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Abstract

The analysis of shape-variations due to changes in facial expression and gender

difference is a key problem in face recognition. In this thesis, we use statistical shape

analysis to construct shape-spaces that span facial expressions and gender, and use

the resulting shape-model to perform face recognition under varying expression and

gender. Our novel contribution is to show how to construct shape-spaces over fields

of surface normals rather than Cartesian landmark points. According to this model

face needle-maps (or fields of surface normals) are points in a high-dimensional

manifold referred to as a shape-space.

We start using a distance measure to discover the similarity between faces and

gender difference, using a number of alternatives including geodesic, Euclidean and

cosine distance between points on the manifold. For recognition we compare the

perfomance distance between Euclidean, cosine and geodesic distance associated

with the shape manifold. Here we explore if the distances used to distinguish gender

and recognise the same for under different expressions. Also, to explore whether the

Fisher-Rao metric can be used to characterise the shape changes due to differences

expression and gender difference. We use a 2.5D representation based on facial

surface normals (or facial needle-maps) for gender classification and face expression.

The needle-map is a shape representation which can be acquired from 2D intensity

images using shape-from-shading (SFS). Using the von-Mises Fisher distribution,

we compute the elements of the Fisher information matrix, and use this to compute

geodesic distance between fields of surface normals to construct a shape-space. We

embed the fields of facial surface normals into a lower dimensional pattern space



using a number of alternative methods including multidimensional scaling, heat

kernel embedding and commute time embedding. We present results on clustering

the embedded faces using the BU-3DFEDB, Max Planck and EAR databases. The

thesis is divided into five chapters.

In Chapter 1 we give a brief introduction and an outline of the thesis. Chapter

2 provides a literature review of aspects related to this topic. More specifically, it

starts by describing the relevant literature of face expression recognition and gender

difference in computer vision research and the approaches for facial shape recovery.

Then, we give a detailed review of the methods developed for face expression and

gender difference recognition. Also, we are working with facial shape recovery, we

review some relevant techniques including the popular shape-from-shading methods.

Are presented in Chapter 4 our first attempt to perform face expression recognition

using facial needle maps which is recovered using shape-from-shading. We explore

how the different distance measure can be used to measure different facets of shape

including gender and expressions. We compute geodesic, euclidean, cosine and Ma-

halanobis distances for the long-vector representation of the needle-maps for the

faces. In Chapter 5 we explore how the Fisher-Rao metric can be used to measure

different facets of facial shape estimated from fields of surface normals using von-

Mises Fisher (vMF) distribution. In particular we aim to characterise the shape

changes due to differences in gender and due to different facial expression. We make

use of the vMF distribution since we are dealing with surface normal data over the

sphere R2 The thesis concludes with Chapter 6, where a summary of the contribu-

tions of the research work is presented. Also, overall conclusions of the work, as well

as, possible future work are discussed.
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CHAPTER 1

Introduction

Face recognition is an extremely complex visual task. Over the past 30 years exten-

sive research has been conducted by psychophysicists, neuroscientists, and engineers

on various aspects of face recognition by humans and machines [125] [27] [88] [113].

Despite significant advances in face recognition, automated face recognition is the

ultimate goal in the computer vision problem, with many commercial and law en-

forcement applications such as entertainment (e.g., for video games, virtual reality),

smart cards (e.g., for drivers’ licenses), information security (e.g., for personal de-

vice logon, database security) and law enforcement and surveillance (e.g., for CCTV

control, suspect tracking and investigation) [100]. While the earliest work on face

recognition can be traced back at least to the 1950s in psychology and to the 1960s
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in the engineering literature. It is only very recently that acceptable results have

been obtained. However, face recognition is still an area of active research since a

completely successful approach or model has not been proposed to solve the face

recognition problem.

These problems stem from the fact that existing systems are highly sensitive to

environmental factors during image capture (Figure 1.1 shows examples of several

variations), including: (i) Variations in facial orientation: the same face can be pre-

sented to the system at different perspectives and orientations. For instance, face

images of the same person could be taken from frontal and profile views. Besides,

head orientation may change due to translations and rotations. Rotation in depth

and perspective transformation may also cause distortion. The common way to deal

with pose variation is to isolate pose types (i.e., frontal, profile, rotated). (ii) Pres-

ence or absence of structural components: A robust face recognition system should

be insensitive to noise generated by frame grabbers or cameras. Also, it should

function under partially occluded images. A robust face recognition system should

be capable of classifying a face image as “known” even under above conditions, if

it has already been stored in the face database. Also, could be difficult to identify

the gender. (iii) Facial expression: is a difficult task due to the natural variation in

appearance of subjects. (iv) Illumination: face images of the same person can be

taken under different illumination conditions such as, the position and the strength

of the light source can be modified. Variations are the most difficult type to cope

with due to fact that pixel intensities are directly affected in a nonlinear way by

changing illumination intensity or direction.

This research focuses on the recognition of face expression and gender differ-
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Figure 1.1: Examples of several variations during image capture.
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ence because face expression and gender difference provide an important behavioral

measure for the study of emotion, cognitive processes, and social interaction. Face

expression and gender difference are commonly acceptable biometrics used by hu-

mans in their visual interaction. A biometric system is a pattern recognition system

that establishes the authenticity of a specific physiological or behavioral character-

istic.

The main motivation for this research topic is the analysis of shape-variations

due to changes in facial expression and gender difference being a key problem in

face recognition. Also, gender difference and face expression is an important is-

sue for the development of intelligent systems. Some applications include making

Human-Computer Interaction (HCI) more user-friendly, passive surveillance and ac-

cess control, collecting valuable demographics (e.g., the number of women entering

a store on a given day), and improving the performance of face identity recognition

by using face expression specific models.

Statistical theories of shape variation [123] have been shown to be powerful tools

for image interpretation. One important approach is to represent a shape by a

set of landmark points on the boundary, and to capture shape variations using the

covariance matrix for the Cartesian co-ordinates of the landmark points [31] [87].

Often, Cartesian landmarks are not the most convenient shape representation. For

certain classes of shape, directional information is more convenient. However, if

the statistical analysis of shapes is attempted with non-Cartesian data, then the

construction of shape-spaces is no longer a straightforward problem.

This thesis aims to complement existing efforts in automatic face expression and

gender difference recognition by taking into account the 3D facial information. The
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shape information of a face can be encoded in a 3D head scan, a facial surface, or a

facial needle-maps (a field of surface normals).

1.1 Motivation and Contribution

This work is motivated in part by the fact that faces have multiple shape proper-

ties, which can be used to categorize them according to different levels of specificity.

Examples include gender, ethnicity, age, expression, identity, attractiveness and dis-

tinctiveness [123]. In particular, we are interested in how such shape variations

manifest themselves in terms of changes in the field of surface normals. The reason

for this is that we aim to fit statistical models of shape to 2D facial images, and from

these images recover information concerning 3D shape. One natural way that cap-

tures features of the human vision system is to employ shape from shading to recover

surface shape from variations in brightness. Here, it is more natural to represent the

facial surface using fields of surface normals rather than surface height information,

since the former is directly linked to the physical process of light reflectance.

We are particularly interested in the use of these ideas to represent variations in

facial shape, and to determine the modes of variation due to factors such as gender

and expression. Our contributions, following:

• Construct a shape-space that can be used to recognise instances of the same

face from 2.5D images. As a result surface normal models are more suitable

for the purposes of fitting to image data. However, due to their non-Cartesian

nature the statistical modeling of variations in surface normal direction is

more difficult than that for landmark positions. To overcome this problem, we
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make use of the statistical representation developed by Smith and Hancock [88]

which converts surface normals into a Cartesian form using the equidistance

azimuthal projection. With the surface normal data in Cartesian form we

construct a shape-space for variations due to changes in facial expression and

gender difference.

• Construct a model for variations in facial shape due to changes in expression

or different gender using information provided by facial needle-maps. A facial

needle-maps is the description of the local orientation of a facial surface, from

which the facial surface can be recovered by surface integration. Moreover, the

orientation field is an intermediate representation in human visual perception,

and is a component of the 2.5D sketch introduced by Marr [62]. This 2.5D

representation is critical for shape-processing, and can be derived from 2D

retinal images using shape-from-shading.

• Our goal in this thesis is to explore how to use the vMF distribution for

shape representation using Fisher Information Matrix, and in particular to

recognise variations in facial shape due to expression and gender difference.

Fields of surface normals can be viewed as distributions of points residing on

a unit sphere and may be specified in terms of the elevation and azimuth

angles. It is natural to parameterise such statistical variations in direction

using the von-Mises Fisher (vMF) distribution, which is specified in terms

of a mean surface normal direction and a concentration parameter. Working

in the surface normal domain (see Figure 1.2), we show how to use the vMF

distribution to represent unstructured surface normal data without landmarks.
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To measure the similarity between two fields of surface normals parameterized

using the vMF distribution we make use of the Fisher-Rao metric. This way,

facial similarity is measured by the geodesic distance between the shapes on a

statistical manifold.

Figure 1.2: Face expression on fields of surface normals.

1.2 Thesis Outline

The remainder of this thesis is organized into the following chapters.

Chapter 2 provides a literature review of aspects related to the research topic.

More specifically, it starts by describing the relevant literature of face expression

and gender difference recognition in computer vision and the approaches for facial

shape recovery. Then, we give a detailed review of the methods developed for face

expression and gender difference recognition. Since we are also working with facial

shape recovery, we review some relevant techniques including the popular shape-

from-shading methods.

In Chapter 4 we present our first attempt to perform face expression recognition

using facial needle maps, which is recovered using shape-from-shading. We explore
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how different distance measures can be used to calculate different facets of shape

including gender and expression. We compute geodesic, Euclidean, cosine and Ma-

halanobis distances for the long-vector representation of the needle-maps for the

faces.

In Chapter 5 we explore how the Fisher-Rao metric can be used to measure

different facets of facial shape estimated from fields of surface normals using the von-

Mises Fisher distribution. In particular we aim to characterise the shape changes due

to differences in gender and facial expressions. We make use of the vMF distribution

since we are dealing with surface normal data over the sphere R2.

The thesis concludes with Chapter 6, where a summary of the contributions of

the research work is presented. Also, overall conclusions of the work, as well as,

possible future work are discussed.



CHAPTER 2

Literature Review

In this thesis, we use statistical shape analysis to construct shape-spaces that span

facial expressions and gender difference by facial needle-maps, and use the resulting

shape-model to perform face recognition under varying expression and gender. Pre-

vious work have shown that the representation of shape has proved to be an elusive

problem in the mathematics and statistics literature. This research involves three

main themes: (i) Facial data representation. (ii) Measure distance to discover the

similarity between face expressions and gender difference, which is measured using a

number of alternative distances (geodesic, Euclidean, cosine and Mahalanobis). (iii)

Explore whether Fisher-Rao metric can be used to characterise the shape changes

due to expression and gender differences. In this chapter, we provide a thorough
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review of the literature relevant to these topics. The chapter is organized as follows.

We commence in Section 2.1 with a review about Face recognition including face

expressions and gender difference. Section 2.2 shows how statistical classification

could be represented. Section 2.3 provides the most popular statistical of shape

used in the literature. In the section 2.4 shows how shape can be represented and

we review the most popular statistical approaches to face recognition (face expres-

sion and gender). Section 2.5 describes geometric details about shape-space. Section

2.6 shows the most important statistical shape-space approaches and the most fa-

mous methods used by the research community. Finally, Section 2.7 concludes the

chapter.

2.1 Face Recognition

An important goal in image understanding is to detect, track and label objects of

interest present in observed images. Objects can be characterized in many ways

according to their colors, textures, shapes, movements, and locations. The past

decade has seen significant advances in the modeling and analysis of pixel values or

textures to characterize objects in images with limited success. The study of human

face recognition has remained a disparate field until 1975 [118] pointed out the lack

of a broad theoretical framework to bring the findings together. Since then, other

theories of face recognition have been proposed [12], [100], [18], [88], [106].

In this thesis we work with face expression and gender difference. There has been

interest in both topics, face expression and gender difference, for scientists from sev-

eral different fields such as computer science, engineering, psychology, neuroscience
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and others [21] [27].

2.1.1 Face Expression

There are many ways that humans display their emotions. The most natural way to

display emotions is using facial expressions (Figure 2.1). In the past 20 years there

has been much research on recognizing emotion through facial expressions. The

research about face expression is motivated because it is extensively used in a wide

range commercial and law enforcement applications. This reasearch was pioneered

by Ekman, Friesen and Ancoli [32] who started their work from the psychcology per-

spective. In the early 1990s the engineering community started to use these results

to construct automatic methods of recognizing emotions from facial expressions in

images or video [21] [63] [68] [79] [118] .

Work on recognition of emotions from image and video has been recently sug-

gested and shown to work by Chen [21], Chen et al. [20], De Silva et al. [27], [88],

[91]. These researches include two methods: holistic (Principal Component Analy-

sis (PCA) and Linear Discriminant Analysis (LDA)) and feature-based (Gabor and

Scale Invariant Feature Transform-based methods). Holistic approaches use the en-

tire face region for the task of feature extraction and, therefore, avoid difficulties in

the detection of specific facial landmarks. Feature-based approaches on the other

hand, extract local features from specific feature points of the face. Cohen [122]

proposed a multilevel HMM that uses the state sequence of independent HMMs to

segment and recognize facial expression.
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Figure 2.1: Face Expression - From left to right: Anger, Disgust, Fear, Happy,
Neutral, Sad, Surprise.

2.1.2 Gender Difference

Women and men have on invariant aspect of faces (gender difference). Humans can

readily determine gender difference for most faces (familiar or unfamiliar). Even

with the hair style concealed, men’s facial hair removed, and no cosmetic cues, hu-

man subjects can still determine sex with an accuracy as high as 96 percent [15].

This observation has attracted the interest of gender difference and prompted them

to explore what is the facial information that differentiates males and females [14]

[13]. Buchala [14] applied Principal Component Analysis (PCA) and explored the

PCA components that gave the greatest gender discrimination using Linear Dis-

criminant Analysis (LDA). Sun [94] used genetic algorithms to apply PCA features

vectors to select the gender discriminating feature subset. Lu et al. [58] applied the

use of a pixel-pattern-based texture feature for gender classification. The main idea

of this method is that the face image can be regarded as a composition of micro-

patterns. The pattern templates were obtained through PCA, and Adaboost was
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used to select the discriminating feature subset. Also, Active Appearence Models

(AAM) have been used by some researches as a feature extraction mechanism in

gender discrimination. Saatci and Town [81] use AAM and Support vector machine

for gender. Also, Wilhelm and Bohme [108] compare AAM with Independent Com-

ponent Analysis (ICA) for gender difference. In [46], the differentiation capabilities

of full face, jaw, lips/mouth, nose and eyes were evaluated. These regions were

manually clipped, represented by AAM and classified using LDA. Shakhnarovich

et al. [83] applied a thresholded weak classifier variant of Adaboost to detected

face images for gender difference. Baluja et al. [2] explored the use of Adaboost

on low resolution grayscale face images. Makinen and Raisamo [60] [59] combined

face detection and gender classification, and gave a comprehensive comparison of

state-of-art gender classification methods. Section 2.2.1 explain some statistical ap-

proaches to face recognition that were presented previously: Eigenfaces, Fisherfaces

and AAM).

2.2 Statistical Classification

Statistical classification is represented in terms of d features or measurements viewed

as a point in a d-dimensional space. The goal is to choose those features that allow

pattern vectors belonging to different categories to occupy compact and disjoint

regions in a dimensional feature space [43].

Statistical pattern recognition has been used successfully to design a number

of commercial recognition systems. In statistical pattern recognition, a pattern is

represented by a set of d features, or attributes, viewed as a d-dimensional feature
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vector.

One of the most important stages in statistical face recognition is dimensionality

reduction to represent each face by a d-dimensional feature vector, where d is as

small as possible. There are some reasons for the low-dimensional representation.

The first reason is that no matter if the original data representation is 2D inten-

sity images, or 21
2
D surfaces, or 3D models, it will inevitably contain information

which is either redundant or irrelevant to the face attribute recognition task. Accord-

ing to Marr [62], the processes involved in vision produce a series of representations

providing increasingly detailed information about the visual environment. Marr

identified three major kinds of representation [62], [109]:

• (i) 2D: this provide a two-dimensional description of the main light-intensity

changes in the visual input, including information about edges and contours.

This representation is obtained from the two-dimensional intensity images;

• (ii) 21
2
D sketch: this incorporates a description of the depth and orientation of

visible surfaces. Using the technology of Shape-From-Shading, this represen-

tation can be achieved from a single intensity image. Like the primal sketch,

it is observer-centered;

• (iii) 3D model representation: this describes three-dimensionally the shapes

of objects and their relative positions in a way that is independent of the

observer’s viewpoint.

The second reason as stated in [29] is that, the classification of patterns as per-

formed by humans is based on very few of the most important features. Moreover,
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keeping the number of features to the absolute minimum will curtail the effect of the

curse of dimensionality phenomenon on the complexity of the classifier. Mathemat-

ical dimensionality reduction techniques can be classified into two major categories:

• (a) Feature selection: select the best subset of the input features in the mea-

surement space. Feature selection is more useful in the face attributes (e.g.,

gender, ethnicity, age) recognition rather than in the face identity recognition,

because very few components are required to encode attributes such as gen-

der, ethnicity and age. However, a large number of components are required

to encode identity and these components are widely distributed [14];

• (b) Feature extraction create new features in a transformed space. Popular

feature extraction methods include Principal Component Analysis (PCA) [44],

Principal Geodesic Analysis (PGA) [35], Linear Discriminant Analysis (LDA)

[95].

2.2.1 Statistical Approaches to Face Recognition

Since the 1990s, appearance based methods have been dominant, from which two

face recognition methods are derived: holistic appearance feature based, and analytic

local feature based. In recent years, Eigenfaces [106] and Fisherfaces [3] approaches

have attracted much attention.

2.2.1.1 Eigenfaces

Eigenfaces was proposed by Turk and Pentland for face identification in 1991 [106].

In their work, face images are projected into a feature space (face space) through



44 Chapter 2: Literature Review

Principal Component Analysis [70] [42]. PCA is a technique that can used to simplify

a data set. The PCA aim to reduce the dimensionality of the data set and to identify

new meaningful underlying variables. PCA is widely used in the statistical face

recognition area. The most famous is the Eigenfaces [106] [74]. The Eigenfaces are

the principal component of the original face image, obtained by the decomposition

of PCA, forming the face space from these images.

Consider a set of N sample images x1, x2, ......xN taking values in an dimensional

image space, and assume that each image belongs to one of c classes X1, X2, ......Xc.

Consider a linear transformation mapping the original dimensional image space into

n-dimensional feature space, where m < n. The new feature vectors yk ∈ Rm are

defined by the following linear transformation:

yk = W T xk (2.1)

k = 1, 2, ....., N (2.2)

where W ∈ Rn×m is a matrix with orthonormal columns. If the total scatter

matrix ST is defined as

ST =

N
∑

k=1

(xk − µ)(xk − µ)T . (2.3)

where µ ∈ Rn is the mean image of all samples, then after applying the linear

transformation W T , the scatter of the transformed feature vectors (y1, y2, ....., yN)

is W T ST W .

In [99], who observed that the conventional definition of PCA lacked an associ-
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ated probabilistic model for the observed data. PCA can be derived within a density

estimation framework, and proposed their probabilistic Principal Component Anal-

ysis method. Based on the probabilistic framework of PCA, they further proposed

a mixture of probabilistic principal component analyzer [98], which is able to model

complex data structures with a combination of local PCA models. Moghaddam and

Pentland [67] also combined density estimation with eigenspace decomposition, and

proposed a probabilistic visual learning technique. Moreover, they showed how the

learning technique was effectively applied to face detection and recognition, espe-

cially to the view-based face recognition.

Scholkopf et al. [82] proposed the kernel PCA method. By making use of kernel

functions to compute the dot products between two vectors, they efficiently com-

puted principal components in a high-dimensional feature space, which is related to

the input space by a non-linear mapping. In [119] and [51], the kernel PCA method

has been applied to face recognition and they achieved a positive performance.

Koren et al. [53] have proposed a weighted PCA method. They investigated

the relationship between PCA and multidimensional scaling, and considered PCA

as computing the projection that maximizes the sum of squared distances in the

projected feature space. By incorporating symmetric non-negative pairwise weights

(dissimilarities) into the sum of squared distances, they controlled the directions of

the leading PCA eigenvectors.

2.2.1.2 Fisherfaces

Fisherfaces was proposed by Belhumeur et al. [3] in 1997. It is based on Fisher

Linear Discriminant Analysis (LDA). LDA is a widely used method for feature
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extraction and dimensionality reduction in pattern recognition and it tries to find

the best project direction in which training samples belonging to different classes

are best separated.

This method selects W in such a way that the ratio of both between class scatter

and the within class scatter is maximized. Let us consider a set of N sample images

(x1, x2, ..., xN ) taking values in an n-dimensional image space, and assume that each

image belongs to one of c classes (X1, X2, ...., Xc). Let the between class scatter

matrix defined as

SB =
c
∑

i=1

Ni(µi − µ)(µi − µ)T . (2.4)

and the within class scatter matrix be defined as

ST =

N
∑

k=1

∑

xk∈Xi

(xk − µi)(xk − µi)
T . (2.5)

where µi is the mean image of class Xi, Ni is the number of samples in class Xi,

and µ is the mean image of all samples.

Zhao et al. proposed a subspace LDA method to solve the generalized and

overfitting problems when performing face recognition on a large face data set but

with very few training face images available per class. This method consists of two

steps. First, the face image is projected into a face subspace via PCA. Second,

LDA is applied to the PCA projected vectors to construct a linear classifier in

the subspace. They also employed a weighted distance metric guided by the LDA

eigenvalues to improve the performance of face recognition using the subspace LDA

method.
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2.3 Statistical Shape Analysis

Statistical shape analysis involves methods for the geometrical study of random

objects where location, rotation and scale information can be removed. The subject

is a new and exciting area of statistics, offering many fresh challenges. Recently,

many research have beeen using shape for analysing in many fields such as computer

vision, medical imaging, pattern recognition and others ([24] [26] [91] [41]).

Previous work has shown that the representation of shape has proved to be an

elusive problem in the mathematics and statistics literature. The development of

a rigorous statistical theory of shape began with the work by Kendall [49] which

describes the shape formed by a set of random points under Brownian motion, and

has been used in the statistical analysis of shape in archaeology and astronomy.

Bookstein [10] and Ziezold [126], on the other hand, have developed methods for

analysing the variations in biological forms.

In the image analysis literature there are numerous examples of the use of

Kendall’s shape spaces [48], [87] and [102]. Developments in statistical shape theory

due to Small [86] and [87] suggest that improved Shape Spaces can be obtained by

representing objects as points on a high-dimensional surface (a manifold) in such

a way that different views of a given object correspond to a single point on the

manifold.

In recent years, several authors have proposed shape prior segmentation algo-

rithms [26], [55], [80]. The general idea is always to include some a priori information

about the shape in the segmentation algorithm in order to limit the space of possible

solutions.
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The value of using shape priors has been shown in a variety of tracking contexts.

Model-based methods [4] have been used in computer vision for a long time, espe-

cially for rigid objects. Deformable templates [122] are an effective and powerful

method to model prior shapes and allow for many deformations modes of shapes.

However, the modelling of objects by such methods generally requires many pa-

rameters and is often done heuristically. Dynamical models, which implicitly contain

shape priors, are extensively used in object tracking to improve the robustness by

estimating state spaces and predicting possible movements [96].

The design of shape priors depends on ongoing work on statistical shape models

[23], [31] and [47]. Statistical models of shape variation were proposed by Wang and

Staib [107], Cremers et al. [25], and Rousson and Paragios [80]. Leventon et al. [55]

defined a statistical shape model to guide the evolution process.

Chen et al. [22] introduced a shape prior segmentation method using the curve

representing the boundary of an object as the shape representation. The method

introduces a shape prior in the geodesic active contour framework proposed by

Caselles [16]. Rousson and Paragios [80] used a signed distance function as a shape

representation.

Several authors have used this shape representation in order to introduce the

shape priors in their proposals [26], [105]. Paragios et al. [80] use a probabilistic

level set distance map. Other shape distances have also been used, such as the

Hausdorff distance in [19].

In particular, advanced models of shape spaces, shape distances, and correspond-

ing shape transformations have been proposed recently [19], [52], [37], [84] and [121].

To construct the shape prior model a shape representation is selected and then



2.4 Shape Representation 49

all of the training instances are coded with that shape representation.

2.4 Shape Representation

The field of geometrical shape analysis was initially developed from a biological

point of view by D’arcy Thompson [97] and is a field of increasing importance.

Shape analysis is of great importance in a wide variety of disciplines, e.g., image

segmentation, image understanding, classification and many other fields.

Shape is commonly used in an everyday language sense, usually referring to the

appearance of an object. An intuitive definition of shape is given by Kendall [49].

Following Kendall [47], the definition of shape is “All the geometrical information

that remains when location, scale, and rotational effects are filtered out from an

object”. So, an object’s shape is invariant under the Euclidean similarity transfor-

mations of translation, scaling, and rotation.

Two objects have the same size-and-shape if they can be translated and rotated

to each other so that they match exactly, i.e., if the objects are rigid-body transfor-

mations of each other. Definition of size and shape: two geometric objects have the

same size and shape, if one can be mapped onto the other by an Euclidian (rotation

and translation) transformation.

Also, we can describe shape by locating a finite number of points on each spec-

imen, which are called landmarks. When analysing shape, it is important that the

landmarks correspond throughout the training set. Landmark is a point of corre-

spondence on each object that matches between and within population. There are

three basic types of landmarks: anatomical, mathematical and pseudo-landmarks
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[31]. (i) Anatomical landmarks: are points that correspond between samples in some

biologically meaningful way, e.g., the tip of a finger. Often anatomical landmarks

are assigned by experts. Letting an expert annotate each of a series of images with

a set of corresponding anatomical landmarks is a direct and certain method to gen-

erate a training set. In many cases this is the best method, but it is also the most

expensive and time consuming method. (ii) Mathematical landmarks: are points

located on an object according to some mathematical or geometrical property of

the boundary, e.g., at a point of high curvature or at an extreme point. The use of

mathematical landmarks is particularly useful in automatic recognition and analysis.

If two dimensional points could be placed at clear corners of object boundaries or

‘T’ junctions between boundaries. (iii) Pseudo-landmarks: there are seldom enough

mathematical and/or anatomical landmarks to give more than a sparse description

of the shape of the target object. One way to obtain a richer shape description is to

place pseudo-landmarks in between the well-defined landmarks. Pseudo-landmarks

are points along the boundaries which are arranged to be uniformly spaced between

well-defined landmark points.

2.5 Shape Space

In this section, we further investigate geometrical aspects of shape. The shape of a

geometric object in R
n is represented by a set of k landmarks, each of which is a

point in R
n . In practice n = 2 or n = 3.

For computation, a shape defined by landmarks is also represented by a vector
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x =


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


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

by column stacking the landmarks. The vector is called a shape vector.

A landmark l is in general represented by a n× 1 vector and the shape vector x

becomes naturally a nk×1 vector. In two dimensions a landmark can be represented

by a complex number and x is in Ck.

Each training set of annotated objects X1, ..., Xns, can be represented by a

matrix X = [x1, ..., xns], where xi denotes the shape vector corresponding to the

annotated object Xi(i = 1, ..., ns).

Quantitative study of shape begins with the formulation of a shape space, in

which each shape is represented as a point. A distance metric on this shape space

gives a measure of shape similarity between any two objects.

Pre-Shape space is the space of all possible pre-shapes. Formally, the pre-shape

space Sk
m is the orbit space of the non-coincident k point set configuration in Rm

under the action of translation and isotropic scaling. The term pre-shape means

that we are one step from shape-rotation still has to be removed.

In the shape space of Figure 2.2 we can see that different views of a given object

correspond to single point. In a shape space of 2D objects, all possible views of an

object caused by translation, scaling and rotation are represented as a single point

and the object recognition can then be achieved, for example, by computing the

geodesic distance between the object and a model in the shape space.

The idea of a shape-space
∑K

m, whose elements are the shapes of k labelled
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Figure 2.2: Illustration of a shape space for 2D objects [123].

points in Rm, at least two being distinct, was introduced in a statistical context by

Kendall (1984) [48].

Here, it is natural to identify shapes differing only by translations, rotations, and

scaling in Rm (although there are situations of interest, not to be considered here,

in which the scale is also relevant). However, this identification will not apply to

reflections. Thus, the resulting shape space is the quotient

k
∑

m

=
Sm(k−1)−1

SO(m)
. (2.6)

of the sphere by the rotation group. This is the base space of a fibre bundle with

total space Sm(k−1)−1 and fibre SO(m). The former is naturally endowed with a
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uniform Riemannian metric, while the latter, being a compact Lie group, possesses

an invariant metric.

The key observation of Kendall is that the metrical geometry of these quotient

spaces, long studied by geometers, is precisely the required tool for the introduction

of measures appropriate for the systematic comparison and classification of various

shapes.

Now, for a planar distribution of points, with m = 2, the shape space
∑k

2 of

k points is simply a complex projective space P k−2 of dimension k − 2, with the

Fubini-Study metric defining the geodesic distances between pairs of shapes.

The vertices of a shape in R2 (viewed as a complex plane), with the centroid

at the origin, determine the homogeneous coordinates of a point in P k−2. The

permutation group
∑

(k) of order k interchanges homogeneous coordinates, and is

therefore represented by projective unitary transformations of P k−2.

For three-point configurations, i.e., k = 3, the shape space is a complex projective

line P 1, which, viewed as a real manifold, is a two-sphere S2. Hence, the natural

shape space for triangles is essentially a Riemann sphere (Kendall 1985, Watson

1986).

2.6 Statistical Shape Spaces Approaches

In this section, a brief overview about statistical shape spaces approaches is pre-

sented. More details about this topic, can be found at [52], [92], [91], [49] and

[39]. There are three different approaches to the study of shapes: (i) Landmark-

Based Shape Analysis, (ii) Geometric Analysis of shapes of curves and (iii) Diffeo-
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morphisms for shape matching. In this section we show a brief description about

Landmark-Based Shape Analysis since it is used in this work.

2.6.1 Landmark-Based Shape Analysis

The first formal mathematical theory of shapes is due to David Kendall [49] and is

referred to as a Procrustes shape analysis. A remarkable body of work on analysis

of shapes also exists due to works of Bookstein ([10], [8] and [7]), Mardia ([61]),

Small ([87], [86] and [54]), and others. These studies share the property that objects

(and their shapes) are represented using a finite number of landmarks (points in

Euclidean spaces) and equivalences are established with respect to shape preserving

transformations. Landmarks are chosen manually to capture shapes of objects in

images. There have been at least three distinct origins of what we call shape theory.

The first approach seems to have been that of Kendall ( [49]) who was, at the

time, concerned with shape in archaeology and astronomy. Kendall ( [48] and [50])

described shape spaces for comparing point sets in any number of dimensions. While

the space is directly related to Procrustes’s distance, it undergoes a Riemannian

submersion to create a non-Euclidean metric. Distances between point sets are

then measured as geodesics along the surface of a hyper-sphere. We refer to these

distances as Kendall’s distance (Kdist). For point sets in three or more dimensions,

the space contains singularities

cos2(Kdist) =
(
∑

i Z
A
i Z

B

i )(
∑

i Z
A

i ZB
i )

(
∑

i Z
A
i Z

A

i )(
∑

i Z
B
i Z

B

i )
. (2.7)

where Z is the complex conjugate of Z, Z = x−iy. Before comparing two points
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sets, they are corrected for translation by placing their centroids at zero by setting.

There is an emerging family of techniques for studying the shapes of connected

curves in Euclidean spaces. Both the geometry of curves and the geometry of spaces

of curves play a role in this shape analysis. Srivastava [52] proposed differential

geometric representations of curves using their direction functions and curvature

functions. Shapes are represented as elements of infinite-dimensional spaces and

their pairwise differences are quantified using the lengths of geodesics connecting

them on these spaces. They use a Fourier basis to represent tangents to the shape

spaces and then use a gradient-based shooting method to solve for the tangent that

connects any two shapes via a geodesic.

There are many interesting applications of the shape theory proposed by [52]. An

important advantage of this approach is that it provides geodesic paths between ar-

bitrary shapes on the shape spaces. These paths can be used to interpolate between

shapes, extrapolate a shape change, and compute a mean shape under a probability

distribution on shapes.

2.7 Conclusions

It should be clear from this literature review that (1) extensive research in shape

analysis has been conducted during the last few decades, and (2) there are many

shortcomings in the current state of the art. We conclude this chapter with a

summary of the above literature, and state the position of this thesis in the context

of the broad field.

Our main objective in this thesis is to use a 2.5D representation of facial shape
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(facial needle-maps) which can be recovered from 2D facial images. Using a novel

face representation for face expression and gender difference to construct shape-

space, this thesis fil a gap in the face expression and gender difference literature.

The first step of our technique is to use surface normal data in Cartesian form to

construct a shape-space for variations due to changes in facial expression and gender

difference.

A research about geometric shape-space and the most important statistical shape-

space approaches, and most famous methods used by the research community were

reviewed. In the literature review, we see a gap on the use of geometric shape-

space to recognise face expression and gender difference from surface normals. As

like described in the literature review, geometric shape space techniques are used to

recognise objects and other types of recognition, which do not include face expres-

sions and gender difference ([52], [75] [24]).

After comparing the studies about shape space approaches, we aim to extend the

shape-space developed by Small [87] from the domain of Cartesian landmark points

to a field of surface normals and explore how the Fisher-Rao metric can be used

to measure different facets of facial shape estimated from fields of surface normals

using von-Mises Fisher distribution. In particular we aim to characterise the shape

changes due to differences in gender and due to different facial expression. We make

use of the vMF distribution since we are dealing with surface normal data over the

sphere R2.
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Cartesian Representation of Vector Field

In this section, we explain how directional data can be converted into a Cartesian

form using the exponential map from a manifold to a tangent space.

A unit vector n ∈ R
3 may be considered as a point lying on a spherical manifold

n ∈ S2, where S2 is the unit 2-sphere. The two are related by n = Φ(n) where

Φ : S2 7→ R
3 is an embedding. Likewise, a field of N surface normals U ∈ RN×3

describing a surface may be considered as a point on a manifold U ∈ S2(N) =

∏N

i=1 S2.
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3.0.1 The Log and Exponential Maps

If v ∈ TnS
2 is a vector on the tangent plane to S2 at n ∈ S2 and v 6= 0, the

exponential map, denoted Expn, of v is the point on S2 along the geodesic in the

direction of v at distance ‖v‖ from n. Geometrically, this is equivalent to marking

out a length equal to ‖v‖ along the geodesic that passes through n in the direction

of v. The point on S2 thus obtained is denoted Expv
n. This is illustrated in Fig. 4.1.

v

n

Expn(v)
TnS

2

||v ||

Figure 3.1: The exponential map.

The inverse of the exponential map is the log map, denoted Logn. Therefore,

the equality Logn(Expn(v)) = v holds. The geodesic distance between two points

n1 ∈ S2 and n2 ∈ S2 can be expressed in terms of the log map, i.e. d(n1, n2) =

‖Logn1
(n2)‖. The exponential and log maps for the space of a field of N surface

normals, S2(N), are simply the direct products of N copies of the maps for S2 given

above.

3.0.2 Spherical Medians and Variance

A distribution of spherical directional data n1, . . . ,nK ∈ R
3 can be characterised

using the mean direction [61] n̂0 = n̄

|n̄| where n̄ = 1
K

∑K
i=1 ni. If we consider
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the distribution of unit vectors as a distribution of points on a spherical manifold

n1, . . . , nK ∈ S2, where Φ(nk) = nk, it is clear that the mean direction is dependent

on the embedding Φ and is the extrinsic mean of a distribution of spherical data:

µΦ = arg min
n∈S2

∑K

i=1 ‖ Φ(n) − Φ(ni) ‖2.

If we define the projection π : R
3 7→ S2 as π(n) = arg min

n∈S2

‖Φ(n)−n‖2, We may

show that the mean direction is the extrinsic mean:

µΦ = π(n̄) = π
(

1
K

∑K

i=1 Φ(ni)
)

.

In other words, the extrinsic mean is the Euclidian average (or centre of mass) of

the distribution of points in R
3, projected back onto the closest point on the sphere.

A more natural definition of the average of a distribution of points on the unit sphere

uses arc length as the choice of distance measure. Since a 2-sphere is a Riemannian

manifold and great circles are geodesics, arc length is the Riemannian distance d(., .)

between a pair of points and hence, d(n1, n2) = arccos (Φ(n1) · Φ(n2)). Using this

definition of distance, we can define the intrinsic mean: µ = arg min
n∈S2

∑K
i=1 d(n, ni).

For spherical data, this is known as the spherical median [34]. This point cannot

be found analytically, but can be solved iteratively using the gradient descent method

of Pennec [72]. We initialise our estimate as the Euclidian mean of distribution, i.e.

µ(0) = µΦ. The current estimate is then updated iteratively as follows:

µ(j+1) = Expµ(j)

(

1

K

K
∑

i=1

Logµ(j)
(ni)

)

. (3.1)

To find the intrinsic mean µ ∈ S2(N) of a sample of K fields of N surface

normals: U1, . . . , UK ∈ S2(N), we replace the exponential and log maps in Equation

4.2 with the corresponding maps for the space S2(N). We can use the log map
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and intrinsic mean to define the sample variance of a distribution of points on the

sphere: σ2 = 1
K

∑K
i=1 d(µ, ni)

2 = 1
K

∑K
i=1 ‖Logµ(ni)‖2.

Suppose that each of the K training examples is a range image which consists of

an array of depth data each containing N = Xres×Yres pixels. For the pixel indexed

p in the kth training sample the depth is zk
p . Using the range data we estimate the

surface normal directions, and the surface normal at the pixel location p for the kth

training image is nk
p.

We calculate the spherical median µp of the distribution of surface normals

n1
p, . . . ,n

K
p at each pixel location p using (4.2). The surface normal nk

p is repre-

sented by its position on the tangent plane Tµp
S2 given by the log map: vk

p =

Logµp
(nk

p) ∈ R
2

A field of surface normals projected to the tangent plane to their local spherical

median may be represented as the long vector: vk = [vk
1 , . . . , v

k
N ]T

With the intrinsic mean of the distribution to hand, we can transform each field of

surface normals representing a facial surface to a distribution of 2-dimensional points

in a Cartesian space using the log map. These projected points retain their variance

with respect to the average direction and provide a convenient representation with

which to work.
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Distances to measure different facets of facial shape

Face recognition has gained much attention in recent years and has become one of the

most successful applications of image analysis and understanding. Face recognition

conferences are emerging and sophisticated commercial systems have been developed

that achieve rather high recognition rates. There is an important goal in image

analysis to classify and recognise objects of interest in given image and imaged

objects can be characterized in several ways, using their colors, textures, shapes,

movements and locations. However, analysis of shapes, expecially complex objects

(faces), is a challenging task and requires sophisticated mathematical tools. Most

of the researches are based on 2D intensity images on the recognition of identities of

people. Also, few studies have been investigated the role of 3D facial shape in gender
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difference and face expression due to the more complex computations required in

3D sensors currently available.

Contributions

This chapter shows our first attempt to perform gender difference and face expres-

sion needle-maps using Shape-from-Shading (SFS). We present a 2.5D data set. This

chapter presented the preliminary results. The aim of our experiments is to explore

how the different distance measures can be used to measure different facets of facial

shape including gender and expressions. We compute geodesic, Euclidean, Maha-

lanobis and cosine distances for the long-vector representations of the needle-maps

of faces. We visualise the distribution of distances using multidimensional scaling

[54] to embed the faces in a two-dimensional pattern space (details of MDS are given

in Section 4.2).

For the recovery of facial shapes from 2D images, we have a special interest in

statistical model based SFS and geometric SFS. SFS methods satisfying statistical

model constraints [30] [88] [89] [90] guarantee that the recovered shapes lie in a space

representing realistic facial shapes, and therefore avoid invalid recoveries such as a

concaved nose. Geometric SFS methods [17] [88] [90] recover facial shapes satisfying

data closeness as a hard constraint. As a result, the recovered shapes implicitly

encode the intensity information. This is especially useful for recognition tasks.

Principal geodesic shape-from-shading combines the statistical constraint and data-

closeness constraint, and is therefore capable of recovering valid and accurate facial

shapes. Compared to the popular 3D morphable model [6], principal geodesic shape-

from-shading is more efficient and improves the model dominance. In this thesis,
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we choose principal geodesic shape-from-shading to recover facial needle-maps from

2D images for gender difference and face expression.

To construct the statistical model, we make use of Principal Geodesic Analysis

(PGA) [35] [73]. For the analysis of facial needle-maps, PGA is better suited since a

needle-map is a field of surface normals which reside on a spherical manifold. After

the recovery of facial needle-maps, we use PGA to find the principal geodesics that

capture the largest statistical variance in the recovered facial needle-maps. Then,

each facial needle-map is represented by a parameter vector, referred to as PGA

feature vector. Each component in the feature vector tells the projected position of

this needle-map on the corresponding principal geodesic.

The remainder of this chapter is organized as follows. Section 4.1 describes how

directional data can be converted into a Cartesian form using the exponential map

from a manifold to a tangent space and describes how to incorporate the statistical

model in shape-from-shading. Also, Section 4.2 describes embedding techniques

to embed the facial shapes into a two-dimensional pattern space. The method

studied is Multi-Dimensional Scaling (MDS) and we compare the results with the

two other embeddings systems: Heat kernel and Commute Time. Next, in Section

4.3 we show how Small’s ideas can be used to construct a shape-space for data

in this form. In Section 4.5, we first give a description of the data set and the

normalization method, then we show the results achieved using the four distance

measures (Euclidean, geodesic, cosine and Mahalanobis) applied for the recognition

of gender and expressions. Finally, Section 4.6 concludes this chapter.
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4.1 Facial Shape Recovery

We recover facial needle-maps using an SFS method, referred to as Principal Geodesic

SFS (PGSFS). The idea is to augment shape-from-shading using a statistical model

that captures variations present in fields of surface normals extracted from human-

faces. In this section, we describe how directional data can be converted into a

Cartesian form using the exponential map from a manifold to a tangent space, and

how to apply Principal Geodesic Analysis (PGA) to a set of example facial needle-

maps for the purpose of learning a statistical model of facial shape.

4.1.1 Cartesian Representation of Vector Field

In this section, we explain how directional data can be converted into a Cartesian

form using the exponential map from a manifold to a tangent space.

A unit vector n ∈ R
3 may be considered as a point lying on a spherical manifold

n ∈ S2, where S2 is the unit 2-sphere. The two are related by n = Φ(n) where

Φ : S2 7→ R
3 is an embedding. Likewise, a field of N surface normals U ∈ RN×3

describing a surface may be considered as a point on a manifold U ∈ S2(N) =

∏N
i=1 S2, which is a special case of a non-linear Riemmanian manifold. To model

the distribution of data on this manifold, we use the Principal Geodesic Analysis

(PGA), which is a generalization of Principal Component Analysis (PCA) from

Euclidean data to data residing on a Riemmanian manifold. PGA makes use of the

intrinsic means of the data on the manifold and the Lie group representation based

on log and exponential maps.
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4.1.2 The Log and Exponential Maps

If v ∈ TnS
2 is a vector on the tangent plane to S2 at n ∈ S2 and v 6= 0, the

exponential map, denoted expn, of v is the point on S2 along the geodesic in the

direction of v at distance ‖v‖ from n. Geometrically, this is equivalent to marking

out a length equal to ‖v‖ along the geodesic that passes through n in the direction

of v. The point on S2 thus obtained is denoted expv
n. This is illustrated in Figure

4.1.

v

n

Expn(v)
TnS

2

||v ||

Figure 4.1: The exponential map.

The inverse of the exponential map is the log map, denoted logn. Therefore, the

equality logn(expn(v)) = v holds. The geodesic distance between two points n1 ∈ S2

and n2 ∈ S2 can be expressed in terms of the log map, i.e., d(n1, n2) = ‖logn1
(n2)‖.

The exponential and log maps for the space of a field of N surface normals, S2(N),

are simply the direct products of N copies of the maps for S2 given above.



66 Chapter 4: Distances to measure different facets of facial shape

4.1.3 Spherical Medians and Variance

A distribution of spherical directional data n1, . . . ,nK ∈ R
3 can be characterised

using the mean direction [61] n̂0 = n̄

|n̄| where n̄ = 1
K

∑K
i=1 ni. If we consider

the distribution of unit vectors as a distribution of points on a spherical manifold

n1, . . . , nK ∈ S2, where Φ(nk) = nk, it is clear that the mean direction is dependent

on the embedding Φ and is the extrinsic mean of a distribution of spherical data:

µΦ = arg min
n∈S2

∑K
i=1 ‖ Φ(n) − Φ(ni) ‖2.

If we define the projection π : R
3 7→ S2 as π(n) = arg min

n∈S2

‖Φ(n)−n‖2, we may

show that the mean direction is the extrinsic mean: µΦ = π(n̄) = π
(

1
K

∑K
i=1 Φ(ni)

)

.

In other words, the extrinsic mean is the Euclidian average (or centre of mass) of

the distribution of points in R
3, projected back onto the closest point on the sphere.

A more natural definition of the average of a distribution of points on the unit sphere

uses arc length as the choice of distance measure. Since a 2-sphere is a Riemannian

manifold and great circles are geodesics, arc length is the Riemannian distance d(., .)

between a pair of points and hence, d(n1, n2) = arccos (Φ(n1) · Φ(n2)). Using this

definition of distance, we can define the intrinsic mean:

µ = arg min
n∈S2

K
∑

i=1

d(n, ni). (4.1)

For spherical data, this is known as the spherical median [34]. This point cannot

be found analytically, but can be solved iteratively using the gradient descent method

of Pennec [72]. We initialise our estimate as the Euclidian mean of distribution, i.e.,

µ(0) = µΦ. The current estimate is then updated iteratively as follows:
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µ(j+1) = expµ(j)

(

1

K

K
∑

i=1

logµ(j)
(ni)

)

. (4.2)

To find the intrinsic mean µ ∈ S2(N) of a sample of K fields of N surface

normals: U1, . . . , UK ∈ S2(N), we replace the exponential and log maps in Equation

4.2 with the corresponding maps for the space S2(N). We can use the log map

and intrinsic mean to define the sample variance of a distribution of points on the

sphere: σ2 = 1
K

∑K

i=1 d(µ, ni)
2 = 1

K

∑K

i=1 ‖logµ(ni)‖2.

Suppose that each of the K training examples is a range image which consists of

an array of depth data each containing N = Xres×Yres pixels. For the pixel indexed

p in the kth training sample the depth is zk
p . Using the range data we estimate the

surface normal directions, and the surface normal at the pixel location p for the kth

training image is nk
p.

We calculate the spherical median µp of the distribution of surface normals

n1
p, . . . ,n

K
p at each pixel location p using Equation (4.2). The surface normal nk

p

is represented by its position on the tangent plane Tµp
S2 given by the log map:

vk
p = logµp

(nk
p) ∈ R

2.

A field of surface normals projected to the tangent plane to their local spherical

median may be represented as the long vector: vk = [vk
1 , . . . , v

k
N ]T .

With the intrinsic mean of the distribution to hand, we can transform each field of

surface normals representing a facial surface to a distribution of 2-dimensional points

in a Cartesian space using the log map. These projected points retain their variance

with respect to the average direction and provide a convenient representation with

which to work.
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4.1.4 Principal Geodesic Analysis for facial Needle-maps

In this section, we explain how to apply PGA to a set of example facial needle-maps

for the purpose of learning a statistical model of facial shape.

PGA is a generalization of PCA from data residing in a Euclidean space to data

residing on a Riemmanian manifold. The goal of PCA is to find a linear subspace

of the space in which the data lies, and maximize the variance of the projected data

in the subspace. In PGA, the notion of a linear subspace is replaced by that of

a geodesic manifold. The geodesics that traverse the submanifold are referred to

as principal geodesics. They are analogous to the principal axes in PCA, expect

that each principal axis in PCA is a straight line. In the spherical case, a principal

geodesic corresponds to a great circle.

To project a point n1 ∈ S2 onto a great circle C is to find the point on C that is

nearest to n1 in terms of geodesic distance. The projection πc : S2 → C is defined

as: πC(n1) = arg min
n∈S2

d(n1, n)2 where d(n1, n) is the geodesic distance between n1

and n on the spherical manifold. For a geodesic C passing through the intrinsic

mean µ, this projection can be approximated linearly in the tangent space TµS
2

logµ(φC(n1)) ≈
d
∑

i=1

vi. logµ(n1), (4.3)

where v1, ...., vd is an orthonormal basis for TµS2, and can be obtained using

standard PCA. Then, the principal geodesic for the S2 space are obtained under the

exponential map expµ(v1), i = 1...d. This approximation enables us to compute the

principal geodesics by applying PCA in the tangent plane TµS
2.

Suppose there are K example facial needle-maps, each having N pixel locations.
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The surface normal at the pixel location l for kth needle-map is nkl. The intrinsic

mean µl of the surface normals n1l, ...., nkl at each pixel location l is calculated. The

surface normal nkl is then represented by its log mapped position ukl = log nkl in

the tangent plane TµS
2. The process is illustrate in Figure 4.2.

PCA1

(a) (b)

Figure 4.2: Projection of surface normals on the unit sphere (a) to points on the
tangent plane at the mean (b) [88].

On the right are the log mapped positions of the points with the mean as the

center of the projection. For the kth training needle-map, we concatenate the x, y-

coordinates of ukl at the N pixel locations, and form the 2N dimensional log mapped

long vector uk = [uk1x, uk1y, . . . , ukNx, ukNy]
T in the tangent plane TµS2(N). The K

long vectors form the column-wise data matrix U = [u1| . . . |uK ], and the covariance

matrix is Σ = 1
K

UUT .

Because N , the dimensionality of the facial needle-maps, is usually too large to

make the manipulation of Σ feasible, the numerically efficient snap-shot method of

Sirovich [85] is used to compute the eigenvectors of Σ. Accordingly, we construct the

matrix Σ̂ = 1
K

UT U , and locate its eigenvalues and eigenvectors. The ith eigenvector

ei of Σ can be computed from the ith eigenvector êi of Σ̂ using ei = Uêi. The ith

eigenvalue λi of Σ equals the ith eigenvalue λ̂i of Σ̂ when i ≤ K. When i > K,
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λi = 0. The K − 1 leading eigenvectors of Σ form the columns of the eigenvector

matrix (projection matrix) Φ = (e1|e2| . . . |eK−1), where K is the number of sample

facial needle-maps. Given a facial needle-map, the log mapped long vector u =

[u1x, u1y, . . . , uNx, uNy]
T is computed, then the corresponding PGA feature vector is

b = ΦT u. From the PGA feature vector b = [b1, . . . bK−1]
T , the needle-map can be

generated using: nl = expµl
((Φb)l) at each location l.

4.1.5 Incorporating the Statistical Model into SFS

With the mean µ and projection matrix Φ of the statistical model constructed

using PGA from the sample facial needle-maps, we are able to augment shape-

from-shading using this model in an iterative way. This shape-from-shading method

is referred to as the principal geodesic shape-from-shading (PGSFS). It not only

imposes the image irradiance equation as a hard local brightness constraint [111],

but also satisfies a strict global shape constraint by projecting the recovered surface

normals into the space spanned by the constructed statistical model. The steps of

this SFS method are illustrated in Figure 4.3. The facial needle-map is initialized

as the intrinsic mean of the statistical model n(0) = µ. Since the statistical model

captures the distribution of facial surface normals, the projection into the model

space guarantees that the recovered needle-map represents a valid human face.

Satisfying the statistical constraint

Given an estimated facial needle-map n(t), we can first compute its log mapped long

vector u(t) = logµ n(t), and then obtain its best fit PGA parameters b(t) = ΦT u(t).

Next, the updated facial needle-map, which is an instance of the statistical model,
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Figure 4.3: Process of PGSFS [112].

can be generated as n̂(t) = expµ(Φ(t)). Because the statistical model captures the

variance structure of facial needle-maps, by satisfying the statistical constraint, the

generated facial needle-map guarantees that it has a realistic appearance. This

also overcomes the well-known local convexity-concavity instability problem [69] in

previous SFS methods.

Satisfying the brightness constraint

Let Il ∈ R denote the intensity at the pixel location l. According to Worthington

and Hancock [111], when the surface reflectance follows Lambert’s law Il = nl · s,

then the surface normal is constrained to fall on a cone whose axis is in the light

source direction s and whose opening angle is α = arccos Il. With n̂(t) generated

from the statistical model at hand, in order to enforce this brightness constraint, we

rotate the normal at each pixel location l back to its closest on-cone position. This

is equivalent to moving each surface normal n̂
(t)
l ∈ S2 along a passing geodesic from

s ∈ S2 a distance arccos Il. This is illustrated in Figure 4.4 which shows the tangent

plane TsS
2. The updated surface normal at pixel location l is

n
(t+1)
l = exps

{

arccos(Il)
logs(n̂

(t)
l

)

logs(n̂
(t)
l

)‖

}

.
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Figure 4.4: Restoring a normal to the closest position on the reflectance cone [90].

Since the facial needle-map satisfies the brightness constraint as a hard con-

straint, they effectively encode the original image data. In other words, the original

image can be recovered from the needle-map. As a result, the needle-map implicitly

encodes image intensity.

Algorithm

The PGSFS algorithm can be summarized as follows [112]:

1. Initialize: n(0) = µ, where µ is the intrinsic mean of the model. Set iteration

t = 0.

2. Estimate PGA parameters: b(t) = ΦT logµ(n
(t)). Generate best fit normals:

n̂(t) = Expµ(Φb(t)).

3. Update normals at each pixel location l, l = 1, . . . , N :

n
(t+1)
l = exps

{

arccos(Il)
logs(n̂l

(t))

logs(n̂l
(t))‖

}

,

Set t = t + 1.
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4. Stop if t > max iterations.

Upon convergence, there are two recovered needle-maps, a) n̂ is an instance of the

statistical model, referred to as the best fit needle-map, and b) n is the closest on-

cone position of n̂. Therefore n not only satisfies data-closeness constraint, but also

satisfies the statistical model which guarantees that the recovered shape realistically

resembles a human face.

Given a statistical model constructed by applying PGA to a set of facial needle-

maps, the recovered facial needle-map n can be represented by the model parameters

b = ΦT logµ(n), where Φ is the projection matrix of the model, and µ is the model

mean. b is referred to as the PGA feature vector of the recovered facial needle-map

n. The statistical model can be the one used in PGSFS, which is constructed from

range data. It can also be constructed from a set of recovered facial needle-maps. In

this chapter, we adopt the latter, and represent the recovered facial needle-maps by

their PGA feature vectors obtained using the model constructed from themselves.

4.2 Embedding Techniques

To visualise the distribution of geodesic distances we use a number of manifold

embedding techniques to embed the facial shapes into a two-dimensional pattern

space. The method studied is Multi-Dimensional Scaling (MDS) [54]. We compare

the results with the other two embedding systems: Heat kernel [1] and Commute

Time [40].
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4.2.1 Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) [54] is a procedure which allows data specified

in terms of a matrix of pairwise distances to be embedded in a Euclidean space.

The classical multi-dimensional scaling method was proposed by Torgenson [101]

and Gower [38]. Here we intend to use this method to embed shock trees in a

low-dimensional space.

The first step to perform the classical MDS is to compute the squared distance

matrix

D = [d2
i,j], i, j = 1, ..., n. (4.4)

where

d2
i,j = (xi − xj)

T (xi − xj). (4.5)

Then, the inner product matrix is given by B = −1
2
JDJ , where J = I−1

n11T and

L1 × n = [l, l, ..., l]. B is symmetric, positive semi-definite and of rank K which is

the original dimension of n points. Therefore B has k non-negative eigenvalues and

n − k zero eigenvalues.

The matrix B can be expressed in terms of its spectral decomposition, B =

V ΛV T , where Λn ×n = diag(λ1, λ2, λK , 0, ..., 0). For convenience, the eigenvalues of

B are ordered such that λ1 ≥ λ2 ≥ ...λK ≥ 0. Hence, the required coordinates are

given by using the non-zeros sub matrix ΛK×K , X = V1Λ
1
2
1 , where V1 and Λ1 are the

first p eigenvectors and eigenvalues of B.
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4.2.2 Heat Kernel

Heat Kernel commence from Laplacian matrix, following the work of Bai and Han-

cock [114] and El-Ghawalby and Hancock [33]. Suppose that the graph under study

is denoted by G = (V, E), where V is the set of nodes and E ⊆ V × V is the set of

edges. The adjacency matrix A for the nodes is:

A(u, v) =















1 if(u, v) ∈ E

0 otherwise

(4.6)

The Laplacian matrix is L = D − A, where D is the diagonal degree matrix

with the elements D(u, u) =
∑

v∈V A(u, v). The normalized Laplacian is given by

L̂ = D
−1
2 LD

−1
2 . The spectral decomposition of the normalized Laplacian matrix is:

L̂ = ΦΛΦT =

|V |
∑

i=1

λiφiφ
T
i . (4.7)

where Λ = diag(λ1, λ2, λ|V |) is the diagonal matrix with the ordered eigenvalues

as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the ordered eigenvectors

as columns. Since L̂ is symmetric and positive semi-definite, the eigenvalues of

the normalized Laplacian fall in the interval [0, 2], i.e., they are all positive. The

eigenvector associated with the smallest non-zero eigenvector is referred to as the

Fielder-vector. Using the heat equation associated with the Laplacian,

∂ht

∂t

= L̂ht. (4.8)



76 Chapter 4: Distances to measure different facets of facial shape

where ht is the heat kernel and t is the time. The solution is found by exponen-

tiating the Laplacian eigenspectrum, i.e.,

ht =

|V |
∑

i=1

exp[λit]φiφ
T
i = Φ exp[−tΛ]ΦT . (4.9)

The heat kernel is a |V | × |V | matrix, and for the nodes u and v of the graph G

the resulting component is

ht(u, v) =

|V |
∑

i=1

exp[−λiT ]φi(u)φi(v). (4.10)

When t tends to zero, then ht
∼= I − L̂t, i.e., the kernel depends on the local

connectivity structure or topology of the graph. If, on the other hand, t is large,

the ht
∼= exp[−tλm]φmφT

m, where λm is the smallest non-zero eigenvalue and φm is

the associated eignvector, i.e., the Field vector. Hence, the large time behaviour is

governed by the global structure of the graph. It is interesting to note that the heat

kernel is also related to the path length distribution on the graph. If Pk(u, v) is the

number of paths of length K between nodes u and v then

ht(u, v) = exp[−t]

|V |2
∑

k=1

Pk(u, v)
tk

k!
. (4.11)

The path-length distribution is itself related to the eigenspectrum of the Lapla-

cian. By equation 4.11 derivatives of the spectral and path-length forms of the heat

kernel show that

Pk(u, v) =

|V |
∑

i=1

(1 − λi)
kφi(u)φ(v). (4.12)
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When the graph is embedded on a manifold in Riemannian space then the pattern

of geodesic distances between nodes on the manifold is the same as the path length

distribution. However, when the manifold is locally Euclidean, then the heat kernel

is approximated by the Gaussian

ht(u, v) = [4φ]
−n
2 exp[

−1

4t2
d(u, v)2]. (4.13)

where d(u,v) is the distance between the nodes u and v on the Euclidean manifold

and n is the dimensionality of the space. The aim here is to find an approximation

to the geodesic distance between nodes in the embedding, by equating the spectral

and Gaussian forms for the Kernel. The result is

d(u, v) =
2

√

√

√

√−tln

(

(4πt)
n
2

|V |
∑

i=1

exp[−λit]φi(u)φi(v)

)

. (4.14)

We can consider the behaviour of this function for large and small values of t.

When t is small, making use of the fact that ht = I − L̂t, we have

d(u, v) = 2

√

−t

(

n

2
ln[4πt] + ln[1 − L̂(u, v)t

)

. (4.15)

Hence, the small t behaviour is determined by the local topology of the graph.

Moreover, since the second term under the square-root vanishes, the behaviour near

t = 0 is independent of the structure of the graph. On the other hand, when t is

large, we can write

d(u, v) = 2

√

−t

(

n

2
ln[4πt] − λmt + lnφm(u)φm(v)

)

. (4.16)
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For very large t we have that d(u, v) ∼= t
√

λm and hence the effect of local

edge-structure is completely smoothed away. Although the parameter t potentially

provides a route to a graph scale-space, here the 4πt is constant = 1.

4.2.3 Commute Time

The commute-time between nodes a and b is the expected number of steps for a

discrete-time random walk to reach node b from a and then return again. The

embedding which preserves commute time as Euclidean distance between nodes has

the co-ordinate matrix YC = V ol√
Λ
−

ΦT
− where V ol =

∑N

a=1 D(a, a) is the volume and

Λ− and Φ− are matrices obtained by deleting the rows and columns corresponding

to zero elements of the Laplacian eigenvalue matrix.

4.3 Four different distance measures

The representation of shape has proved to be an elusive problem in the mathematics

and statistics literature. The development of a rigorous statistical theory of shape

began with the work of Kendall [49] which describes the shape formed by a set of

random points under Brownian motion, and has been used in the statistical analysis

of shape in archaeology and astronomy. Bookstein [10] and Ziezold [126], on the

other hand, have developed methods for analysing the variations in biological forms.

In the image analysis literature there are numerous examples of the use of Kendall’s

Shape Spaces [48], [87].

Recent developments in statistical shape theory due to Small [86] and [87] suggest

that improved shape spaces can be obtained by representing objects as points on a
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high-dimensional surface (a manifold) in such a way that different views of a given

object correspond to a single point on the manifold.

In Kendall’s [48] work, the shape of the point configuration x1, ..., xk is repre-

sented as an element on a shape manifold
∑k

n whose Riemannian geometry is mo-

tivated by Procrustes arguments. A consequence of this geometric representation

of shape is that the similarity of shapes can be measured by the geodesic distance

on the manifold between the shapes corresponding to any two configurations of

landmarks.

Small’s [87] idea is to combine Kendall’s geometry theory of shape with em-

bedding methods based on multidimensional scaling. The starting point for the

embedding process is a dissimilarity matrix.

If Xj, j = 1, ..., m, is a set of m such k−landmark configurations, the m × m

dissimilarity matrix has an element in the row i and column j which is the geodesic

distance between the shape configuration Xi and the shape of configuration Xj in

∑k
n [87].

Suppose that x1, ..., xn+1 points in general position in R
n. We let X = (xij) be

the n × (n + 1) matrix whose jth column is the vector xj . Let Y = (ykl) denote

this n × n matrices of full rank. The pre-shape matrices can be placed into 1 − 1

correspondence with GL(n), the General Linear Group on R
n.

The n × n matrix Y formed by these columns of vector differences can then be

multiplied by an orthogonal n×n matrix ϑ on the left so that the resulting product

ϑY . We say Z = ϑY is a version of the original configuration matrix standardized

both with respect to location and orientation [87].

Small [87] refers to Z = (zkl) as the form-matrix of the configuration matrix
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X. Let T+(n) be the class of n × n upper triangular matrices of positive diagonal

elements. If we denote the group of orthogonal transformations of R
n by O(n),

then O(n) is a subgroup of GL(n). The natural space in which the form matrix

Z resides is identifiable as the factor group GL(n)/O(n). For any Y ∈ GL(n),

there is a unique factorization Y = ϑZ where ϑ ∈ O(n) and Z ∈ T+(n). T+(n) is

homeomorphic with the orbit space GL(n)/O(n).

The quotient map from GL(n)/O(n) is denoted by π. So, in terms of the above

notation, we have π(Y ) = Z. The final stage of the reduction is from the form-

matrix Z to the shape matrix W . If we scale the elements of the form Z so that

the scaled matrix has determinant 1, then scale information is eliminated from the

form-matrix, leaving a matrix containing only information concerning the shape of

the configuration of landmarks. Let W = (wkl) be this scaled matrix.

The matrix W is an element of the set of the all upper triangular matrices with

positive diagonal elements whose product is one. Let ST+(n) be the class of all

such matrices. To obtain a natural metric on ST+(n), we begin by noting that the

2-form tr[dY Y −1(dY Y −1)t] on GL(n) is both positive definite and symmetric and

so provides a right-invariant metric tensor on GL(n). Since the elements of O(n)

acting on the left are isometries with respect to this metric, there is an induced

differential structure and metric tensor on the orbit space T+(n), with respect to

which the quotient map π : GL(n) 7→ T+(n) is a Riemannian submersion. Moreover

the matrix dY Y−1 of 1-form on GL(n) is right-invariant in the sense that, for any

fixed Y0 in GL(n), the right multiplication y 7→ Y̌ = Y Y0 gives dY̌ Y̌ −1 = dY Y −1.

Having obtained a metric for GL(n) in the formula tr[dY Y −1(dY Y −1)t] a metric

for SL(n) is immediately obtained by restriction, because SL(n) is submanifold
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of GL(n). It also possible to use formula tr[dY Y −1(dY Y −1)t] and the quotient

map π : SL(n) 7→ S+(n): the induced metric tensor on ST+(n) is the horizontal

component of the metric tensor on SL(n), thinking of the fibers of π as vertical.

The details of this construction can be found in [87].

It can shown that ST+(n) has constant negative curvature −2, and is isometric

with the Poincaré Half Plane. However, when n > 2, although ST+(n) has non-

positive curvature, it does not have constant curvature.

Now, to compute the geodesic distance between different shapes consider GL(n)

first. Since the metric tensor determined by the formula tr[dY Y −1(dY Y −1)t] is

right-invariant, the geodesic distance between any two points Y1 and Y2 is the same

as that between I and Y = y2y
−1
1 .

So the induced metric on T+(n) is also right-invariant, in the sense that, for

any Y0 in GL(n), dg(π(Y1), π(Y2)) = dg(π(Y1Y0), π(Y2Y0)), where dg is the geodesic

distance on T+(n). For π(Y ) ∈ ST+(n), Le and Small [54] have shown that

dg(π(Y1), π(Y2)) =

√

√

√

√

n
∑

i=1

[

log

(

γi

(
∏n

j=1 γj)
1
n

)]2

. (4.17)

In this thesis, we construct a shape-space for variations due to changes in fa-

cial expression and gender difference. The similarity between faces is measured by

the geodesic distance on the shape manifold using information provided by surface

normals. For the computation of the geodesic distance on shape-space we have

implemented the method proposed by Small [87] when n = 2: dg(π(Y1), π(Y2)) =

1√
2

∣

∣

∣
ln γ2

γ1

∣

∣

∣
, where γi are the positive square roots of the eigenvalues of (Y2Y

−1
1 −

Y2Y
−1
1 ). More detail about Small’s shape space construction can be found in [87].
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We will compare the performance of the geodesic distance with that of the Eu-

clidean, cosine and Mahalanobis distances. For the long-vectors vk
1 and vk

2 the Eu-

clidean distance is represented by the equation

d2
e = (vk

1 − vk
2)

T (vk
1 − vk

2 ). (4.18)

and the cosine distance is represented by the equation

dc = arccos

( |vk
1 | · |vk

2 |
||vk

1 || × ||vk
2 ||

)

. (4.19)

and the Mahalanobis distance is

dm =
√

(vk
1 − vk

2)
T P−1(vk

1 − vk
2 ). (4.20)

where P is the covariance matrix.

4.4 Overview of Data Sets

In this research we use several data sets for executing the experiments work, found

in the literature.

4.4.1 Gender Data Sets

For the gender experiments, two different data sets are used. The first data set is

from Notre Dame biometric database (EAR) [36] [18] consists of range images(3D)

and frontal facial images (2D) selected from the University of Notre Dame Biometrics



4.4 Overview of Data Sets 83

database (Data set 2) 1.

The second data set is from the Max-Planck face database [6] [104] . It comprises

200 laser scanned (Cyberware TM) human heads (100 females and 100 males) which

have smooth and precise facial surfaces. The facial needle-maps are obtaneid by

first orthographically projecting the facial range scans onto a frontal view plane,

and then aligning the plane according to the eye centers, and cropping the plane

142×124 pixels to maintain only the inner part of the face. Finally, the surface

normal at each pixel position is computed using gradients of the processed range

image.

4.4.2 Face Expression Data Set

For face recognition we are using the 3DFEDB database [56]. The database presently

contains 71 subjects (females and males), with ages ranging ages from 18 years to 70

years old, with a variety of ethnic/racial ancestries, including White, Black, East-

Asian, Middle-east Asian, Indian, and Hispanic Latino. Each subject performed

seven expressions in front of the 3D face scanner. With the exception of the neutral

expression, each of the six prototypic expressions include: happiness, disgust, fear,

angry, surprise and sadness.

4.4.3 Data Set and Normalization

For the experiments we use the Notre Dame Biometrics database described in section

4.4.1. In particular, before using the Notre Dame data set ([36], [18]) for gender

1University of Notre-Dame biometrics database. The database is available at
http://www.nd.edu
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discrimination, the range of images and the 2D facial image for each subject must

be aligned and normalized.

4.4.4 Geometric Normalization

Geometric normalization is required for the range images which consist of height

values z sampled at different image locations (x, z). Seven points are manually

selected from the face (two points in each eye, one point in the nose, one point in

the middle of the mouth and one point in the chin). We use the following references

for the points: left eye (inside and the outside corners - 1, 2), right eye (inside and

the outside corners - 3, 4), the nose (N), the middle of the mouth (M), and the

center of the chin (C). The centers of the left and right eyes (denoted as Le and

Re) are calculated as the midpoints of points 1 and 2, and 3 and 4 respectively.

Firstly,we rotate and translate the range images so that the plane passing through

Le, Re and C is perpendicular to the Z − axis, the line passing through Le and Re

are horizontal, and the (x, z) position of N is (0, 0).

The rotation matrix Mr is define in [57]:

Mr = Mz.Mx.My (4.21)

where:

Mx =













1 0 0

0 cos α sin α

0 − sin α cos α












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My =













cos β 0 − sin β

0 1 0

sin β 0 cos β













Mz =













cos γ sin γ 0

sin γ cos γ 0

0 0 1













α = arctan

(

y0
√

x2
0 + z2

0

)

. (4.22)

β = arctan

(

x0

z0

)

. (4.23)

γ = arctan

(

Ley − Lry

Lex − Lrx

)

. (4.24)

where (x0, y0, z0) = ( ~Le − ~C) × ( ~Lr − ~C). If N1 denotes the position of N after

rotation, the translation matrix is define as:

mt = (−N1x,−N1y, 0)T . (4.25)

After rotation and translation, the point (x,y,z) becomes

(x′, y′, z′)T = Mr.(x, y, z)T + Mt. (4.26)

We calculate the mean positions of the five points Le′, Lr′, N ′, M ′ and C ′ from
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the 200 range images, and use them as the reference points. Then, we first scale the

range images to make the distance between Le′ and Lr′ identical to the reference.

Then the principal warps method described in [9] is used to warp the range images so

that the (x, y) positions of the five points (Le′, Lr′, N ′, M ′ and C ′) are identical to

those of the reference ones. The nose N ′ gives the centerline for cropping a 114×100

region from the warped range images, which maintains only the inner part of faces.

Linear interpolation is then used to fill the holes. The geometric normalization for

2D images is almost identical to that used for the 3D range images, except that the

rotation and cropping are performed in the XY plane only.

4.4.5 Brightness Normalization

In addition to the geometric normalization, brightness normalization is also required

for the 2D images. Firstly, the color images are converted into greyscale by aver-

aging the values of the three color channels. The intensity contrast is then linearly

stretched to normalize the ambient lighting variations using the formula:

Inorm(x,y) =
I(x, y) − Imin

Imax − Imin

. (4.27)

where I(x, y) denotes the intensity value at location (x, y), Imin and Imax are the

minimum and maximum intensity values in the image. Finally, we use the method

proposed in [78] to apply photometric correction and specularity subtraction to the

stretched intensity images in order to improve the results of PGSFS (which relies

on the Lambartian reflectance model). After normalization, we can calculate facial

needle-maps using the range images. We use the facial needle-maps extracted from
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Figure 4.5: Examples of the results of SFS on Notre Dame images. From left to right
are: the input intensity images, the recovered facial needle-maps, the ground-truth
needle maps, the recovered surfaces, and the ground-truth surfaces [112].



88 Chapter 4: Distances to measure different facets of facial shape

range images to construct the statiscal model required in PGSFS.

Then, we apply the PGSFS method to the 2D images to recover facial needle-

maps. The recovered needle-maps and integrated surfaces from eight facial images

are shown in Figure 4.5.

4.5 Results

The aim of the experiments is to explore how the different distance measures can be

used to measure different facets of facial shape including gender and expressions.

We compute Euclidean, cosine, Mahalanobis and geodesic distances for the long-

vector representations of the needle-maps for the faces. We visualise the distri-

bution of distances using Multi-Dimensional Scaling [54] to embed the faces in a

two-dimensional pattern space (details of MDS were given in Section 4.2.1).

4.5.1 Gender Discrimination

In the last two decades, extensive research in gender difference systems has been

conducted. We use a 2.5D representation of facial shape needle-maps which can be

recovered from 2D facial images. Using the novel face representation to calculate the

distance measures, this thesis gives a new contribution to the literature to recognise

gender difference.

As explained before, we have two data sets. The first data set consists of 200

facial needle-maps extracted from range images in the Max Planck dataset ( see

Section 4.4). There are 100 females and 100 males, annotated with ground truth.

In Figures 4.6 corresponding Euclidean distance, Figure 4.7 corresponding cosine
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distance, Figure 4.8 corresponding Geodesic distance and Figure 4.9 corresponding

Mahalanobis distance. The first column shows the MDS embedding of the pattern of

distances into a 2-dimensional space. The blue markers are used to denote male sub-

jects, and the red ones female subjects. The second column shows the corresponding

distribution of distances as a histogram. The dark lines are between class distances,

and the light lines are the distribution of within-class distances. The results in

the first row are obtained using Euclidean distance, the second row are for cosine

distance, the third row for geodesic distance and the fourth row for Mahalanobis

distance.

In Figures 4.6 corresponding Euclidean distance, Figure 4.7 corresponding cosine

distance, Figure 4.8 corresponding Geodesic distance and Figure 4.9 corresponding

Mahalanobis distance. The first column shows the MDS embedding of the pattern of

distances into a 2-dimensional space. The blue markers are used to denote male sub-

jects, and the red ones female subjects. The second column shows the corresponding

distribution of distances as a histogram. The dark lines are between class distances,

and the light lines are the distribution of within-class distances. The results in

the first row are obtained using Euclidean distance, the second row are for cosine

distance, the third row for geodesic distance and the fourth row for Mahalanobis

distance.
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Figure 4.6: Max Planck database - Euclidean Distance. We use MDS to embed the

pattern of distances in a 2-dimensional space. The first column shows the MDS analyis

of gender. The second column shows the Distance histograms. Gender - 100 Female

and 100 Male. The blue markers are used to denote male subjects, and the red ones

female subjects. The second column shows the corresponding distribution of distances

as a histogram. The dark lines are between class distances, and the light lines are the

distribution of within-class distances (male and female).
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The second data set is EAR data set [36] [18] which comprises 200 (100 females

and 100 males) laser scanned (Cyberware TM) human heads. The facial needle-

maps are obtained by first orthographically projecting the facial range scans onto

a frontal view plane, and then aligning the plane according to the eye centers, and

cropping the plane to be 142-by-124 pixels to maintain only the inner part of the face.

Finally, the surface normal at each pixel position is computed using the gradients

of the processed range image. More informations, see Section 4.4.

In Figures 4.10 corresponding Euclidean distance, Figure 4.11 corresponding

cosine distance, Figure 4.12 corresponding Geodesic distance and Figure 4.13 corre-

sponding Mahalanobis distance. The first column shows the MDS embedding of the

pattern of distances into a 2-dimensional space. The blue markers are used to de-

note male subjects, and the red ones female subjects. The second column shows the

corresponding distribution of distances as a histogram. The dark lines are between

class distances, and the light lines are the distribution of within-class distances.

The results in the first row are obtained using Euclidean distance, the second row

are for cosine distance, the third row for geodesic distance and the fourth row for

Mahalanobis distance.

Turning our attention first to the embeddings (see Figures between 4.6 to 4.13),

it is clear that in all four cases the distributions overlap, and gender discrimination

can not be achieved using a simple class boundary. However, in the case of the

geodesic distance, the distributions of male and female markers are concentrated in

very different ways. In particular the female markers are more densely concentrated.

This would suggest that probabilistic separation may be feasible, and the unam-

biguous male subjects are separated from the female ones. It is worth noting that
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Figure 4.7: Max Planck database - cosine distance. We use MDS to embed the pattern
of distances in a 2-dimensional space. The first column shows the MDS analyis of gender.
The second column shows the Distance histograms. Gender - 100 Female and 100 Male.
The blue markers are used to denote male subjects, and the red ones female subjects. The
second column shows the corresponding distribution of distances as a histogram. The dark
lines are between class distances, and the light lines are the distribution of within-class
distances (male and female).
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Figure 4.8: Max Planck database - geodesic distance. We use MDS to embed the pattern
of distances in a 2-dimensional space. The first column shows the MDS analyis of gender.
The second column shows the Distance histograms. Gender - 100 Female and 100 Male.
The blue markers are used to denote male subjects, and the red ones female subjects. The
second column shows the corresponding distribution of distances as a histogram. The dark
lines are between class distances, and the light lines are the distribution of within-class
distances (male and female).
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Figure 4.9: Max Planck database - Mahalanobis distance. We use MDS to embed the
pattern of distances in a 2-dimensional space. The first column shows the MDS analyis
of gender. The second column shows the Distance histograms. Gender - 100 Female
and 100 Male. The blue markers are used to denote male subjects, and the red ones
female subjects. The second column shows the corresponding distribution of distances
as a histogram. The dark lines are between class distances, and the light lines are the
distribution of within-class distances (male and female).
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Figure 4.10: Notre Dame database - Euclidean distance. We use MDS to embed the
pattern of distances in a 2-dimensional space. The first column shows the MDS analyis
of gender. The second column shows the Distance histograms. Gender - 100 Female
and 100 Male. The blue markers are used to denote male subjects, and the red ones
female subjects. The second column shows the corresponding distribution of distances
as a histogram. The dark lines are between class distances, and the light lines are the
distribution of within-class distances (male and female).
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Figure 4.11: Notre Dame database - cosine distance. We use MDS to embed the pattern
of distances in a 2-dimensional space. The first column shows the MDS analyis of gender.
The second column shows the Distance histograms. Gender - 100 Female and 100 Male.
The blue markers are used to denote male subjects, and the red ones female subjects. The
second column shows the corresponding distribution of distances as a histogram. The dark
lines are between class distances, and the light lines are the distribution of within-class
distances (male and female).
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Figure 4.12: Notre Dame database - geodesic distance. We use MDS to embed the pattern
of distances in a 2-dimensional space. The first column shows the MDS analyis of gender.
The second column shows the Distance histograms. Gender - 100 Female and 100 Male.
The blue markers are used to denote male subjects, and the red ones female subjects. The
second column shows the corresponding distribution of distances as a histogram. The dark
lines are between class distances, and the light lines are the distribution of within-class
distances (male and female).
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Figure 4.13: Notre Dame database - Mahalanobis distance. We use MDS to embed the
pattern of distances in a 2-dimensional space. The first column shows the MDS analyis
of gender. The second column shows the Distance histograms. Gender - 100 Female
and 100 Male. The blue markers are used to denote male subjects, and the red ones
female subjects. The second column shows the corresponding distribution of distances
as a histogram. The dark lines are between class distances, and the light lines are the
distribution of within-class distances (male and female).
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discriminating male and females faces on the basis of shape alone is a difficult task,

and male human observers consider additional cues such as the hair-style.

These conclusions are borns by the distributions of distance. These are clearly

overlapped, and only in the case of cosine and Mahalanobis distances is there a

significant difference in mean within class and between class distance for the different

genders.

4.5.2 Face expressions

The second experiment explores the ability of the distance measures to distinguish

the same face when presented with a different expression. We use 5 different sets of

data from the BU-3DFEDB database. Details about the database were described

in Section 4.4. In this database, there are male and female subjects. We work with

surface normals estimated from range-images.

The set of data (A) consists of 3 different faces each of which appears with 7

different facial expressions. The second data set (B) has 5 different faces with 7

different facial expressions. The data set (C) has 20 different faces with 7 different

facial expressions. The data set (D) has 30 different faces with 7 different facial

expressions and the final data set (E) has 40 different faces with 7 different facial

expressions. In our MDS visualisations we show the different expressions for the

same subject with the same symbol.

The results of our analysis are shown in Figures between 4.26 to 4.33 The first

column shows the MDS embeddings of data-sets A to E and the second column

shows the histogram between and within-class distance distributions for data-sets A
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to E.

Figure 4.26 shows Euclidean distance, Figure 4.27 shows cosine distance, Figure

4.28 shows geodesic distance and Figure 4.29 shows Mahalanobis distance. Figures

between 4.26 to 4.29 show the MDS embeddings and the histogram between and

within-class distance distribution of data-set A. Each row represents a distance mea-

sure. First row shows the MDS embeddings and the second row shows the distances

histogram.

Figure 4.18 shows Euclidean distance, Figure 4.19 shows cosine distance, Figure

4.20 shows geodesic distance and Figure 4.21 shows Mahalanobis distance. Figures

between 4.18 to efef52 show the MDS embeddings and the histogram between and

within class distance distribution of data-set B. Each row represents a distance

measure. First row shows the MDS embeddings and the second row shows the

distances histogram.

Figure 4.22 shows Euclidean distance, Figure 4.23 shows cosine distance, Figure

4.24 shows cosine distance and Figure 4.25 shows Mahalanobis distance. Figures

between 4.22 to 4.25 show the MDS embeddings and the histogram between and

within class distance distribution of data-set C. First row represents a distance

measure and the second row represents the histograms.

Figure 4.26 shows Euclidean distance, Figure 4.27 shows cosine distance, Figure

4.28 shows cosine distance and Figure 4.29 shows Mahalanobis distance. Figures

between 4.26 to 4.29 show the MDS embeddings and the histogram between and

within class distance distribution of data-set C. First row represents a distance

measure and the second row represents the histograms.

Figure 4.30 shows Euclidean distance, Figure 4.31 shows cosine distance, Figure
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Figure 4.14: BU-3DFEDB database - Distance Measure - Euclidean distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first column shows
the MDS analyis of 3 faces and 7 expressions. The second column shows the Distance
histograms.



102 Chapter 4: Distances to measure different facets of facial shape

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
MDS −Cosine Distance

First dimension

S
ec

on
d 

di
m

en
si

on

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

20

25

30

35

40

45
(2)

Distance measure

F
a

c
e

s
 e

x
p

re
s
s
io

n
s
 a

m
o

u
n

t

Figure 4.15: BU-3DFEDB database - Distance Measure - cosine distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 3 faces and 7 expressions. The second row shows the Distance histograms.
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Figure 4.16: BU-3DFEDB database - Distance Measure - geodesic distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 3 faces and 7 expressions. The second row shows the Distance histograms.
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Figure 4.17: BU-3DFEDB database - Distance Measure - Mahalanobis distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 3 faces and 7 expressions. The second row shows the Distance histograms.
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Figure 4.18: BU-3DFEDB database - Distance Measure - Euclidean distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 5 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.19: BU-3DFEDB database - Distance Measure - cosine distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 5 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.20: BU-3DFEDB database - Distance Measure - geodesic distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 5 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.21: BU-3DFEDB database - Distance Measure - Mahalanobis distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 5 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.22: BU-3DFEDB database - Distance Measure - Euclidean distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 20 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.23: BU-3DFEDB database - Distance Measure - cosine distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 20 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.24: BU-3DFEDB database - Distance Measure - geodesic distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 20 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.25: BU-3DFEDB database - Distance Measure - Mahalanobis distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 20 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.26: BU-3DFEDB database - Distance Measure - Euclidean distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 30 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.27: BU-3DFEDB database - Distance Measure - cosine distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 30 faces and 7 expressions. The second row the distance histograms.
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Figure 4.28: BU-3DFEDB database - Distance Measure - Geodesic Distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 30 faces and 7 expressions. The second row shows the Distance histograms.
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Figure 4.29: BU-3DFEDB database - Distance Measure - Mahalanobis distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 30 faces and 7 expressions. The second row shows the Distance histograms.
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4.32 shows cosine distance and Figure 4.33 shows Mahalanobis distance. Figures

between 4.30 to 4.33 show the MDS embeddings and the histogram between and

within class distance distribution of data-set C. First row represents a distance

measure and the second row represents the histograms.

Analyzing the MDS embeddings and the histograms of Figure 4.26, Figure 4.27,

Figure 4.28 and Figure 4.29, we can see a good separation of the faces expressions

for all the distances. Only, geodesic distance shows a low separation. In this case,

the average for a small group of faces is satisfactory. Also, in Figure 4.30, Figure

4.31, Figure 4.32 and Figure 4.33, we visualize that all the distances (euclidean,

cosine, geodesic and Mahalanobis) results start overlapping. Looking at the cosine

histogram, the second row of Figure 4.31 gives the best separation of different faces

under varying expression.

By increasing the number of faces (see Figures 4.22, 4.23, 4.24, 4.25, 4.26, 4.27,

4.28, 4.29, 4.30, 4.31, 4.32 and 4.33), the results are clearly unsatisfactory. Analyzing

the histograms of those Figures (data set C: 20 faces and 7 expressions, data set D:

30 faces and 7 expressions and data set E: 40 faces and 7 expressions) we achieved

a good result using cosine distance. On the other hand, euclidean, geodesic and

Mahalanobis gives a similar result: almost indistinguishable.

An overview of the results, from the MDS embeddings, for a small number of faces

data-set (see Figure 4.26, 4.27, 4.28 and Figure 4.29), we achieve a good separation of

different faces under varying expression. In fact, the best separation is achieved with

Mahalanobis distance. Also, Euclidean and cosine distances achieve good results.

The face expression separation in those three cases are very satisfactory. In the other

hand, geodesic distance shows an unsatisfactory result. However, as the number of



118 Chapter 4: Distances to measure different facets of facial shape

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5
(1)

First dimension

S
e

c
o

n
d

 d
im

e
n

s
io

n

0 5 10 15
0

5000

10000

15000
(1)

Distance measure

F
a

c
e

s
 e

x
p

re
s
s
io

n
s
 a

m
o

u
n

t

Figure 4.30: BU-3DFEDB database - Distance Measure - Euclidean distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first column shows
the MDS analyis of 40 faces and 7 expressions. The second column shows the distance
histograms.
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Figure 4.31: BU-3DFEDB database - Distance Measure - cosine distance. We use MDS to
embed the pattern of distances in a 2-dimensional space. The first column shows the MDS
analyis of 40 faces and 7 expressions. The second column shows the distance histograms.
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Figure 4.32: BU-3DFEDB database - Distance Measure - geodesic distance. We use MDS
to embed the pattern of distances in a 2-dimensional space. The first row shows the MDS
analyis of 40 faces and 7 expressions. The second row shows the distance histograms.
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Figure 4.33: BU-3DFEDB database - Distance Measure - Mahalanobis distance. We use
MDS to embed the pattern of distances in a 2-dimensional space. The first row shows the
MDS analyis of 40 faces and 7 expressions. The second row shows the distance histograms.
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faces increase, the overlap becomes significant (see Figures 4.22, 4.23, 4.24, 4.25,

4.26, 4.27, 4.28, 4.29, 4.30, 4.31, 4.32 and 4.33). It is clear that in the case of

the Euclidean and cosine distances, while the distance distributions overlap, the

mean interclass distance is less than the mean between class distance. In fact, the

best separation is given by the cosine and Mahalanobis distances. For the geodesic

distance this is not the case, and the distributions are almost indistinguishable.

4.6 Conclusions

In this chapter, we showed how to recognize face expressions and gender difference

using 2.5D facial needle-maps. The needle-maps are extracted from intensity images

using a model-based Shape-From-Shading method, referred to as Principal Geodesic

Shape-From-Shading (PGSFS). The PGSFS method relies on a statistical model of

facial shape formulated in the needle-map domain using Principal Geodesic Analysis.

PGA is formulated using ideas from differential geometry and captures the non-

Euclidean statistical nature of fields of unit-vectors. The PGSFS method is used

to iteratively recover needle-maps that realistically capture facial shape and also

satisfy the image irradiance equation as a hard constraint. Therefore, the recovered

facial needle-maps both encode facial shape information and implicitly capture facial

texture information.

For the recovery of facial shapes from 2D images, we have a special interest in

statistical model based SFS and geometric SFS. SFS methods satisfying statistical

model constraints [88] [89] [90] guarantee that the recovered shapes lie in a space

representing realistic facial shapes, and therefore avoid invalid recoveries such as a
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concaved nose. Geometric SFS methods [88] recover facial shapes satisfying data-

closeness as a hard constraint. As a result, the recovered shapes implicitly encode

the intensity information. This is especially useful for recognition tasks. Principal

geodesic shape-from-shading [89] [90] method relies on a statistical model of facial

shape formulated in the needle-map domain using principal geodesic analysis (PGA).

We demonstrate how to compute geodesic distance between fields of surface

normals on a shape manifold and explore how the different distance measures can be

used to measure different facets of facial shape including gender and expressions.We

compute geodesic, Euclidean, Mahalanobis and cosine distances for the long-vector

representations of the needle-maps of faces. We visualise the distribution of distances

using MDS to embed the faces in a two-dimensional pattern space.

For gender experiments, Euclidean and Geodesic clearly overlapping, and only

in the case of cosine and Mahalanobis distances is there a significant difference in

mean within class and between class distance for the different genders.

Face Expression experiments show, for a small number of faces in data sets that,

we achieve good separation of different faces under varying expression. In fact, the

best separation is achieved with Mahalanobis distance. However, as the number of

faces increases the overlapping becomes significant. It is clear that in the case of the

Euclidean and cosine distances, while the distance distributions are overlapping, the

mean interclass distance is less than the mean between class distance. In fact, the

best separation is given by the cosine and Mahalanobis distances. For the geodesic

distance this is not the case, and the distributions are almost indistinguishable.

This motivates our work in the following chapter. In Chapter 4, we focus on

the development of statistical methods to recognize face expression and gender from
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facial needle-maps.



CHAPTER 5

Fisher-Rao Metric to characterise facial shape

Applications in Computer Vision use Statistical Shape Analysis methods for the

geometrical study of random objects where location, rotation and scale information

can be removed. The subject is a new and exciting area of statistics, offering many

fresh challenges ([24] [26] [91] [41]). The development of a rigorous statistical theory

of shape began with the work by Kendall [49] which describes the shape formed by

a set of random points under Brownian motion, and has been used in the statistical

analysis of shape in archaeology and astronomy. Bookstein [10] and Ziezold [126], on

the other hand, have developed methods for analysing the variations in biological

forms. In the image analysis literature there are numerous examples of the use

of Kendall’s Shape Spaces [48], [87] and [102]. Recent developments in statistical
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shape theory due to Small [86] and [87] suggest that improved Shape Spaces can be

obtained by representing objects as points on a high-dimensional surface (a manifold)

in such a way that different views of a given object correspond to a single point on

the manifold.

Contributions

The aim in this chapter is to explore whether the Fisher-Rao metric can be used

to measure different facets of facial shapes estimated from fields of surface normals

using the von-Mises Fisher (vMF) distribution. The Fisher information of the fam-

ily defines on the manifold a Riemannian metric known as the Fisher-Rao metric.

Fisher-Rao has an approximation metric which is accurate if the variance of the

measured errors is small. It is shown that the manifold of parameter values has a

finite volume under the approximating metric.

In particular we aim to characterise the shape changes due to differences in gender

and facial expressions. We make use of the vMF distribution since we are dealing

with surface normal data over the sphere ℜ2. We choose to work with the von-

Mises Fisher distribution because it is the natural probability distribution for high-

dimensional directional data. The space of vMF distributions forms a differentiable

manifold, which can be considered to be embedded in a higher dimensional space

[93]. The embedding space induces a metric on the manifold that allows for an

intrinsic way to measure distances on the manifold. A Riemannian manifold is a

smooth manifold supplied with a Riemannian metric [45],[73].

The remainder of this chapter is organized as follows: Section 5.1 describes the

Von-Mises Fisher distribution (vMF). Section 5.2 describes the Fisher Information
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Matrix method. Next, Section 5.3 is concerned with assessing shape variation in

fields of surface normals due to both facial expression and gender difference. In the

case of facial expression we aim to explore the changes in facial shape due to subjects

pulling seven different expressions namely, happiness, sadness, surprise, fear, anger,

disgust and neutral. We also aim to explore if the techniques outlined in this work

can be used to distinguish the gender of different subjects. Finally, Section 5.5

concludes this chapter with a summary.

5.1 The von-Mises Fisher distribution (vMF)

A d-dimensional unit random vector x (i.e., x ) is said to have variate von Mises-

Fisher (vMF) distribution if its probability density function is given by:

fp(x, µ, κ) =
κ

p

2
−1

(2π)
p

2 I p

2
−1(κ)

exp(κµT x). (5.1)

where x is a p dimensional vector residing on the hyper-sphere Sp−1 submersed

in ℜp. Il(κ) is the modified Bessel function of the first kind of order l. The density

f(x|µ, κ) is parameterized by the mean direction µ, and the concentration parameter

κ, so called because it characterizes how strongly the unit vectors draw according

to f(x|µ, κ) are concentrated about the mean direction µ. Larger values of κ imply

stronger concentration of the mean direction. In particular when κ = 0, f(x|µ, κ)

reduces to the uniform density on Sd−1, and as κ → ∞ , f(x|µ, κ) tends to a point

density. The interested reader is referred to Mardia et.al (2000) [61] for details on

vMF distributions. The distribution is unimodal and rotationally symmetric around
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the direction µ. Finally, the distribution is uniform over the hyper-sphere for κ = 0.

The maximum likelihood estimators for the two parameters are obtained as follows.

Suppose we have m samples of x, i.e., x1, ....xm. The estimator of the mean direction

is given by µ =
Pm

i=1 xi

||
Pm

i=1 xi||

There is no closed form estimator for the concentration parameter κ̂. Instead, it

is the solution of the transcendental equation

I p

2
(κ̂)

I p

2
−1(κ̂)

=
1

m
||

m
∑

i=1

xi||

In practice we solve this equation using the Newton-Raphson method [28]. It is

worth noting that Jupp and Mardia [61] have developed some non-iterative approx-

imations which apply under small and large values of κ. For p=3, the distribution

is referred to as the vMF distribution.

5.2 Fisher Information Matrix

The Fisher information matrix is a Riemannian metric which can be defined on a

smooth statistical manifold, i.e., a smooth manifold whose points are probability

measures defined on a common probability space [64],[75],[66].

Let I = [0,1] and p: I × ℜk → ℜ+, (x,θ) 7→ p(x;θ), a k-dimensional family

of positive probability density functions parameterized by the vector of parameters

θ = (θ1, ...., θk)
T ∈ ℜk. In classical information geometry the Riemannian structure

of the parameter space ℜk is defined by the Fisher information matrix with elements
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gij(θ) =

∫

p(x|θ) ∂

∂θi

log p(x|θ) ∂

∂θj

log p(x|θ)dx. (5.2)

The notation ∂θi
is used for the partial derivative with respect to the component

θi of θ, where θ is a vector of parameters associated with the density p. The Fisher-

Rao metric tensor (5.2) is an intrinsic measure, allowing us to analyze a finite,

k-dimensional statistical manifold M without considering how M resides in an R2k+1

space. In our case, we have 4 parameters and θ = (κ, µ1, µ2, µ3)
T , where µ =

(µ1, µ2, µ3)
T is the density parameter vector.

In practice we divide each field of surface normals into windows whose size is

determined by the overall image size. In our experiments, the window size is 4x4.

This provides sufficient statistics to make stable estimates of the mean direction and

concentration parameter. Fisher-Matrix gij is a matrix 4 × 4. We are using von

mises with order the parameters as:


















θ1

θ2

θ3

θ4



















=



















κ

µ1

µ2

µ3



















Then, the remaining entries are 4X4 matrix are obtained by symmetric. We

have to compute the integral for each entry.

gij(θ) =

∫

p(X|θ) ∂

∂θi
log p(X|θ) ∂

∂θj
log p(X|θ)dx (5.3)

g1,1 =

∫

p(X|θ) ∂

∂κ
log p(X|θ) ∂

∂κ
log p(X|θ)dx (5.4)
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g1,2 =

∫

p(X|θ) ∂

∂κ
log p(X|θ) ∂

∂µ1
log p(X|θ)dx (5.5)

g1,3 =

∫

p(X|θ) ∂

∂κ
log p(X|θ) ∂

∂µ2
log p(X|θ)dx (5.6)

g1,4 =

∫

p(X|θ) ∂

∂κ
log p(X|θ) ∂

∂µ3

log p(X|θ)dx (5.7)

g2,2 =

∫

p(X|θ) ∂

∂µ1

log p(X|θ) ∂

∂µ1

log p(X|θ)dx (5.8)

g2,3 =

∫

p(X|θ) ∂

∂µ1
log p(X|θ) ∂

∂µ2
log p(X|θ)dx (5.9)

g2,4 =

∫

p(X|θ) ∂

∂µ1
log p(X|θ) ∂

∂µ3
log p(X|θ)dx (5.10)

g3,3 =

∫

p(X|θ) ∂

∂µ2

log p(X|θ) ∂

∂µ2

log p(X|θ)dx (5.11)

g3,4 =

∫

p(X|θ) ∂

∂µ2
log p(X|θ) ∂

∂µ3
log p(X|θ)dx (5.12)

g4,4 =

∫

p(X|θ) ∂

∂µ3
log p(X|θ) ∂

∂µ3
log p(X|θ)dx (5.13)

For simplicity, we concatenate the components of the mean surface normal µ and

write θ = (κ, µT )T . We perform vector-differentiation with respect to µ to simplify



5.2 Fisher Information Matrix 131

our calculations.

We commence by computing

gκ,κ =

∫

fp(x, κ, µ)
∂

∂κ
log fp(x, κ, µ)

∂

∂κ
log fp(x, κ, µ)dx. (5.14)

Substituting for the vMF distribution, we have

gκ,κ =

∫

(2π)
p

2 I p

2
−1(κ)e−κµtx

κ
p

2
−1

[

∂

∂κ

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

eκµtx

]2

dx

(5.15)

gκ,κ =

∫

(2π)
p

2 I p

2
−1(κ)e−κµtx

κ
p

2
−1

[

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

(µtx)eκµtx

+
eκµtx

(2π)
p

2

(

I p

2
−1(κ)(p

2
− 1)κ

p

2
−2 − 1

2
κ

p

2
−1(I p

2
−2(κ)) + I p

2
(κ)

I p

2
−1(κ)2

)]

dx

(5.16)

gκ,κ =
(2π)

p

2 I p

2
−1(κ)

κ
p

2
−1

∫

eκµtx

(

1

(2π)
p

2

)2(
1

I p

2
−1(κ)

)2(

κ
p

2
−2

)2

[

κµtx +

(p

2
− 1)I p

2
−1(κ) − κ

2

(

I p

2
−2(κ) + I p

2
(κ)

)

I p

2
−1(κ)

]2

dx

(5.17)
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gκ,κ =
κ

p

2
−1

(2π)
p

2

1

I p

2
−1(κ)

∫

eκµtx

(

1

κ2

)[

(κµtx)2 + 2a(κµtx) + a2

]

dx

(5.18)

Finally, we have:

gκ,κ =
1

κ2

(

κ2 < cosθµ >2 +2aκ < cosθµ > +a2

)

(5.19)

Where,

a =
(p

2
−1)I p

2−1(κ)−κ
2

(

I p
2−2(κ)+I p

2 (κ)

)

I p
2−1(κ)

y = κµtx

ey = eκµtx

∫

yeydy = yey −
∫

eydy

∫

yeydy = yey − ey

∫

yeydy = ey(y − 1)

< cosθµ >=
∫

yeydy = ey(y − 1)

With the substitution, we have
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gκ,κ =
1

κ2

(

κ2(eκµT x((κµT x) − 1)2) + 2
(p

2
− 1)I p

2
−1(κ) − κ

2

(

I p

2
−2(κ) + I p

2
(κ)

)

I p

2
−1(κ)

× κ(eκµT x((κµT x) − 1))

)

+

(

(p

2
− 1)I p

2
−1(κ) − κ

2

(

I p

2
−2(κ) + I p

2
(κ)

)

I p

2
−1(κ)

2)

(5.20)

In the above we can set p = 3 since we are dealing with a vMF distribution over

a 2D field of surface normals.

In Equation 5.20, we can set p = 3 since we are dealing with a vMF distribution

over a 2D field of surface normals.

The result of the Equation 5.20 depends on κ, that is, the higher the value of

κ, the higher is the value of the Equation 5.20. This is illustrated in Figure 5.1,

which shows a sample (from a given image) of values for κ and the resulting value

of gκ,κ – when using the provided value of κ in the calculation. In Figure 5.1 the

coordinate x represents κ and the coordinate y represents the result for the equation

5.20 (gκ,κ). The symbol (+) is used to denote the relation between κ and gκ,κ. For

example, when κ ∼= 12, gκ,κ
∼= −0, 36.

The second part is to compute the integral for (5.20), when θi and θj are equiv-

alent to κ and µ, respectively.

gij(θ) =

∫

p(X|θ) ∂

∂θi
log p(X|θ) ∂

∂θj
log p(X|θ)dx (5.21)

gκ,µ =

∫

p(X|θ) ∂

∂κ
log p(X|θ) ∂

∂µ
log p(X|θ)dx (5.22)
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gκ,µ =

∫

(2π)
p

2 I p

2
−1(κ)

κ
p

2
−1

e−κµtx

[

∂

∂κ

(

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

eκµtx

)][

∂

∂µ

(

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

eκµtx

)]

dx

(5.23)

gκ,µ =
(2π)

p

2 I p

2
−1(κ)

κ
p

2
−1

∫

e−κµtx

[

eκµtx

(2π)
p

2

(

I p

2
−1(κ)(p

2
− 1)κ

p

2
−2 − κ

p

2
−1 ∂

∂κ
I p

2
−1

(I p

2
−1(κ))2

)]

[

κ
p

2
−1

(2π)
p

2
I p
2−1(κ)

(

eκµtx

)

∂

∂µ
κµtx

]

dx

(5.24)



5.2 Fisher Information Matrix 135

gκ,µ =
1

(2π)
p

2

∫

I p

2
−1(κ)(p

2
− 1)κ

p

2
−2 − κ

p

2
−1
[

1
2

(

I p

2
−2(κ) + I p

2
(κ)
)]

(I p

2
−1(κ))2(eκµtx)(κx)dx

(5.25)

gκ,µ =
κ

(2π)
p

2

κ
p

2
−2

[

2
(

p

2
− 1
)

I p

2
−1(κ) − κ

(

I p

2
−2(κ) − I p

2
(κ)

)

2(I p

2
−1(κ))2

]
∫

(eκµtx)xdx

(5.26)

gκ,µ =

[

2
(

p

2
− 1
)

I p

2
−1(κ) − κ

(

I p

2
−2(κ) − I p

2
(κ)

)

2(I p

2
−1(κ))2

]
∫

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

(eκµtx)xdx

(5.27)

gκ,µ =

[

2
(

p

2
− 1
)

I p

2
−1(κ) − κ

(

I p

2
−2(κ) − I p

2
(κ)

)

2(I p

2
−1(κ))2

]

µ

(5.28)

The third part is to compute the integral for (5.20), when θi and θj are equivalent

to µ and µ, respectively.
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gij(θ) =

∫

p(X|θ) ∂

∂θi
log p(X|θ) ∂

∂θj
log p(X|θ)dx (5.29)

gµ,µ =

∫

p(X|θ) ∂

∂µ
log p(X|θ) ∂

∂µ
log p(X|θ)dx (5.30)

gµ,µ =

∫

(2π)
p

2 I p

2
−1(κ)

κ
p

2
−1

e−κµtx

(

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

)2
∂

∂µ
(eκµtx)dx

(5.31)

gµ,µ =
κ

p

2
−1

(2π)
p

2 I p

2
−1(κ)

∫

(e−κµtx)
[

(eκµtx)κx
]2

dx (5.32)

gµ,µ =
κ

p

2
−1

(2π)
p

2 I p

2
−1(κ)

∫

(κx)2eκµtxdx (5.33)

gµ,µ =
κ

p

2
−1

(2π)
p

2 I p

2
−1(κ)

κ2µ2 (5.34)

The result of the Equation 5.37 depends on κ. That is, the higher the value of κ,

the lower is the resulting value of the equation 5.20. This is illustrated in Figure 5.2,

which shows a sample (from a given image) of values for κ and the resulting value of
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gµ,µ – when using the provided value of κ in the calculation. Like in Figure 5.1, in the

graphic of Figure 5.2 the coordinate x represents κ and the coordinate y represents

the result for the Equation, in this case equation 5.37 (gµ,µ). The symbol (+) is

used to denote the relation between κ and gµ,µ. For instance, when kappa ∼= 11,

gµ,µ
∼= 0.07.
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Figure 5.2: Relation between kappa and g-mu,mu.

Finally, we compute

gµ,µ =

∫

fp(x, κ, µ)
∂

∂µ
log fp(x, κ, µ)

∂

∂µ
log fp(x, κ, µ)dx. (5.35)

Substituting for the vMF distribution, we have

gµ,µ =

∫

(2π)
p

2 I p

2
−1(κ)

κ
p

2
−1

e−κµtx

(

κ
p

2
−1

(2π)
p

2 I p

2
−1(κ)

)2{
∂

∂µ
(eκµtx)

}{

∂

∂µ
(eκµtx)

}T

dx.

(5.36)
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On simplification

gµ,µ =
κ

p

2
−1

(2π)
p

2 I p

2
−1(κ)

κ2µµT . (5.37)

which is a 3x3 matrix.

Substituting for the vMF distribution in (5.2), the elements of the (4×4) Fisher

information matrix (M) are:

M =







g
(1×1)
κ,κ g

(1×3)
κ,µ

g
(3×1)
µ,κ g

(3×3)
µ,µ







We make use of the Fisher-Rao metric to compute the geodesic distance between

the two parametric densities. Consider two corresponding 4x4 image regions for

which the estimated parameter vectors are:

θak = (κak
, µ

ak

)T .

θbk = (κbk
, µ

bk

)T .

κ̂ = 1
2
(κak

+ κbk
).

µ̂ = 1
2
(µak

+ µbk
).

For small changes in parameters the geodesic distance between parameter vectors

is:

ds2
ak ,bk

= gκ̂,κ̂(κak
− κbk

)2 + 2(gκ̂,µ̂)
T (κak

− κbk
)(µ

ak

− µ
bk

) (5.38)

+ (µ
ak

− µ
bk

)T gµ̂,µ̂(µak

− µ
bk

).
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Now, to discover the desired geodesic between two parametric densities, we can

use the Fisher-Rao metric (5.29) to calculate the distance between the faces.

ds = gκ,κ(κ̂1 − κ̂2)
2 + 2gκ,µ(κ̂1 − κ̂2) × (µ̂

1
− µ̂

2
) + gµ,µ(µ̂

1
− µ̂

2
)2

(5.39)

To compute the total facial dissimilarity, we sum the geodesic distances over all

4x4 non-overlapping image blocks. The total dissimilarity is given by

D2
a,b =

∑

k

ds2
ak ,bk

. (5.40)

5.3 Experimental Results

Our experiments are concerned with assessing shape variation in fields of surface

normals due to both facial expression and gender difference. In the case of facial

expression we aim to explore the changes in facial shape due to subjects pulling

seven different expressions namely, happiness, sadness, surprise, fear, anger, disgust

and neutral. We also aim to explore if the techniques described can be used to

distinguish the gender of different subjects.

The procedure adopted is as follows. We estimate fields of surface normals by

computing the derivatives of the height data, and projecting these onto a fronto-

parallel plane. We refer to the fields of surface normals obtained as facial needle-
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maps. We align the needle-maps obtained from the different range of images to

give the maximum overlap (correlation). Each field of surface normals is tessellated

into non-overlapping 4x4 blocks. For each pair of blocks, we estimate the mean

surface normal direction and the concentration parameter. For each pair of facial

needle-maps be compute the Fisher-Rao metric on a block-by-block basis, and then

compute the dissimilarity by summing over the blocks. For the set of n faces under

consideration we construct a n × n dissimilarity matrix. We then apply embedding

technique (MDS) to the dissimilarity matrix to obtain embedding co-ordinates for

the n faces.

For gender discrimination and face expression, we use MDS, heat kernel and

commute time embedding technique to analyze the experiments (details about those

techniques 4.2 are described in the Chapter 4). Also, we assess the quality of the

resulting low-dimensional data representation by evaluating to what extent the local

structure of the data is retained. The evaluation is performed by measuring the

Classification error of a 1-Nearest Neighbour (1-NN) classifier that is trained on the

low-dimensional data representation. Here an object is simply assigned to the class

of its nearest neighbour [11],[103]. In addition, we use the Rand Index to assess

the degree of agreement between two partitions of the same set of objects. Based

on extensive empirical comparison of several such measures, Milligan and Coooper,

1986 [65] recommendes the Rand Index as the measure of agreement even when

comparing partitions having different numbers of clusters [65],[76],[120].



5.3 Experimental Results 141

10
−3

10
−2

10
−1

10
0

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

First dimension

S
ec

on
d 

di
m

en
si

on

Figure 5.3: Gender difference - Max Planck data set.

5.3.1 Gender Discrimination

We experiment on two sets of data. One is the ground-truth needle-maps calculated

from the Max Planck data set. The Max-Planck Face Database [6] [104] comprises

200 (100 females and 100 males) laser scanned (Cyberware TM) human heads with-

out hair. The facial needle-maps are obtained by first orthographically projecting

the facial range scans onto a frontal view plane, and then aligning the plane accord-

ing to the eye centers, and cropping the plane 142x124 pixels to maintain only the

inner part of the face. Finally, the surface normal at each pixel position is computed

using gradients of the processed range image.

Figures 5.3 and 5.4, show MDS embedding of the pattern of distances into a

2-dimensional space for, respectively, Max Planck data set and EAR data set.

These MDS embedding show the best results achieved using 1-NN classifier. The

blue markers are used to denote male subjects, and the red ones female subjects.

We can draw the following conclusions from these plots. First, turning our atten-
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Figure 5.4: Gender difference - EAR data set.

tion to the embedding, using the Fisher-Rao metric the distribution of male and

female markers are concentrated differently. In particular the female markers are

more densely concentrated. This would suggest that probabilistic separation may

be feasible, and the unambiguous male subjects separated from the female ones.

Second, it is worth noting that attempting to discriminate male and females faces

on the basis of shape alone is a difficult task, and human observers make numerous

additional cues such as hair-style.

Table 5.1 shows the results using 1-NN classifier training for MDS, Heat Kernel

and Commute Time. The results achieved in MDS gives the best result achieved

so far. We have 96% of recognition using Max Plank data set and 97% using EAR

data set. Using the other two embedding we got an average of 60% of recognition.

See Table 5.2, we analyse that using Rand Index classifier training we achieved

the best results using heat kernel embedding technique, the average for both data

set is 80% of recognition.
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We observe in Table 5.1 that the performance from the 1-NN classifier gave the

best result using MDS embedding technique for both Data sets. Table 5.2 shows

that, using Rand Index technique, the best result for both data sets is heat kernel

embedding. Also, commute time is not a good classifier for both Classification errors

technique.

Table 5.1: Classification error of 1-NN classifier

Embedding Max Planck data set EAR data set
MDS 0.0455 0.028

Heat Kernel 0.4697 0.3333
Commute Time 0.4242 0.4091

Table 5.2: Classification error of Rand Index

Embedding Max Planck data set EAR data set
MDS 0.1450 0.3200

Heat Kernel 0.1200 0.1950
Commute Time 0.4900 0.4900

5.4 Gender Identification Performance

Compared to the results from Section 5.2, it is clear that using Fisher-Rao metric

to classify gender difference provide best results. Recognising gender difference is

an advance of the research in the field to recognise gender difference. Also, we can

compare our results with the work by Wu [112], which developed statistical meth-

ods to find gender discriminating features from facial needle-maps. The method

constructs a gender sensitive weight maps to quantify the non-uniform distribu-

tion, and develop three novel variants of PGA, namely, weighted PGA, supervised
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weighted PGA, and supervised PGA. The weight map used in weighted PGA is a

straightforward difference between the mean faces of the men and women. The best

classification accuracy achieved using supervised weighted PGA is of 92.5%. This

accuracy is not only higher than that achieved using standard PGA (87.5%), but

also higher than the accuracy of 88.5% achieved using linear discriminant analysis.

To improve this weight map construction in supervised weighted PGA by learning

the weight map from all the labeled data. Unlike the above two methods, the weight

map in supervised PGA describes the pairwise relationship between labeled data.

The weight maps is incorporated into the construction of gender discriminating mod-

els, and these models are used to extract gender discriminating features. For this

method the classification accuracy in the work is of 97%. Also, Lu Xiaoguang et al.

[57] proposed a multimodal facial gender and ethnicity identification. Two different

modalities of human faces, range and intensity are explored. The range information,

containing 3D shape of the face object, is utilized for ethnicity identification; Wen

Yi Zhao et al. [124] proposed a method based on shape-from-shading (SFS) which

improves the performance of a face recognition system in handling variations due to

pose and illumination via image symsthesis. In the Table 5.3, we can observe a com-

parative with the related works. Ziyi Xu et al. [117] proposed a novel hybrid face

coding method by fusing appearance features and geometric features. Volker Blanz

et al. [5] presented a method for face recognition across large changes in viewpoint.

The method is based on a Morphable method of 3D faces that represents face-specific

information extracted from a dataset of 3D scans.

Analyzing the Table 5.3, our research compared to related works achieved the

best performance. We achieved 97, 20% using EAR data set with classification error
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Table 5.3: Gender Identification Performance

Related Works Gender Identification Performance

Lu Xiaoguang et al. [57] 97%
Wen Yi Zhao et al. [124] 93%

Zing Wu [112] 97%
Ziyi Xu et al. [117] 92, 38%

Volker Blanz et al. [5] 84, 75%

1-NN. Also, we have a success using classification error of Rand Index with 88% of

identification using Max Plank data set.

5.4.1 Face expressions

The second experiment explores the ability of the Fisher-Rao metric to distinguish

the same face when presented in a different expression. We use the data set from the

BU-3DFEDB database [56]. Our experiments consist on a group of 100 faces and 7

expression for each face (neutral, angry, fear, disgust, happy, surprise and sad).

The experiments consist of two parts. Firstly, we start to compute our experi-

ments dividing the BU-3DFEDB database into 11 sets of faces. Then, after doing

some testing to validate the technique with the sets of faces, we start working with

the whole database (100 faces and 7 expressions). Using this database we select

random faces that are compared to the rest of the faces.

Experiments - Part One

This section shows the results using the 11 set of faces from the BU-3DFEDB

database. Some visual results of our results are shown in Figure 5.5, Figure 5.6
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and Figure 5.7. In our embedding visualizations (MDS) we show the different ex-

pressions for the same subject with the same symbol. We have 6 different databases.

The first four sets contain male and female subjects. Figure 5.5 shows the first set,

which contains 7 faces with 7 expression and the second set with 10 faces with 7

expressions. Figure 5.6 shows the third set containing 15 faces with 7 expressions

and the fourth set with 20 faces with 7 expressions. Figure 5.7 shows the final two

sets contain, respectively, 7 expressions for 6 males and 6 females.

We observe that the performance from the MDS embedding (see Figure 5.5,

Figure 5.6 and Figure 5.7), for a small number of faces in the data-set, achieves good

separation of different faces under varying expression. However, as the number of

faces increases the overlapping becomes significant. We can see that for data sets

with the same gender the results achieve a better performance.

As described previously, we divide the database into sets of faces. Using the sets

of faces, we calculate 1-NN and Rand-Index classifier training for each embedding

(MDS, heat kernel and commute time). To improve the results achieved so far, we

converte the non-metric and non-Euclidean matrix to metric and Euclidean matrix,

where we have only non-negatives values [110] [116]. Using the route adopted by

Pekalsha [71], by adding a certain constant to all values of the related Gram matrix,

and thus compensating for the effect of the negative values (while maintaining the

same vector structure). Our aim is to rectify a given set of non-Euclidean dissim-

ilarity data so as to make them more Euclidean. One way to gauge the degree to

which a pairwise distance matrix contains non-Euclidean artefacts is to analyse the

properties of its centralised Gram matrix. For an N ×N symmetric pairwise dissim-

ilarity matrix D with the pairwise distance as elements, the centered Gram matrix
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Figure 5.5: In the graphic, at the top embedding consists of 7 different faces each of which
appears in 7 different facial expressions. The graphic at the botton consists of 10 different
faces each of which appears in 7 different facial expressions..
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Figure 5.6: In the graphic, at the top embedding consists of 7 different faces each of
which appears in 15 different facial expressions. The graphic at the bottom consists of 20
different faces each of which appears in 7 different facial expressions..
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Figure 5.7: In the graphic, at the top embedding consists of 6 different faces each of
which appears in 7 different facial expressions, where there are only male faces. The
graphic at the bottom consists of 6 different faces each of which appears in 7 different
facial expressions, where there are only female faces.
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G = −1
2
JD2J , where D2 is element wise squaring of elements in D, J = I − 1

N
11T

is the centering matrix and 1 is the all-ones vector of length N. The degree to which

the distance matrix departs from being Euclidean can be measured by using the

relative mass of negative values or negative fraction
∑

λ<0 |λi|/
∑N

i=1 |λi| [71] and

[115]. This measure is zero for Euclidean distances and increases as the distance

becomes increasingly non-Euclidean. The Kernel embedding is obtained from the

centered Gram matrix using the factorisation G = Y Y T , where Y is the N ×N ma-

trix with the embedded co-ordinates of the data as columns. To determine whether

the Gram matrix is positive semi definite [71] and [115], we perform the decompo-

sition G = ΦΛΦT on the Gram matrix, where Λ = diag(Λ1, ..., ΛN) is the diagonal

matrix which the ordered values as elements and Φ = (φ1|...|φN) is the vector matrix

with the ordered vectors φ1, ..., φN as columns. In terms of the values and vectors,

the matrix of embedded coordinates is given by Y = Φ
√

Λ where the values Λ are

positive.

In Tables 5.4, 5.5 and 5.6, respectively, MDS, Heat Kernel and Commute time,

we can see the new values using 1-NN classifier training, the non-negative values

achieved a better performance compared to negative values.

In Tables 5.7, 5.8 and 5.9, respectively, MDS, Heat Kernel and Commute Time

embedding techniques, using Rand Index classifier training are shown.

The difference between the results of the experiments using the 1-NN and the

Rand Index classifier trained are: for a database with a mixture of male and female

the best results achieved was using MDS for both classifier training. Also, for

MDS, heat kernel and commute time, when the set of faces starts to increase, the

results start to increase for both cases, using negative eigenvalues and non-negative
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Table 5.4: Classification errors of 1-NN classifier trained using MDS embedding.

Face Expressions/DataBase neg.eigenvalues non-neg.eigenvalues

7 Faces 7 Expressions 0.1633 0.0612
10 Faces 7 Expressions 0.2857 0.0714
15 Faces 7 Expressions 0.3429 0.0952
20 Faces 7 Expressions 0.4429 0.1571
30 Faces 7 Expressions 0.5286 0.1905
40 Faces 7 Expressions 0.6710 0.1964
50 Faces 7 Expressions 0.6710 0.2400
68 Faces 7 Expressions 0.7563 0.3130
71 Faces 7 Expressions 0.7606 0.3038

6 Faces 7 Expressions (Male Expressions) 0.1905 0.1190
6 Faces 7 Expressions (Female Expressions) 0.2619 0.0476

Table 5.5: Classification errors of 1-NN classifier trained using Heat Kernel embed-
ding.

Face Expressions/DataBase neg.eigenvalues non-neg.eigenvalues

7 Faces 7 Expressions 0.8776 0.7143
10 Faces 7 Expressions 0.9000 0.8571
15 Faces 7 Expressions 0.9143 0.9238
20 Faces 7 Expressions 0.8929 0.9286
30 Faces 7 Expressions 0.5190 0.9429
40 Faces 7 Expressions 0.9464 0.9229
50 Faces 7 Expressions 0.9571 0.9657
68 Faces 7 Expressions 0.9790 0.9706
71 Faces 7 Expressions 0.9618 0.9678

6 Faces 7 Expressions (Male Expressions) 0.8095 0.7619
6 Faces 7 Expressions (Female Expressions) 0.7857 0.7857
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Table 5.6: Classification errors of 1-NN classifier trained using Commute Time em-
bedding.

Face Expressions/DataBase neg.eigenvalues non-neg.eigenvalues

7 Faces 7 Expressions 0.7755 0.8333
10 Faces 7 Expressions 0.8429 0.9000
15 Faces 7 Expressions 0.9048 0.9333
20 Faces 7 Expressions 0.9214 0.9500
30 Faces 7 Expressions 0.9667 0.9697
40 Faces 7 Expressions 0.9750 0.9750
50 Faces 7 Expressions 0.9800 0.9800
68 Faces 7 Expressions 0.9667 0.9853
71 Faces 7 Expressions 0.9859 0.9859

6 Faces 7 Expressions (Male Expressions) 0.7619 0.8333
6 Faces 7 Expressions (Female Expressions) 0.7381 0.8333

Table 5.7: Classification errors of Rand Index classifier trained using MDS embed-
ding.

Face Expressions/DataBase neg.eigenvalues non-neg.eigenvalues

7 Faces 7 Expressions 0.2041 0.2653
10 Faces 7 Expressions 0.2571 0.2000
15 Faces 7 Expressions 0.3163 0.1619
20 Faces 7 Expressions 0.4662 0.1714
30 Faces 7 Expressions 0.6429 0.1762
40 Faces 7 Expressions 0.7000 0.2179
50 Faces 7 Expressions 0.7543 0.2000
68 Faces 7 Expressions 0.8088 0.2542
71 Faces 7 Expressions 0.8169 0.2515
100 Faces 7 Expressions 0.8249 0.3702

6 Faces 7 Expressions (Male Expressions) 0.1190 0.2619
6 Faces 7 Expressions (Female Expressions) 0.1667 0.2857
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Table 5.8: Classification errors of Rand Index classifier trained using Heat Kernel
embedding.

Face Expressions/DataBase neg.eigenvalues non-neg.eigenvalues

7 Faces 7 Expressions 0.2857 0.2653
10 Faces 7 Expressions 0.3857 0.3143
15 Faces 7 Expressions 0.4694 0.3238
20 Faces 7 Expressions 0.6090 0.3643
30 Faces 7 Expressions 0.7748 0.3333
40 Faces 7 Expressions 0.7786 0.2929
50 Faces 7 Expressions 0.8429 0.3143
68 Faces 7 Expressions 0.8697 0.3887
71 Faces 7 Expressions 0.8753 0.4125
100 Faces 7 Expressions 0.8793 0.8793

6 Faces 7 Expressions (Male Expressions) 0.2381 0.4048
6 Faces 7 Expressions (Female Expressions) 0.2857 0.3810

Table 5.9: Classification errors of Rand Index classifier trained using Commute Time
embedding.

Face Expressions/DataBase neg.eigenvalues non-neg.eigenvalues

7 Faces 7 Expressions 0.4082 0.3061
10 Faces 7 Expressions 0.5571 0.3714
15 Faces 7 Expressions 0.6122 0.3714
20 Faces 7 Expressions 0.6692 0.4000
30 Faces 7 Expressions 0.7714 0.3143
40 Faces 7 Expressions 0.8214 0.3214
50 Faces 7 Expressions 0.8657 0.3286
68 Faces 7 Expressions 0.8866 0.3992
71 Faces 7 Expressions 0.8913 0.3984
100 Faces 7 Expressions 0.8793 0.8793

6 Faces 7 Expressions (Male Expressions) 0.3810 0.4048
6 Faces 7 Expressions (Female Expressions) 0.3810 0.4762
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eigenvalues. For databases where we have only one subject, female or male, generally,

is 1-NN classifier training using MDS embedding (see Table 5.4). Otherwise, using

the negative eigenvalues we have another analysis where for database where we have

only one subject, female or male, the best classifier trained is Rand Index using

MDS (see Table 5.7) and for databases with mixtures of male and female we have

the same classifier trained, 1-NN, where we achieved the best results (see Table 5.4).

Experiments - Part Two

Working with 100 faces (each face has 7 expressions, a total of 700 faces in the

database), we calculate the 1-NN error using a test data set that is randomly selected

from the 700 faces for 10.000 iterations. We set the range of the faces in the test set

from 1 to 7.

Tables 5.10 to 5.30 show the results for each classifier (MDS, Heeat Kernel and

Commute Time), respectively, with the number of the faces in the test set. Like we

did in the previous section (Experiments - Part one), we compare the results using

the non-negative values. Next, we show the results for each randomly selected set

of faces from the database.

Random Testing with 1 face

Tables 5.10 , 5.11 and 5.12 show, respectively, MDS, Heat Kernel and Commute

Time embedding techniques. Experiments using only 1 randomly selected face and

699 training faces for 10.000 iterations.

The best result achieved was 0.0 for all the embedding techniques using neg-
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ative eigenvalues and non-negative eigenvalues. It means that in some iterations

the testing face was recognised into the training data set that contained the other

expressions for the same face. The worst case was 1.0 for all embedding techniques,

meaning that the face expression was not recognise.

We can see that all the embedding techniques achieved the same best result, but

the best average was achieved using MDS compared to the other two embedding

technique. Also, using non-negative eigenvalues gave a better average of error 0.5910

of error (0.4090 of recognition). Analyzing the three embedding, we can see that

the disgust and angry expressions gave the best recognition result. On the other

hand, the worst case shows that fear, in this test, is the face expression that is most

difficult to recognise in the database.

Random Testing with 2 faces

Tables 5.13, 5.14, 5.15 show, respectively, MDS, Heat Kernel and Commute Time

embedding techniques for experiments using 2 randomly selected faces and 698 train-

ing faces for 10.000 iterations.

The best achieved result was 0.0 for MDS and Heat Kernel embedding tech-

niques using negative eigenvalues. For Commute Time it achieved 0.5 of error for

negative and non-negative eigenvalues. Also, the worst recognition case was 1.0 for

all embedding techniques.

The MDS embedding technique achieved a best result for negative and non-

negative eigenvalues. Analyzing the three embedding, we can see when using MDS

embedding, the best and worst face recognition is for the same expression - Fear.
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Table 5.10: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 1 Face neg.eigenvalues non-neg.eigenvalues
Best Result 0.0 0.0
Best Faces Disgust Angry

Worst Result 1.0 1.0
Worst Faces Fear Fear

Average 0.8110 0.5910

Table 5.11: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 1 Face neg.eigenvalues non-neg.eigenvalues
Best Result 0.0 0.0
Best Faces Angry Angry

Worst Result 1.0 1.0
Worst Faces Fear Fear

Average 0.9830 0.9840

Table 5.12: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 1 Face neg.eigenvalues non-neg.eigenvalues
Best Result 0.0 0.0
Best Faces Disgust Angry

Worst Result 1.0 1.0
Worst Faces Fear Fear

Average 0.9890 0.9930
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For Heat Kernel and Commute Time show, that Neutral expression gave the best

and worst recognition results.

Random Testing using 3 Faces

Tables 5.16, 5.17, 5.18 show, respectively, MDS, Heat Kernel and Commute Time

embedding techniques for experiments using 3 randomly faces and 697 training faces

for 10.000 iterations.

The best result achieved was 0.0 for MDS embedding technique using negative

eigenvalues and non-negatives eigenvalues. For Heat Kernel achieved 0.3333 using

non-negative eigenvalues and Commute Time achieved 0.3333 of error using negative

eigenvalues. It means that for some iterations the face testing was recognise into

the training data set that contain the other expressions from the same face. Also,

we have the worst case 1.0 for all embedding techniques.

The MDS embedding technique achieved a best result for negative and non-

negative eigenvalues. Analyzing the three embedding, we can see that in all the

embedding techniques, for the best and worst faces to recognise it is not significant

to analyse what expression helps to find the good results. The best average result

is using MDS with 0.5746 of error.

Random Testing with 4 Faces

Tables 5.19, 5.20, 5.21 show, respectively, MDS, Heat Kernel and Commute Time

embedding techniques for experiments using 4 randomly faces and 696 training faces

for 10.000 iterations.
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Table 5.13: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 2 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.0 0.0
Best Faces Surprise and Fear Happy and Fear

Worst Result 1.0 1.0
Worst Faces Neutral and Fear Neutral and Fear

Average 0.8325 0.6010

Table 5.14: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 2 Faces neg.eigenvalues non-neg.eigenvalues
hline Best Result 0.0 0.50

Best Faces Neutral Surprise and Happy
Worst Result 1.0 1.0
Worst Faces Neutral and Fear Neutral and Fear

Average 0.9770 0.9890

Table 5.15: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 2 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.50 0.50
Best Faces Neutral Neutral and Happy

Worst Result 1.0 1.0
Worst Faces Neutral and Fear Neutral and Happy

Average 0.9885 0.9890
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Table 5.16: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 3 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.0 0.0
Best Faces Surprise and Disgust Happy, Disgust and Neutral

Worst Result 1.0 1.0
Worst Faces Disgust, Angry and Neutral Surprise and Disgust

Average 0.8166 0.5746

Table 5.17: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 3 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.6666 0.3333
Best Faces Surprise, Angry and Fear Angry and Happy

Worst Result 1.0 1.0
Worst Faces Surprise, Disgust and Fear Fear, Surprise and Disgust

Average 0.9793 0.9756

Table 5.18: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 3 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.3333 0.6666
Best Faces Surprise, Happy and Angry Neutral, Happy and Disgust

Worst Result 1.0 1.0
Worst Faces Surprise, Fear and Fear Fear, Surprise and Disgust

Average 0.9940 0.99
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When the size of the face testing set starts to increase, the best results start

to decrease. Still, we can find the best result using MDS embedding technique for

non-negative eigenvalues. The best average is also achieved using MDS embedding

with 0.5567.

Random Testing with 5 faces

Tables 5.22, 5.23, 5.24 show, respectively, MDS, Heat Kernel and Commute Time

embedding techniques for experiments using 5 randomly faces and 695 training faces

for 10.000 iterations.

The best result is using MDS embedding for non-negative eingvalues. Also, the

best average is using MDS with 0.5722. Another analysis is when the set of faces

testing starts to increase, the average in kept constant starting with 2 faces testing,

using all the embedding techniques. What changes frequently is the best and worst

results. As described before, with faces expression does not matter to help finding

the best result.

Random Testing with 6 faces

Tables 5.25, 5.26, 5.27 show, respectively, MDS, Heat Kernel and Commute Time

embedding techniques for experiments using 6 randomly faces and 694 training faces

for 10.000 iterations.

MDS is still doing the best embedding for achieving the best result. In this case,

we achieved the best results using non-negative eigenvalues. The average is still

constant, using MDS with 0.5765 of error.
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Table 5.19: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 4 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.2500 0.0
Best Faces Happy, Fear and Surprise Surprise and Angry

Worst Result 1.0 1.0
Worst Faces Surprise and Angry Happy

Average 0.8185 0.5767

Table 5.20: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 4 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.5000 0.5000
Best Faces Surprise, Fear, Neutral and Disgust Disgust, Fear and Angry

Worst Result 1.0 1.0
Worst Faces Surprise, Angry and Fear Surprise, Fear and Angry

Average 0.9760 0.9825

Table 5.21: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 4 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.5000 0.7500
Best Faces Fear, Surprise, Neutral and Disgust Surprise, Disgust and Neutral

Worst Result 1.0 1.0
Worst Faces Surprise and Fear Surprise, Angry and Fear

Average 0.9760 0.9902
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Table 5.22: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 5 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.2000 0.0
Best Faces Fear, Disgust and Angry Happy, Disgust and Fear

Worst Result 1.0 1.0
Worst Faces Fear, Disgust and Angry Disgust, Happy and Angry

Average 0.8216 0.5722

Table 5.23: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 5 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.4000 0.6000
Best Faces Surprise, Fear Happy, Fear,

and Neutral Disgust and Surprise
Worst Result 1.0 1.0
Worst Faces Neutral, Surprise, Neutral, Surprise,

Disgust and Angry Disgust and Angry

Average 0.9804 0.9900

Table 5.24: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 5 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.6000 0.6000
Best Faces Fear, Surprise, Angry, Surprise

Neutral and Angry and Fear
Worst Result 1.0 1.0
Worst Faces Angry Neutral, Surprise

Disgust and Angry

Average 0.9902 0.9844
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Table 5.25: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 6 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.3333 0.0
Best Faces Happy, Angry and Surprise Happy, Surprise, Neutral

Worst Result 1.0 1.0
Worst Faces Fear, Neutral, Happy and Angry Surprise, Neutral

Average 0.8196 0.5765

Table 5.26: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 6 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.6666 0.6666
Best Faces Fear, Happy, Happy, Angry,

Angry and Surprise Fear and Disgust
Worst Result 1.0 1.0
Worst Faces Fear, Surprise, Neutral Fear, Surprise

Neutral and Fear and Neutral

Average 0.9798 0.9790

Table 5.27: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 6 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.6667 0.6666
Best Faces Happy, Surprise, Surprise, Angry,

Neutral and Angry and Disgust
Worst Result 1.0 1.0
Worst Faces Fear, Surprise Fear, Surprise

and Neutral and Neutral

Average 0.9915 0.9903
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Random Testing with 7 Faces

Tables 5.28, 5.29, 5.30 show, respectively, MDS, Heat Kernel and Commute Time

embedding techniques for experiments using 7 randomly faces and 693 training faces

for 10.000 iterations.

We see similar results compared to the other set of testing faces. The best result

is 0.0 using MDS embedding and the average is 0.5573, also using MDS embedding.

Heat Kernel and Commute Time show a bad average using both negative and non-

negative eigenvalues.

5.5 Summary

This chapter presented how Fisher-Rao metric can be used to measure different

facets of facial shape estimated from fields of surface normals using the von-Mises

Fisher (vMF) distribution. The Fisher information of the family defines on the

manifold a Riemannian metric in known as the Fisher-Rao metric. The Fisher-Rao

metric has an approximation which is accurate if the variance of the measured error

is small. It is shown that the manifold of parameter values has a finite volume under

the approximating metric.

Our experiments concerned with assessing shape variation in fields of surface

normals due to both facial expression and gender difference. In the case of facial

expression, we explored the changes in facial shape due to subjects pulling seven

different expressions namely, happiness, sadness, surprise, fear, anger, disgust and

neutral. Also we explored how the fisher-rao metric technique could be used to

distinguish the gender of different subjects.
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Table 5.28: Classification errors of 1-NN using MDS embedding for 10.000 iterations
using 100 faces with 7 expressions.

Testing - 7 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.2857 0.0
Best Faces Happy, Disgust, Neutral, Fear, Surprise,

Fear and Surprise Disgust and Neutral
Worst Result 1.0 1.0
Worst Faces Fear, Surprise, Neutral, Angry, Happy, Fear,

Happy and Angry Surprise and Neutral

Average 0.8205 0.5573

Table 5.29: Classification errors of 1-NN using Heat Kernel embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 7 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.7142 0.7142
Best Faces Neutral, Happy and Surprise Fear, Disgust,

and Surprise Neutral and Happy
Worst Result 1.0 1.0
Worst Faces Angry, Happy Fear, Surprise, Disgust

Fear and Neutral Neutral and Happy

Average 0.9778 0.9801

Table 5.30: Classification errors of 1-NN using Commute Time embedding for 10.000
iterations using 100 faces with 7 expressions.

Testing - 6 Faces neg.eigenvalues non-neg.eigenvalues
Best Result 0.7142 0.7142
Best Faces Fear, Happy Neutral, Fear, Surprise,

and Surprise Angry and Happy
Worst Result 1.0 1.0
Worst Faces Fear, Surprise, Disgust Fear, Surprise, Disgust,

Neutral and Happy Neutral and Happy

Average 0.9922 0.9898
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Analyzing the experiments for face expressions and gender difference, we achieved

the best performance for gender difference using Fisher-Rao metric. Using MDS with

1-NN classifier training the average of 0.0303 of error (EAR data set) and 0.0455 of

error (Max Planck data set), were achieved. Also, using Rand Index we achieved the

best results using Heat Kernel embedding, the average of 0.12 error (Max Planck

data set) and 0.1950 error (EAR data set).

On the other hand, for face expression we have a mixture of results. Using

the first part of the experiments (divided the BU-3DFEDB into sets of face), the

difference between the results of the experiments using the 1-NN and the Rand

Index classifier trained are: for database with mixture of male and female the best

results achieved was using MDS for both classifier training and the best average

was using non-negatives eigenvalues (7 faces and 7 expressions with 0.0612 of error,

10 faces and 7 expressions with 0.0714 of error, 15 faces and 7 expressions with

0.0952 of error, 20 faces and 7 expressions with 0.1571 of error, 30 faces and 7

expressions with 0.1905 of error, 40 faces and 7 expressions with 0.1964 of error, 50

faces and 7 expressions with 0.24, 68 faces and 7 expressions with 0.3130, 71 faces

and 7 expressions with 0.3038 and 6 faces and 7 expressions for female and male,

respectively, 0.0476 and 0.1190).

Using the second part of the experiments (working with 100 faces and 7 expres-

sions, a total of 700 faces in the database), we achieved different averages using

a test data set that is randomly selected from the 700 faces for 10.000 iterations.

One conclusion is the same for all the random cases, we achieved the best results,

average 0 of error for all MDS embedding and the worst case was of 100% of error.

Then, analysing each case, we have for 1 random face: the best average of error
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recognition is 0.5910 using non-negative eigenvalues for MDS embedding. For 2

random faces: the best average of error is 0.6010 with non-negative eigenvalues for

MDS embedding. For 3 random faces: the best average of error recognition is 0.5746

using non-negative eigenvalues for MDS. For 4 random faces: the best average of

error is 0.5767 using non-negative eigenvalues for MDS embedding. For 5 random

faces: the best average of error recognition is 0.5722 using non-negative eigenvalues

for MDS. For 6 random faces: the best average of error is 0.5765 using non-negative

eigenvalues for MDS embedding. And for 7 random faces: the best average of error

recognition is 5573 using non-negative eigenvalues for MDS. It is clear that, from

the third random faces the average stabilize with 0.57 of error using non-negative

eigenvalues and MDS embedding.



CHAPTER 6

Conclusions

In this chapter, we first summarize the main contributions of this thesis, and then

analyze the weaknesses of the developed methods. Following the analysis, we discuss

some possible solutions and give suggestions for future face expression recognition

and gender difference research. Section 6.1 shows a summary of the contributions

from the research. Section 6.2, summarize and discuss some problems that are not

solved in this thesis. Finally, Section 6.3 shows future research directions motivated

by the work.
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6.1 Summary of Contributions

The overall goal of this thesis was to use statistical shape analysis to construct

shape-spaces that span facial expressions and gender difference by facial needle-

maps, and use the resulting shape-model to perform face recognition under varying

expression and gender. Facial needle-maps describe the local orientation of facial

surfaces, which on one hand reveal the facial shape information, and on the other

hand can be recovered from 2D images using shape-from-shading.

In Chapter 4, we presented our first attempt to use facial needle-maps recovered

using Shape-From-Shading (SFS) for face expression and gender difference. The

results demonstrate the feasibility of face expression. We start using a measure

distance to discover the similarity between faces expression and gender difference,

which is measured using a number of alternatives including geodesic, Euclidean,

Mahalanobis and cosine distance between points on the manifold. In a recognition

experiment we compared the perfomance distance between Euclidean, cosine and

geodesic distance associated with the shape manifold. We explored if the distances

used to distinguish gender and recognise the same face under different expressions.

Chapter 5 explored whether the Fisher-Rao metric can be used to characterise the

shape changes due to differences in expression and gender difference. We used a 2.5D

representation based on facial surface normals (or facial needle-maps) for gender

classification and face expression. The needle-map is a shape representation which

can be acquired from 2D intensity images using shape-from-shading (SFS). Using the

von-Mises Fisher distribution, we computed the elements of the Fisher information

matrix, and used this to compute geodesic distance between fields of surface normals
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to construct a shape-space. We embed the fields of facial surface normals into a

lower dimensional pattern space using a number of alternative methods including

multidimensional scaling, heat kernel embedding and commute time embedding.

6.2 Weaknesses

There are a some of question that are not yet fully solved in this thesis. We sum-

marize and discuss these weaknesses in this section. Some of these weaknesses could

be addressed in future work.

The results in Chapter 4 shows how different distance measures can be used

to measure different facets of facial shape including gender and expressions. We

computed geodesic, Euclidean, Mahalanobis and cosine distances for the long-vector

representations of the needle-maps of faces. Then, we visualise the distribution of

distances using multidimensional scaling [54] to embed the faces in a two-dimensional

pattern space (details of MDS were given in Section 4.2).

The similarity between faces is measured by the geodesic distance on the shape

manifold using information provided by surface normals. For the computation of the

geodesic distance on shape-space we implemented the method proposed by Small

[87] and compared the results to other three measures Euclidean, Mahalanobis and

cosine.

In the first contribution of this thesis, we could see that using the method pro-

posed by Small [87] we did not achieve a satisfactory result for face expression and

gender difference in our experiments. We can see that in the face expression ex-

periments, only for small numbers of faces data set, we achieved good separation
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of different faces under varying expression. In fact, the best separation is achieved

with geodesic distance and Mahalanobis distances. However, as the number of faces

increases the overlapping becomes significant. It is clear that in the case of the

Euclidean and cosine distances, while the distance distributions are overlapping, the

mean interclass distance is less than the mean between class distance. In fact, the

best separation is given by the cosine and Mahalanobis distances. For the geodesic

distance this is not the case, and the distributions are almost indistinguishable.

Using Fisher-Rao metric (Chapter 5) to recognise face expression using sets of

faces from the BU-3DFEDB database, we did not achieved a satisfactory results

using Heat Kernel and Commute Time. Both classifier training gave an average of

97% error. It is poor results compared with the results of MDS embedding.

6.3 Future Research Directions

Having addressed the weaknesses of this thesis, in this section we state our future

work to improve the results presented, and give some sugestions for future research

in face expression recognition and gender difference.

There are clearly a number of ways in which this work may be extended. First,

we have concentrated on frontal view facial surfaces and we can only recover fa-

cial shapes from images with the same viewpoint. We calculate the four distances

(Chapter 4) and Fisher-Rao metric (Chapter 5) using 2.5D frontal images from the

3DFEDB database [56], Max-Planck face database [6] and Notre Dame biometric

database [36]. Even though the ability to deal with varying pose is almost always

claimed to be a benefit of 3D face capture, this problem could be solved by incor-
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porating our methods into a set of view-based models similar to those proposed by

Pentland et al. [74] and Reisfeld et al. [77] which proposed that a set of sepa-

rate submanifolds can be obtained by applying PGA to facial needle-maps of each

viewpoint.

Second, there is a need to investigate the use of more sophisticated methods

such as how the Spherical Triangle can be used to compute the similarity of fields

of surface normals. The aim is to show how to compute the areas of geodesic and

Euclidean triangles, and use the area ratio as an invariant for the purposes of match-

ing to construct individual shape-spaces for each class of object from interpolation

of each triangle as a mean of computing face expressions and gender similarity. To

construct the spherical triangle, we have:

• T is the triangulation of a smooth surface S in ℜ3;

• Ag is the area of geodesic triangle on S with angles αi
3
i=1 and geodesic edge

lengths (dgi)
3
i=1 and Ae is the area of corresponding Euclidean triangle with

lengths (dei)
3
i=1 and angle ϕ3

i=1;

• assuming that each geodesic is a great arc on a sphere with radius Ri, i = 1, 2, 3

corresponding to a central angle 2θ, and that the geodesic triangle is a triangle

on a sphere with R = 1
3

∑

i=1 R with the Euclidean distance between the pair

of nodes is de = 1
3

∑3
i=1 dei;

• considering a small area element on the sphere given in spherical coordinates

by dA = R2 sin θdθdϕ, the integration of dA bounded by 2θ gives us the area

of the geodesic triangle:
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A = 1
2R

(dg)(de)2

where

dg(u, v) = 2rs(u, v)θ(u, v)

de(u, v) = 2rs(u, v) sin θ(u, v)

• now we can describe the data in terms of triangular faces and assign to each

face a curvature ratio K and the Gaussian curvature associated with each

vertex will be GK = 3dg − 72(dg−de)
(dg)3

We have started investigating this method and to complete this idea we need to

research how to construct the interpolation between the faces using the spherical

triangle.

For face expression we did the experiments using a mixture of male and female

subjects and only one subject (female face expressions or male expressions). For a

subject, we started to do experiments using a small group of faces and we achieved

a satisfactory face expression recognition. Also, the set of faces did not prove that

the methods are robust for this type of analysis (male face expressions and female

face expressions).

Third, we can research about the data set that exists in the literature that could

offer face expressions with a number of expressive face expressions for each subject

(male and female). Then, we can use the methods provided in this thesis (Chapters

4 and 5) to classify and compare the results.
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List of Symbols

Expx(y) The Exponential map of point y at base-point x

Logx(y) The log map of point y at base-point x

TxS
2 The tangent plane to a spherical manifold at the point x

µ The intrinsic mean of a distribution of point on a manifold

u Log mapped long vector of a needle-map

d(n1, n2) Geodesic Distance

πC(x) The projection of a point on a spherical manifold onto a great circle

∑

Covariance Matrix

λi, ei The ith largest eigenvalues, and the corresponding eigenvector

Φ The projection matrix formed by the leading eigenvectors

b Feature vector


