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Abstract

The application of quantum cryptographic methods to existing com-

munications infrastructures can be extremely difficult owing to the

complex nature of quantum transmission methods. The premise of

this thesis is an examination of methods to combine quantum-safe

security with standard protocols, such as phase shift keying. Use is

made of an algorithm previously presented by Ueli Maurer which al-

lows for the distillation of a mutual symmetric cryptographic key from

some shared secret information (Maurer, 1993). This algorithm is ex-

amined extensively and incorporated into a complete protocol which

can be applied to pre-existing communications using phase shift key-

ing. Primarily, one must consider the theoretical noise capabilities. In

order to ensure the security of these communications the properties

of microwaves are characterised and established as quantum-limited

coherent states with a fractional excess noise on measurement.

Side channel attacks are more prolific when one considers the quantum

measurement attack vector, especially when one considers that the

full extent of these attacks in not yet known. If the same security

could be extracted from the distillation algorithm, without relying

upon quantum mechanics as the resource, then a universal standard

for widespread implementation could be produced. The properties of

random numbers are shown to be a sufficent resource for the advantage

distillation algorithm which provides a strong candidate for a possible

post-quantum secure universal standard.

The security of this (and various other protocols), however, relies upon

the presence of an ‘impenetrable’ safe-house for trusted parties to pre-

pare their cryptogrpahic resource (whether it be quantum or random



numbers). A side channel attack is examined which is based on the

possibility of signal leakage from a shielded room. The use of the vec-

tor potential elucidates a possible method for signals to be detected

outside a Faraday shielded enclosure - methods for performing this

detection are examined and a characterisation of the properties of the

leakage is performed. Leakage is detected from a shielded room at

the National Authority for Counter Eavesdropping. It is concluded

that a threat exists from this. However, there are possibilities for

counteracting this using certain dielectric materials which need to be

explored further.

Overall, it is established that advances have been made towards de-

veloping a post-quantum secure cryptographic method, which can be

straight forwardly implemented in a variety of existing infrastructures

using phase shift keying protocols, and even in a universal implemen-

tation using random numbers as a secure resource.
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Introduction

From Caesar to Shor - Keeping the Enemy at Bay

For centuries people have concerned themselves with the problem of securing

the information shared between two parties (Singh, 1999), without revealing the

information to an untrusted third party. The Romans brought about the Ceaser

cipher, the ancient Greeks invented the Polybius square and Hebrew scholars

used the Atbash cipher. In later centuries came the Italian Vigenere square,

cracked in the 19th century by Charles Babbage, and various advances from

Arabic mathematical scholars. The world wars fueled further progress in the

topic - Alan Turing’s Bombe was designed to crack the Nazi enigma cipher for

example. In 1948 the founding father of ‘information theory’, Claude Shannon,

published his seminal works (Shannon, 1948) (Shannon, 1949) treating knowledge

as ‘information entropy’, with the hope of being able to explicitly describe and

thus improve communication methods. Modern cryptography was born from

these tools and the problem of sharing information became a rigourous field of

communication intersecting mathematics, physics, and engineering.

This problem of modern information exchange can be thought of as three

distinct, but related, goals;

(a) Authenticity: A trusted party can determine, unequivocally, from whom

the communication came.
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(b) Integrity: The trusted parties can identify when communicated informa-

tion has been tampered with.

(c) Confidentiality: Two trusted parties can share information without it

leaking to a third party.

A good cryptosystem will address all three. Indeed, there exists a variety of

sophisticated cryptographic systems that meet these criteria; in particular, the

‘one time pad’ method encrypts a message with a unique key shared between

trusted parties. The sharing of this key, however, presents a significant problem.

The current method, ‘public key cryptography’, relies upon the complexity of

solving certain problems computationally, namely the factorisation of the product

of two large prime numbers (Nielsen & Chuang, 2004).

This is an extremely difficult problem for a classical computer to handle.

However, various algorithms, for example ‘Shor’s algorithm’, exist for quantum

computers which will allow the computation to be handled with ease. The security

community is concerned with this rising problem and has called for a ‘post-

quantum secure’ solution (NCSC, 2016b).

Many proposals for quantum safe key distribution rely on the complexities of

quantum mechanics for security - quantum key distribution (QKD) became syn-

onymous with entanglement which is very difficult to apply to existing commu-

nications infrastructures(Christandl et al., 2008; Ekert, 1991; Ozols et al., 2014).

Continuous variable quantum key distribution (CVQKD) solutions have been in-

vestigated in an attempt to make QKD more applicable to existing infratrucutres

(Assche et al., 2004; Cerf & Grangier, 2007; Filip, 2008; Graosshans & Cerf, 2004;

Grosshans, 2005; Grosshans et al., 2003; Horodecki et al., 2008; Leung et al., 2014;

Pirandola et al., 2008; Symul et al., 2007; Usenko & Filip, 2010; Weedbrook et al.,

2009, 2012), however many protocols rely on optical frequencies (Assche et al.,

2004; Grosshans et al., 2003; Lance et al., 2008; Weedbrook et al., 2006) and line-

of-sight communication or dedicated optical fibres. One of the most celebrated

protocols, however, is the uni-dimensional Usenko-Grosshans protocol which re-

lies upon quantum limited measurements (Usenko & Grosshans, 2015).

A truly scalable, integrated solution has not yet been produced (ETSI, 2015;

Lidong Chen, 2016; NCSC, 2016a). This thesis, however, works to bridge the gap
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between quantum safe key distribution and existing communications infrastruc-

ture. In particular, implementation in ubiquitious wireless communications such

as mobile phone usage and wi-fi.

Motivation

This work started life when, as a Master’s student, the author was studying

single photon cavity measurements and the group was approached by a satellite

communications company, Airbus Defence and Space, who wished to determine

if QKD was possible in a pre-existing system. This instigated a more novel top-

down approach to quantum safe cryptography.

Noise as a Resource

A conundrum which has prevented QKD and CVQKD from successful microwave

implementations has been the presence of noise. Thermal noise in particular is

thought to obfuscate the microwaves states and make entanglement especially dif-

ficult. A protocol presented by Maurer and Wolf (Bennett et al., 1995; Maurer,

1993; Maurer & Wolf, 1999) called advantage distillation (AD), however, relies on

noise as a resource for secrecy. The presence of noise clouds the communication

from a potential eavesdropper and the two trusted parties can distill a mutual

key from the noise. A further advantage of this protocol is that it can interact

directly with phase shift keying protocols and therefore existing telecommunica-

tions systems.

Moreover, noise is not merely a product of a physical state. Stochastic noise is

produced in random number generation. Harnessing this to power a noise-based

distillation would allow for a channel independent protocol - the gold standard

of modern cryptography goals.

To briefly review information theory, mutual information in the context of a

shared key between two parties, say, Alice and Bob, means that the overlap in

an information Venn diagram must be greater than zero.

I(A : B) > 0 (1.1)
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Figure 1.1: This Venn diagram shows the information entropies between the three

parties. Mutual information exists in all overlapping areas, however the informa-

tion which is secret from Eve is highlighted. This is the mutual information

between Alice and Bob, independent of Eve. This area of the Venn diagram must

be positive for secret key to be exchanged, and then maximised as much as possi-

ble for the benefit of efficiency. I denotes information and H denotes information

entropy.
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In order for this information to be secret, it is required that this mutual informa-

tion is not known to an eavesdropper (for example, Eve). Mathematically this is

represented as:

I(A : B|E) > 0 . (1.2)

This is demonstrated in figure 1.1. This is the only explicit requirement for

secrecy. In fact, it is the definition of secrecy. Information theory then goes on

to discuss the concept of ‘secrecy capacity’, denoted as S (A : B||E). This is the

ability of any given system (for which equation 1.2 must be valid) to maintain

information in secret. It follows that, for a system to have secrecy the following

bounds must be honoured:

0 < S(A : B||E) ≤ I(A : B|E) . (1.3)

The Maurer protocol - advantage distillation - elaborates upon the famous

BB84 protocol (H. Bennett & Brassard, 1984) and is based upon principles as

early as Wyner’s wire tap paper in 1975 (Wyner, 1975). Unusually, it is an entirely

classical principle with a security proof based purely upon the sharing of some

noisy source. The only requirement is that any eavesdropper must have some

unavoidable noise. This thesis establishes an interleaving of shot noise limitied

measurements and phase shift keying protocols, and furthers the exploration with

stochastic noise as a resource for universal implementation.

Novel Contributions

This thesis affords the following additions to the field of post-quantum key dis-

tribution:

• The integration of existing telecommunications protocols with an existing

key distillation protocol to create a novel method of quantum safe key dis-

tribution.

• The analysis of microwave signals to demonstrate that the measurement

noise limitations can be used to secure key distribution, contrary to claims

made in existing microwave key distrbution literature. (Weedbrook et al.,

2012).
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• The proposal of using mathematically inherent properties, specifically the

properties of random numbers, as an alternative resource for key distribu-

tion. This will eradicate the need for shot-noise limited measurements in

the physical transmission and enable channel independent key distribution.

• The analysis of an as yet unexplored consideration for signal leakages through

a Faraday cage. This work demonstrates the need for concern regarding the

use of Faraday cages for security, and a need for further exploration and

characterisation.

The summation of the work contained in this thesis outlines an innovative future

pathway for effective post-quantum key distribution.

Thesis Structure

• The thesis begins Chapter 2 with an examination of how wireless commu-

nications protocols work - specifically phase shift keying - in order to then

outline a protocol to incorporate noise based key distribution. The building

blocks of this protocol are then examined in more detail.

• The central algorithm is then broken down into component parts in Chapter

3 and a mathematical model is presented leading to a demonstration of

security.

• In order to implement this in a wireless system a characterisation of the

transmitting medium must first be obtained - performed in chapter 4 and

the noise levels are determined along with their suitability for use in the

protocol.

• Chapter 5 demonstrates that the system may also be used for the pre-

existing unidimensional CVQKD protocol presented by Usenko and Grosshans

(Usenko & Grosshans, 2015) with a low level of excess noise.

• Since the goal is to implement post-quantum cryptography universally chap-

ter 6 deals with the analysis of stochastic noise in random numbers as a

resource for the advantage distillation protocol.
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• A problem that presents itself at this point is the ability for the involved

parties to maintain a secure ‘housing’ so an eavesdropper could not make a

direct clone of the random numbers - especially since there is no quantum

limited measurement to thwart a cloning attack. Chapter 7 examines the

possibility for signal leakage through a Faraday shielded environment.

• Finally Chapter 8 ties these together and identifies the work that must hap-

pen next in order to realise the full potential of this post-quantum cryptog-

raphy proposal.

Following this brief overview, the reader is presented next with a more in

depth explanation of the two main concepts required to fully understand later

work: information theory and telecommunciations protocols.
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Background

This chapter reviews the principles that underly the work presented later in this

thesis. The concept of Shannon entropy and then how this is used in formulating

the quantity ‘channel capacity’ in the context of the field of information theory is

presented first. This chapter will then explain some of the key principles behind

wireless communications - essential for considering integration of cryptography

with telecommunications infrastrucure.

2.1 Information Theory

This section deals with the classical Shannon blueprints outlined more thoroughly

in (Nyquist, 1928; Shannon, 1948, 1949). The concepts covered include infoma-

tion entropy, channel capactiy and secrecy, alongside the ways in which these

variables relate to each other. These concepts are applied to a simple braodcast

channel and the change with the addition of feedback is examined.

2.1.1 Entropy

Shannon entropy is the measure of expected information gain from a message,

based on the probabilities of the variables from which it is formed. The way

in which the entropy of a channel is calculated is dependent upon the type of

channel. The continuous channel can be treated as the general case, with the
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discrete channel presented as a limiting case of the continuous channel (Nielsen

& Chuang, 2004; Shannon, 1948).

Continuous Channels

Any channel can be modelled as continuous by dividing its signals in to an infinite

number of regions, each of which are arbitrarily small. Such a continuous channel

is defined as one for which the measured output signal x is determined by a

continuous probability distribution p(x). Based on this probability distribution

the expected information gain can be calculated. This value is designated the

Shannon information entropy and is given the symbol H. The information gained

from an arbitrarily small signal region is a function only of the probability across

that region and is a function of the relationship p(x) log p(x). This leads to the

equation for continuous variable Shannon entropy:

H(x) = −
∫ ∞
−∞

p(x) log p(x)dx . (2.1)

Since channels are commonly represented in binary, the basis of the logarithm is

commonly taken to be 2, and this is assumed henceforth. It could be the case

that the channel has a signal dependent on more than one probability distribution

function. This would be a multi-dimensional channel, for which the generalised

case of Shannon entropy is

H(x) = −
∫ ∞
−∞

...

∫ ∞
−∞

p(x1, ..., xn) log p(x1, ..., xn)dx1...dxn . (2.2)

An important consequence of defining entropy in this manner is that H is relative

to the coordinate system and thus is not invariant under coordinate transforma-

tion, and additionally, the entropy for a continuous channel can be negative for

the case.

Gaussian Channels

A continuous channel which consists of Gaussian modulated signals is a commonly

occuring scenario in an application to telecommunications. The probability dis-

tribution function p(x) for a one-dimensional Gaussian distribution with standard
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deviation σ and centred on a mean of 0 is:

p(x) =
1

σ
√

2π
e−(x2/2σ2) . (2.3)

It follows that the information entropy for this Gaussian variable is given as:

H(x) = log σ
√

2πe . (2.4)

Discrete Channels

The discrete channel is a specific case of the continuous channel entropy. If,

in analyising the probability distribution p(x), there are regions, i, in x which

can be generalised as a single probability then one can perform the integral as a

summation. Shannon presents the entropy of a channel as

H = −
∑
n

pi(xi) log pi(xi) . (2.5)

When considering digital logic there is a tendency to discretise models when con-

sidering models, for example in (Maurer, 1993). However this does not consider

the entirety of the situation when dealing with what is a Gaussian channel in a

real physical model, and some important subtleties are lost in the process. Con-

versely to the continuous case, the discrete information entropy must always be

positive as it measures an absolute value of the randomness rather than being

dependent upon some coordinate system. A special case of the discrete channel

entropy is that of binary probability; if there are two outcomes with probabilities

p(x) and q(x) then

p(x) = 1− q(x) . (2.6)

and

Hbin(x) = −p log(p)− (1− p) log(1− p) (2.7)

This can represent data which has been processed through slicing, where q(x) is

the probability of a bit flip error.
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2.1.2 Multiple Variables

In communications cases there are frequently two or three variables to be consid-

ered1. The relationships in entropy between these variables are useful tools. The

mutual information, I, between two variables X and Y is defined as:

I(X : Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dx dy = H(X) +H(Y )−H(X, Y ) ,

(2.8)

which for N variables can be generalised to:

I(X1 : X2 : ... : XN) = I(X1 : X2 : ... : XN−1)− I(X1 : X2 : ... : XN−1|XN) .

(2.9)

In the classical domain the mutual information is always greater than or equal to

zero, in both discrete and continuous cases.

The mutual information can be thought of as the overlap between the entropies

of each variable; the opposite of this, the ‘independent part’ of the entropies, is

the conditional entropy:

H(X|Y ) = H(X, Y )−H(Y ) = −
∫
x

∫
y

p(x, y) log (p(x|y)) d(x) dy . (2.10)

or in the multivariate case:

H(X1, X2, ..., XN) =
∑
N

H(Xi|X1, ...Xi−1) . (2.11)

2.1.3 Channel Capacity

The treatment of entropy using Shannon guidelines causes a fundamental dif-

ference in the channel capacity of a discrete channel compared to a continuous

channel. For the case of a discrete channel it is possible for the channel capacity

to have a zero value. For a continuous channel it is a requirement of the system

to have a positive, non-zero capacity. This difference, while subtle, gives rise to a

1It is conventional in communications to consider the interaction between two people who

are called Alice and Bob, and denoted A and B respectively. A third, trusted, party is often

called Charlie and denoted C, however an eavesdropper is named Eve and denoted E. This

thesis follows this convention, however when discussing the general cases the variables ‘X,Y,Z’

are used.
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number of interesting features. The generalised definition of channel capacity for

a noisy channel, N , is the maximum possible mutual information of all x between

the input, X and output Y , given by

C(N) = max
p(x)

I(X : Y ) , (2.12)

and I(X : Y ) is the mutual information of the input signal X and the output

signal Y , with joint entropy H(X, Y ), denoted by the probability distribution

p(x, y). Thus for a continuous channel, over a period of time τ , the capacity, C

is

C = lim
τ→∞

max
P (x)

1

T

∫ ∫
P (x, y) log

P (x, y)

P (x)P (y)
dx dy . (2.13)

This is independent of the coordinate system despite using probability distribu-

tions which are continuous.

2.1.4 Secrecy

Having outlined the key concepts of information theory, this overview will exam-

ine next the application of these to the principles of cryptography.

Consider transmission of a message, M from a sender (Alice) to a receiver

(Bob), via a ciphertext C, which is achieved by encryption of M with a key, K.

For such a ciphertext to be entirely secure (in which an eavesdropper, Eve, can do

no better than guess at random) then M and C must be statistically independent.

That is

I(M : C) = 0 . (2.14)

(Shannon, 1948) One such cipher is one-time pad 1; however Shannon also iden-

tified that the key must be at least as long as the message, i.e.,

H(K) ≥ H(M) . (2.15)

This clearly leads to difficulty in the accessibility of mutual key. Shannon pro-

claimed this based upon various assumptions. More generally, a requirement for

1The one time pad encodes an n bit message string with an n bit private key string, which

is used only once. This ensures provable secrecy however the large amount of key required often

makes it cumbersome to implement (Nielsen & Chuang, 2004).
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Figure 2.1: Reproduced from Chapter 1 for ease This Venn diagram shows the

information entropies between the three parties. Mutual information exists in

all overlapping areas, however the information which is secret from Eve is high-

lighted. This is the mutual information between Alice and Bob, independent of

Eve. This area of the Venn diagram must be positive for secret key to be ex-

changed, and then maximised as much as possible for the benefit of efficiency. I

denotes information and H denotes information entropy.
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secrecy is illustrated in figure 2.1: the mutual information between the sender and

receiver, independent of any mutual information with the eavesdropper, must be

greater than zero, i.e.,

I(A : B|E) > 0 (2.16)

where I(A : B|E) = K. It is equal to say that Alice and Bob wish Eve’s

knowledge of K to be fractionally small:

I(E : K) < ε (2.17)

It is these objectives that a cryptographic method is aspiring to.

2.1.5 Definitions

The key concpets have been introduced, however a few formal definitions regard-

ing communications are required before continuing.

Definition 1: Broadcast Channel

Any broadcast channel between multiple parties can be modeled by some proba-

bility distribution PX,Y,Z where X, Y, Z indicates the sequence of bits received by

the parties. Whilst this method is applicable to multiple parties this discussion

will be restricted to two legitimate parties, Alice and Bob, and one eavesdropper,

Eve. X, Y and Z are random variables which take on values from the finite

alphabets X, Y and Z

Definition 2: Secrecy Rate

The secret key rate between X and Y with respect to Z is denoted as S(X : Y ||Z)

and is the maximum rate, R at which the parties Alice and Bob can agree on

some secret key, S, whilst the rate at which Eve obtains information is arbitrarily

small. Hence for every ε greater than zero, there is a protocol for a sufficient

number of repeats, N , achieving 1
N
H(S) ≥ R− ε.
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Definition 3: Secrecy Capacity

In a broadcast channel PY Z|X the secrecy capacity Cs
(
PY Z|X

)
is the maximum

rate at which Alice can reliably send information to Bob such that the rate at

which Eve obtains information is arbitrarily small. Cs is the max bits-per-use of

the channel which Alice can send to Bob in secrecy, defined as:

Cs = maxR (2.18)

It is the maximal rate R for which (for every γ > 0 and for all sufficiently large

N) there exists an encoding function

e : {0, 1}K → XN (2.19)

where

K = bRNc (2.20)

together with a corresponding decoding function

d : YN → {0, 1}K . (2.21)

A deterministic encoding function e(V )corresponds to a binary code of length N

with 2K codewords. Where for some x = e(V ) and for V uniformly distributed

over {0, 1}K the following two conditions are satisfied

(a) P [d(Y ) 6= V ] < γ, where X = e(V )

(b) H(V |ZN)/K > 1− γ

It is equivalent to require the two conditions to hold for all probability distri-

butions. A lower bound in the secrecy capacity can be given by the secret key

rate. Logically, the key rate cannot be greater than the capacity of the channel

to provide secrecy. An upper bound in the secrecy capacity can be given by

the maximal mutual information between Alice and Bob. This could be either

I(X : Y ) or I(X : Y |Z), whichever is minimal:

max
PX

S(X : Y ||Z) ≤ CS ≤ min[max
PX

I(X : Y ),max
PX

I(X : Y |Z)]. (2.22)

1

1It is possible for I(X : Y ) < I(X : Y |Z). the example given in (Maurer, 1993) uses the

case where X and Y are independent, binary and symmetric (P (X = 0) = P (Y = 0) = 1
2 ) but

Z = X + Y ( mod 2). Thus I(X : Y ) = 0 but I(X : Y |Z) = H(X) = 1
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2.1.6 Properties of a Simple Broadcast Channel

To understand future protocols it is necessary to understand first the simple

broadcast channel. A set-up where a source sends sequences X,Y,Z to Alice, Bob

and Eve. This ‘discrete memoryless channel’ is dealt with by Csiszar and Korner

in (Csiszar & Korner, 1978).

The following statement was proved in (Csiszar & Korner, 1978), and is re-

peated here:

CS = max
PUX

[I(U ;Y )− I(U ;Z)] (2.23)

where U is a probability distribution taking on values from some arbitrary set U.

Since U = X is a legitimate choice it follows then that

CS(PY Z|X) ≥ max
PX

[I(X : Y )− I(X : Z)] = max
PX

[H(X|Z)−H(X|Y )] . (2.24)

Clearly CS is 0 if I(X : Y ) = I(X : Z). For secrecy to exist in this situation it is

required that there is more mutual information between X and Y than between

X and Z.

Further Defining the Broadcast Channel

In this broadcast situation one can now model the channels as binary symmetric

and independent of each other. For simplicity this discussion moves away from

the central broadcast view and considers the case that there is a channel between

the two legitimate parties, and an additional channel between the sender and the

illegitimate receiver. The channel from Bob to Alice will have bit error probability

ε and Eve’s channel will have bit error probability δ. In mathematical terms this

means that:

PY |X(y|x) = ε if x 6= y (2.25)

PY |X(y|x) = 1− ε if x = y . (2.26)

Without loss of generality it can be assumed that ε, δ ≤ 1
2
. To distinguish this

from other probability distributions, and to keep in line with the notation in

(Maurer, 1993), let this probability dsitribution be called D(ε, δ).
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Properties of the Binary Symmetric Channel

Since these channels are binary symmetric then the binary entropy function can

be applied:

h(p) = − log2 p− (1− p) log2(1− p) (2.27)

it follows then, that

CS(D(ε, δ)) =

{
h(δ)− h(ε) if δ > ε

0 otherwise.
(2.28)

The proof for this can be found in (Maurer, 1993).

2.1.7 Broadcast Channel with Feedback

Having defined a simple broadcast channel examine what happens to the proper-

ties if public, insecure, error-free feedback is allowed. Eve will be able to observe

all messages in the public domain as well as her usual Z outputs. The channel

capactiy for this modified situation will be denoted ĈS(D(ε, δ)).

An Examination of the Channel Capacity

Suppose Alice sends some random bit X over the original broadcast channel, such

that PX(0) = PX(1) = 0.5. The error in the receipt of the bit is independent

of P . The error in the bit that Bob receives call E and the error in the bit Eve

receives call D. Thus Y = X +E and Z = X +D. So far this is identical to the

previous channel set up: P (E = 1) = ε and P (D = 1) = δ.

Now suppose that Bob wishes to send some V back to Alice. He sends W =

Y + V = X +E + V . Alice calculates W +X = V +E (by binary addition) and

‘receives’ V with E.

Eve now knows: Z = X + D, W = X + E + V and, if she tries to extract V

then Z +W = V + E +D. This is equivalent to a cascaded channel.1

The probability that Eve has a bit error in V is given from the probability

that only and exactly one of E and D is a bit flip.

P (Eve has a flipped bit) = P (f) = ε(1− δ) + δ(1− ε) = ε+ δ − 2δε (2.29)

1No information is lost by Eve from computing Z +W see (Maurer, 1993) for proof.
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modulation demodulation

message signal message

Figure 2.2: Telecommunications protocols must include transformations in to and

out of the physical layer. This is done with modulation.

This can be used to transmit key, so this gives a lower limit for ĈS by calculating

H(Y |Z)−H(Y |X):

ĈS(D(ε, δ)) ≥ h(ε+ δ − 2εδ)− h(ε). (2.30)

Since an upper bound on ĈS can be given by equation 2.22 and I(X : Y |Z) =

H(Y |Z)−H(Y |X,Z) = H(Y |Z)−H(Y |X) (where the last equality follows from

channel independence). H(Y |Z)−H(Y |X) is maximised for PX(0) = PX(1) = 1
2

giving the result that:

I(X : Y |Z) = h(ε+ δ − 2εδ)− h(ε), for P =
1

2
. (2.31)

This is the upper bound, but is also equal to the lower bound from 2.30 so

ĈS(D(ε, δ) = h(ε+ δ − 2εδ)− h(ε). (2.32)

given that X and Y are statistically independent, and Z does not uniquely de-

termine X.

Note also, that (for 0 ≤ x ≤ 1
2
) h(x) is monotonically increasing. Thus

h(ε+ δ − 2εδ) ≥ h(ε) with equality if and only if δ = 0, 1 or ε = 1
2
.

2.2 Telecommunications

A typcial telecommunications infrastructure follows the transformations illus-

trated in figure 2.2. where modulation and demodulation are in phase space

(contrary to the frequency and amplitude modulation of older procotols). This

is called phase shift keying (‘PSK’).

In loose terms, wireless telecommunications devices send information to each

other based on creating a ‘spot’ in IQ space. IQ space is equivalent to phase
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space with the x-axis as the ‘in phase’ component and the Q as the ‘quadrature’

component. Satellite communications happen via modulation in this space. This

can be either amplitude modulation (AM), or phase shift keying (PSK). This

corresponds to modulation in the radial axis and direction of changing angle in

an IQ diagram, respectively. For any given communication, these diagrams can

be called ‘constellations’, and each individual spot indicates the piece of informa-

tion which is being sent. These are then mapped to a binary label. Examples of

these include QPSK which sends a ‘spot’ in each quadrant, BPSK which is just

a binary division between positive and negative I, and QAM which has the same

constellation diagram as QPSK.(Heath, 2012). To phase shift, the phase space is

categorised into several domains depending upon the desired density of commu-

nication - binary and quadrature are common (BPSK and QPSK respectively),

but 8- 16- and further PSK is not uncommon.

A diagram depicting the I and Q measurements on respective coordinate axes

indicates the phase and amplitude of the signal, and is called a constellation dia-

gram. QPSK can be depicted easily on a constellation diagram as each quadrature

is a separate domain.

Each domain is assigned a specific ‘Gray coding’ for bit relationships as shown

for the binary and quadrature distributions in figure 2.3. This can be thought of

as a phase modulated signal, sliced in phase and bits assigned accordingly.

Density of slicing can be increased as error rates allow. A noisy signal results

in a more spread out received signal in the constellation diagram. Bit flips occur

when a signal is received in a domain that it was not sent in. This can happen

when the noise in the constellation is high. Many error correction protocols

(commonly ‘turbo codes’) exist to combat this and are very successful to a high

degree of attenuation, at around 80 dB two domains of BPSK can still be identified

on a satellite modem (loaned to the project courtesy of Airbus Defence and Space)

as shown in figure 2.4.

Other common protocols exist including those modulated in amplitude as well

as phase (for example, 4QAM and 16QAM). However, these are not practical

in satellite communications which is the main focus of this work, as amplitude

dependence breaks down at the high losses of satellite signals.
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Figure 2.3: An example of BPSK and QPSK. Note that the axis I and Q used in

the telecommunications industry are equivalent to the p and q notation common

in quantum optics. This is called a constellation diagram

Aside from the actual transmission there is some processing enveloping it. The

data to be sent (the source) undergoes compression, channel encoding, symbol

mapping, constellation mapping, pulse shaping (filtering the pulse so its distribu-

tion over the bandwidth adds maximum tolerance to the system) and digital to

analogue conversion. These last four parts formulate modulation. The channel

consists of an analogue front end, the propagation channel, and an analogue front

end at the receiver. It is in the channel where noise distorts the signal and errors

are introduced. The receiver demodulates the signal and makes decisions about

the meaning of the signal, decodes the now digital sequence of data, applies de-

compression and is left with the final data string- the sink. Should post-quantum

key distribution work for widepsread application it is in this structure that it

would need to fit for maximum efficency.

Simulation

To make things simple this section shall look only at one quadrant of QPSK,

the +I, +Q quadrant, equivalent to a {1,1} constallation mapping. Normally in

communication a single spot in this quadrant is sent several times, then depending
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Figure 2.4: This is a raw example of a BPSK protocol, whereby the two domains

are close (due to attenuation) but independent domains of phase shifting can be

identified at 80 dB loss. This is owing to error correction protocols in the hardware

used (provided by Airbus Defence and Space). This diagram is a screen-shot of

the software provided with the Airbus modems. The x- and y axes are the

normalised in-phase and quadrature-phase measurements of the incoming signal.

Upon detection the signal is split in two and a 90◦ phase transformation applied

to one half - the oscilliscope trace of these is imposed on the diagram as the red

and blue lines.
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Telecommunications

upon the noise of the signal ‘spots’ are received in a Gaussian distribution around

the original, as the noise increases the uncertainty. However what is actually

required is to declare the sending of a particular spot, then have some uncertainty

in what is actually sent. For a typical transmission Alice sends

α(I +Q) (2.33)

where α = 1 or some constant. If Alice makes α a Gaussian variable centred

about a mean ᾱ = 1 she can introduce the uncertainty that she requires into the

transmission. A possible way to do this is using the inverse error function, φ−1:

For a random number x which is uniform on the interval [0, 1]

φ−1(x) =
√

2 erf−1(2x− 1) (2.34)

The mean of the distribution this produces is centred on 0, so a simple solution

is to convert α using this property:

α = 1 + φ−1(x) (2.35)

where x = random number, 0 ≤ x ≤ 1

After this has been transmitted and received by two seperate receivers, which

each add a different Gaussian noise distribution onto the transmission, there are

two data sets which will be used for the next stage in simulation.

2.3 Combining Post-Quantum Key Distribution

with Telecommunications

Symmetric key creation has the purpose of encrypting messages, so it would

become a part of the encryption/decryption segment of the system. However to

execute this it in general requires use of other parts of the system. This implies

that the simplest way for implementation requires an intial exchange with the

receiver before commencing the sending of the intended message. A simplified

process, modified from the current standard communication procedure could look

like this: Source, channel code, modulation, noisy propagation, demodulation,

channel decoding, sink, where source and sink are strings of random numbers.
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Error correction is typically turbo code in most current communications sys-

tems. At its most basic level turbo code adds redundancy to correct channel

errors. More specifically it convolves data with impulse response filters and ran-

domly interleaves the results. This is very different to the cascade system pro-

posed later in this thesis, and the positives and negatives of each type have yet

to be considered. Another feature which may benefit from some consideration is

pulse shaping. Pulse shaping is to reduce the effects of noise in the system, but

noise is actually benefical to the key, so a balance will have to be found.

A particular benefit of the current procedure is the receiver’s ability to make

either ‘hard’ or ‘soft’ decisions. This occurs during the detection of a signal as

a point on a symbol map, and the interpretation of what this point represents

on that symbol map. A hard decision simply interprets the symbol purely based

on its location- if it is in the area designated as {1,1}, for example, then the

point is assumed to be 1,1. A soft decision processes the incoming signal and

decides the probability of being in the correct location for the symbol it was

intended to represent, often by comparing repeated signals. The soft decision

mechanism allows for the receiver to get a potentially higher yield for matches

when implementing symmetric key distribution.

As a conceptual interpretation of the process for key generation, consider the

following. Alice sends a series of symbols. Any individual symbol will be initially

represented as a specific point, however during sending, the noise transforms this

specific point into a probability distribution over its local region, meaning that

it will ultimately be detected as a different exact point. This will be a different

exact point for both Eve and Bob. They make a soft decision on where this

point is supposed to represent, which will be right for most of the time, but not

all of the time. The correct decisions will not be identical for both Bob and

Eve due to the randomness of noise. The points with correct decisions can be

used to generate the symmetric key.For further consideration of the methods of

eavesdropping consider the simplest case of a standard wire tap channel, as that

outlined by Wyner in 1975(Wyner, 1975). This set up has the properties that it

consists of channels along which continuous signals are sent, which are Gaussian

modulated according to the information that is being sent.
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2.3.1 Wiretap

One of the most basic hacks of a cryptographic system that can be imagined is a

simple ‘wiretap’ hack.In a wiretap model Alice will create her signal, send it to

Bob, who will receive it with the addition of some noise. This will look like:

Y 1,2,...,n = R⊗n ⊕ {βi, ..., βi+n} (2.36)

in the case of Bob. In the case of the eavesdropper, Eve, it will look like:

Z1,2,...,n = R⊗n ⊕ {ε, ..., ε+ n} (2.37)

In a continuous Gaussian based wiretap model, Alice is sending a string of random

variables, with a probability distribution denoted by equation 2.3. Bob receives

this string of random variables where each Y i has its own Gaussian distribution,

p(y) centred on the expected value of the p(x) that Alice sent. Additionally,

Eve receives a string of random variables where each Zi has its own Gaussian

distribution, p(z) centred again on the expected value of the p(x). It is important

to note that, since β 6= ε, then Z1,2,...n 6= Y 1,2,...,n 6= X1,2,...,n. This basic model

has the benefits that Eve has unavoidable noise, and even in the perfect channel

limit she has quantum shot noise. An intercept-resend hack is also detectable- the

noise added in this process will be distinguishable from β. However, the downfall

of this model is that it does not adequately represent the physical systems which

one uses realistically. In all experimental situations Alice will have some noise α

which she will create from the desired signal input to the generated signal.
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3

Protocol

Having outlined some of the key concepts required for integrating cryptography

with telecommunications, the next stage is to examine how this integration could

be performed. This chapter presents a proposal for integration, and then examines

in more detail some of the processes required, ending with some considerations

on the character of the wireless signals.

3.1 Novel Contributions

This chapter examines in detail work by Maurer, the ‘advantage distillation al-

gorithm’, complete with mathematical rigour which highlights a correction to

Maurer’s work. This algorithm rarely features in the quantum cryptography

community, despite the majority of proposed QKD protocols relying upon this

work. This chapter also examines a variety of commonly used principles - slic-

ing, information reconcilliation and privacy amplification. However, the novel

work in this chapter brings all these components together, along with an under-

standing of telecommunications protocols, to provide a framework for integrating

quantum-safe key distribution with existing infrastructure. This combines two

fields of work in an innovative way, and the proposal to combine all these features

in novel.
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3.2 Proposed Method

The method proposed for integrating key distribution with a telecommunications

is based upon a key algorithm - ‘Advantage Distillation’. This algorithm takes

some noisy data and extracts from it the parts which are mutual to both the

sending and recieving parties. It will be shown that, assuming any eavesdropper

has some noise separate to the receiver’s noise, this provides secrecy. Surrounding

this implementation, however, the following steps must be executed.

(a) The parties intending to communicate securely, Alice and Bob, authenticate

each other’s identity. (The problem of achieving this is not dealt with in

this thesis, and it is merely assumed to be possible. One can suppose some

trusted certifying authority, or some hashing with a previously agreed i.e.

face-to-face key which is then chained forwards in all subsequent communi-

cations.)

(b) Alice and Bob communicate with each other using a phase shift keying

(PSK) protocol - the phase of the signal is being monitored closely with

PSK.

(c) Alice generates a series of random bits which she assigns to some value of

Gaussian modulation in amplitude.

(d) Within each domain of PSK that Alice sends, the signal is Gaussian mod-

ulated in amplitude according to the bit string Alice generated. This ‘sub-

level’ modulation means that key distribution can be performed alongside

the general communications.

(e) Bob recieves the PSK and measures the Gaussian modulation in amplitude.

(f) This signal is then discretised by Bob, a process known as slicing.

(g) The resultant bits are used to perform ‘advantage distillation’ between Alice

and Bob.

(h) The previous steps have not distilled a perfect key - information reconcili-

ation is performed to correct errors.
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(i) The resultant key material is privacy amplified to produce a key.

(j) The key is then used in a one-time pad-like scheme and the key is refreshed

accordingly.

3.2.1 Encoding

There are two ways to integrate this with existing communications. One efficient

way would be to super impose this with an ongoing communication. For example:

• Alice prepares some arbitrary message for Bob (possibly part of the con-

versation they are already having), for example, ‘Hello World’, encoded

appropriately to some series of ‘1’s and ‘0’s.

• Alice sends this to Bob according to the standard Gray coding.

• Within each domain of the Gray encoding, Alice sub-modulates the domain

in either phase or amplitude.

• The sub-modulation is according to a Gaussian distribution, with the dis-

tribution sliced to a density appropriate to the communication parameters.

• The resultant signal is received and sliced by Bob, within the separate

domains of Gray encoding

• This is equivalent to super-imposing a standard CVQKD protocol, such as

those in (Usenko & Grosshans, 2015; Weedbrook et al., 2010).

Another method of encoding would be to take the PSK protocol and operate

it in the limit of near indistinguishability. A standard PSK communication which

has been attenuated such that there are significant numbers of errors:

• Alice prepares some random numbers, and encodes them in binary

• Alice sends these with the appropriate Gray coding, but at a high attenu-

ation level, such that the domains overlap and generate errors.

• Bob receives this and the slicing step is equivalent to distinguishing the

domains of the Gray encoding.
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Semantically speaking, the only difference in these implementations is whether

or not the slicing is defined be Gray coding domains, or within the domains by

some other sub-divisions, as discussed in the next section. Which encoding is

preferred is likely unique to the circumstances of the communication. Further

work is required to establish the optimum yield from using each of these encodings

in different implementation scenarios.

3.3 Slicing

In order to transform the continuous variable into a series of bits as required for a

key, the signals must be digitised. Imagine a ‘spot’ of a PSK transmission, which

has been modulated in amplitude, this already has a Gray coding bit assignment,

and this will remain for the purposes of ordinary communications. However one

can assign an additional bit code for sliced-up sections of the recieved spot itself,

which can be simulataneously utilised for key distillation. How this is divided

up is outlined in this section. The process of division into bits is called slicing

and is crucial to the protocol - it is here that noise will be added to the system,

which is imperative in order that an eavesdropper will remain ignorant of the

distributed key. Note that the process of slicing outlined here is often referred to

as quantisation in the communications community. The term has been avoided

here to maintain compatability with the quantum cryptography community’s use

of the term slicing and to avoid confusion with quantisation - the transition of a

classical model to a quantum model.

3.3.1 Method

Consider a continuous variable with a probability distribution p(x). To convert

this into a digital, binary describable string, it must be mapped onto one such

string in some way. One can use a form of mapping based upon slicing the

continuous variable into divisions of two. This is done by defining a limiting

point, usually at the mean of the distribution, beyond which any points are

assigned a 1 and prior to which any points are assigned a 0. This assigns each

data point a binary string of unit length 1. Each side of the limit point of the
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distribution is a ‘slice’. For a longer and more accurate binary string each slice

of the distribution can then be split into as many slices as required and each

assigned an appropriate binary value (e.g. 00,01,10,11 for 4 slices). This gives a

mapping to the integers [0, ..., 2n − 1] where n is the number of divisions made.

Obviously the greater the number of slices the greater the accuracy in the

mapping of the variable to a binary string. Figure 3.1 shows a basic slicing of data

points in an exchange between Alice and Bob. The example of a single quadrant

of QPSK which has been amplitude modulated has been used for illustrative

purposes.

Data points are sliced twice. Once at the point of sending - if Alice intends

to send a 000 with the slicing method in figure 3.1 she will send a point with

smaller amplitude. Then once at the point of receipt when it is measured by

Bob. Alice has a string of Gaussian variables, X(1,2,...,n), which she sends to Bob.

Bob recieves a string of Gaussian variables, Y (1,2,...,n), where

X(1,2,...,n) + δ(1,2,...n) = Y (1,2,...,n) (3.1)

and δ represents some small amount of noise that has been introduced in the

communication channel(Assche et al., 2004). In the process of slicing, each X i

has been mapped to an n bit string (sliced n times) S1,2,...,n(X i). In the example

of figure 3.1 n = 3. Clearly, as Bob does the same, dependent upon the value of

δ for each point, he will have errors in his bit strings S1,2,...,n(Y i) with respect to

Alice.

An eavesdropper who performs the measurement will also recieve some errors

with respect to both Alice and Bob - the eavesdropper will recieve a string of

Gaussian variables Z(1,2,...,n) where

X(1,2,...,n) + ε(1,2,...n) = Z(1,2,...,n) (3.2)

and ε represents the noise introduced either from measurement or from the chan-

nel.

The probability of recieving a bit error is related to the Helstrom bound - the

probability that something sent as one state is recieved as another state based

on the indistinguishability of two Gaussian distributions (Helstrom, 1976). An
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Figure 3.1: The slices of data are labelled as a bit string according to the position

of the slice. With the first slice (red), data points either side were labelled as

a 0 or 1. This label remains and the next bit in the string was labelled 0 or 1

according to the position in relation to the second, blue slice. This process is

then repeated for the third, green slice.

example of this in action can be seen in figure 3.2. As Bob will have some

deviation in what he has detected from the sender, then some reconciliation must

take place. This is dealt with in future sections.

3.3.2 Practical Notes on Slicing

During the investigations an interesting practical note on data slicing emerged.

This applies to any continuous variable broadcast, which must undergo a transi-

tion into classical variables.

The simplest method of slicing is to take the mean of all the received values

with any above the mean becoming a binary 1 and anything below becoming 0.

It is however possible to increase key production rates by instead of dividing the

received data in half, divide it into four ‘bins’, slicing more thinly. This requires

each bin to be labelled by two digits, 00, 01 etc. This however raises its own set

of problems, as the different positioning and labelling of the bins will affect the

security of the transmission by different amounts.
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Figure 3.2: Alice sends some point (marked in black as ‘x’) which has some

associated noise (Gaussian distributed), outlined in a black dashed line. It is

possible for Bob and Eve to measure this at any point in this black dashed line.

For example, Bob may measure at the point ‘x’ in red. His best guess is to assume

that this originally came from anywhere within the red dashed line. The shaded

area is the Helstrom bound and it is the point at which any two overlapping

Gaussians cannot be distinguished from each other. This instance demonstrates

how a point may be incorrectly sliced and given the incorrect bit designation.
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If splitting into more than two bins, there are two main methods of bin po-

sitioning: using an equal bin width so that the bins are equally spaced on the

x-axis; and using an equal bin probability, so that the same number of received

points fall into each bin. In the case of Gaussian distributed data, this causes

a spatial bunching of bins around the mean. The two main numbering systems

are the standard binary system e.g. for four bins 00, 01, 10, 11, and Gray coding

where adjacent bin labels differ only by one bit, i.e. for four bins, 00, 01, 11, 10.

For each method, the classical information shared between Alice, Bob and Eve

is different, even when derived from the same quantum information. This means

that some methods are more secure than others. Unfortunately, the security

of each method also changes with channel transmission, with different methods

being optimal at different channel transmissions. In general, however, slicing to

fewer bins is preferable, as is using Gray coding and bins of equal probability

at higher transmissions, as Alice and Bob share a high amount of information

these methods cause small errors in transmission to become small errors in the

resulting string.

Overall the recieved values have a binomial noise distribution which tends to

Gaussian at the high slicing limit.

3.4 Distilling a Key

Having sliced the data into bit strings with some errors, the parties must come

to a mutual agreement on the content of the bit strings in order to use them for

a key. Using the advantage distillation algorithm is the first step for this. The

purpose of advantage distillation is to create data sets which have been refined

to minimise errors. The protocol sifts through data to locate areas where Alice

and Bob do not agree and modify them without revealing the original data to an

eavesdropper. This is enabled by the addition of noise. Consider a random bit,

Q, which is randomly chosen by the sender, Alice. Alice sends this to Bob, N

times along her channel, A.

[Q⊕X1, Q⊕X2, · · · , Q⊕XN ] (3.3)
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To attempt to recover Q, Bob can then check it with his variable, and see if he

recovers an exact match N times.

[(Q⊕X1)⊕ Y1, · · · , (Q⊕XN)⊕ YN ] (3.4)

If Bob recieves either [0, 0, · · · 0] or [1, 1, · · · 1], he accepts Q, and records his

choice. He then tells Alice of his decision, who also accepts it.

The bits, Qi can then be used to modify a new Q and repeat the process to

increase the number of matches, until a key is reached from Q. This, however,

can leak information. Alternatively, the bits, Qi can be saved, and some error

correcting protocol implemented to create a key from Q.

This process is post selection by advantage distillation.

Requirements and their Purpose

Before distillation can occur, the participating parties must first have recieved a

mutual signal. That is to say that both (or all) legitimate parties share informa-

tion which differs from each other only by some quantity of noise. This can be in

the form of a signal sent from a central source to all parties; alternatively from a

party broadcasting their information to the other parties. These two options are

semantically the same.

This initial message would be sent out bit by bit, with each bit being trans-

mitted at least twice, or more times according to the desired yield and security.

Afterwards all parties will hold a list of bits differing from the original signal by

some number of noisy bits. The repeats allow the holders to make an informed

guess at the original sent bit.

The Advantage

Since the discarding of the seemingly incorrect bits is within the control of one

of the legitimate parties this means that this party gains an advantage over any

illegitimate participants. For a large enough starting set the illegitimate partici-

pants will have un-identifiable guesses remaining in their bit set after discarding

bits according to the matchlist which is sent out publicly.
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An Example

Having painted a picture of the set-up, an example is now presented. Say Alice

generates some random number set, R. She sends this number set, combined

with some noise. For simplicity the XOR function is used to represent this. She

sends R ⊕NA Bob receives this number set combined with his own noise giving

R ⊕ NA ⊕ NB. Similarly, Eve receives R ⊕ NA ⊕ NE. To see why this is useful,

examine what happens in an example where R = {0, 0, 0, 0} is chosen.

Alice generates R = {0, 0, 0, 0}. She combines this with some noise, NA =

{0, 0, 0, 1}, giving R ⊕ NA = {0, 0, 0, 1} and sends it to Bob. Bob receives this

and combines it, for example, with local signal noise which will also be a noisy

version of R. He has three options

(a) NB = NA

(b) NB = N̄A
1

(c) NB 6= NA, N̄A.

Examine (c) first- choose NB = {1, 0, 1, 0}. This gives R ⊕ NA ⊕ NB =

{1, 0, 1, 1}. This result does not give {1, 1, 1, 1} or {0, 0, 0, 0} so results of this

nature are excluded.

Next, examine case (a), NB = NA. Hence, NB = {0, 0, 0, 1} and R ⊕ NA ⊕
NB = {0, 0, 0, 0} this result is not trivial, and Bob has managed to procure the

original R, although he knows only that he has R or R̄

Similarly, in case (b) NB = {1, 1, 1, 0} yields R⊕NA⊕NB = {1, 1, 1, 1}. Again,

this result is non trivial and Bob knows he has either R or R̄. He computes this

value for each element he receives from Alice and alerts her to the components

which produced case (c), which they both dispose of.

Variations on this process exist. Firstly, at the end of this first run, Alice

and Bob can either repeat the same process to find R more exactly or they can

use alternative error correcting protocols. An advantage of running a number

of repeats of this advantage distillation process is that it can be mathematically

1 N̄ indicates ‘NOT’ meaning each 0 is exchanged for a 1 and vice versa
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Figure 3.3: A schematic diagram outlining the communication channels between

sender (Alice) and receiver (Bob), and a potential eavesdropper (Eve). α, β and

ε represent noise. The two schematics are semantically identical, however the

‘mutual reconciliation’ implementation (left) is a more practical implementation

of the noisy broadcast theory (right) as found in (Maurer & Wolf, 1999).

modeled and hence simulated key can be found (Maurer & Wolf, 1999), however,

this has to be balanced with possible information leakage.

To summarise, Alice and Bob mutually agree a signal that has been derived

jointly from R and their local noise. This signal is provably different to R and is

therefore unconditionally secret.

3.4.1 The Simulation Process

A pseudo code implementation is provided here for clarity. This involves an 8 bit

comparison and uses conventional notation for demonstration1.

(a) Alice and Bob both create arrays of biased noise. This is in lieu of a shared

1The notation + ← is used to indicate ‘append to array, ≡ denotes that the single bits

must have equality, whereas == denotes that the whole string or array must have equality;

= has the usual meaning and is used for general cases. ’Random’ indicates a random number

generated from a reliable random number source. Currently, pseudo-random number generators

will suffice. Each array element is 1 bit long.
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signal with noise.

while length(NoiseA) and length(NoiseB) < 8L do
NoiseA +← Randombit AND Randombit;
NoiseB +← Randombit AND Randombit;

end

(b) Alice makes an array, SeedA filled with random numbers:

while length(SeedA) < L do
SeedA +← Randombit;

end

(c) SeedA and NoiseA:

while length(Transmit) < 8L do
for Transmit[i] to Transmit[i+ 7] do

Transmit +←(NoiseA[i] XOR SeedA[m]);
j++;

end
m++;

end

(d) During a simulation the sending takes place via reuse of the ‘transmit’ array.

During active exchange this will be via email, radio, wifi, bluetooth or any

other channel

(e) Bob creates a new array for the one he receives by XOR-ing with noise:

while length(SeedB) < 8L do
SeedB +← element of NoiseB XOR element of Transmit ;

end

(f) Bob clears his noise array:

NoiseB == 0;

(g) Bob makes his comparisons:
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while Length(matchlist)< L do
for a = 0 to a = (8L− 8) do

if SeedB[a] ≡ SeedB[a+ 1] ≡. . .≡ SeedB[a+ 7] then
NoiseB +← SeedB[a] ;
matchlist +← 1;
a = a+ 8;

end
else

matchlist +← 0;
a = a+ 8;

end

end

end

(h) Bob ‘sends’ matchlist to Alice:

begin
Send matchlist (according to established protocol)

end

(i) Alice clears her array of noise:

NoiseB == 0;

(j) Alice examines the matchlist she was sent and uses it to distill her original

random numbers:
for i=0 to i=8L do

if matchlist[i] ≡ 1 then
NoiseA +← SeedA[i] ;

end
i++;

end

(k) NoiseA and NoiseB are now approximately equal.

NoiseA and NoiseB can now be fed into the information reconciliation (error

correction) stage of the protocol.

3.4.2 Advantage Distillation

In the situation of advantage distillation, Eve has no information about X and

Y other than that which she obtains through Z. For all Eve’s knowledge of the
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universe T , then I(XY : T |Z) = 0. Alice and Bob share no secret key initially

(not including anything for initial authentication). Eve knows the protocol, but

cannot insert fraudulent messages or perform an intercept-resend attack without

a change in Alice and Bob’s probability distributions. The only assumption made

is that Eve has some quantity of unavoidable noise on her detection of the channel.

Each message transmission step is Ci. Alice’s messages are C1, C3... and Bob’s

are C2, C4.... After a t step protocol Alice computes a secret key S = f(X,Ct)

where Ct is defined as [C1, C2, ..., Ct], and Bob computes S ′ = f(Y,Ct). S and S ′

are required to agree with very high probability,

P [S 6= S ′] ≤ α (3.5)

and Eve to have very little information about either S or S ′:

I(S;Ct, Z) ≤ β (3.6)

where α and β are small.

Examining the Secret Key Rate for One Way Transmission

The secret key rate must be both positive and non-zero which gives the following

theorem:

S(X : Y ||Z) ≥ max[I(Y : X)− I(Z : X), I(X : Y )− I(Z : Y )]. (3.7)

To prove this it needs only work for I(Y : X)− I(Z : X) as the other follows

by symmetry.

Let the alphabet X be:

X = {0, ..., L− 1} (3.8)

for some L. Addition on X is by modulo L. Alice sends some V ∈ X and Bob

and Eve receive the respective pairs [Y, V + X] and [Z, V + X]. Note that X, Y

and Z indicate the noisy channel.

40



3.4 Distilling a Key

Since the secret key rate can be arbitrarily close to the channel capacity:

S(X : Y |Z) ∼ CS and, from 2.22, the channel capacity is lower bounded by:

CS(P[Y,V+X],[Z,V+X]|V ) ≥ max
PV

[H(V |Z, V +X)−H(V |Y, V +X)]. (3.9)

Taking the latter part it can be written as:

H(V |Y, V +X) = H(V, V +X|Y )−H(V +X|Y )

= H(V |Y ) +H(V +X|V Y )−H(V +X|Y )

= H(V +X|V Y )

= H(X|Y )

Similarly, H(V |Z, V +X) = H(X|Z). Thus, the term to be maximised in 3.9

is equal to H(X|Z)−H(X|Y ) = I(Y : X)− I(Z : X).

Examining the Secret Key Rate with Centrally Broadcasted Bits

Advantage distillation requires the generation of a random bit, R, which is sent

a pre-agreed number of times. For this case, for ease of calculation, consider the

case where a central power transmits signals to all three parties.

That bit is generated acccording to

PR(0) = PR(1) =
1

2
(3.10)

and sent over the independent binary symmetric channels. CA, CB and CE with

error probabilities εA, εB and εE. The probability distribution is defined by

PXY Z|R = PX|RPY |RPZ|R (3.11)

where PX|R(x, r) = 1− εA if x = r and εA otherwise; PY |R(y, r) = 1− εB if y = r

and εB otherwise and PZ|R(z, r) = 1− εE if z = r and εE otherwise.

For binary variables a parameter βbc can be defined over CA, CB and CE:

βbc = PXY Z(0, b, c) for b, c ∈ {0, 1} (3.12)

This gives the error probabilities:

εE =
1

2
− 1

2

√
1− 8

β01 − 2(β01 + β10)(β01 + β11)

1− 4β10 − 4β11

(3.13)
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3.4.3 Optimal Hacking

It follows from the above protocol that in order to find out as much information

about Q as possible, Eve should simply calculate

[(Q⊕X1)⊕ Z1, · · · , (Q⊕XN)⊕ ZN ] . (3.14)

If she calculates that a majority of her received set of bits are ‘0’ then she can

presume that Q was indeed ‘0’ and vice versa.

This assumes that:

(a) Eve cannot directly identify Y .

(b) Eve cannot clone X.

This assumption is dealt with rigorously later, however, suppose it to be true for

this current model.

Eve has a greater error probability than Bob

Maurer goes on to prove how Eve cannot know Q better than Bob and Alice, a

summary of which is provided here. This holds for all Eve channels with ε > 0.

The bit error probablity of Alice’s channel is α, so let αr,s(r, s ∈ 0, 1) be the

probability that Q = 0 is sent by Alice, recieved by Bob as Q = r and recieved by

Eve as Q = s. There are four possibilities: Bob and Eve are both correct (α0,0),

Bob and Eve are both wrong (α1,1), Bob is correct and Eve is wrong (α0,1), Bob

is wrong and Eve is correct (α1,0).

Focussing first on α0,0, this situation could have arisen from one of two possible

occurances. The first is that Q remains unchanged:

A 0 → (1− α)→ 0 → (1− α)→ 0 B

A 0 → (1− α)→ 0 → (1− ε) → 0 E

This gives the probability contibution:

αpossibility1
0,0 = (1− α)(1− α)(1− ε) (3.15)
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The second way is that Q is changed in each transmission:

A 0 → α→ 1 → α→ 0 B

A 0 → α→ 1 → ε→ 0 E

Which gives the second probability contribution:

αpossibility2
0,0 = ααε (3.16)

Putting these together, the probability that both Bob and Eve are correct in

receiving Q is:

α0,0 = (1− α)2(1− ε) + α2ε (3.17)

Using the same method it follows that for the remaining three possible out-

comes, the probabilities are:

α0,1 = (1− α)2ε+ α2(1− ε) (3.18)

α1,0 = α1,1 = α(1− α) (3.19)

If Pα,N is the probability that Bob accepts the message sent by Alice (recall

that a message is accepted if all N received bits are equal), and βN the probability

that Bob has made an error in accepting the message then

βN =
1

Pα,N
· (α1,0 + α1,1)N (3.20)

that is, Bob’s error in accepting the message is the probability of getting an

error, divided by the probability that he accepts. Accordingly, substitution from

equation 3.19 gives

βN =
1

Pα,N
· (2α− 2α2)N (3.21)

Now, let γN be the probability that Eve has made an error in accepting the

message. Recall that Eve is choosing to assume that Q = 0 if a majority of her

results match as 0, and vice versa if the majority of her results match as 1. Note

that the only errors which matter are those when Bob has received a complete

match, as all other values are discarded. Thus γN is dependent upon α0,0 and

α0,1. For ease of calculation, suppose that N is even. Since Eve assumes a value

of Q based on having the majority of results equal, it is the probabilities based
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upon the value of N/2 which are important (i.e. Eve does not receive a majority).

To account for all the permutations of having the majority of results equal, the

binomial coeffient for
(
N
N/2

)
is needed. Again, this factor must all be divided by

the probability that Bob accepts, Pα,N .

Maurer initially includes a further factor of 1
2

to account for Eve making a

random, correct, guess, in the case of not having a majority, However, examina-

tion shows this is not necessary as the guesses are statistically independent; so

even though Eve may be accidentally ‘correct’ half of the time, this knowledge is

useless to her as she cannot determine the location of the ‘correct’ results.

To summarise, the expression for γN is:

γN ≥ ·
1

Pα,N
·
(
N

N/2

)
α
N/2
0,0 α

N/2
0,1 (3.22)

and the inequality is the result of this being an absolute lower limit in the event

Eve happens to guess everything else correctly every time.

Analysis of γN can be achieved using Stirling’s approximation for binomial

coefficients. Stirling’s formula states that

n!/((n/e)n ·
√

2πn)→ 1 , n→∞ (3.23)

For sufficiently large even N this gives:(
N

N/2

)
≥ 1√

2πN
· 2N . (3.24)

Thus, the lower bound for γN becomes

γN ≥
1

Pα,N
· 1√

2πN
· 2N · √α0,0α0,1

N (3.25)

=
K√
N
·

(2
√
α0,0α0,1)N

Pα,N
(3.26)

for some positive constant K (Charles H. Bennett, 1995).

In order to understand this in terms of α and ε so that it can be compared

directly to βN , substituion from equations 3.17 and 3.18 gives

√
α0,0α0,1 =

√
(1− 2α + α2 + 2αε− ε)(α2 − 2αε+ ε) . (3.27)
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Note that for a ε = 0 the right hand side of equation 3.27 reduces to α2−α. Next,

note that for all ε > 0, the larger factor (left) decreases by the same amount that

the smaller factor (right) increases. Given the assumption that Eve always has

noise then
√
α0,0α0,1 > α− α2 (3.28)

which is a lower bound on γN . To examine whether the probability that Eve

makes an error is greater than the probability that Bob makes an error, an upper

bound on βN is determined as follows:

Pα,N = pBob correct + pBob incorrect = (2α− 2α2)N + (1− 2α + 2α2)N

(1− 2α + 2α2)N ≤ pα,N < 2 · (1− 2α + 2α2)N

If the statement

(1− 2α + 2α2)N ≤ Pα,N

is substituted into equation 3.20 it follows that

βN ≤
(

2α− 2α2

1− 2α + 2α2

)N
. (3.29)

To summarise so far, the probability of Bob’s error is βN ≤ bN where

b =
2α− 2α2

1− 2α + 2α2
.

To put Eve’s error, γN , into a comparable format, γN ≥ cN , some manipulation

is required:

γN ≥
K√
N
·

(2
√
α0,0α0,1)N

pα,N
,

(1− 2α + 2α2)N ≤ pα,N < 2 · (1− 2α + 2α2)N ,

γN ≥
K ′√
N
·

(2
√
α0,0α0,1)N

(1− 2α + 2α2)N
.

This allows for

c =
2
√
α0,0α0,1

(1− 2α + 2α2)
− δ (3.30)

where δ can be made arbitrarily small. Finally, given equation (3.28), it is easy

to see that c > b provided that δ is sufficently small. Combined, this shows
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that there exists positive constants, b and c, with b < c, such that βN ≤ bN and

γN ≥ cN . Thus, Eve clearly has a greater error probability than Bob when she

tries to guess Q. However, this is not equivalent to there being secrecy in the

channel between Alice and Bob. This is discussed in the following section.

Positive secret key rate

To determine whether the above protocol has a positive secret key rate, i.e.

S(X;Y ||Z) > 0 (3.31)

an inspection of the Shannon entropy and mutual information is executed. Figure

2.1 illustrates the topography of information and the area which is required to be

positive in order to prove the existance of secrecy. It is sufficient to show that the

mutual information betwen Alice and Bob is greater than the mutual information

between Alice and Eve, although it is not a necessary condition, proofs of which

can be found in (Charles H. Bennett, 1995; Maurer, 1993; Maurer & Wolf, 1999).

To show this, the random variables of X̂, Ŷ and Ẑ are introduced. These

variables are constructed from XN , Y N and ZN where, if Bob accepts, X̂ = C

and Ŷ = C ′ and if Bob rejects, X̂ = Ŷ = “reject”. As Eve must collect her

informaton over all messages then Ẑ = [ZN , V ] where V is the collection of all

public messages. Hence, if the inequality

I(X̂; Ŷ )− I(X̂; Ẑ) > 0 (3.32)

holds, then a positive secret key rate exists.

The entropy for the bit C conditional on C ′ can be determined fairly simply

using Shannon’s rules and the binary entropy function h(p):

h(p) = −p log p− (1− p) log(1− p) . (3.33)

Note that

−p log p ≥ −(1− p) log(1− p) . (3.34)

for p ≤ 1/2, and recall that Jensen’s inequality is

n∑
i=1

pif(xi) ≥ f

(
n∑
i=1

pixi

)
(3.35)
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for positive numbers p1, · · · pN which sum to 1, and f a continuous real function

which is concave up, such as h(p). Hence, if Bob accepts then

H(C|C ′) = h(bN) ≤ 2bN · log(1/bN) = 2bN ·N · log(1/b) < cN . (3.36)

Furthermore, examining Eve’s side,

H(C|Ẑ) =
∑

ẑ∈ZN×V

PẐ(ẑ) ·H(C|Ẑ = ẑ) (3.37)

and given that the probability of Eve guessing C incorrectly, with the optimal

strategy and Ẑ = ẑ, is pE,ẑ then∑
ẑ∈ZN×V

PẐ(ẑ) ·H(C|Ẑ = ẑ) = EẐ [h(pE,Ẑ)] ≥ EẐ [pE,Ẑ ] = γN ≥ cN . (3.38)

Bob publically rejects which means that there is a zero information entropy for

Alice conditional upon Bob and Eve:

H(X̂|Ŷ ) = H(X̂|Ẑ) = H(X̂|V ) = 0 (3.39)

Finally, recall that the probability that Bob accepts the message sent by Alice,

pα,N > 0, it follows that

I(X̂; Ŷ )− I(X̂; Ẑ) > 0 (3.40)

and thus there is security in the model.

3.5 Information Reconciliation

Using the simulated satellite setup provided by Airbus Defence and Space some

calculations were performed to investigate the key exchange rate. That is, the

bits-per-bit required to produce key, and identify the redundancy of the protocol.

In particular, this process highlighted the need for a carefully chosen error

correction. Without error correction I(A : B) < I(A : E), further rounds of

advantage distillation creates I(A : B′) > I(A : B). But this also improves Eve’s

information as well. Thus, an error correction code which reveals positional

information and does not create an additional advantage for Alice and Bob is

47



3. PROTOCOL

required. This eliminates the use of Bose–Chaudhuri–Hocquenghem (BCH) and

other forward error correction protocols, such as Hamming codes.

A Hamming(n+ p, n) code will convert an n bit string into a n+ p bit string,

where p bits are parity indicators for a subset of the n bits. This subset is defined

in such a way that any bit flip errors in either the parity or message bits can be

identified and corrected.

To illustrate the flaws in forward error correction consider the straightfor-

ward example of a Hamming(7,4) code. Say Alice wishes to send (0000). With

Hamming code this is (0000000). Assume that Bob has received a bit error and

receives (0010), similarly Eve receives (1000). Without the Hamming code Bob,

Alice and Eve would receive different data different from each other, without any

realising they had an error themselves, or realising that each other had received

different data. With the Hamming code Bob and Eve would realise their bit

errors and both correct them so they both receive the same as Alice. The target

situation is one where both Bob and Eve have errors compared to Alice, and Bob

and Alice can isolate a section in which they have matching data and Eve does

not. If Eve has the opportunity to correct as equally as Bob then this will not be

beneficial.

Cascade

In order to combat the flaws with typical forward error correction a protocol

called cascade has been chosen. This was first establisched by Brassard and

Salvail in 1994 and is designed to leak the minimum amount of information to an

eavesdropper (Brassard & Salvail, 1994). It consists of two algorithms: BINARY

and a randomising function affectionately called JIGGLE. First, a binary search

is performed on both data sets to locate an error. This involves splitting the

data set in to two parts and comparing the parity of each part. Then, if the

parity of part one in Alice’s set does not match the parity of part one in Bob’s

set, part one is split further in to two to narrow down the location of the parity

discrepency further. When the error has been located it can either be corrected,

or simply discarded. Clearly this will only locate one error out of a possible

many. Therefore, to increase the coverage, the next step is to use the JIGGLE
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function. JIGGLE randomises the data string so that the errors are redistributed

and another one can be found using BINARY. Similar protocols exist such as

Shell, which uses a random subset of data rather than the entire string.(Brassard

& Salvail, 1994; Nakassis et al., Pre-print)

Cascade Example

To illustrate the Cascade protocol a simplified example is presented. Suppose

that Alice is trying to send a sequence:

Alice = {0, 0, 0, 0 1, 1, 1, 1 0, 1, 0, 1 0, 0, 0, 0} (3.41)

Bob has received the sequence with a two bit error:

Bob = {0, 1, 0, 0 1, 1, 1, 1 0, 1, 0, 1 0, 0, 0, 1} (3.42)

And Eve has also received the sequence but with a single bit error:

Eve = {0, 0, 0, 0 1, 0, 1, 1 0, 1, 0, 1 0, 0, 0, 0} (3.43)

Alice and Bob split their data into two and compare parities:

Alice = {0, 0, 0, 0 1, 1, 1, 1}parity = 0; {0, 1, 0, 1 0, 0, 0, 0}parity = 0 (3.44)

Bob = {0,1, 0, 0 1, 1, 1, 1}parity = 1; {0, 1, 0, 1 0, 0, 0,1}parity = 1 (3.45)

Eve = {0, 0, 0, 0 1,0, 1, 1}parity = 1; {0, 1, 0, 1 0, 0, 0, 0}parity = 0 (3.46)

Taking side 2 to begin with, Alice and Bob split into two and identify the side

in which the error lies:

Alice = {0, 1, 0, 1}parity = 0; {0, 0, 0, 0}parity = 0 (3.47)

Bob = {0, 1, 0, 1}parity = 0; {0, 0, 0,1}parity = 1 (3.48)

Thus it has been narrowed down to the last four bits. Repeating this dividing

and parity checking again reveals that the problem bit is the final one;

Alice = {0}p = 0; {0}p = 0; (3.49)

Bob = {0}p = 0; {1}p = 1; (3.50)
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Bob adjusts it and the parity checks now look like this:

Alice = {0, 0, 0, 0 1, 1, 1, 1}parity = 0; {0, 1, 0, 1 0, 0, 0, 0}parity = 0 (3.51)

Bob = {0,1, 0, 0 1, 1, 1, 1}parity = 1; {0, 1, 0, 1 0, 0, 0, 0}parity = 0 (3.52)

Eve = {0, 0, 0, 0 1,0, 1, 1}parity = 1; {0, 1, 0, 1 0, 0, 0, 0}parity = 0 (3.53)

Thus far, Eve has learnt very little. She knows two bits exactly, but the ones

which were ignored in the binary search she does not. If Eve had the following

sequence in her second half, she would still have errors and be unable to do

anything about them:

Eve = {1, 0, 1, 0 0, 0, 0, 0}parity = 0 (3.54)

Now turn attention to the first half where both Bob and Eve have an error. These

8 bits are split into two and the parity of each side checked:

Alice = {0, 0, 0, 0}p = 0; {1, 1, 1, 1}p = 0 (3.55)

Bob = {0,1, 0, 0}p = 1; {1, 1, 1, 1}p = 0 (3.56)

Eve = {0, 0, 0, 0}p = 0; {1,0, 1, 1}p = 1 (3.57)

The first four bits are then further searched and the error found and corrected

so both Alice and Bob now match. However Eve is still left with an error in the

second four bits which are not addressed. Alice and Bob’s mutual information

has now been maximised in a way which also minimizes the mutual information

with Eve, the next stage is to amplify the privacy this gives them, as outlined in

the following section.

3.5.1 Monte-Carlo simulations of AD and Cascade

Advantage distillation and cascade have been shown to be mathematically secure

as standalone elements of a key distribution scheme. Monte Carlo simulations

were written by another student, Liam Hunter1, a summary of which is included

here for completeness. The simulations implemented an eavesdropping scheme

whereby in certain conditions it was possible to recover some of the key distilled

1Under the instruction and part-supervision of the author.
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by Alice and Bob. Eve listened to the exchanges between Alice and Bob and

adapted her key distillation technique. In advantage distillation a value is added

to Alice and Bob’s keys when they both agree that their N -bit repeat codes

match after XOR with a randomly generated number. Eve’s strategy makes a

reasonable guess as to what the value will be depending on her interpretation

of the N -bit code. If she is confident that her code is all 0’s or all 1’s she can

add this to her key, however, if she calculates the code and receives, for example,

{0, 1, 1, 0} she must make a decision. Randomly guessing if the value is 0 or 1 will

not be advantageous to Eve therefore she must adopt a different strategy. The

key value is highlighted (labelled with a question mark) and its position noted to

distinguish it from a regular key value and make it traceable.

At the end of the advantage distillation Alice and Bob now both share a key

that is mostly correct. Eve has a key that has slightly more error and highlighted,

question marked, values where the true value is not known. Eve can then listen

to the Cascade protocol communications in order to attempt to correct these

errors. In Cascade, the only information exchanged between Alice and Bob is

a parity value for the current block being worked on. This block size reduces

until the source of a single error is determined. Once found, the correct key

value is revealed by one party which can be captured by Eve. Now Eve has more

information than simply the revealed value as she also has parity information for

each of the blocks analysed by Alice and Bob. If Eve can find a block containing

one unknown value and she knows the parity then that unknown value becomes

known.

During simulations, positions of the unknown values were tracked, as well as

when parity bits occurred. This was then used to determine if it was possible

for Eve to completely correct her key in order to match with Alice and Bob.

Simulations were run using different levels of error for each party to see how this

changed the number of unknown values remaining at the end of the Cascade

protocol. At low error levels (2-6%) Eve was able to recover the whole key most

of the time. However, once error levels started to rise into the region of 10-12%,

there were only a very few number of occasions where Eve was able to arrive

at the same key as Alice and Bob. For a key of length 1024, it was possible

to leave the cascade process after 4 iterations with matching keys between Alice
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and Bob with Eve not knowing up to 300 of the key values. This showed that

in an intelligent tracking eavesdrop, it is still possible to maintain secrecy using

advantage distillation and cascade.

3.6 Privacy Amplification

The final part to consider in the process of producing a symmetric key is the

amplification of privacy to further reduce the knowledge of an eavesdropper. This

is commonly used in many current classical crytpographic protocols (Nielsen &

Chuang, 2004). A large data string is mapped onto a smaller data string using

a matrix mapping, this is commonly called hashing. A universal hash function

is used to shorten the key by a prespecified amount. The hash function has the

following two properties: (a) it is computationally infeasible to find the original

data which mapped to the resultant string (irreversibility) and (b) no two data

strings will produce the resultant string (collision free). This ensures that an

eavesdropper knows the minimum amount of information about the key from the

hashed string which is produced.(Bennett et al., 1995; Cachin & Maurer, 1995;

Stallings, 2014)

Method

For the purposes of clarity, call each matching data string, produced by Alice

and Bob after error correction, M. M is a data block which can be of variable

length. Privacy amplification uses a hash function, H, to map M on to some

smaller number of bits:

h = H(M) . (3.58)

Hash functions use matrix multiplication functions, which have no inverse. This

means that for the result, h, the initial data set, M, cannot be explicitly identified.

To illustrate this, the example of a considerably simplfied matrix multiplication

is used: 
0 0 1 1
1 1 0 0
1 0 0 0
1 1 1 1




1
0
1
0

 =
(
1 1 1 0

)
. (3.59)
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The resultant matrix could have been created by any number of matrix multipli-

cations. In reducing the size of the key the amount of information an eavesdropper

knows about, the key has been reduced to an arbitrarily small amount. To un-

derstand why, consider the example that an eavesdropper, Eve, knows for certain

any 4 bits from M. She may even know H. The resultant, h, is dependent upon

every bit of M, including some bits of which Eve has definitely no information.

Therefore Eve cannot produce an accurate h and all of her knowledge of the key

is reduced. An extended disussion of privacy amplifacation for an imperfect pri-

vate channel where partial information is leaked to Eve can be found in (Bennett

et al., 1988) and (Cachin & Maurer, 1995)

3.7 Integration

In order to adapt a protocol for microwave communications it must integrate with

the following factors:

(a) high loss

(b) noise properties of microwaves

(c) possible side channel attacks

(d) modulation in phase and amplitude

(e) standardised error correction present in current telecommunications proto-

cols

(f) detector independence

Combining the above protocols within a PSK type, communication is affected

by those needs in the following ways:

(a) The protocol relies on the presence of noise, provided there is some mutual

information between Alice and Bob to begin with. The signal must be

detectable beyond mere noise.
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(b) In order for a cloning attack to remain both detectable and for the no-

cloning theorem to apply, the noise properties of microwaves must be quan-

tum limited.

(c) Known hacks such as an ‘intercept resend’ will affect the signal recieved by

Bob and be detectable.

(d) The protocol is actively incorporated with the phase and amplitude modu-

lation.

(e) Standard error correction (such as turbo coding) may not be suitable for

this. However, implementing the proposed error correction mechanism

solely for key distribution in parallel with (and independently of) exisit-

ing correction for the overall signal is straightforward.

(f) The protocol is independent of detection mechanisms.

The predominant issue is the variety of noise in microwaves. A general trans-

mission will have the following predominant sources of noise; sending mechanism,

thermal noise in the channel (additive white gaussian noise- AWGN), shot noise,

detection noise. If the thermal noise dominates, an eavesdropper may be able to

gain more information by performing a ‘freezing attack’ - measuring the signal

from within a cooled cryostat to remove thermal noise.

However, thermal noise on its own can be used in the same manner. Thermal

noise exhibits Hanbury-Brown Twiss correlations. This means that a signal has

some correlation but with noise added. This in itself fulfills the requirements for

sucessful key distillation. The proof that this is acceptable, however, lies beyond

the confines of this thesis and is the subject of future work.

The next stage in applying this protocol is to examine and fully characterise

the noise properties of signal microwaves performing PSK. This is dealt with in

the next two chapters.
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Security Boundaries

It is interesting to consider whether the thermal properties of microwaves will

dominate beyond the shot noise properties, and the subsequent implications of

this on the likelihood of secrecy. To prevent a ‘freezing attack’, one must be able

to measure in the shot noise limit. This chapter examines some of the theory

behind the profiles of noise in the frequency domain.

4.1 Novel Contributions

Some members of the quantum cryptography community (Weedbrook et al., 2010,

2012), have focussed much of their attention on the inflexibility of CVQKD pro-

tocols with thermal states. This has meant that microwaves have repeatedly

been dismissed as an adequate medium for CVQKD, on the understanding that

the single mode field has thermal noise dominating for the microwave frequency

range. This chapter draws on background physics to consider if microwaves can

be considered as a valid region for fresh examination.

4.2 Introduction

In order to communicate securely for a variety of CVQKD protocols, the noise

levels of the signals must meet certain limits. There has been some discussion

over which frequency domains provide security, for example the Usenko uni-

dimensional protocol (Usenko & Grosshans, 2015), and Weedbrook (Weedbrook
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4. SECURITY BOUNDARIES

Figure 4.1: Planck’s Law shown as in (Loudon, 2000), the energy density, W ,

varying with frequency, ω with units of ~/kBT .

et al., 2010). The basic principle in having a secure region is that the thermal

(non-quantum) noise is less than the quantum shot-noise, allowing for a small

margin of error dependent upon the protocol. For example, thermal noise can be

eliminated with a freezing attack and if thermal noise is dominating significantly

beyond the levels allowed by the protocol then the communication is no longer

secure.

Since the signals involved are multimodal then analysis cannot be restricted

to a single mode perspective. One way to manage this is to examine the average

energy for the density of modes. The minimum level of noise for a measurement

is dictated by the vacuum energy. A state which has thermal noise is a thermal

state, or a coherent state with thermal noise is a displaced thermal state.
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4.2 Introduction

Figure 4.2: Planck’s law showing energy density in thermal modes, W , response

with frequency. 1550 nm - a popular communications frequency has been labelled

for reference. Other sample wavelengths are included and it can clearly be seen

that (at room temperature) thermal energy peaks in the infrared region.
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4.3 Security in CVQKD

When analysing the thermal noise present in any general multimode field first

recall (from (Loudon, 2000)) that the mean number of photons excited at a tem-

perature T is

〈n〉 =
1

exp(~ω/kBT )− 1
. (4.1)

The mean energy (at some temperature T ) of these photons is therefore

〈n〉 ~ω . (4.2)

The density of field modes:

ρ (ω) dω = ω2 dω/π2c3 (4.3)

outlines the number of field modes (per unit volume) with frequencies ω to ω+dω.

These have a mean energy as outlined by equation 4.2. Combining 4.1 and 4.2

gives the mean energy density of radiation in modes ω (at temperature, T ):

〈WT (ω)〉 dω = 〈n〉 ~ωρ (ω) dω =
~ω3

π2c3

dω

exp (~ω/kBT )− 1
. (4.4)

〈WT (ω)〉 is the black-body thermal energy per unit volume per unit angular

frequency. This is plotted, for room temperature, in Figure 4.1 in normalised

units. It is more useful for the understanding of security regions to see this

in terms of frequency. This is shown in Figure 4.2 in SI units (also assuming

room temperature). It can be seen from these plots that frequency regions at

threat from thermal noise domination at room temperature lie somewhere in the

Terahertz region.

To compare the dominance of thermal photons with shot noise limited signals,

one can consider how many thermal photons would be measured from the cavity.

4.4 can be considered as a power spectral density in a cavity which is the size of

a chosen wavelength:

P =
~ω0dω

exp
(

~ω
kBT

)
− 1

. (4.5)

The collected power of a measurement would be given by this value multiplied

by the bandwidth of the measuring filter, and multiplied by some measurement
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time, T0. By taking the bandwidth of the filter to be 1
T0

the collected thermal

power for any given frequency, ω0, is:

PCollected = ~ω0
1

exp
(

~ω0

kBT

)
− 1

(4.6)

with photon number given by

n =
1

exp
(

~ω0

kBT

)
− 1

(4.7)

The behaviour of this function can be seen in figure 4.3. If the value for this is

compared with the strength of the signal it will indicate the number of thermal

photons in any one measurement. In particular, frequencies of less than approxi-

mately 1013Hz would not be suitable for single photon signal detection. However,

the ability to use a larger signal strength would improve upon this.

4.4 Conclusions

This Chapter outlines how thermal energy is distributed in multimode signals -

the photon number may be significant for the microwave region, however, there

are fewer modes meaning that the total energy is smaller. Hence the peak of

thermal energy is in the infrared region - this is seen in Figure 4.2. The number

of thermal photons which one would expect to be measured can be seen in Figure

4.3. For a protocol which requires single photons there is a clear limit which

prevents microwaves from being used - when the expected number of detected

thermal photons becomes greater than one. Alternatively, if one requires a shot

noise limited signal only, then an increase in the power of the overall signal would

dominate the thermal photon presence. It would be interesting to consider how

temperature for satellite communications would affect the number of thermal

photons and the implications that might have for single photon protocols and

shot noise limited only protocols.
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4. SECURITY BOUNDARIES

Figure 4.3: The number of thermal background photons which one would expect

to measure for a cavity the length, depth, and width of the given wavelength

at room temperature can be seen here. If one were to use a signal which was

significantly larger than the number of thermal photons then the measurement

would be dominated by shot noise. Frequencies less than at least ≈ 1013 would

not be suitable if one were interested in single photon measurements
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Microwave Characterisation

In order to determine if shot noise limits are achievable using typical PSK mi-

crowave signals, a characterisation of the noise must be performed. This Chapter

examines the properties of the signals using collective measurement to perform

quantum state tomography and reconstruction using homodyne detection. The

characteristic behaviour of this can be used to identify if the state is coherent,

and therefore quantum limited, or if it is a displaced thermal state. If it is the

former, then microwaves may well be suitable for use in both CVQKD proto-

cols and the post-quantum security protocol outlined in Chapter 3. However,

if the signals are displaced thermal states then a thermal protocol may have to

be implemented, or alternatively considering a post-quantum protocol based on

Hanbury-Brown Twiss correlations to produce the biased random noise required

as a resource for advantage distillation. this chapter shows that the signals used

are coherent, however further calibration may be required to reach the limits for

the Usenko protocol.

5.1 Novel Contributions

It has not before been demonstrated that the standard equipment engineered

for telecommunications is not dominated by thermal noise measurements for the

benefit of key distribution protocols. The signals in question are dominated by

shot noise measurements and therefore are suitable for use in CVQKD protocols.
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5. MICROWAVE CHARACTERISATION

Previous to this work, the microwave region was dismissed and declared unsuit-

able for CVQKD implementations on the basis that microwaves are thought to

be thermal.

5.2 Introduction

Translation of CVQKD into the microwave region is not straightforward. The

transition presents a number of challenges, specifically, additional noise, distance

factors and a many photon signal. Characterising noise is a crucial step in imple-

mentation of post-quantum cryptography or CVQKD in wireless communications.

CVQKD is a possible method for implementing security across networks. The

current successful achievements have been in the optical range. A microwave

implementation, if possible, would enable quantum security in a range of wireless

devices, without need for difficult and time consuming spatial callibrations. The

Usenko-Grosshans implementation (Usenko & Grosshans, 2015) sets stringent

limits on excess noise.

Usenko et al. base their proof of security on a uni-dimensional protocol of the

following form:

(a) Alice produces coherent states.

(b) Alice Gaussian modulates these states in one quadrature.

(c) The resultant states are sent to Bob.

(d) Bob performs a homodyne detection mostly in one. quadrature, and moni-

tors the second quadrature (e.g. through basis switching).

A PSK signal meets the latter three requirements - a modulation in one quadra-

ture could easily be performed by Alice with homodyne detection in two quadra-

tures by Bob. It is interesting to characterise the signals for use in this protocol.

As well as performing quantum state tomography to judge suitability for the pro-

tocol outlined in chapter 3, it is interesting to characterise the signals for use in

this protocol also.

62



5.3 Quantum State Reconstruction

5.3 Quantum State Reconstruction

5.3.1 Background

If one measures the states of a wireless communications system, one can identify

their properties and classify the states as either thermal or shot noise limited.

If the states are shot noise limited, they will be coherent. Alternatively they

will be thermal states, or some mix of the two. Suppose that the states of a

typical wireless communications system are coherent states, the properties would

resemble the following (as can be found in (Glauber, 2007)).

Consider some state, |α〉, for which

a |α〉 = α |α〉 (5.1)

meaning that coherent states are eigenstates of the annihilation operator, a. This

can be written in terms of the Fock basis as

|α〉 =
∞∑
n=0

cn |n〉 , (5.2)

and therefore the annihilation operator applied to this is

a |α〉 =
∞∑
n=0

cn
√
n |n− 1〉 = α

∞∑
n=0

cn |n〉 . (5.3)

To find the cn, one can follow the recursion relation given by the definition of the

annihilation operator, giving yielding

cn =
α√
n!
c0 , (5.4)

which then gives the state |α〉 as

|α〉 =
∞∑
n=0

α√
n!
c0 |n〉 . (5.5)

In order to find c0 normalise so that the inner product of a state must equal one:

〈α| α〉 = 1 = |c0|2
∞∑
n=0

α2n

n!
〈n| n〉 . (5.6)
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5. MICROWAVE CHARACTERISATION

Given that the inner product of the number states must also equal 1, and the

coefficient
∑∞

n
α2n
n!

is e|α|
2

according to the Taylor expansion. Then, accordingly

c0 = e
−|α|2

2 . (5.7)

This gives the coherent state in terms of the Fock basis as

|α〉 = e
−α2
2

∞∑
n=0

αn√
n!
|n〉 . (5.8)

Similarly, one can look at the relationship with the creation operator a†. For the

Fock basis:

|n〉 =
a†n√
n!
|0〉 , (5.9)

and so, for a coherent state

|α〉 = e
−α2
2

∑
n

(
αa†
)n

n!
|0〉 . (5.10)

Again, using the Taylor expansion, this can be written

|α〉 = eαa
†− |α|

2

2 |0〉 . (5.11)

Given that the annihilation operator acting on the vacuum state will just give

the vacuum state, then the state can be manipulated to read

|α〉 = eαa
†− |α|

2

2
−α∗a |0〉 . (5.12)

Here the following identity and can be used to simplify this further:

eA+B = e
−[A,B]

2 eAeB . (5.13)

This can now give a coherent state in terms of the vacuum state:

|α〉 = eαa
†−α∗a |0〉 = D (α) |0〉 . (5.14)

Therefore, the quantum state reconstruction of a coherent state will be a displaced

vacuum state with the amplitude of displacement given by the average photon

number.
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The statistics of photons in the coherent state can also be outlined. The cal-

culation of the expectation value for the mean number of photons in the coherent

state is taken by the application of the number operator, N̂ = â†â to the state:

〈n〉 = 〈α| â†â |α〉 = |α|2 , (5.15)

the same can be done for the operator N̂2:〈
n2
〉

= 〈α| â†ââ†â |α〉 = |α|4 + |α|2 . (5.16)

Together equations 5.15 and 5.16 reveal the dispersion of the state:

(∆n)2 = |α|2 = 〈n〉 , (5.17)

meaning that the uncertainty of the state goes as the square root of the number

of photons in the state. The amplitude of the state in phase space is given by

|α| = 〈n〉
1
2 . (5.18)

The quadrature operators, x̂ = 1
2

(
â† + â

)
and p̂ = i

2

(
â† − â

)
(for which the

commuation relation is [x̂, p̂] = i~
2

), can also be applied to the coherent states to

give the real and imaginary parts of the complex amplitude:

〈α| x̂ |α〉 =
1

2
〈α| â† + â |α〉 =

(
~

2ω

) 1
2

(α + α∗) (5.19)

and

〈α| p̂ |α〉 =
i

2
〈α| â† − â |α〉 = i

(
~ω
2

) 1
2

(α− α∗) (5.20)

with the squared operators given by〈
x̂2
〉

=
~

2ω

(
α2 + 2α ∗ α + 1 + α∗2

)
(5.21)

and 〈
p̂2
〉

=
−~ω

2

(
α2 − 2α ∗ α− 1 + α∗2

)
. (5.22)

The variance in the quadrature operators can therefore be expressed as:

(∆x)2 = (∆p)2 =
~
2

. (5.23)
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5. MICROWAVE CHARACTERISATION

The uncertainty relation is given by the inequality ∆a∆b ≥ 1
2

∣∣∣〈[â, b̂]〉∣∣∣. It can

be seen that this is satisfied:

∆x∆p =
~
4

=
1

2

∣∣∣∣i~2
∣∣∣∣ . (5.24)

This means that the combined uncertainty in the quadrature basis of the coherent

state must be dominated by the uncertainty principle, and therefore be shot noise

limited.

The measurement of the states can be seen by the action of the electric field

operator, Ê, which can be given in terms of the quadrature operators:

Ê = X̂ cosφ− Ŷ sinφ , (5.25)

the expectation value for which is〈
Ê
〉

= 〈α| Ê |α〉 =
1

2
〈α| â†e−iφ + eiφâ |α〉 = |α| cos (φ+ Θ) . (5.26)

The field variance, (∆E)2, is the minimum uncertainty state and is indepen-

dent of average photon number and phase angle. The two phase angles, φ and Θ

can be thought of as the measurement phase angle and the phase of the excitation

of the field in which the measurement is performed.

It also follows that the photon number and phase obey the uncertainty relation

∆n∆φ = 1
2

and so a coherent state is a circle in phase space similar to that in

Figure 5.1. In order to examine how this noise is distributed, one can examine

the probability distribution of the states along the amplitude axis. Take the

probability distribution from the projection of the coherent state into the Fock

basis:

P (n) = |〈n| α〉|2 = e−|α|
2 |α|2n

n!
= e−〈n〉

〈n〉n

N !
(5.27)

which is a Poissonian distribution and can be approximated for large numbers of

n by the Gaussian distribution

P (n) ≈ 1√
2π 〈n〉

e−
(n−〈n〉)2

2〈n〉 . (5.28)
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5.3 Quantum State Reconstruction

Figure 5.1: An illustration of the uncertainty of a coherent state in phase space.
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5. MICROWAVE CHARACTERISATION

Given the uncertainty relation between phase and number, it follows that the

phase probability distribution is also Gaussian:

P (φ) =
1

2π

∣∣∣∣∣∑
n

e
1
2
|α|2 |α|

n

(n!)
1
2

ein(θ−φ)

∣∣∣∣∣
2

. (5.29)

Now that the coherent state has been completely defined, it remains to outline

how one can perform a reconstruction. Quantum state reconstruction methods

typically use the Wigner function such as (Leonhardt, 1996; Rundle et al., 2017).

The Wigner function is a quasi probability distribution which can be composed

for a state, first identifited by Wigner in 1932 (Wigner, 1932). If the probability

distribution can be found for a given real state, then it can be compared with

the Wigner function. The Wigner function is given as a function of the density

matrix. The density matrix for coherent states is given by

ρ =

∫
P (α) |α〉 〈α| d2α , (5.30)

where the function P (α) gives real valued coefficients for the coherent state which

are analagous to a probability density. This is called the P− representation. The

density matrix in the P representation also obeys the normalization condition:

Trρ =

∫
P (α)d2α = 1 . (5.31)

If it is supposed that the states are modelled by a Gaussian distribution 1 the

weight funciton can be written as:

P (α) =
1

π 〈n〉
e−|α|

2/〈n〉 (5.32)

and the density operator then becomes

ρ =
1

π 〈n〉

∫
e−|α|

2/〈n〉 |α〉 〈α| d2α . (5.33)

The Wigner function is given by

W (q, p) =
1

2π~

∫
ρ(q − x

2
, q +

x

2
)e

ipx
~ dx (5.34)

1A proof of this can be found in (Glauber, 2007)
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5.3 Quantum State Reconstruction

W (α) =
1

π2

∫
d2ηeη∗α−ηα∗Trρeηa

†−η∗a . (5.35)

For a coherent state given by |α〉 = |X + iY〉 this is

W (X, Y ) =
1

2π
e−((X−x0)2+(Y−y0)2) (5.36)

which is a Gaussian centred on (x0, y0) is phase space.

A sample probability distribution from the Wigner function for a coherent

state centred on (0.69, 0.69) can be seen in Figure 5.4.

5.3.2 Photodetection

In order to see the comparison between detected photocounts and the photons of

the original coherent state consider the following explantion.

The photons arriving at a detector during some integration time T can be

measured as the following:

M̂(t, T ) =

∫ t+T

t

dtf̂(t′) =

∫ t+T

t

dt′â†(t′)â(t′) . (5.37)

An inefficient detector can be modelled as a combination of an inefficient

beam-splitter and a perfect detector where the beam splitter has reflection and

transmission coefficients: R = i(1 − η)1/2 and T = η1/2. The output which falls

on the detector is:

d̂(t) = η1/2â(t) + i(1− η)1/2v̂(t) (5.38)

where â is the input and v̂ is the second field input to the beam splitter.

The photocount operator can then become:

M̂D(t, T ) =

∫ t+T

t

dt′d̂†(t′)d̂(t′) . (5.39)

The mean photocount is:

〈m〉 = 〈M̂D(t, T )〉 = η〈M̂(t, T )〉 (5.40)
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and it can be assumed that the standard vacuum state is being used for v̂(t). The

second factorial moment is given by:

〈m(m− 1)〉 =

∫ t+T

t

dt′
∫ t+T

t

d(t′′)〈d̂†(t′)d̂†(t′′)d̂(t′′)d̂(t′)〉 (5.41)

= η2〈M̂(t, T )[M̂(t, T )− 1]〉 . (5.42)

The variance of the photocount is then given by

(∆m)2 = η2〈[∆M̂(t, T )]2〉+ η(1− η)〈M̂(t, T )〉 (5.43)

where the right hand contribution is the variance of the integrated photon number

of the light beam (as would be present in a perfect detector). The left hand con-

tribution results from the random selection of incident photons due to imperfect

detection.

The value of second order coherence (for zero time delay) is given in terms of

photocount averages as:

g
(2)
D (0) =

〈m(m− 1)〉
〈m〉2

=
〈M̂(t, T )[M̂(t, T )− 1]〉

〈M̂(t, T )〉2
. (5.44)

The Mandel Q parameter is:

QD =
(∆m)2 − 〈m〉

〈m〉
= η
〈[∆M̂(t, T )]2 > −〈M̂(t, T )〉

〈M̂(t, T )〉
. (5.45)

The mean photocount is

〈m〉 = ηn

∫ t+T

t

dt′|ξ(t′)|2 (5.46)

and

〈m(m− 1)〉 = η2n(n− 1)

[∫ t+T

t

dt′|ξ(t′)|2
]2

(5.47)

with photocount variance:

(∆m)2 = 〈m〉 − η2n

[∫ t+T

t

dt′|ξ(t′)|2
]2

. (5.48)

In homodyne detection, the reflection and transmission coeffients of the beam

splitter (separate to an imperfect detector splitter) are:

|R| = |T | = 1/
√

2 and φR − φT = π/2 . (5.49)
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in balanced homodyne detection the measured value is actually the difference

between the two arms of the beamsplitter, for which the operator for perfect

detection becomes:

M̂−(t, T ) = i

∫ t+T

t

dt′
[
â†(t′)âL(t′)− â†L(t′)â(t′)

]
(5.50)

and for imperfect detection:

M̂H(t, T ) =

∫ t+T

t

d(t′)
[
d̂†3(t′)d̂3(t′)− d̂†4(t′)d̂4(t′)

]
. (5.51)

The signal to noise ratio is defined as:

SNR =
〈Ê〉2

(∆Ê)2
(5.52)

where the expectation of the field operator is the signal. For a single mode

coherent state, α (t), given as:

α(t) = F 1/2exp(−iωLt+ iθ) (5.53)

and the coherent signal field of

S = 〈ÊH(χ, t, T )〉 = (FT )1/2cos(χ− θ) . (5.54)

Then the variance of the homodyne field operator is:

N = 〈
[
∆ÊH(χ, t, T )

]2

〉 =
1

4
, (5.55)

giving a signal to noise ratio of:

SNR = 4FT cos2(χ− θ) . (5.56)

This is comparable to the coherent signal of:

S = 〈α|Ê(χ)|α〉 = |α| cos(χ− θ) , (5.57)

with the field variance of

N = (∆E(χ))2 =
1

4
(5.58)

and signal to noise ratio:

SNR = 4〈n〉cos2(χ− θ) . (5.59)
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5.3.3 Basis Swapping

Much of the background has been considered in terms of the x and p basis. A

conversion into the p and q basis is required since the resultant waveform is to be

considered in terms of its real and imaginary parts, equivalent to p and q. In order

to translate from the x, p basis to the quadrature, p, q basis, one must consider

the projection of the x basis onto the p, q basis which goes as the following:

〈x| qp〉 =
( ω
π~

)1/4

exp

(
−ω
2~

(x− q)2 +
i

~
p (x− q)

)
. (5.60)

It is clear that this has no effect on the properties described earlier.

5.3.4 Expected Distributions

If thermal noise dominated measurements of a signal then one would expect to

see non-poissonian statistics. In particular, consider the following equation for

the average number of thermal photons, 〈n〉:

〈n〉 =
1

exp
~ω
kBT −1

, (5.61)

which can be rearranged as:

exp
−~ω
kBT −1 =

〈n〉
1 + 〈n〉

= U . (5.62)

In turn, this gives the probability distribution for a thermal state of:

P (n) =
Un∑
∞ U

n
=

〈n〉n

(1 + 〈n〉)1+n . (5.63)

The variance can be found from this using the following relationship

(∆n)2 =
∑
n

(
n− 〈n〉)2

)
P (n) . (5.64)

Given that

〈n (n− 1)〉 = 2〈n〉2 , (5.65)

then it can be surmised that

(∆n)2 = 〈n〉2 + 〈n〉 . (5.66)
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Figure 5.2: The detection mechanism of a QPSK signal includes the detection

through a high pass filter, splitting it and comparing each signal to a different

phase.

Thus, if the distribution is indeed dominated by thermal noise then the square

of the variance will have a squared component. Compare this to 5.48 which shows

the expected distribution for a coherent state, or a displaced coherent state which

is not dominated by thermal noise. It is possible that other states will have ei-

ther of these distributions, however, if a possible thermal noise measurement

is dominating, then the applicability of many CVQKD protocols, according to

(Weedbrook et al., 2010, 2012) fails, or at least becomes significantly more com-

plex.

5.4 Method

Outlined here is the method for quantum state reconstruction using homodyne

detection of the output from a software defined radio (commonly used to simu-

late wi-fi and satellite signals) and compare the results to the expectation for a

quantum coherent state as is assumed for the analysis in Section 5.3.1.

Telecommunications protocols use an ‘IQ’ modulation system. This is equiv-

alent to modulation in phase (I) and out of phase (Q) resulting in a phase shift

keying diagram. For example, a four-way modulation would be called ‘QPSK’

and have a phase diagram of the form shown in figure 5.3.
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Figure 5.3: QPSK with Gray coding, and a real example from a software defined

radio.

This is equivalent to a quadrature phase diagram, with some normalisation.

By taking multiple repeated measurements of the signal in ‘I’ and ‘Q’ (or in

the real and imaginary components of the incoming waveform) a reconstructed

approximation of the Wigner function for the state received can be made.

Homodyne detection was performed using the receiver and IQ demodulator

of the National Instruments Universal Software Radio Peripheral. The USRP

IQ detection goes as follows: An RF signal is passed through a variable resistor

and an Intermediate Frequency filter, and passes through a low-noise amplifier.

It is then beam-split into two parts. Each part is mixed with a local oscillator

signal close to the frequency of the incoming signal (homodyne detection) and

a 90 degree phase shift of the LO signal, respectively. These are now the I

and Q paths respectively. Each path goes through a filter before meeting the

analogue to digital convertor where it is sampled at some sampling frequency.

Digital down converting and other digital signals processing is applied before

receiving a reconstructed signal. The incoming signal is compared with the LO

and the resultant phase difference is found. This allows for observations of phase

sensitivity, lending itself to phase space detection. This is illustrated in Figure

5.2.
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Figure 5.4: This is the Wigner quasi-probability distribution function for a co-

herent state, with parameters equivalent to the first quadrant of a QPSK

Since an IQ constellation is essentially a map of phase space the coordinates

used for this can be extracted and one can record how frequently state mea-

surements are made in each part of phase space, thus allowing for a statistical

reconstruction of the Wigner quasiprobability function. Measurement of the mean

and variance of the marginal probability distributions can subsequently confirm

the statistical distributions.

This was performed at 51 MHz with varying power ranging from 1012 to 1017

average photon numbers. This means that a relationship between |α|2 and 〈n〉

can be seen and also between (∆α)2 and 〈n〉 evidencing the signals as either

coherent or displaced thermal states.
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Figure 5.5: Detected QPSK states represented in a phase diagram.
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Figure 5.6: There is clearly a positive correlation between the complex amplitude

of the state and the photon number. Furthermore, this is proportional to the

square root of the photon number giving evidence of coherent states.
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Figure 5.7: The variance of the complex amplitude is directly proportional to

the detection of the average photocount. This is indicative of coherent states,

whereas thermal states would exhibit a quadratic feature.
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Figure 5.8: A collective measurement of a BPSK signal reveals the ± |α〉.
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Figure 5.9: The projection of the state onto one basis gives the marginal proba-

bility. This is fitted comfortably to a Gaussian.

Figure 5.10: The projection of the state onto the other basis, taking only one of

the modulations similarly reveals a marginal probability which can be fitted to a

Gaussian.
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Figure 5.11: The signal’s sub-modulation in this basis can be seen. This is a

typical feature of PSK communications.

5.5 Results

Firstly, consider the scatter density for collective measurements in both a QPSK

and BPSK signal in Figures 5.5 and 5.8. This demonstrates how the PSK signal

can be distinguished into distinct states. Next, consider how a QPSK signal is

formulated in phase space as shown in Figure 5.14. The signal in each of the four

quarters is a sharp Gaussian peak. This can be seen in a BPSK signal also. This

signal has been created with some sub-modulation in the ‘Q’ basis which generates

three smaller peaks - as shown in Figure 5.11. The projection of this signal onto

the ‘p’ and ‘q’ basis can be seen in Figures 5.9 and 5.10 respectively. The sub-

modulation is Gaussian also, this can be seen in Figure 5.12. Furthermore the

contour plot of one of the BPSK domains can be seen in Figure 5.13.

The marginal probabilities are clearly Gaussian, as shown in Figures 5.9 and

5.10. This is indicitave of either coherent or displaced thermal states compared

with the Wigner function. It can therefore be surmised that there is more than

a mere thermal chaotic signal, or that other excess noise sources with different

relationships dominate.

Furthermore, consider how the complex amplitude compares to the average
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Figure 5.12: The overall Gaussian properties of the sub-modulation can be seen

more clearly here.
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Figure 5.13: This shows the three states sent in a single domain of BPSK. The

three states are a result of sub-modulation.

photocount number. A coherent state would reveal a square-root relationship.

This is shown in Figure 5.6. A fitting algorithm gives a very strong power re-

lationship of 0.500 ± 0.005. Finally, consider the relationship with the variance

in figure 5.7. This, crucially, has only a linear realtionship. Displaced thermal

states would have a quadratic component which cannot be distinguished here.

Examination of the residuals reveals that there is no further structure and al-

gorithmic fitting forcing a quadratic relationship reveals a negligible quadratic

component on the order of 10−14. This evidences the assertion that microwave

signals are not dominated by thermal noise, and adds weight to the predication

that microwave signals used in existing telecommunications infrastructure can

be shot noise limited. It is perhaps possible that other states and nosie sources

could lead to this distribution, however, given the knowledge of how the states

were prepared there displaced coherent states with shot noise limitations appear

the most likely candidate at this stage. This outcome is not unsurprising given the

calculations of background thermal noise in multimode states given in Chapter

4.

Unfortunately, the linear fitting in this latter relationship reveals a variance

which is greater than that required for the Usenko Grosshans protocol. However,
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Figure 5.14: This is the reconstructed probability distribution for a QPSK state

showing 4 Gaussian peaks in each of the domains.
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some further calibration of the measurement system could likely improve this.

5.6 Conclusions

Microwave signals produced in a typical PSK protocol have been shown to not be

dominated by thermal noise. Consequently the noise is not subject to a cooling

attack and the apparent quantum limited features affirm these signals as a suitable

candidate for the post quantum secure protocol outlined in Chapter 3. However,

further calibration may be needed to achieve the limits of excess noise given in

(Usenko & Grosshans, 2015).

85



5. MICROWAVE CHARACTERISATION

86



6

Random Numbers as a Resource

for Channel Independent Key

Distribution

This chapter outlines a thought experiment which validates the existence of a com-

pletely channel independent secure quantum-safe communication theory. First,

the building blocks of communication theory are outlined. Then various examples

are examined in depth by considering the probability distributions upon which

they depend. These are scrutinized with respect to potential attacks. Finally,

it is concluded that it is possible to generate symmetric key extemporaneously,

which is secure against the classical and quantum attacks considered here.

6.1 Novel Contributions

This section takes standard understandings of random numbers and demonstrates

that random numbers meet the requirements for quantum-safe key distribution.

The concept of using random numbers as a resource for the advantage distillation

protocol is entirely novel.
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6.2 Background and Motivation

Current widely used cryptographic techniques are based on security from ‘com-

putationally hard’ problems. In particular, factorising large numbers into primes.

Such problems are considered ‘NP complete’. However the introduction of quan-

tum computers may void this security. For instance, Shor’s algorithm solves

prime factorisation in a time several orders of magnitude shorter than all known

classical algorithms.

The most advanced quantum computer currently has only the ability factorise

numbers as large as 21 and the computer structure is extremely large(Mart́ın-

López, Enrique, 2012); but with a focus on building bigger, better, and faster

architectures one can imagine a quantum revolution similar to that of classical

computing progression from the 1950’s to now.

Given the large investment of international governments into the persual of

quantum computers, it is prudent to assume that there will bea significant threat

to our security systems in the decades to come. This is evident through a push to

investigate other methods of cryptography - the UK government funded Quantum

Communications Hub for example.

Using quantum cryptography to defeat a quantum problem is a satisfying res-

olution. However it would be narrow-minded to look only at quantum solutions,

especially since these are frequently poorly understood and involve complex im-

plementations which leave more room for mistakes or side channel attacks. This

is recognised in the increased focus on “post-quantum cryprography”. This has

largely been directed by a GCHQ white paper - seeking methods that do not

necessarily require a quantum based implementation so long as the solution is

secure against all possible quantum attacks (NCSC, 2016b).

As yet, the full extent of all possible quantum algorithms is not known. Seek-

ing a solution based on an inherent property of mathematics rather than on the

difficulty of the problem circumvents this issue. In a way, the principle of quan-

tum cryptography seeks to create a solution based on the inherent properties of

the mathematics of quantum systems, however it would be more convenient to

use better understood mathematical principles.
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Figure 6.1: This exploration is concerned with looking for a positive I(X : Y |Z).

This means maximising the highlighted (white) part. So long as this is positive,

the size of I(X:Y:Z) (the knowledge an eavesdropper has of the communication)

is inconsequential.

In this chapter the properties of random numbers are examined with the view

of seeking an inherent property which may be exploitable.

To thwart an eavesdropper, there must be some information shared between

Alice and Bob (two hypothetical parties) that is not shared by some eavesdropper

(who shall be named Eve). Consider the Venn diagram in Figure 6.1. The

highlighted part must be strictly greater than zero. The algorithm discussed in

chapter 3 takes some positive I(X : Y |Z) and outputs useable secrecy capactiy.

Thus, the focus of this chapter will be purely upon identifying a positive I(X :

Y |Z).

The following exploration will look at the entropy between Alice and Bob,

which is directly linked to the ‘randomness’ of the data that Alice and Bob hold

and an examination of the properties of random numbers is a logical place to

start looking for exploitable inherent properties of random numbers.
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6.3 Probabilities of Random Numbers

Consider a rudimentary random number generator- for instance, the flips of an

unbiased coin. One flip of the coin gives the choices of H = Heads and T = Tails.

Two flips gives the combinations HH, HT , TH, and TT . Three flips gives 8

different possible combinations and so on, with 2n combinations of outcomes for

n flips. The tree describing this can be seen in figure 6.3. Naturally, the binary

tree formulates a binomial probability density function. For example, a fair coin

flipped with thirty trials has a distribution seen in Figure 6.4. For comparison,

one can see the distribution for an unfair coin in Figure 6.5.

Suppose the experiment (e.g. coin flips) is repeated a large number of times.

The central limit theorem predicts that the probability density function tends to

a Gaussian. This result can be seen in Figure 6.6 and compared to the Gaussian

in Figure 6.7 with a cumulative distribution function shown is Figure 6.8.

For a large number of repeated coin flips, the expectation for the combination

of H’s or T ’s produced is that half will be H and half will be T s. For example,

HTHHTTHTTTHH... etc. A true unbiased coin is expected to give the result

that it does not tend to either outcome.

Consider next the probability, for a large number of experiment repeats, of

getting some specific xi combination of NH (number of heads) and NT (number

of tails). Monte Carlo simulations give a probability density function shown in

Figure 6.9 (where each combination has been mapped to a decimal number1).

This is a uniform distribution; for exactly 50% chance of a head or a tail all the

resultant paths are equally likely, but the mean outcome of numbers of heads and

tails is 50% - if examining specifically the number of heads (or tails) produced in

total then the distribution looks very different as seen in Figure 6.10. This is a

Gaussian with a mean at N × P (H) where N is the number of trials and P (H)

is the probability of getting ‘heads’.

If considering the case where the ordering of each set of outcomes is important,

then the probability of getting any one of those outcomes is

P (X = xi) =
1

2N
(6.1)

1For example HH = 1, HT = 2, TH = 3, TT = 4

90



6.3 Probabilities of Random Numbers

Figure 6.2: This shows the probability distribution for P = 0.9. It is more

complex than for P = 0.5 as certain outcomes are more heavily weighted.

for N trials, assuming that the probability of each flip is 0.5. This can be seen eas-

ily in Figure 6.11. For other probabilities the outcome is more complex, consider

the outcome for P = 0.9 in figure 6.2.

It can be seen how this extrapolates for higher N in Figure 6.12 - if 128 random

flips were generated, the probability of getting any one combination would be

2.9 × 10−39. Clearly, as N tends to infinity, the probability of getting some

combination of outcomes tends to zero. Even if considering just the number of

heads produced, the probability of receiving a number of heads will still tend to

zero for largeN . The probability of receiving the mean is given by

1

2N

(
N

N/2

)
=

1

2N
N !

(N − 1)!
(
N
2

)
!

(6.2)

evaluating this for limN →∞ gives 0.

This shape can be derived from the Gaussian also. Consider the equation for

a Gaussian distribution:
exp( (x−x̄)2

2σ2 )
√

2πσ
. (6.3)

Evaluating this at x = x̄ gives:

1

σ
√

2π
, (6.4)

so this is the probability that some distribution has the expectation value. Recall

that for counting statistics σ =
√
n

2
and as such, equation 6.4 becomes

1√
πn

. (6.5)

If this is studied as n becomes large the following relationship can be seen:

lim
n→∞

(
1√
πn

)
= 0 . (6.6)

91



6. RANDOM NUMBERS AS A RESOURCE FOR CHANNEL
INDEPENDENT KEY DISTRIBUTION

Figure 6.3: This is the binomial tree showing the possible combinations of out-

comes for three flips of a coin.

Note that this applies for all xi, where the distribution evaluates to:

exp
(
−(xi−n2 )2

n

)
√
nπ

(6.7)

with the limit:

lim
n→∞

exp
(
−(xi−n2 )2

n

)
√
nπ

 = 0 . (6.8)

So that P (X = xi) = 0 for large n, for all xi Thus, for a large enough number

of experiments the probability of getting any one set of outcomes is 0. It is

counterintuitive, but this works for xi = x̄ also, as seen above.

This result means that for a very large number of experiments, the chances

of getting any one distribution (where that one distribution could even be the

expected value), is zero.

6.4 Implications

For an infinite number of coin flips the probability of getting any specific combi-

nation tends to zero, as does the probability of getting any one number of Heads,

or indeed, the mean number of Heads, despite this seeming unintuitive.

In standard counting statistics the standard deviation is approximately equal
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Figure 6.4: This binomial distribution shows the probability that the end com-

bination contains n Heads, after 30 trials of a fair coin. It is clear to see that

this is not dissimilar from the shape of a Gaussian, however it is stepped and not

smooth as one would expect of a Gaussian.

Figure 6.5: This binomial distribution, in contrast to Figure 6.4 shows how the

distribution might be affected for a biased coin. In this instance, the probability

of getting heads is 0.1.
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Figure 6.6: This binomial distribution shows the probability that the end com-

bination contains n Heads, after 300 trials of a fair coin. In contrast to N = 30,

it is possible to see how this approaches a Gaussian distribution with a mean

around 150.

Figure 6.7: This is the Gaussian distribution for a mean of 150 and a standard

deviation of
√

300
2

. This is almost identical to the binomial distribution for the

same figures. This is due to the central limit theorem.
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Figure 6.8: This is the cumulative probability distribution for a Gaussian with a

mean of 150 and a standard deviation of
√

300
2

.

Figure 6.9: This is the probability distribution calculated through Monte Carlo

simulations, for any ordered combination xi of heads and tails where each possible

ordered outcome has been mapped to a decimal number. Note that it is a uniform

distribution.
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Figure 6.10: For N flips, this shows the probability of getting a number of heads,

regardless of ordering. It is clearly Gaussian.

Figure 6.11: The Monte Carlo simulated probabilities for N flips are shown as

circles, this is then fitted to 1/2N , showing how the probability of any outcome

drops exponentially with number of flips.
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Figure 6.12: Following Figure 6.11 the probability distribution is extrapolated

to 128 flips - it can be seen that the probability of getting any one outcome is

1× 10−39

to the square root of the number of counts:

σx ≈
√
N

2
(6.9)

and so the relative error is given by

ε =
σx
N

(6.10)

which gives 5% for 100, 0.5% for 1000 and so on. This means that the relative

error also tends to zero as N tends to infinity and the result number of heads will

close in on the mean value, however, for some value of N which is large but isn’t

actually infinite, then the resultant distribution will not be N
2

.

Suppose that P (x = H) = 0.5 and there are 1012 experiments. It is expected

that NH = 0.5×1012 however the probability of getting exactly NH
NH+NT

= 1
2

tends

to zero for large N .

If two sets are generated, where one is generated by Alice, and the other by

Bob, then, if using the expected values, one might expect a joint probability mass

function to look something like this:
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Alice

H T

Bob
H 0.25 0.25

T 0.25 0.25

However it is already known that the outcomes will differ from this for a

large N . To see how this impacts the statistical properties consider the following

example. A typical joint probability mass function might look like this1:

Alice

H T

Bob
H 0.245 0.238 = 0.483

T 0.271 0.246 = 0.517

= 0.516 = 0.484

The covariance of (X, Y ) for discrete X, Y is

cov(X, Y ) = E(XY )− E(X)E(Y ) (6.11a)

= E[(X − E[X])(Y − E[Y ])] (6.11b)

=
1

n2

n∑
i=1

n∑
j=1

(xi − E (X)) (yj − E (Y )) (6.11c)

which comes out to be ≈ −0.0042. The covariance can be normalised by the

standard deviations in X and Y (0.49999 and 0.49996 respectively for the example

case) to give the correlation, in this case the correlation is −0.016914. This is

non-zero, and indicates a (very small) amount of anti-correlation.

Recall that for statistical independence the following conditions must be met:

P (A ∩B) = P (A) · P (B) (6.12a)

P (A|B) = P (A) (6.12b)

P (B|A) = P (B) (6.12c)

1This example was generated from a simulated 1000 fair coin flips.
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A non-zero covariance means that

E(XY )− E(X)E(Y ) 6= 0 (6.13a)

=⇒
∑∑

XY P (XY )−
∑

XP (X)
∑

Y P (Y ) 6= 0 (6.13b)

=⇒
∑∑

XY P (XY )−
∑∑

XY P (X)P (Y ) 6= 0 (6.13c)

=⇒
∑∑

XY (P (XY )− P (X)P (Y )) 6= 0 (6.13d)

=⇒ P (XY )− P (X)P (Y ) 6= 0 (6.13e)

which directly violates equation (6.12a) and thus the probability of being truly

statistically independent decreases with N . For N large enough that the probabil-

ity of getting exactly N/2 heads is zero, then any two sets of trials will have some

small statistical dependence with each other and some bias towards correlation

or anti-correlation.

One might expect that the chances of being correlated or anti-correlated are

also equally likely. I.e. for K generations of large N sets by Alice and Bob

one might expect that correlation would occur half the time and anti-correlation

would occur half the time. However this is also beholden to the same probability

statistics and thus the outcomes are biased towards either correlated or anti-

correlated.

6.5 Relationship with Entropy

The mutual information between Alice and Bob can be given in terms of proba-

bilities as

I(A : B) =
∑
a

∑
b

P (A,B) log
P (A,B)

P (A)P (B)
. (6.14)

Given the definition (6.12a) for statistical independence, that sets of numbers

with a non-zero covariance are statistically dependent and equation (6.13e) which

shows that
P (X, Y )

P (X)P (Y )
6= 1 (6.15)

then log P (X,Y )
P (X)P (Y )

is non zero. This results in positive mutual information between

Alice and Bob, given that they generate two sets of random numbers, with large
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N . Given that P (x = 0.5) is not quite zero, there will be the rare instance when

Alice and Bob generate sets where at least one has the ‘expected’ distribution of

numbers (i.e. equal heads and tails) 1.

For all possible N , the mutual information is:

I(AN : BN) ≥ 0 ∀N , (6.16)

where

BN , AN = {0, 1}N . (6.17)

However, since I(A : B) > 0 for N →∞, if this is repeated this several times,

over, say K experiments (choosing K sets of N numbers) then:

Ī =
1

N

∑
i

Ii(AN : BN) (6.18)

where either

Ii = 0, or Ii > 0 , (6.19)

then

Ī > 0 for big enough K . (6.20)

This is the same effect as Brownian motion i.e. there is a net movement owing

to averages. There is also an entropic argument for this result; having a set of

random numbers with zero correlation can be considered to be infinitely ordered

for an infinitely big set, a set with zero entropy and zero information entropy.

6.6 Relationship with a Third Set of Numbers

So far it has been demonstrated that there is positive mutual information between

Alice and Bob. The impact of a third person (who shall be called Eve) on the

mutual information has not yet been considered, however.

Suppose now that three sets of random numbers (which shall again model

be modelled as ‘perfect’ coin flips) are generated - sets that shall be designated

Alice, Bob and Eve respectively.

1This can be combated however if Alice and Bob produce numbers with an odd N , or indeed

by doing a brief check and rejecting any sets whose distributions are equal to the expectation

value.
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The interesting quantity is

I(X : Y |Z) =
∑
z

∑
y

∑
x

P (X, Y, Z) log
P (Z)P (X, Y, Z)

P (X,Z)P (Y, Z)
(6.21)

which can be rewritten in terms of the chain rule for mutual information

I(X : Y |Z) = I(X : Y, Z)− I(X : Z) . (6.22)

If the quantity I(X : Z) is less than I(X : Y, Z) then I(X : Y |Z) must be non-

zero. The relationship between Eve and Bob and Eve and Alice will be the same

as the relationship between Alice and Bob.

P (A,E)− P (A)P (E) 6= 0 (6.23a)

P (B,E)− P (B)P (E) 6= 0 (6.23b)

It can be deduced that I(A : E) is non-zero. Similarly it can also be deduced

that P (X, Y, Z)− P (X)P (Y )P (Z) 6= 0. Suppose the following:

P (X, Y )− P (X)P (Y ) = δ (6.24a)

P (Y, Z)− P (Y )P (Z) = ε (6.24b)

P (X,Z)− P (X)P (Z) = γ (6.24c)

P (X, Y, Z)− P (X)P (Y )P (Z) = α (6.24d)

This can be inserted into P (Z)P (X,Y,Z)
P (X,Y )P (Y,Z)

to obtain:

P (Z)(α + P (X)P (Y )P (Z))

(γ + P (X)P (Z))(ε+ P (Y )P (Z)
. (6.25)

Then
P (Z)α + P (X)P (Y )P (Z)P (Z)

γε+ γP (Y )P (Z) + εP (X)P (Z) + P (X)P (Y )P (Z)P (Z)
(6.26)

which, if this quantity evaluates to a value besides one, means that I(A : B|E) >

0. In order to check this, equate the two, and add some constant, ∆, which,

for ∆ = 0 indicates no conditional mutual information, and conditional mutual

information otherwise.

P (Z)α + P (X)P (Y )P (Z)2

= ∆ + γε+ γP (Y )P (Z) + εP (X)P (Z) + P (X)P (Y )P (Z)P (Z) (6.27)
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rearranges to give

∆ = P (Z)α− γε− γP (Y )P (Z)− εP (X)P (Z) . (6.28)

∆ will only be equal to zero in the strict circumstances that the modifiers are

zero, or, some exact combination which, since they vary will only be the case

with a very small probability. This is the same scenario as seen previously:

I(X : Y |Z) =
1

N

∑
i

Ii(X : Y |Z) (6.29)

where either

Ii(X : Y |Z) = 0 , or Ii(X : Y |Z) > 0 . (6.30)

Over some large number of experiements this means that

I(A : B|E) > 0 (6.31)

for a large enough K experiments. This results in some non-zero value in all

parts of the Venn diagram. Note that this only holds if Eve does not have an

exact copy of either Alice or Bob. Crucially, however, by pure guessing, the

chances of replication of either Alice or Bob is 1/2N . If N is large, the number

of repetitions required to get an exact copy is 2N and as a result, a brute force

attack is unreasonable.

The random numbers generated by Alice and Bob with these properties can

be input into an algorithm such as advantage distillation discussed in Chapter 3.

However, whilst Alice and Bob do not publish their number sets using the advan-

tage distillation algorithm, Alice and Bob must be within a trusted environment

when these numbers are produced - such as a shielded room.

6.7 Efficiency

Simulation of random numbers as a resource reveals that there is a baseline

efficiency of 0.06%. For the bits sent between Alice and Bob, 0.06% will end up

as a final key. Some bits will be required for authentication for each transmission.

For n bits required per round for authentication, the starting number set will have
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to be of length 0.06%·n = 1667·n per transmission. For x rounds of transmission,

the initial number set would have to be of length 1667 · n · x Assuming a 256 bit

authentication per transmission, 4266667 bits per round will be required to meet

the minimum level for efficency. The number of rounds of CASCADE required

for this length of key varies dependent upon the bias in the random numbers.

However, in the event that the bias in the random numbers is low enough that

the number of rounds of CASCADE required is too beyond a certain limit, then

the sets can be discarded and new sets generated. There is considerably more

work to be done to find the optimum maximum rounds of CASCADE compared

to the length of the keys and the bias between the two sets.

6.8 Conclusion

This chapter looked to the properties of random numbers as a potential resource

for symmetric key creation using advantage distillation. To demonstrate suitabil-

ity as a resource this chapter showed that there exists a positive mutual informa-

tion I(A : B|E) > 0. This results from a natural bias inherent in a set of random

numbers, despite the expectation that any set of true random numbers has equal

quantities of all possible values. Since these numbers are randomly generated,

then attacks from an eavesdropper are limited to attacks on the advantage dis-

tillation protocol, dealt with in Chapter 3. This shows that random numbers are

a potential suitable resource for post quantum symmetric key distribution. One

of the potential difficulties with this method is the large amount of redundancy

within the production of a key. The number of bits required to exchange a 256 bit

key would vary dependent upon the combination of protocols used to produce the

key. This requires further examination to determine the efficiency of the protocol.

The caveat to using random numbers as a resource is that they can be produced

without any possibility of eavesdropping, for example, preparation in a shielded

room. The assumption that a shielded room prevents eavesdropping is looked at

more thoroughly in the next chapter.
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7

A Side-Channel Attack Arising

from Barrier Leakage

7.1 Novel Contributions

The only work which previously considers the vector potential as a mechanism

for leakage through Faraday cages is (Gelinas, 1984; Kawakami & Yamashita,

1999; Konopinski, 1978; Puthoff, 1998; Zimmerman, 2011, 2013). None of these

have experimentally examined this mechanism, or considered its viability as a

vulnerabilty in security contexts. This work draws on basic knowledge of elec-

tromagnetism (specifically the formulation of the vector potential) and presents

experimental work based on this in the context of Faraday cages as secure rooms.

7.2 Introduction

Shielded rooms and Faraday cages have been used for decades in the fight for cy-

bersecurity, both commercially and within government. TEMPEST 1 attacks and

eavesdropping are a significant threat to defence and containing signals within

a shielded room is thought to eliminate this risk. This is based on the princi-

ple that electromagnetic signal leakage cannot occur though a Faraday cage (or

1TEMPEST is the American National Security Agency code name for the process of taking

advantage of information from stray signals, as in (Marquardt et al., 2011). It covers defensive

emission security as well as offensive eavesdropping.
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shield) owing to the properties of conventional transverse waves. However, it has

come to light in recent times that some signal types may be able to penetrate Fara-

day cage type shielding possibly using the Aharanov-Bohm mechanism (Gelinas,

1984; Puthoff, 1998; Zimmerman, 2011, 2013). In this Chapter it is shown that

these signals demonstrate a leakage risk. Longitudinal signals emitting within a

shielded box are detected from outside the box, the extent is such that text based

conversations can be held with simple off-the-shelf software defined radios.

7.2.1 Motivations

Various protocols for Continuous Variable Quantum Key Distribution (CVQKD)

require that participating parties have a private and secure space to prepare

states. Many CVQKD protocols assume this can be created by simply using a

Faraday shielded box, and continue the protocol proof without further considera-

tion. However literature (Gelinas, 1984; Kawakami & Yamashita, 1999; Konopin-

ski, 1978; Puthoff, 1998; Zimmerman, 2011, 2013) has surfaced which indicates

that this aspect deserves some scrutiny. In order to be assured of the secure

implementation of the proposed protocol, one must first examine the realism of

the assumption that a secure space can be created.

7.2.2 Typical Assumptions

A secure space could normally be assumed on the understanding that a shielded

room and Faraday cage combination will provide the required security. Shielded

rooms and Faraday cages have been used to secure and protect against eaves-

dropping and TEMPEST attacks for a number of years (Agrawal et al., 2003).

The principle is simple. Contain all electromagnetic emissions within a single

room (where no signals can escape, leak, or be observed by an adversary), using

the ability of a Faraday cage to ‘neutralise’ an internal electric field resulting in

zero electric field externally. This ability certainly holds true for conventional,

transverse signals. However, some research suggests that a property of the signal

called the vector potential, and therefore information about the signal, can leak

through a Faraday cage (Gelinas, 1984; Kawakami & Yamashita, 1999; Puthoff,

1998). This Chapter describes a quantum eavesdropping method, detecting the
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vector potential by using the Aharanov-Bohm effect for a possible side-channel

attack on various CVQKD protocols.

7.2.3 Implications

Clearly, if such an eavesdropping method is possible there is a significant question

regarding the security of Faraday cages and shielded rooms. This has the con-

sequence of voiding the security of many existing protocols (especially CVQKD

protocols) and current TEMPEST defences until a solution to this side-channel

attack can be found. This presents a dilemma to governments and other organi-

sations currently relying upon Faraday cages and shielded rooms to secure their

communications. Furthermore, some researchers may rely on Faraday shielding

to perform experiments in an EM-free zone.

7.2.4 Chapter Outline

This Chapter outlines the possibilities for vector potential leakage, including an

investigation of the signal propagation through various shielding barriers. It

starts with a presentation of the theory behind such effects, a look at pre-existing

literature, and preliminary simulations of signals using the COMSOL simulation

software package. The Chapter then moves on to present experimental findings

and summarise the possibility of risk to eavesdropping in shielding scenarios.

7.3 Background

7.3.1 Shielding Methods

There are two principal mechanisms through which leakage is prevented - Fara-

day shielding and attenuation. The former requires a continuous metal barrier,

or cage, which may have holes provided their size is small compared to the wave-

length being blocked. As the metal barrier is conductive the charge which builds

up (as a result of the electric field) is allowed to neutralise through movement of

charge carriers along the metal. This is, however, not entirely fool-proof; some

residual fields can leak through depending on the conductivity of the Faraday
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cage, the size of holes and the continuity quality. Attenuation is used to dampen

these stray signals, a thickness of field-dampening material is added so that the

field strength through the barrier decreases exponentially with thickness until it

can be considered to be negligible and ‘undetectable’. These are particularly de-

signed with a focus towards transverse signal types and work very effectively in

blocking this type of signal, thanks to years of engineering efforts.

7.3.2 The Vector Potential

The eavesdropping mechanisms outlined in (Gelinas, 1984; Kawakami & Ya-

mashita, 1999; Konopinski, 1978; Puthoff, 1998; Zimmerman, 2011, 2013) are

based on the use of the vector potential and the Aharonov-Bohm effect1. What

follows is a study of significant features of the magnetic vector potential so that

it may be further understood in the context of these mechanisms.2

The explanation commences with a complete description of the electric (E)

and magnetic (B) fields in the form of the differential Maxwell equations.

Gauss’ law states

∇ · E =
ρ

ε0

(7.1)

where ρ is the electric charge density and ε0 is the physical constant of vacuum

permittivity. Gauss’ law for magnetism states

∇ ·B = 0 (7.2)

and together the Gauss laws define the fundamental fields. The following two

laws link the two fields. Faraday’s law of magnetic induction is

∇× E = −∂B

∂t
, (7.3)

1Technically the Aharanov-Bohm effect is specifically the phase effect of the vector potential

presence; in this instance it is a reference to the physicaly observable effect of a non-zero vector

potential
2This treatment of the vector potential approximately follows the method of that in

(Townsend, 2000), which should be sought for further details. Similarly, (Barbieri et al., 2013)

provides a transparent explanation of the physical effects of the vector potential.
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defining the electric field as a spatial response to a time variant magnetic field.

Finally, Ampere’s law is

∇×B = µ0j + µ0ε0
∂E

∂t
, (7.4)

where µ0 is the magnetic permeability and the j term referes to charges moving

through the fields which is zero in the case that there are no additional charges

present. Together these four laws provide a complete description of the EM fields.

The vector calculus identity stating that the divergence of a curl is zero

∇ ·∇× f = 0 (7.5)

can be used with Gauss’ law (7.2) so that the magnetic field B can be written in

terms of a hypothetical quantity that is called the ‘vector potential’:

B = ∇×A. (7.6)

It is easy to see that (7.2) holds given (7.5). However Faraday’s law (7.3) becomes:

∇×
(

E +
1

c

∂A

∂t

)
= 0, (7.7)

and using the vector calculus identity that the curl of the gradient is zero:

∇×∇f = 0, (7.8)

then there is the possibility that

E +
1

c

∂A

∂t
= −∇ϕ. (7.9)

where ϕ is some arbitrary scalar potential. Note that this means the vector

potential, A, can be transformed by the addition of some scalar potential function

χ:

A→ A + ∇χ; (7.10)

as long as the scalar potential is also transformed by

ϕ→ ϕ− 1

c

∂χ

∂t
. (7.11)

This is a gauge transformation - the potentials A and ϕ are altered but the

physicality of the fields E and B remain unchanged; this is known as gauge

invariance.
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7.3.3 The Aharonov-Bohm Effect

To see how the role of the vector potential can influence the detection of a field,

despite the field remaining gauge invariant, one can consider the Aharanov-Bohm

effect, first derived in (Aharonov & Bohm, 1959). 1

Consider first a scenario in which a magnetic field is confined to the interior

of a hollow cylindrical shell (as in figure 7.1), for example a solenoid in the ‘long’

approximation 2 Taking the vector potential equation (7.6) in the integral form,

the flux of the magnetic field through a surface S can be written in terms of the

vector potential as: ∫
B · dS =

∫
(∇×A) · dS. (7.12)

To analyse the left hand side use can be made of Stokes’ theorem:∮
A · dr =

∫
(∇×A) · dS. (7.13)

This means that for radii ρ < R then (7.12) becomes:∫
B · dS =

∮
A · dr = |A| 2πρ = B0πρ

2 . (7.14)

Thus, using the azimuthal symmetric property of the cylinder the vector potential

is

A =

(
B0ρ

2

)
ϕ̂ ρ < R (7.15)

1Note that this follows the explanation given in (Townsend, 2000) and (Sakurai & Napoli-

tano, 2011) which provide further detail if required.
2For a ‘long’ solenoid its external fields are considered to be so weak as to be non-present.

An infinitely long solenoid would not have any field lines which meet outside the solenoid.

The imagined cylinder has some radius R, and for all radii ρ > R, then B = 0. The inside of

the cylinder (ρ < R) can be considered to have a uniform magnetic field B = 0 · ρ̂+ 0 · ϕ̂+B0ẑ.

110



7.3 Background

Figure 7.1: A hollow cylinder with a magnetic field, B0, inside and no magnetic

field outside, a surface S which it penetrates and in the presence of a charge q

moving along the path s.
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and for all points beyond the cylinder B has been defined to zero so using the

confined definition of the magnetic field:

A =

(
B0R

2

2ρ

)
ϕ̂ ρ > R. (7.16)

This can be checked by applying the gradient to the curl of A giving B0 inside

the cylinder and 0 outside.

Now that the vector potential for the imagined cylinder has been derived,

it is interesting to investigate what happens to a charge, q, travelling at some

velocity v along some path s in its presence. It is useful to consider the modified

Lagrangian 1for this:

L =
1

2
mv2 − qϕ+

q

c
A · v (7.17)

For some segement of the path that the charge travels along, between the

times t and t+ δt, the change in ‘action’, S, of the particle2 can be seen as

Sno A present → Sno A present +
q

c

∫ t+δt

t

dt v ·A (7.18)

where the integral can be rewritten with respect to the length of the path, ds:

q

c

∫ t+δt

t

dt

(
dx

dt

)
·A =

q

c

∫ x+δx

x

A · ds. (7.19)

Using Feynmann’s method of path integrals for all possible quantum paths (as

outlined in (Sakurai & Napolitano, 2011; Townsend, 2000)), the path amplitude

ψ of a charge q without the presence of the modified vector potential is given by

〈x′, t′| x0, t0〉 =

∫ x′

x0

D [x(t)] e
i
~S[x(t)] (7.20)

where S is the action from the Lagrangian. and D is a shorthand notation to

represent the infinite number of possible path integrals given by∫ x′

x0

D [x(t)] = lim
N→∞

∫
dx1 . . .

∫
dxN−1

( m

2π~i∆t

)N
2
. (7.21)

1The Lagrangian describes the energy of a model, and for a charge without the vector

potential present the Lagrangian would be L = 1
2mv2 − qϕ

2The action of a particle is the time integral of the Lagrangian of that particle and describes

how the system evolves.
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for N path segements, particle mass m and over time interval ∆t. The addition

of the magnetic vector potential to the Lagrangian calls for the modification of

this path amplitude to

〈x′, t′| x0, t0〉 =

∫ x′

x0

D [x(t)] e
i
~S[x(t)]e

iq
~c

∫ x′
x0

A·ds
(7.22)

There are two paths that require consideration in order to observe the Aharanov-

Bohm effect, i.e. the paths going opposite sides of the cylinder. Without the

cylinder, these paths are ψ1 and ψ2. The modified paths, ψ1,2 are then

ψ′1 = ψ1e

iq
~c

∫
path1

A·ds
(7.23a)

ψ′2 = ψ2e

iq
~c

∫
path2

A·ds
. (7.23b)

The total path amplitude for the particle to go around the cylinder is then

ψtotal = ψ′1 + ψ′2 (7.24a)

= ψ1e

iq
~c

∫
path1

A·ds
+ ψ2e

iq
~c

∫
path2

A·ds
(7.24b)

= e

iq
~c

∫
path2

A·ds
(
ψ1e

iq
~c

∫
path1

A·ds−
∫

path2

A·ds
+ ψ2

)
(7.24c)

= e

iq
~c

∫
path2

A·ds (
ψ1e

iq
~c

∮
A·ds + ψ2

)
. (7.24d)

It can be seen that there is a change of relative phase e
iq
~c

∮
A·ds between path 1

and path 2 as a result of the vector potential presence. Using Stokes’ theorem

(7.13) the line integral of the vector potential can be related to the magnetic

flux, ΦB =
∫

B · dS. Consequently, as the magnetic field strength varies the

relative phase between the two paths varies by
(
q
~c

)
ΦB. This has an effect on

the interference pattern for the charged particle - the probability of observing

the particle in some interference region gains a sinusoidal component given by

the period 2π~c
|q|ΨB

where even numbered multiples give rise to no evident change in

interference pattern, and odd numbered multiples give rise to an 180◦ out-of-phase

pattern - i.e. the exact opposite.

This unusual mathematical implication has been physically observed and veri-

fied, for example in (Chambers, 1960; Tonomura, 1982). This is considered on the
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scale of a ‘long’ solenoid. However, a shielded room can be modelled in a similar

way, where the Faraday cage encircling the room is equivalent to the solenoid.

A magnetic field is confined to a box from which it may not ‘leak out’ and so it

cannot be ‘seen’ by the environment. However, charged particles in the environ-

ment can be influenced by the presence of the vector potential eminating from

within the box. This effect refers specifically to phase change but, whilst this is a

useful tool, it isn’t the only observable - a result of the dynamic vector potential

is outlined in the next section and is easier to exploit.

7.3.4 The Dynamic Vector Potential

To further elaborate on the detection of the vector potential one can consider the

dynamic electromagnetic field equation - Faraday’s law of induction (7.3). Given

the definition of the vector potential, (7.6), (7.3) can be rewritten as

∇× E = −∂ (∇×A)

∂t
(7.25)

which then reveals the electric field as an observable of an oscillating vector

potential:

E = −∂A

∂t
−∇Φ (7.26)

or equivalently

E = −1

c

∂A

∂t
(7.27)

if choosing the Coulomb gauge (by imposing the condition ∇ ·A = 0) and using

the Gaussian unit form of the Maxwell equations. It is important to note that

signals inside a shielded room are not static- they are dynamic electromagnetic

fields. As such there is an oscillating vector potential beyond the confines of the

shielded room, regardless of the strength of the shielding.

Further characterisation of this oscillating vector potential field can be achieved

upon manipulation of the Maxwell equations. Using the relationship between

electric field and vector potential in Faraday’s law of induction (7.4) in Gaussian

units then a wave equation for A is produced:

∇× (∇×A)− 1

c

∂ − 1
c
∂A
∂t

∂t
= ∇2A− 1

c2

∂2A

∂t2
= 0 (7.28)
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with a set of ‘vector potential’ wave solutions written as

A(x, t) = A(k)e±ik·xe±iωt (7.29)

with ω = |k| c. Additionally, the Coulomb gauge condition means that

k ·A(k) = ±ik ·A(x, t) = 0 (7.30)

revealing that the direction of A(x, t) is perpendicular to the direction of propaga-

tion (k). Consequently it is apparent that the resultant observable static electric

field from equation (7.27) should be longitudinal with respect to the source of

the signal. It can be argued that longitudinal static electric fields can propagate

through a boundary and that the use of the vector potential is unnecessary. An

explanation can be found in (Boyer, 2000) and the observation of the ‘Maxwell-

Lodge’ effect - a classical equivalent to the Aharonv-Bohm effect with classical

only observables - in (Rousseaux et al., 2008) and (Iencinella & Matteucci, 2004).

Furthermore, similar vector potential effects can be seen in the Mercereau ef-

fect with superconductors (Jaklevic et al., 1964). This provides overwhelming

evidence that the vector potential can provide opportunities for communications

security breaches.

7.3.5 Consequencies of the Boundary

An electromagnetic field is attenuated by a conductive boundary, whereas an

electric only field is able to move through a conducting boundary. These static

fields create a polarization within the conductor and the field is cancelled on

the inside of the conductor only. The resultant polarization creates an electric

field outside the boundary. However a propagating field can be attenuated as

moving charges act to counterbalance the field. It is important to note that

the field is ‘attenuated’ only and not ‘stopped’- this is because the field cannot

be discontinuous at a boundary. The remaining field can be thought of as an

‘evanescent’ field at this point. In this way a transverse electric field will be

attenuated and the longitudinal vector potential induced electric field will be

transmitted at the boundary of a Faraday shield.
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Figure 7.2: A portrayal of barrier tunnelling and evansencent fields.

7.3.6 Evanescent Wave Coupling and Barrier Tunnelling

Evanescent field effects are also referred to frequently as ‘magnetic coupling’ and

are a near-field effect only. EM fields are attenuated through Faraday shielding

barriers and are the source of the need for a significant thickness of material as

outlined in previous sections. The field will decay exponentially along the barrier

and then continue through free space at the other end as shown in figure 7.2.This

is a tunnelling effect and can be described using similar mechanics to quantum

tunnelling.

7.3.7 Characteristics of Barrier Penetration

It has been shown that there are two possible barrier penetration mechanisms to

consider: the far-field ‘curl-free’ electic field, and the near-field evanescent effect.

They are distinct effects however they are very strongly related. For example in

the Goubau transmission line (Goubau, 1954, 1960) surface waves are propagating

using the mechanism of the longitudinal electric field described here, but have
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very similar characteristics to evanescent waves. This is discussed further in (Liu

& Lalanne, 2008).

7.3.8 The Zimmerman Discrepancy

The Zimmerman experiments of (Zimmerman, 2011, 2013) use a U-shaped plasma

tube for detection of the vector potential field. The results suggest that chang-

ing the direction of current flow of the plasma in the tube has an affect on the

strength of the observable field. This is the only result not in agreement with the

understanding of the vector potential mechanism. However, testing by an under-

graduate student revealed that this was a result of asymmetries in the equipment

used to supply excitation current and not related to the vector potential(Munroe,

2015).

7.4 Simulations of Barrier Penetration

In order to assess the risk from these mechanisms it is useful to examine some

models. As outlined above any risk from the vector potential will manifest as an

electric field in a longitudinal direction. The COMSOL multiphysics modelling

software package was used to analyse the longitudinal electric fields in various

situations considering also the effects of Faraday shielding and grounding.

7.4.1 Capacitor

Why a capacitor?

The most basic formulation of interest is simply a transmitter and receiver of a

longitudinal electric field. The transmitter and receiver can be considered as two

metal objects, with a dielectric and a longitudinal electric field in between. A

simple air gap parallel plate capacitor model provides a starting point for un-

derstanding the behaviours of longitudinal fields and how they may behave when

interacting with, say, a Faraday shield, by looking at just two metal plates. Simple
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extensions to this include adding a metal ‘shield’ between the two plates, exper-

imenting with grounding levels, and extending the metal shield into a complete

box thereby simulating a Faraday shield.

Parallel Plate Air Gap Capacitor

Two cylindrical metal plates were constructed with SolidWorks and the voltage

of one of the plates raised to 1 Volt (the other kept at 0) in COMSOL, generating

a static, longitudinal, constant gradient E field between the two plates. The

electric field was modelled, shown in figure 7.3, giving a region in the airgap with

a field as expected. This is consistent with typical knowledge of a capacitor and

also the model of a transmitting and receiving E field plate model.

Parallel Plate Capacitor with Air Gap Shield

The first natural extension to the parallel plate capacitor model is to consider

what happens when a metal shield is placed in the air gap. This is equivalent

to examining how the longitudinal electric field may respond to a sheet of metal

being placed between transmitting and receiving nodes. The SolidWorks model

for this can be seen in figure 7.3. It is clear to see in figure 7.3 that there is almost

no effect on the electric field (with the exception of some small edge artifacts).

There is no electric field through the metal- this is because electrons neutralise

the voltage. However, the surface is then polarized. This is strikingly different

to a transverse electric field, which would not penetrate through metal.

Boxed Capacitor

A metal shield is simply not enough for a complete model. A Faraday shield

consists of an entirely enclosed metal box. If the metal air gap shield is extended

to a box then the model can simulate the effects of a shielded room. A Faraday

shield was constructed in SolidWorks as seen in figure 7.4 (note that the incoming

wire is not attached to the box). COMSOL then was used to calculate the electric

field - shown in figure 7.4. The electric field still penetrates the walls of the box,

however this time the entire metal box becomes a source of sorts - charges move

to neutralize the fields on both sides, resulting in a polarized surface on the edge
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of the box. This occurs even if the box is grounded - which is the explicit case

shown in figure 7.4.

Conclusions

The model so far has highlighted the ways in which the longitudinal electric

field responds with respect to barriers, in ways that would not be expected of

transverse electric fields. It can penetrate shields and Faraday cages without any

difficulty or attenuation. This is due to the charge response inside the metal,

resulting in polarised surfaces.

7.4.2 Zimmerman Aerial and Capacitor

Having established some basic understanding of the longitudinal electric field it

is possible to extend the model to look at the radiating dipole antenna. This is

similar to that used by Zimmerman in (Zimmerman, 2011). This provides the

opportunity to investigate the dynamic effects. Figure 7.5 shows the radiation

pattern from a dipole antenna. The capacitor model above was then utilised to

elucidate the longitudinal electric field. The expanded region shows the direction

of the electric field as longitudinal in the region emanating directly from the end

of the antenna. The capacitor can be considered as a capacitive voltage receiver,

where the electric field penetrates the conducting boundaries of the receiver.

Conclusions

It can be inferred from this model that a standard radiative dipole antenna does

produce longitudinal electric fields as predicted in the theory section of this chap-

ter. However they are produced emanating from the very end of the antenna, not

in the typical transverse direction. This means that longitudinal electric fields

can possibly be isolated from their transverse counterparts for experimental in-

vestigation, by examining the differences between fields emanating from the sides

versus the tip.
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7.4.3 Toroidal antenna

Toroidal antenna motivation

In order to improve upon the possible isolation of longitudinal from transverse

electric fields that can be seen using a dipole antenna, it is possible to develop

an antenna which has no transverse radiation. It is possible to draw inspiration

from toroidal chokes (such as those commonly found in electrical devices). If one

imagines the Poynting vector (the direction of energy flux in an electromagnetic

field) of a loop of current carrying wire around a ferrite core, it will be radial

towards the center of the core. If several of these are added together, creating

a toroid, the overall electron drift is in the direction of the wire turning around

the coil and thus the overall Poynting vector of the toroid will also be radial, this

time towards the center of the toroid. This means that there will be no overall

transverse electromagnetic waves radiating from this construction. However, the

vector potential is not cancelled out by the symmetry of the toroid. The radial

components of the vector potential will be negated by each other, but the com-

ponents on the inside and outside diameters will not completely cancel, resulting

in a net vector potential in the plane normal to that of the toroid. As such there

will be a time varying electric field as a result, without the presence of transverse

electromagnetic fields. This offers the possibility of a longitudinal-only producing

antenna using a toroidal wound solenoid. An off the shelf toroidal choke would

be ideal for this.

Summary

The toroidal model construction from (Everitt, 2015) is summarised here. The

SolidWorks model constructed in (Everitt, 2015) is shown in figure 7.6, which is

then used in COMSOL multiphysics to model the electric field as a result of the

vector potential, shown in figure 7.7. It can clearly be seen that there is a resultant

electric field (as a result of the net vector potential) in the direction normal to

the plane of the toroid, as predicted. This suggests that using a toroidal solenoid

as an antenna in the investigation of leakage will help to isolate the effects that

exist as a result of the electric field.
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7.4.4 Limitations of COMSOL

Thus far the electric field based model provided by COMSOL has been used.

However one can compare this with the RF based model also provided in COM-

SOL to investigate the strengths and weaknesses of COMSOL as a modelling

package. Of particular interest is COMSOL’s handling of the vector potential

induced electric field, isolated by using the model of a toroidal antenna in the

previous section, and observing how this relates to a metal plate (such as one

used in the capacitor model). The model set-up is shown in 7.8, importing the

toroidal model from (Everitt, 2015). If one examines the strength of the electric

field using the RF package, in a direction normal to the toroidal plane one can see

that (in figure 7.8) if the path is unimpeded (the red line) the field just attenuates

as one would expect through free space. However with the metal plate, there is

a discontinuity (blue line) and the field goes to zero immediately. This indicates

that the metal is being treated purely as an attenuator rather than the elec-

tron plasma that allows for the more unusual effects which could be exploitable.

This means that COMSOL modelling cannot be reliable for investigating all the

possible effects and real world experimentation is necessary.

7.4.5 Simulation Conclusions

The simulations performed indicate that electric fields arising as a result of a

vector potential can pass through Faraday shielding, and that a variety of novel

antennas can be used to generate a dynamic electric field resulting from the vector

potential. This clarifies that there is a potential risk for information leakage

during state preparation in a cryptographic context. An experimental realisation

would be the next stage to check if the modelling results are as damning as they

appear.

7.5 Analysing the Risk of Side Channel Attacks

Recall that the motivation for this investigation comes from the risk of informa-

tion leaking uncontrollably from within a completely shielded environment, such
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Figure 7.3: A COMSOL model of a parallel plate capactor with a shield. The

model is on the left, and a cross section of the electric fields on the right with

and without a grounded shield. The electric field polarizes the metal to remove

the electric field from inside of the metal.
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Figure 7.4: A COMSOL model (left) of a parallel plate capactor with one plate

enclosed within a Faraday shield. The electric field (right) still penetrates the

walls of the shield.
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Figure 7.5: A COMSOL model of the Zimmerman aerial and ‘field detector’ The

detector is modeled as two parallel plates with the aim of determining the electric

field between the plates. This shows that measurable voltage can be determined.

Figure 7.6: A SolidWorks model of toroidal winding around a ferrite core (from

(Everitt, 2015)).
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Figure 7.7: The vector potential emitted from the toroidal aerial is shown in

terms of the electric field. The longitudinal electric field generated by the toroid

is highlighted in red (left). The colour map (right) represents the electric field

intensity, where red indicates high intensity and blue indicates low intensity.
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Figure 7.8: This figure shows the COMSOL model ‘RF’ package equivalent of the

static electric field model in figure 7.3 using a toroid in place of a capacitor.
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as might be used in the defence industry. In addition, if this effect is palpa-

ble it may be exploited for novel communication methods. Previous work in this

area, outlined in the previous section, indicates that this type of exploitation may

already exist, leaving current security mechanisms vulnerable. To thoroughly in-

vestigate this matter there will be two goals, to isolate longitudinal signals and

compare their features and performance with conventional signals, and to inves-

tigate the possibilities of communicating from within a freestanding shielded box.

These have been catalogued in the following methods:

Field Detection In isolating longitudinal signals the purpose was to identify and

characterise the existence of non-conventional signal leakage through a shielded

box, and aggravating or alleviating factors. In particular, it is enlightening to

compare this to conventional leakages for a thorough understanding of the future

scope and application of this signal leakage effect.

Attack Simulation In investigating the possibilities of communications through

a shielded box the intent was to set up a stand-alone transmitter and receiver

with a communications wrapper such that messages could be sent and received

from within a shielded box.

7.6 Methods

7.6.1 Suitable Domains

Given the motivation of this experiment it is prudent to look at signals in the

microwave and RF regime, specifically around 10-2500 MHz, as these are typical

of signals from wi-fi and from the choke coils in common electronics.

Since the purpose of the experiment is to isolate and compare longitudinal

signals with conventional signals, a variety of aerial types with different proper-

ties were investigated, and free space transmissions were compared to shielded

transmissions.
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7.6.2 Equipment

Antennas

The aerial types used (as seen in figure 7.12) were as follows:

A conventional whip antenna aligned vertically: The radiation pattern

of such an antenna emits conventionally in a direction radial around the whip,

but longitudinally in the direction of the whip; vertical alignements will couple

transversely. This antenna optimally operates at 900 MHz. The radiation pattern

for this can be see in figure 7.5.

A conventional whip antenna aligned horizontally: The change in align-

ment allows for investigation of the properties of the longitudinal components, as

outlined in the ‘background’ section.

A toroidal choke: This emits longitudinal components only in a direction nor-

mal to the plane of the toroid. This antenna optimally operates around 90 MHz.

An example radiation pattern can be observed in figure 7.7.

Shielding

The shielding used was ‘Eccosorb AN-79’ – 11.4 cm thick carbon treated poly-

urethane foam, backed on a metal coating for best performance, as recommended

in (Technologies, 2015). The sheets are 61 cm2. For frequencies greater than 600

MHz, Eccosorb AN-79 will attenuate a signal by a minimum of 17 dB with a

ceiling frequency of at least 18 GHz. The performance with respect to frequency

can be seen in (Technologies, 2015) which also shows that Eccosorb AN-79 at-

tenuates far below 600 MHz to at least 100 MHz. Several sheets of this were

arranged to form a cuboid box, housing the emitter, with no gaps (which would

have allowed for leakage at the edges). The metal coating forms a shielded box

with the carbon treated foam providing additional attenuation.
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Figure 7.9: These are the three main antenna configurations used. From top to

bottom: The toroidal choke coils; the whip antennas in ‘horizontal’ point-to-point

transmission (longitudinal); the whip antennas in ‘vertical’ parallel transmission,

this is optimal and is used for conventional signal transmission.
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7.6.3 Setup

Field Detection To investigate if fields could be detected a signal was generated

with a TTi TGR 2050 synthesised RF generator, and detected with a Rohde

and Schwarz FS315 spectrum analyzer, as shown in figure 7.10. All three aerial

types were used as transmitters and receivers. This gave a matrix of 9 scenarios

which could then be compared. The transmission strengths were recorded with no

shielding, and then with 1 sheet of Eccosorb. A distance of 12 cm was maintained

throughout and the signals were transmitted with a consistent power of +7 dBm.

The transmission frequencies used were 900 MHz for whip antennas and 100

MHz for toroidal aerials in accordance with their optimal operation. Further

additions of Eccosorb had little reliably determinable impact upon the results of

the experiment and (Technologies, 2015) recommends against it1.

Attack Simulation To simulate an attack a signal was generated and received

with two NI USRP-2901 software defined radios; the set up can be seen in figures

7.9, 7.13 and 7.14. A simple communications wrapper was added which allowed

text to be sent and received using typical protocols (quadrature phase shift keying

- QPSK) 2and with some standard error correction. An example can be seen in

table 7.1. This was a stand-alone battery operated solution such that the inside

of the shielded box was fully sealed and transmitting to the outside. This is

shown in figure 7.13. 900 MHz aerials were used, driven at 100 MHz, so that the

signal was weak enough that conventional radiation would be attenuated by the

Eccosorb, to a degree sufficient to minimise the effect on the detector, leaving

just longitudinal signals. The transmitting antenna was connected to the USRP

and the USRP programmed, via a battery operated laptop, to transmit many

lines of text from completely within the shielded box. The receiving antenna

was connected to a USRP and programmed to receive the text. This antenna

was then aligned at various points and positions around the shielded box and

the receipt, or not, of a transmission recorded, as seen in table 7.1. Use of the

toroidal choke antennas in both receiving and transmission parts, driven at 100

MHz, then confirmed observations.

1This is consistent with the shielding mechanism outlined in 7.3.1
2as seen in the circuit diagram in figure 7.11
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Figure 7.10: This shows more clearly the setup with electric field being detected

either side of a shield

Figure 7.11: The circuit diagram for an attack simulation, including phase mod-

ulation for QPSK.

131



7. A SIDE-CHANNEL ATTACK ARISING FROM BARRIER
LEAKAGE

Figure 7.12: This shows the alignment and positions of the various aerials for

attack simulation. The signal can be transmitted using either aerial A (900 MHz

whip) or B (toroidal choke) and the signal can be received in any one of the 9

configurations.
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Figure 7.13: The setup for attack simulation- a shielded box with a transmitting

antenna inside. A sheet of Eccosorb covers the front but has been removed for

ease of observation. The bottom image shows this in more detail.
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Figure 7.14: This shows, without the addition of the shielding, the basic set-up

of the laptop-to-laptop equipment for attack simulation. Each half consists of the

laptop with software, connected to the USRP (in white) which is connected to

one of the two aerials.
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Table 7.1: Examples of transmission quality in text com-
munication.

Example Text Example Graph Description

Transmission

Perfect, complete reception.

Very poor. Almost no re-
ception: very little text has
been received, the QPSK di-
agram includes spiral arti-
facts, and parsing of the
bit modulation is extremely
poor.

Medium to poor transmis-
sion - some text received,
low quality QPSK diagram
and low quality bit modula-
tion.

Medium to good transmis-
sion – high quality QPSK di-
agram, clear bit modulation,
a few additional seconds of
receipt would usually resolve
this to a complete text.
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Very high quality, almost
full transmission. Lacking
in QPSK diagram but this
is due to software discrep-
ancies displaying only the
last parsed bit after trans-
mission.

7.7 Results

7.7.1 Field Detection

Recall that the purpose of field detection was to compare longitudinal and con-

ventional signals and the effects of shielding on the strength of transmission. The

results of the transmissions between the three antennas configurations are tabu-

lated in table 7.2. It is clear to see that shielding made little difference in coil

to coil transmissions and horizontal to horizontal whip transmissions but a 20

dB loss occurred for whip antennas in conventional arrangements. Horizontal to

vertical transmissions are almost undetectable. However coil to vertical trans-

missions do occur and are attenuated at a similar amount to that of vertical to

vertical, suggesting some transverse signals leak from the toroid.

7.7.2 Attack Simulation

Recall that for attack simulation the purpose was to identify whether complete

text could be communicated to outside a shielded box, from within it. The Rx

whip antenna was placed at various points with respect to the internal Tx whip

antenna and the result of a transmission recorded as either present or unobtain-

able. This was repeated for coil antennas in the parallel position. The results are

recorded in table 7.3. Transmission was possible only when the whip antennas

were aligned end-to-end - a position akin to the ‘horizontal’ alignment in ‘field

detection’, and with the coils.
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Receive

Rx

Transmit

Tx

Free standing:

-40 dBm

Shielded:

-50 dBm

Free standing:

-59 dBm

Shielded:

-57 dBm

Free standing:

-40 dBm

Shielded:

-70 dBm

Free standing:

-48 dBm

Shielded:

-45 dBm

Free standing:

-40 dBm

Shielded:

-37 dBm

Free standing:

-40 dBm

Shielded:

-55 dBm

Free standing:

-50 dBm

Shielded:

-75Bm

Free standing:

-40 dBm

Shielded:

-55 dBm

Free standing:

-20 dBm

Shielded:

-40 dBm

Table 7.2: The three antennas types were used as both transmitter and receiver

(Tx and Rx) in field detection. Here the corresponding strengths with and with-

out shielding are shown. Note that the results are almost symmetrical for Tx and

Rx.
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Position Tx/Rx Transmission? Implication

Side (A4,A1) TV/ Long None Blocked signal

Side (A3,A2) TV/ TV None to poor Signal attenuated

Top (A5) Long/ TV None Blocked signal

Top (A6) Long/ Long Complete Signal free

Side (B7,B8) Long/ Long
Medium to

good

Attenuation is in space

only

Top (B9) Long/ Long Complete Signal free

Table 7.3: This table shows the transmission record for various positions of re-

ceiving antenna, as outlined for attack simulation. The code in brackets (under

‘position’) refers to the position matrix outlined in figure 7.12. Examples of qual-

ity of transmission can be seen in table 7.1 TV here indicates transverse signals

and long indicates longitudinal signals.

.

7.7.3 Limitations

Preliminary experiments highlighted that the signals were extremely sensitive

to subtle changes in the environment which limits the usefulness of possible ex-

tensions to this experiment such as finding the emission patterns by performing

raster-type measurements. In addition it limits the usefulness of direct compar-

isons between two different aerial set types, although the signals were consistent

within the time period required to add or remove the Eccosorb. All the recordings

made with the spectrum analyser were fluctuating by around 2 dB and as such

results showing a change of less than this should not be considered significant.

The noise floor of the spectrum analyser was around −80 to −90 dBm. The

signals were highly distance dependent. It is also possible that if the toroidal

antennas are not completely symmetrical there may be some very small residual

amount of transverse radiation, with the Poynting vector not quite aligned to the

center.
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7.7.4 Leakage

It could be argued that since the Faraday shielding is not completely sealed there

is a possibility that transverse electromagnetic waves could be leaking around

the edges, including any possible residual transverse leakage from the toroidal

antennas. However, looking at the results from the field detection part of the

experiment in table 7.2 it can be seen that transverse radiation is typically atten-

uated by approximately 20dB. Since the attenuation of any of the longitudinal

set-ups do not include a 20dB drop it can be assumed that this is a distinct form

of radiation that is being detected.

7.8 Threat Analysis

7.8.1 Use in a Real Shielded Room

A further extension to this involved access to a real shielded room at the National

Authority for Counter Eavesdropping. The shielded room consisted of two layers

of metal Faraday shielding with some concrete gap in the middle, excepting the

door which was a thick layer of metal. Preliminary results here indicated that

longitudinal radiation leaked through the door but not through the sides, with

the exception of some small residual amount that could be seen as tunnelling.

This indicates that the doors of shielded rooms are a possible threat, but also

that the concrete plays some sort of role in attenuating the signal. Since the use of

concrete in this particular room was completely coincidental, and not included as

standard in shielded rooms it is important that this is noted. Further investigation

is needed to characterise this as a blocking method. Alternatively, the size of the

room proportional to the wavelengths used could be influencing the conductivity,

or the size of the room proportional to the energy in the signal - where the energy

is dissipated through the entire surface area of the metal resulting in only a very

weak almost undetectable signal emitting.
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7.9 Conclusions

7.9.1 Field Detection

It is clear that for antennas transmitting and receiving conventional radiation

(that is- the whip antennas in vertical positions) the Eccosorb attenuates the

signal by around 20dB. This is in accordance with the published values in (Tech-

nologies, 2015) and what would be expected according to convention. For aerials

transmitting unconventional longitudinal radiation there was very little change

in signal strength. This is seen in the horizontal to horizontal, the coil to horizon-

tal, and the coil to coil arrangements. Mysteriously, the converse is true- there is

some small increase in the signal strength, this may be related to the limitations

in signal fluctuations however it is somewhat consistently an increase. This gives

some credence to the idea that the transmissions may in fact use intervening ma-

terial as a waveguide and may be indicative of a tunneling effect. Overall, despite

their relative lack of strength, it is clear that unconventional, longitudinal signals

are insensitive to standard shielding attempts.

7.9.2 Attack Simulation

In the arrangements which were optimal for the transmission there were no

recorded transmissions; that is to say where the aerials were parallel (akin to

the ‘vertical’ arrangements of part 1). In the arrangements allowing for lon-

gitudinal transmissions only (coil to coil and end to end - akin to ‘horizontal’

arrangements in mode 1) there were clear transmissions. This demonstrates that

communication through shielded walls is possible.

7.9.3 Summary

It is clear that there is a significant cause for concern regarding the potential

for eavesdropping through shielded rooms. Further work is required to establish

the extent of this threat and the designs of boxes which increase or decrease the

amount of signal leakage.
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7.9.4 Future Work

In order to truly identify the strength of this threat further work must be done on

testing in ‘real-life’ shielded rooms. This includes the comparison or a concrete

filled wall versus a pure metal cage. Additionally, some observations on concrete

specifically would help to identify how this may be utilised as a blocking ma-

terial. Furthermore, expanding the equipment to investigate other wavelengths

compared to the size of the room may be useful to see if this has some effect.

Ideally, investigating different sizes of room with different intensities of signal will

help to discover if the signal is in some way being dissipated around the surface

area of the shielding, resulting in a negligible signal transmitted.
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8

Conclusions and Future Work

The aim of this thesis was to examine the possibilities for security in implementing

post-quantum key distribution in pre-existing telecommunications systems. In

particular, it was concerned with the implementation of a particular algorithm,

the security constraints set by other authors, and the adherence of signals in

the microwave regime to the necessary characteristics. An alternative source of

noise, stochastic noise from random numbers, was also considered which would

allow application in a wider range of circumstances. Furthermore, this work

was concerned with a possible side channel attack which could hinder its use in

practical implementation.

The post-quantum protocol for implentation in phase shift keyed communi-

cations systems is considered in Chapter 3. The security is analysed, following

that given by Maurer, with some mistakes corrected. It states that provided an

eavesdropper has some unavoidable noise on measurement of the message then

it will be secure. The subject of the noise is then considered in the following

Chapters.

Chapter 4 examines how the presence of thermal noise affects the signal mea-

sured. Theoretical analysis of multi-mode signals such as those found in a typical

wireless communications system indicates that the energy density peaks in the

infrared region. The number of thermal photons which one detects is considered

and shows that single photon protocols would not be suitable beyond a limit

(which varies according to temperature). However, this would not affect proto-

cols which require only a shot noise limited signal, as this cacn be mitigated by
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sending a stronger signal.

Chapter 5 goes some way towards justifiying the claims in Chapter 4 that

telecommunications protocols in the microwave region are secure for implementing

the CVQKD protocols that are outlined in (Usenko & Grosshans, 2015; Weed-

brook et al., 2010). It can be seen that mixed binary coherent states can be

resolved in phase space with shot noise characteristics. This quantum limited

noise measurement means that the excess noise from thermal background does

not dominate and remains below the levels indicated in Chapter 4.

The prospects for implementing a post-quantum cryptographic solution which

relies purely on the properties of mathematics rather than the physical manifes-

tations of quantum physics are examined in Chapter 6. A thought experiment

reveals properties of random numbers on the large scale which give some small

amount of correlation or anti-correlation. This correlation or anti-correlation is

also attributed to the trusted and untrusted parties, however, in different places.

This results in a positive I(A : B|E) over a large enough number of runs. The

outcomes can be fed into an algorithm such as advantage distillation, giving a

secure key, but with a large amount of losses. Chapter 3 deals with the security of

advantage distillation and Chapter 6 demonstrates that random numbers could

be a resource for this algorithm. This is impenetrable to quantum attacks as the

key distribution is completely independent of the channel and the security comes

from the randomness of numbers. The quality of it is such that it could be a

proposal for a universal cryptographic standard. It is implementable on an algo-

rithmic basis only and not dependent upon line of sight communications, fibers,

shot noise limited signals, or other transmission medium properties. The main

caveat is that if an eavesdropper was able to clone something on the ‘private’ and

non-disclosed side of the trusted parties then said eavesdropper would be able to

extract the key. However, this can be prevented if the trusted parties are held

within a secure box, for example a shielded room.

In order to implement a quantum secure key distribution scheme in a real-

istic microwave communications structure one must consider the realism of the

assumptions made for the security of CVQKD, and whether these could reveal a

side channel attack in an authentic application. Chapter 7 discusses a potential
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side channel attack arising from the assumption that a secure housing can be cre-

ated for the parties to prepare their states before transmission. This assumption

is typically justified on the basis that a Faraday shielded structure will prevent

leakage of EM fields. However, Chapter 7 outlines a method of field leakage

through Faraday shielding based on a longitudinal field component, elucidated

through use of the magnetic vector potential mechanism. Tests reveal leakage

in longitudinally directed fields in mock-up shielded boxes; longitudinal fields

are not attenuated by the presence of the shielding and typical transverse fields

are. Further testing in an authentic shielded room at the National Authority for

Counter Eavesdropping indicates this leakage exists in these rooms also with the

indication that there is a possibility that the fields are dampened by materials

such as concrete owing to the leakage through the door and much weaker leakage

throught the sides (which could be attributable to tunnelling). This leakage has

wider implications than the security of CVQKD and could cause problems for

the defence industry regarding TEMPEST security and for those who may use

shielded rooms for experimental purposes.

8.1 Future Work

The security boundaries identified in Chapter 4 have been determined theoreti-

cally making use of the foundations provided in Loudon (Loudon, 2000). It would

be useful to perform an experimental analysis on all wavelengths in the optical to

microwave range to identify whether shot noise limited signals could be extracted

from the entire range of frequencies, and how this is influenced by temperature,

and the temperature of the measuring equipment. In particular, looking at a typ-

ical temperature profile of signals sent through a satellite system. This could be

by performing some signal analysis or by using cooling detection techniques. It

would also be useful to compare a quantum state reconstruction of states sent at

these different wavelengths with those in Chapter 5 to see how the mixed thermal

and coherent state would perform.

The characterisation of microwaves in PSK systems with quantum state re-

construction can be seen in Chapter 5, however it would be useful to extend this

to observing how distance dependence is affected based upon the strength of the
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detection sytem. Susbsequently it would be useful to see how the key rate is

affected by this.

Since the examination of a key distillation protocol from Chapter 3, and the

proposal in Chapter 6 of using random numbers as a resource rather than a

quantum property to create post-quantum security, the question remains on how

‘random’ the random numbers must be. The American National Institute of

Standards and Technology (Kelsey & Barker, 2017) outlines some requirements

for the randomness of a random bit generator. It is unclear at this stage to what

extent the numbers must exhibit ‘true randomness’. It is also possible that other

side channel attacks exist which have not yet been considered.

The work outlined in Chapter 7 reveals some open questions regarding the

security and countermeasures for the use of shielded rooms. In particular further

work is needed to determine which properties of an authentic shielded room make

the longitudinal signals harder to detect. It would be useful to test longitudinal

signals travelling through a variety of materials with different dielectric constants,

including concrete, with a view to settling upon the optimum combination. Fur-

thermore, it would be interesting to see if the size of the room, or the ratio of the

size of the room to the wavelength or the energy density of propagating signals

has an effect on the leakage of longitudinal signals. It would be useful to accu-

rately characterise the weak leakage detected through the concrete sided walls to

determine if this was a barrier tunnelling mechanism or longitudinal penetration

mechanism. This could possibly be implemented using a range of thicknesses and

determining if the signal was exponentially depleted.
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Appendix A

Key Distillation Code

The following is the code used to simulate a noisy exchange with key extraction,

using advantage distillation.
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File: /home/DS/py09flw/Documents/Freya/AliceBobAlgorithmFinal.c Page 1 of 3

/*Symmetric key agreement with varied inputs to examine the influence on the key output*/
 
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
 
#define Mask 1 /*Used as an identifier later*/
 
typedef unsigned char uint8;  /*A variable type 8 bits only in length (+ numbers only) */
 
typedef signed char int8;     /*A variable type 9 bits in length where 1 bit signifies + or -*/
 
/*This function checks that the key output matches and is symmetric*/
 
int MatchCheck(uint8 i, uint8 Array1[i], uint8 Array2[i]){
      int j=0;
      while(Array1[j]==Array2[j]){
          j++;
          if(j==(i-1)){
              return 1;
          }
      }
      return 0;
  }
 
  
  
void main() {
  
  srand(time(NULL));
  
  uint8 C_A[512]={0}, Transmit_1[512]={0}, Transmit_2[512]={0}, C_B_1[512]={0}, C_B_2[512]={0}, Matchlist
[512]={0}, sendMatches[512]={0}, BobNoise[512]={0}, AliceNoise[512]={0};
  int j=0, bytecount=0, bitcount=0, i=0, DONE=0;
  int DistilledSize = 255;
 
  /* Alice and Bob start off with some biased random noise*/
  
  
  for(i=0;i<512;i++){
 
    AliceNoise[i]=rand()&rand();
    BobNoise[i]=rand()&rand();
    
  }
  
  while(DONE!=1){
    
    /*ALICE*/
 
    /*Alice gets random numbers*/
    
    for(i=0;i<DistilledSize;i++){

      C_A[i]=rand();
      
    }
 
    /*Alice XOR's these twice with independent noise*/
    
    for(i=0;i<DistilledSize;++i){
   
      Transmit_1[i]=AliceNoise[2*i]^C_A[i];
      Transmit_2[i]=AliceNoise[(2*i)+1]^C_A[i];
      
    }
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  /*Transmit_1 and Transmit_2 are sent to Bob*/
  
  /*BOB*/
  
  /*Bob receives Transmit_1 and Transmit_2 from Alice and XOR's them with his own noise*/
  
  for(i=0;i<DistilledSize;i++){
 
    C_B_1[i]=BobNoise[2*i]^Transmit_1[i];
    C_B_2[i]=BobNoise[(2*i)+1]^Transmit_2[i];
 
  }
  
  /*Bob clears his noise so it can be repopulated later*/
 
  for(i=0;i<512;i++){
    BobNoise[i]=0;
  }
  
  /*Ensure the counters are set to zero before commencing*/
  
  bitcount=0;
  bytecount=0;
  
  for(i=0;i<DistilledSize;i++){   /*For every array element (byte)*/
 
    
   for(j=7;j>=0;j--){            /* and for every bit within that array element*/
     
    if( (C_B_1[i]>>(j) & Mask) == ( (C_B_2[i]>>(j)) & Mask) ){  /*compare the two arrays*/
      
     BobNoise[bytecount]=(BobNoise[bytecount]<<1)+((C_B_1[i]>>(j) & Mask));

   /*If they match then save this bit 
into the noise array to be used as noise later*/
     bitcount++;

  /*Keeping track of how many bits have 
been saved so that the next array element (byte) can be started when appropriate*/
     if(bitcount==8){  /*-Start a new byte after every 8 bits*/
       
      bitcount=0;
      bytecount++;
      
     } /*Save this into a matchlist as a '1'*/
     
     Matchlist[i]=(Matchlist[i]<<1)+1;
     
    }

  /*otherwise- save this bit into the matchlist as a '0'*/
    else {
      
     Matchlist[i]=Matchlist[i]<<1;
     
    }
   }  
  }
  
  /*Keep track of the results on the output screen*/
  
  printf("\nBob's results(C_new_B): \n");
  
  for(i=0;i<DistilledSize;i++){
 
    sendMatches[i]=Matchlist[i];  /*and 'send' the matchlist over to Alice*/
    
    printf("%d\t",BobNoise[i]);
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  }
  
  
  /*Alice clears her noise to it can be repopulated later*/
 
  for(i=0;i<512;i++){
   AliceNoise[i]=0;    
  }
 
  /*Ensure the counters are set to zero before commencing*/
  
  bytecount=0;
  bitcount=0;
  
  for(i=0;i<DistilledSize;i++){ /*For every array element (byte)*/
 
    for(j=7;j>=0;j--){ /* and for every bit within that array element*/
 
      if( (sendMatches[i]>>j) & Mask) { /*search the matchlist for '1' values (ignoring '0' values*/

 /*save into the noise array the random bit that corresponds to 
that placeholder on the matchlist*/

AliceNoise[bytecount] = (AliceNoise[bytecount]<<1)+((C_A[i]>>j) & Mask);
bitcount++;

    /*keeping tabs on the number of bits so that the next byte can be filled when 
necessary*/

if(bitcount==8){
 

  bitcount=0;
  bytecount++;

 
  
}

      }
    }
  }
  
  /*Keep track of the results on the output screen*/
  
  printf("\nAlice's C_new_A:\n");
  
  for(i=0;i<DistilledSize;i++){
    
    printf("%d\t",AliceNoise[i]);
    
  }
  
  /*We have halved the amount of noise by comparing two bits at a time. Hence on the next repeat we need 
only look at half the size*/
  
  DistilledSize=(bytecount/2);
  
  /*Since this is a simulation, we will repeat it until a matching key is produced*/
  
  DONE=MatchCheck(DistilledSize,AliceNoise,BobNoise);
  
  /*In the case where there is no key produced, we will add a break from the program*/
  
  if(bytecount==0){
 
    break;
    
  }
 
 }
 printf("\n");  
}
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