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Abstract

The main objective of this thesis is to define a new class of multi-parameter

algebras, called the dilute blob algebra dbn(p, q, r, s), which is a generalization of the

Motzkin algebra.

After we define basis diagrams of the dilute blob algebra, we give generators for the

dilute blob algebra. A bijection between basis diagrams of the dilute blob algebra

and basis diagrams of the left-right symmetric Motzkin algebra is also studied.

We prove that the dilute blob algebra is cellular in the sense of Graham and Lehrer

and construct the left cell modules. We then compute the dimension of these cell

modules and the dimension of a dilute blob algebra. We define an inner product on

these cell modules. Then we prove that the cell modules are cyclic.

Moreover, we study the Gram matrix to determine when the cell module with n− 1

propagating lines is simple. We also prove that the cell modules are generically simple

over the complex field, thus the dilute blob algebra is generically semisimple over the

complex field.

We give a necessary and sufficient condition for a dilute blob algebra to be quasi-

hereditary. Explicit restriction rules for the cell modules are given and we find the

Bratelli diagram for n ≤ 4. We also study induction of the cell modules.
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Chapter 1

Introduction

The aim of this thesis is to introduce a new family of diagram algebras. When

we say diagram algebra we mean an associative, unital algebra whose basis elements

are described by diagrams and multiplication is described by diagram concatenation.

There are many known diagrams algebras such as the partition algebra, the planar

partition algebra, the left-right symmetric partition algebra, the partial Brauer algebra,

the Brauer algebra, the Motzkin algebra, the Temperley-Lieb algebra, the left-right

symmetric Temperley-Lieb algebra and the blob algebra. We will give the definition

of each one of these algebras and explain the relations between each of them and

show how our new algebra fits in with these algebras.

Now let R be a commutative ring with identity and fix p, q ∈ R. All the follow-

ing algebras are defined over R. We begin with the partition algebra Pn(p, q) that

appeared in Martin’s work ([18], [19], [20]) and later in Jones’s work [17]. Martin

and Jones defined the partition algebra as a generalization of the Temperley-Lieb

algebra to study the Potts model in statistical mechanics. The representation theory

of the partition algebra is extensively studied. See for example, Martin ([19], [20]),

Halverson and Ram [14] and Doran and Wales [9].

The partition algebra is a tower of finite dimensional algebras that has a basis

consisting of diagrams. These diagrams have a rectangular frame consisting of two

rows, the top row and the bottom row. We arrange n vertices labelled by 1, 2, . . . , n

1
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in the top row and 1′, 2′, . . . , n′ in the bottom row. We then join vertices by edges,

some vertices may not join with any other vertices. Here is an example of a basis

diagram for the partition algebra P6(p, q):

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.1: An example of a basis diagram for P6(p, q).

The dimension of Pn(p, q) is the number of ways to partition a set of 2n elements

which is known to be the Bell number B2n (see, for example [3]).

The product of two basis diagrams x, y in the partition algebra is obtained by con-

catenating diagrams as follows: place x on the top of y and identify the vertices of

the bottom row of x with the vertices on the top row of y. This forms a new diagram

consisting of a top row, middle row and bottom row. Possibly in the middle row

occurs some of loops, paths and isolated vertices that are not joined with the top

row and the bottom row. We remove these components and multiply the resulting

diagram with pα and qβ where α is the number of loops and β is the number of

paths or isolated vertices that removed from the middle row. An example is given as

follows:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

= pq

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.2: An example of the multiplication of two diagrams in P6(p, q).

The planar partition algebra P�n (p, q) is a subalgebra of the partition algebra

Pn(p, q). The planar partition algebra consists of basis diagrams from the partition

algebra such that the edges do not cross in the diagrams.
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The left-right symmetric partition algebra SP2n(p, q) is a subalgebra of the par-

tition algebra Pn(p, q). Consider the basis diagrams of the partition algebra that are

left-right symmetric under reflection in the middle vertical axis. These diagrams are

the basis of the left-right symmetric partition algebra SP2n(p, q). See an example as

follows:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.3: An example of a left-right symmetric partition diagram in SP12(p, q).

The partial Brauer algebra PBn(p, q) is a subalgebra of the partition algebra.

Martin and Mazorchuk in [21] studied the representation theory of this algebra. The

partial Brauer algebra consists of basis diagrams that are in the partition algebra

such that these diagrams only allow an edge to connect any two distinct vertices and

may be there is some vertices that are not connected with any other vertices. An

example is given as follows:

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.4: An example of a diagram in PB6(p, q).

The Brauer algebra Bn(p) is a subalgebra of the partial Brauer algebra PBn(p, q)

that has basis diagrams that are in PBn(p, q) such that every two distinct vertices

are joined with an edge. See an example of a diagram in Bn(p).

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.5: An example of a diagram in B6(p).
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The Motzkin algebra is a subalgebra Mn(p, q) (see [2]) of the planar partition

algebra P�n (p, q) and the partial Brauer algebra PBn(p, q). The basis diagrams of

the Motzkin algebra are the diagrams such that the edges in the diagram do not

cross and every two distinct vertices might be joined with an edge. An example of a

Motzkin diagram is given below:

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.6: An example of a diagram in M6(p, q).

The left-right symmetric Motzkin algebra SM2n(p, q) is a subalgebra of the

Motzkin algebra Mn(p, q) and the left-right symmetric partition algebra SP2n(p, q)

that consists of basis diagrams that are in the Motzkin algebra that are left-right

symmetric under reflection in the middle vertical axis. The following is an example

of the diagram in the left-right symmetric Motzkin algebra:

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.7: An example of a diagram in SM6(p, q).

The Temperley-Lieb algebra TLn(p) (see for example [26] and [29]) is a subalgebra

of the Brauer algebra Bn(p) and the Motzkin algebra Mn(p, q). The basis diagrams of

TLn(p) are the diagrams in the Motzkin algebra such that every two distinct vertices

are joined with an edge and the edges in the diagram do not cross. An example of a

diagram in Temperley-Lieb algebra given as follows:

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.8: An example of a diagram in TL6(p).
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The left-right symmetric Temperley-Lieb algebra STL2n(p) is a subalgebra of

Temperley-Lieb algebra TLn(p) and left-right symmetric Motzkin algebra

SM2n(p, q). The subset of the basis diagrams of Temperley-Lieb algebra that consists

of left-right symmetric diagrams under reflection in the middle axis is the basis of

STL2n(p).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 1.9: An example of a diagram in STL12(p).

For p′ ∈ R, the blob algebra bn(p, p′) (see for example [22] and [23]) is the gen-

eralization of the Temperley-Lieb algebra TLn(p) and when p′ = 1 the blob algebra

is isomorphic to the left-right symmetric Temperley-Lieb algebra as Green proved in

[13]. The basis diagrams of bn(p, p′) consists of the basis diagrams of the Temperley-

Lieb algebra that are undecorated and decorated in various lines by (single) blobs,

with the condition that no line to the left of the rightmost propagating line is deco-

rated; and to the right of it only the outermost arcs may be decorated. An example

of a basis diagram of blob algebra is given below:

•
• •

Figure 1.10: An example of a diagram in b6(p, p′).

The multiplication on the diagrams of bn(p, p′) is similar to the multiplication on the

diagrams of TLn(p), except it is now possible to introduce loops decorated with a

singe blob and lines with two blobs. We remove the loops in the middle row of the

product diagram and multiply the resulting diagram by pα and p′α
′

where α is the

number of undecorated loops and α′ is the number of decorated loops and we replace

any multiple blobs with single blob.
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In this thesis we will introduce a new family of multi parameter algebras, the

dilute blob algebra over a commutative ring R with identity and study some repre-

sentation theory of the dilute blob algebra.

Our motivation to introduce the dilute blob algebra is that when we multiply two dia-

grams in left-right symmetric Motzkin algebra we can have for example the following

product diagrams:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

.

In the first figure we can distinguish between a loop on the axis of symmetry and

ones that is not on the axis of symmetry. So we can have two parameters p and s

where p for the loop that is not on the axis of symmetry and s for the loop that is

on the axis of symmetry.

Similarly, in the second figure we can also distinguish between a path on the axis of

symmetry and the ones that is not on the axis of symmetry. So we can have two

parameters q and r where q for the path that is not on the axis of symmetry and r

for the other one.

Therefore, we can define a deformation of the Motzkin algebra with four parameters

p, q, r, s ∈ R which is our algebra the dilute blob algebra denoted by dbn(p, q, r, s).

Similarly, we can define a deformation of the Temperley-Lieb algebra with two pa-

rameters which is the blob algebra.
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Now we can draw a graph that represents the relations between all the algebras

that we have defined. We denote algebras without their parameters.

Pn

P�nPBn

Bn

Mn

SP2n

SM2n

ST2n

TLn dbn

bn

1.1 Structure of this thesis

Chapter 2 is devoted to the necessary background results from representation

theory. In particular the theory of cellular algebras, quasi-hereditary algebras and

reviewing of the Temperley-Lieb algebras, the left-right symmetric Temperley-Lieb

algebras, the blob algebras and the Motzkin algebras and some results regarding to

their representation theories.

In chapter 3 we introduce a unital associative algebra dbn(p, q, r, s) which depends

on the parameters p, q, r, s. The algebra dbn is defined over any commutative ring R

with identity and has an R-basis of dilute blob diagrams. We show that the algebra

dbn(p, q, r, s) is generated by certain diagrams ti, ri, li for 1 6 i 6 n − 1 and the

diagrams vn, wn when q ∈ R is invertible, where the subalgebra Mn(p), generated by

ti, ri and li for 1 6 i 6 n − 1 is the Motzkin algebra with dimension the Motzkin

number M2n =
∑n

k=0

1

k + 1

(
2n
2k

)(
2k
k

)
. We end this chapter by studying the bijection

between dilute blob diagrams and left-right symmetric Motzkin diagrams which was

in fact the first step we used to define the basis diagrams of the dilute blob algebra.

The main objective of the fourth chapter is to prove that the dilute blob algebra is

cellular, construct the cell modules and find their dimension. By using the dimension
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of the cell module we find the dimension of the dilute blob algebra. We then define

a bilinear form on the cell modules and we use it to prove that the cell modules are

cyclic when the parameters p, q, r and s are invertible in R.

The aim of chapter 5 is to use the Gram matrix to prove that the cell module

∆n(n − 1) is simple if and only if q 6= 0 and qs 6= r2. Also, we introduce some

calculations when n = 1, 2 to investigate when the cell module is simple. In theorem

5.2.1 we prove that the cell modules are generically simple over the complex field.

Chapter 6 is devoted to a very important result about the representation theory

of the dilute blob algebra which is theorem 6.2.5 that proves that the dilute blob

algebra is quasi-heredity over a field F when q 6= 0.

In chapter 7 we study restriction, draw the Bratteli diagram for the restriction

rule for n ≤ 4 and find a spanning set for the induced module of the cell modules.

We end this chapter by giving future directions for research.

Throughout this thesis we assume that R is a commutative ring with identity.



Chapter 2

Background

We devote this chapter to reviewing known results which we will require dur-

ing this thesis. We start in section 2.1 to remind the reader of the definition of a

class of finite dimensional algebras, namely cellular algebras and we briefly present

basic results about their representation theory. Next we recall the definition of quasi-

hereditary algebra which is closely related to a lot of cellular algebras. We then define

the Temperley-Lieb algebra and present some needed results about its representation

theory. Roughly speaking the Temperley-Lieb algebra is a finite dimensional alge-

bra that possesses a basis which can be described by diagrams. Multiplication of

the basis can be defined by concatenation of diagrams. We also briefly define two

related important algebras for our study that are known as the left-right symmet-

ric Temperley-Lieb algebra and the blob algebra. In the final section we define the

Motzkin algebra which is a subalgebra of the dilute blob algebra, following this we

define half Motzkin diagrams which are very useful in finding the dimension of the

dilute blob algebra.

2.1 Cellular algebras

We devote this section to recall the definition of a cellular algebra which was

originally defined by Graham and Lehrer [11] in terms of a cellular basis, and present

9
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some results of its representation theory.

Definition 2.1.1. [11, Definition 1.1] Let R be a commutative ring with identity. A

cellular algebra over R is an associative (unital) algebra A, together with cell datum

(Λ,M,C, ∗) where

(C1) Λ is a partially ordered set(poset) and for each λ ∈ Λ,M(λ) is a finite set such

that C :
∐

λ∈ΛM(λ)×M(λ)→ A is a injective map with image an R-basis of

A.

(C2) If λ ∈ Λ and u,w ∈ M(λ), write C(u,w) = Cλ
uw ∈ A. Then ∗ is an R-linear

anti-involution of A ( An involution means ∗2 = ∗) such that (Cλ
uw)∗ = Cλ

wu.

(C3) If λ ∈ Λ and u,w ∈M(λ) then for any element x ∈ A we have

xCλ
uw ≡

∑
z∈M(λ)

rx(z, u)Cλ
zw modA<λ (2.1)

where rx(z, u) ∈ R is independent of w and where A<λ is the R-submodule of

A generated by {Cλ′′
vg : λ′′ < λ, v, g ∈M(λ′′)}.

The basis is called a cellular basis.

Definition 2.1.2. [11, Definition 2.1] Let A be a cellular algebra with cell datum

(Λ,M, ∗, C). For each λ ∈ Λ define the (left)cell A-module Cλ to be the R-module

with basis {Cλ
u | u ∈M(λ)} and A-action defined by

xCλ
u =

∑
z∈M(λ)

rx(z, u)Cλ
z (x ∈ A, u ∈M(λ)) (2.2)

where rx(z, u) is the element of R defined in definition 2.1.1 (C3).

Definition 2.1.3. [16, section 1.5] Let V be a finite dimensional vector space with an

inner product 〈, 〉. The Gram matrix, G, is defined with respect to a basis v1, v2, . . . , vk

of V by letting the (i, j)th entry of G be 〈vi, vj〉.
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By (2.1) there is a unique bilinear form 〈 , 〉λ : Cλ × Cλ → R such that for

u1, w1, u2, w2 ∈M(λ), 〈w1, u2〉λ is given by

Cλ
u1w1

Cλ
u2w2
≡ 〈w1, u2〉λCλ

u1w2
modA<λ. (2.3)

Regarding to 〈 , 〉λ define the Gram matrix Gλ of Cλ with respect to the basis of cell

module in definition 2.1.2.

Proposition 2.1.4. [11, proposition 2.4 ],[25, proposition 2.9 ] Keep the notation

above. Suppose that λ ∈ Λ and let x, y ∈ Cλ. Then

(i) The form 〈 , 〉λ is symmetric, i.e. 〈x, y〉λ = 〈y, x〉λ.

(ii) 〈a∗x, y〉λ = 〈x, ay〉λ for all a ∈ A.

Now assume that A is a cellular algebra over a field F .

Definition 2.1.5. [11, Definition 3.1], [25, 2.10] For λ ∈ Λ, define the radical of the

bilinear form on Cλ:

rad(λ) = {x ∈ Cλ : 〈x, y〉λ = 0 for all y ∈ Cλ}. (2.4)

The following results are important for the representation theory of cellular algebras.

Proposition 2.1.6. [11, Proposition 3.2] Let λ ∈ Λ. Then

(i) rad(λ) is an A-submodule of Cλ.

(ii) If 〈 , 〉λ 6= 0, the quotient Cλ/ rad(λ) is irreducible.

(iii) If 〈 , 〉λ 6= 0, rad(λ) is the radical of Cλ ( the radical of Cλ is the smallest

submodule of Cλ with semisimple quotient).

Theorem 2.1.7. [25, Theorem 2.16] Let Λ0 = {λ ∈ Λ : 〈 , 〉λ 6= 0}. Then

The set {L(λ) := Cλ/ rad(λ) : λ ∈ Λ0} is a complete set of pairwise inequivalent

irreducible A-modules.
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Proposition 2.1.8. [25, Proposition 2.12] Suppose λ, µ ∈ Λ such that L(λ) 6= 0. Let

D be a proper submodule of Cλ, and suppose that θ : Cµ → Cλ/D is a non-zero A-

module homomorphism, then λ ≥ µ.

Theorem 2.1.9. [25, Corollary 2.21], [11, Theorem 3.8] The following are equiva-

lent.

(i) The algebra A is semisimple.

(ii) The non-zero cell modules Cλ are irreducible and pairwise inequivalent (This

means Cλ = Cλ/ rad(λ) for all λ ∈ Λ).

(iii) rad(λ) = 0 for all λ ∈ Λ.

(iv) detGλ 6= 0 for each λ ∈ Λ.

2.2 Quasi-hereditary algebras

In this section, we recall the definition of another class of finite dimensional

algebras, the quasi-hereditary algebras introduced by Cline, Parshall and Scott, [27]

and how they are related with cellular algebras.

Throughout this section F is a fixed field and A is a finite dimensional F -algebra.

Let rad(A) be the Jacobson radical of A, rad(A) is the largest two-sided nilpotent

ideal of A.

Definition 2.2.1. A two-sided ideal J in the F -algebra is idempotent if J2 = J.

Lemma 2.2.2. [7, Lemma C1]

(1) A two-sided ideal J in algebra A is idempotent if and only if J = AeA, for some

idempotent element e ∈ A.

(2) Given an idempotent two-sided ideal J = AeA, the algebra eAe is semisimple if

and only if J · rad(A) · J = 0.
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Definition 2.2.3. [4, Section 3] A two-sided ideal J of A is said to be a heredity ideal

if the following three conditions hold:

(i) J2 = J.

(ii) J is projective as a left A-module.

(iii) J · rad(A) · J = 0.

Lemma 2.2.4. [7, Lemma C.4] Let J be an idempotent two-sided ideal in A. Then

J is a heredity ideal if and only if the following two conditions hold:

(i) The multiplication map η : Ae⊗eAe eA→ AeA is bijective, where J = AeA, for

some idempotent e ∈ A.

(ii) J · rad(A) · J = 0.

Definition 2.2.5. [4, Section 3] A finite dimensional algebra A over the field F is

called quasi-hereditary provided there is a sequence

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jt = A

of ideals in A such that Ji/Ji−1 is a heredity ideal in A/Ji−1 for i = 1, 2, . . . , t. Such

a sequence of ideals is called a heredity chain in A.

Proposition 2.2.6. [25, corollary 2.23] Let A be a finite dimensional cellular algebra

over a field F with a cell datum (Λ,M,C, ∗) and assume Λ = Λ0. Then A is a quasi-

hereditary algebra.

2.3 The Temperley-Lieb algebra TLn(p)

The Temperley-Lieb algebras was originally introduced by Temperley and Lieb

in [28] in the study of transfer matrices in lattice models.

In this section, we recall the diagrammatic definition of the Temperley-Lieb algebra

TLn(p) where p ∈ R and then define it by generators and relations. The dimension

of TLn(p) and its cell modules are reviewed.
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Definition 2.3.1. A set partition of a finite set X is a set of non-empty subsets

{X1, X2, . . .} of X such that

⋃
iXi = X and Xi ∩Xj = ∅ whenever i 6= j.

The subset Xi in a set partition is called a part.

Let PX denote the set of all set partitions of X.

For n ∈ N, we define n = {1, 2, . . . , n}, n′ = {1′, 2′, . . . , n′} and n′′ = {1′′, 2′′, . . . , n′′}.

We consider the following total order:

1 < 2 < · · · < n , 1′ < 2′ < · · · < n′ and 1′′ < 2′′ < · · · < n′′.

Let Pn be the set of all partitions of the set n ∪ n′.

Definition 2.3.2. A Temperley-Lieb set partition of the set n ∪ n′ is a set partition

T ∈ Pn such that T satisfies the following properties:

(i) |ti| = 2 for all ti ∈ T .

(ii) If ti = {a, c : a, c ∈ n} and tj = {b, d : b, d ∈ n} are elements of T , then these

elements should not satisfy a < b < c < d. Similarly, if a, b, c, d ∈ n′.

(iii) If ti = {a, d′ : a ∈ n, d′ ∈ n′} and tj = {b, c′ : b ∈ n, c′ ∈ n′} are elements of T ,

then these elements should not satisfy either a < b and c′ < d′; or b < a and

d′ < c′.

(iv) If ti = {a, b : a, b ∈ n} and tj = {c, d′ : c ∈ n, d′ ∈ n′} are elements of T , then

these elements should not satisfy a < c < b. Similarly, if a, b, c ∈ n′, d′ ∈ n.

We denote Tn for the subset of Pn that consists of all Temperley-Lieb set partitions.

We can represent each element T ∈ Tn by a diagram on the set n ∪ n′, which are

called vertices : fix a rectangular frame with n nodes on the top row of the rectan-

gle representing the vertices of the set n (increasing from left to right) and with n
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nodes on the bottom row of the rectangle representing the vertices of the set n′ and

connecting the two vertices that belong to the same part by a line bounded by the

rectangular frame, and the vertices are the endpoints of the line, and no two lines

crossing.

It is useful to think of the rectangle as being embedded in the plane as [0, n+1]×[0, 1].

We put the lower left corner of the rectangle at the origin point (0, 0) such that each

vertex i (respectively, i′) is located at the point (i, 1) (respectively, (i′, 0)).

The diagram representing a Temperley-Lieb set partition is not unique, since there

are many different ways to draw the lines. Two such diagrams are regarded as the

same diagram if they encode the same set partition.

We call a diagram representing T ∈ Tn a Temperley-Lieb n-diagram. Then denote by

Tn the set of all Temperley-Lieb n-diagrams.

A line in a Temperley-Lieb n-diagram with one endpoint in the top row and one end-

point in the bottom row is called a propagating line and the one with both endpoints

in the same row is called an arc. An example is given in Figure 2.1.

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.1: An example of a Temperley-Lieb 6-diagram.

We define a Temperley-Lieb algebra as in [11].

Definition 2.3.3. Fix p ∈ R, we define the Temperley-Lieb algebra TLn(p) to be

the R-algebra with basis Tn. The multiplication x · y of x, y ∈ Tn is obtained by

concatenating x and y as follows. Place x above y and identify the bottom row vertices

in x with the corresponding top row vertices in y. This forms a new Temperley-Lieb

n-diagram (since x and y do not have crossing lines then concatenating x and y form

a diagram with no crossing lines), possibly with number of closed loops in the middle

row. We remove these loops and multiply the resulting diagram by pα, where α is the

number of closed loops removed from the middle row. Figure 2.2 gives an example

of this multiplication.
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

= p

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.2: Multiplication of two diagrams in TL6(p).

Note that multiplication in algebra TLn(p) can not increase the number of propagat-

ing lines.

The algebra TLn(p) is generated by the set {In, U1, . . . , Un−1} where

In =

•

•

•

•

•

•

•

•

•

•

•

•
. . . . . . , Ui = .

••••••••

• •

•

• •

• •

•

•

•

•
. . . . . .

i i + 1

The diagram In is the identity element of TLn(p), and the elements Ui satisfy the

following relations:

U2
i = pUi for all i ; (2.5)

UiUj = UjUi for |i− j| > 2; (2.6)

UiUjUi = Ui for |i− j| = 1. (2.7)

The dimension of the algebra TLn(p) is the n-th Catalan number

Cn =
(2n)!

(n+ 1)!n!
. (2.8)

see for example Theorem 2.4 in [26].
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The Temperley-Lieb n-diagram can be cut in half horizontally in such a way that

only propagating lines are cut (once). This produces a top half diagram and a bottom

half diagram, the floating lines in the half diagrams are straightened out and called

defects. For example,

•

•

•

•

•

•

•

•

•

•

•

•
→

•

•

•

•

•

•

•

•

•

•

•

•

→

•

•

•

•

•

•

•

•

•

•

•

•

.

In section 3 in [26], the R-module Zn that is spanned by all top half diagrams that

are resulted from cutting diagrams in Tn is naturally a left TLn-module under the

concatenation of diagrams with half diagrams. Now define a left TLn-submodule

Zn,c ⊆ Zn that is spanned by top half diagrams that contain exactly c arcs.

Graham and Lehrer proved in [11, example 1.4] that the Temperley-Lieb algebra

TLn(p) is cellular over any commutative ring R with identity, with involution ∗ act-

ing by reflecting each diagram horizontally, and Λ = {0, 1, . . . , [n
2

]} with reverse of

the natural order. The cell modules for the algebra TLn(p) are denoted by Zn,c.

The dimension of Zn,c is given from [26, equation 2.9] as follows:

dimZn,c =

(
n

c

)
−
(

n

c− 1

)
. (2.9)

More details about Temperley -Lieb algebras and their representation theory can be

found in [26] and [29].

2.4 The left-right symmetric Temperley-Lieb al-

gebra STL2n(p) and the blob algebra bn(p, p
′)

In this section we give a brief review about the left-right symmetric Temperley-Lieb

subalgebra STL2n(p) of the Temperley-Lieb algebra TL2n(p) and the blob algebra
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bn(p, p′) where p, p′ ∈ R.

2.4.1 The left-right symmetric Temperley-Lieb algebra

STL2n(p)

We define the left-right symmetric Temperley-Lieb algebra STL2n(p) as in [13]

and recall its dimension.

Definition 2.4.1. A left-right symmetric Temperley Lieb 2n-diagram is a Temperley-

Lieb 2n-diagram which is symmetric under reflection in the middle vertical axis.

An example is given in figure 2.3.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.3: A left-right symmetric Temperley Lieb 12-diagram.

Lemma 2.4.2. [13, Lemma 5.6] The left-right symmetric diagrams of TL2n span a

subalgebra of TL2n of dimension
(

2n
n

)
.

Definition 2.4.3. We call the algebra spanned by the left-right symmetric diagrams

of TL2n the left-right symmetric Temperley-Lieb algebra and denote it by STL2n(p).

Let ST2n be the set of all left-right symmetric Temperley-Lieb 2n-diagrams in T2n.

Definition 2.4.4. A half symmetric Temperly-Lieb 2n-diagram is a diagram obtained

by cutting horizontally a diagram in ST2n such that each propagating line is cut once,

and no other line is cut. This obtains a well defined pair of half diagrams which are

the top half 2n-diagram and the bottom half 2n-diagram that have floating lines.

The floating lines are straightened out and called defects.

For example,
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
→

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

→

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.4: An example of splitting a left-right symmetric Temperley-Lieb 8-
diagram into two. The dotted line here just indicates the axis of symmetry.

It is clear that the possible number of propagating lines in a diagram in ST2n is

0, 2, . . . , 2n.

Definition 2.4.5. For l ∈ {0, 2, 4, . . . , 2n}, let ST
|〉
2n(l), ST

〈|
2n(l) be the sets of top half

2n-diagrams and bottom half 2n-diagrams respectively with l defects constructed by

cutting diagrams in ST2n with l propagating lines as in definition 2.4.4. Let ST2n(l)

be the subset of ST2n that contains diagrams with exactly l propagating lines.

It is always possible to construct a unique diagram in ST2n(l) from two diagrams

in ST
|〉
2n(l) and ST

〈|
2n(l) by joining the propagating lines. So we have the following

bijection:

ST2n(l)↔ ST
|〉
2n(l)× ST 〈|2n(l) for all l ∈ {0, 2, 4, . . . , 2n}. (2.10)

2.4.2 The blob algebra bn(p, p
′)

In this subsection, we recall the definition of (left) blob algebra bn(p, p′) where

p, p′ ∈ R as an algebra given by a diagram basis and some useful results that will use

in the next subsection.

Definition 2.4.6. [22, Subsection 2.1] For p, p′ ∈ R, define the (left)blob algebra

bn(p, p′) as the generalisation obtained by including an additional idempotent blob

generator to the (diagram) generators of the Temperley-Lieb algebra, and additional

e = · · · · · · .
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relations given by

••= •

and

· · ·
= p′

· · ·
· · · .

Definition 2.4.7. Let B•n be the basis set of the blob algebra consists of Temperley-

Lieb diagrams in Tn and diagrams with decoration of various lines by (single) blobs,

with the condition that no line to the right of the leftmost propagating line is deco-

rated; and to the left of it only the outermost arcs may be decorated.

Definition 2.4.8. For l ∈ N, let B•n(l) be the subset of of B•n that consists of blob

diagrams with l propagating lines, one of which is decorated by blob; and let B•n(−l)

be the subset of B•n with l propagating lines, all undecorated.

Remark 2.4.9. [22, Section 2] The propagating lines of a diagram in B•n is indexed

by the set {n, n− 2, n− 4, . . . , 2− n,−n}.

Definition 2.4.10. A half blob diagram is a diagram obtained by cutting a blob

diagram from east to west in such a way that only propagating lines are cut (for

definiteness a propagating line that is decorated with a blob is replaced with a prop-

agating line that is decorated with two blobs and cut between the blobs). This

produces a well defined pair of half diagrams which are the top half diagram and the

bottom half diagram. The lines that result from cutting propagating lines are called

defects.

See for example figure 2.5.

Definition 2.4.11. For l ∈ {n, n − 2, n − 4, . . . , 2 − n,−n}, let B
•|〉
n (l), B

•〈|
n (l) be

the sets of top half blob diagrams and bottom half blob diagrams respectively with

l defects obtained by cutting blob diagrams in B•n(l) that have l propagating lines.
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•
•

→
•

• •

Figure 2.5: Splitting a diagram in B•5(3) into two halves.

Since any two half blob diagram in B
•|〉
n (l) and B

•〈|
n (l) connect in a unique way, as in

figure 2.5. Therefore, for l ∈ {n, n− 2, n− 4, . . . , 2− n,−n} we have a bijection:

B•n(l)↔ B•|〉n (l)×B•〈|n (l). (2.11)

The blob algebra is a cellular algebra [12, Section 2] and its left (right) cell modules

C l
n are the R-free module with basis B

•|〉
n (l) (B

•〈|
n (l)) and they are indexed by l ∈

{n, n−2, n−4, . . . , 2−n,−n}. The cell modules C l
n and C−ln have the same dimension

dimC l
n =

(
n
n−l

2

)
. (2.12)

For more details see [22, Section 2] and [10, subsection 2.1].

2.4.3 A bijection between B•n and ST2n

As mentioned in [13, Section 5] there is a bijection between diagrams in ST2n and

diagrams in B•n. For an example of this correspondence see figure 2.6.

•
•

� �

Figure 2.6: An example of a bijection between a blob 6-diagram for b6(p, p′) and
a left-right symmetric Temperley-Lieb 12-diagram for STL12(p).
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Therefore, from equations (2.10) and (2.11) we obtain a bijection

ST
|〉
2n(2k)× ST 〈|2n(2k)↔ ST2n(2k)↔ B•n(l)↔ B•|〉n (l)×B•〈|n (l). (2.13)

for k ∈ {0, 1, . . . , n} and l ∈ {n, n− 2, n− 4, . . . , 2− n,−n}.

Our aim now is to find for any l ∈ {n, n− 2, n− 4, . . . , 2− n,−n} the corresponding

value k ∈ {0, 1, . . . , n}.

Lemma 2.4.12. let d ∈ B•n(l) correspond to x ∈ ST2n(2k).

(i) If n is an even number, then

k = −l if l = 0,−2, . . . ,−n

k = l − 1 if l = 2, 4, . . . , n.

(ii) If n is an odd number, then

k = −l if l = −1,−3, . . . ,−n

k = l − 1 if l = 1, 3, . . . , n.

Proof. If l ∈ {0, ,−1,−2, . . . ,−n}, then the diagram d has l undecorated propagating

lines, and therefore d corresponds to the diagram x with k = l propagating lines. If l ∈

{1, 2, 3, . . . , n}, then the diagram d has l propagating lines including one propagating

line decorated with a blob, and therefore d corresponds to the diagram x with k = l−1

propagating lines.

Corollary 2.4.13. Let |ST |〉2n(2k)| denote the number of top half diagrams in

ST
|〉
2n(2k).
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(i) If n is an even number, then

|ST |〉2n(2k)| =



(
n

n−k
2

)
if k = 0, 2, . . . , n

(
n

n−(k+1)
2

)
if k = 1, 3, . . . , n− 1.

(ii) If n is an odd number, then

|ST |〉2n(2k)| =



(
n

n−k
2

)
if k = 1, 3, . . . , n

(
n

n−(k+1)
2

)
if k = 0, 2, . . . , n− 1.

Proof. This follows immediately from equations (2.12), (2.13) and lemma 2.4.12.

The next result shows how the algebra STL2n(p) is a special case of the blob algebra

bn(p, p′).

Lemma 2.4.14. [13, Lemma 5.7] If p is invertible, the algebra of STL2n(p2) is

isomorphic to the blob algebra bn(p, 1).

2.5 The Motzkin Algebra Mn(p, q)

In this section, we recall the definition of the Motzkin algebra using Motzkin

diagrams. Also, we recall the dimension of this algebra and its generating set.

Definition 2.5.1. A Motzkin set partition of the set n∪n′ is a set partition M ∈ Pn
such that it satisfies (ii), (iii), (iv) of definition 2.3.2 and |ti| ≤ 2 for all ti ∈ M .

Denote by Mn the set of all Motzkin set partitions of the set n ∪ n′.

We can draw a Motzkin n-diagram that represents an element ofMn in the same way

as drawing a Temperley-Lieb diagram, and since the size of the parts of a Motzkin
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set partition are at most two, then a Motzkin n-diagram may have vertices not con-

nected with any other vertices. We call these vertices isolated vertices.

We call a line in a Motzkin n-diagram, d, with one endpoint in the top row and one

endpoint in the bottom row a propogating line and a line with both endpoints in the

same row an arc. An example is given in figure 2.7.

As for Temperley-Lieb diagrams, the diagram representing a Motzkin set partition

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.7: An example of a Motzkin 6-diagram.

is not unique. Two Motzkin n-diagrams are considered equal if they represent the

same set partition.

We denote by MOn the set of all Motzkin n-diagrams, and MOn(k) the set of all

Motzkin n-diagrams with k propagating lines.

From [2, subsection 2.1], the number of the Motzkin n-diagrams is the same as the

number of ways of drawing any number of non-intersecting chords among 2n points on

a circle, which is known to be the Motzkin number M2n. A Motzkin n-diagram with

n lines is a Temperley-Lieb n-diagram and the number of Temperley-Lieb n-diagrams

is equal to the n-th Catalan number as given in equation (2.8)

M2n =
n∑
k=0

(
2n

2k

)
Ck =

n∑
k=0

1

k + 1

(
2n

2k

)(
2k

k

)
. (2.14)

Definition 2.5.2. A half Motzkin diagram is a diagram obtained by cutting hori-

zontally a diagram in MOn such that each propagating line is cut once, and no other

line is cut. This gives a well defined pair of half diagrams which are the top half

n-diagram and the bottom half n-diagram that have floating lines. The floating lines

are straightened out and called defects.
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For k ∈ {0, 1, . . . , n}, let MO
|〉
n(k), MO

〈|
n(k) be the sets of top half n-diagrams and

bottom half n-diagrams respectively with k defects constructed by cutting diagrams

in MOn(k).

Definition 2.5.3. [2, subsection 2.2] For fixed p, q ∈ R, the Motzkin algebra Mn(p, q)

is defined to be the set of linear combinations of Motzkin n-diagrams. The multipli-

cation x · y of two Motzkin n-diagrams x and y is found by concatenating x and y

in the following way: place x on top y and identify the vertices in the bottom row

of x with the vertices in the top row of y. This new diagram may contain a number

of closed loops, isolated vertices and paths in the middle row that are not connected

to the top and bottom rows of the diagram. Then we remove these components and

multiply the final result by pαqβ where α is the number of closed loops and β is the

number of isolated vertices and paths that arise in the middle row.

An example is given in figure 2.8.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

= pq

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.8: An example of multiplication of two diagrams in M6(p, q).

Belletete and Saint-Aubin in [1] define the dilute Temperley-Lieb algebra dTLn(β)

where β ∈ C that has a basis coinciding with the basis of the Motzkin algebra

Mn(p, q), but the multiplication defined on the basis elements of both algebras are

different. In [1, Corollarly 3.6] the authors calculate the number of the top half

diagrams of dilute Temperley-Lieb n-diagrams with k defects which is the same the

number of top half diagram in MO
|〉
n(k). Thus, we have the size of MO

|〉
n(k), denoted

by |MO
|〉
n(k)|, is given by the formula,

|MO|〉n(k)| =

[
n−k

2

]∑
c=0

(
n

k + 2c

)
dimZk+2c,c. (2.15)
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where Zn,c is as in section 2.3.

Proposition 2.5.4. [2, Proposition 2.13] The Motzkin algebra Mn(p, 1) is generated

by In and the diagrams ti, ri, li for 1 ≤ i ≤ n− 1 where

•

•

•

•

•

•

•

•

•

•

•

•
i i + 1

· · · · · ·ti = , ri =
•

•

•

•

•

•

•

•

•

•

•

•

•

•

· · · · · ·
i i + 1

, li =
•

•

•

•

•

•

•

•

•

•

•

•

· · · · · ·
i i + 1

.

Remark 2.5.5. The diagrams ti, ri and li for 1 6 i 6 n − 1 satisfy the relations

which are given in [15, Theorem 4.1].



Chapter 3

The dilute blob algebra dbn(p, q, r, s)

In this chapter we introduce a new class of finite dimensional algebras, the dilute

blob algebra the main object of study in this thesis. This algebra is a generalisation

of the Motzkin algebra. In the first section we define dilute blob set partitions that

are represented by diagrams called dilute blob diagrams. These diagrams are the

basis elements of a dilute blob algebra. We also introduce some concepts that will be

required in the next chapters. In the second section we define a generating set of a

dilute blob algebra when q ∈ R is invertible. The final section is devoted to define the

left-right symmetric Motzkin algebra which is a subalgebra of Motzkin algebra. Then

we show the correspondence between dilute blob diagrams and left-right symmetric

Motzkin diagrams.

Recall from definition 2.5.1 that the set Mn denotes the set of all Motzkin set

partitions of the set n ∪ n′.

3.1 Definition and structure

The purpose of this section is to define the dilute blob algebra. Firstly, we

construct a dilute blob set partition by using a Motzkin set partition that is defined

in definition 2.5.1. Then we explain how we represent a dilute blob set partition by a

diagram drawn in the plane and we called it a dilute blob diagram. Secondly, in order

27
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to multiply two dilute blob diagrams we need to define a product diagram. Next,

we define relations on a product diagram to obtain a dilute blob diagram. These

procedures allow us to define the dilute blob algebra. We end this section by defining

a left module of the dilute blob algebra.

Definition 3.1.1. Given T ∈Mn, then A(T ) is the subset of T that consists of the

elements ai that satisfy the following properties:

(i) |ai| = 1.

(ii) If ai = {a : a ∈ n}, then there is no set {b, c : b, c ∈ n} ∈ T such that b < a < c,

and there is no set {b, c′ : b ∈ n, c′ ∈ n′} ∈ T such that a < b.

(iii) If ai = {a′ : a′ ∈ n′}, then there is no set {b′, c′ : b′, c′ ∈ n′} such that b′ < a′ < c′,

and there is no set {b, c′ : b ∈ n, c′ ∈ n′} ∈ T such that a′ < c′.

Definition 3.1.2. A dilute blob set partition is an element of the set

{(T, d) : T ∈Mn, d ∈P(A(T ))} (3.1)

where P(A(T )) is the power set of A(T ). We denote the set of all dilute blob set

partitions by DBn.

Definition 3.1.3. We can rewrite the set in (3.1) to be the set

{x : x ∈ T \ d} ∪ {y� : y ∈ T ∩ d}. (3.2)

Example 3.1.4. 1. If A = ({{1, 1′}, {2}, {2′}}, {{2′}}) ∈ DB2, then

A = {{1, 1′}, {2}, {2′}�}.

2. IfB = ({{1, 1′}, {2, 3}, {2′, 3′}}, {φ}) ∈ DB3, thenB = {{1, 1′}, {2, 3}, {2′, 3′}}.

From definition 3.1.3, we have that an element of the set DBn has elements from

a Motzkin set partition T , and elements that belong to T ∩d. Therefore, we represent

an element of DBn as we have represented a Motzkin set partition T by a diagram
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as explained in section 2.5, and then add squares that decorate the vertices of the

elements belonging to T ∩ d. Such vertices are called decorated vertices.

Since d ∈P(A(T )) and from the properties of the elements of A(T ) in definition

3.1.1, we will have that decorated vertices should not be located either between the

end points of an arc or in the top row (bottom row) on the left side of any propagating

line.

Definition 3.1.5. We define a dilute blob n-diagram to be an n-diagram that repre-

sents an element belonging to DBn. We denote the set of all dilute blob n-diagrams

by dBn.

As with a Temperley-Lieb n-diagram and a Motzkin n-diagram, also here the dilute

blob n-diagram that represents an element belonging to DBn is not unique.

Two dilute blob n-diagrams are considered equal if they represent the same element

in DBn.

A line in a dilute blob n-diagram with one endpoint in the top row and one endpoint

in the bottom row is called a propagating line and one with both endpoints in the

same row is called an arc. A vertex in a dilute blob n-diagram that is not connected

with any other vertex is called an isolated vertex. An isolated vertex decorated with

a single square is called a decorated vertex.

It is useful to keep in mind that every dilute blob n-diagram d encodes a dilute blob

set partition. Hence, if {i, j′} ∈ d for i ∈ n and j′ ∈ n′ then there is a propagating

line between vertices i and j′ in d, {i, j} ∈ d for i, j ∈ n (respectively n′) then there

is an arc between vertices i and j in d, {i} ∈ d for i ∈ n (respectively n′) then i is an

isolated vertex in d, and {i}� for i ∈ n (respectively n′) then i is a decorated vertex

with a single square in d.

Example 3.1.6. The set dB2 has 35 elements which are:
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In order to be able to multiply dilute blob n-diagrams as for the Temperley-Lieb and

Motzkin algebras, we define the notion of a product n-diagram.

Definition 3.1.7. A product n-diagram, Γ(a, b), is two dilute blob n-diagrams a, b

stacked on top each other and we visualise it as follows:

we draw a in a rectangular frame embedded in a plane with vertices 1 to n (increasing

from left to right) on the top row and vertices 1′ to n′ (increasing from left to right)

on the bottom row. We then relabel the vertices of b from i to i′ on the top row and

i′ to i′′ on the bottom row. We draw the rectangular frame for b below a with the

top row of b identified with the bottom row of a. The edges of the two diagrams are

drawn as usual, and so are the isolated vertices and decorated vertices.

See for example figure 3.1.

a =

•

•
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•
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•

� �
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•� �⇒ Γ(a, b) = •
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�

Figure 3.1: An example of a product 8-diagram Γ(a, b).
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Similarly, we can define the product n-diagram Γ(a, b, . . . , c) for any finite number of

dilute blob n-diagrams. See figure 3.2 for an example of Γ(a, b, c)

a =

•

•

•

•

•

•

•

•

•

•

•

•
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•

•
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� �
, b =

•

•

•

•

•

•

•

•
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•
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⇒ Γ(a, b, c) =
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� �

�

Figure 3.2: An example of the product diagram Γ(a, b, c).

Definition 3.1.8. Given two diagrams a, b ∈ dBn, we call the connected components

in the middle row of the product diagram Γ(a, b) that are not connected with the top

and bottom rows of the diagram Γ(a, b) isolated components.

Isolated components that can occur are:

loops, paths, isolated decorated or undecorated vertices, isolated vertices decorated

with two squares and paths with endpoints decorated or not by single square as

illustrated in figure 3.3.

• •

p

• ,

• • •

q

•�
,

• • •�

r

•��
,

• • •�
�

s

Figure 3.3: Table classifying all the isolated components with their corresponding
parameters in dbn.

In the following any isolated vertex decorated or undecorated is considered a path of

length zero.
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Definition 3.1.9. Let p, q, r and s be elements in R, and a, b ∈ dBn. We define a

set of relations to obtain a dilute blob n-diagram from a product n-diagram Γ(a, b)

as follows:

(1) A product n-diagram Γ(a, b) with closed loops is identified with pα(a,b) times

the same diagram with the closed loops omitted, where α(a, b) is the number

of closed loops removed in the product n-diagram.

(2) A product n-diagram Γ(a, b) with a path which lies entirely in the middle row is

identified with qβ(a,b) times the same diagram with these components omitted,

where β(a, b) is the number of such components.

(3) A product n-diagram Γ(a, b) with a path with one of its endpoints decorated

with a single square which lies entirely in the middle row is identified with rγ(a,b)

times the same diagram with these components omitted, where γ(a, b) is the

number of such components.

(4) A product n-diagram Γ(a, b) with a path with both its end vertices decorated

with squares which lies entirely in the middle row is identified with sδ(a,b) times

the same diagram with these components omitted, where δ(a, b) is the number

of such components.

(5) A product n-diagram Γ(a, b) with a path connecting between two vertices (that

are not decorated), one of them in the middle row and the other one either in

the top row or in the bottom row is identified to be the same diagram with

omitting this path and replacing it with its endpoint, that is either at the top

row or bottom row.

(6) A product n-diagram Γ(a, b) with a path connecting between two vertices, one

of them in the middle row and decorated with a single square and the other

one (that is not decorated with a single square) either in the top row or in

the bottom row is identified with the same diagram omitting this path and

replacing it with its endpoint decorated with a single square, either at the top

row or bottom row.
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Definition 3.1.10. Given a, b two diagrams in dBn we form the product ab ∈ RdBn

as follows:

(1) Form the product n-diagram Γ(a, b) as in definition 3.1.7.

(2) Reduce the product n-diagram to a product n-diagram with no isolated com-

ponents by applying relations (1) to (4) in definition 3.1.9.

(3) Apply relations (5) and (6) in definition 3.1.9 and replace any remaining paths

by single edges.

(4) Remove the middle row and relabel each vertex in the bottom row i′′ to i′.

We denote the resulting diagram by a ◦ b. The product is

ab = pα(a,b)qβ(a,b)rγ(a,b)sδ(a,b)a ◦ b. (3.3)

For example, for n = 8

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•� �ab = •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

� � �

�

= pqr2s

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

�

�
= pqr2s a ◦ b

Figure 3.4: An example of the multiplication ab ∈ dB8.

Lemma 3.1.11. For any diagrams a, b ∈ dBn, we have a ◦ b ∈ dBn.

Proof. It is clear from the structure of the product n-diagram Γ(a, b) that the diagram

a ◦ b consists of non crossing edges since both a, b have non crossing edges. Any arcs,

isolated vertices decorated or undecorated in the top row of a and in the bottom row

of b are also in the top row and bottom row respectively of a ◦ b and by applying

(3) in definition 3.1.10. Therefore, we can not have decorated vertices between the
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endpoints of any arcs or in the left side of any propagating lines in a ◦ b. Hence, a ◦ b

is a dilute blob n-diagram.

Since it does not matter what order we apply the relations, the product ab is well

defined.

In order to prove the product ab (as in definition 3.1.10) satisfies the associative

property, we need to prove that both product (ab)c and a(bc) have the same number

of each type of the isolated components for any a, b, c ∈ dBn. For example, we need

to prove the number of closed loops in the middle row of Γ(a, b) (α(a, b)) adds to

the number of closed loops in the middle row of Γ(a ◦ b, c) (α(a ◦ b, c)) equal to the

number of closed loops in the middle row of Γ(b, c) (α(b, c)) adds to the number of

closed loops in the middle row of Γ(a, b ◦ c) (α(a, b ◦ c)). For this purpose we state

and prove the following proposition.

Proposition 3.1.12. Let a, b and c be diagrams in dBn. Then

α(a, b) + α(a ◦ b, c) = α(a, b ◦ c) + α(b, c) (3.4)

β(a, b) + β(a ◦ b, c) = β(a, b ◦ c) + β(b, c), (3.5)

γ(a, b) + γ(a ◦ b, c) = γ(a, b ◦ c) + γ(b, c), (3.6)

δ(a, b) + δ(a ◦ b, c) = δ(a, c ◦ b) + δ(b, c). (3.7)

Proof. Firstly, to prove equation (3.4) consider the following:

(p1) If a loop appears in the middle row of the diagram Γ(a, b), then definitely it

will appear in the middle row of the diagram Γ(a, b ◦ c). Therefore, α(a, b) =

α(a, b ◦ c).

(p2) If a loop appears in the middle row of the diagram Γ(b, c), then it also will

appear in middle row of the diagram Γ(a ◦ b, c). Therefore, α(b, c) = α(a ◦ b, c).

(p3) If there is a path in the middle row of the diagram Γ(a, b) starting in the vertex

i′ and ending in the vertex j′ in the middle row of the Γ(a, b) such that i′ < j′

, there is a path in the middle row of the diagram Γ(b, c) starting in the vertex
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k′ and ending in the vertex l′ in the middle row of Γ(b, c) such that k′ < l′,

and b has two propagating lines {i, k′} and {j, l′}. This construction will result

to appear a loop in the middle row of the diagrams Γ(a ◦ b, c) and Γ(a, b ◦ c).

Therefore, α(a ◦ b, c) = α(a, b ◦ c). As pictured in the example below

Γ(a, b, c) =

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

Hence, from p1-p3 we have proved equation (3.4).

Similarly, we can prove equations (3.5), (3.6) and (3.7) with appropriate changes.

To satisfy that (ab)c = a(bc) for any a, b, c ∈ dBn, we need also to prove that

(a ◦ b) ◦ c = a ◦ (b ◦ c). So we have the following theorem.

Theorem 3.1.13. The product in equation (3.3) is associative.

Proof. Let a, b and c be diagrams in dBn. Consider the products diagrams Γ(a◦ b, c),

Γ(a, b ◦ c) and Γ(a, b, c). It is clear (ignoring isolated components) that the three

product diagrams are the same. The following explains this explicitly:

(1) If there is a path starting from the top row of a and ending in the bottom row

of c, then it will be a propagating line in (a ◦ b) ◦ c and a ◦ (b ◦ c) i.e following

through lines is associative.

(2) Any arcs, isolated vertices and decorated vertices in the top row of a are also

in the top row of both diagrams (a ◦ b) ◦ c and a ◦ (b ◦ c). Similarly any arcs,

isolated vertices and decorated vertices in the bottom row of c are added to the

bottom row of both diagrams (a ◦ b) ◦ c and a ◦ (b ◦ c).

(3) If there is a path starting from the propagating line {i, j′} ∈ a and terminating

in an isolated vertex (a decorated vertex) {k} ∈ b ({k′} ∈ a). This would

appear the isolated vertex (the decorated vertex) {i} in the top row of both

diagrams (a ◦ b) ◦ c and a ◦ (b ◦ c).
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(4) If there is a path ending in the propagating line {i, j′} ∈ c and terminating in

an isolated vertex (a decorated vertex) {k′} ∈ b ({k} ∈ c). This would appear

the isolated vertex (decorated vertex) {j′} in the bottom row of both (a ◦ b) ◦ c

and a ◦ (b ◦ c).

(5) If there is a path starting from the propagating line {i, j′} ∈ a and terminating

in an isolated vertex (a decorated vertex) {k′} ∈ b ({k} ∈ c). This would appear

the isolated vertex (decorated vertex) {i} in the top row of both diagrams

(a ◦ b) ◦ c and a ◦ (b ◦ c).

(6) If there is a path ending in the propagating line {i, j′} ∈ c and terminating in

an isolated vertex (a decorated vertex) {k} ∈ b ({k′} ∈ a). This would appear

the isolated vertex (decorated vertex) {j′} in the bottom row of both diagrams

(a ◦ b) ◦ c and a ◦ (b ◦ c).

(7) If there is a path starting from a propagating line {i, j′} ∈ a and ending in

another propagating line {k, l′} ∈ a . This would appear an arc {i, k} in the

top row of both diagrams (a ◦ b) ◦ c and a ◦ (b ◦ c).

(8) If there is a path starting with a propagating line {i, j′} ∈ c and ending in

another propagating line {k, l′} ∈ c. This would appear an arc {j′, l′} in the

bottom row of both diagrams (a ◦ b) ◦ c and a ◦ (b ◦ c).

Hence, from 1-8 we have (a ◦ b) ◦ c = a ◦ (b ◦ c), and from proposition 3.1.12 that

tells us the parameters that appear in (ab)c and a(bc) are equal. Therefore, we have

(ab)c = a(bc) for all a, b, c ∈ dBn.

Example 3.1.14. Consider the following product of diagrams in dB8.
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Regardless of the order of the multiplication, we have a path starting from {1, 1′}

in the first digram and ending at {4, 4′} in the last diagram, which will result the

propagating line {1, 4′} in the multiplication diagram. A loop, an isolated vertex and

a path appear in the middle row between the first diagram and the second diagram.

The isolated vertex {4} will appear in the multiplication diagram that resulted from

terminating the propagating line {4, 2′} in the isolated vertex {2} in the top row of the

second diagram. Isolated vertices and decorated vertex with two squares appear in

the middle row between the second diagram and the third diagram. The propagating

line {3, 5′} in the second diagram terminates in two decorated vertices one is {3′}�
in the bottom row of the first diagram and the other one is {5}� in the top row of

the last diagram.

If we multiply the top two diagrams first we have
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If we compose the last two diagrams first we have
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In either case, the same number of each isolated components appears, all components

of the top row and bottom row of the multiplication diagram appear, just in the

opposite order. Consequently, regardless of the order of multiplication we get the

same diagram. In this case, the multiplication diagram is

•

•

•

•

•

•

•
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•
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.

Now we can write the main result of our thesis.

Theorem 3.1.15. Let R be a commutative ring with identity and fix p, q, r, s ∈ R.

The dilute blob algebra dbn(p, q, r, s) is an associative R-algebra and its identity

element is the diagram In (as in figure 3.5 ) with basis dBn and multiplication defined

on the basis elements in dBn and then extended bilinearly to all of dbn(p, q, r, s).

In what follows we will mostly omit the parameters p, q, r, s from our notation, writing

simply dbn for dbn(p, q, r, s).

In =

•

•

•

•

•

•

•

•

•

•

•

•
. . . . . .

Figure 3.5: The identity element of the algebra dbn(p, q, r, s).

Definition 3.1.16. The rank of a diagram x ∈ dBn, denoted rank(x), is the number

of propagating lines in the diagram x. We extend rank to scalar multiples of a

diagram via rank(ax) = rank(x) for x ∈ dBn, a ∈ R.
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Lemma 3.1.17. Given x1, x2 ∈ dBn. Then

rank(x1x2) ≤ min (rank(x1), rank(x2)) . (3.8)

Proof. The multiplication of two diagrams in dBn, can not create any additional

propagating lines, two propagating lines can become an arc, and a propagating line

can contract either to an isolated vertex or to a decorated vertex with a single square.

Corollary 3.1.18. For an integer λ with 0 6 λ 6 n, let Iλ be the R-span of the

diagrams in dBn of rank less than or equal to λ. Then Iλ is a two-sided ideal in dbn,

and we have the tower of ideals,

0 ⊂ I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In = dbn. (3.9)

Proof. Given x, xλ ∈ dBn such that rank(xλ) 6 λ. Thus xλ ∈ Iλ, and by lemma

3.1.17 we have,

rank(xxλ) = rank(xλx) 6 λ.

Therefore, xxλ ∈ Iλ, and xλx ∈ Iλ, and therefore Iλ is a two sided ideal in dbn.

Definition 3.1.19. A half dilute blob diagram is a diagram obtained by cutting

horizontally a dilute blob diagram in the middle in such a way that only propagating

lines are cut (once). This produces a well defined pair of half diagrams, a top half

diagram and a bottom half diagram that have floating lines. The floating lines are

straightened out and called defects.

For example,

•

•

•

•

•

•

•

•

•

•

•

•� �

�
→

•

•

•

•

•

•

•

•

•

•

•

•� �

�

→

•

•

•

•

•

•

•

•

•

•

•

•� �

�

.
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Definition 3.1.20. For λ ∈ {0, 1, . . . , n} define dB
|〉
n (λ), dB

〈|
n (λ) to be the sets of

top half diagrams and bottom half diagrams respectively with λ defects obtained by

cutting dilute blob diagrams in dBn(λ) that have λ propagating lines.

We can form a unique dilute blob diagram by these two half diagrams that have

the same number of defects by joining the defects in the unique way. So we have a

bijection:

dBn(λ)↔ dB|〉n (λ)× dB〈|n (λ) for all λ ∈ {0, 1, . . . , n}. (3.10)

Definition 3.1.21. Denote by |d〉 and 〈d| the top half dilute blob diagram and

bottom half dilute blob diagram respectively given from cutting a dilute blob n-

diagram d.

Note d = |d〉〈d|, where defects are joined up.

Lemma 3.1.22. Let Vn be the free R-module with basis ∪nλ=0dB
|〉
n (λ). Then Vn is a

left dbn-module with the action defined by concatenating a dilute blob diagram in dBn

with a half diagram, then proceeding as for multiplication in dbn. The result is a half

diagram.

Proof. Let x, y ∈ dbn and v be a half diagram in Vn, then (xy)v = x(yv) since we

multiply as we would multiply diagrams in dbn. This proves that the action defined

in Vn is associative.

It is clear that Inv = v for all half diagrams v ∈ Vn.

We give an example to demonstrate the action:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•� �

�
·• • • • • • • • = •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•� �

� = r

• • • • • • • •� �

.

Similarly, we can have a right dbn-module, if we consider the free R-module with

basis ∪nλ=0dB
〈|
n .
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Lemma 3.1.23. For 0 6 λ 6 n define the free R-submodule Wn(λ) of Vn spanned by

half diagrams having at most λ number of defects. Then Wn(λ) is a dbn-submodule

of Vn, and forms a filtration of Vn:

Wn(0) ⊂ Wn(1) ⊂ · · · ⊂ Wn(n) = Vn. (3.11)

Proof. As in lemma 3.1.17, the multiplication of two dilute blob diagrams in dBn can

not increase the number of propagating lines. Also, the action of a dilute blob diagram

in dBn on a half diagram can not increase the number of its defects. Therefore, if x ∈

dBn and a ∈ Wn(λ), then xa can not have more than λ defects, so xa ∈ Wn(λ).

3.2 A generating set for the algebra dbn(p, q, r, s)

In this section, we define the dilute blob algebra by generators. Assume that

q ∈ R is invertible.

For 1 ≤ i ≤ n− 1, consider the following diagrams in dBn,

•

•

•

•

•

•

•

•

•

•

•

•
i i + 1

· · · · · ·ti = , ri =
•

•

•

•

•

•

•

•

•

•

•

•

•

•

· · · · · ·
i i + 1

, li =
•

•

•

•

•

•

•

•

•

•

•

•

· · · · · ·
i i + 1

.

It is well known these diagrams generate the Motzkin algebra as mentioned in propo-

sition 2.5.4. For 1 ≤ i ≤ n, let

•

•

•

•

•

•

•

•

•

•

•

•

•

•�
i

vi = ,· · · wi =
•

•

•

•

•

•

•

•

•

•

•

•

•

•

�

i

· · · .

Diagram multiplication shows that

vi = livi+1 for 1 ≤ i ≤ n− 1. (3.12)
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Similarly,

wi = wi+1ri for 1 ≤ i ≤ n− 1. (3.13)

Definition 3.2.1. Let Hn ⊂ dbn denote the subalgebra of dbn spanned by the identity

element In and the diagrams vi for 1 ≤ i ≤ n. Analogously, let Hn denote the

subalgebra of dbn spanned by the identity element In and the diagrams wi for 1 ≤

i ≤ n.

Proposition 3.2.2. If q ∈ R is invertible then the dilute blob algebra dbn is generated

by the identity diagram In and the diagrams ti, ri, li for 1 ≤ i ≤ n − 1, and the

diagrams vn, wn.

Proof. We claim that every diagram d ∈ dbn can be factored as

d = ξm1vm2wm3 (3.14)

where ξ ∈ R, m1, m2 and m3 are Motzkin diagrams, v is a diagram in Hn and w is

a diagram in Hn .

This factorization can be done as follows. The diagram m1 is obtained from the

diagram d as follows:

1. If d has a propagating line {i, j′}, then m1 has a propagating line {i, i′}.

2. If d has an isolated vertex {i}, then m1 has an isolated vertex {i}.

3. If d has an arc {i, j}, then m1 has an arc {i, j}.

4. If d has a decorated vertex {i}�, then m1 has a propagating line {i, i′}.

5. Any unused vertices in the bottom row of m1 are isolated vertices.

The diagram v is obtained from the diagram d as follows:

1. If d has a decorated vertex {i}�, then v has a decorated vertex {i}�.

Consider the least element i ∈ n such that the vertex {i}� is decorated, and
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put propagating lines {a, a′} to the left of the vertex {i}�. All other unused

vertices are isolated.

2. If d has no decorated vertex in the top row, then v is the identity diagram.

The diagram m2 is obtained from the diagram d as follows:

1. If d has a propagating line {i, j′}, then so does m2. All other unused vertices

are isolated.

2. If d has no propagating lines, then m2 is the identity diagram.

The diagram w is obtained from the diagram d as follows:

1. If d has a decorated vertex {i′}�, then w has a decorated vertex {i′}�.

Consider the least element i′ ∈ n′ such that the vertex {i′} is decorated, and

put propagating lines {b, b′} to the left of the vertex {i′}�. All other unused

vertices are isolated.

2. If d has no decorated vertices in the bottom row, then w is the identity diagram.

The diagram m3 is obtained from the diagram d as follows:

1. If d has a propagating line {i, j′}, then m3 has a propagating line {j, j′}.

2. If d has an isolated vertex {j′}, then m3 has an isolated vertex {j′}.

3. If d has an arc {i′, j′}, then m3 has an arc {i′, j′}.

4. If d has a decorated vertex {j′}�, then m3 has a propagating line {j, j′}.

5. Any unused vertices in the bottom row of m3 are isolated vertices.

The scalar ξ =
1

qβ
where β is the number of isolated components which are isolated

vertices and paths in the product m1vm2wm3.

We claim that d = ξm1vm2wm3. Consider a propagating line {i, j′} in the diagram

d. Then if {a}� ∈ d then i < a, and if {b′}� ∈ d then j′ < b′.

Now {i, j′} ∈ m1vm2wm3 as:
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1. {i, i′} ∈ m1 by construction of m1 ( property 1),

2. {i, i′} ∈ v as i < a for any {a}� ∈ v by construction of v (property 1).

3. {i, j′} ∈ m2 by construction of m2 (property 1).

4. {j, j′} ∈ w by construction of w as j′ < b′ for any {b′}� ∈ d (property 1).

5. {j, j′} ∈ m3 by construction of m3 (property 1).

Hence, {i, j′} ∈ m1vm2wm3.

Consider a decorated vertex {i}� ∈ d. Then {i}� ∈ m1vm2wm3 as {i, i′} ∈ m1 by

construction of m1 (property 4), and {i}� ∈ v by construction of v (property 1).

Consider a decorated vertex {j′}� ∈ d. Then {j′}� ∈ m1vm2wm3 as {j′}� ∈ w by

construction of w (property 1) and {j, j′} ∈ m3 by construction of m3 (property 4).

Consider an isolated vertex {i} ∈ d. Then {i} ∈ m1vm2wm3 as {i} ∈ m1 by the

construction of m1 (property 2).

Similarly for {j′} ∈ d. Then {j′} ∈ m1vm2wm3 as {j′} ∈ m3 by construction of m3

(property 2).

Consider an arc {i, j} ∈ d. Then {i, j} ∈ m1vm2wm3 as {i, j} ∈ m1 by construction

of m1 (property 3).

Similarly an arc {i′, j′} ∈ d. Then {i′, j′} ∈ m1vm2wm3 as {i′, j′} ∈ m3 by construc-

tion of m3 (property 3).

Therefore, d =
1

qβ
m1vm2wm3 as ξ =

1

qβ
where β is the number of isolated vertices

and paths in the product m1vm2wm3.

For example,
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•

•

•

•

•

•

•

•

•

•

•

•
d =

�

�
=

1

q11

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

�

�

= m1

= v

= m2

= w

= m3

.

3.3 Bijection between left-right symmetric

Motzkin diagrams and dilute blob diagrams

Recall the definition of the Motzkin algebra Mn(p, q) from definition 2.5.3. In

this section we define the left-right symmetric Motzkin algebra and then we prove

it is a subalgebra of M2n(p, q). We end this section by making explicit the bijection

between the basis diagrams of the left-right symmetric Motzkin algebra and the basis

diagrams of the dilute blob algebra.

Definition 3.3.1. A left-right symmetric Motzkin 2n-diagram is a Motzkin 2n-

diagram that is symmetric under reflection in the middle vertical axis. Let SMO2n

be the set of all left-right symmetric Motzkin 2n-diagrams.

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.6: An example of a left-right symmtric Motzkin 6-diagram.

Definition 3.3.2. Fix p, q ∈ R, define SM2n(p, q) to be the free R-submodule of

M2n(p, q) with a basis consisting of the basis elements of M2n(p, q) that are left-right

symmetric diagrams.

Lemma 3.3.3. The free R-submodule SM2n(p, q) is a subalgebra of M2n(p, q).
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Proof. Since the identity element I2n of M2n(p, q) is a left-right symmetric diagram,

therefore, I2n ∈ SM2n(p, q).

Also, the multiplication of any diagrams in SM2n(p, q) is the multiplication inM2n(p, q).

However, concatenating two left-right symmetric diagrams also results in a left-right

symmetric diagram. Therefore the multiplication is closed in SM2n(p, q). Hence,

SM2n(p, q) is subalgebra of M2n(p, q).

Proposition 3.3.4. There is a bijection between left-right symmetric Motzkin 2n-

diagrams in SMO2n and dilute blob n-diagrams in dBn.

Proof. Consider a dilute blob n-diagram d in dBn. Replace each square on a decorated

vertex with a line that connects such vertex with the east wall in such a way that

the lines are not crossing. Now consider the diagram union its reflection in the east

wall, which is a diagram for SMO2n.

Conversely, consider a left-right symmetric Motzkin 2n-diagram a. Split a vertically

in the middle into two symmetrical parts. Consider the left part, then replace each

line that is resulting from cutting an arc with a square decorating the endpoint vertex

of the line. The resulting diagram is a dilute blob n-diagram.

For example,

•

•

•

•

•

•

•

•

•

•�

�

�

•

•

•

•

•

•

•

•

•

•
�

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.7: An example of a bijection between a diagram in dB5 and a diagram
in SMO10.



Chapter 4

Cellularity Of dbn(p, q, r, s)

In this chapter, we answer some fundamental questions about the representation

theory of dbn. In particular, in proposition 4.1.1 we show that the dilute blob algebra

dbn over any unital commutative ring R is cellular in the sense of Graham and Lehrer

[11], then we define the cell modules ∆n(λ) of dbn, which have a basis dB
|〉
n (λ). In

proposition 4.2.3 we prove that there is a one-to-one correspondence between half

diagrams in dB
|〉
n (λ) and half diagrams in the set of top half Motzkin n-diagrams that

has λ, λ + 1, . . . , n defects. We use this bijection to find the dimension of the cell

module ∆n(λ). Then we introduce a bilinear form on cell modules and then we use

the bilinear form to prove that the cell modules are cyclic.

4.1 The dilute blob algebra dbn(p, q, r, s) is a cellular

algebra

The aim of this section is showing how the dilute blob algebra dbn satisfies the

axioms of cellular algebra in the sense of Graham and Lehrer [11].

Proposition 4.1.1. The dilute blob algebra dbn is a cellular algebra.

Proof. We prove that the dilute blob algebra dbn satisfies axioms C1-C3 of definition

2.1.1. The cell datum is (Λdbn , dB
|〉
n (λ), C, ∗) where Λdbn = {0, 1, 2, . . . , n} with the

47
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usual (total) order, <, of integers.

We define C : t0≤λ≤ndB
|〉
n (λ) × dB

|〉
n (λ) → dbn to be a map that sends the pair

(u,w) ∈ dB|〉n (λ)× dB|〉n (λ) with λ defects to the diagram Cλ
uw ∈ dBn where w is the

bottom mirror image of w.

A map ∗ is defined by

∗ : dbn → dbn where (Cλ
uw)∗ = Cλ

wu. (4.1)

This map sends every diagram in dBn to its reflection around a horizontal line. An

example is given in figure 4.1 for the case n = 6. We then extend ∗ linearly to all of

dbn

•

•

•

•

•

•

•

•

•

•

•

•�

�

−→∗

•

•

•

•

•

•

•

•

•

•

•

•

�

�

Figure 4.1: An example of the map ∗ that reflects the basis element of dbn around
a horizontal line to get another basis element of dbn.

Since every diagram in dBn can be cut into a unique top half diagram and a unique

bottom half diagram, the map C is an injective map. Moreover, every basis element

is in imC, so (C1) is satisfied.

We now show that ∗ is an anti-involution. Let Cλ
uw, C

λ′

u′w′ ∈ dBn.

Clearly (Cλ
uwC

λ′

u′w′)
∗ = (Cλ′

u′w′)
∗(Cλ

uw)∗ as multiplying diagrams then flipping is the

same as flipping then multiplying.

Also,

(Cλ
uw)∗

2
= ((Cλ

uw)∗)∗ = (Cλ
wu)
∗ = Cλ

uw.

Therefore, ∗ is an anti-involution. Hence, we satisfy (C2).

Now from lemma 3.1.17 we have

rank(Cλ′

u′w′C
λ
uw) 6 min(rank(Cλ′

u′w′), rank(Cλ
uw)) = min(λ′, λ).
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Assume that rank(Cλ′

u′w′C
λ
uw) = l. Then l ≤ λ, and so we have the following two

cases:

Case (1) If l < λ. Then

Cλ′

u′w′C
λ
uw ≡ 0 mod db<λn .

Case (2) If l = λ. Then we have this case when λ 6 λ′ and all λ propagating lines

connect with λ′ propagating lines from Cλ′

u′w′ . Then the multiplication does not

change the bottom half of Cλ
uw. Thus, we have

Cλ′

u′w′C
λ
uw = pαqβrγsδCλ

u′′w

where u′′ ∈ dB|〉n (λ). Here pαqβrγsδ depends on w′, u and does not depend on

w.

Therefore, we satisfy (C3).

Hence, the algebra dbn is a cellular algebra.

4.2 Cell modules of the algebra dbn(p, q, r, s)

In this section, we define the cell modules of the dilute blob algebra dbn, find their

dimensions and prove they are cyclic modules.

Definition 4.2.1. For each λ ∈ Λdbn , the (left) cell module of dbn corresponding to

λ is

∆n(λ) = spanR{Cλ
u : u ∈ dB|〉n (λ)}

where the action of dbn is defined by

xCλ
u =

∑
z∈dB|〉n

rx(z, u)Cλ
z (x ∈ dbn, u ∈ dB|〉n )

where rx(z, u) is the element of R defined in definition 2.1.1 (C3).
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Since the elements of the basis of ∆n(λ) are in one-to-one correspondence with ele-

ments of dB
|〉
n (λ), we shall identify Cλ

u ↔ u ∈ dB|〉n (λ). Then dB
|〉
n (λ) forms a basis of

the cell module ∆n(λ), λ ∈ Λdbn .

Example 4.2.2. The cell module ∆3(2) for the algebra db3 has basis consists of the

following top half diagrams:

• • •
u1 = ,

• • •
u2 = , u3 =

• • •
, u4 =

• • •�
.

If x, y two diagrams in dB3 such that

•

•

•

•

•

•

x =
�

, y =

•

•

•

•

•

•�

�

.

Then

•

•

•

•

•

•

x · u2 =

�• • •

= 0, and y · u1 = •

•

•

•

•

•�

�

• • •

= ru4.

Now, recall from definition 2.5.2 that MO
|〉
n(k) is the set of top half Motzkin

n-diagrams with k defects.

Proposition 4.2.3. For all λ ∈ {0, 1, . . . , n}, there is a bijection between the half

diagrams in dB
|〉
n (λ) and the half diagrams in

⋃n
i=λMO

|〉
n(i).

Proof. Consider a half diagram a ∈ dB|〉n (λ), if there are no decorated vertices in a,

then a ∈MO
|〉
n(λ). Otherwise, replace every square decorating a vertex with a defect.

We will have a half diagram in
⋃n
i=λMO

|〉
n(i).

Conversely, consider a half diagram b ∈ MO
|〉
n(λ), then b ∈ dB|〉n (λ). If b ∈ MO

|〉
n(i)

with i ∈ {λ + 1, λ + 2, . . . , n}, then we will fix the first λ defects start from the left

side and then replace the other defects with squares decorating the vertices. The

resulting half diagrams are in dB
|〉
n (λ).

It is clear that both procedures are the converse of each other.
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For example,

• • • • •� � ↔
• • • • •

Figure 4.2: An example of the bijection between two elements of dB
|〉
5 (2) and

MO
|〉
5 (4).

Recall from equation (2.15) |MO
|〉
n(k)|, so we have the following corollary.

Corollary 4.2.4. The dimension of cell module ∆n(λ) is

dimR ∆n(λ) =
n∑
i=λ


[
n−i

2

]∑
c=0

(
n

i+ 2c

)((
i+ 2c

c

)
−
(
i+ 2c

c− 1

)) . (4.2)

Proof. It is an immediate consequence of proposition 4.2.3 and equation (2.15).

Example 4.2.5. Here is an example for the module ∆3(1). The set MO
|〉
3 (1) has the

following diagrams which are some of the basis diagrams of ∆3(1)

• • • , • • • , • • • , • • • , • • • .

The set MO
|〉
3 (2) consists of the following diagrams:

• • • , • • • , • • • .

These diagrams correspond to some basis diagrams of ∆3(1) respectively which are

• • •� , • • •� , • • •� .

Finally, the set MO
|〉
3 (3) consists of a unique diagram
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• • • .

This diagram corresponds to a basis diagram of ∆3(1) which is

• • •� � .

Therefore, dimR ∆3(1) = 9.

Proposition 4.2.6. The dimension of the dilute blob algebra dbn is given by

dimR dbn =
n∑
λ=0

(dimR ∆n(λ))2 . (4.3)

Proof. This is an immediate result from the algebra dbn being a cellular algebra with

the map C as in the proof of proposition 4.1.1 and the basis set of the cell module

∆n(λ) being the set dB
|〉
n (λ).

On every cell module ∆n(λ) there is a unique bilinear form as mentioned in section

2.1. We can simplify the definition of the bilinear form as follows:

Definition 4.2.7. We define the bilinear form 〈 , 〉λ : ∆n(λ)×∆n(λ)→ R as follows.

If x, y ∈ dB|〉n (λ), then 〈x, y〉λ is defined to be the mirror image of x by a horizontal

reflection, and gluing it on the top of y. If there is a defect in x that does not connect

with a defect in y, then 〈x, y〉λ = 0. Otherwise, 〈x, y〉λ = pαqβrγsδ. We then extend

〈 , 〉λ bilinearly to all of ∆n(λ).

Example 4.2.8. Consider u1, u2 and u4 in example 4.2.2, we have

• • •〈u1, u2〉2 = • • • = 0, 〈u1, u4〉2 = • • •• • •� = r.

Definition 4.2.9. For λ = {0, 1, · · · , n} define Yn(λ) to be the subset of dB
|〉
n (λ)

that has half diagrams having precisely λ defects and n− λ isolated vertices.
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Note that the R-submodule spanR Yn(λ) is not a dbn-submodule.

Proposition 4.2.10. For an invertible q ∈ R, ∆n(λ) is cyclic with any non-zero

element of Yn(λ) being a generator.

Proof. Let y be a half diagram in Yn(λ), then 〈y, y〉λ = qn−λ = ζ. For any element

b ∈ ∆n(λ), then b =
∑m

i=1 aixi for ai ∈ R and xi ∈ dB|〉n (λ). Consider the following

equation:

(∑m
i=1 aiC

λ
xiy

)
y =

∑m
i=1 ai〈y, y〉λxi = ζb.

Therefore,
1

ζ

∑m
i=1 aiC

λ
xiy
y = b. Thus, y generates ∆n(λ).

In general, we have

Proposition 4.2.11. A half diagram a is a generator of ∆n(λ) if there exists a half

diagram b ∈ ∆n(λ) such that 〈a, b〉λ is an invertible in R.

Proof. Let b be a half diagram in ∆n(λ) such that 〈b, a〉λ = ζ is an invertible in R.

For any half diagram x ∈ ∆n(λ), both x and b have the same number of defects and

therefore we may consider Cλ
xb

. Hence,
1

ζ
Cλ
xb
a = x and this proves that (dbn)a =

∆n(λ).

Example 4.2.12. Consider the cell module ∆3(1).

Let a = • • •� , b = • • • and x = • • • .

Then

〈b, a〉1 = • • •� = qr, C1
xb

=
•

•

•

•

•

•
.

Then

1
qr
C1
xb
· a =

•

•

•

•

•

•

�

= 1
qr

•
= x

•
= x

•
= x

Then, if q, r ∈ R are invertible then a generates ∆3(1).





Chapter 5

Generic semisimplicity of

dbn(p, q, r, s)

Theorem 2.1.9 gives us a technique to know when the cell modules of the dilute

blob algebra are simple. The technique is calculating the Gram matrix Gn(λ) for

the bilinear form 〈 , 〉λ for the corresponding cell module ∆n(λ), and then we find

when the determinant of Gn(λ) (det(Gn(λ))) is non-zero. Therefore, as stated in the

theorem 2.1.9 the cell module ∆n(λ) is simple if and only det(Gn(λ)) 6= 0. In this

chapter we study the Gram matrix Gn(λ) of the cell module ∆n(λ) for λ = 0, . . . , n

when n = 1, 2 to identify when the module ∆n(λ) is simple. We then show that for

n > 1 the module ∆n(n − 1) is simple if and only q 6= 0 and qs 6= r2. We end this

chapter by proving that the module ∆n(λ) is generically simple over the complex field

which implies that the dilute blob algebra is generically semisimple over the complex

field.

5.1 Gram matrix

Throughout this section, we assume that F is a field and R = F . Let ∆n(λ) be

the cell module with basis dB
|〉
n (λ) as given in definition 3.1.20. Recall the definition

of the bilinear form 〈 , 〉λ from definition 4.2.7 and the definition of the radical of the

55
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bilinear form on cell module from definition 2.1.5. Let Gn(λ) be the Gram matrix of

the inner product 〈 , 〉λ on the cell module ∆n(λ) as given in section 2.1.

For n ≥ 1 the module ∆n(n) is spanned by the top half diagram x ∈ dB|〉n (n) consist-

ing of n defects, and then it has dimension 1. Then ∆n(n) is simple for n > 1.

Now we discuss when the cell module is simple in the following examples:

Take n = 1. The algebra db1 is 5-dimensional. The corresponding cell modules are

∆1(1) = 〈 • 〉

∆1(0) = 〈a = • , b= •� 〉

and therefore the Gram matrix of ∆1(0) with respect to the previous basis with the

same order is

G1(0) =

q r

r s


and det(G1(0)) = qs − r2. Thus the module ∆1(0) is simple if and only if qs 6= r2.

Let us find rad ∆1(0)

rad ∆1(0) = {x ∈ ∆1(0) : 〈x, y〉0 = 0 for all y ∈ ∆1(0)}.

Let x and y be elements in ∆1(0). Therefore, we can write x and y as linear combi-

nations of the basis elements of ∆1(0). Let ai, bi ∈ F for i = 1, 2 and

x = a1a+ a2b,

y = b1a+ b2b.

Suppose that 〈x, y〉0 = 0 for all y ∈ ∆1(0). By using G1(0) we have the following

equations:
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qa1b1 + ra1b2 + ra2b1 + sa2b2 = 0.

This equation can be written as

(qa1 + ra2)b1 + (ra1 + sa2)b2 = 0.

The above equation is for all values of b1 and b2 . Thus, we can write

qa1 + ra2 = 0, (5.1)

ra1 + sa2 = 0. (5.2)

We get non-zero solutions to the above equations if detG1(0) = 0. This implies

qs− r2 = 0. If qs 6= r2, then x = 0, which implies that rad ∆1(0) = {0}.

When qs = r2 the equations (5.1) and (5.2) satisfy that a1 = − r
q
a2. Therefore,

rad ∆1(0) = F 〈− r
q
a+ b〉.

In the case n = 2, the algebra db2 is 35-dimensional. We have three cell modules

∆2(2), ∆2(1) and ∆2(0) as follows:

∆2(2) = 〈 • • 〉 ,

∆2(1) = 〈a = • • , b= • •�
,c = • • 〉 , and

∆2(0) = 〈a = • • , b= • •�
,c = • •�

,d = • •� �
,e = • • 〉.
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The Gram matrix of ∆2(1) with respect to the previous basis with the same order is

G2(1) =


q r 0

r s 0

0 0 q


and detG2(1) = q(qs− r2). Thus the module ∆2(1) is simple unless q(qs− r2) = 0.

Let us find rad ∆2(1)

rad ∆2(1) = {x ∈ ∆2(1) : 〈x, y〉1 = 0 for all y ∈ ∆2(1)}.

Let x and y be elements in ∆2(1). Therefore, we can write x and y as linear combi-

nations of the basis elements of ∆2(1). Let ai, bi ∈ F for i = 1, 2, 3 and

x = a1a+ a2b+ a3c,

y = b1a+ b2b+ b3c.

Suppose that 〈x, y〉1 = 0 for all y ∈ ∆2(1). By using G2(1) we have the following

equations:

qa1b1 + ra1b2 + ra2b1 + sa2b2 + qa3b3 = 0.

This equation can be written as

(qa1 + ra2)b1 + (ra1 + sa2)b2 + qa3b3 = 0.

The above equation is for all values of b1, b2 and b3. Thus, we can write

qa1 + ra2 = 0, (5.3)

ra1 + sa2 = 0, (5.4)

qa3 = 0. (5.5)

We get non-zero solutions to the above equations if detG2(1) = 0. This implies that

q(qs− r2) = 0. If q 6= 0 and qs 6= r2, then x = 0, which implies rad ∆2(1) = {0}.
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When q = 0 and qs 6= r2 the equations (5.3), (5.4) and (5.5) satisfy a1 = a2 = 0 and

a3 arbitrary. This implies that

rad ∆2(1) = F 〈c〉,

which is a one dimensional space.

When qs = r2 and q 6= 0 the equations (5.3), (5.4) and (5.5) satisfy a3 = 0 and

a1 = − r
q
a2. Therefore,

rad ∆2(1) = F 〈− r
q
a+ b〉.

Also, the Gram matrix of the module ∆2(0) with respect to the previous basis with

the same order is

G2(0) =



q2 qr qr r2 q

qr qs r2 rs r

qr r2 qs rs r

r2 rs rs s2 s

q r r s p


and detG2(0) = q2(r2− qs)4(p− 2). Thus the module ∆2(0) is simple unless q2(r2−

qs)4(p− 2) = 0.

From the last example we can recognise that it is not easy to calculate the determinant

of Gn(λ). Therefore, it is not easy to know in which value of the parameters p, q, r

and s that make the cell module ∆n(λ) simple for high rank n and λ = 0, 1, . . . , n−2.

Proposition 5.1.1. For n > 1 the cell module ∆n(n − 1) is simple if and only if

q 6= 0 and qs 6= r2.

Proof. Order the basis elements of ∆n(n− 1) by letting the first diagram consists of

defects from the vertex 1 to the vertex n− 1 and an isolated vertex in the vertex n.

The second diagram is similar to the first one with put in the vertex n a decorated
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vertex. Other diagrams will consist of n − 1 defects and an isolated vertex, we do

not need to order them. Therefore, we have

Gn(n− 1) =

 G1(0) 0

0 q1n−1


where 1n−1 the n− 1× n− 1 identity matrix. Hence the module ∆n(n− 1) is simple

if and only if qs 6= r2 and q 6= 0.

5.2 Generic semisimplicity of the algebra

dbn(p, q, r, s) over the complex field

We will use the notion generically to mean that the property holds on an Zariski

open dense subset of parameter space, as defined in [5, Section 1]. We will prove that

the property holds for all but finite number of parameters.

Our strategy to prove that the cell module ∆n(λ) is generically simple is proving

that the leading term of the det(Gn(λ) is not identically zero which implies that

det(Gn(λ)) 6= 0.

Theorem 5.2.1. For λ ∈ {0, 1, . . . , n}, the module ∆n(λ) is generically simple over

the complex field.

Proof. By computing Gn(λ) for λ ∈ {0, 1, . . . , n}, we have det(Gn(λ)) is a polynomial

P in the parameters considered as indeterminates. We need to show that P is not

identically zero. Now for any order of the basis of the cell module ∆n(λ), consider

the diagonal entries of Gn(λ) that are 〈a, a〉λ where a is a basis diagram of ∆n(λ). If

a is a diagram only consisting of n − λ isolated vertices, then 〈a, a〉λ is qn−λ which

is the maximal power of q that can occur in the Gram matrix and it occurs only

once. Similarly, if a only consists of n − λ decorated vertices, then we have sn−λ in

the diagonal which is the maximal power of s that occurs in the Gram matrix and

it occurs only once. If a only has isolated vertices and decorated vertices, then qβsδ

where β + δ = n − λ which is maximal total degree of a monomial in q and s and
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occurs only once in that row or column.

Now, we consider how the loop occurs on the diagonal. Consider the following cases:

1. Suppose that n− λ even , so the maximal number of loops is n−λ
2

. To achieve

n−λ
2

loops we need the n−λ
2

arcs to match up exactly. i.e. this occurs when we

have a half diagram with n−λ
2

arcs and we take the inner product with itself.

Thus the maximal power of p (namely n−λ
2

) occurs on the diagonal, and only

on the diagonal. Similarly, the maximal total degree for pαqβsδ occurs on the

diagonal and only on the diagonal with 2α + β + δ = n− λ.

2. Suppose that n − λ odd. Then n−λ−1
2

is the maximal number of loops. We

similarly get that pαqβsδ has maximal total degree on the diagonal with 2α +

β + δ = n− λ.

Therefore, every entry on the diagonal has maximal total degree for that row and

uniquely for that row. The product of the diagonal entries gives the leading term of

the polynomial P , this shows that P is not identically zero. So for a fixed n, there is a

finite set of values for this polynomial p to be zero. Thus the set of parameters which

give non-zero polynomial p has finite complement and hence is dense in parameter

space. Therefore, det(Gn(λ)) is generically non-zero.

Corollary 5.2.2. The dilute blob algebra dbn is generically semisimple over the com-

plex field.

Proof. It is an immediate consequence from theorem 5.2.1 and applying theorem

2.1.9.

To see that the diagonal of Gn(λ) consists of maximal entries as explained above see

the following example:

Example 5.2.3. Consider n = 3 and the cell module ∆3(0) is spanned by the

diagrams:
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• • • , • • •�
, • • •�

, • • •� �
, • • • , • • •�

,

• • •��
, • • •� �

, • • •� � �
, • • •�

, • • • , • • •�
,

• • • .

The Gram matrix of the module ∆3(0) with respect to the illustrated above basis

with the same order is

G3(0) =



q3 q2r q2r qr2 q2 q2r qr2 qr2 r3 qr q2 qr q2

q2r q2s qr2 qrs qr qr2 qrs r3 r2s r2 qr r2 qr

q2r qr2 q2s qrs qr qr2 r3 qrs r2s r2 qr qs qr

qr2 qrs qrs qs2 qs r3 r2s r2s rs2 rs r2 rs r2

q2 qr qr qs qp qr r2 r2 rs pr q r q

q2r qr2 qr2 r3 qr q2s qrs qrs r2s qs qr r2 qr

qr2 qrs r3 r2s r2 qrs qs2 r2s rs2 rs r2 rs qs

qr2 r3 qrs r2s r2 qrs r2s qs2 rs2 rs qs rs r2

r3 r2s r2s rs2 rs r2s rs2 rs2 s3 s2 rs s2 rs

qr r2 r2 rs pr qs rs rs s2 ps r s r

q2 qr qr r2 q qr r2 qs rs r pq r q

qr r2 qs rs r r2 rs rs s2 s r ps pr

q2 qr qr r2 q qr qs r2 rs r q pr pq



If you look to the entries of the diagonal of det(G3(0)), you will recognise for example

that 3 is the unique maximal power of q which is also maximal in the first row and

first column.

Also, the entry q2s has a total degree equal 3 which is uniquely and maximal total

degree for q2s in the second row and second column, in the third row and third

column and in the sixth row and sixth column.



Chapter 6

On quasi-heredity for dbn(p, q, r, s)

In this chapter we prove that the dilute blob algebra dbn over a field F is quasi-

hereditary when the parameter q ∈ F is non-zero. Axiom (2) of the towers of rec-

ollement studied in [6] gives us some machinery to prove that the dilute blob algebra

is quasi-hereditary. We will only recall the required axioms.

Let F be a algebraically closed field. For n ≥ 0 let An be a family of finite dimensional

F -algebras, with idempotent en in An. We recall the following axioms from [6, axiom

(A1), axiom (A2)].

Axiom (A1). For each n ≥ 2 we have an isomorphism

φn : An−2 → enAnen.

Set en,0 = 1 in An, and for 1 ≤ i ≤ n
2

define new idempotents in An by setting

en,i = φn(en−2,i−1). To these elements we associate corresponding quotients of An by

setting An,i = An/(Anen,i+1An).

Axiom (A2).

(i) The algebra An/AnenAn is semisimple.

(ii) For n ≥ 0 and 0 ≤ i ≤ n
2
, setting e = en,i and A = An,i, the surjective

multiplication map Ae⊗eAe eA→ AeA is a bijection.
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By [8, Statement 7] or [24, Definition 3.3.1 and remarks following] the following

Axiom is equivalent to Axiom (A2).

Axiom (A2’). For each n ∈ N the algebra An is quasi-hereditary, with heredity

chain of the form

0 ⊂ · · · ⊂ Anen,iAn ⊂ · · · ⊂ Anen,0An = An.

6.1 An idempotent subalgebra of the dilute blob

algebra

In this section, we construct an idempotent en of the dilute blob algebra and use

this to construct an isomorphism between the rank n− 1 dilute blob algebra and the

algebra endbnen.

Fix a non-zero element q ∈ F and define an idempotent in dbn

•

•

•

•

•

•

•

•

•

•
. . . .en =

1

q

Proposition 6.1.1. For q 6= 0 then for each n > 1 we have an algebra isomorphism

φn : endbnen → dbn−1. (6.1)

Proof. Since the structure of the diagram en consists of isolated vertices at vertex 1

and vertex 1′, and the rest of the diagram as the structure of In−1, so for any diagram

D ∈ dbn, the multiplication diagram enDen has isolated vertices at vertex 1 and

vertex 1′, and the rest of the diagram is a diagram D′ that is in dbn−1. For n > 1

define a map

φn : endbnen → dbn−1
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that sends a diagram enDen ∈ endbnen to a diagram D′ ∈ dbn−1 multiplied by

q, obtained by removing the isolated vertices 1 and 1′ in the diagram enDen, as

illustrated in figure 6.1.

•

•

D′ → q D′

Figure 6.1: φn(enDen) ∈ dbn−1 for enDen ∈ endbnen.

Then we can extend by linearity to any elements of endbnen.

Note that φn(en) = In−1 where en is the identity for endbnen.

•

•
D′1

•
D′2

= q

•

•

D′1

D′2

Figure 6.2: The diagram (enD1en)(enD2en).

Now from figure 6.2, we have for any D1, D2 ∈ dBn

φn ((enD1en)(enD2en)) = q2D′1D
′
2

where D′1, D
′
2 ∈ dBn−1 as shown in figure 6.2.

On the other hand, we know that

φn(enD1en) = qD′1 and φn(enD2en) = qD′2.

Hence,

φn(enD1en)φn(enD2en) = q2D′1D
′
2.

So, we have
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φn ((enD1en)(enD2en)) = φn(enD1en)φn(enD1en).

Then the map φn is a homomorphism.

Conversely, for n > 1 define a map

ιn : dbn−1 → endbnen

That sends a diagram D′ ∈ dbn−1 to a diagram
1

q
enDen ∈ endbnen, obtained by

adding an isolated vertex at the top row and bottom row at the left hand side of the

diagram D′ as illustrated in figure 6.3.

D′ →
•

•

1

q
D′

Figure 6.3: ιn(D′) ∈ endbnen for D′ ∈ dbn−1.

We can extend by linearity to all of dbn−1.

Note that ιn(In−1) = en.

By looking to the figure 6.2, we have

ιn(D′1D
′
2) =

1

q

1

q
(enD1en)(enD2en) =

1

q2
(enD1en)(enD2en).

Also,

ιn(D′1) =
1

q
enD1en, and ιn(D′2) =

1

q
enD2en.

Therefore,

ιn(D′1)ιn(D′2) =
1

q2
enD1enenD2en.

So, we have

ιn(D′1D
′
2) = ιn(D′1)ιn(D′2),



Chapter 6 .On the quasi-heredity for dbn 67

hence the map ιn is a homomorphism.

It is clear that the homomorphisms φn and ιn are inverses of each other. Hence, they

are isomorphisms.

6.2 The dilute blob algebra dbn(p, qr, s) is quasi-

hereditary

Definition 6.2.1. Consider the homomorphism ιn defined in the previous section,

set en,0 = In in dbn, and for 1 6 i 6 n define new idempotents in dbn by setting

en,i = ιn(en−1,i−1).

To these elements we associate corresponding quotients of dbn by setting

dbn,i = dbn/(dbnen,i+1dbn).

Now recall from corollary 3.1.18 the ideal Iλ that is spanned by all dilute blob dia-

grams with λ or less propagating lines.

Lemma 6.2.2. For n > 1 we have

dbnen,idbn = In−i. (6.2)

Proof. It is clear that dbnen,idbn is a two sided ideal generated by en,i. Since multipli-

cation in the dilute blob algebra cannot increase the propagating number as proved

in lemma 3.1.17, and en,i has n − i propagating lines. Then dbnen,idbn consists of

dilute blob diagrams with n− i or less propagating lines.

Let x be a dilute blob diagram which has n − i or less propagating lines. We will

show that x ∈ dbnen,idbn as follows:

(i) Let x have n− i propagating lines. We take the diagram D to be the diagram

with top half the same as the top half of x and bottom half the same as the
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bottom half of en,i, and the diagram D′ to be diagrams with top half the same

as the top half of en,i, and bottom half the same as the bottom half of x.

Then x =
1

q2i
Den,iD

′ ∈ dbnen,idbn.

(ii) Let x have 0 ≤ m < n − i propagating lines. We take D to be the diagram

with top half the same as the top half of x and bottom half with m propagating

lines, the first i vertices being isolated vertices and the next m vertices with

propagating lines and the remaining n−m− i vertices being isolated. We take

D′ to be the diagram with bottom half the same as the bottom half of x and

top half is the mirror image of the bottom half of D.

Then x =
1

qn−m+i
Den,iD

′ ∈ dbnen,idbn.

Therefore, dbnen,idbn is the ideal that is spanned by dilute blob diagrams with n− i

or less propagating lines, and hence dbnen,idbn = In−i.

Proposition 6.2.3. For n > 1 the algebra dbn/dbnendbn is semisimple.

Proof. By lemma 6.2.2 we have in the quotient dbn/dbnendbn that all dilute blob

diagrams with n − 1 or less propagating lines are identified with 0. Hence, the

quotient algebra is spanned by the unique diagram containing only propagating lines

which is the identity element In. So we can write

dbn/dbnendbn = spanF{In}.

Therefore, dbn/dbnendbn is a semisimple algebra.

Proposition 6.2.4. For n > 0 and 0 6 i 6 n, the surjective multiplication map

dbn,ien,i ⊗en,idbn,ien,i
en,idbn,i → dbn,ien,idbn,i is a bijection.

Proof. The idempotent element en,i has n − i propagating lines for all 0 ≤ i ≤

n. Therefore, for each en,i+1 by lemma 6.2.2 the ideal dbnen,i+1dbn of dbn consists

of all dilute blob diagrams with n − (i + 1) propagating lines or less. It follows
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immediately from this that in the quotient algebra dbn/(dbnen,i+1dbn) = dbn,i all

dilute blob diagrams with n− (i + 1) propagating lines or less are identified with 0.

Thus, the quotient dbn,i has a basis indexed by dilute blob diagrams with at least

n − i propagating lines. This implies that en,idbn,ien,i is the algebra that has basis

consisting of dilute blob diagrams that have exactly n−i propagating lines, where the

first i vertices on the top row and bottom row on the left side of the basis diagrams

are isolated vertices and the rest of the diagram has n − i propagating lines. This

means that the basis of algebra en,idbn,ien,i consists of one element which is en,i, so

we can write

en,idbn,ien,i = spanF{en,i},

and therefore en,idbn,ien,i is a semisimple algebra.

Since dimF en,idbn,ien,i = 1, then en,idbn,ien,i ∼= F .

For each 0 ≤ i ≤ n, the subquotient dbn,ien,i has a basis consisting of dilute blob

diagrams with exactly n − i propagating lines, where the first i vertices on the left

side of the bottom row are isolated vertices. Thus dbn,ien,i is the left cell module

∆n(n− i).

Similarly, The subquotient en,idbn,i has a basis consisting of dilute blob diagrams with

exactly n− i propagating lines , where the first i vertices on the left side of the top

row are isolated vertices. Thus en,idbn,i = ∗(∆n(n − i)) (right cell module) where ∗

as defined in equation (4.1), and therefore dimF en,idbn,i = dimF dbn,ien,i.

Therefore, we have dimF dbn,ien,i ⊗en,idbn,ien,i
en,idbn,i = (dimF ∆n(n− i))2.

The algebra dbn,ien,idbn,i has a basis consisting of dilute blob diagrams with exactly

n−i propagating lines. We know from equation (3.10) that every dilute blob diagram

with n−i propagating lines can construct uniquely from two half dilute blob diagrams

that have n− i defects. Therefore, dimF dbn,ien,idbn,i = (dimF ∆n(n− i)2.

Therefore, dimF dbn,ien,i ⊗en,idbn,ien,i
en,idbn,i = dimF dbn,ien,idbn,i.
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Define the multiplication map

Ψ : dbn,ien,i ⊗en,idbn,ien,i
en,idbn,i → dbn,ien,idbn,i

aen,i ⊗ en,ia′ → aen,ia
′

for any basis element aen,i of dbn,ien,i and any basis element en,ia
′ of en,idbn,i.

Since for any basis element aen,ia
′ ∈ dbn,ien,idbn,i, the element aen,i ⊗ en,ia′ is a basis

element of dbn,ien,i ⊗ en,idbn,i, Ψ is surjective.

Since dimF dbn,ien,i⊗en,idbn,ien,i
en,idbn,i = dimF dbn,ien,idbn,i, then Ψ is injective. Thus

Ψ is a bijection.

Theorem 6.2.5. For p, q, r, s ∈ F , q 6= 0 and n > 0, the dilute blob algebra

dbn(p, q, r, s) is quasi-hereditary, with heredity chain of the form

0 ⊂ I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In = dbn. (6.3)

Proof. From propositions 6.2.3 and 6.2.4, we have that the dilute blob algebra dbn

satisfies axiom (A2) from the tower of recollement in [6, (A2)], and this axiom is

equivalent to the axiom (A2’) [6, (A2’)] that states that for each n > 0 the algebra

dbn is quasi-hereditary, with heredity chain of the form:

0 ⊂ · · · ⊂ dbnen,idbn ⊂ · · · dbnen,0dbn = dbn

from lemma 6.2.2 we have dbnen,idbn = In−i.



Chapter 7

Restriction and Induction for the

dbn(p, q, r, s) cell modules

This chapter is devoted to studying restriction and induction for the cell modules

∆n(λ). The first step, for the study of the restriction, is to decide how the subalgebra

dbn is embedded into dbn+1. The embedding that we shall use is defined by adding

a propagating line at the front of the dbn-diagrams. This natural embedding gives a

tower of algebras

db1 ⊂ db2 ⊂ db3 ⊂ · · · (7.1)

The module ∆n(λ) seen as a dbn−1-module will be called the restriction of ∆n(λ) and

denoted by ∆n(λ) ↓. We end the first section by drawing the Bratteli diagram for

the restriction rule for n ≤ 4.

After studying restriction, we then work towards induced modules of the cell modules

∆n(λ) denoted by ∆n(λ) ↑ which is defined by the tensor product as follows:

∆n(λ) ↑= dbn+1 ⊗dbn ∆n(λ). (7.2)
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These are dbn+1-modules in which the action given by x(y ⊗dbn d) = (xy) ⊗dbn d for

all x, y ∈ dbn+1 and d ∈ ∆n(λ). The subscript dbn on the ⊗ means that we have

(xy) ⊗dbn d = x ⊗dbn yd for all x ∈ dbn+1, y ∈ dbn and d ∈ ∆n(λ), we use this to

construct a generating set of the module ∆n(λ) ↑.

7.1 Restriction for the cell modules of dbn(p, q, r, s)

In this section we work towards proving proposition 7.1.2 which describes the

restriction rules for the cell modules ∆n(λ). We begin by defining an inclusion map

from dbn−1 into dbn.

Lemma 7.1.1. For all n ≥ 2, dbn−1 can be identified as a subalgebra of dbn.

Proof. Define an inclusion i : dbn−1 ↪→ dbn obtained by adding a propagating line

immediately to the front of the dbn−1 diagram and then extend by linearity to all

of dbn−1. It is clear that the inclusion i sends the identity diagram of dbn−1 to the

identity diagram of dbn, and for any two diagrams x, y in dbn−1 we have

i(xy) = i(x)i(y)

as multiplying x in y then adding a propagating line in the front of the diagram xy

is the same as adding a propagating line in the front of x and y then multiplying.

Therefore, the inclusion i is a homomorphism.

Also, since different diagrams in dbn−1 have different images in dbn, then i is injective

and therefore dbn−1 is isomorphic to the subalgebra im(i) of dbn.

Proposition 7.1.2. Consider the above inclusion, denote the corresponding restric-

tion of ∆n(λ) to a dbn−1-module by ∆n(λ) ↓. Then, we have for all n ≥ 2 the

following short exact sequences or isomorphisms:

(i) For λ = {1, 2, . . . , n− 2}

0→ ∆n−1(λ)⊕∆n−1(λ− 1)→ ∆n(λ) ↓→ ∆n−1(λ+ 1)→ 0. (7.3)
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(ii) For λ = 0

0→ ∆n−1(0)⊕∆n−1(0)→ ∆n(0) ↓→ ∆n−1(1)→ 0. (7.4)

(iii) For λ = n− 1

∆n(n− 1) ↓∼= ∆n−1(n− 1)⊕∆n−1(n− 2). (7.5)

(iv) For λ = n

∆n(n) ↓∼= ∆n−1(n− 1). (7.6)

Proof. (i) Suppose that 1 ≤ λ ≤ n− 2. We will prove the first part of exact sequence

(7.3). Define an inclusion θ : ∆n−1(λ)⊕∆n−1(λ−1) ↪→ ∆n(λ) ↓ as follows: for a half

diagram d1 ∈ ∆n−1(λ) and a half diagram d2 ∈ ∆n−1(λ− 1)

θ(d1, d2) = d1 + d2

where d1 is the half diagram d1 with an isolated vertex added to the front, and d2 is

the half diagram d2 with a defect added to the front. We then extend linearly to all

of ∆n−1(λ)⊕∆n−1(λ− 1).

It is clear that θ(∆n−1(λ)) ∩ θ(∆n−1(λ − 1)) = 0 as no half diagram can have both

an isolated vertex and a defect at the front. Firstly, to show that θ is a dbn−1

homomorphism, let a be a diagram in dbn−1, d1 be a half diagram in ∆n−1(λ) and d2

be a half diagram in ∆n−1(λ− 1). Then

θ(a(d1, d2)) = θ(ad1, ad2) = ad1 + ad2.

Also,

aθ(d1, d2) = a(d1 + d2) = i(a)(d1 + d2) = i(a)d1 + i(a)d2
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where i is the inclusion as described in proof of lemma 7.1.1.

Now, by considering the diagrams ad1 and i(a)d1 we have

ad1 =

•
a

d1

, i(a)d1 = •
a

d1

,

clearly, they are equal.

Also, compare ad2 and i(a)d2

ad2 =
a

d2

, i(a)d2 =
a

d2

,

clearly, they are equal. Therefore,

θ(a(d1, d2)) = aθ(d1, d2)

and so θ is a homomorphism.

Secondly, θ is injective since distinct elements in ∆n−1(λ)⊕∆n−1(λ−1) have distinct

images in ∆n(λ) ↓.

Now, define a map Φ : ∆n(λ) ↓→ ∆n−1(λ+1) that sends a half diagram in ∆n(λ) that

has a defect or isolated vertex at the vertex 1 to zero in ∆n−1(λ + 1). Otherwise, it

removes the arc and its endpoint at the vertex 1 and then puts at the other endpoint

a defect. We then extend linearly to of all ∆n(λ) ↓.

To see that Φ is a homomorphism, suppose a is a diagram in dbn−1 and x is a half

diagram in ∆n(λ) ↓. We need to consider the following cases:

Case (1): x has a defect at vertex 1, then aΦ(x) = 0 as Φ(x) = 0. Also, i(a)x has a

defect at vertex 1, then Φ(i(a)x) = 0.

Case (2): x has an isolated vertex at vertex 1, then aΦ(x) = 0 as Φ(x) = 0. Also,

i(a)x has an isolated vertex at vertex 1, then Φ(i(a)x) = 0.

Case (3): x has an arc {1, j}, and therefore Φ(x) has a defect at the vertex j. To

study this case consider the following possibilities:

(3a) If there is a propagating line {l, k′} ∈ i(a) that connects with the propagating

line {1, 1′} ∈ i(a) via a path in i(a)x, then i(a)x will have an arc {1, l} and {1, j}
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from x that will form part of this path. Therefore, Φ(i(a)x) will have a defect at the

vertex l. As in the following figure:

i(a)x =

•

•

•

•• •

1 l

1 j

k′a

x .

On the other hand, aΦ(x) will have a defect at the vertex l since the defect at the

vertex j in Φ(x) will link with the propagating line {l, k′} ∈ a via a path in aΦ(x)

essentially the same path in i(a)x. As in the following figure.

aΦ(x) =

•

•• •

l

j

k′a

Φ(x) .

Hence, Φ(i(a)x) = aΦ(x).

(3b) If there is an isolated vertex {c′} ∈ i(a) or {h} ∈ x connecting with the propa-

gating line {1, 1′} ∈ i(a) via a path in i(a)x, then i(a)x will have an isolated vertex

at the vertex 1, so Φ(i(a)x) = 0.

On the other hand, aΦ(x) would then link the defect at the vertex j in Φ(x) with an

isolated vertex via a path in aΦ(x) and therefore the number of the defects will be

fewer than λ+ 1. Hence aΦ(x) = 0 in ∆n−1(λ+ 1).

(3c) If there is a decorated vertex {c′}� ∈ i(a) or {h}� ∈ x connecting with the prop-

agating line {1, 1′} ∈ i(a) via a path in i(a)x, then i(a)x will have a decorated vertex

at the vertex 1. So the number of defects in i(a)x is zero and therefore i(a)x = 0 in

∆n(λ). Hence, Φ(i(a)x) = 0.

On the other hand, aΦ(x) will link the defect at the vertex j in Φ(x) with a decorated

vertex via a path in aΦ(x). So the propagating lines in a can not connect with any

defect in Φ(x). Hence, the number of defects in aΦ(x) is zero and therefore aΦ(x) = 0

in ∆n−1(λ+ 1).

(3d) If there is a defect at the vertex k > j in x connecting with the propagating line

{1, 1′} ∈ i(a) via a path in i(a)x, then i(a)x will have a defect at the vertex 1, so

Φ(i(a)x) = 0.
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On the other hand, aΦ(x) would then link two defects in Φ(x) via a path in aφ(x)

and therefore the number of the defects will be fewer than λ + 1. Hence aΦ(x) = 0

in ∆n−1(λ+ 1).

Therefore, from the three cases Φ is a homomorphism.

To see that Φ is surjective, let y be a half diagram in ∆n−1(λ+ 1), then y has at least

one defect since λ + 1 ≥ 1. Then add on the front of y a vertex and close the first

defect on the left hand side of y onto this new vertex. This is then a half diagram in

∆n(λ) ↓ whose image by Φ is y.

Clearly, im θ ⊂ ker Φ. To prove ker Φ ⊂ im θ, we know that Φ sends every half dia-

gram in ∆n(λ) that has a defect or an isolated vertex at vertex 1 to zero in ∆n−1(λ+1),

otherwise the image of the half diagram is a distinct half diagram in ∆n−1(λ + 1).

Hence, if v =
∑m

i=1 ζivi ∈ ∆n(λ) ↓ \ im θ where ζi ∈ R and vi ∈ ∆n(λ) ↓. Then

there is at least one j ∈ {1, 2, · · · ,m} such that vj has an arc {1, k}, and therefore

Φ(vj) 6= 0. Hence, Φ(v) 6= 0, so ker Φ ⊂ im θ. Then, we have ker Φ = im θ.

(ii) Suppose that λ = 0.

Define an inclusion θ0 : ∆n−1(0) ⊕∆n−1(0) ↪→ ∆n(0) ↓ as follows: for half diagrams

d1, d2 ∈ ∆n−1(0)

θ0(d1, d2) = d1 + d2

where d1 is the half diagram d1 with an isolated vertex added to the front, and d2

is the half diagram d2 with a decorated vertex added to the front. We then extend

linearly to all of ∆n−1(0)⊕∆n−1(0).

It is clear that θ0(∆n−1(0)) ∩ θ0(∆n−1(0)) = 0 as no half diagram can have both

an isolated vertex and a decorated vertex at the front. To show that θ0 is a dbn−1

homomorphism, let a be a diagram in dbn−1, d1, d2 be half diagrams in ∆n−1(0). Then

θ0(a(d1, d2)) = θ0(ad1, ad2) = ad1 + ad2.

Also,
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aθ0(d1, d2) = a(d1 + d2) = i(a)(d1 + d2) = i(a)d1 + i(a)d2

where i is the inclusion as described in proof of lemma 7.1.1.

We have ad1 = i(a)d1 as explained in (i) . Also, compare ad2 and i(a)d2

ad2 =

•� a

d2

, i(a)d2 = •�
a

d2

,

clearly, they are equal. Therefore,

θ0(a(d1, d2)) = aθ0(d1, d2)

and so θ0 is a homomorphism.

Moreover, θ0 is injective since distinct elements in ∆n−1(0) ⊕∆n−1(0) have distinct

images in ∆n(0) ↓.

Now, define a map Φ0 : ∆n(0) ↓→ ∆n−1(1) that sends a half diagram in ∆n(0) that

has an isolated vertex or a decorated vertex at the vertex 1 to zero in ∆n−1(1). Oth-

erwise, it removes the arc and its endpoint at the vertex 1 and then puts at the other

endpoint a defect. We then extend linearly to all of ∆n(0) ↓.

To see that Φ0 is a dbn−1- homomorphism, suppose a is a diagram in dbn−1 and x is

a half diagram in ∆n(0) ↓. We need to consider the following cases:

Case (1): x has an isolated vertex (respectively decorated vertex) at vertex 1, then

aΦ0(x) = 0 as Φ0(x) = 0. Also, i(a)x has an isolated vertex (respectively decorated

vertex) at vertex 1, then Φ0(i(a)x) = 0.

Case (2): x has an arc {1, j}, this case is similar to case (3) in (i) but without the

need to do (c) as there are no defects in x.

Therefore, Φ0 is a homomorphism.

To see that Φ0 is surjective, let y be a half diagram in ∆n−1(1), then y has one defect.

Then add on the front of y a vertex and close the defect onto this new vertex. This

is then a half diagram in ∆n(0) ↓ whose image by Φ0 is y.

Clearly, im θ0 ⊂ ker Φ0. To prove ker Φ0 ⊂ im θ0, we know that Φ0 sends every half

diagram in ∆n(0) that has an isolated vertex or a decorated vertex at vertex 1 to
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zero in ∆n−1(1), otherwise the image of the half diagram is a distinct half diagram in

∆n−1(1). Hence, if v =
∑m

i=1 ζivi ∈ ∆n(0) ↓ \ im θ0 where ζi ∈ R and vi ∈ ∆n(0) ↓ .

Then there is at least one j ∈ {1, 2, · · · ,m} such that vj has an arc {1, k}, and there-

fore Φ0(vj) 6= 0. Hence, Φ0(v) 6= 0, so ker Φ0 ⊂ im θ0. Then, we have ker Φ0 = im θ0.

(iii) Suppose that λ = n−1. Define an inclusion θn−1 : ∆n−1(n−1)⊕∆n−1(n−2) ↪→

∆n(n − 1) ↓ as follows: for a half diagram d1 ∈ ∆n−1(n − 1) and a half diagram

d2 ∈ ∆n−1(n− 2)

θn−1(d1, d2) = d1 + d2

where d1 is the half diagram d1 with an isolated vertex added to the front, and d2 is

the half diagram d2 with a defect added to the front.

To proof that θn−1 is an injective homomorphism is similar to the proof that θ is an

injective homomorphism in (i).

Moreover, θn−1 is surjective. Suppose y is a half diagram in ∆n(n−1) ↓ and therefore

y can not have an arc, it has n− 1 defects and the other vertex is an isolated vertex

or a decorated vertex. The half diagram y would have a defect or isolated vertex

at vertex 1, and if y has a decorated vertex then this must be at the vertex n. If y

has an isolated vertex at the vertex 1, then the other vertices have defects. So by

removing the isolated vertex we will have the unique half diagram that has n − 1

defects in ∆n−1(n− 1) whose image under θn−1 is y. If y has a defect at the vertex 1,

then by removing the defect we will have a half diagram in ∆n−1(n− 2) whose image

under θn−1 is y.

Therefore θn−1 is surjective and therefore is an isomorphism.

(iv) Suppose that λ = n. Define an inclusion θn : ∆n−1(n− 1) ↪→ ∆n(n) ↓ that sends

a unique half diagram in ∆n−1(n− 1) that has n− 1 defects to a unique half diagram

in ∆n(n) ↓ that has n defects. To show that θn is a dbn−1-homomorphism, let a be a

diagram in dbn−1 and d be the half diagram in ∆n−1(n − 1) that has n − 1 defects.

Then ad is zero unless a is the identity diagram of dbn−1, then ad = d. Therefore,
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θn(ad) is equal to zero or θn(d).

On the other hand, if a is the identity diagram of dbn−1 then i(a)θn(d) = θn(d).

Otherwise, i(a)θn(d) = 0.

Hence, θn is a homomorphism.

Since both ∆n−1(n−1) and ∆n(n) ↓ are one dimensional, so θn is an isomorphism.

Note that the exact sequences gives a relationship between the dimensions of the cell

modules:

(i) For 1 ≤ λ ≤ n− 2, we have

dim ∆n(λ) = dim ∆n−1(λ) + dim ∆n−1(λ− 1) + dim ∆n−1(λ+ 1). (7.7)

(ii) For λ = 0, we have

dim ∆n(0) = 2 dim ∆n−1(0) + dim ∆n−1(1). (7.8)

(iii) For λ = n− 1

dim ∆n(n− 1) = dim ∆n−1(n− 1) + dim ∆n−1(n− 2). (7.9)

We can describe the restriction rule that is studied in proposition 7.1.2 by a Bratteli

diagram which is a graph with vertices arranged into level n ∈ N ∪ {0} such that

each vertex on level n corresponds to the label of the cell module ∆n(λ) which is

the number of defects λ and each edge in this graph corresponds to a factor in the

restriction of the module ∆n(λ) to n− 1.
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n = 4 0 1 2 3 4

n = 3 0 1 2 3

n = 2 0 1 2

n = 1 0 1

n = 0 0

Figure 7.1: The Bratteli diagram for the restriction rule for n ≤ 4.

7.2 Induction of the cell modules of dbn(p, q, r, s)

In this section we construct a generating set of the induced modules ∆n(λ) ↑.

Assume that the parameters p, q, r, s are in invertible in R. Recall the inclusion i

from proof of lemma 7.1.1.

Definition 7.2.1. The induced module of ∆n(λ), denoted by ∆n(λ) ↑, is defined by

the tensor product

∆n(λ) ↑= dbn+1 ⊗dbn ∆n(λ).

Firstly, we will find a finite generating set for ∆n(λ) ↑ where λ ∈ {0, 1, . . . , n}. From

proposition 4.2.11, we have that ∆n(λ) is a cyclic module. Let z be a half diagram

in ∆n(λ) such that ∆n(λ) = dbnz, then

∆n(λ) ↑= dbn+1 ⊗dbn (dbnz) = dbn+1 ⊗dbn z. (7.10)

For j ∈ {−1, 0, 1} and λ ∈ {0, 1, . . . , n}, define three maps θj : ∆n(λ)→ ∆n+1(λ+ i)

such that for any half diagram d ∈ ∆n(λ), θ1(d) is the half diagram d with a defect

added to the front, and θ0(d) is the half diagram d with an isolated vertex added to

the front. The last map θ−1 is the half diagram d with adds a vertex to the front of d
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and closes the nearest defect to the new vertex into an arc, if there is no such defect

in d then θ−1(d) = 0. Also, we can define Φ0 : ∆n(0) → ∆n+1(0) that sends a half

diagram d ∈ ∆n(0) to d with a decorated vertex added to the front of d. Here are

some examples.

• • •
θ1 : � =

• • • •� .

• • •
θ0 : � =

• • • •� .

• • •
θ−1 : � =

• • • •� .

• • •
Φ0 : � =

• • • •� � .

Let Cµ
uv be a diagram in dBn+1 where µ ∈ Λn+1 = {0, 1, . . . , n + 1}, u ∈ dB|〉n+1(µ)

and v is bottom mirror image of v ∈ dB|〉n+1(µ). Then

1. If v has a defect at the vertex 1. Then we can write

Cµ
uv =

1

ζ
Cµ
uvC

µ
vv

where ζ = 〈v, v〉µ (is the scalar of the product of the isolated components in

the product Cµ
uvC

µ
vv), as pictured below:

Cµ
uv =

u

v
, Cµ

vv = .

Let v′ be the half diagram obtained from v by deleting the vertex 1 and the

defect, so v = θ1(v′). Then
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Cµ
vv = i(Cµ−1

v′v′
).

Therefore,

Cµ
uv ⊗ z =

1

ζ
Cµ
uvC

µ
vv ⊗ z

=
1

ζ
Cµ
uvi(C

µ−1

v′v′
)⊗ z

=
1

ζ
Cµ
uv ⊗ C

µ−1

v′v′
z.

This tensor is zero if Cµ−1

v′v′
z is zero. Since v has a defect at the vertex 1, then

the element Cµ
uv⊗z can only be non-zero if Cµ−1

v′v′
z is non-zero where v = θ1(v′).

2. If v has an isolated vertex at the vertex 1. Then we can write

Cµ
uv =

1

ζ
Cµ
uvC

µ
vv

where ζ is the scalar of the product of the isolated components in the product

Cµ
uvC

µ
vv, as pictured below

•

Cµ
uv =

u

v
, Cµ

vv =

•

•
.

Since v contains an isolated vertex at vertex 1, then the isolated vertex is one

of the isolated components in Cµ
uvC

µ
vv. Therefore, ζ = qη where η is the product

of the other isolated components.

Let v′ be the half diagram obtained from v by deleting the vertex 1 and the

isolated vertex, so v = θ0(v′). Then

Cµ
uv =

1

η
Cµ
uvi(C

µ

v′v′
).

As in the following figure
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•

u

v

v′

v′

• .

Therefore,

Cµ
uv ⊗ z =

1

η
Cµ
uvi(C

µ

v′v′
)⊗ z

=
1

η
Cµ
uv ⊗ C

µ

v′v′
z.

This tensor is zero if Cµ

v′v′
z is zero. Hence, when v has an isolated vertex at the

vertex 1, then the element Cµ
uv ⊗ z can only be non-zero if Cµ

v′v′
z is non-zero

where v = θ0(v′).

3. If v has a decorated vertex at the vertex 1 (µ = 0), this case similar to case (2)

with small differences which are ζ = sη and v = Φ0(v′).

4. If v has an arc that links the vertex 1 with the vertex k. Then we can write

Cµ
uv =

1

ζ
Cµ
uvC

µ
vv

where ζ is the scalar of the product of the isolated components in the product

Cµ
uvC

µ
vv. As in the following figure

Cµ
uv =

u

v
, Cµ

vv = .

Since v contains an arc ending at vertex 1, then the loop is one of the isolated

components in Cµ
uvC

µ
vv. Therefore, ζ = pη where η is the product of the other

isolated components.

Let v′ be the half diagram obtained from v by deleting the vertex 1 and putting

a defect at vertex k, so v = θ−1(v′) . Then
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Cµ
uv =

1

η
Cµ
uvi(C

µ+1

v′v′
).

As in the following figure

u

v

v′

v′

.

Therefore,

Cµ
uv ⊗ z =

1

η
Cµ
uvi(C

µ+1

v′v′
)

=
1

η
Cµ
uv ⊗ C

µ+1

v′v′
z.

This tensor is zero if Cµ+1

v′v′
z is zero. Hence, when v has an arc ending at vertex

1, then the element Cµ
uv ⊗ z can only be non-zero if Cµ+1

v′v′
z is non-zero where

v = θ−1(v′).

Proposition 7.2.2. Assume that p, q, r, s are invertible in R, u ∈ dB
|〉
n+1(µ) and

suppose z is a half diagram that generates the cell dbn-module ∆n(λ). Then for

λ ∈ {0, 1, 2, . . . , n}

∆n(λ) ↑= spanG (7.11)

where G is the finite set

G ={Cµ

uθ1(v)
⊗ z : v ∈ dB|〉n (µ− 1) and Cµ−1

vv z 6= 0}

∪{Cµ

uθ0(v)
⊗ z : v ∈ dB|〉n (µ) and Cµ

vvz 6= 0}

∪{C0
uΦ0(v)

⊗ z : v ∈ dB|〉n (0)}

(if λ 6= 0) ∪{Cµ

uθ−1(v)
⊗ z : v ∈ dB|〉n (µ+ 1) and Cµ+1

vv z 6= 0}.
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7.3 Future work

In this section we make some suggestions for future directions to continue research

in this topic.

This thesis laid the foundation of the representation theory of the dilute blob

algebra. There are a number of interesting open questions could possibly be answered.

One of the most interesting questions is determining the simple modules of the

algebra. Since the dilute blob algebra is cellular, we investigate when the cell modules

are simple. In theorem 5.2.1 we prove that the cell modules are generically simple.

We still need to know what the value of the parameters that make the cell modules

simple. We can do that by known techniques that apply for cellular algebras (over

a field) by calculating the Gram matrix of the cell modules and then finding the

values of the parameters that make the determinant of the Gram matrix non-zero.

Therefore, we could work to find a formula to the Gram matrix and a formula of its

determinant as in the Temperley-Lieb algebra and the Motzkin algebra.

We then could explore the non-generic representation theory of the algebra. We

might expect the representation theory of this algebra to be similar to that for the

blob algebra (which is turn shares some features with the Temperley-Lieb algebra).
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