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Abstract

Let R be a commutative ring, and let A be a derived A8-algebra over R with
structure maps mij for all i ě 0, j ě 1. In this thesis we construct a collection
of based topological spaces Vij which give rise to the notion of a DA8-space.
The structure of these spaces gives new insight into the structure of a derived
A8-algebra. We study the cell structure of these spaces via a combinatorial
model using partitioned trees. We will prove that the singular chain complex
on a DA8-space gives rise to a derived A8-algebra.

We go on to consider obstruction theories to the existence of the structure
maps of a derived A8-algebra. The bigrading on A leads to choices of the
order in which we develop the derived A8-structure. We give three different
definitions of a “partial” derived A8-structure and in light of these definitions
provide two different obstruction theories to extend a dA´ij-structure to a
dAij structure, plus an obstruction theory to extend a dAr´1-structure to a
dAr`1-structure. In each case, the obstruction lies in a particular class of the
Hochschild cohomology of the homology of A.
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Chapter 0

Introduction

An A8-algebra is a homotopy invariant version of an associative algebra

and this notion has been extensively studied since its definition by James

D. Stasheff [Sta63] in 1963. Keller [Kel01] provides a useful introduction to

A8-algebra structures.

Stasheff [Sta63] defines the associahedra, denoted Kj for j ě 2, a collec-

tion of convex polytopes of dimension j´ 2. It is well known that the k-cells

of Kj are in bijection with bracketings of a word with j letters and j ´ 2´ k

sets of brackets and also planar trees with j leaves and j ´ 2 ´ k internal

edges. Perhaps less well known is a formula, T pj ` 1, kq “ 1
k`1

`

j´2
k

˘`

j`k
k

˘

,

which counts the number of cells in Kj of dimension j ´ 2 ´ k. For com-

pleteness, and due to a lack of a proof in the literature, we prove this fact in

Section 1.6 of this thesis.

An A8-space is an algebra over the operad of associahedra. The associ-

ahedra form a non-symmetric operad in the category of topological spaces,

and an A8-space is an algebra over this operad. Stasheff [Sta63] shows that

the singular chain complex of an A8-space admits the structure of an A8-

algebra.

Livernet [Liv14] establishes an obstruction theory to A8-algebra struc-

tures on a differential Z-graded R-module, A, equipped with a homotopy as-
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sociative multiplication. She defines a “partial” A8-algebra structure, called

an Ar-algebra, and for r ě 3 shows that the obstruction to extend the under-

lying Ar´1-structure on A to an Ar`1-structure lies in a class of the Hochschild

cohomology of the associative algebra HpAq.

In [Kad80], Kadeǐsvili studied an obstruction theory to the uniqueness of

A8-algebra structures, also in terms of the Hochschild cohomology of HpAq.

Furthermore, in the case of A8 ring spectra the obstructions to the existence

of higher homotopies is studied by Robinson [Rob89].

Kadeǐsvili [Kad80] also classified all differential graded algebras over a

field up to quasi-isomorphism. In order to generalise his results to work

over a general commutative ring, Sagave [Sag10] introduced the notion of a

derived A8-algebra. A derived A8-algebra is an pN,Zq-bigraded R-module

with R-linear maps mij of bidegree pi, i` j ´ 2q, satisfying certain relations,

for all i ě 0, j ě 1. Prior to this, Lapin [Lap02] introduced the related

concept of a D
psq
8 -differential A8-algebra.

A derived A8-algebra has an underlying structure of a twisted chain

complex (also known as a multicomplex). Twisted chain complexes were

first introduced by Wall [Wal61] in his work on resolutions for extensions

of groups. They can be considered as a generalisation of a double complex

with one differential being a differential only up to homotopy and all higher

coherences.

In [LRW13] an operadic description of a derived A8-algebra was devel-

oped. Derived A8-algebras are shown to be algebras over the operad dA8.

In this thesis we investigate combinatorial models and obstruction theo-

ries for derived A8-algebras. Throughout we will first consider the classical

case of A8-algebras and the other special case of twisted chain complexes

before introducing the more general theory for derived A8-algebras.

In Chapter 2 we will define a collection of based topological spaces Vij for

i ě 0, j ě 1, and show that these spaces form a non-symmetric N-coloured

operad, V , in the category of based topological spaces. We give the definition
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of a DA8-space and show that this is a non-symmetric non-unital algebra

over the operad V . That is, a family of based topological spaces X “ tXnunPN

equipped with based maps

DAij : Vij ^Xp1 ^ ¨ ¨ ¨ ^Xpj Ñ Xp1`¨¨¨`pj`i

satisfying some relations, for all i ě 0, j ě 1, and pi, jq ‰ p0, 1q.

In the same chapter we also define a collection of spaces Ti for i ě 1

and a D8-space over these spaces to model the structure of a twisted chain

complex. Given that Vi1 “ Ti, a DA8-space has an underlying structure of a

D8-space when j “ 1. There is also an operadic story here with the spaces

Ti forming a non-symmetric N-coloured operad, T , and a D8-space being an

algebra over this operad.

In Chapter 2 we will show that cells in the spaces Vij are in bijection

with partitioned trees with j leaves and i nodes (a vertex with exactly one

child), and thus provide a counting argument for the number of cells in each

dimension of Vij. In particular, we show that the number of cells in dimension

pi` j ´ 2´ kq of Vij is given by

1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

α“0

p´1qk´α
ˆ

k ` 1

k ´ α

˙

Nαpi` j ` α ´ 1, i` 1q

where Nαpn,mq “
α`1
n`1

`

n`1
m`α

˘`

n`1
m´1

˘

. In this chapter we also show that the

boundary of Vij is homeomorphic to a wedge of spheres of dimension i`j´3.

The combinatorial structure of the spaces Ti is less complex since the cells

of dimension i ´ 1 ´ k in Ti are in bijection with partitions of i into k ` 1

parts, and so there are clearly
`

i´1
k

˘

such cells. The space Ti is defined as a

smash product of pi ´ 1q copies of I “ r0, 1s with 0 taken as the basepoint,

and thus the boundary of Ti is homeomorphic to a sphere of dimension i´ 2.

For Chapter 3, the main result is Theorem 3.3.1 in which we prove that

taking the singular chain complex of a DA8-space results in a derived A8-

3



algebra. We see that we get a bigraded R-module with one grading from the

chain complex and the other from the grading on the spaces. The structure

maps mij result from the chain maps induced from the maps DAij, and the

relations in the algebra result from the relations in spaces.

Finally, in Chapter 4 we study the obstructions to the existence of the

structure maps of a twisted chain complex and a derived A8-algebra. We

generalise the pre-Lie structure from [Liv14] to allow for an extra grading and

define the Hochschild cohomology for a derived A8-algebra, as in [LRW13].

For the twisted chain complex case, we define a “partial” twisted chain

complex structure in the obvious way, that is a stage r twisted chain complex

has structure maps di for all 0 ď i ď r subject to the relations among these.

Then in Theorem 4.4.3 we show that if A is a stage r twisted chain complex,

then the obstruction to lift the underlying stage pr ´ 1q-structure of A to a

stage pr ` 1q-structure lies in

HHr`1,1,r´1
bicx pH pAq, H pAqq “ Hr`1

pMorpHpAq, HpAqqr´1
˚ , rm11,´sq.

For the obstructions to the existence of the structure of a derived A8-

algebra we define three different notions of a “partial” derived A8-structure.

The different definitions come down to a choice of how to “build up” the

structure. There is a choice to be made because a derived A8-algebra struc-

ture is bigraded.

The first definition is a DAij-structure in which we have all of the struc-

ture maps mpq for 0 ď p ď i and 1 ď q ď j. The second definition is

a DA´ij-structure which is a DAij-structure without the structure map mij.

These definitions allow us to consider obstructions to lifting a DA´ij-structure

to a DAij-structure i.e. the obstructions to the existence of the structure

map mij. In Theorem 4.5.3 we see that for A a vertical bicomplex such that

HpAq and ZpAq are bigraded projective R-modules, if A is a dA´ij-algebra

with structure maps mpq,
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• then the obstruction to extend the dA´ij-algebra structure to a dAij-

algebra structure, by modifying the map mpi´1qj, lies in

HH i,j,i`j´3
bicx pH pAq, H pAqq “ H i

pMorpHpAqbj, HpAqqi`j´3
˚ , rm11,´sq,

• and the obstruction to extend the dA´ij-algebra structure to a dAij-

algebra structure, by modifying the map mipj´1q, lies in

HH i,j,i`j´3
dga pH pAq, H pAqq “ Hj

pMorpHpAqb˚, HpAqqi`j´3
i , rm02,´sq.

The third definition of a “partial” dA8-structure is a DAr-structure with

all structure mapsmpq such that p ě 0, q ě 1, and p`q ď r. In Theorem 4.5.6

we show that if A is a dAr-algebra, then the obstruction to lift the underlying

dAr´1-algebra structure on A to a dAr`1-algebra structure lies in

HHr`1,r´2
bidga pH pAq, H pAqq “ Hr`1

p
ź

n

MorpHpAqbn, HpAqqr´2
˚´n, rm,´sq.

We do not in this thesis consider the question of obstructions to the

uniqueness of the structure of a twisted chain complex or a derived A8-

algebra, however one could consider this for each of the cases above by fol-

lowing and generalising the approach of [Kad80].
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Chapter 1

Background

1.1 Symmetric monoidal categories

In this section, we give the definition of a symmetric monoidal category

and some key examples that will be used throughout the thesis. In par-

ticular, we define CHau the category of compactly generated Hausdorff

spaces; CHau˚ the category of pointed compactly generated Hausdorff

spaces; ModpRq the category of left R-modules over a commutative ring

R; and ChainpRq the category of chain complexes of left R-modules over a

commutative ring R.

Definition 1.1.1. A monoidal category is a tuple

pM,b, I, α, λ, ρq

consisting of the following data.

1. M is a category.

2. The product b : M ˆ M Ñ M is a functor, called the monoidal

product (or tensor product), where M ˆM is the product category.

3. I is an object in M , called the b-unit.
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4. α is a natural isomorphism

pX b Y q b Z Ñ X b pY b Zq

for all objects X, Y, Z PM , called the associativity isomorphism.

5. λ and ρ are natural isomorphisms

α : I bX Ñ X and ρ : X b I Ñ X

for all objects X PM , called the left unit and the right unit respec-

tively.

The data is required to satisfy the following two axioms.

Unit Axioms: The diagram

pX b Iq b Y X b pI b Y q

X b Y X b Y

α

ρbid idbλ

“

is commutative for all objects X, Y PM ; and

λ “ ρ : I b I
–
ÝÑ I.

Pentagon Axiom: The pentagon

pW bXq b pY b Zq

ppW bXq b Y q b Z W b pX b pY b Zqq

pW b pX b Y qq b Z W b ppX b Y q b Zq

αα

αbid

α

idbα

is commutative for all objects W,X, Y, Z PM .
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A strict monoidal category is a monoidal category in which the natural

isomorphisms α, λ, and ρ are all identity maps. From this point onwards,

we will drop α, λ, and ρ from the notation of a monoidal category.

Definition 1.1.2. A symmetric monoidal category is a pair pM, ξq in

which

1. M “ pM,b, Iq is a monoidal category;

2. ξ is a natural isomorphism

X b Y
ξX,Y
ÝÝÝÑ
–

Y bX

for objects X, Y PM , called the symmetry isomorphism.

This data is required to satisfy the following three axioms.

Symmetry Axiom: The diagram

X b Y Y bX

X b Y

ξX,Y

“
ξY,X

is commutative for all objects X, Y PM .

Compatibility with Units: The diagram

X b I I bX

X X

ξX,Y

ρ λ

“

is commutative for all objects X PM .

Hexagon Axiom: The following diagram is commutative for all objects

X, Y, Z PM :

9



X b pZ b Y q X b pY b Zq

pX b Zq b Y pX b Y q b Z.

Y b pX b Zq pY bXq b Z

idbξZ,Y

α´1α

ξXbZ,Y

α´1

ξY,Xbid

We often drop ξ from the notation of a symmetric monoidal category.

Throughout this thesis we will work in a few different symmetric monoidal

categories. The key categories to consider are as follows.

1. CHau: the category of compactly generated Hausdorff spaces with

morphisms given by continuous maps, the product ˆ as the monoidal

product, and any one-point space as the b-unit.

2. CHau˚: the category of pointed compactly generated Hausdorff

spaces, with morphisms given by continuous basepoint preserving maps,

the smash product ^ as the monoidal product, and the two-point space

as the b-unit.

3. If R is a commutative ring, then the category ModpRq of left R-

modules with morphisms given by R-linear maps, tensor product bR,

and R regarded as the left module over itself as the b-unit.

4. If R is a commutative ring, then the category ChainpRq of chain

complexes of left R-modules with morphisms given by chain maps,

tensor product X b Y where

pX b Y qn “
à

a`b“n

Xa b Yb

with differential Bn : pX b Y qn Ñ pX b Y qn´1 given by

Bnpxb yq “ Baxb y ` p´1qaxb Bby
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where x P Xa, y P Yb and a` b “ n. We have R concentrated in degree

0 as the b-unit.

1.2 Graded modules and derived A8-Algebras

From this point onwards, we take R to be a commutative ring, and all tensor

products are taken over R unless stated otherwise.

We consider a Z-graded R-module, A, to be a collection of R-modules

Aj for all j P Z where Aj is said to be of degree j. A morphism of graded

modules of degree v is a collection of morphisms of R-modules Aj Ñ Aj`v

for j P Z..

Definition 1.2.1. An A8-algebra over R is a Z-graded R-module A, en-

dowed with graded R-linear maps

mn : Abn Ñ A, n ě 1

of degree n´ 2 satisfying the following relation

ÿ

p´1qr`stmup1
br
bms b 1btq “ 0

for each n ě 1, where the sum runs over all decompositions n “ r` s` t and

we put u “ r ` 1` t.

Remark 1.2.2. Let As be the associative operad in chain complexes. Then

note that specifying an A8-algebra structure on a Z-graded R-module, A, is

equivalent to giving a square zero coderivation on the cofree coalgebra on A

over the Kozul dual cooperad As¡.

An pN,Zq-bigraded R-module, A, is a collection of R-modules Aji for

all i P N, j P Z where Aji is said to be of bidegree pi, jq. A morphism of

bigraded modules of bidegree pu, vq is a collection of morphisms of R-modules
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Aji Ñ Aj`vi`u for i P N, j P Z. The lower grading is called the horizontal degree

and the upper grading the vertical degree.

Definition 1.2.3. A twisted chain complex, C, is an pN,Zq-bigraded R-

module, with maps di : C Ñ C of bidegree pi, i ´ 1q for i ě 0, satisfying

ÿ

i`p“u

p´1qidi ˝ dp “ 0 (1.1)

for u ě 0.

Definition 1.2.4. A derived A8-algebra (or dA8-algebra for short) is an

pN,Zq-bigraded R-module, A, with R-linear maps

mij : Abj Ñ A

of bidegree pi, i` j ´ 2q for each i ě 0, j ě 1, satisfying the equations

ÿ

u“i`p,
v“j`q´1,
j“1`r`t

p´1qrq`t`pjmijp1
br
bmpq b 1btq “ 0 (1.2)

for all u ě 0 and v ě 1.

When derived A8-algebras were first defined by Sagave [Sag10], Sagave

was thinking of these in terms of projective resolutions of the homology of a

differential graded algebra. Sagave defined a derived A8-algebra as an pN,Zq-
bigraded R-module to avoid potential problems with taking total complexes.

In this thesis we also use pN,Zq grading conventions but we note that some

authors generalise to pZ,Zq-bigraded R-modules.

It is also worth noting that in [Sta63] and [Sag10], A8-algebras and dA8-

algebras are equipped with a unit condition that we do not include in our

definition.
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Remark 1.2.5. In [LRW13], the operad dAs (in vertical bicomplexes) is in-

troduced, and it is shown that derived A8-algebras are pdAsq8-algebras. So

specifying a derived A8-algebra strucure on an pN,Zq-bigraded R-module,

A, is equivalent to a square zero coderivation on the kozul dual operad

pdAsq¡pAq.

Recall that the Koszul sign rule applies to bigraded maps, that is

pf b gqpxb yq “ p´1qpi`qjfpxq b gpyq

where g has bidegree pp, qq and x has bidegree pi, jq. We will be applying

this throughout, wherever necessary.

1.3 Operads

In this section we introduce the notion of an operad. Our main focus here is

to define a non-symmetric operad by partial compositions and algebras over

them. These definitions will be used in Chapter 2 to describe the structure

of A8-spaces. This example comes from the work of Stasheff [Sta63] and was

a motivating example in the definition of an operad. Here we present the

story in the opposite order.

Let C be a symmetric monoidal category with monoidal product b and

unit κ.

Definition 1.3.1 ([May97]). A non-symmetric operad O in C consists of

objects Opjq for j ě 0, a unit map η : κÑ Op1q, and product maps

γ : Opkq bOpj1q b ¨ ¨ ¨ bOpjkq Ñ Opjq

for k ě 1, and js ě 0, where
ř

js “ j. The γ are required to be associative

and unital in the following senses.

1. The following associativity diagram commutes, where
ř

js “ j and

13



ř

it “ i; we set gs “ j1 ` ¨ ¨ ¨ ` js, and hs “ igs´1`1 ` ¨ ¨ ¨ ` igs for

1 ď s ď k:

Opkq b p
Âk

s“1Opjsqq b p
Âj

r“1Opirqq Opjq b p
Âj

r“1Opirqq

Opiq

Opkq b p
Âk

s“1pOpjsq b p
Âjs

q“1Opigs´1`qqqq Opkq b p
Âk

s“1Ophsqq.

pγ,idq

shuffle

γ

pid,bsγq

γ

2. The following unit diagrams commute:

Opkq b pκqk Opkq κbOpjq Opjq

Opkq bOp1qk Op1q bOpjq.

–

pid,ηkq

–

pη,idqγ γ

The following proposition gives an equivalent definition for a non-symmetric

operad via partial compositions. This definition also appears in [Ger63] under

the name “Pre-Lie system”. In Chapter 4 we will generalise this definition

to a Pre-Lie system for trigraded modules over a commutative ring.

Proposition 1.3.2 ([LV12]). A non-symmetric operad O in C consists of

objects Opjq for j ě 0, a unit map η : κ Ñ Op1q, and partial composition

maps,

˝i : Opmq bOpnq Ñ Opm` n´ 1q

for all 1 ď i ď m satisfying the relations:

λ ˝i pµ ˝j νq “ pλ ˝i µq ˝i`j´1 ν for 1 ď i ď l, 1 ď j ď m, (1.3)

pλ ˝i µq ˝k`m´1 ν “ pλ ˝k νq ˝i µ for 1 ď i ă k ď l, (1.4)

κ ˝1 λ “ λ “ λ ˝i κ. (1.5)
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for any λ P Oplq, µ P Opmq and ν P Opnq.

We will now define an algebra over a non-symmetric operad.

Definition 1.3.3 ([May97]). Let O be a non-symmetric operad. An O-

algebra is an object A together with maps

θ : Opjq b Abj Ñ A

for j ě 0 that are associative and unital in the following senses.

1. The following associativity diagram commutes, where j “
ř

js:

Opkq bOpj1q b ¨ ¨ ¨ bOpjkq b Abj Opjq b Abj

A

Opkq bOpj1q b A
bj1 b ¨ ¨ ¨ bOpjkq b Abjk Opkq b Abk.

pγ,idq

shuffle

θ

pid,θkq

θ

2. The following unit diagram commutes:

κb A A

Op1q b A.

–

pη,idq
θ

In what follows we will only be interested in non-unital algebras defined

via partial compositions and so this equivalent formulation is given in the

next proposition. I am not aware of a reference for this proposition in the case

of classical operads, however it is a straightforward consequence of Proposi-

tion 1.3.2. In the next section we will give a more general result for coloured

operads, of which this one is a direct consequence by restricting to the case

with one colour.
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Proposition 1.3.4. Let O be a non-symmetric operad. A non-unital O-

algebra is an object A together with maps

θ : Opjq b Abj Ñ A

for j ě 0 that are associative in the following sense.

For i “ 1, . . . ,m` n´ 1,

Opmq bOpmq b Abm`n´1 Opm` n´ 1q b Abm`n´1

A

Opmq b Abi´1 bOpnq b Abm`n´i Opmq b Abm.

p˝i,id
m`n´1q

shuffle

θ

pidi,θ,idm´iq

θ

1.4 Coloured operads

In this section we introduce the notion of a coloured operad. For reference

throughout this section we refer to [Yau16] for a comprehensive introduction

to coloured operads. We are specifically interested in a coloured operad

without the symmetric group actions, which were first defined by Lambek as

multicategories ([Lam69]).

Our main focus here is to define a non-symmetric coloured operad by par-

tial compositions (or coloured pseudo-operads in [Yau16]) and algebras over

them. These definitions will be used in Chapter 2 to describe the structure

of D8-spaces and DA8-spaces.

We begin by defining a colour profile, the main purpose of which is to

simplify the notation for the remainder of the section.

Definition 1.4.1 ([Yau16], 9.1). Fix a non-empty set C, whose elements are

called colours.
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1. A C-profile is a finite sequence of elements of C, say, c “ pc1, . . . , cnq.

2. Write |c| for the length of a C-profile as a finite sequence.

3. The empty C-profile is denoted by ∅.

4. The set of C-profiles is denoted by ProfpCq.

5. Suppose a “ pa1, . . . , amq and b “ pb1, . . . , bnq P ProfpCq. Their con-

catenation is defined as the C-profile

pa, bq “ pa1, . . . , am, b1, . . . , bnq.

We will now introduce the notion of a coloured operad in the monoidal

category pC,b, κq.

Definition 1.4.2 ([Yau16], 11.2). Let C be a non-empty set. A non-

symmetric C-coloured operad P in C consists of objects P pc; dq for each

c P ProfpCq and d P C. Plus, for each c P C a unit map 1C : κ Ñ P pc; cq,

and product maps:

γ : P pc; dq b P pb1; c1q b ¨ ¨ ¨ b P pbn; cnq Ñ P pb; dq

for each c “ pc1, . . . , cnq P ProfpCq, and n other colour tuples b1, . . . , bn P

ProfpCq, with b “ pb1, . . . , bnq their concatenation. The γ are required to be

associative and unital in the following senses.

1. Suppose that

• for each 1 ď j ď n, bj “ pb
j
1, . . . , b

j
kj
q P ProfpCq has length kj ě 0

such that at least one kj ą 0;

• aji P ProfpCq for each 1 ď j ď n and 1 ď i ď kj;
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• for each 1 ď j ď n,

aj “

$

&

%

paj1, . . . , a
j
kj
q if kj ą 0,

∅ if kj “ 0;

• a “ pa1, . . . , anq is their concatenation.

Then the following associativity diagram commutes:

P p cd q b

«

n
Â

j“1

P
´

bj
cj

¯

ff

b
n
Â

j“1

«

kj
Â

i“1

P
´

aji
bji

¯

ff

P
`

b
d

˘

b
n
Â

j“1

«

kj
Â

i“1

P
´

aji
bji

¯

ff

P p ad q

P p cd q b
n
Â

j“1

«

P
´

bj
cj

¯

b

kj
Â

i“1

P
´

aji
bji

¯

ff

P p cd q b
n
Â

j“1

P
` aj
cj

˘

,

pγ,idq

shuffle

γ

pid,bjγq

γ

where we have used the notation P p cd q “ P pc; dq to make the diagram

easier to read.

2. Suppose d P C.

• If c “ pc1, . . . , cnq P ProfpCq has length n ě 1, then the right unit

diagram

P p cd q b pκq
n P p cd q

P p cd q b
n
Â

j“1

P
` cj
cj

˘

–

pid,b1cj q
γ

is commutative.
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• If b P ProfpCq has length |b| ě 0, then the left unit diagram

κb P
`

b
d

˘

P
`

b
d

˘

P p dd q b P
`

b
d

˘

.

–

p1d,idq
γ

is commutative.

The above is the definition of a non-symmetric coloured operad. In Propo-

sition 1.4.5 we give an equivalent definition for non-symmetric coloured oper-

ads via partial compositions, but first we define partial composition of colour

profiles.

Definition 1.4.3 ([Yau16], 16.1). Let c “ pc1, . . . , cnq and b “ pb1, . . . , bmq

be C-profiles. We define the partial composition of C-profiles by

c ˝i b “ pc1, . . . , ci´1, b1, . . . , bm, ci`1, . . . , cnq P ProfpCq

for all 1 ď i ď n.

Proposition 1.4.4 ([Yau16], 16.1). For c “ pc1, . . . , cnq and b “ pb1, . . . , bmq

in ProfpCq the partial composition of C-profiles satisfies the following asso-

ciativity relations:

c ˝i pb ˝j aq “ pc ˝i bq ˝i`j´1 a for 1 ď i ď n, 1 ď j ď m (1.6)

pc ˝i bq ˝k`m´1 a “ pc ˝k aq ˝i b for 1 ď i ă k ď n. (1.7)

Proposition 1.4.5 ([Yau16], 16.2 and 16.4). A non-symmetric C-coloured

operad P in C consists of objects P pc; dq for each c P ProfpCq and d P C,

together with partial composition maps:

γi : P pc; dq b P pb; ciq Ñ P pc ˝i b; dq
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for each 1 ď i ď n where |c| “ n. The γ are required to be associative

in the following sense. For c “ pc1, . . . , cnq, b “ pb1, . . . , bmq P ProfpCq and

a P ProfpCq, the diagram

P p cd q b P
`

b
ci

˘

b P
` a
bj

˘

P p cd q b P
`

b˝ja
ci

˘

P
`

c˝ipb˝jaq
d

˘

P
`

c˝ib
d

˘

b P
` a
bj

˘

P
`

pc˝ibq˝i`j´1a
d

˘

pid,γjq

pγi,idq

γi

γi`j´1

(1.8)

commutes for 1 ď i ď n and 1 ď j ď m; and the diagram

P p cd q b P
`

b
ci

˘

b P p ack q P
`

c˝ib
d

˘

b P p ack q

P p cd q b P p
a
ck q b P

`

b
ci

˘

P
`

pc˝ibq˝k`m´1a
d

˘

P p c˝kad q b P
`

b
ci

˘

P
`

pc˝kaq˝ib
d

˘

pγi,idq

–shuffle γk`m´1

pγk,idq

γi

(1.9)

commutes for 1 ď i ă k ď n.

In what follows, we will present two equivalent definitions of an algebra

over a non-symmetric coloured operad.

Definition 1.4.6 ([Yau16], 13.2). Let P be a non-symmetric C-coloured

operad in C. A P -algebra is a family X “ tXcucPC of objects in C, together

with maps

α : P pc; dq bXc Ñ Xd
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where

Xc “

$

&

%

Xc1 b ¨ ¨ ¨ bXcn if |c| ą 0,

κ if |c| “ 0,

that are associative and unital in the following senses.

1. For d P C, c “ pc1, . . . , cnq P ProfpCq with length n ě 1, bj P ProfpCq

for 1 ď j ď n, and b “ pb1, . . . , bnq; the following associativity diagram

commutes:

P p cd q b

«

n
Â

j“1

P
´

bj
cj

¯

ff

bXb P
`

b
d

˘

bXb

P p cd q b
n
Â

j“1

”

P
´

bj
cj

¯

bXbj

ı

P p cd q bXc Xd.

pγ,idq

–shuffle

α

pid,bjαq

α

2. For each colour c P C, the following unit diagram commutes:

κbXc Xc

P p cc q bXc.

–

p1c,idq α

Again, what we are really interested in is a non-unital algebra over a non-

symmetric coloured operad, defined via partial compositions. The following

proposition gives an equivalent definition for such an object.

Proposition 1.4.7 ([Yau16], 16.7). Let P be a non-symmetric C-coloured

operad. A non-unital P -algebra is a family X “ tXcucPC of objects in C,
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together with maps

α : P pc; dq bXc Ñ Xd

where

Xc “

$

&

%

Xc1 b ¨ ¨ ¨ bXcn if |c| ą 0,

κ if |c| “ 0,

that are associative in the following sense.

For d P C, c “ pc1, . . . , cnq P ProfpCq with length n ě 1, and b P ProfpCq;

the following associativity diagrams commute:

P p cd q b P
`

b
cj

˘

bXc˝jb P
`

c˝jb
d

˘

bXc˝jb

P p cd q b
j´1
Â

r“1

Xcr b
“

P
`

b
cj

˘

bXb

‰

b
n
Â

r“j`1

Xcr

P p cd q bXc Xd.

pγj ,idq

–Shuffle

α

pid,α,idq

α

(1.10)

1.5 Trees

In this section we introduce background material on graphs and trees, leading

to the definition of planar trees. Most of this is following the definitions of

Yau [Yau16] with some small convention changes. For example, Yau defines

rooted trees where we want our trees to have a root vertex but no root edge.

Following on from this, we define a structure with a distinguished set of

internal vertices which we refer to as a partitioned tree. The remainder of

this section will be devoted to establishing properties of partitioned trees and

a process for constructing them which will be used in Chapter 2 to consider
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a combinatorial description of the cell structure of the topological spaces Vij.

We begin by giving Yau’s definition of a graph and a directed graph. All

graphs we consider in this thesis will be finite graphs.

Definition 1.5.1. A graph G is an ordered pair pV,Eq of disjoint sets in

which E is a subset of V 2 “ ttx, yu |x, y P V, x ‰ yu.

1. An element in V is called an abstract vertex.

2. An element e “ tx, yu P E is called an edge with abstract end-vertices

x P V and y P V .

3. We say that a graph is finite if both V and E are finite sets, and

non-empty if both V and E are non-empty.

4. A path P in a graph G is an ordered list of abstract vertices

P “ px0, x1, . . . , xlq

for some l ě 1 such that ei “ txi´1, xiu P E for each 1 ď i ď l. Call

l the length of the path. We say that such a path is from x0 to xl,

that each edge ei is in P , and that P contains ei.

5. A trail is a path px0, . . . , xlq whose edges ei “ txi´1, xiu for 1 ď i ď l

are all distinct.

6. A cycle is a path such that the abstract vertices xj for 1 ď j ď l with

l ě 3 are all distinct and x0 “ xl.

7. A forest is a graph with no cycles.

8. We say that a graph G is connected if for each pair of distinct abstract

vertices x, y P V , there exists a path P such that x0 “ x and xl “ y.

Definition 1.5.2. A directed graph is a graph G “ pV,Eq in which each

edge is an ordered pair of abstract vertices.
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1. Suppose e “ px, yq is an edge in a directed graph, it will be depicted as

follows.

x y

Call x and y its initial vertex and terminal vertex respectively. Call

e an outgoing edge of x, and an incoming edge of y.

2. For an abstract vertex v in a directed graph, the set of incoming

edges and set of outgoing edges are written as inpvq and outpvq

respectively.

The next definition is based upon the definition of a directed pm,nq-

graph in [Yau16] however we change conventions to allow an input (defined

below) to have any number of outgoing edges. We also add the definitions

of a “node” and a “child vertex” which will be useful language later in the

section.

Definition 1.5.3. Suppose m,n ě 0.

1. A directed pm,nq-graph is a quadruple

G “ pV,E, inG, outGq

consisting of a directed graph pV,Eq and disjoint subsets inG “ tv| inpvq “

Hu and outG “ tv| outpvq “ Hu where |inG| “ m and |outG| “ n.

2. In such a directed pm,nq-graph G, we define the subset VtG “ tv P

V |v R pinG > outGqu.

3. An abstract vertex v P V in a directed pm,nq-graph G is called

• an input if v P inG;

• an output if v P outG;
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• an internal vertex if v P VtG ;

• a node if |outpvq| “ 1;

• a child vertex of x for x P V if v is the terminal vertex of an

element of outpxq.

4. An edge e “ px, yq P E in a directed pm,nq-graph G is called

• an input edge if x P inG;

• an output edge if y P outG;

• an internal edge if x, y P VtG .

An external edge is an edge that is an input edge, an output edge,

or both.

5. The set of child vertices of x for x P V is denoted by Chpxq.

6. The set of internal edges in G is denoted by IntG.

Notice that removing the condition |outpvq| “ 1 for v P inG from Yau’s

definition removes the condition of having a root edge to the graph. The

next definition allows us to put some extra structure on a graph by putting

an ordering on the output vertices.

Definition 1.5.4. Suppose G is a directed pm,nq-graph for some m,n ě 0.

An output labelling of G is a bijection λ : rns Ñ outG, where

rns “

$

&

%

t1, . . . , nu if n ě 1,

H if n “ 0.

In the next definition we change conventions from Yau’s definition to have

trees defined to “grow upwards” with one incoming edge and m-outgoing

edges.
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Definition 1.5.5. Suppose m is a positive integer. A m-tree T is a con-

nected directed p1,mq-graph such that |inpvq| “ 1 for each v P VtT .

1. We call the single element of inT the root node of T and denote this

by rtT .

2. An m-corolla is a m-tree T such that VtT “ H.

A tree is an m-tree for some m ě 1.

Remark 1.5.6. Notice that if T is an m-corolla then it is sufficient to specify

V “ tv0, v1, . . . , vmu and inT “ tv0u since we must have outT “ V z inT and

E “ tpv0, v1q, pv0, v2q, . . . , pv0, vmqu.

Definition 1.5.7. A planar tree is a tree with an embedding into the strip

R ˆ r0, 1s with the root sent to R ˆ t0u and the leaves sent to R ˆ t1u, up

to isotopies respecting these constraints. Such a structure induces an output

labelling on the tree.

We now introduce the definition of a partitioned tree as a tree with a

specified subset of vertices called the “cut set”. From this point onwards, all

trees that we consider will be planar trees.

Definition 1.5.8. Suppose r, n P N such that n ě 1. An r-partitioned n-

tree is a planar n-tree T “ pV,E, inT , outT q with a specified subset C Ď VtT ,

such that |C| “ r, which we call the cut set.

In particular, a 0-partitioned n-tree is just an n-tree.

For example, the tree
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T “

rtT0

v1

e1

v2

e2

v3

v4

v5

e5

v6

e6

e4

e3

with cut set C “ tv3u, is a 1-partitioned 4-tree. We can represent this by

T “

in which the partition is represented by a gap and we drop the labels on the

edges and vertices.

Definition 1.5.9. If T is an r-partitioned n-tree with cut set C, we recover

the n-tree T by forgetting C. We call this the closure of the partitioned

tree T .

In the example above the closure of T would be the tree represented by

.

Next we introduce the definition of an isomorphism of trees. Notice that

by dropping the labelling of vertices and edges from our diagrams, we have

in a sense already been considering isomorphism classes of trees.

Definition 1.5.10. Suppose T1 “ pV1, E1, rtT1 , outT1q and T2 “ pV2, E2, rtT2 , outT2q

are two m-trees. An isomorphism of trees

ζ : T1 Ñ T2
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consists of two bijections

V1
ζV
ÝÑ V2 and E1

ζE
ÝÑ E2

that preserve edge orientations i.e.

e “ px, yq P E1 if and only if ζpeq “ pζpxq, ζpyqq P E2

and the restrictions of ζ,

inT1
ζ
ÝÑ inT2 and outT1

ζ
ÝÑ outT2

are bijections. Since all our trees are planar, the isomorphism is also required

to respect the planar structre, and so must also preserve the output labelling.

Remark 1.5.11. It is important to note that there is at most one isomorphism

between any two planar trees, or equivalently, all automorphisms are iden-

tities. Indeed, the output labelling condition means that any automorphism

acts as the identity on leaves, and it must also commute with the parent

map, and the claim follows easily from that. It is because of this that it is

harmless to consider isomorphism classes of trees.

Next we introduce the grafting of two trees at a given vertex. The first

definition gives grafting for a planar tree, then we describe how this can be

extended to a grafting of partitioned planar trees.

Definition 1.5.12. Suppose T1 “ pV1, E1, inT1 , outT1q is an n-tree, v P outT1 ,

T2 “ pV2, E2, inT2 , outT2q is an m-tree, and rtT2 is the root of T2, i.e. inT2 “

trtT2u, with V1 and V2 disjoint. Define the pn`m´ 1q-tree

T “ T1 ˝v T2 “ pVT , ET , inT , outT q

as the tree with

• VT “ V1>V2
pv„rtT2 q

,
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• ET “ E1 > E2,

• inT “ inT1 ;

• and outT “ poutT1 ztvuq > outT2 .

Call T1 ˝v T2 the grafting of T1 and T2 via v. Such grafting has a clear

compatibility with the planar structure of the trees. We can see that using

the embeddings of T1 and T2 we have an embedding of T1 ˝v T2 in Rˆ r0, 2s
with leaves of T1 at R ˆ t1u and leaves of T2 at R ˆ t2u. By performing an

isotopy to horizontally scale T2 to width δ where δ is less than the distance

between vi´1 and vi`1 in Rˆ t1u we can then extend leaves in Rˆ t1u up to

R ˆ t2u. Finally we perform an isotopy to scale T1 ˝v T2 from R ˆ r0, 2s to

Rˆ r0, 1s.

Definition 1.5.13. If T1 “ pV1, E1, inT1 , outT1q is an r-partitioned tree with

cut set C1, and T2 “ pV2, E2, inT2 , outT2q is an s-partitioned tree with cut set

C2, then we make the grafting T1 ˝v T2 into a pr ` s` 1q-partitioned tree by

defining the cut set of T1 ˝v T2 to be C1>C2>tvu. We call this a partitioned

grafting and denote by T1 ^v T2.

Remark 1.5.14. Notice that since T1 is a planar n-tree we have a specified

output labelling, λ : rns Ñ outT1 , so v P outT1 has λpkq “ v for some k P rns.

As a result, we can denote T1 ^v T2 by T1 ^λpkq T2, or T1 ^k T2 for short.

Example 1.5.15. Let

T1 “ , T2 “ ,

where T1 is a 1-partitioned 3-tree, and T2 is a 2-partitioned 4-tree. Then the
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partitioned grafting

T1 ^2 T2 “

is a 4-partitioned 6-tree.

Lemma 1.5.16. Partitioned grafting is associative, i.e. if we have three

planar partitioned trees T1, T2, T3 where |outT1 | “ a, and |outT2| “ b, then

1. T1^α pT2^β T3q “ pT1^α T2q^α`β´1 T3, for 1 ď α ď a, 1 ď β ď b, and

2. pT1 ^α T2q ^β`b´1 T3 “ pT1 ^β T3q ^α T2 for 1 ď α ă β.

Proof. The proof of this lemma follows directly from the definition of grafting.

If we draw the structure of the trees on both sides, then relation 1 looks like:

T1

¨ ¨ ¨

α

T2 ^β T3

¨ ¨ ¨
a

outputs

“ T1

¨ ¨ ¨

α

T2

¨ ¨ ¨

β
T3

¨ ¨ ¨
b

outputs

¨ ¨ ¨
a

outputs

“ T1 ^α T2

¨ ¨ ¨

α ` β ´ 1
T3

¨ ¨ ¨
a`b´1
outputs

and relation 2 looks like:

T1 ^α T2

¨ ¨ ¨

β ` b´ 1
T3

¨ ¨ ¨
a`b´1
outputs

“ T1

¨ ¨ ¨

α

T2

¨ ¨ ¨

β
T3

¨ ¨ ¨
a

outputs

“ T1 ^β T3

¨ ¨ ¨

α

T2

¨ ¨ ¨
a`c´1
outputs

.
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With planar structure on grafting defined as in Definition 1.5.12 it is clear

that these associativity relations respect the planar structure up to isotopy.

In particular the induced output labelling on T1^α pT2^β T3q is equal to that

on pT1 ^α T2q ^α`β´1 T3, and similarly for the second relation.

Remark 1.5.17. It is worth noting that the associativity relations for grafting

of planar partitioned trees are exactly the associativity relations for partial

compositions in a non-symmetric non-unital operad. So grafting is a kind of

partial composition for planar partitioned trees.

The next definition gives two different ways to get a pk ` 1q-partitioned

tree from a k-partitioned tree. In the following chapters, we will see that the

splitting of a tree relates to the boundary component of the cell it represents

in Vij. The terminology D8-type and A8-type splitting is chosen to refer

to the types of splittings in the trees that represent the cells of D8 and A8

spaces.

Definition 1.5.18. Let T be a k-partitioned m-tree with cut set C. A

splitting of T at α P V is a pk ` 1q-partitioned m-tree formed in one of the

following ways.

1. If α P VtT so |outpαq| ě 1, and α R C, we take T 1 to be T with the new

cut set C 1 “ C > tαu. We call this a D8-type splitting.

2. If α P V z outT and |outpαq| “ nα with nα ě 3 then we choose J a

proper non-empty interval in Chpαq with 1 ă |J | ă nα. Then T 1 is

given by

• adding a new vertex β so that V 1 “ V > tβu;

• adding edges pβ, vq and removing edges pα, vq for all v P J ;

• adding an edge pα, βq;

• adding β to the cut set so that C 1 “ C > tβu.

We call this an A8-type splitting.
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In both of the above cases, we refer to the node α as the source of the

splitting.

Remark 1.5.19. If α has three or more children then there are 1
2
pnα´2qpnα`1q

A8-type splittings of T , where nα “ |outpαq|. We prove this in Proposi-

tion 1.6.3 as the special case with k “ 1.

Definition 1.5.20. Let t be a k-partitioned planar tree. We denote by Spptq

the set of pk ` 1q-partitioned planar trees which are splittings of t.

Example 1.5.21. Consider the 3-partitioned tree t “ . Then

the splittings of t are given by

Spptq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

, , ,

, , , ,

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

.

The first splitting listed is a D8-type splitting. The other two splittings

on the top row are the two possible A8-type splittings of the 3-corolla in the

middle of the tree. The five splittings on the bottom row are the five possible

A8-type splittings of the 4-corolla at the top left of t.

Next we introduce decorated tree diagrams which are ordered sets of pla-

nar trees with some distinguished vertices. This will allow us to introduce a
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process for building planar partitioned trees. Recall that an ordered partition

of n P N is a collection of natural numbers ni such that
ř

ni “ n.

Definition 1.5.22. A n-tree diagram of length r ` 1 is an ordered set

T “ pt0, . . . , trq of planar ni-trees ti for 0 ď i ď r with n0 ` ¨ ¨ ¨ ` nr “ n` r.

Definition 1.5.23. A decorated n-tree diagram of length r` 1 is a n-

tree diagram, T “ pt0, . . . , trq, with a specified subset D Ď poutt0 > ¨ ¨ ¨>outtrq,

of output vertices such that |D| “ r.

1. We call D the set of distinguished vertices.

2. We can define the set of distinguished vertices in ti by Di “

D X outti .

3. We define the set of root vertices by RtT “ trtt0 , rtt1 , . . . , rttru.

4. Since each ti P T is a planar ni-tree we have a specified output labelling,

λi : rnis Ñ outti for 0 ď i ď r. This induces a labelling γ : rrs Ñ D on

D.

We can now introduce our tree building process which constructs a

planar tree from a decorated tree partition diagram.

Definition 1.5.24. We define a process to construct a k-partitioned m-tree

from a decorated m-tree diagram of length k`1. We will refer to this process

as the tree building process.

We begin with a decorated m-tree diagram, T “ pt0, . . . , tkq. Let γipT q

denote the effect of gluing the root of ti`1 to the leftmost distinguished vertex

of ti (if one exists). Here ti`1 should be interpreted as t0 if i “ k (i.e. if ti is

the last component). So

γipT q “ pt0, . . . , ti´1, pti ^α ti`1q, ti`2, . . . , tkq

where α is the leftmost distinguished vertex of ti. We apply any valid se-

quence of γ’s until we reach a diagram with a single component.
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We will prove in Proposition 1.5.31 that the output of this process is well

defined i.e. independant of the sequence of graftings. Notice that this would

be clear if we did not allow the grafting of t0 into tk.

Remark 1.5.25. Notice that since each entry of the tree diagram is a 0-

partitioned tree, the partitioned grafting taken in the tree building process

assigns a cut set with k elements to the output tree in which the vertex at

each grafting point is included in the cut set.

Example 1.5.26. Suppose we have the following decorated tree partition,

pt0, t1, . . . , t5q “

˜

, , , , ,

¸

.

Then we could apply γ1 to give,

¨

˚

˚

˝

, , , ,

˛

‹

‹

‚

.

Now, we could apply γ5 to give

¨

˚

˚

˚

˚

˚

˚

˝

, , ,

˛

‹

‹

‹

‹

‹

‹

‚
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The rest of the process could continue by applying γ1’s as follows:

¨

˚

˚

˚

˚

˚

˚

˝

, ,

˛

‹

‹

‹

‹

‹

‹

‚

Ñ

¨

˚

˚

˚

˚

˚

˚

˝

,

˛

‹

‹

‹

‹

‹

‹

‚

Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Remark 1.5.27. Notice that the output of the tree building process is

T “ pppppt2 ^2 t3q ^2 t4q ^5 t5q ^5 t0q ^7 t1q

with cut set corresponding to the decorated vertices.

Definition 1.5.28. Suppose T1 “ pV1, E1, rtT1 , outT1q and T2 “ pV2, E2, rtT2 , outT2q

are two k-partitioned m-trees, with cut sets C1 and C2 respectively. An

isomorphism of partitioned trees is an isomorphism of trees that also

preserves the cut set i.e. for v P C1, ζEpvq P C2.

The following proposition highlights a special property of grafting of corol-

las. This result and the subsequent corollary will be useful in Section 1.6

when we think about applying the tree building process to decorated tree

diagrams in which each entry is a corolla.
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Proposition 1.5.29. Let Ci be an mi-corolla for i “ 1, . . . , 4. We have

C1 ˝k C2 – C3 ˝r C4 if and only if C1 – C3, C2 – C4, and k “ r.

Proof. Suppose that T – C1 ˝k C2. Then

• T has a unique internal vertex which we can call v;

• m1 is one plus the number of leaves which are not children of v;

• m2 is the number of children of v;

• k is one plus the number of leaves that are not children of v but that

lie to the left of all children of v.

From these descriptions it is clear that m1, m2 and k are isomorphism in-

variants.

Corollary 1.5.30. Two partitioned graftings of corollas are isomorphic if

and only if their graftings are isomorphic, i.e. C1 ^k C2 – C3 ^r C4 if and

only if C1 ˝k C2 – C3 ˝r C4.

Proof. If C1^k C2 – C3^r C4 then clearly C1 ˝k C2 – C3 ˝r C4. If C1 ˝k C2 –

C3 ˝r C4 then by Proposition 1.5.29 we have C1 – C3, C2 – C4, and k “ r.

Hence the cut set for each tree would be tku “ tru so C1^kC2 – C3^rC4.

From this point onwards we will be working with isomorphism classes of

trees. For simplicity we just refer to these as trees. Our next proposition

shows that two decorated m-tree diagrams of length k ` 1 which are cyclic

permutations of one another will produce the same partitioned tree. Possi-

bly a little more surprising a result is Proposition 1.5.32 which shows that

two decorated partition diagrams which are not cyclic permutations of one

another cannot produce the same partitioned tree.

Proposition 1.5.31. A decorated m-tree diagram A has a unique output

tree τpAq from the tree building process of Definition 1.5.24, and two deco-

rated m-tree diagrams of length k ` 1 will produce the same k-partitioned
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m-tree via the tree building process if they are cyclic permutations of one

another.

Proof. Let us begin by considering a decoratedm-tree diagramA “ pt0, . . . , tkq.

We will show that if i ă j then γj´1γipAq “ γiγjpAq.

If j ą i` 1 then clearly

γj´1γipAq “ pt0, . . . , pti ^α ti`1q, ti`2, . . . , tj´1, ptj ^β tj`1q, . . . , tkq

“ γiγjpAq.

If j “ i` 1, then

γiγi`1pAq “ pt0, . . . , ti´1, ti ^α pti`1 ^β ti`2q, . . . , tkq

and

γiγipAq “ pt0, . . . , ti´1, pti ^α ti`1q ^α`β´1 ti`2, . . . , tkq.

So γj´1γipAq “ γiγjpAq by Lemma 1.5.16. Now we proceed by induction on

|A|.
If |A| “ 1 then there are no steps to take. If |A| “ 2 then there is only

one possible choice of grafting and so τpAq is unique.

Now for k ě 3 assume at for |A| ď k there is a unique resulting tree

τpAq. Then for |B| “ k ` 1, |γipBq| “ k so has a unique output τpγipBqq by

the induction assumption, and |γjpBq| “ k so has a unique output τpγjpBqq,

where we take i ă j without loss of generality. Now since γj´1γipBq “

γiγjpBq, we must have τpγipBqq “ τpγjpBqq and hence τpBq is unique.

Finally since the operation γi have an obvious compatibility with cyclic

permutation, we see that cyclically permuting A does not affect the resulting

tree τpAq.

Proposition 1.5.32. Two decorated m-tree diagrams of length k`1 that are

not cyclic permutations of one another will produce different k-partitioned
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m-trees via the tree building process.

Proof. Suppose we have two decorated m-tree diagrams of length k` 1 that

result in the same partitioned tree but are not cyclic permutations of one

another. Say we have T “ pt0, . . . , tkq, and B “ pb0, . . . , bkq. Since by Propo-

sition 1.5.31 we know that cyclic permutation will not affect the resulting

tree, we can perform a cyclic permutation so that the root of t10 is the root

of the resulting tree τpT q, and the root of b10 is the root of the resulting tree

τpBq.

Now we can repeatedly apply γ1 to each diagram until we have a unique

resulting tree (since we have performed a cyclic permutation in order to make

this choice valid). Since the two partition diagrams are not equal, at some

point tn ‰ bn for 1 ď n ď k. However, since we are applying the same

grafting to both diagrams, tn and cn will be grafted into the same position in

their respective trees, and so the partitioned trees cannot be the same.

Corollary 1.5.33. The tree building process produces a unique

k-partitioned m-tree from each decorated m-tree diagram of length k` 1 up

to cyclic permutation, i.e. two decorated m-tree diagrams of length k ` 1

produce the same k-partitioned m-tree under the tree building process if and

only if they are cyclic permutations of one another.

Proof. This follows directly from Proposition 1.5.31 and Proposition 1.5.32.

1.6 Counting sets of trees

In this section we will define all the necessary combinatorial structure for

the rest of the thesis. The key points of this section are the definition of the

set of trees T ki,j and Propositions 1.6.4 and 1.6.5 which provide arguments

for counting the number of elements of T ki,j. These results will be used in

Chapter 2 for counting the number of cells in each dimension of Vij.
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We specify planar trees by the number of outputs, the number of parti-

tions, and the number of nodes.

Definition 1.6.1. For i, k ě 0, j ě 1, we denote by T ki,j the set of k-

partitioned planar j-trees with i nodes, in which for any vertex v with

|outpvq| ě 2, the children must be leaves, or nodes, or cut points.

So in Example 1.5.21, t is in T 3
1,8. Some other small examples are:

T 1
0,3 “

#

,

+

and,

T 1
4,1 “

$

’

’

’

&

’

’

’

%

, ,

,

/

/

/

.

/

/

/

-

.

Now we will consider a more complex example.

Example 1.6.2. We consider the elements of T 0
1,4. The trees in this set must

have 4 outputs, 1 node, and no partitions so for any node with more than

one outgoing edge, its child vertices have a maximum of one outgoing edge.

From these conditions we can see that the elements of T 0
1,4 are:

#

, , , , ,

, , , ,

,

.

-

.

Notice that the first five trees are the 4-corolla with a single edge affixed in

all possible different positions, while the second five trees are the five possible

A8-type splittings of the 4-corolla with a single edge between the two pieces.
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The following three propositions provide counting arguments for the el-

ements of T ki,j. We first restrict to i “ 0 and Proposition 1.6.3 provides a

counting argument for this case, then Proposition 1.6.4 provides a counting

argument for the special case of k “ 0. We do not restrict to j “ 1 be-

cause restricting to 1-trees reduces this case to counting ordered partitions

of i elements. Proposition 1.6.5 uses the special cases to provide a counting

argument for general T ki,j.

Proposition 1.6.3. The number of trees in T k0,n is given by T pn ` 1, kq “
1

k`1

`

n´2
k

˘`

n`k
k

˘

.

Proof. For the elements of T k0,n, there are no nodes, so we must take every

internal vertex as a cut point. Thus, we are just counting trees with n leaves,

no nodes, and k internal vertices. So we construct and count all trees of this

type.

We begin by taking an ordered partition of the pn` kq edges into pk` 1q

parts, in which each part is greater than or equal to two (because we are

not allowed to have any nodes). To do this we take an ordered partition

of pn ` kq ´ pk ` 1q “ n ´ 1 into pk ` 1q parts and then add one to each

part. There are
`

n´2
k

˘

ordered partitions of this type. This gives us a n-tree

diagram of length k ` 1 in which each element is a corolla with at least two

edges.

In order to apply the tree building process we need to choose k of the

pn`kq outputs to be distinguished. There are
`

n`k
k

˘

ways of doing this. This

gives us a decorated n-tree diagram of length k ` 1 to which we can apply

the tree building process.

So far we have
`

n´2
k

˘`

n`k
k

˘

different decorated partition diagrams. How-

ever, by Corollary 1.5.33 we know that decorated n-tree diagrams only pro-

duce a unique k-partitoned n-tree up to cyclic permutation. The cyclic group

of order k acts freely on the set of decorated n-tree diagrams, because if a

diagram has stabiliser of order m then m must divide both the number k` 1

of roots and the number k of decorated points, so m “ 1.
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So for each decorated n-tree diagram of length k ` 1, we have counted

the same k-partitioned n-tree k ` 1 times. Hence, the number of n-trees in

T k0,n is given by T pn` 1, kq “ 1
k`1

`

n´2
k

˘`

n`k
k

˘

.

Proposition 1.6.4. The number of trees in T 0
i,j is given by the Narayana

number Npi` j, jq “ 1
i`j

`

i`j
j

˘`

i`j
j´1

˘

.

Proof. Suppose T P T 0
ij . We begin by adding a node at the root of T . Now

let m be the number of non-nodal internal vertices. By assumption, beneath

every non-nodal internal vertex we have at least one node. We can remove

one such node in each case, leaving a tree with i internal vertices. This

construction gives a bijection from T 0
ij to the full set of trees with j leaves

and i internal vertices.

Now let us say that a Narayana path of type pn, jq is a sequence u P

t´1, 1u2n such that
řm
i“1 ui ě 0 for all m and

ř2n
i“1 ui “ 0 and there are j

peaks (i.e. adjacent pairs of the form p1,´1q). Suppose that T is a tree with j

leaves and i internal vertices. We can walk clockwise around the tree, starting

on the left hand side of the root, recording a `1 for each upwards step and

a ´1 for each downward step. There are i` j edges, and we walk up the left

hand side of each one and down the right hand side, giving 2pi` jq steps in

total. There is a peak for each leaf. Thus, we have a path in N pi ` j, jq.

It is not hard to see that this gives a bijection between trees and Narayana

paths.

We know from Petersen [Pet15] that Narayana paths are counted by the

Narayana numbers. Hence there are Npi` j, jq trees in T 0
ij .

Proposition 1.6.5. Let

Fkpx, yq “
ÿ

iě0,
jě1

|T kij |xiyj
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then

F0px, yq “
ÿ

pi,jq‰p0,1q

Npi` j, jqxiyj

and

Fkpx, yq “
1

pk ` 1q!

Bk

Byk
F k`1

0 .

Proof. The claim is equivalent to saying that number of trees in T ki,j is given

by

1

k ` 1

ˆ

j ` k

k

˙

ÿ

i“u0`¨¨¨`uk,
j`k“v0`¨¨¨`vk,

uαě0,vαě1 for all α,
puα,vαq‰p0,1q for any α

k
ź

α“0

Npuα ` vα, vαq.

The elements of T ki,j are k-partitioned j-trees with i nodes. Notice that a

k-partitioned tree is the same as a grafting of pk` 1q 0-partitioned trees. So

for any t P T ki,j, t “ tu0,v0 ^ ¨ ¨ ¨^ tuk,vk where tuα,vα P T 0
uα,vα for 0 ď α ď k and

u0 ` ¨ ¨ ¨ ` uk “ i, and v0 ` ¨ ¨ ¨ ` vk “ j ` k. We take v0 ` ¨ ¨ ¨ ` vk “ j ` k

because we want the whole tree to have j outputs, and each time we graft

two trees one output becomes an internal edge.

For each set T 0
uα,vα , there are Npuα` vα, vαq trees (by Proposition 1.6.4).

So we count the number of possible tree diagrams of the form ptu0,v0 , . . . , tuk,vkq.

There are

ÿ

i“u0`¨¨¨`uk,
j`k“v0`¨¨¨`vk,
uαě0,vαě1,
puα,vαq‰p0,1q

Npu0 ` v0, v0q ¨ ¨ ¨Npuk ` vk, vkq

such tree diagrams.

There are a total of j ` k outputs in the subtrees and we must choose k
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of them to be distinguished so there are
`

j`k
k

˘

possible ways of doing this.

Finally, by Corollary 1.5.33, we must divide by k ` 1 to account for the fact

that cyclic permutation means we have counted each partitioned tree k ` 1

times.

Therefore, the number of trees in T ki,j is given by

1

k ` 1

ˆ

j ` k

k

˙

ÿ

i“u0`¨¨¨`uk,
j`k“v0`¨¨¨`vk,

uαě0,vαě1 for all α,
puα,vαq‰p0,1q for any α

k
ź

α“0

Npuα ` vα, vαq.

We now aim to simplify this result using the identity given in the following

Proposition.

Proposition 1.6.6 ([Def]). Let us define

Gkps, tq “
ÿ

ną0,
lě0

k ` 1

n

ˆ

n

l

˙ˆ

n

l ` k ` 1

˙

sntl,

Then Gkps, tq “ G0ps, tq
k`1.

Remark 1.6.7. If we let

Apn, k, lq “
ÿ

i0`¨¨¨`ik“n,
j0`¨¨¨`jk“l,
itě1,jtě0

k
ź

t“0

Npit, jt ` 1q,

then the claim is equivalent to Apn, k, lq “ k`1
n

`

n
l

˘`

n
l`k`1

˘

.

Proposition 1.6.8. Let

Nrpn, kq “
r ` 1

n

ˆ

n

k ` r

˙ˆ

n

k ´ 1

˙
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be the generalised Narayana number. Then

ÿ

i“u0`¨¨¨`uk,
j`k“v0`¨¨¨`vk,
uαě0,vαě1,
puα,vαq‰p0,1q

k
ź

α“0

Npuα`vα, uα`1q “
k
ÿ

α“0

p´1qk´α
ˆ

k ` 1

k ´ α

˙

Nαpi`j`α, i`1q.

Proof. We will prove the proposition by induction on k. We begin by con-

sidering the initial cases k “ 0 and k “ 1. When k “ 0,

ÿ

i“u0,
j`k“v0,

uαě0,vαě1,
puα,vαq‰p0,1q

0
ź

α“0

Npuα ` vα, uα ` 1q “ Npi` j, i` 1q

“
1

i` j

ˆ

i` j

i` 1

˙ˆ

i` j

i

˙

“ N0pi` j, i` 1q.

When k “ 1, we consider the sum as the sum over all pairs in which we allow

puα, vαq “ p0, 1q and use Proposition 1.6.6, then subtract the cases where one

of the two pairs is p0, 1q, i.e.

ÿ

i“u0`u1,
j`k“v0`v1,
uαě0,vαě1,
puα,vαq‰p0,1q

1
ź

α“0

Npuα ` vα, uα ` 1q

“
ÿ

i“u0`u1,
j`k“v0`v1,
uαě0,vαě1

1
ź

α“0

Npuα ` vα, uα ` 1q ´ 2Npi` j, i` 1q

“ N1pi` j ` 1, i` 1q ´ 2N0pi` j, i` 1q

“

1
ÿ

α“0

p´1q1´α
ˆ

2

1´ α

˙

Nαpi` j ` α, i` 1q.

44



Now let

Lpi, j, kq “
ÿ

i“u0`¨¨¨`uk,
j`k“v0`¨¨¨`vk,
uαě0,vαě1,
puα,vαq‰p0,1q

k
ź

α“0

Npuα ` vα, uα ` 1q,

and

Bpi, j, kq “
k
ÿ

α“0

p´1qk´α
ˆ

k ` 1

k ´ α

˙

Nαpi` j ` α, i` 1q,

and assume that the proposition holds for all k ď t. Then for k “ t ` 1 we

have

Lpi, j, t` 1q “
ÿ

i“u0`¨¨¨`ut`1,
j`k“v0`¨¨¨`vt`1,

uαě0,vαě1

t`1
ź

α“0

Npuα ` vα, uα ` 1q´

ˆ

t` 2

1

˙

”

sum with
exactly one
pair“p0,1q

ı

´ ¨ ¨ ¨ ´

ˆ

t` 2

t` 1

˙

”

sum with
exactly t`1
pairs“p0,1q

ı

“ Api` j ` t` 1, t` 1, iq ´
t
ÿ

s“0

ˆ

t` 2

t` 1´ s

˙

Bpi, j, sq.

Now

t
ÿ

s“0

ˆ

t` 2

t` 1´ s

˙

Bpi, j, sq

“

t
ÿ

s“0

s
ÿ

r“0

p´1qs´r
ˆ

t` 2

s` 1

˙ˆ

s` 1

s´ r

˙

Nrpi` j ` r, i` 1q

“

t
ÿ

r“0

t
ÿ

s“r

p´1qs´r
ˆ

t` 2

s` 1

˙ˆ

s` 1

s´ r

˙

Nrpi` j ` r, i` 1q

“

t
ÿ

r“0

t
ÿ

s“r

p´1qs´r
ˆ

t` 2

r ` 1

˙ˆ

t` 1´ r

s´ r

˙

Nrpi` j ` r, i` 1q
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“

t
ÿ

r“0

ˆ

t` 2

r ` 1

˙

«

t
ÿ

s“r

p´1qs´r
ˆ

t` 1´ r

s´ r

˙

ff

Nrpi` j ` r, i` 1q

“

t
ÿ

r“0

ˆ

t` 2

r ` 1

˙

«

t´r
ÿ

β“0

p´1qβ
ˆ

t` 1´ r

β

˙

ff

Nrpi` j ` r, i` 1q

“

t
ÿ

r“0

p´1qt´r
ˆ

t` 2

r ` 1

˙

Nrpi` j ` r, i` 1q

where the final step uses the identity
n
ř

β“0

p´1qβ
`

n
β

˘

“ 0. We know from

Proposition 1.6.6 that Api` j ` t` 1, t` 1, iq “ Nt`1pi` j ` t` 1, i` 1q. So

we have

Lpi, j, t` 1q “ Nt`1pi` j ` t` 1, i` 1q

´

t
ÿ

r“0

p´1qt´r
ˆ

t` 2

r ` 1

˙

Nrpi` j ` r, i` 1q

“

t`1
ÿ

r“0

p´1qt`1´r

ˆ

t` 2

r ` 1

˙

Nrpi` j ` r, i` 1q

“ Bpi, j, t` 1q

as required.

Corollary 1.6.9. The number of trees in T ki,j is given by

1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

α“0

p´1qk´α
ˆ

k ` 1

k ´ α

˙

Nαpi` j ` α, i` 1q (1.11)

where Nrpn, kq “
r`1
n

`

n
k`r

˘`

n
k´1

˘

.

Proof. This follows directly from Proposition 1.6.5 and Proposition 1.6.8.

Remark 1.6.10. To see that this restricts to the result we expect in the case
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i “ 0 we need to use the binomial identity

k
ÿ

r“0

p´1qr
ˆ

k ` 1

r

˙ˆ

m` k ´ r

m

˙

“

ˆ

m´ 1

k

˙

. (1.12)

From the book Concrete Mathematics ([GKP94], equation 5.25) we have the

identity

ÿ

rďl

p´1qr
ˆ

l ´ r

m

˙ˆ

s

r ´ n

˙

“ p´1ql`m
ˆ

s´m´ 1

l ´m´ n

˙

.

The identity we require is a special case of this with n “ 0, s “ k ` 1, and

l “ m` k.

So when i “ 0 in equation (1.11) we have

|T k0,j| “
1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

r“0

p´1qk´r
ˆ

k ` 1

k ´ r

˙

Nrpj ` r, 1q

“
1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

r“0

p´1qk´r
ˆ

k ` 1

k ´ r

˙

r ` 1

j ` r

ˆ

j ` r

r ` 1

˙ˆ

j ` r

0

˙

“
1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

r“0

p´1qk´r
ˆ

k ` 1

k ´ r

˙ˆ

j ` r ´ 1

j ´ 1

˙

“
1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

α“0

p´1qα
ˆ

k ` 1

α

˙ˆ

j ´ 1` k ´ α

j ´ 1

˙

“
1

k ` 1

ˆ

j ` k

k

˙ˆ

j ´ 2

k

˙

by (1.12).

So this agrees with Proposition 1.6.3.

Furthermore, if we restrict to the case j “ 1 we get

|T ki,1| “
1

k ` 1

ˆ

k ` 1

k

˙ k
ÿ

r“0

p´1qk´r
ˆ

k ` 1

k ´ r

˙

Nrpi` r ` 1, i` 1q

47



“

k
ÿ

r“0

p´1qk´r
ˆ

k ` 1

k ´ r

˙

r ` 1

i` r ` 1

ˆ

i` r ` 1

i` r ` 1

˙ˆ

i` r ` 1

i

˙

“

k
ÿ

r“0

p´1qk´r
ˆ

k ` 1

k ´ r

˙ˆ

i` r

i

˙

“

k
ÿ

α“0

p´1qα
ˆ

k ` 1

α

˙ˆ

i` k ´ α

i

˙

“

ˆ

i´ 1

k

˙

by (1.12).
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Chapter 2

Topological Models

The aim of this chapter is to introduce the notion of an A8-space, D8-

space, and DA8-space. In Chapter 3 we will see that taking singular chains

on these structures gives an A8-algebra, twisted chain complex, and derived

A8-algebra respectively. The first case is classical and due to Stasheff [Sta63],

while the other two are new constructions.

We introduce three collections of topological spaces and give examples of

the construction for some low dimensional spaces in each. In this chapter,

we will also discuss the non-symmetric coloured operad structure of these

spaces.

2.1 A8-Structures

An A8-space is a topological space with a multiplication which is not strictly

associative but is associative up to homotopy in a strong sense. So we have a

topological space, X, and a multiplication map, M2 : X ˆX Ñ X. Then we

want to consider a homotopy M3 : I ˆX3 Ñ X such that M3p0, x1, x2, x3q “

M2pM2px1, x2q, x3q and M3p1, x1, x2, x3q “ M2px1,M2px2, x3qq. An illustra-

tion of this homotopy is given by figure 2.1.
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px1x2qx3 x1px2x3q

M3

M2pM2 ˆ 1q M2p1ˆM2q

M3

Figure 2.1: Stasheff polytope K3, homotopy M3

We want to continue to generalise this to a higher associativity condition

for multiplication of four variables. There are five different ways to fully

bracket four variables in a fixed order, and we already have some maps be-

tween them given by compositions of M3 and M2, as shown in figure 2.2.

These maps give us the boundary of a pentagon and we call this pentagon

K4, and so we want to define a homotopy M4 : K4 ˆX
4 Ñ X.

ppx1x2qx3qx4

px1px2x3qqx4

x1ppx2x3qx4q

x1px2px3x4qq

px1x2qpx3x4q

M2pM3 ˆ 1q
M3p1ˆM2 ˆ 1q

M2p1ˆM3q

M3p1ˆ 1ˆM2qM3pM2 ˆ 1ˆ 1q

Figure 2.2: Stasheff polytope K4

To consider generalising this idea to associativity for multiplication of

more variables, we first need to define a collection of convex polytopes called

the associahedra. The associahedron Ki is a convex polytope of dimension

pi´2q, in which the vertices are in bijection with the number of ways of fully

associating i items. In the brief discussion above, we have already seen K3

and K4.

We will now discuss Stasheff’s original construction of the spaces and give

a few examples. We also note that there are many different realisations of

the associahedron, for example the realisation given by Loday and Vallette

in Appendix C of [LV12] was used to create the images in this section.

Definition 2.1.1 ([Sta63]). [Stasheff’s Construction] To construct the as-
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sociahedron Ki, we consider inserting a set of parentheses into a word

of length i, x1...xi. To each such insertion there corresponds a cell on the

boundary of Ki. If the brackets enclose xk through to xk`s´1 then this cell

is taken to be the image of Kr ˆKs under a homeomorphism which we call

Bkpr, sq where r ` s “ i ` 1. Two cells intersect only on their boundaries

according to two relations:

Bjpr, s` t´ 1qp1ˆ Bkps, tqq “ Bj`k´1pr ` s´ 1, tqpBjpr, sq ˆ 1q (2.1)

for 1 ď j ď r and 1 ď k ď s, and

Bj`s´1pr` s´1, tqpBkpr, sqˆ1q “ Bkpr` t´1, sqpBjpr, tqˆ1qp1ˆT q (2.2)

for 1 ď k ă j ď r, where T : Ks ˆ Kt Ñ Kt ˆ Ks permutes the factors.

Starting with K2 being a one point space, we obtain the boundary for each

Ki by induction.

This is a cellular decomposition of the sphere Si´3. Then Ki is the cone

on its boundary, so as a space Ki is homeomorphic to Di´2 and we have a

particular cellular decomposition of the boundary.

Example 2.1.2 (Construction of K4). We consider all possible ways of in-

serting a single pair of matching brackets into a four letter word, that is

px1x2x3qx4, x1px2x3qx4, x1px2x3x4q, x1x2px3x4q, and px1x2qx3x4. To each

such insertion we have a cell on the boundary of K4 under the maps B1p2, 3q,

B2p3, 2q, B2p2, 3q, B3p3, 2q, and B1p3, 2q respectively. The pieces on the bound-

ary of K4 are shown in Figure 2.3. Notice that each piece is a copy of K2ˆK3.

The relations for these pieces are:

B1p2, 3qp1ˆ B1p2, 2qq “ B1p3, 2qpB1p2, 2q ˆ 1q (2.3)

B1p2, 3qp1ˆ B2p2, 2qq “ B2p3, 2qpB1p2, 2q ˆ 1q (2.4)

B2p2, 3qp1ˆ B1p2, 2qq “ B2p3, 2qpB2p2, 2q ˆ 1q (2.5)
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(2.3) (2.4)

(a) B1p2, 3q

(2.4) (2.5)

(b) B2p3, 2q

(2.5) (2.6)

(c) B2p2, 3q

(2.7) (2.6)

(d) B3p3, 2q

(2.3) (2.7)

(e) B1p3, 2q

Figure 2.3: The pieces in K4

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Figure 2.4: The space K4

B2p2, 3qp1ˆ B2p2, 2qq “ B3p3, 2qpB2p2, 2q ˆ 1q (2.6)

B3p3, 2qpB1p2, 2q ˆ 1q “ B1p3, 2qpB2p2, 2q ˆ 1qp1ˆ T q. (2.7)

We use these relations to construct the boundary of K4 and then take the

cone to get the space K4 as shown in figure 2.4.

Example 2.1.3 (Construction of K5). We consider all possible pairs of num-

bers r, s ě 2 such that r ` s “ 6. That is, p2, 4q, p3, 3q, and p4, 2q. So, we

have cells on the boundary as shown in Figure 2.5. Notice that the pieces

(a), (b), (c), (d), (e), and (f) are homeomorphic to K2ˆK4, while the pieces

(g), (h), and (i) are homeomorphic to K3ˆK3. The relations for these pieces
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(2.17)
(2.28)

(2.27)

(2.26)

(2.18)

(a) B1p4, 2q

(2.14)
(2.20)

(2.12)

(2.25)

(2.19)

(b) B2p4, 2q

(2.16)
(2.21)

(2.9)

(2.22)

(2.28)

(c) B3p4, 2q

(2.24)
(2.25)

(2.11)

(2.23)

(2.26)

(d) B4p4, 2q

(2.13)
(2.14)

(2.15)

(2.16)

(2.17)

(e) B1p2, 4q

(2.8)
(2.9)

(2.10)

(2.11)

(2.12)

(f) B2p2, 4q

(2.24)

(2.19)(2.18)

(2.13)

(g) B1p3, 3q

(2.8)

(2.21)(2.20)

(2.15)

(h) B2p3, 3q

(2.10)

(2.23)(2.22)

(2.27)

(i) B3p3, 3q

Figure 2.5: The pieces in K5
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are:

B2p2, 4qp1ˆ B1p2, 3qq “ B2p3, 3qpB2p2, 2q ˆ 1q (2.8)

B2p2, 4qp1ˆ B2p3, 2qq “ B3p4, 2qpB2p2, 3q ˆ 1q (2.9)

B2p2, 4qp1ˆ B2p2, 3qq “ B3p3, 3qpB2p2, 2q ˆ 1q (2.10)

B2p2, 4qp1ˆ B3p3, 2qq “ B4p4, 2qpB2p2, 3q ˆ 1q (2.11)

B2p2, 4qp1ˆ B1p3, 2qq “ B2p4, 2qpB2p2, 3q ˆ 1q (2.12)

B1p2, 4qp1ˆ B1p2, 3qq “ B1p3, 3qpB1p2, 2q ˆ 1q (2.13)

B1p2, 4qp1ˆ B2p3, 2qq “ B2p4, 2qpB1p2, 3q ˆ 1q (2.14)

B1p2, 4qp1ˆ B2p2, 3qq “ B2p3, 3qpB1p2, 2q ˆ 1q (2.15)

B1p2, 4qp1ˆ B3p3, 2qq “ B3p4, 2qpB1p2, 3q ˆ 1q (2.16)

B1p2, 4qp1ˆ B1p3, 2qq “ B1p4, 2qpB1p2, 3q ˆ 1q (2.17)

B1p3, 3qp1ˆ B1p2, 2qq “ B1p4, 2qpB1p3, 2q ˆ 1q (2.18)

B1p3, 3qp1ˆ B2p2, 2qq “ B2p4, 2qpB1p3, 2q ˆ 1q (2.19)

B2p3, 3qp1ˆ B1p2, 2qq “ B2p4, 2qpB2p3, 2q ˆ 1q (2.20)

B2p3, 3qp1ˆ B2p2, 2qq “ B3p4, 2qpB2p3, 2q ˆ 1q (2.21)

B3p3, 3qp1ˆ B1p2, 2qq “ B3p4, 2qpB3p3, 2q ˆ 1q (2.22)

B3p3, 3qp1ˆ B2p2, 2qq “ B4p4, 2qpB3p3, 2q ˆ 1q (2.23)

B4p4, 2qpB1p2, 3q ˆ 1q “ B1p3, 3qpB2p2, 2q ˆ 1qp1ˆ T q (2.24)

B4p4, 2qpB2p3, 2q ˆ 1q “ B2p4, 2qpB3p3, 2q ˆ 1qp1ˆ T q (2.25)

B4p4, 2qpB1p3, 2q ˆ 1q “ B1p4, 2qpB3p3, 2q ˆ 1qp1ˆ T q (2.26)

B3p3, 3qpB1p2, 2q ˆ 1q “ B1p4, 2qpB2p2, 3q ˆ 1qp1ˆ T q (2.27)

B3p4, 2qpB1p3, 2q ˆ 1q “ B1p4, 2qpB2p3, 2q ˆ 1qp1ˆ T q. (2.28)

We use these relations to construct the boundary of K5 and then take the

cone to get the space K5 as shown in figure 2.6.

The encoding of the cell structure of an associahedron by planar trees
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Figure 2.6: Stasheff Polytope K5
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Figure 2.7: Stasheff Polytope K3 and K4 with planar tree labels

is well documented in the literature (see for example [LV12][Appendix C]).

Several realisations of the associahedra as polytopes are known, but here we

are only concerned with the structure as a finite cell complex. Figure 2.7

shows this representation for the polytopes K3 and K4 with splittings drawn

with a small gap as in Section 1.5. We recall that collapsing and expanding

an internal edge allows us to move from a cell to its boundary, we think of

this as adding or removing a splitting.

However, a counting argument for the number of faces of each dimension

is not well documented in the literature. This may well be known, but I have

been unable to find a reference, and so I will present a proof of this using the

counting arguments from Section 1.5.

Proposition 2.1.4 (Appendix C, [LV12]). The cells of dimension k in Kn are

in bijection with the planar trees having n leaves and n´ 1´ k vertices.

Proposition 2.1.5. The number of cells in dimension pn ´ 2 ´ kq in the

associahedron Kn is given by T pn` 1, kq “ 1
k`1

`

n´2
k

˘`

n`k
k

˘

.
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Proof. The cells of dimension pn´ 2´ kq in Kn are in bijection with planar

trees with n leaves, and k`1 vertices. It is easy to see that this is equivalent

to trees with n leaves, k internal edges (i.e. k A8-splittings) and no nodes.

So the cells of dimension pn ´ 2 ´ kq in Kn are in bijection with elements

of T k0,n, and by Proposition 1.6.3 we know that there are T pn ` 1, kq such

trees.

The following two results are also well known in the work of Stasheff

but will be useful in the final section of this chapter when we consider the

structure of the spaces Vij.

Proposition 2.1.6 (Proposition 3, [Sta63]). The space Ki is homeomorphic

to I i´2 – Di´2.

Proposition 2.1.7. The associahedra tKnuně2 form a non-symmetric non-

unital operad, K, in the category of topological spaces.

Proof. This follows directly from the definition of a non-symmetric operad

via partial compositions in Proposition 1.3.2. The structure maps, Bkpr, sq :

Kr ˆKs Ñ Kr`s´1, give the partial compositions, and relations 2.1 and 2.2

are equivalent to the relations for the partial compositions. More details can

be found in [Sta97].

In the next definition, we use the spaces Ki to define an A8-space. In

[Sta63] Stasheff defines an A8-space with a unit condition for the multipli-

cation which we omit here.

Definition 2.1.8. A space X admits an A8-structure if and only if there

exist maps Mi : Ki ˆX
i Ñ X for i ě 2 such that

MipBkpr, sqpρ, σq, x1, ..., xiq “

Mrpρ, x1, .., xk´1,Mspσ, xk, ..., xk`s´1q, xk`s, ..., xiq, (2.29)

for ρ P Kr, σ P Ks, r` s “ i` 1. The pair pX, tMiuq is called an A8-space.
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Proposition 2.1.9 ([Sta97]). An A8-space is an algebra over the operad

K “ tKnu in the category of topological spaces.

Proof. This follows directly from Proposition 1.3.4. We see that with the

structure maps, Mi : KiˆX
i Ñ X for 2 ď i ď n, relation (2.29) is equivalent

to satisfying the associativity diagram of Proposition 1.3.4.

Example 2.1.10. A natural example of an A8-space is the loop space, ΩX of

a based topological space X, with basepoint ˚. We can take the composition

of two loops a, b where:

a : I Ñ X b : I Ñ X

s.t. ap0q “ ap1q “ ˚ bp0q “ bp1q “ ˚.

Then a ˝ b : I ˆ I Ñ X is given by the formula

a ˝ b “

$

&

%

ap2iq 0 ď i ď 1
2
,

bp2i´ 1q 1
2
ď i ď 1.

We can easily see that when composition is defined in this way, it is not

associative, i.e. pa ˝ bq ˝ c ‰ a ˝ pb ˝ cq. However, we can define a homotopy

between the two ways of associating:

M3 : pΩXq3 ˆ I Ñ ΩX

s.t. M3pa, b, c, tq “

$

’

’

’

&

’

’

’

%

app2´ tq2iq 0 ď i ď 1`t
4
,

bp4i´ 1´ tq 1`t
4
ď i ď 2`t

4
,

cpp2i´ 1q ` 2tpi´ 1qq 2`t
4
ď i ď 1.

If we consider the multiplication map, M2 : ΩX ˆ ΩX Ñ ΩX, which takes

two loops pa, bq to the composite a ˝ b, then M3 is a homotopy between

M2pM2 ˆ 1q and M2p1 ˆM2q. Continuing in this manner for composition

of loops naturally gives rise to maps Mi : pΩXqi ˆKi Ñ ΩX which satisfy
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the conditions for an A8-space. This is because the lack of associativity in

a loop space is a result of “how fast” we travel round each loop, and so we

get higher homotopies by varying speeds.

2.2 D8-Structures

In this section we will see that we can define a D8-space, constructed to be

a topological version of a twisted chain complex. The idea is that we want

to capture the essence of the twisted chain complex structure in the category

of topological spaces. We recall the first few relations for a twisted chain

complex below.

C´1
0 C´1

1 C´1
2 C´1

3 C´1
4

C0
0 C0

1 C0
2 C0

3 C0
4

C1
0 C1

1 C1
2 C1

3 C1
4

C2
0 C2

1 C2
2 C2

3 C2
4

d1

d0

d1 d1 d1

d0

d0

d2 d2 d2

d0

d0 d0

d1

d3

d1

d3

d1 d1

Figure 2.8: Some of the maps in a twisted chain complex

1. d0 ˝ d0 “ 0, i.e. d0 is a differential,

2. d0 ˝ d1 ´ d1 ˝ d0 “ 0, i.e. d1 commutes with d0,

3. d0 ˝ d2 ` d2 ˝ d0 “ d1 ˝ d1, i.e. d2 is a chain homotopy with respect to

the differential d0 between d1 ˝ d1 and 0,

4. d0 ˝ d3 ´ d3 ˝ d0 “ d1 ˝ d2 ´ d2 ˝ d1,

5. d0 ˝ d4 ` d4 ˝ d0 “ d1 ˝ d3 ´ d2 ˝ d2 ` d3 ˝ d1,
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D2

D2
1

˚

D2D1D1D2

D3
1

˚

D3

Figure 2.9: The space T2 (left) and T3 (right)

Notice that we have a differential d0 and another map d1 which is not a

differential but is a differential up to chain homotopy. To model this situation

in topological spaces, we will consider a family of based topological spaces

X “ tXnunPN and take D1 to be a map D1 : Xn Ñ Xn`1. We then want

D2 to be a homotopy between D2
1 and the constant map at the basepoint,

D2 : I˚^Xn Ñ Xn`2. This gives us the space which we will call T2 as shown

in figure 2.9. We then define a family of spaces Ti in order to fit with the

relations. The space T3 is shown in figure 2.9 and T4 is shown in figure 2.11.

We will now give a formal construction of the spaces Ti for i ě 1.

Definition 2.2.1. We define the topological space Ti for i ě 1 by Ti “ I^pi´1q

where we take 0 as the basepoint in I “ r0, 1s.

Remark 2.2.2. The boundary of Ti is homeomorphic to Si´2. This follows

directly from the definition of Ti. Notice that BTi – BD
i´1 “ Si´2.

Proposition 2.2.3. The pi´ 1´ kq-cells of Ti are in bijection with the trees

in T ki,1, that is k-partitioned 1-trees with i nodes. There are
`

i´1
k

˘

such cells.

Proof. We think of Ti as

Ti “ I1 ^ I2 ^ ¨ ¨ ¨ ^ Ii´1

where each In is an interval in which we think of 0 as the basepoint, 1 as the
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˚

˚

Figure 2.10: The space T2 (left) and T3 (right)

vertex vn and the 1-cell as en. Then Ti has one pi´ 1q-cell given by

e1 ^ e2 ^ ¨ ¨ ¨ ^ ei´1.

An pi ´ 1 ´ kq-cell of Ti is given by choosing k of the edges e1, . . . , ei´1 to

be replaced by their respective vertices vn. Recall from Remark 1.6.10 that

there are
`

i´1
k

˘

trees in T ki,1. We give a bijection to an element of T ki,1 by letting

each element of our smash product represent an internal vertex of a 1-tree

with i edges. Then the k edges replaced by vertices in the smash product

form the cut set of vertices in the tree.

In the following proposition we show that the spaces Ti can be used to

define an N-coloured non-symmetric non-unital operad. We work in the sym-

metric monoidal category CHau˚ of based topological spaces with monoidal

product given by the smash product and unit S0.

Proposition 2.2.4. We can define an N-coloured non-symmetric operad,

T , in which all operations have arity 1, in the category of based topological

spaces, from the spaces Ti for i ě 1 by

T pp; p` iq “

$

&

%

Ti @p P N, i ě 1,

˚ otherwise,
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p2,1,1
q

p1,1,2
q

p1,2,1
q

˚

Figure 2.11: The space T4

and T pq1, . . . , qn; rq “ ˚ if n ě 2.

Proof. We have natural face inclusion maps Bpr, sq : Tr^Ts Ñ Tr`s given by

ρ^ σ Ñ ρ^ 1^ σ

where ρ P Tr and σ P Ts. Now consider the definition of a non-symmetric

non-unital coloured operad via partial compositions as in Proposition 1.4.5.

Then we have partial compositions

γ : T pp` s; p` s` rq ^ T pp; p` sq Ñ T pp; p` s` rq

for all p P N, given by Bpr, sq : Tr ^ Ts Ñ Tr`s. The partial composition is

trivial otherwise by definition.

It is then easy to check that diagram (1.8) of Proposition 1.4.5 is exactly
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equivalent to

Bpt, r ` sqp1ˆ Bpr, sqq “ Bpt` r, sqpBpt, rq ˆ 1q

in all non-trivial cases, and this clearly holds by definition. Since this operad

is in arity one, diagram (1.9) is always trivial in this case.

We will now define a D8-structure over a family of based topological

spaces. In Proposition 2.2.6 we show that this structure is equivalent to an

algebra over the operad T . In Chapter 3 we will show that taking singular

chains on this structure results in a twisted chain complex.

Definition 2.2.5. A D8-structure on a family of based spacesX “ tXnunPN

is a collection of based maps Di : Ti ^Xn Ñ Xn`i for i ě 1 and any n P N
such that

DipBpr, sqpρ, σq, xq “ Drpρ,Dspσ, xqq (2.30)

for ρ P Tr, σ P Ts, x P Xn, with r ` s “ i.

A D8-space is a family of based spaces X “ tXnunPN together with a

D8-structure.

Proposition 2.2.6. A D8-space is an algebra over the N-coloured operad

T in the category of based topological spaces.

Proof. This follows immediately from Proposition 1.4.7. We have a family

X “ tXnunPN of objects in Top˚, together with maps

Di : T pn;n` iq ^Xn Ñ Xn`i

and relation (2.30) is exactly equivalent to diagram (1.10) of Proposition 1.4.7.
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Remark 2.2.7. I am not currently aware of any examples of D8-spaces, how-

ever one place in which they might arise is as semi-simplicial (up to homo-

topy) H-spaces.

2.3 DA8-Structures

In this final section of this chapter, we view the previous two cases as special

cases of a more general structure, constructed to give a geometric model

of a derived A8-algebra. We already know that a derived A8-algebra has

structure maps

mij : Abj Ñ A

of bidegree pi, i ` j ´ 2q for each i ě 0, j ě 1. A derived A8-algebra

has an underlying twisted chain complex structure given by the maps mi1.

Additionally, if we restrict the structure of a derived A8-algebra to the case

i “ 0 by considering the special case where mij “ 0 if i ą 0, we have the

structure of an A8-algebra.

In what follows we will construct based topological spaces Vij for i ě 0,

j ě 1, and pi, jq ‰ p0, 1q. When j “ 1, Vij will be equal to Ti, and when

i “ 0, Vij will be equal to pKiq` “ Ki >˚. These spaces will be used to define

a DA8-space, which will give us both a multiplication which is associative

up to homotopy and a map of based spaces which is a differential up to

homotopy, as well as compatibility between these and all higher coherences.
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V11 = ˚

V21 = ˚

V02 = ˚

V03 = ˚

V12 = ˚

Figure 2.12: Initial spaces for construction of Vij

Figure 2.12 shows the spaces Vij for low values of i and j. The space

V11 is going to be used to give a map DA11 : V11 ^ Xp Ñ Xp`1 with a

map DA21 : V21 ^ Xp Ñ Xp`2 giving a homotopy between DA2
11 and the

constant map at the basepoint. The space V02 will be used to construct a

map DA02 : V02 ^Xp ^Xq Ñ Xp`q which is our multiplication map, and a

map DA03 : V03 ^Xp ^Xq ^Xr Ñ Xp`q`r gives homotopy associativity for

DA02.

Definition 2.3.1. We first begin by defining pK1q` “ S0 so that taking

a smash product with pK1q` is equal to the identity. Then we define the

collection of based spaces Vij for i ě 0, j ě 1, and pi, jq ‰ p0, 1q as:

Vij :“
ł

tPT 0
i,j

Tr`1 ^ pKoutpv0qq` ^ ¨ ¨ ¨ ^ pKoutpvrqq`

where t P T 0
i,j has a root vertex v0, and r internal vertices, labelled v1, . . . , vr.

Remark 2.3.2. In this definition we are working with pointed spaces Vij. It

is clear that when j “ 1 in this definition, there is just one tree in T 0
i,1. This

tree has i ´ 1 internal vertices, and each vertex has just one output. So

Vi1 “ Ti^pK1q`^ ¨ ¨ ¨^ pK1q` – Ti. We also want the definition of Vij when

i “ 0 to give V0j – pKjq`. Clearly there is just one tree in T 0
0,j and that is the

j-corolla. This tree has no internal vertices and so V0j “ T1^pKjq` – pKjq`.
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Remark 2.3.3. It may also be possible to define the spaces Vij in terms of

the set of planar trees with a length function, however there was insufficient

time to work out the details of this.

Proposition 2.3.4. There is a bijection between T ki,j and pi` j´2´kq-cells

of Vij.

Proof. Clearly by definition of Vij there is a bijection between the top cells of

Vij and trees in T 0
i,j. We know that the top cell of each Koutpvq is in dimension

outpvq ´ 2 and the top cell of each Tr`1 is in dimension r. So the top cells of

Vij lie in dimension

r `
r
ÿ

s“0

poutpvsq ´ 2q “ r ` pi` j ` rq ´ 2pr ` 1q “ i` j ´ 2.

For each t P T 0
i,j where t has a root vertex, v0 and r internal vertices,

labelled v1, . . . , vr, then t can be formed by a grafting of corollas c0, . . . , cr in

which each cn is an outpvnq-corolla. The internal vertices (i.e. the grafting

points/ v1, . . . , vr) correspond to the internal vertices in the tree of T P T 0
i,1.

We know that cells in lower dimensions in Vij are smash products of cells

in lower dimensions of the Tr`1 and the Koutpvq. So by Proposition 2.1.4 and

Proposition 2.2.3 the bijection extends to all pi ` j ´ 2 ´ kq-cells of Vij by

A8-splitting of the components pKoutpvnqq` and D8-splittings of Tr`1.

Proposition 2.3.5. The number of cells in dimension pi` j ´ 2´ kq of Vij

is given by

1

k ` 1

ˆ

j ` k

k

˙ k
ÿ

α“0

p´1qk´α
ˆ

k ` 1

k ´ α

˙

Nαpi` j ` α, i` 1q

where Nrpn, kq “
r`1
n

`

n
k`r

˘`

n
k´1

˘

.

Proof. This follows directly from Proposition 2.3.4 and the counting argu-

ment for the number of trees in T ki,j given in Corollary 1.6.9.
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˚

(a) V11

˚

(b) V02

˚

(c) V21

˚

(d) V03

˚

(e) V12

Figure 2.13: Initial spaces for construction of Vij
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˚

Figure 2.14: Combinatorial description of V13

Proposition 2.3.6. The boundary of Vij with i ą 0 is homeomorphic to a

wedge of Npi` j, jq spheres of dimension i` j ´ 3.

Proof. By definition,

Vij :“
ł

tPT 0
i,j

Tr`1 ^ pKoutpv0qq` ^ ¨ ¨ ¨ ^ pKoutpvrqq`.
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So,

BVij “
ł

tPT 0
i,j

BpTr`1 ^ pKoutpv0qq` ^ ¨ ¨ ¨ ^ pKoutpvrqq`q

–
ł

Npi`j,jq

BpDr
^ pDoutpv0q´2

q` ^ ¨ ¨ ¨ ^ pD
outpvrq´2

q`q

“
ł

Npi`j,jq

BpDr`poutpv1q`¨¨¨`outpvrqq´2pr`1q
q

“
ł

Npi`j,jq

BpDr`pi`j`rq´2r´2
q

“
ł

Npi`j,jq

BpDi`j´2
q

“
ł

Npi`j,jq

Si`j´3.

Hence, BVij –
Ž

Npi`j,jq

Si`j´3.

Remark 2.3.7. When i “ 0, V0j – pKjq` and so BV0j – BpD
j´2q` – pS

j´3q`.

In the following proposition, we use the face maps Bkpr, sq : Kr ˆKs Ñ

Kr`s´1 of the associahedra, and the face maps Bpr, sq : Tr^Ts Ñ Tr`s of the

spaces Ti to form face maps Bkppu, vq, pp, qqq : Vuv ^ Vpq Ñ Vu`p,v`q´1 on the

spaces Vij. These face maps will use the A8 maps when we have performed

an A8-splitting, and the D8 maps when we have performed a D8-splitting.

Proposition 2.3.8. We have natural face maps Bkppu, vq, pp, qqq : Vuv^Vpq Ñ

Vu`p,v`q´1 which satisfy the relations

Bkppu, vq, pp` a, q ` b´ 1qqp1ˆ Brppp, qq, pa, bqqq “

Bk`r´1ppu` p, v ` q ´ 1q, pa, bqqpBkppu, vq, pp, qqq ˆ 1q

(2.31)
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for 1 ď k ď v and 1 ď r ď q; and

Bk`b´1ppp` a, q ` b´ 1q, pu, vqqpBrppp, qq, pa, bqq ˆ 1q “

Brppu` p, v ` q ´ 1q, pa, bqqpBkppp, qq, pu, vqq ˆ 1qp1ˆ T q

(2.32)

for 1 ď r ă k ď q where T : Vab ^ Vuv Ñ Vuv ^ Vab permutes the factors.

Proof. We first observe that we can consider a subcomplex of Vij in the

following way:

ł

TPT 0
u`p,v`q´1,

s.t. t1^kt2PSppT q,
with t1PT 0

u,v ,t2PT 0
p,q

Tr`1 ^ pKoutpv0qq` ^ ¨ ¨ ¨ ^ pKoutpvrqq`

Ď
ł

TPT 0
u`p,v`q´1

Tr`1 ^ pKoutpv0qq` ^ ¨ ¨ ¨ ^ pKoutpvrqq`

where u` p “ i and v` q´ 1 “ j. Also notice that we can write Vuv^Vpq as

p
ł

t1PT 0
u,v

Tα`1^pKoutpv0qq` ^ ¨ ¨ ¨ ^ pKoutpvαqq`q
ľ

p
ł

t2PT 0
p,q

Tβ`1 ^ pKoutpu0qq` ^ ¨ ¨ ¨ ^ pKoutpuβqq`q

“
ł

t1PT 0
u,v ,

t2PT 0
p,q

Tα`1^Tβ`1 ^ pKoutpv10q
q` ^ ¨ ¨ ¨ ^ pKoutpv1αqq`

^ pKoutpu0qq` ^ ¨ ¨ ¨ ^ pKoutpuβqq`

where pKoutpv10q
q`, . . . , pKoutpv1αqq` are arranged such that the kth leaf of t1 is

a child of v1α to enable us to specify where the grafting takes place. Now we

can define a face map:

Bkppu, vq, pp, qqq : Vuv ^ Vpq Ñ Vu`p,v`q´1
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by

Bkppu, vq, pp, qqqptα, tβ, k1, . . . , kα`β`2q

“

$

&

%

Bpα ` 1, β ` 1q ^ 1α`β`2ptα, tβ, k1, . . . , kα`β`2q
if outpv1αq“1
or outpu0q“1,

1α`2 ^ Bkpoutpv1αq, outpu0qq ^ 1βptα, tβ, k1, . . . , kα`β`2q otherwise.

The two required associativity relations hold due to the associtivity condi-

tions satisfied by Bpα`1, β`1q and Bkpoutpv1αq, outpu0qq, and the associativity

of grafting of trees given in Lemma 1.5.16

The following proposition describes how the spaces Vij can be used to

define a N-coloured non-symmetric non-unital operad, V . This gives a nice

description of the structure on the spaces Vij and also a simple way to define

a DA8-space as an algebra over V , as we will prove in Proposition 2.3.12.

Proposition 2.3.9. We can define a N-coloured non-symmetric non-unital

operad, V , in Top˚, from the spaces Vij for i ě 0, j ě 1, pi, jq ‰ p0, 1q by

Vpc; dq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Vij
for all c “ pc1, . . . , cjq P ProfpNq

such that c1 ` ¨ ¨ ¨ ` cj ` i “ d,

˚ otherwise.

Proof. We have partial compositions

γk : Vpc; dq ^ Vpb; ckq Ñ Vpc ˝k b; dq

given by Bkppu, vq, pp, qqq : Vuv ^ Vpq Ñ Vu`p,v`q´1 if |c| “ v, |b| “ q, d “

c1 ` ¨ ¨ ¨ ` cv ` u and ck “ b1 ` ¨ ¨ ¨ ` bq ` p; and trivial otherwise.

It is then easy to see that in all non-trivial cases, diagrams (1.8) and

(1.9) from Proposition 1.4.5 are exactly the associativity conditions given in

Proposition 2.3.8.
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˚

Figure 2.15: Combinatorial description of V22

We will now give the definition of a DA8-space. In Proposition 2.3.12 we

will see that a DA8-space is an algebra over V .

Definition 2.3.10. A family of based spaces X “ tXnunPN admits a DA8-

structure if and only if there exist based maps

DAij : Vij ^Xp1 ^ ¨ ¨ ¨ ^Xpj Ñ Xp1`¨¨¨`pj`i

such that

DAijpBkppu, vq, pp, qqqpρ, θq, x1, . . . , xjq “

DAuvpρ, x1, . . . , xk´1, DApqpθ, xk, . . . , xk`q´1q, xk`q, . . . , xjq (2.33)
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for ρ P Vuv, θ P Vpq, with u`p´ i, v` q “ j`1, and 1 ď k ď v; and xr P Xpr

for r “ 1, . . . , j.

A family of based spaces X “ tXnunPN with a DA8-structure is called a

DA8-space.

Remark 2.3.11. Recall from Definition 1.2.4 that in a derived A8-algebra,

we have relations

ÿ

u“i`p,v“j`q´1,j“1`r`t

p´1qrq`t`pjmijp1
br
bmpq b 1btq “ 0

for all u ě 0 and v ě 1. It should now be possible to see the similarity

between the right hand side of relation (2.33) and the relations for a derived

A8-algebra. This indicates a connection between the maps DAij restricted to

the boundary of Vij, and the relations of a derived A8-algebra. In Chapter 3

we will prove that taking singular chains on a DA8-space gives rise to a

derived A8-algebra.

Proposition 2.3.12. A DA8-space is an algebra over the N-coloured operad

V in the category of based topological spaces.

Proof. This follows immediately from Proposition 1.4.7. We have a family

X “ tXnunPN of objects in Top˚, together with maps

DAij : Vpc; dq ^Xc Ñ Xd

for c “ pc1, . . . , cjq P ProfpNq and d “ c1 ` ¨ ¨ ¨ ` cj ` i P N. It is then

straightforward to check that relation (2.33) is exactly equivalent to diagram

(1.10) of Proposition 1.4.7 in all non-trivial cases.
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Chapter 3

Passage to Algebra

In this section we see the relationship between the spaces studied so far and

the algebras they are designed to model. In particular, we want to show that

the singular chain complex on a D8-space is a twisted chain complex, and

more generally that the singular chain complex on a DA8-space is a derived

A8-algebra. The idea is not to show that all derived A8-algebras can be

derived from the singular chains on some DA8-space but rather that any

DA8-space provides an example of a derived A8-algebra via singular chains.

Before we look at each of our three usual cases, we first briefly recall the

definition of the tensor product of chain complexes and the statement of the

Eilenberg-Zilber theorem.

Definition 3.0.1. Let C and C 1 be chain complexes. We make the tensor

product C b C 1 into a chain complex

pC b C 1qn “
à

a`b“n

Ca b C
1
b

with differential Bn : pC b C 1qn Ñ pC b C 1qn´1 given by

Bnpxb x
1
q “ Baxb x

1
` p´1qaxb Bbx

1
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where x P Ca, x
1 P C 1b and a` b “ n.

Theorem 3.0.2 (Eilenberg-Zilber Theorem [EZ53]). Let X and Y be topo-

logical spaces. Then there exist chain maps

F : C˚pX ˆ Y q Ñ C˚pXq b C˚pY q,

EZ : C˚pXq b C˚pY q Ñ C˚pX ˆ Y q,

such that F ˝ EZ and EZ ˝ F are chain homotopic to the identity.

Definition 3.0.3. If we have two based topological spaces X, Y then we

have a quotient map from X ˆ Y to X ^ Y which we will denote by

π : X ˆ Y Ñ X ^ Y.

3.1 A8-Spaces to A8-Algebras

For our classical case, Stasheff defined an A8-space specifically so that taking

chains on an A8-space gives an A8-algebra. Recall from Definition 2.1.8

that a space X admits an A8-structure if and only if there exist maps

Mi : Ki ˆX
i Ñ X for i ě 2 such that

MipBkpr, sqpρ, σq, x1, ..., xiq “

Mrpρ, x1, .., xk´1,Mspσ, xk, ..., xk`s´1q, xk`s, ..., xiq,

for ρ P Kr, σ P Ks, r ` s “ i ` 1. (3.1)

The pair pX, tMiuq is called an A8-space.

We can see that taking chains on this structure will give a graded R-

module with chain maps induced from the maps Mi on spaces. Recall from

Definition 1.2.1 that an A8-algebra over R is a Z-graded R-module A, en-
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dowed with graded R-linear maps

mn : Abn Ñ A, n ě 1

of degree 2´ n satisfying the following relation

ÿ

p´1qr`stmup1
br
bms b 1btq “ 0

for each n ě 1, where the sum runs over all decompositions n “ r` s` t and

we put u “ r ` 1` t.

Theorem 3.1.1 ([Sta63]). If X admits an A8-structure tMiu, then C˚pXq

admits the structure of an A8-algebra by defining m1 “ B and for i ą 1,

mipu1 b ¨ ¨ ¨ b uiq “ Mi#pκi b u1 b ¨ ¨ ¨ b uiq where κi is a suitable generator

of C˚pKiq.

Remark 3.1.2. Stasheff does not give a proof of this result but from the

statement we can see that the maps in the algebra should be those induced

from the space after applying the Eilenberg-Zilber map so that the map Mi#

goes from pC˚pKiq b C˚pXq
biqn to Cnpxq. The generator κi should be the

generator that represents the top cell of Ki in Ci´2pKiq, then a choice of

orientation on the space gives the sign conventions in the algebra.

Remark 3.1.3. [MSS02] Since the associahedra are regular cell complexes

with the operad structure given by cellular inclusions Kr ˆ Ks Ñ Kr`s´1,

their cellular chain complexes C˚pKnq form a non-symmetric chain operad

which is precisely the non-symmetric operad Ass8 for A8-algebras.

3.2 D8-Spaces to D8-Algebras

In this section we consider the relationship between a D8-space and a twisted

chain complex. Recall from Definition 2.2.5 that a family of based spaces

X “ tXnunPN admits a D8-structure if and only if there exist based maps
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Di : Ti ^Xn Ñ Xn`i for i ě 1 and any n P N such that

DipBpr, sqpρ, σq, xq “ Drpρ,Dspσ, xqq (3.2)

for ρ P Tr, σ P Ts, x P Xn, with r ` s “ i. A D8-space is a family of based

spaces X “ tXnunPN together with a D8-structure.

We can see that when we take singular chains on this structure we will get

two gradings, one from the chain complex, and the other we inherit from the

grading on the spaces. We will have a pN,Zq-bigraded R-module C˚pX˚, Rq

with CnpXp, Rq in bidegree pp, nq and CnpXp, Rq “ 0 if n ă 0.

Recall from Definition 1.2.3 that a twisted chain complex, C, is an pN,Zq-
bigraded R-module, with maps di : C Ñ C of bidegree pi, i ´ 1q for i ě 0,

satisfying

ÿ

i`p“u

p´1qididp “ 0 for u ě 0. (3.3)

In the following theorem we will show how to obtain such a structure with the

maps di derived from the induced chain maps on Di. Similarly, relation 3.3

is derived using the structure of the space Ti and relations 3.2.

Before stating the theorem, we briefly discuss the chain maps induced

from the structure maps relating the spaces Ti “ I^pi´1q. We consider a

generator τi P Ci´1pTiq where we take τp to be the pi ´ 1q’th power of the

obvious chain u1 P C1pIq with respect to the Eilenberg-Zilber product. It

should be clear that dpu1b¨ ¨ ¨bup´1q “
řp´1
t“1 p´1qt´1u1b¨ ¨ ¨b ûtb¨ ¨ ¨bui´1.

Hence we have

dTipτiq “
ÿ

r`s“i

p´1qr´1Dpr, sqpτr b τsq. (3.4)

where Dpr, sq is the induced chain map

Dpr, sq : Cr´1pTrq b Cs´1pTsq Ñ Cr`s´2pTr`sq
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which sends τr b τs to τr b 1b τs.

Theorem 3.2.1. Let X “ tXnunPN be a D8-space. Then C˚pX,Rq, the

singular chain complex on X, is a twisted chain complex.

Proof. We take chains on each based space, Xp for p P N, to obtain a col-

lection of graded R-modules C˚pXp, Rq with differentials Bp, for all p P N.

This results in a bigraded R-module CnpXpq for n P Z and p P N with a

map of bigraded modules d0 of bidegree p0,´1q given by d0pxq “ Bppxq for

x P C˚pXp, Rq.

Now since X is a D8-space, we consider the chain maps induced by the

mapDi for any i ě 1. We can see from Figure 3.1 that a sequence of maps and

restrictions enables us to obtain from Di a map di : Cn´i`1pXpq Ñ CnpXp`iq

for each p P N and any n ě 0, i.e. a map of bigraded modules of bidegree

pi, i´ 1q.

Now, clearly D2i is a chain map, so we know that the following diagram

commutes.

À

a`b“n

CapTiq b CbpXpq CnpXpq

À

r`s“n´1

CrpTiq b CspXpq Cn´1pXpq

D2i

dTib1`1bd0
d0

D2i

This tells us that when we restrict to a “ i´ 1 we have

d0Dipτi b´q “ DipdTi b 1qpτi b´q `Dip1b d0qpτi b´q

“ DipdTipτiq b ´q ` p´1qi´1Dipτi b d0p´qq

“
ÿ

r`s“i

p´1qr´1DipDpr, sqpτr b τsq b ´q ` p´1qi´1Dipτi b d0p´qq.

(3.5)
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CnpTi ^Xpq CnpXp`iq

CnpTi ˆXpq

pC˚pTiq b C˚pXpqqn

À

a`b“n

CapTiq b CbpXpq

Ci´1pTiq b Cn´i`1pXpq

R tτiu b Cn´i`1pXpq

Cn´i`1pXpq

D1i

π˚

EZ D2i

Di

Inclusion

Natural Isomorphism

di

Figure 3.1: Diagram showing the sequence of maps and restrictions to obtain
di
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for τi P Ci´1pTiq. Notice that the last step of this equality comes from

equation 3.4.

Now since X is a D8-space,

DipBpr, sqpρ, σq,´q “ Drpρ,Dspσ,´qq

for ρ P Tr, σ P Ts, with r ` s “ i. Thus by considering induced chain maps,

we have

DipDpr, sqpτr b τsq b ´q “ Drpτr bDspτs b´qq.

So

pd0Dipτi b´q “
ÿ

r`s“i

p´1qr´1DipDpr, sqpτr b τsq b ´q ` p´1qi´1Dipτi b d0p´qq

“
ÿ

r`s“i

p´1qr´1Drpτr bDspτs b´qq ` p´1qi´1Dipτi b d0p´qq.

(3.6)

Finally, from Figure 3.1 we see that

• Dipτi b´q “ dip´q, and

• Drpτr bDspτs b´qq “ Drpτr b dsp´qq “ drpdsp´qq,

so we have

d0di ` p´1qidid0 “
ÿ

r`s“i

p´1qr´1drds

as required.

Remark 3.2.2. Notice that since the spaces Ti form a non-symmetric N-

coloured operad T , we have an induced N-coloured non-symmetric operad in

chain complexes C˚pT q with structure maps given by the maps Dpr, sq and
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the obvious relations. It may then be possible to argue that there is a map

of operads from C˚pT q to the operad D8, and we know that algebras over

the operad D8 are twisted chain complexes from [LRW13], however I have

not had time to work out the details of this.

3.3 DA8-Spaces to dA8-Algebras

In this section we generalise the above argument to investigate the relation-

ship between a DA8-space and a derived A8-algebra. Recall from Defini-

tion 2.3.10 that a DA8-space is a family of based spaces X “ tXnunPN along

with based maps

DAij : Vij ^Xp1 ^ ¨ ¨ ¨ ^Xpj Ñ Xp1`¨¨¨`pj`i

such that

DAijpBkppu, vq, pp, qqqpρ, θq, x1, . . . , xjq “

DAuvpρ, x1, . . . , xk´1, DApqpθ, xk, . . . , xk`q´1q, xk`q, . . . , xjq (3.7)

for ρ P Vuv, θ P Vpq, with u`p´ i, v` q “ j`1, and 1 ď k ď v; and xr P Xpr

for r “ 1, . . . , j.

Again we can see that taking singular chains on this structure will give a

bigraded R-module with one grading coming from the chain complex and the

other coming from the grading on the spaces. Recall from Definition 1.2.4

that a derived A8-algebra is an pN,Zq-bigraded R-module, A, with R-linear

maps

mij : Abj Ñ A
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of bidegree pi, i` j ´ 2q for each i ě 0, j ě 1, satisfying the equations

ÿ

u“i`p,
v“j`q´1,
j“1`r`t

p´1qrq`t`pjmijp1
br
bmpq b 1btq “ 0 (3.8)

for all u ě 0 and v ě 1. We will see in the proof of the following theorem

that maps mij can be derived from the chain maps induced by DAij and

that a relation of the form of equation 3.8 can be derived from the structure

of the space Vij and relation 3.7.

Before stating the theorem, we briefly discuss the chain maps induced

from the structure maps relating the spaces Vij. Notice that from the con-

struction of Vij in Definition 2.3.1 we have maps

Bkppp, qq, pr, sqq : Vpq ^ Vrs Ñ Vij

where p` r “ i, and q ` s “ j ` 1. So we have induced chain maps

B
1
kppp, qq, pr, sqq : CnpVpq ^ Vrsq Ñ CnpVijq.

We can take a sequence of maps and restrictions as shown in Figure 3.2.

Then if we consider this specifically in the case n “ i` j ´ 3 we have

Ci`j´2pVijq

Cp`q´2pVpqq b Cr`s´2pVrsq
À

a`b“i`j´3

CapVpqq b CbpVrsq Ci`j´3pVijq.

dVij

I
Bkppp,qq,pr,sqq

2
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CnpVpq ^ Vrsq CnpVijq

CnpVpq ˆ Vrsq

pC˚pVpqq b C˚pVrsqqn

À

a`b“n

CapVpqq b CbpVrsq

Bkppp,qq,pr,sqq
1

π˚

Bkppp,qq,pr,sqq
2

Figure 3.2: Diagram showing the sequence of maps to obtain Bkppp, qq, pr, sqq
2

Let us denote the composition Bkppp, qq, pr, sqq
2I by Dkppp, qq, pr, sqq, then

we can choose a generator τpq in Cp`q´2pVpqq for each p` q ě 2 such that

dVijpτijq “
ÿ

p`r“i,
q`s“j`1,

1ďkďq

p´1qpk´1qs`pj´kq`rq`pp`r´1qDkppp, qq, pr, sqqpτpqbτrsq. (3.9)

The sign p´1qpk´1qs`pj´kq`rq`pp`r´1q is consistent with a choice of orientation

on the cells of Vij. Notice that since Vij is a wedge of smash products of

Tα’s and Kβ’s, we take τij to be a sum of products of the generators τα and

κβ with the induced map Dkppp, qq, pr, sqq consistent with the map given in

Proposition 2.3.8.

Theorem 3.3.1. Let the family of based spaces X “ tXnunPN be a DA8-

space. Then C˚pXpq, the singular chain complex onX is a bigradedR-module

with the structure of a derived A8-algebra.

Proof. We take chains on each based space, Xp for p P N, to obtain a collec-

tion of graded R-modules C˚pXp, Rq with differentials Bp, for all p P N. This
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results in a bigraded R-module C˚pX˚, Rq with CnpXpq of bidegree pp, nq for

n P Z and p P N with a map of bigraded modules m01 of bidegree p0,´1q

given by m01pxq “ Bppxq for x P C˚pXpq. By convention we take CnpX˚q “ 0

for n ă 0.

Now we consider the chain maps induced by the maps DAij for i ě 0,

j ě 1. If we let Ap,n :“ CnpXpq then we can see from figure 3.3 that a

sequence of maps and restrictions enables us to obtain from DAij a map

mij : Abj Ñ A of bidegree pi, i` j ´ 2q.

CnpVij ^Xp1 ^ ¨ ¨ ¨ ^Xpjq CnpXp1`¨¨¨`pj`iq

CnpVij ˆXp1 ˆ ¨ ¨ ¨ ˆXpjq

pC˚pVijq b C˚pXp1q b ¨ ¨ ¨ b C˚pXpjqqn

À

a0`a1`¨¨¨`aj“n

Ca0pVijq b Ca1pXp1q b ¨ ¨ ¨ b CajpXpjq

À

a1`¨¨¨`aj“n`2´i´j

Ci`j´2pVijq b Ca1pXp1q b ¨ ¨ ¨ b CajpXpjq

À

a1`¨¨¨`aj“n`2´i´j

R tτiju b Ca1pXp1q b ¨ ¨ ¨ b CajpXpjq

À

a1`¨¨¨`aj“n`2´i´j

Ca1pXp1q b ¨ ¨ ¨ b CajpXpjq

D1ij

π˚

EZ D2ij

Dij

Inclusion

Natural Isomorphism

mij

Figure 3.3: Commutative diagram showing a sequence of maps and restric-
tions to obtain mij
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Since D2ij is a chain map we know that the following diagram commutes:

À

a0`a1`¨¨¨`aj“n

Ca0pVijq b Ca1pXp1q b ¨ ¨ ¨ b CajpXpjq CnpXp1`¨¨¨`pj`iq

À

b0`b1`¨¨¨`bj“n´1

Cb0pVijq b Cb1pXp1q b ¨ ¨ ¨ b CbjpXpjq Cn´1pXp1`¨¨¨`pj`iq

D2ij

dVijb1bj`
j
ř

t“1
1btbm01b1bj´t

m01

D2ij

This tells us that when we restrict to a0 “ i` j ´ 2 we have

m01Dijpτij b´b ¨ ¨ ¨ b ´q “ DijpdVijpτij b 1bjqp´ b ¨ ¨ ¨ b ´q

`

j
ÿ

t“1

p´1qi`j´2Dijpτij b 1bt´1
bm01 b 1bj´tqp´ b ¨ ¨ ¨ b ´q, (3.10)

where τij P Ci`j´2pVijq. Using equation 3.9 and rearranging we get

m01Dijpτij b´b ¨ ¨ ¨ b ´q

`

j
ÿ

t“1

p´1qi`j´2Dijpτij b 1bt´1
bm01 b 1bj´tqp´ b ¨ ¨ ¨ b ´q

“ DijpdVijpτijq b 1bjqp´ b ¨ ¨ ¨ b ´q

“
ÿ

p`r“i,
q`s“j`1,

1ďkďq

p´1qpk´1qs`pj´kq`rq`pp`r´1q

DijpDkppp, qq, pr, sqqpτpq b τrsq b ´ b ¨ ¨ ¨ b ´q. (3.11)

Now since X is a DA8-space,

DAijpBkppu, vq, pp, qqq ^ 1^jqpρ, θ,´, . . . ,´q “

DAuvp1
^k
^DApq ^ 1^j´kqpρ,´, . . . ,´, θ,´, . . . ,´q

for ρ P Vuv, θ P Vpq, with u ` p ´ i, v ` q “ j ` 1, and 1 ď k ď v. Thus we

have an induced equality of chain maps
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DijpDkppp, qq, pr, sqqpτpq b τrsq b 1bjqp´ b ¨ ¨ ¨ b ´q

“ Dpqpτpq b 1bk´1
bDrspτrs b 1bsq b 1bq´s´kqp´ b ¨ ¨ ¨ b ´q. (3.12)

So

m01Dijpτij b´b ¨ ¨ ¨ b ´q`
j
ÿ

t“1

p´1qi`j´2Dijpτij b 1bt´1
bm01 b 1bj´tqp´ b ¨ ¨ ¨ b ´q

“
ÿ

p`r“i,
q`s“j`1,

1ďkďq

p´1qpk´1qs`pj´kq`rq`pp`r´1q

DijpDkppp, qq, pr, sqqpτpq b τrsq b ´ b ¨ ¨ ¨ b ´q

“
ÿ

p`r“i,
q`s“j`1,

1ďkďq

p´1qpk´1qs`pj´kq`rq`pp`r´1qDpqpτpq b 1bk´1
b

Drspτrs b 1bsq b 1bq´s´kqp´ b ¨ ¨ ¨ b ´q.

(3.13)

Finally, from Figure 3.3 we see that

• Dijpτij b´b ¨ ¨ ¨ b ´q “ mijp´ b ¨ ¨ ¨ b ´q, and

• Dpqpτpq b´, ¨ ¨ ¨ b ´ bDrspτrs b´b ¨ ¨ ¨ b ´q b ¨ ¨ ¨ b ´q

“ mpqp´ b ¨ ¨ ¨ b ´ bmrsp´ b ¨ ¨ ¨ b ´q b ¨ ¨ ¨ b ´q.

So we have

m01mij `

j
ÿ

t“1

p´1qi`j´1mijp1
bt´1

bm01 b 1bj´tq “

ÿ

p`r“i,
q`s“j`1

1ďkďq

p´1qpk´1qs`pj´kq`rq`pi´1qmpqp1
bk´1

bmrs b 1bj´kq (3.14)

87



which we multiply throughout by p´1qi´1 and rearrange to get

ÿ

i“p`r,
j`1“q`s,
q“1`k`t

p´1qks`t`rqmpqp1
bk
bmrs b 1btq “ 0

as required.

Remark 3.3.2. Notice that since the spaces Vij form a non-symmetric N-

coloured operad V , we have an induced N-coloured non-symmetric operad in

chain complexes C˚pVq with structure maps given by the mapsDkppp, qq, pr, sqq

and the obvious relations. It may then be possible to argue that there is a

map of operads from C˚pVq to the operad pdAsq8, and we know that algebras

over the operad pdAsq8 are derived A8-algebras from [LRW13], however I

have not had time to work out the details of this.
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Chapter 4

Obstruction Theory

In this chapter we establish three different obstruction theories for the exis-

tence of dA8-algebra structures on an pN,Zq-bigraded R-module A. These

three theories arise from two fundamentally different approaches, the first by

considering building the bigraded structure one piece at a time (and this is

studied in two different ways), and the second using a total degree approach

where the structure is added several maps at a time by arity and horizontal

degree. In each case, we work in terms of the relevant Hochschild cohomology

of H pAq.

We present separately the special case of obstructions to the existence

of twisted chain complex structures on an pN,Zq-bigraded R-module. For

the special case of A8-algebra structures, this question has already been

answered by Livernet [Liv14]. We follow the same lines of approach as Liv-

ernet in avoiding the common assumptions on the underlying R-module of

having no 2-torsion and being N-graded, directly applying her results and

generalising where necessary.

Throughout this chapter we work over a commutative ringR, and consider

an pN,Zq-bigraded R-module A, where A is a collection of R-modules Aji for

i P N, j P Z.
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4.1 Homology of bigraded R-modules of mor-

phisms

In this section, we present a generalisation of Chapter 3 of [Liv14] to vertical

bicomplexes. That is, we establish an isomorphism

H pMorpCbn, Cqq Ñ MorpH pCqbn, H pCqq

where C is a vertical bicomplex. In order to do this, we place some unavoid-

able projectivity conditions on C, which will later become conditions needed

for the obstruction theories we develop.

Definition 4.1.1. Let C and D be vertical bicomplexes, i.e. bigraded R-

modules together with a vertical differential dC : Cj
i Ñ Cj`1

i of bidegree

p0, 1q. We denote by MorpC,Dq the vertical bicomplex given by

MorpC,Dqvu “
ź

α,β

HomRpC
β
α , D

β`v
α`uq

with vertical differential B : MorpC,Dqvu Ñ MorpC,Dqv`1
u given by Bf “

dDf ´ p´1qvfdC for f P MorpC,Dqvu.

• The bigraded module of cycles in C is ZpCq where Zj
i pCq “ KerpdC :

Cj
i Ñ Cj`1

i q.

• The bigraded module of boundaries in C is BpCq where Bj
i pCq “

ImpdC : Cj´1
i Ñ Cj

i q.

• The homology of C is the bigraded module HpCq where Hj
i pCq :“

HjpC˚i q “ Zj
i pCq{B

j
i pCq.

The map f P MorpC,Dq is a morphism of vertical bicomplexes if and only

if Bf “ 0. In particular, fpZpCqq Ă ZpDq and fpBpCqq Ă BpDq. So, if f P

MorpC,Dqvu is such that Bf “ 0, then f defines a map f P MorpH pCq, H pDqqvu
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as fprcsq “ rfpcqs. Moreover, if f “ Bu for some u P MorpC,Dqv´1
u , then

fpZpCqq Ă BpDq and f “ 0. Thus there is a well defined map of bigraded

modules

HC,D : H pMorpC,Dqq Ñ MorpH pCq, H pDqq

rf s ÞÑ f.

Definition 4.1.2. We say that a vertical bicomplex, C, satisfies assumption

(A) if the following two sequences are split exact:

0 Ñ ZpCq ÑC
dC
ÝÑ BpCq Ñ 0

0 Ñ BpCq Ñ ZpCq Ñ H pCq Ñ 0.

Proposition 4.1.3. Let C and D be vertical bicomplexes satisfying assump-

tion (A).

1. Given g P MorpH pCq, H pDqq, there exists f P MorpC,Dq such that

Bf “ 0 and f “ g.

2. For f P MorpC,Dq satisfying Bf “ 0 and f “ 0 P MorpH pCq, H pDqq

there exists u P MorpC,Dq such that Bu “ f .

Consequently, the map HC,D : H pMorpC,Dqq Ñ MorpH pCq, H pDqq is

an isomorphism of bigraded modules and the vertical bicomplex MorpC,Dq

satisfies assumption (A).

Proof. This follows directly from Proposition 3.3 of [Liv14] in which the au-

thor proves the exact same statement for C,D dg-modules so in this propo-

sition we are just including an extra grading.

Corollary 4.1.4. Let C be a vertical bicomplex such that ZpCq and H pCq

are projective bigraded modules. For every n ě 1, there exists an isomor-

phism of bigraded modules

ϕn : H pMorpCbn, Cqq Ñ MorpH pCqbn, H pCqq.
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Proof. Again Livernet [Liv14] proves this result for a dg-module C and so

the proof of this corollary follows her lines of argument but with an extra

grading.

Remark 4.1.5. We let Cj,k
i pA,Aq “ MorpAbj, Aqki . Then we have the isomor-

phism ϕj : H pCj,˚
i pA,Aqq Ñ Cj,˚

i pH pAq, H pAqq.

4.2 Lie structures and Hochschild cohomol-

ogy

In this section we follow the sign conventions as in [LRW13] and present some

of their main results around Hochschild cohomology. It is worth noting that

a similar result can be found in [RW11], and differs from the one presented

here by sign convention. The one stated here is the more general result and

the case we will use later in the obstruction theory.

Definition 4.2.1. Given a vertical bicomplex A, the trigraded R-module

C˚,˚˚ pA,Aq is defined by

Cn,i
k pA,Aq “ MorpAbn, Aqik.

Then we can define a graded R-module CH˚pA,Aq given by

CHN
pA,Aq “

ź

ně1

ź

k,j
k`j`n“N

Cn,j
k pA,Aq,

where the grading is the total grading, that is, an element in Cn,j
k pA,Aq has

total degree j ` k ` n.

We describe a graded Lie structure on CH˚`1pA,Aq.

Definition 4.2.2. Let C be a dg-R-module. A graded pre-Lie algebra struc-
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ture on X is a graded R-linear map ˝ : X bX Ñ X satisfying

@f, g, h P X, pf ˝gq˝h´f ˝pg˝hq “ p´1q|g||h|pf ˝hq˝g´p´1q|g||h|f ˝ph˝gq.

Definition 4.2.3. Let C be a dg-R-module. A graded Lie algebra structure

on C is a bracket operation r´,´s : C b C Ñ C satisfying

rf, gs “ ´p´1q|f ||g|rg, f s,

p´1q|f ||h|rf, rg, hss ` p´1q|g||f |rg, rh, f ss ` p´1q|h||g|rh, rf, gss “ 0.

Proposition 4.2.4 ([LRW13]). The composition product,

f ˝ g “
n´1
ÿ

r“0

p´1qpn`1qpm`1q`rpm`1q`jpn`1q`k|g|fp1br b g b 1bn´r´1
q

P Cn`m´1,i`j
k`l pA,Aq

for f P Cn,i
k pA,Aq and g P Cm,j

l pA,Aq endows CH˚`1pA,Aq with the struc-

ture of a weight graded pre-Lie algebra, with weight given by |f | “ k`n`i´1.

Corollary 4.2.5. The bracket

rf, gs “ f ˝ g ´ p´1q|f ||g|g ˝ f for f P Cn,i
k pA,Aq and g P Cm,j

l pA,Aq

gives rise to a graded Lie algebra structure on CH˚`1pA,Aq.

Proof. A graded pre-Lie algebra as stated above always gives rise to a graded

Lie algebra with the given bracket operation. A proof of this general result

can be found in Theorem 1 of [Ger63].

Remark 4.2.6. In fact we can actually go further than this and say that

f ˝ g “
n
ÿ

r“1

f ˝r g
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where f ˝rg “ p´1qpn`1qpm`1q`pr`1qpm`1q`jpn`1q`k|g|fp1br´1bgb1bn´rq defines

a weight graded pre-Lie system in the sense of the following definition.

Definition 4.2.7. Let O be an pN,N,Zq-trigraded R-module. A weight

graded pre-Lie system on O is a sequence of maps, called composition maps,

˝u : On,ik bOm,jl Ñ On`m´1,i`j
k`l , @ 1 ď u ď n

satisfying the relations: for every f P On,ik , g P Om,jl and h P Ob,da ,

f ˝u pg ˝v hq “ pf ˝u gq ˝v`u´1 h, @ 1 ď u ď n and 1 ď v ď m,

pf ˝u gq ˝v`m´1 h “ p´1q|g||h|pf ˝v hq ˝u g, @ 1 ď u ă v ď n.

Remark 4.2.8. Notice that this definition contains an extra N grading com-

pared to the one presented in [Liv14], however that definition can be recov-

ered from the one above by considering the horizontal grading to be zero

throughout.

The following two results are generalisations of Lemma 2.10 and Propo-

sition 2.13 from [Liv14]. We omit the proofs for these due to them being

analogous to those in [Liv14].

Lemma 4.2.9. Let pO, ˝q be a weight graded pre-Lie system. Let g P O be

an element of odd weight. Then for all f P O, one has

pf ˝ gq ˝ g “ f ˝ pg ˝ gq and (4.1)

rf, g ˝ gs “ ´rg, rg, f ss “ ´rg ˝ g, f s. (4.2)
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Proposition 4.2.10. Let A be a vertical bicomplex with vertical differential

m01. There is an induced differential B on CpA,Aq which satisfies, for all

g P CpA,Aq,

Bf “ rm01, f s; (4.3)

Bpf ˝ gq “ Bf ˝ g ` p´1q|f |f ˝ Bg; (4.4)

Brf, gs “ rBf, gs ` p´1q|f |rf, Bgs. (4.5)

As a consequence, CHpA,Aq is a differential (weight) graded Lie algebra.

Proof. The differential m01 is considered as an element of C1,1
0 pA,Aq, so has

weight 1. Hence, for all f P Cn,i
k pA,Aq we have

Bf “ m01f ´ p´1qi
n
ÿ

r“1

fp1br´1
bm01 b 1bn´rq

“ m01 ˝ f ´ p´1qip´1qn`1`kf ˝m01

“ m01 ˝ f ´ p´1q|f |f ˝m01

“ rm01, f s.

The proof for 4.4 and 4.5 are easy calculations and can be found without the

extra grading in [Liv14].

Recall from Definition 1.2.4 that a dA8-algebra is an pN,Zq-bigraded R-

module, A, with R-linear maps mij P C
j,i`j´2
i pA,Aq for each i ě 0, j ě 1,

satisfying the equations

ÿ

u“i`p,
v“j`q´1,
j“1`r`t

p´1qrq`t`pjmijp1
br
bmpq b 1btq “ 0
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for all u ě 0, v ě 1. This system of equations is equivalent to

ÿ

u“i`p,
v“j`q´1

mij ˝mpq “ 0 (4.6)

for all u ě 0 and v ě 1.

Proposition 4.2.11. Let

Oij “
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq P C
j,i`j´3
i pA,Aq.

Then BOij “ 0.

Proof.

BOij “
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

Bpmab ˝mpqq

“
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

Bmab ˝mpq ´mab ˝ Bmpq

“
ÿ

i“c`e`g,
j“d`f`h“2,

pc,dq,pe,fq,pg,hq‰p0,1q

pmcd ˝mef q ˝mgh ´mcd ˝ pmef ˝mghq

“ 0.

The individual summands vanish as a result of the Jacobi relation when

mcd ‰ mef ‰ mgh; the pre-Lie relation when mef ‰ mgh and pmcd “

mef or mcd “ mghq; and by Lemma 4.2.9 when mef “ mgh.

Lemma 4.2.12. Let A be an dA8-algebra, with structure maps mij. The
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maps

B “ rm01,´s : Cn,i
k pA,Aq Ñ Cn,i`1

k pA,Aq,

dτ “ rm11,´s : Cn,i
k pA,Aq Ñ Cn,i

k`1pA,Aq,

and

dµ “ rm02,´s : Cn,i
k pA,Aq Ñ Cn`1,i

k pA,Aq

satisfy

Bdτ “ ´dτB,

Bdµ “ ´dµB.

Proof. The proof is the same for both parts of this lemma and so here we

only present the proof of the first equality.

From the relations on a dA8-algebra we know that Bm11 “ rm01,m11s “

0. So for f P Cn,i
k pA,Aq

Bdτf “ rm01, rm11, f ss

“ ´ p´1q|m01||m11|p´1q|m01||f |rm11, rf,m01ss

´ p´1q|m01||f |p´1q|m11||f |rf, rm01,m11ss

“ ´p´1q|f |rm11, rf,m01ss

“ ´p´1q|f |p´1q|f |rm11, rm01, f ss

“ ´dτBf.

The remainder of this section is devoted to describing the Hochschild

cohomology of A via CHpA,Aq. We also consider the special cases when A

is a bidga, bicomplex or a dga.
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Definition 4.2.13. A bidga is a dA8-algebra with mij “ 0 for i` j ě 3.

Remark 4.2.14. An equivalent definition is that a bidga is a monoid in the

category of bicomplexes with vertical and horizontal differentials given by

m01 and m11, and associative multiplication given by m02.

Definition 4.2.15 ([LRW13]). Let m be a formal sum m “
ř

mij and

pA,mq be a dA8-algebra. Then the Hochschild cohomology of A is defined

as

HH˚
pA,Aq :“ H˚

pCHpA,Aq, rm,´sq.

Remark 4.2.16 ([LRW13]). When A is a bidga with m “ m11`m02, i.e. A is

a bidga with trivial vertical differential, the external grading is preserved by

both bracketing with m11 and m02. Hence we can, as in [RW11, Section 3.1],

consider bigraded Hochschild cohomology

HHs,r
bidgapA,Aq “ Hs

p
ź

n

Cn,r
˚´npA,Aq, rm,´sq.

Remark 4.2.17. In addition to the above, when A is a bicomplex with trivial

vertical differential, the arity and vertical grading are preserved by bracketing

with m11. As a result we can consider a trigraded Hochschild cohomology

HHs,n,r
bicx pA,Aq :“ Hs

pCn,r
˚ pA,Aq, rm11,´sq.

When A is a graded algebra with an associative multiplication m “ m2,

i.e. A is a dga with trivial vertical differential, the grading is preserved by

bracketing with m2. We think of A as a bigraded module concentrated in

horizontal degree zero, with an associative multiplication m “ m02, and then

we can consider bigraded Hochschild cohomology

HH0,n,r
dga pA,Aq “ Hn

pC˚,r0 pA,Aq, rm02,´sq.
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4.3 Obstruction theory for A8-structures

Here we recall the main theorem of [Liv14]. It is worth noting that our

conventions on notation and bidegree differ slightly from Livernet’s and so

here the result has been written to be consistent with our notation so far.

We easily recover the Lie structure on EndpAq defined in [Liv14] by setting

l “ k “ 0 in Proposition 4.2.4. The results in Section 4.1 are precisely a

bigraded generalisation of the results in Section 3 of [Liv14] and thus the

original results are easily recovered by ignoring the horizontal grading in

those presented above.

Definition 4.3.1. Let r ą 0 be an integer. A graded R-module A is an Ar-

algebra if there exists a collection of elements mi P C
i,i´2
0 pA,Aq for 1 ď i ď r

such that (in the notation of Proposition 4.2.4)

ÿ

i`j“n`1

mi ˝mj “ 0

for all 1 ď n ď r.

Remark 4.3.2. Given an Ar-algebra with r ě 3, the graded R-module HpAq

is a graded associative algebra (i.e. a dga with trivial differential) with mul-

tiplication induced from m2, so we can consider the Hochschild cohomology

HH0,n,t
dga pHpAq, HpAqq.

Theorem 4.3.3 ([Liv14], Theorem 4.8). Let r ě 3. Let A be a dg-module

such that HpAq and ZpAq are graded projective R-modules. Assume A

is an Ar-algebra, with structure maps mi P Ci,i´2
0 pA,Aq for 1 ď i ď r.

The obstruction to lift the Ar´1-structure of A to an Ar`1-structure lies in

HH0,r`1,r´2
dga pHpAq, HpAqq.

This theorem tells us that O0,r`1 gives rise to an element

O0,r`1 P C
r`1,r´2
0 pHpAq, HpAqq,
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and if the class of O0,r`1 vanishes in HH0,r`1,r´2
dga pHpAq, HpAqq then there

exist maps mr`1 and m1
r which extend the Ar´1-structure of A to an Ar`1-

structure.

In fact the statement is stronger than this and the following Proposition

shows that if an extension exists, then the class of O0,r`1 vanishes and so we

can say that an extension exists if and only if the class of O0,r`1 vanishes in

HH0,r`1,r´2
dga pHpAq, HpAqq.

Proposition 4.3.4. Let r ě 3. Let A be a dg-module such that HpAq and

ZpAq are graded projective R-modules. Assume A is an Ar-algebra, with

structure maps mi P C
i,i´2
0 pA,Aq for 1 ď i ď r. If an extension of the Ar´1-

structure of A to an Ar`1-structure exists, then the class of O0,r`1 vanishes

in HH0,r`1,r´2
dga pHpAq, HpAqq.

Proof. By assumption, we have relations

Bmn “ ´
ÿ

i`j“n`1,
i,ją1

mi ˝mj for n ď r.

Notice that

O0,r`1 “
ÿ

i`j“r`2,
i,ją1

mi ˝mj

“ m2 ˝mr `mr ˝m2 `
ÿ

i`j“r`2,
i,ją2

mi ˝mj.

Now if an extension of the Ar´1-structure to an Ar`1-structure exists, then

we have m1, ..,mr´1 as above and also two new elements, m1
r P C

r,r´2
0 pA,Aq

and mr`1 P C
r`1,r´1
0 pA,Aq with relations

Bm1
r “ ´

ÿ

i`j“r`1,
i,ją1

mi ˝mj (4.7)
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Bmr`1 “ ´m2 ˝m
1
r ´m

1
r ˝m2 ´

ÿ

i`j“r`2,
i,ją2

mi ˝mj. (4.8)

We see that Bmr “ Bm
1
r so Bpmr ´m

1
rq “ 0, and

Bmr`1 `O0,r`1 “ m2 ˝ pmr ´m
1
rq ` pmr ´m

1
rq ˝m2

“ dµpmr ´m
1
rq.

We can check that

BpBmr`1 `O0,r`1q “ Bd
µ
pmr ´m

1
rq “ ´d

µ
Bpmr ´m

1
rq “ ´d

µ
p0q “ 0

and so we have a map Bmr`1 `O0,r`1. Now

Bmr`1 `O0,r`1 “ dµpmr ´m1
rq “ dµpmr ´m1

rq

but also

Bmr`1 `O0,r`1 “ Bmr`1 `O0,r`1 “ O0,r`1

since Bmr`1 P Im B so Bmr`1 “ 0.

Now we have shown that O0,r`1 “ dµpmr ´m1
rq, in particular O0,r`1 P

Im dµ, and so rO0,r`1s vanishes in HH0,r`1,r´2
dga pHpAq, HpAqq.

4.4 Obstruction theory for twisted chain com-

plexes

In this section we consider twisted chain complexes, another special case of

the obstruction theory which may be of independent interest to some readers.

As above these results can be recovered from the more general results in the

following section.
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Here we are working with pN,Zq-bigraded R-modules with all structure

maps in arity one so we can use the isomorphism from Corollary 4.1.4 with

n “ 1 to get

ϕ : H pMorpA,Aqq Ñ MorpH pAq, H pAqq.

We can also specialise the Lie structure from Section 4.2 to get f ˝ g “

p´1qk|g|fg for f P C1,i
k pA,Aq and g P C1,j

l pA,Aq.

Definition 4.4.1. A stage r twisted chain complex, A, is an pN,Zq-bigraded

R-module with maps di : AÑ A of bidegree pi, i´1q for 0 ď i ď r, satisfying

ÿ

i`p“u

di ˝ dp “ 0 for 0 ď u ď r.

Remark 4.4.2. If we have a stage r twisted chain complex, with r ě 2, then

the relation when u “ 1 implies

d0d1 ´ d1d0 “ 0 i.e. Bd1 “ 0,

so d1 P C
1,0
1 pH pAq, H pAqq is well defined. Additionally, the relation when

u “ 2 implies

d0d2 ` d2d0 “ d1d1 i.e. Bd2 “ d1d1,

Thus d̄1d̄1 “ 0 and d̄1 is a differential for H pAq (the induced differential on

MorpHpAq, HpAqq is rd1,´s).

Hence, H pAq is a bicomplex with trivial vertical differential and we can

consider the Hochschild cohomology HHs,1,t
bicx pH pAq, H pAqq.

Theorem 4.4.3. Let r ě 2. Let A be an pN,Zq-bigraded R-module with

vertical differential d0 : Ats Ñ At`1
s such that HpA, d0q and ZpA, d0q are

pN,Zq-bigraded projective R-modules. Assume A is a stage r twisted chain
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complex. Then the obstruction to lift the stage pr ´ 1q-structure of A to a

stage pr ` 1q-structure lies in HHr`1,1,r´1
bicx pH pAq, H pAqq.

Proof. By assumption we have

ÿ

i`p“u

di ˝ dp “ 0 for 0 ď u ď r

or equivalently

Bdn “
ÿ

i`p“u,
i,pą0

´di ˝ dp for 0 ď u ď r.

We begin by defining

Or`1 “
ÿ

i`p“r`1,
i,pą0

di ˝ dp.

Then,

BOr`1 “
ÿ

i`p“r`1,
i,pą0

Bpdi ˝ dpq

“
ÿ

i`p“r`1,
i,pą0

Bpdiq ˝ dp ´ di ˝ Bpdpq

“ ´
ÿ

i`p“r`1,
i,pą0

ÿ

s`t“i,
s,tą0

pds ˝ dtq ˝ dp `
ÿ

i`p“r`1,
i,pą0

ÿ

u`v“p,
u,vą0

di ˝ pdu ˝ dvq

“
ÿ

a`b`c“r`1,
a,b,cą0

´pda ˝ dbq ˝ dc ` da ˝ pdb ˝ dcq

“
ÿ

a`b`c“r`1,
a,b,cą0

p´1qb`1dadbdc ` p´1qbdadbdc

“ 0.
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So, BOr`1 “ 0 and Or`1 gives rise to an element Or`1 P C
1,r´1
r`1 pH pAq, H pAqq.

Now,

B

¨

˚

˝

ÿ

a`b“r`2,
a,bą1

p´1qadadb

˛

‹

‚

“
ÿ

a`b“r`2,
a,bą1

Bpda ˝ dbq

“
ÿ

a`b“r`2,
a,bą1

Bpdaq ˝ db ´ da ˝ Bpdbq

“
ÿ

s`t`v“r`2,
s,tą0,vą1

´pds ˝ dtq ˝ dv ` dv ˝ pds ˝ dtq

“
ÿ

s`t“r`1,
s,tą0

pds ˝ dtq ˝ d1 ´ d1 ˝ pds ˝ dtq

“ Or`1 ˝ d1 ´ d1 ˝Or`1

“ ´rd1,Or`1s.

So Brd1,Or`1s “ 0, and rd1,Or`1s P Im B so rd1,Or`1s “ 0. It can easily

be checked that rd1,Or`1s “
“

d1,Or`1

‰

.

If the class ofOr`1 vanishes in HHr`1,1,r´1
bicx pH pAq, H pAqq then there exists

an element u P C1,r´1
r pH pAq, H pAqq such that rd1, us “ Or`1. We apply the

isomorphism ϕ to obtain an element d1r P C
1,r´1
r pA,Aq such that Bd1r “ 0 and

d1r “ u. Now,

rd1, d1rs “ rd1, d1rs “ rd1, us “ Or`1.

So rd1, d1rs ´Or`1 “ 0 P C1,r´1
r`1 pH pAq, H pAqq and thus there exists an ele-

ment dr`1 P C
1,r
r`1pA,Aq such that

Bdr`1 “ rd1, d
1
rs ´Or`1

“ rd1, d
1
r ´ drs ´

ÿ

i`p“r`1,
i,pą1

p´1qididp.
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The collection td0, d1, ..., dr´1, dr ´ d
1
r, dr`1u form a stage r` 1 twisted chain

complex structure on A. Thus the class of Or`1 is an obstruction and if
“

Or`1

‰

vanishes in HHr`1,1,r´1
bicx pH pAq, H pAqq then we can extend the stage

pr ´ 1q-structure on A to a stage pr ` 1q twisted chain complex structure on

A.

4.5 Obstruction theory for derived A8-structures

In this final section of the chapter we present the two main results, Theo-

rem 4.5.3 and Theorem 4.5.6. Though the two different theorems present a

choice of how to build the structure of a dA8-algebra, the proofs are largely

similar and follow the same line of argument. We begin by defining the

different notions of “partial” dA8-structure.

Definition 4.5.1. Let i ě 0, j ě 1 be integers. An pN,Zq-bigraded R-

module, A, is a dA´ij-algebra if there exist elements mpq P C
q,p`q´2
p pA,Aq for

all 0 ď p ď i, 1 ď q ď j, with pp, qq ‰ pi, jq, satisfying the equations

ÿ

u“c`p,
v“d`q´1

mcd ˝mpq “ 0

for all 0 ď u ď i, 1 ď v ď j with pu, vq ‰ pi, jq.

Definition 4.5.2. Let i ě 0, j ě 1 be integers. An pN,Zq-bigraded R-

module, A, is a dAij-algebra if there exist elements mpq P C
q,p`q´2
p pA,Aq for

all 0 ď p ď i, 1 ď q ď j, satisfying the equations

ÿ

u“c`p,
v“d`q´1

mcd ˝mpq “ 0

for all 0 ď u ď i, 1 ď v ď j.
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mij
rm11,´s

rm02,´s

Horizontal degree

Arity

i1 2 ¨ ¨ ¨

j

¨
¨
¨

2

3

4

m01

Figure 4.1: The maps in a dA´ij-algebra / dAij-algebra

In the following theorem we are going to consider obstructions to extend-

ing a dA´ij-algebra structure to a dAij-algebra structure.

Theorem 4.5.3. Let i ě 1, j ě 2 be integers such that i` j ą 3.

Let A be a vertical bicomplex such that HpAq and ZpAq are bigraded

projective R-modules. Assume A is a dA´ij-algebra with structure maps mpq P

Cq,p`q´2
p pA,Aq .

4.5.3.1 Then after modifying mpi´1qj, the obstruction to extend the modified

dA´ij-algebra structure to a dAij-algebra structure lies in

HH i,j,i`j´3
bicx pH pAq, H pAqq.

4.5.3.2 Then after modifying mipj´1q, the obstruction to extend the modified
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dA´ij-algebra structure to a dAij-algebra structure lies in

HH i,j,i`j´3
dga pH pAq, H pAqq.

Proof. Let B “ rm01,´s, d
τ “ rm11,´s, d

µ “ rm02,´s.

Note that |mpq| “ p` q`pp` q´2q´1 “ 2p`2q´3 is odd for all p ě 0,

q ě 1.

By assumption we have

ÿ

u“a`p,
v“b`q´1

mab ˝mpq “ 0

for all 0 ď u ď i, 1 ď v ď j with pu, vq ‰ pi, jq. Or equivalently,

Bmuv “ ´
ÿ

u“a`p,
v“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq.

We have

Oij “
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq P C
j,i`j´3
i pA,Aq,

where BOij “ 0 by Proposition 4.2.11. So Oij gives rise to an element

Oij P Cj,i`j´3
i pHpAq, HpAqq. For 4.5.3.1 we notice that

B

¨

˚

˚

˚

˚

˝

ÿ

a`p“i`1,
b`q“j`1,

pa,bq,pp,qq‰p0,1q,p1,1q

mab ˝mpq

˛

‹

‹

‹

‹

‚
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“
ÿ

a`p“i`1,
b`q“j`1,

pa,bq,pp,qq‰p0,1q,p1,1q

Bmab ˝mpq ´mab ˝ Bmpq

“
ÿ

a`p“i`1,
b`q“j`1,

pa,bq,pp,qq‰p0,1q,p1,1q

Bmab ˝mpq ´mpq ˝ Bmab

“
ÿ

c`e`p“i`1,
d`f`q“j`2,

pc,dq,pe,fq,pp,qq‰p0,1q,
pp,qq‰p1,1q

´ pmcd ˝mef q ˝mpq

`mpq ˝ pmcd ˝mef q

“
ÿ

c`e“i,
d`f“j`1,

pc,dq,pe,fq‰p0,1q

´ pmcd ˝mef q ˝m11

`m11 ˝ pmcd ˝mef q

“ Oij ˝m11 ´m11 ˝Oij
“ ´rm11,Oijs

“ ´dτOij.

As a consequence, dτ pOijq “ 0 and Oij represents a class in

HH i,j,i`j´3
bicx pH pAq, H pAqq “ H i

pCj,i`j´3
˚ pHpAq, HpAqq, dτ q.

If rOijs “ 0 then there exists u P Cj,i`j´3
i´1 pHpAq, HpAqq such that dτu “ Oij.

By Corollary 4.1.4 there exists m1
pi´1qj P C

j,i`j´3
i´1 pA,Aq such that Bm1

pi´1qj “ 0
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and m1
pi´1qj “ u. So

rm11,m1
pi´1qjs “ dτm1

pi´1qj “ dτu

“ Oij

“
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq

“ rm11,mpi´1qjs `
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p1,1q

mab ˝mpq.

Hence,

rm11,mpi´1qj ´m
1
pi´1qjs `

ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p1,1q

mab ˝mpq “ 0.

By Corollary 4.1.4, there exists mij P C
j,i`j´2
i pA,Aq such that

Bmij “ rm11,mpi´1qj ´m
1
pi´1qjs `

ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p1,1q

mab ˝mpq.

As a consequence, the collection

tmpq|0 ď p ď i, 1 ď q ď j, pp, qq ‰ pi´ 1, jqu Y tmpi´1qj ´m
1
pi´1qju

gives A the structure of a dAij-algebra.
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For 4.5.3.2 we notice that

B

¨

˚

˚

˚

˚

˝

ÿ

a`p“i,
b`q“j`2,

pa,bq,pp,qq‰p0,1q,p0,2q

mab ˝mpq

˛

‹

‹

‹

‹

‚

“
ÿ

a`p“i,
b`q“j`2,

pa,bq,pp,qq‰p0,1q,p0,2q

Bmab ˝mpq ´mab ˝ Bmpq

“
ÿ

a`p“i,
b`q“j`2,

pa,bq,pp,qq‰p0,1q,p0,2q

Bmab ˝mpq ´mpq ˝ Bmab

“
ÿ

c`e`p“i,
d`f`q“j`3,

pc,dq,pe,fq,pp,qq‰p0,1q,
pp,qq‰p0,2q

´ pmcd ˝mef q ˝mpq

`mpq ˝ pmcd ˝mef q

“
ÿ

c`e“i,
d`f“j`1,

pc,dq,pe,fq‰p0,1q

´ pmcd ˝mef q ˝m02

`m02 ˝ pmcd ˝mef q

“ Oij ˝m02 ´m02 ˝Oij
“ ´rm02,Oijs

“ ´dµOij.

As a consequence, dµpOijq “ 0 and Oij represents a class in

HH i,j,i`j´3
dga pH pAq, H pAqq “ Hj

pC˚,i`j´3
i pHpAq, HpAqq, dµq.

If rOijs “ 0 then there exists u P Cj´1,i`j´3
i pHpAq, HpAqq such that dµu “

Oij. By Corollary 4.1.4 there exists m1
ipj´1q P Cj´1,i`j´3

i pA,Aq such that
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Bm1
ipj´1q “ 0 and m1

ipj´1q “ u. So

rm02,m1
ipj´1qs “ dµm1

ipj´1q “ dµu

“ Oij

“
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq

“ rm02,mipj´1qs `
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p0,2q

mab ˝mpq.

Hence,

rm02,mipj´1q ´m
1
ipj´1qs `

ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p0,2q

mab ˝mpq “ 0.

By Corollary 4.1.4, there exists mij P C
j,i`j´2
i pA,Aq such that

Bmij “ rm02,mipj´1q ´m
1
ipj´1qs `

ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p0,2q

mab ˝mpq.

As a consequence, the collection

tmpq|0 ď p ď i, 1 ď q ď j, pp, qq ‰ pi, j ´ 1qu Y tmipj´1q ´m
1
ipj´1qu

gives A the structure of a dAij-algebra.

Instead of building up the structure maps mij one by one, we may consider

taking collections of maps mij with i ` j “ α and look at the obstructions

to building up the structure by adding a whole collection in one go.

Definition 4.5.4. Let r ě 1 be an integer. An pN,Zq-bigraded R-module,
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A, is a dAr-algebra if there exist collections of maps Mα “ pmpqq p`q“α,
pě0,qě1

P
ś

p`q“α
Cq,p`q´2
p pA,Aq for all α ď r, satisfying the relations

¨

˚

˚

˚

˝

ÿ

u“c`p,
v“d`q´1,
uě0,vě1

mcd ˝mpq

˛

‹

‹

‹

‚

u`v“β

“ 0

for all β ď r. Equivalently,

BMβ “ pBmuvqu`v“β “

¨

˚

˚

˚

˚

˝

´
ÿ

u“c`p,
v“d`q´1,

pc,dq,pp,qq‰p0,1q

mcd ˝mpq

˛

‹

‹

‹

‹

‚

u`v“β

.

Remark 4.5.5. If A is a dA1-algebra then A is a vertical bicomplex. The

induced differential on CpA,Aq is B “ rm01,´s.

If A is a dA2-algebra then we have Bm11 “ 0 and Bm02 “ 0, so there are

induced elements m11 P C
1,0
1 pH pAq, H pAqq and m02 P C

2,0
0 pH pAq, H pAqq.

If A is a dA3-algebra then m11 ˝m11 “ 0, so H pAq is a bicomplex with

trivial vertical differential. In addition, we have m02 ˝ m02 “ 0 and m11 ˝

m02`m02 ˝m11 “ 0, so m02 is an associative multiplication on H pAq. Hence

the bigraded module H pAq is a bidga with trivial vertical differential.
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Horizontal degree

Arity

i1 2 3 ¨ ¨ ¨

j
¨
¨
¨

2

3

4

m01

i` j “ r ` 1
i` j “ r

Figure 4.2: The maps in a dAr-algebra/ dAr`1-algebra

Theorem 4.5.6. Let r ą 3 be an integer.

Let A be a vertical bicomplex such that HpAq and ZpAq are bigraded

projective R-modules. Assume A is a dAr-algebra with structure maps

Mα “ pmpqq p`q“α,
pě0,qě1

P
ś

p`q“α,
pě0,qě1

Cq,p`q´2
p pA,Aq. Then the obstruction to lift

the underlying dAr´1-algebra structure on A to a dAr`1-algebra structure

lies in

HHr`1,r´2
bidga pH pAq, H pAqq.

Proof. Let B “ rm01,´s, d
Tot “ rm11 `m02,´s.

Note that |mpq| “ p` q ` pp` q ´ 2q ´ 1 “ 2p` 2q ´ 3 is odd.
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Let us define

Or`1 “ pOijqi`j“r`1

“

¨

˚

˚

˚

˚

˝

ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq

˛

‹

‹

‹

‹

‚

i`j“r`1

P
ź

i`j“r`1

Cj,i`j´3
i pA,Aq.

Then

BOr`1 “ pBOijqi`j“r`1 “ p0qi`j“r`1 “ 0

by Proposition 4.2.11.

So Or`1 gives rise to a collection of elements

Or`1 P
ź

i`j“r`1

Cj,i`j´3
i pHpAq, HpAqq.

We notice that

`

dTotOr`1

˘

uv
“

´

rm11 `m02, pOijqi`j“r`1s

¯

uv

“

´

rm11, pOijqi`j“r`1s ` rm02, pOijqi`j“r`1s

¯

uv

“ rm11,Opu´1qvs ` rm02,Oupv´1qs with u` v “ r ` 2.
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So

B

¨

˚

˚

˚

˚

˝

ÿ

a`p“u,
b`q“v`1,

pa,bq,pp,qq‰p0,1q,p1,1q,p0,2q

mab ˝mpq

˛

‹

‹

‹

‹

‚

u`v“r`2

“

¨

˚

˚

˚

˚

˝

ÿ

a`p“u,
b`q“v`1,

pa,bq,pp,qq‰p0,1q,p1,1q,p0,2q

Bmab ˝mpq ´mab ˝ Bmpq

˛

‹

‹

‹

‹

‚

u`v“r`2

“

¨

˚

˚

˚

˚

˝

ÿ

a`p“u,
b`q“v`1,

pa,bq,pp,qq‰p0,1q,p1,1q,p0,2q

Bmab ˝mpq ´mpq ˝ Bmab

˛

‹

‹

‹

‹

‚

u`v“r`2

“

¨

˚

˚

˚

˚

˚

˚

˝

ÿ

c`e`p“u,
d`f`q“v`2,

pc,dq,pe,fq,pp,qq‰p0,1q,
pp,qq‰p1,1q,p0,2q

´pmcd ˝mef q ˝mpq `mpq ˝ pmcd ˝mef q

˛

‹

‹

‹

‹

‹

‹

‚

u`v“r`2

“

¨

˚

˚

˚

˚

˝

ÿ

c`e“u´1,
d`f“v`1,

pc,dq,pe,fq‰p0,1q

´pmcd ˝mef q ˝m11 `m11 ˝ pmcd ˝mef q

˛

‹

‹

‹

‹

‚

u`v“r`2

`

¨

˚

˚

˚

˚

˝

ÿ

c`e“u,
d`f“v,

pc,dq,pe,fq‰p0,1q

´pmcd ˝mef q ˝m02 `m02 ˝ pmcd ˝mef q

˛

‹

‹

‹

‹

‚

u`v“r`2

“
`

Opu´1qv ˝m11 ´m11 ˝Opu´1qv `Oupv´1q ˝m02 ´m02 ˝Oupv´1q

˘

u`v“r`2

“
`

´rm11,Opu´1qvs ´ rm02,Oupv´1qs
˘

u`v“r`2

“ ´dTotOij.
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As a consequence, dTotpOr`1q “ 0 and Or`1 represents a class in

HHr`1,r´2
bidga pH pAq, H pAqq.

If rOr`1s “ prOijsqi`j“r`1 “ 0 then there exists

U “ puijqi`j“r P
ź

i`j“r

Cj,i`j´2
i pHpAq, HpAqq

such that dTotU “ Or`1. By Corollary 4.1.4 there exists

M 1
r “

`

m1
ij

˘

i`j“r
P

ź

i`j“r

Cj,i`j´2
i pA,Aq

such that BM 1
r “ 0 and M 1

r “ U . So

rm11,m1
pi´1qjs ` rm02,m1

ipj´1qs “

´

dTotM 1
r

¯

ij

“ pdτUqij “ Oij

“
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q

mab ˝mpq

“ rm11,mpi´1qjs ` rm02,mipj´1qs

`
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p1,1q,p0,2q

mab ˝mpq.
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Hence,

¨

˚

˚

˚

˚

˝

rm11,mpi´1qj ´m
1
pi´1qjs ` rm02,mipj´1q ´m

1
ipj´1qs

`
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p1,1q,p0,2q

mab ˝mpq

˛

‹

‹

‹

‹

‚

i`j“r`1

“ 0.

By Corollary 4.1.4, there exists Mr`1 “ pmijqi`j“r`1 P
ś

i`j“r`1

Cj,i`j´2
i pA,Aq

such that

BMr`1 “ pBmijqi`j“r`1

“

¨

˚

˚

˚

˚

˝

rm11,mpi´1qj ´m
1
pi´1qjs ` rm02,mipj´1q ´m

1
ipj´1qs

`
ÿ

i“a`p,
j“b`q´1,

pa,bq,pp,qq‰p0,1q,p1,1q,p0,2q

mab ˝mpq

˛

‹

‹

‹

‹

‚

i`j“r`1

.

As a consequence, the collection tM1,M2, ¨ ¨ ¨ ,Mr´1,Mr ´ M 1
r,Mr`1u is a

dAr`1-algebra structure on A extending the dAr´1-algebra structure.
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Appendix A

Construction of V23

In this appendix we give the details of the structure of the space V23 using

Definition 2.3.1. This is an extra example which may be of interest to readers

wanting to see a case of the construction of a space Vij with i` j “ 5. There

are of course other examples we could consider, such as V32 or V14.

There are 20 trees in the set T 0
2,3. It is straightforward to check that 10

of these trees correspond to copies of T3 ^ pK3q` in V23 and the other 10

correspond to copies of T4^pK2q`^pK2q`. Hence we see that the space V23

is as shown in figure A.1.
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˚

Figure A.1: The space V23
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Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks].
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