Anisotropy, focal mechanisms, and state of stress in an oilfield:
Passive seismic monitoring in Oman

Abdullah Said Saleh Al-Anboori

Submitted in accordance with the requirements for the degree of Ph.D.
The University of Leeds

School of Earth and Environment

October 2005

The candidate confirms that the work submitted is his own and
that appropriate credit has been given where reference has been
made to the work ot others. This copy has been supplied on the
understanding that it 1s copyright material and that no quotation
from the thesis may be published without proper acknowledgement.



This thesis is dedicated to my mother, father & wife,
may almighty Allah reward-you for everything



Acknowledgments

‘““ Have we not made the earth an expanse and mountains stakes” The Holy Quran

To Allah belongs the praise in the first and in the last. I praise Him as one who acknowledges

His Pertection. Oh my lord open for me my chest and ease my task.

Mike Kendall, my supervisor, was really the driving force for my research. Without his help,
this piece of work would never have been possible. His enthusiasm towards the project, patience
with my silly questions, critical advice, guidance throughout my PhD even when he moved to

Bristol and his smiley face every time I pop in to see him are greatly appreciated.

[ am also grateful to Mirko van der Baan for acting as a local supervisor after Mike lett and
for his help and many comments. Many thanks to Rob Jones and Dan Raymer for supplying
the data, installing XMETAL software here in Leeds and their tremendous help in how to use
it. Thanks to Guy Mueller (from PDO) who is responsible for much of the information in the
chapter on Yibal geology. Thanks to the petrophysicists Patrick Hogarty and Michel Krief (from
PDO) for providing shear dipole logs and help on estimating the anisotropy magnitude from

these logs.

Nick Teanby’s permission to use his codes (particularly the splitting code) and his advice on their
use are much appreciated. Mark Chapman 1s greatly appreciated for supplying his frequency-
dependent anisotropy code. Thanks to the computer man, James Wookey, for his scripts and
tools, without which this project would have been very ditficult. Thanks to the computer officers,
Stuart Borthwick and Nick Barber, for putting up with my computing problems. I am also
grateful to the GMT man, Ian Bastow, for his help on my GMT scripts. I would also like to
thank Quentin Fisher and Mike Welch from Rock Detormation Research for their constructive
comments on stress magnitude estimation. Thanks to my office mates James While, James
Hammond, Andrew Gait, Lindsey, David Green, Kristot de Meersman, James Wookey and Andy
Carter for their continuous help and making my time here in Leeds enjoyable. Thanks also to
the Omani PhD students in the school (Bader Al-Busafi, Mohammed Al-Wardi, Mohammed
Al-Kindi and Suleiman Al-Hinai) for their brotherhood and support.

To my mother, father, wife and 3 kids (Albljaa, Adam and Hawaa), may Allah reward you all for

your moral support. Although my little kids are mischievous, their smiles upon returning home

relieve my PhD stresses.

My Thanks also go to Graham Stuart and Phil Christie for acting as examiners. Thanks to
PDO and ABB for permission to use the microseismic data. I am especially grateful to PDO
for funding my PhD, MRes and BSc studies, and for permission to publish the results. Finally,
thanks to every one who helped me directly (by constructive comments and supplying data and/or

software) and indirectly (by moral support) to push my thesis to a finished product.



R I R R I R R T R R T R R I R R R I R U I T ——————— .S

Abstract

Knowledge ot the spatial characteristics of stress and fractures in reservoirs is important for op-
tmismg production and injection processes. Semi-permanent passive microseismic monitoring
15 being conducted in the Yibal field, Oman, to better understand reservoir geomechanics. The
network comprises 12 4C stations in 5 monttoring wells which can be used tor focal mechanism
and anisotropy studies. In this study, I analyse 22 days of data, containing over 600 located
events. In the first analysis, 43 reliable fault planc solutions (FPSs) are determined using polari-
ties and amplitudes of direct P-, SV- and SH-waves based on a pure double-couple source. The
principal stress directions are estimated using the method of Gephart and Forsyth (1984) from
FPSs. Stress magnitudes are then estimated based on a friction model, and stresses are finally
modelled based on a passive basin model. In the second analysis, nearly 400 reliable S-wave
sphtting measurements of time lag and fast shear-wave strike are determined. Shear-wave split-
ting modelling 1s used to interpret the results in terms of fracture orientation and fracture density.
In the final analysis. 19 examples ot frequency-dependent S-wave splitting are determined and

the results are interpreted using the Chapman (2003) theory to estimate the fracture size.

[ observe a transition in faulting regime from strike-slip (with a thrusting component) in the shale
Figa cap rock to pure thrusting in the gas-charged Natih A chalk reservoir. Deeper in the held
I observe another transition from strike-slip in the Nahr Umr shale cap rock to normal faulting
In the oil-bearing Shuaiba chalk reservoir. The transition at each shale/chalk interface may be
attributed to vanations mn the triction angles: from low in the shales (12° and 18°, respectively) to
high in the chalks (397). The Natih A results suggest a positive anomaly in Poisson’s ratio (0.37).
which 1s consistent with the ongoing compaction in this unit. The maximum compressive stress
direction vanes with depth: horizontal E in Fiqa, horizontal NNE in Natih-A, sub-horizontal E
in Nahr Umr, and sub-vertical in Shuatba. The splitting magnitudes are high (5-10%) in the SE
footwall of the large eastern-most graben fault that runs through the field and low (1%) in the
opposite hanging wall. The highest tracturing (5% average anisotropy) and largest fracture sizes
(2 m) arc predicted in the Natth A reservoir. In contrast, the FFiga exhibits moderate fracture
density (3%) with fine-scale tractures (<0.1 pm in size). Weaker anisotropy is found in the
Nauh B-G, which 1s attributed to moderate fracture density in the upper layers and preferred
crystal orientation in the lower layers. The splitting orientation results are interpreted in terms of
a single set ot near-vertical fractures trending: 19°NNE in the Natih A, 90°E in the Figa and the
lower part of Natih B-G, and 45°NL in the upper part of Natih B-G. The fractures are aligned
parallel to the direction of the maximum compressive stress, as determined by the FPS-based

stress analysis.

Cumulatively, these results show how microscismic data can be used to infer the faulting and

stress regime, and the size, density and orientation of fractures in individual formations, with a

high level ot resolution. Such information is invaluable for ticld development strategies.
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Chapter 1

Introduction

1.1 Introduction

Passive seismic monitoring in hydrocarbon fields has the potential to play an important role in
field development (Jupe et al., 2000; Kristiansen et al., 2000). Microseismic activity can be in-
duced by production, injection and regional tectonic processes. Such earthquake activity can
be used to delineate faults, identify reservoir compartmentalization, and monitor the progress of
injection fronts. Microseismic data can be also used to estimate fracture-induced seismic aniso-
tropy (Teanby et al., 2004b), and fault regime and stress (Rutledge et al., 1998) in hydrocarbon
settings. Microseismic-like data have also been used to estimate fracture size in hydrocarbon

settings (Liu et al., 2003Db).

In this thesis, I present an integrated study of subsurface fractures and stresses from microseis-
micity in the Yibal field in west central Oman (Figure 1.1). Focal mechanism analysis and stress
inversion, shear-wave splitting, and frequency-dependent shear-wave splitting analysis are used
to investigate the dynamic nature of the reservoir. I also present extensive synthetic tests prior
to real data analysis to assess viability and limitations of the techniques and draw guidelines
for subsequent analysis of real data. The Yibal microseismic data were recorded during an on-
going microseismic monitoring trial (Jones et al., 2004). The project is a collaborative venture
between Petroleum Development Oman (PDQO), ABB Oftshore Systems (now VetcoGray), and

Shell Exploration and Production Technology and Research (SepTAR).



1.2 Aims and motivations

The Yibal field in west central Oman (Figure 1.1) was discovered in 1962 and 1s now 1n ter-
tiary stages of production. A semi-permanent deep seismic network was deployed to address
questions regarding reservoir behaviour and future production. To date only basic processing
has been applied to the data. The recorded data have been inverted for event locations and their
magnitudes to gain insight in their spatial distribution. However, this provides little more than a
basic understanding of the geomechanics in the reservoir. Detailed analysis such as focal mech-
anism determination has not been performed, nor has an evaluation of anisotropy in the field.
Application of these techniques should provide a more detailed picture of spatial and temporal

variations in reservoir stress, which 1s the overall aim of this PhD thesis.

1.2.1  Objectives

The objectives of the thesis are to :

e Compute focal mechanisms of microearthquakes and invert for the stress regime.

e Perform shear-wave splitting analysis to estimate the spatial distribution of fracture orien-

tation and fracture density.

e Determine fracture size using frequency-dependent anisotropy.

1.3 Importance of this thesis

In 1999, the Yibal field displayed disappointing production rates. Geomechanical issues such
as well damage/failure, high water cuts at production wells, subsidence of 4cm per year and

compaction are some of the main problems in the Yibal field. The microseismic work was

carried out in the hope that it could help optimise hydrocarbon recovery and give insights into

the field geomechanics (Jones et al., 2004).

Knowledge of in-situ stress state and fracture parameters from focal mechanism and shear-wave
splitting analysis, respectively, can be significantly useful. The impact of the in-situ stress acting
on the rock and the fracture network in hydrocarbon flow is pronounced. The permeability of
cracks 1s strongly dependent on the 1n-situ stress acting on them (Gutierrez et al., 2001; Thomas

et al., 2003). Theretore, stresses are important in determining the role of faults as seals or fluid

pathways in fractured reservoirs such as those investigated in this thesis.



Incorporating the spatial distribution of stress and fractures together with the Yibal geologi-
cal model in a 3D geomechanical model can predict more accurately the reservoir behaviour
throughout the lifetime of the field. The parameters of the static 3D geological and structural
model can be extracted from seismic images and from routinely acquired petrophysical logs such
as density, seismic velocity, saturation and porosity (Fanchi, 2003; Liu et al., 2004). In addition
to stress, other geomechanical parameters such as rock strength can also be calculated from the
logs using empirical relationships (Arifin et al., 2003). The resulting 3D geomechanical model
1s ultimately coupled with fluid flow to solve for in-situ stress, as well as rock and fluid flow

properties in space and time (Tran et al., 2004; Walters et al., 2002; Garcia and Teufel, 2005).

A 3D geomechanical model has many advantages in drilling and field management that could
be implemented in Yibal. It can predict zones prone to well failure so they can be alleviated,
and new sate well trajectories can be designed (Arifin et al., 2003). It can also predict water-
front movements (from the water injection wells) to minimise water cut affected wells. Khan
and Teufel (2003) found the maximum fluid permeability direction aligned with the maximum
principal stress direction. Thus, the geomechanical model can also be used to maximise well
productivity by considering drilling perpendicular to fractures or the maximum stress direction
(Al-Ruwaili and Chardac, 2003). Forecasting 3D subsidence and compaction due to gas deple-

tion from the Natih reservoir 1s another potential benefit of a 3D geomechanical model.

1.4 Thesis outline

The thesis introduction outlines previous work in the study area and provides a broad picture of

the seismic network, recorded data and preprocessing.

Chapter 2 provides a geological and structural description of the study area. More importantly, it
also presents different fracture and in-situ stress data that have been collected from the field. The
chapter ends with a summary of the fracture and stress parameters from geology that are used to
forward-predict some of the main modelling parameters used in subsequent chapters. Towards
the end of each subsequent chapter dealing with real data, one can refer back to this summary to

assess the agreement between the results and the field geology.

Chapter 3 describes the work carried out 1n focal mechanism determination and stress inversion.
The first part (focal mechanism) starts with a description of the focal mechanism theory, followed
by synthetic tests, and finishes with the analysis of real data to determine fault plane solutions.

The second part (stress inversion) presents the theory 1n detail, stress inversion based on the focal



mechanisms, and finally provides estimates of stress magnitudes.

Chapter 4 provides theoretical predictions of shear-wave splitting in different likely fracture
scenarios in Yibal, via synthetic modelling with an emphasis on differentiating brine versus gas-
filled cracks. The chapter is ultimately meant to provide guidelines for shear-wave splitting
analysis of the real data performed in the following chapter (Chapter 5) and also help in the

interpretation of the real data results.

Chapter 5, previously presented in Al-Anboori et al. (2005), summarises shear-wave splitting re-
sults for the real data and the interpreted fracture strike and dip, and fracture density. It concludes

with the likely causes of anisotropy at Yibal.

Chapter 6 presents estimates of fracture size by means of frequency-dependent anisotropy de-
rived from shear-wave splitting analysis. It first describes the crack model of Chapman (2003)
that handles frequency-dependent anisotropy. Applications to real data from two fields, Yibal

and Valhall, are then presented.

The final chapter outlines the main conclusions and significant contributions of the project. It

also presents possible options for future work.

1.5 Previous studies of Yibal

There has been little previously published work concerned with the Yibal field. Neither earth-
quake focal mechanism nor shear-wave splitting studies are commonly done with microseismic
data in general. Recently, Al-Abri (2003) studied anisotropy and frequency dependent shear-
wave splitting using 4 days of Yibal microseismic data. Time lag results were between 0-26 ms,
the anisotropy magnitude was between 0-3% and the fast shear-wave strike was east (E) with

estimated mean direction of 96°. His frequency dependent anisotropy results indicate a fracture

size on the order of 1-10 m.

Potters et al. (1999) performed an anisotropy study in a nearby field named Natih, =~ 80 km
north-east of Yibal. Both fields share the same geological history since they are part of the
Fahud Salt Basin. Anisotropy was determined in the Fiqga shales and chalky Natih reservoir
using observations of shear-wave splitting in a 9-component 3-dimensional (9C3D) experiment.
Anisotropy up to over 20% was observed 1n the survey. The Figa fast shear-wave direction was
oriented north (IN) over the north-east part of the survey and north-east (NE) in the south-east

part. The Figa sphtting time lag was generally small (0-8 ms), but time lags as high as 30 ms



Figure 1.1 Map of Oman showing the Yibal field and nearby fields (modified from Al-Busaidi
(1997)).
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are encountered in some areas. The Natih fast shear wave trend was NE (in agreement with
geological knowledge of dominant open fracture direction) with high splitting time lags and

anisotropy values exceeding 30 ms and 15%, respectively.

In a later study of data from the same experiment, van der Kolk et al. (2001) used BOSK
eftective-medium theory to explain two shear-wave splitting anomalies, one in Natih and the
other in Figa. The BOSK theory is based on research work by Budiansky and O’Connell (1977)
and Sayers and Kachanov (1991). Using effective medium modelling, and considering only ver-
tical wave propagation they found that shear-wave splitting is higher for gas-filled than liquid-
filled fractures. The first anomaly shows splitting at the Natih crest is higher (50% or more) than
at the flanks. The large anisotropy value over the gas cap on the crest was interpreted as being
a result of both high density of fractures and gas-filled fractures. The second anomaly, observed

on F1qa above the reservoir was interpreted in terms of a gas chimney above the reservoir.

However, Hudson and Crampin (2003) suggested two main errors in the theory, and thereby
the application, of van der Kolk et al. (2001). This called into question the interpretation of
the anomaly 1n the gas cap. The first error is that the Sayers and Kachanov (1991) approxima-
tions are for dry inclusions and therefore not applicable for in-situ fluid-filled cracks. Secondly,
Sayers and Kachanov (1991) assumes that fluid-flow parameters are independent of crack ori-
entations and therefore neglect the etfect of orientation, distribution and connectivity of cracks.
Hudson and Crampin (2003) also pointed out that lag time is independent of fluid type for verti-
cal wave propagation through vertically aligned cracks (i.e., the raypaths used by van der Kolk
et al. (2001)). They also suggested that existing theories (such as Crampin (1978; 1984); Hud-
son (1980; 1981) and Tod (2001)) may explain the anomaly with lower amounts of anisotropy.

They also highlighted the use ot considering a wider range of wave propagation directions in

determining the cause of anisotropy.

Sayers (2002) concluded that vertical propagation through dipping fractures yields a significant

decrease in shear-wave splitting with increasing fluid bulk modulus. Therefore Sayers (2002)
proposed that steeply-dipping, non-vertical cracks may serve as an explanation for the observed

anomaly by van der Kolk et al. (2001) of high shear-wave splitting in the gas-saturated zone of

the reservotr.



1.6 Passive seismic monitoring at Yibal

Micro-seismic monitoring started in October 1999 1n response to a tremor felt at the surtace by
the Yibal team in 1997. The goal of this monitoring is improved hydrocarbon production and
Injection optimisation. Initially, a shallow network was deployed followed later on by a deeper

borehole network deployed by ABB Offshore Systems Limited (the data and event locations

have also been processed by ABB).

1.6.1 Description of network and sensors

The experiment, described by Jones et al. (2004), consists of five deep boreholes containing
permanent recording geophones (down to 1400 m depth). Figure 1.2a shows the location of
these wells. For best coverage over the whole field, four wells (Y053, Y279, Y385 and Y425) are
situated at the peripheries of the field forming a parallelogram-like shaped network of 2km X 2km
dimension. The fifth well (YO&0) is positioned at the centre of the network. Throughout this
thesis I reter to wells Y053, Y080, Y279, Y385 and Y425 as wells 1, 2, 3, 4 and 5, respectively.

Each well installation comprises an array of 8-level, 4 component (tetrahedral) sensor packages.
The 3-Cartesian components can be constructed using only 3 components, rendering the fourth
component as a coherence trace that can be used as an indicator of coupling, sensitivity and
calibration. The tetrahedral system also has the advantage that 3 orthogonal components can be
constructed even if one sensor 1s dead or malfunctioning. Figure 1.2b shows the geometry of
the array in each well. Station locations are listed in Appendix B.1. The stations (within the
array) are evenly spaced in wells 3, 4 and 5 with station spacings ot about 28.5, 65 and 80 m,

respectively, while in wells 1 and 2 stations are not evenly spaced.

1.6.2 Data acquisition

The downhole geophones continuously record signals, digitized at 2kHz (i.e., sample rate of
0.5 ms). A microseismic detection scheme is used on specific continuous channels (1.e., only
particular channels are allowed to trigger). When triggered, a 4 second record (including some

data before and after the trigger time) of all channels 1s saved to disk as an event.
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Figure 1.2 [a] Map of the five observation boreholes (blue hexagons) containing permanent sen-
sors (ignore the small red dots). Horizontal and vertical axes are universal eastern and northern
co-ordinates, respectively. [b] SW-NE cross section of the 8-level, 4C array (triangles) in the
five boreholes. The datum 1s the mean sea level + 150 m. Stations of known tool orientation are

marked by green filled triangles. Also shown are the P-wave (red) and S-wave (black) velocity
models. Distances in the horizontal axis are relative.



1.6.3 Recording status of sensors

Table 1.1 shows the recording status of all channels. Around 40% have been functioning well,
the rest are considered bad channels. Only 12 stations have known tool orientations (determined
from sensor orientation check-shots using a vibroseis truck), but these stations are distributed
across all 5 wells. Another 2 stations, 3.2 (well 3, level 2) and 3.6, have a hodogram set but
no orientation information. However the horizontal components of station 3.6 generally sufter
from severe ringing and are therefore not used in our analysis when they exhibit this problem.
With a few stations, different components (within a single station) are occasionally seen to hav<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>