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Abstract 

It is commonly accepted that accurate early diagnosis and monitoring of neurodegenerative 

conditions is essential for effective disease management and delivery of medication and 

treatment. This research develops automatic methods for detecting brain imaging 

preclinical biomarkers for Parkinson’s disease (PD) by considering the novel application of 

evolutionary algorithms. An additional novel element of this work is the use of 

evolutionary algorithms to both map and predict the functional connectivity in patients 

using rs-fMRI data. Specifically, Cartesian Genetic Programming was used to classify 

dynamic causal modelling data as well as timeseries data. The findings were validated 

using two other commonly used classification methods (Artificial Neural Networks and 

Support Vector Machines) and by employing k-fold cross-validation. Across dynamic 

causal modelling and timeseries analyses, findings revealed maximum accuracies of 

75.21% for early stage (prodromal) PD patients in which patients reveal no motor 

symptoms versus healthy controls, 85.87% for PD patients versus prodromal PD patients, 

and 92.09% for PD patients versus healthy controls. Prodromal PD patients were classified 

from healthy controls with high accuracy – this is notable and represents the key finding 

since current methods of diagnosing prodromal PD have low reliability and low accuracy. 

Furthermore, Cartesian Genetic Programming provided comparable performance accuracy 

relative to Artificial Neural Networks and Support Vector Machines. Nevertheless, 

evolutionary algorithms enable us to decode the classifier in terms of understanding the 

data inputs that are used, more easily than in Artificial Neural Networks and Support 

Vector Machines. Hence, these findings underscore the relevance of both dynamic causal 

modelling analyses for classification and Cartesian Genetic Programming as a novel 

classification tool for brain imaging data with medical implications for disease diagnosis, 

particularly in early stages 5-20 years prior to motor symptoms. 

Keywords: 

Evolutionary Algorithms; Cartesian Genetic Programming; Classification; Parkinson’s 

Disease; Prodromal Parkinson’s Disease; Resting-state fMRI; Dynamic Causal 

Modelling. 
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By 2050, 22% of the global population will be over 60 years of age, which is double the 

current proportion (estimated at 11%, 2000). During early 20th Century, life expectancy in 

developed nations was an average 50 years of age, whereas in 2014, life expectancy was 

estimated at an average 80 years of age. This explosion in life expectancy is attributed 

largely to advances regarding sanitation, medicine, and living conditions [1]–[3]. An 

ageing population is not without challenges as the biological and cognitive decline 

associated with ageing is the leading cause of non-communicable diseases, such as cancer, 

stroke, type-two diabetes, Parkinson’s disease (PD) [4], [5] and Alzheimer’s disease (AD), 

amongst others. As such, the World Health Organization’s “Draft Twelfth General 

Programme of Work” (April 13, 2013) lists “Addressing the challenge of non-

communicable diseases” [6] as a salient issue. The current research develops a new method 

of diagnosing PD, a neurodegenerative disease (a class of non-communicable diseases), 

using evolutionary algorithms (EAs). 

This thesis firstly outlines why it is important to examine learning algorithms in the 

context of the classification for PD, prodromal PD (early stages of PD), and healthy age-

matched controls. Secondly, computational intelligence methods are briefly reviewed, 

including EAs, Cartesian Genetic Programming (CGP), and classification. Furthermore, 

this thesis includes a discussion of methods for working with class-imbalanced data, given 

the limitations in testing and recruiting patient and healthy matched samples. For instance, 

the research presented uses a dataset with 102 PD patients, 18 prodromal PD patients, and 

eight healthy controls. Thirdly, functional magnetic resonance imaging (fMRI) is 

reviewed, including an overview of resting state fMRI (rs-fMRI) as the findings reported 

in this thesis examine classification using rs-fMRI data. Finally, an analysis of clinical rs-

fMRI data is presented using EAs with the overarching objective of detecting a brain 

imaging biomarker for PD and developing novel tools for accurate monitoring of treatment 

of PD. 

1.1. Research Aims 

New tools for early diagnosis and accurate monitoring of PD are required as the prevalence 

of PD is expected to increase with an ageing population. Early diagnosis and accurate 
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monitoring of PD facilitates drug dosages to be patient-tailored, which boosts therapeutic 

benefits and limits side effects and functional disability, whilst improving patient quality of 

life. Difficulties providing a differential diagnosis of PD abound, for example, community 

studies indicate that PD diagnoses have 15-26% false positive rates [7], [8], which is 

further exacerbated in the early stages of PD. Therefore, quick and non-invasive methods 

for diagnosis and monitoring with good accessibility are necessary. 

The research presented in this thesis proposes a novel brain imaging biomarker for PD. 

There are two overarching research questions. 

Research question 1: 

Can accurate monitoring of PD be achieved using EAs on rs-fMRI data 

for patients prescribed Modafinil? 

Research question 2: 

Can early stage PD be diagnosed using EAs on rs-fMRI data? 

Research question 1 focuses on developing novel clinical monitoring tools using data from 

a controlled experiment in which participants were administered the drug (versus a control 

group) Modafinil (typically prescribed for PD patients to relieve physical fatigue). 

Research question 2 applies the techniques developed to the diagnosis of participants with 

PD, early stage PD, and healthy age-matched controls. These research questions are both 

novel and exploratory, examining a timely issue with numerous medical implications, 

including concerning the transferability of medical research based on limited and unequal 

sample sizes. 

Developing a tool that can differentiate between the various stages of disease severity is a 

fundamental aim of the work presented, with therapeutic consequences in terms of 

tailoring medication dosage and monitoring medication in accordance with symptoms 

exhibited and overall PD stage. The research presented analyses open data taken from the 

Parkinson’s Progression Markers Initiative database (PPMI; http://www.ppmi-
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info.org/data), a longitudinal study where participants underwent a comprehensive 

longitudinal follow-up schedule of clinical, imaging and bio-specimen assessments. 

This research develops automatic procedures for identifying PD brain imaging preclinical 

biomarkers, which enhances the confidence of methods involved in early PD diagnosis. A 

core research aim is to identify the applicability of Cartesian Genetic Programming (CGP) 

and recurrent CGP (RCGP) classification for both timeseries and Dynamic Causal 

Modelling (DCM) analyses. The timeseries values and DCM values from the rs-fMRI data 

are subjected to supervised classification and the findings are validated with two other 

commonly used classification methods (Artificial Neural Networks, referred to as ANN, 

and Support Vector Machines, referred to as SVM). EAs, such as CGP and RCGP, have 

not previously been applied to brain imaging data. A crucial advantage of EAs, specifically 

CGP, is that they offer a white box solution providing more information on the inputs used 

and better understanding of the final solution obtained in classification, relative to ANN 

and SVM. Moreover, research on the classification of rs-fMRI data has typically used 

statistical-based classifiers (e.g., independent components analysis and multivariate pattern 

analysis [9]–[13]; for an example of independent components analysis in rs-fMRI for PD 

data, see [14]). This thesis examines an additional novel question: is DCM analysis useful 

for classification? Previous research has not examined the applicability of DCM values in 

classification and little research has applied DCM to PD data [15]–[20]. 

A common limitation with medical data involves recruiting low numbers of patients, which 

can result in class-imbalanced data (e.g., high numbers of controls versus patients). This 

research examines the applicability of classification methods to two datasets with heavily 

class-imbalanced data, which mimics the conditions prolific in medical research, enabling 

the research findings presented in this thesis to be more easily generalised to clinical 

settings. 

1.2. Key Novel Aspects Examined in this Thesis 

The work presented in this thesis aims to develop novel automatic methods for identifying 

PD brain imaging preclinical biomarkers, which can aid clinical diagnosis, monitoring and 
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investigation of PD. Currently prodromal PD diagnosis (5-20 years before motor 

symptoms are apparent) is in its infancy with typically low accuracy rates and high levels 

of misdiagnosis with other Parkinsonian conditions. Hence, prodromal PD diagnosis is 

highly novel and relevant, ensuring access to early treatment for patients 5-20 years prior 

to motor symptoms occurring, and providing overall better disease management, thus, 

increasing patient quality of life. 

Research questions 1 and 2 respectively develop novel clinical monitoring and diagnosis 

tools using open rs-fMRI data, with a data-driven exploratory approach. Additional 

novelties presented in this work include the examination of CGP and RCGP as applied to 

both timeseries and DCM analyses, with findings being validated by ANN and SVM. EAs 

have not previously been applied to brain imaging data (which is typically analysed using 

statistical-based classifiers) and contain numerous benefits, including providing a white 

box solution that presents researchers with detailed information concerning the derived 

outcomes. In addition, DCM analysis is advantageous in that it provides information on the 

causal connectivity between different brain regions, yet, this technique has not previously 

been subjected to classification and, moreover, there is only limited research applying 

DCM to PD clinical data [15]–[20]. 

A final core novelty of the work explored in this thesis involves the use of clinical class-

imbalanced samples. Medical data typically includes heavily class-imbalanced data (i.e., 

unequal numbers of patients relative to controls). Hence, this research examines the 

previous crucial research points whilst using heavily class-imbalanced datasets that mimic 

the conditions that clinical research typically encounter, applying techniques to minimise 

the impact of class-imbalanced data on classification accuracy. Outcomes are highly 

relevant for the generalisation of clinical findings derived from limited samples. 

1.3. Outline of Thesis Chapters 

The research presented in this thesis examines the application of computational 

intelligence methods to classification of rs-fMRI data with the aim to identify brain 

imaging PD biomarkers for disease diagnosis and monitoring. Chapter 5 and Chapter 6 
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apply EAs to brain imaging data derived from open databases. Chapter 5 investigates 

disease monitoring via the classification of participants administered a fatigue-reducing 

drug (Modafinil) commonly prescribed to PD patients, using a double-blind paradigm. 

Chapter 6 examines the diagnosis of prodromal PD patients, PD patients, and healthy 

controls. The classification of prodromal PD represents a crucial advance in the field given 

that prodromal PD occurs 5-20 years before motor symptoms are present and the findings 

could facilitate early diagnosis and better disease management. Both Chapter 5 and 

Chapter 6 apply CGP classification to rs-fMRI timeseries and DCM analyses and findings 

are validated using ANN and SVM classifiers. Furthermore, ADASYN is applied due to 

both datasets being highly class imbalanced. 

Chapter 1 outlines the research aims. Chapter 2 presents a review of PD, including 

epidemiology, diagnosis, treatment, and monitoring. Chapter 3 reviews MRI and fMRI 

approaches including resting state and default mode network, and Chapter 4 outlines 

computational intelligence techniques, emphasising CGP and RCGP for timeseries 

analysis and classification of dynamic signals. Chapter 5 presents Study 1: classification of 

participants administered Modafinil versus controls. Chapter 6 presents Study 2: 

classification of PD patients versus prodromal PD patients versus healthy controls. Finally, 

Chapter 7 includes conclusions and directions for future research. 
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Neurodegenerative Diseases (NDDs) globally are the leading cause of disability, with 

patients facing on average over 20 years of chronic disability. NDDs cause neural 

degeneration, resulting in diverse behavioural and cognitive deficits. Over 50% of all 

patients with dementia go undiagnosed by their primary care provider [21]–[24]. The 

common symptomologies between different NDDs make a differential diagnosis 

challenging, especially during the early phases. As each NDD requires its own specific 

treatment plan, more efficient and reliable methods to differentially diagnose NDDs are 

required, particularly focusing on the initial stages of the disease [25]. The research 

considered here examines a novel approach: the use of EAs to diagnose early stage PD, a 

class of NDDs. 

PD has a 15-26% rate of misdiagnosis by general neurologists [7], [8]. Based on similar 

physical and cognitive symptoms in early PD, patients are often mistakenly diagnosed with 

another frequently occurring NDD (e.g., AD and Huntington’s Disease, referred to as HD) 

or even diagnosed with a less common NDDs (e.g., progressive supranuclear palsy1 , 

multiple system atrophy2, and normal essential tremor) [7]. These difficulties in reaching a 

differential diagnosis, particularly in early PD, reiterate the need for an objective 

diagnostic aid such as is developed in the research presented in this thesis. This section 

briefly outlines two common NDDs (AD and HD) before outlining the epidemiology, 

pathology, clinical phenotype, and assessment strategies involved in PD, amongst other 

relevant information. The literature reviewed outlines the context in which PD is diagnosed 

and highlights the relevance of future work in applying EAs to other NDDs. 

2.1. Alzheimer’s Disease (AD) 

AD is both the most frequently occurring NDD and the most common type of dementia 

[26]. Like PD, AD is caused by numerous interacting factors including age, environment, 

genetic factors, and lifestyle [27], with age being an important trigger of AD. For example, 

 
1 Also known as PSP. This is an uncommon brain disorder that affects movement, control of walking (gait) 

and balance, speech, swallowing, vision, mood and behaviour, and thinking. The disease results from damage 

to nerve cells in the brain. 
2 Also known as MSA. This is a rare NDD characterised by symptoms such as tremors, slow movement, 

muscle rigidity, and postural instability balance difficulties (collectively known as Parkinsonism) due to 

dysfunction of the autonomic nervous system and ataxia. 
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individuals aged 65-80 years are twice as likely to develop AD relative to younger adults 

and, in North America, the incidence per age group doubles every 5 years, from 0.17% at 

65, to 2.92% at 85 [28]. AD symptoms involve memory loss, reduction of eyesight, 

visuospatial deficits, delusions, and obsessive behaviour. 

AD is diagnosed and monitored via physical and cognitive assessments, yet AD patients 

show greater cognitive loss relative to PD patients (yet these typically reveal greater motor 

loss). For instance, cognitive symptoms are evaluated with a range of cognitive assessment 

tests, one of which is the Rey-Osterrieth Complex Figure [29], [30], in which patients copy 

a drawing of connected shapes and, following a brief period, patients are asked to replicate 

this same drawing from memory; hence, visuospatial skills and memory are both 

evaluated. Medication can slow disease development and temporarily reduce the cognitive 

symptoms but it only has a mild effect on disease outcomes [31]. There is yet no cure for 

AD. As AD advances, comprehensive care is required for catering to patients’ needs, with 

financial and emotional implications. 

2.2. Huntington’s Disease (HD) 

HD is hereditary and individuals whose parents are a gene carrier have a 50% likelihood of 

developing HD [32]. HD has numerous cognitive, motor, and psychiatric symptoms. Motor 

symptoms can be similar to PD (rigidity, and postural problems) but also include 

uncontrollable jerky movements (labelled chorea). Cognitive impairment is typically 

greater in HD relative to PD, and includes memory loss (sometimes resulting in dementia), 

depression, anxiety, aggression, and obsessive behaviour [33]. The Unified Huntington’s 

Disease Rating Scale (UHDRS) is used to diagnose HD [34]. This scale evaluates motor, 

cognitive, behavioural, and functional abilities. Psychiatric medication is used for many 

cognitive symptoms (e.g., depression, irritability, and mood swings). In addition, PD 

medication can treat chorea and other motor symptoms [35]. Nevertheless, these drugs 

only treat HD symptoms and no cure is available. 
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2.3. Parkinson’s Disease (PD) 

In the UK, one in 500 people have PD and it is the 2nd most prevalent NDD globally, 

trailing only Alzheimer’s disease (AD) [36], [37]. PD occurs in 1.3% European adults and 

increases to almost 3% in adults over 80 years of age [38]. PD is a progressive and 

neurodegenerative condition, in which disordered movement is a key symptom. Motor 

symptoms include slowness (bradykinesia), stiffness (rigidity), shaking (tremor) and 

impaired balance (postural instability) [39], [40]. Neurological markers include a reduction 

of dopaminergic neurons and Lewy body (LB) deposition, the cause of which is not known 

[41], [42]. There is currently no cure for PD and medication helps temporarily with 

controlling some of the symptoms [43]. 

2.3.1. Historical Overview 

PD-related symptoms are first described in Ancient Indian Sanskrit texts from 3000 BC3. 

Reports of PD-related symptoms are also described in ancient Chinese, Greek and Biblical 

texts4. In 1817, James Parkinson provided the first a detailed clinical account of PD in 

1817, within his An Essay on The Shaking Palsy, focusing on six patients, three of which 

were his patients and the remaining three individuals he observed in London [44]. The 

early neurologists Charcot, Trousseau, Gowers and Erb subsequently developed the 

clinical phenotype of PD. PD was initially labelled paralysis agitans, although in 1877, to 

recognise Parkinson’s discoveries, Charcot renamed the disease to maladie de Parkinson – 

Parkinson’s Disease [45]. Parkinson described that a common symptom involves “lessened 

muscular power” [46] that was reiterated in Charcot’s description of non-tremulous type of 

PD, in which Charcot specifies that slow movements need to be differentiated from 

weakness or “lessened muscular power”. 

The subsequent century marked the gradual investigation of PD and broadening of its 

pathological underpinnings. In 1912, Friedrich Lewy revealed that bodies were a 

pathological marker of PD. In 1919, Konstantin Tretiakoff revealed the deterioration of 

 
3 In Ayurveda, the Indian system of medicine, there are descriptions of a condition called ‘kampavata’ 

comprising tremors, stiffness, depression and movement depletion. 
4 Ecclesiastes 12:3 “In the day when the keepers of the house shall tremble…” 
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pigmented substantia nigra cells in the brainstem of encephalitic PD patients. In 1957, 

Carlsson et al. revealed that dopamine5 is a putative neurotransmitter [47]. Furthermore, in 

1960, Ehringer and Hornykiewicz revealed that PD patients have significantly lower 

dopamine concentrations in the striatum [47], [48], leading to the start of levodopa trials 

for PD patients in 1961 [49]. In 1961, findings revealed that injected levodopa improves 

akinesia in PD patients and, by 1970, oral administration of levodopa was developed [50], 

[51], resulting in Carlsson winning the Nobel Prize in Medicine in 2000. To date, PD 

research has revealed that genetic mutations, abnormal handling of misfolded proteins by 

the ubiquitin–proteasome and the autophagy-lysosomal systems, increased oxidative stress, 

mitochondrial dysfunction, inflammation and other pathogenic mechanisms are 

contributing components in the death of dopaminergic and non-dopaminergic cells in the 

brains of PD patients [52], [53]. Dopamine replacement therapy is currently recognised as 

the most effective treatment for PD patients [54]. 

2.3.2. Epidemiology 

PD occurs in 0.1-0.2% of the population, in 1-2 % of individuals over 60 years old [55], 

and it is more common in men [56]. Mean age of onset is 60 years, yet 5% of PD patients 

are diagnosed under 40 years old. Age is the largest risk factor for PD [5], [57], and 

increases prevalence by over 400%. Indeed, in the USA, 0.02% individuals who died aged 

45 – 54 years were diagnosed with PD, relative to almost 9% individuals who died aged 

over 85 years. Age further increases PD severity to a greater extent than disease duration 

[4], [57]. PD occurs in all ethnic groups and countries, yet, it is more frequent in 

Caucasians relative to Asians and Africans [56]. 

In the United Kingdom (UK), research using data acquired from the National Health 

Service (NHS) General Practice Research Database6 (2009) estimated PD prevalence at 

0.3% (0.3% for men and 0.2% for women), which corresponds to 126,893 PD patients7. 

 
5 Dopamine is a neurotransmitter that is located primarily in the neurons of substantia nigra and ventral 

tegmental area and is imperative in movement control and reward behaviour. 
6  World’s largest database of anonymised longitudinal medical records, comprising approximately 3.4 

million people’s records 
7 Approximate number of cases per country: 108,000 in England, 10,000 in Scotland, 5,900 in Wales and 

3,000 in Northern Ireland. 
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Given a globally ageing population, UK prevalence is estimated to raise 28% by 2020. 

Nevertheless, this data focuses exclusively on patients diagnosed PD, hence, actual 

prevalence is likely to be higher as many individuals either are misdiagnosed or do not 

obtain medical advice. Indeed, door-to-door community studies reveal that 25% PD 

patients are undiagnosed [58]. 

2.3.3. Pathology 

PD is produced by damage to dopaminergic neurons in the substantia nigra, causing 

reduced dopamine within the striatum, diminished dopamine transporters, and LB 

deposition. Figure 2.1 and Figure 2.2 present the pathology of PD and some other NDDs; 

the full neuropathological spectrum of these disorders is much more complex than depicted 

in Figure 2.2. Figure 2.1 shows the histology of substantia nigra using haematoxylin and 

eosin stain with × 200  magnification. Figure 2.1 (a) depicts normal substantia nigra 

pathology and (b) demonstrates neuronal loss and LB (see arrow) deposition in a patient 

with PD. Substantia nigra deterioration is considered a cause of PD motor symptoms. 

LB are inclusions of alpha-synuclein, ubiquitin and neuro-filament proteins contained 

within the cytoplasm of neurons. PD patients reveal a distinct dispersion of LB impacting 

on the autonomic nervous system and medium to large monoaminergic and cholinergic 

neurons. Braak et al. [59] described six stages of LB deposition and related cell death: 

stages 1-2 focus on pathology in the dorsal motor nucleus of the vagus nerve and anterior 

olfactory structures, stages 3-4 focus on spread of PD to the midbrain and basal ganglia, 

and stages 5-6 involve spread to cortical regions. 
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Figure 2.1 - Parkinson’s disease pathology; Images are provided by Dr. Ismail, Consultant 

Neuro-pathologist at Leeds Teaching Hospitals NHS Trust. 

 

Figure 2.2 - Overview of the anatomical location of and macroscopic and microscopic 

changes characteristic of the NDDs discussed in [37]. 

PD is typically sporadic although first-degree relatives are twice as likely to develop PD 

[60]. There are multiple theories regarding the cause of PD, such as ageing, genetic factors 

[61], and environmental factors. It is likely that a combination of genetic and 

environmental factors result in the alpha-synuclein becoming a toxic protein that amasses 
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within the neurons. Neurons react by creating LB round the alpha-synuclein to shield 

themselves, although often this protective manoeuvre is not successful and the neuron 

subsequently dies. Research has revealed that long-term exposure to neurotoxins (such as 

pesticides) can lead to PD-related symptoms [62] and other researchers have suggested that 

pesticides can result in oxidative stress that hastens the natural ageing process [63]. 

Some research suggests that PD is just fast-tracked normal ageing since LB and reduced 

substantia nigra cells can also be present in healthy senior adults who have no PD 

symptoms. Nevertheless, in PD patients the reduction in substantia nigra cells with age 

occurs significantly faster, to levels of approximately 30% of age-matched controls [64]. 

There is greater loss in the lateral ventral substantia nigra of PD patients, whereas healthy 

controls experience greater loss in the medial ventral and dorsal regions [64]. Other 

research has identified that PD is not only related to dopaminergic deficits but also to 

changes in relation to other neurotransmitters (including acetylcholine and serotonin). 

2.3.4. Financial Costs 

The UK spent £600 million yearly on economic costs associated with 100,000 PD patients 

in 2003 (corresponding to £5993 per patient) [65]. Current expenditure is likely to be 

exacerbated by an ageing UK population with now almost 130,000 PD patients. Costs are 

increased with certain PD symptomology, ageing, and PD severity [66]–[68]. For PD 

patients with motor fluctuations and dyskinesia costs double [69] and dementia triples the 

costs [70], relative to PD patients without these symptoms. Further, older PD patients often 

live in care homes and are more likely to have falls and non-motor symptoms (e.g., 

dementia, hallucinations) [71]. 

Beyond the financial and time costs required to employ specialised clinicians, there are 

economic costs associated with training and using the diagnostic scale. The Unified 

Parkinson’s Disease Rating Scale (UPDRS) scale is free for clinical purposes, yet there are 

costs incurred for its use in research: $1000 (approximately £750) charge for funded 

research and £20,000 for industry-funded research. Moreover, the online training 

programme costs $1,000-1,500 (approximately £750-1,125) per clinician for use in clinical 
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research and $250-500 (approximately £188-375) for non-members of the Movement 

Disorders Society to use the scale for personal reasons or non-profit research [72]. 

Indirect financial costs associated with PD include loss of earnings via early retirement of 

the PD patient or a family member who cares for them. Until a cure for PD is developed, 

early diagnosis and treatment are essential in improving quality of life for PD patients and 

their family, which will help to reduce any financial burdens linked to PD on both the 

patients’ family and the NHS. 

2.3.5. Clinical Phenotype 

PD typically occurs in individuals over 60 years old and is characterised by slowness of 

movement (bradykinesia) and the presence of one additional symptom: extrapyramidal 

rigidity, rest tremor, and postural instability in the absence of exclusion criteria. Rest 

tremor, rigidity, and bradykinesia are considered to be key PD symptoms [8]. Listed as 

follows in Table 2.1 are the PD symptoms taken from the NHS guidelines [73]. In the last 

20 years, research has revealed that PD is not solely a movement disorder as was thought 

for over 200 years. Non-motor PD symptoms can include hyposmia8, depression, anxiety, 

hallucinations, sleep disturbance, autonomic dysfunction, and cognitive impairment, bowel 

problems, pain, and communication problems; mental health, delusions, depression, and 

impulsive behaviour [59], [74]. 

  

 
8 Hyposmia is a reduced sense of smell and may occur many years before the onset of motor signs. 
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Table 2.1 - Parkinson’s disease symptoms 

Main symptoms 

1. Tremor – shaking, which usually begins in the hand or arm and is more likely to 

occur when the limb is relaxed and resting 

2. Slowness of movement (bradykinesia) – where physical movements are much 

slower than normal, which can make everyday tasks difficult and can result in a 

distinctive slow, shuffling walk with very small steps 

3. Muscle stiffness (rigidity) – stiffness and tension in the muscles, which can make 

it difficult to move around and make facial expressions, and can result in painful 

muscle cramps (dystonia) 

Physical symptoms 

1. Balance problems – these can make someone with the condition more likely to 

have a fall and injure themselves 

2. Loss of sense of smell (anosmia) – sometimes occurs several years before other 

symptoms develop 

3. Nerve pain – can cause unpleasant sensations, such as burning, coldness or 

numbness 

4. Problems with urination – such as having to get up frequently during the night to 

urinate or unintentionally passing urine (urinary incontinence) 

5. Constipation 

6. Inability to obtain or sustain an erection (erectile dysfunction) in men 

7. Difficulty becoming sexually aroused and achieving an orgasm (sexual 

dysfunction) in women 

8. Dizziness, blurred vision, or fainting when moving from a sitting or lying 

position to a standing one – caused by a sudden drop in blood pressure 

9. Excessive sweating (hyperhidrosis) 

10. Swallowing difficulties (dysphagia) – this can lead to malnutrition and 

dehydration 

11. Excessive production of saliva (drooling) 

12. Sleeping (insomnia) – this can result in excessive sleepiness during the day 

Cognitive and psychiatric symptoms 

1. Depression and anxiety 

2. Mild cognitive impairment – slight memory problems and problems with 

activities that require planning and organisation 

3. Dementia – a group of symptoms, including more severe memory problems, 

personality changes, seeing things that are not there (visual hallucinations) and 

believing things that are not true (delusions) 

On average, 10% of PD patients develop severe dementia [75]. LB Disorder is diagnosed 

when cognitive dysfunction precedes motor symptoms, whereas Parkinson’s with 

Dementia is diagnosed when the reverse occurs. Hence, some researchers characterise PD 

as a neuro-psychiatric disorder. 
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PD clinical sub-types are diagnosed according to age of onset or key symptoms. The 

presence of bradykinesia is obligatory for PD diagnosis. Bradykinesia is defined as minor, 

dysrhythmic and progressively decelerating movements that become lesser with repetition 

[76]. Consequences include slow gait with little shuffling steps, reduced dexterity, absence 

of gesticulation, decreased blink frequency and facial expression, low voice, and problems 

swallowing. Given the multi-faceted elements involved in bradykinesia, clinicians can find 

it problematic to diagnose – a difficulty which is exacerbated in early PD stages – with 

consequences on PD diagnosis accuracy [77]. Approximately 70% of PD patients 

experience muscular tremor (regular rhythmic oscillating movement with 4-6 Hz 

frequency), which is common in the hands but can be present in the arms, legs, jaw and 

tongue. Tremors are often conspicuous when patients are at rest but are lessened when 

patients engage in deliberate movement [78]. 89-99% of PD patients experience rigidity, 

which causes individuals to have a bent, stiff, posture [7], [78]. When the clinician moves a 

patient’s body part, rigidity can be perceived as constant resistance, and this resistance is 

heightened when patient moves a contralateral limb. When both tremor and rigidity occur 

in the same body part, this is labelled as cogwheel rigidity since there is an irregular 

recurring resistance to passive movement. 

Other early onset clinical symptoms include handwriting changes progressing towards 

micrographia, decreased facial expressiveness, no arm swinging on one side of the body, 

and a decreased sense of smell [79]. The glabellar tap reflex 9 is neither sensitive nor 

specific to PD. PD onset is slow; hence, people may initially feel these symptoms are due 

to normal ageing. Motor symptoms tend to occur only (or mainly) in one limb and this 

asymmetry continues as the disease progresses with one side of the body typically being 

more symptomatic. Indeed, the initially unaffected limb becomes affected 2-3 years after 

detection of the first symptoms in the contralateral limb [78]. Clinical symptoms 

characterising advanced PD include hypophonia, drooling of saliva due to decreased 

swallowing, and postural reflexes may, additionally, worsen. Furthermore, depression is 

present in 40% PD patients. 

 
9 Known also as the glabellar tap sign, this is a primitive reflex elicited by repetitive tapping on the forehead. 

Participants blink in response to the first few taps, although, if blinking persists this is abnormal (labelled as 

Myerson’s sign) and is a symptom of PD. 
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2.3.6. Prodromal PD 

Early PD diagnosis is essential for the administration of neuroprotective drugs given that 

treatment in the latter phases of the disease is not as effective due to the widespread 

decline of dopaminergic neurons. PD motor symptoms are apparent in the early phases of 

the disease, typically occurring following a loss of 60% of dopaminergic neurons [80], 

[81]. The premotor or prodromal PD phase is the period of time from the start of 

neurodegeneration and detection of clinical motor symptoms, between 5 and 20 years [82]. 

In the prodromal phase, individuals typically have non-motor symptoms (rapid eye 

movement, sleep behaviour disorder and olfactory dysfunction) [83]. Braak et al.’s staging 

system provides a pathological account for the occurrence of prodromal non-motor 

symptoms as Lewy pathology impacts on the lower brainstem before affecting the 

substantia nigra pars compacta in the midbrain [59]. For instance, it is likely that anosmia 

and rapid eye movement sleep behaviour disorder (two common prodromal non-motor 

symptoms) occur due to LB respectively penetrating the olfactory bulb and the pontine 

subcoeruleus nucleus [59]. Prodromal symptoms can be used in combination with 

biomarkers (cerebrospinal fluid, referred to as CSF, measurements and dopamine 

transporter imaging, referred to as DAT) to detect people with enhanced probability of 

developing PD [82]–[84]. 

Prodromal PD is typically misdiagnosed as another Parkinsonian disorder. Hence, a key 

step in ensuring accurate diagnosis involves early identification of prodromal PD patients, 

with consequences for patient treatment and disease management. The research presented 

in this thesis examines a novel diagnostic tool to identify prodromal PD patients using a 

brain imaging biomarker. 

2.3.7. Assessment 

PD progression is measured via the Unified Parkinson’s Disease Rating Scale (UPDRS) 

[85] – a widely used and validated scale. The Movement Disorder Society sponsored 

revision of Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [86], [87] included 

rephrasing some questions to enhance clarity, adding new questions, and rephrasing other 
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questions to detect symptoms which may differ among patients in early PD. The UPDRS 

contains four sections: three sections focus on motor symptoms and the patient’s ability to 

undergo routine daily activities and one section involves a motor exam (assessing speed, 

amplitude, and rhythm); the latter is essential in examining the various elements involved 

in bradykinesia. The motor exam involves patients completing 18 tasks and performance 

on each is evaluated on a 0-4 Likert scale, with ratings of 4 corresponding to more severe 

motor symptoms. Like the UPDRS, the MDS-UPDRS also evaluates motor symptoms via 

an aggregated score, which removes relevant information regarding a given patient’s motor 

symptoms. 

Much research reveals low reliability for bradykinesia assessments (relative to assessments 

of other PD symptoms) when using the MDS-UPDRS items [88]–[91] due in part to 

insufficient medical training regarding delivering the MDS-UPDRS [92]. Indeed, 

clinicians administering the MDS-UPDRS motor examination typically emphasise 

movement amplitude [93], rather than other features such as acceleration and velocity. 

Kishore et al. developed the Modified Bradykinesia Rating Scale (MBRS), which is more 

sensitive than the MDS-UPDRS regarding evaluating the multifaceted PD motor 

symptoms, even though it does not provide a completely objective and quantitative 

evaluation [94]. Correctly evaluating movement symptoms is essential with direct 

implications on the administration of medication. For instance, Levodopa improves 

movement speed better than movement amplitude or rhythm [95]. 

Cognitive PD symptoms are evaluated using the Montreal Cognitive Assessment (MoCA). 

This measurement tool was designed to detect mild cognitive impairment [96], although 

research has revealed that it can be suitably applied to PD screening [97]–[99] and it takes 

only 10 minutes to administer. MoCA provides an in-depth evaluation of cognitive abilities 

(visuospatial awareness, memory, attention, and language). The Clinical Dementia Rating 

(CDR) is another measure of cognitive impairment that, like the MDS-UPDRS focuses on 

cognitive implications on daily life. 

Another relevant issue within the UK is that, sadly, there are not enough PD experts to 

meet demand and the services available differ significantly by region [100], with 
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implications on patient care and their quality of life. The limited support available 

underscores the need for developing automised methods of detecting PD biomarkers, as 

per the research presented in this thesis. 

2.3.8. Diagnosis 

UK guidelines suggest that individuals with Parkinsonian-like symptoms are referred to a 

specialist for diagnosis [101], [102]. The diagnostic criteria for PD are well established and 

are presented in Table 2.2 [7]. These criteria are specified by the UK Parkinson’s Disease 

Society Brain Bank and National Institute for Health and Care Excellence (NICE) 

guidelines. 

  



Chapter 2: Parkinson’s Disease 

52 

Table 2.2 - PD – UK Parkinson’s Disease Society Brain Bank diagnostic criteria; taken 

from [103] 

Step 1: Diagnosis of a Parkinsonian syndrome 

Bradykinesia (slowness of initiation of voluntary movement with progressive reduction in 

speed and amplitude of repetitive actions) and at least one of the following: (i) muscular 

rigidity, (ii) 4-6 Hz rest tremor and (iii) postural instability not caused by primary visual, 

vestibular, cerebellar or proprioceptive dysfunction. 

Step 2: Exclusion criteria for PD 

1. History of repeated strokes with stepwise progression of Parkinsonian features 

2. History of repeated head injury 

3. History of definite encephalitis 

4. Oculogyric crises 

5. Neuroleptic treatment at the onset of symptoms 

6. More than one affected relative 

7. Sustained remission 

8. Strictly unilateral features after 3 years 

9. Supranuclear gaze palsy 

10. Cerebellar signs 

11. Early severe autonomic involvement 

12. Early severe dementia with disturbances of memory, language and praxis 

13. Babinski’s sign 

14. Presence of cerebral tumour or communicating hydrocephalus on CAT scan 

15. Negative response to large doses of levodopa (if malabsorption excluded) 

Step 3: Supportive criteria for PD (three or more required for diagnosis of definite PD) 

1. Unilateral onset 

2. Rest tremor present 

3. Progressive disorder 

4. Persistent asymmetry affecting side of onset most 

5. Excellent response (70 – 100%) to levodopa 

6. Severe levodopa-induced chorea 

7. Levodopa response for 5 years or more 

8. Clinical course of 10 years or more 

 

2.3.8.1. Misdiagnosis 

Rates of accurate PD diagnoses are particularly low in both primary care by general 

practitioners [104] and secondary care by specialists [77], resulting in patients obtaining 

inadequate treatment. A challenge involves differentiating PD from alternative diseases 

that present similar symptomologies; a difficulty that is compounded in the early phases of 

PD. PD has rates of misdiagnosis of 25% as it is often mistakenly labelled as another 
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NDD, for example, PSP [77], [105]. Research reveals that 10% of PD cases are 

misdiagnosed as atypical Parkinsonism or a Parkinson’s plus syndrome [106]. Further, post 

mortem research has revealed that up to 15-26% of PD cases were misdiagnosed by 

general neurologists [7], [8], with only 8-15% of misdiagnosis when diagnosed by expert 

movement disorder clinics [77], [107], [108]. Yet, due to limited financial and time-related 

resources, it is not feasible for movement disorder experts to diagnose each case of 

potential NDDs. 

There are various common disorders that have Parkinsonian symptoms and which are 

frequently misdiagnosed as PD; these are presented in Table 2.3 [103]. These disorders 

typically do not respond well to levodopa and are frequently more symmetrical from the 

beginning, with minimal or no rest tremor. For example, essential tremor may be a more 

appropriate diagnosis for patients with a symmetrical limb tremor, sometimes including 

head and voice tremor, and sometimes due to autosomal dominant inheritance. Regarding 

essential tremor, there is no rigidity or Bradykinesia present and tremors are suppressed by 

alcohol. Asymmetrical rest tremor can, also, occur in patients with adult onset dystonia and 

these patients are sometimes misdiagnosed as benign tremulous PD, as their scans reveal 

no dopaminergic deficit. Furthermore, postural instability is characteristic of PD although 

this does not typically occur within the first year or two of PD. Postural instability is also 

characteristic of PSP, particularly when this occurs in the early stages and is accompanied 

by a history of falls. Vascular PD and drug induced PD are among other conditions that 

have Parkinsonian symptoms [103]. 
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Table 2.3 - Differentiating commoner causes of Parkinsonism; taken from [103] 

Condition History Clinical Features Investigations Management 

Drug-induced Parkinsonism Previous exposure to drugs 

mainly neuroleptic 

treatment and anti-emetics 

May be associated with 

akathisia and oro-

mandibular dystonia 

Based on history Discontinue offending 

drug. Anticholinergic drugs 

may be helpful for tremor 

MSA Parkinsonism and or gait 

unsteadiness with or 

without autonomic 

dysfunction 

Orthostatic hypotension, 

absence of tremor, 

symmetrical signs, 

cerebellar features, erectile 

dysfunction, poor response 

to levodopa 

MRI brain, sphincter EMG Levodopa trial, amantidine 

measures to control 

postural hypotension, e.g., 

fludrocortisone 

PSP Early falls backwards, 

cognitive or behavioural 

changes 

Gaze palsy (down more 

than up), axial rigidity, 

frontal and pyramidal signs, 

poor response to levodopa 

MRI brain Levodopa trial 

Normal-pressure 

hydrocephalus 

Urinary incontinence, 

ataxia, cognitive 

impairment 

Dementia festinating gait CAT or MRI 

brain, therapeutic lumbar 

puncture 

Evaluate for 

ventriculoperitoneal shunt 

Multiple lacunar strokes Stepwise neurological 

impairment 

Focal findings, sensory or 

motor loss 

CAT or MRI 

Brain 

Antiplatelet treatment, 

control of risk factors 

(e.g., diabetes, 

hypertension, increased 

cholesterol) 

Cortico basal degeneration Associated cognitive 

impairment 

Marked asymmetry of 

clinical findings, dyspraxia, 

cortical sensory loss, 

myoclonus, dystonia, alien 

limb phenomenon, absence 

of response to levodopa 

EEG, 

Psychometry 

 

Dementia with LB Dementia occurring before 

or concurrently with 

Parkinsonism 

Visual hallucinations MRI brain, 

Psychometry 

Consider cholinesterasae 

inhibitor 
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The research presented in this thesis identifies an imaging biomarker for PD using 

functional brain imaging (fMRI), an ideal tool that can increase diagnostic accuracy 

dramatically given that it is both non-invasive and not reliant on diagnostic tests that may 

involve subjective evaluations. Objective evaluations can be challenging, specifically 

given the complexity of certain symptoms, such as bradykinesia. 

2.3.9. Treatment 

Management of PD is achieved via a multidisciplinary team [109], in which a neurologist, 

geriatrician, or PD nurse specialist coordinates a team and ensures specialist consultations 

if and when appropriate. Healthcare professions necessary for PD treatment often include 

general practitioners, physiotherapists, occupational therapists, psychiatrists, psychologists, 

speech and language therapists, dieticians and palliative care physicians. 

There is no cure for PD, hence, treatments are symptomatic and do not provide clinical 

neuro-protective effects. PD treatments focus primarily on medication to temporarily 

manage symptoms and, therefore, improve patient quality of life. Even though there is 

medication for PD, it is very difficult to confirm the diagnosis. Early diagnosis results in 

better effect of the medication for patients. Medication dosage is monitored to enhance 

time periods when patients exhibit few symptoms (time on) and to reduce periods of time 

when motor symptoms are prominent (time off). The therapeutic window is defined as the 

varying dosages of medication that result in on time. Outside the therapeutic window, 

patients will experience either sub-therapeutic levels PD symptoms (time off, see bottom 

section of Figure 2.3) or side effects (time on, see top section of Figure 2.3). The 

therapeutic window decreases as PD progresses over the years. In advanced PD, clinicians 

may administer less medication (increasing motor symptoms) to manage side effects 

associated with medication. Clinicians do not aim to treat all PD symptoms given that 

higher drug doses can result in greater short and long-term side effects. 



Chapter 2: Parkinson’s Disease 

56 

 

Figure 2.3 - Therapeutic window in PD 

There is a variety of drugs used to treat PD, each with a specific potency and associated 

side effects. Treatment is tailored to each patient given the unique profile of PD symptoms 

exhibited, which changes according to the stage of PD. Indeed, NICE guideline specifies 

the following: 

“There is no single drug of choice in the initial pharmacotherapy of 

early PD.” 

“The choice of drug should take into account clinical and lifestyle 

characteristics of the patients and their preference once they have been 

informed of the short and long-term benefits and drawback of the drug 

classes.” 
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Hence, specialist monitoring of disease progression and drug side effects is essential for 

maintaining patient quality of life. Non-motor PD symptoms include disorders of mood, 

sleep, cognition and autonomic function and are often treated using another class of 

medication. The dopaminergic drugs to treat motor symptoms can themselves cause non-

motor side effects similar to these PD non-motor symptoms. For advanced PD, it is 

sometimes recommended to administer medication through enteric or subcutaneous 

pathways or even for patients to obtain deep brain stimulation surgery. 

2.3.10. Medication 

Levodopa (this medicine is labelled co‑beneldopa or co‑careldopa) is prescribed for 

treating symptoms that impact on day-to-day movement and balance, which enables the 

brain to convert it into dopamine. When movement and balance symptoms are mild then 

other drugs are available as options. Table 2.4 compares three commonly prescribed drugs 

for early PD, including the benefits (e.g., minimising tremor) and costs (e.g., side effects) 

of each [110]. 

Schrag and Quinn conducted a review, revealing that 70% of PD patients are administered 

levodopa [43]. Indeed, levodopa is seen typically as the best treatment option available to 

PD patients [111], [112]. Side effects associated with levodopa can be severe, in some 

cases irreversible. These side effects include adverse motor complications, which are 

divided into two categories of motor fluctuations and dyskinesia (movement disorders 

similar to bradykinesia). These are labelled levodopa-induced dyskinesia (LID) [113]–

[115] and their frequency increases with time spent using levodopa [116]. Hence, there is 

often a trade-off between PD symptoms and LID symptoms, typically managed by 

manipulating levodopa dosage or using alternative medication. 
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Table 2.4 - Comparing drug options for early PD; taken from [110] 

Effects and side effects Names of medicines 

Levodopa Dopamine 

agonists 

MAO-B 

(monoamine 

oxidase B) 

inhibitors 

Can it help me with movement 

problems such as slowness and 

tremor? 

☺☺☺ 

More 

improvement 

☺ 

Less 

improvement 

☺ 

Less 

improvement 

Can it help me with day-to-day 

activities? 

☺☺☺ 

More 

improvement 

☺ 

Less 

improvement 

☺ 

Less 

improvement 

Might it cause dyskinesia 

(uncontrolled movements)? 

 

More likely 

 

Less likely 

 

Less likely 

Might I get other side effects such 

as sleep problems, impulse control 

disorder or psychotic symptoms? 

 

Fewer side 

effects 

 

More side 

effects 

 

Fewer side 

effects 

Other PD symptoms include drooling, memory loss, and depression, amongst others. 

Drooling can be reduced with speech and language therapy or via mediation (e.g., 

anticholinergic medicines such as glycopyrronium bromide or atropine). Memory loss and 

confusion can occur as a result of PD, termed Parkinson’s disease dementia, and can be 

treated with medication (cholinesterase inhibitors or memantine). Depression is frequent in 

PD patients and can be treated via therapy (e.g., cognitive behavioural therapy). 

Common side effects from medication include abnormal daytime sleepiness, psychotic 

symptoms (hallucinations and delusions), orthostatic hypotension (light-headedness, 

faintness or dizziness when patients stand up rapidly), and impulse control disorders (e.g., 

compulsive gambling, binge eating, and obsessive shopping, amongst others). These can 

be treated by changing PD medication type/dose, taking additional medication (e.g., 

quetiapine or clozapine for psychotic symptoms [117]–[119], midodrine or fludrocortisone 

for orthostatic hypotension [120]–[122], and Modafinil for certain sleep-related conditions 

[123]–[126]), and/or cognitive behavioural therapy. 
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2.3.10.1. Modafinil 

Modafinil (Provigil) is a multipurpose drug used in the treatment of sleep disorders, such 

as narcolepsy [127], [128], and it improves cognitive function in psychiatric disorders, for 

instance schizophrenia [129]–[131]. Approximately 50% of PD patients experience 

physical fatigue [124], for which Modafinil is a common medication that clinicians 

prescribe to PD patients [123]–[126]. Research has linked Modafinil to enhanced attention 

and memory [132]–[134] and it is well tolerated by patients and has no effect on PD 

movement symptoms [135]. More recently, Modafinil has been used as a “smart drug”, 

with approximately 25% of students at Oxford, Newcastle, and Leeds having tried this 

drug [136]. In a 2013 interview with the Telegraph, Professor Sahakian of clinical 

neuropsychology (University of Cambridge) mentioned that the number of students taking 

Modafinil was increasing alarmingly [137]. There is much controversy regarding the use of 

psychostimulants or “smart drugs” to heighten cognitive abilities [138]. Research suggests 

that Modafinil results in less side effects and lower addiction risks, relative to stimulants 

such as methylphenidate [139] and amphetamine [140], with benefits similar to those 

provided by these drugs. Yet, Modafinil has a large impact on the dopaminergic system, 

indicating possibly stronger addiction risks than previously estimated [141]. 

Even though Modafinil is regularly prescribed to PD patients, evidence supporting its 

effectiveness as a fatigue-reducing drug is mixed. For instance, Lou et al. conducted a 

longitudinal study testing participants multiple times over two months and revealed that 

Modafinil can diminish physical fatigue in PD patients, as noted by the Epworth 

Sleepiness Scale and by a finger-tapping task following two months of treatment [125]. 

Other research has revealed that Modafinil relieves fatigue, as measured by the Global 

Clinical Impression Scale for Fatigue, and reduces excessive daytime somnolence [126]. 

Nevertheless, this same research revealed no relief from fatigue as measured by the 

Fatigue Severity Scale. A crucial point is that, regardless of the effectiveness of Modafinil 

in reducing fatigue, it is commonly prescribed to PD patients. Hence, the research 

presented in this thesis examines the classification of brain imaging data for participants 

administered Modafinil (versus a control group; see Chapter 5) to improve the validity of 
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treatment, to develop novel monitoring methods, and to further develop techniques for 

automatic PD biomarker identification (see Chapter 6). 

2.3.11. Monitoring 

Regular monitoring every six months of motor and non-motor symptoms via outpatient 

clinic appointments is necessary to ensure patients are administered appropriate levels of 

medication, given their changing symptomology (and medication side effects). 

Unfortunately, it is common for drugs administered to treat one symptom to also aggravate 

another symptom. For instance, D1 dopamine agonists reduce bradykinesia but worsen 

hallucinations and levodopa reduces tremor but worsens dyskinesia. Therefore, clinicians 

need to make a trade-off between the benefits (reducing PD symptoms) and costs (side 

effects) when prescribing medication. 

2.3.12. Diagnostic Tools 

PD diagnosis is based on clinical assessment although an autopsy is necessary for 

confirmation of diagnosis with, to date, no validated diagnostic PD biomarker. Key motor 

symptoms (Parkinsonism) are also present in other disorders, compounding difficulties in 

reaching a differential diagnosis. PD symptoms include motor disorders as well as non-

motor disorders (olfactory and autonomic dysfunction, and sleep and cognitive symptoms) 

that can be apparent before motor symptoms occur [82], [142]. Hence, non-motor 

symptoms can be a prodromal/pre-clinical PD marker [143]–[145]. For instance, 90% of 

PD patients have olfactory dysfunction. Given that olfactory dysfunction is less frequent in 

other Parkinsonian diseases, this symptom can be used to differentially diagnose PD from 

other Parkinsonism diseases (e.g., the University of Pennsylvania Smell Identification Test 

and Sniffing Sticks reveal moderate sensitivity, 0.77, and specificity, 0.85 [146]). 

Current diagnostic methods focus primarily on clinical assessment with limitations in 

correctly diagnosing early PD stages and differentially diagnosing PD from other disorders 

with Parkinsonian symptoms. Disease progression and treatment are also based on clinical 

assessment of symptoms (e.g., using the UPDRS scale), with a key focus on motor 
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dysfunction. Nevertheless, the presence of non-motor symptoms that can appear before 

motor symptoms has highlighted the need to re-conceptualise PD to provide a greater focus 

on non-motor clinical signs, such as anosmia. This can be used in addition to the current 

clinical criteria to provide a more nuanced account of early PD symptoms and to improve 

diagnostic accuracy. Still, some proposals for broadening PD assessment have been 

criticised for not mentioning dopamine deficit or false positives/negatives [147]. 

There exist many Parkinsonian conditions and tremulous movement disorders whose 

symptoms (particularly in the early stages) can overlap with those of PD. Hence, 

accurately diagnosing PD when using only clinical tools remains a challenge. Diagnostic 

tools for PD have primarily been tested in patients with confirmed PD diagnosis through 

longitudinal follow-up and/or blinded specialist assessment and, as such, their diagnostic 

accuracy has not been examined in early PD patients. Note that the majority of PD patients 

used in research on diagnostic tools did not undergo an autopsy to confirm their PD 

condition. Some clinicians adopt a watchful waiting strategy in which patient symptoms 

are observed over 6-12 months before a definitive diagnosis is issued. Alternatively, 

ancillary tests can be used for diagnosis in addition to clinical assessment. NICE guidelines 

directed at patients in England and Wales specify the following: 

“PD should be diagnosed clinically and based on the UK Parkinson’s 

Disease Society Brain Bank Criteria”. 

Concerning ancillary tests, NICE guidelines specify that: 

“123 I-FP-CIT SPECT should be considered for people with tremor 

where essential tremor cannot be clinically differentiated from 

Parkinsonism.” 

“Structural MRI may be considered for the differential diagnosis of 

Parkinsonian syndromes”. 

Up to 15-26% of patients with early stages of PD are misdiagnosed by clinicians who have 

limited PD expertise [7], [8], which underscores the need to identify a PD biomarker, as 
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per the work presented in this thesis. Beyond improving diagnostic accuracy, identifying 

an early stage PD biomarker would facilitate the development and assessment of treatment 

drugs with putative neuroprotective agents that could be administered to patients with early 

stages of PD, before long-term neural damage has taken place. 

2.3.13. PD Biomarkers 

A biomarker is “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes or pharmacological 

responses to a therapeutic intervention” (Biomarkers Definitions Working Group [148]). 

Patients with early phases of PD are typically misdiagnosed and currently PD diagnosis 

can only be confirmed following an autopsy. Clear diagnostic PD criteria are challenging 

given the range of other disorders that share Parkinsonism symptoms, particularly in the 

early stages of the disease, yet this is essential before a biomarker can be identified and 

validated. To date, no PD biomarker has been identified to detect early stages of PD or to 

confirm PD diagnosis, which is the focus of the research presented in this thesis. 

Given limitations in accurately diagnosing PD, research examining the identification of 

reliable, sensitive, reproducible, cost-effective, non-invasive and well validated biomarkers 

is required [149]. Biomarkers can be identified using clinical, imaging, genetic, proteomic, 

and/or biochemical data [82]. For instance, some research has already tested potential 

biomarkers using olfactory testing, tissue and fluid analysis, functional neuroimaging, and 

genetic risk factors. Indeed, future PD diagnosis is likely to rely on numerous interacting 

data sources, such as clinical, laboratory, imaging and genetics data [150]–[152]. 

Based on different stages of PD, three key PD biomarkers are required (Figure 2.4) [153], 

[154]: 

1. Prodromal, preclinical, or premotor biomarkers: these are diagnostic with the 

objective of categorising early stage PD patients to administer neuroprotective 

therapies before significant neuronal loss occurs. Premotor symptoms may be 

caused by pathogenic processes with etiological implications [155]. 
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2. Risk or susceptibility biomarkers: identify individuals particularly likely to develop 

PD. 

3. Motor stage biomarkers: to chart PD progression and to examine treatment 

efficacy, occurring when motor dysfunction is apparent. 

 

Figure 2.4 - Factors and premotor markers associated with loss of neurons (----) prior to 

onset of motor signs and clinical diagnosis (====) of PD; taken from [42] 

Much research has been conducted to identify prodromal, motor stage and other 

biomarkers, with limited success. Possible reasons for this limited success involves the 

participant sample characteristics (PD research typically focuses on patients with a 

confirmed diagnosis and in the late PD stages), diagnostic criteria, and poor storage and 

collection of data [156], [157]. The Parkinson’s Progression Markers Initiative (PPMI) 

focuses on eliminating many of these key limitations by aiming to recruit equal numbers of 

early stage (pre-medication) PD patients and healthy age-matched controls [158]. PPMI 

contains 20 centres across the EU and the USA and these follow standardised procedures 

for repeated bio-sampling (blood, CSF, urine), clinical assessments, and imaging as well as 
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rigorous standards for data storage and analysis. The NINDS has adopted a similar 

approach for its Parkinson’s Disease Biomarkers Program, which involves research 

collaboration among consortium members, a data repository and a Data Management 

Resource. 

2.3.13.1. Genetic and Molecular Biomarkers 

Genetics is now a known PD risk factor, yet, research examining links between single 

nucleotide polymorphisms in various candidate genes (e.g. ones related to detoxification 

like Cytochrome P450s gene family or dopamine) has revealed either weak or no 

relationship with PD risk [159]–[161]. Genome wide association surveys (GWAS) have 

explored 16 PD loci although these account for a small percentage of heritability. 

Nevertheless, rare early onset familial PD due to mutations in a single gene has 

underscored the relevance of genetic factors. For instance, point mutations, duplications, 

and triplication in the SNCA10 gene are related high risk of PD and some single nucleotide 

polymorphisms11 of the SNCA gene are also linked to PD [153], [162]. As such, research 

on candidate genetic biomarkers has focused on mitochondrial dysfunction and mutations 

in mitochondrial genes (e.g., SNCA) and gene products (alpha-synuclein). Indeed, certain 

genetic mutations can result in familial Parkinsonism. Tests for these genetic mutations are 

costly and typically restricted to research labs. Exceptions include recessive Parkin gene 

mutation tests directed at young onset PD patients that is positive in 5% patients under 40 

years old and LRRK212 tests in patients with autosomal dominant pedigrees that is positive 

in 5-6% these patients [163]. 

PD involves damage to the pigmented dopamine neurons in the substantia nigra, leading to 

motor dysfunction (bradykinesia, tremor at rest, rigidity, and postural instability). Post 

mortem brain tissue has highlighted key molecular pathways and genes, enabling targeted 

therapies, the advance of animal PD models, including novel drug delivery mechanism 

[153], [164]–[167]. Post-mortem examination has focused on the molecular 

 
10 The SNCA gene provides instructions for making a small protein called alpha-synuclein. 
11 The most common type of genetic variation in humans 
12 The LRRK2 (Leucine-rich repeat kinase 2) gene provides instructions for making a protein called dardarin. 
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neuropathology [168] in an effort to identify both a prodromal biomarker and potential 

treatment to stop/reverse disease progression. 

Post mortem research has primarily explored two areas: firstly, the degeneration and death 

of the melanin containing neurons of the substantia nigra and, secondly, Lewy pathology 

(intra-cytoplasmic LB with inclusions containing alpha-synuclein and ubiquitin). Cell 

death is a key research focus given that this occurs in the dopamine containing neurons of 

the substantia nigra. Findings have revealed that PD brains are characterised by differences 

in mitochondrial function, greater oxidative stress, lysosomal dysfunction, protein 

aggregation and reduced degradation, deposition of iron, including inflammation and glial 

activation. Current methods for identifying potential biomarkers focus on global non-

targeted procedures, for instance, omics (e.g., genomics, proteomics, metabolomics, etc.), 

comparing tissue samples from PD patients to healthy age-matched controls [145], [150], 

[169]–[171]. These findings are relevant in identifying a possible PD biomarker (e.g., 

alpha-synuclein) and to advance animal models of PD [149], [167], [168], [172]–[174]. 

PD neuroprotection clinical trials have explored these identified mechanisms (e.g., 

neuronal loss such as apoptosis and mitochrondrial dysfunction), yet, no neuroprotective or 

PD modification treatments have been successfully developed. It is likely that multiple 

mechanisms are involved in disease progression and these would need targeting in drug 

trials. Hence, further research is required to identify validated PD biomarkers across 

different disease phases to gain a more complete understanding of the disease. The 

research presented in this thesis focuses on identifying a brain imaging biomarker for both 

early stage PD as well as for the clinical phase of PD. 

2.3.13.2. Functional/Behavioural Biomarkers 

Early stage PD non-motor symptoms (e.g., dysfunction in olfaction, sleep, visuospatial 

abilities, cognition, and executive function) are due to damage to the extra nigral areas, 

occurring prior to degeneration of dopamine nigral neurons [175]. Functional tests may 

signal whether individuals are at risk of developing PD. Benefits of these tests include that 

they are non-invasive, cost effective, often simple to administer, and may contain some 
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tests that can be completed by the patient at home and/or online. Functional measures 

include olfaction acuity tests (e.g., the University of Pennsylvania Smell Identification Test 

– the UPSIT), the rapid eye movement sleep behaviour disorder (RBD) 13  [84], [176] 

screening questionnaire, a keyboard tapping test, the bradykinesia akinesia incoordination 

test (BRAIN), and accelerometer based exams. These measures are currently used in 

research (e.g., PREDICT-PD) and can potentially be developed for identifying at risk 

individuals. Data from functional tests can be used in combination with other risk factors 

(e.g., family history) and used as inputs to algorithms to automatically calculate a given 

patient’s risk factor [177]–[180], although there are ethical issues regarding false 

positives/negatives [152], [155], [180]. The research presented in this thesis examines the 

use of EAs to automatically detect PD patients from healthy age-matched controls. 

2.3.13.3. Brain Imaging Biomarkers 

Brain imaging techniques enable clinicians and researchers to determine brain activation 

and neurological problems, without invasive neurosurgery. These methods can provide 

relevant information regarding brain structure and function, in addition to standard clinical 

assessments. The most commonly used brain imaging tools are described as follows. 

2.3.13.3.1. Computed Axial Tomography (CAT) 

CAT scanning (also known as computed tomography, CT, or computed aided tomography) 

uses the differential absorption of x-rays to create a brain image. During a CAT scan, an 

individual lies on a table that moves inside and outside of a hollow, cylindrical apparatus. 

Figure 2.5 illustrates a CAT scanner with a participant. An x-ray source is positioned on a 

ring around the inner section of the tube, with its beam directed at the individual’s head. 

Once the individual’s head moves past the x-ray beam, the beam is sampled by one of the 

various detectors that are positioned on the apparatus’ circumference. The images 

generated are influenced by the absorption of the x-ray beam concerning the body tissue 

that moves through this beam. Bone and hard tissue have good absorption of x-rays, 

 
13 Approximately 50% of people who are diagnosed with REM-sleep behaviour disorder in adulthood will 

develop neurodegenerative Parkinsonism with mean latency of 12 years (61)  
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although air and water have poor absorption, and soft tissue has mediocre absorption. 

Hence, CAT scans reveal the structural brain elements but cannot provide information 

regarding specific brain functioning during cognitive tasks. Adverse effects of CAT scans 

include tissue damage resulting from prolonged or repeated exposure to ionising radiation. 

As such, like x-rays, CAT scans are used cautiously. 

 

 

Figure 2.5 - CAT Scan; taken from [181] 

CAT brain scans are not typically used for PD patients as these tend to reveal normal 

images in PD patients or indicate incidental basal ganglia calcification or age-related 

changes, for instance, generalised atrophy. CAT scans are useful when other neurological 
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symptoms that might indicate normal pressure hydrocephalus14 or space occupying lesion 

in the brain are present. 

2.3.13.3.2. Positron Emission Tomography (PET) 

PET uses trace levels of short-lived radioactive material to map functional processes in the 

brain, similar to the action that glucose or oxygen perform in the brain. During radioactive 

decay, positrons are emitted and these are detected. Figure 2.6 depicts a PET scanner. 

Regions with high radioactivity are correlated with brain activity. Disadvantages of PET 

scans include that they are relatively expensive, inaccessible, and have poor temporal (40 

seconds) and spatial (1 cm) resolution. 

 

Figure 2.6 - PET Scanner; taken from [182] 

Research has explored the use of PET as a diagnostic tool for PD, and typically involves a 

fluorine-18-labelled-dopa isotope; although PET is not currently advocated by NICE. PET 

 
14 Normal pressure hydrocephalus occurs when excess CSF accumulates in the brain’s ventricles, which are 

hollow fluid-filled chambers. 
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can differentially diagnose PD, MSA, PSP, and corticobasal degeneration 15  from each 

other with good sensitivity [183]. In addition, findings reveal diminished asymmetric pre-

synaptic striatal uptake in PD patients and pre-clinical nigrostriatal impairment in first 

degree relatives of PD patients (note that some relatives later developed PD in follow-up 

tests) [184]. Limitations of PET include cost, radiation exposure to patients, and poor scan 

accessibility for clinicians. 

2.3.13.3.3. Single Photon Emission Computed Tomography (SPECT) 

SPECT is a nuclear imaging method, which integrates CAT and a radioactive material 

(tracer), that allows the clinicians to see how blood flows to tissues and organs. The 

process involves first injecting radionuclide into a participant and, after 3-6 hours, a 

SPECT head scan is then performed to capture the uptake in the nigrostriatal (presynaptic) 

nerve endings. The computer collects the information emitted by gamma rays and 

translates them into two-dimensional cross-sections. These cross-sections can be added 

back together to form a 3D image of a given organ (e.g., the brain). The radioisotopes 

typically used in SPECT to label tracers are iodine-123-beta-CIT labelled ioflupane (FP-

CIT) 16 , technetium-99m, xenon-133, thallium-201, and fluorine-18. These radioactive 

forms of natural elements pass safely through the body and can be detected by the scanner. 

To safeguard patients from iatrogenic hypothyroidism (reducing thyroid uptake of radio-

iodine) patients are administered potassium bromide two hours prior to the radionuclide 

injection and 24 hours following the injection. Further, patients are advised to refrain from 

consuming medication for a few days prior to the scan as these can affect FP-CIT uptake. 

Within each scan, patients are exposed to the same as one year’s background radiation 

exposure. 

SPECT tests differ from PET scans in that the tracer remains in the blood stream rather 

than being absorbed by surrounding tissues (as per PET), thereby limiting the images to 

 
15 Also known as CBD. This is a rare and progressive NDD involving the cerebral cortex and the basal 

ganglia. The symptoms typically begin in people from 50–70 years of age, and the average disease duration 

is six years. It is characterised by marked disorders in movement and cognitive dysfunction, and is classified 

as one of the Parkinson plus syndromes. 
16 A DatSCAN is the trade name for SPECT imaging of FP-CIT 
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areas where blood flows. SPECT scans are cheaper (cost for one scan: £1,000 [185]) and 

more readily available than higher resolution PET scans (cost for one scan: over £5,000). 

The amount of radiation that the body is exposed to is less than an x-ray or CAT scan, 

however, SPECT is still an invasive imaging technique. 

Research has revealed that SPECT imaging of the striatal dopamine transfer activation can 

be used in addition to clinical assessment to diagnose PD. Decreased FP-CIT binding in 

the contralateral striatum to the Parkinsonian limb is associated with PD. SPECT imaging 

can detect early phases of PD, given that even before the appearance of motor symptoms 

PD patients have 40-50% reduction in the striatal dopamine transfer activation [186]–

[188]. Individuals with early PD symptoms, such as olfactory deficit [189] or RBD [84], 

[176], also reveal abnormal SPECT scans. Findings indicate that FP-CIT SPECT scans can 

differentially diagnose PSP, CBD, MSA, and dementia with LB 17  relative to PD. 

Nevertheless, this research typically does not use participants within the early phases of 

these diseases [188], [190]–[193], hence, limiting its use as a clinical tool. SPECT imaging 

can result in false positives for individuals without PD but with other degenerative 

Parkinsonian conditions (Table 2.5) [194]. NICE and SIGN guidelines suggest using FP-

CIT SPECT imaging for confirmation of PD diagnosis for patients who potentially have 

another disorder causing a non-degenerative Parkinsonism or non-Parkinsonian tremor. 

Table 2.5 - Conditions with abnormal FP-CIT SPECT scan; adapted from [194] 

Abnormal scan Normal scan 

PD Essential tremor 

PSP Dystonic tremor 

MSA Drug-induced Parkinsonism 

CBD Toxin-induced Parkinsonism 

DLB Normal pressure hydrocephalus 

HD Psychogenic Parkinsonism 

Limitations include poor specificity, patients exposed to radiation, cost, potential 

subjectivity, and poor scan accessibility of clinicians both within countries and on a 

 
17 Also known as LBD. This is a type of dementia that shares symptoms with both Alzheimer’s disease and 

Parkinson’s disease. 
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worldwide level as few countries possess scans. Further, evaluation of scans can be 

subjective and dependent on the radiologist’s experience, yet, even though there is no 

established ‘cut off’ point for abnormality, there is good inter-rater (kappa 0.82-0.92) and 

intra-rater (0.92-1.00) agreements [188], [192]. Computational methods are being 

developed and validated to automate this process and reduce subjectivity. 

2.3.13.3.4. Dopamine Active Transporter (DAT) 

A DAT brain scan examines the function of dopamine transporters and is typically used to 

explore nigro-striatal dopaminergic neurodegeneration linked to Parkinsonian Syndrome, 

revealing good specificity [188], [192], [195]–[198]. 123I Ioflupane (radioactive tracer) is 

used to bind to the DAT in the striatum and then SPECT visualises the level of transporter 

available. These transporters typically reuptake dopamine from the synaptic cleft and are 

integral to preserving the presynaptic neuron. PD patients reveal 50-70% less DAT 

transporters [199]–[201]. 

A limitation of this approach is that it involves injecting patients with a radioactive tracer 

(conveying a small risk to patients, like a CAT scan) 3-5 hours before the DAT scan using 

a gamma camera. The scan lasts 30-45 min and participants are required to remain still 

during this period (often problematic for PD patients). Figure 2.7 (a) depicts example DAT 

brain images, (b) represents a patient being injected with a radioactive tracer, and (c) 

portrays a participant undergoing a DAT scan. 

 

Figure 2.7 - DAT Scan; taken from [202] 

DAT scans cannot discriminate between Parkinsonian Syndrome disorders [203], [204]. 

Yet, DAT scans are useful to examine patients with ambiguous Parkinsonian Syndrome 
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symptoms, enabling clinicians to distinguish between disorders of essential tremor or drug-

induced Parkinsonian Syndrome, as the latter is not associated with reduction in nigro-

striatal dopamine transporter) whereas Parkinsonian Syndrome does reveal DAT 

degeneration [192], [195], [197], [203], [205], [206]. Hence, DAT scans are a relevant tool 

in clinical assessment and control of patient medication and treatment [207]. 

2.3.13.3.5. Electroencephalography (EEG) 

EEG involves the measurement of brain electrical activity using electrodes positioned on 

the scalp. In 1924, the first EEG recordings on humans were published. Between 1935 and 

1936, Pauline and Hallowell Davis recorded the first event-related potentials on awake 

humans (published in 1939). The data collected is the electrical signal from many neurons, 

as illustrated in Figure 2.8. Via the use of averaging methods, event-related potentials 

enable the extraction of detailed sensory, cognitive, and motor events. The amplitude of a 

normal EEG has a range of -100 and +100 microvolts. The EEG recorded at the scalp is 

the total measure of the activity from numerous neurones and various frequency patterns 

may be identified. There are four waves within the normal EEG: (1) delta rhythm at 1-4 

Hz, (2) theta rhythm at 4-8 Hz, (3) alpha rhythm at 8-12 Hz, and (4) beta rhythm at 13-20 

Hz. In order to analyse the EEG output, the amplitude and the frequency of waves is used. 

When individuals are relaxed, wave amplitude is typically larger and frequency is lower, 

whereas the reverse occurs when individuals are excited. 
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Figure 2.8 - EEG Scan; taken from [208] 

Approximately 20 electrodes are placed on an individual, using the Jasper ‘10/20’ system 

[209], in which electrodes are located with regards to the location of the frontal, central, 

temporal, parietal, and occipital lobes. On the left side of the head there is an odd number 

of sites, on the right side there is an even number of sites, and midline electrodes are 

referred to as ‘z’. The most frequently used type of event-related potential recording is 

made between a scalp electrode positioned at an area of interest and a reference electrode 

positioned at a site that is relatively unaffected by the electrical activity of experimental 

interest. Recordings are based on the difference in voltage between each exploring 

electrode and the common reference electrode. Participants need to remain still as any 

facial movement (e.g., eye and jaw movements) can result in fluctuating electrical fields 

across the scalp. As such, eye movements are measured with the EEG so that trials with 

large eye movements can be removed or corrected from the data analysis. Current systems 

can record from up to 128 sites simultaneously using a geodesic dense array sensor net. 
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By creating event-related potential time-stamped maps, following the stimulus event, the 

relative times at which specific brain regions are activated can be identified. 

EEG is currently used widely in research, given that it is non-invasive, able to detect 

millisecond-level changes in electrical activity, and has high temporal resolution. 

Disadvantages of EEG include low spatial resolution, low signal to noise ratio, poor 

measurement of neural activity within the upper brain sections (the cortex), and that it is 

time consuming to connect participants to the EEG. 

2.3.13.3.6. Magneto encephalography (MEG) 

MEG measures the magnetic fields produced by brain’s electrical activity, using highly 

sensitive devices labelled superconducting quantum interference devices. MEG is an 

imaging technique that is used frequently in research and in clinical settings, as portrayed 

in Figure 2.9, and has applications in aiding surgeons to locate pathology and in aiding 

researchers to examine the function of specific brain regions, amongst other applications. 

MEG has high temporal and spatial resolution, although it needs sensitive apparatus and 

methods that reduce environmental magnetic interference. 
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Figure 2.9 - MEG Scan; taken from [210] 

2.3.13.3.7. Near infrared spectroscopy (NIRS) 

NIRS is an optical technique for measuring the brain’s blood oxygenation. NIRS involves 

shining light in the near infrared part of the spectrum (700-900nm) through the skull and 

examining the degree of attenuation in the remerging light (see Figure 2.10). The level of 

light attenuation depends on blood oxygenation and, hence, NIRS can provide an indirect 

measure of brain activity. 
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Figure 2.10 - NIRS; taken from [211] 

2.3.13.3.8. Magnetic Resonance Imaging (MRI) 

MRI has furthered current knowledge significantly over the last three decades, contributing 

to better disease diagnoses and to the development of treatments. Prior to MRI, methods 

involving ionising radiation (e.g., x-rays, CAT, and PET) were commonly used although, 

unlike MRI, these methods are not safe due to the radiation and, also, they are not 

applicable to the large range of tissue that is currently examined using MRI. Benefits of 

MRI over CAT include identifying blood flow, cryptic vascular malformations, 

demyelinating diseases, whilst having no beam-hardening artefacts (as per CAT). For 
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instance, the posterior fossa can be more easily captured via MRI relative to CAT. As 

such, in the 1980s, MRI became the standard medical imaging tool. In addition, MRI 

creates higher resolution images relative to PET. MRI is comparable to an x-ray placed 

within a large doughnut-shaped magnet. Figure 2.11 is tentatively dated to 1980 and shows 

Sir Peter Mansfield, in shirt and tie, with his colleagues a couple of years after they 

completed their first MRI whole-body scans of Sir Peter himself. They had completed the 

first MRI images of living tissue (the fingers of research student Andrew Maudsley) in 

1976, resulting in large advances in the detection of body tissue [212]. 

 

Figure 2.11 - The team behind some of the whole-body MRI scans; taken from [213] 

In contrast to CAT, structural MRI brain scans have been used to differentially diagnose 

PD relative to degenerative Parkinsonian conditions (e.g., MSA, PSP, and CBD). 

Nevertheless, structural changes are visible in the later stages of PD and at this point a PD 

diagnosis has usually already been confirmed based on clinical assessment. Research has 

used PET, SPECT, and MRI to classify PD relative to patients with other movement 

disorders. Neuroimaging methods are costly, which restricts their use in typical clinical 
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settings [82], [214]–[216], although a MRI scan costs (cost for one scan: £400-600) 

significantly less than a PET or SPECT scan. Functional MRI (fMRI) is when participant’s 

neural activity is examined whilst the participant completes a given task (e.g., a perception, 

language or memory task). fMRI will be discussed further in Chapter 3. 

2.4. Summary 

Difficulties associated with differentially diagnosing PD abound, although these are 

reduced with greater clinician training/experience and disease progression [107], [217]. 

Community investigations have revealed that PD diagnoses have 15-26% false positive 

rates and this is particularly problematic in early stages of PD. PD is typically 

misdiagnosed with other degenerative Parkinsonian conditions and with late onset tremor 

[104], [217]. Likewise, research on pathology has indicated that 10-24% of PD diagnoses 

are not confirmed pathologically and PSP, MSA, and AD are the most frequent revised 

diagnoses. Further, clinical trials employing rigorous diagnostic assessment criteria have 

revealed that 4-15% of early stage PD diagnoses do not have abnormal DAT scans. 

Misdiagnosis hinders patient care and medication. Imaging methods (e.g., FP-CIT SPECT 

scans and DAT) can provide additional data to confirm a PD diagnosis, although some of 

these methods have clear drawbacks including low specificity, exposing patients to 

radiation, cost, and accessibility to clinicians. Hence, fast and non-invasive methods with 

high accessibility (e.g., able to be administered in clinical environments or even at 

patient’s own home, such as portable MRI scanner trucks) are clear next steps for future 

research. The research provided in this thesis introduces a novel and highly accurate brain 

imaging (resting state functional magnetic resonance imaging) biomarker for PD. 
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Chapter 3. Functional Magnetic Resonance 

Imaging (fMRI) 
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fMRI captures brain activity by measuring changes linked to blood flow. Given that 

cerebral blood flow and neuronal activation are associated with one another, active brain 

regions also have increased blood flow. The research presented in this thesis is based on rs-

fMRI data. Hence, this chapter outlines the physics underlying MRI and fMRI images and 

provides a review of the steps involved in fMRI data analysis: data preprocessing and 

processing. 

3.1. MRI 

MRI is a technique of imaging the body that is both non-invasive and non-ionising; this 

method is widely used in research and clinical environments. Relative to other imaging 

techniques, MRI produces high soft tissue contrast (such as diffusion of water with 

diffusion weighted imaging, blood flow measurement, and metabolite concentration 

mapping with chemical shift imaging) and can be used flexibly on a range of tissue 

properties to supplement anatomical readouts [218]. MRI is particularly widespread in 

both neurology and neurosurgery as it generates high definition images of the brain, spinal 

cord and vascular anatomy, focusing on the axial plane, sagittal plane and coronal plane, as 

can be seen in Figure 3.1. 

MRI images are derived from the magnetisation characteristics of atomic nuclei. A strong, 

uniform, external magnetic field is applied, which aligns the protons that usually have a 

random orientation within the water nuclei of tissue. Subsequently, a burst of radio 

frequency (RF) energy is applied to this alignment/magnetisation to modify the alignment. 

The nuclei release RF energy as they regress to their original resting alignment via 

relaxation processes. Following a specific time interval after applying the initial RF, the 

released signals are then calculated. The signal is collected and encoded in the frequency 

domain (k-space). Reconstruction via multi-dimensional Fourier transformations generates 

the final MRI image. Various types of images can be generated by changing the 

administered and measured sequence of RF pulses. Repetition Time (TR) corresponds to 

the time between successive pulse sequences administered to a given slice. Echo time (TE) 
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corresponds to the time between the delivery of the RF pulse and the receipt of the echo 

signal. 

 

Figure 3.1 - The axial plane, sagittal plane and coronal plane used in the standard 

coordinate space for MRI; taken from [219] 

MRI signal relies on both the local proton (or nuclei) density (with greater proton density 

relating to greater signal intensity) and the relaxation processes (reduction of 

transverse/detectable magnetisation). There are two types of relaxation processes that can 

influence the signal, leading to complementary contrast mechanisms: (1) T1 longitudinal 

relaxation time: the time constant related to the rate excited spinning protons return to 

equilibrium and realign with the external magnetic field. T1-weighted images are 

generated via brief TE and TR times, and the image contrast and brightness are linked to 

the T1 tissue characteristics. Brain images of T1 contrast contain dark (low signal 

intensity) ventricles, grey matter is represented as grey (medium intensity) and white 

matter (WM) is represented as bright/white (high intensity). (2) T2 transverse relaxation 

time: the time constant that regulates the rate at which excited spinning protons regain 

equilibrium and lose phase coherence with one another. T2-weighted images are generated 

by longer TE and TR times, and the image contrast and brightness are related to the T2 

tissue characteristics. T2-weighted images reveal bright/white ventricles, with grey matter 

represented as grey and WM represented by dark regions. 

MRI sequences typically involve T1-weighted and T2-weighted scans, as well as Fluid 

Attenuated Inversion Recovery (termed Flair). These scans can be distinguished by 

examining the CSF, which is dim in T1-weighted images and light in T2-weighted images. 

The Flair sequence is generated by very long TE and TR times and it is useful in 
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identifying pathology as it creates images in which abnormalities are emphasised by being 

light whilst normal CSF remains dim. Table 3.1 and Table 3.2 respectively depict typical 

MRI sequences and the shading of key brain tissues. Figure 3.2 presents a T1-weighted, 

T2-weighted and Flair brain image. 

Table 3.1 - Most common MRI sequences and their approximate TR and TE times 

 TR (ms) TE (ms) 

T1-weighted (short TR and TE) 500 14 

T2-weighted (long TR and TE) 4000 90 

Flair (very long TR and TE) 9000 114 

 

Table 3.2 - How tissues are observed in different MRI sequences 

Tissue T1-Weighted T2-Weighted Flair 

CSF Dark Bright Dark 

WM Light Dark grey Dark grey 

Cortex Grey Light grey Light grey 

Fat (within bone marrow) Bright Light Light 

Inflammation (infection, demyelination) Dark Bright Bright 
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Figure 3.2 - A comparison between T1, T2, and Flair 

MRI involves low signal to noise ratio (SNR) because of low energy in the resonance 

process. The signal intensity is dependent on the number of nuclei generating the signal. 

Augmenting the signal and/or reducing noise are two strategies to heighten SNR. Higher 

field magnets produce a larger magnetisation and boost the signal, although these can 

result in greater image artefacts because of magnetic field inhomogeneities. Decreasing 

thermal noise generated by the detector electronics (via cryogenic coils) diminishes overall 

noise and can double and even triple SNR [2]. Hence boosting magnetic field strength and 

using a cryogenic detector coil enhances SNR, resulting in improved MRI image accuracy. 

3.1.1. The BOLD Effect and Hemodynamic Response 

Research by Ogawa in 1990 on tubular hypointensities in the rat cortex revealed the 

contrast technique in MRI of the paramagnetic effect of deoxygenated blood: gradient echo 

MRI sequences are related to T2* contrast but spin echo sequences are related to T2 [220]. 

Ogawa posited this effect can be applied to detect hemodynamic response using MRI via 

the blood oxygenation level dependant contrast (BOLD). This approach is currently widely 

used as it provides a non-invasive method of detecting the functional response to a 

stimulus, with a high spatial resolution over the entire brain. BOLD fMRI is superior to 

other imaging methods (e.g., SPECT, PET) since bolus tracking or radioactive compounds 

are not required. 
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The BOLD response to brain activity is an intricate process. Brain activation is related to 

heightened glucose and oxygen use, although the BOLD signal is characterised by a rise in 

the fMRI signal within putatively active areas, suggesting greater blood oxyhemoglobin to 

deoxyhemoglobin ratio. Following the presentation of a stimulus, there is a minor 

reduction in signal corresponding to a reduced blood oxygenation to deoxyhemoglobin 

ratio. Subsequently, the signal heightens, then plateaus, and finally falls to baseline values 

with a minor undershoot. The imbalance between oxygen consumption, cerebral blood 

volume and flow reaction, and mechanical resistance in the capillaries all contribute to the 

final shape of the response. 

3.2. fMRI 

fMRI was designed in the 1990s and has now become one of the standard and most 

frequently used methods for examining neural activity, which is represented in Figure 3.3. 

Carp used a search string on pubmed.org for counting the number of human fMRI studies 

per year [221], substituting YYYY with the year of interest, and the research presented in 

this thesis has updated Carp’s search to reveal the current state of human research using 

fMRI. As evident in Figure 3.3, there has been an explosion of fMRI research, with over 

2300 papers published in 2015. 
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Figure 3.3 - Frequency of Publications on Human fMRI Studies (Until June 2017) 

fMRI research has been conducted examining almost all regions of brain science, with a 

particular emphasis on examining brain regions corresponding to specific functions. For 

example, findings have revealed that the brain is compartmentalised, containing 

specialised regions for face perception [222], moral behaviour [223], amongst multiple 

others. Furthermore, the brain always has some level of neural activity [224], which 

suggests that at some point it might be possible to interact with vegetative coma patients 

via monitoring their brain activity [225]. Structure–function mapping advances knowledge 

regarding how the brain processes information and interactions between specific brain 

regions when completing tasks (e.g., recall task). As such, the overall aim underlying brain 

mapping involves identifying associations between neuronal substrates, their connections, 

and their functional relevance. 

fMRI measures changes in blood oxygenation and flow in response to neural activity. 

fMRI allows researchers to map the activation levels throughout the brain, whilst 

individuals are engaged in a particular task (e.g., memory task) or at rest. Brain activation 

is indirectly measured as active regions require more oxygen and have increased blood 

flow, which modifies the magnetic field. These changes in magnetic field (BOLD) are 

measured by fMRI. Following neuronal activity, the blood flow changes between various 
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hundred milliseconds and various seconds. As blood flow changes are directly related to 

neural activity, the time-course of activity following specific tasks can be mapped. It is 

important to note that differences in the hemodynamic time-constants across both people 

and cortical regions limits the temporal resolution to about a second. Regarding fMRI data 

analysis, signal and image processing methods are required to generate from the raw data a 

statistical map revealing the brain regions that are activated in response to a given task. 

Various software packages (including several open source) are available for fMRI data 

processing and analysis; the most commonly used are FSL (the FMRIB Software Library) 

[226]–[228] and SPM (Statistical Parametric Mapping) [229]–[231]. 

Benefits of fMRI include that it is non-invasive, safe, and generates brain images with 

good spatial resolution and somewhat good temporal resolution, relative to methods such 

as PET. A further advantage of both fMRI and MRI is that multiple measures can be 

obtained from these systems. Individuals can be scanned for approximately one hour, 

producing measures of brain structure and function. The structural measures include 

measures of anatomy, for example, grey matter or T1 image (see Figure 3.4a), measures of 

WM (tractography), for example, diffusion tensor imaging or diffusion weighted imaging 

(see Figure 3.4b, which shows cortex, white and grey matter, third and lateral venticles, 

putamen, frontal sinus and superior sagittal sinus), measures of vasculature, time of flight 

imaging, or magnetic resonance angiography (see Figure 3.4c, which depicts carotid and 

vertebral circulation). Functional measures include measures of task-related activity across 

the brain or in particular regions (see Figure 3.5), measures of brain connectivity (see 

Figure 3.6), which are functional relationships across regions, and measures of 

relationships between the brain and the body, for example, physiological connectivity. 
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Figure 3.4 - (a) T1-weighted MR image of the brain; taken from [232]. (b) Diffusion 

Tensor Imaging; taken from [233]. (c) Normal neck magnetic resonance angiography; 

taken from [234] 

 

Figure 3.5 - Group maps generated from random effect analysis showing task-related 

activation during an fMRI study; taken from [235] 
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Figure 3.6 - Brain networks show increased connectivity from front to back and within one 

hemisphere in men (upper) and left to right in women (lower); taken from [236] 

Brain imaging can be roughly separated into two major categories: structural brain imaging 

(which focuses on the study of brain structure, the diagnosis of disease and injury) and 

functional brain imaging. Modalities of performing structural imaging include CAT, MRI, 

and PET. Functional brain imaging can be used to study both cognitive and affective 

processes. Modalities include PET, fMRI, EEG and MEG. Each brain imaging modality 

provides a different type of measurement of the brain and they also have advantages and 

disadvantages with respect to spatial resolution, temporal resolution, and invasiveness. 

fMRI provides a good balance between these properties and has become the dominant 

functional imaging modality in the past decade. 
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3.3. Resting-State fMRI (rs-fMRI) 

rs-fMRI is a relatively novel and effective approach for examining regional interactions 

taking place when an individual is not taking part in an explicit task. rs-fMRI is easier for 

neurologically impaired patients, relative to task-based fMRI as the latter involves 

cooperation yet many participants (e.g., PD or dementia patients) may find it challenging 

to follow task instructions within a scanner. The clinical implications of rs-fMRI are in its 

infancy [237]. 

rs-fMRI measures spontaneous low frequency fluctuations (0.1 Hz) in the BOLD signal to 

investigate the functional architecture of the brain. The significance of these fluctuations 

was first identified by Biswal et al. [238] in a study that involved participants not taking 

part in any cognitive, language, or motor tasks. Then, using a standard block design fMRI, 

in which the same participants completed a bilateral finger-tapping task, findings revealed 

a seed zone in the left somatosensory cortex with a correlation between the BOLD time 

course of the seed region and of all other brain regions. In addition, findings revealed that 

the left somatosensory cortex was strongly associated with homologous regions in the 

contralateral hemisphere. Hence, the two regions shared elements of the BOLD signal 

(functionally connected) when not engaged in finger-tapping, as represented in Figure 3.7. 
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Figure 3.7 - rs-fMRI research, revealing spatial activation map to finger-tapping (left) and 

cross-correlation of signal fluctuation concerning a seed in the right motor cortex during 

the baseline (right); taken from [238] 

Researchers posit the BOLD signal corresponds to neuronal activity, nevertheless, the 

basic molecular, cellular, and biophysical mechanisms involved are unknown. Increasing 

popularity in rs-fMRI research underscores the need to further explore the relationship 

between electrophysiological and BOLD signal fluctuations. Research has revealed that the 

networks identified via rs-fMRI have also been identified via EEG and MEG [239], which 

suggests that electrophysiological factors trigger rs-fMRI signal. 

rs-fMRI is related to electrophysiology, yet, research is required to further examine the 

relationship between global BOLD signal and local electrophysiological recording, and 

also the source of signal fluctuation. Even though rs-fMRI is based on assumptions that 

there is a neuronal source underpinning the signal, to date there is no model outlining the 

mechanisms behind this, which produces challenges regarding controlling spurious noise. 

Hence, signal cannot be only attributed to neuronal factors. A key disadvantage of rs-fMRI 

involves the difficulties interpreting signal, which can be exacerbated by the fluctuating 

modulation of neuronal signal caused by an altered vasculature response in participants 

suffering from diseases or who have been administered differing anaesthetic medications 

and dosages. 
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Research has used rs-fMRI to identify functional networks for neurosurgical procedures 

and to identify epileptogenic networks in epileptic patients. Furthermore, research has 

revealed that resting-state network characteristics can differentiate AD patients and 

patients with minor cognitive impairment from healthy controls [13], [240]. It is possible 

that patients with disorders of consciousness and psychiatric patients can gain from this 

technique. The current research examined PD classification using rs-fMRI data. 

3.3.1. Default Mode Network (DMN) 

rs-fMRI research has identified approximately 12 functional networks (regions correlating 

with one-another in their temporal signal), capturing sensory and cognitive processes, 

which remain stable over different participant groups and studies. Functional networks are 

presented in Figure 3.8 [241]. For instance, somatosensory motor network is responsible 

for human sensory processing and comprises of primary somatosensory cortex, secondary 

somatosensory cortex, primary motor cortex and secondary motor cortex, two to three 

networks in the visual cortex, and one network in the auditory cortex. Sensory networks 

are bilateral with primary and secondary cortical regions. Higher order cognitive networks 

comprise of the left and right attention networks and contain the lateral posterior cingulate, 

middle frontal and orbital, superior parietal, middle temporal cortex, and the DMN, which 

includes medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), left inferior 

parietal cortex (LIPC), and right inferior parietal cortex (RIPC) [242]. 
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Figure 3.8 - The human resting-state functional network organisation: (B) the default mode 

network, (C) and (D) right and left attention network; taken from [241] 

Raichle et al. [243] identified DMN from PET data [244]. This research involved the 

analysis of data from healthy participants resting with their eyes shut, which revealed 

specific brain areas were most active at rest and their activity declined when participants 

were engaged in cognitive tasks. DMN was identified by Greicius et al. [242] using fMRI 

and has been verified in numerous studies using a wide variation of analysis methods. 

Hence, by examining the associations between variations of the BOLD signal, fMRI can 

identify certain regions that are activated in synchrony each other [237]. It is relevant to 

note that one assumption underlying this method is the robustness of functional 

connectivity analysis as a tool that reproduces fundamental aspects of brain organisation 

via several cognitive states [245]. 



Chapter 3: fMRI 

94 

Much research has examined the DMN as one of the most important resting-state neural 

networks (RSNs), revealing that it is involved in inner voice, self-reference, and 

consciousness [246]. The DMN is highly detectable in rs-fMRI given that it is 

metabolically active when there are no task demands [243] and inversely related to regions 

involved in task performance (i.e., DMN signal amplitude decreases as signal increases in 

areas involved in completing a given task) [247]. 

Beyond the topological organisation that are based on anatomical structures and anti-

correlative links between DMN and task driven regions, signal properties include temporal 

structure. Correlation between brain regions within a network contains signal fluctuations 

(0.01 Hz to 0.15 Hz frequency), yet, little is known regarding the underpinnings of these 

fluctuations and their frequency band. Researchers posit the hemodynamic response 

(captured via BOLD fMRI) adds a low frequency transformation to the high frequency 

neuronal activity, resulting in this temporal property. Further, rs-fMRI signal has a 1/𝑓 

frequency distribution with less frequencies corresponding to greater power relative to 

larger frequencies. Random noise (termed Gaussian or white noise) has a flat power 

distribution over all frequency bands. Hence, despite little research having examined low 

frequency fluctuations, biologically relevant signal can still be distinguished from random, 

system-generated, noise. 

Functional networks are arranged in terms of biological areas that are separate for sensory 

systems and higher order cognitive systems. Research reveals that networks portray 

cognitive properties of patients with diseases and healthy control participants. For 

example, greater DMN connectivity is related to schizophrenic patients with positive 

symptoms [248]. Research has revealed links between rs-fMRI networks and comparable 

networks captured via EEG and MEG [239] with similar patterns of activation following 

task-based fMRI [224], which suggests that rs-fMRI networks are based on 

electrophysiological factors. Hence, rs-fMRI research indicates that networks link local 

neuronal activity and cognition. 
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3.4. fMRI Data Analysis 

fMRI data analysis constitutes an enormous data problem as every brain volume examined 

contains approximately 100,000 different voxel measurements. Every experiment can 

capture hundreds of brain volumes per participant, with typically 30 participants in fMRI 

research to enable population inference. Therefore, the volume of data being analysed is 

huge, especially considering that fMRI studies typically collect structural (T1-weighted 

images) data as well as functional (T2*-weighted images) data. Other factors contributing 

to the challenges involved in fMRI data analysis, beyond the large data issue, include the 

signal of interest being weak and the presence of temporal and spatial noise structure. 

fMRI data analysis involves preprocessing followed by processing, which is represented in 

the pipeline shown in Figure 3.9. 

 

Figure 3.9 - fMRI data processing pipeline 

fMRI data analysis includes three main goals: 

1. Localisation is a brain mapping approach that involves identifying the active brain 

regions during a given task/psychological event/behaviour. 



Chapter 3: fMRI 

96 

2. Connectivity involves measuring how brain areas are functionally related to each 

other and is typically represented in terms of correlations between brain regions 

over times. Three widely used connectivity methods are functional connectivity 

(correlations over time, for instance, seed-based connectivity examines all the brain 

areas that are correlated with a specific brain region) [249], effective connectivity 

(this includes various families of statistical models, such as path analysis and 

mediation models, Granger causality models, and dynamic causal modelling), and 

multivariate connectivity (data reduction methods, such as principle components 

analysis and independent components analysis but also graphical models such as 

constructing visualisation of the nodes and edges among brain areas and calculating 

the descriptive properties of these regions to infer behaviour) [250]. 

3. Prediction involves using brain activity to generate hypotheses regarding 

perceptions, behaviour, health status, amongst other factors, with applications to 

neurological disorders including AD and PD. These predictions can be validated 

over participants within a study and across studies. 

3.4.1. Preprocessing 

There are various fundamental steps involved when preprocessing fMRI data. The research 

presented in this thesis used CONN (version 17.c) [251], [252] and SPM12 (version 6906 - 

Wellcome Department of Imaging Neuroscience, London, UK) [230] software packages in 

MATLAB to complete the fMRI data preprocessing. The preprocessing and processing 

steps are presented in the same order in which they take place in the SPM12 template 

scripts. 

3.4.1.1. Slice Timing Correction 

fMRI data are typically collected via two-dimensional MRI acquisition and each slice is 

acquired individually. Slices can be acquired in ascending or descending order, or 

interleaved (each odd slice is acquired sequentially resulting in half of the slices being 

acquired and subsequently the other half of slices are acquired as depicted in Figure 3.10. 

In Figure 3.10, slices are acquired in the order 1-3-5-7-2-4-6-8 and the times on the right 
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represent the relative time the data in the slice is acquired, given a repetition time of 2 

seconds. 

 

Figure 3.10 - An example of slice timing in an interleaved MRI acquisition; taken from 

[219] 

Hence, different slices are acquired at differing time points and the temporal difference 

between two slices can be up to various seconds (as a function of the repetition time, or TR 

of the pulse sequence). Figure 3.11a represents three curves that depict samples from the 

same hemodynamic response at the times related to the slices represented in Figure 3.10. 

The slices acquired later in the volume reveal an ostensibly earlier response at every time 

point since the hemodynamic response has begun prior to the acquisition time. The timing 

of events/trials are imputed into a statistical model that depicts the expected signal 

resulting from the task, yet, a core assumption is that data was acquired at the same time. If 

left uncorrected, this time difference could be problematic as the hemodynamic response 

has a temporal factor. Hence, temporal differences in slice acquisition can pose challenges 

for data analysis. Slice timing correction [253] addresses this limitation and involves 

selecting a reference slice and sinc interpolating the data from all slices to correspond with 

this reference slice timing, as illustrated in Figure 3.11b. Slice timing correction methods 

use sinc interpolation, resulting in reduced smoothing in the signal. In Figure 3.11b, the 

blue line represents the original timeseries from a single voxel in the slice acquired at the 
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start of each volume acquisition and the red line represents the interpolated time course 

after correcting this slice to correspond to the centre slice, acquired halfway through the 

volume, at time TR/2. Slice timing correction can be applied if the precise timing of 

acquisition is known. This timing changes based on the scanner and pulse sequence used, 

but the physics support personnel can provide this information. 

 

Figure 3.11 - (a) The impact of slice timing on the acquired data. (b) An example of slice 

timing correction using linear interpolation; taken from [219] 

Some limitations of slice timing correction include (1) sinc interpolation, which can lead to 

artefacts present within one image being spread throughout the timeseries (problematic 

when considering interactions between slice timing and head motion). (2) When using 

short repetition times (TR ≤ 2 seconds) with interleaved acquisitions, event-related 
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analysis is robust against slice timing error; this is especially the case when applying 

spatial smoothing to the data, as data from bordering slices (acquired 1/2 TR from each 

another) are combined to result in a slice timing error of only TR/2. (3) Statistical models 

with temporal derivatives control for some timing misspecification and diminish the effect 

of slice timing discrepancies [219]. 

3.4.1.2. Motion Correction 

All participants move their heads during scanning even minimally (e.g., swallowing), 

nevertheless, slight movements can significantly impact on the data collected. Figure 3.12 

illustrates the impact of movement on brain images; the images reveal activation for a 

blocked design motor task relative to a resting baseline. The left panel of Figure 3.12 

shows a severe example of motion-related artefacts, as this individual had Tourette 

syndrome, labelled a “flaming brain” artefact. The right panel of Figure 3.12 depicts a 

common example where movement is represented as activation along one edge of the 

brain, illustrating motion in that direction, which is related to the task. 

Head movement results in two fundamental limitations: (1) Location mismatch of 

following images in the timeseries (labelled bulk motion). Standard motion correction 

techniques reduce error by realigning the images in the timeseries to one reference image. 

Head movement during acquisition is corrected in order for every image voxel to depict 

the equivalent 3D part of tissue at each time point. SPM applies a 6-parameter affine 

transformation (rotation and translation about and in the x, y, and z axes). Bulk motion can 

have a strong impact on activation maps, typically at the image boundaries since 

significant changes in image intensity arise when a voxel without brain tissue in it at one 

time point subsequently includes brain tissue resulting from movement. These artefacts 

differ according to the type of movement, as shown in Figure 3.12. For instance, a ring of 

positive or negative activation depicts movement along the inferior–superior axis, positive 

activation on one side of the head and negative activation on the other side depicts 

movement along the left-right axis, or large areas of positive or negative activation in the 

orbitofrontal cortex depict rotation along the left-right axis. Artefacts are, also, typically 

present at the edges of the ventricles. 
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Figure 3.12 - Examples of the impact of head movement on statistical maps; taken from 

[219] 

(2) Head movement can change the MRI signal. Following movement, the protons that 

move into a voxel from an adjacent slice contain a differing level of excitation from that, 

which is expected by the scanner, resulting in a reconstructed signal that inaccurately 

represents the tissue in the voxel (labelled spin history effect) [254]. Spin history effect can 

generate big variations in the intensity of one slice or a group of slices, resulting in stripes 

of interchanging bright and dark slices when using interleaved acquisition. Spin history 

effect cannot be corrected using standard motion correction techniques, although 

exploratory methods (e.g., independent component analysis) or spin-history corrections 

can be applied [254], [255]. 

3.4.1.3. Spatial Normalisation 

At times, fMRI data are acquired from one person to gain specific information, e.g., 

regarding location of a tumour for surgery. Nevertheless, in research, fMRI data is 

typically acquired from a sample of participants with the aim of generalising findings 

regarding brain function across participants. Hence, data needs to be collated across 

participants. A problem is that individual brains vary in size and shape, so they need to be 

transformed to aligned with each other. The method of spatially transforming data into a 

common space for data analysis is labelled inter-subject registration or spatial 

normalisation. 

Across individuals, brains reveal strong uniformity regarding structure, yet they vary 

extensively in terms of size and shape. A normal human brain contains two hemispheres 
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linked via a corpus callosum whose shape is typically stable across individuals. A set of 

major sulcal landmarks (such as the central sulcus, sylvian fissure, and cingulate sulcus) 

and the basal ganglia exist in almost all individuals, yet, variability exists concerning the 

minute features of brain structure. For instance, individuals possess a transverse gyrus in 

the superior temporal lobe (labelled Heschl’s gyrus) that is linked to the primary auditory 

cortex, although the number and size of these gyri differ across people [256], [257] with 

brain structure differences still occurring in identical twins [258]. Spatial normalisation 

transforms brain images from every participant to minimise inter-individual variability, 

enabling group analyses. 

A widely used template for spatial normalisation was created by the Montreal Neurological 

Institute, labelled the MNI template. This template consists of the average of 152 normal 

MRI scans. The MNI template was created to facilitate automated registration rather than 

landmark-based registration (where normalisation to the template involves first locating 

anatomical landmarks). Spatial normalisation techniques typically involve preprocessing 

the anatomical images before performing normalisation. These preprocessing methods 

involve correction of low-frequency artefacts (labelled bias fields), eliminating non-brain 

tissues, and segmenting the brain into different tissue (grey matter, WM, and CSF). 

3.4.1.4. Segmentation 

Brain tissue needs to be segmented into separate tissue classes (grey matter, WM, and 

CSF). Despite these tissues relating to distinct image intensities in a T1-weighted MRI, it 

is not possible to select the specific intensity values and threshold the image to locate these 

classes for three reasons: (1) precise brain segmentation is challenging in data processing 

as MRI images are noisy and even if the mean intensity of grey matter voxels differs from 

that of WM, their distributions can intersect. (2) Some voxels encompass various tissue 

types (labelled partial volume effect) and the intensity of these voxels varies widely in 

relation to their location. (3) Non-uniformities over the imaging field of view can result in 

the intensity of grey matter in a given area being more similar to that of WM in a different 

region, relative to grey matter in this other area. Hence, segmentation based on image 

intensities is problematic. 
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The unified segmentation approach [259] is a technique for tissue segmentation that is 

widely used (see [260] for a review of tissue segmentation methods). This technique 

involves using both spatial normalisation and bias field correction alongside tissue 

segmentation, to identify the prior probability of voxels with grey or WM based on a 

probabilistic atlas of tissue types. The prior probability is applied to image data to identify 

the tissue class. Hence, two voxels with matching intensities can be labelled as differing 

tissue classes (e.g., if one is in a region with high probability of grey matter and another 

with high probability of WM). 

3.4.1.5. Generating a Brain Mask 

In SPM, WM, grey matter, and CSF masks are generated based on a T1 image. The T1 

image is converted to standard MNI-152 space via a non-linear, diffeomorphic warp. A 

deformation field is applied to the T1, generating a version of the T1 in standard MNI-152 

space. Then, the WM, grey matter, and CSF segmentation masks are joined, resulting in a 

full-brain mask. 

3.4.1.6. Registration 

A widely used spatial registration technique is volume-based registration to a template 

image, which involve affine linear registration including other methods of nonlinear 

registration. Typically used templates include the MNI-305 or MNI-152. These templates 

are averages of brain scans from many individuals that were registered into a common 

space. The fMRI image is spatially registered to the T1 via an affine transformation. This 

step corrects for head movement between acquisition of the T1 and the acquisition of the 

fMRI data. 

Deformation fields are then applied to the fMRI data. At this stage, the fMRI data have 

been coregistered to the T1, therefore, the deformation field generated for the T1 can be 

applied to the fMRI data. This step involves applying a pre-existing 3D template image to 

move the transformed fMRI data onto a grid space with comparable voxel sizes to those of 
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the original fMRI data (but not the T1 data). T1 voxels sizes are smaller and fMRI data 

files resampled to a T1 grid-space are quite big. 

3.4.1.7. Spatial Smoothing 

Between-subject fMRI analyses typically involve spatial smoothing (note that this is 

relevant for 2D cortical surface as well as 3D volumetric approaches). Smoothing filters 

out high spatial frequency noise (functioning as a low-pass spatial frequency filter), which 

enhances the signal-to-noise ratio [261]. This boosts the probability of detecting signals in 

between-subject analyses, given that the exact cortical location of foci is variable across 

participants. In addition, following smoothing the data are more similar to a continuous 

field of random values, which is a core assumption of random field theory (a multiple 

comparisons correction) [262]–[266]. 

Spatial smoothing comprises of applying a filter to the image to eliminate high-frequency 

data, resulting in blurred images with reduced spatial resolution. This is completed to 

“average out” some of the random noise but to still preserve neural activity-related signal. 

There are three reasons for applying spatial smoothing: (1) when collating data across 

participants the spatial location of functional regions is variable and not corrected by 

spatial normalisation. Spatial smoothing diminishes the incongruity across participants. (2) 

Eliminating high-frequency information (i.e., minor image changes), boosts the signal-to-

noise ratio for signals with greater spatial scales. Given that fMRI activation typically 

occurs over various voxels, the advantages in terms of boosting signal for bigger features 

overshadow any limitations involved in removing minor features. In addition, the 

acquisition of small voxels can minimise dropout in regions prone to artefacts and 

smoothing aids to counter the heightened noise produced when small voxels are used. (3) 

Certain analyses (e.g., theory of Gaussian random fields [267]) need some level of spatial 

smoothness. 

Standard spatial smoothing techniques involve the convolution of the 3D image with a 3D 

Gaussian filter (or kernel). The degree of smoothing generated via a Gaussian kernel is 

governed by the width of the distribution. In image processing, the width of the 
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distribution is accounted for by the full width at half-maximum (referred to as FWHM) 

[268]. This measures the width of the distribution at the point where it is at half of its 

maximum; it is linked to the standard deviation (σ) via the equation 𝐹𝑊𝐻𝑀 =

2𝜎√2𝑙𝑛(2) , or approximately 2.55𝜎.  Greater FWHM result in larger smoothing, as 

presented in Figure 3.13. The left panel in Figure 3.13 shows three different kernels used 

for convolution. The identity kernel has a positive value in its central point and zeros 

elsewhere, whereas the Gaussian kernels spread progressively from the centre. A random 

signal was created and convolved with each of these kernels and the results are depicted in 

the right panel of Figure 3.13. Convolution with the identity kernel reproduces the original 

data, yet convolution with a Gaussian kernel generates smoothing, with larger smoothing 

for a wider kernel. The default kernel is FWHM of 6 mm in each direction. In the research 

presented in this thesis, all the functional images were spatially smoothed using a Gaussian 

kernel with 8 mm [269] FWHM to account for inter-participant variability while 

maintaining a relatively high spatial resolution. 

 

Figure 3.13 - An example of convolution used in spatial smoothing; taken from [219] 

Smoothness directly relates to the associations between neighbouring voxels. Hence, the 

smoothness of an image is not always related to the degree of smoothing applied. An 

image containing random noise will have little smoothness; yet, MRI images have higher 

smoothness because of the filtering applied via image reconstruction and because of 

intrinsic correlations within the image. Following application of smoothness, the 

smoothness of the image produced is calculated using the following formula: 
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𝐹𝑊𝐻𝑀 = √𝐹𝑊𝐻𝑀𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐
2 + 𝐹𝑊𝐻𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑

2  

Figure 3.14 illustrates the preprocessing pipeline that was used for preprocessing the rs-

fMRI data in the research presented in this thesis. The images are taken from the data 

analysis steps involved in preprocessing of one of the participants in the study presented in 

Chapter 6. The parameters of the preprocessing pipeline are also provided in Chapter 5 and 

Chapter 6. 

 

Figure 3.14 - Preprocessing pipeline used in this research 

3.5. Processing 

3.5.1. Modelling Brain Connectivity 

Neuroimaging research currently largely focuses on functional localisation, yet, scientists 

now are highlighting the relevance of functional integration to account for brain function 

[270], [271]. This section reviews techniques for analysing brain connectivity using fMRI 

data. Brain connectivity is essential for identifying interactions between spatially separate 

brain areas that relate to mental function. There is no strict consensus concerning the 

analysis of brain connectivity, with analysis techniques frequently being reviewed, 

modified, and new ones being developed. Nevertheless, this section briefly reviews these 

brain connectivity analysis techniques as applied to fMRI data. 



Chapter 3: fMRI 

106 

Studying connectivity in neuroscience involves focusing on three different elements, 

anatomical connectivity, functional connectivity, and effective connectivity. Anatomical 

connectivity involves studying the anatomical layout of axons and synaptic connections 

and focusing on how neural units interact directly with each other. Functional connectivity 

focuses on the correlation between activity in different brain areas. Moreover, this involves 

examining the statistical dependencies between measured timeseries (the statistical 

dependencies of observed neurophysiological responses). Effective connectivity, however, 

examines the causal influence that one neuronal system exerts over another (at synaptic or 

neuronal population level). Effective connectivity is investigated in the research presented 

in this thesis. 

3.5.1.1. Effective Connectivity 

Effective connectivity models explore the causal relationship and interactions between 

activity across different brain regions. Modelling methods in brain imaging based on 

effective connectivity include (1) structural equation modelling (SEM, e.g., multivariate 

analysis testing for influences among interacting variables), (2) Timeseries analysis (e.g., 

Granger Causality), (3) methods based on linear regression analysis (e.g. Psychophysical-

Interaction analysis and Graphical Causal Models), and (4) methods based on nonlinear 

dynamic models (e.g., DCM). 

SEM is a technique that tests hypotheses regarding causal relationships between variables 

that are described typically using linear equations (note that nonlinear equations are also 

feasible; see [272]–[274]). SEM can be sometimes problematic as the standard techniques 

for testing model fit assume independence between observations, which does not apply to 

fMRI data. Another primary issue with SEM is that the model is meant to identify causal 

relations between neuronal signals, but these must be estimated based on indirect and noisy 

BOLD MRI measurements [275]. This noise in the measurements can result in the 

identification of spurious relationships between some variables. Furthermore, the 

transformation from latent neuronal signals to observed hemodynamic signals is quite 

complex and nonlinear [276]. Although this latter challenge can be addressed using SEM, 

it is more naturally accommodated within techniques such as DCM, which directly 
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evaluate the hemodynamic response function to estimate causal relations between neuronal 

elements. 

Granger causality posits that a cause occurs before its effects and, hence, it models 

causality by exploring the temporal relationship between variables (i.e., data from various 

variables are modelled over time). Granger causality is seemingly appealing compared to 

other forms of effective connectivity modelling since it provides a method of testing whole 

brain effective connectivity without specifying an anatomical network, as is necessary for 

SEM and DCM. However, Granger causality analysis with fMRI data is challenging due to 

the temporal characteristics of fMRI data. Granger causality relies upon the relative 

activity of different regions across time, therefore, it is important to first account for the 

effects of slice timing. Moreover, Granger causality assumes that the hemodynamic 

response is similar in its timing characteristics across the brain, which is not the case [277]. 

These differences overshadow the Granger causality analysis. Moreover, research has 

shown (using simultaneous electrophysiological recordings and fMRI) that Granger 

causality on fMRI timeseries does not accurately extract causal influences [278]. 

Graphical causal models examine the causal relationship (conditional independence 

relations; i.e., two variables are independent when conditioned on some other variables) 

between different groups of variables in the graph [274], [279], [280]. From the 

perspective of regression analyses, the conditioning on a third variable is the same as 

incorporating this as a covariate within the statistical model. If two variables are correlated 

with a third variable, then adding that third variable as a regressor eliminates the 

correlation and results in the variables being independent. One particular challenge to the 

use of search methods, such as graphical causal modelling, is combining data across 

multiple participants. It might seem obvious to simply combine the data across participants 

into a single search, or average the data across participants, however, each of these 

methods has the potential to obtain incorrect results. This issue has been addressed in the 

IMaGES [276] method, however, implementing IMaGES is expensive both timely and 

computationally. 
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While SEM and graphical causal models are very general methods that are applicable to 

many different kinds of data, DCM was developed specifically for modelling of causal 

relations in neuroimaging data (fMRI and EEG/MEG) [281]. DCM is discussed further in 

the following section, given that it is a key analysis used in the research presented in this 

thesis. 

3.5.2. Dynamic Causal Modelling (DCM) 

Research on rs-fMRI is prolific, specifically concerning differences in functional 

connectivity related to specific brain regions or to specific participant groups. Functional 

connectivity can explore unusual patterns of distributed activity, yet, causal inferences 

between neuronal systems cannot be determined [281]. In contrast, effective connectivity 

(including DCM) is based on a probable model of linked neuronal activity to examine 

causal interactions between brain regions. DCM is widely used in EEG research [281]–

[283]. rs-fMRI data do not include exogenous (activating) inputs, unlike task-based 

studies; hence, endogenous fluctuations activate in brain regions. 

DCM, which is based on Bayesian methods, examines the effective connectivity between 

brain regions for a specific experimental design. DCM explores effective connectivity (the 

causal effect of one neuronal system on another) using nonlinear designs to identify a 

reasonable generative model of measured neural activity (electromagnetic measurements 

or hemodynamic fMRI measurements). 

DCM contains information regarding how neuronal activity results in the measured 

responses, which allows estimation of the effective connectivity. The research presented in 

this thesis examines DCM for rs-fMRI, in which deterministic inputs are 

activating/causing changes in the stimulation of different brain regions. This occurs via a 

dynamic input–state–output model of several inputs and outputs. The inputs relate to 

standard stimulus functions linked to the experimental manipulations. An initial challenge 

involved applying no driving inputs (related to the experimental design) to DCM, as per rs-

fMRI [284], though, currently DCM can now be used with rs-fMRI. The state variables 

include neuronal activities and neurophysiological or biophysical variables that result in 
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the outputs. The outputs include electromagnetic measurements or hemodynamic fMRI 

measurements (as per the research presented in this thesis). 

DCM is a very powerful tool, yet, it has some limitations. Similar to SEM, the validity of 

the results in DCM analysis depends upon the anatomical models that are specified and the 

regions that are used for data extraction. In order to solve this issue, graphical search 

techniques can be used initially to construct a set of plausible candidate models, and then 

use DCM to test specific hypotheses about those models. Moreover, DCM is currently only 

applicable to specific networks (e.g., DMN in the research presented in this thesis) and 

applying DCM to the whole brain is a very timely and valuable tool in research. 

The research presented in this thesis uses spectral DCM [285]. Spectral DCM has 

advantages over stochastic DCM. Rather than estimating time varying fluctuations in 

neuronal states (stochastic DCM), in the research presented in this thesis, the parameters of 

cross spectra were estimated (spectral DCM). Spectral DCM is not only more accurate but 

also more sensitive to group differences. As such, spectral DCM results in a concise and 

effective method for estimating the effective connectivity from rs-fMRI timeseries, 

building on assumptions [269]. 

The research presented in this thesis explored the effective connectivity between DMN 

nodes and estimated the corresponding coupling parameters via spectral DCM in 

combination with different classification methods. The research presented in this thesis 

applies DCM, substituting high-dimensional fMRI timeseries with a low dimensional 

vector of parameter estimates. DCM connectivity values are then subjected to 

classification. This is a novel approach that has not been done previously in the literature. 

A pipeline of the method used in the research presented in this thesis can be seen in Figure 

3.15. Excepting classification for DCM and timeseries, which is a novel element of this 

research, the processing steps are standard in rs-fMRI data analysis. 
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Figure 3.15 - Data analysis pipeline used in this research 

 

3.6. Summary 

fMRI is a clinical tool with multiple advantages, generating objective high resolution 

images. For instance, fMRI is non-invasive, safe to use and does not use radiation such as 

x-rays, CAT, and PET scans. These qualities make fMRI an effective and efficient tool in 

aiding clinical diagnosis, providing objective data (relative to less objective data obtained 

via clinical questionnaires). The research presented in this thesis applies classification to 

fMRI data to develop an automatic and highly accurate classification method relevant for 

PD monitoring in Chapter 5 using a controlled clinical experiment, and the methods 

developed are then applied to the diagnosis of early stage PD in Chapter 6. 
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Computational intelligence is the capability of a computer to learn a given task based on 

data/experimental observation. This chapter outlines key classification models, issues to 

consider when developing and applying models for real-life/biomedical problems (for 

instance, classification using class-imbalanced data), using computational intelligent 

techniques to create classification models, different classification strategies, classification 

of timeseries data, classification of dynamic data, and CGP classification. These themes 

are relevant given that the research presented in this thesis applies CGP, SVM, and ANN 

classification to dynamic class-imbalanced data 

4.1. Predictive Modelling 

Predictive modelling involves developing mathematical models of anticipated future 

behaviour, based on previous behaviour. Predictive modelling mainly includes regression 

and classification modelling. Regression models are used for questions that require 

predicting a continuous variable, whereas classification models are used for categorical 

variables. The research presented in this thesis focuses on classification of binary variables 

(e.g., two dichotomous classes such as PD patients versus health age-matched controls). 

4.1.1. Classification 

Classifiers are models that predict a nominal or ordinal variable from a limited group of 

potential options. The prediction is derived from continuous or nominal data (e.g., a fixed-

size vector with summary features of the sample). Classifiers generate a mapping between 

an input feature vector 𝑓 = [𝑓1, 𝑓2, … , 𝑓𝑛] and an output prediction, 𝑝𝑖. Classification output 

is reliant on both the model and the type of data used. A common method involves 

outputting a discrete class prediction as one of the classes in the group of potential classes 

{𝑐1, 𝑐2, … , 𝑐𝑐} . This method is particularly useful for basic questions as additional 

interpretation is not required. Nevertheless, limitations of this method include that it does 

not provide estimates of certainty and it generates identical output for both a distinctive 

sample and a sample that is between two classes. Other learning algorithms generate an 

estimate of certainty and tend to output a vector of continuous values [𝑜1, 𝑜2, … , 𝑜𝑐], per 

input pattern, with each value relating to a measure of support for a given class. The values 
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generated can be probabilities, for instance, ∑ 𝑜𝑖
𝐶
𝑖=1 = 1, or they can be arbitrary units 

representing a general score. For models that provide an estimate of certainty per category, 

the overall predicted class is that with the greatest score. Often when classifying 

dichotomous binary variables, models output only one continuous value (instead of one per 

class). In this case, a label vote can be generated by thresholding the score regarding an 

arbitrarily selected level or a pre-determined value. These methods are relevant for clinical 

contexts in which patients with a specific disease (versus healthy controls) are being 

identified, as the model score provides a biomarker to facilitate diagnosis. 

4.1.1.1. Evaluating Classification Models 

There are various methods to evaluate the performance of multiple classifiers. One basic 

approach involves calculating the classifier’s accuracy rate by computing a ratio of 

accurately predicted data objects, as per: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴𝑐 + 𝐵𝐶

𝑁
 

𝐴𝑐  and 𝐵𝐶 are the number of correctly predicted instances of classes 𝐴 and 𝐵, respectively, 

and 𝑁 represents the total number of patterns. There are two key limitations to using a 

classifier’s accuracy as a measure of goodness of fit. Firstly, heavily class-imbalanced data 

results in many classifiers revealing artificially high accuracy levels and misclassifying 

trends to the larger class. For instance, in a dataset with 80% cases belonging to class 1 and 

20% cases belonging to class 2, a classifier that identifies each sample as class 1 results in 

80% accuracy, although it is not useful since this is the no-information rate. Whilst 

classifiers perform with better than no-information rate accuracy, this example underscores 

the relevance of class distribution given a bias towards the larger class. 

Secondly, when evaluating classifiers using accuracy rates, these do not differentiate 

between Type I and Type II errors, which have distinct disadvantages in real-life scenarios 

(e.g., misdiagnosis of a healthy individual versus not diagnosing a patient with a disease). 

Accuracy rates speak directly to a classifier’s capacity, despite of all the limitations that 

they have (see [286] for a review of accuracy rate limitations). However, this depends 
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highly on the data and the type of classification that is used. Moreover, in some cases, the 

standard fitness measure in classification is the overall classification accuracy (see [287]). 

4.1.2. Learning Algorithms 

There are numerous learning algorithms that apply classification models to training data, 

using different standpoints, including linear models, non-linear separators, rule based 

approaches (such as trees), amongst others. This section reviews the most frequently used 

methods. 

4.1.2.1. Logistic Regression 

Logistic regression models fall within the general linear model category by examining 

research questions that contain a categorical dependent variable (typically a binary 

variable) [288]. The output includes the log odds of a positive class (labelled an event) and 

a linear expression between the covariates and the log odds is generated using the 

maximum likelihood estimation. The coefficients depict the increase in the log odds of an 

event per one unit increase in the predictor. Linear discriminant analysis involves a 

somewhat comparable method that generates a linear model by reducing the likelihood of 

misclassification. 

4.1.2.2. Decision Trees 

Rule-based models are based on if… then... else... conditions. For instance, a model 

predicting whether Tim will make a cup of coffee could include the following: 

IF time spent sleeping is 8 hours or less AND a work deadline is fast approaching in 2 

hours or less THEN Tim will make coffee. 

Models can involve a linear sequence of rules, where samples are categorised into a group 

given that certain conditions/rules are met (e.g., the PART algorithm; [289]). Nevertheless, 

a frequent method involves decision trees or classification trees (e.g., classification and 

regression trees [290] and C4.5 [291]). Decision trees involve a hierarchy of rules leading 



Chapter 4: Computational Intelligence 

116 

to a binary tree (although other variations are possible), where IF and ELSE pathways are 

depicted by tree branches from corresponding nodes and the class labels are represented by 

leaves. 

Decision trees have three key advantages. Firstly, they provide highly interpretable 

outcomes that specify the threshold predictor values. Secondly, decision trees enable an 

inherent method of feature selection, whereby just discriminatory data attributes that are 

identified by the induction process are present in the final model. Hence, less 

preprocessing by clinicians (a method that can produce bias) is required. Thirdly, decision 

trees can be applied to categorical predictors, which involves dividing potential outcomes 

into two subsets (one per branch). Overfitting is a limitation inherent in decision trees, as 

these follow certain rules in large trees that can classify small segments of the training 

data. 

4.1.2.3. k-Nearest Neighbours (kNN) 

The kNN algorithm predicts classes using data from a training set that includes information 

on correct class. Using a distance metric (usually Euclidean distance) of the feature vector, 

the algorithm measures the distance to each data point based on the training data. The k 

training samples containing the lowest distance (nearest-neighbours), are assigned a 

separate class relative to data that is further away. This method is sensitive and flexible 

given that k can, in principle, be any value. Nevertheless, limitations include poor 

applicability for high dimensionality data and, also, the training set needs to be stored, 

which can be challenging when working with big data. 

4.1.2.4. Support Vector Machines (SVM) 

Learning algorithms typically aim to sort each training sample from each class, without 

focusing on the method they are applying. For instance, linearly separable data contains 

countless possible discriminatory lines with which to sort the data into the classes. SVM 

follow a different methodology, by generating the optimal sorting boundary using just 

samples (labelled support vectors) related to each class that are nearest to the perimeter 
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(i.e. the samples that are most difficult to classify). Predictions are then generated by 

matching future data to this border. Resemblance between two samples is computed via the 

dot product, creating a linear classification boundary. 

An advantage of SVM is that the similarity function can be substituted by any kernel 

function (via a kernel trick that charts two comparison feature vectors to a higher 

dimension and calculates their resemblance within this space) to generate non-linear 

boundaries. Linear, radial basis function, and polynomial are three frequently used kernel 

functions, which give SVM high flexibility. SVM are widely used due to their flexibility 

and accuracy [292]. There are two key limitations to SVM. Firstly, SVM include high trial-

and-error given the possible candidate kernel functions. Secondly, interpretation can be 

difficult as much weight is given to the support vectors. 

4.1.2.5. Ensemble Classifiers 

A novel technique involves generating an ensemble classifier by joining the outputs from a 

group of models with low bias error and high variance, which enables misclassifications by 

one or two models to be cancelled by the majority of the ensemble. Without an ensemble, 

these minor misclassifications would likely remain undetected. Ensemble classifiers are 

reviewed in the subsequent sections. 

4.1.2.5.1. Diversity Methods 

There are various stages within ensemble development in which diversity can be promoted 

or maintained to enhance ensemble efficacy; these are outlined as follows. 

Base Classifier Models 

Using various learning algorithms is just one method to generate a diverse range of base 

classifiers. Indeed, the no free lunch theorem [293] specifies that a single best 

classification model suited to all datasets does not exist. Hence, using multiple learning 

algorithms enhances the possibility of identifying a strong model. Moreover, each 
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algorithm uses a novel route for mapping features to an output in a different way, leading 

to a range of classification rules. 

Learning Algorithm Hyper-Parameters 

Learning algorithms typically contain at least one tuneable hyper-parameter (e.g., k in kNN 

models) and a minimum number of observations per split in decision trees. Ensemble 

diversity is heightened by adopting different versions of each model based on differing 

hyper-parameter values. 

Training Set Manipulation 

A widely used diversity preservation method entails training base classifiers on separate 

subsets of the training set, which facilitates the recognition of clear patterns/trends that are 

relevant for future predictive modelling. For instance, k-fold cross-validation (CV) is a 

simple technique in which the training set is split into k equally-sized folds. The model is 

fitted on k − 1 of these subsets, removing one subset at each iteration for validation 

purposes. Training is performed k times and results in k classifiers, trained on somewhat 

distinct datasets. k-fold CV is a method applied to the data presented in this thesis. 

Bootstrapping samples involves a comparable method, in which training subsets are 

created from the original training set via sampling with replacement. Data samples that 

may not have been sampled are labelled as out of bag samples and are used for validation. 

Data Feature Manipulation 

An alternative method involves creating base models on varying subsets of the feature 

space, which results in classifiers recognising distinct patterns/trends in the training data. 

One basic approach is to fit each model with one attribute, although distinct or overlapping 

subsets are applicable too. This method is particularly effective for datasets that do not 

contain numerous superfluous attributes (unlike datasets in which each feature contains 

useful information) and it is commonly used for ensemble building. 
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Modify Output Classes 

Research involving multi-class categorisation can use approaches that split datasets in 

relation to the output classes. For instance, Dietterich and Bakiri’s error-correcting output 

coding technique randomly divides the original classes into two groups and relabels data 

accordingly [294]. The learning algorithm then uses this new training data to perform 

standard binary classification. The process of randomly dividing the data and training is 

replicated multiple times and results in a new classifier at each iteration that can 

differentiate between these binary groups and, finally, an ensemble is created as a result of 

these classifiers. Other techniques involve resampling the dataset into two groups (one 

class and other examples) with the purpose of using these new datasets to train classifiers. 

This process can then be repeated for each class to result in models that can recognise a 

given class. 

Selection Process 

The member selection phase is the last stage of ensemble building, in which diversity can 

be preserved. There are various methods for ensemble model selection. For instance, the 

base classifiers can be selected as a function of their individual accuracy or an explicit 

measure of diversity. Ensemble size is related to its performance, with smaller sizes having 

less varied opinions. 

4.1.2.5.2. Ensemble Building Approaches 

This section outlines three frequently used ensemble building methods: bagging, boosting, 

and random forests. 

Bagging 

Bagging, a term derived from the two stage method of Bootstrap AGGregatING, involves 

iteratively applying one learning algorithm to distinct subsets of the original training set to 

result in a diverse set of classifiers [295]. These bootstrap replicates are selected at random 
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with replacement, creating different subsets of data that can include repeated instances of 

the same of data samples. After training a given number of models, the loop stops and an 

ensemble is created based on the classifiers generated. The outputs of all members are 

joined, allowing the prediction of new data patterns. Bagging is effective on unstable 

predictors with large variance error characteristics (e.g., decision trees). 

Boosting 

Boosting, similar to bagging, involves manipulating the training set so that models 

examine distinct samples, resulting in a diverse classifier [296], [297]. A model is trained 

on a subset selected randomly without replacement from the dataset. Samples are then 

weighted in relation to classification accuracy and the subsequent fitted model is highly 

endorsed if it accurately classifies samples that were misclassified by the first model. 

Hence, an ensemble of classifiers controls against errors made by individual models on 

given samples. Following each iteration, the weights are recalculated to represent the 

ensemble’s accuracy. The ensemble is finalised when a certain number of iterations is 

concluded and it can then predict new trends by using the collective results from all the 

models. Boosting typically provides greater classification accuracy relative to bagging 

[298], yet accuracy diminishes to a larger extent when artificial noise is incorporated into a 

dataset for boosting, compared to bagging [299]. 

Random Forests 

Random Forests is an extension of bagging that is used for decision trees [300]. The 

method involves (1) training many thousand decision trees to bag and (2) applying a 

feature subsetting method so that base classifiers use multiple features to generate 

predictions. These diversity preservation methods allow the ensuing ensemble to be robust, 

accurate, and able to generalise to other datasets, whilst minimising overfitting (which is a 

common problem with decision trees). 
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4.2. Computational Intelligence (CI) 

CI is a branch of Artificial Intelligence (AI), that includes optimisation algorithms and 

representations, such as Genetic Programming (GP) [301]–[303], ANN [304]–[308], 

Particle Swarm Optimisation (PSO) [309], [310], Ant Colony Optimisation (ACO) [311], 

[312], Fuzzy Logic [313], [314], and Artificial Immune System (AIS) [315]–[317]. These 

methods are typically motivated by natural phenomena, including Darwinian evolution, the 

neural networks within mammalian brains, the behaviour of ant colonies, amongst others. 

CI methods typically decipher complicated problems without needing expertise from a 

specific research area and, furthermore, they commonly examine optimising computational 

constructs. The process typically starts by randomly generating a function to resolve a 

given problem (the assigned task), which results in low performance accuracy, although 

over the iterative teaching process performance increases. This method does not contain 

bias regarding the search process, which would be present if a human were to attempt to 

solve a problem based on preconceptions/priori experience. 

CI has been applied to research on pattern recognition, control engineering, circuit design, 

and symbolic regression. CI methods are particularly useful when standard methods cannot 

be applied or when a problem is too demanding to be resolved using 

analytical/mathematical techniques. The research presented in this thesis explores the 

application of CI to classification predictive modelling, using GP, ANN, and SVM. 

4.2.1. Artificial Neural Networks (ANN) 

ANN involve computational models of tightly connected organisations of neurons within 

the human brain. ANN can be used both as computational tools and to examine the brain’s 

functional connectivity. A key element is their huge dispersed network of individually 

feeble computational units (neurons) that in conjunction can create high computational 

power [318]. Indeed, ANN were created to generate a computational resource comparable 

to the processing power of the human brain, in an attempt to tackle problems that 

computers typically find challenging but which are easily completed by humans (e.g., 
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pattern recognition). Via learning algorithms, these networks are able to find the solution 

of diverse tasks without needing expertise domain knowledge. 

4.2.2. Genetic Programming (GP) 

GP is a branch of CI that is based on Darwinian evolution with the objective of 

automatically producing functioning computer programs. For instance, EAs are global 

optimisers that iteratively train a population of candidate programs encoded by primitive 

data strings called genotypes, with behaviour being managed by phenotypes (depicted as 

operators acting on inputs). Training occurs via an iterative process of identifying good 

performing individuals and joining these to create novel candidate solutions, hence, 

elongating the search with every stage. Regarding predictive modelling, the model 

involves a complex non-linear expression depicted as a data structure (e.g., syntax tree, 

graph, or list). Fitness criteria controls the evolutionary search, instead of fitting a model to 

the data based on maximum-likelihood estimation. 

4.2.2.1. History 

Turing, in 1948, posited randomly generated networks can complete tasks using a 

genetical search [319]. Although this theory was proposed in relation to binary networks 

imitating the human brain, the behaviour of unorganised machines and EAs do overlap. 

EAs were developed by Barricelli et al. in 1954 as an optimisation algorithm [320], yet 

they became widely used only when Holland applied these to evolve a list of numbers, 

depicting chromosomes, in his research on Genetic Algorithms (GA) in 1973 and 1975 

[321], [322]. EAs and GA then became widely used as optimising parameters for 

complicated problems. Cramer, in 1985, explored the evolution of a chromosome via GA 

that encoded a structure similar to a tree – this research developed GP [323]. Koza in early 

1990s, further examined GP, outlining the effective application of GP to many tasks, in 

addition to outlining new methods [324]–[326]. Modern day advances in computational 

power (e.g., Graphics Processing Units and supercomputer clusters) has enabled GP to be 

applied to increasingly difficult tasks including population based searches via EAs. 
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4.2.2.2. Implementation 

This section provides an overview of the practical considerations when applying GP to a 

classification problem. 

4.2.2.2.1. Program Representation 

GP includes the iterative population based training methods common to EAs with 

programs focusing on certain inputs via a group of primitive functions. Evolved 

individuals contain two factors: (1) the genotype (a string of primitive data types 

overseeing the respective individual’s functional representation); and (2) the phenotype 

(which commands an individual’s behaviour via representing the program using typical 

computational data structure). The phenotype of an evolved expression is often depicted 

using a syntax tree, in which branch nodes relate to a specific functions and leaf nodes 

represent inputs to the program or numerical constants. GP involves domain specific 

functions, for instance, an expression evolved with GP to address a symbolic regression 

task can use mathematical operators, whereas a program directing a robot can incorporate 

other functions including “turn left”. 

Modifying the function set used by the tree results in functions evolving to become 

specific to a certain task. Nevertheless, ANN (as another CI method) uses a different 

strategy in which each node typically has the same function independent of the task. 

Genotypes enable basic changes to a genetic code, although an interpreter (to deconstruct a 

given function) is needed before running the program. Figure 4.1 depicts an example 

arithmetic syntax tree, where a genotype can be expressed as the fundamental functions in 

pre-order notation: +(−(8, 3), /(9, 5)). To translate this into a string of primitive values for 

use as a chromosome, it is necessary for the functions to be depicted by basic data types 

via a lookup table. 
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Figure 4.1 - A syntax tree representing the expression (8 − 3) + (9 ÷ 5) 

 

4.2.2.2.2. Evolutionary Computing 

Evolutionary computing is a form of computer science that is based on Darwin’s theory of 

evolution [327], involving the examination of non-deterministic search algorithms. 

Evolutionary computing involves a particular methodology to answer search problems 

using stochastic18 heuristic19 population based20 optimisation. The population is used to 

search for a solution via interacting between themselves and/or the environment (Swarm 

Intelligence; a review of this is beyond the scope of this document) or via a method 

derived from Darwinian evolution (EAs). Natural evolution posits that individuals’ fitness 

is directly related to their success in competing for limited resources, allowing them to 

survive and reproduce [328]. Furthermore, when considering stochastic trial-and-error 

style problem solving processes (also known as generate-and-test), there is a grouping of 

candidate solutions. The solutions that provide better answers to the problem are more 

likely to be maintained and to be used to generate additional candidate solutions. As the 

research presented in this thesis makes use of EAs, this area is discussed in the following 

section. 

Evolutionary Algorithms (EAs) 

EAs are a branch of GP that search the solution space of possible programs to identify the 

optimal configuration for a specific task, which is grounded in evolutionary genetics. A 

 
18 Involves a random element in the search process. 
19 Uses experience and/or learning to guide the search. 
20 Makes use of many agents working together or independently. 
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key element of EAs involves survival of the fittest (i.e., survival of genes with good traits). 

Darwin, in 1859, posited that all species evolve through a continuous process involving the 

acquisition of beneficial traits from their predecessors [327]. Individuals with these 

inherited beneficial traits have better survival prospects and increased likelihood of 

procreation. Advances in human genome research has resulted in a gene centric approach 

to evolution (see [329]). This approach outlines that genes which compete for survival and 

alleles conveying survival benefits have a greater probability of being inherited by 

subsequent generations. 

EAs contain various heuristics that solve optimisation problems using contexts similar to 

those of natural evolution. EAs can evolve using varying degrees of abstraction; 

nevertheless, they are always focused on a group of candidate solutions (population) that is 

improved via an iterative process over generations. EAs are an approved set of heuristics, 

which are flexible to use, relying on minimal a priori expert knowledge for the 

optimisation task. Given a quality function to be maximised, a set of candidate answers can 

be randomly generated, for instance, sections of the function’s domain, and a quality 

function can be applied to determine abstract fitness (larger values/scores are better). Given 

the fitness values, certain candidates are selected for use in the subsequent generation via 

recombination (also known as sexual reproduction or crossover) and/or mutation. 

Recombination is an operator that is applied to two or more selected candidates (the so-

called parents or genotype or chromosomes), by mixing their genetic material (genes), to 

create one or more new candidates (the children or new chromosomes or the offspring). 

Mutation is applied to one candidate (asexual reproduction) or two candidates (sexual 

reproduction) and results in one new candidate. Regarding classification problems, fitness 

relates to the accuracy; note though that as with the selection of function set, the fitness 

function is application-reliant. For instance, for a population evolved to control a robot to 

finish specific jobs in the shortest time possible, fitness represents duration of time for each 

candidate solution to finish these jobs with lower fitness values representing better 

solutions. 

Executing the operations of recombination and mutation on the parents leads to the 

generation of a novel group of candidates (the offspring), whose fitness is measured. The 
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offspring subsequently compete (given their fitness and age) against the previous 

generation in terms of being selected for the next generation. This process can be iterated 

until a candidate with sufficient quality (a solution) is identified or a previously set 

computational limit is attained. The user can define the termination conditions, although 

these conditions normally specify a maximum number of allowed generations and a target 

fitness value (when an acceptable solution is found). 

Each individual’s fitness is assessed following every generation and a prearranged number 

of candidate solutions are chosen from the population (depending on their fitness) as 

parents for the subsequent generation (selection stage). Child solutions are generated from 

the parents through different breeding strategies that fine-tune the parent’s genotype to 

create novel genetic material. In nature, evolution enables children to inherit beneficial 

genes from their parents. Similarly, in EAs this process enables optimisation search to 

progress to novel areas of the solution space through two operators: crossover (joining two 

parent genotypes for the child) and mutation (randomly changing alleles). Advantages of 

crossover include that they aid the search avoid local optima and expand the degree of 

exploration, whereas mutation facilitates a local search. Both crossover and mutation can 

be modified via hyper-parameters (e.g., mutation rate, the ratio of crossover to mutation). 

Figure 4.2 depicts the individual from Figure 4.1 following mutation. Figure 4.3 represents 

an example of crossover. Child solutions are automatically used for the subsequent 

generation or, alternatively, they compete against their parents for survival, as a function of 

the selected replacement operator. This method of evaluation, selection, breeding, and 

replacement, is replicated for a given number of generations and the fittest individual in the 

last generation is chosen as the winner/output. 
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Figure 4.2 - The tree from Figure 4.1 following mutation, now depicting the expression 
(8 + 3) + (9 ÷ 7) 

 

 

Figure 4.3 - Children share genetic material from both parents when created through 

crossover 

Many elements within both EAs and natural selection are stochastic. For example, even 

individuals with low fitness have a possibility of reproducing and passing on their genetic 

material. Concerning recombination, elements from the parents are selected randomly to be 

recombined. Likewise, with regards to mutation, both the elements to be modified and the 

elements to replace these are selected randomly. The general scheme of an EA is presented 

in pseudo code in Figure 4.4 and Figure 4.5. 
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Figure 4.4 - The general scheme of an EA in pseudo code; taken from [328] 
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Figure 4.5 - General diagram of how EAs work 

Advantages of EAs include their high flexibility (as fitness function and the operators 

relating to every candidate are domain specific) and their capability to join local and global 

searches to generate an exhaustive solution space. Hence, EAs, and specifically GP, are 

widely used in many research areas (e.g., temporal forecasting, symbolic regression, signal 

processing, classification, and control tasks). EAs enable manipulation of a trade-off 

between exploration and exploitation, which can create qualitatively distinct searches 

(applications typically use a balanced approach of these two). Explorative searches are 

similar to random search techniques and focus on a big section of the solution space, rather 

than examining minor sections within this space. Exploitative searches, however, are like 

hill climbing as they commonly involve configurations enabling just minor changes to the 

current generation, generating exhaustive searches in minor areas of the search space to 

find maxima. 
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4.2.3. Cartesian Genetic Programming (CGP) 

CGP [330], [331] is a type of EAs and it is a strand of GP [325], [332], [333], that encodes 

computational structures as generic cyclic/acyclic graphs/nodes indexed by their Cartesian 

coordinates. It is called ‘Cartesian’ because it represents a program using a two-

dimensional grid of nodes. A limitation of numerous GP methods is program bloat [334], 

yet, CGP is resistant to this [335], [336]. 

The size of CGP chromosomes remain stable even while the number of active nodes may 

change during evolution, resulting in inconstant length phenotypes (solutions). Users 

indicate the greatest number of nodes and a percentage of these are then activated. 

Overestimating the number of nodes can enhance evolution [337] and increase the neutral 

genetic drift. 

As described in Figure 4.6, CGP chromosomes contain three elements (see [338]): (1) 

function genes (𝐹𝑖), which characterise indexes in a function look-up-table and define the 

purpose of all nodes; (2) connection genes (𝐶𝑖), defining the positions where all nodes 

obtain its inputs. In traditional acyclic CGP, connection genes can link a specific node to 

prior nodes or to program inputs. (3) Output genes (𝑂𝑖) focus on program inputs or internal 

nodes and specify the program outputs. 
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Figure 4.6 - General form of CGP; taken from [330] 

All nodes are linked to prior nodes or program inputs. Program inputs do not all 

necessarily need to be implemented, which allows evolution to identify the relevant inputs. 

Unlike tree-based GP, an improvement that CGP offers is the reutilisation of node outputs. 

CGP is designed for multiple-input multiple-output problems and, even though only some 

nodes are used in the final program output, the unused nodes are inactive and allow neutral 

genetic drift, which promotes flexible phenotype length. 

For the research presented in this thesis, a new open source cross platform CGP library 

(version 2.4) [339] was used since it is able to evolve symbolic expressions, Boolean logic 

circuits, and ANN, and it can be extended to different areas. The CGP library enables the 

control of evolutionary parameters and the application of custom evolutionary stages. 

In CGP, programs are represented in the form of directed acyclic graphs. These graphs are 

represented as a two-dimensional grid of computational nodes. The genes that make up the 

genotype in CGP are integers that represent where a node derives its data, what actions the 

node executes on the data, and where the output data needed by the user is located. During 

the decoding of the genotype, several nodes might be ignored when these node outputs are 

not required in the calculation of output data. When nodes are ignored, these nodes and 

their genes are labelled non-coding. Following the decoding of a genotype, the program is 

labelled a phenotype. The genotype in CGP has a determined length. The phenotype length 

(concerning the number of computational nodes) can range from zero nodes (occurring 
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when all the program outputs were directly connected to program inputs) to the maximum 

number of nodes present in the genotype (occurring when all nodes in the graph are 

necessary). 

The genotype–phenotype mapping used in CGP is one of its fundamental and 

distinguishing elements. The types of computational node functions used in CGP are 

determined by the user and are presented in a function look-up table. In CGP, every node 

in the directed graph represents a set function and is encoded by certain genes. One gene is 

the address of the computational node function in the function look-up table, which is 

labelled a function gene. The remaining node genes determine from where the node 

derives its data. These genes represent addresses in a data structure (normally an array), 

labelled connection genes. Nodes take their inputs in a feed-forward manner from either 

the output of nodes in a previous column or from a program input (labelled a terminal). 

The number of connection genes a node has is selected to be the maximum number of 

inputs (labelled the arity) that any function in the function look-up table has. The program 

data inputs are given the absolute data addresses 0 to 𝑛𝑖 − 1, where 𝑛𝑖 is the number of 

program inputs. The data outputs of nodes in the genotype are given addresses 

sequentially, column by column, starting from 𝑛𝑖  to 𝑛𝑖 + 𝐿𝑛 − 1, where 𝐿𝑛  is the user-

determined upper bound of the number of nodes, as shown in Figure 4.6. Figure 4.7 

represents an example of a CGP program. 

 

Figure 4.7 - An example CGP program; taken from [340] 
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4.2.3.1. Recurrent Cartesian Genetic Programming (RCGP) 

CGP enables connection genes to link to prior nodes within a graph (including inputs). 

RCGP [338], [340] extends CGP by enabling cyclic connections, such as feedback, to any 

node (even itself) and to program inputs. Figure 4.8 illustrates an example of a RCGP 

program. A potentially unlimited number of connection genes leads to mutations 

generating the same number of recurrent and feed-forward connections [340]. Yet, many 

times, it is not necessary for 50% of connections to be recurrent, hence, the inclusion of 

recurrent connection probability (a parameter to regulate the likelihood that a mutation to a 

connection gene produces a recurrent connection). For example, 10% recurrent connection 

probability leads to 10% of connection gene mutations generating cyclic connections and a 

0% recurrent connection probability results in traditional CGP with just acyclic 

connections. RCGP chromosomes perform in the same way as traditional CGP 

chromosomes, though differences lie concerning the program output(s). Specifically, in 

RCGP these can be identified by the inputs and by the internal nodes, even before the 

outputs have been generated [340]. As such, similar to the settings of recursive equations, 

the nodes begin with zero output until generating the new output. Further exploration of 

the use of other non-zero initial node values in terms of transfer functions [338] is 

required, yet, this is beyond the scope of this thesis. 

 

Figure 4.8 - An example RCGP program; taken from [340] 

All studies presented in this thesis are executed and run using the open source cross 

platform CGP-Library (version 2.4) [339]. To evaluate chromosome fitness, a custom 
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fitness function is used, which assigns a score equal to the total number of values from the 

training sequence (100), subtracted by the number of accurate predicted values in 

sequence, minus 0.01 for additional accurate values following a predicted inaccurate value. 

Higher fitness values indicate a worse solution. 

4.3. Computational Intelligence Applied to Predictive Modelling 

GP and ANN can be used as learning algorithms for training classification models. CI 

algorithms generate classifiers via randomly creating initial models and then enhancing 

these through an iterative process. The last models tend to be non-linear and provide a 

different method relative to standard statistical modelling techniques, although the CI 

search techniques are highly computationally costly compared to standard statistical 

methods. 

A key benefit of CI is the greater flexibility in the model representation, training 

techniques, and assumptions regarding data, which makes CI superior to standard 

predictive modelling methods for varied complex tasks. For instance, some statistical 

models make assumptions regarding the data (e.g., logistic regression does not function 

appropriately with collinear data attributes) and typically require big sample sizes to avoid 

violating the statistical assumptions. In contrast, CI algorithms require a measure of model 

goodness, with no statistical assumptions, and typically involve highly flexible model 

representations that enable them to be applied to data presented in different formats. These 

advantages have resulted in CI methods being applied to wide ranging research areas (e.g., 

complex multidimensional data from image recognition). 

In general, there are multiple key differences between machine learning/CI classifiers and 

statistical-based classifiers, five of which are outlined as follows [341]. Firstly, no single 

prediction method yields high performance under every context, as per the no free lunch 

theorem [342]. For instance, statistical-based classifiers focus largely on predictive 

modelling. In contrast, machine learning classifiers typically involve explanatory 

modelling (also referred to as descriptive modelling) techniques, being data-driven instead 

of examining an experimental hypothesis. Explanatory modelling is largely applied to 
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testing causal theory, whereas descriptive modelling focuses on “representing the data 

structure in a compact manner” [343]. 

Secondly, machine learning techniques can be validated and there are various validation 

approaches that provide an unbiased estimate of the accuracy of the selected prediction 

rule [344], for instance, CV that is applied to the research presented in this thesis. 

Regarding statistical approaches, there is no independent dataset for validation, hence, this 

method relies on the CV error estimates of the various candidate techniques. 

Thirdly, statistical modelling requires various assumptions to be fulfilled before running 

the analysis and the distribution of dependent or independent variable needs to be 

identified. This is not the case for machine learning algorithms, which have far less 

assumptions and enable contexts in which there may not be any continuity of boundary. 

Fourthly, machine learning techniques include a large variation of tools. For example, 

Online Learning tools predict and learn concurrently from big data, and Random Forest 

and Gradient Boosting work quickly with big data. Indeed, machine learning is highly 

efficient for data containing both many attributes and many observations. Statistical 

modelling approaches are typically used for smaller datasets with fewer attributes to 

prevent overfitting. 

Finally, fewer assumptions in predictive modelling results in greater predictive power. 

Machine learning is not based on human expertise or assumptions, rather, it uses iterations 

to identify patterns within the data, which typically lead to high predictive power. Machine 

learning involves no a priori assumptions regarding the relationship between the variables, 

neither does it assume that there is one best model to account for the data. This approach is 

completely data-driven: all the data is inputted and the machine then empirically outlines 

any relationships within the data (main effects and/or lower order interaction effects). 

Nevertheless, the flexibility inherent in machine learning algorithms enable many sets of 

inputs that may not be logically related to one another to be applied, which can increase the 

risk of overfitting (identifying spurious correlations) relative to traditional statistical 
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models. Hence, CV and multiple techniques of penalised models have been developed over 

the last 25-30 years to counter any limitations linked to overfitting. In contrast, statistical 

models are derived from coefficient estimation and the modeller must have expert 

knowledge concerning the relationship and nature of the variables before running the 

analysis. Indeed, statistical learning models assume that there is a fundamental data 

generating model, and inputs must be logically linked to the independent variable. The 

absence of any a priori assumption/logical link is often negatively deemed fishing for an 

answer [345]. 

4.4. Generalisation 

A fundamental objective to predictive modelling involves their performance to new 

datasets, rather than just their performance on a training dataset. Overfitting occurs when 

classifiers reveal good accuracy for a training dataset but performance is significantly 

lower when applied to novel datasets. Overfitting can be accounted for by dividing the 

dataset into a training (typically 50% of the original dataset) and test set (also typically 

50% of the original dataset). The model uses the training set to learn and, afterwards, the 

unbiased performance is examined on the test set. Good test set accuracy indicates that the 

model has high generalisation properties. In some cases, the testing set is further divided 

into validation and test so that the generalisation ability can be assessed during the search 

for a solution [346]. A validation set is further useful for early stopping (before overfitting 

occurs in training) [347]. This method has been used for classification in the research 

presented in this thesis (see [348], [349] for other examples). Splitting a dataset into test 

and training sets randomly can create bias given that the test set might not fully represent 

the population data. Hence, rather than randomly dividing the data, k-fold cross-validation 

is used instead. 

CV is an easy and well-established method for estimating prediction error. For large 

enough datasets, some of this data can be used as a validation set to evaluate the 

performance of a prediction model. k-fold CV takes some of the data to fit the model and 

another separate set of the data to test the model. The data is divided into k approximately 

equal sets. Figure 4.9 illustrates an example of k-fold CV for k = 10, where the red subset 
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represents the test set. Regarding the kth part (test set), the model is fit to the other k−1 

parts and the prediction error of the fitted model is estimated when predicting the kth part. 

Likewise, the same process is applied to k = 1, 2, ..., k and combine the k estimates of 

prediction error. k = 5 or 10 are the most accepted and widely used values [350]–[353]. 

 

Figure 4.9 - An example of 10-fold cross-validation 

10-fold CV involves splitting the data into 10 equally sized folds and iterating through 

each fold in which each is used as a validation set whilst the 9 folds are used as training 

sets. The average validation fold accuracy score is calculated, providing a rigorous 

evaluation of a model that has been fitted on distinct splits of the dataset. 

k-fold CV has been widely used mainly for two reasons: (1) as a testing method, which 

gives a nearly unbiased estimate of the generalisation power of the model by avoiding 

overfitting; (2) as a model selection technique. The research presented in this thesis used k-

fold CV mainly for the first reason. As outlined previously, the process involves training k 

models for each fold, and then training one final model over the entire training set. This 

process is repeated 10 times (runs) for each fold and the average accuracy over the k folds 

is reported in the end. 

The bias-variance decomposition of error [354] accounts for overfitting by positing that 

model error is the total of three values: (1) the irreducible error, which represents 

unavoidable noise in the dataset; (2) bias from the overall fit of the model to the data; and 

(3) error resulting from variance, which is the capability of model adaptability to change in 

relation to the predictor values. Figure 4.10 represents two distinct models classifying 

binary data with has two continuous predictors. A distinct non-linear relationship between 

the explanatory variables and the class is visible. Although the decision boundary as 

presented in Figure 4.10a includes bias error, it is suitable for classifying new data. The 

classification function depicted in Figure 4.10b detects minor inconsistencies in the 
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training set, resulting in a model with low bias error but, also, poor generalisation to new 

datasets. 

 

Figure 4.10 - Comparison of two models’ decision functions with divergent error 

characteristics 

Models include noise from variance error and bias error, although learning algorithms can 

display differing amounts of each with the aim of reducing overall error. For instance, 

decision trees often display good accuracy when sorting training set samples (low bias 

error), although accuracy for sorting new data is lower (high variance error). Both kNN 

learning algorithms and SVM directly manipulate both variance error and bias error. For 

example, in kNN learning algorithms, low values of 𝑘 correspond to models with high 

variance and low bias error and increasing k results in larger bias error. Likewise, in SVM, 

parameter 𝑐 manipulates the margin of the boundary between these errors, with smaller 𝑐 

resulting in less cost linked to misclassifying training points and a greater margin (lower 

variance error but higher bias error). A model that generalises well to new datasets needs 

to have low variance error. Typically, given that minor improvements in bias error strongly 

enhance model generalisation to new datasets, models with low bias error and high 

variance error can be enhanced more easily, relative to the reverse situation. 
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CI classifiers (like traditional statistical learning algorithms) can result in overfitting to the 

training data and low generalisation. Overfitting is aggravated by very specific non-linear 

classification expressions generated by protracted training methods. Over-training can be 

avoided using similar methods as those outlined for predictive modelling, in addition to 

techniques selected for a given learning algorithm. For instance, classifiers trained via 

iterative learning algorithms (e.g., EAs) can apply the early stopping method to decrease 

overfitting, which halts the training run before the predetermined number of iterations has 

been completed. When to stop is regulated by accuracy of the fittest model on another 

validation set (a reduction in accuracy signals overfitting and reduced generalisation). 

Alternatively, a smaller generation limit can be allowed for problems with reduced sample 

size, in which splitting the data into a validation set is not practical. 

A limitation implicit in CI learning algorithms is their rigorous search that, when joined 

with dynamically sized classifiers (e.g., expression trees), can generate very precise 

discrimination rules including more terms than a standard linear model and large 

interaction depth. Just as decision trees result in overfitting to the training set, likewise 

expression trees can overfit when trained using EAs. Magnitude of GP evolved expressions 

does not influence overfitting [355], yet augmenting the number of hidden neurons in 

ANN can result in overfitting [356]. 

4.5. Classification of Timeseries Data 

The research presented in this thesis involves the classification of timeseries data from 

both a clinical experiment (Chapter 5) and from PD patients (Chapter 6). Predictive 

modelling involves charting a set of data features (consisting of continuous or nominal 

data) to an output class prediction. Given the increase of different data types, research has 

now examined the classification of sequenced data. Xing et al. established a three-factor 

taxonomy of methods of sequence classification: (1) model-based methods generate 

predictions based on mathematical models of phenomena; (2) distance-based methods 

compare the resemblance between two sequences, for instance, via SVM with a specific 

kernel function for the input data; and (3) feature-based methods rely on domain data to 
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detect discriminatory elements of the sequence [357]. Research reveals that feature-based 

methods typically produce greater classification accuracy [358], [359]. 

Classification of timeseries data mostly requires a priori information to diminish the 

number of possible summary features and to select only those features with probable 

discriminatory power. Researchers have automated the feature selection process. For 

instance, Deng et al. designed the Time Series Forest algorithm, to recognise distinct 

elements within data trends [360]. A prediction is generated by dividing the input 

timeseries data into intervals and contrasting the findings of two intervals being input into 

one of three functions (mean, standard deviation, and slope of a regression line) at each 

node. The training process aims to divide the data with the objective of being highly 

discriminatory. A limitation of this method is that interpretability of the resulting models is 

poor, with still many potentially redundant features that may need to be removed before 

additional modelling. Fulcher et al. outlined a method to visually represent discrepancies in 

timeseries data from applications, containing over 9000 summary features (e.g., statistical 

summaries, signal processing algorithms, and information theory approaches) [361]. This 

method enables effective comparison of sequences acquired from multiple sources, yet, the 

data still requires dimensionality reduction before performing classification. 

Feature design classification techniques diminish the dimensionality of raw sequence data 

into wieldy-sized feature vectors that can be applied to standard modelling. Research has 

begun to automatise this process, yet, initial findings reveal that automatisation generates 

numbers of features with poor interpretability. An objective feature design algorithm needs 

to analyse data without relying on expert knowledge. CI methods are applicable when 

there is both a big search space and no a priori knowledge regarding potential solutions. 

GP is relevant in these situations given its flexibility in representation and behaviour. 

Sharman et al. applied GP to evolve adaptive signal processing algorithms via arithmetic 

operators, time-delay functions, and a stack for retaining useful output values, although 

they did not use classification [362]. Similarly, Parallel Architecture Discovery and 

Orchestration [363], [364], involves a classification framework for input signals using 

diverse forms (e.g., timeseries data, images, and video files), which is based on domain 
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specific function sets and a shared stack. Zeus [365] is applicable to timeseries 

classification, in which every chromosome depicts a candidate feature vector and every 

gene represents a function chosen from a group of arithmetic operators and statistical 

means of aggregation. Nevertheless, Eads et al. revealed that modelling timeseries data via 

SVM without feature designs, relative to Zeus, results in classifiers with higher accuracy. 

4.6. Classification with Dynamical Systems 

Methods for modelling timeseries data typically include summarising the raw data into 

distinct groups of feature sets via aggregate functions (e.g., mean, standard deviation, or 

signal processing tools), which can be automised with GP. Indeed, some research on the 

automatisation of timeseries data includes the use of stacks and time delay functions, yet 

GP can present challenges regarding implementing and interpreting. Nevertheless, there 

are some CI algorithms, labelled computational dynamical systems (coined by Stepney in 

[366]; e.g., Recurrent Neural Network, Gene Regulatory Network, [367], [368], and 

Artificial Biochemical Network [369]) that have been effectively applied to timeseries 

data. These methods involve modelling with networks of the body’s biological 

mechanisms, enabling recurrent connections related to short term memory as well as to 

output feedback. 

A traditional predictive model based on GP involves mapping inputs (a feature vector) to 

an output (a label prediction or a group of scores/probabilities) via a mathematical 

function. The output is constant for a specific group of inputs. In contrast, dynamical 

systems generate stateful programs that can be executed online and which can modify 

themselves in relation to varying input data. Hence, dynamical systems are often used in 

control problems and temporal forecasting [370]–[377]. 

Dynamical systems can also be used for classification problems [378]–[380]. Yet most 

research modelling timeseries data focuses on forecasting and not differentiating samples 

into separate classes. For dynamical systems, classification of sequence data needs to take 

into account the method of giving the inputs to the system as recurrent networks are less 
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flexible than GP and typically allow only one sample per timestep (similar to forecasting). 

Hence, fitting a training set containing various timeseries can be onerous. 

Dynamical systems have been used to model PD using finger tapping movement data, 

based on a feature design technique with a windowed GP method [381]. Both methods 

were inputted into an ensemble aimed at predicting PD (versus healthy controls). The 

research outlined in this thesis extends this study by examining the classification of rs-

fMRI data for PD patients and prodromal PD patients from healthy age-matched controls. 

This is done using CGP and RCGP (as a dynamic classifier) as the main classification 

techniques and using the rs-fMRI data (particularly large and extremely dynamic data) as 

inputs to the classifiers. 

4.7. Imbalanced Data 

Learning algorithms typically assume approximately equal class distributions. Hence, these 

algorithms may function with low accuracy when faced with significantly imbalanced 

datasets, labelled between-class imbalance. For instance, the research presented in this 

thesis used heavily between-class imbalanced data from 102 PD patients versus eight 

controls. Misclassification in the medical domain can have grave implications (e.g., non-

diagnosis of cancer [382]). As such, highly accurate classifiers that function with between-

class imbalanced data to identify a minority class (e.g., AD patients) are necessary. In 

these cases, the overall accuracy or error rate may not be sufficient and other metrics (e.g., 

receiver operating characteristics curves, precision-recall curves, and cost curves) may 

better represent the performance of algorithms with imbalanced data. 

Small sample sizes with significantly imbalanced class distributions are particularly 

common in clinical research due to challenges in recruiting patient samples and constrict 

learning due to two limitations. Firstly, reduced sample sizes result in problems linked to 

absolute rarity and within-class imbalances. Secondly, algorithms frequently do not 

generalise inductive rules across the sample. Algorithm performance is restricted by the 

limitations implicit in generating conjunctions across many features with reduced samples, 

which can result in overfitting (which occurs when the rules produced are overly precise). 
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Indeed, the class-imbalance problem is a relative problem that depends on (1) the degree of 

class-imbalance; (2) the complexity of the concept represented by the data; (3) the overall 

size of the training set; and (4) the classifier involved. More specifically, the higher the 

degree of class-imbalance, the higher the complexity of the concept. The smaller the total 

size of the training set, the greater the effect of class imbalances in classifiers sensitive to 

the problem [383]. 

Research has revealed that the performance of certain classifiers trained on specific 

imbalanced data can be similar to the performance of these same classifiers trained on the 

same data that has been modified to have approximately equal class distributions [383], 

[384]. Yet, for most imbalanced data, solutions for learning predominantly focus on 

modifying the data sample to achieve a sample that has balanced class distributions, which 

enhances the overall classification accuracy relative to the original imbalanced sample 

[385]–[387]. There are four key solutions for imbalanced learning based on sampling 

methods, which are summarised briefly below: random oversampling and undersampling, 

informed undersampling, synthetic sampling with data generation, and adaptive synthetic 

sampling. 

4.7.1. Random Oversampling and Undersampling 

The numbers within each class distribution can be modified to achieve balanced data. 

Oversampling involves adding additional data to the original dataset whereas 

undersampling involves taking away data. Random oversampling is achieved by 

incorporating a group sampled from the lesser class. For a group of randomly selected 

minority examples, the number of samples in the original set should be increased by 

replicating the selected examples and adding them to the whole set. Therefore, the number 

of total examples is augmented and the class distribution balance of the set is adjusted 

accordingly. For undersampling, a set of majority class examples are randomly selected 

and removed from the set. 

Both oversampling and undersampling have limitations that constrain the performance of 

learning algorithms [388]–[390]. Given that oversampling includes additional simulated 
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data, this can result in overfitting [389] in which classifiers create precise rules to account 

for the various replications of the data. Overfitting is apparent when training accuracy is 

high but testing and validation accuracies are substantially lower [388]. A limitation 

inherent in undersampling is that eliminating data can lead the classifier to neglect key 

patterns within the majority class. 

4.7.2. Informed Undersampling 

Informed undersampling minimises the impact of removing data that occurs in standard 

random undersampling. The EasyEnsemble, BalanceCascade, and kNN algorithms are 

examples of informed undersampling [391]. For instance, regarding eliminating data from 

the majority class, EasyEnsemble uses unsupervised independent random sampling with 

replacement, whilst BalanceCascade involves supervised and systematic identification of 

data to eliminate. kNN involves four techniques to undersample [392]: (1) NearMiss-1 

removes data whose mean are most similar to the three nearest minority class data points; 

(2) NearMiss-2 removes data whose mean are most similar to the three furthest minority 

class data points; (3) NearMiss-3 removes a certain number of data whose mean are most 

similar to different minority class data points; and (4) Most Distant removes data whose 

mean are furthest from the three nearest minority class data points. Findings reveal that 

NearMiss-2 provides more accurate results relative to the remaining kNN methods. 

4.7.3. Synthetic Sampling with Data Generation (SMOTE) 

Simulated data does not have the limitations implicit in oversampling, yet it increases the 

original dataset to significantly enhance algorithm learning. For example, SMOTE uses the 

feature space resemblances between minority data to generate simulated data. Findings 

reveal high accuracy for SMOTE in diverse applications [393]. Still, limitations include 

over-generalisation and low variance [394]. Specifically, SMOTE can result in heightened 

inter-class overlap [394] as it creates the same number of synthetic data samples per 

original minority example but does not take into account proximity of other data examples. 
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4.7.4. Adaptive Synthetic Sampling (ADASYN) 

Adaptive sampling methods do not have the limitations associated with SMOTE and 

examples include Border-line-SMOTE [395] and ADASYN [396] algorithms. For 

instance, ADASYN is an extension of SMOTE that systematically and adaptively 

generates varying numbers of synthetic data based on minority and majority class 

distributions to create class balanced data [396], focusing on generating synthetic data 

close to the inter-class boundary. The research presented in this thesis applies ADASYN to 

generate class balanced data for classification. 

4.8. CGP Classification 

Classification has been widely investigated in machine learning and in data mining [397], 

[398], and involves predicting the value of a categorical attribute (the class) from values of 

different attributes (predicting attributes). A search algorithm is used to induce a classifier 

from a group of correctly classified data instances (training set). A different group of 

correctly classified data instances (test set) is used to examine the quality of the classifier 

obtained. Various types of models (e.g., decision trees or rules) can depict the classifiers. 

Genetic programming is an evolutionary learning method with good prospects for 

classification. 

The training set selects the optimum parameters for a specific model and provides an 

unbiased estimate of cost function when evaluating specific parameters. Selecting the 

parameters optimises the estimate of the cost function, given the training set, which biases 

this estimate. The selected parameters perform best on the training set and, therefore, the 

performance of these parameters in the training set is quite optimistic. For the research 

presented in this thesis, a different set has been used for validation (referred to as 

validation set) by dividing the test set into validation and test sets. Validation sets are used 

in order to help with avoiding overfitting, as discussed in the generalisation section 4.4, 

and to select the best model. Model evaluation provides a representative estimate of the 

cost function as it selects the best performing model using the validation data, which biases 

this estimate, resulting in an optimistic estimate of model performance. Following training 
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of models (using training data) and model selection (using validation data), the final step 

involves identifying performance of the selected model (using test data), providing an 

unbiased estimate of performance. 

Various types of models (e.g., decision trees or rules) can depict classifiers. CGP is a graph 

based EAs system with good prospects for classification. For the research presented in this 

thesis, multiple outputs were used in the CGP library, one for each class. Advantages 

associated with this method include the following: 

• When using a threshold, its position is often arbitrarily chosen, however, its 

position is likely to affect the results. This issue is removed when using multiple 

outputs. 

• When multiple outputs are used, these can involve using different factors in 

classification rather than the same factors, as per the other class. 

• The value of each output gives a confidence related to its corresponding class, 

rather than the produced class. 

• When using many classes (more than two), the order in which they are assigned to 

the regions of the single output is important. For instance, whether “Class A” flow 

more naturally into “Class B” or “Class C”, however, when using multiple outputs 

this is not a concern. 

• When using many classes (more than two), the region of values that represent each 

class become smaller as the number of the types of classes increases. This is likely 

to make the task more challenging as the number of classes grows. 

CGP has multiple advantages relative to other classification methods. These include the 

reuse of sub-functions, having no bloat [336], and being able to report the classification 

model in a mathematical formula/expression as well as a graphical diagram. Figure 4.11 

and Figure 4.12 present examples of CGP classification trees; dotted lines in Figure 4.12 

represent implicit reuse of sub-expressions within the network and numbers indicate 

offsets in the matching window. These advantages are conducive to understanding the 

underlying elements of the classification model in more detail, which is not an option in 

most other classification methods. 
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Classification approaches apply machine learning classifiers to differentiate disease 

subtypes, often applying this to clinical data (e.g., patients versus healthy controls [399], 

[400]). The research presented in this thesis examines the use of classification as a 

diagnostic tool to improve current methods of PD diagnosis. 
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Figure 4.11 - An example of CGP classification tree (graph) 
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Figure 4.12 - An example of best evolved classifier; taken from [401] 
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4.9. Research Applying EAs to Classification of Medical Data 

Research has explored the classification of PD patients using learning algorithms, yet, 

these have not used EAs. EAs offer a novel approach to disease classification, which is 

examined in this thesis. EAs are optimising algorithms based on Darwinian evolutionary 

theory. CGP is a subtype of EAs that as a norm evolves directed acyclic computational 

structures of nodes. RCGP is an extension of CGP, which enables cyclic or feedback 

connections. CGP and RCGP are used in the research presented in this thesis as the main 

methods of classification. CGP and RCGP have never been applied to neuroimaging data, 

including rs-fMRI, which is explored in this thesis. 

A key benefit of using EAs alongside an expressive dynamical representation is the ability 

to explore a wide area of classifiers. In addition, since these classifiers do not rely on 

expert knowledge, they can identify trends that might not be detected by experts and 

contribute to furthering expert knowledge. For instance, evolved classifiers and their 

distributions have provided the following scientific contributions: the differential effect of 

dominance on diagnostic accuracy, the over-representation of certain trends of acceleration 

in the movements of PD patients, and amplitude and frequency blends with diagnostic 

power. Regardless of how efficient these classifiers are, a limitation of this method is the 

lack of knowledge underpinning how these algorithms function, rendering them often 

unfathomable to experts. Hence, these classifiers are a valuable tool in guiding and/or 

supporting a medical diagnosis, yet, an automated diagnosis cannot be approved unless the 

clinician is confident regarding the biological underpinnings of the diagnosis. 

4.10. Computational Intelligence Approaches for Diagnosing Parkinson’s Disease 

4.10.1. Kinematic Research 

Technological advances have resulted in more medical research using recorded data to 

broaden current understanding of the mechanisms underpinning diseases, for instance, 

positional data has been instrumental in furthering knowledge on Parkinsonian movement 

disorders. Prior to the development of wearable sensors, medical research used invasive 

technology. For example, Benecke et al. (1987) measured elbow and finger position during 
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motion and revealed that PD patients (relative to healthy controls) had difficulties 

switching between different sequential motor movements. Specifically, Benecke et al. used 

a potentiometer and a strain gauge to record kinematic data while capturing 

electromyography signals from a body part [402]. Likewise, Agostino et al. (1992) asked 

patients to trace patterns while grasping a device with two potentiometers to examine 

sequential arm movements in individuals with PD, HD, and Dystonia, revealing abnormal 

sequential movements for patients with these disorders [403]. These tests were not 

conducted within patients’ home setting, where movement symptoms would occur, but in a 

clinical environment using awkward and intrusive equipment. 

Currently, sensors are relatively small and provide multiple advantages for research, such 

as diminished awareness of the sensors and reduced discomfort, resulting in a more 

tranquil test setting. Much research uses positional and rotational sensors to measure the 

affected body part’s spatial location. For example, a component of assessing motor decline 

involves a finger-tapping task in which patients tap their thumb and forefinger numerous 

times whilst a medic evaluates performance. Agostino et al. used optoelectronic sensors to 

generate 3D finger-tapping motion data of a single finger and of four fingers tapping on a 

thumb, taking the number of finger taps, size, pauses and time as relevant variables. 

Findings revealed worse motor disorders for single finger taps relative to whole hand taps 

for PD patients [404], [405]. More recent research has used finger-tapping [406], reach and 

grasp [407], and drawing tasks [408], which focus on the application of EAs for different 

methods of diagnosing PD or confirming the diagnosis of PD. 

A standardised movement task (such as finger-tapping) can be advantageous as it is easily 

replicable for subsequent research and provides a familiar setting for participants. 

Nevertheless, finger-tapping tasks typically reveal low inter- and intra-rater reliability, 

which is typically attributed to the limited capacity of medics to evaluate performance 

solely via observation [93]. Specialised equipment may be better equipped to detect early 

stages of cognitive and motor decline, relative to medics. A new approach involves 

capturing patient movements via computational techniques and using EAs to assess 

performance. A recent study revealed that using EAs to assess performance data from a 

finger-tapping task alone differentiated PD patients from age-matched controls with an 
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accuracy of ~95% [409]. As such, data from traditional motor exams combined with new 

computational techniques are a valid and relatively novel approach in diagnosing PD.  

Table 4.1 presents research examining movement features, which underscores the 

relevance that neurodegenerative researchers have placed on investigating motor disorders 

via the use of transducer technology to capture precise movement data. This research 

typically uses a standard feature extraction and statistical analysis method to examine the 

data, which relies on both expert knowledge and an exploratory hypothesis. In contrast, 

research using data mining often comprises of unbiased data analysis to detect significant 

relationships and trends. 

Table 4.1 - Kinematic research 

Authors  Date  Research  

Manson et al. [410] 2000 Ambulatory dyskinesia monitors 

Berardelli et al. [411] 2001 Effect of sensory cues on bradykinesia 

Hoff et al. [412] 2001 Objectively assessing LIDs 

Bonato et al. [413] 2004 Measuring longitudinal motor fluctuations 

Iansek et al. [414] 2006 Improving freezing of gait with external cues 

Chee et al. [415] 2009 Reducing step length of freezing of gait 

Rodrigues et al. [416] 2009 The slowing of successive finger tap motions 

Yokoe et al. [417] 2009 Different features of finger tapping 

Patel et al. [418] 2009 The use of quantifiable data to estimate severity of symptoms 

Espay et al. [419] 2011 How bradykinesia responds to dopaminergic medication 

Heldman et al. [93] 2011 Examining the Modified Bradykinesia Rating Scale reliability 

with quantifiable measures 

Ling et al. [420] 2012 Reducing hypokinesia in PD patients and PSP 

 

4.10.2. Non-movement PD studies 

Non-movement data is also relevant in PD research. For instance, many imaging 

modalities have been used to examined the neural activity of PD patients. Indeed, the 

research presented in this thesis examines rs-fMRI brain images of PD patients, prodromal 

PD patients, and healthy control participants. Alternative tasks have been developed to 

explore the impact of motor symptoms on many functions, including investigating tremor 

in a shape tracing task [421], examining the influence of PD treatment on the sequence 
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effect and ‘true’ bradykinesia via a pegboard test [422], and exploring the speech patterns 

of PD patients (relative to healthy controls) by focusing on vocal disorders when 

pronouncing vowel sounds [423]. 

4.10.3. Computational Modelling 

Advances in computer software technology have enabled learning algorithms to be trained 

on big data with sensible time frames, producing intricate computational models of NDDs. 

For example, Keijsers et al. asked patients suffering from LID to wear a sensor whilst 

completing their normal daily tasks, capturing 92 movement features that were modelled 

with ANN. The features involved summaries of the processed separation signal (in time 

and frequency domains), based on prior information of the frequency bands in which 

dyskinesia are often present [424]. Patel et al. examined dyskinesia and bradykinesia using 

accelerometer data from which multiple features were identified. Signal processing 

techniques were used for data analysis, such as analysing the frequency spectrum and 

running cross-correlation, and then using SVM to model these features. Patel et al. used 

prior expertise for the data extraction process to identify areas of the frequency spectrum 

sensitive to variations in Parkinsonian symptoms [418], [425]. 

Lones et al. developed two classification methods (sliding window genetic programming 

expressions and artificial biochemical networks) that identified PD patients relative to 

healthy controls with ~95% accuracy using movement data [409]. Furthermore, Ericsson et 

al. used SPECT images of the basal ganglia of PD patients, to model 17 summary data 

features via SVM, based on expert knowledge [426]. Lones et al. developed classifiers 

based on EAs to differentiate LID movements from participants’ daily activities [427]. 

Lones et al.’s research has been translated into LID-monitor, which is a device that has 

been developed in the spinout company formed by the researchers, ClearSky Medical 

Diagnostics. LID-monitor is already being used in multiple NHS centres (including 

Harrogate District Hospital, Leeds Teaching Hospital, amongst others) and in hospitals in 

other countries (including China). 
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These described studies generated accurate models and are relevant in clinical settings to 

aid PD diagnosis and monitoring. Most of the research presented in this section used prior 

expert understanding of the disease to extract summary features from the raw data, which 

were then input into predictive model learning algorithms. Nevertheless, an automated and 

interpretable feature extraction method for data mining would further advance knowledge 

by objectively modelling kinematic symptoms and providing relevant information to 

clinicians. The research presented in this thesis explores an automated and interpretable 

technique for modelling brain imaging data of PD patients and prodromal PD patients. 

4.11. Summary 

Statistical predictive modelling provides multiple methods for predicting outcomes using 

known data, which are applicable for the development of an automated diagnosis of PD, as 

outlined in the research presented in this thesis. Specifically, CGP classifiers reveal good 

performance, even with small sample sizes, and can generate models that obtain high 

accuracy rates. This method is applicable to data with numerous features, such as 

timeseries data. A highly effective method of classifying timeseries data involves feature 

design techniques to limit the dimensionality into discrete, practicable feature vectors. 

Nevertheless, many feature design methods have poor interpretability, hence, a priori 

knowledge is valuable to aid interpretation. For the analysis of rs-fMRI data, this is already 

accounted for in the preprocessing steps. Therefore, there is no need to use any feature 

design/selection techniques before subjecting the timeseries data to classification. 

Moreover, the research presented in this thesis uses DCM analysis of rs-fMRI data as a 

novel tool that has not been previously explored in classification. 
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This chapter develops a technique for accurate monitoring of PD using EAs on rs-fMRI 

data for participants prescribed Modafinil (typically prescribed for PD patients to relieve 

physical fatigue). Modafinil is a “smart drug” and a fatigue-reducing medication that 

boosts attention and memory. Approximately half of PD patients report fatigue-related 

symptoms [124], hence, Modafinil is typically prescribed to alleviate these symptoms 

[123]–[126]. A crucial overarching research question is: Can methods for differentiating 

clinical groups using EAs on rs-fMRI data be developed, based on a controlled clinical 

experiment and focusing on a medication (Modafinil) typically administered to PD 

patients? This experiment examines rs-fMRI data in which healthy young adults were 

administered a single dose of 100 mg of Modafinil (versus a placebo). This experiment 

used healthy participants rather than PD patients in order to initially develop accurate 

monitoring of individuals administered a common PD medication, with implications for 

PD patient monitoring. The activity of RSN and the intrinsic connectivity are explored and 

these data are subjected to a classifier to examine the physiological impact of Modafinil. 

This chapter addresses two further research questions: (1) Can CGP be applied to the 

monitoring of participants administered Modafinil (versus a control group) using rs-fMRI 

data? And (2) are timeseries analyses and DCM analyses relevant for classification? This 

research is exploratory, being the first to examine Modafinil classification to differentiate 

participant groups. Developing a method to differentiate participants is clinically relevant 

with implications for patient diagnosis (classification of patients relative to healthy 

controls, as presented in Chapter 6) and drug treatment monitoring. 

Research on rs-fMRI [238], [428] is prolific [429], specifically with regards to 

differentiating participant groups or brain states based on functional connectivity. For 

instance, Esposito et al. examined the effects of Modafinil on functional connectivity using 

rs-fMRI [430]. rs-fMRI is a valuable element of fMRI data acquisition, given that it is 

well-suited to investigating changes in functional connectivity [431] and can explore 

certain research questions that could not be addressed by relying solely on task-related 

fMRI data. Numerous cortical circuits can be examined simultaneously using rs-fMRI. 
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Moreover, confounding variables, for instance, inter-individual variability in task 

performance, is limited when examining participants that are at rest [432]. 

BOLD fMRI was primarily used in early rs-fMRI studies, examining the activity of certain 

brain regions at rest [433]. Findings revealed that rest activity is related to at least ten 

[241], [434]–[436] functional RSN [241], these include the DMN [243], the Salience 

Network, the Fronto Parietal Control (FPC) network (lateralised in both hemispheres), the 

primary Sensory Motor Network, the Exstrastriate Visual System, and the Dorsal Attention 

Network [241]. DMN is studied as a norm within rs-fMRI research and, hence, is 

examined in the current study. 

Functional connectivity allows researchers to examine abnormal patterns of activity, yet, it 

does not enable researchers to identify the original source of effective connectivity (i.e., 

the impact of one neuronal system on another) [281]. DCM is based on a neuronal model 

of coupled neuronal states. Friston et al. developed DCM to fully examine the effective 

connectivity underpinning functional connectivity, focusing on rs-fMRI [285]. The current 

research applies classification to the DCM analysis of rs-fMRI data. 

5.1. Research Overview and Aims 

A core research objective is to develop methods for differentiating clinical groups 

following drug treatment, based on a controlled clinical experiment. Specifically, this 

experiment explored the question: Can accurate monitoring of PD be achieved using EAs 

on rs-fMRI data for patients prescribed Modafinil? This research involved an analysis of 

rs-fMRI data taken from OpenfMRI database (accession number: ds000133; [437]), in 

which healthy young adults were administered a single dose of 100 mg of Modafinil 

(versus a placebo). In the current research, the activity of the RSN and the functional 

connectivity were examined, and this data was subjected to a classifier to explore the 

physiological impact of Modafinil. 

This research applied EAs, specifically CGP and RCGP, for the classification of rs-fMRI 

using DCM and timeseries analyses. The timeseries values and DCM values from the rs-
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fMRI data are subjected to supervised classification. CGP and RCGP have not previously 

been used for the classification of brain imaging data. Moreover, this study explores an 

additional novel question: is DCM analysis useful for classification? Previous research has 

not explored the applicability of DCM values in classification. 

A common limitation in medical research involves recruiting equal sample sizes of patients 

and healthy controls, often leading to class-imbalanced data (e.g., unequal groups of 

controls versus patients). The OpenfMRI dataset used in this experiment is heavily class-

imbalanced, with many more control participants relative to participants administered 

Modafinil. Hence, this research explored the applicability of classification methods to 

class-imbalanced data, with implications for the transferability of medical research based 

on limited and imbalanced sample sizes. 

5.2. Method 

5.2.1. Participants 

Twenty-six male participants were recruited with an age range of 25–35 years. Participants 

were right-handed (tested using the Edinburgh Handedness inventory) [438], with similar 

educational level, and no history of psychiatric, neurological or medical (hypertension, 

cardiac disorders, and epilepsy) conditions as identified by the Millon test and by clinical 

examination. The participants provided written consent and the study was approved by the 

ethics committee of University of Chieti (PROT 2008/09 COET on 14/10/2009) and 

conducted in accordance with the Helsinki Declaration [430], [437]. 

5.2.2. Procedure 

Participants were told to consume their normal amount of nicotine and caffeine and to 

refrain from consuming alcohol 12 hours prior to the study. Participants were administered 

Modafinil (100 mg) or placebo. The study was double blind and both the Modafinil and 

placebo pills looked identical. Following consumption of the drug, participants were given 

an fMRI scan. 
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Data from all participants were processed and separated into their corresponding treatment 

groups (Modafinil and placebo). Data from one control participant was excluded, as this 

data was too poor quality to be analysed. Pre-session data was also categorised as 

placebo/control as this research only examines the effect of Modafinil on brain 

functionality. The Modafinil group contains 39 participants: 13 participants tested in one 

session with three runs. The control group contains 111 participants: 12 participants tested 

in two sessions with three runs plus 13 participants tested in one session with three runs. 

5.2.3. rs-fMRI Acquisition  

rs-fMRI BOLD data was separated in three runs (duration: 4 min each) and then high 

resolution T1 anatomical images were acquired. Participants were instructed to focus on 

the centre of a grey screen that was projected on a LCD screen, viewed via a mirror located 

over the participant’s head. The participant’s head was placed in an eight-channel coil with 

foam padding to reduce involuntary head movements. BOLD functional imaging was 

performed with a Philips Achieva 3T Scanner (Philips Medical Systems, Best, The 

Netherlands), using T2*-weighted echo planar imaging (EPI) free induction decay (FID) 

sequences and applying the following parameters: Echo Time (TE) 35 ms, matrix size 

66 × 66, Field of View (FoV) 256 mm, in-plane voxel size 464 mm, flip angle 75°, slice 

thickness 4 mm and no gaps. 140 functional volumes consisting of 30 transaxial slices 

were acquired per run with a volume Repetition Time (TR) of 1671 ms. High resolution 

structural images were acquired at the end of the three rs-fMRI runs through a 3D 

MPRAGE sequence employing the following parameters: sagittal, matrix 256 × 256, FoV 

256 mm, slice thickness 1 mm, no gaps, in-plane voxel size 1 𝑚𝑚 ×  1 𝑚𝑚, flip angle 

12°, TR = 9.7 ms and TE = 4 ms [430], [437]. 

5.2.4. Imaging Data Analysis  

5.2.4.1. Preprocessing 

The imaging data analyses were done using the CONN (version 17.c) [251], [252] and 

SPM12 (version 6906 - Wellcome Department of Imaging Neuroscience, London, UK) 

[230] software packages based on MATLAB. Preprocessing included 4D NIFTI (an 
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Analyze-style data format, proposed by the NIFTI Data Format Working Group as a 

“short-term measure to facilitate inter-operation of fMRI”) import, 4D to 3D NIFTI 

conversion, and reduction of the spatial distortion using the Field Map toolbox in SPM12 

[230]. Anatomical data was segmented and both anatomical and functional data were 

normalised. All the functional images were motion corrected and coregistered to 

participants’ own high-resolution anatomical image. The participants’ anatomical images 

were normalised to the standard T1 template in the MNI space, as provided by SPM12. 

Then the normalisation parameters of each participant were applied to the functional 

images to normalise all the functional images into the MNI space. The EPI data was 

unwarped (using field-map images) to compensate for the magnetic field inhomogeneities, 

realigned to correct for motion, and slice-time corrected to the middle slice. The 

normalisation parameters from the T1 stream were then applied to warp the functional 

images into MNI space. All the functional images were spatially smoothed using a 

Gaussian kernel with 8 mm [269] FWHM to account for inter-participant variability while 

maintaining a relatively high spatial resolution. Linear and quadratic detrending of the 

fMRI signal was applied, which involved covarying out WM and CSF signal. WM and 

CSF signals were predicted for each volume from the mean value of WM and CSF masks, 

derived by thresholding SPM’s tissue probability maps at 0.8. The data was bandpass 

filtered (0.008–0.1 Hz). 

The preprocessing pipeline can be seen in Figure 3.14 and the MATLAB batch script for 

preprocessing is presented below: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% SPATIAL PREPROCESSING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
data_path = [data_folder_name, '/sub-', ... 
    subjectno, '/ses-', sessionprepost, '/']; 

  
f = spm_select('FPList', fullfile(data_path,['func/Run0', ... 
    runno]), '^sub.*\.nii$'); 
a = spm_select('FPList', fullfile(data_path,'anat'), ... 
    '^sub.*\.nii$'); 

  
cd([data_path, 'func/Run0', runno]); 

  
clear matlabbatch 
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% Realign 
%-------------------------------------------------------------- 
matlabbatch{1}.spm.spatial.realign.estwrite.data = ... 
    {cellstr(f)}; 
matlabbatch{1}.spm.spatial.realign.estwrite.roptions.which ... 
    = [0 1]; 

  
% Coregister 
%-------------------------------------------------------------- 
matlabbatch{2}.spm.spatial.coreg.estimate.ref    = ... 
    cellstr(spm_file(f(1,:),'prefix','mean')); 
matlabbatch{2}.spm.spatial.coreg.estimate.source = cellstr(a); 

  
% Segment 
%-------------------------------------------------------------- 
matlabbatch{3}.spm.spatial.preproc.channel.vols  = cellstr(a); 
matlabbatch{3}.spm.spatial.preproc.channel.write = [0 1]; 
matlabbatch{3}.spm.spatial.preproc.warp.write    = [0 1]; 

  
% Normalise: Write 
%-------------------------------------------------------------- 
matlabbatch{4}.spm.spatial.normalise.write.subj.def      = ... 
    cellstr(spm_file(a,'prefix','y_','ext','nii')); 
matlabbatch{4}.spm.spatial.normalise.write.subj.resample = ... 
    cellstr(f); 
matlabbatch{4}.spm.spatial.normalise.write.woptions.vox  = ... 
    [3 3 3]; 

  
matlabbatch{5}.spm.spatial.normalise.write.subj.def      = ... 
    cellstr(spm_file(a,'prefix','y_','ext','nii')); 
matlabbatch{5}.spm.spatial.normalise.write.subj.resample = ... 
    cellstr(spm_file(a,'prefix','m','ext','nii')); 
matlabbatch{5}.spm.spatial.normalise.write.woptions.vox  = ... 
    [1 1 1]; 

  
% Smooth 
%-------------------------------------------------------------- 
matlabbatch{6}.spm.spatial.smooth.data = cellstr(spm_file ... 
    (f,'prefix','w')); 
matlabbatch{6}.spm.spatial.smooth.fwhm = [8 8 8]; 

  
spm_jobman('run',matlabbatch); 
clear matlabbatch; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% PROCESSING 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Defining the GLM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mkdir('GLM'); 
cd([data_path, 'func/Run0', runno, '/GLM']); 

  
matlabbatch{1}.spm.stats.fmri_spec.dir = {[data_path, ... 
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    'func/Run0', runno, '/GLM']}; 
matlabbatch{1}.spm.stats.fmri_spec.timing.units = 'scans'; 
matlabbatch{1}.spm.stats.fmri_spec.timing.RT = TR; 
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t = 16; 
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t0 = 8; 
matlabbatch{1}.spm.stats.fmri_spec.sess.scans = cellstr... 
    (spm_select('FPList', fullfile(data_path,['func/Run0', ... 
    runno]), '^sw.*\.nii$')); 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond = struct( ... 
    'name', {}, 'onset', {}, 'duration', {}, 'tmod', {}, ... 
    'pmod', {}, 'orth', {}); 
matlabbatch{1}.spm.stats.fmri_spec.sess.multi = {''}; 
matlabbatch{1}.spm.stats.fmri_spec.sess.regress = struct( ... 
    'name', {}, 'val', {}); 
matlabbatch{1}.spm.stats.fmri_spec.sess.multi_reg = {''}; 
matlabbatch{1}.spm.stats.fmri_spec.sess.hpf = 128; 
matlabbatch{1}.spm.stats.fmri_spec.fact = struct('name', ... 
    {}, 'levels', {}); 
matlabbatch{1}.spm.stats.fmri_spec.bases.hrf.derivs = [0 0]; 
matlabbatch{1}.spm.stats.fmri_spec.volt = 1; 
matlabbatch{1}.spm.stats.fmri_spec.global = 'None'; 
matlabbatch{1}.spm.stats.fmri_spec.mthresh = 0.8; 
matlabbatch{1}.spm.stats.fmri_spec.mask = {''}; 
matlabbatch{1}.spm.stats.fmri_spec.cvi = 'AR(1)'; 
matlabbatch{2}.spm.stats.fmri_est.spmmat(1) = ... 
    cfg_dep('fMRI model specification: SPM.mat File', ... 
    substruct('.','val', '{}',{1}, '.','val', '{}',{1}, ... 
    '.','val', '{}',{1}), substruct('.','spmmat')); 
matlabbatch{2}.spm.stats.fmri_est.write_residuals = 0; 
matlabbatch{2}.spm.stats.fmri_est.method.Classical = 1; 

  
spm_jobman('run',matlabbatch); 
clear matlabbatch; 

  
% Now we will also need to extract signal from CSF and white 
% matter (WM) to be used as confound. First, we are going to 
% extract the WM (Pons) time series, which we will use as one 
% of the nuisance variables. 

  
matlabbatch{1}.spm.util.voi.spmmat = {[data_path, ... 
    'func/Run0',  runno, '/GLM/SPM.mat']}; 
matlabbatch{1}.spm.util.voi.adjust = NaN; 
matlabbatch{1}.spm.util.voi.session = nosess; 
matlabbatch{1}.spm.util.voi.name = 'WM'; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.centre = [0 -24 -33]; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.radius = 4; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.move.fixed = 1; 
matlabbatch{1}.spm.util.voi.roi{2}.mask.image = {[data_path,... 
    'func/Run0',  runno,  '/GLM/mask.nii']}; 
matlabbatch{1}.spm.util.voi.roi{2}.mask.threshold = 0.8; 
matlabbatch{1}.spm.util.voi.expression = 'i1 & i2'; 

  
spm_jobman('run',matlabbatch); 
clear matlabbatch; 

  
% We do the same thing to extract CSF (from one of the 
% ventricles) signal with a sphere centred on [1 -39 3]. 
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% This will create the file VOI_CSF_1.mat. 

  
matlabbatch{1}.spm.util.voi.spmmat = {[data_path, ... 
    'func/Run0',  runno, '/GLM/SPM.mat']}; 
matlabbatch{1}.spm.util.voi.adjust = NaN; 
matlabbatch{1}.spm.util.voi.session = nosess; 
matlabbatch{1}.spm.util.voi.name = 'CSF'; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.centre = [1 -39 3]; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.radius = 4; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.move.fixed = 1; 
matlabbatch{1}.spm.util.voi.roi{2}.mask.image = {[data_path,... 
    'func/Run0',  runno,  '/GLM/mask.nii']}; 
matlabbatch{1}.spm.util.voi.roi{2}.mask.threshold = 0.8; 
matlabbatch{1}.spm.util.voi.expression = 'i1 & i2'; 

  
spm_jobman('run',matlabbatch); 
clear matlabbatch; 

  
% Next we need to adjust the SPM with the covariates. 

  
matlabbatch{1}.spm.stats.fmri_spec.dir = {[data_path, ... 
    'func/Run0', runno, '/GLM']}; 
matlabbatch{1}.spm.stats.fmri_spec.timing.units = 'scans'; 
matlabbatch{1}.spm.stats.fmri_spec.timing.RT = TR; 
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t = 16; 
matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t0 = 8; 
matlabbatch{1}.spm.stats.fmri_spec.sess.scans = cellstr ... 
    (spm_select('FPList', fullfile(data_path,['func/Run0', ... 
    runno]), '^sw.*\.nii$')); 
matlabbatch{1}.spm.stats.fmri_spec.sess.cond = struct( ... 
    'name', {}, 'onset', {}, 'duration', {}, 'tmod', {}, ... 
    'pmod', {}, 'orth', {}); 
matlabbatch{1}.spm.stats.fmri_spec.sess.multi = {''}; 
matlabbatch{1}.spm.stats.fmri_spec.sess.regress = struct( ... 
    'name', {}, 'val', {}); 
matlabbatch{1}.spm.stats.fmri_spec.sess.multi_reg = ... 
    cellstr(spm_select('FPList', fullfile(data_path,[ ... 
    'func/Run0',runno], '/GLM/'), '^VOI_CSF_.*\.mat$')); 
matlabbatch{1}.spm.stats.fmri_spec.sess.multi_reg = cellstr ... 
    (spm_select('FPList', fullfile(data_path,['func/Run0', ... 
    runno], '/GLM/'), '^VOI_WM_.*\.mat$')); 
matlabbatch{1}.spm.stats.fmri_spec.sess.multi_reg = cellstr ... 
    (spm_select('FPList', fullfile(data_path,['func/Run0', ... 
    runno], '/'), '^rp_sub-.*\.txt$')); 
matlabbatch{1}.spm.stats.fmri_spec.sess.hpf = 128; 
matlabbatch{1}.spm.stats.fmri_spec.fact = struct('name', {},... 
    'levels', {}); 
matlabbatch{1}.spm.stats.fmri_spec.bases.hrf.derivs = [0 0]; 
matlabbatch{1}.spm.stats.fmri_spec.volt = 1; 
matlabbatch{1}.spm.stats.fmri_spec.global = 'None'; 
matlabbatch{1}.spm.stats.fmri_spec.mthresh = 0.8; 
matlabbatch{1}.spm.stats.fmri_spec.mask = {''}; 
matlabbatch{1}.spm.stats.fmri_spec.cvi = 'AR(1)'; 
matlabbatch{2}.spm.stats.fmri_est.spmmat(1) = cfg_dep... 
    ('fMRI model specification: SPM.mat File', substruct(... 
    '.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', ... 
    '{}',{1}), substruct('.','spmmat')); 
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matlabbatch{2}.spm.stats.fmri_est.write_residuals = 0; 
matlabbatch{2}.spm.stats.fmri_est.method.Classical = 1; 

  

spm_jobman('run',matlabbatch); 
clear matlabbatch; 

 

5.2.4.2. Processing 

5.2.4.2.1. Timeseries 

Functional connectivity in DMN is well studied. Hence, this research took as regions of 

interest (nodes) the most commonly reported four major parts of DMN, as shown in Figure 

5.1: medial prefrontal cortex (mPFC, centred at 3, 54, −2), posterior cingulate cortex (PCC, 

centred at 0, −52, 26), left inferior parietal cortex (LIPC, centred at − 50, − 63, 32), and 

right inferior parietal cortex (RIPC, centred at 48, − 69, 35). For each participant, the 

volumes of interest were defined as spheres centred at those coordinates mentioned above 

with an 8 mm radius and with a mask threshold of 0.5. The first eigenvectors were 

extracted after removing the effect of head motion and low frequency drift. This vector is 

stored for each region as timeseries. The MATLAB script for extracting the PCC 

timeseries is presented below; in order to extract the timeseries for other brain regions 

(LIPC, RIPC, and mPFC), the word “PCC” are substituted accordingly. 

matlabbatch{1}.spm.util.voi.spmmat = {[data_path, ... 
    'func/Run0',  runno, '/GLM/SPM.mat']}; 
matlabbatch{1}.spm.util.voi.adjust = NaN; 
matlabbatch{1}.spm.util.voi.session = nosess; 
matlabbatch{1}.spm.util.voi.name = 'PCC'; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.centre = [0 -52 26]; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.radius = 8; 
matlabbatch{1}.spm.util.voi.roi{1}.sphere.move.fixed = 1; 
matlabbatch{1}.spm.util.voi.roi{2}.mask.image = {[data_path,... 
    'func/Run0',  runno,  '/GLM/mask.nii']}; 
matlabbatch{1}.spm.util.voi.roi{2}.mask.threshold = 0.5; 
matlabbatch{1}.spm.util.voi.expression = 'i1 & i2'; 

  
spm_jobman('run',matlabbatch); 
clear matlabbatch; 
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Figure 5.1 - The four DMN regions of interest used in this research 

5.2.4.2.2. Dynamic Causal Modelling (DCM) 

The spectral DCM analyses were conducted using the DCM12 implemented in SPM12. 

The regions of interest of DCM analyses were defined according to the peak of the DMN 

independent component maps, as presented in Figure 5.1. The main purpose of the current 

DCM analysis was to investigate the endogenous/intrinsic effective connectivity and to 

examine the causal interactions across these regions. The modelled low frequency 

fluctuations were set as driving inputs to all four nodes, and different models were defined 

by considering a full connection for all nodes. Expected posterior model probabilities and 

exceedance probabilities were computed. The intrinsic connectivity parameters (16 values 

that were stored in DCM.Ep.A matrix, referring to all parameters of intrinsic/effective 

connectivity [281]; Table 5.1 presents an example of an intrinsic connectivity matrix) from 

each participant were subjected to classification using CGP. 

Table 5.1 - An example of DCM.Ep.A, intrinsic connectivity matrix 

-0.19 0.17 0.07 0.12 

0.15 -0.18 0.04 0.13 

0.11 0.08 -0.38 -0.11 

0.10 0.12 -0.04 -0.17 
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5.2.5. Cartesian Genetic Programming 

As discussed in Chapter 4, CGP [331] is a strand of GP [325], [332], that encodes 

computational structures as generic cyclic/acyclic graphs. For this research, a new cross 

platform open source CGP library [339] was used since it is able to evolve symbolic 

expressions, Boolean logic circuits, and ANN, and it can be extended to diverse research 

areas. The CGP library enables the control of evolutionary parameters and the application 

of custom evolutionary stages. 

5.2.5.1. Classification 

To have equal class representation, data from each class was divided randomly into subsets 

of 70% (training), 15% (validation), and 15% (test). The geometry of the programs in the 

population (chromosomes) has fifty nodes with a function set of four mathematical 

operations (+, -, ×, ÷), multiple inputs (according to the datasets), and one output (class 1 

for Modafinil participant group, class 0 for the control participant group). At each 

generation, the fittest chromosome is selected and the next generation is formed with its 

mutated versions (mutation rate = 0.1). Evolution stops when 15000 iterations are reached. 

To obtain statistical significance, the classification was done in 10 runs for each 

combination of inputs and the accuracy was averaged over the runs. The results (the 

winning chromosome, the networks, and the accuracy values) were stored for each run 

individually. 

5.2.5.1.1. Classification of Timeseries 

rs-fMRI is a widespread tool for exploring the functionality of the brain, using volume 

timeseries data. These scans contain abundant data; hence, obtaining relevant and useful 

data from raw scans (i.e., high dimensional datasets) can be difficult. Machine learning 

algorithms provide various tools that create datasets with less dimensions and more useful 

data, although challenges persist regarding how to select relevant data and how to maintain 

the interpretability of this data. This can result in losing important properties of the raw 
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data, although dealing with such a large number of features can be computationally 

expensive and very time consuming. 

In the current experiment, the RCGP algorithm is used to classify the features that 

appeared across time in participant scans. The number of timeseries values is 145, i.e., for 

each of the four regions in the DMN, there is a vector of 145 values. Analysing/classifying 

the timeseries values was conducted in three different ways in terms of inputs to the 

classifier: 

1. The timeseries values for each region separately were used as inputs to the classifier, to 

classify with 145 features per region (relating to DMN regions: LIPC, RIPC, PCC, and 

mPFC) and per participant. 

2. The timeseries values together in four columns (one per region) were used as inputs to 

the classifier to classify the data with four columns (corresponding to the four DMN 

regions) of 145 features per participant. 

3. The timeseries values inserted together in one column were used as inputs to the 

classifier to classify the data with 580 features in one vector for each participant. The 

order of inputting the timeseries values for each DMN region to form the final vector 

was consistent between participants. 

Classification was completed in 10 runs for each combination of inputs and the accuracy 

was averaged over the runs. The same inputs were used to classify the data using ANN in 

MATLAB (Pattern Recognition and Classification Application – nprtool with 10 hidden 

layers) and also SVM in MATLAB for comparison/validation. RCGP was used with 10% 

probability for the recurrent connections. A complete pipeline of the preprocessing and 

processing of the data is presented in Figure 3.15. 

The MATLAB script for the SVM classification method is included below: 

%% Import data 
clc; close all; clear 

  

load DCM_Ep_A_total.mat 
load Target_DCM.mat 
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totaldata = table(); 

  

for i = 1:size(DCM_Ep_A_total,2) 
    totaldata{:,i} = DCM_Ep_A_total(:,i); 
end 
totaldata.Target = Target_DCM; 

  
runs = 10;      % Number of runs to repeat the classification 
AccuTrain = zeros(runs,1); 
AccuTest = zeros(runs,1); 
lossKnn = zeros(runs,1); 
lossDa = zeros(runs,1); 
results = zeros(runs,2); 
for runno = 1:runs 
    %% Split the data into training and test sets 
    pt = cvpartition(totaldata.Target,'HoldOut',0.3); 

     
    dataTrain = totaldata(training(pt),:); 
    dataTest = totaldata(test(pt),:); 

     
    %% Create a model 
    mdl = fitcsvm(dataTrain,'Target','KernelFunction','gaussian'); 

     
    %% Calculate the loss errTrain and errTest 
    [label,score] = predict(mdl,dataTest); 
    % label represents the classification of each row in inputs; Each row 
    % corresponds to a row in X, which is a new observation. The first 

column 
    % contains the scores for the observations being classified in the 
    % negative class, and the second column contains the scores 

observations 
    % being classified in the positive class. 
    errTrain = resubLoss(mdl); 
    errTest = loss(mdl,dataTest); 

     
    AccuTrain(runno,1) = 100*(1-errTrain); 
    AccuTest(runno,1) = 100*(1-errTest); 

     
    %% Create models and calculate loss 
    % Create partition 
    k = 10;     % Number of Folds 
    part = cvpartition(totaldata.Target,'KFold',k); 

     
    % k-NN 
    mdlKnn = fitcknn(totaldata,'Target','NumNeighbors',5,... 
        'CVPartition',part); 
    lossKnn(runno,1) = kfoldLoss(mdlKnn); 

     
    % Discriminant analysis 
    mdlDa = fitcdiscr(totaldata,'Target','CVPartition',part); 
    lossDa(runno,1) = kfoldLoss(mdlDa); 

     

    %% Create a table to hold the results 
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    results(runno,:) = [(1-lossKnn(runno,1))*100 (1-

lossDa(runno,1))*100]; 

     

end 

  
%% Take the mean of the results 
meanTrain = mean(AccuTrain); 
meanTest = mean(AccuTest); 
sdTrain = std(AccuTrain); 
sdTest = std(AccuTest); 
meanresults = mean(results); 
sdresults = std(results); 

 

5.2.5.1.2. Classification of DCM 

The classification was run in the CGP Library with 16 inputs (all the DCM values sorted 

by region and presented as only one vector per participant). To facilitate comparison, the 

classification with data from the same participants was run using ANN and SVM, both run 

in MATLAB. 

5.2.6. Adaptive Synthetic Sampling 

As previously mentioned, the Modafinil group contained 39 participants and the control 

group contained 111 participants, resulting in highly imbalanced data. Hence, ADASYN 

was used to make the data balanced. After the process, the minor group for each 

combination (in the training set) had a higher number of participants, which made the data 

balanced for CV. The validation and test sets were kept the same. 

5.2.7. k-Fold Cross-Validation 

10-fold CV was used to evaluate the classification accuracy using an unbiased estimate of 

the generalisation accuracy [351]. CV is beneficial as it allows the generation of 

independent test sets with enhanced reliability. With 10-fold CV, typically one (of 10) 

subset is the test set and remaining nine subsets are training sets. These sets are then 

rotated so that each set is used to test the data once. One repetition of the 10-fold CV does 
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not produce sufficient classification accuracies for comparison, therefore, 10-fold CV is 

repeated 10 independent times and the mean accuracy over all 10 trials is calculated. 

Since the main classification methodology in this research involved dividing the data into 

three different subsets (training, validation, and test), the data was divided into 10 subsets 

and, each time, one of the 10 subsets were used as the test set, another one for validation, 

and the remaining eight as a training set. The data was divided using stratified random 

sampling enabling the sample proportion in each data subset to be the same as that in the 

original data (i.e., equal class distribution in the subsets as per the original data). Hence, 

the data was split for each class initially and then the classes were mixed to form the 

completed set. This was done for each combination of inputs to both CGP (for DCM 

values) and RCGP (for timeseries values). In this study, the data for each combination of 

inputs was divided into three parts of 80% (training), 10% (validation), and 10% (test). 

5.3. Results 

This study examined the classification of 39 participants administered Modafinil versus 

111 control participants. The analysis (classification) focused on organising features to be 

used as inputs to the classifier in CGP and also in RCGP, implemented using the CGP 

Library. To validate the results, the analysis/classification was additionally completed 

using ANN and SVM, both in MATLAB. 

5.3.1. Classification of Timeseries 

Initially, the timeseries values for each region were used as inputs to the classifier 

individually. Therefore, the data was classified with 145 features from each region per 

participant. The same procedure was completed separately for each DMN region (PCC, 

mPFC, RIPC, and LIPC). Then, the timeseries values were used as inputs to the classifier 

to classify the data in four columns (relating to the four DMN regions) of 145 features per 

participant. Finally, the timeseries values together in one column were used as inputs to the 

classifier to classify the data with 580 features in one vector for each participant. The 

results after 10 runs for each combination were averaged and are summarised in Table 5.2. 
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The classification was also done using ANN and SVM. For SVM, only the training and 

test sets were considered for classification. 

Table 5.2 - Classification results for the timeseries values 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 73.75 (2.98) 75.52 (1.59) 74.28 (1.22) 

ANN 83.74 (7.78) 73.48 (12.88) 72.18 (8.01) 

SVM 100 (0) NA 73.81 (0.50) 

mPFC RCGP 71.88 (5.00) 74.80 (1.57) 73.52 (1.38) 

ANN 78.07 (9.02) 71.75 (9.90) 64.78 (9.93) 

SVM 100 (0) NA 74.00 (0.46) 

RIPC RCGP 74.40 (2.96) 76.51 (2.57) 71.26 (5.94) 

ANN 81.92 (7.63) 72.18 (7.46) 70.00 (8.06) 

SVM 100 (0) NA 73.71 (0.49) 

LIPC RCGP 72.79 (3.52) 74.79 (1.55) 72.53 (3.22) 

ANN 85.88 (10.20) 70.88 (11.96) 70.45 (8.65) 

SVM 100 (0) NA 73.90 (0.49) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 73.63 (2.11) 75.92 (2.16) 73.99 (2.94) 

ANN 73.83 (0.17) 74.49 (0.67) 74.24 (0.49) 

SVM 74.25 (0.05) NA 73.95 (0.05) 

Classification results for all the DMN regions (1 input) 

 

RCGP 74.68 (1.60) 76.55 (2.82) 74.57 (1.82) 

ANN 73.97 (0.13) 74.11 (0.37) 74.01 (0.45) 

SVM 74.00 (0.00) NA 74.00 (0.00) 

Findings revealed that the Modafinil group were successfully classified from the control 

group with a maximum accuracy of 74.57% using RCGP (minimum accuracy: 71.26%). 

The results from the other two classification techniques (ANN and SVM) validated this 

finding as they were very similar: 64.78-74.24% for ANN and SVM in all the different 

combinations of inputs. 

Unlike for the DCM analyses, mixed ANOVAs were not conducted to evaluate the 

correspondence between participant group and timeseries features, given that there were 

580 features per participant, which would not be interpretable. 
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5.3.2. Classification of Dynamic Causal Modelling (DCM) 

Classification using the CGP Library was executed with 16 inputs (all the DCM values 

sorted by region and presented as one vector per participant) and 1 output (class 1 for the 

Modafinil group and class 0 for the control group). The results were then averaged over 10 

runs and are presented in Table 5.3. The classification was done using ANN and SVM. For 

SVM, only the training and test sets were considered for classification. 

Table 5.3 - Classification results for DCM values 

 Training % (SD) Validation % (SD) Test % (SD) 

CGP 75.63 (7.13) 80.35 (6.18) 73.89 (7.70) 

ANN 79.99 (5.57) 73.93 (7.94) 67.39 (6.57) 

SVM 73.81 (0.50) NA 73.81 (0.50) 

Findings revealed that the Modafinil group were successfully classified from the control 

group with 73.89% accuracy using CGP. The results from the other two classification 

techniques (ANN and SVM) validated this finding as they were very similar: 67.39% for 

ANN and 73.81% for SVM. 

Two examples of the CGP classification network trees/graphs can be seen in Figure 5.2 

and Figure 5.3. This reflects one of the core advantages of CGP in terms of providing a 

white box solution, giving more information on the inputs used and enhanced knowledge 

concerning the final solution obtained in classification, which is not easily possible (if at 

all) with ANN and SVM classification techniques. These networks and their respective 

mathematical expressions are very complex and often difficult to interpret. Nevertheless, 

these networks can provide highly useful information. For example, in Figure 5.2, only 

half of the inputs have been used to arrive at the final classification. Similarly, Figure 5.3 

reveals that only 11 of the inputs are used and the network evolved, in this case, is 

arguably somewhat simpler than that depicted in Figure 5.2. Future work can explore 

constraining the geometry of the classifier (at the cost of classification accuracy) in order 

to simplify the networks and enhance interpretability. 
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Figure 5.2 - CGP classification tree for the classification of Modafinil vs. control; example 
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Figure 5.3 - CGP classification tree for the classification of Modafinil vs. control; example 
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To evaluate the correspondence between participant group and DCM features, a mixed 

2 × 16 ANOVA between the participant group (Modafinil and control) and DCM features 

(16 inputs per participant) was conducted. A Greenhouse-Geisser correction was used as 

the model violated sphericity. The ANOVA revealed a significant main effect of DCM 

features (𝐹(4.39, 210.64) = 228.90, 𝑀𝑆𝐸 = 2.71, 𝑝 < .001, 𝜂𝑝
2 = .83). There was no 

significant interaction effect between participant group and DCM features 

(𝐹(4.39, 210.64) = 0.83, 𝑀𝑆𝐸 = 0.01, 𝑝 = .516, 𝜂𝑝
2 = .02)  and no significant main 

effect of group (𝐹(1, 48) = 1.12, 𝑀𝑆𝐸 = 0.00, 𝑝 = .294, 𝜂𝑝
2 = .02). This main effect of 

features represents the key finding as it indicates that the features in general are essential, 

whereas information on participant group per se is not. 

5.3.3. k-Fold Cross-Validation 

In order to evaluate the performance of the classifier, k-fold CV was conducted on all the 

different combinations of inputs for both DCM and timeseries values. 

5.3.3.1. Cross-Validation for RCGP for Timeseries 

The inputs were divided into 10 folds with 80% of the data used for training, 10% for 

validation, and 10% for test. After the artificial data samples were synthesised for the 

minor class in the training set, CV was repeated for 10 runs and the results were averaged, 

as shown in Table 5.4. Findings indicated that the Modafinil group were successfully 

classified from the control group with a maximum accuracy of 63.13% using RCGP in CV 

(minimum accuracy: 51.67%). 
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Table 5.4 - Cross-validation results for the timeseries values 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 58.74 (5.37) 70.36 (0.83) 63.13 (2.86) 

mPFC RCGP 57.01 (5.13) 67.26 (3.52) 58.69 (3.99) 

RIPC RCGP 55.14 (4.91) 68.51 (4.04) 58.09 (5.80) 

LIPC RCGP 56.97 (4.41) 70.05 (2.41) 58.09 (4.31) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 44.63 (5.99) 71.74 (10.16) 51.67 (8.30) 

Classification results for all the DMN regions (1 input) 

 RCGP 60.21 (3.59) 69.86 (2.53) 60.73 (3.96) 

 

5.3.3.2. Cross-Validation for CGP for DCM 

The inputs were divided into 10 folds with 80% of the data used for training, 10% for 

validation, and 10% for test. After the artificial data samples were synthesised for the 

minor class in the training set, CV was repeated for 10 runs and the results were averaged, 

as shown in Table 5.5. Findings revealed that the Modafinil group were successfully 

classified from the control group with 59.55% accuracy using CGP in CV. 

Table 5.5 - Cross-validation results for DCM values 

 Training % (SD) Validation % (SD) Test % (SD) 

CGP 62.55 (2.87) 76.61 (2.90) 59.55 (6.53) 

 

5.4. Discussion 

This research develops methods for differentiating clinical groups using EAs on rs-fMRI 

data, based on a controlled clinical experiment. Specifically, this experiment examined the 

monitoring of participants administered Modafinil (versus a control group) using rs-fMRI 

data. These findings build on previous research exploring the application of EAs for 

monitoring PD patients following treatment with Levodopa (LID-monitor) [427]. 
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A distinctive element of this research involved the use of DCM analysis for classification. 

CGP classification method was used for timeseries analyses and DCM analyses and these 

findings were validated with two other widely used classification methods (ANN and 

SVM). Findings were further validated using k-fold CV technique. Given that the data was 

highly imbalanced, ADASYN was used to balance the data before performing CV, 

providing a more equal class distribution within the training set (i.e., balanced numbers of 

Modafinil and control participants). Findings revealed a maximum classification accuracy 

of 75%. An important finding was that there was almost no difference in the classification 

accuracies between timeseries and DCM data. Moreover, EAs, specifically CGP, have not 

previously been used for classification of brain imaging data; hence, this research provided 

a novel application of CGP (on rs-fMRI data). CGP provided equivalent performance 

accuracy when compared with ANN and SVM classification methods. A relevant question 

for future research is whether CGP is relevant for the classification of PD patients (rather 

than healthy participants, as per the current research) administered Modafinil relative to 

non-medicated PD patients who are experiencing fatigue. 

A key aspect of this research involved the application of a dynamical method of 

classification (RCGP). CGP has been previously used in the classification of biomedical 

data but not brain imaging data. This research applied CGP to rs-fMRI data, a timely 

approach given that fMRI is a non-invasive method that generates images with high spatial 

resolution and good temporal resolution and it is widely used in medical facilities [439]–

[442] (e.g., for diagnosis). 

fMRI data is dynamic as biomedical data from the nervous system are complex, nonlinear 

and nonstationary. Nevertheless, research on the classification of biomedical timeseries 

data typically uses static classifiers (e.g., SVM [443] and feed-forward neural networks 

[444]; see also [445], [446]). Other research has compared dynamical to static classifiers 

for biomedical data, revealing better discrimination and increased diversity in dynamical 

classifiers [409]. The current research used two static classifiers (SVM and ANN) to 

validate the findings from a dynamical classifier (RCGP) for the classification of 

timeseries data, which revealed comparable findings between all three methods. Whilst 
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dynamical classifiers might theoretically better represent the nature of biomedical imaging 

data, future research is needed to further examine this question. 

This research used a novel approach, applying classification to DCM data. Findings 

revealed that DCM data for classification provided comparable accuracy across all three 

classifiers, relative to timeseries data, which is surprising as other research has revealed 

that classification often provides better accuracies with raw unprocessed data. Timeseries 

data is raw fMRI data and includes over 100 features. In contract, DCM data is processed, 

representing the effective connectivity (the causal effect) of one neuronal region on 

another and, in this case, contained only 16 features. These findings underscore the 

relevance of DCM data for classification, even though this data is processed and contains 

much less features relative to timeseries data. 

Following k-fold CV, classification accuracy for timeseries values decreased to 52-63% 

and for DCM values accuracy was reduced to 60%; these findings held across all 

participant groups. This is due to the fact that this research used heavily class-imbalanced 

data containing 39 Modafinil participants and 111 control participants. Yet, standard 

classification methods typically assume balanced class distributions. Imbalanced data 

significantly reduces classification accuracy [447] given that the classifier cannot be 

trained efficiently to distinguish the differences between features in the two classes. A 

widely used solution involves modifying the data to obtain a sample with balanced class 

distributions, which often increases the overall classification accuracy compared to the 

original imbalanced sample [385]–[387]. Nevertheless, this solution is not perfect given 

that the balanced data is only used in the training set, which compromises the accuracy in 

the validation and test sets as the classifier that was trained for the CV is a different 

classifier with a different accuracy level than that used in the classification part. The 

current research used ADASYN to balance the training set. The fact that findings revealed 

accuracies of approximately up to 75% in the classification of Modafinil timeseries and 

DCM data speaks to the robustness of CGP as a classification method, even for highly 

imbalanced data as in this research. 
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5.5. Conclusion 

To conclude, this research explored the classification of participants administered 

Modafinil (versus a control group) using novel data (DCM values) and a novel 

classification method (CGP). This demonstrates the power of the technique to monitor PD 

patients in response to the medication they are receiving as their medication is adjusted. 

These results add to previous literature examining EAs for monitoring PD patients 

following Levodopa treatment [427]. Classification accuracy for DCM analyses was 

compared to that of timeseries analyses. Moreover, two other classification methods (ANN 

and SVM) were used to validate the findings, including employing k-fold CV. Findings 

revealed a maximum accuracy of 75% for CGP. Classification accuracy was equivalent for 

DCM analyses and timeseries analyses and, further, accuracy did not differ by method 

(CGP, ANN, or SVM). These findings underscore the relevance of CGP as a novel 

classification method for dynamic brain imaging data, for both processed data (as per 

DCM values) and raw data (i.e., timeseries). Hence, the methods developed are potentially 

relevant for drug treatment monitoring and for differentiating between clinical groups, for 

instance, the diagnosis of patients relative to healthy controls. Applying these methods 

developed to a clinical sample of PD patients and examining the transferability of these 

tools is the focus of the research presented in the subsequent chapter. 
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Chapter 6. Early Stage Diagnosis of Parkinson's 

Disease: CGP Classification of rs-fMRI Data 
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As previously discussed in Chapter 2, currently, there is poor differential diagnosis of 

NDDs with high rates of misdiagnosis and low test-retest reliability [77], [104]; indeed, PD 

has rates of misdiagnosis of 15-26%. Hence, this research examines a key question: Can 

early stage PD (before motor symptoms are apparent, i.e., prodromal PD) be diagnosed 

using EAs on rs-fMRI data? Early diagnosis of PD is fundamental in providing patients 

with palliative care during the early phases before motor symptoms are present, enabling 

effective disease management and maintaining patient quality of life. Moreover, once a 

neuroprotective drug to treat PD is developed, the early diagnosis of PD would have even 

greater clinical implications [448]. 

This chapter explores an automatic and non-invasive method of confirming the diagnosis 

of PD, specifically, examining the classification of participants diagnosed with PD, 

prodromal PD participants, and healthy age-matched controls using rs-fMRI data. This 

research involves an analysis of rs-fMRI data taken from the Parkinson’s Progression 

Markers Initiative database (PPMI; http://www.ppmi-info.org/data). The PPMI [158] is a 

landmark, large-scale, comprehensive, observational, international, and multi-centre study 

that recruits de novo (early-untreated) PD patients, prodromal PD patients, and age-

matched healthy participants (among other participant groups) to identify PD progression 

biomarkers. This study applies EAs, specifically CGP and RCGP, for the classification of 

rs-fMRI in PD using DCM and timeseries analyses. The timeseries values and DCM 

values from the rs-fMRI data are subjected to supervised classification and the findings are 

validated with two other commonly used classification methods (ANN and SVM) as well 

as employing k-fold CV. 

A key aim of this chapter is to identify the applicability of CGP and RCGP classification 

for both timeseries and DCM analyses regarding the analysis of PD data. CGP and RCGP 

have not previously been used in the classification of brain imaging data. This study 

examines an additional novel question: is DCM analysis useful for classification for PD 

data? Previous research has not explored the applicability of DCM values in classification 

and, to date, little research has applied DCM to PD data [15]–[20]. Hence, by doing both, 

this research develops automatic procedures for identifying PD brain imaging preclinical 

biomarkers, which can be used for aiding/confirming early PD diagnosis. 
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Furthermore, a typical difficulty when conducting medical research involves recruiting 

equal sample sizes of patients and healthy controls, often resulting in class-imbalanced 

data (e.g., unequal groups of controls versus patients). The PPMI database is heavily class-

imbalanced, with many more PD patients relative to prodromal PD and control 

participants. Hence, this chapter explored the applicability of classification methods to 

class-imbalanced data, with key implications for the transferability of medical research 

based on limited and imbalanced sample sizes. 

6.1. Method 

6.1.1. Participants 

PPMI is a longitudinal study where participants underwent a comprehensive longitudinal 

follow-up schedule of clinical, imaging and biospecimen assessments. There were eight 

healthy controls (all male, mean age = 68, SD = 3.16), 18 prodromal PD patients (13 male, 

mean age = 68, SD = 4.03), and 102 early PD patients (71 male, mean age = 63, SD = 

7.83). The overall age range was 50-75 years. 3 Tesla rs-fMRI, dopamine transporter 

(DAT) imaging, and MRI scans were acquired for all participants. 

PD participants were recruited at disease threshold (diagnosis within two years and 

untreated for PD) and were required to have an asymmetric resting tremor or asymmetric 

bradykinesia or two of bradykinesia (resting tremor and rigidity). DAT deficit was 

acquired for PD participants. Healthy participants had no significant neurologic 

dysfunction, no first degree family member with PD, and they obtained a MoCA > 26. The 

study was approved by the institutional review board of all participating sites. Written 

informed consent was obtained from all participants. 

6.1.2. rs-fMRI Acquisition  

A standardised MRI protocol included acquisition of whole-brain structural and functional 

scans on 3 Tesla Siemens Trio Tim MR system (for more information see 

http://www.ppmi-info.org/). 3D T1 structural images were acquired in a sagittal orientation 

using a MPRAGE GRAPPA protocol with Repetition Time (TR) 2300 ms, Echo Time 
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(TE) 2.98 ms, Field of View (FoV) 256 mm, Flip Angle (FA) 9° and 1 𝑚𝑚3 isotropic 

voxel. For each participant, 212 BOLD echo-planar rs-fMRI images (40 slices each, 

ascending direction) were acquired during an 8 min, 29 s scanning session (acquisition 

parameters: TR = 2400 ms, TE = 25 ms, FoV = 222 mm, FA = 80° and 3.3 𝑚𝑚3 isotropic 

voxels). Participants were instructed to rest quietly, keeping their eyes open, and were 

asked not to fall asleep. 

6.1.3. Imaging Data Analysis  

6.1.3.1. Preprocessing 

The preprocessing steps were the same as described in Chapter 5, excepting that 

preprocessing included DICOM to 3D NIFTI conversion. 

6.1.3.2. Processing 

Timeseries and DCM analyses were obtained as described in Chapter 5. 

6.1.4. Cartesian Genetic Programming (CGP) 

6.1.4.1. Classification 

This research applied the same classification method as described in Chapter 5, excepting 

that there was one output for the classifier (class 1 for one group, class 0 for the other one). 

6.1.4.1.1. Classification of Timeseries and DCM 

This research applied same classification method using timeseries and DCM values as data 

inputs as described in Chapter 5, excepting that for timeseries values the number of data 

inputs is 210 (corresponding to the number of image slices). When inputting the timeseries 

values for the four DMN regions of interest to the classifier in one vector, the number of 

features is 840 per participant. Classification was completed for each of the three 

participant groups (PD, prodromal PD, and control) against the remaining two. 



Chapter 6: PD Diagnosis 

186 

6.1.5. Adaptive Synthetic Sampling (ADASYN) 

As previously mentioned, the control group contained eight participants, the prodromal PD 

group contained 18 patients, and the PD group contained 102 patients. Therefore, the data 

was highly imbalanced. Following the same steps outlined in Chapter 5, ADASYN was 

applied to make the data balanced for training the classifier. 

6.1.6. k-Fold Cross-Validation 

This research applied the same k-fold CV method as described in Chapter 5, excepting that 

for both PD participants and prodromal PD participants relative to control participants, CV 

was completed using 9 folds (due to the small number of samples in the control group). 

6.2. Results 

This study examined classification of 102 PD participants, 18 prodromal PD participants, 

and eight healthy age-matched controls. The analysis (classification) focused on organising 

features to be used as inputs to the classifier in CGP and also in RCGP and was 

implemented using the CGP Library. To validate these findings, the analysis/classification 

was additionally completed using ANN in MATLAB (Pattern Recognition and 

Classification Application – nprtool with 10 hidden layers) and SVM in MATLAB. 

6.2.1. Classification of Timeseries 

Initially, the timeseries values for each region were used as inputs to the classifier 

individually. Therefore, the data was classified with 210 features from each region per 

participant. The same procedure was repeated separately for each DMN region (PCC, 

mPFC, RIPC, and LIPC). Then, the timeseries values were used as inputs to the classifier 

to classify the data with four columns (relating to the four DMN regions) of 210 features 

per participant. Finally, the timeseries values together in one column, were used as inputs 

to the classifier to classify the data with 840 features in one vector for each participant. The 

results after 10 runs for each combination were averaged and are presented for each 

category in Table 6.1, Table 6.2, and Table 6.3. The classification was also completed 
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using ANN and SVM. For SVM, only the training and test sets were considered for 

classification. 

Table 6.1 - Classification results for the timeseries values (PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 92.06 (2.67) 91.60 (2.91) 91.95 (2.66) 

ANN 92.73 (0.07) 92.72 (0.32) 92.74 (0.31) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

mPFC RCGP 92.03 (2.68) 91.73 (3.02) 92.01 (2.88) 

ANN 92.69 (0.06) 92.85 (0.41) 92.76 (0.40) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

RIPC RCGP 91.13 (3.97) 92.41 (3.64) 91.46 (5.15) 

ANN 92.68 (0.11) 92.85 (0.50) 92.90 (0.39) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

LIPC RCGP 91.66 (2.55) 91.75 (2.76) 91.68 (3.46) 

ANN 92.69 (0.10) 92.89 (0.39) 92.61 (0.38) 

SVM 92.73 (0.00) NA 92.73 (0.00) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 91.89 (2.77) 92.03 (3.34) 91.79 (3.45) 

ANN 92.66 (0.13) 92.96 (0.45) 92.74 (0.46) 

SVM 92.78 (0.01) NA 92.73 (0.00) 

Classification results for all the DMN regions (1 input) 

 

RCGP 89.95 (8.53) 91.84 (2.77) 92.09 (2.68) 

ANN 92.75 (0.08) 92.74 (0.25) 92.59 (0.07) 

SVM 92.73 (0.00) NA 92.73 (0.00) 
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Table 6.2 - Classification results for the timeseries values (PD vs. prodromal PD) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 85.64 (2.03) 85.94 (2.23) 85.87 (2.24) 

ANN 85.02 (0.18) 84.80 (0.82) 85.02 (0.48) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

mPFC RCGP 85.10 (1.67) 85.97 (2.19) 85.49 (2.35) 

ANN 85.00 (0.13) 84.66 (0.33) 85.25 (0.69) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

RIPC RCGP 84.93 (1.22) 87.54 (1.12) 80.64 (11.25) 

ANN 84.97 (0.07) 85.10 (0.28) 84.93 (0.21) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

LIPC RCGP 75.00 (22.97) 85.85 (2.36) 85.56 (3.15) 

ANN 84.99 (0.15) 84.91 (0.62) 85.05 (0.47) 

SVM 85.00 (0.00) NA 85.00 (0.00) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 84.69 (2.87) 87.54 (4.01) 85.02 (3.51) 

ANN 85.06 (0.15) 84.74 (0.64) 84.95 (0.46) 

SVM 85.06 (0.02) NA 85.00 (0.01) 

Classification results for all the DMN regions (1 input) 

 

RCGP 85.47 (1.86) 86.27 (2.78) 85.71 (2.43) 

ANN 84.99 (0.03) 85.12 (0.34) 84.90 (0.26) 

SVM 85.00 (0.00) NA 85.00 (0.00) 
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Table 6.3 - Classification results for the timeseries values (prodromal PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 69.46 (14.76) 78.74 (7.12) 62.41 (18.16) 

ANN 69.05 (0.42) 69.16 (2.09) 68.53 (1.44) 

SVM 69.23 (0.01) NA 69.22 (0.02) 

mPFC RCGP 66.82 (15.66) 76.32 (8.82) 66.49 (17.38) 

ANN 69.72 (0.79) 69.53 (1.78) 69.32 (1.75) 

SVM 69.87 (0.13) NA 69.73 (0.26) 

RIPC RCGP 55.93 (25.99) 83.26 (10.26) 55.15 (21.75) 

ANN 69.42 (0.32) 69.53 (1.62) 70.11 (2.02) 

SVM 69.70 (0.14) NA 69.23 (0.25) 

LIPC RCGP 67.02 (14.68) 78.66 (16.73) 70.62 (13.40) 

ANN 69.18 (0.50) 69.17 (1.70) 68.92 (1.56) 

SVM 69.23 (0.00) NA 69.23 (0.00) 

Classification results for all the DMN regions (4 inputs) 

 

RCGP 62.45 (12.09) 72.86 (10.24) 62.46 (22.83) 

ANN 69.35 (0.74) 68.96 (1.83) 69.75 (1.16) 

SVM 74.32 (0.27) NA 70.76 (0.52) 

Classification results for all the DMN regions (1 input) 

 

RCGP 64.15 (15.10) 70.04 (12.18) 54.64 (30.34) 

ANN 69.27 (0.15) 68.77 (0.74) 69.35 (0.66) 

SVM 69.25 (0.01) NA 69.21 (0.06) 

As depicted in Table 6.1, findings revealed that PD patients were successfully classified 

from healthy controls with a maximum of 92.09% accuracy using RCGP (minimum 

accuracy: 91.46%). The results from the other two classification techniques (ANN and 

SVM) validated this finding as they were very similar: between 92.59% and 92.90% for 

ANN and SVM in all the different combinations of inputs. 
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Table 6.2 illustrates that PD patients were successfully classified from prodromal PD 

patients with a maximum accuracy of 85.87% using RCGP (minimum accuracy: 80.64%). 

The results from the other two classification techniques (ANN and SVM) validated this 

finding as they were very similar: between 84.90% and 85.25% for ANN and SVM in all 

the different combinations of inputs. 

The results revealed, as represented in Table 6.3, that prodromal PD patients were 

successfully classified from healthy controls with a maximum accuracy of 70.62% using 

RCGP (minimum accuracy: 54.64%). The results from the other two classification 

techniques (ANN and SVM) validated this finding as they were very similar: between 

68.53% and 70.76% for ANN and SVM in all the different combinations of inputs. 

Unlike for the DCM analyses, mixed ANOVAs were not conducted to evaluate the 

correspondence between participant group and timeseries features given that there were 

840 features per participant, which would not be interpretable. 

6.2.2. Classification of Dynamic Causal Modelling (DCM) 

Classification using CGP implemented in CGP Library was executed with 16 inputs (all 

the DCM values sorted by region and presented as only one vector per participant) and 1 

output (class 1 for one group, class 0 for another one). The results were then averaged over 

10 runs and are presented for each category in Table 6.4. The classification was also done 

using ANN and SVM. For SVM, only the training and test sets were considered for 

classification. 
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Table 6.4 - Classification results for DCM values 

 Training % (SD) Validation % (SD) Test % (SD) 

PD vs. controls 

CGP 91.00 (5.56) 93.23 (3.83) 90.87 (4.41) 

ANN 93.42 (1.97) 93.52 (7.57) 91.18 (8.86) 

SVM 92.86 (0.68) NA 92.86 (0.68) 

PD vs. prodromal PD 

CGP 80.01 (7.79) 90.82 (3.85) 79.12 (12.36) 

ANN 86.06 (2.47) 83.32 (8.29) 83.32 (7.39) 

SVM 85.36 (0.58) NA 85.36 (0.58) 

Prodromal PD vs. controls 

CGP 74.11 (27.42) 90.11 (12.31) 75.21 (23.01) 

ANN 78.34 (16.44) 70.00 (22.97) 65.00 (26.87) 

SVM 68.42 (0.00) NA 68.42 (0.00) 

As illustrated in Table 6.4, findings revealed that PD patients were successfully classified 

from healthy controls with 90.87% accuracy using CGP. The results from the other two 

classification techniques (ANN and SVM) validated this finding as they were very similar: 

91.18% for ANN and 92.86% for SVM. The results also revealed that PD patients were 

classified from prodromal PD patients with 79.12% accuracy using CGP. The results from 

ANN and SVM again validate these findings with 83.32% and 85.36% accuracy rates, 

respectively. Finally, the results indicated that prodromal PD patients were classified from 

healthy controls with 75.21% accuracy using CGP. The results from ANN and SVM also 

validate these findings with 65.00% and 68.42% accuracy rates, respectively. 

Examples of the CGP classification trees/graphs can be seen in Figure 6.1 and Figure 6.2 

for PD versus controls, Figure 6.3 and Figure 6.4 for PD versus prodromal PD, and Figure 

6.5 and Figure 6.6 for prodromal PD versus controls. This represents a fundamental benefit 

of CGP, generating a white box solution that enhances interpretability of the classification 

network (not always possible with ANN and SVM classification methods). Despite the 

complexity inherent in these networks, they can provide crucial relevant information. For 

instance, in Figure 6.1 and Figure 6.2, approximately half of the inputs have been used to 

arrive at the final classification. These two networks are rather simpler than those 

represented in Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6. 
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Figure 6.1 - CGP classification tree for the classification of PD vs. controls; example 1 
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Figure 6.2 - CGP classification tree for the classification of PD vs. controls; example 2 
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Figure 6.3 - CGP classification tree for the classification of PD vs. prodromal PD; example 1 
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Figure 6.4 - CGP classification tree for the classification of PD vs. prodromal PD; example 2
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Figure 6.5 - CGP classification tree for the classification of prodromal PD vs. controls; 

example 1 
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Figure 6.6 - CGP classification tree for the classification of prodromal PD vs. controls; 

example 2 
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To evaluate the correspondence between participant group and DCM features, three mixed 

ANOVAs were conducted. In each ANOVA only two groups (e.g., PD patients and 

control) were considered rather than all three groups (PD patients, prodromal PD patients, 

and healthy control) at once, to mimic the classification method used in which, again, only 

two groups were considered at any point. For all three ANOVAs, a Greenhouse-Geisser 

correction was used as the models violated sphericity. 

Firstly, to examine the correspondence between PD and control participants and DCM 

features, these were subjected to a mixed 2 × 16 ANOVA between the participant group 

(PD patients and healthy control) and DCM features (16 inputs per participant). The 

ANOVA revealed a significant main effect of DCM features (𝐹(5.47, 590.68) =

64.25, 𝑀𝑆𝐸 = 2.17, 𝑝 < .001, 𝜂𝑝
2 = .37). There was no significant interaction effect 

between participant group and DCM features (𝐹(5.47, 590.68) = 2.08, 𝑀𝑆𝐸 = 0.07, 𝑝 =

.060, 𝜂𝑝
2 = .02)  and no significant main effect of group (𝐹(1, 108) = 0.02, 𝑀𝑆𝐸 =

0.00, 𝑝 = .879, 𝜂𝑝
2 = .00). 

Secondly, to explore the correspondence between PD patients and prodromal PD 

participants and DCM features, these were subjected to a mixed 2 × 16 ANOVA between 

the participant group (PD patients and prodromal PD) and DCM features (16 inputs per 

participant). The ANOVA revealed a significant main effect of DCM features 

(𝐹(5.66, 667.89) = 112.36, 𝑀𝑆𝐸 = 3.68, 𝑝 < .001, 𝜂𝑝
2 = .49). There was no significant 

interaction effect between participant group and DCM features (𝐹(5.66, 667.89) =

1.22, 𝑀𝑆𝐸 = 0.04, 𝑝 = .296, 𝜂𝑝
2 = .01)  and no significant main effect of group 

(𝐹(1, 118) = 0.17, 𝑀𝑆𝐸 = 0.00, 𝑝 = .680, 𝜂𝑝
2 = .00). 

Finally, to investigate the correspondence between prodromal PD and control participants 

and DCM features, these were subjected to a mixed 2 × 16  ANOVA between the 

participant group (prodromal PD and control) and DCM features (16 inputs per 

participant). The ANOVA revealed a significant main effect of DCM features 

(𝐹(5.15, 123.58) = 44.51, 𝑀𝑆𝐸 = 1.71, 𝑝 < .001, 𝜂𝑝
2 = .65). There was no significant 
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interaction effect between participant group and DCM features (𝐹(5.15, 123.58) =

1.16, 𝑀𝑆𝐸 = 0.05, 𝑝 = .331, 𝜂𝑝
2 = .05)  and no significant main effect of group 

(𝐹(1, 24) = 0.01, 𝑀𝑆𝐸 = 0.00, 𝑝 = .913, 𝜂𝑝
2 = .00). 

Over the three ANOVAs, findings consistently revealed a main effect of DCM features 

with no significant main effect of participant group and no significant interaction effect. 

This represents the key finding as it indicates that the features in general are essential, 

whereas information on participant group per se is not. 

6.2.3. k-Fold Cross-Validation 

To evaluate the performance of the classifier, k-fold CV was conducted on all the different 

combinations of inputs for both DCM and timeseries values. 

6.2.3.1. Cross-Validation for RCGP for Timeseries 

The inputs were divided into folds with 80% of the data used for training, 10% for 

validation, and 10% for test. After the artificial data samples were synthesised for the 

minor class in the training set (using ADASYN), CV was repeated for 10 runs and the 

results were averaged, as depicted in Table 6.5, Table 6.6, and Table 6.7. Findings revealed 

that PD patients were successfully classified from healthy controls with a maximum 

accuracy of 91.22% using RCGP in CV (minimum accuracy: 87.55%, see Table 6.5). PD 

patients were successfully classified from prodromal PD patients with a maximum 

accuracy of 82.99% using RCGP in CV (minimum accuracy: 79.54%, see Table 6.6). 

Prodromal PD patients were successfully classified from healthy controls with a maximum 

accuracy of 68.28% using RCGP in CV (minimum accuracy: 62.58%, see Table 6.7). 
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Table 6.5 - Cross-validation results for the timeseries values (PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 88.95 (8.14) 92.09 (0.45) 88.42 (8.03) 

mPFC RCGP 85.76 (8.49) 92.60 (1.13) 87.55 (6.40) 

RIPC RCGP 91.45 (1.40) 92.76 (1.48) 90.99 (1.50) 

LIPC RCGP 90.92 (1.70) 92.02 (0.48) 91.22 (0.51) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 91.54 (0.86) 92.49 (1.16) 90.48 (2.16) 

Classification results for all the DMN regions (1 input) 

 RCGP 90.58 (2.61) 92.37 (0.99) 90.45 (1.62) 

 

Table 6.6 - Cross-validation results for the timeseries values (PD vs. prodromal PD) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 82.91 (2.46) 85.20 (1.06) 81.74 (3.18) 

mPFC RCGP 82.44 (2.50) 84.53 (0.28) 82.56 (2.19) 

RIPC RCGP 81.96 (4.15) 84.97 (1.23) 79.54 (7.56) 

LIPC RCGP 82.81 (2.17) 85.19 (0.89) 82.59 (1.65) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 81.82 (6.60) 84.94 (0.85) 80.96 (8.07) 

Classification results for all the DMN regions (1 input) 

 RCGP 82.68 (2.55) 85.18 (1.11) 82.99 (1.88) 
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Table 6.7 - Cross-validation results for the timeseries values (prodromal PD vs. controls) 

 Training % (SD) Validation % (SD) Test % (SD) 

Classification results for each DMN region 

PCC RCGP 66.90 (4.33) 75.93 (5.80) 64.20 (7.01) 

mPFC RCGP 70.91 (7.12) 81.62 (6.70) 67.15 (10.77) 

RIPC RCGP 68.53 (7.74) 77.25 (4.18) 62.58 (11.13) 

LIPC RCGP 65.87 (10.02) 79.52 (5.36) 68.28 (10.15) 

Classification results for all the DMN regions (4 inputs) 

 RCGP 66.71 (5.64) 79.78 (5.75) 63.53 (9.79) 

Classification results for all the DMN regions (1 input) 

 RCGP 63.49 (4.82) 79.94 (6.26) 64.64 (12.77) 

 

6.2.3.2. Cross-Validation for CGP for DCM 

The inputs were divided into folds with 80% of the data used for training, 10% for 

validation, and 10% for test. After the artificial data samples were synthesised for the 

minor class in the training set (using ADASYN), CV was repeated for 10 runs and the 

results were averaged, as shown in Table 6.8. 

Table 6.8 - Cross-validation results for DCM values 

 Training % (SD) Validation % (SD) Test % (SD) 

PD vs. controls 

CGP 77.37 (10.28) 85.63 (3.97) 76.45 (8.43) 

PD vs. prodromal PD 

CGP 64.17 (9.56) 75.38 (6.36) 63.28 (6.01) 

Prodromal PD vs. controls 

CGP 59.91 (6.42) 88.45 (9.58) 53.81 (13.85) 

The results revealed that PD patients were successfully classified from the healthy controls 

with an accuracy of 76.45% using CGP in CV. PD patients were classified from the 

prodromal PD participants with 63.28% accuracy using CGP in CV. Finally, the findings 

indicated that prodromal participants were classified from healthy controls with 53.81% 

accuracy using CGP in CV. 
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6.3. Discussion 

This research examined the classification of participants diagnosed with PD, prodromal PD 

participants, and healthy age-matched controls using rs-fMRI data. A key research 

question was: Can early stage PD (prodromal PD) be diagnosed using EAs on rs-fMRI 

data? Another distinctive element of this research involved (1) the application of EAs 

(CGP) as a classification method and (2) DCM analysis for classification. CGP 

classification was used for DCM analyses as well as timeseries analyses and the findings 

were validated with two other commonly used classification methods (ANN and SVM). A 

crucial benefit of EAs, specifically CGP, is that they provide a white box solution giving 

more information on the inputs used and enhanced knowledge concerning the final 

solution obtained in classification, compared to ANN and SVM. Findings were 

additionally validated using k-fold CV technique on the data. 

The data was highly imbalanced, hence, ADASYN was used to balance the data before 

performing CV, resulting in an equal class distribution within the training set (i.e., 

balanced numbers of PD, prodromal PD, and control participants). Across timeseries and 

DCM analyses, findings revealed that PD versus control participants were classified with a 

maximum accuracy of 92%, PD versus prodromal PD participants with a maximum 

accuracy of 86%, and prodromal PD versus control participants with a maximum accuracy 

of 75%. These findings are notable as early diagnosis of PD (before motor symptoms) is in 

its infancy with high rates of misdiagnosis, impacting on patient treatment and quality of 

life. This finding embodies the most important research output from this thesis. 

Findings further revealed almost no difference in the classification accuracies between 

timeseries and DCM data. In addition, findings revealed that CGP almost always provided 

equivalent performance accuracy when compared with ANN and SVM classification 

methods. Hence, these findings underscore the relevance of DCM analyses for 

classification and CGP as a novel classification tool for brain imaging data. 

A novel question addressed by this research was: is DCM analysis useful for 

classification? Although DCM has recently become a widespread tool to model effective 
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connectivity in neuroimaging data [19], [449]–[452], no research has examined 

classification using DCM analysis for any type of fMRI data, including rs-fMRI. 

Moreover, few studies have conducted DCM analysis on PD data [15]–[20]. Hence, this 

research aimed to further existing knowledge on DCM as applied to PD. An interesting 

finding was little difference in the classification accuracies between timeseries and DCM 

analyses (1-6% difference in the maximum accuracies). The findings, firstly, speak to the 

relevance of DCM data for classification and, secondly, broaden the small literature on 

DCM as applied to PD data. DCM analysis was conducted on the DMN, yet, new research 

[453] has examined DCM across multiple brain networks and currently whole-brain DCM 

of fMRI data is an ongoing project by the SPM developers lab. As such, exploring DCM 

across specific regions influenced by PD (e.g., basal ganglia) is an exciting avenue for 

future research. 

Classification of rs-fMRI data is a key theme examined by this research, specifically, this 

research explored the applicability of CGP and RCGP to classify rs-fMRI data. Previous 

research on the classification of fMRI data has largely focused on statistical modelling 

techniques (e.g., independent components analysis, multivariate pattern analysis; [342], 

[343], [454]). These latter approaches are mostly predictive (hypothesis driven), yet, 

machine learning methods (as per this research) are explanatory modelling techniques 

(mostly data driven). Machine learning approaches are advantageous given that (1) they 

can be validated, providing an unbiased estimate of accuracy [344]; (2) they are typically 

based on fewer assumptions (relative to statistical-based techniques); and (3) they can 

predict and learn concurrently from large datasets, whereas statistical modelling are 

typically used for small datasets to avoid overfitting [343], [454]. 

The approach used in this research was distinctive as EAs, specifically CGP, have not been 

used for classification of brain imaging data. CGP provided approximately equivalent 

performance accuracy when compared with ANN and SVM classification methods across 

all participant groups (PD, prodromal PD, and control). Further research can examine CGP 

as applied to task-based fMRI, which would enable researchers to explore a number of 

sophisticated questions including finger-tapping tasks (unlike rs-fMRI), which is used in 

behavioural measures and is currently a leading method for confirming PD diagnosis. 
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Following k-fold CV, classification accuracy for timeseries values decreased by only a few 

percentage. Yet, for DCM values, accuracy was reduced to 76% for the PD versus control 

participant group, although these findings held across all participant groups. The reduced 

accuracy is due to having used class-imbalanced data as, whilst there was a large sample of 

PD patients, sample sizes of the prodromal PD and control groups were comparably 

smaller. Moreover, the number of features included in the classification was significantly 

smaller in DCM values in comparison with the timeseries values. 

Imbalanced data limits classification accuracy [383], [447], [455] as most classification 

methods assume balanced class distributions, creating two problems. Firstly, high class-

imbalanced data results in limited training set sample size as classifiers often treat 

imbalanced data as though they have small sample sizes (since some classes may have 

small numbers). Secondly, learning focuses on classes with larger sample sizes, rather than 

focusing on discriminating between the sizes of the classes in the data and the 

characteristics of the actual data (rather than the synthesised data). Solutions to imbalanced 

data typically include changing/generating data to obtain equal class-distributions, which 

tends to improve classification accuracy [385]–[387]. Nonetheless, given that the synthetic 

balanced data is applied only to the training sets, classification accuracy is limited for the 

validation and test sets as before the classifier that was trained for the CV was a different 

classifier with a different accuracy level than that used in the classification part. This is an 

inevitable problem associated with imbalanced data, regardless of the number of folds 

involved in CV. 

In this research, ADASYN was used, which is a method of generating synthetic data to 

create balanced class-distributions for the training set (i.e., generating balanced numbers of 

PD, prodromal PD, and control participants). ADASYN was applied to the three 

classification groups: PD versus control, PD versus prodromal PD, and prodromal PD 

versus control. Findings revealed maximum classification accuracies of 71-92% across all 

groups when using timeseries and DCM data. Despite the reduced accuracy following CV, 

results revealed that classification was reliable for both timeseries and DCM values. 

Hence, classification on DCM and timeseries values can be used as brain-imaging 
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biomarkers for PD and the current findings underscore the relevance of CGP as a 

classification method, even for highly imbalanced data. 

This study involved an analysis of a large open dataset (PPMI) [158]. Contributing to open 

science (e.g., making data publically available) shares resources from one project to other 

research, such as the re-analysis of biomedical raw data to examine new predictions [456], 

as per the current research. Advantages of open science include data sharing, saving 

resources (e.g., money and time), exchanging expert viewpoints, reducing fraud and p-

hacking, training purposes, amongst others. Here, in addition to the reproducibility and 

resource-sharing advantages provided by open data, this research was able to access a 

sample of 128 participants (excluding participants who did not fulfil the eligibility 

requirements). Most previous research using fMRI data acquire limited samples, typically 

20 participants ([12], [407], [457], [458]; although 77 participants were tested in [13]). 

Having such a large sample size lends confidence to the generalisability of these findings. 

6.4. Conclusion 

To conclude, this chapter explored the classification of rs-fMRI data in participants 

diagnosed with PD, prodromal PD participants, and healthy age-matched controls using 

novel data (DCM analyses) and a novel classification method (CGP). Classification 

accuracy for DCM analyses was compared to that of timeseries analyses, and two other 

classification methods (ANN and SVM) were used to validate the findings, as well as 

employing k-fold CV. Across DCM and timeseries analyses, findings revealed maximum 

accuracies of 86% for classification of prodromal PD patients versus PD patients, and 92% 

for PD patients versus healthy controls using CGP. Early diagnosis of PD (before motor 

symptoms appear) is rife with challenges and current methods have high rates of 

misdiagnosis. This research further revealed a maximum accuracy of 75% in 

differentiating prodromal PD patients from healthy controls, with medical implications for 

disease management, patient treatment, and patient quality of life. Hence, this finding is 

the most important research output from this thesis. Furthermore, classification accuracy 

was approximately equivalent for (1) DCM analyses and timeseries analyses and (2) 

different classification methods (CGP, ANN, or SVM). CGP has distinct advantages 
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regarding the information linked to the solutions they generate. Therefore, these findings 

speak to the relevance of CGP as a novel classification tool for two types of brain imaging 

data (DCM and timeseries rs-fMRI analyses). This research developed automatic 

procedures for identifying PD brain imaging preclinical biomarkers, which are 

fundamental in improving accuracy of PD diagnosis methods. Furthermore, these findings 

highlight the applicability of DCM analyses for classification. 
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Within the last chapter of this thesis, a summary of the empirical findings is presented and 

the main themes arising from these are discussed. Subsequently, potential limitations and 

future directions are outlined. 

7.1. Research Aims and Summary of Findings 

The research presented in this thesis examined two principal research questions, which are 

both novel and exploratory with medical implications in relation to monitoring and 

diagnosis for PD:  

Research question 1: 

Can accurate monitoring of PD be achieved using EAs on rs-fMRI data 

for patients prescribed Modafinil? 

This research question is investigated in Chapter 5, using a controlled experiment to 

explore the classification of brain imaging data from participants administered a fatigue-

reducing medication (Modafinil) typically prescribed to PD patients, versus a control 

group. Participants were classified with a maximum accuracy of 75% for CGP 

(classification of timeseries values). The methods developed are relevant for medication 

monitoring and were then applied to the classification of clinical data (PD diagnosis) in 

Chapter 6. 

Research question 2: 

Can early stage PD be diagnosed using EAs on rs-fMRI data? 

This research question is explored in Chapter 6, which married brain imaging and 

classification approaches to identify a biomarker for PD. Findings revealed maximum 

accuracy rates of 75% for prodromal PD patients versus healthy controls (classification of 

DCM values), 86% for PD patients versus prodromal PD patients (classification of 

timeseries values), and 92% for PD patients versus healthy controls (classification of 

timeseries values). Hence, this research develops automatic methods for classifying PD 
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brain imaging preclinical biomarkers. The fact that prodromal PD patients were 

differentiated from healthy controls with such a high accuracy rate is notable and 

represents the most valuable finding from this thesis, given that current methods of 

diagnosing PD have low reliability and low accuracy, particularly for early stages of PD in 

which motor symptoms are not present, as per prodromal PD. 

In addition, Chapter 5 and Chapter 6 explored a novel research objective: to examine the 

applicability of CGP and RCGP classification for both timeseries and DCM analyses in rs-

fMRI since CGP and RCGP have not previously been used in the classification of brain 

imaging data, nor has research examined the applicability of DCM in classification. 

Chapter 5 and Chapter 6 both examined CGP classification of rs-fMRI data, applying 

classification to DCM values and timeseries values. Findings were validated with ANN 

and SVM classification methods as well as employing k-fold CV. Across both chapters, 

findings revealed almost no difference in the classification accuracies between timeseries 

and DCM data. Furthermore, CGP provided equivalent performance accuracy relative to 

ANN and SVM. CGP has distinct advantages as it provides a white box solution, enabling 

researchers to have more information regarding the elements underpinning the 

classification process. Therefore, this research underscores the applicability of DCM 

analyses for classification and CGP as a novel classification tool for brain imaging data. 

A typical limitation in medical research involves recruiting low numbers of patients, often 

resulting in class-imbalanced data (e.g., unequal numbers of controls versus patients). The 

research presented in this thesis investigated the applicability of classification methods to 

two datasets with heavily class-imbalanced data, which imitates the conditions prolific in 

medical research, with implications for the transferability of medical research using small 

and unequal sample sizes. The current research used ADASYN to balance the training set 

for the datasets used in both Chapter 5 and Chapter 6. Across both studies, findings 

revealed high classification accuracy rates, underscoring the robustness of CGP for the 

classification of medical data, even for heavily imbalanced data. 
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7.2. Key Novel Aspects 

This thesis developed novel automatic methods for identifying PD brain imaging 

preclinical biomarkers using a data-driven exploratory approach, that can facilitate clinical 

diagnosis, monitoring and investigation of PD. A crucial novelty of this work involves the 

classification of prodromal PD. Prodromal PD patients were classified with maximum 

accuracy rates of 75% relative to healthy age-matched control participants. Prodromal PD 

diagnosis typically has poor accuracy rates and high levels of misdiagnosis with other 

Parkinsonian diseases. This finding is fundamental given that the early diagnosis of 

prodromal PD, occurring 5-20 years prior to motor symptoms, is essential for efficient 

disease management. 

Further novelties examined in this thesis include the exploration of CGP and RCGP as 

applied to both timeseries and DCM analyses. Note that CGP, RCGP, and DCM have not 

previously been applied to the classification of fMRI data. Findings revealed that CGP 

yielded equivalent performance accuracy compared to ANN and SVM, yet, it provides 

core benefits including a white box solution that gives researchers more detailed 

information regarding the derived solutions. In addition, timeseries and DCM analyses 

provided equivalent classification accuracies. DCM is advantageous as it specifies the 

effective, causal, connectivity between brain regions, hence, yielding relevant information 

for clinicians examining PD deficits. As such, these novel findings indicate that DCM can 

be applied to classification and, furthermore, CGP is a new classification technique for 

brain imaging data. Finally, the exploration of these novel research points with class-

imbalanced datasets (following the application of ADASYN to reduce the impact of class-

imbalanced data on classification accuracy) facilitates the generalisation of the research 

findings to wider medical contexts, given that clinical research typically recruits unequal 

sized samples of patients and control participants. 
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7.3. Themes 

In this section, three themes are discussed: (1) biomedical imaging data for classification 

with applications for diagnosis; (2) EAs for classification; and (3) DCM values (relative to 

timeseries values) as applied to classification. 

7.3.1. Biomedical Imaging Data for Classification  

Classification is a relevant tool for diagnosis. Current methods of PD diagnosis focus 

largely on movement data, and have misdiagnosis rates of up to 15-26% by general 

neurologists [7], [8]. Yet, early diagnosis is key to providing adequate treatment given that 

treatment is less efficient as PD progresses. Hence, this thesis explored the use of rs-fMRI 

data for classification, focusing on PD patients (versus prodromal PD participants, and 

healthy age-matched controls; Chapter 6) and participants administered Modafinil (versus 

a control group; Chapter 5). Findings revealed high classification accuracies: 92% for PD 

versus control participants, 86% for PD versus prodromal PD participants, 75% for 

prodromal PD versus control participants, and 75% for participants administered Modafinil 

versus a control group. 

fMRI methods have multiple benefits, including being non-invasive (relative to other brain 

imaging techniques, e.g. PET or CAT) and time-efficient (collecting data for Chapter 5 

took only 4 minutes per participant), though it is costly (relative to questionnaire methods, 

yet, substantially cheaper than many other brain imaging techniques). Timeseries values 

provide over 100 features automatically taken from the raw data, whereas movement data 

mostly requires processing before extracting features (typically 20-30 features). DCM 

values involve far less features (only 16 values) relative to timeseries values and is based 

on Bayesian techniques. 

7.3.2. Evolutionary Algorithms (EAs) 

Research examining classification of fMRI data have typically used statistical modelling 

techniques, for instance, independent components analysis and multivariate pattern 
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analysis [342], [343], [454]. These statistical approaches are often hypothesis driven, 

whereas EAs primarily use data-driven explanatory modelling techniques. The latter have 

numerous benefits including validation (providing an unbiased estimate of accuracy [344]), 

relying on less assumptions compared to statistical-based methods, and predicting and 

learning simultaneously from big datasets (to prevent overfitting statistical methods often 

use small datasets [343], [454]). 

EAs have been successfully applied to big datasets, such as biomedical data. EAs engage 

in a solution search space, modifying candidate solutions within the data via a number of 

steps (labelled mutation and crossover). This process is iterative given that EAs start with a 

set of random solutions and, following each iteration, a new set is generated via the 

application of mutation and crossover to a subset (selected based on their fitness level) of 

the earlier set of random solutions. 

GP is an EA that maximises executable expressions [459]. Research has revealed that CGP 

(as used in Chapter 5 and Chapter 6) is competitive relative to other GP methods [330] and 

has multiple advantages in comparison to other classification methods. These include the 

reuse of sub-functions, having no bloat [336], and being able to report the classification 

model in a mathematical formula/expression as well as a graphical diagram (see Figure 

4.11 and Figure 4.12 for examples), which provides a deeper understanding regarding the 

underlying elements of the classification model, in comparison to other widely used 

classification methods including ANN and SVM. A further advantage of CGP is that the 

geometry of CGP can be constrained in order to form simpler networks, even at the cost of 

less accurate classifiers. Hence, EAs, including CGP, enable researchers to control the 

balance between developing a good classifier versus better understanding of the data inputs 

in the classification. 

EAs have been applied to PD movement data, obtaining classification accuracy of ~95% 

[409]. Yet, CGP has not previously been applied to the classification of brain imaging data. 

The research presented examined the classification of brain imaging data using EAs. 

Specifically, Chapter 5 and Chapter 6 examined the applicability of CGP and RCGP to 

classify rs-fMRI data. Findings revealed successful classification of PD patients (Chapter 
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6, relative to prodromal PD and healthy controls) and of participants administered 

Modafinil (Chapter 5, relative to a control group) with high accuracy rates. Hence, these 

results suggest that CGP classification can be used as a tool for identification of brain 

imaging biomarkers associated with PD and with the ingestion of Modafinil for PD drug 

treatment monitoring. 

EAs are commonly used techniques for generating classifiers [287], [460]–[462]. A novel 

element of the research presented in this thesis involves the use of dynamical classifiers 

(e.g., artificial biochemical networks). Biomedical signals (e.g., signals derived from the 

human nervous system) are dynamic as these are complex, nonlinear and nonstationary. A 

benefit of using RCGP is its dynamic nature. Previous work on the classification of 

biomedical timeseries data typically has used static classifiers (e.g., SVM [443] and feed-

forward neural networks [444]; see also [445], [446] for examples of research that has 

examined the use of static classifiers to dynamical features). Nevertheless, fMRI data is 

dynamic (being complex, nonlinear and nonstationary). Hence, it is possible that a 

dynamic classifier is better suited to biomedical imaging data. Further research can 

examine the performance of dynamic classifiers relative to static classifiers. 

7.3.3. Dynamic Causal Modelling (DCM) 

DCM analysis is advantageous as it provides information on the causal links between 

different brain regions. Recently DCM has gained in popularity in the analysis of 

neuroimaging data [19], [449]–[452], yet, previous research has not investigated whether 

DCM values are useful in classification. Further, only limited research has examined DCM 

as applied to PD data [15]–[20]. The research presented in this thesis applied DCM values 

to classification for PD brain imaging data (Chapter 6) and for participants administered 

Modafinil (Chapter 5). Indeed, Chapter 5 and Chapter 6 adopted a novel approach by using 

DCM to examine the endogenous/intrinsic effective connectivity and the causal 

interactions across the DMN regions and, subsequently, the DCM values were subjected to 

classification. Findings across both Chapter 5 and Chapter 6 revealed that DCM values for 

classification provided comparable accuracy across all three classifiers, compared to 

timeseries values. 



Chapter 7: Discussion 

215 

Other research indicates that classification accuracies are typically higher when using raw 

unprocessed data (as per timeseries values). The timeseries values used in this research 

included over 100 features per participant, whereas the DCM values included only 16 

features per participant and consisted of processed data (comprising of the causal effect of 

one neuronal region on another). Findings from Chapter 5 and Chapter 6 speak to the 

applicability of DCM data for classification, regardless of this being processed with few 

features (compared to timeseries data). Moreover, Chapter 6 findings extend the limited 

research on DCM in relation to PD data. 

7.4. Potential Limitations 

In this section, two potential limitations are outlined: (1) the use of heavily imbalanced 

data with implications on classification accuracy; and (2) the classification of datasets 

including only brain imaging data, rather than including various sources of behavioural 

data, such as movement data. 

7.4.1. CGP Classification Networks 

A core advantage of CGP is that it can provide a white box solution, giving researchers 

detailed information on how the inputs have been used to train the classifiers in order to 

derive outputs. Hence, this research aimed to achieve more specific brain imaging 

biomarkers, considering that there are 16 features in a DCM connectivity matrix. This was 

supposed to be accomplished via detecting a clear relationship between the classification 

networks concerning input nodes (DCM connectivity values) and their use in training the 

resulting classifiers. However, despite exploring a large number of the networks generated, 

there were no apparent similarities regarding how the algorithms employed the inputs for 

classification of the brain imaging data. Moreover, the research examined modifying the 

classification parameters for CGP and RCGP, revealing no change in the findings despite 

differing classification accuracies. Future research can indeed explore the possibility of 

detecting classification networks that have greater similarity (i.e., greater similarity in 

white box solutions) in terms of using DCM connectivity values as inputs with the 

objective of obtaining high classification accuracy rates. 
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7.4.2. Class-Imbalanced Data 

Imbalanced datasets are relatively common with regards to the classification of biomedical 

data [447], [463]. The minority class typically includes data from the key group (rather 

than the control group) due to recruitment and cost limitations [463] and this data may 

include extreme cases [464], further impeding accurate classification. The research 

presented included heavily class-imbalanced data: Chapter 5 used 39 participants 

administered Modafinil and 111 participants in the control participant group; Chapter 6 

used a sample of eight healthy controls, 18 prodromal PD patients, and 102 early PD 

patients. Nevertheless, the strong results achieved in both Chapter 5 and Chapter 6 are 

notable given the imbalanced nature of the data and can be better generalised to many 

clinical datasets, which are typically class-imbalanced (given limitations in recruiting 

clinical samples). 

Imbalanced data reduces classification accuracy [383], [447], [455] given that 

classification methods typically assume balanced class distributions [464]. Four 

implications of class-imbalanced data are as follows: (1) training set sample size is reduced 

since classifiers typically consider that imbalanced data has limited sample sizes; (2) 

learning is biased towards classes with bigger sample sizes; (3) classification rules 

predicting the majority class (e.g., for Chapter 5, the control participant group) tend to be 

specialised, hence, with low coverage, and so general rules (predicting the minority class) 

are prioritised; and (4) the classifier may incorrectly label small groups of minority class 

data as noise and reject these. Further, classification of the minority class can be worsened 

by the presence of genuine noise data, given the small sample size available, as there is 

less accurate data available to train the classifier [465]. 

Solutions commonly involve changing/generating data to obtain more balanced class-

distributions, resulting in heightened classification accuracy [385]–[387]. In Chapter 5 and 

Chapter 6, ADASYN was used to generate synthetic data leading to balanced class-

distributions for the training set (e.g., for Chapter 5 this involved generating balanced 

numbers of participants in the Modafinil and control participant groups in the training set). 

A limitation of generating synthetic balanced data is that it is applied only to the training 
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sets. The classifier trained for CV is a different classifier with a different accuracy level 

than that used in the classification part. Therefore, classification accuracy for the validation 

and test sets is typically reduced. In Chapter 5 and Chapter 6, classification accuracy was 

reduced following CV, yet, findings still underscored the relevance of CGP as a robust 

classification method, including for class-imbalanced data. 

Imbalanced data remains an important limitation that is very common in medical datasets, 

as used in the research presented. Chapter 6 used open data acquired from the PPMI 

dataset. This dataset is a growing source of data; hence, the class-imbalanced limitation 

can be addressed in time, considering that every year a large amount of data is collected 

globally from approved centres. 

7.4.3. fMRI Data 

Chapter 5 and Chapter 6 examined CGP classification of rs-fMRI. The data was acquired 

from open sources, hence, this limited the scope of the data available to only brain imaging 

data. A key future direction would be to integrate both brain imaging and behavioural data. 

This is particularly relevant for classification of NDDs in which movement is often 

implicated. 

Indeed, movement characteristics have been widely studied in research regarding how EAs 

can be used to induce classifiers able to discriminate PD patients from healthy controls or 

from other NDDs. For instance, Lones et al. developed two classification techniques: 

sliding window genetic programming expressions and artificial biochemical networks 

[409]. These classifiers identified PD patients (relative to healthy controls) with ~95% 

accuracy based on movement data. In contrast, Long et al. examined only brain imaging 

data (multimodal imaging and multi-level measurements) and successfully classified early 

PD patients (relative to healthy controls) with an accuracy of 87% [458]. As such, these 

promising classification powers suggest that using a combination of rs-fMRI and 

behavioural tasks (e.g., finger-tapping [406], reach and grasp [407], and drawing tasks 

[408]) may provide a non-invasive and more accurate approach, improving the clinical 

diagnosis of early PD and potentially other NDDs. 
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7.5. Future Directions 

In this section, two areas for future research are outlined: (1) Classification of other 

neurological/neurodegenerative diseases; and (2) whole-brain DCM analysis. 

7.5.1. Classification of Neurological/Neurodegenerative Diseases 

The research presented in this thesis involved the classification of PD patients (Chapter 6) 

and participants administered Modafinil for accurate PD drug monitoring (Chapter 5) and 

identified a brain imaging biomarker for both PD and Modafinil by focusing on changes to 

the DMN whilst participants were at rest. Research reveals that changes to the DMN may 

signal several neurological disorders, for instance, AD [466], [467], attention deficit 

hyperactivity disorder [468], [469] and depression [470]–[472] amongst others. Hence, an 

important direction for future research involves identifying whether CGP classification is 

applicable to other neurological/neurodegenerative diseases, such as AD. 

Currently, PD has misdiagnosis rates of 15-26% [7], [8]. Given that the research presented 

in this thesis obtained high classification accuracy rates, findings can be applied to medical 

settings with the objective of confirming disease diagnosis and accurate drug treatment 

monitoring. Indeed, this research can be applied to other neurological/neurodegenerative 

diseases in order to examine whether the intrinsic connectivity as a result of DCM analysis 

can be used as a biomarker for diagnostic purposes. 

The use of resting-state scans (as per the research reported in this thesis) is well suited to 

individuals with neurological/neurodegenerative diseases for two reasons. Firstly, task-

based studies include more variables, requiring greater control. With rs-fMRI, group 

differences are more clearly identified since differences between scans that do not arise 

from participants’ mental state are reduced. Secondly, participants with certain NDDs 

(e.g., dementia) may not be able to correctly execute the tasks involved in a task-based 

study, yet resting-state studies can still include these participants. 
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Chapter 6 examined the classification of PD patients, prodromal PD patients, and healthy 

controls using binary classification (e.g., classification of PD patients relative to prodromal 

PD patients). A timely next step involves the classification of multiple PD subgroups 

simultaneously. Indeed, rather than having binary classification, future research could 

examine developing classifiers with multiple outputs (one output per PD subtype). 

7.5.2. Whole-Brain Dynamic Causal Modelling 

DCM analysis focuses only on specific brain regions, selected in relation to a given 

research question. This research examined DCM analysis on the DMN. The DMN has 

been typically examined in rs-fMRI research with much research linking changes in the 

DMN to biomarkers for neurological conditions [466]–[472]. Nevertheless, expanding the 

brain regions included in DCM analysis to explore large – even whole-brain – neural 

networks is a relevant and timely approach that can broaden our understanding of the 

mechanisms triggering cognitive processes (e.g., consciousness) for both individuals with 

neurological/neurodegenerative disorders (e.g., identifying biomarkers for neurological 

disorders) and healthy individuals. 

7.6. Overall Conclusions 

This thesis investigates two overarching themes: (1) the development of methods for 

accurate monitoring of PD medication using EAs on rs-fMRI data for participants 

administered Modafinil; and (2) the diagnosis of early stage PD (prodromal PD) using EAs 

on rs-fMRI data. Classification was conducted on timeseries values as well as DCM 

values. Additional novel features of this research include the application of CGP and 

RCGP classification for brain imaging data and, also, the use of DCM values in 

classification. Findings revealed maximum accuracy rates of 75% for prodromal PD 

patients versus healthy controls, 86% for PD patients versus prodromal PD patients, and 

92% for PD patients versus healthy controls. These findings were validated with two 

classification methods (ANN and SVM) and revealed that CGP provided equivalent 

performance accuracy relative to ANN and SVM. Further, there was almost no difference 

in the classification accuracies between timeseries and DCM data. These findings attest the 
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significance of DCM analyses for classification and CGP as a new classification method 

for brain imaging data. 

As such, this research identified a brain imaging biomarker for PD patients, with 

particularly high accuracy for diagnosing the most challenging of PD subtypes – 

prodromal PD – early PD patients without motor symptoms. This finding represents the 

most valuable research output from this thesis. Standard methods for the diagnosis of 

prodromal PD reveal low reliability with high rates of misdiagnosis, underscoring the 

clinical relevance of the current findings in developing an automatic method for classifying 

PD brain imaging preclinical biomarkers. Indeed, implications abound regarding 

confirmation of PD diagnosis – a relevant and timely approach given current overall PD 

misdiagnosis levels of 15-26% [7], [8]. Finally, the research presented in this thesis 

underscores the importance developing current classification methods for improving the 

differential diagnosis of neurological/neurodegenerative diseases, including subtypes 

within these (e.g., PD subtypes). In addition, methods examining the concurrent 

classification of multiple different disease subgroups (rather than binary classification) are 

a much-needed step for future research. 
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List of Abbreviations 

ACO Ant Colony Optimisation 

AD Alzheimer’s Disease 

ADASYN Adaptive Synthetic Sampling 

AI Artificial Intelligence 

AIS Artificial Immune System 

ANN Artificial Neural Networks 

Bagging Bootstrap Aggregating 

BOLD Blood-Oxygen Level Dependent  

BRAIN Bradykinesia Akinesia Incoordination Test 

CAT Computed Axial Tomography  

CBD Corticobasal Degeneration 

CDR Clinical Dementia Rating 

CGP Cartesian Genetic Programming  

CI Computational Intelligence 

CONN Functional Connectivity Toolbox 

CSF Cerebrospinal Fluid 

CT See CAT 

CV Cross-validation 

DAT Dopamine Transporter Imaging 

DCM Dynamic Causal Modelling 

DMN Default Mode Network 

EAs Evolutionary Algorithms  

EEG Electroencephalography  

EPI Echo Planar Imaging 

EU European Union 

FA Flip Angle 

FFT Fast Fourier Transform  

FID Free-Induction Decay 

Flair Fluid Attenuated Inversion Recovery 

fMRI Functional Magnetic Resonance Imaging  

FoV Field of View 

FPC Fronto Parietal Control 

FSL FMRIB Software Library 

FWHM Full Width at Half-Maximum 

GA Genetic Algorithms 

GP Genetic Programming 

GWAS Genome Wide Association Surveys 

HD Huntington’s Disease 
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kNN k-Nearest Neighbours 

LB Lewy Body 

LID Levodopa-Induced Dyskinesia 

LIPC Left Inferior Parietal Cortex 

MBRS Modified Bradykinesia Rating Scale 

MDS-

UPDRS 

Movement Disorder Society sponsored revision of Unified Parkinson’s 

Disease Rating Scale 

MEG Magneto Encephalography  

MoCA Montreal Cognitive Assessment 

mPFC Medial Prefrontal Cortex 

MNI Montreal Neurological Institute 

MRI Magnetic Resonance Imaging  

MSA Multiple System Atrophy 

NDDs Neurodegenerative Diseases  

NHS National Health Service 

NICE National Institute for Health and Care Excellence 

NINDS National Institute of Neurological Disorders and Stroke 

NIRS Near Infrared Spectroscopy  

PCC Posterior Cingulate Cortex 

PD Parkinson’s Disease 

PET Positron Emission Tomography  

PPMI Parkinson’s Progression Markers Initiative 

PSO Particle Swarm Optimisation 

PSP Progressive Supranuclear Palsy 

RBD Rapid Eye Movement Sleep Behaviour Disorder 

RCGP Recurrent CGP 

RF Radio Frequency 

RIPC Right Inferior Parietal Cortex 

rs-fMRI Resting State fMRI  

RSN Resting State Neural Network 

SD Standard Deviation 

SEM Structural Equation Modelling 

SIGN Scottish Intercollegiate Guidelines Network 

SPECT Single Photon Emission Computed Tomography 

SMOTE Synthetic Sampling with Data Generation 

SNR Signal to Noise Ratio 

SPM Statistical Parametric Mapping 

SVM Support Vector Machines 

TE Echo Time 

TR Repetition Time 

UHDRS Unified Huntington’s Disease Rating Scale 
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UK United Kingdom 

UPDRS  Unified Parkinson’s Disease Rating Scale 

UPSIT University of Pennsylvania Smell Identification Test 

USA United States of America 

WM White Matter 
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