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Abstract

Pressure drop of single-phase flow across 90◦ sharp-angled mitre elbows connect-

ing straight circular pipes is studied in a bespoke experimental facility by using

water and air as working fluids flowing in the range of bulk Reynolds number

500<Re<60000. To the best of our knowledge, the dependence on the Reynolds

number of the pressure drop across the mitre elbow scaled by the dynamic pres-

sure, i.e. the pressure-loss coefficient K, is reported herein for the first time.

The coefficient is shown to decrease sharply with the Reynolds number up to

about Re=20000 and, at higher Reynolds numbers, to approach mildly a con-

stant K=0.9, which is about 20% lower than the currently reported value in the

literature. We quantify this relation and the dependence between K and the

straight-pipe friction factor at the same Reynolds number through two new em-

pirical correlations, which will be useful for the design of piping systems fitted

with these sharp elbows. The pressure drop is also expressed in terms of the

scaled equivalent length, i.e. the length of a straight pipe that would produce the

same pressure drop as the elbow at the same Reynolds number.

Air-water flow in horizontal and vertical straight pipes and through 90◦ sharp-

angled mitre elbows, is investigated visually by using high-speed high-resolution

camera. The flow is studied in pipes with three diameters for about 600 conditions

of air-water flows, characterized by superficial velocities in the ranges of j∗
L
=0.297-

1.015 m/s for water and j∗
G
=0.149-33.99 m/s for air. The portion of the pipe

upstream of the elbow is always positioned horizontally, while the portion of

the pipe downstream of the elbow is oriented horizontally or vertically with the

flow moving upward. Plug, slug, slug-annular and annular flows are observed in

horizontal straight pipes, while slug, churn and annular regimes are recorded in

vertical straight pipes. These flow patterns are well predicted by the Mandhane

iii



et al. [1] map for horizontally oriented straight pipes and by the Hewitt and

Roberts [2] map for vertically oriented straight pipes. The prediction of the

flow patterns along the straight portions of the pipe improves by expressing the

maps in non-dimensional form. The changes of the flow patterns as the fluids

pass through the mitre elbows are thoroughly discussed. A multiple membrane

flow structure is observed in the vertical upward flow at much higher Reynolds

numbers, based on the water superficial velocity, than in the vertical downward

case previously reported in the literature. The flow patterns through the elbows

are expressed for the first time in terms of rescaled Mandhane et al. [1] maps,

which simultaneously represent the flow patterns both upstream and downstream

of the elbows. The dimensional analysis proves that a rigorous way to present the

flow regimes of an incompressible isothermal air-water flow for a given geometry

is a map in the space of the Reynolds numbers based on the superficial velocities

of air and water for fixed Froude number.

The pressure drop generated by air-water flows was measured in horizontal and

vertical straight pipes and across 90◦ sharp-angled mitre elbows for the same flow

conditions of visual investigations.Two new pattern-based values of the Lockhart-

Martinelli parameter C are found for the pressure drop in horizontal pipes with

the presence of mitre elbows. A dimensional analysis is employed to scale the

pressure drop data for straight pipes and across the elbows. New pattern-based

empirical correlations are proposed to fit the scaled frictional pressure drops for

the flows through the straight portions of the pipe and across the elbows.

The flow perturbation length upstream of the elbow is located at less than 32.5D∗

for single-phase and two-phase flows, while the flow recovery length downstream

of the elbow was less than 32.5D∗ and 60D∗ for single-phase and two-phase flows,

respectively. The peripheral pressure upstream and downstream of the elbow is

found to be axially symmetric farther than 7D∗ upstream and downstream of the

elbow for horizontal orientation in single-phase and two-phase flows.
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Chapter 1

Introduction

The importance of sharp-angled elbows

Two-phase flow is common in many industrial applications, such as refrigeration,

chemical and oil industries. These systems employ many types of pipe fittings,

like pipe bends, elbows, and sharp-angled elbows to direct the flow according to

the system’s route design. Bends are classified according to the ratio between

the curvature radius of the bend and the pipe diameter C=R∗/D∗. (The symbol

∗ henceforth indicates a dimensional quantity, while quantities with no symbols

are dimensionless). Bends with curvature radii are classified as elbows or pipe

bends, while they are identified as a mitre bends when two pipes join together

without any curvature, as illustrated in Figure 1.1.

D∗

R∗

(a) Pipe bends and round elbows.

D∗

(b) Sharp-angled mitre elbows.

Figure 1.1: Comparison between round elbows and sharp-angled mitre elbows.
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Sharp-angled elbows are used in many applications due to the space limitations

and, to achieve an optimum use of them, it is crucial to predict the pressure drop

across these types of bends in single-phase and two-phase flows.

In single-phase flow, the prediction of the pressure drop across 90◦ sharp-angled

mitre elbows is more complicated than that across round elbows because the

additional pressure drop generated by the flow separation in 90◦ sharp-angled

mitre elbows.

In two-phase flow, the interaction between the working fluids leads to form differ-

ent regimes, which are known as flow patterns. The prediction of two-phase flow

patterns through pipe fittings is important for the design of industrial piping sys-

tems because the flow regimes regulate relevant flow properties like pressure drop

and heat transfer. The effect of mitre elbows on the flow patterns is expected to

be more than the effect of round elbows because the flow separation in the mitre

elbows.

Pressure drop of two-phase flow consists of three components, the pressure drop

due to the change in elevation or head pressure drop ∆p∗st, which is called the static

pressure drop, the pressure drop due to kinetic energy change as a consequence

of phase change, which is known as the momentum pressure drop ∆p∗mom, and

the pressure drop due to the frictional forces between the flow and the pipe walls

and between the working fluids ∆p∗f .

∆p∗tp = ∆p∗st + ∆p∗mom + ∆p∗f . (1.1)

The two-phase pressure drop across elbows is affected by many factors, such as the

flow characteristics, like the phase velocities, physical properties of the working

fluids and flow direction (upward or downward), the structural factors such as the

pipe diameter D∗, curvature ratio C and the elbow orientation. The two-phase

pressure drop across sharp-angled mitre elbows is expected to be more than that

across round elbows because the pressure drop increases as the curvature ratio

decreases.

Although there are many prediction models for two-phase pressure drop in straight

pipes and across elbows, most of these methods are limited to special conditions
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and cannot cover wide ranges of flow conditions. Furthermore, there is no avail-

able study in the literature has been conducted to investigate the behaviour of

two-phase flow patterns through 90◦ sharp-angled mitre elbows and to predict

the single-phase and two-phase pressure drop across these types of fittings.

This work studies the pressure drop of single-phase flow across 90◦ sharp-angled

mitre elbows by employing air and water as working fluids at 500<Re<60000.

Flow patterns are visualized in straight pipes and through the sharp elbows in

horizontal and vertical orientations. Pressure drop measurements are employed

along straight pipes and across mitre elbows to investigate the effect of the elbow

on the two-phase pressure drop, to measure the perturbation length upstream

and downstream of the elbow and to examine the effect of the elbow on the pres-

sure distribution around the pipe periphery. New test facility has been designed

and built for this work to accomplish the visual and the pressure measurements

investigations.

Motivations

The motivations of this study are:

• There is no available study in the literature to investigate the single-phase

pressure drop across 90◦ sharp-angled mitre elbows for Re <30000.

• Flow pattern maps cannot predict the flow patterns accurately for different

flow conditions and most of the available pattern maps were proposed in

terms of dimensional parameters.

• There is no available study in the literature to investigate the behaviour of

two-phase flow patterns across 90◦ sharp-angled mitre elbows.

• There is no reliable method in the literature to predict the two-phase pres-

sure drop across 90◦ sharp-angled mitre elbows.

• Most of the two-phase pressure drop prediction models were proposed in

terms of dimensional parameters without considering the effect of the flow

patterns on the pressure drop of two-phase flow along straight pipes and

across pipe fittings, like elbows and pipe bends.
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Objectives

The objectives of this study are:

• Design and build a new test facility to study the pressure drop of single-

phase and two-phase flows and to visualize the behaviour of two-phase flow

patterns along straight pipes and through 90◦ sharp-angled mitre elbows

for different flow conditions.

• Express the pressure loss coefficient of 90◦ sharp-angled mitre elbows in

terms of Re in the range of 500<Re<60000.

• Investigate the two-phase flow patterns in straight pipes for horizontal and

vertical orientations and express them in terms of non-dimensional pattern

maps.

• Scaling the existed flow pattern maps of Mandhane et al. [1] and Hewitt

and Roberts [2] in terms of non dimensional parameters by using simple

dimensional analysis of Π theorem.

• Study the behaviour of two-phase flow patterns through the horizontal and

horizontal to vertical 90◦ sharp-angled mitre elbows with upward flow and

express the behaviour in terms of non-dimensional Mandhane et al. [1] maps.

• Investigate the pressure drop of two-phase flow along horizontal and vertical

straight pipes and across the horizontal and horizontal to vertical 90◦ sharp-

angled elbows with upward flow.

• Find appropriate values of the parameter C in Lockhart and Martinelli

model to fit the scaled pressure drop data of two-phase flow along straight

pipes with the presence of horizontal 90◦ mitre elbows in terms of Lockhart

and Martinelli [5] multiplier for different flow patterns.

• Propose new pattern-based correlations for pressure drop of two-phase flow

in straight pipes and across elbows for horizontal and vertical orientations

in terms of non-dimensional parameters by using dimensional analysis Π

theorem.
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• Locate the flow perturbation length upstream and downstream of 90◦ sharp-

angled mitre elbows for single-phase and two-phase flows in the horizontal

and vertical orientations.

• Examine the effect of horizontal 90◦ sharp-angled mitre elbows on the pres-

sure distribution at different angles (0◦, 90◦, and 270◦) around the pipe

periphery for single-phase and two-phase flows.

Thesis structure

The thesis is divided into eight chapters and three appendixes as follows: Chapter

2 illustrates the fundamentals and definitions of the two-phase flow parameters

and flow patterns classification in horizontal and vertical straight pipes. Chapter

3 reviews the literature studies of single-phase flow across elbows, two-phase flow

patterns, two-phase pressure drop measurements, the prediction maps of flow

patterns and the two-phase pressure drop prediction models. The specifications

of the experimental test facility, the experimental procedure and the uncertainty

analysis are illustrated in Chapter 4.

The results and discussions of single-phase flow measurements are included in

Chapter 5. Chapter 6 reviews the results and discussions of two-phase flow visu-

alization in straight pipes and across 90◦ sharp-angled mitre elbows in horizontal

and vertical orientations. The results and discussions of two-phase pressure drop

measurements in straight pipes and across 90◦ sharp-angled mitre elbows for hor-

izontal and vertical orientations are included in Chapter 7. The conclusions and

the recommendations are found in Chapter 8.

Three appendixes are added at the end of the thesis. Appendix A reviews the

prediction results of single-phase and two-phase pressure drop in straight pipes

and across 90◦ round elbows. Appendix B depicts the calibration data of the

measurement instruments, while Appendix C illustrates the dimensional analysis,

which are used to scale the experimental data for two-phase flow and two-phase

pressure drop in straight pipes and across 90◦ sharp-angled mitre elbows.
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Chapter 2

Fundamentals and definitions of

two-phase flow

This Chapter illustrates the two-phase flow fundamentals and definitions.

Fundamentals and definitions

Gas-phase quality:

Gas-phase quality x is defined as the ratio between the mass flow rate of the

gas-phase and the total mass flow rate. The gas-phase quality varies from zero

for liquid only flow to one for gas only flow.

x =
ṁ∗

G

ṁ∗
G

+ ṁ∗
L

, (2.1)

where ṁ∗
G

is the gas-phase mass flow rate and ṁ∗
L

is the liquid-phase mass flow

rate.

Void fraction:

Void fraction ε is used to express the gas-phase ratio in the two-phase flow geom-

etry such as chordal (ch), cross-sectional (cs) and volumetric (vol) as:

εch =
l∗
G

l∗
G

+ l∗
L

, (2.2)

where l∗
G

is the length of the gas-phase and l∗
L

is the length of the liquid-phase.

εcs =
A∗

G

A∗
G

+A∗
L

, (2.3)

6



Fundamentals and definitions of two-phase flow

where A∗
G

and A∗
L

are the cross-sectional areas occupied by the gas-phase and the

liquid-phase respectively.

εvol =
V ∗
G

V ∗
G

+ V ∗
L

, (2.4)

where V ∗
G

and V ∗
L

are the volume flow rates of the gas-phase and the liquid-

phase respectively. The cross-sectional void fraction εcs is the most common used

definition in two-phase flow, which can be estimated by using different methods.

Two-phase velocity:

The phase velocity in two-phase flow is defined according to the assumption of

the two-phase flow phenomena.

• Mass velocity: The mass velocity G∗
k

of the phase k is defined as the ratio

between the mass flow rate and the cross-sectional area:

G∗
k

=
ṁ∗

k

A∗ , (2.5)

where ṁ∗
k

is the mass flow rate of the phase k, and A∗ is the cross-sectional

area of the pipe. The total mass velocity of the two-phases is equal to the

summation of the mass velocities for the liquid-phase G∗
L

and the gas-phase

G∗
G
.

• Superficial velocity: The superficial velocity is defined as the ratio between

the volume flow rate of the fluid-phase and the whole cross-sectional area

of the pipe as:

j∗
k

=
V̇ ∗
k

A∗ , (2.6)

j∗
L

=
V̇ ∗
L

A∗ , j∗
G

=
V̇ ∗
G

A∗ , (2.7)

where V̇ ∗
k

is the volumetric flow rate of the phase k.

• Mixture velocity: This velocity is known as the ratio between the total

volumetric flow rate and the pipe cross-sectional area:

U∗
tp

=
V̇ ∗

A∗ = j∗
L

+ j∗
G
. (2.8)

7



Fundamentals and definitions of two-phase flow

• Average velocity: This velocity is defined as ratio between the volumetric

flow rate V̇ ∗
k

of the phase k and the area of the pipe which is occupied by

the phase A∗
k
:

U∗
k,av

=
V̇ ∗
k

A∗
k

, (2.9)

U∗
G,av

=
V̇ ∗
G

A∗ε∗cs

, U∗
L,av

=
V̇ ∗
L

A∗(1− ε∗cs)
. (2.10)

Reynolds number:

Reynolds number Re is defined as the ratio between the inertial and viscous

forces:

Re =
ρ∗U∗b l

∗

µ∗
, (2.11)

where ρ∗ is the fluid density, U∗b is the fluid bulk velocity and l∗ is the length

while µ∗ is the fluid kinematic viscosity. For pipe flow, Re is defined in terms of

pipe diameter D∗ as:

Re =
ρ∗U∗bD

∗

µ∗
. (2.12)

In two-phase flow, Re is defined in terms of superficial velocities as:

Rek =
ρ∗
k
j∗
k
D∗

µ∗
k

, (2.13)

where the subscript k=L for liquid-phase and k=G for gas-phase. Another defi-

nition of the two-phase flow Re is given in terms of mass velocity G∗ as:

Rek =
G∗

k
D∗

µ∗
k

. (2.14)

Froude number:

Froude number Fr represents the ratio between the inertia force and the gravity,

and it can be defined for single-phase flow as:

Fr=
U∗b√
g∗l∗

, (2.15)

where U∗b is the flow velocity, g∗ is the gravitational acceleration and l∗ is the unit

length and it is equal to the pipe diameter D∗ in pipe flow. For two-phase pipe

flow, Frk for the phase k is defined in terms of superficial velocity j∗
k

as:

Frk=
j∗
k√
g∗D∗

. (2.16)
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Weber number:

Weber number for single-phase flow is defined as the ratio between the inertia

force and the surface tension as:

We =
ρ∗U∗b 2D∗

σ∗
, (2.17)

where σ∗ is the surface tension of the working fluid. In two-phase flow Wek for

the phase k is defined in terms of superficial velocity j∗
k

as:

Wek =
ρ∗
k
j∗
k

2D∗

σ∗
. (2.18)

Dean number:

Dean number De is known for single-phase flow as the ratio between the viscous

force and inertia of the flow in curved pipes:

De =
ρ∗U∗bD∗
µ∗

√
D∗

2R∗
= Re

√
D∗

2R∗
, (2.19)

where R∗ is the curvature radius of the bend or the elbow. In two-phase flow,

Dek of the phase k is defined in terms of Rek as:

Dek = Rek

√
D∗

2R∗
. (2.20)

Two-phase flow patterns

The structure of the two-phase flow in the flow region is known as the flow

patterns. In pipe flow, different flow patterns could form and their types depend

on many conditions, like the pipe diameter D∗, the physical properties of the

working fluids, the flow direction and the flow rates of the fluids. The wellknown

flow regimes in horizontal and vertical pipes are illustrated in this Section.

Flow patterns in horizontal pipes

The common observed flow patterns in horizontal pipe flow, which are shown in

Figure 2.1, are:
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bubbly

stratified

wavy

plug

slug

annular

mist

Figure 2.1: Flow patterns in horizontal pipe flow [6]

• Bubbly flow: This type of flow is usually recognized at high liquid-phase

flow rates and low gas-phase flow rates. Gas bubbles occupy the top side

of the pipe because of the density difference between the phases.

• Stratified flow: This regime forms when both liquid and gas phases flow at

low flow rates. The gas-phase flows at the top side of the pipe separated

from the liquid-phase, because the effect of the gravity.

• Stratified wavy flow: When the gas-phase flow rate in stratified flow in-

creases slightly more than the liquid-phase flow rate, the liquid flow at the

bottom of the pipe forms waves with different amplitudes, which is known

as stratified wavy flow. The amplitude of the liquid waves depends on the

velocity difference between the phases, and it cannot reach to the top wall

of the pipe.

• Intermittent flow: This pattern forms at further increase in the gas-phase

flow rate relative to the liquid-phase flow rate of the stratified wavy flow.

This increase in the gas-phase flow rate leads to an increase in the amplitude

of the liquid-phase waves until they touch the top wall of the pipe. The

intermittent flow can be classified into two different flow patterns:

1. Plug flow: This regime is distinguished as elongated bubbles flowing

at the top side of the pipe due to the gravity, while the liquid-phase

flows at the bottom side of the pipe. The length and the diameter
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of the bubbles are controlled by the flow conditions, nevertheless, the

bubble diameter is always smaller than the pipe diameter.

2. Slug flow: At higher gas-phase flow rates, the elongated bubbles of

plug flow change to a gas-phase slugs separated by liquid-phase slugs,

forming the slug flow regime. The diameter of the gas-phase slugs in

this flow pattern is approximately equal to the pipe diameter. Gas-

phase slugs move at the top side of the pipe separated from the bottom

wall of the pipe by a thin liquid-phase layer. This type of flow is not

stable and not recommended in many two-phase flow applications.

• Annular flow: At very high gas-phase flow rates and low liquid-phase flow

rates, the flow of gas-phase occupies the core of the pipe surrounded by a

thin layer of liquid-phase which is known as annular flow. The thickness

of the liquid layer at the bottom side of the pipe is larger than the upper

layer due to the gravity. This regime is stable and recommended in many

two-phase flow applications.

• Mist flow: At very high gas-phase flow rates, the liquid layers of the annular

flow separate from the pipe walls as small liquid-phase droplets flowing in

a continuous gas-phase, to form the mist flow.

Flow patterns in vertical pipes

In two-phase flow through a vertical pipe, the effect of the gravity and the buoy-

ancy generates many differences between the flow patterns of the horizontal and

the vertical pipe flows. Figure 2.2 depicts the common observed flow patterns in

vertical pipe flow.

• Bubbly flow: This regime is generated at very low gas-phase flow rates and

high liquid-phase flow rates. The gas-phase bubbles take a spherical shape

with different sizes much smaller than the pipe diameter.

• Slug flow: At higher gas-phase flow rates, the bubbles size increases to

generate gas-phase slugs separated by liquid-phase slugs, which is known

as slug flow. The diameter of the gas-phase slugs is approximately equal
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bubbly slug churn annular wispy-annular mist

Figure 2.2: Flow patterns in vertical pipe flow [6]

to the pipe diameter and they flow at the centre of the pipe with a thin

liquid layer between them and the pipe wall. The liquid-phase slugs in this

regime may include some small bubbles.

• Churn flow: This regime represents a transition regime between the slug

and the annular flows. The flow is recognised as an up and down oscillating

motion of the liquid layer between the gas-phase slugs and the pipe wall,

during the general flow.

• Annular flow: The only difference between the annular flow in vertical and

horizontal pipes is the thickness of the liquid-phase layers around the gas-

phase core. The liquid layer at the bottom side of the pipe in horizontal

flow is thicker than the top layer due to the gravity, while the layers in

vertical pipe flow are symmetric around the flow axis.

• Mist flow: At further increase in the gas-phase flow rate of the annular

flow, the liquid-phase layers separate from the pipe walls and form a small

liquid droplets flow within the continuous gas-phase flow, which is known

as a mist flow.
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Chapter 3

Literature review

This Chapter reviews the studies of single-phase and two-phase flows through dif-

ferent pipe fittings. Section 3.1 includes the investigations of single-phase pressure

drop across elbows. The two-phase flow visualization studies are found in Section

3.2, while the two-phase pressure drop investigations are included in Section 3.3.

Section 3.4 illustrates the prediction maps of flow patterns in adiabatic two-phase

flow and the prediction models of two-phase pressure drop.

Single-phase flow through elbows and pipe bends

Pipe fittings like elbows and pipe bends are essential in many industrial appli-

cations and the estimation of the pressure drop across these fittings is crucial in

piping systems design. The prediction of the pressure losses across elbows and

pipe bends is more complicated than the straight pipe flow because the local

pressure drop across these fittings is affected by the additional factors generated

by the elbows, like the secondary flow and the flow separation [7]. The pressure

drop across the elbows augments with the decrease of the elbow’s curvature ratio

C=R∗/D∗, where R∗ is the curvature radius of the elbow and D∗ is the pipe

diameter [8]. Sharp-angled mitre elbows generate more local pressure drop than

the round elbows because the even more intense flow separation [9, 10].

Numerous studies in the literature have investigated the pressure loss across round

elbows in terms of pressure loss coefficient K. Schmandt and Herwig [11] used

the numerical simulation (Second Law Analysis SLA) method and experimental
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investigations to examine the validity of the SLA-model in computing the pres-

sure loss coefficient K of 90◦ round elbows with square cross section for laminar

flow conditions at Re<200. The study proved that this numerical method can

be employed to evaluate K of pipe fittings accurately. Schmandt and Herwig

[12] proved that the pressure loss coefficient in 90◦ round elbow is a function of

Reynolds number Re for steady and unsteady laminar flows for Re<200. Ito [13]

proposed an empirical model to evaluate the pressure loss coefficient of smooth

pipe bends for turbulent flow depending on many factors, like the bend angle,

the curvature radius, the pipe diameter and the flow Reynolds number Re as:

• For Re (D∗/2R∗)2 < 91:

K = 0.00068967 α∗ θ∗ Re−0.2
(

2R∗

D∗

)−0.9
. (3.1)

• For Re (D∗/2R∗)2 > 91:

K = 0.00241 α∗ θ∗ Re−0.17
(

2R∗

D∗

)0.84

, (3.2)

where R∗ is the curvature radius, D∗ is the pipe diameter, θ∗ is the angle of the

bend and α∗ is an empirical parameter and it can be evaluated depending on the

curvature ratio of the bend 2R∗/D∗ as:

• For (2R∗/D∗) <19.7:

α∗ = 0.95 + 17.2(2R∗/D∗)−1.96. (3.3)

• For (2R∗/D∗) >19.7:

α∗ = 1. (3.4)

The elbow equivalent length l∗eq, which is the length of a straight pipe that would

produce the same pressure drop as the elbow at the same flow conditions, rep-

resents another way to express the pressure drop across elbows and pipe bends.

Based on wide ranges of experimental data for different working fluids, Wilson

et al. [14] expressed the pressure drop across 90◦ round elbow with C=1 in terms

of the ratio between the equivalent length of the elbow and the pipe diameter
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L=l∗eq/D
∗ for wide range of laminar and turbulent flow conditions. In laminar

flow, the L is highly affected by the Reynolds number, while this effect is negligi-

ble in turbulent flow conditions. The study showed that L varies between 20 and

30 for Re>2000. Depending on experimental data, Beij [15] proposed a graphical

model to predict the equivalent length to diameter ratio L of 90◦ round elbows

in terms of the curvature ratio of the bend C as shown in Figure 3.1. Perry [16]

0 2 4 6 8 10
0

10

20

30

40

50

C

L

Figure 3.1: Equivalent length to diameter ratio for bends in terms of curvature ratio C =

R∗/D∗ [15]

suggested that the value of L for 90◦ round bends is varied between 20 and 60

for turbulent flow conditions. Depending on experimental data, Spedding et al.

[17] found that the L ratio of 90◦ round bend with C=0.65 varies between 43

and 60 for different turbulent flow conditions. Crawford et al. [9, 10] found that

the L ratio of 90◦ sharp-angled elbow (they used a T shape junction with one

blocked end) is approximately equal to 43 for turbulent flow conditions. Further

more, the study proposed an empirical correlation to fit the experimental data

of the pressure drop across 90◦ round elbows with small curvature ratios C for
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turbulent flow as:

L = 2.4792 Cf Re0.25
(

2R∗

D∗

)
+ 1.25

(
2R∗

D∗

)−1.5
Re0.35, (3.5)

where Cf if the Darcy friction factor of straight pipes, which is computed for the

same flow conditions.

Although there are many researchers studied the single-phase pressure drop across

90◦ round elbows, only three researchers have presented experimental results in

sharp-angled mitre elbows. Kirchbach [18] studied the pressure drop across single

and multiple smooth mitre elbows for turbulent water flow at Re>28000. The

study found that the pressure loss coefficient is a function of the elbow angle

for this range of Re, and it is approximately equal to 1.1 for 90◦ sharp-angled

mitre elbow. Further investigations were conducted by Schubart [19] to examine

the effect of the surface roughness on the pressure drop of the turbulent flow

across mitre elbows for Re>20000. The study reported some increase in the

pressure loss coefficient for rough elbows than the smooth ones. For the 90◦ sharp-

angled mitre elbows there is no significant difference in the K values between

the smooth and the rough surface for Re<60000 (the range of interest in the

present study). The pressure loss coefficient of mitre elbows for compressible air

flow expressed by Haidar [20] in terms of elbow’s angle. The study proposed

an empirical correlation to fit the experimental data of pressure loss coefficient

in terms of elbow’s angle. By using STAR-CD computational fluid dynamics,

Moujaes and Aekula [21] investigated the pressure distribution of turbulent air

flow through a 90◦ sharp-angled mitre duct with a rectangular cross section. The

study found that the pressure loss coefficient K varies between 1.22 and 1.3 for

Re>105.

Books on fluid mechanics, for example Munson et al. [22], White [23], and Ren-

nels and Hudson [24], and engineering manuals, for example Crane [25], rely

on Kirchbach [18]’s and Schubart [19]’s data and do not report any dependence

of the pressure-loss coefficient of 90◦ mitre elbows on the bulk Reynolds num-

ber Re. Crane [25] used the experimental data of Kirchbach [18] to correlate

the pressure-loss coefficient with the friction factor in straight pipes at the same

Reynolds number.
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It is evident that there is a dearth of studies relating minor pressure-loss co-

efficients for pipe fittings, especially 90◦ sharp-angled mitre elbows, with the

Reynolds number. A symptomatic sentence on this point is found in White [23]:

“Although K is dimensionless, it is often not correlated in the literature with the

Reynolds number...”.

In the present work, we have carried out an experimental investigation of the

pipe flow through 90◦ sharp-angled circular mitre elbows by varying the bulk

Reynolds number Re = U∗bD∗/ν∗ (where U∗b is the mean velocity and D∗ is the

pipe diameter) between 500 and 60000. Both air and water have been utilized

as working fluids in the same experimental facility and we have employed three

diameters for each fluid.

Two-phase flow visualization

This Section reviews the visual investigations of the flow patterns behaviour

through different types of pipe bends and elbows. The flow patterns observations

studies are reviewed in Section 3.2.1, while the investigations of the influence of

the gravity and the centrifugal force on the flow patterns are found in Section

3.2.2. Studies of the flow patterns behaviour through different types of bends and

the flow perturbation length location due to the elbow are reviewed in Section

3.2.3.

Flow patterns observations

The identification of the flow patterns is important in two-phase flow systems

design because the flow patterns control the local pressure drop and heat transfer

[26]. Numerous studies have been conducted to identify the two-phase flow pat-

terns, with the presence of elbows and pipe bends, and express them graphically

in terms of different parameters as flow patterns maps.

Six flow patterns (bubbly, stratified, plug, slug, wavy and annular) were observed

by Usui et al. [27, 28, 29] for air-water flow through vertical C-shaped 180◦ bends.

The observed flow patterns were expressed in flow patterns maps in terms of j∗
L

and j∗
G

for upward and downward flows.

Gas-water and air-water Upward and downward flows through a vertical 180◦
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bends with ∪ and ∩ shapes were employed by Takemura et al. [30] to investigate

the behaviour of the flow regimes across the bends for different flow conditions.

Four flow patterns (bubbly, slug, annular and froth) were observed and expressed

in pattern maps in terms of liquid-phase and gas-phase superficial velocities.

Five patterns (bubbly, dispersed, intermittent, stratified and annular) were ob-

served by Wang et al. [31, 32] in air-water flow through a horizontal 180◦ bends

with different curvature ratios C. The observed regimes were expressed in diameter-

based flow pattern maps in terms of j∗
L

and j∗
G

for different flow conditions. The

maps illustrate the effect of the bends curvature ratios C on the transition zones

between annular and stratified regimes.

Six flow patterns (stratified-wavy, slug-stratified wavy, intermittent, annular, dry

out and mist) were identified visually by Da Silva Lima [33] in refrigerant R-134a

two-phase flow through a horizontal and vertical C-shaped 180◦ bends with up-

ward and downward flows for different flow conditions. The study reported that

the observed flow patterns through the bends were similar to the flow regimes

in straight pipes with minor differences due to the bend. Padilla et al. [34]

remarked three flow patterns (slug, intermittent and annular) in two-phase re-

frigerant R-1234yf downward flow through vertical C-shape 180◦ bends. The flow

visualization data at the entrance of the bend have good agreement with Wojtan

et al. [35]’s flow patterns map.

Visual investigations by De Oliveira et al. [36] distinguished three patterns (strat-

ified, intermittent and annular) in refrigerant R-134a two-phase flow through 180◦

bends. The flow regimes are well expressed in terms of Wojtan et al. [35]’s flow

patterns map.

A study by Saidj et al. [37] used air-water two-phase flow to investigate the effect

of horizontal to vertical 90◦ bend with upward flow on two-phase flow patterns.

Three different flow regimes were recognized in the horizontal portion of the pipe

upstream of the bend (plug, slug and stratified wavy) and two different patterns

in the vertical portion of the pipe downstream of the bend (slug and churn). The

study showed that the length of the air slugs increased downstream of the bend.

Hsu et al. [38] remarked three patterns (slug, stratified and stratified wavy) in

air-water flow through 90◦ round elbow by using different elbow diameters, cur-
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vature radii and different orientations. Ma et al. [39] employed power spectral

density (PSD) and multiscale entropy (MSE) techniques to identify air-water flow

patterns through vertical C-shape 180◦ bend for different air and water superficial

velocities in upward and downward flow orientations. Five flow regimes (plug,

stratified, slug, annular and dispersed) were observed for upward and downward

flows and expressed in flow pattern maps in terms of air and water superficial

velocities. Dang et al. [40] distinguished five regimes (bubbly, plug, slug, pseudo

slug and stratified) in air water flow across 90◦ round elbow for different flow

conditions. The observed patterns are well presented in terms of Mandhane et al.

[1] map.

The effect of gravity and centrifugal forces on two-phase

flow patterns

The effect of the gravity and the centrifugal force on two-phase flow patterns

through pipe bends has been reported by many researchers for different bends

orientations.

Usui et al. [27, 28, 29] proposed a modified Froude number Frmod to express the

domination forces on the air-water flow through vertical C shape bends for upward

and downward flows. The study showed that gravity overcame the centrifugal

force for (Frmod<1), the centrifugal force is the dominant for (Frmod>1) and both

forces have equivalent action for (Frmod=1). Takemura et al. [30] studied the

effect of gravity and centrifugal force on upward and downward air-water flows

through a vertical 180◦ bends with ∪ and ∩ shapes. They identified the ranges of

flow conditions to dry the top surface of the ∩-shape bends and the inner wall of

the ∪-shape bends, due to the gravity, and express them in terms of superficial

velocities of the working fluids.

Da Silva Lima [33], Da Silva Lima and Thome [41] investigated the effect of the

gravity and the centrifugal forces on two-phase refrigerants flow through 180◦

bends visually. The studies found that the influence of the centrifugal force on

the flow patterns through the bend was more than the effect of the gravity, for the

employed flow conditions in these studies. Padilla et al. [34] used the gas-phase

Froude number FrG to express the effect of the gravity and the centrifugal force
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on two-phase refrigerants R-410A, R-134a and R-1234yf flows across 180◦ bend.

The study reported that the centrifugal force overcomes the gravity for FrG�1,

while the gravity effects the patterns more than the centrifugal force for FrG�1,

similar to the results of Usui et al. [27, 28, 29].

Flow patterns behaviour through elbows and pipe bends

The action of different factors on the two-phase flow through elbows and pipe

bends, like the flow separation, the secondary flow and the gravity, perturbs the

flow patterns through the elbow. Consequently, different phenomenon of the two-

phase flow behaviour through elbows and pipe bends have been distinguished by

many researchers for horizontal and vertical orientations.

Flooding and reverse flow, water-phase flow downward in general upward two-

phase flow, reported by Usui et al. [27], Luo and Wu [42] and Wang et al. [43]

for air-water flow through vertical C-shape 180◦ bends with upward flow and by

Hsu et al. [38] for air-water flow through horizontal to vertical 90◦ round elbow

with upward flow. These phenomena were not observed in downward flows for

the same flow conditions.

Chen et al. [44, 45], Wang et al. [32, 43] and Wang et al. [46] found that the

stratified flow regime changes suddenly to annular through horizontal and vertical

180◦ bends with low curvature ratios, because the centrifugal force overcomes the

effect of the gravity.

The air slug division has been reported by Chen et al. [44], Luo and Wu [42]

and Wang et al. [43] through a vertical ∪ shape 180◦ bends, and by Hsu et al.

[38] through a 90◦ round elbows with upward flow. The divided bubbles coalesce

downstream of the elbow and form a membrane flow, which is a two-phase flow

structure defined by Milan et al. [47] in a vertical downward flow, for different

flow conditions.

The increase in the slug velocity through the bends has been reported by Luo

and Wu [42] for air-water flow through a vertical ∪ shape 180◦ bends and by Hsu

et al. [38] for a 90◦ round elbows with upward flow.
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Flow perturbation length

The location of the flow perturbation length, i.e. the length required by the

flow to recover the patterns observed well upstream of the bend, or the distance

upstream of the bend, downstream of the bend where the flow is not affected

by the bend, represents an important aim of many studies. Although there is

no available study in the literature to locate the perturbation length duo to the

presence of 90◦ sharp-angled mitre elbows, many studies have been conducted to

find the perturbation length upstream and downstream of round elbows and pipe

bends by using visual investigations.

Kim et al. [48] studied air-water bubbly flow through a horizontal 90◦ elbows vi-

sually. The study found that the perturbation length is 43.9 times the pipe inside

diameter D∗ downstream of the elbow. Da Silva Lima [33] and Da Silva Lima and

Thome [41] reported that the effect of 180◦ bends on refrigerant R-134a two-phase

flow lasts longer downstream of the bend, in vertical orientation with downward

flow, than horizontal and vertical orientation with upward flow. The studies did

not remark any effects on the flow patterns upstream of the bends for all orien-

tations. De Kerpel et al. [49] investigated the refrigerant R-134a two-phase flow

through vertical ∪ shape return bend to locate the flow recovery length down-

stream of the bend. The experimental results showed that the effect of the elbow

on the flow patterns lasted up to 30 times the pipe diameter D∗ downstream

of the bend. An experimental study by Padilla et al. [34] used two-phase re-

frigerants (R-1234yf, R-410A and R-134a) flows across C-shape 180◦ bends with

downward flow to locate the flow perturbation length upstream and downstream

of the bend. The maximum perturbation length upstream and downstream of the

bend were located at 10D∗ and 20D∗ respectively. De Oliveira and Barbosa [50]

used air-water flow through vertical C-shape 180◦ bend with different curvature

ratios for wide range of upward and downward flow conditions to examine the

effect of the bend on the frictional pressure drop. The effect of the bend on the

two-phase pressure was located at 15D∗ upstream of the bend for upward and

downward flows, while the effect lasts farther than the last measurement station

at about 71D∗ downstream of the bend. Yadav and Kim [51] and Yadav et al.

[52] found that the distribution of bubbles in air-water flow through a vertical 90◦
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bend with upward flow was not affected farther than 16 and 33 times the pipe

diameter D∗ upstream and downstream of the bend, respectively.

Despite the extensive literature in the field, there is no study investigating the

influence of 90◦ sharp-angled mitre elbows on two-phase flow patterns. In this

work, we are therefore motivated to visualize the behaviour of air-water flows

upstream, through and downstream of mitre elbows in horizontal and vertical

orientations. Important aims are to assess how the flow patterns change character

as the fluids pass through the sharp elbows and to represent these changes by use

of the Mandhane et al. [1] map.

We propose a novel visual representation that allows identifying the flow pat-

terns both upstream and downstream of the elbows in a single non-dimensional

Mandhane et al. map for each elbow orientation.

Two-phase pressure drop

The prediction of pressure drop across pipe fittings, like elbows and pipe bends

represents a crucial aim to the designers of two-phase flow piping systems. The

pressure drop across elbows and pipe fittings is affected by many factors, which

are reported by many studies in the literature. Section 3.3.1 reviews the effect of

elbows structure on the two-phase pressure drop, while Section 3.3.2 illustrates

the effect of the flow conditions.

Effect of the elbow structure

The pipe diameter D∗ and the bend curvature ratio C have been reported by

many authors as effective factors on the two-phase pressure drop across elbows

and pipe bends.

Experimental and numerical investigations by Graf and Neti [53] studied the pres-

sure drop of air-water bubbly flow across 90◦ round elbows. The study reported

that the pressure drop increases as the elbow curvature ratio C decreases. The

experimental and the numerical data have good agreement with Chisholm [54]’s

pressure drop prediction model. Chen et al. [55] studied the frictional pressure

drop of air-water flow through wavy pipes with different diameters, curvature

radii and spacer length for wide range of flow conditions. The experimental re-
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sults show that the two-phase pressure drop increases with the decrease of the

curvature ratio C. New two-phase multiplier correlation was proposed in terms of

the Lockhart and Martinelli [5]’s parameter X and liquid-phase Froude number

FrL. The proposed multiplier fits the experimental data of the study, and Chen

et al. [44]’s study with 15.86% average error. Chen et al. [56] studied the pressure

drop of refrigerant R-410A two-phase flow across ∪ bends with different diameters

and curvature ratios for different mass velocities G∗. The study reported that the

two-phase pressure drop increases as the curvature ratio C decreases. A new two-

phase friction factor was proposed in terms of two-phase Reynolds number Retp,

Weber number We and curvature ratio C. The proposed friction factor fits the

experimental data with ±19.1% average error. Benbella et al. [57] investigated

the pressure drop of air-water flow through internal wavy vertical to horizontal

90◦ elbows with different curvature radii for wide range of flow conditions. The

study examined the effect of the mass velocity G∗, operation pressure p∗ and the

curvature ratio C on the two-phase pressure drop. The pressure drop increases

with the increase of the mass velocity, the system pressure and the decrease of

the curvature ratio. The study proposed a new correlation for two-phase pressure

loss coefficient Ktp in terms of two-phase Reynolds number Retp and the curvature

ratio of the bend C. The proposed correlation fits their data with less than ±10%

average error.

Sánchez Silva et al. [58] carried out an experimental study to examine the pressure

drop of air-water flow across horizontal 90◦ round elbows with different diameters

and curvature ratios for wide range of flow conditions. The study proved that the

pressure drop increases with the decrease of the pipe inside diameter. A new two-

phase multiplier was proposed in terms of Dean number De and homogeneous

volumetric fraction of the phases λL and λG. The predicted pressure drop, which

is obtained by using the new multiplier, fits the experimental data with ±7.75%

average error. Padilla et al. [59] studied the pressure drop of refrigerant R-

410A two-phase flow across horizontal 180◦ bends with different diameters and

curvature ratios for wide range of flow conditions. The study found that the

pressure drop through the bend increases with the decrease of the curvature ratio

C. Pressure drop of air-water flow across 90◦ round elbows studied by Hsu et al.
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[38] for different pipe diameters, curvature ratios, elbow orientations and wide

range of flow conditions. The study reported that the two-phase pressure drop

across the elbow increases with the decrease of the curvature ratio C.

Effect of flow conditions

The pressure drop of two-phase flow across pipe fittings is highly affected by the

flow conditions as reported by numerous studies.

Tran [60] studied the pressure drop of refrigerants R-410A and R-134a two-phase

flow through C-shape 180◦ bends for wide range of flow conditions and bend

orientations. The study found that the pressure drop across the bend increases

with the increase of the mass velocity G∗, the gas-phase quality x and the system

operating pressure p∗. Wang et al. [46] and Chen et al. [56] carried out an experi-

mental study on two-phase refrigerants R-22 and R-410A flow across 180◦ return

bends to examine the effect of the flow conditions on the pressure drop. The ex-

perimental results showed mild effect of the gas-phase quality x on the multiplier

of the two-phase pressure drop across the bend for both working refrigerants. Air-

water pressure drop through a vertical to horizontal 90◦ round elbow investigated

by Spedding and Bénard [61] to examine the effect of flow conditions on the two-

phase frictional pressure drop. The experimental results reported negative values

of the frictional pressure drop in the vertical pipe upstream of the elbow for low

superficial velocities of upward flow. The pressure drop across the elbow increases

with the increase of superficial velocities of the liquid-phase j∗
L

and the gas-phase

j∗
G
. Depending on the experimental data, an empirical correlation was proposed

to fit the ratio between the two-phase equivalent length and the diameter Ltp in

terms of two-phase Reynolds number Retp.

The influence of the mass velocity G∗, gas-phase quality x and oil concentrations

on the pressure drop of refrigerant-oil two-phase flow across wavy pipes investi-

gated by Chen et al. [45] for wide range of flow conditions of R-134a and R-410A

refrigerants. The study showed that the two-phase pressure drop increases with

the increase of the mass velocity and the oil concentration. Domanski and Her-

mes [62] employed the experimental data of Geary [63] and Chen et al. [55] to

propose a new pressure drop prediction model for two-phase pressure drop across
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180◦ bends by using dimensional analysis Π theorem. The proposed model added

a new multiplier to the straight pipe prediction model of Müller-Steinhagen and

Heck [64], which represents the effect of the bend in terms of physical properties

of the working fluids and the bend curvature ratio C. The new correlation fits

75% of the employed data with about ±25% error. The effect of bends orienta-

tion, gas-phase quality x and the total mass velocity G∗ on the frictional pressure

drop of two-phase refrigerant R-134a flow along straight and wavy pipes with

180◦ bends studied by Chen et al. [65]. The experimental results showed that

pressure drop through the bend of vertical orientation were higher than that in

horizontal orientation. Furthermore, the ratio between the bend and straight pipe

pressure drop was highly affected by the total mass velocity of the flow G∗ and

the gas-phase quality x. Sánchez Silva et al. [58] reported that the pressure drop

of air-water flow across horizontal 90◦ round elbow increases with the increase of

air and water superficial velocities.

Padilla et al. [59] found that the pressure drop of refrigerant R-410A two-phase

flow through 180◦ horizontal bends increases with the increase of the total mass

velocity G∗ and the system pressure p∗. Hsu et al. [38] showed that the fric-

tional pressure drop of air-water flow through 90◦ round elbows increases with

the increase of the total mass velocity G∗ and the air mass quality x for horizon-

tal and vertical orientations. The experimental data showed that the frictional

pressure drop across the elbow in vertical orientation, with the flow goes upward,

was larger than that in the horizontal orientation for the same flow conditions.

Bowden and Yang [66] investigated the pressure drop of air-water flow through

90◦ round elbows for wide range of flow conditions. The experimental results

showed mild effect of the air mass quality x on the two-phase pressure loss coef-

ficient. The study employed the modified Lockhart and Martinelli [5] two-phase

multiplier ΦL to fit the experimental data.

This work investigates the pressure drop of air-water flow along the test sections

and across a horizontal and horizontal to vertical 90◦ sharp-angled mitre elbows

for wide range of flow conditions.

25



Literature review

Predictions of two-phase flow patterns and pres-

sure drop

This Section reviews numerous flow patterns prediction maps for two-phase flow

through horizontal and vertical pipes and pressure drop prediction models for

two-phase flow through straight pipes and across 90◦ round elbows. Section 3.4.1

reviews the proposed maps to predict the adiabatic two-phase flow patterns in

straight pipes for horizontal and vertical orientations. The prediction models

of two-phase pressure drop along straight pipes and across elbows are found in

Section 3.4.2.

Flow pattern maps

Flow pattern maps are used to predict the flow regimes, which are usually ex-

pressed as two dimensional graphs with many inside boundaries. The boundaries

represent the transition zones between the flow patterns like the transition region

between the laminar and the turbulent flows in single-phase flow.

The importance of flow patterns prediction is related to their influence on the

local two-phase flow properties, like the pressure drop and the heat transfer [6,

26, 67, 68, 69, 70].

Numerous studies have been conducted to propose the pattern maps of two-phase

flow through different geometries for adiabatic and diabatic flow conditions. Many

of these studies expressed the maps in terms of dimensional parameters including

physical properties of the working fluids, while limited studies employed non-

dimensional parameters [1, 2, 71, 72].

Most of these maps are limited to special experimental conditions and they cannot

predict the flow patterns with acceptable percentage of error at different flow

conditions [6, 73].

This Section illustrates the most cited flow pattern maps of adiabatic two-phase

flow through horizontal and vertical pipes, which are conducted at the same

conditions of the present work.

Depending on wide range of experimental data of many studies [74, 75, 76], Baker

[71] proposed a pattern map for two-phase flow along horizontal pipes in terms of
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superficial mass velocities and fluids properties as shown in Figure 3.2. To cover
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Figure 3.2: Baker’s prediction map for two-phase flow patterns along horizontal pipes [71].

wide range of working fluids, the map employed the parameter Ψ with liquid-

phase mass velocity in the abscissa and the parameter λ with gas-phase mass

velocity in the ordinate. The parameters Ψ and λ are defined in terms of physical

properties of the working fluids as:

Ψ =

(
σ∗
water

σ∗
L

)[(
µ∗
L

µ∗
water

)(
ρ∗
water

ρ∗
L

)2
]1/3

, (3.6)

λ =

(
ρ∗
G

ρ∗
air

ρ∗
L

ρ∗
water

)1/2

. (3.7)

A two-phase flow map was proposed for vertical pipe flow by Hewitt and Roberts

[2] in terms of superficial momentum fluxes of the phases as shown in Figure

3.3. Although the map was proposed in terms of dimensional parameters, it

can predict the flow patterns for wide range of flow conditions with acceptable

percentage of error because it has been proposed depending on experimental data

of air-water and steam-water flows through wide range of pipes diameters.
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Figure 3.3: Hewitt and Roberts [2]’s map for two-phase flow in vertical pipes

Mandhane et al. [1] used wide range of two-phase flow data to propose a flow

patterns prediction map, as shown in Figure 3.4. The map has been proposed

in terms of liquid-phase and gas-phase superficial velocities j∗
L

and j∗
G

to consider

the effect of pipe diameter on the flow patterns. To minimize the generated error

due to the influence of the fluids physical properties on the flow regimes, the

boundaries between the patterns in this map were represented as wide regions

instead of lines. The map has the ability to predict the two phase flow patterns in

horizontal pipes with acceptable percentage of error although it has been proposed

in terms of dimensional parameters.

Depending on theoretical analysis and experimental results Taitel and Dukler [72]

proposed a prediction map of two-phase flow through horizontal pipes in terms of

non-dimensional parameters, which include the physical properties of the fluids

and the pipe diameter, as illustrated in Figure 3.5. The abscissa of the map is

the Martinelli parameter X and it can be defined by using:

X =

(
(∆p∗/∆l∗)L
(∆p∗/∆l∗)G

)1/2

. (3.8)

The parameter K, in the left y ordinate, is proposed to predict the boundary line
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Figure 3.4: Mandhane et al. [1]’s map for horizontal two-phase flow
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Figure 3.5: Taitel and Dukler [72]’s two-phase flow pattern map for horizontal flow
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C between the stratified and the stratified wavy regimes in terms of the physical

properties of the fluids as:

K =

[
ρ∗
G
j∗
G

2j∗
L

(ρ∗
L
− ρ∗

G
)g∗ν∗

L

]1/2
, (3.9)

where ν∗ is the kinetic viscosity. The parameters of the right y ordinate are used

to predict the other patterns. The gas-phase Froude number FrG is employed to

predict the boundaries A and B and it can be defined as:

FrG =

√
ρ∗
G

ρ∗
L
− ρ∗

G

j∗
G√
D∗g∗

. (3.10)

The parameter T in the right y ordinate is used to predict the boundary D and

it can be defined by using:

T =

[
(∆p∗/∆l∗)L
(ρ∗

L
− ρ∗

G
)g∗

]1/2
. (3.11)

Two-phase pressure drop prediction models

Three different approaches were followed by many researchers to predict the pres-

sure drop of two-phase flow:

• Empirical approach: The prediction models of this approach are usually

simple to use, proposed depending on experimental data and most of them

are limited to a special experimental conditions.

• Analytical approach: The proposed models depending on this approach

used complex calculations and need more time to get one solution. Most of

these models depend on mathematical assumptions and limited to a specific

flow conditions.

• Phenomenological approach: The models of this approach employed theo-

retical analysis and experimental data to include the effect the flow patterns

on the two-phase pressure drop. These types of models are not valid for

different types of flow patterns and they need an accurate data of flow

patterns.

This Section includes many empirical models which are proposed to predict the

pressure drop of two-phase flow along straight pipes and across 90◦ elbows. The
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models are classified according to their assumptions to express the two-phase flow

as:

• Homogeneous models: These models assume both phases to flow at the same

velocity, the phases are thermodynamically equilibrium and an appropriate

single-phase friction factor Cf can be used as a two-phase friction factor.

These models are recommended for high velocities flows with low gas-phase

or low liquid-phase fractions, like bubbly and mist flows [70].

• Separate flow models: These models assume each phase to flow separately

at different velocities in the pipe area, proportional with its mass quality,

and the pressure drop in each phase is equal to the total two-phase pressure

drop:

∆p∗

∆l∗

∣∣∣∣
L

=
∆p∗

∆l∗

∣∣∣∣
G

=
∆p∗

∆l∗

∣∣∣∣
tp

. (3.12)

These models express the two-phase pressure drop in terms of two-phase

multiplier and single-phase pressure drop per unit length as will be illus-

trated in this Section [70].

• Chisholm models: These models assume each phase to flow alone in the

whole area of the pipe and a two-phase multiplier can be added to represent

the effect of the other phase, similar to the separate flow models.

Lockhart and Martinelli’s model

This model represents one of the earliest models, which are developed the separate

flow theory. The model suggested four different flow cases, tt when the flow

is turbulent for both phases, vv when the flow is laminar for both phases, vt

when the liquid-phase flow is laminar and the gas-phase is turbulent and tv when

the liquid-phase flow is turbulent and the gas-phase is laminar. The two-phase

frictional pressure drop according to this model is defined as:

∆p∗tp = Φ2
k

∆p∗
k
, (3.13)

where ∆p∗tp is the two-phase pressure drop, Φk is the two-phase multiplier, ∆p∗
k

is

the single-phase pressure drop and the subscript k=L for liquid-phase and k=G
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for gas-phase. The single-phase pressure drop ∆p∗
k

is defined for each phase in

terms of the total mass velocity G∗ as:

∆p∗
L

= 4 Cf L
(

∆l∗

D∗

)
G∗2(1− x)2

(
1

2ρ∗
L

)
, (3.14)

∆p∗
G

= 4 Cf G
(

∆l∗

D∗

)
G∗2x2

(
1

2ρ∗
G

)
, (3.15)

where Cf L and Cf G are the single-phase Darcy friction factors for liquid and gas

phases respectively, and, for turbulent flow, they can be computed by using Bla-

sius [77]’s formula as:

Cf L =
0.079

Re0.25
L

and ReL =
G∗(1− x)D∗

µ∗
L

, (3.16)

Cf G =
0.079

Re0.25
G

and ReG =
G∗xD∗

µ∗
G

. (3.17)

For laminar flow conditions Rek ≤2000:

Cf k =
16

Rek

. (3.18)

The two-phase pressure drop multipliers Φ2
L

and Φ2
G

are correlated by Chisholm

[78] as:

Φ2
L

= 1 +
C
X

+
1

X2
, (3.19)

Φ2
G

= 1 + CX +X2, (3.20)

where X is known as Martinelli parameter, which represents the ratio between

the liquid-phase and the gas-phase pressure gradients, and it can be defined as:

X =
(∆p∗/∆l∗)

L

(∆p∗/∆l∗)
G

. (3.21)

The values of the empirical parameter C in Equations (3.19) and (3.20) were

proposed by Chisholm [78] for different flow conditions as listed in Table 3.1.

Figure 3.6 illustrates the two-phase flow multiplier of Lockhart and Martinelli [5]

model Φk in terms of Matinelli parameter X for wide range of flow conditions.
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Figure 3.6: Two-phase flow multiplier Φk values in terms of Martinelli parameter for wide

range of flow conditions [5].

Table 3.1: Experimental values of the parameter C [78].

Liquid-phase Gas-phase Symbol C
turbulent turbulent (tt) 20

laminar turbulent (vt) 12

turbulent laminar (tv) 10

laminar laminar (vv) 5

The parameter C provides the Lockhart and Martinelli model a unique flexibility

to fit the experimental pressure drop data of two-phase flow along straight pipes

with the presence of different geometries, such as pipe fittings, elbows and pipes

with different cross-sectional areas [40, 66, 79, 80, 81, 82, 83, 84].

Chisholm’s pipe flow model

This model has been developed depending on the assumptions of Chisholm’s

approach by Chisholm [85]. The two-phase multiplier of this model Φ2
Ch

is defined
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as:

Φ2
Ch

=
∆p∗tp
∆p∗

kO

, (3.22)

where ∆p∗
kO

is, liquid-only k = L or gas-only k = G, the frictional pressure drop

and it is defined in terms of total mass velocity G∗ as:

∆p∗
LO

= 4 Cf LO
(

∆l∗

D∗

)
G∗2

(
1

2ρ∗
L

)
, (3.23)

∆p∗
GO

= 4 Cf GO
(

∆l∗

D∗

)
G∗2

(
1

2ρ∗
G

)
, (3.24)

where Cf LO and Cf GO are single-phase Darcy friction factors for liquid-phase and

gas-phase respectively, and they are defined as:

• For turbulent flow conditions Re ≥2000:

Cf LO =
0.079

Re0.25
LO

and ReLO =
G∗D∗

µ∗
L

, (3.25)

Cf GO =
0.079

Re0.25
GO

and ReGO =
G∗D∗

µ∗
G

. (3.26)

• For laminar flow conditions Re ≤2000:

Cf kO =
16

RekO

, (3.27)

where the subscript kO=LO for liquid-phase and kO=GO for gas-phase.

The two-phase multiplier Φ2
Ch

is correlated as:

Φ2
Ch

= 1 + (Y 2 − 1)
[
Bx2−n/2(1− x)2−n/2 + x2−n

]
, (3.28)

where Y , B and n are experimental parameters and x is the gas-phase mass

quality. The parameter Y in (3.28) represents the ratio between the liquid-only

and the gas-only single-phase pressure drops, and it can be defined as:

Y 2 =
∆p∗

GO

∆p∗
LO

. (3.29)

The parameter B in (3.28) is an empirical parameter and it was correlated in

terms of Y values as:
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• For 0 < Y < 9.5:

B =
55

G∗0.5
for G∗ ≥ 1900 kg/m2.s,

B =
2400

G∗
for 500 ≥ G∗ ≤ 1900 kg/m2.s,

B = 4.8 for G∗ ≤ 500 kg/m2.s.

(3.30)

• For 9.5 < Y < 28:

B =
550

Y G∗0.5
for G∗ ≤ 600 kg/m2.s,

B =
21

Y
for 500 ≥ G∗ > 600 kg/m2.s.

(3.31)

• For Y > 28:

B =
1500

Y 2G∗0.5
. (3.32)

Depending on experimental data, it is found that the parameter n in Equation

(3.28) has the value of n=0.25 for gas-phase qualities x<0.5 with ±0.02% accu-

racy.

Friedel model

This model employed the separated flow model to represent te pressure drop in

straight pipes in terms of two-phase multiplier and single-phase liquid pressure

drop. The frictional two-phase pressure drop according to this model is defined

as:

∆p∗
tp

= ∆p∗
LO

Φ2
Fri, (3.33)

where ∆p∗
LO

is single-phase pressure drop for liquid-phase only as defined in (3.23)

while Φ2
Fri is the two-phase multiplier and it can be expressed as:

Φ2
Fri = A1 +

3.24A2A3

Fr0.045
H

We0.035
L

. (3.34)

The factors in equation (3.34) are defined as follows:

A1 = (1− x)2 + x2
ρ∗
L
Cf GO

ρ∗
G
Cf LO

, (3.35)

where Cf LO and Cf GO are the Darcy friction factors for liquid-phase only and gas-

phase only as defined in (3.25) and (3.26).

A2 = x0.78(1− x)0.224. (3.36)
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A3 =

(
ρ∗
L

ρ∗
G

)0.91(
µ∗
G

µ∗
L

)0.19(
1− µ∗

G

µ∗
L

)0.7

. (3.37)

FrL =
G∗2

g∗D∗ρ∗
H

2
, (3.38)

where G∗ is the total mass velocity and ρ∗
H

is the homogeneous density and it can

be defined as:

ρ∗
H

=

(
x

ρ∗
G

+
1− x
ρ∗
L

)−1
. (3.39)

WeL =
G∗2D∗

σ∗ρ∗
H

. (3.40)

Müller-Steinhagen and Heck’s model

A simple model proposed by Müller-Steinhagen and Heck [64] to predict the

frictional pressure drop of two-phase flow in straight pipes. The frictional pressure

drop according to this model is defined in terms of gas-phase pressure drop and

other parameters as:

∆p∗tp=G
′
(1− x)

1
3 + ∆p∗

GO
x3, (3.41)

where x is the gas-phase mass quality and G
′

is known as Muller parameter and

it can be expressed as:

G
′
=∆p∗

LO
+ 2(∆p∗

LO
−∆p∗

GO
)x, (3.42)

where ∆p∗
LO

and ∆p∗
GO

are liquid-only and gas-only pressure drops respectively and

they can be expressed in terms of the total mass velocity of the flow G∗ as:

∆p∗
LO

=4 Cf LO
G∗2

2D∗ρ∗
L

(3.43)

∆p∗
GO

=4 Cf GO
G∗2

2D∗ρ∗
G

(3.44)

where Cf LO and Cf GO are liquid-only and gas-only Darcy friction factors and they

are defined in Equations (3.25), (3.26) and (3.27).

Chisholm’s bends model

This model used Chisholm’s approach to express the pressure drop of two-phase

flow across 90◦ bends by modifying the parameter B of Chisholm [85]’s model in
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terms of liquid-only pressure loss coefficient KLO and the curvature ratio of the

bend R∗/D∗ as:

B = 1 +
2.2

KLO

(
2 + R∗

D∗
) . (3.45)

The two-phase pressure drop across 90◦ round elbows according to this model is

defined as:
∆p∗tp
∆p∗

LO

∣∣∣∣
b

= 1 +

(
ρ∗
L

ρ∗
G

− 1

)[
Bx(1− x) + x2

]
, (3.46)

where ∆p∗
LO

is the liquid-only pressure drop across the bend and it can be ex-

pressed as:

∆p∗
LO

=
Cf LOG∗L2LL

2ρ∗
L

, (3.47)

where Cf LO is the liquid-only Darcy friction factor, defined in (3.25), G∗ is the

mass velocity, ρ∗ is the density and LL is the ratio between the equivalent length

of the bend leq and the pipe diameter D∗.

Sookprasong et al.’s model

This model employed the homogeneous approach to propose a new multiplier for

two-phase pressure drop across 90◦ round elbows in terms of the densities and

the superficial velocities of the working fluids as:

Φ2 =
(ρ∗

L
j∗
L

+ ρ∗
G
j∗
G
)(j∗

L
+ j∗

G
)

ρ∗
L
j∗2

L

. (3.48)

The pressure drop of two-phase flow is defined according to this model as:

∆p∗tp
∆p∗

L

∣∣∣∣
b

= Φ2, (3.49)

where ∆p∗tp is the two-phase pressure drop across the elbow, ∆p∗
L

is the liquid-

phase pressure drop across the elbow, which is defined in terms of liquid-phase

pressure loss coefficient KL as:

∆p∗e = KL

ρ∗
L
j∗
L

2

2
. (3.50)
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Chapter 4

Experimental test facility and

procedure

This Chapter illustrates the specifications of the test facility, the methodology

of data reduction, the experimental flow conditions, the experimental procedure

and the uncertainty calculations procedure.

Test facility design and specifications

A new experimental test rig was designed and built for this work in the Depart-

ment of Mechanical Engineering at The University of Sheffield. The facility was

composed of two main lines, one for air and one for water, a phase mixer, and test

sections equipped with 90◦ sharp-angled mitre elbows as shown schematically in

Figure 4.1. The rig was designed to operate with single-phase flow, with air or

water, and air-water two-phase flow.

Water line

Water line consists of pumping unit, water filters, water flow meters and water

tanks. The pumping unit was designed to feed the test sections with wide range of

water flow rates at a constant operating pressure and it was assembled from many

components as illustrated in Figures 4.2 and 4.3. A Penstar ULTRA3-7 variable

speed pump operating at constant pressure and a maximum flow rate of 80l/min

(litres per minute) was employed to pump water from a water storage tank. The

pump was controlled automatically by a control unit which was assembled by the
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Figure 4.1: Schematic diagram of air-water test facility.

supplier from a pressure vessel, a pressure transducer, a pressure gauge, a variable

speed controller and a potentiometer. The unit had the function of controlling

the pump velocity automatically to obtain a constant pressure at the exit of the

pump for all the flow rates. The potentiometer and the pressure gauge were

employed to set the pressure to the operating value up to 6bar. In case of any

change in the flow pressure at different flow rates the pressure transducer sent a

signal to the variable speed controller to change the pump speed automatically

and to keep the pressure constant at the new flow rate.

Two water filters were employed to minimize the intrusion of impurities in the

test sections. The first one was a horizontal SpiroTrap MB3 filter, which was

located at the exit point of the water storage tank after a ball valve as shown in

Figures 4.2 and 4.4. The second filter was a 1mm mesh size in-line strainer, which

was located after the pump as shown in Figures 4.2 and 4.4. The water flow rates

were measured by two turbine type flow meters, Omega FTB-101 and Omega

FTB-104, to cover two wide ranges of volume flow rates: 1.3-13.2 l/min and 6.6-

60 l/min, respectively. The flow meters were calibrated by the manufacturer with

a ±0.5% reading accuracy. A six digits rate meter, Omega DPF-702, was utilized

to display the flow meters readings in l/min. Manual ball valves were employed

to separate the air or water lines when operating the rig with single-phase flow.

Figure 4.5 shows pictures of the turbine flow meter and the digital ratemeter.
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Figure 4.2: Specifications of pumping unit.

(a) Pressure gauge and transducer.

potentiometer
on/off

(b) Pumping unit control box.

Figure 4.3: Pumping unit control.

(a) SpiroTrap MB3 water filter. (b) In-line water filter.

Figure 4.4: Water filters.
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(a) Flow meter. (b) Digital ratemeter.

Figure 4.5: Water flow measurement kit.

Figure 4.6: Water flow control valves.

Two different screw-down valves were employed to regulate the water flow man-

ually, a 3/4 in globe valve and a 1/2 in needle valve, which were located after

the FTB-104 and the FTB-101 flow meters respectively. The valves are shown in

Figure 4.6, and their locations are shown in Figure 4.1.

A stainless steel tank with 150 litres capacity was employed as a water storage.

Another tank of a 20 litres capacity was connected to the water line as illustrated

in Figure 4.1, which had the function of phase-separation, when the rig operates

with two-phase flow, the air rises up to the atmosphere, while the water flows

down to the main storage tank to pump it again.
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Figure 4.7: Pressure control valve (left) and air flow meter(right).

Air line

The air line was designed to supply the test sections with wide range of air flow

rates. Air was supplied by an air compressor at 7bar pressure and regulated to

the required flow rate up to 500 standard l/min by a pressure valve. An air

filter-dryer was located before the air flow meter to supply the test sections with

clean dry air. Air flow rate was regulated by a 1/2 in needle valve manually.

An air mass flow meter, Omega FMA-1612A-v2, was used to measure the flow

rates between 2.5 and 500 standard l/min. The flow meter was calibrated by

the manufacturer with an accuracy of ±0.8% of the reading value and ±0.2% of

the full scale value (FS). The pressure valve and the air flow meter are shown

in Figure 4.7. A spring type check valve was located after the air flow meter, as

illustrated in Figure 4.1, to block any water flow toward the air line when the rig

operates with water or two-phase flow.

Phase-mixer:

An air-water phase-mixer was designed and constructed for this work to generate

the two-phase flow. The mixer was constructed from a 4 in diameter upvc pipe

with 5mm wall thickness and 250mm length. Two jets of water entered the mixer

from opposite sides and perpendicularly to the axis of the mixer. Air entered

the mixer parallel to its axis through a section of porous media characterized

by holes with 0.1mm diameter. The air-water mixture left the mixer from the

opposite side of the air entrance, as illustrated in Figure 4.8. A flow stabilizer was

designed and constructed to reduce the flow circulation at the exit of the phase-

mixer. The stabilizer was assembled from an acrylic pipe with 21mm diameter,
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Figure 4.8: Schematic diagram and picture of the phase-mixer.

(a) (b)

Figure 4.9: Schematic diagram (a) and picture (b) of the flow stabilizer.

2mm wall thickness and 400mm length. Cross fins with 2mm thickness were used

to divide the cross section of the pipe to obtain four streams as shown in Figure

4.9.

Test sections

Six test sections, three for flow visualization and three for pressure measurements

investigations, were employed in this study. The test sections were constructed

from commercial acrylic pipes with a wall thickness of 2mm, internal diameters

D∗=11, 16 and 21mm and a total length of 240D∗ for all pipe diameters (100D∗

upstream and 140D∗ downstream of the elbow to ensure full recovery of the

flow). For each test section, an additional straight 100D∗-long pipe was located

upstream of the section to ensure fully developed flow condition, as illustrated

in Figure 4.1. Figures 4.10 and 4.11 show the schematic diagrams of the flow

visualization and the pressure drop measurement test sections.

The test sections were assembled from segments, which were joined together by
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Figure 4.10: Schematic diagram of the flow visualization test sections.
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Figure 4.11: Schematic diagram of the pressure drop measurements test sections and mea-

surements taps locations.
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Figure 4.12: Schematic diagram and pictures of the connecting flanges.

pressure tapmitre elbow

Figure 4.13: Schematic diagram and picture of 90◦ sharp-angled mitre elbow.

using an acrylic flanges. The flanges were designed carefully to seal the junctions

between the pipe segments by using O-rings in order not to perturb the flow as

shown in Figure 4.12. The 90◦ sharp-angled elbows were constructed by cutting

two pipe pieces accurately at 45◦, with maximum error of ± 0.5◦, and by joining

them accurately by using a special acrylic welding solution. Figure 4.13 shows the

schematic diagram and picture of the mitre elbows. The test section was fixed to

an aluminium frame, which was constructed from a square Bosch Rexroth bars

with 30×30mm cross section and 8mm slot. The frame was designed to hold

the different test sections and the connecting pipes for horizontal and vertical

orientations. The portion of the pipe upstream of the elbow was always positioned

45



Experimental test facility and procedure

(a) Acrylic pipe clip. (b) Abs pipe clip.

Figure 4.14: Test sections pipe clips.

horizontally, while the portion downstream of the elbow was oriented horizontally

or vertically with the fluids moving upward. Different sizes of pipe clips were

utilized to fix the test sections and the other pipes to the frame as shown in

Figure 4.14. The frame dimensions and specifications are illustrated in Figure

4.15.

Ten measurement stations (A-J) were located along the pressure drop measure-

ments test sections, to measure the pressure distribution along the straight parts

of the pipe and across the elbow, as shown in Figure 4.11. The pressure taps were

designed and machined from the same material of the test sections. Holes with a

diameter of 1mm were drilled radially through the pipe walls to allow the fluid to

flow through the pressure taps without perturbing the flow inside the pipe. An

M5 push-in fittings with 6mm flexible tubes were used to connect the pressure

taps with the pressure measurement instruments. Additional pressure taps were

located at four measurement stations, stations C-F, upstream and downstream of

the elbow of the 16mm diameter test section, as shown in Figure 4.16, to measure

the pressure of single-phase and two-phase flows at different angles around the

pipe periphery (0◦ at the top, 90◦, and 270◦) for horizontal orientation. Plastic

ABS pipes with 25mm diameter were employed to connect the test section with

the water storage tank and the pumping unit.

Data acquisition

Two differential pressure transducers, Omega PX409-2.5DWU10V and Omega

PX409-10WDWUI, were used to measure the pressure drop along the test sec-
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Figure 4.15: Schematic diagram and pictures of the frame.
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Figure 4.16: Schematic diagram and picture of pressure measurement taps.
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Figure 4.17: The block diagram of the LabView code.

tions when the rig operates with single-phase water or air-water two-phase flows.

The transducers were operated in a range of (0−17.2 kPa and 0−2.5 kPa) re-

spectively and they were calibrated by the manufacturer with a full scale (FS)

best straight line (BSL) accuracy of ±0.08%. An MK Type4 differential water

manometer was employed to measure the pressure drop of the air flow, operated

in a range of 0−4.9 kPa with ±0.1% of the reading value and ±1 Pa accuracy

at 20◦C. An absolute pressure transducer, Omega PX309-100G5V, was used to

measure the absolute pressure in a range of 0 − 680 kPa and it was calibrated

by the manufacturer with a ±0.25% FS BSL accuracy. The pressure signals

were recorded by a National Instrument data acquisition system with 16-bit res-

olution, which was consisted of an NI-USB-6002 card for voltage signal and an

NI-9203-analogue-channel with an NI-CDAQ-9171-USB-Chasis for current sig-

nals. A special Labview code was utilized for the logging and processing of the

pressure measurements. The block diagram of the Labview code is illustrated

in Figure 4.17. The temperature of the flow was measured at each experimental

test by using type K thermocouple with a Picco data logger. The temperature

measurement kit was carefully calibrated against an accurate thermometer with

less than ± 0.5◦C accuracy. The calibration data of the flow, temperature and

pressure measurement instruments are illustrated in Appendix B. A Phantom

v210 high-speed high-resolution camera was used to video record the two-phase

flow patterns in the straight pipes upstream of the elbow (at horizontal orienta-

tion), downstream of the elbow (at vertical orientation) and through the elbow
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Figure 4.18: Schematic diagrams and pictures of camera position.

at both orientations at 1750 frames per second. White acrylic sheets with white

LED light were employed as a monitor background to obtain optimum quality

videos. Acrylic mirrors inclined with 45◦ were located close to the elbow to cap-

ture both of the side view and the top view of the flow across the horizontal

elbow as illustrated in Figure 4.18. The videos at different flow conditions were

analysed to distinguish the observed flow patterns and to investigate the flow

regimes behaviour through the elbows for both orientations.

50



Experimental test facility and procedure

Experimental procedure

This Section includes the experimental procedure of the single-phase and the

two-phase flows investigations for horizontal and vertical orientations. Lemmon

et al. [88] was used to calculate air and water physical properties at measured

temperature and pressure for each experiment. All of the experiments were con-

ducted at about 25◦C. The maximum change of the fluid temperature in all the

experiments was about 5◦C.

In single-phase flow, the pressure was measured along each test section for differ-

ent flow conditions as listed in Table 4.1.

Table 4.1: Water and air flow rates.

D∗ (mm) V̇ ∗
L

(l/min) V̇ ∗
G

(standard l/min) ReL ReG

11 4 - 22 5 - 460 8486 - 47522 620 - 63225

16 4 - 32 10 - 500 6016 - 48125 882 - 44114

21 4 - 40 15 - 500 9173 - 45866 1010 - 33669

All of the pressure measurements were started after obtaining a constant mean

flow rate. Several experiments were repeated at different dates to check the

repeatability of the measurements. The maximum deviation of the measured

data across all the repeated experiments was about 0.7%.

In two-phase flow, all experiments were started by regulating the water flow rate

to the needed value manually. After obtaining a constant mean water flow, the

mixture was created by manually regulating the air flow rate to the needed value

by using a needle valve. The data, videos for flow visualization and pressure drop

for pressure drop investigations, were then registered after obtaining steady state

mixture flow. These steps were repeated for all test sections in horizontal and ver-

tical orientations for different water and air superficial velocities (j∗
k

= V̇ ∗
k
/A∗),

where V̇ ∗ is the volumetric flow rate, k is the fluid ,L for water and G for air, and

A∗ is the pipe cross-sectional area. In the horizontal orientation, five different

water superficial velocities were used at D∗=21mm, while three different water

velocities were used in the other test sections with D∗=11 and 16mm. About 30,

20 and 15 different air superficial velocities were used at each water velocity at
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D∗=21, 16 and 11mm respectively in the ranges that are listed in Table 4.2. In

Table 4.2: Flow parameters in the horizontal configuration.

D∗ (mm) j∗
L

(m/s) j∗
G

(m/s) ReL ReG

11 0.51 - 0.76 0.51 - 33.82 5173 - 10346 293 - 19559

16 0.55 - 0.79 0.26 - 30.59 7945 - 11367 208 - 24956

21 0.297 - 0.68 0.15 - 24.75 5598 - 12782 158 - 26456

the vertical orientation, 5 different water velocities were used for each test sec-

tion, while 30, 20 and 12 different air velocities were used for each water velocity

at D∗=21, 16 and 11mm respectively in the ranges that are listed in Table 4.3.

Figure 4.19 shows the flowchart of the experimental procedure for the flow visual-

Table 4.3: Flow parameters in the vertical configuration.

D∗ (mm) j∗
L

(m/s) j∗
G

(m/s) ReL ReG

11 0.68 - 1.02 0.51 - 30.44 6897 - 10346 293 - 17603

16 0.34 - 0.68 0.26 - 33.99 4889 - 9778 208 - 27729

21 0.279 - 0.50 0.15 - 24.75 5598 - 9330 158 - 26456

ization and the pressure drop measurements of two-phase flow. The pressure drop

measurements between different measurement stations were repeated at different

time intervals to examine the repeatability of the measurements. The maximum

deviation between the repeated experiments was less than 5% for all of the test

sections in both horizontal and vertical orientations.

Methodology of data reduction procedure

This Section includes the data analysis procedure for single-phase and two-phase

pressure drop investigations and the method of the uncertainty analysis.

Single-phase flow

Single-phase pressure drop along the test section were measured to compute the

Darcy friction factor Cf , the elbow equivalent length l∗
eq

and the pressure loss

coefficient K of the sharp elbow. Single-phase Darcy friction factor in straight
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Figure 4.19: Flow chart of experimental procedure for two-phase flow visualization and pres-

sure drop measurements.
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Figure 4.20: Schematic diagram of pressure drop along the test section

pipes Cf was calculated by using:

Cf =
∆p∗D∗

0.5∆l∗ρ∗U∗b 2
, (4.1)

where ∆p∗ is the measured pressure drop, D∗ is the pipe diameter, ∆l∗ is the

distance between the measurement stations, ρ∗ is the density of the utilized fluid

and U∗b is the bulk velocity.

Pressure drop across the elbow was computed by using the pressure drop along

the straight pipes upstream and the downstream of the elbow as reported by Ito

[13], Crawford et al. [10] and Spedding et al. [17]. Figure 4.20 shows a schematic

diagram of the pressure drop along the test section with the presence of the

elbow. As displayed in Figure 4.20, the pressure-drop through the elbow was

computed as the difference between the intercepts on the vertical axis of the two

best-fit straight lines defining the straight-pipe pressure gradients upstream and

downstream of locations C and G (dashed blue lines). The scaled equivalent

length l∗
eq

was obtained by subtracting the intercepts of the two best-fit straight

lines on the horizontal axis. After obtaining the pressure drop across the elbow,

the pressure loss coefficient K is evaluated by using:

K =
∆p∗|e

0.5ρ∗U∗b 2
, (4.2)
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where ∆p∗|e is the pressure drop across the sharp elbow. The equivalent length

of the elbow l∗
eq

was computed by using:

l∗
eq

=
∆p∗|e

(∆p∗/∆l∗)up
, (4.3)

where (∆p∗/∆l∗)up is the pressure gradient along the straight pipe upstream of

the elbow.

Two-phase flow

In two-phase flow investigations, pressure drop measurements along the test sec-

tions for both orientations were employed to evaluate the pressure drop across

the elbow by applying the same procedure that was used in single-phase flow.

The frictional pressure drop per unit length along the straight portions of the

pipe is computed as follows [89, 90]:

∆p∗

∆l∗

∣∣∣∣
f

=
∆p∗

∆l∗

∣∣∣∣
meas

−∆p∗

∆l∗

∣∣∣∣
st

sin θ∗, (4.4)

where the angle θ∗ is measured with respect to the vertical line, the subscript

“meas” denotes the total measured pressure drop per unit length and the sub-

script “st” indicates the static pressure drop per unit length due to the effect of

gravity and defined as:

∆p∗

∆l∗

∣∣∣∣
st

= g∗ [(1− ε) ρ∗
L

+ ερ∗
G
] , (4.5)

where ε is the gas-phase void fraction, ρ∗
L

is the density of water and ρ∗
G

is the

density of air. Many empirical correlations were proposed to predict the gas-

phase void fraction, like Lockhart and Martinelli [5], Spedding and Chen [91] and

Baroczy [92]. The average deviation between the void fraction results by using

these correlations, for our flow conditions, was less than ±5%. Therefore, the

method of Baroczy [92] was used in our calculations as:

ε =

[
1 +

(
1− x
x

)0.74(
ρ∗

G

ρ∗
L

)0.65(
µ∗

L

µ∗
G

)0.13
]−1

, (4.6)

where x=ṁ∗
G
/(ṁ∗

G
+ ṁ∗

L
) is the gas-phase mass quality.
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Table 4.4: The uncertainty in the measurements instruments.

Device Model uncertainty

Water flow meter FTB-104 ±(0.5% of reading)

Water flow meter FTB-100 ±(0.5% of reading)

Absolute pressure transducer PX309-100G5V ±(0.25% FS BSL)

Diff. pressure transducer PX409-2.5DWU10V ±(0.08% FS BSL)

Diff. pressure transmitter PX409-10WDWUI ±(0.08% FS BSL)

Diff. alcohol manometer Air flow Type 4 ±(1% Reading)

Air flow meter FMA-1612A-V2 ±(0.8% Reading + 0.2% FS)

Thermocouple Type K ±(0.5%)

Uncertainty calculations

There were two main sources of uncertainty: the uncertainty associated with the

measurement instruments and the uncertainty in the measured values. The un-

certainties of the measurement instruments were provided by the manufacturers,

as discussed in Section 4.1.5 and listed in Table 4.4.

The uncertainties in the measured values included the uncertainty of the pipe

diameter D∗, the distance between the measurement stations ∆l∗, the surface

roughness of the pipes, the elbow angles and the fluids physical properties. Each

pipe diameter was measured carefully by a micrometer at five different locations

with a ±0.1mm maximum error, while the surface roughness of the pipe was

measured by a Dektal 150 surface profiler with a ±2% uncertainty. The distances

between measurement stations ∆l∗ were measured with a ±1mm maximum error

and the angle of the elbows was measured by an accurate protractor with a

±0.5◦ uncertainty. The uncertainty in the fluid properties was computed for each

experiment by using the NIST Refprop database [88]. The square root of the sum

of the sequence method was used to obtain the total uncertainty of a measured

quantity f = f(x0, .., xN), as follows [93]:

δf =

√√√√ N∑
n=0

(
∂f

∂xn
δxn

)2

, (4.7)

where δxn is the experimental error associated with the variable xn.

The uncertainties are indicated by error bars in the graphs of Chapters 5, 6 and
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7. For clarity, error bars are only shown for data corresponding to three or four

representative points in some figures rather than displaying the error bars for all

data points. The average of the absolute error percentage between the predicted

and the experimental values was computed by using:

average abs. error =
1

N

N∑
1

∣∣∣∣predicted value - experimental value

experimental value

∣∣∣∣× 100(%).

(4.8)
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Chapter 5

Single-phase flow results

This Chapter includes the experimental results of the single-phase pressure drop

measurements along straight pipes and across 90◦ sharp-angled mitre elbows.

Section 5.1 reviews the results and discussions of the friction factor in straight

pipes. The results and discussions of the pressure drop across 90◦ elbows are

found in Section 5.2, while the measurements of peripheral pressure are included

in Section 5.3.

Friction factor in straight pipes

Before studying the local pressure drop due to the elbow, it is essential to verify

that the Darcy friction factor of the turbulent flow in the straight pipe upstream

of the elbow,

Cf =
2D∗∆p∗

∆l∗ρ∗U∗b 2
, (5.1)

agrees with well-established empirical correlations for the range of Reynolds num-

bers of interest in our study. In Equation (5.1) ∆p∗ is the pressure drop along the

straight section of the pipe upstream of the elbow, ∆l∗ is the distance along which

∆p∗ is measured, ρ∗ is the density of the fluid, U∗b =ṁ∗/(ρ∗A∗) is the mean-flow

velocity, ṁ∗ is the mass flow rate, and A∗ is the cross-sectional area of the pipe.

Figure 5.1 shows Cf as a function of the Reynolds number Re=U∗bD∗/ν∗, where

ν∗ is the kinematic viscosity of the fluid, for the three different pipe diameters

and the two fluids. The data are compared with Churchill’s [94], Haaland’s [95]

and McKeon et al.’s [96] correlations and with data from experiments and di-
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rect numerical simulations [96, 97, 98, 99]. A very good agreement with less than

±5% average error is found. The scatter is almost constant in the whole Reynolds

number range, although the estimated uncertainty increases as Re decreases due

to the high uncertainty in the measurement instruments at these ranges of flow

conditions. Air and water data have the same average errors.
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Re

C f

airD∗=11mm

airD∗=16mm

airD∗=21mm
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waterD∗=16mm

waterD∗=21mm

Exp. data swanson

Exp. data Mckeon

Exp. data Den toonder

Exp. data Wu

Churchill[1977]

McKeonet al.[2004]

Haaland[1983]

Figure 5.1: Friction factor Cf as a function of the Reynolds number Re for flow through

straight pipes.

Pressure drop across 90◦ sharp-angled mitre el-

bow

Pressure drop across the elbow is computed depending on the pressure distribu-

tion along the test section as illustrated in Section 4.3.

Figure 5.2 shows the scaled pressure drop along the test sections and across the

mitre elbows for water and air flows. The trends show the independence of the
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results on the working fluid and clearly show the local drop due to the elbow.

This effect is negligible upstream and downstream of streamwise distances equal

to 32.5D∗ from the elbow (measurement locations C and F , respectively), i.e.

where the pressure gradient is solely due to the distributed straight-pipe frictional

effects.

As displayed in Figure 5.2, the pressure-drop coefficient K was computed as the

difference between the intercepts on the vertical axis of the two best-fit straight

lines defining the straight-pipe pressure gradients upstream and downstream of

locations C and F (dashed black lines). The scaled equivalent length L was

obtained by subtracting the intercepts of the two best-fit straight lines on the

horizontal axis. The pressure drop across 90◦ sharp-angled elbows is expressed
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ρ
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L
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A
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C
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E
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G
H

I
J

Figure 5.2: Pressure drop relative to the measurement location A along the 21-mm-diameter

test section at Re =22900 for air and water flows. The pressure-loss coefficient K
and the scaled equivalent length L are indicated.

in terms of pressure loss coefficient K by using Equation (4.2) as illustrated in

Section 4.3.

Figure 5.3 shows K as a function of Re. To the best of our knowledge, this is
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the first time that the dependence of K on Re has been presented for 90◦ sharp-

angled mitre elbows. The experimental results show that K decreases rapidly as

Re increases up to Re≈104. For Re>104 the effect of Re is moderate as K keeps

decreasing. As remarked by Munson et al. [22] it is expected that the coefficient

K displays a weak dependence onRe at highRe because the dominance of inertia

effects, which is responsible for secondary flows and separation, renders the local

pressure drop directly proportional to the dynamic pressure 0.5ρ∗U∗2b . A new

0 1 2 3 4 5 6

·104

1

1.5

2

2.5

3

3.5

4

R

K

Exp. data Kirchbach[1935]

Exp. data Schubart[1935]

Correlation (5.2)

Figure 5.3: Pressure-loss coefficient K for 90◦ sharp-angled elbows as a function of the

Reynolds number Re. Legends are given in Figure 5.1.

correlation based on our experimental data is proposed:

K = 427.5Re−0.77 + 0.9, 500 ≤ Re ≤ 60000. (5.2)

Correlation (5.2) fits our experimental data within an average error of ±3%. The

experimental data for smooth elbows by Kirchbach [18] and for rough elbows by

Schubart [19] are shown for comparison in Figure 5.3. Probably due to the high

uncertainty in their experiments, Kirchbach’s [18] and Schubart’s [19] data do not
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show the subtle dependence of K on Re in the range 15000<Re<60000. They

predict a constant K=1.1, whereas our K values decrease slowly with Re and are

consistently lower than theirs in this Re range. According to Kirchbach’s [18]

and Schubart’s [19] data, roughness has no effect on K in this Re range, arguably

because the Reynolds number is large enough for the elbow pressure drop to be

caused mainly by the local separation rather than by frictional effects. As for

the Cf data, our K data show an experimental scatter that is independent of the

Reynolds number and of the fluid employed. It would be interesting to extend

the range of Re to verify whether K reaches a constant value at larger Re and

to quantify this value precisely. According to our measurements, limRe→∞K=0.9

appears to be more realistic than the currently adopted K=1.1. It is also impor-

tant to investigate how K varies in the laminar-flow limit Re→0.

Figure 5.4 shows a comparison between our K values as a function of Cf and the

predicted K trend proposed by Crane [25] for turbulent flow conditions. Both

Crane’s formula [25] and our data predict that K increases monotonically with

Cf , but our data are lower than Crane’s [25] in the whole Cf range. Furthermore,

our study reveals that the increase of K with Cf is linear only for 0.02<Cf<0.03,

while the dependence of K on Re is more significant for Cf>0.03. In the linear

regime, the following relation between K and Cf is proposed,

K = 26.92Cf + 0.42, 0.02 < Cf < 0.03, (5.3)

which fits the experimental data in this range of Cf within a ±2.5% average error.

Crane [25] instead predicts a linear dependence for any value of Cf , i.e. K=60 Cf .
It is worth noting that our linear Correlation (5.3) does not cross the origin in

the (K, Cf ) plane, while Crane’s [25] does. If the straight line passed through the

origin, the bulk velocity U∗b could be simplified from the linear relationship upon

re-writing the quantities in dimensional form. The elbow pressure drop could be

computed by simply measuring the straight-pipe pressure drop and this would be

very useful for engineering applications.

Figure 5.4 also shows that Kirchbach’s [18] and Schubart’s [19] data are also much

lower than Crane’s [25] predicted values, which is somewhat surprising because

Crane’s correlation [25] is based on Kirchbach’s [18] and Schubart’s [19] results.
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Figure 5.4: Pressure-loss coefficient K for sharp-angled elbows as a function of Cf .

For the whole range of Cf values, a new correlation relating K and Cf is proposed

for flows across 90◦ sharp-angled elbows:

K = 32980 Cf 3.32 + 0.9, 0.02 < Cf < 0.05. (5.4)

Correlation (5.4) fits the experimental data within a ±1.9% average error. If

the well-known correlation for the turbulent friction coefficient given by Blasius,

Cf=0.3164 Re−0.25 [23], is substituted into our Correlation (5.4), one obtains

K=722.8Re−0.83 + 0.9, which only differs from our Correlation (5.2) by less than

±2%, which is smaller than the experimental error of our K and Cf data.

The equivalent length to diameter ratio,

L =
l∗eq
D∗

=
∆l∗∆p∗e
D∗∆p∗

, (5.5)

where the equivalent length l∗eq is the length of the straight pipe that would

generate the same pressure drop as the elbow at the same bulk Reynolds number,

represents another way to express the pressure loss in elbows and pipe bends. In

Equation (5.5), ∆l∗ and ∆p∗ are defined as in Equation (5.1). As shown in

Figure 5.5, L varies between 35 and 65. It decreases sharply up to Re=7000,
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Figure 5.5: Equivalent length to diameter ratio L for sharp-angled elbow as a function of Re.
The symbols are given in Figure 5.1.

then increases slowly with Re and appears to approach the asymptotic value

L=45. Our data are in the middle of the experimental data for 90◦ round elbows

by Wilson et al. [14] (C=1) and Spedding et al. [17] (C=0.65). The dashed line

indicates the constant L=60 suggested by Crane [25], which matches Spedding

et al.’s data [17] at large Reynolds number. The dash-dotted line denotes the

constant L=43 proposed by Crawford et al. [10], which shows the best agreement

with our results. It is thus confirmed that L depends strongly on the elbow

curvature ratio C and only mildly on Re for Re>40000 [13, 9, 10, 15].

Measurement of peripheral pressure

Figure 5.6 shows scaled air pressure measurements at different angles (0◦, 90◦ and

270◦) around the periphery of the 16-mm-diameter pipe at four different stations

upstream and downstream of the elbow and at four Reynolds numbers. The

experimental data show that the peripheral pressure upstream and downstream of

the elbow is axially symmetric at all the tested locations. As shown in Figure 4.11,

the closest locations D and E are at a distance of 7D∗ upstream and downstream
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Figure 5.6: Air-flow pressure drop at different angles around the pipe periphery at stations

C,D,E and F of the 16-mm-diameter test section at different Re.

of the elbow, respectively, which agrees with the result by Ito for 90◦ round elbows

[13].
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Chapter 6

Two-phase flow visualization

results

This Chapter reviews the results and discussions of two-phase flow visualization

along straight pipes and through 90◦ sharp-angled mitre elbows for horizontal

and vertical orientations.

Two-phase flow in straight pipes

Four flow patterns were observed in the horizontal configuration for 275 flow

conditions of Table 4.2: plug, slug, slug-annular and annular flows. Figure 6.1

presents instantaneous snapshots of these flow patterns in the horizontal pipe

section upstream of the elbow for D∗=21mm, j∗
L
=0.495 m/s and different j∗

G
.

Three flow patterns, slug, churn and annular flows, were recorded in the vertical

riser at a distance of 100D∗ downstream of the elbow for 338 flow conditions for

air and water superficial velocities in the ranges listed in Table 4.3. Figure 6.2a

shows instantaneous snapshot of the two-phase flow patterns in the vertical pipe

with D∗=21mm for j∗
L
=0.279m/s and different j∗

G
. The membrane flow structure,

discovered by Milan et al. [47] in vertical downward flows, has been observed

for the first time in the present study in the vertical upward flow downstream

of the elbow as a result of the coalescence of the bubbles after their division

through the elbow. Figure 6.2b shows pictures of single and multiple membrane

flow in the pipe with D∗=21mm for j∗
G
=0.15 m/s and different j∗

L
. Up to four
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j∗G=0.15 m/s ReG=158elongated bubbles

j∗G=1.98 m/s ReG=2116slug

j∗G=11.88 m/s ReG=12700slug-annular

j∗G=24.75 m/s ReG=26456annular

flow

Figure 6.1: Flow patterns in horizontal pipe sections upstream of the elbow for D∗=21mm,

j∗L=0.495 m/s, ReL = ρ∗Lj
∗
LD

∗π/(4µ∗
L)=5598 and different j∗G. The Reynolds num-

ber for air is defined as ReG = ρ∗Gj
∗
GD

∗π/(4µ∗
G). The densities of the fluids are ρ∗k

and the dynamic viscosities are µ∗
k .

membranes were observed in a single air slug, often almost equally spaced along

the vertical direction. Milan et al. [47] observed the membrane flow at a maximum

water velocity of 0.41 m/s, while we recorded the presence of these structures

at higher water velocities, i.e. up to j∗
L
=1.02 m/s, which correspond to higher

Reynolds numbers based on j∗
L

because our three diameters are larger than Milan

et al.’s, i.e. D∗=8.8mm. Figure 6.3 represents the observed flow patterns in the

horizontal straight pipes on the Mandhane et al. map [1], while Figure 6.4 shows

the patterns in the vertical straight pipes on the Hewitt and Roberts map [2].

We have chosen these maps to display our experimental data graphically because

they were proposed to cover a wide range of pipe diameters, including ours. The

comparison is better for the data for the vertical orientation in Figure 6.4 than

for the data for the horizontal orientation in Figure 6.3.

The dimensional analysis in Appendix C shows that the patterns of an incom-

pressible isothermal air-water flow can be expressed in scaled form in terms

of only three non-dimensional parameters, i.e. the Reynolds number for water

ReL=ṁ
∗
L
/(µ∗

L
D∗)=ρ∗

L
j∗
L
D∗π/(4µ∗

L
), the Reynolds number for air ReG=ṁ

∗
G
/(µ∗

G
D∗)

=ρ∗
G
j∗
G
D∗π/(4µ∗

G
), and the Froude number for water FrL=ṁ

∗
L
/(
√
g∗D∗5/2ρ∗

L
), where

ṁ∗
L
, ṁ∗

G
and µ∗

L
, µ∗

G
are the mass flow rates and viscosities of the two fluids, and
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(a) Patterns for j∗
L
=0.279 m/s.

slug flow, membrane flow

j∗L=0.35m/s

ReL=6531
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ReL=7464

j∗L=0.45m/s

ReL=8397
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(b) Membrane flow for j∗
G
=0.15m/s.

Figure 6.2: Flow patterns in vertical pipe section downstream of the elbow for D∗=21mm,

(a) ReL=5598 and (b) ReG=159.

g∗ is the gravitational acceleration. The analysis demonstrates that only three

parameters are necessary because for incompressible isothermal air-water flows

the other scaled parameters, the ratio of densities and the ratio of viscosities, are

constant. For a constant Froude number, a rigorous non-dimensional represen-

tation of incompressible constant-property air-water flow patterns is therefore a

map in the (ReG,ReL) plane.

We can then express the dimensional maps in Figures 6.3 and 6.4 in terms of

ReL and ReG by assuming that the effect of Froude number is negligible. This

hypothesis has been largely verified by experimental works in the horizontal case

at sufficiently high mass flow rates of both fluids, which avoid the stratified flow

regime where gravity plays a decisive role [6]. This is the case of our experiments

because all our data points are on the upper half of the horizontal-flow Mandhane

map, as clearly shown in Figure 6.3. In the vertical-flow case, Spedding and
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Figure 6.3: Comparison between the detected flow patterns in horizontal pipe sections (rep-

resented by the symbols) with the prediction given by the Mandhane et al. map

[1] for D∗=21mm (◦), D∗=16 mm (�), and D∗=11mm (�).

Nguyen [100] (refer to discussion of their figure 3 on page 785) showed that, in

the Froude number range of interest for our work, i.e. 0.5 ≤ FrL ≤ 2.5, gravity

has a mild effect on the flow patterns, especially on the slug-flow regime.

To rescale the maps in terms of ReL, ReG, the velocities j∗
L
, j∗

G
at the boundaries

between the regions distinguishing the flow patterns and the average value of

our pipe diameters are used to compute ReL and ReG. The rescaled Mandhane

et al. and Hewitt and Roberts maps are displayed in Figures 6.5 and 6.6. The

rescaled Mandhane et al. map in Figure 6.5 shows a slight improvement for the

prediction across the boundary between the plug and slug regions as fewer symbols

representing the plug flow fall in the slug-flow region and no symbols representing

the slug flow are confined in the strip dividing the two regions. This is instead

the case in the dimensional Mandhane et al. map of Figure 6.3. In the rescaled

Hewitt and Roberts map in Figure 6.6, all the symbols fall more clearly within
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Figure 6.4: Comparison between the observed flow patterns in the vertical straight pipe sec-

tions with the prediction given by the Hewitt and Roberts map [2]. The symbols

indicate the same diameters as in Figure 6.3.

the predicted regions as they are more clustered together than in the dimensional

map.

Figure 6.7 shows the map obtained by Milan et al. [47] to identify the regions in

the parameter space where the membrane flow was observed for vertical downward

flow. Because our pipe diameters are different from Milan et al.’s, we show the

map in non-dimensional form. As for the discussion of Figure 6.2, almost all the

flow conditions for which we detected the membrane flow lie in a higher range of

ReL, where Milan et al. did not observe this flow.

Two-phase flow across the mitre elbow

Two-phase flow patterns through 90◦ sharp-angled mitre elbows have been inves-

tigated visually to document the behaviour of the flow regimes through the sharp

bend caused by the interaction of different forces, like the centrifugal force, the
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Figure 6.5: Comparison between the observed flow patterns in horizontal straight pipes with

the prediction given by the rescaled Mandhane et al. map [1]. The symbols indi-

cate the same diameters as in Figure 6.3.

gravity force, and the buoyancy force, which acts primarily in the vertical orien-

tation. When the elbow was positioned vertically, we investigated the horizontal

to vertical upward flow, which is one of four possible flow orientations for this

geometry, the others being the horizontal to vertical downward flow, the vertical

upward to horizontal flow, and the vertical downward to horizontal flow.

Horizontal orientation

For ReG<200 in the horizontal orientation, the plug flow is not affected by the

elbow due to the balance between the secondary flow and the gravity. The elon-

gated air bubbles, observed for 200<ReG<3000 in plug and slug flows, divide into

two or more bubbles as the flow passes through the elbow, as shown in Figure 6.8

in the pipe with D∗=21mm. The disruption of the bubbles is caused by the flow

separation and the strong secondary flow across the elbow. The divided bub-
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Figure 6.6: Comparison between the observed flow patterns with the non-dimensional Hewitt

and Roberts map [2]. The symbols indicate the same diameters as in Figure 6.3.

bles often merge downstream of the elbow to recover the unperturbed regimes

upstream of the elbow as the centrifugal force vanishes downstream of the bend,

similar to the results of Chen et al. [44] in horizontal return bends. At higher air

velocities, 3000<ReG<20000, slug and slug-annular flows suddenly become annu-

lar downstream of the elbow due to the centrifugal effects dominating over the

gravity effects. This annular flow downstream of the elbow is different from the

annular flow in straight pipes because it is swirling as the water layers move in

rotational motion around the air flow core and along the pipe periphery, while the

layers in straight pipe annular flow move parallel to the pipe axis. The flow then

recovers its original pattern approximately 60D∗ downstream of the elbow. Fig-

ure 6.9 shows the flow change from slug to swirling annular through a D∗=21mm

horizontal elbow. This phenomena was reported by Chen et al. [44] and Wang

et al. [32, 46] in horizontal 180◦ bends at superficial velocities larger than ours

because the secondary flow in 90◦ sharp-angled mitre elbows is stronger than that
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Figure 6.7: Comparison between the experimental data and non-dimensional Milan et al.

[47]’s membrane flow map.

in round bends for similar conditions.

For ReG>20000 the flow upstream of the elbow is annular and has a thick bottom

water layer. Downstream of the elbow it is still annular but it is characterized

by a constant-thickness axially symmetrical water layer because the inertia of

the secondary flow and the centrifugal force dominate over the gravity effects.

Like in the case in Figure 6.8, the water layers of the annular flow downstream

of the elbow swirl around the pipe periphery before recovering to the standard,

non-rotating annular flow farther downstream of the elbow (after approximately

60D∗). Figure 6.10 illustrates this phenomenon through the D∗=21mm horizontal

elbow for different flow conditions. Two-phase flow patterns through horizontal

mitre elbows are represented for the first time in terms of the non-dimensional

Mandhane et al. map [1], shown in Figure 6.11. This novel representation is

useful because it visually combines information on the flow regime upstream of
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top view

side view flow

Figure 6.8: Bubble division and coalescence in the horizontal elbow with D∗=21mm,

ReL=5598 and ReG=1058.
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Figure 6.9: Change from slug flow to swirling annular flow across the horizontal elbow with

D∗=21mm. Left photo: ReL=5598 and ReG=11641. Middle photo: ReL=7464

and ReG=11641. Right photo: ReL=9330 and ReG=10582.

the elbow, given by the location of the symbols in the Mandhane et al. regions,

with the information on the change of the flow regimes as the fluids move across

the elbow, denoted by the colour of the symbol.

Horizontal to vertical upward orientation

For ReG<1000, the intermittent flow patterns (plug and low-j∗
G

slug) entering

the horizontal part of the elbow change to slug flow in the riser downstream

of the elbow due to the effect of gravity. In the upward flow, a liquid-phase

reverse downward flow may occur for these flow conditions. This reverse water
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Figure 6.10: Change from annular flow to swirling annular flow across the horizontal el-

bow with D∗=21mm. Left photo: ReL=5598 and ReG=23281. Middle photo:

ReL=7464 and ReG=22223. Right photo: ReL=9330 and ReG=21165.

flow splits the air slugs into two or more bubbles downstream of the elbow. The

divided bubbles coalesce downstream of the elbow, often resulting in a membrane

flow structure. This behaviour was reported by Wang et al. [43] downstream of

vertical 180◦ bend with upward flow and by Milan et al. [47] in vertical straight

pipe with downward flow. Figure 6.12 shows this phenomenon in the vertical

elbow with D∗=21mm at different times. The phenomenon of flow reversal and

bubble division were reported by Hsu et al. [38] in 90◦ round elbows and Wang

et al. [43] in 180◦ bend at velocities higher than ours because the secondary flow,

which is the main cause for this phenomenon, increases with the decrease of

curvature radius of the elbow at the same flow conditions, as also mentioned by

Wang et al. [32] and Wang and Mayinger [101].

For 1000<ReG<3000, the slug flow upstream of the elbow remains such in the

vertical pipe downstream of the elbow, but it changes character. In the horizontal

pipe upstream of the elbow, the air slugs occur in the top part of the pipe while

thin water layers appear at the bottom of the pipe. Downstream of the elbow in

the vertical pipe, the air slugs move in the centre of the pipe while thin liquid films

occur between the slugs and the pipe wall. At higher j∗
G
, i.e. for 3000<ReG<10000,

the slug flow converts to churn flow through the elbow, as shown in Figure 6.13

for the elbow of D∗=21mm at j∗
L
=0.297 m/s. At higher j∗

G
,ReG>10000, the slug-

annular and annular flows in the horizontal pipe upstream of the elbow change

to swirling annular as the fluids pass through the elbow due to the centrifugal

force and the secondary-flow effects dominating over the gravity effects, similar

to the results of Wang et al. [43] in vertical 180◦ round elbows. As for the
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Figure 6.11: Representation of the two-phase flow patterns through the mitre elbows in the

horizontal orientation on the non-dimensional Mandhane et al. map [1]. The

flow regime upstream of the elbow are denoted by the location of the symbols

in the Mandhane regions, while the flow regimes downstream of the elbow are

indicated by the colour of the symbol.

behaviour of the flow across the elbow in the horizontal configuration, the water

layers of the swirling annular flow downstream of the elbow rotate around the

pipe periphery before recovering to the standard annular flow at a distance of

about 60D∗ downstream of the elbow. The annular flow enters the horizontal

leg of the vertical elbow with a thicker water layer at the bottom of the pipe

and changes to a swirling annular flow with an axially symmetrical water-layer

thickness downstream of the elbow, as shown in Figure 6.15 for the D∗=21mm

elbow. Similar to the map of Figure 6.11, the air-water flow patterns through

elbows in the horizontal to vertical upward position are represented for the first

time on the rescaled Mandhane et al. map [1], as shown in Figure 6.16.
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membrane
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Figure 6.12: Change from plug flow to slug flow due to separation of bubbles across the elbow

for D∗=21mm, j∗L=0.297 m/s, j∗G=0.15 m/s, ReL=5598 and ReG=159.
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Figure 6.13: Change from slug flow to churn flow through the vertical elbow for D∗=21mm,

j∗L=0.297 m/s, and different j∗G. Left photo: ReL=5598 and ReG=3175. Middle

photo: ReL=5598 and ReG=5291. Right photo: ReL=5598 and ReG=8466.
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Figure 6.14: Change from slug flow to swirling annular flow through the horizontal to vertical

elbow forD∗=21mm, j∗L=0.297 m/s, and different j∗G. Left photo: ReL=5598 and

ReG=9524. Middle photo: ReL=5598 and ReG=11641. Right photo: ReL=5598

and ReG=13757.
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Figure 6.15: Standard annular flow change to swirling annular flow through the horizontal

to vertical elbow with upward flow for D∗=21mm, j∗L=0.297 m/s and different

j∗G. Left photo: ReL=5598 and ReG=15874. Middle photo: ReL=5598 and

ReG=21165. Right photo: ReL=5598 and ReG=26456.
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Figure 6.16: Representation of the two-phase flow patterns through the mitre elbows in the

horizontal to vertical upward orientation on the non-dimensional Mandhane et al.

map [1]. Like in Figure 6.11, the flow regime upstream of the elbow are denoted

by the location of the symbols in the Mandhane regions, while the flow regimes

downstream of the elbow are indicated by the colour of the symbol.
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Chapter 7

Two-phase pressure drop

measurements results

This Chapter includes the experimental results and discussions of the pressure

drop measurements of air-water flow along straight pipes and across 90◦ sharp-

angled mitre elbows for horizontal and vertical orientations. Section 7.1 reviews

the pressure drop in horizontal and vertical straight pipes, while Section 7.2

depicts the pressure drop across 90◦ sharp-angled mitre elbows. Measurements

of peripheral pressure are found in Section 7.3.

Two-phase pressure drop measurements in straight

pipes

The pressure drop was first measured along the straight portions of the pipes up-

stream and downstream of the mitre elbows. The distance upstream of the elbow

where the flow starts to be affected by the elbow and the distance downstream

of the elbow after which the presence of the elbow is not influential were also

measured. The flow recovery length was 60D∗ downstream of the elbow and the

upstream perturbation distance was 32.5D∗ upstream of the elbow.

Figure 7.1 shows a comparison between our pressure drop data in straight pipes

in the horizontal and vertical configurations and the predictions by the models

proposed by Lockhart and Martinelli [5], Friedel [86], Chisholm [85] and Müller-

Steinhagen and Heck [64]. The data are not predicted well by the models. The
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Figure 7.1: Comparison between the experimental pressure drop in horizontal straight pipes

(left) and vertical straight pipes (right), with Lockhart and Martinelli [5], Friedel

[86], Chisholm [85] and Müller-Steinhagen and Heck [64] models, D∗=11mm 4,

D∗=16mm � and D∗=21mm ◦.

deviation between the experimental data and the predicted values increases as

the pressure drop increases. The Lockhart and Martinelli [5] model leads to a

better agreement with the experimental data than the other two models. At very

small pressure drops (∆p∗/∆l∗<2500 Pa/m), the Lockhart and Martinelli [5] and

the Müller-Steinhagen and Heck [64] models predict the experimental data with

good agreement. At higher pressure drops, the Müller-Steinhagen and Heck [64]

model gives a deviation from the experimental data that is much larger than the

other two models. The deviation between the models and the experimental data

was lower in the vertical case than in the horizontal case. The prediction models

do not include the effects of the flow patterns.

Figure 7.2 shows the scaled experimental pressure drop data fitted with the Lock-

hart and Martinelli Correlation (3.19) [5]. The pressure drop across the whole test

section between stations A and J is well expressed by the model with C=10 and

C=20. We observe that our data are comprised between the correlation curves

for C=10 and C=20.

The scatter is due to the additional factors generated by the elbow, such as severe

flow separation and significant perturbation of the flow patterns.

Figure 7.3 shows a comparison between the scaled experimental pressure drop

along the test section close to the elbow (between measurement stations C and

G) fitted with the Lockhart and Martinelli Correlation (3.19) [5]. The pressure
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Figure 7.2: Comparison between the experimental two-phase pressure drop along the test

section scaled by two-phase multiplier and (3.19) [5], legends are specified in

Figure 7.1.
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Figure 7.3: Comparison between the experimental pressure drop along the test section close

to the elbow scaled by two-phase multiplier and (3.19) [5], legends are specified

in Figure 7.1.
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drop close to the elbow is higher than across the whole section and it is strongly

affected by the flow patterns as depicted in Figure 7.3.

Therefore, we choose to use two C parameters, one corresponding to the intermit-

tent patterns (slug and plug) and one corresponding to the continuous patterns

(slug-annular and annular). The new values are C=147 ± 9.67% for intermit-

tent patterns and C=96 ± 3% for continuous patterns. These results show the

flexibility of the Lockhart and Martinelli [5] model to fit the two-phase pressure

drop with the presence of different types of pipe fittings by employing different

values of the parameter C in Correlation (3.19) as reported by many researchers

like Dang et al. [40], Mishima and Hibiki [79], Zhao and Bi [80], Lee and Lee

[81], Kim et al. [82], Kong and Kim [83], Qiao et al. [84], Kim et al. [102].

In Appendix C a dimensional analysis based on the Π theorem proves that the

scaled frictional pressure drop of an incompressible isothermal air-water flow,

CL =
∆p∗

∆l∗

∣∣∣∣
f

D∗5ρ∗
L

ṁ2
L

, (7.1)

can be expressed as a function of only three non-dimensional parameters, i.e. CL =

CL (ReL,ReG, F rL), where ReL = ṁ∗
L
/(µ∗

L
D∗) = ρ∗

L
j∗
L
D∗π/(4µ∗

L
) is the Reynolds

number for water, ReG = ṁ∗
G
/(µ∗

G
D∗) = ρ∗

G
j∗
G
D∗π/(4µ∗

G
) is the Reynolds number

for air, and FrL = ṁ∗
L
/
(√

g∗D∗5/2ρ∗
L

)
is the Froude number for water, where g∗

is the gravitational acceleration, and ṁ∗
k
, ρ∗

k
, and µ∗

k
are the mass flow rates, the

densities, and the viscosities of the two fluids, respectively. Only three parameters

are required because for incompressible isothermal air-water flows the ratio of

densities and the ratio of viscosities are constant.

In Figure 7.4 the two-phase CL data for the horizontal straight pipe upstream of

the elbow in the present work and the data of Spedding and Bénard [61] and

Kim et al. [102] show excellent collapse when CLReα
G

is plotted as a function

of (ReL/ReG)
β. A least-square fit analysis gives α=0.3 and β=0.5. The effect

of Froude number is negligible in this range of parameters, as it is expected in

the horizontal case. The excellent scaling of the data is independent of the flow

patterns, which are represented by different colours in the graph.

Figure 7.5 represents the two-phase CL data for the vertical straight pipe down-

stream of the elbow and experimental data from Tang et al. [103]. The collapse
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Figure 7.4: Scaled two-phase pressure drop in horizontal pipes.
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Figure 7.5: Scaled two-phase pressure drop in vertical pipes.

of data scaled in the form CLReα
G

as a function of (ReL/ReG)
β (α=1 and β=0.5)

is also very good, although the scatter of some data representing the slug and

churn flows is larger than in the horizontal configuration because the effect of FrL.

This is also expected because gravity plays a non-negligible role in the vertical

configuration. To clarify the effect of FrL the scaled pressure drop data for the

vertical pipe case of Figure 7.5 is coloured by FrL in Figure 7.6. The effect of FrL

augments in the range 1<(ReL/ReG)
0.5<4, causing a scatter in the experimental

data in the region between the slug and churn flows. The maximum data scatter

occurs for FrL≤1.

Figures 7.5 and 7.6 show that the frictional pressure drop has negative values

in the range between slug and churn regimes because the static pressure drop

due to gravity overcomes the frictional effect, a phenomenon due to reversed

liquid flow at the pipe surface and reported, amongst others, by Spedding’s group

[61, 104, 105] and by Liu’s group [89, 106, 103] in vertical pipe flow. The negative-

friction data are highlighted by the hatched area in Figure 7.6. Note that the

range of parameters for which the negative friction occurs falls within the range

where the effect of Froude number is significant.
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Figure 7.6: Scaled two-phase pressure drop in vertical pipes coloured by FrL.

New pattern-based correlations are proposed to fit the experimental data of the

frictional pressure drop in horizontal and vertical pipes. The correlations in this

section and in Section 7.2 are valid for the same viscosity and density ratios as

the ratios between the air and water densities and viscosities and in the ranges of

Reynolds numbers stated next to each equation and listed in Tables 4.2 and 4.3.

For the horizontal case the following correlation is proposed for intermittent (plug

and slug) flows:

CLRe0.3
G

= 2.914

(ReL

ReG

)−1.287
− 0.0075,

(ReL

ReG

)0.5

> 1. (7.2)

For slug-annular and annular flows in the horizontal case, we propose the following

correlation:

CLRe0.3
G

= 1.54

(ReL

ReG

)−2.923
+ 1.554,

(ReL

ReG

)0.5

< 1. (7.3)

Correlations (7.2) and (7.3) fit the scaled experimental data with ±12.4% and

±7.8% average error, respectively. The following correlation is proposed to fit the

pressure drop data for all flow patterns:

CLRe0.3
G

= 2.607

(ReL

ReG

)−2.203
+ 0.23, 0.4 <

(ReL

ReG

)0.5

< 8. (7.4)
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Correlation (7.4) fits the experimental data of the present work with ±15% av-

erage error and the data of Spedding and Bénard [61] and Kim et al. [102] with

±32% average error.

The frictional pressure drop data for vertical upward churn and annular flows is

correlated as follows:

CLReG = 1835

(ReL

ReG

)−3.197
− 249.6,

(ReL

ReG

)0.5

< 1, (7.5)

Correlation (7.5) fits 89% of the scaled experimental data of the present work

with ±19.3% average error and the data of Tang et al. [103] with ± 42% average

error. The high deviation between the experimental data of Tang et al. [103] and

Correlation (7.5) is related to the effect of the void fraction, as our calculations

were based on Correlation (4.6) to compute the void fraction while the Tang

et al.’s are employed direct measurements of the void fraction. Due to the scatter

in the pressure drop data for slug flow in vertical pipes, we could not correlate

these data with acceptable error for the whole range of Froude numbers. However,

we propose a new correlation to fit the experimental data for FrL>1 as:

CLReG = 2111

(ReL

ReG

)−3.506
− 60.77.

(ReL

ReG

)0.5

> 1. (7.6)

The correlation fits 70% of the experimental data for FrL>1 with ±16.9% average

error.

Two-phase pressure drop measurements across

the mitre elbows

Pressure gradient distribution along the test sections was measured to study the

effect of the elbow and to compute the pressure drop across the 90◦ sharp-angled

mitre elbows.

Figure 7.7 shows the two-phase pressure drop along the test section of D∗=21mm

and across the mitre elbow in the horizontal configuration. The influence of the

elbow is negligible upstream and downstream of the elbow at streamwise dis-

tances equal to 32.5D∗ and 60D∗ from the elbow, i.e. at measurement locations

C and G, respectively, where the pressure gradient is solely due to the distributed
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Figure 7.7: Air-water pressure drop relative to the measurement location A along the 21-mm-

diameter test section for ReL =9330 and ReG =8466 in the horizontal configura-

tion.

straight-pipe frictional effects. As graphically represented in Figure 7.7, the pres-

sure drop across the elbow ∆p∗|e is computed as the difference between the two

best-fit straight lines defining the straight-pipe pressure gradients upstream and

downstream of locations C and G, denoted by the dashed lines, and the vertical

dash-dotted line at l∗/D∗=0.

Figure 7.8 shows the comparison between our experimental data for the pressure

drop through horizontal and horizontal to vertical mitre elbows for a wide range

of flow conditions, listed in Tables 4.2 and 4.3, and the prediction given by the

models proposed by Chisholm [54] and Sookprasong et al. [87]. These models

severely overpredict the pressure drop especially at high flow rates. The deviation

increases with the increase of pressure drop for both orientations. This amount

of error is expected because these correlations model the frictional pressure drop

across round elbows. These models do not include the influence of the flow
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Figure 7.8: Comparison between the experimental pressure drop through horizontal (left) and

vertical (right) 90◦ sharp-angled mitre elbow with Chisholm [54] and Sookprasong

et al. [87] models. Legends for the symbols are specified in Figure 7.1.

patterns on the pressure drop [6, 26, 58, 107].

Similar to the CL coefficient for straight pipes, the dimensional analysis based on

the Π theorem outlined in Appendix C proves that the scaled pressure drop of

an incompressible isothermal air-water flow across a mitre elbow,

KL =
∆p∗|eD∗4ρ∗L

ṁ2
L

, (7.7)

can be expressed as KL = KL (ReL,ReG, F rL). Figures 7.9 and 7.10 show the

scaled pressure drop KL for the horizontal and the horizontal to vertical upward

configurations, respectively.

Differently from the frictional pressure drop in the straight portions of the pipe,

the elbow pressure drop is strongly affected by the flow patterns. The highest

data scatter in Figures 7.9 and 7.10 is observed for slug and slug-annular flows,

whereas the data for annular and for plug flows instead collapse well, i.e. in the

cases of large inertia due to large air flow rates, i.e. large ReG, and to large water

flow rates, i.e. large ReL. The effect of FrL (0.5 ≤ FrL ≤ 2.5) is mild for the

pressure drop due to the mitre elbows. The high scatters for intermittent flows

is not due to the effect of the Froude number as in the vertical case but to the

separation and secondary flows in elbows, which are more influential than gravity.

New pattern-based correlations are proposed to fit the scaled pressure drop through

90◦ sharp-angled mitre elbows. For the horizontal case the following correlation
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Figure 7.9: Scaled two-phase pressure drop through horizontal 90◦ sharp-angled mitre elbows.
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Figure 7.10: Scaled two-phase pressure drop through horizontal to vertical 90◦ sharp-angled

mitre elbows.
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is proposed for intermittent (plug and slug) flows:

KLRe0.3
G

= 127.3

(ReL

ReG

)−1.276
+ 1.472,

(ReL

ReG

)0.5

> 1. (7.8)

For slug-annular and annular flows in the horizontal case, we propose the following

correlation:

KLRe0.3
G

= 40.25

(ReL

ReG

)−2.991
+ 102.1,

(ReL

ReG

)0.5

< 1. (7.9)

Correlation (7.8) fits 83% of the data with ±23.6% average error, while (7.9) fits

90% of the data with ±14.2% average error. Correlation (7.9) also fits the annular

flow data only with the same accuracy.

For the horizontal to vertical upward configuration, the following correlation is

proposed for intermittent (plug and slug) flows:

KLReG = 41370

(ReL

ReG

)−1.549
− 321.2,

(ReL

ReG

)0.5

> 1. (7.10)

For slug-annular and annular flows in the horizontal to vertical upward configu-

ration, the following correlation is proposed:

KLReG = 25570

(ReL

ReG

)−4.111
+ 16790,

(ReL

ReG

)0.5

< 1. (7.11)

Correlations (7.10) and (7.11) predict the scaled experimental data with 28.6%

and 23.9% average error, respectively.

Measurement of two-phase flow peripheral pres-

sure

Figure 7.11 shows two-phase pressure measurements at three angles (0◦, 90◦ and

270◦) around the periphery of the 16-mm-diameter pipe at four stations upstream

and downstream of the elbow for ReL=8610 and four ReG in the horizontal con-

figuration. The experimental data show that the peripheral pressure upstream

and downstream of the elbow is axially symmetric at all the tested locations. As

shown in Figure 4.11, the closest locations D and E are at a distance of 7D∗ up-

stream and downstream of the elbow, respectively, which agrees with the result

by Lima and Thome for the two-phase refrigerant flow through horizontal 180◦

round elbows [108].
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Figure 7.11: Air-water flow pressure drop at different angles around the pipe periphery at

stations C,D,E, and F of the 16-mm-diameter test section at ReL=8556 and

different ReG.
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Chapter 8

Conclusions and

recommendations

Conclusions

This Section reviews the conclusions of single-phase flow measurements, the two-

phase flow visualization and the pressure drop investigations of two-phase flow.

Single-phase flow

The pressure drop in straight pipes and across 90◦ sharp-angled circular mitre el-

bows was investigated experimentally for wide ranges of flow conditions to express

the pressure loss coefficient K in terms of Reynolds numberRe. The straight-pipe

friction factor shows excellent agreement with well-established correlations and

reliable published data and it is proved that the pressure was axially symmetric

at all the measurement locations. We have shown that the dependence of the

pressure-loss coefficient of the 90◦ mitre elbow on the bulk Reynolds number is

rather pronounced, particularly for Re<20000. We have also studied the rela-

tionship between this coefficient and the straight-pipe friction factor and obtained

two new correlations for the pressure-loss coefficient which will be useful for the

design of piping systems fitted with these sharp elbows. The pressure drop was

also expressed in terms of the equivalent length to diameter ratio. We have shown

that this ratio varies between 35 and 60 and we have presented its dependence

on the Reynolds number.
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Two-phase flow

This section reviews the conclusions of the prediction results, two-phase flow

visualization and pressure drop measurements results.

Prediction results

The prediction results examined the effective factors on two-phase pressure drop

in straight pipes and across elbows. The pressure drop increases with the increase

of phase velocities, while the pressure drop decreases with the increase of pipe

diameter and the bend curvature ratio C for the same flow conditions.

The pressure drop trend was similar in all prediction models which are used in

this study even though there is a remarkable deviation between the results of

different models.

Two-phase flow visualization

Flow visualization was conducted in this work to identify the flow patterns in

straight pipes and to study the behaviour of the two-phase flow patterns through

the horizontal and horizontal to vertical 90◦ sharp-angled mitre elbows. Four flow

patterns are observed in horizontal pipes upstream of the elbow: elongated bub-

bles, slug, slug-annular and annular at 275 different flow conditions, while three

flow patterns were observed in the vertical pipe downstream of the elbow: slug,

churn and annular at 338 different flow conditions. The observed flow patterns

in horizontal and vertical pipes are satisfactory predicted by the Mandhane et al.

map [1] and by the Hewitt and Roberts map [2], respectively. The Mandhane

et al. [1] map and the Hewitt and Roberts [2] map are successfully rescaled in

terms of ReL and ReG depending on dimensional analysis. The rescaled maps

show an improve in the prediction of the flow patterns with mild effect of FrL.

The membrane flow structure is observed in this study in vertical upward flow

as a result of bubbles merge downstream of the elbow at new ranges of j∗L higher

than those were reported by Milan et al. [47] in downward flow.

The effects of 90◦ sharp-angled mitre elbows on the observed flow patterns are

expressed in terms of the rescaled Mandhane et al. map [1] for both orienta-

tions. The perturbation of the flow regimes due to the elbow lasts about 60D∗
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downstream of the elbow in horizontal and vertical orientations.

Two-phase pressure drop measurements

Pressure drop investigations were conducted to express the air-water pressure

drop, in straight pipes and across 90◦ sharp-angled mitre elbows, in terms of

flow patterns and non-dimensional parameters by using Π theory. Pressure drop

measured along three different diameters test sections for horizontal and vertical

configurations at more than 600 flow conditions.

The comparison between the experimental results and pressure drop prediction

models show that the models could not predict the experimental data for all flow

conditions. The model of Lockhart and Martinelli [5] fits the scaled pressure

drop along the whole test section between C=10 and C=20. The pressure drop

along the test section close to the mitre elbow (between measurement stations

C and G) is strongly affected by the flow patterns. New pattern-based values of

the parameter C are proposed to fit the scaled pressure drop close to the elbow.

The experimental data of straight pipes and 90◦ sharp-angled mitre elbows in

horizontal and vertical orientations are well expressed in terms of non-dimensional

parameters and two-phase flow patterns. New empirical correlations are proposed

to fit the scaled experimental data of straight pipes and 90◦ sharp-angled elbows

for horizontal and vertical orientations.

The flow perturbation length was located at about 32.5D∗ upstream of the el-

bow and 60D∗ downstream of the elbow. The pressure measurements proved

that there is no effect of the elbow on the peripheral pressure farther than 7D∗

upstream and downstream of the elbow.

Recommendations

This Section includes the recommendations for the future work.

• Investigate the pressure loss coefficient of 90◦ sharp-angled mitre elbows in

single-phase laminar flow for Re<500 and turbulent flow for Re>60000.

• Study the effect of the phase-mixer on the results of two-phase flow visual-

ization and pressure drop measurements by using different types of phase-
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mixers.

• Investigate the behaviour of the bubbly, stratified, stratified-wavy and dis-

persed flows through 90◦ sharp-angled mitre elbows and examine their effect

on the pressure drop across the elbow for horizontal and vertical orienta-

tions.

• Study the length, the velocity and the frequency of the elongated bubbles

and the phase slugs in these regimes.

• Examine the effect of 90◦ sharp-angled elbows on two-phase flow patterns

and pressure drop for different vertical orientations, like horizontal to verti-

cal with downward flow, vertical to horizontal with upward flow and vertical

to horizontal with downward flow.

• Measure the gas-phase void fraction for upward two-phase flow in vertical

straight pipes to obtain more accurate calculations of the frictional pressure

drop component.

• Investigate the effect of the gas-phase void fraction on the frictional pressure

drop of two-phase flow in vertical straight pipes with upward flow.
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[77] H. Blasius, Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten.

Springer, 1913.

[78] D. Chisholm, “A theoretical basis for the Lockhart-Martinelli correlation

for two-phase flow,” Int. J. Heat and Mass Transfer, vol. 10, no. 12, pp.

1767–1778, 1967.

[79] K. Mishima and T. Hibiki, “Some characteristics of air-water two-phase flow

in small diameter vertical tubes,” Int. J. Multiphase flow, vol. 22, no. 4,

pp. 703–712, 1996.

[80] T. Zhao and Q. Bi, “Pressure drop characteristics of gas–liquid two-phase

flow in vertical miniature triangular channels,” Int. J. of Heat and Mass

Transfer, vol. 44, no. 13, pp. 2523–2534, 2001.

[81] H. Lee and S. Lee, “Pressure drop correlations for two-phase flow within

horizontal rectangular channels with small heights,” Int. J. Multiphase

Flow, vol. 27, no. 5, pp. 783–796, 2001.

[82] S. Kim, J. Park, G. Kojasoy, and J. Kelly, “Local interfacial structures

in horizontal bubbly flow with 90-degree bend,” Int. Conf. Nuclear Eng.,

vol. 2, pp. 219–226, 2006.

[83] R. Kong and S. Kim, “Characterization of horizontal air–water two-phase

flow,” Nuclear Eng. Design, vol. 312, pp. 266–276, 2017.

[84] S. Qiao, D. Mena, and S. Kim, “Inlet effects on vertical-downward air–water

two-phase flow,” Nuclear Eng. Des., vol. 312, pp. 375–388, 2017.

[85] D. Chisholm, “Pressure gradients due to friction during the flow of evapo-

rating two-phase mixtures in smooth tubes and channels,” Int. J. Heat and

Mass Transfer, vol. 16, no. 2, pp. 347 – 358, 1973.

[86] L. Friedel, “Improved friction pressure drop correlations for horizontal and

vertical two-phase pipe flow,” in European two-phase flow group meeting,

Paper E, vol. 2, 1979, p. 1979.

105



Bibliography

[87] P. Sookprasong, J. Brill, and Z. Schmidt, “Two-phase flow in piping com-

ponents,” J. Energy Res. Tech., vol. 108, no. 3, pp. 197–201, 1986.

[88] E. Lemmon, M. Huber, and M. McLinden, “NIST Standard Reference

Database 23: Reference Fluid Thermodynamic and Transport Properties -

REFPROP. 9.0.” 2010.

[89] L. Liu, “The phenomenon of negative frictional pressure drop in vertical

two-phase flow,” Int. J. Heat Fluid Flow, vol. 45, pp. 72–80, 2014.

[90] P. Griffith, C. Lau, P. C. Hon, and J. Pearson, “Two phase pressure drop

in inclined and vertical pipes,” Cambridge: Heat Transf. Lab., 1973, Tech.

Rep., 1973.

[91] P. L. Spedding and J. J. J. Chen, “Holdup in two phase flow,” Int. J.

Multiph. Flow, vol. 10, no. 3, pp. 307–339, 1984.

[92] C. J. Baroczy, “A systematic correlation for two-phase pressure drop.” in

Chem. Eng. Progr., Symp. Ser., 62: No. 64, 232-49 (1966). Atomics

International, Canoga Park, Calif., 1966.

[93] J. Taylor, An Introduction to Error Analysis. University Science Books,

1997.

[94] S. Churchill, “Friction-factor equation spans all fluid-flow regimes,” Chem.

Eng., vol. 84, no. 24, pp. 91–92, 1977.

[95] S. E. Haaland, “Simple and explicit formulas for the friction factor in tur-

bulent pipe flow,” ASME J. Fluids Eng., vol. 105, no. 1, pp. 89–90, 1983.

[96] B. McKeon, C. Swanson, M. V. Zagarola, R. Donnelly, and A. Smits, “Fric-

tion factors for smooth pipe flow,” J. Fluid Mech., vol. 511, pp. 41–44, 2004.

[97] J. den Toonder and F. M. Nieuwstadt, “Reynolds number effects in a tur-

bulent pipe flow for low to moderate Re,” Phys. Fluids, vol. 9, no. 11, pp.

3398–3409, 1997.

106



Bibliography

[98] C. Swanson, B. Julian, G. Ihas, and R. Donnelly, “Pipe flow measurements

over a wide range of Reynolds numbers using liquid helium and various

gases,” J. Fluid Mech., vol. 461, pp. 51–60, 2002.

[99] X. Wu and P. Moin, “A direct numerical simulation study on the mean

velocity characteristics in turbulent pipe flow,” J. Fluid Mech., vol. 608,

pp. 81–112, 2008.

[100] P. Spedding and V. Nguyen, “Regime maps for air water two phase flow,”

Chem. Eng. Sc., vol. 35, no. 4, pp. 779–793, 1980.

[101] M. Wang and F. Mayinger, “Post-dryout dispersed flow in circular bends,”

Int. J. Multiph. Flow, vol. 21, no. 3, pp. 437–454, 1995.

[102] S. Kim, G. Kojasoy, and T. Guo, “Two-phase minor loss in horizontal

bubbly flow with elbows: 45-degree and 90-degree elbows,” Nuclear Eng.

Design, vol. 240, no. 2, pp. 284–289, 2008.

[103] C. Tang, S. Tiwari, and A. J. Ghajar, “Effect of void fraction on pressure

drop in upward vertical two-phase gas-liquid pipe flow,” J. Eng. Gas Turb.

Power, vol. 135, no. 2, p. 022901, 2013.

[104] P. Spedding, G. Woods, R. Raghunathan, and W. J.K., “Vertical two-phase

flow: Part iii: Pressure drop,” Chem. Eng. Res. Des., vol. 76, no. 5, pp.

628–634, 1998.

[105] P. Spedding, G. Woods, R. Raghunathan, and J. Watterson, “Flow pattern,

holdup and pressure drop in vertical and near vertical two-and three-phase

upflow,” Chem. Eng. Res. Des., vol. 78, no. 3, pp. 404–418, 2000.

[106] H. Liu, C. Vandu, and R. Krishna, “Hydrodynamics of taylor flow in ver-

tical capillaries: flow regimes, bubble rise velocity, liquid slug length, and

pressure drop,” Indust. & Eng. Chem. Res., vol. 44, no. 14, pp. 4884–4897,

2005.

[107] S. Z. Rouhani and M. S. Sohal, “Two–phase flow patterns: A review of

research results,” Prog. in Nuc. Ener., vol. 11, no. 3, pp. 219–259, 1983.

107



Bibliography

[108] R. Lima and J. Thome, “Two–phase pressure drops in adiabatic horizontal

circular smooth u-bends and contiguous straight pipes (rp-1444),” Hvac&R

Research, vol. 16, no. 3, pp. 383–397, 2010.

[109] C. Colebrook, “Turbulent flow in pipes, with particular reference to the

transition region between the smooth and rough pipe laws.” J. ICE, vol. 11,

no. 4, pp. 133–156, 1939.

[110] X. Fang, Y. Xu, and Z. Zhou, “New correlations of single-phase friction

factor for turbulent pipe flow and evaluation of existing single-phase friction

factor correlations,” Nuclear Engineering and Design, vol. 241, no. 3, pp.

897–902, 2011.

[111] P. Sookprasong, Two-phase flow in piping components. University of Tulsa,

Fluid Flow Projects, 1980.

108



Appendices

109



Appendix A

Prediction results

This Appendix reviews the prediction results of single-phase Darcy friction factor

in straight pipes, the pressure loss coefficient of 90◦ round elbows, two-phase

pressure drop in straight pipes and across 90◦ round elbows. Many prediction

models were employed to obtain these results for different flow conditions and

pipes diameters which are listed in Table A.1.

Table A.1: Flow conditions and pipes specifications that were employed in the prediction

calculations.

Pipe diameter D∗ (mm) 11 16 21

Ambient pressure (bar) 1 1 1

Temperature ◦C 25 25 25

j∗
L

(m/s) 0.68 - 1.015 0.34 - 0.68 0.297 - 0.495

j∗
G

(m/s) 0.51 - 26 0.25 - 26 0.1485 - 26

Pipe surface roughness smooth smooth smooth

Lemmon et al. [88] was used to evaluate the physical properties of air and water

at the given ambient pressure and temperature. The prediction analysis waswas

conducted to examine the effective factors on two-phase pressure drop in straight

pipes and across 90◦ elbows, like the superficial velocities and pipes diameters.
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Figure A.1: Prediction values of single-phase friction factor of pipe flow by using Blasius, Cole-

brook, Churchill, Haaland, McKeon et al. and Fang et al. formulas for different

conditions as listed in Table A.1.

Single-phase Darcy friction factor and pressure

loss coefficient

The prediction of single-phase pressure drop across the elbow is crucial because

most of the two-phase pressure drop prediction models are employing the single-

phase pressure drop and a two-phase multiplier.

Numerous implicit and explicit formulas have been proposed to express the single-

phase Darcy friction factor in terms of Reynolds number Re by Blasius [77],

Colebrook [109], Churchill [94], Haaland [95], McKeon et al. [96] and Fang et al.

[110]. Figure A.1 shows the single-phase friction factor which is computed by

using different correlations for Re<60000. Although there is some deviation

between the predicted values of Cf which are computed by different formulas,

any one of these formulas can be employed to evaluate the single-phase friction

factor Cf with acceptable percentage of error.

In addition to the frictional losses in straight pipe flow, the flow across pipe
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Figure A.2: Predicted values of single-phase pressure loss coefficient K of 90◦ round elbows

with C = 1 in terms of Re by using Beij [15] and Ito [13] methods.

bends and elbows includes further losses as a consequence of the secondary flow

and the flow separation. Two well known methods were proposed by Beij [15]

and Ito [13] to express the pressure drop across elbows and pipe bends in terms of

equivalent length to diameter ratio L and pressure loss coefficient K respectively.

Figure A.2 shows a single-phase pressure loss coefficient of 90◦ round bends K in

terms of Re by using Beij [15]’s and Ito [13]’s approaches. There is a remarkable

deviation between the predicted values of K by the models and this deviation

could be related to the difference in the assumptions that were used to propose

the models.

Two-phase pressure drop

This section includes the prediction values of air-water frictional pressure drop in

straight pipes and across 90◦ round elbows by using many well known prediction

models.
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Two-phase pressure drop in straight pipes

Three prediction models of two-phase pressure drop, Lockhart and Martinelli

[5], Friedel [86], Chisholm [85], Müller-Steinhagen and Heck [64], were used to

examine the effect of the phase velocities and the pipe diameter on the frictional

pressure drop of air-water flow for the flow conditions which are listed in Table

A.1.

Effect of air and water superficial velocities

Figure A.3 illustrates the predicted pressure drop per unit length ∆p∗tp/∆l
∗ for

different j∗
L

and j∗
G

by using Lockhart and Martinelli [5], Friedel [86], Chisholm

[85] and Müller-Steinhagen and Heck [64] models. The prediction results show

that the pressure drop in straight pipes ∆p∗tp/∆l
∗ increases as the air and water

superficial velocities increase as mentioned by many studies which were reviewed

in Chapter 3. Although the predicted values of pressure drop by different models

follow the same trend, a remarkable deviation between the values of different

models can be noticed as illustrated in Figure A.4.

Effect of pipe diameter

Pipe diameter D∗ represents an effective factor on two-phase frictional pressure

drop. Figure A.5 show the predicted values of pressure drop per unit length

∆p∗tp/∆l
∗ in therms of j∗

G
and D∗ for j∗

L
= 0.396 m/s by using Lockhart and

Martinelli [5], Friedel [86], Chisholm [85] and Müller-Steinhagen and Heck [64]

models. The predicted pressure drop per unit length ∆p∗tp/∆l
∗ increases as D∗

decreases for same flow conditions as mentioned by many studies in the literature

as clarified in Chapter 3.

Pressure drop across 90◦ round elbows

The effect of superficial velocities of the working fluids and pipes inside diameters

on air-water pressure drop across 90◦ round elbows are presented in this section.

Effect of superficial velocities

Figure A.6 shows the predicted values of air-water pressure drop across 90◦ round

elbows ∆p∗tp,e by using Chisholm [54] and Sookprasong [111] models in terms of air
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Figure A.3: Air-water two-phase frictional pressure drop per unit length ∆p∗tp/∆l
∗ predictions

in terms of j∗G for T ∗=25◦C, D∗=21mm and p∗=1 bar and different j∗L .
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Figure A.4: Comparison between the predicted pressure drop in straight pipes by using

Lockhart and Martinelli [5], Chisholm [85], Müller-Steinhagen and Heck [64] for

D∗=21mm, j∗L=0.396 m/s and j∗G=9.9 m/s.
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Figure A.5: Air-water two-phase frictional pressure drop per unit length ∆p∗tp/∆l
∗ predictions

in terms of j∗G for T ∗=25◦C, p∗=1 bar, j∗L 0.396 m/s and different D∗.
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(b) Chisholm [54]

Figure A.6: Predicted values of air-water pressure drop across 90◦ round elbows by using

Chisholm [54], Sookprasong [111] models for T ∗=25◦C, D∗=21mm and p∗=1

bar.

and water superficial velocities for D∗=21mm. The prediction results show that

the pressure drop increases as the superficial velocities increase for both models.

Although the models predict different values of pressure drop for the same flow

conditions as clarified in Figure A.7, the pressure drop results follow the same

trend.

Effect of pipe diameter:

Figure A.8 shows the predicted pressure drop across 90◦ round elbows by using

Chisholm [54] and Sookprasong [111] models in terms of j∗
G

for different D∗ at

j∗
L
=0.396 m/s. The predicted results show mild effect of the pipe diameter D∗

on the pressure drop across 90◦ elbows. These results agree with many studies,

in the literature, which are reported that the pressure drop across the elbows is

a function of the elbow curvature ratio C rather than the pipe diameter D∗.
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Figure A.7: Predicted two-phase pressure drop across 90◦ round elbows by using Chisholm

[54] and Sookprasong [111] models for D∗=21mm, j∗L=0.396 m/s and j∗G=9.9 m/s.
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Figure A.8: Predicted values of air-water pressure drop across 90◦ round elbows by us-

ing Chisholm [54] and Sookprasong [111] models for T ∗=25◦C, p∗=1 bar and

j∗L=0.396 m/s.
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Appendix B

Calibration of measurement

instruments

All of the measurement instruments were calibrated either by the manufacturer

or in the lab against accurate standards. The calibration of the instruments

has been included in the calculations of the experimental data. This Appendix

presents the details of the measurement instruments calibration certificates and

data.

Pressure measurements instruments

Differential pressure Instruments

A differential pressure transducer was employed to measure the high-range (0-

17.23kPa) pressure drop of single-phase water and two-phase flows along the test

sections. Figures B.1 and B.2 depict the calibration certificate and data of the

differential pressure transducer respectively. A differential pressure transmitter

was used to measure the low-range of pressure drop (0-2.5 kPa) of single-phase

water and two-phase flows. The calibration certificate and data of the differential

pressure transmitter are shown in Figures B.3 and B.4 respectively.

Absolute pressure

An absolute pressure transducer was used in this work to measure the absolute

pressure. The transducer was calibrated by the manufacturer and supplied with
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Figure B.1: Calibration certificate of the differential pressure transducer.
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Figure B.2: Calibration data of the differential pressure transducer, range 0 - 17.23kPa.

a signed certificate. Figures B.5 and B.6 depict the calibration certificate and

data of the absolute pressure transducer respectively.

Flow measurements

Water flow measurements

Two different turbine flow meters (FTB-101 and FTB-104) with six digits rateme-

ter (Omega DPF-702) were employed for water flow measurements in the ranges

of (1.3-13.2 and 6.6-60) LPM, respectively. The flow meters were calibrated by

the manufacturer with ±0.5% reading error and the calibration certificates and

data for the water flow meters are shown in Figures B.7, B.8, B.9 and B.10.

Air flow measurement

An air mass flow meter was used to measure the air flow rate. The flow meter was

calibrated by the manufacturer and supplied with a signed certificate. The cali-

bration certificate and data are illustrated in Figures B.11 and B.12 respectively.
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Figure B.3: Calibration certificate of the differential pressure transmitter.
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Figure B.4: Calibration data of the differential pressure transmitter, range 0 - 2.5 kPa.

Temperature measurements

A type K thermocouple was used for water temperature measurements with picco

data logger. The thermocouple was calibrated in the lab against an accurate

thermometer. The calibration data is shown in Figure B.13.
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Figure B.5: Calibration certificate of the absolute pressure transducer.
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Figure B.6: Calibration data of the absolute pressure transducer, range 0 - 690 kPa.
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Figure B.7: Calibration certificate of the FTB-101 water flow meter.

126



Calibration of measurement instruments

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Displayed flow rate (l/m)

A
c
tu

a
l
fl
o
w

ra
te

(l
/
m
)

fit line

displayed data

V̇ ∗
act = 0.9889V̇ ∗

disp + 0.1419

R2 = 1

Figure B.8: Calibration data of the FTB-101 water flow meter, range 1.3 - 13.2 LPM.
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Figure B.9: Calibration certificate of the FTB-104 water flow meter.
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Figure B.10: Calibration data of the FTB-104 water flow meter, range 6.5 - 60 LPM.
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Figure B.11: Calibration certificate of air mass flow meter.
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Figure B.12: Calibration data of air mass flow meter, range 2.5 - 500 SLPM.
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Figure B.13: Calibration data of the type K thermocouple.
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Appendix C

Dimensional analysis

A dimensional analysis based on the Π theorem, which was used to obtain the

non-dimensional parameters that describe the flow patterns and the two-phase

pressure drop, are illustrated in this Appendix.

Dimensional analysis of two-phase flow

The two-phase flow depends on many factors, such as the pipe diameter D∗,

fluids densities ρ∗k, the dynamic viscosities of the fluids µ∗k, the mass flow rates

ṁ∗k (where k=L for water and k=G for air) and the gravitational acceleration g∗.

The flow is also dependent on the angle of the pipe inclination with respect to

the vertical axis. For mitre elbows, the flow also depends on the flow direction,

as explained in Section 6.2. As we operate in regimes at high Reynolds numbers,

the effect of the surface tension between air and water is negligible [56, 65].

The number of dimensionless parameters is Π=k′− n, where k′=8 is the number

of the dimensional parameters and n=3 is the number of basic dimensions, i.e.

the mass, the length, and the time. It follows that Π=5. As repeating variables,

we choose D∗, ρ∗
L
, and ṁ∗

L
. We find the following dimensionless parameters:

Π1 = ρ∗
G
D∗a (ρ∗

L
)b (ṁ∗

L
)c . (C.1)

The first parameter, which is obtained by applying a=0, b=-1 and c=0, is the

density ratio of the two-phases R:

Π1 = R =
ρ∗
G

ρ∗
L

= constant in air-water flow. (C.2)
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Π2 = µ∗
L
D∗a (ρ∗

L
)b (ṁ∗

L
)c . (C.3)

The second dimensionless parameter, for a=1, b=0 and c=-1, is the liquid-phase

Reynolds number:

Π2 = ReL =
ṁ∗

L

µ∗
L
D∗

=
ρ∗
L
j∗
L
D∗π

4µ∗
L

. (C.4)

Π3 = µ∗
G
D∗a (ρ∗

L
)b (ṁ∗

L
)c . (C.5)

The third non-dimensional parameter, for a=1, b=0 and c=-1, is the gas-phase

Reynolds number:

Π3 = ReG =
ṁ∗

G

µ∗
G
D∗

=
ρ∗Gj

∗
G
D∗π

4µ∗
G

. (C.6)

Π4 = ṁ∗
G
D∗a (ρ∗

L
)b (ṁ∗

L
)c . (C.7)

By applying a=0, b=0 and c=-1, the fourth dimensionless parameter is the mass

flow rates ratio:

Π4 =Mass =
ṁ∗

G

ṁ∗
L

=
µ∗
L

µ∗
G

ReL

ReG

=Mu
ReL

ReG

. (C.8)

Π5 = g∗D∗a (ρ∗
L
)b (ṁ∗

L
)c . (C.9)

The fifth parameter is defined by using a=5, b=2 and c=-2 as:

Π5 =
ṁ∗

L

2

g∗D∗5ρ∗
L

2
= Fr2

L
. (C.10)

Note that the Π4 parameter found directly from the analysis is Π4=ṁ∗G/ṁ
∗
L
, which

can be written as Π4= (µ∗
L
/µ∗

G
)ReL/ReG. The Reynolds numbers already belong

to the dimensionless group of parameters and therefore the ratio of viscosityMu

is a more convenient choice for Π4.

For a specified geometry and flow direction, the flow patterns can therefore be

expressed in terms of ReL, ReG, F rL, R, and Mu. For an incompressible and

isothermal air-water flow, R and Mu are constants, and thus flow pattern maps

can be obtained in the two-dimensional space (ReL, ReG) for a given FrL.

Dimensional analysis of two-phase pressure drop

A dimensional analysis based on the Π theorem is employed to find the non-

dimensional parameters the friction coefficient CL and the scaled pressure drop of

the elbow KL depend on. The flow depends on the diameter D∗, the densities and
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the viscosities of the fluids, ρ∗k and µ∗k, the mass flow rates ṁ∗k (where k=L for

water and k=G for air), and the gravitational acceleration g∗. The flow is also

dependent on the angle of the pipe inclination with respect to the vertical axis.

For mitre elbows, the flow also depends on the flow direction, that is, whether

the vertical pipe is located upstream or downstream of the elbow. The effect of

the surface tension between air and water is negligible because the interest is in

high-Reynolds-number regimes [56, 65].

The number of dimensionless parameters is Π=k′− n, where k′=8 is the number

of the dimensional parameters and n=3 is the number of basic dimensions, i.e.

the mass, the length, and the time. It follows that Π=5. As repeating variables,

D∗, ρ∗
L
, and ṁ∗

L
are chosen. We find the following dimensionless independent

parameters:

Π1 = R =
ρ∗
G

ρ∗
L

= constant in air-water flow. (C.11)

Π2 = ReL =
ṁ∗

L

µ∗
L
D∗

=
ρ∗
L
j∗
L
D∗π

4µ∗
L

. (C.12)

Π3 = ReG =
ṁ∗

G

µ∗
G
D∗

=
ρ∗
G
j∗
G
D∗π

4µ∗
G

. (C.13)

Π4 =Mass =
ṁ∗

G

ṁ∗
L

=
µ∗
L

µ∗
G

ReL

ReG

=Mu
ReL

ReG

. (C.14)

Π5 =
ṁ∗

L

2

g∗D∗5ρ∗
L

2
= Fr2

L
. (C.15)

Note that the Π4 parameter found directly from the analysis is Π4=ṁ∗G/ṁ
∗
L
, which

can be written as Π4= (µ∗
L
/µ∗

G
)ReL/ReG. The Reynolds numbers already belong

to the dimensionless group of parameters and therefore the ratio of viscosity is a

more convenient choice for Π4. The pressure drop coefficients CL scale as:

CL =
∆p∗tp
∆l∗
|f
D∗5ρ∗

L

ṁ∗
L

2 , (C.16)

and

KL = ∆p∗tp|e
D∗4ρ∗

L

ṁ∗
L

2 . (C.17)
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