE,CHANGE,ROTATE);
Tree proposed = Construct tree pra(Tree alter op, Tree current);

[Posterior proposed, Parametersproposed] =
Posterior eval(Tree proposed, Tree alter op);
Posterior ratio = Posterior proposed

Posterior current
;

if Posterior ratio < Rand(1) then
Tree current = Tree proposed;
Parameters current =
Parameters Gibbs update(Tree proposed, Parametersproposed);
Posterior current =
Posterior eval(Tree proposed, Parameters current);
Parameter history(Main loop number) =
Record(Tree proposed, Posterior current, parameters current);

else
Tree current = Tree current;
Posterior current = Posterior current;
Parameter history(Main loop number) =
Record(Tree current, Posterior current, parameters current);

end
Main loop number = Main loop number + 1;

end
Optimal tree = Choose max(Parameter history);
plot&output
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