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Abstract

Restriction Site associated DNA (RAD) is a molecular method involving restriction digestion
and high throughput DNA sequencing. It promises the systematic subsampling of the
genome and highly repeatable scoring of genetic variation in hundreds of individuals at
current sequencing costs. However, it comes with its own problems. De novo assembly of
RAD sequence data usually creates many putative reference tags that are only found in one
or a few individuals leaving only relatively few markers for population genomic analyses. In
the first chapter, I investigate three potential reasons for this outcome — incomplete digestion,
genomic religation and insufficient DNA template amount — by looking at the occurrence
of restriction enzyme recognition sequences within the resultant sequencing data of two
different types of RAD libraries.

Analysis of sequence clusters as well as the proportion of concordantly mapping read pairs
against a Locusta reference sequence suggest that incomplete digestion has affected one of the
restriction enzymes used and thereby the number of loci that could be sequenced at sufficient
depth across individuals. The other restriction enzyme is found to be much less affected
by incomplete digestion and instead random religation of restriction fragments indicates
an inefficient adapter ligation step that also leads to low read depths across individuals.
Finally, gPCR and read mapping against four newly reconstructed paired-end (PE) contig
pair reference sequences suggests that low amount of starting DNA and/or high loss of DNA
during the library preparation are a major cause for the locus drop-out observed in the de
novo assembled read data.

In the second part of this thesis, I use RAD sequence data to make inferences about
several aspects of the demographic history of two grasshopper subspecies that form a hybrid
zone in the Pyrenees between France and Spain. Sequence data was generated from 36
individuals sampled at the two opposite ends of a hybrid zone that is characterised by hybrid
male sterility. I use a state-of-the-art de novo assembly strategy that utilises the shotgun-type
PE reads from standard RAD to distinguish alleles from paralogs. I then conduct several
population genomic analyses with the programme ANGSD that incorporates uncertainty in
genotypes by using genotype likelihoods instead of called genotypes. Results based on more
than 1 million filtered sites confirm the high genetic differentiation of the two subspecies
found in pre-genomic studies and a surprisingly high genetic diversity in the subspecies that
is thought to be derived from a very distant glacial refuge. Further, demographic modelling



with the programme dadi reveals a robust signal of low but significant gene flow during the
divergence of the two subspecies (Nm ~ 0.471, until about 25 thousand years ago (kya)).
Allowing for gene flow roughly doubles the divergence time estimate from about 0.5 to
1.1 million years ago (mya). The divergence time estimate without allowing for gene flow
is highly consistent with previous estimates from a mitochondrial sequence marker. A
history of divergence with gene flow also indicates that alleles causing Dobzhansky-Muller
incompatibilitys (DMls) are unlikely to have risen in frequency by genetic drift alone. The
gene flow is clearly asymmetric between the two subspecies in line with many previous
studies of the hybrid zone that indicated asymmetric introgression in the same direction.
There is no signal of recent (postglacial) gene flow in the data set. However, this may well be
due to a lack of power. Further analysis of this data set promises to yield more insights, e.g.

loci potentially under divergent selection between the two subspecies.
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Glossary

all pairs all the pairs of sequences below a given Levenshtein distance are identified during

the graph construction phase. 66

barcode short DNA sequence incorporated into adapter oligonucleotides that becomes part
of the sequence read. Barcodes are used in order to be able to pool the DNA of different
individuals, populations, treatments, etc. into one library that can be sequenced on one
lane of an illumina flow cell. 9, 46

C; PCR cycle when a certain fluorescent threshold is reached. 54

concordant A read pair is called concordant if it aligns with the expected relative mate
orientation (here: forward-reverse or reverse—forward) and within the expected range
of distances between mates. This is also called a proper pair. The complement of
discordant. xvi, 32, 39, 47, 62, 63

connected component All nodes (here sequence reads) after all-pairs search (and before
clustering!), that are directly connected by an edge or indirectly connected via several

nodes, belong to the same connected component. 66

contig longer consensus sequence derived from assembling smaller overlapping sequence
reads. 25, 26, 50, 69

discordant A read pair is called discordant if it aligns without the expected relative mate
orientation (here: forward—-reverse or reverse—forward) or outside the expected range of
distances between mates. Note that bowtie?2 only calls discordant read pair mappings
if both reads map uniquely. Here, I am NOT adopting this requirement. xv, 32

edit distance minimum number of operations (one symbol insertion, deletion or substitution)
required to change one string of symbols into another. Also known as Levenshtein
distance. 17,52, 66, 67



Xvi Glossary

Expect (E) value The Expect value (E) is a parameter that describes the number of hits one

can "expect" to see by chance when searching a database of a particular size. 50

fragment not a PCR duplicate. With paired reads from standard RAD (i. e. including
random shearing of restriction fragments) typically identified by having different PE
read sequences or different insert sizes after read mapping against a reference. 26-29,
56, 67

heterochromatin Chromatin that remains in a highly condensed state throughout the cell
cycle. 44

index similar to barcode and serves the same purpose; generally incorporated into the centre

of the adapter so that special sequencing run for the index is required. 10
kmer subsequence with a specified length (k) of a longer sequence. 25, 48, 49, 71, 107

linked RAD tag site position in the reference sequence with at least one concordant read
pair on each side of a putative restriction site and the SE reads overlapping each other
as expected from the restriction enzyme. 25, 27, 47, 51

mapping quality score The mapping quality score Q is the Phred transformation of the
estimate of the probability p that the reported mapping position does not correspond to
the read’s true point of origin: Q = —10log;,p. The way p is estimated is different
for each mapping programme, but in any case a mapping quality score Q of 3 roughly
corresponds to a mis-mapping probability p of 0.5, i. e. the read has an estimated 50%

chance to have derived from a location other than the one reported. 46

population minor allele frequency The population minor allele frequency is the (unknown)
frequency of the minor allele in the entire population (as opposed to the sample).. 76,
78

proper pair read pair from illumina paired-end sequencing that got mapped to a reference
in the correct orientation within a maximum expected distance from each other that is
determined by the fragment size selection during the sequencing library preparation.
Also called a concordantly mapping pair. xv, 27, 32, 46, 47, 62—-64, 69

RAD tag genetic marker from RAD sequencing; the sequence up or downstream of a
restriction site. 13, 23, 25-27, 40, 41, 45,49, 51, 52, 56, 69



Glossary xvii

read any sequence that comes out of the sequencer. 9

sample allele frequency The sample allele frequency is the frequency of the allele among
the individuals in a specific sample. 76, 80, 117

SbfT restriction enzyme with the recognition sequence CCTGCA|GG. 22-24, 29, 42-45

site frequency spectrum Also known as allele frequency spectrum (AFS). It is constructed
by computing the sample frequency (i. e. an integer >0) of the ancestral (unfolded)
or minor allele (folded) at each nucleotide site. The SES is then the histogram of the
number of sites at each frequency. 11, 69, 76, 77, 79-83, 86, 87, 91-96, 100, 109, 117,
127, 129

Xhol restriction enzyme with the recognition sequence CJTCGAG. 23, 45
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Chapter 1

General Introduction

Fig. 1.1 Chorthippus parallelus parallelus. Male individual from Finland.

1.1 Hybrid Zone in the Pyrenees

A hybrid zone of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) occurs
along the Pyrenees mountains between France and Spain where an Iberian subspecies,



2 General Introduction

erythropus, meets the nominate subspecies parallelus (Butlin and Hewitt, 1985a,b). In
Europe, the subspecies parallelus is distributed from the Balkans in the southeast to southern
France, northwards up to England (but not Ireland) and to southern Finland and eastwards
at least until the Ural and Caucasus mountains. On the Iberian peninsula, it is replaced by
the subspecies erythropus. The two subspecies meet and hybridise in transverse mountain
passes (cols) of the Pyrenees. The hybrid zone is not confined to the High Pyrenees. The
hybrid zone extends into the eastern (Catalan region) and western foothills (Basque region)
of the Pyrenees (Buno et al., 1994; Hewitt, 1993). The hybrid zones in the Basque region
and probably also the Catalan region appear to be much wider than in the High Pyrenees
(Buno et al., 1994; Vazquez et al., 1994). This is likely due to greater population densities

and fewer barriers to dispersal (e. g. high mountains) allowing a greater degree of mixing.

In what characters have subspecies diverged?

The two subspecies have diverged in many characters. They include morphological characters
(Butlin and Hewitt, 1985b; Butlin et al., 1991), mating behaviour, i.e. male calling and
courtship song, cuticular hydrocarbons and female preference (Buckley et al., 2003; Butlin
and Hewitt, 1985a; Ritchie, 1990; Ritchie et al., 1989), chromosomal characters (Bella et al.,
2007; Gosalvez et al., 1988) and a neuropeptide (Roth et al., 2007). The two subspecies also
have different patterns of infection by the bacterial endosymbiont Wolbachia (Zabal-Aguirre
et al., 2010, 2014) with a generally lower infection frequency in parallelus than in erythropus.

Phylogeographic studies of Chorthippus parallelus in Europe

The historical biogeography and population structure of C. parallelus in Europe has been
extensively studied by Cooper et al. (1995) and Lunt et al. (1998). Based on these studies,
the current hybrid zone is believed to have formed by secondary contact following range
expansion after the last glaciation from two different refugia as the ice retreated in the
Pyrenees some 9-12,000 years ago. The absence of shared haplotypes between Spanish and
French populations at an anonymous nuclear sequence marker (cpnl-1) indicates extensive
lineage sorting, which can only be caused by a substantial time of divergence with no or
very low gene flow (Cooper and Hewitt, 1993). Mitochondrial sequence divergence between
erythropus and parallelus indicates a total divergence time of around 500,000 years (Lunt
et al., 1998). This calculation assumed a mutation rate of 2% per million years and no gene
flow during divergence.

It seems very likely that large fluctuations in climate, like ice ages, and the concomitant

habitat changes have played a major role in repeatedly separating the ranges of the two
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subspecies for thousands of generations (Hewitt, 1990). Secondary contact during interglacial
periods would then have allowed some gene exchange between the two subspecies. This
would have reduced genetic divergence at least for those populations close to the contact
zone. However, those populations would go extinct at the onset of the next ice age. So
any gene flow that did not reach populations in glacial refuges would not have affected the
longterm divergence of the two subspecies.

Phylogeographic studies strongly suggest that the parallelus populations on the French
side of the Pyrenees are derived from populations in the Balkans (southeastern Europe)
and that erythropus populations on the Spanish side of the Pyrenees are derived from a
refuge in the south of the Iberian peninsula. Strong molecular genetic and chromosomal
differentiation within Spain suggests that current erythropus populations are derived from
several independent refugia in southern Spain (Bella et al., 2007; Cooper and Hewitt, 1993).
In particular, there seems to be strong divergence between Pyrenean and northern Spanish

populations on the one hand and central and southern Spanish populations on the other hand.

Hybrid zone as a natural laboratory

With an average haplotype divergence of 1.7% at a single nuclear locus (Cooper and Hewitt,
1993), the two subspecies may still be at an intermediate stage in the process of speciation
(Mallet, 2008; Roux et al., 2016). This would make this system suitable for the study of
reproductive isolation mechanisms that evolve during the early stages of speciation which do
not necessarily have to be similar to those that evolve toward the end of speciation or after
speciation is complete.

In the laboratory, F; hybrid males produced from crosses between pure’ parallelus and
‘pure’ erythropus taken from either side of the hybrid zone are almost completely sterile with
degenerate testes and a severely disrupted meiosis (Bella et al., 1990; Hewitt et al., 1987;
Virdee and Hewitt, 1992). The fact that F; males are affected by sterility, not only F; or
backcross males, indicates that at least one locus must be (co-)dominant in its expression of
the genetic incompatibility (the other locus may be recessive if located on the X chromosome).
Hybrid females on the other hand are fully fertile. This is therefore an example of Haldane’s
rule (Turelli and Orr, 1995). Males collected from the hybrid zone, however, are almost
completely fertile (Ritchie et al., 1992). The absence of sterile males in the hybrid zone
is likely due to the reconstruction of compatible (presumably ancestral) genotypes caused
by selection against incompatible combinations of derived alleles (Gavrilets, 1997). The
two subspecies are polymorphic for these negative epistatic interactions (roughly 10% of F;
hybrid males from pure parents are fully fertile, Shuker et al., 2005) and thus compatible

(i.e. ancestral) alleles can reach the centre of the hybrid zone. This also means that genetic
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markers, even when in complete linkage disequilibrium with a causative variant underlying
sterility, are not necessarily expected to be divergently fixed between the two subspecies.

Within a transect of the hybrid zone, clines for different characters vary greatly in
width suggesting that the underlying genes have introgressed to different degrees since the
secondary contact of the two subspecies. Selection in hybrids will restrict the introgression
of those parts of the genome that are responsible for Dobzhansky-Muller incompatibilities
between the genomes of the two subspecies, whereas neutral loci should introgress to a
large extent into the other subspecies’ genomic background by recombination. The clines
of several characters are also much wider than would be expected for neutral introgression
given the life time dispersal distance of these grasshoppers of less than 30 m (Virdee and
Hewitt, 1990) and the number of generations since secondary contact of around 9,000 years
(Hewitt, 1990). Those broad clines are a likely relict of the colonisation of the hybrid zone by
rare long distance dispersal (Nichols and Hewitt, 1994). Initially broad clines for characters
under selection in hybrids should on the other hand have converged to equilibrium narrow
clines in just a few hundred generations (Barton and Hewitt, 1985). This should increase the
power to detect genetic markers under selection in hybrids in a hybrid zone analysis with
a dense genome-wide marker set (Gompert and Buerkle, 2011a). In addition, the bimodal
distribution of testis follicle lengths (a good proxy for sterility) of backcross hybrids suggests
that only a few loci of large effect contribute to hybrid sterility [Llewellyn, 2008, fig. 4-3 and
Shuker et al., 2005].

The two subspecies also have divergent infection patterns with the endosymbiont Wol-
bachia (Zabal-Aguirre et al., 2010). That is a low infection frequency in the parallelus
populations where the B strain of Wolbachia is predominant versus a high infection frequency
in erythropus populations where the F strain is predominant. Unidirectional cytoplasmic
incompatibility causes an average reduction of 32.5% in the proportion of eggs with embryos
as compared to crosses between uninfected individuals (Zabal-Aguirre et al., 2014). This, in
addition with the slightly less severe bidirectional cytoplasmic incompatibility, should lead to
considerable reproductive isolation between the two subspecies. So, male hybrid sterility and
divergent mating systems are not the only reproductive barriers between the two subspecies.
The occurrence of several reproductive barriers also speaks for a rather old divergence of the
two subspecies.

Another subspecies of C. parallelus has been detected in Italy from nuclear sequence
(Cooper et al., 1995) and chromosomal differentiation and a hybrid zone between the
Italian subspecies and the northern European and Balkan subspecies (parallelus) based on
cytogenetic markers has been described in the Alps (Flanagan et al., 1999). Interestingly, the

Italian subspecies seems to be more closely related to the Iberian subspecies (erythropus)
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than to parallelus (Cooper et al., 1995) and, in contrast to the Pyrenean hybrid zone, natural
male hybrids have been found that do show meiotic abnormalities and abnormally developed
sperm. This may indicate that the hybrid zones in the Alps are much younger than those in
the Pyrenees.

Evidence for asymmetric introgression across the hybrid zone

Clines of several morphological as well as molecular markers have been shown to be very
wide in different transects through the hybrid zone (up to 40 km) (Butlin and Hewitt, 1985a,b;
Butlin et al., 1991; Vazquez et al., 1994) and their centres are often displaced from each other,
which indicates substantial gene flow across the hybrid zone.

Bella et al. (1992) have found preferential homogamy (i.e. production of pure rather than
hybrid offspring) in parallelus females sequentially mated with males from both subspecies.
In a similar study, Hutchison (2013) found that parallelus males outcompete erythropus
males in siring offspring regardless of the females’ subspecies status. This indicates some
mechanism(s) of postmating isolation. A very good candidate for this is unidirectional
cytoplasmic incompatibility caused by divergent frequencies of Wolbachia infection in the
populations used for those crossing experiments (Zabal-Aguirre et al., 2010, 2014). The
fact that parallelus males sire more offspring in both types of matings indicates a greater
potential for introgression of the parallelus genome (including the X chromosome) into the
erythropus genome than vice versa. This is particularly true when males contribute more
to gene flow than females due to their higher dispersal distances as has been estimated in a
closely related grasshopper species (Bailey et al., 2003).

Lunt et al. (1998) have found that a population from Pyrenean Spain (Escarilla) is more
similar to French populations at a mitochondrial sequence marker (COI) than to all other
Spanish populations. If this pattern is a result of introgression of mitochondrial haplotypes
from parallelus into Pyrenean erythropus, then it could be driven by Wolbachia (Gompert
et al., 2008; Hurst and Jiggins, 2005; Raychoudhury et al., 2010). This is supported by the
finding of Zabal-Aguirre et al. (2010) that, in the hybrid zone, the shift of infection from
parallelus type to erythropus type occurs on the Spanish side of the Pyrenees. Mitochondrial
and Wolbachia genomes should be in strong linkage disequilibrium, since both are maternally
inherited. The spread of a Wolbachia strain (or the uninfected state) should therefore also
lead to the spread of its associated mitochondrium.

Ferris et al. (1993) have shown that an X-chromosomal nucleolar organiser region (NOR,
a cluster of ribosomal DNA) specific to parallelus has introgressed deeply into erythropus
genomic background in the Pyrenean hybrid zone. At the transect across the Col de la

Quillane the cline centre for this marker is some 15 km south of the centre of most other
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clines. This indicates substantial introgression of X-chromosomal sequences from parallelus
into erythropus. A much more extreme indication of introgression has been found by
Bella et al. (2007). They have shown that an X-chromosomal interstitial heterochromatic
band that is closely associated with the NOR characteristic of parallelus has introgressed
about 400 km into the northwest of the Iberian peninsula into the south of the Cantabrian
mountains. Interestingly, the X-NOR did not introgress or is not active in erythropus genomic
background.

There is not just evidence of introgression from parallelus into erythropus. Butlin
et al. (1991) have shown that at a transect in the western Pyrenees (Col du Pourtalet) many
morphological characters have cline centres that are greatly displaced towards the north
into parallelus territory. However, this is the only study that I am aware of that indicates
substantial introgression from erythropus into parallelus. So there seems to be ample direct
and indirect evidence for substantial introgression from parallelus into erythropus since
the formation of the Pyrenean hybrid zone some 10 kya (and potentially also in previous

interglacials) as detailed above and only scant evidence for gene flow in the other direction.

Dispersal and serial founder effects

Most species on Earth have experienced range shifts and expansions into their current habitat
following the changes in environmental conditions due to climate warming at the end of
the last ice age between 18,000 and 10,000 years ago. Many species are geographically
subdivided into distinct subspecies which form hybrid zones where they meet. Many of these
hybrid zones are secondary, having formed after allopatric divergence in different ice age
refugia (Hewitt, 1999; Taberlet et al., 1998).

The recolonisation of previously inhospitable habitat during range expansion should have
led to a series of founder events (Peter and Slatkin, 2015). These are severe population
bottlenecks caused by the founding of new populations by very few colonists. This is
followed by initially exponential (census) population size increase. Later gene flow should
have little impact on gene frequencies in established populations (Hewitt, 1996; Waters et al.,
2013). A series of founder events should produce a strong negative correlation between
genetic diversity and geographical distance from the source population. Similarly, it should
produce a strong positive correlation of genetic divergence with geographical distance from
the origin of expansion (Peter and Slatkin, 2013). Both correlations are strongest right after
the time of range expansion and should decay over time depending on the dispersal ability of
the species.

In many species it has indeed been found that genetic diversity decreases the further

away a population is from the origin of range expansion (e. g. in humans, Luca et al.,



1.1 Hybrid Zone in the Pyrenees 7

2011). In particular, populations from the north of a distribution range often have lower
genetic diversity than southern populations, which are closer to glacial refugia (Hewitt,
1996). There are, however, also exceptions to this overall pattern. For example, Petit et al.
(1999) have shown a lack of decreasing genetic diversity of mitochondrial sequences with
distance to putative glacial refugia in the bat species Nyctalus noctula. It is very likely that
the exceptional dispersal capability of this migratory species can at least partly explain this
observation.

In Chorthippus parallelus, the spatial distribution of genetic variation across Europe at
neither a nuclear nor a mitochondrial locus had clearly shown a reduction of genetic diversity
with distance from the putative glacial refuge in the Balkans or Greece (see intraregionial
K values in table 2 of Cooper et al., 1995 and table 1 of Lunt et al., 1998). There is also no
increase of genetic distance with geographic distance to putative ancestral populations in the
southern Balkans in those two data sets (see their pairwise K7 values). The general reduction
in genetic diversity from southern to northern European populations found by Cooper et al.
(1995) does not necessarily need to be a signal from postglacial range expansion either. A
possible alternative explanation would be smaller effective population sizes in the north due
to greater forest cover. For instance, the dryer climate in the south could have allowed more
wildfires to create the open grassland that is the suitable habitat for C. parallelus.

Serial founder models are based on stepping-stone dispersal that is over discrete locations
that are colonised one by one and only by individuals from neighbouring locations. However,
it is obvious that most species do not disperse that way. Individual based simulation studies
of recolonisation by Ibrahim et al. (1996) have shown that the current spatial distribution of
genotypes is very dependent on the distribution of individual lifetime dispersal distances of
the species (i.e. not just the average individual dispersal distance) as well as on the dispersal
of other species it depends on, e. g. food plant species. They included leptokurtic dispersal
functions with fat tails that allow rare long distance dispersal. The simulations showed
that colonists founding new populations can initially reproduce exponentially, while later
migrants will arrive when the population size is closer to its carrying capacity and therefore
contribute relatively little to the gene pool of the population. The result are large patches
of reduced genetic diversity and those patches persist for many hundreds of generations.
According to this study, recolonisation by rare long distance dispersal seems to produce a
smaller increase of genetic distance with geographic distance than stepping-stone dispersal
and this signal also decays more quickly over time. It also shows that rare long distance
dispersal leads to a greater reduction in genetic diversity than stepping-stone dispersal.

However, when looking at a slightly broader spatial scale than individual subpopulations,

the reduction in genetic diversity in a newly colonised area with respect to refugial areas due
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to serial founder events can be reversed if long distance dispersal is common enough (Bialozyt
et al., 2006). In order for long distance dispersal to speed up recolonisation appreciably (e. g.
reducing colonisation time by one half) as compared to diffusion dispersal, it’s rate needs to
be so high that genetic diversity on a regional scale is hardly diminished during colonisation.
Founder populations do not have time to grow into large patches and admixture between
adjacent founder populations as well as ongoing migration from the source of expansion
could erode the small expansion signal of reduced local genetic diversity very quickly (Peter
and Slatkin, 2013, fig. 3).

While Virdee and Hewitt (1990) have estimated the average dispersal distance for the
flightless Chorthippus parallelus at only 30 m per generation, its postglacial range expansion
must have proceeded at a much greater pace. Assuming the distance between the putative
Balkan glacial refugia and Britain is about 2,000 km, with a dispersal distance of 30 m it
would have taken about 67,000 years to reach Britain. For C. parallelus to reach Britain
between the Younger Dryas cold spell at around 11 kya and the flooding of the English
Channel at around 8 kya (Sturt et al., 2013), the average dispersal distance would have needed
to be 600—700 m per generation (year) (Cooper et al., 1995). This indicates that long distance
dispersal during postglacial range expansion of C. parallelus was common enough to allow
preservation of genetic diversity at a regional scale over its whole current distribution range.
The initially reduced genetic diversity at a local scale may have recovered since the end of
recolonisation of northern Europe due to gene flow between adjacent founder populations.

Recently, a more powerful measure to detect range expansions has been proposed by
Peter and Slatkin (2013). It is based on the expected increase of frequencies of shared alleles
between source population and newly founded population due to genetic drift, a phenomenon
also known as "allele surfing".

Of particular interest is whether the different processes associated with the postglacial
recolonisation of northern Europe (including allele surfing and adaptation to different environ-
ments) accelerated the divergence that results in hybrid sterility between the two subspecies
parallelus and erythropus. Tregenza et al. (2002) have investigated this and have found no
significant effect associated with recolonisation during postglacial range expansion on testis
follicle length (a good proxy for sterility) in crosses between populations across Europe,
i.e. a cross between France and Spain does not produce more sterile offspring than a cross

between Greece and Spain.
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1.2 RAD

What is RAD?

RAD, aka RADseq and sRAD, is a restriction enzyme-based genotyping by sequencing
(GBS) technique. It targets regions of the genome for sequencing that flank the recognition
sites of restriction enzymes (fig. 1.2). Altshuler et al. (2000) were the first to use reduced-
representation sequencing libraries from genomic restriction fragments for SNP discovery.
After the introduction of massively parallel sequencing technologies, these were further
developed for population allele frequency and genotype estimation (Andolfatto et al., 2011;
Baird et al., 2008; Davey et al., 2011; Elshire et al., 2011; Van Tassell et al., 2008). By
sequencing only the ends of restriction fragments, RAD creates sequencing libraries with
reduced complexity as compared to whole-genome shotgun sequencing, thus subsampling the
genome at homologous locations to identify and type single nucleotide polymorphisms (SNPs)
and small sequence insertion or deletion polymorphisms (indels) more or less randomly
throughout the genome and increasing read coverage for the enriched sites. It is therefore a
cost-effective alternative to whole genome shotgun sequencing. If template molecules for
sequencing are labelled with different barcodes from ligated adapter oligonucleotides, then
individual or population samples can be pooled during library preparation and sequenced
together in the same parallel sequencing run. Different reads from the same RAD tag are
fully overlapping, which focuses coverage at those restriction sites and facilitates variant
discovery and genotype calling for RAD tags as compared to shotgun sequencing. When
standard RADseq according to Baird et al. (2008) is done with PE sequencing, the forward
reads begin at the cut site but the second (reverse) reads are coming from the sheared end
and are only partially overlapping each other (shotgun type reads). Those paired-end reads
that originate from the same side of the same restriction site can be used to identify PCR
duplicates and can be assembled into a few hundred base pair long contigs (fig. 1.2). double
digest RAD (ddRAD) together with paired-end sequencing, i.e. sequencing from each end of
the restriction fragment, produces two RAD tags per fragment, i.e. one on each end (fig. 1.3).

As opposed to microsatellite markers or target capture sequencing, RADseq can be used
with study organisms that are currently lacking genome sequence information and allows
genome-wide discovery of co-dominant genetic markers and their genotyping in one go
(Davey et al., 2011). Only genome size and GC content are required to estimate the required
number of reads for a certain target coverage. Previously, microsatellites had been the
marker of choice for many population genetic studies. However, developing hundreds or
even thousands of polymorphic microsatellite markers is costly and time-consuming for

species without a close relative with a sequenced genome (DAWSON et al., 2010). Once
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Fig. 1.2 Overview of the standard RAD marker technique according to Baird et al. (2008). (1) One restriction
enzyme is used to digest genomic DNA. The first illumina adapter (P1), containing a different barcode (here
called index) sequence for each individual, is then ligated to the restriction fragments. The restriction fragments
are then sheared, usually by high-frequency sonication, into a fragment size range that is suitable for illumina
sequencing, which is selected on an agarose gel. After ligation of the second illumina adapter (P2), fragments
with at least one P1 adapter are enriched by selective PCR. (2) The single-end (SE) reads start with a barcode
sequence, followed by the remainder of the restriction site. Only relatively short sequences (tags) are generated
from the ends of the fragments. (3) Due to random shearing of restriction fragments, the PE reads start at
variable genomic distances from the restriction site (unless they are PCR duplicates) and thus can be assembled
into short PE contigs, depending on the size range selected on the gel. Taken from Atwood et al. (2011).
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developed, the genotyping of many microsatellite markers in many individuals is again costly
and time-consuming. In addition, mutation mode and mutation rates are generally not known
for microsatellites. Like AFLP, RADseq does not require prior sequence information and
selection of polymorphic markers for genotyping of population samples. However, instead of
dominant restriction fragment length polymorphisms, RADseq provides sequence informa-
tion from those fragments that makes determination of homology much easier (Hohenlohe
et al., 2013) and allows the application of site frequency spectrum and haplotype-based
population genomic analyses (Pool et al., 2010).

While many questions in evolutionary genetics can already be addressed with a fairly
moderate number of markers (from 10’s to 100’s of loci) — e. g. inference of population
structure, phylogeny, phylogeography, historical demography and gene flow as well as QTL
mapping — some other questions greatly benefit from a dense genome-wide marker set (10’s
of thousands to several million markers depending on genome size). Genome scans, with
samples from large, outbred populations in particular, greatly increase their chances of
signal detection with a dense genome-wide marker set (Catchen et al., 2017; Lowry et al.,
2016; McKinney et al., 2017). For instance, while association analysis of F2 or backcross
individuals from experimental crosses or linkage analysis from wild pedigrees capture only
few recombinations that allow for a disassociation of weakly linked markers to a causative
allele, the same study within wild populations effectively uses many historical recombinations
and thus allows in principle a much finer scale of mapping of loci affecting variation in
the focal trait. Thus, genome-wide association studies can benefit from a high density of
genetic markers across the genome, and more so for species with low genome-wide levels of
linkage disequilibrium (LD). The same is true in principle for genome-wide scans for signals
of selection, e. g. hybrid zone analyses (Gompert et al., 2012b).

Since standard version of RAD according to Baird et al. (2008) generates tags around
every restriction site — one upstream and one downstream of it (figure 1.2), it allows for only
limited complexity reduction. Currently available rare cutter restriction enzymes have an up to
8 bp long recognition sequence (ignoring ambiguous positions). Further complexity reduction
can be achieved by skipping the step of shearing the restriction fragments and instead size
selecting a range of restriction fragments that have the right size for the sequencing platform
(Andolfatto et al., 2011; Elshire et al., 2011). This produces RAD tags only at cut sites which
have a second cut site within a short distance from the first cut site. Further fine tuning of
library complexity can be achieved by adding a second restriction enzyme to the protocol
and sequence only fragments cut by both enzymes, so-called ddRAD (see fig. 1.3) (Peterson
et al., 2012).
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Fig. 1.3 Double-digest RAD protocol overview. Genomic DNA is first digested by two different restriction
enzymes (red and green). illumina adapters (P1 and P2) are then ligated to the restriction fragments. The
P2 adapter is a so-called divergent-Y adapter that, if anything, only contains the reverse-complement of
the backward PCR primer binding site needed during the selective PCR step (see figure 2.14 on page 42).
Restriction fragments are then size-selected on a gel. Here, in contrast to the standard RAD protocol (see fig.
1.2), gel size selection selects which markers get into the final sequencing library. The selective PCR step
enriches the library for fragments with at least one P1 adapter ligated to it. Bridge-amplification on the illumina
flow cell requires a P1 and a P2 adapter. illumina paired-end sequencing results in two RAD tags per fragment
that can be assembled and used for SNP and indel calling.
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When making the decision between whether to use standard RAD or ddRAD several
things need to be considered. The first is surely whether standard RAD can provide enough
complexity reduction. If that is the case, then the next consideration will be the availability
of a sonicator for the random shearing of restriction fragments to a size suitable for the
sequencing platform. The availability of a sonicator may not be critical though, since there
are now enzymes that can perform random DNA fragmentation such as those provided by the
NEBNext Ultra II kit from NEB or the Nextera DNA Library Preparation Kit from illumina.
One advantage built into standard RAD if the RAD library is sequenced with PE sequencing
(i.e. a forward read from the RAD tag and a reverse read from the opposite end created by
shearing) is the easy detection of PCR duplicates. Due to random shearing, the SE and PE
reads of two pieces of DNA after PCR should only be identical if at least one of them is a
clone from PCR. When doing PE sequencing on a ddRAD library, both forward and reverse
reads are fixed at restriction sites and PCR duplicates are not detectable unless at least a
few degenerate bases are added to the sequencing adapter and sequenced (see Casbon et al.,
2011; Schweyen et al., 2014; Tin et al., 2015). Another great feature of standard RAD is the
possibility to assemble an a few hundred base pair long contig from the partially overlapping
PE reads of each RAD tag (see fig. 1.2). This is very useful for paralog detection and
functional annotation (Chong et al., 2012; Etter et al., 2011; Hohenlohe et al., 2013).

Even when standard RAD could provide enough complexity reduction, ddRAD may be
still preferable. One reason is the slightly easier library preparation protocol. It has fewer
steps, fewer clean-ups with the associated loss of DNA and it doesn’t require a sonicator
(Puritz et al., 2014b). With PE sequencing it also provides two RAD tags from each restriction
fragment that is being sequenced (see fig. 1.3), a SE RAD tag and a PE RAD tag which can
both be used for SNP and indel genotyping. One major disadvantage that comes with ddRAD
is the fact that size selection of restriction fragments selects markers. So reproducibility of
markers can be an issue. A good overlap in recovered markers has however been reported
with precise size selection tools such as a Pippin Prep (Sage Science) (DaCosta and Sorenson,
2014; Peterson et al., 2012). Another downside is the greater susceptibility to allele-drop-out
due to polymorphisms in the restriction sites (Arnold et al., 2013).

What can it be used for?

RADseq (either standard or ddRAD) has been used for virtually any kind of evolutionary
genetic analysis including genome wide association study (GWAS) (Nadeau et al., 2014;
Parchman et al., 2012), genomic clines analysis (Gompert et al., 2012a; Nosil et al., 2012),
genetic mapping (Andolfatto et al., 2011; Baxter et al., 2011; Chutimanitsakun et al., 2011;
Pfender et al., 2011; Richards et al., 2013), phylogenomics (Merz et al., 2013; Nadeau et al.,
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2014; Wagner et al., 2012), genome scans for selection (Andersen et al., 2012; Gompert
et al., 2012a; Hohenlohe et al., 2010; Pujolar et al., 2014; Stolting et al., 2013) and inference
of population demographic history (Evans et al., 2014; Lozier, 2014; Luca et al., 2011).
Assuming the majority of a genome evolves neutrally or nearly neutrally, RAD markers
provide a lot of neutral sequence variation that can be used to infer fine-scale population
structure, phylogeography as well as parameters for models of demographic history, like
effective population size and gene flow. This information is useful for the planning and
interpretation of genome scans for selection, GWASs and genomic clines analyses. However,
some RAD markers will fall into functional regions of the genome and, therefore, cannot be

assumed to be neutral genetic markers.

Problems with RAD

RAD markers, however, pose several challenges to unbiased estimation of population genetic
parameters. One challenge are null alleles from polymorphisms in the restriction recognition
sequence (Arnold et al., 2013; Gautier et al., 2012; Luca et al., 2011). Allele-drop-out
leads to a systematic underestimate of genetic polymorphism and it also tends to increase
estimates of genetic differentiation between populations. The biasing effect is stronger
the greater the genetic diversity of the species. Luca et al. (2011) have provided formulas
for an approximate correction of the effect of allele-drop-out on these measures based on
equilibrium assumptions. However, filtering loci by across individual coverage can already
greatly reduce its effect. With a frequency of the restriction site mutation of 0.5, 25% of
individuals would not have reads at the locus, assuming HWE. With a frequency of 0.75,
56% of sampled individuals would not have reads from the locus. So requiring a minimum
proportion of individuals to have reads from the locus could mitigate the effect of allele-drop-
out but not completely remove it, even if only loci with full coverage across individuals are
included (Arnold et al., 2013). That is because the set of loci not affected by allele-drop-out
are not a random subset of all loci, but tend to have lower genetic diversity (and therefore
also a smaller chance of a mutation in the restriction site).

RADseq is also sensitive to the quality of input DNA (Graham et al., 2015). Shearing
of genomic DNA results in smaller fragments that may be too short for efficient sonication
in standard RADseq (Davey et al., 2012) or disconnect two restriction sites in ddRAD,
preventing their PCR and bridge amplification required for sequencing. However, only highly
degraded DNA (i.e. containing only low molecular weight fragments) leads to a marked
reduction in RAD tags recovered per individual.

Most RAD-like protocols include a selective PCR step that is intended to increase the

fraction of fragments with correctly ligated adapters in the DNA library before sequencing.
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PCR duplicates in the sequence data set, however, should be removed before genotype calling.
This has two reasons. First, misincorporation events that occur and are propagated by PCR
amplification during the library preparation would appear like genuine alleles to all genotype
callers due to their high read coverage. Second, PCR drift can produce more copies of
one allele at a heterozygous locus in the sequencing library. Since most genotype callers
assume binomial read sampling from a bi-allelic locus, non-random read sampling from a
heterozygous locus will lead to increased false-homozygote genotype calls. Both biases also
apply when doing population genetic analyses in a probabilistic framework from genotype
likelihoods, as done in the chapter Investigation into the demographic history of the hybrid
zone.

In general, RAD cannot be expected to provide binomially distributed read depths of
alleles at bi-allelic diploid loci nor can it be expected to lead to Poisson distributed read
depths across loci. Observed read depth distributions are always overdispersed with respect
to these theoretical distributions. For this reason detection of paralogous loci should not
be based on Poisson quantile thresholds of locus read depth. There are several reasons for
overdispersed read depths. Davey et al. (2012) have shown that in standard RAD libraries
smaller restriction fragments have lower read coverage than longer ones. This is probably
caused by a less efficient shearing through sonication of small restriction fragments (Davey
et al.,, 2012). Additional variation in coverage between RAD tags is caused by a positive GC
bias from PCR amplification (at least with the commonly used Phusion DNA polymerase).
Variation in DNA methylation of restriction sites is a further reason for overdispersed read
depths when using methylation sensitive restriction enzymes. There is also evidence for
methylation at CpG sites in another acridian grasshopper related to C. parallelus (Keller
et al., 2007). Due to random shearing, each locus in a standard RAD sequencing library is
represented by DNA copies of different lengths. With all other RAD-like protocols, each
locus is represented by DNA copies of only one length. PCR amplification as well as bridge
amplification on the flow cell of the illumina sequencer are biased toward smaller DNA
fragments. This leads to a greater read coverage of loci from smaller restriction fragments
(Andrews et al., 2014).

RAD de novo assembly pipelines

Since RAD produces fully overlapping sequences from RAD tags, de novo assembly algo-
rithms for RAD data have mostly been based on distances between read sequences rather
than length of sequence overlaps, which is how shotgun-type reads are assembled into
contigs longer than an individual read length. However, assembly programmes designed
for shotgun-type reads have been successfully employed for assembling RAD tags (e. g.
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Parchman et al., 2013). One of the most widely used programmes for RAD de novo assembly,
stacks, has only recently introduced gapped alignment (via Needleman-Wunsch algorithm)
into its de novo assembly procedure (with version 1.38 from 18 April 2016). This allows it
to assemble RAD tags with indels. Eaton (2014) has shown convincingly with simulated and
empirical data the advantage of using pyRAD over stacks (previous to version 1.38) when
the sequences contain realistic numbers of indels. It recovers loci shared among a greater
number of individuals. Like pyRAD, the de novo assembly method of dDocent (Puritz et al.,
2014a) allows for indels during the clustering step and therefore its assembled loci are shared
among a greater number of individuals than those assembled by the indel-unaware clustering
algorithm of stacks (previous to version 1.38).

A common problem with most RAD analysis pipelines published to date is their lack of
modularisation and documentation. For instance, a good de novo assembly strategy can be
combined with a suboptimal SNP detection or paralogy detection algorithm without clear
separation of both functionalities in the code and appropriate documentation. This makes it
difficult for users to recombine the best functionality from different programmes or pipelines
and results in a lot of underused computer code. Two pipelines that exemplify this problem
shall be mentioned here: PRGmatic from Hird et al. (2011) and rtd from Peterson et al.
(2012). Writing feature-rich, complex, monolithic and sparsely documented software is
obviously a common issue in software development and has been addressed by providing
basic rules in the Unix philosophy. A noteworthy positive exception to this general lack of
modularisation and thorough documentation is dDocent (Puritz et al., 2014a).

The de novo assembly of RAD loci without a reference sequence poses a particular
challenge to the application of RAD to non-model organisms. With short read lengths and
repetitive genome sequences, the distinction of homologous from paralogous read sequences
can become impossible for RAD tags in repetitive parts of the genome. Importantly, mis-
assembled clusters of sequence reads from repetitive RAD tags need to be detected and
removed from downstream population genetic analyses because they violate the assumption
of orthology underlying most of these analyses. Otherwise, diversity estimates will be
inflated, for instance.

There have been several attempts to optimise RAD de novo assembly (e. g. [lut et al.,
2014; Mastretta-Yanes et al., 2015). Ilut et al. (2014) describe an empirical method to
determine the optimal within cluster distance for RAD tag de novo assembly. Using digital
digests of genome sequences with one restriction enzyme (but without random shearing, i.e.
equivalent to double-digest), they create a clustering threshold series. For each clustering
threshold they determine the number of clusters that contain one haplotype, two haplotypes

or >3 haplotypes. They then propose that the optimal cluster distance threshold is where the
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1-haplotype and 2-haplotype clusters start to plateau in frequency and the >3—haplotype
clusters are still low in proportion. Higher thresholds would not increase the detection of
heterozygous loci much while increasing the proportion of paralogous sequences within the
2-haplotype cluster category. However, I tested their method on the standard RAD data
set used in Investigation into the demographic history of the hybrid zone and could not

find a plateau in the cluster frequency curves and therefore also no optimal cluster distance
threshold (fig. 1.4).
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Fig. 1.4 Distance threshold series from the Ilut pipeline. The number of distinct sequences in clusters of size 1,
2 and >3 are plotted for each maximum edit distance threshold for transitive clustering.

Many paralogy filters have been proposed. One commonly used filter is based on an
excess of heterozygotes with respect to Hardy Weinberg equilibrium (HWE) (HOHENLOHE
et al., 2011). Unless a locus is affected by strong overdominant selection (which is rare),
an excess of heterozygous genotypes in a population sample is most likely an artefact of

clustering similar sequence reads from repetitive parts in the genome.
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Alternatives to RAD

RAD is an untargeted reduced representation sequencing method (with the exception of GC
and methylation bias dependent on restriction enzyme and genome studied) which has been
criticised recently by Lowry et al. (2016) and Tiffin and Ross-Ibarra (2014) when used in
genome scans for regions under selection. Their main point is that many such genome scans
had used RAD data with too few markers to have at least one polymorphic marker in strong
enough LD with a locus under selection and therefore have probably missed many such
loci, particularly those with incomplete selective sweeps or starting from standing genetic
variation. The extent of LD (i.e. average size of linkage blocks) varies greatly among species
and seems to be fairly unpredictable (Lowry et al., 2016, see their table 1). So the scale
of this problem very much depends on the average LD and the size of the genome of the
species studied. This lack of complete marker coverage in regions under selection has led
Lowry et al. (2016) to suggest exome capture sequencing for genomic scans for selection, i.e.
enriching for functionally relevant sequences at the risk of missing those distant from genes
(Good, 2011; Jones and Good, 2016; Mamanova et al., 2010; Yi et al., 2010).

Targeted capture sequencing is only slowly being adopted for evolutionary and ecological
studies of non-model organisms (Bi et al., 2012; Nadeau et al., 2012). There are probably
two main reasons for that. First, probe design requires prior sequence information. So, unless
a genome reference sequence is available from at least a fairly closely related species (Good,
2011) a transcriptome needs to be assembled first (Bi et al., 2012). Second, probe synthesis
has greatly added to the costs of sequencing. Both issues have been addressed successfully
by Puritz and Lotterhos (2017). They show that probes can be generated directly from cDNA.
Given that already Maricic et al. (2010) have reported custom in-house generation of capture
probes, it seems surprising that this approach has not already been adopted more widely.
Also note that not only protein coding sequences would be captured when using cDNA for
probe generation but also many long non-coding RNA’s most of which have a poly-A tail
(Ulitsky, 2016).

There is now good experimental support for the argument that the inference of neutral
processes, like demographic history and gene flow, from exome capture sequence data should
suffer from severe biases due to pervasive effects of linked selection even when inference
is restricted to putatively neutral four-fold degenerate sites (e.g. Andolfatto, 2007; Elyashiv
et al., 2016; McVicker et al., 2009; Sella et al., 2009). Since RADseq samples sequences
more or less randomly from across the genome, it should suffer much less from this bias
but can also not be assumed to provide fully neutrally evolving sequences, especially in
species with large effective population sizes and low recombination rates (Corbett-Detig et al.,
2015). However, current data still suggests that fluctuations in population sizes are the main
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contributor to variation among species of genetic diversity at four-fold degenerate sites and
that therefore useful information about neutral demographic processes can be retrieved from
such data (Coop, 2016; Hsieh et al., 2017). In addition, 4-fold degenerate sites have been
repeatedly shown to be the most polymorphic among all sites examined in whole-genome
resequencing studies of diverse organisms (see Begun et al., 2007, table 1 and Small et al.
2007) Furthermore, powerful tests of selection based on the ratio of non-synonymous to
synonymous substitutions can be performed with protein coding sequences from exome

capture but not from RAD data.

1.3 What to expect in the following chapters

In this study, I address the following questions:

* Can a genome-wide set of sequence markers be generated from the genome of C.

parallelus?

* Can such a data set be assembled and genetic variation be analysed that allows infer-
ences to be drawn about forces that affect the majority of markers, i.e. can genome-wide
signals be detected?

The chapter 2 on page 21 documents an investigation into the possible reasons for a lack
of across-individual sequence coverage at almost all de novo assembled RAD tags. In the
second chapter, I then apply a new de novo assembly strategy (adapted from dDocent) to one
standard RAD data set (Baird et al., 2008) from two population samples of C. p. erythropus
and C. p. parallelus. While avoiding SNP and genotype calling from this low coverage
data set, I derive genome-wide population genetic summary statistics and use two different
programmes to fit demographic models for the two subspecies using their one-dimensional

as well as joint site frequency spectra.






Chapter 2

Testing incomplete digestion

Bonzai: Are you as successful as you
would like to be?

Zappa: I would say that the basic
characteristic of my life is failure. If
there is one thing that I excel at, it’s
failure — I manage to fail at 100 percent
of the things that I do. Since most of the
things that I set out to do are
theoretically impossible, it’s very easy
to fail. I’ve learned to live with it. In
terms of machinery and personnel, there
never seems to be enough to get things
done exactly right.

interview with Frank Zappa, 1985

2.1 Introduction

In this chapter, I use two different types of RAD data sets' to investigate three issues that
can occur during the preparation of RAD libraries and that can lead to unusually low overall
sequence read coverage and an extreme variation in coverage among loci and individuals:
incomplete digestion, genomic re-ligation and low genomic template amount. I show bioin-
formatic analyses that can detect or at least distinguish among these issues post-sequencing

and I suggest suitable measures for the library preparation that can mitigate their impact.

Ithat were initially created with the intention of doing a hybrid zone analysis
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2.1.1 The Problem

A standard RAD library with the restriction enzyme Sbfl was prepared according to the
protocol of Paul Etter, University of Oregon (Baird et al., 2008) (see Appendix section 5.1
on page 152). The RAD library contained DNA from 36 grasshoppers sampled from the two
distal populations ("Aunat" and "Greixer") of a transect through the Chorthippus parallelus
/ erythropus hybrid zone in the Pyrenees between France and Spain (fig. 2.1). The RAD
library was sequenced on an illumina GAIIx at GenePool in Edinburgh and the resulting
46 base pair (bp) long reads” assembled with the programme suite stacks (Catchen et al.,
2011).

Elevation (m)
W 0 - 1800
L. 1800 - 2800
I 2800 - 3500
3500 - 4000

France

Fig. 2.1 Map of sampling locations. JH34-AU: parallelus; JH30-GR: erythropus. TH20-MB: marks the centre
of the cline of sterility as determined by Shuker et al. (2005). Details about the creation of this map are provided
in the section 2.3.1 on page 42.

Figure 2.2a shows the frequency distribution of loci — reconstructed by stacks version
0.998 — over the number of individuals that have a genotype called for that locus. Stacks
was run with a minimum allele read depth of 3 per individual and a maximum number of

mismatches between alleles of 2 for merging alleles into loci within individuals as well as

Zafter removing the barcode sequence


http://genomics.ed.ac.uk
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Fig. 2.2 Frequency distribution of loci, reconstructed by stacks (i.e. so-called "catalog stacks"), over the
number of individuals in which they have a genotype call.

assembling a catalog of loci for the whole sample of 36 grasshoppers (further details can be
looked up on the stacks home page). About 50% of the 379,720 unfiltered reconstructed
loci have a genotype call in only one or two of the 36 individuals. About 170,000 RAD
markers were expected from this library (see section 2.3.5) assuming a genome size of 12
giga bps (see section 2.3.4).

Figure 2.2b shows the frequency distribution of reconstructed loci over the number of
individuals for which they have a genotype called for the data of an Sbfl4+Xhol double-digest
RAD library. This ddRAD library was prepared from the same individuals but according to
the protocol in Appendix section section 5.2 on page 152. The SE and PE RAD tags have
been merged into a 196 bp long tag® before the assembly with stacks. Stacks was run
with a minimum allele depth of 3 and maximum mismatch distance of 6 for merging alleles
into read stacks within individuals as well as assembling a catalog of stacks (i.e. putative
loci) from the individual stacks of all 36 grasshoppers (plus 2 technical replicates). Of the
156,532 putative loci that stacks had assembled, 51% can only be found in one individual
and only 3.5% can be found in 20 or more individuals. Note that these numbers are from the
raw output of stacks and do not include credibility filtering of putative loci and genotype
calls. Around 16,000 RAD markers were expected from this double-digest RAD library (see
equation 2.3 in section 2.3.5).

3including 11 bp remainders of restriction sites


http://creskolab.uoregon.edu/stacks/param_tut.php
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In the standard Sbfl RAD data set, there are 5,014 SE reads and 25,268 PE reads that
apparently contain Sbfl recognition sites within them (30,282 in total)*. I searched in
88,734,712 quality filtered reads altogether. That is, 0.034% of quality filtered reads contain
an Sbfl recognition site. Figure 2.3 shows the frequency distributions of Sbf] sites in SE
and PE reads for all 36 individuals separately (for further description see section 2.3.11).
Obviously, if SbflI restriction and following P1 adapter ligation were 100% efficient, there
should be no Sbfl recognition sequences in either SE or PE reads. Could this pattern be an

a) single—end reads

unique read count
30 50
|
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|

o A A VN P
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position in read (1-based)

b) paired-end reads
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position in read (1-based)

Fig. 2.3 Sbfl site frequency distributions across (a) SE and (b) PE reads for each of the 36 individuals in the
standard RAD data set.

indication that Sbfl restriction during the library preparation was incomplete? If so, could
there be a systematic variation between individuals in the completeness of restriction at
individual SbfT sites that could lead to many loci only being detected in a few individuals
as shown in figure 2.27? In the following I will investigate the potential role of incomplete
restriction enzyme digestion during the sequencing library preparation on the distribution

4counted with grep -c
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of read coverage over RAD tags and on the resulting detection probability of RAD tags as

shown in figure 2.2.

2.2 Results and Discussion

2.2.1 Assembling pairs of PE read contigs

Incomplete digestion for a specific Sbfl site could in principle be tested with a PCR (or even
quantified with gPCR) across this site before and after digestion (Luca et al., 2011). However,
no close reference sequence was available for PCR primer design at the time of this analysis”.
For a given RAD tag from a standard RAD library, the PE reads can be used to assemble
them into a contig that could be long enough for primer design (see figure 1.2 on page 10).
Still, for PCR primer design, pairs of PE contigs need to be created. This requires some
reference sequence to provide the information for which RAD tags come from the same Sbfl
site in the Chorthippus parallelus genome.

I decided to use the transcriptome of the desert locust Schistocerca gregaria (Cyrtacan-
thacridinae) as a reference sequence (Badisco et al., 2011) . The transcriptome of another
grasshopper — Locusta migratoria (Oedipodinae) — was also available (Kang et al., 2004),
but Liu et al. (2008) have shown that the subfamily Cyrtacanthacridinae is more closely
related to Gomphocerinae — the subfamily that Chorthippus parallelus belongs to — than the
subfamily Oedipodinae.

I have mapped all standard Sbfl RAD reads® of all 36 individuals against the Schis-
tocerca transcriptome with stampy (Lunter and Goodson, 2011) (see 2.3.6 on page 46).
From the mapping output files I first extracted all read pairs where at least one read
from a pair mapped and then merged them into one big file. I then ran my custom script
find_linked_RADtags.pl on this file. This script collected from all individuals all PE
reads that belong to the same RAD tag of a linked RAD tag site that was detected in as little
as one individual. For each detected linked RAD tag site this script collected the PE reads
upstream and downstream of the Sbfl restriction site in separate files (for further description
see section 2.3.6). It thus collected PE reads from 77 Schistocerca reference contigs with
linked RAD tag sites .

I then used the programme SSAKE (Warren et al., 2007) together with my wrapper script
SSAKEoptimiser.pl for the de novo assembly of PE reads into contigs (see section 2.3.6).

SSAKEoptimiser.pl finds the optimal kmer length for each individual assembly, optimising

3 April 2014
%informal name "Big Data"
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for the length of the longest contig assembled. There are 64 Schistocerca reference contigs
with a RAD tag site for which at least one upstream and one downstream SSAKE contig could
be assembled.

The SSAKEoptimiser output for each assembly of PE reads generally contains several
contigs of similar length and with similar read counts. It is therefore not straightforward
to pick those SSAKE contigs upstream and downstream of the restriction site that genuinely
belong together, i.e. come from the same locus. Using a heuristic that uses contig number,
contig length and blast hits against the putative Schistocerca reference contig, I could

assemble and confidently pick 20 pairs of PE read contigs for PCR primer design (further
details on page 49).
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Fig. 2.4 Distribution of RAD fragment numbers from the 36 individuals in the library mapped against 4 PE
contig pair reference sequences.
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I combined pairs of PE contigs by aligning them to their putative Schistocerca reference
contig and filled the gap between them with N’s. I then used these 20 newly created C.
parallelus consensus sequences as a reference against which to map all standard Sbfl RAD
reads (further details in section 2.3.7). That is because before setting out to do PCR I wanted
to find out how many of the 36 individuals get reads mapped to these linked RAD tag sites
and whether individuals actually have reads mapped to both RAD tags at an SbfI restriction
site. This could be important information for prioritising some of the 20 loci over others for
the analysis of between individual variation in the completeness of digestion with PCR.

Among the 20 C. parallelus PE contig pair reference sequences, there are 5 which:

* do not show very high or very low number of reads mapped
* do not show large numbers of very divergent reads mostly containing indels

* do not show other signs of repetitiveness, e. g. SE reads mapping to PE contigs instead
of the RAD tags

One of these 5 reference sequences has only reads mapped from C. p. parallelus (12
individuals) and none from C. p. erythropus. This could be caused by a polymorphism in the
restriction site sequence. For each individual, I counted the number of fragments mapped
towards the remaining four reference sequences by counting only SE reads from proper pairs
and after removing PCR duplicates by collapsing multiple occurrences of the same insert
size into one. If two read pairs on a RAD site from an individual have the same insert size,
they constitute only one fragment, i.e. one read pair is likely to be a PCR duplicate.

Figure 2.4 shows the distribution of these counts over all 36 individuals for the four
PE contig pair reference sequences. It suggests that none of the 4 loci would be a good
candidate to test possible variation in restriction enzyme digestion with PCR. That is because
the distribution of coverage at the 4 loci is rather even across the 36 individuals. Even though
between individual variation in the completeness of digestion cannot be ruled out by this data
yet, a different pattern would be expected if it was common. That is, more individuals would
have no fragments mapping while others would have many. Given this data, a systematic
variation in the completeness of restriction enzyme digestion between individuals is now
less likely to be the reason for the dominance of singleton loci in the stacks assembly (see
figure 2.2). Instead, the variation in coverage among individuals in figure 2.4 can be largely
explained by variation in the number of input reads (figure 2.5).

The fragment count for the four loci is generally not very high (see table 2.1), indicating
that low unique template amount for sequencing prevented any individual from having many
fragments mapped. I started the standard Sbfl RAD library preparation with about 130 ng of
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Fig. 2.5 Correlation of locus dropout (left) and fragment counts (right) with number of input reads. Left: Locus
dropout is the number of loci (which are the same as in figure 2.4) for which an individual had no fragment
mapped. Right: the sum of mapped fragments over the four loci for each individual versus the number of input
reads for the read mapping.

DNA from each grasshopper (see sRAD protocol on page 152). Assuming that the genome
is 12 Gbp long (see section 2.3.4), this would only correspond to around 10,000 copies of the

genome (equation 2.1).

Table 2.1 Mean and coefficient of variation of fragment counts per individual for the 4 loci shown in figure 2.4.

mean CV

Contig944 35 05
Contig3766 45 0.6
Contigl776 48 05
Contig213 1.9 08

For the Sbfl+Xhol double-digest RAD library I estimated the template amount that went
into the selective PCR during library preparation with gPCR. This also indicated a very low
template amount of on average 1.26 (& 0.37) template molecules per locus and individual

(see section 2.3.8).
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molar amount of template amount of DNA 130 <107 (2.1)
u = = :
P MW of bp x genome size 660#@ x 12 x 10%p

=1.26 x 10~’mol

number of template molecules = 1.26 x 10~?°mol x Avogadro’s number
=1.26 x 10"’mol x 6.0221413 x 10%
= 9884

The problem of low fragment count is unlikely to be alleviated much by creating more
sequence reads from the same RAD library (figure 2.6). Instead, the template amount from
each individual for the selective PCR during the library preparation needs to be increased.
One obvious way would be to increase the total DNA input from each individual, but that
reduces the number of individuals that can be pooled during the library preparation since the
capacity of spin columns and the agarose gel (for size selection) is then reached with fewer
individuals. Another option could be to postpone the gel fragment size selection until after
a selective PCR, thus reducing the loss of template amount before the PCR (see Parchman
et al. 2012 and the table on page 54).

If the dominance of singleton loci in the stacks assembly was not caused by a systematic
variation in the completeness of digestion between individuals but simply by random dropout
due to low template amount, could this in turn again be caused by incomplete restriction
enzyme digestion of genomic DNA as indicated by the full Sbfl recognition sequences found
in the RAD sequence data (figure 2.3)? Or can genomic religation of restriction fragments’
account for the observed restriction enzyme recognition sequences in the RAD data? The

rest of this chapter will be investigating this question.

7instead of ligation to Illumina adapters
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Fig. 2.6 The standard Sbfl RAD library was sequenced on four different Illumina GAIIx flow cell lanes with
increased sequence template amount resulting in an increased read yield. However, this increased sequencing
effort for the same RAD library generated an ever higher proportion of PCR duplicates.

2.2.2 Incomplete digestion or genomic religation in the standard RAD
library?
Cluster analysis

If non-homologous Sbfl fragments were ligated during the adapter ligation step in the library
preparation, then the subsequences right (i.e. downstream) of the Sbfl site in the SE reads
should be very divergent within clusters of similar reads, except when the clusters contain
PCR duplicates which can be recognised by (almost) identical PE reads®. I have therefore
collected all read pairs containing an SbfI site from each individual and, after collapsing all
identical read pairs into one, clustered these reads by the subsequence left (57) of the Sbfl

8they should only differ by sequencing errors
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TGCAGGTCATGGCTGCTGGGTATAACAGCAT ATGCATG TATGCAACTTCAACTGTGTGAATAAAAACATACAAAACAAAAAAATATCAT
TGCAGGTCATGGCTGCTGGGTATAACAGCAT GGCGGGG AGCCGACGAGAAGCTGGGCGATCGTTGGTTGCACGCCCCAGTCAGTAGGCT
TGCAGGTCCTGGCTGCTGGGTATAACAGCAT CCACGCT GATGTAAAAGCATCAGTGGAGTCATCCTAGACGGGTCTCGAAACGTCGCGA
TGCAGGTCCTGGCTGCTGGGTATAACAGCAT CCGCAGC TCAGTGGCCTGGTGCAGAGTCGTGCGCGCAGGCCCGGACGGCGCGGTGCGG
8 TGCAGGTCCTGGCTGCTGGGTATAACAGCAT CCGCAGC TCAGTGGCCTGGTGCAGAGTCGTGCGCGCAGGCCCGGACGGCGCGTTGCGG
TGCAGGTCCTGGCTGCTGGGTATAACAGCAT CTACGAG ACACCACGTCAACGAGTGCCGAGGGCTCCCCATACTGTGATCCCGAGGACA
TGCAGGTCCTGGCTGCTGGGTATAACAGCAT TCCTGGC CTTTAACAACGGAAGCAAAAGACCAAGAACCAGCAGCCAGGGCCGGCAGAA
TGCAGGTCCTGGCTGCTGGGTATAACAGCAT TCCTGGC TATTTTCCGAAACATAACGGAAATAAAGGATACAAGGAACCTAAAGTGTCT

TGCAGGACAGCCGCCGTCCTGAGCTCACGACT AAATCG TGTGAACTCTCTCAGTTCTGCCATTGGACTGCGGATGAAATGCGCTAGTGC
TGCAGGACAGCCGCCGTCCTGAGCTCACGACT GACTTC CCGAATAGGCCCATGGAGGAGGTGAAGGCGGCTTCCTCGGTGGCATCTCAT
TGCAGGACAGCCGCCGTCCTGAGCTCACGACT GGGGGC TGCGATGTCACTGCGTTGCCGACGATTCTGCGACTCTGCTAGCGTCGGTGG
TGCAGGACAGCCGCCGTCCTGAGCTCACGACT, GGTACC ACATTGGTGTCAAAATGGTGCCACTACACTGGCACTAACGCTGTGCCTCTA
TGCAGGACAGCCGCCGTCCTGAGCTCACGCCT, GGTACC ACATTGGTGTCAAAATGGTGCCACTACACTGGCACTAACGCTGTGCCTCTA

TGCAGGATACCGGTTTCACTTCAGACACAGCA ACGTAG AGAGTGCAGAATACATCCACAAGAATCGTCAGTGAGCATCAACGACCAGAA
2 TGCAGGATACCGGTTTCACTTCAGACACAGCA CACGCA AAGGAATCGTCAATTTAGTATTGGAGGGAAGCGTACGGGGTAAAAACCGCA
TGCAGGATACCGGTTTCACTTCAGACACAGCA GAGCGG AAACAAAATTTTGATGCTGTGTCTGCTGTATGGTTGACACAGCTACAGCGG
TGCAGGATACCGGTTTCACTTCAGACGCAGCA CTTGGC ATTCATCACCATCAAAAGGGATGAATTACCACGATGCCAATTCAACTACTT

TGCAGGATAGGCAGAT. GGGAGCCTAT, TACTAG TAAAAAACGACGGTTTCTGGAGCCTCATTGATTGCTACACTGAAGT A

TGCAGGATAGGCTCCCACACATATCTGCCTAT, ACTTCT CCCTAGAAAATATTGTAAATTTGTGCGAACAAGACGTTTTTTTATTATCAC

B TGCAGGCCGACTGGACGGTCTGGACGGCAGAG CCGGCC TTAAGATTAGTTTCAGGCTGTGTGGTTCTATATTCACCAGTCATAAAACTT
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG CCATCG TTCTACGGAGTTTATTCGTTAGGGCAGTAGCCTGCCACCTGCTGTTCCATT
2 TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG CGGCGC GGGGACTGTCAGTGTCGTCGCTACAGAGAGAGGTGGAGGGGGTGGGGGTCT
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG GAGAAG CATAAATGTTCGTTAAAACGCACTTTAATACTCGTTATTAAATTTTCGACT
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG GAGAAG CATGAATGTTCGTTAAAACGCACTTTAATACTCGTTATTAAATTTTCGACT
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG GCTAAC CCCTTGCTCTCTTATTCCCTGCCTTTGAGGTTGATGGGGTCTGTAGAGCCC
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG GTAATG GGCTACTTTTCCTTTAGGATCCCTCGAGATTCTTCAGGGTGAGGGATAAAC
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG TGACAT CTGACTGCTTTCTCTGAGGACACCCATCTGCAACGCCCATCGTGCGTGCCT
TGCAGGCCGACTGGTCGGTCTGGACGGCAGAG TGACAT CTGACTGCTTTCTCTGAGGACACCCATCTGCAACGCCCATCGTGTGTGCCT

Fig. 2.7 Snapshot of clusters of unique read pairs from the output of command 2.14. Each line shows a read
pair. Left column: SE reads, right column: PE reads. The Sbfl recognition sequence is highlighted in yellow.
The SE reads in the top cluster are quite diverse right of the SbfI site, although in the lines 619 and 620 as well
as 622 and 623 they are identical. In the first case this is clearly due to PCR duplication indicated by the almost
identical PE reads (they only differ by sequencing errors). In the second case, however, PCR duplication can be
ruled out and only incomplete digestion of the Sbfl site at this putative locus seems plausible.

site, thus ignoring the potentially non-homologous subsequence right of the Sbfl site (for
details see section 2.3.11). Figure 2.7 shows a snapshot from the output. Even though there
clearly is some indication of incomplete digestion (see figure 2.8), most clusters are largely

consistent with genomic religation.
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TGCAGGACTATCAGCTGCAGGACAGTCA ACTGTCAGCT GGGGACTGTCCTGCAGCTGATAGTCCTGCAGCTTACTGTCCTGCAGCTGAC
TGCAGGACTATCAGCTGCAGGACTGTCA ACTGTCTGCT GACAGTCGCGCAGCTGACAGTCGCGCAGCTGAAAGTCGCGCACCTGAGGGT
TGCAGGACTGTCAGCTGCAGGACTGTCA ACGCGACGAG CCATGCGTGGTTGTTTACATTTITIGTGCTGGTTGAGTGACATCTTTGGACA
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTAAGCT GGTGACTGTCCTGCAGCTGACTGTCCTGCAGCTGACAGTACTGCAGCTGAC
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCAGCT CAGTCCTGCAGCTGACAGTCCTCCAGCTGACAGTCGTGCAGCTGACAGTCC
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCATCT GCAGCTGACAGTCGCGCAGCTGACAGTCCTGCAGCTGACAGTCCTGCAGCT
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCTGCT ACAGTCGCGCAGCCGAAAGTCGCGCAGCTGACAGTCGTGCAGCTACAGTCC
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCTGCT AGCTGACAGTCGTGCAGCTGACAGTCGTGCAGCTGACAGTCGCGCAGCTGA
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCTGCT CTGAGGGTCGCGCAGCTGACAGTCGCGCAGCTGACAGTCCTGCAGCTGACA
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCTGCT GACAGTCATGCAGCTGACAGTCGTGCAGCTGACAGTCACACACCTGAGAAT
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCTGCT GTCGCGCAGCTGACAGTCGCGCAGCTGACAGTCCTGCAGCTGACAGTCCTG
TGCAGGACTGTCAGCTGCAGGACTGTCA ACTGTCTGCT TCACACACCTGAGAATCGCGCAGCTGACAGTCGCGCAGCTGACAGTCACGC
TGCAGGACTGTCAGCTGCAGGACTGTCA GATGCCAGCC GGGGGCAGGAGACCTGAACTGGTCCCCGGAGTCGATTCGATCCCCGCTGCA
TGCAGGACTGTCAGCTGCAGGACTGTCA GTTGTTGTGC CCCACACTGCGTCGTCCGCAGATCAACGAGCACGTTCGACATTTCAATAAA
TGCAGGACTGTCAGCTGCAGGGCTGCCA GCTGTTAGCT TGACAGTCCTGCAGCTGACAGTCCTGCAGCATTCTGTCCTGCAGCTGACTG
TGCAGGACAGTCAGCTGCAGGACTATCA ACAGTCAGCT GGTGACTGTCCTGCAGCTGACTGTCCTGCAGCTGATAGTCCTGCAGCTTAC
TGCAGGACAGTCAGCTGCAGGACTATCA ACAGTCAGCT TGTCCTGCAGCTGCCAGTCCTGCAGCTGACAGACACGAAGCTGACAGTCCT

Fig. 2.8 Snapshot of a cluster of unique read pairs from the output of command 2.14. Each line shows a
read pair. Left column: SE reads, right column: PE reads. The SbfI recognition sequence is highlighted in
yellow. The sequences right of the SbfI site are not very diverse. In fact, they are so similar that they could be
derived from a repetitive genomic element. The read pairs in the lines 413-418, in particular, seem to suggest
incomplete digestion of the SbfT site.

Read pair mapping analysis

Random genomic restriction fragment religation should create chimeras. If mapped to a
reference sequence, read pairs from such chimeras should generally not map as proper pairs.
I therefore mapped all Sbfl containing read pairs against the Locusta migratoria genome
(Wang et al., 2014) with bowtie2 (Langmead and Salzberg, 2012). Proper pairs should be a
clear indication of incomplete digestion whereas discordantly mapped read pairs could be
the result of genomic religation or lack of synteny between the Chorthippus and Locusta
genome or simply the small size of the contigs in the Locusta genome assembly.

I therefore tried to estimate the proportion of concordantly mapping read pairs from a
random sample of read pairs where, for the vast majority of read pairs, the two reads in a
pair should come from the same genomic location as in the case of incomplete digestion.
Any reduction in the proportion of concordantly mapping read pairs among the Sbfl site
containing read pairs with respect to this expectation should be caused by random genomic
religation of SbfI restriction fragments.

As a quasi random sample, I have taken the 200,001st to 300,000th read pair from each
individual. After mapping against the Locusta genome reference sequences, I first extracted
all read pairs where both reads mapped, concordantly or not and disregarding mapping
quality. The total number of these read pairs is 846,583. Among these read pairs there are
440,015 that map concordantly (further details from page 62 onwards). So 52% of mapping
read pairs mapped concordantly. That means that a random read pair — where both reads
generally come from the same genomic location in C. parallelus as with incomplete digestion

—is about as likely to map discordantly as concordantly against the Locusta genome reference.


http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

2.2 Results and Discussion 33

posterior distribution of the difference in 6

50

40
|

mode = 0.368 |

Density
30

20

| |
| |
[} |
[} 1
1 1

I I I I I I
0.30 0.32 0.34 0.36 0.38 0.40

difference in

Fig. 2.9 Density plot from 10,000 samples from the posterior credibility distribution of the differences in 8
between randomly selected reads and SbfI site containing reads. 6 stands for the probability of a read pair to
map concordantly.

Using the same command lines as above for read pairs containing SbfI sites, I counted
among a total of 2,184 mapping read pairs 333 which mapped concordantly, or 15.5%.

Figure 2.9 shows the posterior credibility distribution of the difference in 6 — the proba-
bility that a read maps concordantly — between the randomly selected read pairs and the Sbfl
site containing read pairs. The difference in the probability to map concordantly between a
randomly selected read pair and a read pair containing an Sbfl site is 0.367 (95% HDI: 0.352,
0.382). This is a strong difference that says that 37% more reads map concordantly among
the randomly selected read pairs than among the SbfT site containing read pairs.

This result is consistent with random genomic religation, which recreates SbfI sites and
disrupts concordant mapping of read pairs. If the Sbfl sites observed in some reads would
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only be caused by incomplete digestion, this large difference would not be expected. On the
other hand, the fact that 15% of SbfI site containing reads do map concordantly indicates

that genomic religation cannot account for all the observed SbfI sites in the reads.

2.2.3 Incomplete digestion or genomic religation in the double-digest
RAD library

There are also reads from the Sbfl+Xhol double-digest library that contain full restriction
enzyme recognition sequences. I have counted the Sbfl and Xhol site positions in PCR-
deduplicated SE and PE reads from each individual. The figures 2.10 and 2.11 show the
relative site frequency distributions across SE and PE reads for Sbfl and Xhol, respectively
(further details in section 2.3.11).

Cluster Analysis

As with the SbfI site containing reads from the standard Sbfl RAD library, if random genomic
religation were responsible for the the Sbfl and Xhol sites in the double-digest RAD reads,
then the subsequences left and right of the Sbfl or Xhol sites in the reads should come from
different loci. When clustering reads by similarity of the subsequences left of the Sbfl or
Xhol sites, the subsequences right of the Sbfl or Xhol sites should be very divers within
clusters.

After collapsing identical Sbfl and Xhol site containing SE reads into one, I have therefore
clustered them by the subsequence left (57) of the recognition sequence (further details on
page 60). Looking into these clusters of uniqued SE reads with Xhol sites does for the vast
majority show clusters that are consistent with incomplete digestion (see fig 2.12)! The
clusters from SE reads with an SbfI site, on the other hand, for the vast majority support

genomic religation (see figure 2.13).
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Fig. 2.10 Relative Sbfl site frequency distributions for the Sbfl-Xhol double-digest RAD data set with per
individual uniqued reads relative to individual read count. Note that the graph for the PE reads has a 20 times
larger y-axis than the graph for SE reads. SE reads are 96 base pairs long, PE reads are 100 base pairs long.
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Fig. 2.11 Relative Xhol site frequency distributions for all 38 individuals (including two technical replicates)
with per individual uniqued reads relative to individual read count.
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TGCAGGGTGTCACCTCAGAAACAGCTACGTTA
TGCAGGGTGTGACCTCAGAAACAGCTACGCTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACGTTG
TGCAGGGTGTGACCTCAGAAACAGCTACTTTG
TGCAGGGTGTGACCTCAGAAACGGCTACGTTG
TGCAGGGTGTGACCTCAGAAACGGCTACGTTG
TGCAGGGTGTGATCTCAGAAACAGCTACGCTG
TGCAGGGTGTGATCTCAGAAACAGCTACGTTG
TGCAGGGTGTTACCTCAGAAACAGCTACGTTA
TGCAGGGTGTTACCTCAGAAACAGCTACGTTA

TGCAGGGTGTTACCTCAGAAACAGCTACGTTA

TGCAGGTGAAGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGACGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGAGGTCATGCTGTCAGCAAAAGGCA
TGCAGGTGAGGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGAGGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGAGGTCGTGCTGTCAGTTAAAGGCA
TGCAGGTGATGTCATGCTGTCAGCAAAAGACA
TGCAGGTGATGTCATGCTGTCAGCAAAAGACA
TGCAGGTGATGTCATGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCATGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCATGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGCCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCAAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCTAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCTAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGCTAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGTTAAAGGCA
TGCAGGTGATGTCGTGCTGTCAGTTAAAGGCA
TGCAGGTGATTTCGTGCTGTCAGCAAAAGGCA

GAGTATTATACCCAATATGATGAAAACCCATTCAGTGAGGAAACCTCCCAAACAGCTA
GGCCCCTTGTTTATTATAAGTCGCCGCAGTAAGGTGCCACAACTGTAGTGTCACTGCC
AAAATATTAGCTGATCGTGATGCTGAAGCAAAACATAGGTTAGCAGGACGGGACCGCT
AACCAAATGAGATATCATTCTGATCTCAACTTTARACAAAATTTCGATCCTTTTTCTA
AAGAGCGATACTACGAGATCCGGAATGGTGCTCAGGCCCCCAGATAACGGCCAAGCTA
AAGAGCGATACTACGAGATCCGGAATGGTGCTCAGGCCCCCAGATAACGGCCAGGCTA
AAGAGCGATACTACGAGATCCGGAATGGTGCTCAGGCCCCCAGATAACGGCCAGGCTC
CAAGTAAATGATTTGGTCACAGCCGATGCACAGTATCACAACTCGTGTATGAAAAAAA
CACCCGCCAGAARAAGTTTTGGGGGTGCTCAGCACCTACATGAAACGAGTAAGAARAAA
CACCCGCCAGAARAAGTTTTGGGGGTGCTCAGCACCTACATGAAACGAGTAAGAAAAAT
CAGCCATATCCCTAAGGGGCCCATTACCCGCCTAACGTTGGAGCTGCCAACTACAAGT
CATGTGTGTGTGTGTGCTGTCCTTATCATAAGCTTAAGTAGTATGTAAGTCTAGGGAC
CCTGACCCGCAGCAACCTGGATGGAAAAAGAACGTGCACTTTGCTGTTTCAATGCCTC
CTTTCTTTACAAAGGATAGAACGCCTGGAAAACTTGCTACAAAACCGGGACACCACAC
GCTGAGGTTGATGGGCACCGCTGTTGTGGGCCGGCCGTGGGGGTGCAGCAGGCGTCTA
GGCCCCTTGTTTACTATAAGTCGCCGCAGTAAGGTGCCACAACTGTAGTGTCACTGCC
GGCCCCTTGTTTATTATAAGT CGCCGCAGTAAGGTGACACAACTGTAGTGTCACTGCC
GGCCCCTTGTTTATTATAAGTCGCCGCAGTAAGGTGCCACAACTGTAGTGTCACTGCC
GGGTTTGAAAGGTAGTTCAAAGTTTCTCTATGGGACTTGAAAGGTAGTTGAAAGTATC
GGGTTTGAAAGGTAGTTCAAAGTTTCTCTATGGGACTTGAGAGGTAGTTGAAAGTATC
GTCATTGCCTCTACTACGCCGCAGCGTTCGTCGCCGGCGCCTCCGCCATTTTTCTGAC
TAATGAGCCATGCTGCCCCTATAGCCGTACATATTTGCGAAAGTGTTGCCGGCGCAGG
TACCTCCTGGCATGGCACTGGTCTGTATTCACGACACTTTTCCAGGACAAAGATCCTA
TGACAGACGCTCATACATCAGTTTCTTTAAGGTTGGCAATTTCCAACTACAACCCTAA
TGACAGACGCTCATACATCAGTTTCTTTAAGGTTGGCAATTTCCAACTACAACCCTAC
TGCATAGCAGTTTGAATCACTGGCTACAGTTACAGCAAATTCTATTTTAAACAGACGA
TACTCAGAATTTGGGAGGAATAGTATTTTTTGAATAACTTCTTGTGAATTTCGTAATT
GAGTAATGTGTGTAAAGTCCTATGGGACCAAACATCTAAGGTCATCGGTCCCTAACAT
GAGTAATGTGTGTAAAGTCCTATGGGACCAAACATCTAAGGTCATCGGTCCCTAAGCT
GGCCTGCCTGGTTGCTGAGAAGGCGACAGTAGAGGCGATGTGGCTACGAGATGCTGCG
GGCCTGCCTGGTTGCTGAGAAGGCGACAGTAGAGGCGATGTGGCTACGAGATGCTGCG
GAGCATTATACCCAATATGATGAAAACCCATTCAGTGAGGAAACCTCCCAAACAGCTA
GAGTATTATACCCAATATGATGAAAACCCATTCAGTGAGGAAACCTCACAAACAGATA
GAGTATTATACCCAATATGATGAAAACCCATTCAGTGAGGAAACCTCCCAAACAGCTA

TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCACCCGTCTGTTGCCATAGGACATTAACGCTAAATTGTGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGACATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGTGCCGCACTTCCCTGTCGGA
TCGCCGGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TAGCCCGTCTGTTGCCATAGGACATTAACGCTAAACTGCGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAACTGCGCCGCACTTCCCTGTCGGA
ATCTTCACCACCGGCAGCGGGGGCTACTCCACGCAGAGGGCGGGGCGCAGTCTACGAC
ATCTTCACCACCGGCAGCGGGGGCTACTCCACGCAGAGGGCGGGGCGTAGTCTACGAC
TCACCCGTCTGTTGCCATAGGACATTAACGCTAAATTGTGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCAGTTTCCTGTCGGA
TCGCACGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTACCATAGGACATTAACGCTAAATTGTGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGC
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGG
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGTGCCGCACTTCCCTGTCGGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAAATTGTGCCGCACTTCCCTGTCTGA
TCGCCCGTCTGTTGCCATAGGACATTAACGCTAACTTGCGCCGCACTTGCCTGTCGGA
TCGCCCGTCTGTTTCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCTGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCTGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGG
TCGCCTGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGTA
TCGCCCTTCTGGTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTCTCGGA
TCGCCCTTCTGGTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTCTCGGT
TCGCCCTTCTGTTGCCATAGGACATTGACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCGCCGGTCTGTTGCCATAGGACATTAACGCTAAACTGCGCCGCACTTCCCTGTCGGA
TCGCCGGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA
TCACCCGTCTGTTGCCATAGGACATTAACGCTAAATTGCGCCGCACTTCCCTGTCGGA

Fig. 2.12 Two clusters produced by cluster.pl on all uniqued SE reads containing an Xhol site. The top
cluster is one of only very few that is indicative of genomic religation given its sequence diversity downstream
of the Xhol site. The bottom cluster is one of the vast majority (including the many small ones) that are only

consistent with incomplete digestion given the lack of sequence divergence downstream of the Xhol site.
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Fig. 2.13 Two examples of clusters produced by cluster.pl on all uniqued SE reads containing an SbfT site.
The upper cluster is indicative of incomplete digestion. The lower cluster is indicative of genomic religation.

TGCAGGCCCAAAGGTTACGCCACTGTTTCAGTGTGAGGATTGC
TGCAGGCCCTAAGGTTACGCCACTGTTTCAGTGTGAGGATTGC
TGCAGGCCCTAAGGTTACGCCACTGTTTCAGTGTGAGGATTGC
TGCAGGCCCTAAGGTTTCGCCACTGTTTCAGTGTGAGGATTGC
TGCAGGCCCTAAGGTTTCGCCACTGTTTCAGTGTGAGGATTGC
TGCAGGCCCTAAGGTTTCGCCACTGTTTCAGTGTGAGGATTGC
TGCAGGCCCTAAGGTTTCGCCACTGTTTCAGTGTGAGGATTGC

TGCAGGCTGTCAGCATTAGCTCATGTAGTGTCTGATGCTGACAG
TGCAGGCTGTCAGCATTAGCTCATGTAGTGTCTGATGCTGACAG
TGCAGGCTGTCAGCATTAGCTCATGTAGTGTCTGATGCTGACAG
TGCAGGCTGTCAGCATTAGCTCATGTAGTGTCTGATGTTGACAG
TGCAGGCTGTCATCATTAGCTCATGTAGTGTCTGATGCTGACAG

CGAGCGACGAGTGATAGAGGTGGTAACGCAGTAGCGTCACCATGG
CGAGCGACGAGTGATAGAGGTGGTAACGCAGGAGCGTCACCATGG
CGAGCGACGAGTGATAGAGGTGGTAACGCAGTAGCGTCACCATGG
CGAGCGACGAGGGATAGAGATGGTAACGCAGTAGCGTCACCATGG
CGAGCGACGAGTGATAGAGATGGGAACGCAGTAGCGTCACCATGG
CGAGCGACGAGTGATAGAGATGGTAACGCAGTAGCGTCACCATGC
CGAGCGACGAGTGATAGAGATGGTAACGCAGTAGCGTCACCATGG

AATCAGATAGAAAATTTCGCTTGTCACAGGATGAGAAAGGAAAT
AATTATTATTTTTGTGTGTTTTGATAAATTGTCCATTCTTTCAA
CATTTCCGTAAATCACAGAAAACTCCAACCTATATGGCCAGAAG
CTCTGCGGATTGCGGCTCTTATCTGCGAGGCAAACACCGCCCAG
ATTAGGGAAATCCGGGAAAAGGCCATTTCCGCTACCAAGAAGCC
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Read pair mapping analysis

As for the standard RAD library, if the Sbfl or Xhol sites in the reads of the double-digest
RAD library are due to random restriction fragment religation, then they should be chimeras.
The sequences left and right of the restriction site should map to different parts of a set of
genome reference sequences. That’s why I wrote a script called digidig.pl that takes a
FASTQ SE read file, looks whether there are Sbfl (or Xhol) sites in the reads at a position
that leaves at least 30 bp to the left and right of the recognition sequence, splits the reads
at the Sbfl (or Xhol) site and writes the upstream part to a new SE file and the reverse
complement of the downstream part to a new PE file. Next, I mapped these individual
paired read files against the Locusta reference genome (Wang et al., 2014) with bowtie2.
I have then extracted all reads from read pairs where both reads mapped, properly or not
and disregarding mapping quality (for further details see page section Read pair mapping
analysis on page 62).

Using the same command lines as above for the standard RAD read pairs, but specifying
an accepted insert size range of 30 till 120 (instead of 50 till 900), I counted 116 concordantly
mapped read pairs (indicating incomplete digestion) among a total of 932 mapped read pairs
(12.4%).

I have also digitally digested the SE reads with Xhol using digidig.pl and mapped
the digested reads against the Locusta genome reference. Using the same methods as for
Sbfl site containing SE reads, I counted 949 read pairs mapping concordantly (indicating
incomplete digestion) among a total of 2250 mapped read pairs (42.2%).

In order to estimate the expected proportion of concordantly mapping read pairs for
reads where both read subsequences are derived from the same location in the C. parallelus
genome (as with incomplete digestion), I modified digidig.pl to also allow random digital
digestion. It picks a random cut position while making sure that each new read in the resulting
read pair is at least 30 bp long.

As a quasi random sample of reads I took the 200,001st — 300,000th SE reads from each
individual. I then digitally digested these random reads randomly with digidig.pl creating
new read pairs with variable read lengths. I then mapped these read pairs against the Locusta
genome reference with bowtie2 with the same settings as before (see page 62). I used the
same set of command lines as above for the Sbfl and Xhol digitally digested SE reads. I thus
counted 689,319 concordantly mapping read pairs among a total of 1,041,305 mapping read
pairs, or 66.2%.
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Table 2.2 Summary of results from read pair mapping analyses. The percentage of concordantly
mapping read pairs is shown for each data set together with the expected percentage from random
read pairs.

% concordant

data observed  expected
Sbfl in standard RAD 15.5 52.0
Sbfl in ddRAD 12.4 66.2
Xhol in ddRAD 422 66.2

2.2.4 Summary

Table 2.2 summarises the mapping results for the two different RAD libraries and the two
restriction enzymes used and shows that reads with Sbfl sites map concordantly much less
often than would be expected if they were mainly caused by incomplete digestion. Reads
containing Xhol sites, on the other hand, map concordantly much more frequently, although
still far fewer than expected if incomplete digestion were the sole reason for Xhol sites in
these reads. These results are consistent with the results from the analysis of clusters of cut
site containing reads.

So incomplete digestion seems to have affected Xhol sites much more than Sbfl sites
in both types of RAD libraries. In order to detect an Xhol site that was not cut within SE
reads of the double-digest library, it (i) needs to be within less than 90 base pairs of the Sbfl
site and (ii) have a second Xhol site within the next few hundred base pairs that was cut, so
that a P2 adapter could be ligated. Given these highly restrictive conditions, it seems likely
that incomplete digestion of Xhol sites has significantly reduced the template amount for the
Sbfl4-Xhol double-digest RAD library.

Incomplete digestion is a much more severe problem with the library preparation than
genomic religation. When assembling RAD tags only from SE reads as in standard RAD,
genomic religation should only interfere with clustering when the second restriction site is
within a read length of the first. Other chimeras should not be a problem for clustering. By
contrast, incomplete digestion does not so much interfere with RAD tag assembly — two
SbfT sites within a read length of each other should be rare anyway — but it indicates that
an unknown (and probably unknowable) fraction of restriction sites were not cut. That is
because an uncut site can only be detected if there was a restriction site close by that did get
cut. So, the indication that the SbfI restriction sites in the reads of the two RAD libraries are
probably mostly due to genomic religation is a good sign, although it indicates an inefficient
ligation of Illumina adapters, which also reduces PCR template amount. The general lack of
signs for genomic religation in the SE reads containing an Xhol site, on the other hand, is

reason for concern, since it suggests incomplete digestion.
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Given the rarity of signs for incomplete digestion of Sbfl restriction sites, it seems
unlikely that it alone could have reduced the template amount enough to cause the extreme
skew in the distribution of putative RAD tag loci over genotype calls (i.e. individuals) as
observed in figure 2.2a. Although a high-fidelity version of Sbfl was used, remaining star

activity of Sbfl may be an explanation for the large number of singleton loci in figure 2.2a.



42 Testing incomplete digestion

2.3 Methods

All commands and programmes shown here have been executed in the command processor
BASH on the Debian-based Linux operating system called Ubuntu.

2.3.1 Creation of figure 2.1

The base map was created from two digital elevation model (DEM) tiles of the SRTM 90m
Digital Elevation Database v4.1 provided by CGIAR-CSI (Jarvis et al., 2008). I used QGIS
to extract the polygons corresponding to the country borders of France and Spain from a
shapefile containing all world-wide country borders (downloaded from Natural Earth). Raster
manipulations (projection, merging, clipping to polygon outline, color relief, hill shade and
slope shade) were carried out with utilities from the Geospatial Data Abstraction Library
(GDAL). The exact GDAL command lines can be provided upon request. Raster overlays
and map design was performed with QGIS (2017) (version 2.18).

2.3.2 Adapter sequences for Sbfl+Xhol ddRAD

Pl adapter insert P2 adapter

'Y
s
26
5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA CGCTCTTCCGATCT xxxxxXxTGC#A GGNNNNNNNNNNNC P-TCGANASGAN GTTCAGCAGGAATGCCGAGACCG V!

3'-TTACTATGCCGCTGGTGGCTCTAGATGTGAGARAGGGATGTGCT| GCCAGRAGEETAGA | x:xxxx— P ACGTCCNNNNNNNNNNNGAGC T+CTAGCCTTCTCGC CAAGTCGTCCTTACGGCTCTGGCTAGAGCATACGGCAGAAGACGAAC-5'

Fig. 2.14 Outline of P1 and P2 adapters for double-digest RAD. Underlined sequences are selective PCR primer
sequences. An asterisk * stands for a phosphorothioate bond. A "P" stands for a phosphate group. Sequences in
italics are non-complementary (wavy). Sequences with an orange background are identical to each other. An

x" stands for a base in a barcode sequence.

2.3.3 Estimating genome wide GC content

Using the SE reads from the Sbfl RAD library (excluding the SbfI recognition sequence
part) and command 2.2 I have determined the GC content of the SE reads: 49.5%. So, it
seems that sequences close to Sbfl sites are more GC rich than further distant sequences.


http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
http://www.qgis.org/en/site/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-countries/
www.gdal.org
www.gdal.org
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Command 2.1 For each individual, this command takes the PEs reads, removes exact duplicates
and determines their overall GC content. Finally, the average of the individual GC contents is taken.
Note the brute-force parallelisation by sending each iteration of the for loop into the background
with (...)&.

for i in *fq_2.gz;

do

( awk '(NR-2)%4==0' <(zcat $i) | perl -ne' $h{$_}=1;END{foreach $s (keys %h)
{$gc += $s =" tr/GC/GC/;} print $gc/(51 * scalar keys %h), "\n";} ' )&

done | \

perl -ne'$sum+=$_; END{print $sum/$., "\n";}'

0.4607

Command 2.2 This command is a different version of command 2.1. It is used here to determine
the GC content of all SE reads from the standard Sbfl RAD library. It first creates and exports
two functions, gc and mean, and then uses the programme parallel in order to parallelise the
determination of GC content over 10 cores. After stripping barcode and the remainder of the
restriction site, the reads are 40 base pairs long. Note, the space between { and awk (line 1) as well as
{ and perl (line 7) is required.

gcOf{ awk '(NR-2)%4==0' | sed 's/~...... /7" |\

perl -ne'$h{$_}=1;END{foreach $s (keys %h){$gc+=$s="tr/GC/GC/;}
print $gc/(40*scalar keys %h), "\n";}' ;}

export -f gc

mean(){ perl -ne'$sum+=$_; END{print $sum/$., "\n";}'; }
export -f mean

parallel -j 10 'zcat {} | gc' ::: *fq_1.gz | mean

0.4956

2.3.4 Genome size of Chorthippus parallelus

Chorthippus parallelus has a chromosome complement of 2n = 16 + X. Males have one
X-chromosomes, females have two. Table 2.3 shows four studies that provide genome size
estimates for Chorthippus parallelus. Note that all studies are measuring the DNA content
of spermatids. However, none of the studies explicitly deal with the issue that half of their
measurements are missing the contribution from the X chromosome.

Table 2.3 mentions the country of origin of the grasshoppers used for genome size
estimates. Note, however, that only Belda et al. (1991) provide sampling locations. For
the rest it is assumed that individuals were sampled close to the authors institutes. So two
studies provide genome size estimates for C. parallelus parallelus and two for C. parallelus
erythropus. The parallelus subspecies seems to have a genome 2—4 giga bps larger than the
one of subspecies erythropus. Apart from possible systematic differences in methodology,

this apparent difference in genome size could be real, since several studies have shown
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Table 2.3 Studies that provide genome size estimates for Chorthippus parallelus

sample C-value . .
study 12 Method tissue type standard species
source [107“g]
John and Hewitt (1966)4 UK 12.37 (& 0.75)®  Feulgen staining, spermatid  Locusta migratoria®
microdensitometry
Wilmore and Brown (1975)¢ UK 13.36 (£ 0.04) Feulgen staining, spermatid mouse spermatid
microdensitometry
Gosalvez et al. (1980)¢ Spain 8.58 (& 0.47)  Feulgen staining, spermatid  Allium cepa, root tissue
microdensitometry
Belda et al. (1991) Spain 10.73 (£ 0.97)%  Feulgen staining, spermatid chick erythrocytes
microdensitometry

“ see their table 3

b 5 individuals

¢ assuming 6.4 on relative scale corresponds to C-value of 5.5 pg
4 see their table 2

€ C. longicornis syn. of C. parallelus

1 3 individuals

§ 3 individuals

chromosomal differentiation between the two subspecies, in particular on the X chromosome:
an active nucleolar organiser region (NOR) distally on the X in C. p. parallelus but not in
C. p. erythropus (Gosalvez et al., 1988). This NOR on X lies in or near a distinctive distal
C-band’. In addition, Pyrenean C. p. erythropus also show an interstitial C-band on X that
does not occur in pure C. p. parallelus (Bella et al., 2007). Further chromosomal differences
are listed in table 1 of Ferris et al. (1993).

Gosalvez et al. (1988) showed that all the heterochromatin present in both subspecies is
particularly rich in GC DNA base pairs.

2.3.5 Expected RAD marker number

Using PE reads from the standard RAD library — PCR-deduplicated per individual — as
a proxy for the whole genome, I estimate the GC content of the Chorthippus parallelus
genome to be around 46% (see Estimating genome wide GC content on page 42). However,
Wilmore and Brown (1975) have determined the GC content of the C. p. parallelus genome
from thermal dissociation profiles (41.2%) and sedimentation in CsCl and Cs;SO4 density
gradients (41.7% and 42.0%)"°. 1 think that PE reads from SbfI standard RAD are still a
biased sample towards GC rich regions of the genome due to the GC rich Sbfl recognition

sequence. Assuming a genome size of 12 giga base pairs, the expected number of RAD tag

9heterochromatin stained with Giemsa
10gee their table 1
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loci from a standard RAD library with Sbfl in the grasshopper genome is ~170,000 (equation
2.2).

0.42\% [ (1-0.42)\?
expected number of RAD tags = 12 x 10° x <—> X <( ) > X 2 2.2)
genome size tags per Sbfl site
SbfT site probability
=173,110

The number (and identity) of markers in a double-digest RAD library depends very much
on the size selection of restriction fragments. I selected fragments roughly between 300
and 800 bp length. The P1 adapter is 63 bp long (excluding 4 bp overhang), the P2 adapter
is 61 bp long (excluding 4 bp overhang). The Sbfl remainder after the cut is 6 bp long
and the Xhol remainder is 5 bp long. If Xhol cuts a fragment at a distance less than about
300 —63 —61 —6—5 = 165 bp away from the SbfI cut site, then this fragment would not
be size selected because it would be shorter than the lower bound of size selection (in this
example). The SE sequences (excluding the Sbfl recognition sequence parts) have a mean
GC content of 49.5% (see command 2.2). The following formula requires the GC content of
sequences of length 168 bp adjacent to Sbfl sites. I will use the average of SE and PE GC
contents — 48% (see section 2.3.3 on page 42) — for calculating the probability of no Xhol
cut within the first 168 bp after the Sbfl restriction site. In the next 500 bp then needs to be
at least one Xhol site to make the Sbfl fragment a marker. The expected number of RAD
markers per genome with an Sbfl-Xhol double-digest and a selected size range of 300—-800bp
is:

RAD markers per genome =~ 12 x 10° (genome size in bp) 2.3)
X (0—;2) ’ X <(1 7;'42) )2 (SbfT cut prob. per bp)
x2 (each cut creates two potential RAD tags)
X [1 - (0—;8> ) X <(1 7;)'48) >2:| (prob. of no Xhol cut in the first 165 bp after SbfT site)

500
046\ [/ (1-046)\"
X (1 — |:1 — <T> X <( 1 )) ] ) (prob. of at least one Xhol cut in the following 500bp)

~ 16,000

I have created an Excel file called ComplexityReduction.x1s that implements equation

2.3 and that allows easy modification of variables.
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2.3.6 Assembling pairs of PE read contigs

READ MAPPING The 49 million standard Sbfl RAD reads used here were base call quality
filtered with process_radtags'' and a quality score threshold of 20 in a 20 bp sliding
window. process_radtags also made sure that the remainder of the Sbfl restriction site
was present at the 6th position in the SE reads and that it was preceded by one of the 36 5 bp
long barcodes that I used, for each case allowing 1 bp mismatch. I mapped these reads against
the Schistocerca transcriptome (Badisco et al., 2011) with stampy (Lunter and Goodson,
2011) and setting the switches -noautosense, to turn off inference of insert size distribution,
and -insertsd=400, to specify a very wide insert size distribution. This is to ensure that
the proper pair bit in the SAM flag is set correctly by stampy. I then used command 2.3 in
order to extract all Sequence Alignment/Map format (SAM) records, where at least one read

from a pair got mapped, with subsequent position sorting. After this filtering, I merged all

Command 2.3 Command line that uses samtools and awk to create position sorted bam files in
parallel that only contain records of paired reads where at least one read of the pair got mapped (i.e.

Skipping records with ﬂag 77 and 141). Note the brackets around the command line and the skipping of ";" between "&"
and "done".

for i in *sam.gz; \
do (samtools view -hS $i | gawk '/~\@/ || and($2, 4)==0 || and($2, 8)==0' | \
samtools view -uhS - | samtools sort - “basename $i .fq_l.sam.gz’) & done

individual mapping output files into one big file with samtools merge. Note, that I did not

12 were also

filter for mapping quality scores, so that reads with ambiguous mapping position
retained. When stampy identifies several equally good mapping locations for a read or read
pair, it reports one of these at random. Also note that the Schistocerca expressed sequence
tags (ESTs) were assembled with the programme phrap and the authors do not report any
attempt to merge different transcripts from the same gene into so-called unigenes. It can
therefore happen that reads that are derived from the same position in the genome map to
different parts of the Schistocerca reference.

DETECTING LINKED RAD TAG SITES The programme IGV among others can be used to
visualise the alignment of many reads against a set of reference sequences. However, visually
inspecting all Schistocerca reference contigs for whether they have read pairs mapped to
both sides of one Sbfl restriction site is very tedious and time consuming. That is why I
wrote the script called find_linked_RADtags.pl which reports reference contigs where at
least two read pairs map to opposite sites of an Sbfl restriction site (or any cut site leaving

a 4 bp overhang). This script also detects the contig shown in figure 2.15. With this script

from the stacks pipeline
2with quality score < 3, see stampy README section 11.5


http://samtools.github.io/hts-specs/SAMv1.pdf
http://www.phrap.org/phredphrap/general.html
http://www.broadinstitute.org/software/igv/home
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Fig. 2.15 Alignment of standard RAD read pairs to both sides of an SbfI restriction site. Read pairs are
connected by a line. Forward mapping reads are pink, backward mapping reads are blue. The upper individual
has 7 unique read pairs, i.e. with different paired-end reads.

the detection of a reference contig requires one concordantly mapped read pair (also called
proper pair) on both sides of an Sbfl restriction site. So SE as well as PE reads need to map
on both sides of the restriction site. This is stringent and will obviously miss contigs with
genuine Sbfl RAD tag sites, but it is necessary to remove many false positive detections. The
purpose of the script is not to detect as many contigs as possible, but only to detect several
contigs with genuine Sbfl RAD tag sites. The script find_linked_RADtags.pl collects all
PE reads that are mates of SE reads that mapped to a detected linked RAD tag site. For each
detected reference contig it prints reads upstream or downstream of that site to a separate
file. Note, that at this stage find_linked_RADtags.pl will only detect one linked RAD tag
site per reference contig. However, due to the small sizes of the transcriptome contigs, this
should not be major shortcoming.

PE READ ASSEMBLY I attempted to use VelvetOptimiser.pl to assemble the collected
PE reads into PE contigs (Zerbino and Birney, 2008). However, the programme fails to
assemble three PE read contigs with low read coverage — Contigl776_downstream (see
figure 2.15), Contig4139_upstream and LCO3019A1F03.f1_upstream — despite my diligent
attempts to provide the necessary settings (Davey et al., 2012; Etter et al., 2011; Zerbino,
2010).

SSAKE (Warren et al., 2007) is a simpler but also less heuristic and more tunable assembly

programme than Velvet. It does not take base call quality scores into account and takes only


http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
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multi-fasta files as input. It searches for perfect kmer matches between reads. i.e. does not

allow for sequencing error or SNPs. SSAKE by default does not allow setting a minimum

Command 2.4 Command line that turns fastq files into multi-fasta files. It takes all fastq files in the
parent directory, extracts the header and sequence part (while skipping the quality string), replaces the
"@" at the beginning of the fastq headers with a required ">" sign and writes the stream to a new file
with the same base name.

for i in ../*fq; do awk '(NR-1)%4==0 || (NR-2)%4==0"' $i | \
sed 's/~@/>/' > “basename $i .fq .fa; done

overlap (-m) of less than 16 bp. This could be too stringent for some of the low coverage PE
contigs that I wanted to assemble. I, therefore, modified SSAKE to allow a minimum overlap
of as small as 10 bp. When calling SSAKE with

-w 1 Minimum depth of coverage allowed for contigs
-o 1 Minimum number of reads needed to call a base during an extension

. on the "Contigl1776_downstream" reads from one individual for PE assembly (just two
overlapping reads, see fig. 2.15), it is able to assemble a full length contig of 81 bp.
TAGCLE Any non-genomic sequence, i.e. adapter sequence, in the reads should interfere
with de novo assembly. The Perl script TagCle by Kang-Wook Kim (Sheffield University)
detects overlap between paired reads by Smith-Waterman local alignment and clips off read
segments downstream of the end of the local alignment, i.e. generally adapter sequence. That
way the script can also detect a single adapter (or barcode) base at the end of a read. I used

command 2.5 to remove adapter sequences from the reads. TagCle clipped 159 SE and 216

Command 2.5 This is the command line that I used in order to run the script TagCle on all 154
pairs of input files in parallel. The -me switch turns off any direct search for adapter sequences.

for i in ../input/*fq_1;

do

(j="echo $i | sed 's/1$/2/'"; TagCle_0.70.pl -me -il $i -i2 $j > “basename $i .fq_1".log) &
done

PE reads of a total of 1,584,732 reads (0.02%). It did not discard any sequence.

KMER SIZE OPTIMISATION All de novo assemblers require optimisation of kmer length
(Davey et al., 2012), which is mainly what VelvetOptimiser.pl does with Velvet. So I
wrote a script called SSAKEoptimiser.pl which for each set of PE reads iterates through
kmer lengths from 11 to 33 and keeps the assembly which produces the longest contig. This

script exists in several parallelised versions (using different parallelisation modules) that
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Fig. 2.16 The run times of the four parallelised versions of the SSAKEoptimiser script on 11 input files.

parallelise not only over input files but also over iterations through kmer lengths. This full
parallelisation greatly speeds up execution on a multi-core machine (figure 2.16).

PICKING THE RIGHT SSAKE CONTIGS SSAKE generally assembles many contigs for a
region. In some cases this is due to different SE RAD tags mapping to the same position
in the Schistocerca transcriptome. In other cases, this is clearly due to insufficient merging
of contigs by SSAKE due to low coverage and SNPs (see figure 2.17) That’s why I created
multiple alignments of SSAKE contigs from each assembly with Muscle (Edgar, 2004) in
order to manually merge them in the alignment editor of MEGA (Tamura et al., 2013).

N Belvu: stdin

[File] [Edit] Eolour] [Sort] Picked:

(7x3dd) Q

contig?lsize2dl | readd2lcovl?. 35|1 (241 (GERETEEEEEATATACGECARART ERT TEGGREGGACEEERA . . . . . o o .4ttt sttt ittt i st it st s s st bs s tts s bassstsssasibsssnsiissssrssnsss
contigdlsizeSllireadl3lcovE, 19 1 81 GGEETREEECATATACGECAAART CET CERRREET ACGCCGAGCCGA HGEG9HGCEGTGTTGEECGHEEGTGECERGGGG

contighlsizebllread2lcovl, 67 B T N GACI

contig3lsize8llreadl2lcov?, 56 1

contigllsizel3kl read?7 1 cow8, B8 |1 135 25"
contighleize5dlread3|cov2. 83 B L I PP C&
contig7lsize8dlread2lcovl, 21

Fig. 2.17 Multiple sequence alignment of SSAKE contigs assembled from reads collected from the downstream
side of the RAD tag site in the Schistocerca reference contig "LC.1628.C1.Contigl776". The aligment view
was created with the command: muscle -in *LC.1628.C1.Contigl776_downstream+contigs -msf |
belvu - . The 7 contigs can clearly be merged into one big contig if allowing for a few SNPs.
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Since the SSAKEoptimiser output generally contains several contigs of similar length
and with similar read counts, it is difficult to pick those contigs upstream and downstream
that genuinely belong together, i.e. come from the same locus. Visual inspection of a pairwise
alignment showed that it is by no means always the longest contig assembled that aligns
significantly to the Schistocerca reference.

In order to help me pick the right SSAKE contigs, I started by determining for each PE
read assembly

* the length of the longest contig assembled
* the total number of contigs assembled and
¢ the number of contigs with length > 100, > 200 and > 300 bp

Another important piece of information would be a significant blast hit of a SSAKE contig
against its putative Schistocerca reference contig. I therefore extracted all 64 Schistocerca
reference contig sequences from the Schistocerca transcriptome reference file with command
2.6. With my script blast2seq.pl —calling NCBI blastn 2.2.28+ (Camacho et al., 2009)

Command 2.6 Example of a command line that extracts FASTA sequences from an indexed multi-
FASTA file using a file listing FASTA headers.

for i in “cat reference_contig_names_with_up-downstream_contig; \
do samtools faidx LC_unique.seq $i > $i.fa; \
done

— I then blasted all 128 relevant SSAKE contig files against their putative Schistocerca reference
contig sequence and recorded the number of blast hits as well as the fasta headers of the 10
best hitting SSAKE contigs together with their Expect (E) value (further explanation) in a
.SSAKE contig_stats file. I only recorded blastn hits with an Expect (E) value of less
than 10710, T then used this table as a guide for picking and possibly merging SSAKE contigs
in MEGA. I used command lines similar to 2.7 in order to find overlapping SSAKE contigs that

haven’t been merged yet.

Command 2.7 This command line example is a very quick way to find out which sequences in a
multi fasta file are similar to each other. It prints out hits of an all by all blastn of the sequences in a
file. Note that query and subject get the same file. The first awk command removes hits against itself,
the sort part brings reciprocal hits together and the second awk command keeps only one line for each
pair of matching sequences.

blastn -query *LC03012A1D06.f1_downstream.fa.ssake*.contigs \
-subject *LC03012A1D06.f1_downstream.fa.ssake*.contigs -task blastn \
-evalue le-10 -outfmt 6 | awk '$1 != $2' | sort -k3 -nkll | awk 'NR%42' | less -S



http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQ#expect
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I only called pairs of PE contigs if on each side of the restriction site I could unambigu-
ously pick a SSAKE contig. This either required a much better blast hit than the second best
SSAKE contig or, if no blast hits could be obtained, a small number of SSAKE contigs, one of
them being much longer than the others. I required at least one of the two PE contigs from a
restriction site to have a significant blast hit to the Schistocerca reference contig.

After picking and potentially merging SSAKE contigs, I aligned upstream and reverse
complemented downstream contigs against their putative Schistocerca reference contig (if
possible, i.e. significant blast hit) and filled the gap between them with N’s. I thus created a

new C. parallelus PE contig pair consensus sequence for each Schistocerca reference contig.

2.3.7 Backmapping

After the creation of 20 C. parallelus PE contig pair consensus sequences, I wanted to find
out how many of the 36 individuals get reads mapped to these 20 linked RAD tag sites and
whether individuals actually have reads mapped to both sides of an Sbfl restriction site.
INCLUDING SE RAD TAG SEQUENCES INTO THE NEW REFERENCE Before mapping
all standard Sbfl RAD reads back against the newly created PE contig pair reference, I
wanted to include the SE RAD tag sequences into the PE contig pair consensus sequences.
For the determination of the consensus RAD tag sequences I obviously only want to use
reads whose PE mate was used for the assembly of the SSAKE PE contig that I finally picked
(see section 2.3.6). That’s because the script find_linked_Radtags.pl had printed out
all read pairs that mapped to a detected linked RAD tag site in the Schistocerca reference,
but after the SSAKE assembly I mostly only picked PE contigs that got a blast hit to their
Schistocerca reference contig. Other SSAKE contigs are much more likely to derive from
similar but non-homologous loci to the Schistcerca reference contig. I started by using
command 2.8 in order to extract the FASTQ headers from those PE reads that get a blast
hit to their inferred PE contig. I then used the output files from this command, containing

Command 2.8 Using blastn to find PE reads that map to the inferred PE contig (see section 2.3.6
on page 49). The for loop iterates over all 40 PE read files. The first part of the loop converts fastq
to fasta format. The second line feeds that into blastn (using megablast by default) and uses the
corresponding PE contig (from section 2.3.6) as subject. The third line takes the first column with the
query headers from the blast output table and writes it to an output file.

for i in *fq_2; \

do awk '(NR-2)%4==0 || (NR-1)%4==0' $i | sed 's/@/>/' | sed 's/_pp//' | \
blastn -subject “basename $i .fq_2 _consensus.fas -evalue 1le-10 -outfmt 6 | \
cut -f1 | sed 's/2$/1/' > “basename $i .fq_2 _blast_mapped.ids; \

done

headers of the required SE sequences, as pattern files for a grep filter of the SE read files that


http://en.wikipedia.org/wiki/FASTQ_format

52 Testing incomplete digestion

[ Primer3_ready_with... ;| [ LC.1628.C1.Contigl776_primer3ready with_SE RADtags + | 6_primer3ready_with SE RADtags Go T < +» & [ = (I 1 1 1 1 | 1|

—_————

par_34-10 bam Coverage

par_34-10.bam

Fig. 2.18 Example read alignment of all standard RAD reads of individual par_34-10 against one PE contig
pair reference sequence.

find_linked_RADtags.pl has put out (command 2.9). Having extracted these SE reads

Command 2.9 Using the header files created by the previous command (2.8) to extract corresponding
SE reads from find_linked_RADtags.pl SE read files.

for i in *ids; \

do grep -Al -f $i ../all_Big Data_"basename $i _blast_mapped.ids”.fq_1 | \
egrep -v "\-\-" | sed 's/@/>/' > “basename $i .ids _SE.fas; \

done

for each RAD tag, I created multiple sequence alignments of them with muscle in .msf
format, which I could then use for the consambig programme from the emboss package in
order to create SE RAD tag consensus sequences. Finally, I included these sequences into
the 20 PE contig pair consensus sequences manually in MEGA.

TARGETED ALIGNMENT AND CLEAN UP OF MAPPING RESULT [ used the programme
stampy to align all standard Sbfl RAD reads from all 36 individuals against this new set
of reference sequences. Figure 2.18 shows an example of an alignment of this stampy
mapping. There are many low quality mappings which are very likely wrong (e. g. SE reads
mapped to PE contig without SbfI site). However, here I have been using reads derived
from a much larger source than is represented in the small reference of 20 pairs of PE
contigs. Therefore, stampy finds unambiguous mapping locations'? for reads that have an
edit distance of 17 to the reference sequence. stampy does not have an option for maximum

allowed distance to the reference. Kosugi et al. (2013) have developed a few Perl scripts that

3indicated by a mapping quality >3


http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/consambig.html
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Fig. 2.19 Read alignment of all standard RAD reads of individual par_34-10 against one PE contig pair
consensus sequence. Upper track after coval-refine filtering. Lower track is without coval-refine
filtering for comparison.

deal with the problem of false positive alignments especially when doing a so-called fargeted
alignment'* by removing reads that map with too many mismatches. They show that filtering
by mapping quality score is rather ineffective when trying to improve a targeted alignment.
Their programme coval-refine by default removes all reads with more than 2 indels, 1
indel and 1 soft-clipped end and 2 soft-clipped ends. I have changed coval-refine so that
indels count like two mismatches. I have set the maximum proportion of mismatches to 0.1.
Thus SE reads are 46 base pairs long and are allowed to have up to 5 mismatches. The 51 base
pair long PE reads are also allowed up to 5 mismatches. By default, coval-refine counts
ambiguous positions in the reference as mismatches. I therefore changed coval-refine to
take correct account of the dual ambiguity codes RWYMKS. Figure 2.19 shows the mapping

result after coval-refine treatment for one individual and one reference sequence.

2.3.8 Estimation of template amount for selective PCR

I estimated the amount of template that went into the selective PCR for the Sbfl4Xhol
double-digest library (see figure 1.3) with quantitative PCR (Rutledge and C6té, 2003).

4when the reference sequence is much smaller than the source of the reads to be mapped
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I took an aliquot of the selective PCR product and determined its DNA concentration with
picoGreen and a fluorometer. I made a serial dilution of 8 times 1:10 from this PCR product
and used this to produce a standard curve. I created three replicates of the standard curve and
three replicates of the target, i.e. the solution before selective PCR. The C; threshold was
automatically set by the gPCR machine and, except for the lowest template concentration of
the standard dilution, the melting temperature of the PCR products were always very close
to 79°C. Assuming a mean template molecule length of 550 bp and 16,000 loci from this
double-digest library (see equation 2.3), the gPCR results indicate that on average only 1.26

(+ 0.37) template molecules per locus and individual went into the selective PCR'>.

2.3.9 comparison of different double-digest RAD protocols

Please see the table on the following page.

155ee DD_RAD_LIB_101111_data.xls



Table 2.4 comparison of different protocols for non-standard RAD? (see figure 1.3)

PUYIPIN €°C

protocol

adapters

DNA isolation

digestion

ligation

gel size selection

PCR

purification

Peterson et al. (2012)

Andolfatto et al. (2011)

Parchman et al. (2012)

this study

P1 and P2 adapter at
stock conc. of 40uM,
short adapters and
long PCR primers

10uM stock conc.,
short adapters + long
PCR primers

1uM stock conc. for
P1 (EcoRI) adapter,
10uM stock conc. for
P2 (Msel) adapter,
annealing in pure
water (?!), short
adapters + long PCR
primers

long adapters short
PCR primers (fig.
2.14)

NA

Puregene (Qiagen)

NA

silica spin columns
(Qiagen)

digest for 3h, no
heat-inact. — instead
bead puri.

10ng DNA per sample,
with 3.3U of 4bp
cutter Msel (i.e. no
double-digerst), 3h at
37°C followed by
heat-inact.

6- and 4bp cutter, 10U
EcoRI, only 1U Msel,
digestion in T4 buffer,
NaCl added to
~50mM end conc.,
volume 9ul, 8h,
heat-inact.

132 ng per sample, 10
U/sample SbfI-HF, 20
U/sample Xhol ,
NEBuffer 4, 3 h at
37°C followed by
heat-inact.

30min ligation at RT,
2-10 fold excess of

adapters to sticky ends

Snmole adapters, only
1 U of T4 DNA ligase
in a volume of 50ul,
1h at 16°C

Ipmole EcoRI adapter,
10pmole Msel adapter,
67 NEB units T4
ligase, 6h at 16°C,
ligation in only 11.4ul

~22 fold excess of
adapters to sticky
ends, 400 NEB
Ul/sample ligase, 2 h at
RT, then over night at
4°C followed by
heat-inact.

before PCR,
automated DNA size
selection with
Pippin-Prep (Sage
Science)

before PCR, ladder
mixed into library, 2%
gel

after PCR, 2.5% gel,
low electric field gel
runs, EtBr gels, many

lanes

before PCR, 1%
agarose gel with EtBr,
whole pooled library
in one lane, 13 V/cm

20ng size-selected
library per PCR
reaction, 2uM end
conc. of each PCR
primer, only 8-12
cycles (?!)

only 15 cycles,
Phusion

individual PCR before
pooling samples and
before gel size
selection, 30 cycles
(1), only 0.08uM end
conc. of each primer
in PCR (?!), BioRad
Iproof High Fidelity
DNA polymerase
20-24 cycles, Phusion
Mastermix, 1.0uM of
each thiol-protected
primer

AMPure beads

AMPure beads

QiaQuick spin
columns

Qiagen MinElute spin
columns

¢ without a random shearing step

sS
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2.3.10 PCR duplicates in the standard Sbfl RAD data

The standard Sbfl RAD library had been sequenced on 4 lanes of an Illumina GAIIXx sequencer
with increasing template amount. I ran the programmes RADpools and RADtags from the
RADtools package version 1.2.1 on the raw data of these four lanes separately. RADpools
demultiplexes reads by barcode, filters them according to base call quality scores and finally
sorts read sequences alphabetically in individual read files. The programme RADtags then
takes these sorted read files and calls RAD tags based on maximum pairwise mismatch counts.
RADtools therefore uses alphabetical sorting of reads (within individuals) in order to reduce
the number of pairwise mismatch counts it has to perform to call clusters of reads into RAD
tags. This is obviously a suboptimal clustering strategy since it does not guarantee to cluster
all similar sequences together. For each RAD tag it reports the read count as well as fragment
count. Different fragments are recognised by different PE reads, allowing for sequencing
errors. PCR duplicates have the same PE read sequences and thus don’t increase fragment
count but do increase read count. I then ran my script investigate_PCR_duplicates.pl
on the individual output files of RADtags from each lane in order to determine the total
number of PCR duplicates from the read and fragment counts that it had put out for each

cluster of SE reads. I then repeated the same analysis for all reads combined.

2.3.11 Investigation of restriction enzyme recognition sequences within
RAD reads

SbfI and Xhol site frequency distributions

For the figures 2.3, 2.10 and 2.11 I used my script position.pl to tally — for each individual
separately — the positions in the unique read sequences where an Sbfl or Xhol recognition
sequence was found. Each line in these plots connects the site frequencies of one individual.
SE and PE reads were analysed separately. The reason for collapsing the reads into unique
sequences is to remove the effect of PCR duplicates. Any peaks in the distributions can thus
not be caused by PCR duplicates.

In figure 2.3 (a), there are three peaks in Sbfl frequency at position 29, 34 and 39. Are
these peaks caused by repetitive genome sequences that just happened to have an SbfT site at
those positions? In order to investigate this, I used command line 2.10 in order to cluster all
Sbfl site containing reads from from the standard SbfI-RAD data set by the subsequence left
(5°) of their Sbfl site. If the peaks at read position 29, 34 and 39 in figure 2.3 (a) were due
to repetitive genome sequences, then the reads with Sbf] sites at those positions should find

themselves in bigger clusters than other reads. Large cluster sizes are indeed found for reads


https://github.com/johnomics/RADtools.git

2.3 Methods 57

Command 2.10 This command line clusters unig-ed SE reads of all individuals that contain an
Sbfl site and then prints out foreach Sbfl site position in the SE read length the cluster sizes that have
been found. My custom script cluster.pl first groups reads by Sbfl position and then clusters them
within groups by mismatch count on the subsequence left of the SbfI site, thus ignoring the potentially
non-homologous genomic sequence (due to religation) downstream of the SbfT site.

zcat *fq_1.gz | awk '(NR-2)%4==0' | grep "CCTGCAGG" | \
sort | uniq | cluster.pl > all_ind_pre_SbfI_cl_size_by_pos.cl
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Fig. 2.20 Cluster size for reads with different position of Sbfl site in the SE reads of the standard SbfI-RAD
library.

with SbfI site at read position 29, 34 and 39 (figure 2.20). This supports the idea, that the
peaks of Sbfl site frequency are caused by repetitive genome sequences that happen to have
an Sbfl site at these positions.
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count SE reads PE reads
175 TGCAGGCGC GTTCAGCAGGAATGCCGAGACCG GCGCCTGCAGGCGC
22 TGCAGG. GTTCAGCAGGAATGCCGAGACCGATA CCTGCAGGCGC

5TG SAT
TGTAGATCTC

Fig. 2.21 PE reads with Sbfl site from ind. ery_30-8. underlined: Sbfl recognition sequence; GCGCC: barcode
sequence; : sequence common to P1 and P2 adapter; TCG...: P1 adapter sequence; GTT...: P2
adapter sequence. This figure was created from the output of command 2.11.

There are two individuals in figure 2.3 (b) which have exceptionally high SbfT site frequen-
cies in PE reads (individual "ery_30-8" and individual "ery_30-17"). The exceptionally high

Command 2.11 This command takes the SE and PE reads from one individual and pastes them
side by side separated by a tab character. It then extracts those lines where the PE read contains an
Sbf recognition sequence, counts the number of occurrences of identical lines and presents the most
common lines at the top.

paste <(zcat ery_30-8.fq_1.gz | awk '(NR-2)%4==0') <(zcat ery_30-8.fq_2.gz | \
awk '(NR-2)%4==0') | grep " .*CCTGCAGG" | sort | uniq -c | sort -nrk 1 | less -S

number of Sbfl sites at the beginning of PE reads from these individuals can be explained by
P1 adapter dimers and the fact that the barcode sequences for these two individuals (GCGCC
and TGACC) end with CC and that these barcode sequences (or at least the CC part) appear
at the beginning of PE reads into P1 adapters, thus recreating an Sbfl recognition sequence
(fig. 2.21). An equivalent but not as frequent pattern can be found in the reads of individual
"par_34-3", which has the barcode AACCC. The fact that the barcode sequence (or part of it)
can be found at the beginning of PE reads can be explained by P1-P1 dimers where one of
the adapters gets sheared off after (or within) the barcode sequence followed by ligation of
the P2 adapter, which is necessary for illumina sequencing. The overall higher frequency of
Sbfl sites in PE reads of these three individuals (figure 2.22) can be explained by reads into
the P1 adapter, i.e. sequencing the recreated Sbfl site (figure 2.23).

Command 2.12 This command is similar to command 2.11. However, in addition to the Sbfl
recognition sequence it extracts lines that contain an 8 base pair sequence from the beginning of the
illumina adapters (see figure 2.14).

paste <(zcat par_34-3.fq_1.gz | awk '(NR-2)%4==0') <(zcat par_34-3.fq_2.gz | \
awk '(NR-2)%4==0') | grep "CCTGCAGG.*AGATCGGA" | sort -k 2 | uniq | vim -

The reads for figure 2.10 and 2.11 are from reads of the Sbfl4-Xhol double-digest RAD
library and were quality filtered with stacks’ process_radtags and my custom script
grep_true_RADtag.pl. In contrast to figure 2.3, the Sbfl and Xhol site frequencies in these
two figures are expressed in relation to the individual’s read count, thus removing the effect

of inter-individual variation in read count on the site frequency distributions.
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individual frequency distributions of Sbfl sites in PE reads
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Fig. 2.22 SbfT site frequency distributions in uniqued PE reads for each individual relative to its read count (after
quality filtering with process_radtags). The three individuals with barcodes ending in CC are highlighted
with different colours.

1 TGCAGGTTTAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCG AAA AGAGCGTCGTGTAGGGAAAGAGTGTAGAT
2 TGCAGGAGAAAGGTTTAGATCGGAAGAGCGGTTCAGCAGGAATGCC AAACCTTTCT AGAGCGTCGTGTAGGGAAAGAG
3 TGCAGGGCCTGAGGAGGCACAGAGGGGGAGTGGTTGGATCGGAAGA AACCACTCCCCCTCTGTGCCTCCTCAGGC, AGA

4 TGCAGGTGAAATGCCGGGTTAGATCGAAAGAGCGGTTCAGCAGGAA AACCCGGCATTTCA AGAGCGTCGTGTAGGGAA
5 TGCAGGCATTTGTCTGCAGGGTTAGATCGGAAGAGCGGTTCAGCAG AACCCTGCAGACAAATG AGAGCGTCGTGTAGG

Fig. 2.23 Snapshot from the output of command 2.12. The highlighted subsequences contain the Sbfl recognition
sequence overlapping with the reverse complement of the barcode sequence AACCC and the beginning of the P1
adapter sequence. The subsequences left of the Sbfl sequence in the PE reads are genomic. Note that these
genomic sequences can also be found in the corresponding SE reads (after reverse-complementing) right after
the remainder of the SbfT sites at the beginning of the SE reads.
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The most striking pattern are the three outlier individuals for the PE reads containing Sbfl
sites in figure 2.10. The outlier individuals are "par_34-3", "ery_30-18" and "par_34-14".
This high relative frequency is not due to low read counts.

sample ID barcode

34-3 AACCC
34-14 GCGCC
30-18 TGACC

However, these three individuals are the only three whose barcode ends with CC. When
looking at the output of the following command line, it becomes clear that the high frequencies
of reads with SbfI sites from these three individuals is caused by reads into the P1 adapter,
their barcode regenerating the Sbfl recognition sequence.

awk '(NR-2)%4==0' par_34-3_cleaned_trueTags.fq_2 | \
grep CCTGCAGG | sort | uniq | cluster.pl > par_34-3_SbfI_PE.cl

The extreme similarity of the curves for these three individuals is also striking. This might
be caused by common repetitive sequences containing two Sbfl sites in close proximity.
Figure 2.11 shows the Xhol site frequency distribution over SE and PE reads. There are
no outlier individuals but clear common peaks of Xhol frequency at certain positions in the
reads. I clustered all Xhol site containing SE reads by the subsequence left (5°) of their Xhol
site with my script cluster.pl and command 2.13. Figure 2.24 shows for the SE reads

Command 2.13 This command is analogous to command 2.10. It clusters unig-ued SE reads of all
individuals that contain an Xhol site and then foreach Xhol site position in the SE read length prints
out the cluster sizes that have been found. My custom script cluster. pl first groups reads by Xhol
position and then clusters them within groups by mismatch count on the subsequence left of the Xhol
site, thus ignoring the potentially non-homologous genomic sequence (due to religation) downstream
of the Xhol site.

cat *cleaned_trueTags.fq_1 | awk '(NR-2)%4==0' | grep "CTCGAG" | \
sort | uniq | cluster.pl > all_ind_XhoI_in_SE_cl_by_pos.csv &

that most of these peaks are the result of repetitive sequences since they coincide with large

cluster sizes.

Cluster Analysis

For the cluster analysis of genomic religation versus incomplete digestion, I have first
collected all read pairs containing a restriction site from each individual with my script
grep_fq_read_pairs.pl. I have then used command 2.14 with my script cluster.pl in

order to cluster these reads by similarity of the subsequence left (5”) of the restriction site. 1
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Fig. 2.24 Xhol site frequency distribution for all uniqued SE reads together (red) and the corresponding sizes
of clusters in which these reads find themselves (green).

have used command 2.13 to cluster SE reads with Sbfl or Xhol sites from the double-digest
RAD library. In addition to cluster sizes, the script cluster.pl can also be set to print out
the clusters themselves. The output file with clusters is then opened in the text editor VIM

and the DNA sequences are highlighted with colours by a VIM plugin of Johan Nylander.


https://www.abc.se/~nylander/
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Command 2.14 This command first pastes read pairs that contain SbfT sites sites side by side (SE
left, PE right), then removes exact duplicate lines before clustering read pairs by the subsequence left

of the SbfT site.
paste <(awk '(NR-2)%4==0' *SbfI_reads.fq_1) <(awk '(NR-2)%4==0' *SbfI_reads.fq_2) | \
grep "CCTGCAGG" | sort | uniq | cluster.pl > all_uniq_SbfI_reads_clustered.cl

Read pair mapping analysis

QUASI-RANDOM READ PAIRS With command 2.15 I have taken the 200,001st to 300,000th
read pair from each individual in the standard RAD data set. For the Sbfl4-Xhol double-

Command 2.15 This command line extracts the third set of 100,000 FASTQ records from each read
file.

for i in ../*fq_[12].gz; do (head -n 1200000 <(zcat $i) | \
tail -n 400000 > “basename $i .gz  .random)& done

digest RAD data set [ have used a very similar command, but extracted only the SE reads.
All reads had passed my quality filtering steps.

BOWTIE2 For the standard RAD library, I ran bowtie2 with a maximum allowed
fragment/insert size for a "valid paired alignment"'® (-X) of 900. The upper end of gel size
selection was at around 800 base pair fragment length (including Illumina adapters). For the
read pair data from digital digestion, I have set the maximum fragment/insert size to 120.
The length of the original Sbfl+Xhol SE reads was 96 bps. For both types of read pairs I ran
bowtie2 in -very-sensitive-local mode.

COUNTING CONCORDANT READ PAIRS I then extracted all reads from read pairs where
both reads mapped, concordantly or not and disregarding mapping quality, sorted on names
(both done as in command 2.16) and concatenated the individual sorted BAM files into
one with samtools cat. I then used command 2.17 in order to count the total number of

Command 2.16 This command line extracts from each individual read mapping output file (in SAM
format) those read pairs where both reads mapped (-F12) and then sorts these SAM records by read

name, which is necessary for concatenating the individual files into one with samtools cat.

parallel -j 5 'samtools view -huF12 {} |
samtools sort -n -o {.}_F12_sort.bam -T {.} -' ::: *sam &

read pairs. Although, bowtie2 reports a number of concordantly mapped read pairs in its
mapping summary report, I have found that the proper pair bit in the SAM flag of each read
record is not always set correctly. This seems to be linked to the inference of fragment/insert
size, i.e. the length of the genomic fragment from which the SE read and the PE read is

16presumably synonymous to proper pair


http://en.wikipedia.org/wiki/FASTQ_format
http://samtools.github.io/hts-specs/SAMv1.pdf
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Command 2.17 This command line counts the number of SE reads (first in pair) in a mapping
output file (binary SAM format).

samtools view -f64 all_random_F12_sort.bam | wc -1

produced. I have therefore applied my own filtering to count proper pairs (command 2.18).
My script Isize.pl calculates the insert/fragment size, also known as template length, from

Command 2.18 This command line counts the number of genuinely concordant read pairs in a
mapping output file by applying a sequence of filters. The first line extracts all reverse mapping
reads (-f16) whose mate did not map as reverse-complement (-F32) and which have the proper pair
SAM flag bit set (-£2). The second line makes sure that both reads in the pair got mapped to the
same reference contig. The third line makes sure that the reverse mapping read has a higher mapping
position than its forward mapping mate (no dovetailing). The fourth line uses my custom script
Isize.pl in order to calculate the fragment/insert size and the fifth line makes sure that the insert

size is within the bounds of 50 and 900.
samtools view -f2 -f16 -F32 all_random_F12_sort.bam | \

awk '$7 " ="\

awk '$4 > $8' | \

Isize.pl | \

avk '$10 < 900 && $10 > 50' | \
wc -1

the reported mapping positions of the read pair and the CIGAR string of the reverse mapping
read in the pair. It does this by adding up the matching bases reported in the CIGAR string
of the reverse mapping read in order to add this to its reported mapping position'” and then
subtracts from the result the reported mapping position of its forward mapping mate. Thus
soft-clipped bases are not included in the calculated insert size.

A mapped base is a base in the read that corresponds one-to-one to a base in the reference.
So soft-clipped, hard-clipped, inserted and deleted bases are not mapped bases in that sense.
Tim Fennell on the samtools mailing list on SourceForge

If all segments [reads] are mapped to the same reference, the unsigned [absolute] observed
template length equals the number of bases from the leftmost mapped base to the rightmost
mapped base.

Li and Durbin (2011)

I have also searched among the read pairs, which did not get the proper pair bit set by
bowtie2, for read pairs which still fulfill the criteria of proper pairs (command 2.19). For the
read pairs from digital digestion I used the same three commands (2.17 till 2.19) as for the

standard Sbfl RAD read pairs, except for applying an accepted insert size range of 30 to 120.

7this results in the reference coordinate of the position right of the rightmost mapping base with respect to
the reference sequence


http://samtools.github.io/hts-specs/SAMv1.pdf
http://sourceforge.net/p/samtools/mailman/message/28656712/
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Command 2.19 This command line applies the same filters as command 2.18 to read pairs which
did not get the proper pair SAM flag bit set (-F2).
samtools view -F2 -f16 -F32 all_mapped_read_pairs_F12.bam I\

awk '$7 " "=tro| N\

awk '$4 > $8' | \

Isize.pl | \

avk '$10 < 900 && $10 > 50' | \
we -1




Chapter 3

Investigation into the demographic
history of the hybrid zone

There’s no such thing as a data analysis pipeline.

John McCutcheon

3.1 Introduction

Traditionally, population genetic analyses relied on a genotype calling step. However, with
low to medium coverage (< 10x) next generation sequencing data there can be substantial
uncertainty in genotype inferences. The major sources of error are assembly and mapping
errors (Li, 2011b) as well as base call errors and the random sampling of allele copies at
hererozygous loci. If this uncertainty is ignored during downstream analyses by using the
most likely genotype given the sequencing read data at a locus from an individual — and
usually some hard filtering of putatively variant sites based on quality scores or likelihood
ratio test (LRT) p-values — this can lead to errors or biases in population genetic inferences
(Crawford and Lazzaro, 2012; Han et al., 2014; Johnson and Slatkin, 2008). Methods that
avoid genotype calling by incorporating genotype uncertainty in downstream analyses can
largely avoid these biases (L.i, 2011b; Nielsen et al., 2012). In addition, by avoiding SNP
calling and instead incorporating uncertainty in polymorphic sites, these methods can also
avoid ascertainment bias in downstream analyses (Albrechtsen et al., 2010).

The following study is an attempt to infer some details of the demographic history of
the two subspecies erythropus and parallelus from patterns of genetic variation observed in

next-generation sequencing data from a standard RAD library. In this chapter, population
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size always stands for effective population size, not census population size, unless stated

otherwise.

3.2 Materials & Methods

3.2.1 Sampling and library preparation

Individuals from each of the two distal populations of a transect through the eastern part of
the Pyrenees Mountains (Col de la Quillane, fig. 2.1) were sampled by Jamie Hutchison and
Roger Butlin in 2008 and preserved in ethanol until DNA extraction in 2009. A RAD library
was prepared according to the protocol of Baird et al. (2008) (see Appendix section 5.1 on
page 152 for details). It was then sequenced on 4 lanes of an Illumina GAIIx with 51 base
pair paired-end sequencing which yielded a total number of 52,872,783 read pairs.

3.2.2 Read filtering

Raw sequencing reads were split by individual barcodes and filtered for base call quality with
process_radtags from Stacks (Catchen et al., 2011). Since all used barcode sequences
differed from each other by at least 3 mismatches, SE reads were allowed to start with a 5
base pair sequence that differed from one of the barcodes used by 1 mismatch. Read pairs
were discarded if they did not contain the remainder of the SbfI restriction site with at most
one mismatch following the barcode in the SE read. Base call quality filtering was done with
a sliding window across the reads. A read pair was discarded if the average Phred-scaled
base call quality in a window dropped below 20. This read pair filtering discarded 8,505,427
raw read pairs (16%) leaving 44,367,356 read pairs for the analysis. After removal of the 5
bp barcode sequence, the SE reads were 46 bp long.

3.2.3 De novo assembly

In order to create a reference sequence for the RAD tags in this library, I used an assembly
strategy very similar to the one implemented in dDocent (Puritz et al., 2014a) (see figure
3.1 for an overview). I used only non-redundant sequence reads for de novo assembly of a
"RADome". I used starcode (commit 1034408ca6) (Zorita et al., 2015) to collapse read
pairs from each individual separately into unique representatives allowing for an edit distance
of up to 2. These unique representatives are the canonical sequences from all connected
components of the graph from an all pairs search. Canonical sequences are chosen by highest

read count, then by highest number of connections with other reads. This reduced the number


https://github.com/jpuritz/dDocent
https://github.com/gui11aume/starcode
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of quality filtered read pairs for de novo assembly to 9,179,521 (21% of the original read pair
number). Due to the shotgun-type nature of PE reads, read pairs should only be identical (up
to 2 mismatches) if they come from the same fragment from random shearing, i.e. if they are
clonal reads from PCR.

After combining all SE sequences from these unique sequence pairs from all individuals
into one fasta file, I have used Vsearch (commit 1116d6167b) (Rognes et al., 2016) with its
subcommand cluster_fast for heuristic clustering with a pairwise identity threshold of
0.8 of a query sequence with the centroid of a growing cluster. Identity is defined as 1 minus
edit distance as a proportion of alignment length, but excluding terminal gaps. Thus a indel

between two reads will only contribute once towards their edit distance.

collapse read pairs into uniques starcode
lcombine SE reads
cluster SE reads agressively Vsearch cluster fast

identity threshold 0.8

l reformat

split clusters into putative alleles/haplotypes
keeping track of relationships in a tree like data structure

l

merge split clusters recursively into RAD tag loci
making use of similarity between PE reads

l

local de novo assembly of PE reads rainbow asm

rainbow div

rainbow merge

l concatenate SE RAD tag and PE contig

clustering of contigs with identity threshold 0.9 Vsearch cluster fast

l

multiple alignment and majority consensus

within each cluster Vsearch

Fig. 3.1 Overview of the de novo assembly strategy.


https://github.com/torognes/vsearch
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Next, I have used the uclust format output of Vsearch together with the collapsed read
pairs from starcode to create a clustering output in the format of the output from rainbow
cluster (Chong et al., 2012). I then ran rainbow div on this cluster file. This programme
recursively splits the initial clusters into putative alleles/haplotypes while keeping track of
the relationships between split clusters in a tree—like data structure. These split clusters
are next merged back recursively along this tree structure with rainbow merge that uses
the similarity between PE reads to determine whether two split clusters should be merged.
Remember that the standard RAD protocol (Baird et al., 2008) includes random shearing of
restriction fragments. This produces PE reads of variable distances from the same RAD tag
(Etter et al., 2011). The unique feature of rainbow is to be able to utilise these shotgun—type
PE reads to distinguish alleles from paralogs. In addition, after recursively merging split
clusters into putative RAD loci, rainbow merge also performs a local de novo assembly
with the sequences of each merged cluster using SE and PE reads. From the assembly
output I then extracted the SE RAD tag sequences together with their longest PE read contig
(separating each with a sequence of 10 N’s) using gawk code from dDocent.

Finally, since the merge process of rainbow depends on overlap between PE reads from
the same RAD locus, it could be incomplete when coverage is low. I therefore clustered
the rainbow contigs again with the Vsearch subprogramme cluster_fast, this time with
an identity threshold of 0.9 and producing a majority consensus sequence from a multiple
alignment of the sequences in each cluster of rainbow contigs. The assembled RADome
contains 583,312 contigs and a total length of 97 mega base pairs (Mbp). In the following I
will frequently refer to it under the informal name of Big Data reference assembly.

An extensive documentation about the assembly procedure as well further downstream
analyses can be found in the BASH script assembly . sh. This text file contains exact command
lines used, together with extensive explanation. It should be the first stop for information
when trying to reproduce the results presented here. Note, not all steps of the analysis could
be documented directly in this text file, but when Rmarkdown or IPython notebooks (Pérez
and Granger, 2007) have been used for analysis, then references to those files can be found

in assembly. sh.

3.2.4 Read mapping

I mapped all quality filtered reads against the newly created RADome (or Big Data reference)
with the programme bowtie2 version 2.2.9 (downloaded on 29th October 2016) (Langmead
and Salzberg, 2012). I ran bowtie2 in end—to—end mode, i.e. without soft—clipping of query
sequences. Further, I specified "very—sensitive" search mode with a seed length of 20. I
allowed gaps to be up to 10 bp long, but I disallowed gaps within 4 bp of either end of the


https://sourceforge.net/projects/bio-rainbow/files/
https://sourceforge.net/projects/bio-rainbow/files/
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/assembly.sh
http://rmarkdown.rstudio.com
https://ipython.org
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
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read. In addition I specified a high penalty of 10 for alignments against ambiguous characters
in the reference. In most reference contigs, SE RAD tag and PE contig were separated by 10
N’s (unless rainbow asm assembled SE and PE reads into one contig). This high penalty
therefore makes successful read alignments across the gap between SE RAD tag and PE read
contig very unlikely. Further, I specified a minimum fragment length of 60 for proper pair
read alignments, thus allowing some overlap between reads in a pair.

Although standard RAD data from paired-end sequencing allows the detection and
removal of PCR duplicates, I have opted not to do so, since ANGSD could not estimate a
site frequency spectrum from a de-duplicated data set (see section 3.4.4 on page 110 in the
supplementary material). The following analyses all depend on the correct estimation of
genotype likelihoods which assumes that reads are sampled independently from the true
genotype. Due to the PCR duplicates, I expect the genotype likelihoods to be generally
biased against heterozygote genotypes. Andrews et al. (2016) have claimed that "PCR should
not systematically favour one allele over another at a given locus, and therefore parameters
estimated from a large number of loci are unlikely to be substantially biased". However,
PCR drift, i.e. the random amplification of one allele at a locus at the expense of the other,
as well as allele dropout can bias the site frequency spectrum towards higher frequency
counts. For instance, if there were three true heterozygotes at a locus and all other individuals
homozygous for the reference allele, then the count class 3 should be incremented in the SFS.

With three false homozygote calls at this locus, the count class 6 will be incremented instead.

3.2.5 Filtering of the de novo reference assembly

There are 4,575 contigs with SE reads that map to the PE part of the contig, i.e. which do not
pass the mismapping filter. I have also filtered contigs for excessive coverage by SE reads,
which map to the RAD tag part of each contig (i.e. next to the restriction site). The coverage
by PE reads is much more dependent on the length of the contig. With this filter a contig has
excessive coverage if in any of the individual BAM files it has SE read coverage above the
99th percentile of that individual’s coverage distribution. I have thus excluded 2,282 contigs
due to excessive coverage. Since many false—positive SNPs fall within low—complexity
sequences (Li, 2014), I have detected those regions within the Big Data reference assembly
with dustmasker (Morgulis et al., 2006) and excluded them from further analysis. The
above filters have excluded 10% of the reference from further analysis, leaving 88 Mbp.

I then went on to extract those bits of the filtered reference that have sufficient data
for downstream analyses. I used the samtools depth command to get the read count for
all positions and for all 36 individuals across the filtered reference. I then extracted those
positions where at least 15 individuals have each at least 3 x coverage. I only counted reads
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with a mapping quality greater than 5. This reduces the number of sites to 2% of the original
Big Data reference assembly or 2 Mbp, spread over 34,967 contigs. The first 6 base pairs of
each contig are the remainder of the SbfI restriction site (TGCAGG) and therefore not variable.
I have excluded those sites as well from further analysis.

In addition to the excessive coverage filter, I have also applied a HWE filter to the

remaining sites in order to reduce false heterozygotes caused by reads from paralogous
sequences mapping to the same position in the reference. I have used the programme ANGSD
(version 0.915-5, git commit ge6e63e5, Nov. 2016) (Korneliussen et al., 2014) to estimate
per site inbreeding coefficients (Fj;.) using genotype likelihoods (Vieira et al., 2013). 1
removed entire contigs that had a site with a negative estimate of inbreeding coefficient and a
p-value for deviation of Fjj;, from O of less than 0.05 from an LRT. I estimated inbreeding
coefficients for each population separately as well as for both populations taken together.
The latter increased sample size for the estimation of F;, but also increased estimates of
Fire for SNPs with different allele frequencies in the two populations. This filter removed
217 contigs (for further details see section 3.4.3 on page 109 in the supplementary material).
This has left 1,799,962 filtered sites on 34,750 contigs for further analysis.
Inspection of the global, i.e. across sample, coverage distribution revealed that there were
12,693 sites with total coverage greater than 1000x. I have therefore also determined the
99th percentile of the global per-site' coverage distribution and removed all contigs with a
position that had coverage greater than the global 99th percentile. This has removed 69,438
sites on 407 contigs leaving 1,730,524 sites on 34,343 contigs for further analysis. The new
across-sample (global) coverage distribution is shown in figure 3.2.

The average per site, per individual coverage across the 1.7M filtered sites is 6.3 x (fig.
3.3).

The above filters have selected for contigs with more unique sequences as shown by the
great reduction in the proportion of reads with a mapping quality score of 1 that map to the
filtered reference as compared to the unfiltered reference sequence (see fig. 3.4). Only reads
with a mapping quality score of > 5 have been used for downstream analyses. A Phred score
of 5 for the mapping quality should indicate a probability of about 1/3 that the read truly
originated elsewhere in the reference sequence (mapping uncertainty does not incorporate
assembly uncertainty). However, as figure 3.20 on page 108 shows, bowtie2 generally
greatly underestimates the true mapping quality, given the reference sequence, particularly
for very low mapping quality scores. A more stringent filtering of read mappings is therefore
not necessary. Note that in all following analyses mapping quality information is incorporated
into the calculation of genotype likelihoods by capping base quality by the mapping quality

lincluding SE and PE reads and across the whole contig, not just RAD tag part
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Fig. 3.2 Histogram of across sample coverage with reads of mapping quality greater than 5 from 1.7 million
nucleotide sites in the Big Data reference after filtering.

of the read”. A different mapping programme will therefore result in different genotype
likelihoods as mapping quality scores are computed with different heuristics by the different
mapping programmes (see fig. 3.20a on page 108).

A better measure of the repetitiveness of the assembled RADome than the distribution of read
mapping quality is the distribution of mappability. Mappability measures the uniqueness of a
sequence of length k (kmer) sampled from a position x in the reference sequence (here Big
Data reference assembly). Mappability is the inverse of how often that kmer can be found

in the whole reference sequence up to a specified number of mismatches (or edits) (Derrien

2This claim has not been fully verified but is very likely: I have used the genotype likelihood version from
samtools throughout (and ANGSD directly incorporates code from samtools), which should be based on MAQ
(Liet al., 2008, section Methods: Consensus genotype calling).
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Fig. 3.3 Individual coverage distributions from reads with mapping quality greater than 5 over 1.7 million sites

in the Big Data reference after filtering. red: erythropus, green: parallelus.

et al., 2012). Mappability has a range between 0 and 1. A position has mappability of 1 if its

kmer occurs only once in the reference, 0.5 if it occurs twice and so on. Figure 3.5 shows the
distribution of per contig average mappability of the raw Big Data reference assembly and
of the reference assembly after applying above filters. Note that the mappability scores for

the filtered reference sequence are just a subset of the mappability scores for the unfiltered

reference, i.e. all mappability scores measure the uniques of kmers in the Big Data reference

assembly.

Figure 3.5 shows that a large proportion of contigs have an average mappability of 1

or close to 1 and that the majority of contigs have average mappability greater than 0.5. It

also shows that the above filters have not selected for more unique contigs in the Big Data

reference assembly. In fact, the reference contigs kept after filtering for further analysis have
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Fig. 3.4 Distribution of mapping quality scores determined by bowtie?2 for all mapped reads to the unfiltered
and filtered reference sequence.

lower median mappability than before filtering. The median mappability before filtering is
0.787 whereas after filtering it is 0.737. The median of the difference in mappability between
a contig before filtering and a contig after filtering is 0.053 (95% confidence interval (Cl):
0.05, 0.055). Regions in the reference with lower mappability are more difficult to map
reads to with data from short read next-generation sequencing. Quantitative measures of read
counts as well as polymorphism detection in those regions will be compromised (Derrien
et al., 2012; Lee and Schatz, 2012). However, a lower mappability is not indicative of a bad
de novo assembly of the reference. In fact, collapsing repetitive sequences from the sampled
genome into one reference contig will increase the average mappability of the assembled
reference.

The above filters have also selected for contigs with lengths that are roughly consistent with
the expected size distribution of sonicated restriction fragments that were size selected on an
agarose gel during library preparation (see figures 3.6 and fig. 5.2 on page 156). Note that
the size selected DNA fragments contained the 67 bp long P1 adapter and that PCR as well
as cluster generation on the flow cell should increase the proportion of short fragments in the

resulting illumina sequence data.
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Fig. 3.5 Distribution of average mappability per contig before and after filtering the Big Data reference assembly.
For details see section 3.4.2 on page 107 in the supplementary material.
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Fig. 3.6 Distribution of contig lengths. Top: raw RAD assembly (Big Data reference) before filtering (583,312
contigs). Bottom: RAD assembly after applying filters (34,343 contigs).
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3.2.6 PCA

I have used ANGSD (version 0.915-5, git commit ge6e63e5, Nov. 2016) (Korneliussen
et al.,, 2014) to estimate posterior genotype probabilities across all sites using as prior a
maximum likelihood (ML) estimate of the population minor allele frequency (MAF) per
site across all individuals from the two populations and the assumption of HWE (Kim et al.,
2011). Although the assumption of HWE may well be violated, it should only make genotype
probability estimates more similar between divergent individuals. Therefore, any major
divergence detected between individuals based on these genotype probabilities cannot be an
artefact of this prior. At low coverage, the identification of the minor allele can be uncertain.
The estimation of the minor allele frequency incorporated this uncertainty (Skotte et al., 2012,
suppl. mat.).

Next, I estimated the ML global unfolded site frequency spectrum based on per—site
sample allele frequency likelihoods (SAF), again across all individuals, using ANGSD’s subpro-
gramme realSFS (Korneliussen et al., 2013; Nielsen et al., 2012). This global site frequency
spectrum then served as prior to estimate per—site sample allele frequency posterior proba-
bilities. Thus for each site 2N + 1 probabilities were calculated (N=36, the total number of
individuals sequenced).

I have then estimated a genotype covariance matrix with ngsCovar (Fumagalli et al.,
2014) between all 36 individuals. At each site the posterior expectation of the genotype
covariance is computed by summing over all 9 genotype combinations and weighting each
combination by the respective two posterior genotype probabilities. Each cell of the matrix
contains the genotype covariance between two individuals averaged over all sites and each
site weighted by its probability of being variable using the sample allele frequency posterior
probabilities (Fumagalli et al., 2013, eq. 19 and 20).

During the estimation of genotype and sample allele frequency probabilities I have applied
standard (not extended) BAQ to cap the base quality by the calculated per-base alignment
quality (Li, 2011a). This is in order to reduce false-positive variant detection caused by
misalignment around indels.

I then performed an eigen—decomposition on the resulting covariance matrix with the R

function prcomp.

3.2.7 Fsr

Using ANGSD (version 0.915-5, git commit ge6e63e5, Nov. 2016) and its subprogramme
realSFS (Korneliussen et al., 2014) I have determined a ML estimate of the global unfolded

2D-site frequency spectrum that contains the joint sample allele frequencies of the non—
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reference allele from erythropus and parallelus (figure 3.7). I applied standard BAQ (L1,
2011a) and required a nucleotide site to have sequence reads from at least 9 individuals in
each population. The 2D-SFS contains the joint frequencies from approximately 1,130,775
sites of which 60,573 (5%) are variable in erythropus, parallelus or both. This global unfolded
2D-site frequency spectrum was then used as (empirical) prior for posterior probabilities
of all possible sample allele frequencies from which the posterior expectation of Fsr per
site is calculated using realSFS from ANGSD (Fumagalli et al., 2013, eq. 3 and 16). This
programme reports the numerator and denominator for either Reynolds’ Fsr (Fumagalli et al.,
2013, eq. 1-3) or Hudson/Bhatia’s Fg7 (Bhatia et al., 2013, eq. 9 and 10) for each site. I am
not reporting estimates of Fsr per site due to their large variance (Weir et al., 2005). Instead
I am reporting the global average Fsr across all sites. This average is always calculated by
summing the numerator and denominator across sites and then taking the ratio (Bhatia et al.,

2013). Note, that all estimates of Fsr calculated here assume within-population HWE.
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Fig. 3.7 ML estimate of the joint sample allele frequencies of the non—reference allele for parallelus (PAR) and
erythropus (ERY). The count for the joint frequency class (0,0) has been set to zero for the purpose of better
visualisation.

In order to investigate the dependence of Fgr on SNP ascertainment (i.e. simulated SNP
discovery) in one or the other population, I have calculated ML estimates of population
minor allele frequency (MAF) with ANGSD (Kim et al., 2011) for each population. I have
then used these allele frequencies to subset sites into minor allele frequency classes and
estimated average Fgr for each class as before. For further details of the analysis please
consult assembly. sh and the notebook Fst.

I have also determined the distribution of Fsr over minor allele frequency (MAF) in
either erythropus or parallelus with the function Fst of dadi (Gutenkunst et al., 2009) on
the observed 2D SFS as shown in figure 3.7. This calculates Weir & Cockerham’s Fgr (Weir
and Cockerham, 1984, eq. for 0 at top of p. 1363). I then simulated site frequency spectra


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/assembly.sh
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/FST/Fst.md
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with dadi for four different demographic models and generated expected distributions of Fgy
over MAF for these demographic scenarios. Two models included a recent bottleneck for one
of the two populations, the other two included a recent population size expansion. Further
details can be found in the IPython notebook 05_2D_models, section "Fst".

I have also estimated the net sequence divergence D, between erythropus and parallelus
(Nei and Kumar, 2000, see equation 12.67 on p. 256):

D, =K —Kjs (3.1)
where Kj is the average of within-population genome-wide sequence divergences:

Ky

m
= - X ﬂery+—n+m X ﬂpar (32)

n and m are the sample sizes (36 alleles) of erythropus and parallelus, respectively. T,
and 7,,, are the average number of pairwise differences within erythropus and parallelus
as calculated from the 1D site frequency spectra of each population with equation 3.7 (see
section Genetic diversity estimates). Kp is:

m n
Ky=— |} Y litn— )+ jm— ))& (33)
nm 120 j=0

where &;; is the count in the unfolded joint allele frequency class [i, j] in the 2D-SFS (fig.
3.7). The allele frequency classes in the 2D-SFS refer to the non-reference allele. The joint
reference allele frequency is given by [m-i, n-j]. K should be equivalent to d,, as given in
eq. 12.66 on p. 256 in Nei and Kumar (2000). The expectation of D, is related to divergence
time 7' (assuming divergence without gene flow) as follows (Nei and Kumar, 2000, eq. 12.69

an p. 256):
E[D,) =2uT (3.4)

where 1t is the nucleotide mutation rate. I have assumed a nucleotide mutation rate of
3 x 10~ throughout this chapter (Liu et al., 2017).

3.2.8 Genetic diversity estimates

I have calculated ML estimates of the unfolded global site frequency spectrum, i.e. including
all sites across contigs, for erythropus and parallelus separately with ANGSD and its subpro-
gramme realSFS (Korneliussen et al., 2014). T used a different version of ANGSD —0.917-142,

git commit ge3dbeaa, 20 June 2017 — than for the previous analyses described above. The


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/dadi/05_2D_models.ipynb
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main difference is that this version applies extended instead of standard BAQ (for more
details see this ANGSD issue thread). Extended BAQ is a more sensitive and less conservative
algorithm than standard BAQ allowing for the detection of more polymorphic sites at the
cost of slightly increased number of false positives. I folded these single-population (1D)
site frequency spectra with my Python script fold_1D_spectrum.py.

I required at least 9 individuals to have read data in order to include a site into the
estimation. For so-called overlapping sites I required sequence read data from at least 9
individuals in each population. So-called non-overlapping sites have sequence read data
from at least 9 individuals in only one of the two populations.

Since I noticed a considerable amount of variability in the ML estimates of SFS from
repeated runs of the programme realSFS, I turned off its accelerated Expectation Max-
imisation (EM) algorithm, extended the maximum number of EM iterations to 50,000 and
specified a rolerance of 1e-06, which is the minimum difference in likelihood between two
successive EM iterations and therefore a stopping criterium. These modifications completely
removed the variability in SFS estimates, but also greatly extended running time, particularly
for the site frequency spectrum of parallelus.

The programme realSFS allows bootstrapping the site frequency spectrum, i.e. re-
estimation of the site frequency spectrum from nucleotide sites resampled with replacement.
However, Cl’s estimated from these bootstraps will be too narrow, since it ignores that sites
in the same contig are not independent and the SFS estimated is therefore a composite
maximum likelihood estimate. Although, most of the contigs should not contain more than 1
SNP, I think it is best to resample over whole contigs instead of sites. Contigs, except for
those coming from the same restriction site, should generally be unlinked. Bootstrapping
over contigs is not implemented in ANGSD/realSFS. I have therefore created 200 bootstrap
replicates of the contig id list (see bootstrap_contigs.ipynb) and specified them as so-called
regions for the estimation of sample allele frequency files. I have then estimated site frequency
spectra from these SAF files as before.

I fitted standard neutral coalescent model site frequency spectra to the observed folded
single-population spectra by optimising 6 in the following equation (Wakeley, 2009, eq.
4.21):

L
1o, =i [n/2] (3.5)

1
En]=6+

This formula gives the equilibrium neutral expectation of counts (1) in each frequency class
(i) in a folded spectrum. I used the R function optimize to find the value of 8 that minimises
the squared deviation of the above equation from all observed counts 7;.


https://github.com/ANGSD/angsd/issues/97
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/bootstrap_contigs.ipynb
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I derived the global estimates of the number of segregating sites (S) and the average
number of pairwise differences (77,imq) from the global folded site frequency spectrum
according to equations 1.3 and 1.4 in Wakeley (2009), respectively:

n/2
S=)m (3.6)
i=1
1 n/2
= Y i(n—i)n; (3.7)
() &

where n is the number of alleles sampled, i.e. twice the number of sampled individuals for
diploid loci. n; is the count in the i—th frequency class of the folded SFS. The estimates of
global Tajima’s D are based on these estimates and equation 2.17 in Gillespie (2004):

_ T bw
- C

Dr (3.8)
C is a normalising constant that should make critical values of Tajima’s D (-2 and 2 for the
5% significance level) independent of sample size (Wakeley, 2009, page 115). The formulas
for its calculation can be looked up for instance in Gillespie 2004, page 45. Oy is Watterson’s
0 and is calculated with:

oy =5/y ! (3.9)

i=1 !

Details of the above calculations are documented in the Rmarkdown notebook new_1D_SFS.

3.2.9 Inference of population demographic history
stairway-plot

I have used the programme stairway-plot version 2 beta (Liu and Fu, 2015) to infer the
history of effective population sizes for erythropus and parallelus. 1t is a model-flexible
approach, which means that it does not require the prior specification of a demographic
model whose parameters shall be estimated. It can only be used on a single-population (1D)
site frequency spectrum. With a user-specified mutation rate (1) and generation time, it
estimates the diploid effective population size (N,) over time in the past by searching for
the 6 (4N,u) values that maximise the composite likelihood of the given site frequency
spectrum. The programme also infers the optimal number of time intervals (each with its
own optimal value of 0) with different population sizes. With the number of chromosomes
sampled being n, there can be from 1 up to n — 1 time intervals with different population

sizes. For the addition of another 6 parameter it needs to improve the likelihood of the model


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/minInd9_overlapping/SFS/new_1D_SFS.md
https://sites.google.com/site/jpopgen/stairway-plot
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significantly as determined by a LRT. The method has an intrinsically decreasing resolution
going back in time. That is because the time intervals of the plot are proportional to expected

coalescence time E|[T;]:
4N,

i(i—1)

with i being the number of lineages left in the genealogy and N, being the diploid effective

E[T) =

population size during the interval 7; between two coalescent events (Gillespie 2004, eq.
2.13).

I used a custom version of stairway-plot. I replaced the java class file
Stairway_fold_training_testingb.class with
Stairway_fold_random_break5.class, kindly provided by Xiaoming Liu. This was
necessary to allow for the construction of bootstrap Cl’s for the stairway plots with version
2 and folded site frequency spectra. Usually, version 2 for folded spectra only allows
the construction of pseudo Cl’s by random subsample of polymorphic sites and random
breakpoints. I used my own bootstrap replicates of SFS (resampled over contigs), not a
parametric bootstrap as implemented in version 1 of stairway-plot. I specified a mutation
rate per base pair and generation of 3 x 10~ (Liu et al., 2017) and a single number of

breakpoints (steps), 34, effectively turning off random breakpoints.

Estimation of the two-dimensional joint site frequency spectrum

As for the one-dimensional site frequency spectra (see section 3.2.8), [ have used ANGSD/realSFS
version 0.917-142 (git commit ge3dbeaa, downloaded on 20 June 2017) for the estimation

of an unfolded two-dimensional (2D) joint site frequency spectrum from only overlapping
sites. I have used the same exhaustive search parameters for two-dimensional site frequency
spectrum estimation with realSFS as for one-dimensional SFS estimation (see section 3.2.8

on page 79).

For the creation of 200 bootstrap resampled 2D site frequency spectra (resampled over
contigs), I have used bootstrap resampled lists of contig id’s and specified them as regions
for SAF file creation with ANGSD (see bootstrap_contigs.ipynb). I used my script
estimate_SAFs.py to compute SAF files in parallel. Importantly, I made sure that sample
allele frequency likelihood calculation was restricted to only overlapping sites. Usually,
realSFS when provided with two or more SAF files (from two or more populations) would
automatically estimate the joint site frequency spectrum from only overlapping sites even
if the SAF files would also include non-overlapping sites. However, the algorithm for
determining overlapping sites in realSFS does not allow repetitions of the same sites (here

sites from whole contigs) in the input SAF files. I have therefore modified the realSFS


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/bootstrap_contigs.ipynb
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/estimate_SAFs.py
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source file multisafreader.hpp by adding return 0; at the beginning of the function
set_intersect_pos. This turns off determination of overlapping sites when realSFS
is provided with more than one SAF file and instead makes it read in all sites, including
repetitions of the same site. See ANGSD issue thread #86 for some more details.

dadi

I have used dadi (Diffusion Approximations for Demographic Inference) version 1.7.0 (git
commit b8¢89915c, downloaded on 17 February 2017) for demographic modelling and
inference (Gutenkunst et al., 2009). I have used its function fold to fold the two-dimensional
unfolded spectrum from ANGSD/realSFS.

dadi provides a numerical solution of a diffusion equation that models the probability
distribution of population allele frequencies over time. It is a continuous approximation to
the bi-allelic Wright-Fisher process with a discrete number of individuals and a discrete
number of populations (Kimura, 1986). It can model random genetic drift, population splits,
directional migration and selection. It requires the specification of a demographic model with
a set of parameters. It computes the expected population allele frequency spectrum under a
certain set of parameter values and then computes the product of Poisson likelihoods over
the entries in the observed site frequency spectrum with rates equal to the expected allele
frequency from the optimally scaled model spectrum. The set of parameter values is optimised
with one of several optimisation algorithms provided by SciPy (Jones et al., 2001-). For the
conversion of parameters from genetic to absolute units, I have assumed one generation per
year and a mutation rate per nucleotide site and generation of 3 x 10~°. For details of the
demographic model fitting with dadi, see the Jupyter notebook 01_newAngsd_2D_models.
For graphical representations of inferred best-fitting models, I have used functions provided
by a derivative of dadi called moments (Jouganous et al., 2017).

When performing LRT’s to test the significance of more complex models compared to
simpler, nested models, I have applied an adjustment factor to the LRT test statistic (D).
This adjustment is required when performing LRT’s with composite likelihoods (Coffman
et al., 2016). This adjustment factor can be computed with dadi’s LRT_adjust function
and a set of bootstrap data sets (i.e. site frequency spectra). I have used my 200 bootstrap
resampled 2D site frequency spectra for this, generated as described above. The adjustment
factor can be extremely different depending on whether it was calculated by evaluating
LRT_adjust at the simple or complex model optimal parameterisation. Evaluating with the
complex model optimal parameters is more powerful, while evaluating at the simple model
optimal parameters provides a more conservative adjustment. P-values for mixtures of x?2

distributions have been calculated with adi’s sum_chi2_ppf function.


https://github.com/ANGSD/angsd/issues/86
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/minInd9_overlapping/DADI/01_newAngsd_2D_models.ipynb
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For the estimation of 95% Cl’s, I have used the function GIM_uncert in dadi, which
accounts for linkage in the data (Coffman et al., 2016). GIM_uncert calculates the Godambe
Information Matrix (GIM), which requires the provision of bootstrap resampled site frequency
spectra. Note that the GIM method for estimation of parameter variances and covariances is
still an imperfect approximation. This is made evident by parameter variances and covariances
calculated with a Fisher Information matrix (FIM), which assumes completely independent
data, that are sometimes larger than those derived from the GIM. Also note that all Cl’s
reported here assume a normal distribution of errors. Further details about the estimation of
parameter uncertainties as well as formulas for error propagation from genetic to absolute
units can be found in section 13 of the IPython notebook 01_newAngsd_2D_models.ipynb.


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/ANGSD/BOOTSTRAP_CONTIGS/minInd9_overlapping/DADI/01_newAngsd_2D_models.ipynb
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3.3 Results & Discussion

3.3.1 Genetic differention between erythropus and parallelus

Figure 3.8 shows a principal component analysis of genotypic covariances between all
36 individuals of erythropus and parallelus taking SNP and genotype uncertainty into
account. Almost ! /4 of the total genotypic variance is explained by the first principal
component which clearly separates two clusters of individuals that correspond to the two
subspecies. The second principal component captures only 3% of the total genotypic
variance. This confirms estimates of genetic differentiation by Cooper et al. (1995) based on
sequence variation at a single nuclear locus that the two subspecies are genetically distinct.
Individual par_34-1 seems to be considerably less differentiated from erythropus than the
other parallelus individuals. This may be due to insufficient information because of extremely
low coverage (see fig. 3.3 and Patterson et al. 2006). See section 3.4.5 on page 110 for the
effect of SNP calling, genotype calling and normalisation of covariances on PCA.

I estimated posterior expectations of Fsr from 1.6 million sites across 32,706 contigs.
Note, that this included 0.5 million sites for which there were fewer than 9 individuals with
read data in one of the two populations. The global average Hudson/Bhatia’s estimate of
Fsr 15 0.298 (95% bootstrap Cl: 0.294 — 0.303) (see fig. 3.9). Note, that the 95% Cl| only
captures the variance due to sampling loci in the genome (genetic sampling according to Weir
1999, p. 161), not the variance due to sampling individuals from the population (statistical
sampling). The latter could be estimated by bootstrapping individuals from each population.
Estimating C|’s by bootstrapping over contigs assumes that they are independent replicates
of the evolutionary process in the history of the two subspecies, i.e. that they are unlinked.
However, with the standard RAD protocol (Baird et al., 2008), two RAD tags (here called
contigs) are recovered from each restriction site. The bootstrap Cl for genome-wide Fgp
computed here may therefore slightly underestimate uncertainty. Also note that the empirical
null distribution of global Fgr, estimated by randomly permuting the population label of
individuals, does not include 0. There therefore seems to be a positive bias in the estimation
of global Fyr of about 0.0249. See section 3.4.6 on page 117 of the supplementary material
for different estimates of global Fsr.

Figure 3.10 shows the dependence of average Fsr on the minor allele frequency when
only sites are included that are polymorphic in the ascertainment population. Not surprisingly,
SNP ascertainment in one of the two populations lowers average Fgy estimates since it also
excludes highly differentiated sites where the ascertainment population is fixed for one
allele. When ascertaining SNP sites in erythropus or parallelus, in each case the average Fgr

estimate tends to decrease with decreasing minor allele frequency. This would be consistent
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Fig. 3.8 Principal component analysis with genotype probabilities across 1.7 million sites from all 36 individuals
of erythropus and parallelus. Numbers in brackets indicate the percentage of total variance explained by this
axis.

with both populations having undergone a population expansion where rare alleles are more
likely to be private to one population. This is made evident by the estimate of global unfolded
2D-site frequency spectrum that was used as prior for per—site Fg7 estimates (fig. 3.7). Since
these sites have a low allele frequency differentiation, they lower the average Fgr estimate.
In contrast, if one or both populations had undergone a recent population bottleneck, variable
sites would more often be ancient and polymorphic in the ancestral population. Sites with
rare alleles in the bottlenecked population would therefore also include those that have drifted
apart in allele frequency between the two populations, thus increasing average Fsr estimates
(see fig. 3.12) (Bhatia et al., 2013). According to these predictions, the sudden increase in
Fgr for the lowest MAF when ascertaining in erythropus (fig. 3.10) would therefore indicate
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Fig. 3.9 Resampling based estimation of the variance of global Fsr (blue) and the empirical null distribution of
global Fsr by randomly permuting population labels of individuals (green).

a very recent bottleneck, whereas the sudden decrease in Fyr when ascertaining in parallelus
would indicate a very recent population expansion. However, the observed distribution of
Fsr over MAF as calculated with dadi from the 2D SFS of figure 3.7 on page 78 does not
show the same tendency to decrease with minor allele frequency (figure 3.11).

A ML estimate of the number of nucleotide sites with fixed differences between these two
samples of 18 individuals each from erythropus and parallelus can also be extracted from
the 2D-site frequency spectrum in figure 3.7: 418 or 0.69% of polymorphic sites. These are
the counts in the cells (0, 36) and (36, 0) of the 2D-SFS.

The net sequence divergence D, per site between erythropus and parallelus is 0.003.



88 Investigation into the demographic history of the hybrid zone

Allele frequency dependence of FST

ascertainment in PAR
ascertainment in ERY

ascertainment across ERY and PAR {
all sites }{/ }/ {

0.6
.

0.4

average Bhatia's Fsr

o0 _| T T~¢,
S IT _ —K— A
1 LI 13 114 JL\E\Mi £=3712
T ~ 1 T x T
A — ¥ JLJ_JL T -
= [
Y] L ~~.I
o R4
1
K3
3t
31 _ 3%
3
S |
o
I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5

minor allele frequency

Fig. 3.10 Fsr by MAF class for different ascertainment schemes. The global average Fsr when using all sites,
i.e. without SNP ascertainment, is shown as a grey line. For the subset of sites in each MAF class the median
and the 95% Cl of 10,000 bootstrap resamples are shown.
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Fig. 3.11 Distributions of Fgr by MAF as estimated from the 2D SFS in figure 3.7 on page 78 with the function
Fst in 8adi. SNP’s were subset by minor allele frequency in either erythropus (ERY) or parallelus (PAR).
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from simulated model spectra in the same way as for figure 3.11.
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3.3.2 Genetic diversity within erythropus and parallelus

Figure 3.13 shows the ML estimate of the global folded site frequency spectrum for erythropus
and parallelus. The conspicuous spike in frequency for the minor allele count of 2 as
compared to standard neutral expectations, particularly in parallelus, is not compatible
with any demographic scenario. However, even when disregarding frequency class 2, the
folded site frequency spectrum of parallelus seems to be more right-skewed, that is having
a greater proportion of low-frequency variants, than erythropus. There is apparently not a
big difference between spectra estimated from only overlapping sites and spectra including
non-overlapping sites. Note, that this site frequency spectrum is not based on called SNPs.
Instead it is based on per-site sample allele frequency likelihoods (SAF) that incorporate the
genotype uncertainty of each individual due to binomial sampling of alleles from a diploid
genotype — as happens during next generation sequencing — as well as sequencing and read
alignment error (Li, 2011b; Li et al., 2008; Nielsen et al., 2012, 2011). It does not therefore
suffer from the ascertainment bias observed in previous studies that were based on sites
detected as polymorphic in a specific sample (Albrechtsen et al., 2010; Han et al., 2014;
Korneliussen et al., 2013). This ascertainment bias has led to a relative excess of intermediate
versus low frequency classes of SNP’s. It also does not suffer (as much) from bias caused
by genotype calling from low-coverage sequencing. This can either lead to an excess of
low frequency variants (Nielsen et al., 2012, fig. 1), if sequencing errors are mistaken for
alleles, or a deficiency of low frequency variants if genotype calling algorithms require a
minimum coverage (or coverage ratio) before they call a heterozygote genotype (e. g. Liu
and Fu (2015)).

The site frequency spectrum has not yet been corrected for bias due to allele-drop-out
(Lucaetal., 2011). Simulations by Cariou et al. 2016 indicate, however, that "this bias is of
minor importance when the polymorphism is below 2 %, which is the case in most species,
at least in animals". The estimated expected nucleotide heterozygosity (7. ) estimated here
for both subspecies is well below 2% (see tab. 3.1). Allele-drop-out is a problem that has
affected previous types of genetic markers like microsatellites or AFLP’s, usually known
under the term "null alleles". Arnold et al. (2013) and Gautier et al. (2012) have shown with
simulations that loci affected by allele-drop-out show a greater proportion of intermediate
allele frequencies as compared to loci not affected. My data filtering, that included filtering
for minimum coverage and for minimum number of individuals with read data, should have
enriched for sites less affected by allele-drop-out. Those sites show the opposite bias towards
a relative excess of low-frequency variants (Arnold et al., 2013). Figure 3.13 shows site
frequency spectra estimated from only overlapping sites, i.e. sites with read data for at
least 9 individuals in each population sample, as well as from including non-overlapping
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Fig. 3.13 ML estimate of the global minor allele frequency spectrum for erythropus (red) and parallelus (green).
The site frequency spectra were estimated from either only overlapping nucleotide sites (1.13 million) or
including non-overlapping sites (1.6 million from erythropus and 1.2 million from parallelus).

sites. Overlapping sites should be more enriched for those less affected by allele-drop-out
and therefore show a greater bias towards a relative excess of low-frequency variants. This
effect can be observed in the diversity statistics reported in table 3.1 where, for instance, the
expected nucleotide heterozygosity (7;.) for parallelus calculated from a site frequency
spectrum from only overlapping sites is lower than when calculated from a SFS including
non-overlapping sites. This effect, although statistically significant, is relatively small and

therefore unlikely to change any conclusions drawn from the data in a qualitative way. This
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makes sense since loci with greater nucleotide heterozygosity should have a higher chance of
allele-drop-out due to polymorphisms in the restriction site and therefore also a lower chance
of overlapping between the two populations (i.e. having 9 individuals with read data in each
population).

Since the same filtering thresholds were applied to the data from erythropus and parallelus
and since the parallelus sample has generally much lower coverage (see fig. 3.3), it would
seem plausible that, when including non-overlapping sites, the sites used to estimate the
site frequency spectrum for parallelus have been relatively more enriched for those less
affected by allele-drop-out than the sites used to estimate the SFS of erythropus. However,
although absolute parameter values may well be biased in both parallelus and erythropus, all
analyses in this and the following section are also done from only overlapping sites. Any
differences between parallelus and erythropus can therefore not be due to lower coverage in
parallelus in conjunction with allele-drop-out. Also, the allele-drop-out problem is a missing
data problem and to some extent similar to the missing data problem caused by low coverage
next-generation sequencing. Both increase false homozygote calls for true heterozygotes
and both therefore lead to a deviation of observed genotype frequencies from HVWE. The
algorithms for inferring the site frequency spectrum implemented in ANGSD incorporate an
assumption of HWE [Nielsen et al. 2012, eq. 2 and 3 and Vieira et al. 2013]. They place a
low conditional probability on combinations of genotypes in the sample that would deviate
strongly from HWE. I therefore expect ANGSD to mitigate the effects of allele-drop-out on
population genetic analyses.

Figure 3.14 shows that despite the large amount of sites included in the ML estimation,
there is still considerable uncertainty in the global folded site frequency spectrum, partic-
ularly for parallelus. This could be explained by the lower average sequence coverage for
individuals from the parallelus population (see fig. 3.3).

The number of segregating sites (S) and the average number of pairwise differences
(774 jima) are summary statistics of the site frequency spectrum. While S weights each site
equally, intermediate frequency variants contribute much more to the magnitude of 7 than
high- and low-frequency variants (Wakeley, 2009, eq. 1.4). Both diversity estimates are
significantly higher in parallelus than in erythropus (tab. 3.1).

This seems at odds with the expectation from the hitherto proposed historical biogeo-
graphic model of a postglacial expansion of C. p. parallelus towards central and western
Europe from a glacial refuge in the Balkans (Cooper et al., 1995; Lunt et al., 1998). C. p.
erythropus in the Pyrenees on the other hand is expected to be derived from several smaller
refuges in southern Spain, i.e. its expansion after the last Ice Age would have covered a much

shorter distance. According to this model one would expect the parallelus subspecies to have
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Fig. 3.14 The global folded site frequency spectrum of erythropus and parallelus with absolute counts from
only overlapping sites and 95% Cl limits from 200 bootstrap resamples of contigs. A standard neutral model
spectrum was fit to each observed spectrum for comparison.

undergone a long series of founder events which should have reduced genetic diversity at the
edge of the distribution much more so than for the erythropus subspecies (Luca et al., 2011).

That ancestral parallelus and erythropus expanded from their glacial refuges as a "wave",
i.e. without colonisation by rare long—distance migration, is made unlikely by at least two

observations:

* the colonisation of Britain by C. p. parallelus before the flooding of the English
Channel after the last Ice Age (Cooper et al., 1995),

Table 3.1 Comparison of the proportion of segregating sites S,,,,, the average number of pairwise differences
per site 7y, and Tajima’s D for the global site frequency spectrum of erythropus and parallelus. Numbers in
brackets are 95% bootstrap confidence intervals. Diversity statistics are calculated from only overlapping sites
or including non-overlapping sites. There are 1,130,775 overlapping sites. When including non-overlapping
sites, estimates are based on 1,214,939 sites for parallelus and 1,638,468 sites for erythropus.

statistic

Sprop Tsite Tajima’s D

overlapping sites
erythropus ~ 0.0326 (0.0320, 0.0331) ~ 0.00715 (0.00704, 0.00726)  -0.345 (-0.386, -0.308)
parallelus  0.0442 (0.0435, 0.0450)  0.00805 (0.00794, 0.00815)  -0.936 (-0.965, -0.908)
including
non-overlapping sites
erythropus ~ 0.0325 (0.0321, 0.0330)  0.00735 (0.00726, 0.00745)  -0.242 (-0.282, -0.210)
parallelus  0.0451 (0.0445, 0.0457)  0.00832 (0.00820, 0.00845)  -0.897 (-0.927, -0.868)
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* the clines for several markers in the Pyrenean hybrid zone between the two subspecies
that are too wide to be explained by the average dispersal rate of this species of 30 m

per generation (Nichols and Hewitt, 1994).

The higher genetic diversity in Pyrenean parallelus is not unique to this study though. Lunt
et al. (1998) reported intraregional Kg values of a mitochondrial sequence that were 1.5 times
higher in Pyrenean parallelus than in Pyrenean erythropus and Llewellyn (2008), table 3-3,
found that nucleotide diversity (77, jimq) Was higher in parallelus than in erythropus from the
Pyrenees in 5 out of 7 expressed sequences. Kg values in Cooper et al. (1995) from a single
nuclear locus contradict this and show about twice as much genetic variation in Spain as in
France.

Both subspecies have a significantly negative Tajima’s D (tab. 3.1). This means that there
is an excess of low frequency variants. Besides artefacts in the data or analysis pipeline
(Shafer et al., 2016), this can only have two reasons. First, many variable sites are of recent
recent origin, which would be a signal of recent population size expansion. Second, pervasive
genome-wide selection, positive or negative and at the detected sites or closely linked sites.
With purifying selection, low frequency variants would also be of ancient origin and be kept
at low frequency by selection. The Tajima’s D estimates also differ significantly between
the two subspecies. The estimate for parallelus is far more negative than the estimate for
erythropus. This is as expected from a greater recent population size expansion in parallelus
than in erythropus. The difference in Tajima’s D observed here therefore would be in line
with the scenario inferred by previous phylogeographic studies. Alternatively, a greater
ancient population size in parallelus, as indicated by the higher genetic diversity estimates,
would allow for a greater strength of purifying selection in parallelus than in erythropus
(Corbett-Detig et al., 2015).

3.3.3 Demographic history of the hybrid zone

If all sites were bi-allelic and if there were no linkage among sites, i.e. each site could be
regarded as an independent data point, then the two-dimensional site frequency spectrum in
figure 3.7 would be a complete summary of the genetic variation in the data set. Figure 3.15
shows the folded version of this. Each cell in this figure indicates the count of sites with a
specific allele frequency in erythropus and a specific allele frequency in parallelus of the
joint minor allele, i.e. the minor allele when pooling both populations.

A simple divergence-in-isolation model in dadi infers a similar divergence time for
the two subspecies as previously estimated from mitochondrial sequence data (tab. 3.2).

Assuming a mitochondrial nucleotide substitution rate of 2% per million years and no gene
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Fig. 3.15 Folded joint site frequency spectrum of erythropus and parallelus from 1,130,775 overlapping sites.
The cells contain counts on a log scale of sites with a certain joint minor allele frequency. The upper right half
of the matrix is empty in a folded 2D spectrum and therefore set white. Counts of zero have been set to 1 and
appear white in the lower left half of the matrix. This spectrum contains 74,058 sites that are polymorphic in
erythropus or parallelus or both. Monomorphic sites (with joint frequency [0,0]) have been masked for better
visualisation.

flow since the split from their common ancestral population, Lunt et al. (1998) have estimated
the divergence time to between 363,000 and 731,000 years. The estimate of divergence time
from this model in §adi is also very similar to the estimated divergence time derived from
the expectation of D,, the net sequence divergence (see eq. 3.4): 504,166 years.

Adding gene flow to this model improves the fit of the simulated model spectrum to the
observed spectrum (tab. 3.3). Allowing for gene flow also doubles the estimated divergence
time. This divergence-with-migration model can be reduced to the divergence-in-isolation
model (without migration) by setting the migration rate to zero. The latter model is therefore
nested within the former, allowing for the application of a LRT for the statistical significance

of the existence of gene flow between erythropus and parallelus. With the composite
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likelihood adjustment of the LRT statistic evaluated at the complex model (i.e. divergence-
with-migration) optimal parameterisation, the addition of a migration rate parameter greater
than zero is highly significant (p ~ 0.0). Note, that since here a single parameter is on the
boundary of the parameter space, the null distribution of the LRT statistic is % X(% + % %]2 (Self
and Liang, 1987). If the adjustment factor is computed with the optimal parameters from the
nested divergence-in-isolation model, then a non-zero migration rate has a p-value of 0.011.
The observed 2D-SFS therefore seems to provide a robust signal of low but non-zero gene
flow between the two subspecies during the history of their divergence.

The divergence-with-migration model spectrum has markedly reduced residuals for the
counts of low frequency shared polymorphisms as compared to the divergence-in-isolation
model (fig. 3.16). An increased number of shared polymorphisms at low frequency in one or
both populations is a signal of gene flow (Gutenkunst et al., 2009, suppl. mat. section 1.1).
Further details can be found in section 3.4.8 on page 120 of the supplementary material.

Allowing the gene flow to be asymmetric further improves the fit to the data (tab. 3.4).
Are the two migration rates, one for each direction, significantly different from each other?
The model with one (symmetrical) migration rate is not just nested within a model with two
different migration rates. I have therefore parameterised the asymmetric migration model
so that the divergence with (symmetrical) migration model is nested within it by setting
my = r X my. The divergence with symmetrical migration model has by definition an r of
1. I can then ask: does allowing r to be different from 1 significantly improve the fit to
the observed spectrum? The p-value of the LRT statistic (D), with an adjustment factor
calculated by evaluating at the complex model optimal parameterisation, is 0.0 (assuming D
is 9612 distributed). With an adjustment factor calculated by evaluating at the nested model
optimal parameterisation, the p-value of the LRT is 0.00083. There therefore seems to be a
robust signal of asymmetric migration between erythropus and parallelus.

Gene flow is estimated to have been on average ~5 times higher in the direction paral-

lelus—erythropus than vice versa (tab. 3.4). Several observations from previous studies have

Table 3.2 Parameters for a simple divergence-in-isolation model inferred with dadi. N,,: diploid population
size of erythropus, Np,,: diploid population size of parallelus, T: divergence time in years, -logL: negative
log-likelihood of the model spectrum simulated with the given parameter values. The population sizes are
assumed to have been constant since the split from the common ancestral population.

Parameter ML estimate 95% Cl

Nery 602,490 586,288 — 618,692
Npar 1,281,364 1,236,331 — 1,326,398
T 486,848 476,703 — 496,994

-logL. 25,375
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Table 3.3 Parameters for a divergence-with-migration model inferred with 6adi. N,,: diploid population size
of erythropus, Npar: diploid population size of parallelus, T: divergence time in years, m: proportion of new
immigrant individuals each generation, -logL: negative log-likelihood of the model spectrum simulated with
the given parameter values. The population sizes are assumed to have been constant since the split from the
common ancestral population. Gene flow is assumed to be equal in both directions.

Parameter ML estimate 95% Cl

Nery 599,837 584,697 - 614,978
Npar 1,167,067 1,132,862 - 1,201,271
T 1,083,296 1,062,695 - 1,103,896
m (x1077) 2.49 241-2.57

-logL. 21,942
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Fig. 3.16 The plots of Poisson residuals between the observed 2D-SFS (fig. 3.15) and the best-fitting model
spectra from the divergence-in-isolation model (left) and the divergence-with-migration model (right). Note
the markedly reduced residuals for the counts of low frequency shared polymorphisms in the residual plot of
the divergence-with-migration model.

indicated greater introgression from parallelus into erythropus (summarised in the chapter
General Introduction).

One potential reason for stronger effective gene flow from parallelus into erythropus than
vice versa could be that introgressed alleles from parallelus had a greater chance to reach
those erythropus populations that survived the ice ages in southern Spain than introgressed
erythropus alleles could have reached those parallelus populations that survived the ice ages
in the Balkans or even further southeast. This is already obvious from the much greater
geographical distance of the current hybrid zone (and probably also hybrid zones of previous
epochs) to the inferred location of glacial refuges of the two subspecies (Lunt et al., 1998).

Table 3.5 shows the parameters of a two-epoch model with exponential size change

in the second (recent) epoch. The model allows a size change starting at time 75 in the
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Table 3.4 Parameters for an asymmetric-migration model inferred with 6adi. N, diploid population size
of erythropus, Npa,: diploid population size of parallelus, T: divergence time in years, m: proportion of new
immigrant individuals each generation, -logL: negative log-likelihood of the model spectrum simulated with
the given parameter values. The population sizes are assumed to have been constant since the split from the
common ancestral population.

Parameter ML estimate 95% Cl

Nery 500,974 483,927 - 518,021
Npar 1,279,484 1,240,749 - 1,318,220
T 1,138,863 1,102,539 - 1,175,187
Mery—spar (x1077) 1.06 0.89 -1.23

Mpar—ery (x1077) 4.97 4.66 - 5.28

-logL 21,465

past with the populations exponentially reaching the current population size (fig. 3.17).
Each population size change is enforced to happen at the same time for both populations.
Migration rates are assumed to be the same across epochs. The best-fit parameters of this
model indicate a very recent population size reduction for both erythropus and parallelus,
with a much more severe bottleneck in parallelus than erythropus. Does the addition of
the second epoch significantly improve the fit to the observed 2D-SFS? By either setting
Nezry = Nelry and Nga, = N;a, or by setting 7, = 0, I can reduce this two epoch model to
the one-epoch asymmetric migration model from above. When calculating the composite
likelihood adjustment factor by evaluating at the optimal parameterisation of the complex
model (treating Ngry, lem and 7> as nested), the p-value of the LRT is ~ 0.0. Note that
here one parameter (7») is at the boundary of the parameter space. So D is not strictly x>
distributed with 3 degrees of freedom (see Self and Liang 1987). However, I cannot find out
the correct mixing of probability distributions, so I am using the x? distribution in the hope
that this is conservative. The adjustment factor evaluating at the optimal parameterisation of
the simple model (asymmetric-migration) resulted in an error message and therefore could
not be calculated. Still, the addition of the second epoch seems to allow for a statistically
significant improvement of the fit to the data. Note, that a piecewise two-epoch model, i.e.
with an instantaneous size change at 7> years in the past, fits the data slightly better (by 21
log-likelihood units) than this model with exponential size change during the second epoch.
However, the piecewise model converged on parameter values that indicated an unrealistically
recent bottleneck only 51 generations ago and a current population size for parallelus of only
1,217.

Figure 3.18 shows the stairway plots for erythropus and parallelus. They indicate a much
larger ancient population size for parallelus with around 4 million than for erythropus with

around 0.7 million. In addition, the estimate of ancient population size for erythropus seems
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Table 3.5 Parameters for a two-epoch-exp.-size-change model inferred with dadi. Ng,y: diploid population
size of erythropus during the first epoch after the split from the common ancestral population, N,l,a,: diploid
population size of parallelus during the first epoch, 77 (73): duration of the first (second) epoch in years, Nezry
(Nga,): diploid population size of erythropus (parallelus) at the end of the second epoch (i.e. at present), m:
proportion of new immigrant individuals each generation, -logL: negative log-likelihood of the model spectrum
simulated with the given parameter values. The population sizes are assumed to have been constant during the
first epoch after the split from the common ancestral population followed by an exponential size change in the

second epoch.

Parameter ML estimate 95% Cl

N, 477,541 457,215 — 497,867
N, 1,742,857 1,664,480 — 1,821,233
Ty 1,054,796 899,637 — 1,209,952
N2, 275,161 127,196 — 423,127
NZ, 40,775 29,753 - 51,798

vE) 5,330 4,188 — 6,472

Ti+T 1,060,126 1,018,721 - 1,101,530
Mery—spar (x1077) 0.9 0.71-1.08

Mpar—ery (x1077) 5.5 5.06 -5.95

-logL 21,009

to have an exceptionally low uncertainty. The uncertainty for the very recent population
sizes then increases sharply. This is in contrast to the stairway plot of parallelus, which
indicates a similar uncertainty for all time intervals. There is no hint of ancient fluctuations
in population size. The apparent bottlenecks at around 400 kya are likely artefacts of the
estimation method (Liu and Fu, 2015). Both stairway plots indicate a very recent drastic
reduction in population size. For the erythropus population, the stairway plot indicates a
reduction to about 5% of the ancestral population size (~ 35,000) within just the last 1.5
thousand years. For the parallelus population, stairway-plot infers an even more drastic
reduction to about 0.5% of the ancestral population size (~ 20,000). This dramatic reduction
in effective population size is inferred to have happened within the last 20 thousand years.
So there is a general agreement between the stairway plots (figure 3.18), inferred from
single population site frequency spectra with stairway-plot, and the two-epoch-with-exp-
size-change model inferred from the two-population joint site frequency spectrum with
dadi (fig. 3.17). Both infer a much larger ancient population size for parallelus compared
to erythropus. However, while adi infers only ~1.7 million as ancient population size
for parallelus, stairway-plot infers ~ 4 million. Both programmes infer a very recent
population size reduction for both populations. Remember, however, that the model in adi
enforced the second size change to happen over the same time period for both populations

while the stairway plots have no such restriction. The inferences of both programmes agree
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Fig. 3.17 Graphical representation of the best-fit two epoch model with exponential size change in the second
epoch. Note that here numbers for migration rates (at arrows) are shown as scaled migration rates (2Nm), scaled
by twice the population size of the receiving population.

about a very drastic population size reduction for the parallelus population. However, there
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Fig. 3.18 Stairway plots for erythropus and parallelus from only overlapping sites. The red line is the median
inferred population size in each time interval from 200 bootstrap replicates of the SFS. The thick grey lines
define the 75% bootstrap-CI and the light grey lines define the 95% bootstrap-CI. Apparent bottlenecks in the
two plots at around 400 kya are likely artefacts (see Liu and Fu (2015)).

is quite a large discrepancy about the inferred size of the recent bottleneck for the erythropus
population. While stairway-plot infers a very severe bottleneck to a current population
size of ~35 thousand, dadi infers only a mild bottleneck to ~275 thousand, which is only a
reduction by less than 50% from the ancient population size of ~477 thousand.

The recent population bottleneck shown by the stairway plots for the two subspecies
agrees with expectations of range expansion from glacial refuges by long distance dispersal
and serial founder events after the end of the last ice age. It also makes sense that the
population size started to reduce much earlier in parallelus than erythropus as the range
expansion of parallelus must have begun earlier than in erythropus for it to reach the Pyrenees
at about the same time as erythropus. It is also congruent with the current biogeographic

model that Pyrenean erythropus had experienced a much smaller bottleneck due to serial
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founder events during range expansion than parallelus, since the distance to the glacial refuge
is much shorter for Pyrenean erythropus than Pyrenean parallelus.

In addition to allowing for two epochs with different population sizes, I have also fit
two-epoch models to the data that allow for different migration rates between the epochs.
The questions is: can we detect a change in the rate of migration over the history of the two
subspecies? Table 3.6 shows the best-fitting parameters for an ancient-asymmetric-migration
model in dadi. This model fixes the migration rate in the second, i.e. recent, epoch (7;) at
zero. This model infers that gene flow between erythropus and parallelus has ceased ~27
thousand years ago (fig. 3.19).

Table 3.6 Parameters for an ancient-asymmetric-migration model inferred with dadi. N,,: diploid population
size of erythropus after the split from the common ancestral population, Np,,: diploid population size of
parallelus, T.: duration of period with gene flow in years, 7;: time in years since total isolation, i.e. no gene
flow, m: proportion of new immigrant individuals each generation, -logL: negative log-likelihood of the model
spectrum simulated with the given parameter values. The population sizes are assumed to have been constant
since the split from the common ancestral population.

Parameter ML estimate 95% CI

Nery 490,244 473,465 — 507,021
Npar 1,257,636 1,220,512 — 1,294,754
T. 1,262,489 1,223,308 — 1,301,670
T; 27,489 26,450 — 28,529
T.+T; 1,289,979 1,251,387 — 1,328,572
Mery—spar (x1077) 1.23 1.056 — 1.406
Mpar—sery (x1077) 6.43 6.029 — 6.839

-logL. 21,301

Compared to the single-epoch asymmetric-migration model from above, this model adds
a recent period of complete isolation, which improves the fit to the data by 164 log-likelihood
units. The ancient-asymmetric-migration model can be reduced to the asymmetric-migration
model by setting 7; to zero. The latter is therefore nested within the former and a LRT of
the significance of 7; can be performed. A linkage adjusted LRT has a p-value of 0.0, when
calculating the adjustment factor by evaluating at the optimal parameters of the complex
model, or a p-value of 0.014, when evaluating at the optimal parameters of the simple model.
On a cautionary note, the adjustment factor calculated by evaluating at the optimal parameters
of the complex model is 2.22, which would indicate an increase in power due to linkage in
the data. Obviously, this makes no sense and probably indicates that the approximations from
the Godambe Information Matrix are breaking down here (Coffman et al., 2016). Despite
this, adding a recent time of complete isolation between erythropus and parallelus does seem

to improve the fit to the data significantly. What is more, allowing the gene flow in the second
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epoch to be non-zero in both directions, i.e. adding two more migration rate parameters,
does not improve the fit to the data (same log-likelihood) and converges to migration rate
parameter values for the second epoch that are practically zero.

ancient migration

PAR

Population Sizes

348,

ERY

1290 27
Time Ago (KY)

Fig. 3.19 Graphical representation of the best fit ancient-asymmetric-migration model. As in figure 3.17, the
migration rates are shown as scaled migration rates (2Nm), i.e. scaled by twice the population size of the
receiving population. The horizontal black bar starting at 27 thousand years in the past symbolises the cessation
of gene flow.

Phylogeographic studies as well as paleoclimatic data strongly suggest that the two
subspecies, erythropus and parallelus, diverged in isolation during last 2 or 3 ice ages and
only recently (~10 kya) came into secondary contact (see chapter General Introduction).
Clines of several morphological, behavioural and molecular markers have been shown to
be very wide (some over 40 km) (Butlin and Hewitt, 1985a,b; Butlin et al., 1991; Vazquez
et al., 1994) and their centres often displaced from each other, which indicates substantial
gene flow across the hybrid zone (Ferris et al., 1993). Lunt et al. (1998) have found that a
population from Pyrenean Spain is genetically more similar to Pyrenean French populations
at a mitochondrial sequence (COI) than to other Spanish populations. The two population
samples used in this study come from populations in close proximity to the hybrid zone.
They may therefore show some evidence of recent gene flow between the two subspecies.
In order to detect this, I have also fit a secondary-contact model to the observed spectrum
with dadi. This model specifies divergence in isolation during an initial period followed by
a period with (symmetrical) migration between the two subspecies until the present. The
best fitting model parameters indicate that erythropus and parallelus diverged in isolation
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for 445,694 generations. The two populations then came into secondary contact 587,653
generations ago. So, the best fitting parameters clearly do not specify a recent and relatively
short period of secondary contact. Also, compared to the simpler one-epoch divergence-
with-migration model, the secondary-contact model improves the fit to the data by only 27
log-likelihood units. Despite this, a linkage adjusted LRT indicates that this improvement is
highly significant (p-value < 10~7).

The reverse of the secondary-contact model is a model that defines the first epoch as the
one where gene flow is allowed, followed by a second epoch with complete isolation. It could
therefore also be called a primary-contact model. I have also fitted such a primary-contact
model to the data for comparison with the secondary-contact model. Note, that the definition
of the primary-contact model is similar to the ancient-asymmetric-migration model described
above with the restriction that here there is only one migration rate parameter, i.e. gene
flow is assumed to be equal in both directions. Unsurprisingly, the best fit parameters of
this primary-contact model indicate a very similar history as the slightly more complex
ancient-asymmetric-migration model. It too infers a long initial period of contact between
erythropus and parallelus (~1.2 million generations) and a very recent cessation of gene
flow between the two subspecies (~28 thousand generations ago). Compared to the nested
divergence-with-migration model, it improves the fit to the data by 91 log-likelihood units
and a linkage adjusted LRT is highly significant (p < 0.004, with conservative adjustment).
This confirms that the addition of an epoch without gene flow significantly improves the fit
to the data. In addition, a primary-contact model fits the data better than a secondary-contact
model by 66 log-likelihood units. Finally, a three-epoch model, where in the most recent
epoch gene flow is allowed to recommence, converges on a time parameter for the third epoch
that is practically zero. That is, the three-epoch model converges on the primary-contact
model. This underscores that there is no significant signal of recent gene flow in the data.
This may in part be caused by a lack of power to detect very low and recent gene flow with
the current sample size of 18 individuals (Robinson et al., 2014). If the two populations
had been affected by recent gene flow across the hybrid zone it must have been so low
that the frequencies of introgressed alleles are too low to be detected with a sample size of
just 18 individuals. This result confirms previous cline analyses of many other characters
that indicated that these two populations could be regarded as pure representatives of their
respective subspecies (Vazquez et al., 1994).

The inferred demographic models as depicted in the figures 3.17 and 3.19 should not
be taken at face value. They are necessarily gross simplification of the actual demographic
history. For instance, continuous migration during an epoch has been assumed in all models.

The actual demographic history is certainly more complex and likely to be one of short periods
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of intermediate gene flow (while in secondary contact during interglacials) interrupted by
long periods without gene flow (while in separate glacial refugia) (Hewitt, 1990). A model
that does not contain this complexity will necessarily estimate a longterm average gene flow
that is very low.

Both populations sampled are in an area that was inhospitable for these grasshoppers or
even covered by glaciers during the last ice age. They must therefore have a history of range
expansion from glacial refugia and colonisation of new habitat that formed between ~20,000
and 10,000 years ago. It is not known whether a particular climatic event coincides with the
estimated divergence time of about 1.0—1.2 mya. The estimated divergence time between
erythropus and parallelus may simply be the time of first settlement of Iberia and the Balkans
or Turkey by C. parallelus. The divergence time estimate is based on an estimate of per
nucleotide mutation rate in other insects (Liu et al., 2017) and assumes a molecular clock, i.e.

no variation in substitution rate over the time of divergence between the two subspecies.
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3.4 Supplementary Material

3.4.1 How well are mapping quality scores calibrated?

The mapping quality score (mapQ) is the Phred scaled probability p that the true mapping

position of the read is not the reported mapping position (rounded to the next integer):

mapQ = —10logop

True mapping position is meant with respect to the provided reference sequence, i.e. assuming
the true reference sequence is known without error. I have simulated 200,000 SE reads of 50
bp length from the Heliconius melpomene genome reference (Hmell-1_Release_20120601)
with the programme mason (version 0.1.2) (Holtgrewe, 2010). The H. melpomene ref-
erence sequence has a length of 269,658,870 bp. I have also simulated reads from the
much bigger (and probably more repetitive) human genome reference sequence (version
GRCh38). The human reference sequence is 11.5 times larger than the H. melpomene refer-
ence sequence (3,099,750,718 bp). I simulated reads without sequencing error but with a
polymorphism rate of 0.01, 20% of which were indels. Indels could be up to 20 bp long and
their length was drawn from a uniform distribution. bowtie2 was run in -very-sensitive
and -end-to-end mode, bwa mem and stampy were run with default settings. In order to ex-
tract counts of mapped and incorrectly mapped reads from SAM files, I used the programme
wgsim_eval.pl from the read simulation package wgsim of Heng Li. A read is mapped
correctly if its reported mapping position is within 50 bp of the true origin. Further details
can be found in Mason_sim.sh and Mapping_Tool_Test.

The observed rate of mismappings of these simulated reads should be an estimator of the
true mapping quality p. I can therefore compare how well the reported mapping qualities of
the different mapping programmes correspond to the observed false positive rate. Figure 3.20
shows that bowtie2, generally underestimates the true mapping quality, given the reference
sequence, when simulating from the H. melpomene reference. When mapping against the
more repetitive human reference bowtie?2 underestimates mapping quality for quality scores
below 25 and slightly overestimates mapping quality for reads with higher quality scores

assigned.

3.4.2 Mappability across the de novo reference assembly

Mappability is a measures that can be computed for a single nucleotide position x in a
reference sequence. It assumes that the reference sequence is known without error. Starting

at position x a sequence of length k is extracted from the reference sequence. This kmer


https://github.com/lh3/wgsim
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/reference-mapping/data/simulation/Mason/Mason_sim.sh
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/reference-mapping/data/simulation/Mapping_Tool_Test.md#how-well-are-mapq-scores-calibrated
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(b) Simulating Illumina reads from Heliconius melpomene and Homo sapiens reference sequence and
mapping with bowtie2.

Fig. 3.20 Comparison of reported and observed false positive mapping rate (FPR). The reported FPR is the
mapping quality score transformed back into a probability. The observed FPR is the proportion of all mapped
reads with a specific mapping quality score that have an incorrect mapping position reported by the mapping
programme. The diagonal line indicates 1:1 correspondence. For points above the diagonal the mapping
programme underestimates the true mapping quality. For bowtie2 several points have been annotated with the
reported mapping quality score of the reads they represent.
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is then searched for in the whole reference sequence allowing for up to m mismatches (or
edits, i.e. including indels). The number of times the kmer is found in the reference is Fy ,.
Mappability M is then defined as:

B 1
Fk7m(x)

Mkm(x)

I have used programmes in the tool package GEM (Derrien et al., 2012) together with
programmes from the tool package BEDOPS (Neph et al., 2012) to compute the average
mappability over the positions in each contig (see assembly.sh for further details). I
specified a kmer length of 40 and allowed up to 3 edits during the search for mapping positions
in the Big Data reference assembly. The search did not include the reverse complement of
the reference. Average mappability per contig was computed for all contigs in the complete
unfiltered Big Data reference assembly and the subset of contigs which passed all filters, i.e.
which included at least one interval after filtering that was kept for downstream analysis. The
difference in location between the distributions in figure 3.5 was tested with the R function

wilcox.test.

3.4.3 Filtering against deviation from HWE

I filtered out contigs that had a variable site with a negative inbreeding coefficient Fjg at the
significance level of 0.05 from an LRT (Vieira et al., 2013). This was intended as a measure
to reduce false-positive SNP’s due to paralogous sequences mapping to the same position in
the de novo reference assembly. Sites with a positive within population Fys could be affected
by allele drop out (due to polymorphisms in the restriction site), they could be affected by
PCR drift or they could map to the X chromosome, since all sequenced individuals are males
(and there is no homologous male sex chromosome in Chorthippus parallelus, Gosalvez et al.
(1988)). 38% of contigs from erythropus and 48% of contigs from parallelus have a SNP
with significantly positive Fyg at the 0.05 level. But note that Vieira et al. (2013)’s method
for estimating the per-site inbreeding coefficient from genotype likelihoods shows a strong
upward bias when used with very low coverage data (1x) and few individuals sequenced
(10) (see their figure 1). Further analysis reveals a strong correlation of the p-value from the
LRT with the MAF of the SNP (see figure 3.21). I have therefore opted not to filter contigs
against positive Fyg of their SNP’s. This filter would have preferentially removed SNP’s (and
their contigs) with high MAF and would therefore have distorted the site frequency spectrum
which most analyses in this chapter are based on. Vieira et al. (2013)’s method jointly
estimates genotype frequencies, minor allele frequency and per-site inbreeding coefficient.

It is therefore not surprising that a site with greater MAF provides more power to detect an


http://algorithms.cnag.cat/wiki/The_GEM_library
https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/assembly.sh
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excess of homozygote genotypes as compared to HWE expectations. All SNP’s with an
excess of heterozygotes show very high MAF even for p-values as high as 0.1. This must
be due to the fact that genotype frequencies and MAF are confounded parameters: a high
estimate for heterozygote frequencies cannot go together with a low estimate for MAF. It
is likely that an increase in sample size would increase the power to detect an excess of

heterozygotes (Vieira et al., 2013).

3.4.4 Removing PCR duplicates

I have removed PCR duplicates by collapsing read pairs into unique representatives per
individual with starcode allowing for an edit distance of 2. I have applied the same filters
as before, except for the addition of positive Fyg filtering (which removed 225 contigs) and
requiring only at least 1x coverage in at least 15 individuals for each included reference
site. I only counted reads with a mapping quality score of at least 5. These filters retained
2,455,851 sites on 48,556 contigs. The average per site and per individual coverage is 1.14x.
The across sample coverage per site has a modal value of 25 (see fig. 3.22). The individual
coverage distributions show a median coverage of 1x for all erythropus individuals and a
median of 0x for most parallelus individuals (fig. 3.23). For some more details see the
notebook DEDUP.

As before, for the estimation of 1D site frequency spectra I required read data from at
least 9 (of 18) individuals to include a reference position. Unfortunately, the Big Data set
without PCR duplicates does not provide enough information for the estimation of allele
frequency spectra (fig. 3.24). Different minimum coverage filtering for at least 3 in 10 or
15 individuals did not lead to improved results. It could be that the low coverage of the de-
duplicated read data does not allow the distinction between polymorphisms and sequencing

€ITOIS.

3.4.5 PCA with SNP calling, normalisation and genotype calling

The PCA in figure 3.8 on page 86 has been done on a covariance matrix that has been
estimated from genotype likelihoods without SNP and without genotype calling. Additionally,
no normalisation of the genotypic covariances by the binomial variance of allele frequency
has been applied. In the following I am going to show PCA’s from covariance matrices that
have been estimated with SNP calling, normalisation and genotype calling. SNP’s were
called with a LRT of the MAF being 0 at a p-value threshold of 0.001. Genotypic covariances
were normalised by p;(1 — p;) as in eq. 19 in Fumagalli et al. 2013.


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/BAM_dedup/DEDUP.md
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Fig. 3.21 Dependence of the p-value from an LRT test of HWE on the MAF of the SNP. The upper two panels
show SNP’s with F > 0 at the given significance level. The lower two panels show SNP’s with F' < 0. SNP’s
were detected with a LRT of the MAF being 0.0 with a significance level of 0.01.
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Fig. 3.22 Across sample (i.e. global) coverage distribution with de-duplicated read data after filtering (excluding
HWE filtering which removed 3,486 contigs). The distribution is based 2,683,395 sites on 52,042 contigs. The
red dashed line marks the modal coverage. Compare with figure 3.2 on page 71.
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Individual coverage distributions
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Fig. 3.23 Individual coverage distributions from de-duplicated read data after filtering (excluding HWE filtering
which removed 3,486 contigs). The distribution is based 2,683,395 sites on 52,042 contigs. Compare with

figure 3.3 on page 72.
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Fig. 3.24 Folded 1D site frequency spectra for erythropus and parallelus from de-duplicated read data.
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Fig. 3.25 PCA with SNP calling and normalisation.

Figure 3.25 shows the plot of the first two eigenvectors of a PCA with SNP calling
and normalisation. SNP calling finds 68,590 SNP’s. When comparing with the PCA from
figure 3.8 on page 86 a general similarity in the relative coordinates between individuals
is apparent. However, the first eigenvector in figure 3.25 explains only 13% of the total
genotypic variation in the data compared to 23% in the PCA without SNP calling (fig. 3.8).
Figure 3.26 shows the plot of the first two eigenvectors of a PCA with genotype calling. The
genotype with the maximum posterior probability was called. Again, when compared to the
PCA plot in figure 3.8 a general similarity of the relative coordinates between individuals is
apparent (except for the switch in sign on the second axis, which is chosen randomly by the
prcomp function in R). With genotype calling, the proportion of total variance explained by
the first eigenvector is reduced even further to just 11%.



116 Investigation into the demographic history of the hybrid zone

68,590 SNP's
unknown minor allele + SNP pval: 1e-03
with genotype calling

A ERY
PAR
par_34-5
n
o
o
=
N
S/ 344
) 34-1 P4
N - A par_.
NS A gpandha
=]
=
(&]
o
>
c
(]
=
()
par_34-7
o
o —
|
par_34-14
I I I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3

eigenvector 1 (11%)

Fig. 3.26 PCA with SNP calling, normalisation and genotype calling.
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These different PCA’s all reveal two clusters of individuals on the first axis of variation.
These clusters coincide with population label and are clearly separated on the first axis which
explains from 11% to 23% of the total genotypic variation among individuals. The clear
genotypic distinction of erythropus and parallelus is therefore robust to the way the genotype

covariance matrix is computed.

3.4.6 Fsr

realSFS can also estimate Reynolds’ Fgr (Fumagalli et al., 2013, eq. 1-3). Reynolds’ Fsr
includes a weighting by sample size. The genome-wide Reynolds’ Fsr is 0.308. That is 0.01
higher than Hudson/Bhatia’s version of Fgr.

Fsr is a summary statistic of the joint site frequency spectrum from two or more pop-
ulations. The 2D-SFS in figure 3.7 on page 78 has been estimated from the 1,130,775
sites that are overlapping, i.e. sites with sequence reads from at least 9 individuals in each
population. I have used the function Fst in dadi (Gutenkunst et al., 2009) to calculate
Weir & Cockerham’s Fgy (Weir and Cockerham, 1984, eq. for 0 at top of p. 1363) from
this 2D-SFS. This version of Fgr should be very similar to Reynolds Fyr>. Both assume
equal amounts of drift experienced by both populations and if this assumption is violated,
they become dependent on the ratio of sample sizes. In contrast, Hudson/Bhatia’s Fgr does
not make this assumption and is independent of sample sizes (Bhatia et al., 2013). Here,
however, sample sizes are the same (18). So I do not expect both versions of Fgr to differ
because of weighting by sample size. The genome-wide Fgr as calculated from this 2D-SFS
is 0.265 (see section "Fst" in 05_2D_models. ipynb). This is 0.043 below Reynolds’ Fsr as
estimated from 1.6 million sites with realSFS.

Hudson/Bhatia’s genome-wide Fgr has shown a bias of 0.025 as determined by the
median of the empirical null distribution estimated by 100 permutations of population label.
I have also estimated the empirical null distribution of Weir & Cockerham’s Fsr estimated
from the 2D site frequency spectra estimated from sample allele frequency files with permuted
population labels. The median of this distribution indicates a bias in the genome-wide Fgr
estimate of 0.037 (fig. 3.27).

Weir and Cockerham (1984), p. 1366, propose a correction of bias based on jackknife
resampling of loci. I have created all delete—1 jackknife resamples over 32,706 contigs and

used them for bias correction with the following formula:

n—1

Fsr.,,, = nFsr —

n
Fsr,
n =
i=1

3this has not been fully verified due to the complexity of the formulas


https://github.com/claudiuskerth/PhDthesis/blob/master/Data_analysis/SNP-indel-calling/dadi/05_2D_models.ipynb
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Fig. 3.27 Empirical null distribution of Weir & Cockerham’s Fsr estimated in 6adi from the 2D-SFS’s of 100
permutations of population label.
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Fig. 3.28 stairway plot for erythropus and parallelus from including non-overlapping sites. The thick
grey lines define the 75% bootstrap-CI and the light grey lines define the 95% bootstrap-CI. Compare with
figure 3.18 on page 102.

Fsr, 1s the Fg7 from the i-th jackknife resample. This leads to only a negligible bias correction
of -3.5e-06.

3.4.7 Stairway plots

The stairway plots in figure 3.18 have been created from only overlapping sites, i.e. ex-
clusively from sites that had 9 individuals with read data in both populations. Figure 3.28
shows the corresponding stairway plots when this restriction is released. When comparing
with figure 3.18, the stairway plot for parallelus is hardly changed. The stairway plot for
erythropus is also very similar to the one in figure 3.18. The ancient population size is
estimated to have been slightly higher, about 1.0 million, and the current population size is
estimated to be about 8,000 instead of above 20,000.
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3.4.8 Distinguishing reduced divergence time from increased migra-
tion

The figures 3.29 and 3.30 show a series of expected two-dimensional site frequency spectra
simulated with dadi for different divergence times and migration rates. They show that
qualitatively quite similar expected spectra can be generated when either reducing divergence
time or increasing the migration rate. N, stands for the inferred common ancestral population
size of the two populations, which was calculated by first computing Watterson’s 0 from the
observed 2D-SFS (see eq. 3.9 on page 81) and assuming Oy ~ 4N,uL. With the mutation
rate U set to 3 X 10~ and the total sequence length L set to 1,130,775, this results in an
estimate of N, of 1,126,030. A divergence time of 0.222 x 2N, therefore corresponds to
500,000 generations. Migration rates reported in figure 3.30 are scaled by 2N, i.e. divide by
2N, to get m, the proportion of new immigrant individuals per generation.

Figure 3.31 compares the best fitting model spectra from 6adi for the divergence-in-
isolation model and the divergence-with-migration model. The greatest qualitative difference
between the two model spectra is the much higher number of expected low frequency
shared polymorphisms in the divergence-with-migration model spectrum and the higher
expected number of high frequency shared polymorphisms in the divergence-in-isolation
model spectrum. The model parameters for these two spectra are given in table 3.2 on page 97
and 3.3 on page 98, respectively.

Figure 3.32 shows the plot of Poisson residuals between the best fit model spectra in
figure 3.31. The large residuals for shared polymorphisms that are at low frequency in one or

both populations is a signature of gene flow (Gutenkunst et al. 2009, suppl. mat. section 1.1).

3.4.9 Miscellaneous results from demographic modelling

Figure 3.33 shows the best fitting model spectra from the asymmetric-migration model and
the two-epoch-with-exp-size-change model inferred with dadi together with plots of the
Poisson residuals between them. The plot of Poisson residuals in the bottom left indicates
that the main difference between the two models is in how they fit low frequency variants
private to parallelus. Of these variants, the two-epoch-with-exp-size-change model predicts

far fewer singletons and many more doublets, triplets, etc.
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Chapter 4
General Discussion

The two subspecies erythropus and parallelus have a high genome-wide average genetic
differentiation (Fs7: 0.298, 95% bootstrap Cl: 0.294 — 0.303). The net sequence divergence
D, of 0.003, however, clearly marks them as a semi-isolated species pair in the "grey zone"
of the speciation continuum (Roux et al., 2016). The two subspecies have not diverged in
complete allopatry. Instead there is a robust signal of ancient and asymmetric gene flow
during the history of the divergence of the two subspecies (see tab. 3.4). Allowing for gene
flow doubles the divergence time estimate from about 0.5 to 1.1 mya. Gene flow had been
about 5 times higher in the direction from parallelus to erythropus than vice versa. This is in
line with many previous studies of the Pyrenean hybrid zone that indicated an asymmetry of
gene flow in the same direction (see chapter General Introduction).

Gene flow was apparently low enough and positive selection for alleles causing DM|s
high enough to allow the evolution of DMIs between the two subspecies (Bank et al., 2012).
The effective number of haploid migrants per generation estimated by the two-epoch-exp.-
size-change (fig. 3.17) and ancient-asymmetric-migration models (fig. 3.19) are much less
than 2 (2Nm < 2). A population scaled migration rate for diploid individuals much less
than 1 allows the near fixation of alternative alleles by genetic drift (fig. 4.1) (Slatkin, 1987;
Slatkin and Barton, 1989). Note that the finite island model predicts a far lower Fg7 from
the estimated migration rates in dadi than the Fgy calculated from the observed 2D-SFS
(cf. fig. 3.9 and section 3.4.6 on page 117). Unless there are unmet assumptions of the
finite island model and unknown biases in the data, which I am unaware of, this suggests
that genetic drift alone cannot fully account for the genome-wide divergence of the two
subspecies and divergent selection and/or selection against hybrids may need to be invoked
to explain a large part of it. In addition, the clear evidence of ancient gene flow between the
two subspecies also indicates that the alleles that cause hybrid male sterility cannot be of

ancient origin and have spread solely via genetic drift (Bank et al., 2012; Gavrilets, 1997), as



126 General Discussion

1.0

-1 ; o two-epoch-exp.-size-change
A ancient-asymmetric—migration

0.8
|

1

Fer=———
ST 1+4Nma

0.6

Fsr

0.4

0.2
|

Fig. 4.1 Relationship between genetic differentiation (Fsr) and the effective number of diploid migrants
per generation (Nm) in the finite island model (Hudson et al., 1992). « = [n/(n—1)]?, n is the number of
subpopulations and has been set to 2. Fsr increases sharply for Nm < 1 (left of the red dashed line). The
inferred population scaled migration rates (both directions combined) from the two best-fit models in dadi are
plotted on the graph for comparison.

could be assumed given that they are not fixed in the two subspecies (Shuker et al., 2005).
The only possibility for the evolution of a neutral DMI| would be if sterility had evolved
in complete allopatry during the last ice age and there had been effectively no gene flow
since the secondary contact (that could have eroded that DMI) as suggested by the ancient
migration model in dadi. However, as mentioned before, the current data set probably lacks
the power to detect very low and very recent gene flow due to low sample sizes (Robinson
et al., 2014). So, in order to exclude the possibility of neutral DM|s underlying the sterility in
hybrids of the two subspecies, the demographic modelling from chapter Investigation into
the demographic history of the hybrid zone would have to be repeated with a much greater
sample size. Probably more than 100 individuals per population would be required to be able
to detect recent, low gene flow. Very low gene flow on the other hand would be less effective
at eroding the evolved DMI.

The parallelus population had a much greater ancient population size than erythropus: at
least twice as high according to adi and four times as high according to stairway-plot.
There seems to be a signal of a recent (postglacial) drastic bottleneck in parallelus as
would be expected from serial founder events during range expansion from a Balkan glacial
refuge. However, it seems difficult to reconcile this with the strongly negative Tajima’s D for

parallelus (tab. 3.1), which would indicate a population size expansion. This discrepancy
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remains an open question that should be resolved. The signal for a population bottleneck
in erythropus is more ambiguous. While stairway-plot infers a strong and very recent
bottleneck from the 1D site frequency spectrum (fig. 3.18), dadi infers only a mild bottleneck
from the 2D site frequency spectrum (fig. 3.17). A less severe bottleneck would be consistent
with the expected lower effect of serial founder events during the expansion of erythropus
from its glacial refuge in southern Spain to the Pyrenees.

A primary contact model (i.e. with ancient gene flow) fits the data better than a secondary
contact model. That means that there is no significant signal of recent gene flow in the
genome-wide 2D-site frequency spectrum. This also indicates that the detected asymmetry
of gene flow between erythropus and parallelus cannot just be a consequence of different
distances of the sampled populations to the hybrid zone centre (fig. 2.1) or hybrid zone
movement. Rather, this hints at intrinsic mechanisms for asymmetric isolation like those
described in chapter General Introduction.

Underlying the analyses of demographic history is the assumption that the vast majority
of RAD markers are selectively neutral. The analysis may therefore be improved by removing
outlier loci that may be evolving under selection (Beaumont and Nichols, 1996; Whitlock
and Lotterhos, 2015). An Fs7 outlier scan could be attempted with this data set to detect
RAD loci potentially evolving under divergent selection in the two subspecies. These may or
may not be linked to loci involved in DMIs. However, given the low number of informative
SNPs (less than ~74,058, Roesti et al. 2012) spread over a low number of RAD loci (34,343)
in the current data set when compared with the genome size (10—14 Gbp), it is likely that
only a subset of the genomic regions under selection could be detected (Lowry et al., 2016).
In addition, the large Cls of the 1D site frequency spectra (see fig. 3.14) already indicate great
uncertainties in allele frequency estimates of individual sites. Due to these large uncertainties
in allele frequencies, a method for Fg7 outlier detection needs to be employed that takes this
uncertainty into account, like the Bayesian hierarchical F-model of Gompert and Buerkle
(2011b). This detects outliers based on an empirical distribution of per-locus Fsr. If the data
set contains many thousands of unlinked loci and the vast majority of them are neutral and
only weakly affected by linked selection, then this empirical distribution should provide a
good null distribution (Whitlock and Lotterhos, 2015). The simulation of a distribution of
neutral Fgr based on the demographic models inferred in chapter 3 may therefore not be
necessary.

The uncertainties in the estimates of parameters for demographic models are much
larger than suggested by the reported 95% bootstrap Cls. These intervals only capture the
uncertainty due to genetic sampling, i.e. sampling a finite number of independent realisations

of the evolutionary process. Due to the large number of independent loci used for inference
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here, this uncertainty is rather small. Much greater uncertainty lies in the method of parameter
inference. For instance, adi and stairway-plot differ dramatically in their estimates of
the ancient population size of parallelus: 1.26 million and 4 million, respectively (compare
fig. 3.18 and 3.19). The fact that stairway-plot does not incorporate gene flow in its
model is unlikely to be the reason for this discrepancy. If this were the case, then the
divergence-in-isolation model in dadi should also estimate a much larger population size for
parallelus than the models divergence-with-migration and asymmetric-migration. However,
this is clearly not the case (compare N, in table 3.2 with N, in tables 3.3 and 3.4).

The conversion of model parameter estimates from dadi and stairway-plot from
genetic units to absolute/physical units requires the assumption of a mutation rate. I have
assumed a mutation rate of 3 x 10~ per nucleotide site and year for C. parallelus throughout.
This estimate was taken from the few direct estimates of mutation rates in insect species
available so far, measured by detecting differences between parents and offspring (Liu et al.,
2017). Those estimates are remarkably close to each other and their Poisson error 95% Cls
range from 1.0 x 107 to 6.1 x 10~°. Estimates of single nucleotide mutation rates are for
Heliconius melpomene: 2.9 x 1072 (Keightley et al., 2015), for Drosophila melanogaster:
2.8%x107? (Keightley et al., 2015), for Bombus terrestris: 3.6 X 10?2 (Liu et al., 2017)
and for Apis mellifera: 3.4 x 1072 (Yang et al., 2015). So unless the true mutation rate
in grasshoppers is an outlier, the uncertainty in demographic model parameter estimates
due to uncertainty in the assumed mutation rate is likely to be small. For example the
estimate of divergence time in the divergence-in-isolation model from dadi of 486 thousand
years changes to 521 thousand years when assuming the mutation rate estimated for D.
melanogaster (+7%) or to 405 thousand years when assuming the mutation rate estimated
for B. terrestris (-16%).

The estimates of effective population size for the two subspecies of C. parallelus are most
likely underestimates of the true effective population size. This is because for a wide range of
sexually reproducing species across the tree of life a large reduction in genome-wide genetic
diversity due to selection on linked sites has been inferred (Corbett-Detig et al., 2015). The
effect of linked selection on genome-wide average genetic diversity greatly depends on the
genome-wide average effective recombination rate. The recombination rate can vary greatly
between fairly closely related species (e.g. 37 cM/Mb in Apis mellifera vs. 8.7 cM/Mb in
Bombus terrestris, Liu et al. 2017). The effective recombination rate is lower than 1/2 the
rate of crossing-over if there is any form of inbreeding.

Two high quality estimates of effective population size have been published recently
for insect species. One for Drosophila melanogaster: 1.4 x 10° (Keightley et al., 2014),
the other for Heliconius melpomene: 2 x 10° (Keightley et al., 2015). These estimates of
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effective population size are based on estimates of nucleotide heterozygosity (77 ima) from
4-fold degenerate sites in genome resequencing data. They are not based on demographic
modelling and also likely underestimate the true effective population size due to selection
at linked sites. So, the estimate of 4 million as the ancient population size of parallelus by
stairway-plot can still be regarded as consistent with these estimates for the two other
insect species and also when considering the generally narrow range of effective population
sizes across the tree of life as compared to current census population sizes (Coop, 2016).

Only folded site frequency spectra could be analysed in this study since the sequence of
close enough outgroups were not available to infer the ancestral allele at polymorphic sites.
Suitable outgroups for C. parallelus would be the closely related C. curtipennis endemic
to North America and the more distantly related sister species C. montanus (BUTLIN and
HEWITT, 1987). Unfolded site frequency spectra contain more information for the inference
of demographic history and selection, although the large uncertainties in the site frequency
spectrum of parallelus would be even greater in an unfolded site frequency spectrum. A third
population sample (from curtipennis rather than montanus) would also allow the application
of the population branch statistic (PBS) to detect loci under recent positive selection in one
of the three populations (Yi et al., 2010).

Chapter 3 is still an incomplete investigation of the demographic history of the two
subspecies and important aspects of it remain unknown or uncertain. For instance, the spatial
aspect of the history. Why does Pyrenean parallelus have a greater nucleotide diversity than
Pyrenean erythropus if its putative glacial refuge is so much more distant? Are the glacial
refugia and origins of expansions indeed in the Balkans and southern Spain as suggested by
previous phylogeographic data of two loci (Cooper et al., 1995; Lunt et al., 1998)? These
aspects could be further investigated with RAD data from population samples spread across
the distribution range of both subspecies (He et al., 2017; Noguerales et al., 2018). Ten
individuals per population should suffice, but the number of sampled populations should
be maximised and their locations spread evenly across the distribution range. With such
data the pairwise directionality index ¥ between populations of Peter and Slatkin (2013)
could be calculated that allows the localisation of the origin of a recent range expansion.
The inference of the origin of expansion could be improved by adding data from species
distribution models and including distributions in the past inferred by using paleo-climatic
data (Elith and Leathwick, 2009; Kozak et al., 2008). This can then be combined with
spatially explicit coalescent simulations and approximate Bayesian computation (Ray et al.,
2010). This whole approach has been recently documented by He et al. (2017).
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5.1 sRAD protocol

5.1.1 isolate DNA from grasshopper hindleg

» with Qiagen Dneasy Blood and Tissue Kit (spin columns)

5.1.2 check the quality of the isolations

* by running each isolation on a 0.8% gel (figure 5.1)

Fig. 5.1 Four spin column DNA isolation from grasshopper hindlegs next to HindIII digested lambda. The
DNA is obviously already fragmented. All grasshopper DNA isolations look like that. The SRAD protocol
worked anyway fine with them.

5.1.3 treat DNA isolations with RNase if necessary

* can be done on the spin column, leading to less RNase contamination

5.1.4 quantify DNA samples with fluorimeter twice

* produce at least three replicates of calf thymus standard serial dilutions for the standard
curve
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5.1.5 transfer 200ng of each DNA isolation into a well in a 96 well plate

* in an Excel spreadsheet, enter the DNA isolation code for each well, print it out

* beware of cross-contamination when opening the lid

5.1.6 digest 200ng of DNA from each individual with Sbfl HF

¢ make master mix of 20x:

— 2.0ul 10X NEBuffer 4
— 0.25u1 SbfI (20 U/ul) — 5 U/sample
— 10u1 ddH,0

fill with ddH,O to 20ul endvolume

* mix by pipetting, shake the plate at the end, spin down with centrifuge
* incubate for 1.5 hours at 37°C

* heat-inactivate in thermal cycler at 65°C for 20 min '

* allow to cool down slowly to room temperature in thermal cycler (30 min)

5.1.7 ligate P1 adapters with different barcodes to each restriction di-

gest

* put the sample plate on ice
* thaw P1 adapter plate on ice, shake to mix, spin down, reseal the plate after use
* first add to each heat inactivated restriction digest:
— 1.0 ul of 100nM (=0.1pmole) barcoded P1 adapter
* then make master mix of 20x:

— 1.0 ul 10X NEB Buffer 2 *

no “cut-ligation” when using SbfI and barcodes ending with CC

20.5pmole/pg DNA; this is probably more than necessary, however, if you size select at 350bp or above
adapter dimers shouldn’t be a problem
3to keep the concentration of monovalent cations at SOmM
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— 0.3 ul rATP (100mM — end concentration 1 mM) 4
— 0.2 ul concentrated T4 DNA Ligase (2,000 NEB U/ul) >
- 7.5 ul ddH20

* add 9.0 ul of master mix to each well to a 30ul endvolume
« final monovalent cation concentration should be 50 mM ©

* incubate at room temperature (RT) for 30 min, but over night in the fridge doesn’t do
any harm and might give higher yield

* heat-inactivate at 65°C for 20 min in thermal cycler

* allow to cool down slowly to room temperature

5.1.8 combine samples

* pool the 18 individual ligation mixes, making up ~540ul and ~3.6 ug DNA

5.1.9 shear DNA with Covaris machine in Edinburgh

* optimization needed, test the result of each Covaris setting with Agilent Bioanalyzer
2100 DNA 100 chip or agarose gel with GeneRuler 100bp DNA ladder

Table 5.1 optimal Covaris settings

duty cycle 10%
intensity 5
cycles/burst 200
duration 100sec

5.1.10 clean up sheared library

 with one Qiagen MinElute PCR Purification column (Cat. no. 28004), capacity each 5
ug DNA

e elute with 21 ul EB

4rATP powder dissolved in EB (pH 8.5) is stable; reduce freeze-thawing cycles; 0.1 mM ATP is as efficient
as ImM but a 10mM ATP concentrations inhibit ligations!

3400U/sample corresponding to 2000 NEB U/ug DNA

®NEBuffer 4 contains S0mM potassium ions
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5.1.11 size selection on agarose gel

« rinse the gel tank and use fresh buffer before running the gel’

* run elution (20u1) in one lane of 1.25% agarose gel with 10 ul 6X Orange Dye for 1h
15 min at 6.7 V/em ®

* the wells should be less than half full, otherwise migration of fragments will be
distorted °

* load 20 ul 100bp ladder (20ug) in the left lane, leave 1 lane space between standard
and library

* use fresh razor blade and UV transilluminator (long wave setting to minimize muta-

tions) to cut out a size range of ~350-750 bp '°

5.1.12 gel extraction of DNA

* split the gel slice in half
* melt gel at RT with frequent vortexing
1

» use one column of Qiagen MinElute Gel Extraction kit for the gel slices '

* elute with 20ul

5.1.13 blunt-ending of sheared fragments
* NEB Quick Blunting Kit (Cat. no. E1201S)
* to the eluate from the previous step, add:

— 2.5 ul 10X blunting buffer
— 2.5 ul ANTP mix (1mM) 2

7if you have run a gel from a different library before, otherwise not necessary
8.3.6ug DNA per lane, 2X Orange Dye is necessary to make the DNA sink into the gel well, a lot of DNA

could otherwise be lost at this step

95-6mm wide wells

10when making the vertical cuts, be sure not to go below 350bp, otherwise risk of adapter dimer contamination
(Maureen Liu)

Teven though it says otherwise in the manual of the kit, you can gel extract with just one column any amount
of gel as long as it is completely melted before loading

12be sure to add before enzyme mix!
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(a) two pools sheared with the (b) after size selection of the pools
Covaris settings from Table
5.1

Fig. 5.2 Size selection of fragments after shearing.
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— 1.0 ul Blunt Enzyme mix

¢ incubate at RT for 30 min

5.1.14 clean up blunt-ended library

» with Qiagen MinElute column

* elute with 42ul EB into a tube containing Sul 10X NEBuffer 2

5.1.15 A-tailing

* to the eluate of the previous step, add:

- 1.0 ul dATP (10mM) — 0.2 mM final concentration
— 3.0 Klenow fragment (3’ — 5’ exo™)

— incubate at 37°C for 30 min

* allow to cool down slowly to RT

5.1.16 clean up A-tailed library

» with Qiagen MinElute column

« elute with 43u1 EB into a tube containing 5.0 ul1 10X NEBuffer 2 '

5.1.17 P2Y-adapter ligation '*

* to the eluate of the previous step, add:

— 1.0 ul of 10uM P2Y adapter (=10pmole)
- 0.5 ul rATP (100mM) — 1.0 mM final concentration
— 0.5 ul1 T4 DNA Ligase

* incubate at RT for 30 min, but over night in the fridge doesn’t do any harm and might

give higher yield

B3final NaCl concentration S0mM, necessary to keep P2Y adapter annealed, salt concentrations of 100mM
could decrease ligation efficiency (from NEB FAQ)

14Let the adapter oligos anneal slowly over a couple of hours in the heat block or thermal cycler. The adapter
can be tested through ligation to a Taq PCR product and subsequent test PCR with the following P2Y primer: 5’
— TCTCGGCATTCCTGCTGAAC - 3’ (Kang-Wook Kim)
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5.1.18 clean up P2 ligated library

¢ with MinElute column

* elute with 50 ul EB

5.1.19 RAD tag test amplification

* set up PCR:

6.5 ul H20
5

12.5 ul 2x Phusion Mastermix

6

2.5 ul P1 primer (10uM) — 1.0uM end concentration '

2.5 ul P2 primer (10uM)

1.0 ul RAD library template

* use filter-tips or different pipettes for anything post-PCR !

Table 5.2 PCR programme
98°  30sec
98°  10sec
65°  30sec } %25
72°  20sec?
72°  Smin
4° oo

4 30sec per kb recommended

5.1.20 check RAD amplification on a gel

* on 1% agarose gel put:

— 5 ul of PCR product
— 2ul GenRuler 100 bp DNA Ladder

Do not use Phusion PCR kit with standard dNTP’s. Phusion only works with high quality dNTP’s !
161 found that a much higher primer concentration than usual can greatly increase yield
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— 1 ul RAD library template

* PCR product must be at least twice as bright as the template and template should be

faintly visible

Fig. 5.3 PCR products of test amplifications of two libraries left of their respective templates. Adapter dimers
are visible at ~130bp.

5.1.21 perform a 100ul PCR

» with 4ul template if very strong PCR product from test PCR, otherwise up to 30ul

template
* 18 PCR cycles only in order to minimize PCR duplicates and bias

* purify the PCR product with Qiagen MinElute PCR purification column, elute with
20ul

* use filter-tips for anything post-PCR !

5.1.22 gel purification of amplified library
* use filter-tips for anything post-PCR !

* rinse the gel tank and use fresh buffer before running the gel if you have run a different

library before
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* run elution (20u1) in one lane of 1.25% agarose gel with 10 ul 6X Orange Dye for 1h
15 min at 6.7 V/cm

* the wells should be less than half full, otherwise migration of fragments will be
distorted !

* load 20ul 100bp ladder (20u g) in the left lane, leave 1 lane space between standard
and library

* use fresh razor blade and UV transilluminator (long wave setting to minimize muta-
tions) to cut out a size range of ~350-750 bp '®

(a) before size selection (b) after size selection

Fig. 5.4 Size selection of the amplified RAD library. Adapter dimer bands are clearly visible. About ~0.03%
of the reads from this library came from adapter dimers or sequences with very small genomic inserts.

175_6mm wide wells
18adapter dimers run at ~130bp, when making the vertical cuts, be sure not to go below 350bp, otherwise
risk of adapter dimer contamination (Maureen Liu)
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5.1.23 gel extraction
* filter-tips !
» with MinElute Gel Extraction Kit
* melt agarose slice at room temperature with frequent mixing

* elute in 20 ul EB

5.1.24 quantify molar concentration of RAD tags

* determine DNA concentration of the library with fluorimeter twice and each with at
least 3 replicates of the calf thymus standard serial dilution

* determine size distribution and peak size of RAD tags with Agilent Bioanalyzer 2100
DNA chip or from agarose gel picture

« multiply peak size by 650 [g/mol] '” to get the molecular weight of the library
* divide the DNA concentration of the library [g/u1] by it’s molecular weight to get the

molar concentration [nmole/L] of RAD tags in the library

5.1.25 validate library *°

* A-tail PCR product
* T/A clone 1.0 ul of library into pGEM vector
* Sanger sequence some clones

« check for frequency of P1-P1 dimers, PCR duplicates > and blast the sequences

5.2 Double-Digest SRAD protocol

5.2.1 ingredients

* gilica membrane genomic DNA extraction kit (e. g. Qiagen Dneasy Blood and Tissue Kit)

%the molecular weight of a base pair

20optional because of the cost and effort involved with cloning, but recommended before spending a lot of
money on Solexa sequencing

2lwhen P2Y adapter is at the same position in two clone sequences
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agarose

fluorometer, Hoechst dye and standard solutions (e. g. Calf Thymus standard)

Sbfl High Fidelity from NEB

Eagl HF and Agel HF from NEB

thermal cycler

96-well PCR plates

adhesive plate sealing film from qPCR machine
plate centrifuge

barcoded P1 adapters ( at 100nM concentration)

P2Y adapter with complementary sticky ends to the 6bp cutter used (and optionally containing

barcodes)

rATP (100nM concentration)
concentrated T4 DNA ligase
Qiagen MinElute reaction cleanup kit (Cat. no. 28204)
Glycerol

6x OG

TBE

QG buffer

SybrSafe

Blue-light transilluminator

razor blades

SpeedVac (or just table centrifuge)
Phusion PCR mastermix

P1 and P2 PCR primer

filter tips

BioAnalyzer

ethidium bromide
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5.2.2 protocol

5.2.3 isolate DNA from grasshopper hindleg

» with Qiagen Dneasy Blood and Tissue Kit (spin columns)

5.2.4 check the quality of the isolations

* by running each isolation on a 1.0% gel

5.2.5 quantify DNA samples with fluorometer twice

 produce at least three replicates of calf thymus standard serial dilutions for the standard

curve
* produce at least 5 points for the standard curve spanning from ~200ng/ul to ~12.5ng/ul
« remove dodgy measurements of the standard in order to increase 77 to at least 0.99

* get at least two concentration measurements per DNA isolation

5.2.6 digest 132 ng of DNA from each individual with Sbfl HF and
Xhol

¢ make master mix of 40x:

— 3.0ul 10X NEBuffer 4
— 3.0ul 10x BSA
— 0.5u1 SHfI-HF (20 U/ul) — 10 U/sample — 72U/ug DNA
— 0.5ul Xhol (20 U/ul) — 10 U/sample — 72U/ug DNA
- 10ul ddH,O
* based on the DNA measurements, adjust the amount of DNA isolation volume for the

digestion, so that more or less equal amounts of each sample go into the library (see

Fluorimeter.ods)

* fill with ddH,O to 30ul endvolume

22This requires 20u1 of the 25u1 Sbfl enzyme in a tube of 500 U.
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* the total amount of DNA from all samples should not exceed the capacity of a MinElute

spin column (5ug). Otherwise, two separate libraries have to be prepared.

* in an Excel spreadsheet, enter the code and volume of each DNA isolation in a layout

that corresponds to the 96 well plate, print it out and use it as reference when pipetting
* beware of cross-contamination, particularly when opening the lid of the plate
* mix by pipetting, shake the plate at the end, spin down with centrifuge
* incubate for 3 hours at 37°C in a thermal cycler with heated lid

* heat-inactivate in thermal cycler at 65°C for 20 min, then ramp down to room tempera-

ture at no more than 2°C/min

5.2.7 calculate the molar amount of sticky ends in the restriction digest

e Parameters:

genome size: 12 x 10°bp

8
molxbp

average molecular weight of a base pair: 660

expected number of SbfT restriction sites per genome (GC 46.5%): 135,633 **

amount of digested DNA in g per sample: 132 x 10~°g

* SbfT sticky ends:

t of DNA
molar amount of SbfI sticky ends = amoumt © — x Sbfl sites per genome x 2
MW of bp x genome size
(5.1)
132 x 1077
T 8 135,633x2
66omol—><bp x 12 x 10 bp

=4.52 x 10 mol
= 4.52fmol per sample

» Xhol sticky ends:

23

24

adhesive films for gPCR plates only seal tight after heating via a heated lid beyond 70°C
see ComplexityReduction.x1s for the calculation of this number



5.2 Double-Digest sSRAD protocol 165

— expected number of Xhol restriction sites per genome (GC 46.5%):
2,509,115 *> — 18.5 x SbfT sites

molar amount Xhol sticky ends = 18.5 x molar amount of Sbfl sticky ends

(5.2)
— 18.5 x 4.52 x 10~ " mol
= 83.6 x 10~ " mol
= 83.6fmol per sample

* in order to provide adapters in ~ 10 —20x excess toward sticky ends, use 100fmol
(=0.1pmol) P1 adapter per sample and 2pmole of P2 adapter per sample

5.2.8 setup a 10uM P2Y-Xhol adapter stock solution from oligos
* set up annealing buffer (AB) as shown in table 5.3

Table 5.3 annealing buffer set up:

NEB2 (10x)* 100u1
EDTA (100mM)? 110ul
ddH,0 79011

1,000u1

¢ 1x NEB2 contains 10mM MgCl,
0.372g EDTA dissolved in 10ml 1x NEB2
« ...split the volume into 100u1 aliquots and heat them to 65° for 20 minutes >°
* spin down lyophilised oligos in manufacturers tube for 1 min at maximum speed
* dissolve the lyophilised oligos with EB to 100uM
* then set up 10uM adapter solution with:

* ...and anneal the oligos by heating the mixture in the thermal cycler to 96°C for 2
minutes and then ramping down to RT at 2°/min

2
2

Ssee ComplexityReduction.xls for the calculation of this number
6in order to denature nuclease contamination
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Table 5.4
upper oligo (100uM) 10ul
lower oligo (100uM) 10ul
AB 80ul

100ul

5.2.9 ligate adapters to each restriction digest

* put the sample plate on ice

thaw P1 adapter plate on ice, shake to mix, spin down, reseal the plate after use
* first add to each heat inactivated restriction digest:

— 1.0 ul of 100nM barcoded P1 adapter — 0.1 pmol %’
— 2.0 ul of 1uM P2-Xhol adapter — 2.0 pmol **

* vortex plate and spin down

¢ then make master mix of 40x:

— 0.8 ul 10X NEB Buffer 2 *°

— 0.4 ul rATP (100mM — end concentration 1 mM) **

— 0.2 ul concentrated T4 DNA Ligase (2,000 NEB U/ul) *'
- 5.6 ul ddH,O

* add 7.0 ul of master mix to each well to a 40ul end volume and mix by pipetting up
and down

» after carefully sealing the plate with adhesive film, vortex and spin down

270.757pmole/pg DNA; 22 fold excess of adapter to cohesive ends. If you size select at 300bp or above,
adapter dimers shouldn’t be a problem.

2815 pmol/ug DNA; 23.9 fold excess of adapter to cohesive ends.

293dds 10mM NaCl to the final solution, final NaCl concentration ~50mM, which is necessary to keep the
P2Y adapter double stranded; however, salt concentrations of 100mM decrease ligation efficiency (from NEB
FAQ)

30rATP powder dissolved in EB (pH 8.5) is stable; reduce freeze-thawing cycles; 0.1 mM ATP is as efficient
as ImM but a 10mM ATP concentrations inhibit ligations!

31400U/sample corresponding to 3030 NEB U/ug DNA
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« final monovalent cation concentration should be ~50 mM *2
* incubate at room temperature (RT) for 2 hours, then over night in the fridge

* heat-inactivate at 65°C for 20 min in thermal cycler, then ramp down to RT at 2°C/min

5.2.10 combine samples

* pool the 38 individual ligation mixes, making up ~1,520ul and ~5 ug DNA

5.2.11 clean up and concentrate the adapter ligated library

» with one Qiagen MinElute reaction cleanup column (Cat. no. 28204), capacity each
5ug DNAY

* use at least as much ERC buffer as ligation mix for the reaction cleanup kit

* elute with 15 ul EB

5.2.12 size selection on agarose gel
» rinse the gel tank and use fresh buffer before running the gel**
* make a 110ml 1% TBE gel with 6.3l SybrSafe

* add 10ul 6x OG loading dye and ~5ul 100% Glycerol to the 15u1 eluate of the last

step »

* run the whole mix in one lane at 13 V/cm for ~45 min or when the orange dye just

about reaches the bottom of the gel

* the wells should be less than half full, otherwise migration of fragments will be

distorted — 5—6mm wide wells

* load 30ul 100bp ladder (50ng/ul) in the left lane, leave 1 lane space between standard
and library

32NEBuffer 4 contains 50mM potassium ions

3Bignore what the kit manual says about the maximum amount of enzymatic reaction that can be cleaned up
per column

34if you have run a gel from a different library before, otherwise not necessary

33~51g DNA per lane, the glycerol is necessary to make the DNA sink into the gel well, a lot of DNA could
otherwise be lost at this step
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* use fresh razor blade and a blue light transilluminator to cut out a size range of
~300-800 bp (fig. 5.5) *°

* cut the gel block into 4 pieces and put each into a 2ml tube

» weigh each tube and subtract the weight of an empty tube to get the gel weights in mg
* add 3 x as much buffer QG to each tube as the weight of its gel piece

* rotate the tubes at RT for one hour to melt the gel pieces

» combine the dissolved gel pieces in a bigger vessel and add one gel volume (mg=ml)

of isopropanol followed by mixing
« purify that solution over one MinElute spin column with a SpeedVac *’

e elute with 30ul EB

Fig. 5.5 Gel picture after size selection.

36be as accurate as possible with the vertical cuts, you can take your time, be sure not to go below 300bp,
otherwise risk of adapter dimer contamination (Maureen Liu)

3Teven though it says otherwise in the manual of the kit, you can gel extract with just one column as long as
the gel contains no more than 1% agarose and it is completely melted before loading
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5.2.13 selective amplification

* save 6l of the eluate of the last step for later gPCR
* then set up a PCR with the remaining 24 ul eluate:

- 6.0 u1 H20

— 50.0 1 2x Phusion Mastermix

— 10.0 pl P1-thiol primer (10uM) — 1.0uM end concentration **
— 10.0 ul P2-thiol primer (10uM)

— 24 ul RAD library template
* split the PCR mix into 5x 20l volumes and add 10l mineral oil to each PCR tube

* then run each tube with the PCR programme shown in table 5.5

Table 5.5 PCR programme
98°  30sec
98° 10sec
65°  30sec } %18
72° 30sec”
72° Smin
4° oo

4 30sec per kb recommended

5.2.14 purifcation and concentration of the selective PCR product

* use filter-tips or different pipettes for anything post-PCR !
» combine all PCR products and check Sul of it on a 1.25% gel next to 2ul Genruler
* take 6ul of the PCR product for gPCR

* purify the rest of the PCR product over a MinElute column eluting with 10ul EB

Do not use Phusion PCR kit with standard NTP’s. Phusion only works with high quality INTP’s !
31 found that a much higher primer concentration than usual can greatly increase yield
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5.2.15 determination of template amount used for selective PCR by

qPCR
use filter-tips

use 4l of the 6ul of the PCR product set aside in the previous step to determine it’s
DNA concentration with the fluorometer and picoGreen dye and use it as a standard in
the gQPCR

make 8x 1:10 serial dilutions of the PCR product in 101 EB each to produce a standard
curve

set up 20ul gPCR reactions with SybrGreen PCR master mix and 2u1 template:

— three replicates of serial dilutions including negative control
— three replicates of the template saved in step 5.2.13
from the C; values and the known amount of template molecules in the standard

dilution, determine the amount of template molecules per locus and individual *°
(see sRAD/qQPCR/TRIAL_LIB_241011_data.x1ls)

5.2.16 normalisation of the library

Unless the library looks like a homogeneous smear on the gel, it is advisable to normalise it.

check activity of double strand specific nuclease (DSN) with control template from the
kit

use filter-tips
take 61 of the purified PCR product and add 2ul 4x Hybridization buffer *!
put 4ul of the mixture in each of two tubes, labeled “1/8” and “1/16”

overlay the reaction mixtures with 101l mineral oil and spin down for 2 min at max

speed

in a thermal cycler, heat the mixture to 98° for 2 min

40This can be used to predict the expected proportion of false homozygote genotype calls due to PCR drift
and false heterozygote genotype calls due to high coverage PCR mutations.

41500mM final NaCl concentration for annealing. EB contains 10mM Tris-HCl at pH 8.5, 1x hybridization
buffer contains 50mM HEPES at pH 7.5. So the pH in the mixture should be close to 7.5.
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...then incubate at 68° for 5 hours
put DSN master buffer into thermal cycler to preheat it to 68°
make a 1/8th and 1/16 dilution of the DSN enzyme with DSN storage buffer

keep the thermal cycler at 68°C and add 5Sul preheated DSN master buffer to each tube
while keeping the tube in the cycler, then flick, spin down briefly and immediately put
back into the thermal cycler

incubate for 10 minutes at 68°C
add 1ul of 1/8th or 1/16th DSN enzyme into each tube respectively **
incubate for 25 minutes at 68°C

add 10ul DSN stop solution, mix and spin

5.2.17 test PCR of normalisation

use filter-tips

from each vial of the last step (i. e. “1/8” and “1/16”), set up three 10ul test PCR’s
with 1ul template

run PCR for 5, 10 and 15 cycles with temperature steps as in table 5.5 and check Sul
PCR product on a 1.25% EtBr gel next to 2ul Genruler

examine the PCR product: homogeneous smear in right size range?, 5 cycle PCR
product visible? (see figure 5.6)

decide which DSN dissolution produced the better result

5.2.18 amplification of normalised library

use filter-tips

set up a 50ul PCR as follow:

42just add the enzyme, don’t flick, don’t spin down, just be quick, i. e. no more than 10 seconds for this step!

#the reaction mixture contains 5SmM MgCl, and the stop solution contains SmM EDTA to neutralise it.
Figure 4(B) in the TRIMMER kit manual suggests that inactivation of DSN by heating is not guaranteed to be
complete.
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Fig. 5.6 Gel picture of 5, 10 and 15 cycle test PCR’s (from left to right).

— 25ul 2x Phusion Master mix
— Sul P1-thiol primer (10uM)
— 5ul P2-thiol primer (10uM)
— 10ul normalised library

- 5ul ddH,0

* run the PCR programme in table 5.5 for 5-7 cycles, depending on the outcome of the
test PCR #*

5.2.19 purification of the library

* use filter-tips

* purify the 50ul PCR product over a MinElute column

elute with 25ul EB
* use 4ul for DNA concentration measurement with fluorometer

* calculate an estimate of the molar concentration of the library

4These additional PCR cycles do not further bias the library’s representation of the pre-normalisation
template since this PCR starts with a lot of template molecules as indicated by the few cycles necessary to
create a visible PCR product.
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5.2.20 validate library *

* A-tail PCR product

T/A clone 1.0 ul of library into pGEM vector
» Sanger sequence a few dozen clones

* check for whether the sequences contain a P1 adapter sequence on one end and a P2

adapter sequence on the other

#optional because of the cost and effort involved with cloning, but recommended before spending a lot of
money on Solexa sequencing
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