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Abstract

Let R be a commutative ring, and let A be a derived A,-algebra over R with
structure maps m;; for all < > 0, 7 > 1. In this thesis we construct a collection
of based topological spaces V;; which give rise to the notion of a D A.-space.
The structure of these spaces gives new insight into the structure of a derived
A-algebra. We study the cell structure of these spaces via a combinatorial
model using partitioned trees. We will prove that the singular chain complex
on a DA -space gives rise to a derived A-algebra.

We go on to consider obstruction theories to the existence of the structure
maps of a derived A, -algebra. The bigrading on A leads to choices of the
order in which we develop the derived A, -structure. We give three different
definitions of a “partial” derived A, -structure and in light of these definitions
provide two different obstruction theories to extend a dA,-structure to a
dA;; structure, plus an obstruction theory to extend a dA,_;-structure to a
dA,1-structure. In each case, the obstruction lies in a particular class of the
Hochschild cohomology of the homology of A.
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Chapter 0O
Introduction

An A, -algebra is a homotopy invariant version of an associative algebra
and this notion has been extensively studied since its definition by James
D. Stasheff [Sta63] in 1963. Keller [Kel01] provides a useful introduction to

A-algebra structures.

Stasheff [Sta63] defines the associahedra, denoted K; for j > 2, a collec-
tion of convex polytopes of dimension j — 2. It is well known that the k-cells
of K; are in bijection with bracketings of a word with j letters and j —2 —k
sets of brackets and also planar trees with j leaves and j — 2 — k internal
edges. Perhaps less well known is a formula, T(j + 1,k) = k%l(] ;2) (j J]gk),
which counts the number of cells in K of dimension j — 2 — k. For com-
pleteness, and due to a lack of a proof in the literature, we prove this fact in

Section 1.6 of this thesis.

An A -space is an algebra over the operad of associahedra. The associ-
ahedra form a non-symmetric operad in the category of topological spaces,
and an Ay-space is an algebra over this operad. Stasheff [Sta63] shows that
the singular chain complex of an A,-space admits the structure of an A-
algebra.

Livernet [Liv14] establishes an obstruction theory to Ay -algebra struc-

tures on a differential Z-graded R-module, A, equipped with a homotopy as-
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sociative multiplication. She defines a “partial” A,-algebra structure, called
an A,-algebra, and for r > 3 shows that the obstruction to extend the under-
lying A,_1-structure on A to an A, -structure lies in a class of the Hochschild

cohomology of the associative algebra H(A).

In [Kad80], Kadeisvili studied an obstruction theory to the uniqueness of
Ax-algebra structures, also in terms of the Hochschild cohomology of H(A).
Furthermore, in the case of A, ring spectra the obstructions to the existence
of higher homotopies is studied by Robinson [Rob89].

Kadeisvili [Kad80] also classified all differential graded algebras over a
field up to quasi-isomorphism. In order to generalise his results to work
over a general commutative ring, Sagave [Sagl0] introduced the notion of a
derived A.-algebra. A derived Ay -algebra is an (N, Z)-bigraded R-module
with R-linear maps m;; of bidegree (i,7 + j — 2), satisfying certain relations,
for all i = 0, 5 = 1. Prior to this, Lapin [Lap02] introduced the related
concept of a Dgg)—differential Ax-algebra.

A derived A,-algebra has an underlying structure of a twisted chain
complex (also known as a multicomplex). Twisted chain complexes were
first introduced by Wall [Wal61] in his work on resolutions for extensions
of groups. They can be considered as a generalisation of a double complex
with one differential being a differential only up to homotopy and all higher

coherences.

In [LRW13] an operadic description of a derived Ay -algebra was devel-

oped. Derived A, -algebras are shown to be algebras over the operad dA.

In this thesis we investigate combinatorial models and obstruction theo-
ries for derived Ay-algebras. Throughout we will first consider the classical
case of Ay -algebras and the other special case of twisted chain complexes

before introducing the more general theory for derived A.-algebras.

In Chapter 2 we will define a collection of based topological spaces V;; for
i =0, 7 =1, and show that these spaces form a non-symmetric N-coloured

operad, V, in the category of based topological spaces. We give the definition
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of a DAy-space and show that this is a non-symmetric non-unital algebra
over the operad V. That is, a family of based topological spaces X = {X,, },en
equipped with based maps

DAZ_] . V;J AN Xpl N A ij i Xp1+~~-+pj+i

satisfying some relations, for all ¢ > 0, j > 1, and (i,7) # (0, 1).

In the same chapter we also define a collection of spaces T; for ¢ > 1
and a Dy-space over these spaces to model the structure of a twisted chain
complex. Given that V;; = T}, a D A-space has an underlying structure of a
Dy-space when 7 = 1. There is also an operadic story here with the spaces
T; forming a non-symmetric N-coloured operad, T, and a D.-space being an

algebra over this operad.

In Chapter 2 we will show that cells in the spaces Vj; are in bijection
with partitioned trees with j leaves and i nodes (a vertex with exactly one
child), and thus provide a counting argument for the number of cells in each
dimension of V;;. In particular, we show that the number of cells in dimension
(t+j—2—k)of Vj; is given by

Jj+k k+1 o :
k~|—1( >Z ( a)Na(@+j+oz1,z+1)

where N, (n,m) = 25 ("*1) (™) In this chapter we also show that the

n+1l \m+a/ \m—1

boundary of V;; is homeomorphic to a wedge of spheres of dimension 7 + j — 3.

The combinatorial structure of the spaces T; is less complex since the cells
of dimension ¢ — 1 — k in T} are in bijection with partitions of ¢ into k + 1
parts, and so there are clearly (121) such cells. The space T; is defined as a
smash product of (i — 1) copies of I = [0, 1] with 0 taken as the basepoint,

and thus the boundary of T} is homeomorphic to a sphere of dimension ¢ — 2.

For Chapter 3, the main result is Theorem 3.3.1 in which we prove that

taking the singular chain complex of a DA -space results in a derived A,-



algebra. We see that we get a bigraded R-module with one grading from the
chain complex and the other from the grading on the spaces. The structure
maps m,; result from the chain maps induced from the maps DA;;, and the

relations in the algebra result from the relations in spaces.

Finally, in Chapter 4 we study the obstructions to the existence of the
structure maps of a twisted chain complex and a derived A, -algebra. We
generalise the pre-Lie structure from [Liv14] to allow for an extra grading and
define the Hochschild cohomology for a derived A-algebra, as in [LRW13].

For the twisted chain complex case, we define a “partial” twisted chain
complex structure in the obvious way, that is a stage r twisted chain complex
has structure maps d; for all 0 < i < r subject to the relations among these.
Then in Theorem 4.4.3 we show that if A is a stage r twisted chain complex,
then the obstruction to lift the underlying stage (r — 1)-structure of A to a
stage (r + 1)-structure lies in

HHy,lo "~ (H(A), H(A)) = H™ (Mor(H(A), H(A)), ™, [mar, —]).

For the obstructions to the existence of the structure of a derived A.-
algebra we define three different notions of a “partial” derived A, -structure.
The different definitions come down to a choice of how to “build up” the
structure. There is a choice to be made because a derived A -algebra struc-

ture is bigraded.

The first definition is a D A;;-structure in which we have all of the struc-
ture maps mp, for 0 < p < ¢ and 1 < ¢ < j. The second definition is
a DA;;-structure which is a D A;j-structure without the structure map m;;.
These definitions allow us to consider obstructions to lifting a D A;;-structure
to a DA,j-structure i.e. the obstructions to the existence of the structure
map m;;. In Theorem 4.5.3 we see that for A a vertical bicomplex such that
H(A) and Z(A) are bigraded projective R-modules, if A is a dA;;-algebra

with structure maps m,,,



e then the obstruction to extend the dA;;-algebra structure to a dA;;-
algebra structure, by modifying the map m;_y);, lies in

HHy 77 (H(A), H(A)) = H' (Mor(H(A)®, H(A))H72, [ma, —]),

e and the obstruction to extend the dA;;-algebra structure to a dA;;-
algebra structure, by modifying the map m;;_1), lies in

HHgi 72 (H(A), H(A)) = HY (Mor(H (A)®*, H(A);" ™%, [moz, -]).

The third definition of a “partial” dA,-structure is a D A,-structure with

all structure maps my, such thatp > 0, ¢ > 1, and p+¢ < r. In Theorem 4.5.6

we show that if A is a dA,-algebra, then the obstruction to lift the underlying

dA,_i-algebra structure on A to a dA,  -algebra structure lies in

H Hygoi ™ (H (A), H(A)) = H™H(] [ Mor(H(A)%", H(A)), 75, [m, ~]).

We do not in this thesis consider the question of obstructions to the
uniqueness of the structure of a twisted chain complex or a derived A.-
algebra, however one could consider this for each of the cases above by fol-

lowing and generalising the approach of [Kad80].






Chapter 1

Background

1.1 Symmetric monoidal categories

In this section, we give the definition of a symmetric monoidal category
and some key examples that will be used throughout the thesis. In par-
ticular, we define C' Hau the category of compactly generated Hausdorff
spaces; C Hau, the category of pointed compactly generated Hausdorff
spaces; Mod(R) the category of left R-modules over a commutative ring
R; and Chain(R) the category of chain complexes of left R-modules over a

commutative ring R.

Definition 1.1.1. A monoidal category is a tuple
(M7®7 I? a? )\7 p)

consisting of the following data.

1. M is a category.

2. The product ® : M x M — M is a functor, called the monoidal
product (or tensor product), where M x M is the product category.

3. I is an object in M, called the ®-unit.
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4. « is a natural isomorphism
X®Y)®Z->X®((Y®2)
for all objects X,Y, Z € M, called the associativity isomorphism.
5. A and p are natural isomorphisms
a: I®X —->X and p: X®I[I->X

for all objects X € M, called the left unit and the right unit respec-
tively.

The data is required to satisfy the following two axioms.

Unit Axioms: The diagram

(X®HEY 4 XR(IR®Y)

p@idl lid@)x

XQ®Y —— XQ®Y

is commutative for all objects X,Y € M; and
A=p: IQISI.

Pentagon Axiom: The pentagon

WRX)®(Y®Z2)

(WeX)®Y)® Z R XY ®Z))
la@d id@aT
WR(XRY))®~Z @ W R(XRY)® 2)

is commutative for all objects W, XY, Z € M.
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A strict monoidal category is a monoidal category in which the natural
isomorphisms «, A, and p are all identity maps. From this point onwards,

we will drop «, A, and p from the notation of a monoidal category.

Definition 1.1.2. A symmetric monoidal category is a pair (M,§) in
which

1. M =(M,®,]I) is a monoidal category;
2. & is a natural isomorphism

Xoy 25 vex

for objects X,Y € M, called the symmetry isomorphism.

This data is required to satisfy the following three axioms.

Symmetry Axiom: The diagram

Exy

XY —/— Y®X

L e

X®Y

is commutative for all objects X,Y € M.

Compatibility with Units: The diagram

X®I 2 10X

lﬂ b

X — X

is commutative for all objects X € M.

Hexagon Axiom: The following diagram is commutative for all objects
X,Y,Z e M:



(X®2)®Y (X®Y)® Z

\&X@zjf EYV

YR(X®Z) 2“5 (YRX)®Z
We often drop ¢ from the notation of a symmetric monoidal category.
Throughout this thesis we will work in a few different symmetric monoidal

categories. The key categories to consider are as follows.

1. CHau: the category of compactly generated Hausdorff spaces with
morphisms given by continuous maps, the product x as the monoidal

product, and any one-point space as the ®-unit.

2. CHau,: the category of pointed compactly generated Hausdorff
spaces, with morphisms given by continuous basepoint preserving maps,
the smash product A as the monoidal product, and the two-point space
as the ®-unit.

3. If R is a commutative ring, then the category Mod(R) of left R-
modules with morphisms given by R-linear maps, tensor product ®gp,

and R regarded as the left module over itself as the ®-unit.

4. If R is a commutative ring, then the category Chain(R) of chain
complexes of left R-modules with morphisms given by chain maps,

tensor product X ® Y where

()(CD)/)n:: (:) )C1<>}@

a+b=n

with differential 0, : (X ®Y),, > (X ®Y),_1 given by

On(t®Y) =0z ®y + (—1)' ® dpy
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where z € X,, y € Y, and a +b = n. We have R concentrated in degree
0 as the ®-unit.

1.2 Graded modules and derived A..-Algebras

From this point onwards, we take R to be a commutative ring, and all tensor
products are taken over R unless stated otherwise.

We consider a Z-graded R-module, A, to be a collection of R-modules
AJ for all j € Z where A’ is said to be of degree j. A morphism of graded
modules of degree v is a collection of morphisms of R-modules A7 — A+

for j e Z..

Definition 1.2.1. An A-algebra over R is a Z-graded R-module A, en-

dowed with graded R-linear maps
my: A" - A, n>1

of degree n — 2 satisfying the following relation
2(_1)r+stmu(1®7‘ ®m. ® 1®t) -0

for each n > 1, where the sum runs over all decompositions n = r + s+t and

we put u =7r+1+1¢.

Remark 1.2.2. Let As be the associative operad in chain complexes. Then
note that specifying an A -algebra structure on a Z-graded R-module, A, is
equivalent to giving a square zero coderivation on the cofree coalgebra on A

over the Kozul dual cooperad As'.

An (N, Z)-bigraded R-module, A, is a collection of R-modules A{ for
all i € N, j € Z where A/ is said to be of bidegree (7,). A morphism of

bigraded modules of bidegree (u, v) is a collection of morphisms of R-modules
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Ag — AZLZ for i € N, j € Z. The lower grading is called the horizontal degree

and the upper grading the vertical degree.

Definition 1.2.3. A twisted chain complex, C, is an (N, Z)-bigraded R-
module, with maps d; : C — C of bidegree (i,7 — 1) for i > 0, satisfying

> (=1)diod, =0 (1.1)

i+p=u

for u = 0.

Definition 1.2.4. A derived A -algebra (or dA,-algebra for short) is an
(N, Z)-bigraded R-module, A, with R-linear maps

mgj; - A®j — A
of bidegree (7,7 + j — 2) for each i = 0, j > 1, satisfying the equations

Z (_1)rq+t+mmij<1®r ® Mpq ® 1®t) =0 (1-2)

u=i+p,
’l):‘]-‘rq—l,
J=1+4r+t

forallu>0and v > 1.

When derived A.-algebras were first defined by Sagave [Sagl0], Sagave
was thinking of these in terms of projective resolutions of the homology of a
differential graded algebra. Sagave defined a derived Ay -algebra as an (N, Z)-
bigraded R-module to avoid potential problems with taking total complexes.
In this thesis we also use (N, Z) grading conventions but we note that some
authors generalise to (Z, Z)-bigraded R-modules.

It is also worth noting that in [Sta63] and [Sagl0], A-algebras and dA..-
algebras are equipped with a unit condition that we do not include in our

definition.
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Remark 1.2.5. In [LRW13], the operad d.As (in vertical bicomplexes) is in-
troduced, and it is shown that derived A-algebras are (d.As),-algebras. So
specifying a derived A-algebra strucure on an (N, Z)-bigraded R-module,
A, is equivalent to a square zero coderivation on the kozul dual operad

(dAs)i(A).
Recall that the Koszul sign rule applies to bigraded maps, that is

(fR9)(x®y) = (1) f(z) @ g(y)

where ¢ has bidegree (p,q) and z has bidegree (i,j). We will be applying

this throughout, wherever necessary.

1.3 Operads

In this section we introduce the notion of an operad. Our main focus here is
to define a non-symmetric operad by partial compositions and algebras over
them. These definitions will be used in Chapter 2 to describe the structure
of Ax-spaces. This example comes from the work of Stasheff [Sta63] and was
a motivating example in the definition of an operad. Here we present the
story in the opposite order.

Let C be a symmetric monoidal category with monoidal product ® and

unit k.

Definition 1.3.1 ([May97]). A non-symmetric operad O in C consists of
objects O(j) for j = 0, a unit map n : K — O(1), and product maps

7:0(k)®@O0(1) ® - ®O(jr) — O)

for k > 1, and js; = 0, where ), js = j. The v are required to be associative

and unital in the following senses.

1. The following associativity diagram commutes, where >, j, = j and
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Dy = 1 weset gg = j1 4+ -+ Js, and hy = iy 11 + - + iy, for
1<s<k:

O(k) ® (R, 0(,) ® (R, 0(i,)) — 2 0(j) ® (®!_, O(i,))

|

shuffle O (Z)

O(k) ® (R, (0(js) ® (@7, Oliy, 1+4))) “2X O(k) ® (RF_, O(hy)).

2. The following unit diagrams commute:

O(k) ® (k) —=— O(k) k®O(j) ——— O(j)
l(id,nk/ l(mid%
O(k)® O(1)* O(1) ® O(y).

The following proposition gives an equivalent definition for a non-symmetric
operad via partial compositions. This definition also appears in [Ger63] under
the name “Pre-Lie system”. In Chapter 4 we will generalise this definition

to a Pre-Lie system for trigraded modules over a commutative ring.

Proposition 1.3.2 ([LV12]). A non-symmetric operad O in C consists of
objects O(j) for j = 0, a unit map n : Kk — O(1), and partial composition

maps,
0;: O(m)®0O(n) - O(m+n—1)

for all 1 < i < m satisfying the relations:

Aoj (ojv) = (No; ) 0 v for 1<i<[;1<j<m, 1.3)
(Noj p) opym1 v =(Aogv)oyu  for 1<i<k<l, 1.4)
Kop A= A= \o; k. (1.5)
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for any A € O(1), p € O(m) and v € O(n).
We will now define an algebra over a non-symmetric operad.

Definition 1.3.3 ([May97]). Let O be a non-symmetric operad. An O-
algebra is an object A together with maps

0:0()®A% - A
for j = 0 that are associative and unital in the following senses.
1. The following associativity diagram commutes, where j = >’ j:

7,id)

Ok)®O(H) @ ® Oy ® A% — 0 O(j) @ A

o
shuffle A
d

W o(k) @ A,

O(k) ® O(j1) ® A®' @ - - - @ O(j) ® A
2. The following unit diagram commutes:

KQA ———— A

e

O(1)® A.

In what follows we will only be interested in non-unital algebras defined
via partial compositions and so this equivalent formulation is given in the
next proposition. I am not aware of a reference for this proposition in the case
of classical operads, however it is a straightforward consequence of Proposi-
tion 1.3.2. In the next section we will give a more general result for coloured
operads, of which this one is a direct consequence by restricting to the case

with one colour.
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Proposition 1.3.4. Let O be a non-symmetric operad. A non-unital O-

algebra is an object A together with maps
0:0()® A% - A

for 5 > 0 that are associative in the following sense.

Fori=1,... m+n—1,

O(m) ® O(m) ® A®m 1 Cota™7) O(m+n—1)Q A®mn-1
lo
shuffle A
|
O(m) @ A®1 @ O(n) @ A®m+n—i (id",0,id™ ") O(m) @ A®™.

1.4 Coloured operads

In this section we introduce the notion of a coloured operad. For reference
throughout this section we refer to [Yaul6] for a comprehensive introduction
to coloured operads. We are specifically interested in a coloured operad
without the symmetric group actions, which were first defined by Lambek as
multicategories ([Lam69]).

Our main focus here is to define a non-symmetric coloured operad by par-
tial compositions (or coloured pseudo-operads in [Yaul6]) and algebras over
them. These definitions will be used in Chapter 2 to describe the structure
of Dy-spaces and DA-spaces.

We begin by defining a colour profile, the main purpose of which is to

simplify the notation for the remainder of the section.

Definition 1.4.1 ([Yaul6], 9.1). Fix a non-empty set C, whose elements are

called colours.
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1. A C-profile is a finite sequence of elements of C|, say, ¢ = (¢1,...,¢p).
2. Write |¢| for the length of a C-profile as a finite sequence.

3. The empty C-profile is denoted by &.

4. The set of C-profiles is denoted by Prof(C).

5. Suppose a = (ay,...,a,) and b = (by,...,b,) € Prof(C). Their con-

catenation is defined as the C-profile

(a,b) = (a1, ..., am, b1, ..., by).

We will now introduce the notion of a coloured operad in the monoidal

category (C,®, k).

Definition 1.4.2 ([Yaul6], 11.2). Let C' be a non-empty set. A non-
symmetric C-coloured operad P in C consists of objects P(c; d) for each
¢ € Prof(C) and d € C. Plus, for each ¢ € C' a unit map 1¢ : K — P(c;¢),

and product maps:
v PG d) @ P(bi;e) ® - ® Plby; cn) — P(b;d)

for each ¢ = (¢1,...,¢,) € Prof(C), and n other colour tuples by,...,b, €

Prof(C'), with b = (by,...,b,) their concatenation. The y are required to be

associative and unital in the following senses.
1. Suppose that

o foreach 1 < j <mn, b = ... ,bij) e Prof(C) has length k; > 0
such that at least one k; > 0;

° g{eProf(C) foreach 1 < j<nand1<i<ky

17



e for each 1 < j < n,

(Q{,...,Qij) if k; > 0,
a. =
=3 .
%) it k; = 0;
e a=(ay,...,qa,) is their concatenation.

Then the following associativity diagram commutes:

ros[§r()]e[Br()] = o [8r(2)]
shuffle p{g>
Pla)® @[ <?>®§P<Z§>]M>P(2)®§P(Z;)7

where we have used the notation P(§) = P(c;d) to make the diagram
easier to read.

2. Suppose d € C.

o If c=(cy,...,cn) € Prof(C) has length n > 1, then the right unit
diagram

P(3)® (k)" —=— P(3)

l(ld ®1c /

P(5)®® P(2)

j=1

1s commutative.
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e If b € Prof(C) has length |b| = 0, then the left unit diagram

v @ P(5) — P(})

1s commutative.

The above is the definition of a non-symmetric coloured operad. In Propo-
sition 1.4.5 we give an equivalent definition for non-symmetric coloured oper-
ads via partial compositions, but first we define partial composition of colour

profiles.

Definition 1.4.3 ([Yaul6], 16.1). Let ¢ = (c1,...,¢,) and b = (by, ..., by)
be C-profiles. We define the partial composition of C-profiles by

coib=1(c1,...,¢i1,01, . by, Civay ..y ¢p) € Prof(C)

forall 1 <7< n.

Proposition 1.4.4 ([Yaul6], 16.1). For ¢ = (¢1,...,¢,) and b = (by, ..., by)
in Prof(C) the partial composition of C-profiles satisfies the following asso-

ciativity relations:

co;(boja) =(co;b)ojsj—1a forl<i<n,1<j<m 1.6
(co;b) ogym—1a=(cora)o;b forl <i<k<n. (1.7)
O

Proposition 1.4.5 ([Yaul6], 16.2 and 16.4). A non-symmetric C-coloured
operad P in C consists of objects P(c;d) for each ¢ € Prof(C) and d € C,

together with partial composition maps:
Vi : Pc;d) @ P(b;ci) — P(co; b;d)

19



for each 1 < i < n where |¢|] = n. The v are required to be associative
in the following sense. For ¢ = (c1,...,¢,),b = (b1,...,b,) € Prof(C) and
a € Prof(C), the diagram

) —=
Jm,id) p(eoiteia)) (1.8)

P() @ P(5) — P

P @P(L)@P(a) MY p(et) g P(2)

shuﬁﬁel% l’yker, 1

P(i)@P(i)@P(é) P((Qoib)oz-%—m—lg) (19)

PEPYBP(L) — s P(g)
commutes for 1 <i < k < n.

In what follows, we will present two equivalent definitions of an algebra

over a non-symmetric coloured operad.

Definition 1.4.6 ([Yaul6], 13.2). Let P be a non-symmetric C-coloured
operad in C. A P-algebra is a family X = {X_.}.c of objects in C, together

with maps
a:Plgd)® X, — Xy
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X, ® - ®X,, iflc]>0,
K if |¢| =0,

that are associative and unital in the following senses.

1. For de C, ¢ = (c1,...,cn) € Prof(C) with length n > 1, b; € Prof(C)

for 1 <j<n,and b= (b,...,b,); the following associativity diagram

» Zn

commutes:

P(5)® [é P(ﬁ;)] ®X, % P(5)®X,
j=1

shufﬁelé

Pme®[P(h)ex,) °

(id,@ja)l
P(5)®X, o . Xy

2. For each colour ¢ € C', the following unit diagram commutes:

QX ——— X,

(lc,id)l /

P(¢)® X..

Again, what we are really interested in is a non-unital algebra over a non-
symmetric coloured operad, defined via partial compositions. The following

proposition gives an equivalent definition for such an object.

Proposition 1.4.7 ([Yaul6], 16.7). Let P be a non-symmetric C-coloured
operad. A non-unital P-algebra is a family X = {X_.}.cc of objects in C,
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together with maps
a:Plgd)®X, — Xy
where

Xy ®---®X,, if|c/>0,

X, =
K if |¢| =0,

that are associative in the following sense.
Forde C,c=(cy,...,c,) € Prof(C) with length n > 1, and b € Prof(C);

the following associativity diagrams commute:

(75,id)

PE®P(L) Xy  P() © Xeop
Shuﬁ"lel;
Jj—1 n
P(§)®®1X@®[P(£)®XQ]® ®1XCT o (1.10)
r= r=j+
(id,oa,id)l
P(fl) ®X£ < > Xg.

1.5 Trees

In this section we introduce background material on graphs and trees, leading
to the definition of planar trees. Most of this is following the definitions of
Yau [Yaul6] with some small convention changes. For example, Yau defines
rooted trees where we want our trees to have a root vertex but no root edge.
Following on from this, we define a structure with a distinguished set of
internal vertices which we refer to as a partitioned tree. The remainder of
this section will be devoted to establishing properties of partitioned trees and

a process for constructing them which will be used in Chapter 2 to consider
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a combinatorial description of the cell structure of the topological spaces V;;.

We begin by giving Yau’s definition of a graph and a directed graph. All

graphs we consider in this thesis will be finite graphs.

Definition 1.5.1. A graph G is an ordered pair (V, E) of disjoint sets in
which F is a subset of V2 = {{z,y}|z,y € V,x # y}.

1.

2.

An element in V is called an abstract vertex.

An element e = {x,y} € E is called an edge with abstract end-vertices

reVandyeV.

We say that a graph is finite if both V' and E are finite sets, and
non-empty if both V and E are non-empty.

A path P in a graph G is an ordered list of abstract vertices
P = (xo,xl,...,xl)

for some | > 1 such that ¢; = {x;_1,2;} € F for each 1 < < [. Call
[ the length of the path. We say that such a path is from x, to z;,

that each edge e; is in P, and that P contains e;.

A trail is a path (zo,...,x;) whose edges e; = {z;_1,2;} for 1 <i <1

are all distinct.

A cycle is a path such that the abstract vertices z; for 1 < j <! with

[ = 3 are all distinct and x¢ = ;.
A forest is a graph with no cycles.

We say that a graph G is connected if for each pair of distinct abstract

vertices z,y € V, there exists a path P such that zo = z and z; = y.

Definition 1.5.2. A directed graph is a graph G = (V, E) in which each

edge is an ordered pair of abstract vertices.
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1. Suppose e = (z,y) is an edge in a directed graph, it will be depicted as

O—©

Call x and y its initial vertex and terminal vertex respectively. Call

follows.

e an outgoing edge of z, and an incoming edge of y.

2. For an abstract vertex v in a directed graph, the set of incoming
edges and set of outgoing edges are written as in(v) and out(v)

respectively.

The next definition is based upon the definition of a directed (m,n)-
graph in [Yaul6] however we change conventions to allow an input (defined
below) to have any number of outgoing edges. We also add the definitions
of a “node” and a “child vertex” which will be useful language later in the

section.
Definition 1.5.3. Suppose m,n = 0.

1. A directed (m,n)-graph is a quadruple
G = (V, E,ing, outg)

consisting of a directed graph (V, E') and disjoint subsets ing = {v|in(v) =

} and outg = {v|out(v) = &} where |ing| = m and |outg| = n.

2. In such a directed (m,n)-graph G, we define the subset V;, = {v €
Vv ¢ (inglloutg)}.

3. An abstract vertex v € V in a directed (m,n)-graph G is called

e an input if v € ing;

e an output if v € outy;
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e an internal vertex if v € V};

e a node if [out(v)| = 1;

e a child vertex of x for x € V if v is the terminal vertex of an
element of out(x).

4. An edge e = (z,y) € E in a directed (m,n)-graph G is called

e an input edge if x € ing;
e an output edge if y € outg;
e an internal edge if z,y € V.

An external edge is an edge that is an input edge, an output edge,
or both.

5. The set of child vertices of x for x € V is denoted by Ch(x).
6. The set of internal edges in G is denoted by Intg.

Notice that removing the condition |out(v)| = 1 for v € ing from Yau'’s
definition removes the condition of having a root edge to the graph. The
next definition allows us to put some extra structure on a graph by putting

an ordering on the output vertices.

Definition 1.5.4. Suppose G is a directed (m,n)-graph for some m,n > 0.

An output labelling of G is a bijection A : [n] — outg, where

{1,...,n} if n>1,
%) if n=0.

[n] =

In the next definition we change conventions from Yau’s definition to have
trees defined to “grow upwards” with one incoming edge and m-outgoing

edges.
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Definition 1.5.5. Suppose m is a positive integer. A m-tree T is a con-

nected directed (1, m)-graph such that |in(v)| = 1 for each v € V..

1. We call the single element of iny the root node of 7" and denote this

by rtp.

2. An m-corolla is a m-tree T such that V., = &.

A tree is an m-tree for some m > 1.

Remark 1.5.6. Notice that if T" is an m-corolla then it is sufficient to specify
V = {vg,v1,...,0n} and iny = {vy} since we must have outy = V\ iny and
E = {(vo,v1), (vo,v2), - - -, (Vo, Um) }-

Definition 1.5.7. A planar tree is a tree with an embedding into the strip
R x [0, 1] with the root sent to R x {0} and the leaves sent to R x {1}, up
to isotopies respecting these constraints. Such a structure induces an output

labelling on the tree.

We now introduce the definition of a partitioned tree as a tree with a
specified subset of vertices called the “cut set”. From this point onwards, all

trees that we consider will be planar trees.

Definition 1.5.8. Suppose r,n € N such that n > 1. An r-partitioned n-
tree is a planar n-tree T' = (V, E, ing, outy) with a specified subset C' < V.,
such that |C| = r, which we call the cut set.

In particular, a O0-partitioned n-tree is just an n-tree.

For example, the tree
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€5 €6

T == 64
€62 €3

with cut set C' = {vs}, is a 1-partitioned 4-tree. We can represent this by
re |
U7

in which the partition is represented by a gap and we drop the labels on the

edges and vertices.

Definition 1.5.9. If T" is an r-partitioned n-tree with cut set C', we recover
the n-tree T" by forgetting C'. We call this the closure of the partitioned
tree T'.

In the example above the closure of T" would be the tree represented by

<

Next we introduce the definition of an isomorphism of trees. Notice that
by dropping the labelling of vertices and edges from our diagrams, we have

in a sense already been considering isomorphism classes of trees.

Definition 1.5.10. Suppose 17 = (V1, E1, rtp,, outy, ) and Ty = (Va, Ey, rtp,, outr, )

are two m-trees. An isomorphism of trees
C: Ty =Ty
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consists of two bijections
Cv CE
Vi —_—> ‘/2 and E1 —> EQ
that preserve edge orientations i.e.

e=(x,y)e By ifand only if ((e) = ({(z),((y)) € Es
and the restrictions of (,

. ¢ . ¢

inp, > inp, and outpy = outp,

are bijections. Since all our trees are planar, the isomorphism is also required

to respect the planar structre, and so must also preserve the output labelling.

Remark 1.5.11. It is important to note that there is at most one isomorphism
between any two planar trees, or equivalently, all automorphisms are iden-
tities. Indeed, the output labelling condition means that any automorphism
acts as the identity on leaves, and it must also commute with the parent
map, and the claim follows easily from that. It is because of this that it is

harmless to consider isomorphism classes of trees.

Next we introduce the grafting of two trees at a given vertex. The first
definition gives grafting for a planar tree, then we describe how this can be

extended to a grafting of partitioned planar trees.

Definition 1.5.12. Suppose T} = (V4, By, ing,, outy, ) is an n-tree, v € outy,,
Ty = (Va, By, ing,, outy,) is an m-tree, and rtp, is the root of Ty, i.e. ing, =
{rtr,}, with V; and V; disjoint. Define the (n + m — 1)-tree

T = T1 Oy T2 = (VT, ET,inT,outT)

as the tree with

_ _Wuvs
o Vr= (v~rtqy )’
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[ ] ET = El I EQ,
[ iIlT = iIlTl;
e and outy = (outy, \{v}) I outy,.

Call T o, T the grafting of T} and T, via v. Such grafting has a clear
compatibility with the planar structure of the trees. We can see that using
the embeddings of 77 and T» we have an embedding of 77 o, T5 in R x [0, 2]
with leaves of 77 at R x {1} and leaves of T5 at R x {2}. By performing an
isotopy to horizontally scale T, to width 0 where ¢ is less than the distance
between v; 1 and v; 41 in R x {1} we can then extend leaves in R x {1} up to
R x {2}. Finally we perform an isotopy to scale T} o, T from R x [0, 2] to
R x [0,1].

Definition 1.5.13. If T} = (14, £y, ing, outy, ) is an r-partitioned tree with
cut set C1, and Ty = (Vs, Ea, ing,, outy,) is an s-partitioned tree with cut set
(5, then we make the grafting 77 o, T» into a (r + s + 1)-partitioned tree by
defining the cut set of Tj 0, Ty to be C111C,11{v}. We call this a partitioned
grafting and denote by 17 A, T5.

Remark 1.5.14. Notice that since T} is a planar n-tree we have a specified
output labelling, A : [n] — outy,, so v € outy, has A(k) = v for some k € [n].

As a result, we can denote Ty A, 15 by Ty Axg) 1o, or Ti Ay T3 for short.

Example 1.5.15. Let

|
\Y \Y
-V, -

) - )

where T} is a 1-partitioned 3-tree, and 75 is a 2-partitioned 4-tree. Then the
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partitioned grafting

|
\Y
AN
\Y
Tl N9 T2 = V
is a 4-partitioned 6-tree.

Lemma 1.5.16. Partitioned grafting is associative, i.e. if we have three

planar partitioned trees T}, T5, T3 where |outr,| = a, and |outy,| = b, then
LTy ng (To ngTs) = (Th Ao T2) Aayp1 T, for 1l <a<a,1<p <D, and
2. <T1 Na Tg) N B+b—1 T3 = (Tl AR Tg) Na TQ forl<a< ﬁ

Proof. The proof of this lemma follows directly from the definition of grafting.

If we draw the structure of the trees on both sides, then relation 1 looks like:

T3
A
T outputs
Tg A\ 8 T3 TQ T3
LY L R
T outputs T outputs T outputs
T1 = T1 = Tl Na T2
and relation 2 looks like:
B+0b—-1 a B Q
a+b—1 a atce—1
I outputs M outputs \V outputs
T1 Na Tz = T1 = Tl N T3 :
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With planar structure on grafting defined as in Definition 1.5.12 it is clear
that these associativity relations respect the planar structure up to isotopy.
In particular the induced output labelling on T} A, (T2 A T3) is equal to that

on (171 Ag Ts) Aayp—1 Ts, and similarly for the second relation. O

Remark 1.5.17. It is worth noting that the associativity relations for grafting
of planar partitioned trees are exactly the associativity relations for partial
compositions in a non-symmetric non-unital operad. So grafting is a kind of

partial composition for planar partitioned trees.

The next definition gives two different ways to get a (k + 1)-partitioned
tree from a k-partitioned tree. In the following chapters, we will see that the
splitting of a tree relates to the boundary component of the cell it represents
in Vj;. The terminology D.-type and A.-type splitting is chosen to refer
to the types of splittings in the trees that represent the cells of Do, and A

spaces.

Definition 1.5.18. Let T be a k-partitioned m-tree with cut set C. A
splitting of T" at o € V is a (k + 1)-partitioned m-tree formed in one of the

following ways.

1. If a e Vi, so |out(e)| = 1, and a ¢ C, we take 7" to be T with the new
cut set C' = C'11 {a}. We call this a D,-type splitting.

2. If « € V\outyr and |out(a)| = n, with n, > 3 then we choose J a

proper non-empty interval in Ch(a) with 1 < |J| < n,. Then 7" is

given by
e adding a new vertex 8 so that V' = V11 {j};
e adding edges (f,v) and removing edges (a,v) for all v € J;
e adding an edge (a, f);
e adding f to the cut set so that C" = C'11 {f3}.

We call this an A, -type splitting.
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In both of the above cases, we refer to the node « as the source of the

splitting.

Remark 1.5.19. If o has three or more children then there are 3 (nq—2)(nq+1)
Ax-type splittings of T', where n, = |out(«)|. We prove this in Proposi-
tion 1.6.3 as the special case with k£ = 1.

Definition 1.5.20. Let ¢ be a k-partitioned planar tree. We denote by Sp(t)
the set of (k + 1)-partitioned planar trees which are splittings of t.

NV

Example 1.5.21. Consider the 3-partitioned tree ¢t = \V . Then
NV

the splittings of ¢ are given by

The first splitting listed is a Dy-type splitting. The other two splittings
on the top row are the two possible A -type splittings of the 3-corolla in the
middle of the tree. The five splittings on the bottom row are the five possible
Ax-type splittings of the 4-corolla at the top left of ¢.

Next we introduce decorated tree diagrams which are ordered sets of pla-

nar trees with some distinguished vertices. This will allow us to introduce a
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process for building planar partitioned trees. Recall that an ordered partition

of n € N is a collection of natural numbers n; such that > n; = n.

Definition 1.5.22. A n-tree diagram of length r + 1 is an ordered set

T = (to,...,t,) of planar n;-trees t; for 0 < i < r with ng+ -+ +n, =n+r.

Definition 1.5.23. A decorated n-tree diagram of length r + 1 is a n-
tree diagram, T = (to, . .., t,), with a specified subset D < (outy, 11 - -Llout, ),

of output vertices such that |D| = 7.

1. We call D the set of distinguished vertices.

2. We can define the set of distinguished vertices in t; by D; =

D nouty,.
3. We define the set of root vertices by Rtp = {rt;,,rts,,... 7t}

4. Since each t; € T is a planar n;-tree we have a specified output labelling,
Ai © [n;] — outy, for 0 < ¢ < r. This induces a labelling v : [r] — D on
D.

We can now introduce our tree building process which constructs a

planar tree from a decorated tree partition diagram.

Definition 1.5.24. We define a process to construct a k-partitioned m-tree
from a decorated m-tree diagram of length k+ 1. We will refer to this process
as the tree building process.

We begin with a decorated m-tree diagram, T' = (to,...,t;). Let v(T)
denote the effect of gluing the root of ¢; 1 to the leftmost distinguished vertex
of t; (if one exists). Here t;,1 should be interpreted as ¢y if i = k (i.e. if ¢; is

the last component). So

Yi(T) = (to, ..., tic1, (ti Aativ), tiva, .. tg)

where « is the leftmost distinguished vertex of t;. We apply any valid se-

quence of 4’s until we reach a diagram with a single component.
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We will prove in Proposition 1.5.31 that the output of this process is well
defined i.e. independant of the sequence of graftings. Notice that this would

be clear if we did not allow the grafting of ¢y into .

Remark 1.5.25. Notice that since each entry of the tree diagram is a 0-
partitioned tree, the partitioned grafting taken in the tree building process
assigns a cut set with k£ elements to the output tree in which the vertex at

each grafting point is included in the cut set.

Example 1.5.26. Suppose we have the following decorated tree partition,

ity = (NN NN )

Then we could apply ~; to give,

\
N LN

Now, we could apply 75 to give

\Y4
AV EAVANV AN
vV
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The rest of the process could continue by applying v;’s as follows:

\
V4 §
LAY

\

NV \ N
VAN NV
~NV N
NN\

Remark 1.5.27. Notice that the output of the tree building process is

T = (((((t2 A2 t3) A2ta) Asts) Asto) A7ita)
with cut set corresponding to the decorated vertices.

Definition 1.5.28. Suppose 17 = (V1, E1, rtp,, outy, ) and Ty = (Vs, Ea, rtp,, outr, )
are two k-partitioned m-trees, with cut sets C} and Cj respectively. An
isomorphism of partitioned trees is an isomorphism of trees that also

preserves the cut set i.e. for v € C1, (g(v) € Cs.

The following proposition highlights a special property of grafting of corol-
las. This result and the subsequent corollary will be useful in Section 1.6
when we think about applying the tree building process to decorated tree

diagrams in which each entry is a corolla.
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Proposition 1.5.29. Let C; be an m;-corolla for ¢ = 1,...,4. We have
Ciop Cy = Cy0,Cyif and only if C; = C3, Cy = Cy, and k = 7.

Proof. Suppose that T~ (' o, C5. Then
e 7' has a unique internal vertex which we can call v;
e m; is one plus the number of leaves which are not children of v;
e M5 is the number of children of v;

e k is one plus the number of leaves that are not children of v but that
lie to the left of all children of v.

From these descriptions it is clear that m;, ms and k are isomorphism in-

variants. O

Corollary 1.5.30. Two partitioned graftings of corollas are isomorphic if
and only if their graftings are isomorphic, i.e. C; Ap Cy = C3 A, Cy if and
only if Ol Ok Cg = Cg Oy 04.

Proof. 1f C; A Cy =~ C5 A, Cy then clearly C; o, Cy =~ C30, Cy. If C 0, Cy =~
C5 o, Cy then by Proposition 1.5.29 we have C; =~ C3, Cy =~ Cy, and k = 7.
Hence the cut set for each tree would be {k} = {r} so Cy ApCy = C3A,Cy. O

From this point onwards we will be working with isomorphism classes of
trees. For simplicity we just refer to these as trees. Our next proposition
shows that two decorated m-tree diagrams of length k£ 4+ 1 which are cyclic
permutations of one another will produce the same partitioned tree. Possi-
bly a little more surprising a result is Proposition 1.5.32 which shows that
two decorated partition diagrams which are not cyclic permutations of one

another cannot produce the same partitioned tree.

Proposition 1.5.31. A decorated m-tree diagram A has a unique output
tree 7(A) from the tree building process of Definition 1.5.24, and two deco-

rated m-tree diagrams of length k 4+ 1 will produce the same k-partitioned
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m-tree via the tree building process if they are cyclic permutations of one

another.

Proof. Let us begin by considering a decorated m-tree diagram A = (to, ..., ).
We will show that if ¢ < j then v;_17(A) = 77, (A).
If j > i+ 1 then clearly

Vi—1%i(A) = (Lo, (ti Aatig)s tivas s tima, (G Aptia)s oo k)
= 775(A).

It j =141, then

YiYit1(A) = (o, - tic1, ti Aa (Bix1 Agtize), ..o tk)

and

Yivi(A) = (o, - ti—1, (ti Aativ1) ANatp—1 tive, - tk).

So v;-17i(A) = 7v;(A) by Lemma 1.5.16. Now we proceed by induction on
|Al.

If |A] = 1 then there are no steps to take. If |[A] = 2 then there is only
one possible choice of grafting and so 7(A) is unique.

Now for k > 3 assume at for |A| < k there is a unique resulting tree
7(A). Then for |B| =k + 1, |v:(B)| = k so has a unique output 7(7;(B)) by
the induction assumption, and |v;(B)| = k so has a unique output 7(~;(B)),
where we take i < j without loss of generality. Now since v;_17(B) =
v:vj(B), we must have 7(v;(B)) = 7(v,;(B)) and hence 7(B) is unique.

Finally since the operation 7; have an obvious compatibility with cyclic

permutation, we see that cyclically permuting A does not affect the resulting
tree 7(A). O

Proposition 1.5.32. Two decorated m-tree diagrams of length k+1 that are

not cyclic permutations of one another will produce different k-partitioned
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m-trees via the tree building process.

Proof. Suppose we have two decorated m-tree diagrams of length k£ + 1 that
result in the same partitioned tree but are not cyclic permutations of one
another. Say we have T' = (to,...,t;), and B = (by, ..., b). Since by Propo-
sition 1.5.31 we know that cyclic permutation will not affect the resulting
tree, we can perform a cyclic permutation so that the root of ¢ is the root
of the resulting tree 7(7'), and the root of b is the root of the resulting tree
7(B).

Now we can repeatedly apply 7; to each diagram until we have a unique
resulting tree (since we have performed a cyclic permutation in order to make
this choice valid). Since the two partition diagrams are not equal, at some
point £, # b, for 1 < n < k. However, since we are applying the same
grafting to both diagrams, t,, and ¢, will be grafted into the same position in

their respective trees, and so the partitioned trees cannot be the same. [J

Corollary 1.5.33. The tree building process produces a unique

k-partitioned m-tree from each decorated m-tree diagram of length k + 1 up
to cyclic permutation, i.e. two decorated m-tree diagrams of length k + 1
produce the same k-partitioned m-tree under the tree building process if and

only if they are cyclic permutations of one another.

Proof. This follows directly from Proposition 1.5.31 and Proposition 1.5.32.
O

1.6 Counting sets of trees

In this section we will define all the necessary combinatorial structure for
the rest of the thesis. The key points of this section are the definition of the
set of trees 7:’3 and Propositions 1.6.4 and 1.6.5 which provide arguments
for counting the number of elements of 7;’3 These results will be used in

Chapter 2 for counting the number of cells in each dimension of V;.
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We specify planar trees by the number of outputs, the number of parti-

tions, and the number of nodes.

Definition 1.6.1. For ¢,k > 0, j > 1, we denote by ’7;’“] the set of k-
partitioned planar j-trees with ¢ nodes, in which for any vertex v with

lout(v)| = 2, the children must be leaves, or nodes, or cut points.

So in Example 1.5.21, ¢ is in 7'1?:8. Some other small examples are:
7613 = {\/ ) \/}

and,

721 = ) }a
Now we will consider a more complex example.

Example 1.6.2. We consider the elements of 7",. The trees in this set must
have 4 outputs, 1 node, and no partitions so for any node with more than
one outgoing edge, its child vertices have a maximum of one outgoing edge.

From these conditions we can see that the elements of T, are:

Notice that the first five trees are the 4-corolla with a single edge affixed in
all possible different positions, while the second five trees are the five possible

A-type splittings of the 4-corolla with a single edge between the two pieces.
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The following three propositions provide counting arguments for the el-
ements of 77“] We first restrict to ¢ = 0 and Proposition 1.6.3 provides a
counting argument for this case, then Proposition 1.6.4 provides a counting
argument for the special case of k = 0. We do not restrict to j = 1 be-
cause restricting to 1-trees reduces this case to counting ordered partitions
of 7 elements. Proposition 1.6.5 uses the special cases to provide a counting

k
argument for general 7,".

Proposition 1.6.3. The number of trees in 7§, is given by T'(n + 1,k) =
() (0

Proof. For the elements of 76’fn, there are no nodes, so we must take every
internal vertex as a cut point. Thus, we are just counting trees with n leaves,
no nodes, and k internal vertices. So we construct and count all trees of this
type.

We begin by taking an ordered partition of the (n + k) edges into (k + 1)
parts, in which each part is greater than or equal to two (because we are
not allowed to have any nodes). To do this we take an ordered partition
of (n+k)—(k+1) =n—11into (k+ 1) parts and then add one to each
part. There are (";2) ordered partitions of this type. This gives us a n-tree
diagram of length k£ + 1 in which each element is a corolla with at least two
edges.

In order to apply the tree building process we need to choose k of the
(n+ k) outputs to be distinguished. There are ("Zk) ways of doing this. This
gives us a decorated n-tree diagram of length k£ + 1 to which we can apply

the tree building process.

n;Q) (n-’:k

ever, by Corollary 1.5.33 we know that decorated n-tree diagrams only pro-

So far we have ( ) different decorated partition diagrams. How-
duce a unique k-partitoned n-tree up to cyclic permutation. The cyclic group
of order k acts freely on the set of decorated n-tree diagrams, because if a
diagram has stabiliser of order m then m must divide both the number k + 1

of roots and the number k of decorated points, so m = 1.
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So for each decorated n-tree diagram of length k + 1, we have counted
the same k-partitioned n-tree k + 1 times. Hence, the number of n-trees in

T&h, is given by T(n + 1,k) = 2= (".%) ("19). .

k+1

Proposition 1.6.4. The number of trees in 7:01 is given by the Narayana
N T Ny

number N (i + j,j) = m(’jj) (;_]1)

Proof. Suppose T' e 7;? We begin by adding a node at the root of 7. Now
let m be the number of non-nodal internal vertices. By assumption, beneath
every non-nodal internal vertex we have at least one node. We can remove
one such node in each case, leaving a tree with ¢ internal vertices. This
construction gives a bijection from 7;? to the full set of trees with j leaves

and 7 internal vertices.

Now let us say that a Narayana path of type (n,j) is a sequence u €
{—1,1}>" such that 37" u; = 0 for all m and ", u; = 0 and there are j
peaks (i.e. adjacent pairs of the form (1, —1)). Suppose that T is a tree with j
leaves and 7 internal vertices. We can walk clockwise around the tree, starting
on the left hand side of the root, recording a +1 for each upwards step and
a —1 for each downward step. There are ¢ + j edges, and we walk up the left
hand side of each one and down the right hand side, giving 2(i + j) steps in
total. There is a peak for each leaf. Thus, we have a path in N(i + j,7).
It is not hard to see that this gives a bijection between trees and Narayana

paths.

We know from Petersen [Pet15] that Narayana paths are counted by the
Narayana numbers. Hence there are N (i + j,j) trees in 7;? O

Proposition 1.6.5. Let

Fy(z,y) = Y| T5la'y
120,
j=1
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then

Fo(w,y) = N(i+j,)="y’
(4.5)#(0,1)
and
1 o k+1
P = i

Proof. The claim is equivalent to saying that number of trees in 77“] is given

by

1 (j+k i
k:—+1<j ' ) D [ [N (ua + va,va).

i=ug+-+ug, a=0
JjH+k=vo+---+vg,
ua=0,vq =1 for all a,
(va,va)#(0,1) for any o

The elements of 7% are k-partitioned j-trees with ¢ nodes. Notice that a
k-partitioned tree is the same as a grafting of (k + 1) O-partitioned trees. So

for any t € TF, t = tugwo A * Aty v, Where t, . € 7:& v, for 0 < a <k and

iy
u0~|—--'+ukj= t,and vg+---+vp =7+ k. Wetakevg+---+vp,=7+k
because we want the whole tree to have j outputs, and each time we graft
two trees one output becomes an internal edge.

For each set 7 , . there are N(uq + vq, V) trees (by Proposition 1.6.4).
So we count the number of possible tree diagrams of the form (£, vy - - - s fuy vy, )-

There are

Z N(ug + vo,v9) -+ - N(ug + vk, vg)

i1=ug+-+ug,
J+k=vo+---+uy,

Ua=0,v021,

(u& ,UQ)#(O,l)

such tree diagrams.

There are a total of j + k outputs in the subtrees and we must choose k
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of them to be distinguished so there are (j Zk) possible ways of doing this.
Finally, by Corollary 1.5.33, we must divide by k + 1 to account for the fact
that cyclic permutation means we have counted each partitioned tree k + 1
times.

Therefore, the number of trees in 7;’3 is given by

1 [(j+k k
—k;+1( i ) Z N(ug + Vq, Vq)-

i=ug+-+ug, a=0
Jt+k=vo+:-+vy,
uq=0,vq=1 for all a,
(ue,va)#(0,1) for any «

O

We now aim to simplify this result using the identity given in the following

Proposition.

Proposition 1.6.6 ([Def]). Let us define

E+1(n n nal
Gilst) = 2, n (l)<l+k:+1>3t’

n>0,
=0

Then Gy (s,t) = Go(s,t)*1 O
Remark 1.6.7. If we let

A kD) = > [ NGeje+1),

G0+ tig=n, t=0
Jo+-+ik=l,
1t=1,7: =0

then the claim is equivalent to A(n, k, 1) = &L (") ( " )

n \l/J \l+k+1

Proposition 1.6.8. Let

w50
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be the generalised Narayana number. Then

D ] N(uatve ua+1) = H (=1 (l’:j;) N (i+j+a,i+1).

i=ug+--tug, a=0 a=0
Jt+k=vo+-+vy,

Ua=0,v021,

(ua,va)sé((),l)

Proof. We will prove the proposition by induction on k. We begin by con-
sidering the initial cases £k = 0 and £ = 1. When k£ = 0,

0
Do TN (ua+ vasua +1) = N(i+ j,i + 1)
a=0

1=ug,
L fi+g\ (it
1)\

Jj+k=vo,
= No(i +j,i+1).

UQZO,UQZL
(uOA 71}@)7&(071)

When k£ = 1, we consider the sum as the sum over all pairs in which we allow
(Ua, Vo) = (0,1) and use Proposition 1.6.6, then subtract the cases where one

of the two pairs is (0, 1), i.e.

1
Z HN(ua + Vg, Ug + 1)
a=0

t=uo+ui,
Jj+k=vo+uv1,
Ua ZO,UQ 217
(uﬂ 7U&)7/:(0’1)

1
= > [ N(ua+va e +1) = 2N(i+ j.i+ 1)
i=ug+ui, o=0

Jj+k=vo+v1,
Ua=0,vq=>1

=N(Gi+j+1,i+1)—2No(i +j,i + 1)

R R T SerY
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Now let

k
L(i,j, k) = Z HN(ua+va,ua+1),

i=uo+-tup, a=0
J+k=vo+--+vg,
Uq=0,v02>1,

(udvva)#(ovl)

and

k
kE+1 S ,
B(i, j, k =Z < )Na(z+9+a,z+1),

and assume that the proposition holds for all £ < t. Then for £k = ¢ + 1 we
have

t+1

L(i,j,t+1) = > [ [N (ua + va, o +1)—

i=uo+-+uty1, a=0
jtk=vo+--+vi41,
Ua =001

(t + 2> sum with t+ 2 sum with
exactly one| — ... — exactly t+1
1 [pairZ(Oal)] t+1 [pairs=(0 1)]

o St+2 ,
=A(l+j+t+1,t+1,0)— Z bil—s B(i, j,s).

Now
¢
t+2

Bli i

M (, 177, )pis

t+2\[/s+1
NoGititritl

8+1>(S—7’> (i+j+ri+1)

il
:ii(_l) (t+2)<2ti)NT(i+‘j+r’i+l)
(

== s+1

LA t+2\ /t+1—7r
- 1 No(i+j+ri+l
PIDNC ) [ (R RACRSRRRERY
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t t+ 2 [ ¢t s t+1—7r ' . .
:72_0(7’4—1) _;(_1) < s—p >]Nr(l+]—|—fr71+1)
= 2\ [SY et L
_72_[)(7’4—1) _50( 1) ( ﬁ >]NT<Z+j+T,Z+1)
=)D (:ii) N(i+j+ri+1)

r=0

where the final step uses the identity . (—1)5(2) = 0. We know from
8=0

Proposition 1.6.6 that A(i+j+t+1,t+1,i) = Nyyq(i+j5+t+1,i+1). So

we have
L(i,j,t +1) = Nypr (i + j +t + 1,0 + 1)

_ Zt:(_l)t—f‘<t * 2)Nr(z‘ +j+ri+1)

= r+1
t+1
t+2
_ _1\t+l-r _— .
_;)( 1) (T+1>Nr(z+]+r,z+1)
= B(i,j,t+1)
as required. O

Corollary 1.6.9. The number of trees in 7;’“] is given by

1 j+k i o k41 o .
_{)k-a N, it 111
k:+1< ' )ZO( () Nali+ g ani ) (1.11)
where N, (n,k) = =2 (.7 ) ("))

Proof. This follows directly from Proposition 1.6.5 and Proposition 1.6.8. [

Remark 1.6.10. To see that this restricts to the result we expect in the case

46



1 = 0 we need to use the binomial identity

i(ﬂ)?«(k’ : 1) <m +¢,§ —r) _ <mk— 1) o)

From the book Concrete Mathematics (|[GKP94], equation 5.25) we have the
identity

s ()7 -

The identity we require is a special case of this with n = 0, s = k + 1, and

l=m+k.

So when ¢ = 0 in equation (1.11) we have

1 J+

k| _
|76’j|_k+1( k
_|_
k

So this agrees with Proposition 1.6.3.

Furthermore, if we restrict to the case j = 1 we get

1 (k+1) < (k1 4 .
|iﬁ|=—k+1( " )Z(—l)k (k_r)Nr(z+r+1,z+1)
r=0
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Chapter 2
Topological Models

The aim of this chapter is to introduce the notion of an Ay-space, D-
space, and DA -space. In Chapter 3 we will see that taking singular chains
on these structures gives an A,-algebra, twisted chain complex, and derived
A-algebra respectively. The first case is classical and due to Stasheff [Sta63],
while the other two are new constructions.

We introduce three collections of topological spaces and give examples of
the construction for some low dimensional spaces in each. In this chapter,
we will also discuss the non-symmetric coloured operad structure of these

spaces.

2.1 A, -Structures

An A.-space is a topological space with a multiplication which is not strictly
associative but is associative up to homotopy in a strong sense. So we have a
topological space, X, and a multiplication map, M5 : X x X — X. Then we
want to consider a homotopy M3 : I x X3 — X such that M3(0, zy, 2o, x3) =
My(My(x1, 22), x3) and M3(1, x1, 9, x3) = Ms(x1, Ma(z9,x3)). An illustra-
tion of this homotopy is given by figure 2.1.
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M3 M3
— > o — > o

(.%'11‘2)(133 ZEl(IQ.I‘g) M2<M2 X 1) M2(1 X Mg)

Figure 2.1: Stasheff polytope K3, homotopy M;

We want to continue to generalise this to a higher associativity condition
for multiplication of four variables. There are five different ways to fully
bracket four variables in a fixed order, and we already have some maps be-
tween them given by compositions of M3 and Ms, as shown in figure 2.2.
These maps give us the boundary of a pentagon and we call this pentagon

K4, and so we want to define a homotopy M, : K4 x X* — X.

(@122)(w34)

M3(A42 x 1 x 1) M3(]_ x 1 x Mg)

x1(@a(w34))
A{z (1 X ]\/fg)

((ZE1I2)1E3),T4

x1((wox3)24)
My(Ms x 1
(Il((lleﬂg))l'4 2( 3% ) Mg(l X M2 X 1)

Figure 2.2: Stasheff polytope K,

To consider generalising this idea to associativity for multiplication of
more variables, we first need to define a collection of convex polytopes called
the associahedra. The associahedron K; is a convex polytope of dimension
(1 —2), in which the vertices are in bijection with the number of ways of fully
associating ¢ items. In the brief discussion above, we have already seen K3
and K.

We will now discuss Stasheft’s original construction of the spaces and give
a few examples. We also note that there are many different realisations of
the associahedron, for example the realisation given by Loday and Vallette

in Appendix C of [LV12] was used to create the images in this section.

Definition 2.1.1 ([Sta63]). [Stasheft’s Construction] To construct the as-

20



sociahedron K;, we consider inserting a set of parentheses into a word
of length ¢, x;...z;. To each such insertion there corresponds a cell on the
boundary of K;. If the brackets enclose z; through to x;,s 1 then this cell
is taken to be the image of K, x K, under a homeomorphism which we call
Ok(r,s) where r + s = i + 1. Two cells intersect only on their boundaries

according to two relations:
0j(rys +t—1)(1 x Ok(s,t)) = Ojrp—1(r+s—1,t)(0;(r,s) x 1) (2.1)
forl<j<randl1<k<s, and
Ojys—1(r+s—1,t)(0k(r,s) x1) = p(r+t—1,5)(0;(r,t) x 1) (1 xT) (2.2)

for 1 <k < j<r where T : K, x K; - K; x K, permutes the factors.
Starting with K, being a one point space, we obtain the boundary for each
K; by induction.

This is a cellular decomposition of the sphere Si=3. Then K; is the cone
on its boundary, so as a space K; is homeomorphic to D=2 and we have a

particular cellular decomposition of the boundary.

Example 2.1.2 (Construction of K4). We consider all possible ways of in-
serting a single pair of matching brackets into a four letter word, that is
(x129m3) 2y, T1(Tows)Ty, T1(Towsy), T122(T324), and (x1x9)z324. ToO each
such insertion we have a cell on the boundary of K4 under the maps 0;(2, 3),
05(3,2), 02(2,3), 05(3,2), and ¢4(3, 2) respectively. The pieces on the bound-
ary of K, are shown in Figure 2.3. Notice that each piece is a copy of Ky x K.

The relations for these pieces are:

01(2,3)(1 x 81(2,2)) = 01(3,2)(01(2,2) x 1) (2.3)
01(2,3)(1 x 32(2,2)) = 02(3,2)(01(2,2) x 1) 2.4
02(2,3)(1 x 01(2,2)) = 05(3,2)(02(2,2) x 1) (2.5)



(2.3) (2.4) (2.4) (2.5) (2.5) (2.6)

(a) 01(2,3) (b) 02(3,2) (c) 02(2,3)
@7 (26) 23) (27
(d) 05(3,2) (e) 01(3,2)

Figure 2.3: The pieces in K4

(2.7)
(2.6)
(2.3)
\\/ (2.5)
(2.4)

Figure 2.4: The space K,

We use these relations to construct the boundary of K4 and then take the

cone to get the space K, as shown in figure 2.4.

o2

Example 2.1.3 (Construction of K5). We consider all possible pairs of num-
bers r,s = 2 such that » + s = 6. That is, (2,4), (3,3), and (4,2). So, we
have cells on the boundary as shown in Figure 2.5. Notice that the pieces
(a), (b), (¢), (d), (e), and (f) are homeomorphic to Ky x K4, while the pieces
(g), (h), and (i) are homeomorphic to K3 x K3. The relations for these pieces



(2.2 (2.2 (2.22)
(2.18) (2.19) (2.28)
(2.27) (2.12) (2.9)
(2.17) (2.14) (2.16)
(2.28) (2.20) (2.21)

a) 01(4,2) b) da(4,2) ¢) 05(4,2)
2 2 2 11
(2.26) (2.17) (2.12)
(2.11) (2.15) (2.10)
2 24 2 13 (2 8
2 25 2 14
d) 04(4,2) e) 01(2,4) £) (2, 4)
(2.13) (2.15) (2.27)
(2.18) (2.19) (2.20) . (2.21) (222)+  +(2.23)
(2.24) (2.8) (2.10)
(g) 01(3,3) (h) 2(3,3) (i) 03(3,3)

Figure 2.5: The pieces in K5
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We use these relations to construct the boundary of K5 and then take the

cone to get the space K5 as shown in figure 2.6.

The encoding of the cell structure of an associahedron by planar trees
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@2 12)

@ 12)

Figure 2.6: Stasheff Polytope K5
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Figure 2.7: Stasheff Polytope K3 and K, with planar tree labels

is well documented in the literature (see for example [LV12][Appendix CJ).
Several realisations of the associahedra as polytopes are known, but here we
are only concerned with the structure as a finite cell complex. Figure 2.7
shows this representation for the polytopes K3 and K4 with splittings drawn
with a small gap as in Section 1.5. We recall that collapsing and expanding
an internal edge allows us to move from a cell to its boundary, we think of
this as adding or removing a splitting.

However, a counting argument for the number of faces of each dimension
is not well documented in the literature. This may well be known, but I have
been unable to find a reference, and so I will present a proof of this using the

counting arguments from Section 1.5.

Proposition 2.1.4 (Appendix C, [LV12]). The cells of dimension k in K, are

in bijection with the planar trees having n leaves and n — 1 — k vertices. [
Proposition 2.1.5. The number of cells in dimension (n — 2 — k) in the

associahedron K, is given by T'(n + 1, k) = ﬁ(”f) (”Zk)
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Proof. The cells of dimension (n — 2 — k) in K, are in bijection with planar
trees with n leaves, and k + 1 vertices. It is easy to see that this is equivalent
to trees with n leaves, k internal edges (i.e. k& A, -splittings) and no nodes.
So the cells of dimension (n — 2 — k) in K, are in bijection with elements
of Tg,, and by Proposition 1.6.3 we know that there are T'(n + 1, k) such

trees. ]

The following two results are also well known in the work of Stasheff
but will be useful in the final section of this chapter when we consider the

structure of the spaces Vj;.

Proposition 2.1.6 (Proposition 3, [Sta63]). The space K; is homeomorphic
to ['72 ~ D72, ]

Proposition 2.1.7. The associahedra {K,},>2 form a non-symmetric non-

unital operad, IC, in the category of topological spaces.

Proof. This follows directly from the definition of a non-symmetric operad
via partial compositions in Proposition 1.3.2. The structure maps, dx(r, s) :
K, x Ky — K, 4 1, give the partial compositions, and relations 2.1 and 2.2
are equivalent to the relations for the partial compositions. More details can
be found in [Sta97]. O

In the next definition, we use the spaces K; to define an A -space. In
[Sta63] Stasheff defines an A,-space with a unit condition for the multipli-

cation which we omit here.

Definition 2.1.8. A space X admits an A,-structure if and only if there
exist maps M, : K; x X* — X for i > 2 such that

Mi(ak(,r? S)(IOJ 0)7 L1yeeny xz) =
M, (p,x1, .., p—1, Mg(0, g, ooy Thrs—1), Thsy -y Ti),  (2.29)

forpe K, 0 € K5, r+s =i+ 1. The pair (X, {M,}) is called an A,.-space.
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Proposition 2.1.9 ([Sta97]). An Ay-space is an algebra over the operad
K = {K,} in the category of topological spaces.

Proof. This follows directly from Proposition 1.3.4. We see that with the
structure maps, M; : K; x X' — X for 2 < i < n, relation (2.29) is equivalent

to satisfying the associativity diagram of Proposition 1.3.4. O]

Example 2.1.10. A natural example of an A-space is the loop space, 2.X of
a based topological space X, with basepoint *. We can take the composition

of two loops a, b where:

a:l—X b: 1 - X
st. a(0) =a(l) == b(0) = b(1) = =.

Then aob: I x I — X is given by the formula

a(2i) 0<i<

1
aob= z
1

b(2i—1) 3<i<
We can easily see that when composition is defined in this way, it is not

associative, i.e. (aob)oc # ao(boc). However, we can define a homotopy

between the two ways of associating:

M (QX)® x I — QX

a((2 — t)2i) 0<i< i
s.t. Mg(CL,b,C,t) = b(42*1*t) % <1< %,
c((2i—1)+2t(i—1)) ZH<i<1

If we consider the multiplication map, M, : QX x QX — QX which takes
two loops (a,b) to the composite a o b, then M3 is a homotopy between
My (My x 1) and My(1 x Ms). Continuing in this manner for composition
of loops naturally gives rise to maps M; : (2X)" x K; — QX which satisfy
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the conditions for an A -space. This is because the lack of associativity in
a loop space is a result of “how fast” we travel round each loop, and so we

get higher homotopies by varying speeds.

2.2 D, -Structures

In this section we will see that we can define a D.-space, constructed to be
a topological version of a twisted chain complex. The idea is that we want
to capture the essence of the twisted chain complex structure in the category
of topological spaces. We recall the first few relations for a twisted chain

complex below.

~1 dy 1 di -1 di —1 di -1
OO 1 4 02 4 3 4 04

2\

CO > Cl e 02 2 C3 2 04
do//d//é/ do
o y O == (01 === C} y C}

Figure 2.8: Some of the maps in a twisted chain complex

1. dyody =0, i.e. dy is a differential,
2. dyody —dyody=0,i.e. d; commutes with d,

3. dyody + dyody=dyod, ie. dyis a chain homotopy with respect to
the differential dy between d; o d; and 0,

4. doodg—d30d0=d10d2—d20d1,
5. d00d4+d40d0:dlodg—d20d2+d30d1,
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D}

DD, Dy D,

Figure 2.9: The space Ty (left) and T3 (right)

Notice that we have a differential dy and another map d; which is not a
differential but is a differential up to chain homotopy. To model this situation
in topological spaces, we will consider a family of based topological spaces
X = {X,}nen and take D; to be a map D; : X,, — X,,;;. We then want
D, to be a homotopy between D? and the constant map at the basepoint,
Dy : I, A X,, > X,,1o. This gives us the space which we will call T, as shown
in figure 2.9. We then define a family of spaces T; in order to fit with the
relations. The space T5 is shown in figure 2.9 and 7} is shown in figure 2.11.

We will now give a formal construction of the spaces T; for ¢ > 1.

Definition 2.2.1. We define the topological space T} for i > 1 by T, = 1"~V
where we take 0 as the basepoint in I = [0, 1].

Remark 2.2.2. The boundary of T} is homeomorphic to S*2. This follows
directly from the definition of T;. Notice that 0T; =~ 0D*"! = §i~2,

Proposition 2.2.3. The (i — 1 — k)-cells of T} are in bijection with the trees
i—1

. ) such cells.

in iﬁ, that is k-partitioned 1-trees with ¢ nodes. There are (

Proof. We think of T} as
,_TZ‘:Il/\IQ/\"‘AIZ‘_l

where each I, is an interval in which we think of 0 as the basepoint, 1 as the

60



Figure 2.10: The space T» (left) and T3 (right)

vertex v, and the 1-cell as e,. Then T; has one (i — 1)-cell given by
€1 NEy N - NEi_1.

An (i — 1 — k)-cell of T; is given by choosing k of the edges e;,...,¢e;_1 to
be replaced by their respective vertices v,. Recall from Remark 1.6.10 that
there are (121) trees in ’7;'3 We give a bijection to an element of 77“1 by letting
each element of our smash product represent an internal vertex of a 1-tree
with ¢ edges. Then the k edges replaced by vertices in the smash product

form the cut set of vertices in the tree. O

In the following proposition we show that the spaces T; can be used to
define an N-coloured non-symmetric non-unital operad. We work in the sym-
metric monoidal category C'Hau, of based topological spaces with monoidal

product given by the smash product and unit S°.

Proposition 2.2.4. We can define an N-coloured non-symmetric operad,
T, in which all operations have arity 1, in the category of based topological

spaces, from the spaces T; for 1 > 1 by

) T; VpeNjiz=1,
T(p;ip+i) = .
* otherwise,
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————

Figure 2.11: The space Ty

and T(q1, ..., qn;7) == if n = 2.

Proof. We have natural face inclusion maps d(r, s) : T, A Ty — T, given by
pART—=pAlAc

where p € T, and o € T,. Now consider the definition of a non-symmetric
non-unital coloured operad via partial compositions as in Proposition 1.4.5.

Then we have partial compositions
v:Tp+si;p+s+r)AT(pp+s) > Tpp+s+r)

for all p € N, given by d(r,s) : T, A Ts — T,,s. The partial composition is

trivial otherwise by definition.

It is then easy to check that diagram (1.8) of Proposition 1.4.5 is exactly
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equivalent to
ot,r+s)(1 xd(r,s)) =ad(t+rs)(dt,r) x1)

in all non-trivial cases, and this clearly holds by definition. Since this operad

is in arity one, diagram (1.9) is always trivial in this case. [

We will now define a Dy -structure over a family of based topological
spaces. In Proposition 2.2.6 we show that this structure is equivalent to an
algebra over the operad 7. In Chapter 3 we will show that taking singular

chains on this structure results in a twisted chain complex.

Definition 2.2.5. A D -structure on a family of based spaces X = {X,, }sen
is a collection of based maps D; : T; A X,, = X,,4; for i > 1 and any n € N
such that

Di(0(r, s)(p,0), x) = Dr(p, Ds(0, 7)) (2.30)

for peT,, ceTy, x e X,, withr+ s =1.
A D,-space is a family of based spaces X = {X,,},en together with a

D -structure.

Proposition 2.2.6. A D.-space is an algebra over the N-coloured operad

T in the category of based topological spaces.

Proof. This follows immediately from Proposition 1.4.7. We have a family
X = {X,}nen of objects in Top,, together with maps

D;:Tnin+i) A X, — Xpyi

and relation (2.30) is exactly equivalent to diagram (1.10) of Proposition 1.4.7.
[
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Remark 2.2.7. T am not currently aware of any examples of D.-spaces, how-
ever one place in which they might arise is as semi-simplicial (up to homo-

topy) H-spaces.

2.3 DA, -Structures

In this final section of this chapter, we view the previous two cases as special
cases of a more general structure, constructed to give a geometric model
of a derived A, -algebra. We already know that a derived Ay -algebra has

structure maps
mg; - A®j — A

of bidegree (i,i + j — 2) for each i > 0, j = 1. A derived Ay -algebra
has an underlying twisted chain complex structure given by the maps m;;.
Additionally, if we restrict the structure of a derived A-algebra to the case
i = 0 by considering the special case where m;; = 0 if i > 0, we have the

structure of an A-algebra.

In what follows we will construct based topological spaces V;; for ¢ > 0,
j =1, and (i,5) # (0,1). When j = 1, V;; will be equal to 7;, and when
i =0, V;; will be equal to (K;)+ = K;11*. These spaces will be used to define
a DAy -space, which will give us both a multiplication which is associative
up to homotopy and a map of based spaces which is a differential up to

homotopy, as well as compatibility between these and all higher coherences.
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‘/11 = ¢ * %2 = . *

Vo = ' Vos = —_— *

Vi =

Figure 2.12: Initial spaces for construction of V;;

Figure 2.12 shows the spaces V;; for low values of ¢ and j. The space
Vi1 is going to be used to give a map DAy @ Vii A X, — X,y with a
map DAy @ Voy A X, — X,12 giving a homotopy between DA2?, and the
constant map at the basepoint. The space Vo will be used to construct a
map DAy : Voo A X, A X, — X4, which is our multiplication map, and a
map DAps : Vos A Xp A Xy A X, — X4 g4 gives homotopy associativity for
DAgs.

Definition 2.3.1. We first begin by defining (K;); = SY so that taking
a smash product with (K7), is equal to the identity. Then we define the
collection of based spaces V;; for i > 0, j > 1, and (4, j) # (0,1) as:

‘/ij = \/ TT‘+1 AN (Kout(vo))-i- TANEAN (Kout(vr))-‘r
teT}

where t € 7;0] has a root vertex vg, and r internal vertices, labelled v, ..., v,.

Remark 2.3.2. In this definition we are working with pointed spaces V;;. It
is clear that when j = 1 in this definition, there is just one tree in 7;01 This
tree has ¢ — 1 internal vertices, and each vertex has just one output. So
Vit =T A (Kq) 4 Ao A (K7 )y = T, We also want the definition of V;; when
i = 0 to give Vp; = (Kj)4. Clearly there is just one tree in 73; and that is the

j-corolla. This tree has no internal vertices and so Vp; = Th A (K)+ = (K;)+.
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Remark 2.3.3. It may also be possible to define the spaces V;; in terms of
the set of planar trees with a length function, however there was insufficient

time to work out the details of this.

Proposition 2.3.4. There is a bijection between T and (i +j —2 — k)-cells

Proof. Clearly by definition of V;; there is a bijection between the top cells of
Vi; and trees in 7?] We know that the top cell of each Ky (. is in dimension
out(v) — 2 and the top cell of each T, is in dimension r. So the top cells of

Vi; lie in dimension

P (out(v,) —2) = v+ (i+j+r)—2r+1) =i+j—2.
s=0
For each t € ’7;0] where ¢t has a root vertex, vy and r internal vertices,
labelled vy, ..., v,, then t can be formed by a grafting of corollas cg, ..., ¢, in
which each ¢, is an out(v,)-corolla. The internal vertices (i.e. the grafting
points/ vy, ..., v,) correspond to the internal vertices in the tree of 17" € 7;01
We know that cells in lower dimensions in V;; are smash products of cells
in lower dimensions of the T}, and the Ky ). So by Proposition 2.1.4 and
Proposition 2.2.3 the bijection extends to all (i + j — 2 — k)-cells of Vj; by
Ag-splitting of the components (Kout(v,))+ and Dy-splittings of T}.,4. O

Proposition 2.3.5. The number of cells in dimension (i + j — 2 — k) of V;;

is given by

T (‘Hk)zk: (k+1)Na(z‘+j+oz,z'+1)

where N,(n, k) = =21, ) (")

Proof. This follows directly from Proposition 2.3.4 and the counting argu-

ment for the number of trees in 7% given in Corollary 1.6.9. O
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Figure 2.13: Initial spaces for construction of Vj;
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!
Y IV

Figure 2.14: Combinatorial description of Vi3

Proposition 2.3.6. The boundary of V;; with ¢ > 0 is homeomorphic to a
wedge of N(i + j,j) spheres of dimension i + j — 3.

Proof. By definition,

‘/ij = \/ Tr+1 A (Kout(vo))+ ZANRIRIAN (Kout(vr))+-

0
Ty
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So,

a‘/l] = \/ (9 r+1 /\ out vo)) ANRA (KOUt(UT))+)
teTY;

\/ (’/3 Dout(vo )+ TN (Dout(vr)f2)+)

N(i+35,5)

_ \/ a Dt out(v1)+-~~+out(v7-))—2(r+1))
N(i+37.5)
_ \/ a(DT+(i+j+7")72r72>

N(i+3.5)

= \/ o)

N(i+35,5)

_ \/ SZ-’r]—g.

N(i+j.4)

lle

Hence, 0V;; = \/ S5 O

N(i+3,9)

Remark 2.3.7. When i = 0, Vp; = (K;); and so dVy; = 0(D772), = (5973),.

In the following proposition, we use the face maps di(r,s) : K, x Ky —
K, 51 of the associahedra, and the face maps d(r, s) : T, A Ty — T,y of the
spaces T; to form face maps Jx((u, v), (p,q)) : Vuv A Vpg = Vispawiq—1 on the
spaces V;;. These face maps will use the A, maps when we have performed

an Agx-splitting, and the D.,, maps when we have performed a D.-splitting.

Proposition 2.3.8. We have natural face maps dx((u, v), (p,q)) : Vau AVpg —

Viutpw+q—1 which satisfy the relations

Ok((u,v), (p + a,q +b—=1))(1 x 0:((p, ), (a,]))) = (2.31)
ak‘—i—r—l((u +p,v+q— 1)? (a’7 b))(ﬁk«u’ U)) (p7 q)) X 1)
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forl<k<wand1l<r<gq; and

Opv-1((p + a,q +b—1), (u,0))(0-((p, 9), (a,b)) x 1) = (2.32)
Or((u+p,v+q—1),(a,0)(((p,q), (u,v)) x 1)(1 x T)

for 1 <r <k <qgwhereT :Vy AV, — Vi A Vy permutes the factors.

Proof. We first observe that we can consider a subcomplex of Vj; in the

following way:

\/ Tr-i—l AN (Kout(vo))-‘r ZANMRREVA (Kout(vr))+
TeT?

u+p,v+q—1’
s.t. t1 Agt2eSp(T),
with tleww,tge'rpqq

- \/ Tr-i-l AN (Kout(vo))-‘r ANERRIRAN (Kout('ur))-i-

Teno+p,v+q—1

where u+p =7 and v+¢—1 = j. Also notice that we can write V,,, AV}, as

( \/ Ta+1A(Kout(vo))+ VANRRIVAN (Kout(va))-i-) /\

t167;07v
( \/ T6+1 A (Kout(u0)>+ ATA (Kout(u5)>+)
t2€TR,
= \/ Ta+1/\Tﬁ+1 N (Kout(vé))+ AN A (Kout(v&))+
t1€7;0’v,
t2€7;0’q

N (Kout(uo))-‘r AN (Kout(u,g))-‘r

where (Kout%))Jr, ..+, (Kout(u,))+ are arranged such that the kth leaf of ¢, is
a child of v/, to enable us to specify where the grafting takes place. Now we

can define a face map:

ak((“? U), (p7 Q>> . Vuv AN ‘/an - Vu+p,v+q—1
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by

ak((ua U), (p7 Q))(taa t,ﬁ’a kla cee 7ko¢+5+2)

0(04 + 1’ B + 1) A 1a+6+2(ttx7 tﬁ: k17 ) ka+5+2) (1)fr ?)Lift((vi%o))zzlly

1972 A O (out(v))), out(ug)) A 1%(ta,ts, ki, ..., karsre) otherwise.

The two required associativity relations hold due to the associtivity condi-
tions satisfied by d(a+1, 5+1) and 0k (out(v),), out(up)), and the associativity

of grafting of trees given in Lemma 1.5.16 [

The following proposition describes how the spaces V;; can be used to
define a N-coloured non-symmetric non-unital operad, V. This gives a nice
description of the structure on the spaces V;; and also a simple way to define

a DA,-space as an algebra over V. as we will prove in Proposition 2.3.12.

Proposition 2.3.9. We can define a N-coloured non-symmetric non-unital

operad, V, in Top,, from the spaces V;; for i = 0, j > 1, (i,7) # (0,1) by

for all ¢ = (cq,...,¢;) € Prof(N)

such that ¢; +--- +¢; +1 =d,
V(c;d) =

[ * otherwise.

Proof. We have partial compositions
Vi V(e d) A V(b er) — V(coy b;d)

given by 0((u,v), (9,q)) : Viw A Vog = Viipwig if | = v, [b] = ¢, d =
g+ +c¢ +uand ¢, = by + -+ b, + p; and trivial otherwise.

It is then easy to see that in all non-trivial cases, diagrams (1.8) and
(1.9) from Proposition 1.4.5 are exactly the associativity conditions given in
Proposition 2.3.8. O]
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Figure 2.15: Combinatorial description of Vs

We will now give the definition of a DA -space. In Proposition 2.3.12 we

will see that a DA.-space is an algebra over V.

Definition 2.3.10. A family of based spaces X = {X,,} en admits a D A-

structure if and only if there exist based maps
DAZJ . V;J AN Xpl VANREVAN ij - Xp1+~~~+pj+i

such that

DA;;(0((u,v), (p,0))(p,0), 21, ..., 2;) =
DAUU(p’ L1y Th—1, DAPQ(07 Ty - - - 7mk+q—1)a Thtqs - - - 71:]) (233)
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for pe Vi, 0 € Vg, withu+p—i,v+qg=37+1,and 1 <k <v;and z, € X,
forr=1,...,7.

A family of based spaces X = {X,, }neny with a DA -structure is called a
DA -space.

Remark 2.3.11. Recall from Definition 1.2.4 that in a derived A,-algebra,

we have relations

Z (=) TP (197 @ myy @ 1%1) = 0

u=i+p,v=j+q—1,7=1+r+t

for all w > 0 and v > 1. It should now be possible to see the similarity
between the right hand side of relation (2.33) and the relations for a derived
A-algebra. This indicates a connection between the maps D A;; restricted to
the boundary of V;;, and the relations of a derived A-algebra. In Chapter 3
we will prove that taking singular chains on a DA, -space gives rise to a

derived A.-algebra.

Proposition 2.3.12. A DA -space is an algebra over the N-coloured operad

V in the category of based topological spaces.

Proof. This follows immediately from Proposition 1.4.7. We have a family
X = {X, }nen of objects in Top,, together with maps

DA;; - V(g d) n X, — Xy

for ¢ = (¢1,...,¢j) € Prof(N) and d = ¢4 + --- +¢; + i € N. It is then
straightforward to check that relation (2.33) is exactly equivalent to diagram

(1.10) of Proposition 1.4.7 in all non-trivial cases. O
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Chapter 3
Passage to Algebra

In this section we see the relationship between the spaces studied so far and
the algebras they are designed to model. In particular, we want to show that
the singular chain complex on a Dg-space is a twisted chain complex, and
more generally that the singular chain complex on a DA -space is a derived
Ag-algebra. The idea is not to show that all derived A, -algebras can be
derived from the singular chains on some DA.-space but rather that any

D A.-space provides an example of a derived A,-algebra via singular chains.

Before we look at each of our three usual cases, we first briefly recall the
definition of the tensor product of chain complexes and the statement of the

Eilenberg-Zilber theorem.

Definition 3.0.1. Let C' and C’ be chain complexes. We make the tensor
product C' ® C” into a chain complex

C®C),= P C.eC

a+b=n

with differential 0, : (C ® C"),, —» (C ® C"),,—1 given by

On(z®1) = 0ux @2 + (1) ® dya’
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where z € C, 2’ € C) and a + b = n.

Theorem 3.0.2 (Eilenberg-Zilber Theorem [EZ53]). Let X and Y be topo-

logical spaces. Then there exist chain maps

F:O(X xY) - Cu(X)®CL(Y),
EZ: Cy(X)®Cu(Y) — Cu(X x Y),

such that F'o FZ and EZ o F' are chain homotopic to the identity.

Definition 3.0.3. If we have two based topological spaces X,Y then we
have a quotient map from X x Y to X A Y which we will denote by

T: X xY —->XAY.

3.1 A, -Spaces to A -Algebras

For our classical case, Stasheff defined an A -space specifically so that taking
chains on an Ay -space gives an Ay -algebra. Recall from Definition 2.1.8
that a space X admits an A -structure if and only if there exist maps
M, : K; x X* - X for i > 2 such that

Mi(ak(ra S)<p7 0-)7:1:17 7Iz> =
M, (p, 1, . p—1, Mg(0, gy ooy Ths—1), Thasy -y Li),

forpe K,,oe Kg,r+s =1+ 1. (3.1)

The pair (X, {M,}) is called an Ay -space.

We can see that taking chains on this structure will give a graded R-
module with chain maps induced from the maps M; on spaces. Recall from
Definition 1.2.1 that an A, -algebra over R is a Z-graded R-module A, en-
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dowed with graded R-linear maps
my: A®" > A n=>=1

of degree 2 — n satisfying the following relation
Y=, (197 @ m, @ 191) = 0

for each n > 1, where the sum runs over all decompositions n = r + s+t and

we put u =7r+1++¢.

Theorem 3.1.1 ([Sta63]). If X admits an Ag-structure {M;}, then C,(X)
admits the structure of an Ay -algebra by defining m; = ¢ and for i > 1,
mi(u; ® -+ @u;) = Mig(k; @ui ® - - - ® u;) where k; is a suitable generator
of Cy(K;). O

Remark 3.1.2. Stasheff does not give a proof of this result but from the
statement we can see that the maps in the algebra should be those induced
from the space after applying the Eilenberg-Zilber map so that the map M;4
goes from (Cy(K;) ® Cyx(X)®"), to Cy(x). The generator k; should be the
generator that represents the top cell of K; in C;_5(K;), then a choice of

orientation on the space gives the sign conventions in the algebra.

Remark 3.1.3. [MSS02] Since the associahedra are regular cell complexes
with the operad structure given by cellular inclusions K, x Ky — K, 1,
their cellular chain complexes C,(K,) form a non-symmetric chain operad

which is precisely the non-symmetric operad Ass,, for A,-algebras.

3.2 D,-Spaces to D -Algebras

In this section we consider the relationship between a D -space and a twisted
chain complex. Recall from Definition 2.2.5 that a family of based spaces

X = {X,}neny admits a Dy-structure if and only if there exist based maps
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D;:T; n X,, > X,4; for i > 1 and any n € N such that
D;(0(r, s)(p,0),z) = D,(p, Ds(0, 2)) (3.2)

forpeT,., oeT,, xe X,, withr+s =i A Dy-space is a family of based
spaces X = {X,,}nen together with a Do,-structure.

We can see that when we take singular chains on this structure we will get
two gradings, one from the chain complex, and the other we inherit from the
grading on the spaces. We will have a (N, Z)-bigraded R-module Cy (X, R)
with C,,(X,, R) in bidegree (p,n) and C,(X,, R) = 0if n < 0.

Recall from Definition 1.2.3 that a twisted chain complex, C, is an (N, Z)-
bigraded R-module, with maps d; : C' — C of bidegree (i, — 1) for i > 0,
satisfying

> (=1)’did, = 0 for u > 0. (3.3)

i+p=u

In the following theorem we will show how to obtain such a structure with the
maps d; derived from the induced chain maps on D;. Similarly, relation 3.3
is derived using the structure of the space T; and relations 3.2.

Before stating the theorem, we briefly discuss the chain maps induced
from the structure maps relating the spaces T, = I"¢~Y. We consider a
generator 7; € C;_1(T;) where we take 7, to be the (i — 1)’th power of the
obvious chain u; € C;(I) with respect to the Eilenberg-Zilber product. It
should be clear that d(u; ®- - ®u,_1) = f;ll(—l)t’lu1®~ QU U
Hence we have

dr,(7:) = > (=1)7'D(r,s)(r, ®@Ts). (3.4)

r+s=1

where D(r, s) is the induced chain map

D<7n7 5) : Crfl(Tr) & Csfl(Ts) - Cr+572(Tr+s>
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which sends 7, ® 7, to 7, ® 1 ® 5.

Theorem 3.2.1. Let X = {X,},en be a Dy-space. Then Ci(X, R), the

singular chain complex on X, is a twisted chain complex.

Proof. We take chains on each based space, X, for p € N, to obtain a col-
lection of graded R-modules C,(X,, R) with differentials 0, for all p € N.
This results in a bigraded R-module C,(X,) for n € Z and p € N with a
map of bigraded modules dy of bidegree (0, —1) given by dy(z) = J,(x) for
r € Cu(X,, R).

Now since X is a Dy-space, we consider the chain maps induced by the
map D; for any ¢ > 1. We can see from Figure 3.1 that a sequence of maps and
restrictions enables us to obtain from D; a map d; : Cy,—i11(X,) — Cn(X,p44)
for each p € N and any n > 0, i.e. a map of bigraded modules of bidegree
(i,i—1).

Now, clearly D! is a chain map, so we know that the following diagram

commutes.

4

D Cu(T)) ® Co(Xp) —— Cu(X,)

a+b=n
dr,®1+1®do do
D!
@ (1) QC(Xp) —— Cha(Xy)
r+s=n—1

This tells us that when we restrict to a = ¢ — 1 we have

(dr, @ 1) (1, ® —) + Di(1®d)(1: ® —)
dr,(1:) @ =) + (—1)"" ' Di(7: @ do(—))
= '(—1)7”_15(1)(73 $) (7 @ 75) ® =) + (=1)"" ' Di(7; @ do(—))-

(3.5)
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Co(T; A X)) - >y Cr(Xpsi)

a+b=n
Ci(Th) ®
Inclusion

RA{7i} ® Crisa(X)

A

Natural Isomorphism

Cn—i-‘rl (Xp)

Figure 3.1: Diagram showing the sequence of maps and restrictions to obtain
d;
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for 7, € C;_1(T;). Notice that the last step of this equality comes from
equation 3.4.

Now since X is a D-space,

Di(a(ra 3)(P, 0>a _) = Dr(pa Ds(a> _))

for pe T,, o0 € Ty, with r + s = i. Thus by considering induced chain maps,

we have

Di(D(r,5)(1, ®75) ® =) = Dy (7, ® Dy(7:, @ —)).

(doDi(ri® =) = Y (~1) "' Dy(D(r,5)(1, ®7,) ® =) + (~1)""' Di(r ® do(~))

rs=i
= (1) D (7 @ D7 © =) + (=1)7 " Dil(7: @ do ().
o (3.6)
Finally, from Figure 3.1 we see that
e Di(1;®—) = d;(—), and
* Di(7: ® Dy(: ® ) = Dy(1, @ ds(—)) = dr(ds(-)),
so we have
dod; + (—1)'dsdo = ) (—1)"""d,d,
rs=i
as required. O

Remark 3.2.2. Notice that since the spaces T; form a non-symmetric N-
coloured operad T, we have an induced N-coloured non-symmetric operad in

chain complexes C(7) with structure maps given by the maps D(r,s) and
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the obvious relations. It may then be possible to argue that there is a map
of operads from C,(7T) to the operad Dy, and we know that algebras over
the operad D, are twisted chain complexes from [LRW13], however I have

not had time to work out the details of this.

3.3 DA, -Spaces to dA,-Algebras

In this section we generalise the above argument to investigate the relation-
ship between a DA, -space and a derived Ay -algebra. Recall from Defini-
tion 2.3.10 that a D Ay-space is a family of based spaces X = {X,,},en along

with based maps
DA = Vig n Xpy Ao A Xy = Xt

such that

DAij(ak(<u7v)> (pa q))(ﬂ? 9)7 L1, 7xj) =
DA, (p,x1, ..., x5—1, DAp(0, g, ..., Thig1), Thigs - -, 5)  (3.7)

for pe Vi, 0 € Vg, withu+p—i,v+¢g=j+1,and 1 <k <v;and z, € X,
forr=1,...,7.

Again we can see that taking singular chains on this structure will give a
bigraded R-module with one grading coming from the chain complex and the
other coming from the grading on the spaces. Recall from Definition 1.2.4
that a derived A -algebra is an (N, Z)-bigraded R-module, A, with R-linear

maps
ml-j : A®j — A
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of bidegree (i,i + j — 2) for each i > 0, j > 1, satisfying the equations

2 (_1)rq+t+pjmij(1®r Q@ mypg @ 1®t) =0 (3.8)

u=1+p,
v=j+q—1,
Jj=1+r+t

for all w = 0 and v > 1. We will see in the proof of the following theorem
that maps m;; can be derived from the chain maps induced by DA;; and
that a relation of the form of equation 3.8 can be derived from the structure

of the space V;; and relation 3.7.

Before stating the theorem, we briefly discuss the chain maps induced
from the structure maps relating the spaces Vj;. Notice that from the con-

struction of V;; in Definition 2.3.1 we have maps
Ok((P,q), (r,8)) = Vog A Ves = Vi

where p +r =14, and ¢+ s = j + 1. So we have induced chain maps
O ), (r,5)) : Cu(Vig A Vi) = Cu(Vig)-

We can take a sequence of maps and restrictions as shown in Figure 3.2.

Then if we consider this specifically in the case n =i + j — 3 we have

Ciyj—2(Vij)

dVi]‘
I Ok ((p,q),(1,8))” l
Cp+q—2(v;)q) ® C’r-&-s—Z(V;'s) — (‘B Ca(v;)q) ® Cb(v;s) e Ci+j—3(V; )

a+b=i+j—3
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Figure 3.2: Diagram showing the sequence of maps to obtain dx((p, q), (r,s))”

Let us denote the composition dx((p, q), (7, $))"I by Di((p,q), (r,s)), then

we can choose a generator 7,, in Cpiq—2(V,,) for each p + ¢ = 2 such that

dy,(ry) = Y. (=1)FDHUREr =D ((p ), (1, 5))(1g®7rs). (3.9)

p+r=i,
qt+s=j+1,
1<k<q
The sign (—1)k—DstG—R)+ra++r=1) ig consistent with a choice of orientation
on the cells of Vj;. Notice that since V}; is a wedge of smash products of
T,’s and Kp’s, we take 7;; to be a sum of products of the generators 7, and
kg with the induced map Dy ((p,q), (r,s)) consistent with the map given in

Proposition 2.3.8.

Theorem 3.3.1. Let the family of based spaces X = {X, },en be a DA-
space. Then C,(X,), the singular chain complex on X is a bigraded R-module

with the structure of a derived A-algebra.

Proof. We take chains on each based space, X, for p € N, to obtain a collec-
tion of graded R-modules C,(X,, R) with differentials 0,, for all p € N. This
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results in a bigraded R-module C,(X,, R) with C,,(X,) of bidegree (p,n) for
n € Z and p € N with a map of bigraded modules mg; of bidegree (0, —1)
given by mg, () = 0,(x) for x € C(X,). By convention we take C,(X,) =0
for n < 0.

Now we consider the chain maps induced by the maps DA;; for i > 0,
j = 1. If welet Ay, := C,(X,) then we can see from figure 3.3 that a
sequence of maps and restrictions enables us to obtain from DA;; a map
my; : A% — A of bidegree (i,i+ j — 2).

D!,

Cn(v;j ANXpy A A Xp]) - Cn(Xp1+--~+p]+i)

W*T

Cn(Vij x Xpy % -+

vz

(Cu(Vig) ® Cu(Xp) ® - -

(‘B Cao(v;j)®ca1(xp1)®" '®Caj(ij)

aptai+--+aj=n

C—D Ci+]'*2(‘/;j) ® Cal (Xpl) @ ® Caj (ij)

a1 +-ta;=n+2—i—j
Inclusion]\

@ 4R{Tij}®ca1(Xp1)®”'®Caj(ij)

a1+-ta;j=n+2—i—j

Natural IsomorphismT

@ Cal (Xpl) @ ® Cag (ng)

ai+-+aj=n+2—i—j

Figure 3.3: Commutative diagram showing a sequence of maps and restric-
tions to obtain m;;
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Since D} is a chain map we know that the following diagram commutes:
C—B Cﬂ ( lJ) ®Ca1( pl) ®- ®Cﬂ ( ) % CH(XP1+~-+pj+i)
aptai+--+a;j=n

o .
ldvﬁ@l@ur 3 19t @mg 1 @1®I
t=1

//

C‘D Cbo(‘/;j)®0b1(Xp1) ®Cb( p;) — Cn 1( p1+- +pg+z)

bo+bi+--+bj=n—1

This tells us that when we restrict to ag = ¢ + 7 — 2 we have

Mo Dy (1, ® —® -+ @ —) = Dyj(dy, (1; 9 1¥) (- ® - @ —)

J
+ Z Z+J 2D’L] Tz] ® 1®t_1 ® mo1 ® 1®j_t)(_ ® Y ® _)’ <310)

t=1

where 7;; € Cy4;-2(Vi;). Using equation 3.9 and rearranging we get

mouDij(T; @ — @ ® —)

=

+ 3 (1) 2Dy (r; ® 18T @m @ 1) (- @ - ® )

o~
Il

1
= Dyj(dv, (1) @ 1¥) (- ® - - ® —)
- Z‘ (= 1) Ds+G—R)Frat(ptr—1)
oy Dij(Di((p: @), (1)) (T ® 7o) @ = @ - - @ —). (3.11)

1<k<q

Now since X is a DA, -space,

DAij<ak<<u7U)7 (p, Q>) A 1/\j)(p7 97 BEEERE) _) =
DA (1M A DA A 1N MY — 0 =0, —, =)

for pe Vi, 0 €V, withu+p—t,v+q¢g=7+1,and 1 <k <v. Thus we

have an induced equality of chain maps
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D_U(Dk<<p7 Q)a (T7 S))(qu ® TTS) ® 1®j)(_ X ® _)
= DTy ® 1 ' @ Dy (15 @ 1P) @ 1P M) (— @ - - ® —). (3.12)

So
mOlD_ij(Tij -0 & _)

J
Z z+] 2DZJ 7_”®1®t 1®m1®1®] t)(_®...®_)

t=1
)(k,1)5+(j,k)+rq+(p+r,1)

— Z (-1
q—f::;;il, D_U<Dk((p7 Q>7 (7“, S))(qu ® Trs) K—® & _)
1<k<q
Z (_1)(k—1)8+(j—k)+rq+(p+r—1)D_m(qu ® 1%
- p+r=i, D_'r’s(Trs ® 1@3) ® 1®q—s—k)(_ ® T ® _)-
q+s=j5+1,
1<k<q
(3.13)
Finally, from Figure 3.3 we see that
® Dij(1;® - ® - ®—) =my(~®: - ®—), and
. D_(rpq®— -®—®D_rs(m®—®---®—)®---@—)
So we have
] . . .
mo1mij + Z(—l)zﬂ_lmi]’(l@t_l ®mo; @ 1%771) =
t=1
Z (_1)(k—l)s+(j—k)+rq+(i—1)mpq(1®k—1 ® Mys @ 1®j—k;) (3'14)
ptr=t,
qt+s=j+1
1<k<q
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which we multiply throughout by (—1)""! and rearrange to get

Z (_1)ks+t+’rqmpq<1®k ® My ® 1®t) — 0

1=p+,
Jj+1l=q+s,
q=1+k+t

as required.
m

Remark 3.3.2. Notice that since the spaces Vj; form a non-symmetric N-
coloured operad V), we have an induced N-coloured non-symmetric operad in
chain complexes C (V) with structure maps given by the maps Dy ((p, q), (1, s))
and the obvious relations. It may then be possible to argue that there is a
map of operads from C, (V) to the operad (dAs)q, and we know that algebras
over the operad (dAs)y are derived Ay-algebras from [LRW13], however I

have not had time to work out the details of this.
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Chapter 4
Obstruction Theory

In this chapter we establish three different obstruction theories for the exis-
tence of dA,-algebra structures on an (N, Z)-bigraded R-module A. These
three theories arise from two fundamentally different approaches, the first by
considering building the bigraded structure one piece at a time (and this is
studied in two different ways), and the second using a total degree approach
where the structure is added several maps at a time by arity and horizontal

degree. In each case, we work in terms of the relevant Hochschild cohomology

of H(A).

We present separately the special case of obstructions to the existence
of twisted chain complex structures on an (N, Z)-bigraded R-module. For
the special case of A -algebra structures, this question has already been
answered by Livernet [Liv14]. We follow the same lines of approach as Liv-
ernet in avoiding the common assumptions on the underlying R-module of
having no 2-torsion and being N-graded, directly applying her results and

generalising where necessary.

Throughout this chapter we work over a commutative ring R, and consider
an (N, Z)-bigraded R-module A, where A is a collection of R-modules A7 for
1eN, jeZ.
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4.1 Homology of bigraded R-modules of mor-

phisms

In this section, we present a generalisation of Chapter 3 of [Liv14] to vertical

bicomplexes. That is, we establish an isomorphism
H (Mor(C®",C)) — Mor(H(C)®", H(C))

where C'is a vertical bicomplex. In order to do this, we place some unavoid-
able projectivity conditions on C', which will later become conditions needed

for the obstruction theories we develop.

Definition 4.1.1. Let C' and D be vertical bicomplexes, i.e. bigraded R-
modules together with a vertical differential de : €7 — C/*" of bidegree
(0,1). We denote by Mor(C, D) the vertical bicomplex given by

Mor(C, D), HHomR (C? DYy
with vertical differential ¢ : Mor(C, D)? — Mor(C, D)?*! given by df =
dpf — (=1)"fdc for f e Mor(C, D).

e The bigraded module of cycles in C'is Z(C) where Z/(C) = Ker(dc
! — CcIth,

e The bigraded module of boundaries in C is B(C) where B!(C) =
Im(d¢ : €771 — CY).

e The homology of C' is the bigraded module H(C) where H!(C) :=
HI(CF) = Z}(C)/B](C).

The map f € Mor(C, D) is a morphism of vertical bicomplexes if and only
if 0f = 0. In particular, f(Z(C)) ¢ Z(D) and f(B(C)) < B(D). So, if f €
Mor(C, D)? is such that df = 0, then f defines amap f € Mor(H (C), H(D))?

u
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as f([c]) = [f(c)]. Moreover, if f = du for some u € Mor(C, D)™, then
f(Z(C)) = B(D) and f = 0. Thus there is a well defined map of bigraded

modules

Hep : H(Mor(C, D)) — Mor(H (C), H(D))
[f1— 7.

Definition 4.1.2. We say that a vertical bicomplex, C', satisfies assumption

(A) if the following two sequences are split exact:

0— Z(C) —C 2% B(C) -0
0— B(C) — Z(C) — H(C) — 0.

Proposition 4.1.3. Let C' and D be vertical bicomplexes satisfying assump-
tion (A).
1. Given g € Mor(H(C), H(D)), there exists f € Mor(C, D) such that
of =0and f =g.
2. For f € Mor(C, D) satisfying 0f = 0 and f = 0 € Mor(H(C), H(D))
there exists u € Mor(C, D) such that du = f.
Consequently, the map Hep @ H(Mor(C, D)) — Mor(H(C),H(D)) is
an isomorphism of bigraded modules and the vertical bicomplex Mor(C, D)

satisfies assumption (A).

Proof. This follows directly from Proposition 3.3 of [Liv14] in which the au-
thor proves the exact same statement for C', D dg-modules so in this propo-

sition we are just including an extra grading. [

Corollary 4.1.4. Let C be a vertical bicomplex such that Z(C) and H (C')
are projective bigraded modules. For every n > 1, there exists an isomor-

phism of bigraded modules
¢n : HMor(C®",C)) — Mor(H (C)®", H(C)).
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Proof. Again Livernet [Liv14]| proves this result for a dg-module C' and so
the proof of this corollary follows her lines of argument but with an extra

grading. O]

Remark 4.1.5. We let C7*(A, A) = Mor(A®7, A)¥. Then we have the isomor-
phism i) 1 H(CI* (A, A)) — CH*(H(A), H(A4).

4.2 Lie structures and Hochschild cohomol-

ogy

In this section we follow the sign conventions as in [LRW13] and present some
of their main results around Hochschild cohomology. It is worth noting that
a similar result can be found in [RW11], and differs from the one presented
here by sign convention. The one stated here is the more general result and

the case we will use later in the obstruction theory.

Definition 4.2.1. Given a vertical bicomplex A, the trigraded R-module
Ciy* (A, A) is defined by

CI"'(A, A) = Mor(A®", A).
Then we can define a graded R-module CH*(A, A) given by

cHY(AA) =]] [] A4,

n=1 k,j
k+j+n=N

where the grading is the total grading, that is, an element in Cg’j (A, A) has
total degree 7 + k + n.
We describe a graded Lie structure on CH**1(A, A).

Definition 4.2.2. Let C be a dg-R-module. A graded pre-Lie algebra struc-
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ture on X is a graded R-linear map o : X ® X — X satisfying
Vf.g.he X, (fog)oh—fo(goh) = (1) (foh)og—(=1)" fo(hog).

Definition 4.2.3. Let C' be a dg-R-module. A graded Lie algebra structure
on C'is a bracket operation [—, —] : C ® C' — C' satisfying

[f,9] = =(=1)"1![g, f1,
(=DVILE L9, P11+ (1) g, By 1]+ (=)™ [, [ £, 1] = 0.

Proposition 4.2.4 ([LRW13]). The composition product,

n—1
f og = Z (_1)(n+1)(m+1)+r(m+1)+J(n+1)+k|g\f(1®r Rg® 1®n—r—1)
r=0

€ Cgizm_l’ﬂj (A, A)

for f € OF'(A, A) and g € G (A, A) endows CH**'(A, A) with the struc-
ture of a weight graded pre-Lie algebra, with weight given by | f| = k+n-+i—1.

Corollary 4.2.5. The bracket
[f,g] = fog— (—=1)Wdlgo f for feCP'(A A)and ge C™(A, A)
gives rise to a graded Lie algebra structure on C H*T1(A, A).

Proof. A graded pre-Lie algebra as stated above always gives rise to a graded
Lie algebra with the given bracket operation. A proof of this general result
can be found in Theorem 1 of [Ger63]. O

Remark 4.2.6. In fact we can actually go further than this and say that
fog= Z forg
r=1
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where fOrg _ (_1)(n+1)(m+1)+(r+1)(m+1)+j(n+1)+k|g\f(1®r—1®g®1®n—r) defines

a weight graded pre-Lie system in the sense of the following definition.

Definition 4.2.7. Let O be an (N,N,Z)-trigraded R-module. A weight

graded pre-Lie system on O is a sequence of maps, called composition maps,
0 1 O @O - OFf Y Y 1<u<n
satisfying the relations: for every f e O/, ge O™ and h e O,

fou<govh>:<foug>ov+uflh7 Vv 1<u<nand1<1}<m7

(foug) ovim 1 h= ()M (fo,h)o,g, ¥ I<u<v<n.

Remark 4.2.8. Notice that this definition contains an extra N grading com-
pared to the one presented in [Liv14], however that definition can be recov-
ered from the one above by considering the horizontal grading to be zero

throughout.

The following two results are generalisations of Lemma 2.10 and Propo-
sition 2.13 from [Liv14]. We omit the proofs for these due to them being

analogous to those in [Liv14].

Lemma 4.2.9. Let (O, 0) be a weight graded pre-Lie system. Let g € O be
an element of odd weight. Then for all f € O, one has

(foglog=/feol(gog) and (4.1)
[f,909] =—lg.l9. 1] = =g g f] (4.2)
[l
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Proposition 4.2.10. Let A be a vertical bicomplex with vertical differential
mo1. There is an induced differential 0 on C(A, A) which satisfies, for all
ge CA, 4,

of = [moy, fl; (4.3)
Afog)=0afog+ (=1)I'foay; (4.4)

As a consequence, CH(A, A) is a differential (weight) graded Lie algebra.

Proof. The differential my, is considered as an element of Cy' (A, A), so has
weight 1. Hence, for all f € C;"*(A, A) we have

of =morf — (=1 Z FA® T @me @1%"7)

= Mgy © f _ (_1)i(_1)n+1+kf o Moy
=m0 f— (-1

= [m017f]-

mf © Moy

The proof for 4.4 and 4.5 are easy calculations and can be found without the

extra grading in [Liv14]. O

Recall from Definition 1.2.4 that a dA,-algebra is an (N, Z)-bigraded R-
module, A, with R-linear maps m;; € C’ij’”j*Q(A, A) for each i = 0, 7 = 1,

satisfying the equations

t+pj t
2 (_1)rq+ +mmij(1®r @ Mpg @ 19 ) =0
u=1+p,
v=j+q—1,
J=l+r+t
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for all w > 0, v > 1. This system of equations is equivalent to

Z Mjj © Mpg = 0 (4.6)

u=1+p,
v=j+q—1

forallu>0and v > 1.

Proposition 4.2.11. Let

Oy= Y mgomyeCH A A)

i=a+p,
(a7b)7(p7q)¢(071)

Then 60” =0.

Proof.

00;; = Z A(Map © M)
i=a+Dp,
(a,),(p,q)#(0,1)

= Z OMgp © Mpg — Mgp © OMpg

(a,),(p,q)#(0,1)
= 2 (Med © Mey) © Migh — Mg © (Mey © Mgh)
i=ct+e+g,
j=d+f+h=2,
(c,d),(e,f),(g,h)#(0,1)

= 0.

The individual summands vanish as a result of the Jacobi relation when
Meqg # Mey # Mgp; the pre-Lie relation when mey # mg, and (mey =
Mef O Meg = Myp); and by Lemma 4.2.9 when m.r = my,. O

Lemma 4.2.12. Let A be an dA-algebra, with structure maps m;;. The
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maps
0= [mo1,—]: CP' (A, A) — CP (A, A),

d™ = [ma1, —] : OF' (A, A) — CPL (A, A),

and

@ = [y, —] : CP(A, A) — CpFH(A, A)
satisfy

od" = —d" 0,

od' = —d"o.

Proof. The proof is the same for both parts of this lemma and so here we
only present the proof of the first equality.

From the relations on a dAy-algebra we know that dmy; = [me1, mq1] =
0. So for f e C'(A, A)

od" f = [mor, [ma, f]]
- _ (_1)|m01|\mu|(_1)|m01|\f|[mll7 [f,mo1]]
— (_1)|m01\|f\(_1)Imn||f\[f7 [mo1, ma]]
= — (=) [mas, [f, ma]]
= — (=) (=) may, [moy, £1]
= —d"0f.

]

The remainder of this section is devoted to describing the Hochschild
cohomology of A via CH(A, A). We also consider the special cases when A

is a bidga, bicomplex or a dga.
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Definition 4.2.13. A bidga is a dA,-algebra with m;; = 0 for i + 57 > 3.

Remark 4.2.14. An equivalent definition is that a bidga is a monoid in the
category of bicomplexes with vertical and horizontal differentials given by

mp1 and mq1, and associative multiplication given by mys.

Definition 4.2.15 ([LRW13]). Let m be a formal sum m = > m,;; and
(A,m) be a dAy-algebra. Then the Hochschild cohomology of A is defined

HH*(A, A) := H*(CH(A, A),[m, —]).

Remark 4.2.16 (JLRW13]). When A is a bidga with m = mq; + mgg, i.e. A is
a bidga with trivial vertical differential, the external grading is preserved by
both bracketing with my; and mge. Hence we can, as in [RW11, Section 3.1],

consider bigraded Hochschild cohomology

HHyoo (A A) = H (] [ CL2(A, A), [m, =]).
Remark 4.2.17. In addition to the above, when A is a bicomplex with trivial
vertical differential, the arity and vertical grading are preserved by bracketing
with mq;. As a result we can consider a trigraded Hochschild cohomology
HHy (A A) = HY(CPT (A, A), [mag, —]).

When A is a graded algebra with an associative multiplication m = ma,
ie. Ais a dga with trivial vertical differential, the grading is preserved by
bracketing with my. We think of A as a bigraded module concentrated in
horizontal degree zero, with an associative multiplication m = mgg, and then
we can consider bigraded Hochschild cohomology

HHyw" (A, A) = H™(Cy" (A, A), [mos, —]).

dga
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4.3 Obstruction theory for A, -structures

Here we recall the main theorem of [Livl4]. It is worth noting that our
conventions on notation and bidegree differ slightly from Livernet’s and so
here the result has been written to be consistent with our notation so far.
We easily recover the Lie structure on End(A) defined in [Liv14] by setting
Il = k = 0 in Proposition 4.2.4. The results in Section 4.1 are precisely a
bigraded generalisation of the results in Section 3 of [Livl4] and thus the
original results are easily recovered by ignoring the horizontal grading in

those presented above.

Definition 4.3.1. Let » > 0 be an integer. A graded R-module A is an A,-
algebra if there exists a collection of elements m; € Ci* *(A, A) for 1 <i < r

such that (in the notation of Proposition 4.2.4)

Z m;om; =0

i+j=n+1
foralll <n <.

Remark 4.3.2. Given an A,-algebra with r > 3, the graded R-module H(A)
is a graded associative algebra (i.e. a dga with trivial differential) with mul-
tiplication induced from ms, so we can consider the Hochschild cohomology

HHY'(H(A), H(A)).

dga

Theorem 4.3.3 ([Liv14], Theorem 4.8). Let r > 3. Let A be a dg-module
such that H(A) and Z(A) are graded projective R-modules. Assume A
is an A,-algebra, with structure maps m; € Cy' (4, A) for 1 < i < r.
The obstruction to lift the A,_j-structure of A to an A, i-structure lies in

HHY™ Y2 (H(A), H(A)).

dga

This theorem tells us that Op,1 gives rise to an element
OO,rJrl € Cg-i_l’T_Q(H(A)? H(A))a
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and if the class of Op, ; vanishes in HHS;ZH’T_Q(H(A),H(A)) then there
exist maps m,,1 and m/ which extend the A,_j-structure of A to an A, -
structure.

In fact the statement is stronger than this and the following Proposition
shows that if an extension exists, then the class of m vanishes and so we

can say that an extension exists if and only if the class of Op,1 vanishes in
HHY™ Y2 (H(A), H(A)).

dga

Proposition 4.3.4. Let r > 3. Let A be a dg-module such that H(A) and
Z(A) are graded projective R-modules. Assume A is an A,-algebra, with
structure maps m; € Co' (A, A) for 1 < i < r. If an extension of the A,_;-

structure of A to an A, ;-structure exists, then the class of Op, ;1 vanishes
. 0,r+1,r—2
in HHdgff ""“(H(A),H(A)).

Proof. By assumption, we have relations

om, = — Z m;om; for n<r.

i+j=n+1,
i,j>1

Notice that

OO,rJrl = 2 m; o Mm;

i+j=r+2,
ij>1

= Mo O My + My 0 My + Z m; O M.
i+j=r+2,
i,j>2
Now if an extension of the A,_;-structure to an A, ,i-structure exists, then
-2
we have my, .., m,_; as above and also two new elements, m/. € Cy" “(A, A)

and m,1 € Ci "1 (A, A) with relations

om, = — Z m; o m; (4.7)

i+j=r+1,
ij>1
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OMy11 = —Mgom, —m, omy — 2 m; o m;. (4.8)
i+j=r+2,

ij>2

We see that dm,. = dm/. so d(m, —m]) =0, and

omyi1 + Op i1 = mg o (m, —m.,) + (m, —m,) oms

= d"(m, —m,).
We can check that

o(0myy1 + Ogpyr) = 0d*(m, —m)) = —d"d(m, —m,) = —d"(0) =0

and so we have a map 0m, ;1 + Op,+1. Now

omyi1 + Op i1 = d*(m, —m!) = d*(m, —m!)

but also

omyy1 + Qo1 = 0mpy1 + Opry1 = Oprin

since 0m,.41 € Imd so om,,1 = 0.

Now we have shown that Op,11 = d"*(m, —m.), in particular Oy, €

Imd*, and so [Op,+1] vanishes in HHgg’;H’T_Q(H(A), H(A)). O
4.4 Obstruction theory for twisted chain com-

plexes

In this section we consider twisted chain complexes, another special case of
the obstruction theory which may be of independent interest to some readers.
As above these results can be recovered from the more general results in the

following section.
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Here we are working with (N, Z)-bigraded R-modules with all structure
maps in arity one so we can use the isomorphism from Corollary 4.1.4 with

n =1 to get
¢ : H(Mor(A, A)) — Mor(H(A), H(A)).

We can also specialise the Lie structure from Section 4.2 to get fog =
(=DMl fg for fe Cr'(A,A) and g e C7 (A, A).

Definition 4.4.1. A stage r twisted chain complex, A, is an (N, Z)-bigraded
R-module with maps d; : A — A of bidegree (i,i—1) for 0 < ¢ < r, satisfying

Y diod, =0 for O<u<r

i+p=u

Remark 4.4.2. 1f we have a stage r twisted chain complex, with r > 2, then

the relation when u = 1 implies
dodl — dldo =0 i.e. 8d1 = 0,

so d, € C7°(H(A),H(A)) is well defined. Additionally, the relation when

u = 2 implies
dodg + dgdo = d1d1 i.e. 8d2 = dldl,

Thus did; = 0 and d, is a differential for H(A) (the induced differential on
Mor(H(A), H(A)) is [d7,]).
Hence, H(A) is a bicomplex with trivial vertical differential and we can

consider the Hochschild cohomology HH:M (H(A), H(A)).

bicx

Theorem 4.4.3. Let r > 2. Let A be an (N, Z)-bigraded R-module with
vertical differential dy : AL — AL™! such that H(A,dy) and Z(A,dy) are
(N, Z)-bigraded projective R-modules. Assume A is a stage r twisted chain
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complex. Then the obstruction to lift the stage (r — 1)-structure of A to a
stage (r 4 1)-structure lies in HH,."""" "' (H(A), H(A)).

bicx

Proof. By assumption we have

Z diod,=0 for 0<u<r
i+p=u
or equivalently
od,, = Z —d;jod, for 0<u<r.
i+p=u,
2,p>0
We begin by defining
Or-i-l = Z dz ¢} dp.

i+p=r+1,
2,p>0

Then,

00,0 = . ddiod,)

i+p=r+1,

7,p>0
= Y Ad;)od,—d;oddy)
i+p=r+1,
2,p>0
- Z Z(dsodt)odp+ Z Z d; o (d, od,)
i+p=r+1, s+t=1, i+p=r+1, u+v=p,
,p>0  s5,t>0 7,p>0 u,v>0
= ) —(deody)ode+d,o0(dyod,)
a+b+c=r+1,
a,b,c>0
= Y (D dadede + (< 1) dadyd,
a+b+c=r+1,
a,b,c>0
= 0.
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S0, 00,11 = 0 and O, gives rise to an element O, € O/ (H(A), H(A)).

Now,

ol D (<1)ady | = D) Adaody)

a+b=r+2, a+b=r+2,
a,b>1 a,b>1

D1 0(da) o dy — dg 0 Ody)

a+b=r+2,
a,b>1

= > —(diody)od,+dyo(dsody)

s+t+v=r+2,
s,t>0,0>1

> (dyody)ody —dio(dsod)

s+t=r+1,
s,t>0

=Orp10dy —di 0Oy
= _[dh Or+1]-

So d[dy, O,11] = 0, and [dy, O,11] € Im @ s0 [dy, O,1] = 0. It can easily
be checked that [dy, O] = [d_l, m

If the class of O, vanishes in HH,;""""~'(H (A), H(A)) then there exists
an element v e C}" "' (H(A), H(A)) such that [di,u] = O,;1. We apply the
isomorphism ¢ to obtain an element d. € C'" (A, A) such that dd,. = 0 and

d!. = u. Now,

[dhd;'] = [dlad'/r] = [dl,U] = (97”-1-1-

So [d,d.] — 0,11 = 0 € CH'7H(H(A), H(A)) and thus there exists an ele-
ment d,,, € C}7,(A, A) such that

adr+1 = [dh d;«] - Or+1
= [dyd, —d]— > (-1)did,.

i+p=r+1,
2,p>1
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The collection {do, d,...,dr—1,d, — d..,d, 1} form a stage r + 1 twisted chain

complex structure on A. Thus the class of O,,; is an obstruction and if

[O,41] vanishes in HH[;"""" "' (H(A), H(A)) then we can extend the stage

bicx
(r — 1)-structure on A to a stage (r + 1) twisted chain complex structure on
A. O

4.5 Obstruction theory for derived A, -structures

In this final section of the chapter we present the two main results, Theo-
rem 4.5.3 and Theorem 4.5.6. Though the two different theorems present a
choice of how to build the structure of a dA,-algebra, the proofs are largely
similar and follow the same line of argument. We begin by defining the

different notions of “partial” dA.,-structure.

Definition 4.5.1. Let @ = 0, j > 1 be integers. An (N, Z)-bigraded R-
module, A, is a dA;;-algebra if there exist elements m,,, € Cg””q_?(A, A) for

all 0 < p<i,1<q<j, with (p,q) # (i, ), satisfying the equations

2 Meg © Mpg = 0

u=c+p,
v=d+q—1

forall 0 <u<i,1<v<jwith (u,v) # (4,7).
Definition 4.5.2. Let @ > 0, j > 1 be integers. An (N, Z)-bigraded R-

module, A, is a dA;;-algebra if there exist elements m,, € C’g’“q*Q(A, A) for

all 0 < p <1, 1< q< j, satisfying the equations

Z Meg © Mpg = 0

u=c+p,
v=d+q—1

forall 0 <u<i, 1 <v<y.
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Arity

[m02, —]

Horizontal degree

mo1
Figure 4.1: The maps in a dA;;-algebra / dA;;-algebra

In the following theorem we are going to consider obstructions to extend-

ing a dA;-algebra structure to a dA;;-algebra structure.

Theorem 4.5.3. Let : > 1, j > 2 be integers such that ¢ + 7 > 3.
Let A be a vertical bicomplex such that H(A) and Z(A) are bigraded

projective R-modules. Assume A is a dA;-algebra with structure maps m, €
Carra—2(A, A) .

4.5.3.1 Then after modifying m;_1);, the obstruction to extend the modified

dA;;-algebra structure to a dA;;-algebra structure lies in

HHZHI73(H(A), H(A)).

bicx

4.5.3.2 Then after modifying m;;_1), the obstruction to extend the modified
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dA;;-algebra structure to a d4;;-algebra structure lies in

H Hy 7 (H(A), H (A)).

PTOOf. Let & = [m01,—], d” = [mn, —]7 dt = [m()Q,—].
Note that [mpy,| = p+q¢+ (p+q¢—2)—1=2p+2¢—3isodd for all p > 0,
qg=1.

By assumption we have

u=a+p,
v=b+q—1

forall 0 <wu <1, 1 <wv<jwith (u,v) # (¢,7). Or equivalently,

OMyy = — Z Mab © Mg
u=a+p,
v=b+q—1,
(a,b),(p,q)#(0,1)

We have
_ Gyi+i—3
0ij = Z Map © Mypq € C; (A, A),
i=a+p,

(a,b),(p,q)#(0,1)

where 00;; = 0 by Proposition 4.2.11. So O;; gives rise to an element
Oy € CP"73(H(A), H(A)). For 4.5.3.1 we notice that

0 Z Mab © Mpq

a+p=i+1,
b+q=j+1,
(a,b),(p,q)#(0,1),(1,1)
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= Z OMgp © Mpg — Mgp © OMpg

a+p=i+1,
b+q=j+1,
(a,b),(p,q)#(0,1),(1,1)

= Z OMgh © Mypg — Mpg © OMgy,
a+p=i+1,

b+q=j+1,
(a,b),(p,q);é((],l),(l,l)

Z = (Mea © Mey) © Myg
ctet+p=i+l, + Mpq © (mCd © mef)
d+f+q=j+2,
(c.d),(e.f),(p,a)#(0,1),
(p.a)#(1,1)
__ — (Mg © Mey) 0 My
cte=i, + M1y 0 (Mg © Mey)
d+f=j+1,
(c,d),(e,f)#(0,1)
= O;j0omyr —ma1 0 Oy

= —[mu, Oij]
= —d" 0.

As a consequence, d"(0;;) = 0 and O_w represents a class in

HHPH 7 (H(A), H(A) = H(CIH3(H(A), H(A)),d").

bicx

If [Oy;] = 0 then there exists u € C7'}7 > (H(A), H(A)) such that d"u = O;.

By Corollary 4.1.4 there exists m{;_,; € CHH73( A, A) such that omi;_4y; =0
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——
and M1y, =

I
[
3
S

(a,b),(p,q)#(0,1)

= [ma1, mu-ny;] +

(a.b).{pa) £ (0,1).(1L.1)

Hence,

[mu, mei—1)5 — m'(l.fl)j] + Z Map O Mypg = 0.

i=a+p,
j=b+q—1,
(a,b),(p,@)#(0,1),(1,1)

By Corollary 4.1.4, there exists m,; € C7"777%(A, A) such that

oM. — )

omi; = [mar, m-1y; m(iq)j] + Z
i=a+p,
j=b+q—1

(a,0),(p.q)#(0,1),(1,1)

As a consequence, the collection

M O Mpg.

{mpgl0 <p <i,1<q<j,(p,q) # (i —1,5)} U ima_1); —mi_1);}

gives A the structure of a dA;;-algebra.
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For 4.5.3.2 we notice that

D

Z Mah © Mpy | = Z OMigp © Mg — Migp © OMyg
a+p=i, a+p=t,
b+q=7+2, b+q=j+2,
(a,0),(p,q)#(0,1),(0,2) (a,b),(p,q)#(0,1),(0,2)
= Z OMygly © Mpg — Mpg © OMgp,
a+p=t,
b+q=j+2,
(a,0),(p,9)#(0,1),(0,2)

Z — (Med © Mey) © Mg
ct+e+p=i, + qu © (mCd © mef)
d+f+q=37+3,

(cvd)v(evf)v(p»Q)9é(Ovl):
(p,9)#(0,2)

. Z - (mcdomef)om02
cte=i, + Moz © (Meq © Mey)
d+f=j+1,
(e,d),(e,f)#(0,1)
= Oij © M2 — Mp2 © Oij

= —[m02> Oij]

As a consequence, d*(0;;) = 0 and O_w represents a class in

HH 73 (H (A), H(A)) = H/(CPY72(H(A), H(A)), d").

dga

If [O;;] = 0 then there exists u € C/~"?(H(A), H(A)) such that d*u =

O;j. By Corollary 4.1.4 there exists m/ ) € Cij_l’iﬂ_‘g(A,A) such that

i(j—1
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omi;_yy = 0 and mj,; | =u. So

[moz, mi;_py] = dimy_yy = d*u

=) maomy
i=a+p,
(a,b),(p,q)#(0,1)
= [mo2, mij-1)] + >, Mab © Mypg.
1=a+p,
Jj=b+q—1,

(a,b),(p,q)#(0,1),(0,2)

Hence,

[mo2, migj—1) — m;(jfl)] + Z Map © Mpg = 0.
i=a+p,
(a,b),(p,a)#(0,1),(0,2)

By Corollary 4.1.4, there exists m,; € C7"777%(A, A) such that

ja) _ /
omij = [moz, mii—1) — ms;_q)] + > Mab © Mg
i=a+p,
(a,b),(p,q)#(0,1),(0,2)

As a consequence, the collection
{mp0 <p<i,1<qg<y,(pqg) #(i,j—1)}vu {mi(jfl) - m;(j_l)}
gives A the structure of a dA;;-algebra. O

Instead of building up the structure maps m;; one by one, we may consider
taking collections of maps m;; with ¢ + j = o and look at the obstructions

to building up the structure by adding a whole collection in one go.
Definition 4.5.4. Let > 1 be an integer. An (N, Z)-bigraded R-module,
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A, is a dA,-algebra if there exist collections of maps M, = (Mmp,) p+g=a, €

p=0,q>1
I Cgvp+‘1—2(A, A) for all a < r, satisfying the relations
pta=a

2 Med © Mg =0

u=c+p,
v=d+q—1,

u=0,0>1 ut+v=p4

for all § < r. Equivalently,

OMp = (OMup)yypep = | — Z Med © Mypg

u:C+p7
v=d+q—1,
(C’d)7(p7q)7é(0?1) 'u-‘r’U:,B

Remark 4.5.5. If A is a dA;-algebra then A is a vertical bicomplex. The
induced differential on C'(A, A) is ¢ = [me1, —].

If Ais a dAs-algebra then we have dmy; = 0 and dmge = 0, so there are
induced elements 7y € C1°(H(A), H(A)) and gz € Co°(H (A), H(A)).

If Ais a dAs-algebra then my; o my; = 0, so H(A) is a bicomplex with

trivial vertical differential. In addition, we have g o Mgz = 0 and mq; ©

oz + Moz 0Ty = 0, so Tgg is an associative multiplication on H (A). Hence
the bigraded module H(A) is a bidga with trivial vertical differential.
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Horizontal degree

N itj=r+1
1+ =7

Figure 4.2: The maps in a dA,-algebra/ dA, ;;-algebra

Theorem 4.5.6. Let r > 3 be an integer.

Let A be a vertical bicomplex such that H(A) and Z(A) are bigraded
projective R-modules. Assume A is a dA,-algebra with structure maps
My = (Mpg)p+g=a, € [ CEPT972(A,A). Then the obstruction to lift

p=0,g=1 ptg=a,
p=0,q=1
the underlying dA,_;-algebra structure on A to a dA, j-algebra structure
lies in

HH V2 (H(A), H(A)).

bidga

Proof. Let 0 = [mqy, —], d™" = [my1 + moga, —].

Note that |my,| =p+q¢+ (pP+q¢—2)—1=2p+2¢—3is odd.
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Let us define

Ory1 = (Oij)i+j=r+1

B jyi+i—3
= Z Mab © Mpqg € H C (A, A).
i=a+p, ’i+j=7"+1
(avb)7(p7Q)#(071) i+j=r+1

Then

aC)r+1 = (aoij>i+j:r+1 = <O>i+j:r+1 =0

by Proposition 4.2.11.

So O, gives rise to a collection of elements

Oe [] /9 -3(H(A), HA)).

itj=r+1

We notice that

(dTOt(’)rH)UU = ([mll + M2, (Oij>i+j:r+1]>uv
= ([mn’ (Oij)i+j:r+1] + [mOQJ (Oij)i+j:r+1])w

- [mll’ O(“_l)v] + [m027 Ou(v—l)] with u +v =r + 2.
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So

= (0(u71)v 0Mmip — M1 0 O(ufl)v + Ou(vfl) © Moz — M2 © Ou(vfl))

S mwem,

a+p=u,
b+g=v+1,
(a7b)7(p7Q)¢(071)’(1’1)7(072) 'U,+’U:7‘+2

Z OMgp © Mg — Mgp © OMyg
a+p=u,
b+g=v+1,
(avb)v(pvq);é(ovl)7(171)7(072) u+v=f’n+2

Z OMgh © Mpg — Mpg © OMygp
a+p=u,
b+g=v+1,
(a,b),(p,q)#(0,1),(1,1),(0,2) Ut =142

ct+e+p=u,
d+ f+q=v+2,
(e,d),(e,f),(p,q)#(0,1),
(p,q)#(1,1),(0,2)

D —(Mea©mep) o may + My 0 (Meg 0 Mey)

cte=u—1,
d+f=v+1,

Z —(Mea © Mey) © Mipg + Mpg © (Mg © Mey)

utv=r+2

(c,d),(e,f);é((],l) ut+v=r+2

+ Z _(mcdomef>om02+m020(mcdomef)

cte=u,
d+f=v,
(c,d),(e,f)#(0,1)

(=[ma1, Q)] = [M02, Ouw—1)1) i

_dTot Oij .
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As a consequence, d™%(0,,1) = 0 and O, represents a class in

H Hygo ™ (H(A), H(A)).

I [Or41] = ([04])1 j—ry1 = O then there exists

U= ()€ ] CF72(H(A), H(A))

i+j=r

such that d™U = O, . By Corollary 4.1.4 there exists

ML= (mly),, e [T CF %A, 4)

i+j=r

such that 0M! = 0 and M/ = U. So

[mn,m’(i_l)j] + [m027m§(j_1)] = <dT°tM7{>ij

= (dTU)ij = 0j;

Z Mgp © Mg

i=a+p,
(a,b),(p,q)#(0,1)

= [mn, m(z’fl)j] + [m02a mi(jfl)]

+ }: Map © Mg
i=a+p,
(a?b)7(p$q)7é(071)7(171)7(0’2)
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Hence,

[ma1, m-1); — m/(i—l)j] + [moz, mi(j—1) — m;(j—l)]

+ Z Mgp © Mg = 0.

i=a+p,
j=b+q—1,
(aab)v(pvq);&(orl)v(lvl)v(ovz) i-‘,—j:r-‘,—l

By Corollary 4.1.4, there exists M1 = (my;);, ;1 € 11 CHHI72(A, A)
i+j=r+1
such that

OM,i1 = (Omyz),;, .

= [mn; m—1); — m/(ifl)j] + [m02>mi(j—1) - m;(jfl)]

+ Z Map © Mg
i=a+p,
(a,b),(p,q);ﬁ(0,1),(1,1),(0,2) i+j:7~+1
As a consequence, the collection {My, My, -+, M, 1, M, — M/, M, 1} is a

dA,q-algebra structure on A extending the dA,_;-algebra structure. ]
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Appendix A

Construction of V53

In this appendix we give the details of the structure of the space Vs3 using
Definition 2.3.1. This is an extra example which may be of interest to readers
wanting to see a case of the construction of a space V;; with i +j = 5. There
are of course other examples we could consider, such as V3o or Vi4.

There are 20 trees in the set 7'2?3. It is straightforward to check that 10
of these trees correspond to copies of T3 A (K3), in Vg and the other 10
correspond to copies of Ty A (K3) 1 A (K3),. Hence we see that the space Va3

is as shown in figure A.1.
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