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Abstract

Direct-sequence code-division multiple-access (DS-CDMA) and multiple-input multiple-

output (MIMO) wireless networks form the physical layer of the current generation of

mobile networks and are anticipated to play a key role in the next generation of mobile

networks. The improvements in capacity, data-rates and robustness that these networks

provide come at the cost of increasingly complex interference suppression and resource

allocation. Consequently, efficient approaches to these tasks are essential if the current

rate of progression in mobile technology is to be sustained. In this thesis, linear mini-

mum mean-square error (MMSE) techniques for interference suppression and resource

allocation in DS-CDMA and cooperative MIMO networks are considered and a set of

novel and efficient algorithms proposed.

Firstly, set-membership (SM) reduced-rank techniques for interference suppression

in DS-CDMA systems are investigated. The principles of SM filtering are applied to the

adaptation of the projection matrix and reduced-rank filter in reduced-rank signal pro-

cessing based on the method of joint iterative optimisation (JIO) of adaptive filters. The

sparse updates and optimised step-sizes that form the basis of SM schemes are intro-

duced to JIO in order to improve its convergence and complexity whilst maintaining its

use of low-dimensionality filters. An analysis of the proposed schemes confirms their

stability and establishes bounds on their performance. Through simulation in a DS-

CDMA system, the proposed schemes are shown to outperform the existing JIO and

reduced-rank schemes whilst achieving a significant reduction in computational com-

plexity.

Secondly, resource allocation in multi-relay cooperative MIMO systems is addressed.

Jointly operating iterative discrete stochastic algorithms (DSAs) are utilised to form a

low-complexity transmit diversity selection (TDS) scheme which is optimised by a par-

allel relay selection (RS) procedure. The proposed scheme is shown to converge to the

optimal exhaustive solution of the combinatorial TDS problem and enhance the per-

formance of existing interference suppression methods. RS based on a DSA is then

extended to continuous adaptive power allocation to form a joint discrete-continuous

optimisation procedure that augments conventional iterative MMSE power allocation.

Lastly, an investigation into the use of bidirectional MMSE algorithms for inter-

ference suppression in DS-CDMA systems operating over severely fading channels is

presented. The correlation present, even in fast fading environments, between 3 or more

successive channel coefficients is exploited to enable improved reception and multiuser
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interference suppression (MUI) without tracking of the faded or unfaded symbols. A

set of adaptive mixing parameters is introduced to optimise the weighting of the corre-

lation information from the considered channel coefficients in order to improve conver-

gence and steady-state performance. An analysis of the proposed schemes is presented

and the mechanisms behind their improved performance established. Accompanying

signal-to-interference-plus-noise-ratio (SINR) analysis also provides analytical perfor-

mance curves. The proposed schemes are compared to existing schemes and are shown

to provide improved tracking and robustness, both in conventional and cooperative DS-

CDMA networks.
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Chapter 1

Introduction

Contents

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Overview

Recent advances in mobile communications have been made possible by the progression

of the underlying wireless networks from analogue to direct-sequence code-division

multiple-access (DS-CDMA) and, in the near future, to multiple-input multiple-output

(MIMO) and cooperative systems. However, the improvements in data-rate, capacity

and coverage provided by these networks are accompanied by multiuser interference

(MUI), increased power consumption, intersymbol interference (ISI) and increased sus-

ceptibility to fading [1, 2]. Consequently, effective operation of these systems is reliant

on the signal processing that performs interference suppression and resource allocation.

A vast array of research literature has been generated on interference suppression

14



CHAPTER 1. INTRODUCTION 15

and resource allocation algorithms, leading to well defined and documented optimal

methods and solutions [2–8]. However, the computational complexity of obtaining

the optimum solution generally prohibits their application to real-world systems. As

a result, algorithms that efficiently obtain a near-optimal solution are of great interest.

Training-based adaptive algorithms are a means to achieving this; however, a compro-

mise between performance, complexity and convergence accompanies these algorithms.

In this thesis, a number of novel frameworks and accompanying adaptive algorithms

are proposed that advance upon existing techniques in the field of interference suppres-

sion and resource allocation. Firstly, the set-membership (SM) [9–11] framework is

applied to the promising area of reduced-rank signal processing based on joint iterative

optimisation (JIO) of adaptive filters [12, 13]. Algorithms based on this framework are

applied to a DS-CDMA system and improve upon the performance of existing reduced-

rank schemes whilst achieving a significant reduction in complexity. An analysis is

presented that confirms the convergence of the proposed algorithms and provides an

improved steady-state error bound.

Secondly, interference suppression and resource allocation algorithms for coopera-

tive MIMO systems are investigated. Low-complexity discrete stochastic algorithms

(DSAs) [14] are utilised to a form joint transmit diversity and relay selection (RS)

scheme for cooperative MIMO systems. Optimal 1-bit power allocation is obtained

using low-complexity algorithms and discrete stochastic RS is shown to also bring im-

provements to continuous power allocation.

Lastly, the challenges of interference suppression for conventional and cooperative

DS-CDMA systems in severely fading channels are addressed by the proposition of a set

of bidirectional minimum mean-square error (MMSE) adaptive algorithms [15]. Cor-

relation information from a plurality of time instants is utilised to avoid tracking of the

channel or transmit symbols. Mixing parameters are also introduced to optimise the use

of the correlation information. An analysis of the proposed algorithms provides ana-

lytical performance curves along with further insight into the operation of the proposed

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 1. INTRODUCTION 16

schemes. The resulting algorithms improve upon the existing differential schemes in

terms of convergence, steady-state performance, robustness to channel discontinuities

and fading rate range.

1.2 Contributions

• The novel application of SM techniques to reduced-rank adaptive reception based

on JIO of adaptive filters. Improved complexity, convergence and interference

suppression performance are obtained by applying the principal of sparse, opti-

mised updates to the joint iterative operation of the reduced-rank method. Al-

gorithms based on mean square-error (MSE) and least-squares (LS) error criteria

are derived and applied to the adaptation of the dimensionality reducing projec-

tion matrix and the reduced-rank filter. Error bounded sets containing valid filter

estimates are formed at each time instant and optimised step-sizes are derived to

ensure each adaptive structure lies within the relevant set. Variable errors bounds

and rank selection are introduced to allow the proposed algorithms to adapt to

non-stationary environments whilst also assisting in transferring the burden of

bound and rank specification from the user to the algorithm. Stability and con-

vergence analyses are presented and used to provide an improved lower bound on

the performance of the proposed scheme compared to the use of the error bound

alone. Simulations in a DS-CDMA system with short spreading sequences over

a wide range of scenarios confirm the improved performance of the proposed

schemes and their effective interference suppression properties.

• Optimisation of RS and transmit diversity selection (TDS) in a two phase multi-

relay cooperative MIMO system using joint discrete iterative algorithms. Sets

of relay transmit antenna patterns are formed and then optimised, reduced, and

searched by jointly operating DSAs at the destination node. Optimisation of the

second phase is combined with selection of the data to forward from the relays in a

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 1. INTRODUCTION 17

process where the burden of optimisation is concentrated at the receiver. Minimal

1-bit feedback is required for each relay antenna and both decode-and-forward

(DF), and amplify-and-forward (AF) protocols are considered. The proposed

schemes are then implemented with optimal and iterative, and linear and non-

linear receivers and multiuser detection (MUD) methods. This results in a number

of novel low-complexity implementations where discrete and iterative methods

jointly operate and converge under a variety of optimisation criteria. Feedback

analysis is given and the proposed schemes are shown to provide increased diver-

sity and interference suppression, and achieve near optimal performance whilst

entailing significantly reduced computational complexity.

• An improved relay power allocation scheme for cooperative multi-relay MIMO

networks where a DSA is used to aid the continuous power allocation process. A

DSA utilising forwarded error data iteratively selects sets of relay antennas and

constrains their transmit power to zero in a manner not possible with continuous

power allocation alone. This results in improved power allocation by introducing

first phase performance information into the second phase power allocation pro-

cess. Adaptive reception implementations are presented which involve a number

of discrete and iterative algorithms that jointly operate and converge in parallel to

form a low-cost joint receive and transmit parameter optimisation scheme.

• A linear reception framework for multi-relay MIMO networks that exceeds the

performance of the Wiener filter. Fully iterative least mean-square (LMS) based

MMSE receivers are used to exploit the non-Wiener behaviour of the LMS al-

gorithm in the presence of interference. The non-Wiener behaviour is shown

to extend beyond systems with narrow band interference and a low-complexity

iterative reception scheme is formed. The results are validated using bit-error-

rate (BER) and MSE simulation plots and the performance improvements can

attributed to the improved interference suppression of the LMS algorithm as a
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result of its lack of fixed correlation structures.

• The formulation of a switching bidirectional MMSE-based adaptive reception and

interference suppression scheme for severely fading channels. In rapidly time-

varying fading channels the correlation between multiple adjacent fading coeffi-

cients, and therefore receive vectors, is exploited in order to provide improved de-

tection and estimation without the need for channel tracking. A switching frame-

work based upon an auxiliary metric is introduced to optimise performance when

correlation properties are rapidly varying and channel discontinuities are present.

The use of the correlation information corresponding to multiple received vectors

is optimised and implemented adaptively. Signal-to-interference-plus-noise-ratio

(SINR) analysis of the proposed algorithm is presented and analytical perfor-

mance curves obtained. Conjugate gradient (CG) and stochastic gradient (SG)

implementations are derived and applied to conventional and cooperative mul-

tiuser DS-CDMA systems.

1.3 Thesis Outline

The structure of the thesis is as follows:

• Chapter 2 presents a literature review of the trends in mobile communications

and introduces the system models considered in the thesis. Alongside this, an

introduction to the principles of estimation and detection theory, and a review of

existing interference suppression and resource allocation techniques is given.

• Chapter 3 presents a novel low-complexity SM reduced-rank framework based

on the JIO of adaptive filters. Efficient schemes based on adaptive algorithms are

derived and their computational complexity given. Convergence and steady-state

analyses are presented and the proposed algorithms are applied to the uplink of a

multiuser DS-CDMA system.
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• Chapter 4 presents a joint relay and TDS framework for resource allocation in

cooperative multi-relay MIMO networks. DSAs are utilised to obtain a low com-

plexity transmit optimisation procedure that requires minimal 1-bit feedback and

whose computational burden is centred at the receiver. Improved diversity and

interference suppression are achieved by the proposed schemes and the ability

of MMSE adaptive techniques in multi-relay MIMO networks to exceed the per-

formance of the optimal Wiener filter is highlighted. Discrete stochastic RS is

jointly applied to continuous power allocation and, through the enforcement of

zeros constraints, improves relay power allocation.

• Chapter 5 presents a bidirectional MMSE interference suppression scheme for

DS-CDMA systems operating over fast fading channels. Variable switching and

mixing parameters are utilised to optimise the contribution towards the adaptation

of the interference suppression filter from each of the considered time instants. An

SINR analytical framework is derived and applied to the proposed algorithms to

obtain analytical performance curves. The proposed schemes exhibit improved

performance and robustness over the existing schemes, and are also able to obtain

an interference suppression filter suitable for compounded, highly dynamic relay

channels.

• Chapter 6 presents conclusions and the possible future work based on the content

of the thesis.

1.4 Notation

Throughout this thesis, bold lower case and upper case letters represent vectors and

matrices, respectively, and scalar quantities are represented by standard weight letters.

The expectation operator is denoted by E(·) and the trace and main diagonal of a matrix

are denoted by trace(·) and diag(·), respectively. The notation (·)∗, (·)T and (·)H denote

the complex conjugate, standard transpose and Hermitian transpose, respectively. The
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Euclidean norm of a vector and the absolute value of a scalar are expressed as ‖ · ‖ and

| · | , respectively, and the cardinality of a set is given by #(·). An identity matrix of

dimensionality M ×M is denoted by IM and a matrix with dimensions M ×N populated

with the scalar x is expressed as XM×N . Reduced-rank vectors and matrices are given

with the addition of a tilde (.̃) and estimated values are denoted by the addition of a hat

(.̂).
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2.1 Introduction

This chapter presents an introduction to the progression of mobile network technology

and the associated techniques and algorithms utilised for resource allocation and in-

terference suppression. Firstly, a summary of the trends in mobile communications is

given alongside an introduction to the associated system models, namely DS-CDMA,

MIMO and cooperative systems. Following this, an overview and description of the

detection and estimation techniques ubiquitous within wireless networks are presented.

Finally, interference suppression and resource allocation are introduced along with the

widely used optimal and adaptive methods.
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2.2 Trends in Mobile Communications Systems

Since the advent of mass market mobile communications at the end of the 20th cen-

tury, mobile communications have become an integral part of a modern ultra-connected

lifestyle. This has led to a rapid increase in system capacity requirements but also to

a shift in nature of the data transmitted, from low data-rate speech to bandwidth inten-

sive multimedia content. Consequently, the underlying technology, standards and signal

processing of the mobile network infrastructure have had to adapt to the changing re-

quirements placed upon them.

The initial digital second generation networks based on time-division multiple-access

(TDMA) and frequency division multiple access (FDMA) were primarily designed for

the transmission of speech using a circuit switched network topology. These networks

still account for the majority of world-wide mobile subscribers due to the mature sta-

tus of the technology, ease of roaming and low cost handsets. However, even with

the introduction of higher capacity packet switched methods, such as general packet

radio service (GPRS) and enhanced data-rates for global system for mobile communi-

cations (GSM) evolution (EDGE) these networks were not able to provide the flexibility,

data-rates and exponentially increasing capacity required as mobile internet use became

increasing popular.

This brought about a shift to the spread spectrum DS-CDMA systems that are cur-

rently used in various standards around the world and in existing 3G networks in the

UK 1. Its flexibility, capacity and robustness suited DS-CDMA to mobile networks but

has also made it a common choice of transmission method for the burgeoning area of

wireless sensor networks (WSNs). The benefits of DS-CDMA for mobile communi-

cations include robustness in multipath environments, flexible allocation of bandwidth,

increased user capacity and reduced interference to co-spectrum users. However, these

advantages come at the cost of the increased MUI and ISI, which are inherent to mul-

1In this work, the generations of mobile technology are referred to as they are commonly accepted in

the UK; however, classification of this nature varies depending on the country and network operator.
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tiple access spread spectrum systems where users transmit non-orthogonal signals over

a shared channel. Consequently, the demands placed on the signal processing at the re-

ceiver and the transmitter have increased. Accordingly, to achieve the theoretical capac-

ities on offer, advanced MUD, antennas techniques and power allocation are required.

The exponential increase in traffic over mobile networks is forecast to continue,

therefore a new 4th generation of mobile wireless networks is required to supersede

the current standards. Due to their increased diversity, multiplexing and spectral ef-

ficiency, MIMO and orthogonal frequency-division multiplexing (OFDM) techniques

have been presented as a means to provide the extra capacity and robustness required.

Although not yet commercially deployed in the UK [16], MIMO capability has been

incorporated in to Third Generation Partnership Project (3GPP) Long term evolution

(LTE) standards since release 8 [17]. Increased coverage whilst avoiding extensive and

costly investment in new infrastructure is also essential if 4G generation standards are

to be widely adopted and the deployment issues of the 3G roll-out avoided. Accord-

ingly, relaying is anticipated to play a vital role in future network protocols due to its

ability to increase coverage with low cost fixed or mobile relays, as opposed to con-

ventional base stations. Consequently, relaying and cooperation between base stations

and mobile users has been incorporated into 3GPP LTE advanced release 10 [17] and is

anticipated to lead to fully cooperative MIMO networks. However, the increased perfor-

mance brought about by MIMO systems and relaying is accompanied by a substantial

increase in the complexity of the processing required at the transmitter, relays and re-

ceiver. Consequently, improved signal processing techniques are once again required to

minimise the adverse impact that this additional processing has on the mobile user and

the complexity of the user equipment.

2.2.1 Spread Spectrum Systems

The defining characteristic of spread spectrum systems is that their transmission band-

width is significantly larger than the bandwidth of the data signal to be transmitted. As
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a result, spread spectrum systems have a significantly broader but lower power spectral

density (PSD) compared to equivalent power narrow band systems. This gives spread

spectrum systems increased resistance to narrow band jamming, frequency selective

fading and rudimentary eavesdropping but also allows it to present its signal as noise

to co-system and co-spectrum users. These characteristics made spread spectrum sys-

tems ideally suited to military applications and it is this that accounted for their initial

usage. More recently its DS-CDMA implementation has been adopted for commercial

communications due to its multiuser properties and flexibility [2].

In DS spread spectrum systems, each transmitted data symbol is spread by modulat-

ing it with a higher frequency binary sequence made up of N bits or chips. The period

of a chip, Tc, is significantly shorter than data symbol, Ts, where, for DS-CDMA with

short spreading sequences, Ts/N = Tc, N is referred to as the processing or spreading

gain and the spreading sequence is repeated from symbol to symbol. Through the se-

lection of orthogonal or approximately orthogonal spreading codes, multiple access is

possible over a shared channel. DS-CDMA in 3rd generation mobile networks operates

on this principle and uses orthogonal codes when synchronicity between users signals

can be ensured, and pseudo-random (PR) sequences when timing inaccuracies destroy

the orthogonality between orthogonal codes. With the addition of chip pulse shaping

to enable bandlimiting, the baseband continuous time receive signal in a K user system

with a multipath channel can be expressed as

r(t) =

K∑

k=1

L∑

l=1

∞∑

i=∞
Akbk[i]hk,lsk[t − iTs] + n[t] (2.1)

where

sk[t] =

N∑

n=1

ck[n]p[t − iTs − jTc], (2.2)

p is the chip pulse shaping waveform and ck is the spreading sequence of the kth user.

For the kth user, Ak and bk are the transmit amplitude and symbol stream, respectively;

hk,l is the gain of the lth path of the kth user’s L path multipath channel and n is additive
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white Gaussian noise (AWGN).

By assuming a synchronous system where the channel delay profile is an integer

multiple of the chip period, the receive signal for the ith symbol period at the receiver

after chip pulse matched filtering can be expressed in the discrete time domain as

r[i] =

K∑

k=1

Ak[i]bk[i] Hk[i]ck[i]
︸     ︷︷     ︸

ps[i]

+η[i] + n[i] (2.3)

where

Hk[i] =





hk,1[i] 0 . . . 0

hk,2[i] hk,1[i]

... hk,2[i]
...

hk,L[i]
...

. . .

0 hk,L[i]

0
. . . 0

... hk,1[i]

...
. . . hk,2[i]

...

0 0 . . . hk,L[i]





. (2.4)

The ISI generated by the multipath channel is given by η[i], pk[i] is the M × 1 signature

of the kth user, r[i] is a M × 1 column vector where M = N + L − 1 and n[i] is a vector

of AWGN.

2.2.2 MIMO Systems

MIMO communications systems [1,18–21] potentially offer significant advantages over

single-input-single-output (SISO) systems in terms of diversity and multiplexing. The

accompanying increases in capacity and robustness to narrowband fading have made

them an attractive transmission scheme for high data-rate systems. In contrast to DS-

CDMA, separation of channels is achieved through spatial separation of the transmit
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and receive antennas. However, due to the shared channel and correlation between co-

located antennas, orthogonality between data streams in a MIMO system is possible

only with use of the space-time block coding (STBC) or code-division methods covered

in Section 2.2.1. In spite of this, MIMO systems share an equivalence with DS-CDMA

systems where the multi-antenna separation plays a similar role to the user separation

allowed by the spreading sequences. Due to this, the receive signal in MIMO system

can be expressed using (2.3) by substituting the signature sequence of the kth user, pk[i],

for the spatial signature of the mth transmit antenna, hm[i]. The result is an expression

given by

r[i] =

M∑

m=1

Am[i]bm[i]hm[i] + n[i] (2.5)

where

hm[i] = [hm,1[i] . . . hm,n[i]]T (2.6)

and hm,n denotes the complex path gain from the mth transmit antenna to the nth receive

antenna. Although partially equivalent to DS-CDMA, MIMO systems are commonly

expressed with the summation removed for ease of manipulation and calculation, result-

ing in

r[i] = H[i]A[i]b[i] + n[i] (2.7)

where

H[i] =

(

h1[i] . . . hm[i]

)

=





h1,1[i] . . . hm,1[i]

...
. . .

...

h1,n[i] . . . hm,n[i]





, (2.8)

A[i] = diag[A1[i] . . .AM[i]] and b[i] = [b1[i] . . . bM[i]]T .

2.2.3 Cooperative Networks

The traditional point-to-point transmission techniques introduced thus far have a num-

ber of weaknesses associated with their power requirements, limited number of trans-
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Figure 2.1: Cooperative MIMO system model

mission paths and node cost [22–27]. Cooperative communications are concerned with

addressing these weaknesses and enabling the application of wireless networks to sce-

narios and environments previously not possible [28–31].

Initial studies on cooperative networks considered single relay implementations where

the relay’s primary use was to assist the communications of direct path in the presence

of AWGN [22, 32]. However, more recently, complex systems with multiple fixed or

mobile relays have been the focus of attention due to their flexibility, diversity, low-cost

and distributed data sensing potential.

With regard to traditional mobile communications, cooperation is envisaged to form

a part of future MIMO based mobile networks in order to provide low-cost coverage

extension and capacity enhancement. However, with the advent of multi-relay multi-

antenna systems, allocation of the finite network resources of time and power has be-

come vital if the optimum performance is to be obtained.

The relaying protocols of AF and DF prevail in cooperative communications due to

their simplicity and intuitiveness. The optimum choice of the protocol has been shown

to be dependent on respective performance of the first and second phases whereby DF

is suited to scenarios where the first transmission is more reliable than the second phase

and vice-versa for AF. The system model of a general cooperative two-hop MIMO net-

work with a direct path and half duplex relays is given by Figure 2.1, where there are
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Figure 2.2: Cooperative DS-CDMA system model

Nr relays and Na forward and backwards antennas at each relay.

Mathematically, the received signals of the first phase at the destination, first phase

at the nth relay, and the second phase at the destination in a DF system are given by

rsd[i] = Hsd[i]As[i]b[i] + nsd[i], (2.9)

rsrn
[i] = Hsrn

[i]As[i]b[i] + nsrn
[i] (2.10)

and

rrd[i] =

Nr∑

n=1

Hrnd[i]Arn
[i]b̂rn

[i] + nrd[i], (2.11)

where b̂rn
is the decoded and estimated data at the nth relay, and perfect synchronisation

is assumed. For an AF system, b̂rn
is replaced with the received signal of the first phase,

rsrn
[i].

An alternative cooperative implementation is to use DS-CDMA based transmissions.

This allows the benefits of DS-CDMA to be brought to cooperative networks. This

has enabled the introduction of cooperative DS-CDMA to mobile networks but also the

application of DS-CDMA to multi-hop WSNs where low a PSD and power consumption

are key concerns [29,30,33]. The system model of a cooperative two-hop single antenna

DS-CDMA network with single path channels, a negligible direct path and half duplex

relays is given by Figure 2.2. The expression for the received signals at the relay and
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destination nodes for a K user AF system are given by

rsrn
[i] =

K∑

k=1

ask
[i]bk[i]hsrn

[i]ck[i] + nrn
[i], (2.12)

rrd[i] =

Nr∑

n=1

arn
[i]hrnd[i]rsrn

[i] + nd[i] (2.13)

and

rrd[i] =

Nr∑

n=1

K∑

k=1

ask
[i]arn

[i]hsrn
[i]hrnd[i]ck[i]bk[i] +

Nr∑

n=1

arn
[i]hrnd[i]nrn

[i] + nd[i]. (2.14)

2.3 Parameter Estimation

Parameter estimation is a fundamental element of signal processing and is an essential

tool in the implementation of communication systems. The estimation techniques cov-

ered in this thesis can be broadly classified into two families: classical and Bayesian

[34–36]. These methods differ in their statistical assumption about input signals, the

type of parameter to be estimated and the level of a priori knowledge. Accordingly, the

resulting set of estimators from each approach have their own individual properties and

preferred applications.

2.3.1 Bayesian Estimation

Bayesian methods [34, 35] address estimation problems where there is some level of

prior knowledge on the quantity to be estimated and associated probabilistic assump-

tions can be made. The motivating factor of this methodology is to take advantage of

the prior knowledge but also to provide an alternative method of estimation when a

minimum variance unbiased estimator cannot be found [34].

In Bayesian estimation, the quantity to be estimated is assumed to be a random

variable. This enables prior knowledge to be incorporated into an a posterior probability
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density function (PDF) and an improved estimate obtained. To obtain such an estimator,

the definition of the Bayesian MSE is required

E[(θ − θ̂)] =
∫ ∫

(θ − θ̂)2 p(x, θ)dxdθ (2.15)

where the expectation is taken with respect to p(x, θ) and θ is a random variable [34].

To evaluate (2.15), p(x, θ) is first obtained using Bayes theorem

p(x, θ) = p(θ|x)p(x). (2.16)

The minimiser of (2.15) can then be found to be

θ̂ = E(θ|x) (2.17)

which is the MMSE solution and the mean of the posterior PDF of θ. A related esti-

mator obtains the maximum value of posterior PDF of θ and is accordingly termed the

maximum a posterior (MAP) estimator.

However, in practice the MMSE estimator described above is not easily obtainable.

Consequently, in most scenarios, Bayesian estimators are limited to being linear and of

the form

θ̂ =WHx (2.18)

where θ and x are assumed to be zero mean and the estimation error, θ − θ̂, is assumed

orthogonal to the observation vector, x. However, the linear MMSE filter will not be

optimal unless the optimal filter is linear; for example, when the signal model is given

by

x = Hθ + n (2.19)

where n is AWGN.
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The restriction to linear filters conveniently allows (2.15) to be expressed as

E‖θ − θ̂‖2 = E‖θ −WHx‖2. (2.20)

To obtain the linear Bayesian MMSE estimator, (2.20) is minimised with respect to WH,

yielding

W = R−1P (2.21)

where R = E[rrH], P = E[rθH] and the resulting MMSE is σ2
θ
I − PHR−1P where

σ2
θ

is the variance of the parameter vector. Thus to obtain the linear Bayesian MMSE

estimator, or the Wiener filter as it is otherwise known, as in the problem defined by

(2.20) and (2.19), the first two moments of the joint distribution p(x, θ) are required.

2.3.2 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation is a classical methodology which provides an

asymptotically efficient and unbiased estimate via a straightforward but potentially com-

putationally intensive procedure [2, 34, 35]. Fundamentally, ML estimation chooses the

parameter(s) that maximises the probability of a chosen PDF distribution resulting in

the observed data. However, with an incorrect choice of PDF an unreliable estimate

may be obtained.

Mathematically, the maximum likelihood estimator (MLE) for a parameter is given

by the value that maximise the likelihood function p(x; θ). Analytically the parameter

value that maximises the likelihood function can then be obtained by finding the station-

ary points of the probability distribution. For simplicity, in many practical estimators the

log of the likelihood function is used, resulting in the following maximisation procedure

θ = arg max
θ

lnp(x; θ). (2.22)

Here it can be seen that the MLE is the limiting instance of the MAP estimator when no
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prior knowledge is available. Consequently, it can be thought as a classical analogue to

the MAP estimator.

Although simplistic in its approach, it is not always possible to obtain a closed form

solution for the MLE and therefore numerical methods involving iterative maximisa-

tion and combinatorial searching are often required. This can lead to computationally

intensive solutions, especially when multiple parameters are to be estimated.

2.3.3 Least Squares Estimation

The LS estimator [34,35,37] is deterministic and, although it can converge to the mini-

mum variance unbiased estimator under the correct conditions, it cannot be considered

optimal, unlike MMSE and ML based estimators. A significant benefit of the method of

LS is that only a signal model is assumed and no statistical information or assumptions

about the data or noise are necessary. This, along with its intuitiveness, has led to the

LS estimator being widely used. Focussing on linear estimation, the model assumed by

the LS method for a unknown vector parameter is of the form

x = Hθ + n (2.23)

where n is unknown additive noise. The LS estimator finds the parameter θ that min-

imises the squared difference between the observed signal and the reconstructed signal.

Mathematically the cost function is expressed as

J(θ) = ‖x −Hθ̂‖2 (2.24)

and when solved, yields

θ = (HHH)−1HHx (2.25)

as the LS solution. A solution has been found whilst making no statistical assumptions

about the data, making it a highly useful if not optimal estimator. Furthermore, if the
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errors represented by n are wide-sense stationary (WSS), independent, and normally

distributed, the ML and LS estimators are equivalent [34]. Therefore the LS approach

provides an alternative approach to establishing the MLE.

2.3.4 Reduced-Rank Techniques

In the traditional signal processing techniques covered up to this point, the adaptive es-

timation and filtering procedures operate directly on the raw observation signal. How-

ever, this leads to a dependency between the performance of a filtering process and

the properties of the observed signal, such as eigenvalue spread, dimensionality, and

noise and correlation characteristics. This can lead to problems including slow conver-

gence, extended training, high computational complexity, susceptibility to interference,

large memory requirements and isolation of the signals of interest. Reduced-rank tech-

niques [12, 13, 38–43] can help alleviate these problems by mapping or projecting the

observed signal onto a reduced-rank signal subspace, thus reducing the dimensional-

ity of the signal and extracting features of interest. Ideally, the objective is to perform

rank-reduction whilst preserving the signals of interest so that equivalent full-rank per-

formance can be obtained by a subsequent reduced-rank filtering procedure. The advan-

tages of this approach result from the use of reduced dimensionality filters but also the

separation of the observation vector into signal and noise subspaces.

The rank-reduction process is performed using a projection matrix that maps the

M×1 full-rank observation vector onto a D×1 reduced-rank signal subspace. The M×D

projection matrix, SD, is designed in accordance with a chosen optimisation criterion

where the exact nature of the subspace onto which the full-rank signal is projected is

determined by said criterion. This process is depicted in Figure 2.3 where r̃[i] is the D×1

reduced-rank signal vector and the input to reduced-dimensionality adaptive filter w̃[i].

The main challenges in reduced-rank signal processing are the design of the projection

matrix and selection of the rank of the subspace, D.

The earliest methods were inspired by principal components (PC) analysis in math-
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Figure 2.3: Reduced-rank projection matrix

ematics and based upon eigendecomposition of the received signal’s autocorrelation

matrix [40, 41, 43]. By performing an eigendecomposition given by

R = QΛQH =

M∑

i=1

λiqiq
H
i , (2.26)

whereΛ is a diagonal matrix of eigenvalues and Q = [q1, q2, . . . , qM] is a matrix formed

from the corresponding eigenvectors, the D largest eigenvalues and their corresponding

eigenvectors can be chosen and a reduced-rank PC approximation of the autocorrelation

matrix formed [38, 44, 45]. Rearrangement of the eigenvalues of (2.26) into ascending

order then allows the basic reduced-rank approximation of the autocorrelation matrix to

be formed from the D largest eigenvalues and eigenvectors, yielding

R̃ =

M∑

i=M−D+1

λiqiq
H
i . (2.27)

However, correct selection of the rank D is required to ensure the majority of the sig-

nal of interest is projected on to the reduced-rank signal subspace and that the system

is not under-modelled. This is a non-trivial task, especially when the optimum rank

scales with system size. This in combination with the computational complexity of

eigendecomposition and the fact the reduced-rank processing is not optimised accord-

ing to a user specified criterion limits the applicability of the PC technique. A natural

progression from this was the cross spectral technique. This improved technique se-

lected D eigenvalues based on an auxiliary criterion but the problem of rank selection

and eigendecomposition remained [43]. Consequently, subsequent research focussed on

low-complexity reduced-rank methods which avoided eigendecomposition and whose
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rank did not scale with system size. In 1998 the multi-stage Wiener filter (MSWF)

was proposed by Goldstein, Reed and Scharf [42]. Based on a truncated form of a de-

composition of the traditional Wiener filter, it had the desirable properties of avoiding

eigendecomposition and the rank of its subspace not scaling with system size [41–43].

The MSWF forms the Krylov subspace through D recursions of a projection matrix

construction algorithm and then projects the full-rank signal onto it. A form amenable

to adaptive implementation is the ‘Powers of R’ approach which only requires the auto-

correlation and cross-correlation matrices of the observation vector [42, 43]. Following

this approach, the projection matrix that mathematically maps the observation vector on

to the reduced-rank signal subspace is then formed by

SDk
[i] =

[

p̄[i], p̄k[i]R[i], p̄k[i]R
2[i], p̄k[i]R

3[i], · · · , p̄k[i]R
D−1[i]

]

(2.28)

where

p̄k[i] =
pk[i]

||pk[i]||
(2.29)

and R[i] and p[i] are the autocorrelation matrix and cross-correlation vector, respec-

tively, at the ith time instant. Although described as projection matrix here, it is often

referred to as a linear transform or transformation matrix and expressed as SDk
[i]SH

Dk
[i]

from a linear algebra perspective; however, in this work it shall only be referred to as a

projection matrix from this point onwards.

The MSWF and its equivalence with auxiliary vector filtering (AVF) marked a pro-

gression in reduced-rank signal processing but complexity remained an issue [46–48].

The most recent reduced-rank techniques focus upon fully adaptive implementations

where the projection matrix is iteratively updated in conjunction with the adaptive

structures in the reduced-rank signal subspace. Two methods emerged based on this

approach: reduced-rank processing based on JIO of adaptive filters; and joint interpo-

lation, decimation and filtering (JIDF) [12, 13, 49, 50]. The advantages offered by these

techniques stem from the exchange of information between the rank-reduction process
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Figure 2.4: Reduced-rank JIO implementation

and the subsequent adaptive filtering but also their ability to be implemented with exist-

ing adaptive algorithms such as the recursive least-squares (RLS) and LMS. An MMSE

implementation of the scheme depicted in Figure 2.4 can be obtained by solving the

following optimisation problem

[SDk ,opt, w̃k,opt[i]] = arg min
SDk
,w̃k

E[|bk[i] − w̃H
k [i]SH

Dk
[i]r[i]|2]. (2.30)

where bk[i] is the desired output.

2.4 Interference Suppression

Suppression of interference in wireless communications systems is essential if capacity

is to be maximised and reliable transmission obtained. Approaches to interference sup-

pression depend upon both the system and the nature of the interference. Consequently,

a vast array of research literature has been generated on this topic and continues to be a

focus of signal processing research efforts with books including Verdu [2] providing a

unified treatment of the theory and established techniques. When considering the sys-

tems covered in this thesis, achieving robustness against multiuser, multi-stream and

multipath interference are the most significant challenges.

In this section, the focus is on interference suppression in DS-CDMA systems; how-

ever, in a similar manner to the mathematical equivalence between DS-CDMA and
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MIMO systems, the interference between antennas in a MIMO system can be likened

to the MUI in DS-CDMA systems. Consequently, the methods given in this section are

equally applicable to MIMO systems although their notation and naming in the literature

may differ.

MUD addresses the need to suppress the MUI created by co-system signals which

share the same physical channel. Considering the output of the matched filter of user 1,

the signal of interest and interference can be expressed as

r[i] = A1[i]b1[i]H1[i]c1[i] +

K∑

k=2

Ak[i]bk[i]Hk[i]ck[i]

︸                       ︷︷                       ︸

MUI

+η[i] + n[i]. (2.31)

Improvements are sought by actively taking into account the interfering users’ signals

when performing detection and estimation. This is in contrast to single user detection

which bases detection and estimation of a user’s signal solely upon the characteristics

of their desired signal [2, 51]. In DS-CDMA networks it can appear that MUD is a

trivial or potentially unnecessary task due to orthogonal spreading codes. However,

this requires synchronous operation and therefore places heavy demands on the users

and timing within the system. Restricting DS-CDMA networks to orthogonal codes

can also deprive them of a number of advantages, such as the ability to tradeoff ca-

pacity against performance in order to obtain a dynamic system that is able to adapt

to the time-varying demands placed on it [2]. Additionally, even with asynchronous

transmission it is possible to maintain quasi-orthogonality with correctly designed non-

orthogonal signature sequences, therefore mitigating an element of the MUI. During

the infancy of DS-CDMA communications, the single user matched filter that treated

multiple-access-interference (MAI) as AWGN was thought to be the optimal reception

technique. However, the study of MUD established that this is not the case if informa-

tion on the interfering users is known. Single user detection was the dominant method

when wireless communications were in their infancy prior to 1980s but the advent of ad-

vanced multiple-access schemes brought about the need for more sophisticated schemes
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which did not simply treat multiple access interference as AWGN [2, 52].

2.4.1 Maximum Likelihood Detection

Optimum MUD is based upon ML detection and estimation of all MAI such that the

likelihood or log-likelihood function is maximised. This results in a solution that ob-

tains the symbols that are most likely to have resulted in the observed signal. This is also

equivalent to the solution that results in minimum noise energy [2]. To obtain optimal

MUD performance, the receiver requires knowledge of the system spreading sequences,

user timing information, user receive amplitudes and noise power. When this informa-

tion is known, the likelihood function is equivalent to the minimisation of the Euclidean

distance, and is given by

[

b̂1[i] . . . b̂K[i]
]

= arg max
b1[i]...bK [i]

p(r[i]; b1[i] . . . bK[i])

= arg min
b1[i]...bK [i]

∥
∥
∥
∥
∥
∥
∥

r[i] −
K∑

k=1

Ak[i]bk[i]Hk[i]ck[i]

∥
∥
∥
∥
∥
∥
∥

2

.

(2.32)

The solution to (2.32) can be found through analysis of all combinations of the user sym-

bols bk[i]. However, this is a prohibitively complex task for practical implementation

due to the exponential relationship between the number of users and possible solutions.

Specifically, there are (OM)K possible solutions to (2.32) where OM is the order of the

modulation scheme. To alleviate this complexity, ML based schemes that operate over

a reduced set of solutions have been developed [53,54]. These schemes attempt to place

a constraint on the solution set in order to restrict searching to the candidates that are

most likely to yield the ML solution. Sphere decoding is the most prominent member

of this family of schemes and places a sphere with a predefined radius onto a lattice of

potential solutions so only candidates that fall within the sphere are considered for ML

detection [53].
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2.4.2 Linear Detection Techniques

Sub-optimal techniques such as sphere decoding go someway to reducing the computa-

tion burden of ML MUD but their complexity still substantially exceeds that of linear

methods [53]. Furthermore, obtaining the required information on each user’s signal is

not always practical or possible. Consequently, investigation into linear detection meth-

ods that occupy the middle ground between optimality and complexity, and require only

the decoding of the desired user have been a common focus of MUD research. As previ-

ously noted, linear correlating receivers are optimal for single user detection, however,

their effectiveness declines when multiple users are present and they also fail to fully

exploit data on interfering users. Accordingly, in the presence of MAI alternative linear

methods are of more use.

MMSE Linear Detection

In contrast to the ML method given by (2.32), the MMSE MUD problem can be cast

as a linear estimation problem where a finite impulse response (FIR) filter is used to

minimise the MSE between the estimated data of the user of interest and the transmitted

data, E[bk[i] − b̂k[i]]. The relevant optimisation expression is given by

wk,opt[i] = arg min
wk

E
∥
∥
∥bk[i] − wH

k [i]r[i]
∥
∥
∥

2
. (2.33)

By taking the gradient with respect to the complex vector wk[i] and equating to zero, an

expression for the optimum linear MMSE MUD filter can be formed

wk,opt[i] =





K∑

n=1

A2
n[i]

A2
k
[i]

Hk[i]ck[i]c
H
k [i]HH

k [i] +
σ2

A2
k
[i]

I





−1

Hk[i]ck[i]. (2.34)

A linear estimate of the desired symbol can then be computed

zk[i] = wH
k,opt[i]r[i] (2.35)
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and processed by a detector given by

b̂k[i] = Q(zk[i]), (2.36)

where Q is a slicer dependent on the constellation scheme of the system.

Although the computational complexity advantages brought about by linear MMSE

approaches are significant with respect to ML based schemes, a matrix inversion of

cubic complexity is still required. Furthermore, the accurate determination of cross-

correlations, channel coefficients, users’ signal-to-noise-ratio (SNR) and spreading se-

quences may not always be possible in a time-varying environment.

Least Squares-Based Linear Detector

As with parameter estimation, an alternative deterministic approach based on the LS

optimisation criterion can be used to derive an interference suppression filter. This

removes the need for statistical assumptions about the input data but instead introduces

a dependency on the number of data samples used in the calculation of the LS solution.

Firstly, an estimation error based cost function is formed that utilises all data up to and

including the ith time instant and has an exponential forgetting factor, λ, to weight more

recent samples more heavily

J[i] =

l=1∑

i

λi−l
∥
∥
∥bk[l] − wH

k [l]r[l]
∥
∥
∥

2
= ‖ek[l]‖2 . (2.37)

Via the standard LS derivation [38] the resulting solution is given by

wk[i] = R−1[i]p[i] (2.38)

where

R[i] =

i∑

l=1

λi−lr[l]rH[l] (2.39)
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and

p[i] =

i∑

l=1

λi−lbH
k [l]r[l]. (2.40)

Symbol estimation is then performed as for the linear MMSE detector given by (2.35)-

(2.36).

2.4.3 Adaptive Linear Interference Suppression

To simplify the MMSE and LS interference suppression processes and remove the need

for system knowledge, adaptive linear techniques can be used. These simply require an

initial training sequence after which they switch to decision directed operation. How-

ever, an additional training sequence may be required if there are abrupt changes in the

system channels or user power.

Least Mean-Square Algorithm

As with the optimal MMSE approach, the following optimisation function is utilised

(2.33)

J[i] = E
∣
∣
∣bk[i] − wH

k [i]r[i]
∣
∣
∣
2
= E |ek[i]|2 . (2.41)

The LMS is then derived by placing (2.41) into a steepest descent framework as given

by

wk[i + 1] = wk[i] − µ∇J[i]. (2.42)

To avoid the use of a deterministic gradient an instantaneous gradient estimate is taken

with respect to the linear filter

∇
wH

k
[i]

J[i] = −r[i]
(

bk[i] − wH
k [i]r[i]

)H

︸                   ︷︷                   ︸

ek[i]

. (2.43)

This gradient estimate can then be placed into (2.42) to form a SG algorithm

wk[i + 1] = wk[i] − µr[i]e∗k[i]. (2.44)
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The LMS algorithm presented above was first proposed in 1960 [55,56]. Since its inven-

tion, its behavioural and convergence properties have been thoroughly investigated and

established. This, coupled with its low complexity, has led to the LMS being adopted in

a wide-variety of estimation and signal processing applications. Although widely used,

the low complexity of the LMS is accompanied by a slow rate of convergence compared

to other adaptive filtering algorithms due to its stochastic nature and discarding of past

data [34,38]. Consequently, other methods achieve faster convergence at the expense of

increased complexity.

Recursive Least Squares Algorithm

The RLS utilises the entire data record from the point in time the algorithm commenced

and therefore achieves a rate of convergence that is typically an order of magnitude

faster than the LMS. However, this is at the cost of increased complexity and memory

requirements [34,38]. To perform the algorithms’s derivation a solution to the weighted

LS cost function (2.37) is first obtained from the recursive forms of (2.39) and (2.40)

given by

R[i] = λR[i − 1] + λi−lr[l]rH[l] (2.45)

and

p[i] = λp[i − 1] + λi−lb∗k[l]r[l][l]. (2.46)

Although in a recursive form, the solution given by (2.38), (2.45) and (2.46) involves a

computationally intensive matrix inversion. To address this, the RLS algorithm utilises

the matrix inversion lemma, or Woodbury identity as it is also commonly known, to

avoid the matrix inversion. The identity is given by

(A + BDC)−1 = A−1 − A−1B(C−1 + DA−1B)DA−1. (2.47)
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By equating (2.45) to the matrix inversion lemma and performing some algebraic ma-

nipulation, the recursive equations for the RLS algorithm can be reached. The full RLS

algorithm is given by (2.48) to (2.51), where λ is an exponential forgetting factor close

to unity and is used to decrease the weighting of past data.

k[i] =
λ−1P[i − 1]r[i]

1 + λ−1rH[i]P[i − 1]r[i]
(2.48)

ek[i] = bk[i] − wH
k [i − 1]r[i] (2.49)

wk[i] = w[i − 1] + k[i]eH
k [i] (2.50)

P[i] = λ−1P[i − 1] − λ−1k[i]rH[i]P[i − 1] (2.51)

Conjugate Gradient Algorithm

The motivation behind the formation of the CG method was to improve upon the con-

vergence speed of the steepest descent method whilst avoiding the complex matrix in-

version required for the conventional LS solution [57]. Although designed for quadratic

problems of the form

1

2
wHRw − pHw, (2.52)

the unique minimiser is also the solution to the more common problem formation

Rw = p (2.53)

and can also be extended to non-quadratic problems.

The CG method is based upon the principle of R-orthogonality or conjugacy be-

tween a set of vectors, d1···l, where they are defined as R-orthogonal, and therefore lin-

early independent, if dH
l

Rd j = 0 for all l , j [57]. These linearly independent vectors

can then be used to expand the solution such that it can be obtained by the evaluation of

a number of low complexity products.
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The implementation of the conjugate gradient method in an iterative fashion leads

to the conjugate gradient algorithm. At each time instant a finite number of iterations,

J, are performed and a succession of direction vectors, d j, which are orthogonal to d j−1,

are generated from a combination of past direction vectors and optimisation function

gradient [58]. Consequently, no matrix inversion is required and the method rapidly

proceeds to the solution. Firstly in the derivation, the gradient and direction vectors for

the kth user require initialisation

gk,0[i] = ∇wk[i]Jk[i] = R[i]wk,0[i] − pk[i], dk,0[i] = −gk,0[i] (2.54)

The algorithm commences at each iteration with a steepest descent style filter update

wk, j+1[i] = wk, j[i] + αk, j[i]dk, j[i] (2.55)

where

αk, j[i] =
gH

k, j
[i]dk, j[i]

dH
k, j

[i]R[i]dk, j[i]
(2.56)

and is found by the minimisation of J(wk, j[i]) with respect to αk, j[i]. The direction

vector is then updated for the next iteration

dH
k, j+1[i] = −gH

k, j+1[i] + βk, j[i]d
H
k, j[i] (2.57)

where

βk, j[i] =
gH

k, j+1
[i]R[i]dH

k, j
[i]

dH
k, j

[i]R[i]dk, j[i]
. (2.58)

The number of iterations, J, can either be predetermined or the algorithm terminated

when a desired error residual level is achieved.
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2.4.4 Non-Linear Detection Techniques

Non-linear suboptimal MUD offers significant performance advantages over linear meth-

ods whilst maintaining a complexity significantly below that of optimal techniques [2].

Subtractive interference cancellation is a popular decision driven subset that operates

on the principle of MAI estimation and subtraction. Such methods are often imple-

mented in multiple stages where each stage removes a proportion of the interference

created by one of the interfering users [51]. However, their effective operation is re-

liant on reliable knowledge or each user’s receive power, spreading code and channel.

Consequently, their use is often limited to base stations where power constraints and

spreading sequence estimation are of less of a concern. Although subtractive interfer-

ence suppression is non-linear, its constituent estimation procedures can be linear and

methods such as the correlating, MMSE or LS receivers are commonly used. In the

following examples MMSE based estimation is utilised to illustrate the operation of the

subtractive schemes.

Successive Interference Cancellation

Successive interference cancellation (SIC) is the most popular of the subtractive meth-

ods and is suited to scenarios where a large power differential exists between users’

signals. It operates in a serial fashion where at each successive stage a user’s transmit-

ted data is estimated and their receive signal recreated. This signal is then subtracted

from the total receive signal in an effort to remove their MAI contribution and increase

the SINR ratio of subsequently decoded users [59, 60]. The modified receive signal for

the nth stage of SIC is given by

rn[i] = r[i] −
n−1∑

k=1

Ak[i]b̂k[i]Hk[i]ck[i] (2.59)
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where b̂k[i] is the estimated user data given by

b̂n[i] = sgn[wH
n [i]rn[i]], (2.60)

wn[i] = R−1
n [i]pn[i], Rn[i] = E[rn[i]rn[i]] and pn[i] = E[rn[i]b∗n[i]] when linear MMSE

estimation and binary phase shift keying (BPSK) modulation is used. The performance

of SIC can be improved by optimising the order of decoding in terms of received signal

strength. Decoding and subtracting the user’s signal with the highest power will achieve

the largest reduction in MAI and schemes that do this are termed ordered SICs.

Parallel Interference Cancellation

Parallel interference cancellation (PIC) is a concurrent form of subtractive interference

suppression which is suited to scenarios where users have approximately equal receive

power [2,60]. PIC attempts to subtract all MAI for each user by detecting and estimating

each user’s signal in parallel. Conventional detection for all users is performed on the

received signal to provide the estimates necessary for the reconstruction of the MAI.

A second stage of conventional estimation then takes place on the MAI compensated

received signal for each user and a set of improved estimates obtained. PIC can also

be extended to multiple stages where the improved set of estimates from the previous

stage is used to recreate the MAI for each user. In turn a further improved set of symbol

estimates is achieved. The interference suppression operation for the kth user at the nth

stage can expressed as

rn[i] = r[i] −
K∑

k=1,k,n

Ak[i]b̂k,n[i]Hk[i]ck[i]. (2.61)

Subtractive interference suppression can alleviate MAI and reduce the limits it places

on capacity and performance of DS-CDMA systems. However, effective operation is

heavily reliant on accurate estimation of the interfering users’ signals and their transmit

symbols. If an incorrect symbol estimate is utilised in the cancellation procedure this
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has the effect of quadrupling the interfering power of that user. Consequently, reliable

estimation of the interfering symbols is essential if improved performance compared to

convention detection is to be obtained [51, 61].

2.5 Resource Allocation

Allocation of the finite resources in communications networks is a vital task if capac-

ity, robustness and efficiency are to be maximised. The advances in wireless networks,

and the system complexity that accompanies this, has led to an increase in the need for

cross-layer optimisation and accurate allocation of transmit power, spectrum, transmit

time and rate, and antennas, among others [62]. The selection of the optimisation cri-

teria is of central importance and is heavily dependent on the system application and

the nature of the transmitted data. Common criteria include capacity, quality of service,

MUI and power consumption. The method of implementation is also a key consider-

ation when performing resource allocation and is linked to the topology and operation

of the considered system. Closed-loop and open-loop, individual, distributed and cen-

tralised techniques and constraints are the most prevalent, with the characteristics of

each formed from a trade-off between performance, complexity and communications

requirements. A requirement for the implementation of centralised open-loop schemes

is a feedback channel. The higher the capacity of the feedback channel the better per-

formance obtained due to reduced quantisation distortion and higher update rates. How-

ever, the addition of a feedback channel causes a reduction in system capacity.

In DS-CDMA, one of the most critical roles of resource allocation is power con-

trol to ensure the near-far problem is avoided [2]. DS-CDMA systems are particulary

susceptible due to the shared physical channel and the simultaneous transmission over

it. Specifically, it occurs when the difference in receive power between two users in a

single cell is so great that decoding of the weaker signal is not possible. Although such a

problem can be overcome once sampling has taken place using subtractive interference
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cancellation, this relies upon the physical limits of the analogue-to-digital converter

(ADC) to ensure the weaker signal is effectively sampled. Consequently, power allo-

cation in DS-CDMA is vital - a fact that is reflected in the frequency and resolution

of DS-CDMA power update schemes compared to GSM whose TDMA/FDMA access

schemes lessen the effect of the near-far problem. An example power allocation opti-

misation problem for a DS-CDMA system with a centralised power constraint is given

by

[A1[i] · · ·AK[i]] = arg min
A1[i]···AK [i]

E
[

|bk[i] − wH
k

[i]r[i]|
]

subject to

K∑

k=1

|Ak|2 = p

(2.62)

where r[i] is given by (2.3), p is a system transmit power constraint and wk[i] is an

interference suppression filter for the kth user [63]. This yields the following MMSE

solution for the kth user

Ak[i] = R−1
Ak

[i]pAk
[i] (2.63)

where Rk[i] = E
[

cH
k

[i]Hk[i]b
∗
k
[i]wk[i]w

H
k

[i]bk[i]Hk[i]ck[i]
]

and

pk[i] = E
[

cH
k

[i]Hk[i]b
∗
k
[i]wk[i]bk[i]

]

. Extending resource allocation to cooperative net-

works is essential if their full potential is to be realised. However, the additional chal-

lenges of providing feedback over multi-hop cooperative networks complicates the task.

The issue is further complicated by the need to achieve a balance between relay bat-

tery life, spatial diversity, spatial multiplexing, and feedback requirements. Established

methods such as the water filling algorithm can require global channel knowledge and

a high number of feedback bits, both of which require significant system resources to

implement. Consequently, distributed and minimal feedback schemes are a significant

focus of research.
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2.6 Summary

This chapter has presented on overview of DS-CDMA and MIMO systems, and the fun-

damentals of adaptive signal processing, interference suppression and resource alloca-

tion. The motivation behind the use of DS-CDMA and MIMO techniques in the current

and future mobile networks have been covered and the challenges that they pose stated.

The key concepts of interference suppression and resource allocation in multiuser sys-

tems have then been introduced alongside the principles of estimation, detection and

adaptive filter theory upon which the proposed methods in this thesis are based.
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3.1 Introduction

In the last decade reduced-rank signal processing has been promoted as a viable and

attractive solution to a range of applications where the number of elements in adaptive

52



CHAPTER 3. SET-MEMBERSHIP REDUCED-RANK JOINT ITERATIVE ALGORITHMS FOR

DS-CDMA SYSTEMS 53

filters have become prohibitively high [13, 39, 41, 42, 44, 45, 47, 49, 50, 64–71]. Due to

their performance in the presence of MUI, narrow band interference and fading chan-

nels, a resurgence of interest has also occurred in spread-spectrum systems such as

DS-CDMA and ultra-wide-band (UWB). A key feature of these systems is their use of

extended spreading codes which act to suppress multiuser and intercell inference. How-

ever, due to the problem of chip synchronisation in the uplink of DS-CDMA systems,

the use of orthogonal codes to suppress MUI is restricted to the downlink. Conse-

quently, in the uplink pseudo-random (PR) codes are utilised to randomise each user’s

signal to co-system and co-spectrum users; however, this leads to increased multiuser in-

terference compared to the downlink. Therefore interference suppression techniques are

required. Linear and non-linear approaches including direct equalisation, SIC and deci-

sion feedback have been proposed as interference suppression and reception techniques

for DS-CDMA systems with short spreading sequences [61,72,73]. However, the signif-

icant dimensionality of the structures necessary for both linear and non-linear reception

and interference suppression of these spread signals results in a trade-off between com-

plexity, convergence, training sequence length and tracking performance [38], whether

implemented optimally or iteratively. These factors also impact upon the power con-

sumption and robustness of a system, both of which are critical in mobile systems and

WSNs.

Reduced-rank signal processing offers an alternative to conventional interference

suppression techniques and has the ability to combat a number of the aforementioned

drawbacks. By introducing a layer of preliminary signal processing that reduces the di-

mensionality of the input signal, smaller receive and interference suppression filters can

be used. However, this extra layer of processing comes at a cost of increased complexity

and consequently there is a quest for low-complexity reduced-rank methods. In com-

munications theory, reduced-rank techniques originated from eigendecomposition of the

received signal’s autocorrelation matrix. Following decomposition, the largest eigenval-

ues and corresponding eigenvectors are then selected to form the reduced-rank signal
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subspace and the dimensionality/rank reducing projection matrix which transforms the

full-rank signal [13]. The PC and cross-spectral metric are two early techniques based

on singular value decomposition (SVD) of an estimate of the autocorrelation matrix.

These schemes operate via optimisation functions based on the optimum reduced-rank

representation and a secondary error criterion [40,43], respectively. However, the inher-

ent complexity of SVD fuelled the search for alternative reduced-rank methods. This led

to the emergence of two approaches: the MSWF [41–43] and the AVF [46,47]. Both of

these techniques possess the desirable characteristic of the subspace rank or number of

auxiliary vectors not scaling with full-rank system dimensionality. However, complex-

ity remained a major issue. The most recent method, reduced-rank signal processing

based on JIO of adaptive filters, combats the issue of complexity by interpreting the

projection or transformation matrix as a bank of adaptive filters. These filters are then

jointly adapted with the reduced-rank filter in order to arrive at an effective projection

matrix and interference suppression filter [12]. The majority of existing reduced-rank

algorithms for communications perform the dimensionality-reduction process and inter-

ference suppression as independent tasks and use a conventional algorithm such as the

LMS only to perform the adaptation of the reduced-rank interference suppression filter.

In contrast, JIO uses conventional algorithms to adapt both structures and introduces an

exchange of information between the two processes - a combination which results in

performance benefits. However, this method has a complexity that still exceeds that of

the full-rank LMS by up to an order of magnitude1. Consequently, the formulation of a

technique to reduce this complexity is of great interest and central to this chapter.

SM techniques are a low-complexity approach to established adaptive filtering and

have been applied to linear receivers in DS-CDMA and channel estimation with promis-

ing results [10, 11, 74]. Consequently, the combination of these and reduced-rank tech-

niques for DS-CDMA interference suppression form an attractive proposition which has

the potential to achieve the gains of reduced-rank signal processing without the associ-

1Depending upon the rank of the scheme
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ated complexity.

The basis of SM filtering lies in set theory and the generation of a set of solutions to

a bounded optimisation problem as opposed to a single solution [10]. First proposed for

systems where a bound could be placed on the noise variance, it was later reformulated

for a bounded error specification which allowed it to be applied to channel equalisation

and interference suppression [10]. Two predominant error bounded SM implementa-

tions exist: the normalised LMS (NLMS) and RLS algorithms. The latter of which is

in fact rooted in optimal bounding ellipsoids (OBE) techniques but conveniently lends

itself to a LS interpretation [9]. Performance and complexity improvements over con-

ventional adaptive methods result from SM filtering because an ‘optimised’ step-size is

utilised and an element of the redundancy in the adaptation process eliminated. This

redundancy removal stems from the definition of a bounded set of valid estimates as

opposed to a point estimate at each time instant such that it is possible that a previous

solution to the optimisation problem lies within the current set of solutions, thus remov-

ing the need to update the solution (filter coefficients) whilst not sacrificing performance.

Further improvements in performance and complexity can be obtained by implementing

a variable error bound which adapts the solution sets to suit the environment and assists

in preventing over and under bounding [74, 75] of the solution set. However, compared

to the complexity savings brought about by the removal of redundancy, the improve-

ments in convergence brought about by SM techniques are less significant and the over-

riding limiting factor remains the length of the filter. This shortfall of SM techniques

can be addressed by introducing reduced-rank methods to alter the dimensionality of the

signals under consideration. Consequently, investigation into a combination of SM and

reduced-rank schemes has the potential to bear significant advances in low-complexity

reduced-rank interference suppression.

This chapter proposes the integration of SM filtering with the JIO reduced-rank

method for linear MUI suppression in DS-CDMA systems. A framework for the in-

tegration is set out and the unique properties of JIO which allow SM techniques to be
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elegantly applied to reduced-rank methods, where previously not possible, are high-

lighted. The generation of sets of solutions from which the reduced-rank subspace and

filter are chosen allow the selective updating capabilities and step-size optimisation of

SM schemes to be applied to the adaptation of these structures. This gives the JIO

reduced-rank procedure an added element of adaptivity which enables it to operate more

reliably but also improves its convergence and steady state performance. The overall

result is a sparsely updating implementation of the JIO whose complexity and perfor-

mance can be controlled by manipulating the SM error bound and hence the bounded

set of solutions. This makes the schemes especially suited to mobile communications

and WSNs where battery life is a major consideration and demands on the system are

dynamic [76]. The derivation and implementation of two SM reduced-rank algorithms

based on the SM-NLMS and Bounding Ellipsoid Adaptive Constrained Least Squares

(BEACON) algorithms are presented. An analysis which unifies and extends that cur-

rently available is then given for their stability, convergence properties and steady-state

error performance. In addition to this, a novel automatic SM rank-selection algorithm

is presented along with a variable error bound implementation where the error bound is

determined adaptively in order to arrive at an optimised bound, prevent over and under-

bounding, and address the problem of bound selection when limited system knowledge

is available. The performance of the proposed algorithms is evaluated and compared

against existing methods for interference suppression in the uplink of a DS-CDMA sys-

tem [2, 76].

This chapter is organised as follows: Section 3.2 introduces the system model and

the linear reception of DS-CDMA signals, and Section 3.3 gives the integration of SM

filtering with JIO of adaptive filters and the formulation of a JIO-SM framework. Sec-

tion 3.4 derives and presents two algorithms based on the MMSE and LS error criteria.

This is followed by analyses of their complexity, automatic rank-selection and adap-

tive error bound variants of the proposed algorithms. Section 3.5 presents stability and

MSE analyses of the proposed algorithms along with limitations of the analyses re-
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Figure 3.1: DS-CDMA uplink system model.

sulting from the complex interdependent relationship between the adaptive structures

of the schemes. This is followed in Section 3.6 by the application and simulation of

the proposed and existing algorithms to the DS-CDMA system and evaluation of their

performance. Finally, Section 3.7 gives the conclusions.

3.2 DS-CDMA System Model and Linear Receivers

In this chapter, a discrete time model of the uplink of a symbol synchronous UMTS

DS-CDMA system with short spreading sequences, K users and N chips per symbol is

considered. This system is illustrated in Figure 3.1 [77]. The system has a chip rate of

3.84Mchips/s, an assumed bandwidth of 5MHz and uses quadrature phase shift keying

modulation (QPSK). The multipath channel of each user is modelled in accordance

with the UMTS Vehicular A channel model [78] and each path delay is assumed to be

a multiple of the chip rate. For every user in the uplink an independent L path time-

varying channel is generated. Each user’s channel realisation is assumed to be constant

over each symbol period and to have a maximum delay spread of TDmax
= (L − 1)Tc
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where Tc =
1

3.84×106 s is the chip duration. The channel for user k is given by

hk[i] =
[

hk,1[i] hk,2[i] · · · hk,L[i]
]

=
[

αk,1[i]pk,1 αk,2[i]pk,2 · · · αk,L[i]pk,L

]
(3.1)

where pk = [pk,1 pk,2 · · · pk,L] is the average power profile of the channel and αk[i] =

[

αk,1[i] αk,2[i] · · · αk,L[i]
]

are independent Rayleigh distributed intersymbol complex

fading coefficients generated in accordance with Clarke’s model where 20 scatterers

are assumed. These complex coefficients include the Doppler effect where the Doppler

shift and symbol period are denoted by fd and Ts = NTc, respectively [79] and are

specified for each simulation.

Short PR spreading codes which maintain cyclostationarity are repeated from sym-

bol to symbol and allow conventional adaptive techniques to be utilised. The use of

long codes eliminates the cyclostationarity required for the use of standard adaptive

direct detection techniques and alternative channel estimation based methods are re-

quired [80, 81]. However, the investigation into MUD and equalisation in long code

DS-CDMA is beyond the scope of this work. The M-dimensional received signal r[i] at

the base station after chip-pulse matched filtering and sampling at the chip rate is given

by

r[i] = A1b1[i]H1[i]c1[i] +

K∑

k=2

Akbk[i]Hk[i]ck[i]

︸                    ︷︷                    ︸

MUI

+η[i] + n[i], (3.2)

where M = N+L−1 and n[i] = [n1[i] . . . nM[i]]T is the complex Gaussian noise vector

with zero mean and autocorrelation matrix E
[

n[i]nH[i]
]

= σ2
nI. The kth user’s symbol is

bk[i] and is assumed to have been drawn from a general QPSK constellation normalised

to unit power. The amplitude of user k is Ak and η[i] is the ISI vector resulting from

the multipath channel. The M ×N convolution channel matrix, Hk[i], contains one-chip

shifted versions of the zero padded channel vector, hk[i], and the N × 1 vector ck[i] is
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the spreading code of user k. The structures can be described by

Hk[i] =





hk,1[i] 0

...
. . . hk,1[i]

hk,L[i]
...

0
. . . hk,L[i]





, ck[i] =





c1
k
[i]

...

cN
k

[i]





. (3.3)

In this model, the ISI span and contribution ηk[i] are functions of the processing gain,

N, and channel length, L. If 1 < L ≤ N, 3 symbols would interfere in total: the current,

the previous and the successive symbol. In the case of N < L ≤ 2N, 5 symbols would

interfere: the current one, the 2 previous and the 2 successive ones. In most practical

DS-CDMA systems 1 < L ≤ N; therefore only 3 symbols are usually affected [78].

Training-based adaptive multiuser linear receivers of the sort considered in this

chapter are tasked with suppression of the interference in (3.2). However, these do

not require knowledge of the system spreading codes and are therefore well suited to

scenarios where it is not possible or practical to obtain the spreading codes of the user

of interest or interfering users. The design of such receivers corresponds to determining

an FIR filter wk[i] = [wk,1[i] wk,2[i] . . . wk,M]T with M coefficients which provides an

estimate of the desired symbol, as given by

b̂k[i] = Q(zk[i])

= 1√
2
sgn

(ℜ[

zk[i]
])

+ 1√
2
sgn

(ℑ[zk[i]
])

j

= 1√
2
sgn

(ℜ[

wH
k

[i]r[i]
])

+ 1√
2
sgn

(ℑ[wH
k

[i]r[i]
])

j,

(3.4)

where ℜ(·) and ℑ(·) denote the real and imaginary parts respectively, j =
√
−1, Q is

a QPSK slicer, sgn(·) is the signum function and the system of interest uses unity nor-

malised QPSK modulation. The quantity zk[i] = wH
k

[i]r[i] is the output of the adaptive

receiver wk[i] for user k at the ith time instant where wk is optimised according to a cho-

sen criterion. However, the M × 1 dimensionality of w[i] can become large in highly

spread systems, leading to computationally intensive implementations and slow conver-
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gence when full-rank adaptive algorithms are used. Reduced-rank and SM techniques

offer solutions to these problems.

3.3 Set-Membership Reduced-Rank Framework

Reduced-rank techniques for communications achieve dimensionality reduction by pro-

jecting the M ×1 received vector r[i] onto a reduced-rank signal subspace; for example,

the Krylov subspace for the MSWF and the AVF with orthogonal auxiliary vectors.

The tasks of interference suppression, symbol estimation and detection can then be

performed in the lower dimensionality signal subspace with a standard reduced length

adaptive filter. For user k in a multiuser system, this is mathematically expressed as

b̂k[i] = Q
([

w̃H
k [i]SH

Dk
[i]r[i]

])

= Q
([

w̃H
k [i]r̃k[i]

])

(3.5)

where r̃k[i] = SH
Dk

[i]r[i] and the M×D projection matrix SDk
performs the dimensionality

reduction. The D×1 vector w̃[i] performs the linear interference suppression where D is

the rank of signal subspace and therefore the dimensionality of the filter where D ≪ M.

However, the majority of techniques prior to the proposition of JIO of adaptive filters

relied in some part on SVD or a similarly complex task to generate the projection matrix

SDk
[39], [12].

Reduced-rank adaptive filtering based on JIO circumvents these complex tasks by

considering the projection matrix and reduced-rank filter as adaptive structures and plac-

ing them in a joint optimisation function. These two structures are then jointly and it-

eratively adapted to reach a solution. Expressing this as a conventional optimisation

problem yields

[SD,opt[i], w̃opt[i]] = arg min
SD ,w̃

E[|b[i] − w̃H[i]SH
D[i]r[i]|2], (3.6)

where the user index k has been omitted and user 1 is assumed; a feature that will
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continue for the remainder of this chapter. The MMSE expressions for these structures

are then derived by fixing w̃[i] and SD[i] in turn and minimising with respect to the

other, resulting in the following expressions

w̃opt[i] = R̃−1[i]p̃[i] (3.7)

and

SD,opt[i] = R−1[i]PD[i]R−1
w [i], (3.8)

where R̃[i] = E[r̃opt[i]r̃
H
opt[i]], p̃[i] = E[b∗[i]r̃opt[i]], R[i] = E[r[i]rH[i]] and Rw[i] =

E[w̃opt[i]w̃
H
opt[i]] are the reduced-rank and full-rank input signal autocorrelation ma-

trices, and reduced-rank filter autocorrelation matrix respectively. In addition to this,

PD[i] = E[b∗[i]r[i]w̃H
opt[i]] is the reduced-rank cross-correlation matrix. The interde-

pendency between w̃opt[i] and SD,opt[i] prohibits a closed form solution; however, solu-

tions can be reached by iterating (3.7) and (3.8) after suitable initialisation which does

not annihilate the signal or de-stabilise the iterative process. The MMSE can then be

obtained, as given by

MMSE = σ2
b − p̃H[i]R̃−1[i]p̃[i] (3.9)

where σ2
b
= E[|b[i]|2]. The joint optimisation structure of the MMSE function given

by (3.6) opens up the possibility of a non-convex error-surface. However, this is con-

sidered in [12] and although multiple solutions exist, there are no local minima when

implemented iteratively and therefore the adaptive process is not sensitive to initialisa-

tion2. The purely adaptive nature of JIO and its previous implementation with NLMS

and RLS algorithms suits it well to integration with SM techniques. Additionally, the

process of integration is also far less involved and problematic, and more complete than

previous methods that use alternative reduced-rank techniques [71]. This is due to the

well defined SM framework that already exists for the algorithms used to implement the

JIO schemes.

2Provided the signal is not annihilated
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The generation of the JIO-SM framework resembles that of a standard SM scheme

but two solution sets are required at each iteration. To create the JIO-SM framework,

firstly an expression for the soft symbol estimate and the two error bounds have to be

defined

z[i] = w̃H[i − 1]SH
D[i − 1]r[i], (3.10)

and

| b[i] − w̃H[i]SH
D

[i − 1]r[i] |2≤ γ2
w̃

and | b[i] − w̃H[i − 1]SH
D[i]r[i] |2≤ γ2

S

(3.11)

where γS and γw̃ are the error bounds for the projection matrix and reduced-rank filter,

respectively. The structures w̃[i − 1] and SD[i − 1] refer to the previous estimate of

the reduced-rank filter and projection matrix, respectively, in an iterative estimation

procedure.

Following this, defining a sample space χ that contains all possible data pairs b and

r enables the definition of the feasibility sets Θw̃ and ΘSD
as subsets of χ, which contain

the values that fulfil each error bound in (3.11). These sets for the reduced-rank filter

and the projection matrix are expressed as

Θw̃ ,
⋂

(b,r)∈χ
w̃ ∈ CD :| b − w̃HSH

D
r |2≤ γ2

w̃

and ΘS ,
⋂

(b,r)∈χ
SD ∈ CM×D :| b − w̃HSH

D
r |2≤ γ2

S
,

(3.12)

respectively, where the alternative adaptive structure is assumed fixed in each.

The final step in the development requires the application of the feasibility sets to

a time-varying scenario to ensure they contain all estimates which fulfil the respective

error criterion at the ith time instant. These sets are termed the constraint sets and are

given by

Hw̃[i] = {w̃[i] ∈ CD : |b[i] − w̃H[i]SH
D

[i − 1]r[i]| ≤ γw̃}

and HS [i] = {SD[i] ∈ CM×D : |b[i] − w̃H[i − 1]SH
D[i]r[i]| ≤ γS }.

(3.13)
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Presuming the error bounds are chosen to ensure that the constraint sets are non-empty

(Hw̃[i],HS [i] , ∅), every point within each set is a valid estimate of the structure.

The objective of a SM algorithm is to then select a point which lies in the appropriate

constraint set at each time instant.

With the set-theory foundation set-out, it is now possible to construct the optimisa-

tion functions that form the starting point of the algorithms’ derivations. For both the SG

and LS based schemes their derivation begins with a constrained optimisation problem

formed on the principle of minimal disturbance [82]. This corresponds to minimising

the disturbance to the projection matrix and interference suppression filter at each up-

date instant. Accordingly, the distance traversed across the sample space at each time

instant to reach the current constraint set is to be minimised. A natural progression from

this is that if the previous estimate lies in the current constraint set, it remains a valid

estimate and therefore no update is required to satisfy the conditions of the optimisation

function. The result is a sparsely updating algorithm which effectively discards data if

it will not result in a sufficient level of innovation.

3.4 Proposed Algorithms

In this section, the theory set out in Section 3.3 is interpreted as two optimisation prob-

lems that lead to the formation of MSE and LS cost functions. Solving these optimisa-

tion functions results in two algorithms termed the JIO-SM-NLMS and JIO-BEACON.

3.4.1 Set-Membership Reduced-Rank NLMS Algorithm

To derive the JIO-SM-NLMS, the following constrained optimisation problem is con-

sidered
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[SD[i], w̃[i]] = arg min
SD ,w̃

‖ w̃[i] − w̃[i − 1] ‖2 +

‖ SD[i] − SD[i − 1] ‖2

subject to b[i] − w̃H[i]SH
D[i − 1]r[i] = γw̃

b[i] − w̃H[i − 1]SH
D

[i]r[i] = γS ,

(3.14)

where the objective is to minimise the disturbance to the projection matrix and reduced-

rank filter while satisfying the bounds imposed on the estimation error. In order to

recast (3.14) as a more readily solvable unconstrained optimisation problem the method

of Lagrange multipliers is used, yielding

L = ‖ w̃[i] − w̃[i − 1] ‖2 + ‖ SD[i] − SD[i − 1] ‖2

+λ1(b[i] − w̃H[i]SH
D

[i − 1]r[i] − γw̃)

+λ2(b[i] − w̃H[i − 1]SH
D[i]r[i] − γS ).

(3.15)

Taking the gradient with respect to the two adaptive structures and equating to zero, the

following system of equations is reached

∇w̃[i] = 2(w̃[i] − w̃[i − 1]) − SH
D[i − 1]r[i]λ1 = 0, (3.16)

∇S D[i] = 2(SD[i] − SD[i − 1]) − r[i]w̃H[i − 1]λ2 = 0. (3.17)

Further manipulations then allow us to arrive at expressions for the reduced-rank filter,

projection matrix and Lagrange multipliers, as given by

λ1 =
2(b[i] − w̃H[i − 1]SH

D
[i − 1]r[i] − γw̃)∗

rH[i]SD[i − 1]SH
D

[i − 1]r[i]
, (3.18)

λ2 =
2(b[i] − wH[i − 1]SH

D[i − 1]r[i] − γS )∗

rH[i]r[i]w̃H[i − 1]w̃[i − 1]
, (3.19)

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 3. SET-MEMBERSHIP REDUCED-RANK JOINT ITERATIVE ALGORITHMS FOR

DS-CDMA SYSTEMS 65

w̃[i] = w̃[i − 1] +
(e[i] − γw̃)∗

rH[i]SD[i − 1]SH
D

[i − 1]r[i]
︸                             ︷︷                             ︸

µ̄[i]

SH
D[i − 1]r[i] (3.20)

and

SD[i] = SD[i − 1] +
(e[i] − γS )∗

rH[i]r[i]w̃H[i − 1]w̃[i − 1]
︸                            ︷︷                            ︸

η̄[i]

r[i]w̃H[i − 1] (3.21)

where the a priori error e[i] is given by

e[i] = b[i] − w̃H[i − 1]SH
D[i − 1]r[i]. (3.22)

For the reduced-rank interference suppression filter, but equally applicable to the projec-

tion matrix, the update term µ̄ will attempt to find the shortest path from w̃[i − 1] to the

bounding hyperplane ofHw̃[i] in accordance with the principle of minimal disturbance,

as in Figure 3.2. However, if w̃[i − 1] ∈ Hw̃[i], it is clear that the error bound constraint

Figure 3.2: Geometric interpretation of JIO-SM-NLMS reduced-rank filter update.

is satisfied and no update is necessary i.e. w̃[i] = w̃[i − 1]. To assess the need for an

update a simple innovation check (IC) consisting of an ‘if ’ statement comparing the a

priori error to the bound is used. The update terms are then set to zero if the result of

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 3. SET-MEMBERSHIP REDUCED-RANK JOINT ITERATIVE ALGORITHMS FOR

DS-CDMA SYSTEMS 66

the conditional statement is found to be negative, thus effectively removing the update

procedure. When placed into the familiar NLMS structure, the following expressions

for the adaptation of the reduced-rank interference suppression filter are reached

w̃[i] = w̃[i − 1] + µ[i]e∗[i]SH
D[i − 1]r[i] (3.23)

where

µ[i] =






1

rH [i]SD[i−1]SH
D

[i−1]r[i]

(

1 − γw̃

|e∗[i]|

)

if |e∗[i]| ≤ γw̃

0 otherwise.

(3.24)

Similarly, for the projection matrix,

SD[i] = SD[i − 1] + η[i]e∗[i]r[i]w̃H[i − 1] (3.25)

where

η[i] =






1
rH [i]r[i]w̃H [i−1]w̃[i−1]

(

1 − γS

|e∗[i]|

)

if |e∗[i]| ≤ γS

0 otherwise.

(3.26)

The full algorithm is then formed from the update equations of (3.22), (3.23) and (3.25),

where the variable step-sizes are given by (3.24) and (3.26). Finally, to prevent insta-

bility of the algorithm during the transient, an upper bound, µ+, is placed upon the

reduced-rank filter step-size when the projection matrix has been updated during the

current time instant.

3.4.2 Reduced-Rank BEACON Algorithm

The BEACON algorithm operates by defining the constraint set as a degenerate ellipsoid

specified by (3.11) at each time instant. An additional set denoted as the membership

set can then be defined as the intersection of every constraint set up to the current time

instant (∩i
l=1
H[i]) [9]. An OBE algorithm is then used to outer bound the membership

set with the centroid of this ellipsoid able to be taken as a point estimate, i.e. the ith filter

value. The definition of the BEACON algorithm in these terms does not initially lend
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itself to straightforward integration with JIO, however, in [9] the BEACON is shown to

also be the solution to a constrained LS optimisation - an interpretation which enables

easier integration with the JIO.

After some initial manipulation, the constrained optimisation problem is given by

[SD[i], w̃[i]] = arg min
SD ,w̃

· · ·

(w̃[i] − w̃[i − 1])HP−1[i](w̃[i] − w̃[i − 1])+

(SD[i] − SD[i − 1])HC−1[i](SD[i] − SD[i − 1])

subject to | b[i] − w̃H[i]SH
D

[i − 1]r[i] |2≤ γ2
w̃

| b[i] − w̃H[i − 1]SH
D

[i]r[i] |2≤ γ2
S

(3.27)

where

P[i] = P[i − 1] −
λw̃[i]P[i − 1]SH

D
[i − 1]r[i]rH[i]SD[i − 1]P[i − 1]

1 + λw̃[i]G[i]
(3.28)

and

C[i] = C[i − 1] − λS [i]C[i − 1]r[i]w̃H[i − 1]w̃[i − 1]rH[i]C[i − 1]

1 + λS [i]F[i]
. (3.29)

To continue with the derivation, (3.27) is recast as an unconstrained optimisation prob-

lem with the use of the method of Lagrange multipliers, yielding,

L = (w̃[i] − w̃[i − 1])HP−1[i](w̃[i] − w̃[i − 1])+

(SD[i] − SD[i − 1])HC−1[i](SD[i] − SD[i − 1])+

λw̃[i](| b[i] − w̃H[i]SH
D

[i − 1]r[i] |2 −γ2
w̃)+

λS [i](| b[i] − w̃H[i − 1]SH
D

[i]r[i] |2 −γ2
S
).

(3.30)

Forming a system of equations by taking the gradient of (3.30) with respect to the adap-
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tive structures results in

∇w̃[i] =(w̃[i] − w[i − 1])P−1[i] − λw̃[i]rH[i]SD[i − 1]...

(b[i] − w̃H[i]SH
D[i − 1]r[i]).

(3.31)

∇S [i] =(SD[i] − SD[i − 1])C−1[i] − λS [i]r[i]w̃H[i − 1]...

(d[i] − w̃H[i − 1]SH
D[i]r[i]).

(3.32)

Further manipulation then allows intermediate expressions for the reduced-rank filter

and projection matrix to be reached, respectively

w̃[i] = w̃[i − 1] +
λw̃[i]P[i]rH[i]SD[i − 1]δ[i]γw̃

| δ[i] | , (3.33)

and

SD[i] = SD[i − 1] +
λS [i]C[i]r[i]w̃H[i − 1]δ[i]γS

| δ[i] | , (3.34)

where

δ[i] = b[i] − w̃H[i − 1]SH
D[i − 1]r[i]. (3.35)

To arrive at a recursive estimation procedure for each structure, P[i− 1] and C[i− 1] are

used to calculate the auxiliary scalar variables G[i] and F[i], respectively, where

G[i] = rH[i]SD[i − 1]P[i − 1]SH
D[i − 1]r[i]. (3.36)

F[i] = w̃H[i − 1]w̃[i − 1]rH[i]C[i − 1]r[i]. (3.37)

Using the relationship

1 + λw̃[i]G[i] = 1 +
1

G[i]

( | δ[i] |
γw̃

− 1

)

G[i] =
| δ[i] |
γw̃

(3.38)

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 3. SET-MEMBERSHIP REDUCED-RANK JOINT ITERATIVE ALGORITHMS FOR

DS-CDMA SYSTEMS 69

the final reduced-rank filter update equation is reached

w̃[i] = w̃[i − 1] +
λw̃[i]P[i]SH

D[i − 1]r[i]δ[i]

1 + λw̃[i]G[i]
, (3.39)

where

λw̃[i] =






1
G[i]

( |δ[i]|
γw̃
− 1

)

if | δ[i] |≥ γw̃

0 otherwise

(3.40)

and once again the if statement forms the IC. In an analogous manner to step-size in the

NLMS variant, the forgetting factor is set to zero thus skipping the update procedure

when the if statement returns a negative result . Similarly for the projection matrix, the

relationship given by

1 + λS [i]F[i] = 1 +
1

F[i]

( | δ[i] |
γw̃

− 1

)

F[i] =
| δ[i] |
γS

(3.41)

is used to arrive at the recursive update procedure

SD[i] = SD[i − 1] +
λS [i]C[i]r[i]w̃H[i − 1]δ[i]

1 + λS [i]F[i]
, (3.42)

where

λS [i] =






1
F[i]

( |δ[i]|
γS
− 1

)

if | δ[i] |≥ γS

0 otherwise

(3.43)

The final algorithm then iteratively operates using (3.35), (3.39) and (3.42) where the

variable forgetting factors are given by (3.40) and (3.43). As in the JIO-SM-NLMS

implementation, an upper bound, λ+w̃ , is placed upon reduced-rank filter forgetting fac-

tor when the projection matrix has been updated during the current time instant. This

ensures stability during the initial transient period of the algorithm.
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Table 3.1: Computational complexity of proposed and existing algorithms

Average number of complex operations per iteration

Algorithm Additions

NLMS 3M − 1

RLS 4M2

SM-NLMS URw(2M + 4) + M + 1

BEACON URw(3M2 + M + 7) + M + 1

MSWF-NLMS M2(D + 2) + M(D + 1) − D − 2

MSWF-RLS M2(D + 2) + M(D + 1) + 4D2 − D − 1

JIO-NLMS M(2D + 1) − 3D − 4

JIO-RLS 3M2 + M(3D − 2) + 3D2

JIO-SM-NLMS URS (M(D + 1) + D − 1) + URw(2D) + DM + 4

JIO-BEACON URS (M2 − M + D2 + 4D + 1) + URw(6D2 + 2) + DM + 1

Multiplications

NLMS 3M + 2

RLS 5M2 + 5M + 2

SM-NLMS URw(2M) + M + 1

BEACON URw(2M2 + M) + M + 1

MSWF-NLMS M2(D + 2) + M(2D + 3) + 3D + 3

MSWF-RLS M2(D + 2) + M(2D + 3) + 3D + 3

JIO-NLMS M(2D + 1) + 5D + 5

JIO-RLS 4M2 + M(2D + 1) + 8D2 + 4D + 6

JIO-SM-NLMS URS (M(D + 1) + 2D + 5) + URw(2D + 4) + MD + D

JIO-BEACON URS (2M2D + 2MD + D2 + 4D + 10)+

URw(6D2 + 2D + 7) + MD + D + 1
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3.4.3 Computational Complexity

The potential complexity reductions made by the proposed algorithms are closely re-

lated to the frequency of updates or update rates, denoted URS and URw for the projec-

tion matrix and reduced-rank interference suppression filter, respectively. These terms

are defined as the fraction of received symbols which result in an update of their respec-

tive structure. Figure 3.3 shows a comparison between the complexity of the conven-

tional full and reduced-rank algorithms and that of the proposed schemes. The results

shown in Figure 3.3 are based on update rates of 10% for all SM schemes and a rank

of D=6. The accompanying analytical expressions for the algorithm complexities are

given by Table 3.1.
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Figure 3.3: Computational complexity of the proposed and existing algorithms.

From Figure 3.3 it is evident that complexity savings of approximately an order of

magnitude are possible for the JIO-BEACON and approximately 63% for the JIO-SM-

NLMS, both of which are substantial savings with regards to power consumption in

mobile and wireless sensor networks. The complexity of the JIO-SM-NLMS is also

below that of the full-rank BEACON at all but low values of M, values at which the

overheads of the linear JIO scheme exceed the additional complexity resulting from
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quadratic complexity of the BEACON scheme.

3.4.4 Rank Adaptation Algorithm

The dimensionality of the subspace of a reduced-rank algorithm has an impact on their

performance in a manner analogous to conventional adaptive filtering. This therefore

allows the rank of the proposed schemes to act as an additional optimisation parameter.

By adjusting the rank of the subspace depending on the stage of operation it is possible

to obtain performance improvements. In practical scenarios this corresponds to using

lower ranks during the convergence of algorithms to aid the convergence, and increased

ranks for steady state operation. Such methods have been previously proposed but the

application of an automatic rank-selection algorithm to a SM scheme has not featured.

The integration of a rank-adaptation feature involves the formulation of a cost-function

which allows the optimum rank to be determined. In [13] an exponentially weighted LS

a posteriori cost function was used and a similar approach shall be used here. However,

adaptation of the rank shall only be permitted when the a priori error exceeds the ap-

propriate bounds and an update performed. The chosen rank Dopt shall be constrained

to lie between Dmin and Dmax and selected according to the expression

Dopt[i] =






arg min
Dmin≤D≤Dmax

R (w̃D[i], SD[i]) if | e[i] |≥ γ

D[i − 1] otherwise,

(3.44)

where

R (w̃D[i], SD[i]) =

i∑

l=1

βi−l | b[l] − w̃H
D[i]SH

D[i]r[l] |2 . (3.45)

The values of Dmin and Dmax are chosen to offer optimum performance throughout the

data record the algorithm is operating over and β is the exponential weighting factor to

ensure a smooth transition between subspace ranks. Figure 3.4 displays the relationship

between the rank and performance of the NLMS based schemes with optimised param-

eters. The optimum range of ranks equates to Dmin = 2 and Dmax = 10, and therefore
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these bounds shall be used for relevant simulations which feature later in this chapter.
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Figure 3.4: NLMS scheme rank comparison with 1000 training symbols.

3.4.5 Adaptive Variable Error Bound

The determination of the error bounds for an SM scheme is a complex task and one

which requires knowledge of the parameters of the considered system. Inappropriate

error bound selection results in the possibility of under and over bounding, and asso-

ciated performance degradation and complexity increases [74, 75]. By incorporating

selected system parameters into the formulation of a variable bound for the proposed

algorithms, it is possible to reduce the probability of encountering bounding problems

but also remove the need for an accurate determination of error bounds prior to the

operation of the schemes. In this chapter, the implementation of parameter dependent

bounds which require knowledge of the projection matrix and reduced-rank filter are

considered. For the implementation given here, knowledge of the noise variance is also

assumed; however, it is readily obtainable via noise estimation algorithms [83,84]. The
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variable error bounds for the projection matrix and reduced-rank filter are given by

γS [i + 1] = (1 − β)γS [i] + β

√

αS ‖SD[i]w̃[i]‖σ̂2
n[i] (3.46)

and

γw̃[i + 1] = (1 − β)γw̃[i] + β

√

αw̃‖SD[i]w̃[i]‖σ̂2
n[i] (3.47)

where β is a forgetting factor and αS and αw̃ are tuning parameters for the projection

matrix and reduced-rank filter bounds, respectively. The motivation behind the forma-

tion of the variable bound expressions lies in providing the SM process with information

on the noise at the output of the filtering process, an approximation given by the term

√

αS ‖SD[i]w̃[i]‖σ̂2
n[i]. Time averaging is then performed by β to ensure stable transi-

tions between error bound values and overall stability. For added protection against

the risk of over-bounding and inaccurate symbol estimation, a ceiling value is imple-

mented with regards to the bounds. For the power normalised QPSK system considered

in this chapter, these ceiling values are set at γS max
= 0.7 and γw̃max

= 0.65 for both the

JIO-SM-NLMS and JIO-BEACON schemes.

3.5 Analysis

The MSE analysis of set-membership schemes presents a number of unique and chal-

lenging problems when compared to conventional adaptive algorithms. The variable

convergence parameters and the sparse updates increase the complexity of the analysis

significantly. However, methods to partially take account of these SM features have been

previously presented in [85, 86] for system identification. These include a ‘probability

of update’ term which accounts for the sparse adaptation and simplifying assumptions

about the variable convergence parameters. The analysis of JIO-SM is substantially

more complex than conventional SM analysis but the methods above shall still be used

to aid the analysis. To begin, the probability of update terms are incorporated into the
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recursive equations for the adaptation of the reduced-rank interference suppression filter

and the projection matrix, this yields the following expressions

w̃[i] = w̃[i − 1] + µ[i]Pw̃up
e∗[i]SH

D[i − 1]r[i], (3.48)

and

SD[i] = SD[i − 1] + η[i]PS up
e∗[i]r[i]w̃H[i − 1], (3.49)

for the JIO-NLMS and

w̃[i] = w̃[i − 1] +
λw̃[i]Pw̃up

P[i]SH
D

[i − 1]r[i]δ[i]

1 + λw̃[i]G[i]
, (3.50)

and

SD[i] = SD[i − 1] +
λS [i]PS up

C[i]r[i]w̃H[i − 1]δ[i]

1 + λS [i]F[i]
, (3.51)

for the JIO-BEACON. PS up
and Pw̃up

are the probability of update terms for the projec-

tion matrix and reduced-rank interference suppression filter, respectively, and are the

analytical embodiment of the update rates. To increase the accuracy and practicality

of analysing the SM schemes, their dependency on the a priori error is eliminated by

confining the analysis to the excess error under steady-state conditions. This allows

more accurate models of the probability of update to be formed as it can be assumed

that PS up/w̃up
are constant and reflect the probability of the steady state error exceeding

the appropriate bound.

3.5.1 Stability

As with much of the JIO material covered in this chapter, analysis of its application to

adaptive interference suppression is limited. However, with methods inspired by beam-

forming analysis in [87] the stability analysis of the proposed JIO-SM-NLMS algorithm

can be approached.

The spectral radius technique can be used for the JIO-SM-NLMS but depends upon
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obtaining recursive relationships for the error weight vector and error weight matrix

for the reduced-rank filter and projection matrix, respectively. To do this, expanded

versions of (3.48) and (3.49), which include Pw̃up
, PS up

and the optimised step-sizes, are

substituted into the reduced-rank filter error weight vector εw̃[i+1] = w̃[i+1]−w̃opt[i+1]

and the projection matrix error weight matrix εS D
[i + 1] = SD[i + 1] − SD,opt[i + 1]

equations, yielding

εw̃[i + 1] =(I − µ[i]Pw̃up
SH

D[i]r[i]rH[i]SH
D[i])εw̃[i]

+ µ[i]Pw̃up
b∗[i]SH

D[i]r[i]

− µ[i]Pw̃up
SH

D[i]r[i]rH[i]SH
D[i]w̃opt

(3.52)

and

εS [i + 1] =εS [i](I − η[i]PS up
r[i]rH[i])

− η[i]PS up
r[i]w̃H[i]rH[i]SD[i]εw̃[i]

− η[i]PS up
r[i]w̃H[i]rH[i]SD[i]w̃opt

+ η[i]PS up
b∗[i]r[i]w̃H[i].

(3.53)

The expectations of (3.52) and (3.53) are then taken and a recursive expression reached,





E(εw̃[i + 1])

E(εS [i + 1])





= B





E(εw̃[i])

E(εS [i])





+ T (3.54)

where

B =





I − µ[i]Pw̃up
R̃ 0

−η[i]PS up
E(r[i]w̃H[i]rH[i]SD[i]) I − µ[i]PS up

R





, (3.55)

T =





µ[i]Pw̃up
(p̃ − R̃w̃opt)

η[i]PS up
pw̃H[i] − η[i]PS up

E(r[i]w̃H[i]rH[i]SD[i])





, (3.56)

p̃ = E(b∗[i]r̃[i]) and R̃ = E(r̃[i]r̃H[i]). The stability of the algorithm can then be de-
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termined from the spectral radius of (3.54). For convergence the eigenvalues of BHB

should not exceed 1 at each time instant, a factor which is partly ensured by the variable

step-sizes and the reduced-rank filter step-size limits, µ+ and λ+w̃. Numerical studies can

then verify (3.54) and its ability to determine the stability.

3.5.2 Steady State MSE

In this section, the steady state MSE of the proposed schemes is studied and expressions

developed that allow the steady state MSE to be more accurately predicted compared to

using the a priori error bound.

JIO-SM-NLMS

The interdependency of the adaptive structures in JIO poses several problems when

approaching the analysis, consequently a semi-analytical steady state error solution is

sought. The analysis begins by forming an M-dimensional expression for the MSE

where an equivalent M-dimensional low-rank filter is obtained by an inverse mapping

of the reduced-rank interference suppression filter. This mapping is given by

w[i] = SD[i]w̃[i]. (3.57)

The MSE can then be expressed as

J[i] = E[|b[i] − wH[i]r[i]|2]. (3.58)

After straightforward manipulation the MSE dependency on the full-rank error weight

matrix can be obtained

J[i] = Jmin[i] + tr
(

E[εH
w [i]r[i]rH[i]εw[i]]

)

, (3.59)
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where εw[i] = w[i] − wopt and Jmin = E[|b[i] − wH
optr[i]|]. The second term in (3.59)

is equal to the excess MSE and can be rearranged into a form which is appropriate for

analysis and the pursuit of an expression for the steady state error,

J[i] = Jmin[i] + tr
(

E[r[i]rH[i]εw[i]εH
w [i]]

)

︸                           ︷︷                           ︸

Jex

. (3.60)

The first step is to reach a recursive expression for the full-rank equivalent filter error

vector. To do this, (3.23) and (3.25) are substituted into (3.57) and the optimum full-rank

equivalent filter subtracted, yielding

εw[i + 1] = εw[i]

+
µ[i]Pw̃up

e∗[i]

r̃[i]r̃[i]
SD[i]SH

D[i]r[i]

+
η[i]PS up

e∗[i]

w̃H[i]w̃[i]rHr[i]
r[i]w̃H[i]w̃[i]

+
µ[i]η[i]Pw̃up

PS up
e∗[i]e∗[i]

r̃H[i]r̃H[i]w̃H[i]w̃[i]rHr[i]
r[i]w̃H[i]SH

D[i]r[i].

(3.61)

At this point in the derivation, in addition to the common independence assumptions

associated with convergence analysis [38], a number of simplifying assumptions can

be made as a result of the proposed algorithm structure and the small values of the

step-sizes at steady-state. These include

µ2[i]η[i] ≈ 0

µ[i]η2[i] ≈ 0

µ2[i]η2[i] ≈ 0

. (3.62)

The next step is to substitute (3.61) into the expression for Jex in (3.60). The convenient

manipulation available due to the trace of expectation operators allows a number of

terms to be simplified and removed, resulting in a recursive expression for Jex. Then
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assuming PS up
[i], Pw̃up

[i] and Jex[i] are constant under steady-state conditions i.e.

limi→∞ PS up
[i] = PS up

Pw̃up
[i] = Pw̃up

Jex[i] = Jex

, (3.63)

an expression for the steady-state excess error of the JIO-SM-NLMS algorithm can be

reached

Jex = Jmin

µ2P2
w̃up
+ η2P2

S up
+ 2µηPw̃up

PS up

µPw̃up
(2 − µPw̃up

) + ηPS up
(2 − ηPS up

) − 2µηPw̃up
PS up

(3.64)

where µ = E[µ[i]] and η = E[η[i]].

Unlike the majority of existing SM analyses [85, 86] which concentrate on system

identification, the analysis here is in relation to an interference suppression scenario and

therefore certain simplifying assumptions about the properties of the input signal cannot

be made. This results in a steady-state error expression which although different, has a

similar structure.

It is clear that (3.64) is dependent upon PS up/w̃up
and has to be obtained in order to ar-

rive at an analytical expression. Assuming the additive noise is white and Gaussian, and

that the estimation error has reached its steady state value, the variations in Jex can also

be assumed to be Gaussian. Therefore the probability of the steady-state error exceed-

ing the bound can be modelled by a complementary Gaussian cumulative distribution

or ’Q’function. Ideally (3.64) would be used to obtain an accurate value for the steady-

state error and therefore the probability of it exceeding the error bound. However, its

dependency on PS up/w̃up
prohibits such an approach. The alternative is to approximate

the upper and lower bounds on the probability of update for the projection matrix based

on Jmin, γS and σ2
n. A lower bound can then be approximated by

PS upmin
= 2Q





γS
√

σ2
n + Jmin



 (3.65)
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and an upper bound by

PS upmax
= 2Q





γS
√

σ2
n + γ

2
S





(3.66)

where the factor of 2 is to ensure Q(0) = Pup = 1 for γS = 0. The difference in applica-

tion from existing SM analysis also impacts here because it is unrealistic to assume that

the minimum error is bounded by the noise variance. Consequently, the lower bound is

assumed to be the error from the optimum equivalent full-rank filter with the addition

of the noise variance. As before, the upper bound of the error is approximated by the

sum of the SM error bound and the noise variance. However, as will become clear in

Section 3.5.2, using γS as an upper bound is not a satisfactory approximation of the

error for the γS of interest and in supporting simulations the update rate is considerably

better modelled by (3.65) than (3.66), therefore (3.65) shall be used for the remainder of

this chapter. Due to the higher update priority given to the projection matrix, the update

characteristics of the reduced-rank filter Pw̃up
differ from PS up and are therefore more

suitably modelled using a semi-analytical approach where Pw̃up
can be approximated

from comparable simulations. Using this approach the divergence of the theory from

the simulations is minimised.

The second pair of quantities required for the calculation of (3.64) are the expec-

tation of the step-sizes. In [86] the worst case scenario step size is used and a similar

approach shall be taken in this chapter, where the step-size can take any value in the

range 0 - 1, but shall be set to η = 1 and µ = 0.1.

JIO-BEACON

The analysis presented in Section 3.5.2 extends that currently available for SM schemes

and shall now be applied to the JIO-BEACON algorithm. The derivation presented here

for the JIO-BEACON follows a similar method and begins by forming an expression

for the full-rank equivalent filter error weight vector so that Jex can be calculated from

(3.60). By substituting (3.33) and (3.34) into (3.57) and again subtracting the optimum
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full-rank equivalent filter, a recursive expression for the full-rank equivalent filter error

weight vector is reached

εw[i + 1] = εw[i]

+ SD[i]
Pw̃up

G[i]
λw̃[i]P[i]r̃[i]e∗[i]

+
PS up

1 + λS [i]

(

λS [i]

F[i]
C[i]A[i]δ∗[i]

)

w̃[i]

+
PS up

Pw̃up
λS [i]λw̃[i]

(1 + λS [i])G[i]

(

λS [i]

F[i]
C[i]A[i]δ∗[i]

)

...

P[i]r̃[i]e∗[i],

(3.67)

where A[i] = r[i]w̃H[i]. Using equivalent simplifications to those found in the JIO-SM-

NLMS analysis

λ2
w̃[i]λS [i] ≈ 0

λw̃[i]λ2
S
[i] ≈ 0

λ2
w̃[i]λ2

S [i] ≈ 0

, (3.68)

an expression for the JIO-BEACON steady-state error is obtained

Jex = Jmin

P2
w̃up
λ2

w̃ +
P2

S up
λ2

S

(1+λS )2 +
2Pw̃up PS upλw̃λS

1+λS

Pw̃up
λw̃(2 − Pw̃up

λw̃) +
PS upλ

2
S

1+λS
(2 − PS upλ

2
S

1+λS
) − 2

Pw̃up PS upλw̃λ
2
S

1+λS

(3.69)

The expressions in (3.67) - (3.69) are included here for mathematical completeness

and are similar to the JIO-SM-NLMS. The main differences between (3.69) and (3.64)

stem from the fact that the JIO-SM-NLMS uses a variable step-size whereas the JIO-

BEACON employs a variable forgetting factor.

3.6 Simulations

In this section, the performance of the algorithms presented in this chapter are com-

pared against existing full-rank and reduced-rank schemes. Comparisons shall be made

in terms of convergence and tracking performance using the SINR and BER as metrics.
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Throughout all simulations the JIO and MSWF based schemes have a reduced dimen-

sionality subspace of rank of 4 and 6 respectively. Each simulation is averaged over

2000 independent runs and, where the channel is non-stationary, the fading rate is given

by the dimensionless normalised fading parameter, Ts fd, which is specified in each plot.

All MMSE based filters, full and reduced-rank, are initialised as w[0] = δ × (1) and all

LS based filters are initialised as w[0] = (0) and w(1) = 1. Projection matrices shall be

initialised as S [0] = ζ ×





I

0





where δ and ζ are small positive constants.

3.6.1 Analytical MSE Performance

In this section, the analytical expressions and approximations derived in Section 3.5.2

for the JIO-SM-NLMS steady state error are validated via a comparison against sim-

ulations of the proposed schemes. The JIO-SM-NLMS applied here makes use of a

fixed estimation error bound and therefore exhibits a specific MSE performance charac-

teristic where the optimum MSE performance is obtained when the bound is small but

non-zero, a value defined here as γS ,opt. Consequently, two methods of estimating the

MSE are required. For small γS the MSE expression J[∞] ≈ Jmin + Jex can be used to

provide an accurate lower bound, but for γS > γS ,opt, J[∞] = γ2 acts as a increasingly

accurate error approximation.

In the following simulations, a lightly loaded system with a spreading gain of 32

is used and operates in a stationary environment with a signal-to-noise ratio of 15dB.

The simulated and analytical MSE are plotted against the projection matrix error bound

which has been normalised by the noise power σ2
n. The reduced-rank filter error bound

is set to γS − 0.05.

As one can see from Figure 3.5, the analytical MSE provides a lower and signifi-

cantly more accurate bound on the MSE of the JIO-SM schemes for γS < γS ,opt com-

pared to γ2
S

where γ2
S ,opt
/σ2

n ∼ 4. This therefore verifies the method of analysis presented

in this chapter. However, as previously mentioned γ2
S

acts as more accurate bound for
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Figure 3.5: Analytical MSE performance.

larger steady state error and therefore the use of either depends upon the relative level

of the error bound.

3.6.2 SINR and BER Performance

In the presented simulations, each algorithm has an initial period of training and then

switches to decision directed operation. The step-sizes throughout all the simulations

were set to µ = 0.25 for the full-rank NLMS and MSWF-NLMS, and η = 0.25 and

µ = 0.1 for the projection matrix and reduced-rank interference suppression filter adap-

tation for the JIO-NLMS, respectively. The exponential forgetting factor for the LS

based schemes is λ = 0.998 for the convergence, multiuser and SNR performance sim-

ulations. The reduced-rank filter step-size and forgetting factor upper bounds, µ+ and

λ+w̃, respectively, are set to 0.1 and 0.998 for each simulation.

The performance of the stochastic gradient based schemes is shown in Figure 3.6.

The convergence of the proposed scheme can be seen to exceed that of the conven-

tional JIO and MSWF algorithms while having a considerably lower computational

complexity. The proposed scheme can also be seen to achieve a comparable steady-
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state SINR compared to the conventional implementation whilst achieving a consider-

able 3dB SINR advantage after 25 iterations.
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Figure 3.6: SINR performance comparison of MSE algorithms with 150 training sym-

bols.

Figure 3.7 gives the performance of the LS based schemes and shows that the pro-

posed scheme exhibits improved convergence performance compared to the conven-

tional JIO-RLS. It also reaches a maximum SINR close to the MSE while achieving

a significant 50% reduction in complexity. In addition to this, the performance after

convergence shows that the JIO-BEACON outperforms the SINR of the JIO-RLS by up

to 1dB and the full-rank BEACON by up to 2dB, indicating that the reduced-rank SM

scheme has maintained the capability to mitigate the effects of a fading channel.

Figure 3.8 gives the performance of the proposed and existing reduced-rank algo-

rithms when the spreading sequence length is increased to 64 and the system is heavily

loaded. Both the proposed schemes exhibit improved convergence over the MSWF

schemes with the JIO-NLMS also achieving a 3dB SINR gain over the over the con-

ventional JIO-NLMS during convergence. The performance of the BEACON-JIO has

dropped in comparison with the JIO-RLS when processing these more highly spread

signals but complexity savings are still made.
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Figure 3.7: SINR performance comparison of LS algorithms with 100 training symbols.
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Figure 3.8: SINR performance comparison of LS and MSE algorithms with 250 training

symbols and increased length spreading sequences.

Figure 3.9a and 3.9b show the SINR performance of the proposed MSE based

scheme versus the system SNR and loading, respectively, for a fading channel after

150 training symbols. The JIO-SM provides an improvement in performance compared

to the conventional scheme at moderate SNR whilst achieving a reduction in complex-
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ity. At low SNR its performance declines but it still maintains an improvement over the

full-rank scheme. The performance of the scheme under increasing system loads is good

and exceeds that of the conventional scheme at low system loads. Its performance de-

grades in a similar manner to the MSWF when interference suppression becomes more

challenging but maintains a 1-2dB improvement in SINR performance.
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Figure 3.9: MSE schemes - SNR and multiuser performance after 150 training symbols.

The SINR performance versus system SNR and loading for the LS based schemes

are shown by Figures 3.10a and 3.10b. Once again the simulations have been conducted

with a fading channel and 100 training symbols. In Figure 3.10a the proposed scheme

can be seen to perform well and closely match the performance of the conventional JIO

for SNRs of interest and suffers only a 2dB SINR disadvantage at an SNR of 20dB.

The performance of the scheme in Figure 3.10b at low system loading is good but does

degrade at higher loading levels compared with the conventional JIO-RLS. However,

as the system approaches a state of overloading, Figure 3.10b indicates that although

performance of the proposed scheme will degrade it will significantly outperform the
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MSWF and full-rank RLS.

0 5 10 15 20
−10

−5

0

5

10

15

20

N= 32, Users = 6, T
s
f
d
 = 1.66 × 10

−4

SNR (dB)

S
IN

R
(d

B
)

 

 

RLS

MSWF−RLS

JIO−RLS

JIO−BEACON

MMSE

(a) SINR versus system SNR

0 5 10 15 20

3

4

5

6

7

8

9

10

N = 32, SNR = 12dB, T
s
f
d
 = 8.33 × 10

−5

Number of Users

S
IN

R
(d

B
)

 

 

RLS

MSWF−RLS

JIO−RLS

JIO−BEACON

MMSE

(b) SINR versus system loading

Figure 3.10: LS schemes - SNR and multiuser performance after 100 training symbols.

The SINR plot in Figure 3.11, shows the performance gains that are possible when

the automatic rank-selection feature from Section 3.4.4 is incorporated into the pro-

posed algorithms. The automatic rank-selection improves steady-state SINR perfor-

mance whilst also exceeding the convergence performance of the fixed-rank algorithms.

The update rates associated with the schemes in Figure 3.11 differ from those of the

previous simulations because of the larger gap between the error bounds placed on

the adaptive structures. In this simulation the projection matrix and reduced-rank filter

bounds are γS = 0.6 and γw = 0.3 respectively; therefore, an increase in the probability

of the reduced-rank filter updating results.

The performance and complexity improvements brought about the introduction of

an adaptive variable error bound are illustrated by Figure 3.12. Improvements in the

complexity of both schemes result whilst preserving performance. Accordingly, the

performance of the variable bound schemes can be improved to above that of the fixed
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Figure 3.11: Performance comparison of automatic rank-selection algorithms.

schemes whilst maintaining complexity savings.
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Figure 3.12: SINR performance of proposed JIO-SM-NLMS and JIO-BEACON algo-

rithms with variable γS and γw̃ where αS = 5 and αw̃ = 4, and a training sequence of

100 symbols.

Figure 3.13 shows the uncoded BER performance of the proposed schemes and

existing reduced-rank schemes along with the two most common full-rank schemes. The
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schemes are trained with 500 symbols and then switched to decision directed operation.

Both the SM reduced-rank algorithms exceed the convergence of the MSWF schemes

and reach a lower steady-state error; however, as has been previously documented, the

MSWF-NLMS fails to tridiagonalise its autocorrelation matrix and therefore struggles

in this scenario. The JIO-BEACON exhibits excellence performance and, along with the

NLMS implementation, achieves significant complexity savings which increase with the

SNR.
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Figure 3.13: BER performance comparison.

3.7 Summary

This chapter presented an SM reduced-rank framework based on joint iterative opti-

misation of receive parameters. The sparse updates and optimised convergence pa-

rameters associated with SM schemes were brought to the adaptation of the subspace

estimating projection matrix and the reduced-rank interference suppression filter. Least

squares, stochastic gradient, automatic rank-adaptation and adaptive error bound algo-

rithms were presented along with their application to interference suppression in the
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uplink of a time-varying multiuser DS-CDMA system. Novel analysis of the proposed

schemes has been given along with the limitations of applying existing SM analysis

techniques to the proposed algorithms. Simulations have then been presented and illus-

trate that the performance of the proposed schemes closely matches that of the existing

reduced-rank schemes while achieving a significant reduction in computational com-

plexity.

This chapter has addressed the need for low-complexity high-performance interfer-

ence suppression in the DS-CDMA systems currently used in the third generation of

mobile networks However, the capacity and infrastructure cost of DS-CDMA is envis-

aged to be unsuitable for the next generation of mobile systems. Consequently, coop-

erative MIMO systems have been proposed for next generation networks and are the

system that the forthcoming chapter focuses upon.

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



Chapter 4

Joint Discrete and Continuous

Algorithms for Resource Allocation

and Interference Suppression in

Cooperative MIMO Networks

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 System and Data Model . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 MMSE Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Transmit Diversity Optimisation . . . . . . . . . . . . . . . . . . . 105

4.5 Relay Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

91



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 92

4.1 Introduction

Cooperative MIMO networks have received significant attention in the recent research

literature due to their spatial diversity gain, multiplexing gain, robustness, low power

and high capacity. These characteristics suit cooperative MIMO to future mobile net-

works that require extended coverage, increased data rates and enhanced quality of ser-

vice whilst minimising infrastructure investment. Consequently, cooperative MIMO

techniques have been incorporated into future mobile protocols [22–25, 88–91]. Al-

though still in their infancy, promising results and techniques for cooperative MIMO

systems have been published, predominantly focussing on cooperation protocols, rout-

ing, information theoretic limits and diversity maximisation [88]. The common pro-

tocols of DF and AF both offer added degrees of freedom, which, when effectively

exploited, can lead to significant performance gains. Cooperative MIMO systems also

enable the use of TDS, power allocation and relay optimisation to improve performance

and reduce the number of relays burdened with retransmission of the signal [92, 93].

TDS and RS can be interpreted as sub-optimal variants of beamforming and power allo-

cation where transmit powers are constrained to discrete values of 1 and 0. However, a

trade-off exists between this sub-optimality and the reduced feedback requirements re-

sulting from the 1 bit quantisation [3, 94]. The multiplexing gain resulting from MIMO

systems is an attractive feature and one that is already exploited in a range of systems;

however, there is an associated increase in interference from the multi-stream transmis-

sion. When channel state information (CSI) is available at the transmitter, this interfer-

ence can be mitigated by the use of SIC and equivalent techniques such as the Vertical

Bell-Labs Layered Space-Time (V-BLAST) and multi-branch implementations [95–98].

If CSI is unavailable, adaptive interference suppression, reception and power allocation

provide alternative means to mitigate this interference at significantly lower computa-

tional expense [99, 100].

Previous works that addressed antenna selection and RS have chosen several dif-

ferent approaches in an attempt to obtain increased performance and lower complex-
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ity. In [101], an iterative method is presented that determines the antenna selection by

assessing the MMSE impact of adding antenna pairs to the transmit antenna pattern.

However, this work assumes full CSI in an AF system and does not guarantee conver-

gence to the exhaustive solution. In [3], an SNR based approach is taken where the

transmit antennas at the source and relay are chosen to maximise the post-processing

SNR. An SNR based approach is also taken in [102] and [103] where antennas are cho-

sen based on their instantaneous SNR and maximisation of the SNR after maximal-ratio

combining. Once again though, full CSI is assumed and the application has not been

extended to cooperative systems with a non-negligible direct path. The mutual informa-

tion/capacity of MIMO systems is also an important consideration and in [104] sum-rate

maximisation is performed via receive antenna selection for a non-cooperative system.

When the suppression of multiple access interference is also taken into consider-

ation, the task of establishing optimal TDS and RS in terms of capacity, BER per-

formance and diversity takes on an added degree of complexity. SIC reception in a

cooperative MIMO system has previously been considered in [28, 105] to address this.

However, these concentrate on single relay AF systems which present a less challeng-

ing environment to implement cooperative SIC reception and subsequent optimisation.

To further address interference mitigation, adaptive interference suppression techniques

for MIMO networks have been proposed. These have shown good performance but

encounter the problems of limited applicability to cooperative MIMO systems, and the

undiscerning use of system channels and relays [99, 100].

Progressing beyond TDS leads to continuous power allocation. Although extensive

literature has been published on power allocation in wireless networks [63, 93, 99, 100,

106, 107], optimisation in multi-relay cooperative MIMO networks has not been con-

sidered. The high number of antennas places an increased computational and feedback

burden on the system and limits the use of optimal techniques. Iterative techniques

and coarse quantisation can help alleviate this burden but come at the cost of degraded

performance and extended convergence periods. In addition, conventional MSE power
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allocation procedures do not take into account the performance of preceding phases;

therefore, potentially, optimising the transmission of erroneous data.

In this chapter, the problem of low complexity optimisation of TDS and continu-

ous power allocation is addressed for a cooperative MIMO system. A range of MMSE

reception techniques are utilised and their integration with low-complexity TDS consid-

ered. The combinatorial nature of TDS results in a discrete optimisation problem where

conventional continuous iterative methods are unsuitable. Although solvable with an

exhaustive search, this constitutes a highly complex solution and is inappropriate for

practical implementation. Consequently, a discrete stochastic procedure first proposed

in [14] is introduced as an alternative low-complexity method to arrive at the optimum

transmit diversity. However, convergence is dependent upon the cardinality of the solu-

tion set and this therefore acts as a limiting factor on the performance of an algorithm.

Furthermore, the potential for inaccurate reception at the relays leads to complications

and performance implications for the relaying protocol. To address these issues, a tech-

nique termed RS is introduced. This eliminates a number of the most poorly performing

relays from consideration and leads to a reduction in the cardinality and increase in

quality of the solution set. To formalise this approach, a joint TDS and RS framework is

developed and a number of discrete iterative algorithms based on MSE and mutual in-

formation optimality criteria presented. Discrete iterative RS is extended to continuous

power allocation such that power allocation is restricted to an optimised set of relays.

This constrains the transmission power of the poorly performing relays to zero, in a

manner not possible with power allocation alone, but also allows the performance of the

preceding stage to influence the subsequent optimisation. Furthermore, the reduction

in the number of considered relays improves the convergence performance of iterative

techniques thus increasing their suitability to application in cooperative MIMO systems.

TDS and RS schemes are shown to converge to the exhaustive solution at low com-

putational expense and also operate effectively when recursive least squares channel

estimation is introduced to provide CSI. To illustrate the versatility of the proposed al-
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gorithms and their ability to jointly operate with continuous algorithms, they are also

applied to low-complexity continuous adaptive interference suppression. The compu-

tational complexity, convergence, and diversity gains of the proposed algorithms are

analysed and the algorithms implemented in a multi-relay cooperative MIMO system.

Comparisons are drawn against the optimal exhaustive solutions and standard coopera-

tive implementations.

This chapter is organised as follows: Sections 4.2 and 4.3 give the system, data mod-

els and reception techniques used throughout this chapter. Sections 4.4 and 4.5 detail the

problems that face multi-relay cooperative MIMO systems, the corresponding linear and

non-linear MMSE, and mutual information optimisation problems and the framework

for their solution. The proposed discrete iterative and continuous algorithms are given

in Section 4.6 along with a channel estimation procedure. Section 4.7 presents the anal-

ysis of and an investigation into the computational complexity, convergence, diversity

and feedback properties of the proposed algorithms. The performance of the proposed

algorithms along with comparisons against standard cooperative and non-cooperative

methods are given in Section 4.8. The chapter is drawn to a close by the concluding

remarks of Section 4.9.

4.2 System and Data Model

The cooperative network considered is a two-phase QPSK system where the direct path

is non-negligible and no ISI is assumed. All relays are half-duplex, and MMSE inter-

ference suppression and symbol estimation are performed at all decoding nodes. Single

source and destination nodes are separated by Nr intermediate relay nodes where the

source and relay nodes are anticipated to represent mobile stations and the destination

node a fixed base station. The channel of each antenna pair is represented by a complex

gain and the direct path has a gain which is a fraction of the indirect paths in order to

reflect the increased geographical distance and shadowing involved. The source and
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Figure 4.1: MIMO multi-relay system model.

destination nodes each have Nas forward and Nad backward antennas respectively, and

the relay nodes have Nar forward and backward antennas. Nas data streams are trans-

mitted in the system and each is allocated to the correspondingly numbered antenna at

the source node. Data are transmitted in packets of N symbols where during the first

phase packets are transmitted from the source to the relay and destination nodes. The

second phase then consists of decoding, power normalisation and forwarding for the

DF protocol and simply power normalisation and retransmission for the AF protocol.

All channels are assumed uncorrelated, unless otherwise specified, with frequency flat

block fading where the coherence time is equal to the N symbol packet. The total aver-

age transmit power in each phase is maintained at unity and equally distributed between

the active antennas. The maximum spatial multiplexing gain and diversity advantage

simultaneously available in the system are r∗ = Nas and d∗ = Nad(1 + (NrNar/Nas)),

respectively [4, 108]. An outline system model is given in Figure 4.1.

4.2.1 Decode-and-Forward

The received signals of the first phase at the destination and nth relay for the ith symbol

are given by

rsd[i] = Hsd[i]As[i]Ts[i]b[i] + ηsd[i] (4.1)
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and

rsrn
[i] = Hsrn

[i]As[i]Ts[i]b[i] + ηsrn
[i], (4.2)

respectively. The structures Hsd and Hsrn
are the Nas ×Nad source - destination and Nas ×

Nar source - nth relay channel matrices, respectively. The quantities ηsd and ηsrn
are the

Nad×1 and Nar×1 vectors of zero mean additive white Gaussian noise at the destination

and nth relay, respectively, whose variances are σ2
sd

andσ2
srn

and autocorrelation matrices

σ2
sd

INad
and σ2

srn
INsrn

. The source’s Nas × 1 transmit data vector is denoted by b and As is

the diagonal source transmit power allocation matrix that normalises the average total

transmit power of the first phase to unity, assuming that the modulation scheme is also

power normalised to 1. Lastly, Ts is a diagonal Nas × Nas source TDS matrix, where

elements of the main diagonal specify whether the correspondingly numbered antenna

is active. Accordingly, to maintain maximum multiplexing gain under the described

protocol all source antennas are required, therefore Ts[i] = INas
.

At the nth relay, the output of the reception procedure is denoted zrn
[i] and the de-

coded symbol vector is given by

b̂rn
[i] = Q(zrn

[i])

= 1√
2

[

sgn
(ℜ[

zrn
[i]

])

+ sgn
(ℑ[zrn

[i]
])]

(4.3)

where Q(·) is the QPSK slicer, ℜ(·) and ℑ(·) denote the real and imaginary parts, re-

spectively and sgn(·) is the signum function.

The Nad × 1 second phase received signal at the destination is the summation of the

Nr relayed signals, yielding

rrd[i] =

Nr∑

n=1

Hrnd[i]Arn
[i]Trn

[i]b̂rn
[i] + ηrd[i], (4.4)

where Hrnd is the nth relay - destination channel matrix and Arn
[i] is the nth relay transmit

power allocation matrix that ensures the total transmit power of the second phase is

unity. Trn
is the TDS matrix of the nth relay and specifies which of its Nar antennas are
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active. The summation of (4.4) can be expressed in a more compact form, given by

rrd[i] =H rd[i]Ar[i]T r[i]
ˆ̄b[i] + ηrd[i] (4.5)

where T r[i] = diag
[

Tr1
[i] Tr2

[i]...TrNr
[i]

]

is the NarNr × NarNr compound relay TDS

matrix, ˆ̄b[i] =
[

b̂T
r1

[i] b̂T
r2

[i] ... b̂T
rNr

[i]
]T

, H rd[i] =
[

Hr1d[i] Hr2d[i] ... HrNr d[i]
]

is the Nad ×

NarNr compound channel matrix and Ar[i] = diag
[

Ar1
[i] Ar2

[i]...ArNr
[i]

]

is the com-

pound power allocation matrix where trace(AH
r [i]Ar[i]) = 1. The final received signal

at the destination is formed by stacking the received signals from the relay and source

nodes to give

rd[i] =





rsd[i]

rrd[i]





. (4.6)

4.2.2 Amplify-and-Forward

For the AF protocol, the common approach of compounding the first and second phase

signals and channels is used [3]. The resulting expression for the destination’s second

phase received signal is given by

rrd[i] =H rd[i]Ar[i]T r[i]r̄sr[i] + ηrd, (4.7)

where r̄sr[i] can be interpreted as the AF equivalent of ˆ̄s[i]. Expanding (4.7) yields

rrd[i] = H rd[i]Ar[i]T r[i]H sr[i]As[i]Ts[i]b[i]

+H rd[i]Ar[i]T r[i]η̄sr

+ηrd

, (4.8)

where r̄sr[i] =
[

rT
sr1

[i] rT
sr2

[i] ... rT
srNr

[i]
]T

, H sr[i] =
[

HT
sr1

[i] HT
sr2

[i] ... HT
srNr

[i]
]T

and Ar[i]

normalises the average transmit power of the second phase based on the each relay’s

receive power. The received signals of the first and second phases can then be stacked
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as in (4.6) to give rd[i].

4.3 MMSE Reception

In cooperative MIMO networks, signal detection and interference suppression is re-

quired for the signals given by (4.2) and (4.6). This chapter focuses on MMSE based

reception techniques at the relays and destination due to their simplicity, versatility and

the ease of extracting performance metrics. The primarily concentration is on the DF

protocol but expressions for reception at the destination node are easily transferred to

AF.

4.3.1 Optimal Linear MMSE

Linear MMSE reception can be achieved with the use of the Wiener filter. The opti-

misation functions for the Wiener filter at the nth relay and the destination are given

by

W
opt
rn
= arg min

Wrn [i]

E
∥
∥
∥b[i] −WH

rn
[i]rsrn

[i]
︸        ︷︷        ︸

zrn [i]

∥
∥
∥

2
(4.9)

and

W
opt

d
= arg min

Wd[i]

E
∥
∥
∥b[i] −WH

d [i]rd[i]
︸      ︷︷      ︸

zd[i]

∥
∥
∥

2
(4.10)

whose dimensions are Nar × Nas and 2Nad × Nas, respectively. These expressions yield

the following filters

Wsrn
= R−1

srn
Psrn

(4.11)

and

Wd = R−1
d Pd (4.12)
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where Rsrn
= E

[

rsrn
[i]rH

srn
[i]

]

, Psrn
= E

[

rsrn
[i]bH[i]

]

, Rd = E
[

rd[i]rH
d

[i]
]

and Pd =

E
[

rd[i]bH[i]
]

. The MSE at the destination and nth relay can then be given by

σ
2
s − trace

(

PH
d R−1

d Pd

)

(4.13)

and

σ
2
b − trace

(

PH
srn

R−1
srn

Psrn

)

, (4.14)

respectively, where σ2
b
= E

[

bH[i]b[i]
]

.

4.3.2 Optimal MMSE SIC

Non-linear reception offers performance advantages in MIMO systems by assisting in

the mitigation of the multi-antenna interference; however, this is at the cost of increased

complexity. By using MMSE SIC, advantages can be obtained whilst avoiding the com-

plexity associated with other non-linear methods such as sphere and full maximum like-

lihood decoding. The implementation of SIC in MIMO systems has been addressed

in previous works but cooperative DF MIMO systems add an additional layer of com-

plexity to the process due to two reception phases and the multiple, independent nodes

transmitting simultaneously [97, 98].

To perform SIC at the destination a modified received vector with the contribution

of the lth − 1 data streams removed for the lth layer of decoding is required

rl
d[i] =





rl
sd

[i]

rl
rd

[i]





, (4.15)

where

rl
rd[i] = rrd[i] −H rd[i]Ar[i]T r[i]

ˆ̄bl−1
d [i] (4.16)

and

rl
sd[i] = rsd[i] −Hsd[i]As[i]Ts[i]b̂

l−1
d [i]. (4.17)
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The detection and estimation of the lth data stream at the destination is performed using

the relayed and direct signals. Interference cancelation is then implemented in a batch

process where the detection order can be optimised in accordance with a selected crite-

rion. In the cooperative system considered here a single destination symbol estimate is

used to generate the cancelation terms for all the relevant source and relay antennas, thus

the implicit assumption that all relays transmit the identical data is made. The NarNr × 1

estimated symbol interference cancelation vector is given by

ˆ̄bl
d[i] =





b̂l
d
[i]

...

b̂l
d
[i]





(4.18)

where

b̂0
d
[i]

l=0

=





0

...

0





b̂l
d
[i]

l=1···Nas−1

=





b̂1
d
[i]

...

b̂l
d
[i]

0(Nas−l)×1





. (4.19)

are Nar × 1 estimated symbols vectors. The destination Wiener filter for the lth layer is

then given by

wl
d = Rl

d

−1
pl

d, (4.20)

where Rl
d

and pl
d

are the associated correlation matrices. MMSE SIC is also undertaken

at each relay and the modified received signal for the lth layer of decoding at the nth relay

is given by

rl
srn

[i] = rsrn
[i] −Hsrn

[i]As[i]Ts[i]b̂
l−1
rn

[i] (4.21)
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where

b̂0
rn

[i]
l=0

=





0

...

0





and b̂l
rn

[i]
l=1···Nas−1

=





b̂1
rn

[i]

...

b̂l
rn

[i]

0(Nas−l)×1.





(4.22)

have a dimensionality of Nas×1 and form the estimated symbol interference cancelation

vector. The associated Wiener filter is given by

wl
rn
= Rl

rn

−1
pl

rn
, (4.23)

where Rl
rn

and pl
rn

are the required correlation matrices. The MSE resulting from SIC at

the relays and destination are given by

MSErn
= σ2

s −
Nas∑

j=1

(

P
j
rn

H
R

j
rn

−1
P

j
rn

)

(4.24)

MSEd = σ
2
s −

Nas∑

j=1

(

P
j

d

H
R

j

d

−1
P

j

d

)

, (4.25)

respectively.

4.3.3 Iterative Adaptive Linear MMSE

Adaptive reception and interference suppression presents a low-complexity and prac-

tical alternative to the two previous techniques. By iteratively converging towards the

optimal estimation and interference suppression filter the computational expense can be

significantly reduced. Derivation of such an approach begins as in Section 4.3.1 with an

MSE optimisation problem given by

W
opt

d
[i] = arg min

Wd[i]

E

[∥
∥
∥b[i] −WH

d [i]rd[i]
∥
∥
∥

2
]

. (4.26)
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However, instead of solving optimally, a stochastic gradient approach is chosen and the

gradient taken with respect to the filter Wd. A recursive LMS update equation can then

be formed with the aid of a step-size µ, resulting in

Wd[i + 1] =Wd[i] + µdrd[i]eH
d [i], (4.27)

where

ed[i] = s[i] −WH
d [i]rd[i] (4.28)

and b[i] is provided by a known training sequence or in a decision directed manner. A

similar approach is also taken for reception at the relay nodes, resulting in the following

LMS update equation

Wrn
[i + 1] =Wd[i] + µrrrn

[i]eH
rn

[i], (4.29)

where

ern
[i] = b[i] −WH

rn
[i]rrn

[i]. (4.30)

4.3.4 MMSE Power Allocation and Interference Suppression

To enhance the performance of a cooperative MIMO system, the relay power alloca-

tion can be optimised. This allows increased transmit power to be dedicated to the

relay-destination channels that have advantageous transmission characteristics. Due to

the MMSE reception techniques utilised in this chapter, the focus is on MMSE power

allocation optimisation. This allows full integration between the reception and power

allocation procedures but also does not burden the system with additional metric calcu-

lations. However, the received signal first requires reformulating to enable optimisation

of the transmit power allocation vector,

rrd[i] =H rd[i] ˆ̄B[i]ār[i] + ηrd[i] (4.31)
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where ˆ̄B[i] = diag
[
ˆ̄b[i]

]

is the NarNr × NarNr compound relay estimated data matrix and

the NadNr×1 compound power allocation vector, ār[i], is given by the diagonal elements

ofAr[i], where ā
H
r [i]ār[i] = 1.

Forming a joint power allocation and receive filter optimisation function yields

[

W
opt

d
[i], ā

opt
r [i]

]

= arg min
Wd[i],ār[i]

E

[∥
∥
∥b[i] −WH

d
[i]rd[i]

∥
∥
∥

2
]

subject to ā
H
r [i]ār[i] = 1.

(4.32)

To solve optimally, the method of Lagrange multipliers is used to transform (4.32) into

an unconstrained optimisation problem, yielding

L = E

[∥
∥
∥b[i] −WH

d [i]rd[i]
∥
∥
∥

2
]

+ λ(ā
H
r [i]ār[i] − 1), (4.33)

where λ is the Lagrange multiplier [63]. By fixing Wd and taking the gradient with

respect to ār, an optimum expression for the power allocation vector is reached

ār[i] = (Rā + λI)−1pā, (4.34)

where Rā = E
[

B̄H[i]H
H
rd[i]W̃d[i]WH

d
[i]H rd[i]B̄[i]

]

, pā = E
[

B̄H[i]H
H
rd[i]W̃d[i]b[i]

]

and

W̃d[i] contains rows Nad + 1 to 2Nad of Wd[i]. The optimal Wd[i] can then be derived in

a similar fashion to that of Section 4.3.1.

Once again, this optimal MMSE procedure can be implemented in an iterative fash-

ion. This is done by taking the gradient of (4.32) with respect to WH
d

[i] whilst fixing

ār[i], and vice versa. The LMS update expressions for the linear receive filter and power

allocation vector can then be formed

Wd[i + 1] =Wd[i] + µrd[i]eH
d [i] (4.35)

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 105

and

ār[i + 1] = ār[i] + νB̄
H[i]HH

rd[i]W̃d[i]ed[i] (4.36)

where

ed[i] = b[i] −WH
d [i]rd[i] (4.37)

and µ and ν are manually set step-sizes. At each iteration, (4.35) and (4.36) are per-

formed followed by enforcement of the power constraint of (4.32). However, if en-

forcement of the power constraint is sought via the Lagrangian multiplier of (4.33), the

solution of a complex quadratic problem is required [63]. To avoid the complexity as-

sociated with this, the following alternative power normalisation is performed at each

time instant

ār[i + 1] =
ār[i + 1]

√

ā
H
r [i + 1]ār[i + 1]

. (4.38)

4.4 Transmit Diversity Optimisation

The added spatial diversity and multiplexing that cooperative MIMO achieves compared

to single antenna systems make it an attractive transmission methodology. However,

undiscerning use of the available channels when a number may have poor transmission

characteristics leads to performance degradation, a loss of achievable diversity and ca-

pacity, and increased interference. These problems can be alleviated by the intelligent

selection of transmit antennas of each phase in a process termed here as TDS. The re-

quirement to maintain maximum multiplexing gain in the system prohibits selection at

the source node and therefore selection at the relays using T r[i] is concentrated upon.

By optimising the selection of T r[i] it is possible to optimise the performance of the sys-

tem as a whole. The limited number of relay antennas and the finite number of possible

states of each (on/off) makes the selection of T r[i] a discrete and permutation based

task. Therefore the selection task for each reception technique is formed as a discrete

optimisation problem.
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4.4.1 Optimal Linear MMSE

The availability of MSE information from reception of second phase makes TDS opti-

misation based on this metric an attractive and low-cost procedure. To begin the opti-

misation a discrete cost function is first required, given by

T
opt
r = arg min

T r[i]∈ΩT

C [i,T r[i]]

= arg min
T r[i]∈ΩT

E
[

‖b[i] −Wd [i,T r[i]] rd [i,T r[i]]‖2
]

(4.39)

where the TDS matrix is chosen from a finite set of candidates denoted by ΩT. The so-

lution to (4.39) can be found by searching the set been generated from the permutations

of active antennas over all the relays, ΩT. However, the cardinality of such a set, #ΩT,

is extremely large even at modest numbers of relays and antennas. When all antennas

are active and inter-relay communication is assumed #ΩT = (Nar × Nr)! and rises fur-

ther when not all antennas are required to be active. Searching of such a set is clearly

impractical and therefore methods to reduce #ΩT are required. Initially the problem is

transformed from a permutation based to a combinatorial one by prohibiting inter-relay

communications and restricting the allocation of data streams to antennas. The distance

between relays and the additional computational expense of inter-relay communication

leads us to the realistic and common assumption of no inter-relay communication. This

restricts relays to only forward data that has been decoded locally. In addition to this, if

Nar = Nas at each relay, it is possible to pre-allocate data streams to transmit antennas

and therefore remove complexity from the relaying process whilst reducing #ΩT with-

out bias towards certain data streams. To do this, data streams are pre-allocated such

that each stream is transmitted from its correspondingly numbered antenna at each re-

lay. The final condition placed on the selection of transmit antennas is to specify the

size of the subset of active antennas, a value denoted Nasub
where 1 < Nasub

< Nr. This

constraint ensures that a minimum level of achievable diversity is available whilst ensur-

ing increased robustness by preventing the use of poor quality channels. The combined
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effect of these conditions and restrictions is a reduced set ΩT which has a cardinality

#ΩT =

(

NarNr

Nasub

)

, (4.40)

where trace(T r[i]) = Nasub
when TDS is employed. This updated candidate set of TDS

matrices can now be inserted into the MSE cost function given by (4.39), and the equa-

tions of (4.13) and (4.14) used to provide the necessary MSE information to solve (4.39).

4.4.2 Optimal MMSE SIC

The process of TDS can be extended to SIC and offers the prospect of performance

advantages over that of standard SIC. As previously set out, the process of TDS is a

discrete optimisation task whose performance and complexity is heavily dependent on

the cardinality of the candidate set of solutions. Consequently, the considered set of

solutions will be refined as it has been for in Section 4.4 for optimal linear MMSE

reception. This refined set can then be placed in a TDS SIC optimisation function,

giving

T
opt
r = arg min

T r[i]∈ΩT

Csic [i,T r[i]]

= arg min
T r[i]∈ΩT

Nas∑

l=1

E

[∥
∥
∥bl[i] − wl

d [i,T r[i]] rl
d [i,T r[i]]

∥
∥
∥

2
]

.

(4.41)

As before, the task is to then select the optimal TDS matrix from the set ΩT with respect

to MSE performance.

4.4.3 Mutual Information and Capacity Maximisation

Maximisation of the enhanced capacity and sum-rate that cooperative MIMO networks

offer leads to a second optimisation criterion based on the mutual information of the

system. Once again the concentration shall be on the second phase due to the lack of

antenna redundancy at the source node. The optimisation framework given in Section

4.4 will be used but the optimality of each selection will be determined by its effect on
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the mutual information.

In [18,109] the formulation of the mutual information of a conventional MIMO sys-

tem is studied. Treating the cooperative system considered in this work in a similar

manner it is possible to arrive at an expression for the mutual information of the second

phase. Fundamentally, the mutual information of the second phase is given by the dif-

ference between the differential and the conditional differential entropy of the received

signal when the transmit data are known. This can be expressed as

Id (b; rrd) = H(rrd) − H(rrd|b). (4.42)

With further manipulation presented in [18, 109], the mutual information of the second

phase can be expressed as

IT (b; rrd, i,T r[i]) = log2det

(

INa
+ 1

Nasub
σ2
η
E

[

H rd[i]T r[i]
ˆ̄b[i] ˆ̄b

H

[i]T H
r [i]HH

rd[i]

])

.

(4.43)

By transforming the TDS framework given in Section 4.4 into a maximisation procedure

and inserting (4.43), the following expression is reached

T
opt
r = arg max

T r[i]∈ΩT

IT (b; rrd, i,T r[i])

= arg max
T r[i]∈ΩT

log2det

(

INa
+

1

Nasub
σ2
ηrd

H rd[i]T r[i]Rˆ̄sT
H
r [i]H

H
rd[i]

)

,

(4.44)

where the autocorrelation matrix of the transmitted relay data is given by

R ˆ̄b
= E

[

ˆ̄b[i] ˆ̄b
H

[i]

]

=





INa
. . . INa

...Nr

. . .
...

INa
. . .
Nr

INa





. (4.45)

The optimisation problem posed by (4.45) is a discrete combinational problem where
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the finite set ΩT contains the potential solutions and is required to be searched for a

solution to be found.

4.4.4 Iterative Adaptive Linear MMSE

Here an optimisation problem based on low-complexity continuous iterative adaptive

linear MMSE reception and the discrete TDS is posed. This is a joint optimisation

problem where the solution to (4.10) is iteratively found as opposed to that optimally

calculated in Section 4.3.1. Placing into a single continuous-discrete hybrid optimisa-

tion function yields

[

W
opt

d
[i],T opt

r [i]
]

= arg min
Wd[i],T r[i]∈ΩT

Cad [i,T r[i],Wd[i]]

= arg min
Wd[i],T r[i]∈ΩT

E
[

‖b[i]−

Wd [i,T r[i]] rd [i,T r[i]]‖2
]

. (4.46)

However, due to the use of an LMS algorithm to arrive at Wd[i], ideal MSE informa-

tion is not available. Consequently, the expectation is required to be replaced with an

ensemble average using the destination’s squared instantaneous estimation error given

by (4.28). This results in an updated expression for Cad given by

Cad [i,T r[i],Wd[i]] =
1

i

i∑

k=1

‖b[k]− Wd [k,T r[i]] rd [k,T r[i]]‖2 . (4.47)

Additional complexity savings are possible through the use of a recursive averaging

procedure instead of the summation in (4.47). However, reducing the complexity further

by using the unaveraged instantaneous error is not practical due to the AWGN and the

unreliable estimates of T r[i] even at high values of i.
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4.5 Relay Selection

In Section 4.4 the optimisation of the system is considered through the process of TDS.

However, due to the separation between the two phases, the advantages available are

restricted by the performance of the first phase. The primary problem which exists for

MMSE reception with TDS is the possibility of pairing a high quality second phase

channel with a poor quality first phase channel, a problem arising from the lack of con-

sideration of first phase channels conditions in the TDS process. This can be alleviated

through optimisation of channel pairing. A second aspect of the discrete TDS opti-

misation and methods to solve it, is its dependence on the cardinality of the set ΩT,

therefore, reducing this further is desirable. However, first phase performance metrics

are not directly available at the destination, inter-relay communication is prohibited and

there is no antenna redundancy at the source. Consequently, direct optimisation of the

first phase is not possible. To address these issues it is proposed to transfer the burden

of first phase optimisation onto the destination by performing a joint optimisation pro-

cedure where the TDS set is optimised based on performance metrics from the relays.

This is done by forwarding the available MSE and mutual information of each relay

to the destination and then removing members of the set ΩT based on the first phase

performance of their relays. By removing TDS matrices from ΩT that transmit from

the relay(s) with the highest MSE/lowest mutual information, it is possible to reduce

the probability of a mismatch between the first and second phase channels whilst re-

ducing the size of the TDS set. This process of selecting relays to remove allows TDS

optimisation to operate on a set which has been shaped by the relay metrics whilst not

overly restricting the subsequent optimisation and the number of second phase channels

available - a scenario which would lead to an increased chance of channel mismatch.
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4.5.1 Optimal Linear MMSE

The task of RS is a discrete combinatorial problem and can be expressed as an op-

timisation function. The selection of the poorest performing relay based on its MSE

performance under optimal linear reception can be expressed as

ropt = arg max
r[i]∈ΩR

F [i, r[i]]

= arg max
r[i]∈ΩR

E

[∥
∥
∥b[i] − wH

srr[i]
[i] rsrr[i]

[i]
∥
∥
∥

2
]

,

(4.48)

where the set ΩR contains the candidate relays.

For the selection of multiple or Nrem relays, the MSE of relay subsets is required.

This is obtained by populating ΩR with vectors of dimensionality Nrem × 1 that contain

all possible length Nrem combinations of relay indices such that

|ΩR| =
(

Nr

Nrem

)

(4.49)

or equivalently, all possible relay subsets of cardinality Nrem. When placed into an

optimisation framework this yields

r
opt = arg max

r[i]∈ΩR

Nrem∑

j=1

F
[

i, r j[i]
]

= arg max
r[i]∈ΩR

Nrem∑

j=1

E

[∥
∥
∥
∥b[i] − wH

srr j[i]
[i] rsrr j[i]

[i]
∥
∥
∥
∥

2
]

,

(4.50)

where r j represents the jth element of the vector r. Following the solution of (4.48)

or (4.50), set reduction can commence. This is where the TDS matrices which involve

transmission from the relay(s) contained within ropt/ropt are removed from ΩT. This

reduced TDS set is termed Ω̄T and its cardinality is given by

#Ω̄T =

(

Nar(Nr − Nrem)

Nasub

)

. (4.51)
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The TDS optimisation given by (4.39) then operates over this set. As can be seen from

(4.51), increasing Nrem leads to a decrease in #Ω̄T and the complexity of the optimisation

process. However, high values of Nrem greatly restricts the choice of TDS matrices and

therefore second phase channels, leading to an increased probability of a first and second

phase channel mismatch. Consequently, there is a balance to be struck between system

performance and optimisation complexity when choosing Nrem. In general, Nrem should

remain low in comparison with Nr; however, finer adjustment depends on the variance

of the qualities of the first and second phase channels.

4.5.2 Optimal MMSE SIC

The SIC receiver when implemented in MIMO networks has the ability to offer consid-

erable advantages over linear reception techniques. However, when applied to DF coop-

erative networks, the separation of the first and second phases can lead to performance

degradation and the effective operation of SIC breaking down. In the SIC framework

set out in Sections 4.3.2 and 4.4.2, the estimated relay transmit data are formed from a

single estimate based on the receive signals from the relayed and direct transmissions.

This method operates on the assumption that identical symbol estimates are obtained

at each relay for every time instant and that this also occurs at the destination node.

However, this assumption is liable to breakdown. RS can help mitigate this problem

by identifying and removing the relay(s) most likely to break the identical relay symbol

estimate assumption and then refining the TDS set accordingly.

This is achieved by identifying the relay(s) with the highest MSE as for the optimal

linear reception. The discrete MSE optimisation function to identify the highest MSE

relay(s) are given by

ropt = arg max
r[i]∈ΩR

F sic [i, r[i]]

= arg max
r[i]∈ΩR

Nas∑

l=1

E

[∥
∥
∥bl[i] − wH

srr[i]
[i] rl

srr[i]
[i]

∥
∥
∥

2
] (4.52)
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for the single relay case. Extending RS to multiple relays yields

r
opt = arg max

r[i]∈ΩR

Nrem∑

j=1

F sic
[

i, r j[i]
]

= arg max
r[i]∈ΩR

Nrem∑

j=1

Nas∑

l=1

E

[∥
∥
∥
∥bl[i] − wH

srr j [i]
[i] rl

srr j[i]
[i]

∥
∥
∥
∥

2
]

.

(4.53)

The selected relay(s) are then removed from the candidate TDS set to form Ω̄T, which

(4.41) then operates over.

4.5.3 Mutual Information and Capacity Maximisation

Next the introduction of RS and its effect on the performance and complexity of the

mutual information TDS process is addressed. The expression of (4.44) does not di-

rectly take account of the performance of the source-relay transmission and therefore

there is a likelihood of Isrn
< Irnd. To address this, it is proposed that the relay(s) with

the lowest mutual information between the transmitted data s and its received signal rsrn

are removed from consideration. This can be achieved by the discrete combinatorial

optimisation problem given by

r
opt = arg min

r[i]∈ΩR

Nrem∑

j=1

IR

(

b; rsrr j [i]
, i, r j[i]

)

= arg min
r[i]∈ΩR

Nrem∑

j=1

log2det

(

INa
+

1

Naσ2
ηsr

Hsrr j[i]
[i]RsH

H
srr j [i]

[i]

) , (4.54)

where the autocorrelation matrix of the transmitted data is given by

Rb = E
[

b[i]bH[i]
]

= INa
. (4.55)

As before, the removal of a relay reduces the cardinality of the set over which TDS

is performed and therefore improves the speed and/or complexity of the corresponding

optimisation.
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4.5.4 Iterative Adaptive Linear MMSE

To further illustrate the use of discrete approaches RS is now applied to adaptive linear

reception. As for optimal linear reception, the optimal relay(s) shall be selected in

accordance with optimisation problem given by

r
opt = arg max

r[i]∈ΩR

Nrem∑

j=1

F ad
[

i, r j[i]
]

= arg max
r[i]∈ΩR

Nrem∑

j=1

E

[∥
∥
∥
∥b[i] − wH

srr j[i]
[i] rsrr j[i]

[i]
∥
∥
∥
∥

2
]

.

(4.56)

However, the LMS adaptation does not perform the expectation and the MSE is replaced

with an ensemble average based on the instantaneous squared relay estimation error

given by (4.30). Reformulating F ad accordingly, yields

F ad
[

i, r j[i]
]

=
1

i

i∑

k=1

[∥
∥
∥
∥b[k] − wH

srr j[k]
[i] rsrr j [i]

[k]
∥
∥
∥
∥

2
]

. (4.57)

4.5.5 MMSE Power Allocation and Interference Suppression

The structure and optimisation criteria of the optimal and iterative solutions to the joint

power allocation and interference supersession optimisation, (4.32), and the standard

MMSE (4.10) problem are similar. Consequently, the same RS functions as given in

Sections 4.5.1 and 4.5.4 can be used when applying RS to the optimisation problems

of Section 4.3.4. Once RS is complete at each time instant, the power allocation and

interference suppression optimisation procedure operates over the remaining relays and

antennas.

4.5.6 Extension to Amplify-and-Forward

Due to the lack of decoding at each relay in an AF system, MSE information is not

available and a secondary optimisation criterion is required. Here the end-to-end SNR

of each relay branch is chosen and RS based on the branch(es) with the lowest SNR
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.

Figure 4.2: Algorithm flow diagram.

performed. Interpreting this in the multiple RS framework yields

r
opt = arg min

r[i]∈ΩR

Nrem∑

j=1

K
[

i, r j[i]
]

(4.58)

where

K
[

i, r j[i]
]

=
trace(Hr

r j[i]
d[i]Arr j d[i]Hsr

r j[i]
[i]As[i]AH

s [i]HH
sr

r j [i]
[i]AH

r
r j [i]d

[i]HH
r
r j[i]

d
[i])

trace(Hr
r j[i]

d[i]Ar
r j[i]

d[i]σ2
srINa AH

r
r j [i]d

[i]HH
r
r j[i]

d
[i]+σ2

rd
INa )

. (4.59)

4.6 Proposed Algorithms

In this section, algorithms to solve the optimisation problems of Sections 4.4 and 4.5

are presented and the practicalities of their implementation addressed.

4.6.1 Transmit Diversity Selection and Relay Selection

It is proposed that the TDS and RS schemes operate in a joint and cyclic fashion where

RS constantly refines the set that TDS operates over. However, to obtain solutions to the

optimisation functions, backward CSI is required at the relays and destination. Due to

the cyclic nature of the proposed optimisation framework it is possible to insert channel

estimation without interrupting the process; a flow diagram given by Figure 4.2 shows

this.
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Table 4.1: Proposed discrete stochastic TDS algorithm for linear MMSE reception

Step

1. Initialisation

choose T [1] ∈ ΩT,TW[1] ∈ ΩT, πT

[

1,T [1]
]

= 1,

πT[1, T̃ ] = 0 for T̃ , T [1]

2. For the time index i = 1, 2, ...,N

choose T C[i] ∈ ΩT

3. Comparison and update of the worst performing relay

if C[i,T C[i]
]
< C[i,TW[i]

]
then TW[i + 1] = T C[i]

otherwise TW[i + 1] = TW[i]

4. State occupation probability (SOP) vector update

πT[i + 1] = πT[i] + µ[i + 1](vTW[i+1] − πT[i]) where µ[i] = 1/i

5. Determine the largest SOP vector element and select the optimum

TDS matrix

if πT

[

i + 1,TW[i + 1]
]

> πT[i + 1,T [i]] then T [i + 1] = TW[i + 1]

otherwise T [i + 1] = T [i]

The optimal but most complex method to obtain solutions to the range of TDS and

RS optimisation problems is to perform an exhaustive search of the respective sets at

each time instant. However, due to the power consumption and complexity constraints

on nodes within the system such an approach is not possible, although it can act as a

lower bound on performance. Iterative methods which converge to the optimal solution

present an alternative low complexity approach and it is these that shall be used in this

chapter. Conventional iterative algorithms such as the LMS and RLS are unsuitable

for discrete problems and therefore a low-complexity DSA first presented in [14] and

later used [91] is selected. Each set of optimisation problems can then be jointly and

iteratively solved at little additional computational cost above that of the reception and

decoding process.

For the optimisation problems of Sections 4.4 and 4.5 a low-complexity DSA that

jointly optimises RS and TDS in accordance with (4.39) and (4.48), (4.41) and(4.52),

(4.54) and (4.45), and (4.46) and (4.56), and converges to the optimal exhaustive solu-

tion is proposed. Firstly, in Table 4.1, the TDS segment of the algorithm that performs

MMSE optimisation of the TDS matrix T r is presented. At each iteration, the MSE of

a randomly chosen candidate TDS matrix (T C
r ) (step 2) and that of the best performing

TDS matrix currently known (T B
r ) are calculated (step 3). Via a comparison the lower
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Table 4.2: Proposed discrete stochastic RS algorithm for linear MMSE reception

Step

1. Initialisation

choose r[1] ∈ ΩR, r
W[1] ∈ ΩR, πR

[

1, r[1]
]

= 1,

πR[1, r̃] = 0 for r̃ , r[1]

2. For the time index i = 1, 2, ...,N

choose rC[i] ∈ ΩR

3. Comparison and update of the worst performing relay

if F [

i, rC[i]
]

> F [

i, rW[i]
]

then rW[i + 1] = rC[i]

otherwise rW[i + 1] = rW[i]

4. State occupation probability (SOP) vector update

πR[i + 1] = πR[i] + µ[i + 1](vrW[i+1] − πR[i]) where µ[i] = 1/i

5. Determine the largest SOP vector element and select the optimum

relay

if πR

[

i + 1, rW[i + 1]
]

> πR[i + 1, r[i]] then r[i + 1] = rW[i + 1]

otherwise r[i + 1] = r[i]

6. TDS Set Reduction

remove members of ΩT which utilise r[i + 1] (ΩT → Ω̄T)

MSE TDS matrix is designated T B
r for the next iteration (step 3). The current solution

and TDS matrix chosen for transmission (T r) is denoted as the current optimum and is

the TDS matrix which has occupied T B
r most frequently over the course of the packet

up to the ith time instant - effectively an average of the occupiers of T B
r . This aver-

aging/selection process is performed by allocating each member of ΩT a |ΩT| × 1 unit

vector, vl, that has a one in its corresponding position in ΩT i.e. vT B
r
[i] is the label of the

best performing TDS matrix at the ith iteration. The current optimum is then chosen and

tracked by means of a #ΩT×1 state occupation probability (SOP) vector, πT. This vector

is updated at each iteration by adding vT B
r
[i+ i] and subtracting the previous value of πT

(step 4). The current optimum is then determined by selecting the largest element in πT

and its corresponding entry in ΩT (step 5). Through this process, the current optimum

converges towards and tracks the exhaustive solution [14]. An alternative interpretation

of the proposed algorithm is to view the transitions, T B
r [i] → T B

r [i + 1], as a Markov

chain and the members of ΩT as the possible transition states. The current optimum can

then be defined as the most visited state.

Table 4.2 presents the discrete stochastic RS algorithm which provides the algorithm

of Table 4.1 with a refined TDS set (ΩT → Ω̄T) in accordance with (4.48). The operation
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Table 4.3: TDS algorithm alterations
TDS Step 3

Linear MMSE if C[i,T C[i]
]
< C[i,T W[i]

]

SIC if Csic[i,T C[i]
]
< Csic[i,T W[i]

]

MI if IT(b; rrd, i,T
C[i]) > IT(b; rrd, i,T

W[i])

Linear Adaptive if Cad
[

i,T C[i],Wd[i]
]

< Cad
[

i,T W[i],Wd[i]
]

AF - Linear MMSE and SNR if C[i,T C[i]
]

< C[i,T W[i]
]

Table 4.4: RS algorithm alterations

RS Step 3

Linear MMSE if

Nrem∑

j=1

F
[

i, rC
j [i]

]

>

Nrem∑

j=1

F
[

i, rW
j [i]

]

SIC if

Nrem∑

j=1

F sic
[

i, rC
j [i]

]

>

Nrem∑

j=1

F sic
[

i, rW
j [i]

]

MI if

Nrem∑

j=1

IR(b; rrd, i, r
C
j [i]) <

Nrem∑

j=1

IR(b; rrd, i, r
W
j [i])

Linear Adaptive if

Nrem∑

j=1

F ad
[

i, rC
j [i]

]

>

Nrem∑

j=1

F ad
[

i, rW
j [i]

]

AF - Linear MMSE and SNR if

Nrem∑

j=1

K
[

i, rC
j [i]

]

<

Nrem∑

j=1

K
[

i, rW
j [i]

]

of the RS algorithm in Table 4.2 is similar to that of the TDS algorithm but with a

reversed inequality of step 3, enabling convergence to the highest MSE relay(s), and the

addition of Step 6 that performs set reduction as described in Section 4.5. In Table 4.2 a

single relay is selected but extension to the selection of multiple relays is straightforward

and involves replacing r with the vector form r and using the MSE calculation of (4.50).

In order to adapt the algorithms of Table 4.1 and 4.2 for use with SIC reception,

MI optimisation and adaptive reception, a number of alterations are required. These

include reversing the inequality of step 3 for MI optimisation and replacing the metric

calculation functions, also of step 3, for all schemes. Details of the required changes

are given in Tables 4.3 and 4.4, for TDS and RS, respectively, where alterations with

respect to RS are for the selection of multiple relays.

Due to the purely adaptive nature of the schemes when iterative adaptive reception

is used, a number of further alterations and clarifications are required for correct oper-
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Table 4.5: Power allocation auxiliary variable dimensionality

Structure Dimensionality
†B̄[i] Na(Nr − Nrem) × Na(Nr − Nrem)
†H rd[i] Na × Na(Nr − Nrem)
†
ār[i] Na(Nr − Nrem) × 1

ation. Firstly, updating of the receive filter at the destination for each TDS matrix and

the accompanying error calculation occurs only when its corresponding TDS matrix is

selected as either T ,T C or T W. Secondly, due to the parallel convergence of the relay

filters, destination filters, TDS and RS, an extended convergence period is expected.

Consequently, the step-size of step 4 (µ[i]) is not suitable since it more heavily weights

early samples. To avoid this, a fixed step-size is implemented which equally weights all

samples and assists convergence at large values of i.

4.6.2 Relay Selection and Continuous Power Allocation

For implementation of continuous power allocation with RS, the algorithm alterations

given for linear MMSE and linear adaptive reception are used. At each time instant, the

entries corresponding to the relay(s) selected by the algorithm of Table 4.2 are removed

from the power allocation vector along with the entries in the relay-destination channel

matrix when optimal MMSE techniques are used. This reduces the dimensionality of

the structures required for power allocation, therefore improving complexity and con-

vergence. The dimensionality of these modified structures are given in Table 4.5 where

†(·) represents a modified structure.

After RS, a reformulated relay-destination received vector is given by

rrd[i] = †H rd[i]† ˆ̄B[i]† ār[i] + ηrd[i], (4.60)

which can then be introduced into the optimisation functions of Section 4.3.4 via the

compound destination vector rd.

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 120

4.6.3 Correlated Channels

In practical cooperative MIMO systems the channels between antennas pairs are spa-

tially correlated due to the close proximity of the antennas at transmitting and receiv-

ing nodes. The most straightforward approach to addressing the problem of correlated

channels is to increase antennas spacing at the nodes and control the angle spread (AS)

and angle of arrival (AoA) of the incoming signal power. However, these are often not

practical solutions due to the size of the nodes relative to the system wavelength and

the fact that AS and AoA are functions of the environment and the type of node i.e.

base station or mobile station. Correlation between the channels of a system leads to

performance degradation due to the challenges correlated signals pose for interference

suppression procedures. Consequently, assessing the operation of transmission schemes

in the presence of correlated channels is vitally important.

Generation of the correlated channels in this work is performed using the intelligent

multi-element transmit and receive antennas(I-METRA) model in combination with a

power azimuth spectrum model [18,110]. Spatial correlation matrices are generated for

each antenna array of the base station (RBS) and mobile station (RMS), and the overall

correlation matrices for the uplink and downlink are given by

RUP = RMS ⊗ RBS

RDN = RBS ⊗ RMS

(4.61)

respectively, where ⊗ represents the Kronecker product. The proposed schemes are

applied to a macrocell environment where the PAS is given by a truncated Laplacian

distribution with AS = 5◦ and AS = 10◦ for the mobile stations (source and relays) and

base station respectively (destination). A single arrival cluster is assumed for all nodes

and the AoA for the mobile and base station are given by 67.5◦ and 20◦ respectively.

The antenna spacing at all nodes is 0.5λ where λ denotes the system wavelength.
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4.6.4 RLS Channel Estimation

The operation of the proposed optimal MMSE algorithms require knowledge of the

channel, however, an assumption of full CSI is unrealistic and therefore channel estima-

tion is required. Due to the discrete stochastic algorithm used in this work, tracking of

a solution is possible and also a strength of the proposed schemes. Consequently, itera-

tive RLS channel estimation is chosen for its relatively low complexity, fast convergence

and ability to jointly operate with the proposed iterative algorithms. Channel estimation

shall take place at the relays and destination for the first phase and at the destination for

the second phase, with no feedback of CSI required in either phase. Standard training

based estimation shall be performed for Hsrn
and Hsd but this is not possible for H rd

due to the correlated nature of the transmit data from the relays. To perform accurate

and reliable estimation ofH rd, the training sequence at each relay is convoluted with an

independent pre-shared PR binary sequence, γn, which decorrelates the transmit signal

from each relay. The modified received signal at the destination is given by

rrd[i] =H rd[i]ArT r[i]Γ[i]
ˆ̄b[i] + ηrd[i], (4.62)

where

Γ[i] = diag

[

γ1[i]...
Na

γ1[i]...
Nr

γNr
[i]...

Na

γNr
[i]

]

, (4.63)

and γ[i] = {−1, 1}. The objective function forH rd is given by

Ĥ rd[i] = arg min
Ĥ rd[i]

N∑

i=1

λn−i
∣
∣
∣rrd[i] − Ĥ rd[i]ArT r[i]b̄[i]

∣
∣
∣
2
. (4.64)

The expressions for the second phase channel estimation are given by (4.65)-(4.68),

where λ in an exponential forgetting factor. With straightforward alterations the expres-

sions for estimation of the channels of the first phase can also be obtained

eH rd
[i] = rrd[i] − Ĥ rd[i]ArT r[i]Γ[i]b̄[i], (4.65)

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 122

PĤ rd
[i] =

1

λ
PĤ rd

[i − 1] − 1

λ
Γ[i]b̄[i]ArT r[i]KĤ rd

[i]PĤ rd
[i − 1], (4.66)

K
Ĥ rd

[i] =
Γ[i]b̄[i]ArT r[i]PĤ rd

[i]

λ + Γ[i]b̄H[i]ArT r[i]PĤ rd
[i]Γ[i]b̄H[i]ArT r[i]

(4.67)

and

Ĥ rd[i] = Ĥ rd[i − 1] + eH rd
[i]K

Ĥ rd
[i]. (4.68)

Once CE has concluded, Γ[i] may be removed or transformed to an identity matrix and

normal transmission resumed.

4.7 Analysis

In this section, analyses and discussion of the four major aspects of the proposed algo-

rithms that encompass their advantages over existing methods are presented. The four

areas covered are computational complexity, convergence, diversity gain and feedback

requirements.

4.7.1 Complexity

The iterative operation of the TDS algorithms offer a clear complexity advantage over an

exhaustive search of the entire set of solutions. These savings result from a significant

reduction in the number of calculations at each time instant for each considered set.

However, as is often found in mobile systems, complexity benefits are a tradeoff against

performance. In contrast to this, performing RS in combination with the TDS algorithm

improves both convergence and complexity. This results from the low-complexity of the

RS procedure being outweighed by the saving made from the TDS process operating

over the lower cardinality set Ω̄T . In Figure 4.3 the computational complexity in terms

of the total number of complex multiplications and additions is given for the optimal

exhaustive methods and the proposed DSA when optimal linear MMSE reception is

used. For simplicity and conciseness, in this figure and throughout the remainder of the
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chapter, Na is used to refer to the number of antennas at each node, where Na = Nas =

Nar = Nad.
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Figure 4.3: Computational complexity of optimal exhaustive (Ex) and proposed iterative

(It) MMSE TDS schemes.

There are substantial complexity savings from the use of the proposed algorithms

over the exhaustive solutions, savings which increase with the number of relays and

total antenna elements in the system. Savings are also achieved from introducing RS

into the optimal exhaustive and proposed methods. These savings also increase with

system size and confirm that the complexity savings made by RS exceed the cost of its

implementation. From Figure 4.3 it is evident that the savings also increase with Nrem,

a feature explained by the following relationship

(

#ΩR,Nrem=2 − #ΩR,Nrem=1

) ≤
(

#Ω̄T,Nrem=1 − #Ω̄T,Nrem=2

)

. (4.69)

Table 4.6 presents the analytical expressions for the complexity of the linear MMSE

based algorithms. The presence of the set cardinality in all expressions accounts for each

scheme’s complexity dependence on the set over which it operates. Also, the reasons
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Table 4.6: Proposed algorithm complexity

Algorithm No. of Complex Additions and Multiplications

Iterative TDS 3
(

3(NaNr)
3 + 2Na(NaNr)

2 + NaNr(6N2
a + 4Na + 5) + · · ·

8N3
a − N2

a + Na + 1
)

+ 5NrN3
a + NrNa + Nr + 3#ΩT

Iterative TDS 3
(

3(NaNr)
3 + 2Na(NaNr)

2 + NaNr(6N2
a + 4Na + 5) + 8N3

a − · · ·
with RS N2

a + Na + 1
)

+ 5NrN3
a + NrNa + Nr + 6N3

a − 3N2
a + 2#Ω̄T + 2#ΩR

Exhaustive TDS #ΩT

(

3(NaNr)
3 + 2Na(NaNr)

2 + NaNr(6N2
a + 4Na + 5) + · · ·

8N3
a − N2

a + Na + 1
)

+ 5NrN3
a + NrNa + Nr

Exhaustive TDS #Ω̄T

(

3(NaNr)
3 + 2Na(NaNr)

2 + NaNr(6N2
a + 4Na + 5) + · · ·

with RS 8N3
a − N2

a + Na + 2
)

+ 7NrN3
a − NrN2

a + NrNa + Nr + 2#ΩR

Adaptive Power 3(NaNr)
3 + 2Na(NaNr)

2 + NaNr(6N2
a + 4Na + 5) + 8N3

a − N2
a + Na + 1

Allocation +2N3
a Nr + N2

a Nr + NaNr + 4N2
a

Adaptive Power 3(NaNr)
3 + 2Na(NaNr)

2 + NaNr(6N2
a + 4Na + 5) + 8N3

a − N2
a + Na + 1

Allocation with RS +2N3
a (Nr − Nrem) + N2

a(Nr − Nrem) + Na(Nr − Nrem) + 4N2
a + 2#ΩR

behind the complexity reduction achieved by the iterative RS algorithm are evident from

the expressions for the iterative TDS and iterative TDS with RS. The majority of the

savings arise from the difference between 3#ΩT and 2#Ω̄T +2#ΩR, and by referring back

to the set cardinality expressions given by (4.40), (4.51) and (4.49), the characteristics

of the lines of Figure 4.3 can be accounted for.

4.7.2 Feedback

A significant advantage of the discrete schemes proposed in this chapter are their low

feedback requirements. No precoding is required at the transmitting nodes, TDS oper-

ates solely in the second phase, and reception at the receiving node requires only locally

available CSI. Consequently, only the feedback of the TDS to the relays is required.

For RS, relay MSE information is required to be forwarded. In this work it is assumed

perfect, free from the effects of quantisation, and performed during the training period.

As covered earlier in this work, TDS can be interpreted as discrete power control with

one bit quantisation, where the relative transmit power from each antenna is constrained

to either 1 or 0. As a result, Nar feedback bits are required for TDS at each relay node
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Figure 4.4: Cooperative MIMO system model with feedback model.

and a total of Nr × Nar bits for the overall system, a figure which grows linearly with

the size of the system. This low feedback rate increases the robustness of the TDS and

RS optimisation processes and assists in maintaining performance up to significant lev-

els of feedback errors. Additionally, the impact on the capacity of the system is small,

as only a brief time slot is required for transmission of the feedback information. As

expected, the feedback properties of continuous power allocation are greater and the

effect of quantisation more significant. In total 2log2(q) × Nr × Nar bits of feedback are

required, where q is the number of quantisation levels and the power allocation vector

is imaginary. As well as the capacity impact of the feedback, the higher number of bits

also increases bit-error probability and resultant performance degradation.

A binary symmetric channel is used to model the feedback channel, the quality of

which is controlled by the probability of error term where 0 ≤ pe ≤ 1. Figure 4.4 gives

the system model when a feedback channel is implemented and Figure 4.5 illustrates the

structure of the data and feedback packets transmitted in the system when error control

coding is not used.

4.7.3 Diversity

A significant benefit of multi-relay MIMO systems is the diversity advantage and spatial

multiplexing gains they offer. However, obtaining the full diversity requires complex
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Figure 4.5: Cooperative MIMO packet structure.

optimum non-linear methods such as sphere and maximum likelihood decoding. In

this chapter, linear MMSE receivers have been used and therefore it is not possible

to obtain the full diversity on offer. Nevertheless, the diversity advantage available to

the receivers can be maximised and accompanying interference suppression improved.

The proposed methods restrict the number of transmit paths used and therefore lowers

the maximum diversity advantage available to the optimum non-linear receivers from

d∗ = Nad(1+ (NrNar/Nas)) to d∗ = Nad(Nasub/Nar +1), when full spatial multiplexing gain

is maintained. However, they enable the lower complexity MMSE based techniques to

increase their exploitation of the diversity at SNR of interest by removing paths which

bring little or no advantage to the cooperative transmissions of the first and second

phase, and dedicating increased transmit power over the remaining transmission routes.

4.7.4 Convergence of Discrete Stochastic Algorithm

Here the conditions under which convergence of the proposed discrete algorithms is

guaranteed are specified and a discussion on the behavior of the proposed algorithms

under non-ideal conditions presented. Considering the combinatorial nature of the prob-

lems and algorithms presented in this paper, convergence is judged against the optimal

exhaustive solution at each time instant. Due to the application of the proposed schemes

in practical communications systems the primary concentrations are BER and squared

estimation error as a measure of performance and convergence.

Global convergence of the proposed algorithms is dependent on two assumptions:
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the independence between the observations used for the objective function calculations

and the satisfaction of

Pr
{CT

[

i, topt] < CT [i, t[i]]
}

> Pr
{CT [i, t[i]] < CT

[

i, topt]} (4.70)

and

Pr
{

CT

[

i, topt] < CT

[

i, tC[i]
]}

> Pr
{

CT [i, t[i]] < C
[

i, tC[i]
]}

(4.71)

for the MMSE TDS and

Pr
{FR

[

i, ropt] > FR [i, r[i]]
}

> Pr
{FR [i, r[i]] > FR

[

i, ropt]} (4.72)

and

Pr
{

FR

[

i, ropt] > CR

[

i, rC[i]
]}

> Pr
{

FR [i, r[i]] > FR

[

i, rC[i]
]}

(4.73)

for the MMSE RS . When these conditions are met and independent observations utilised,

t[i]→ topt and r[i]→ ropt are guaranteed when operating independently [14, 91]. How-

ever, due to the joint of operation of TDS and RS and the practical difficulties of ob-

taining numerous independent observations under the system model presented in this

work, the proof of convergence is intractable and therefore not guaranteed. Never-

theless, throughout the simulations presented in the work and supporting simulations,

excellent steady-state convergence performance has been observed, indicating that the

lack of independent observations is not a problem for the optimal reception schemes.

Further support for this conclusion is presented in [91], where no convergence issues

were encountered as a result of the lack of independent observations. However, addi-

tional care has to be taken when studying the convergence of the schemes which feature

adaptive reception. As previously specified, the step-size of TDS and RS algorithms

is fixed for the adaptive MMSE implementation to aid convergence of TDS and RS at

large i and avoid becoming trapped in an non-optimal state. Though effective, the rate of

convergence will still lag behind the optimal scheme due to the convergence of the LMS
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adaptive filter algorithms and the ensemble error, but also the convergence of a plural-

ity of algorithms in parallel for TDS with RS. To aid the convergence of all schemes,

#ΩR << #Ω̄T should be ensure to enable RS to converge significantly before TDS. This

therefore minimises the number of TDS iterations performed on the non-optimal Ω̄T

set and assists in ensuring that the detrimental convergence effects of a changing Ω̄T in

the initial transient is outweighed by the benefits of TDS operating over a significantly

reduced cardinality set.

4.8 Simulations

In this section, simulations of the proposed algorithms and their various implementa-

tions are presented. Comparisons shall be given between the optimal exhaustive (Ex-

haustive TDS, Exhaustive TDS with RS), the standard cooperative system (No TDS -

all relays), non-cooperative transmission (Non-Cooperative), iterative (Iterative TDS,

Iterative TDS and RS) and power allocation (PA) based implementations. Optimal

MMSE reception is used at the relay and destination nodes unless otherwise stated and

equal power allocation shall be maintained in all phases for TDS DF schemes, where

Ar[i] = 1/
√

NasubINarNr
when TDS is employed andAr[i] = 1/

√
NarNrINarNr

for standard

cooperative transmission. For TDS AF, the transmit power of the mth antenna at the nth

relay when TDS is employed is given by

Arn,m[i]
1√

NasubHsrn,m[i]HH
srn,m

[i] + σ2
sr

, (4.74)

thus ensuring E
[

A
H
r [i]Ar[i]

]

= 1. For standard cooperative transmission Nasub is re-

placed with Nar and CSI is provided by the RLS algorithm of Section 4.6.4. The RLS

variables P
Ĥ rd

, PĤsrn
and PĤsd

are initialised as identity matrices and λ, the exponential

forgetting factor, is 0.9. The initial values of Ĥ rd, Ĥsrn
and Ĥsd are zero matrices. For

adaptive power allocation, the vector ār is initialised with equal power allocation and
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all step-sizes for adaptive reception and power allocation are set to 0.1. Throughout all

simulations, Nas = Nar = Nad = Na, where Na is specified in each plot, and Nasub = 4 un-

less otherwise stated. Each simulation is averaged over Np packets where Np is specified

in each plot.
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Figure 4.6: BER performance versus the number of received symbols for the proposed

schemes with full and estimated CSI, and optimal linear receivers.

Figure 4.6 shows the BER performance versus the number or received symbols for

the proposed schemes when a single relay is removed and estimated CSI is used for

the TDS schemes. The performance of the TDS schemes exceed that of the standard

cooperative system and RS improves performance further in terms of convergence and

steady-state. This shows that the process of RS decreases the likelihood of channel

mismatch between the first and second phases but also confirms the improvement in

convergence performance obtained by refining and reducing the cardinality of the set

which TDS operates over. The behavior of the CE schemes indicate that TDS, RS and

CE jointly operate correctly and allow the convergence to the exhaustive solution if

an appropriate value of λ is chosen. Lastly, applying RS to adaptive power allocation
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improves performance further by constraining relays nodes’ transmission power to zeros

based on their first phase performance. This indicates that RS and power allocation

operate correctly in parallel but also that the resulting power allocation process considers

the attributes of both the first and second phases, an outcome which is not possible with

power allocation alone.
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Figure 4.7: Squared error performance versus the number of received symbols for the

proposed schemes with full and estimated CSI, and optimal linear receivers.

Figure 4.7 presents the squared error performance of the TDS based schemes pre-

sented in Figure 4.6. Once again the improvement in convergence brought about by

#Ω̄T < #ΩT is evident as well as the effective operation of the schemes which use itera-

tively estimated CSI. The rapid and complete convergence of the iterative TDS and RS

also confirms the correct operation of two simultaneous discrete iterative algorithms.

A further semi-analytical conclusion can also be drawn, stating that for effective con-

vergence of the TDS with RS scheme when the variable step-size of step 4 is used,

#ΩR < #Ω̄T is required. This condition ensures that the RS DSA converges significantly

before the TDS DSA and therefore allows TDS to operate on the fully refined TDS set

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 131

for the majority of the time. This condition also goes someway to ensuring that suffi-

cient relays/antennas are available for TDS whilst avoiding an increased risk of channel

mismatch, i.e. Nasub
/Na ≈ Nr − Nrem.
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Figure 4.8: BER performance versus SNR for the proposed schemes with optimal linear

receivers and Nrem = 1, 2.

The BER performance versus SNR of the proposed algorithms is shown in Figure

4.8. The steeper gradient of the proposed schemes indicate that increased diversity has

been achieved by the RS schemes at the SNR of interest, gains which increase when

Nrem = 2. Improved interference suppression is also obtained as evidenced by the shift-

ing of the plots compared to the standard system, gains which reach 5dB at a BER of

10−2. In general, the BER performance of the discrete iterative scheme closely matches

the exhaustive performance; however, there is an increasing discrepancy for the schemes

with Nrem = 2 as the SNR increases. This is partially accounted for by the lower BER

but is also explained by the increased size ofΩR and the increased time the DSA takes to

converge to the optimal ΩR. This results in the TDS portion of the algorithm operating

on a suboptimal Ω̄T for a significant number of initial iterations, therefore increasing the

BER convergence time. Differing rates of convergence are also responsible for the clos-
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ing of the performance gap at high SNR between the schemes with Nrem = 2 and those

with adaptive power allocation. At high SNR the power allocation schemes and the iter-

ative scheme with Nrem = 2 have not fully converged at N = 500 and consequently have

not reached their error floor, as shown by the flattening off of the their curves. Although

power allocation with RS increases the rate of convergence, the exhaustive scheme with

Nrem = 2 does not require convergence and therefore at a moderate number of received

symbols at high SNR the exhaustive scheme’s BER performance exceeds that of the

power allocation schemes.

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

N
r
 = 4, N

a
 = 2, N = 250, N

p
 = 1000

 

 

Non−Cooperative

No TDS

Iterative TDS

Iterative TDS with RS

Exhaustive TDS

Exhaustive TDS with RS

PA

PA with RS

Figure 4.9: BER performance versus SNR for the proposed schemes with optimal linear

receivers when operating over correlated channels.

An important aspect of cooperative MIMO systems and transmission strategies is

their performance in the presence of correlated channels. Figure 4.9 shows the perfor-

mance of the schemes over the correlated channels specified in Section 4.6.3. Improved

interference suppression and diversity has been achieved by the proposed schemes and

no significant convergence problems are evident. The RS schemes also achieve signifi-

cant gains of 4dB at a BER of 10−2 compared to the scheme where only single relay is

removed. However, as expected, the performance has been degraded by the correlated

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 133

channels compared to the results in Figure 4.8. As in Figure 4.8, the BER performance

of the power allocation and RS schemes appear to converge; however, this is once again

due to the differing convergence rates of the iterative and exhaustive TDS schemes with

RS compared the iterative power allocation schemes.
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Figure 4.10: BER performance versus SNR for the proposed schemes with SIC.

The effect of introducing SIC to the TDS schemes is illustrated by Figure 4.10. The

advantage in interference suppression is evident from the shifted plots but there are

also diversity gains when RS is considered. The gains of introducing RS when SIC is

utilised are substantial and exceed that of introducing RS when SIC is not used. This

can be attributed to the decrease in probability that RS brings about of different symbols

being transmitted from the active relays. Thus reducing the likelihood that the identical

transmit symbol assumption of Section 4.5.2 is violated.

Figure 4.11 presents the BER performance versus the number of received symbols

for TDS and TDS with RS when joint adaptive linear MMSE reception is used at the

destination node. Firstly, an interesting feature to note is the performance of the standard

cooperative scheme (No TDS) when an adaptive receiver is used. It exceeds the perfor-
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Figure 4.11: BER performance versus the number of received symbols for proposed

schemes with joint adaptive linear MMSE receive filters.

mance of the MMSE filter although no CSI or power allocation information is required.

Similar performance of the LMS algorithm has been observed previously [111, 112],

however, this have been in the presence of narrow band interference. In this scenario,

the non-Wiener performance is dependent upon the possibility of erroneous decisions

at the relays nodes. The erroneous symbols subsequently transmitted by the relays can

be viewed as interference that the LMS receiver is able to suppress to a greater extent

than the MMSE receiver because it does not have fixed correlation structures. The rate

of convergence of both iterative TDS algorithms has been slowed considerably due to

the convergence of the receive filters and their ensemble error but also the challenges

posed by several adaptive schemes operating in parallel. The TDS algorithm exceeds

the performance of the optimal filter due to the non-Wiener behaviour but RS does not

improve performance further. This can be attributed to the challenges of a number of

iterative algorithms operating jointly but also the suboptimal sets that the TDS with RS

algorithm will be operating on for a significant number of iterations.
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Figure 4.12: BER performance versus the number of received symbols for the proposed

PA schemes.

Figure 4.12 presents the BER convergence performance of the proposed power al-

location algorithms when joint power allocation and interference suppression is used at

the destination node. The algorithms with adaptive reception converge towards those

with MMSE reception but, as has been observed previously, the challenges of the RS,

power allocation and interference suppression jointly operating marginally outweigh the

benefits that RS brings when optimal, non-iterative reception is used.

Figure 4.13 illustrates the performance of the proposed iterative TDS schemes when

implemented in an AF system. Both the iterative schemes converge to their optimal

exhaustive counterparts and, as expected, the TDS and RS scheme displays an increased

rate of convergence compared to TDS alone. However, RS does not bring about an

improvement in steady state performance as in DF systems. This results from the use of

branch SNR as secondary RS criteria and the resulting incomplete integration with the

MSE based TDS at the destination.

In previous simulations, the feedback channel to each relay is assumed error free.

However, in reality this assumption is likely to breakdown. Figure 4.14 gives the BER

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 4. JOINT DISCRETE AND CONTINUOUS ALGORITHMS FOR RESOURCE

ALLOCATION AND INTERFERENCE SUPPRESSION IN COOPERATIVE MIMO NETWORKS 136

0 500 1000 1500 2000 2500
10

−3

10
−2

10
−1

Number of Received Symbols

B
E

R

N
r
 = 4, N

a
 = 2, N

asub
 = 4, SNR = 10dB, N

p
 = 1000

 

 

Non−Cooperative

No TDS

Exhaustive TDS

Exhaustive TDS and RS

Iterative TDS

Iterative TDS and RS

Figure 4.13: BER performance versus the number of received symbols for the proposed

schemes in an AF system with optimum linear receivers.
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performance versus the probability of error in each individual feedback bit when no

error coding and correction is used. All schemes are compared when optimal linear re-

ceivers with full backward CSI are used all nodes and the forwarded MSE data from the

relays are assumed perfect. All schemes provide improved performance over the non-

cooperative system up until the probability of error reaches ≈ 0.1 and their performance

converges. At this point 57% of the NaNr bit packets have at least one or more error.

The performance degradation is due to the non-optimal second phase channels being

utilised, incorrect total transmit power and incorrect values used in the calculation of

the MMSE receiver at the destination node. For the power allocation schemes, 5 bit

quantisation in used for the real and imaginary parts and all feedback bits are set to zero

to indicate a relay that has been removed through RS. RS improves performance at low

error rates but the transition between the performance of power allocation RS and the

standard scheme is at a lower error rate than that of the TDS schemes.
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Figure 4.15: Mutual Information performance versus the number of received symbols

for the proposed schemes.

Figure 4.15 gives the mutual information of the proposed TDS schemes versus the
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number of iterations of the DSAs. Both schemes achieve gains over the standard system

but RS results in a small performance loss compared to the TDS scheme. This is due

to the MI optimisation given by (4.45) not taking into account the MI of the first phase

because of the inherent separation between phases in DF systems. However, the TDS

with RS scheme has lower complexity and increased speed of convergence compared

to TDS alone due to the refined set Ω̄T and its lower cardinality. Additionally, when

utilising RS, the probability of the MI/capacity of the first phase being unable to satisfy

that of the second phase is reduced.

4.9 Summary

This chapter has presented TDS and RS, and power allocation methods based on DSAs

for multi-relay cooperative MIMO systems where RS improves the performance of con-

ventional algorithms. Hybrid continuous-discrete MMSE and MI optimisation problems

have been formed and a framework to solve them developed. The resulting joint TDS

and power allocation with RS schemes have been shown to operate well with optimal re-

ceivers, converge in parallel with low-complexity linear adaptive MMSE receivers and,

in the majority of scenarios, converge to the exhaustive solution. Increased diversity

and improved interference suppression are obtained by the proposed schemes and full

algorithmic implementations have then been given to provide designers with the tools

to significantly improve the performance of cooperative MIMO systems.

This and the previous chapter have focussed on resource allocation and interference

suppression for the future and current mobile systems. Due to their use of conventional

cost functions, reception, and interference suppression techniques that attempt to track

the channel coefficients or unfaded symbols, they are suited to low to moderate fading

rates and their performance will degrade at high fading rates. The next chapter addresses

this degradation and the need for more robust reception and interference suppression in

highly time-varying fading channels where conventional techniques are inadequate.
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5.1 Introduction

Low-complexity reception and interference suppression are essential in multiuser mo-

bile systems if battery power is to be conserved, data-rates improved and quality of
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service enhanced. Conventional adaptive schemes fulfil many of these requirements

and have been a significant focus of research literature [2, 29, 51, 52, 60, 72, 113] and

Chapters 3 - 4.

However, in time-varying fading channels commonly associated with mobile sys-

tems, these adaptive techniques encounter tracking and convergence problems. Opti-

mum closed-form solutions can address these problems but their computational com-

plexity is high and CSI is required. Low-complexity adaptive channel estimation can

provide CSI but in highly dynamic channels tracking problems exist due to their fi-

nite adaptation rate [38]. An alternative statistical approach is to obtain the correla-

tion structures required for optimal MMSE or LS filtering [114, 115]. Although this

relieves the tracking demands placed on the filtering process, in a Rayleigh fading chan-

nel, a zero correlator is the result due to the expectation of a Rayleigh fading coeffi-

cient, and therefore the cross-correlation vector, equating to zero i.e. E [h1[n]] = 0 and

E
[

b∗
1
[n]r[n]

]

= 0. In slowly fading channels this problem may be overcome by using

a time averaged approach where the averaging period is equal to or less than the coher-

ence time of the channel. However, in fast fading channels an averaging period equal

to the coherence time of the channel is insufficient to overcome the effects of additive

noise and characterise the MUI [2].

The inclusion of an optimised convergence parameter(s) into conventional adaptive

algorithms, as in Chapter 3 and reference therein, extend their fading range and lead to

improved convergence and tracking performance [9, 10, 116–122]. However, the stabil-

ity of adaptive step-sizes and forgetting factors can be a concern unless they are con-

strained to lie within a predefined region [123]. In addition, the fundamental problem

of obtaining the unfaded symbols whilst suppressing MUI remains. Consequently, the

application of such algorithms is restricted to low and moderate fading rates.

The limitations of conventional estimation approaches led to the proposition of

methods that attempt to track the faded symbol, such as the channel-compensated MMSE

solution [113, 124]. This removed the burden of fading coefficient estimation from the
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interference suppression filter; however, a secondary process is required to perform

explicit estimation of the fading coefficients in order for symbol estimation to be per-

formed [15].

Approaches that avoid tracking and estimation of the fading coefficients altogether

were proposed in [15, 125, 126]. Here it was put forward that although a channel might

be highly time variant, two adjacent fading coefficients will be approximately equal and

have a significant level of correlation. These properties can then be exploited to obtain

a sequence of faded symbols where the primary purpose of the filter is to suppress

multiuser interference and track the ratio between successive fading coefficients; thus,

not burdening it with estimation of the fading coefficients themselves. However, this

scheme has a number of limitations stemming from its use of only one correlation time

instant and a single family of adaptive algorithms.

In this chapter, a bidirectional MMSE based interference suppression scheme for

highly dynamic fading channels is presented. The non-zero correlation between multi-

ple time instants is exploited to improve the robustness, tracking and convergence per-

formance of existing MMSE schemes. NLMS and CG implementations are presented

that overcome a number of problems associated with applying the RLS to bidirectional

problems. A range of novel mixing strategies that weight the contribution of the con-

sidered time instants and improve the convergence and steady-state performance, and

increase robustness against the channel discontinuities are also presented. An analy-

sis of the proposed schemes is given and establishes the mechanisms and factors be-

hind their behaviour and expected performance. The proposed schemes are applied to

conventional multiuser DS-CDMA and cooperative DS-CDMA systems to assess their

MUI suppression and tracking capabilities. The resulting simulations confirm that the

algorithms improve upon existing schemes with minimal increase in complexity.

In this chapter, Section 5.2 presents the proposed optimisation problems and the

motivation behind their development. Switching and mixing strategies that enhance

performance are proposed and assessed in Section 5.3, followed by the algorithmic
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implementations of the proposed presented methods in Section 5.4. An analysis of the

proposed algorithms is given in Section 5.5, and simulations and performance evaluation

are presented in Section 5.6. Conclusions in Section 5.7 then draw the chapter to a close.

5.2 Proposed Bidirectional Scheme

Adaptive parameter estimation has two primary objectives: estimation and tracking of

the desired parameters. When applied to the DS-CDMA systems with short spreading

sequences considered in this thesis, these translate into tracking of the desired symbol

and suppression of MUI. However, in fast fading channels the combination of these

objectives places unrealistic demands on conventional filtering and estimation schemes.

Differential techniques reduce these demands by relieving the adaptive filter of the task

of tracking fading coefficients. This is achieved by posing an optimisation problem

where the ratio between two successive received samples is the quantity to be tracked.

Such an approach is enabled by the presumption that, although the fading is fast, there

is a significant level of correlation between the adjacent channel samples i.e.

f1[i] = E
[

h1[i]h∗1[i + 1]
] ≥ 0, (5.1)

where h1[i] is the channel coefficient of the desired user. The interference suppression

of the resulting filter is improved in fast fading environments compared to conventional

adaptive filters but only the ratio of adjacent fading samples is obtained. Consequently,

differential MMSE schemes are suited to use with differential modulation where the

ratio between adjacent symbols is the data carrying mechanism.

However, limiting the optimisation process to two adjacent samples exposes these

processes to the negative effects of uncorrelated samples

E
[

h1[i]h∗1[i + 1]
] ≈ 0, (5.2)
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but also does not exploit the correlation that may be present between two or more adja-

cent samples, i.e.

f2[i] = E
[

h1[i]h∗1[i − 1]
]

> 0

f3[i] = E
[

h1[i + 1]h∗
1
[i − 1]

]

> 0.

(5.3)

To address these weaknesses, a bidirectional MSE cost function based on 3 adjacent

samples if formed so that the number of channel scenarios under which the differential

MMSE performs beneficial adaptations is substantially increased. Termed the bidirec-

tional MMSE, due to the use of the time instants, i − 1, i, and i + 1, the motivation

behind this proposition is illustrated by the plots of fading/channel coefficients in Fig-

ure 5.1, where J1 represents the 2 sample differential MMSE. There is a low level of

correlation present between samples i and i − 1, thus any adaptation of the filter will

bring little benefit. However, the proposed scheme operates over J1, J2 and J3; therefore,

it can exploit the correlation between i + 1 and i − 1 and past data. Figure 5.1b gives an

example of a channel where there is significant levels of correlation between samples.

Although the existing differential scheme operates over 2 correlated samples, the pro-

posed scheme is able to exploit the additional correlation present between i + 1 and i,

and i + 1 and i − 1, effectively reusing data in a similar method to the affine projection

algorithm (AP) [38, 121].

The optimisation problem of the proposed scheme where user 1 is assumed is given

by

w = arg min
w

= E

[∣
∣
∣b[i]wHr[i − 1] − b[i − 1]wHr[i]

∣
∣
∣
2

(J1)

+
∣
∣
∣b[i]wHr[i − 2] − b[i − 2]wHr[i]

∣
∣
∣
2

(J2)

+
∣
∣
∣b[i − 1]wHr[i − 2] − b[i − 2]wHr[i − 1]

∣
∣
∣
2
]

(J3)

, (5.4)

where w is the expected value of the filter, J1 − J3 equate to those of Figure 5.1, and the

time instants of interest have been altered to avoid the use of future samples. In addi-

tion to (5.4), an output power constraint is required to avoid the trivial zero correlator
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(a) Badly conditioned fading channel

(b) Well-conditioned fading channel

Figure 5.1: Fading channels
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solution

E

[∣
∣
∣wHr[i]

∣
∣
∣
2
]

= 1. (5.5)

Basis for (5.4) can be found by considering the output of the filter w as a scaled version

of the faded symbols where the MUI has been suppressed [15]. For J3 consider the

following

wHr[i] ≈ αh[i]b[i]

wHr[i − 2] ≈ αh[i − 2]b[i − 2]

h[i] ≈ h[i − 2]

b[i]wHr[i] ≈ b[i − 2]wHr[i − 2]

b[i − 2]wHr[i] ≈ b[i]wHr[i − 2]

(5.6)

where is α is a scaling factor. It is then clear that an optimisation function should focus

on the minimisation of

b[i − 2]wHr[i] − b[i]wHr[i − 2] (5.7)

in order to track the ratio between faded symbols.

Extension of the bidirectional scheme to any number of time instants is also possible;

however, the benefit of doing so is dependent on the fading rate of the channel and the

related correlation of the channel coefficients. The generalised form of the bidirectional
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problem can be expressed as follows

w = arg min
w

= E

[∣
∣
∣b[i]wHr[i − 1] − b[i − 1]wHr[i]

∣
∣
∣
2

...

+
∣
∣
∣b[i]wHr[i − (D − 1)] − b[i − (D − 1)]wHr[i]

∣
∣
∣
2

+
∣
∣
∣b[i − 1]wHr[i − 2] − b[i − 2]wHr[i − 1]

∣
∣
∣
2

...

+
∣
∣
∣b[i − 1]wHr[i − (D − 1)] − b[i − (D − 1)]wHr[i − 1]

∣
∣
∣
2

+
∣
∣
∣b[i − (D − 2)]wHr[i − (D − 1)] − b[i − (D − 1)]wHr[i − (D − 2)]

∣
∣
∣
2
]

(5.8)

where D denotes the number of considered time instants. Introducing summations into

(5.8) yields a more concise form

w = arg min
w

= E





D−2∑

d=0

D−1∑

l=d+1

∣
∣
∣b[i − d]wHr[i − l] − b[i − l]wHr[i − d]

∣
∣
∣
2



 , (5.9)

where the constraint of (5.5) is required once again.

5.3 Switching Strategies

The advantages of a bidirectional scheme operating over 3 time or more time instants

are clear. However, the performance of the scheme may degrade when received vectors

based on uncorrelated fading coefficients are utilised in the update of the interference

suppression filter. This is particulary evident from the example channel illustrated in

Figure 5.1a, where the contribution to the optimisation function represented by J3 is

unlikely to aid the accurate adaption of w to the overall trend of the channel due to

the incontinuity. To avoid this, a set of switching or mixing parameters is introduced

that determines the weighting of the D constituent elements of the bidirectional cost
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function. With these modifications the updated 3 time instant bidirectional MSE cost

function is given by

w = arg min
w

= E

[

ρ1[i]
∣
∣
∣b[i]wHr[i − 1] − b[i − 1]wHr[i]

∣
∣
∣
2

(J1)

+ρ2[i]
∣
∣
∣b[i]wHr[i − 2] − b[i − 2]wHr[i]

∣
∣
∣
2

(J2)

+ ρ3[i]
∣
∣
∣b[i − 1]wHr[i − 2] − b[i − 2]wHr[i − 1]

∣
∣
∣
2
]

(J3)

, (5.10)

where ρ are the weighting factors and 0 ≤ ρ1[i], ρ2[i], ρ3[i] ≤ 3. Introducing weighting

factors into the generalised bidirectional cost function yields

w = arg min
w

= E





D−2∑

d=0

D−1∑

l=d+1

ρn[i]
∣
∣
∣b[i − d]wHr[i − l] − b[i − l]wHr[i − d]

∣
∣
∣
2



 , (5.11)

where n = d(D − 3) + l + 1. However, for the remainder of this chapter the case where

D = 3 is considered.

The correct determination of receive vector samples that correspond to the scenarios

depicted in Figure 5.1a is essential if correct optimisation of the ρ is to be achieved. The

use of CSI to achieve this would be a highly effective but impractical solution due to

the difficulty in obtaining the CSI; consequently, other methods must be sought. In this

section, the use of two alternative metrics is proposed: the signal power differential after

interference suppression between the considered time instants, and the error between the

considered time instants.

Firstly, a switching based scheme where ρ1−3 = [0, 1] is considered. At each time

instant the weighting factors are determined by the following post-filtering power dif-

ferential metrics

P1[i] =
∣
∣
∣w[i]Hr[i]

∣
∣
∣
2 −

∣
∣
∣w[i]Hr[i − 1]

∣
∣
∣
2

P2[i] =
∣
∣
∣w[i]Hr[i]

∣
∣
∣
2 −

∣
∣
∣w[i]Hr[i − 2]

∣
∣
∣
2

P3[i] =
∣
∣
∣w[i]Hr[i − 1]

∣
∣
∣
2 −

∣
∣
∣w[i]Hr[i − 2]

∣
∣
∣
2
.

(5.12)

If the power difference for each of J1−3 exceeds a predefined threshold the corresponding
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ρ is set to zero, therefore, removing the corresponding element of the cost function

from the adaptation process at that time instant. The highly dynamic nature of the

channel requires an adaptive threshold which is able to track the changes in the system

and determine appropriate time instants based on surrounding samples. Consequently,

for each ρn a threshold, Tn[i], related to a time-averaged, windowed, root-mean-square

of the relevant differential power is used. The value of ρn in then determined in the

following manner

ρn[i] =






0 ifPn[i] ≥ Tn[i]

1 otherwise

, (5.13)

where

Tn[i] = ν
[

λPPnRMS
[i] + (1 − λP)PnRMS

[i]
]

, (5.14)

PnRMS
[i] =

√√

1

m − 1

i∑

l=i−m

Pn[l]2, (5.15)

and ν is a positive user defined constant greater than unity that scales the threshold.

Although the current sample corresponding to Jn may bring no benefit in terms of

adaptation, this does not indicate that all previous cost function elements corresponding

to Jn should be discarded. An alternative approach is to use a set of convex mixing pa-

rameters that are not restricted to 1 or 0. This allows each element of the cost function

to be more precisely weighted based on its previous and current values. However, the

setting of these mixing parameters is once again problematic if they are to be fixed. Ac-

cordingly, an adaptive implementation that can take account of the time-varying chan-

nels and previous values which continue to have an impact on the adaptation of the filter

is sought. The errors extracted from the cost function (5.10) are chosen as the metric for

this implementation. These provide an input to the weighting factor calculation process

that is directly related to the cost function of (5.10). The time varying mixing factors

are given by

ρn[i] = λeρn[i − 1] + (1 − λe)
eT [i] − |en[i]|

eT [i]
(5.16)
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where

eT [i] = |e1[i]| + |e2[i]| + |e3[i]|, (5.17)

and the individual errors terms are calculated as

e1[i] = b[i]wH[i − 1]r[i − 1] − b[i − 1]wH[i − 1]r[i]

e2[i] = b[i]wH[i − 1]r[i − 2] − b[i − 2]wH[i − 1]r[i]

e3[i] = b[i − 1]wH[i − 1]r[i − 2] − b[i − 2]wH[i − 1]r[i − 1].

(5.18)

The forgetting factor, 0 ≤ λe ≤ 1, is user defined and, along with normalisation by the

total error, eT [i], and

3∑

n=1

ρn[0] = 1, ensures

3∑

n=1

ρn[i] = 1 and a convex combination at

each time instant.

5.4 Adaptive Algorithms

To commence deriving low-complexity adaptive implementations of the proposed bidi-

rectional schemes, the expected value of the filter w is replaced with the appropriate

instantaneous estimate, yielding

w[i] = arg min
w[i]

= E

[∣
∣
∣b[i]wH[i − 1]r[i − 1] − b[i − 1]wH[i]r[i]

∣
∣
∣
2

+
∣
∣
∣b[i]wH[i − 2]r[i − 2] − b[i − 2]wH[i]r[i]

∣
∣
∣
2

+
∣
∣
∣b[i − 1]wH[i − 2]r[i − 2] − b[i − 2]wH[i]r[i − 1]

∣
∣
∣
2
]

subject to E

[∣
∣
∣w[i]Hr[i]

∣
∣
∣
2
]

= 1.

(5.19)

This cost function then forms the basis of the adaptive algorithms derived in this section.

However, to reduce the complexity of the derivations, enforcement of the non-zero con-

straint is not included and instead enforced in a stochastic manner at each time instant

after the adaptation process is complete [15].
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5.4.1 Stochastic Gradient Techniques

Here a low-complexity NLMS implementation that utilises an instantaneous gradient in

a steepest descent framework is formed.

Firstly, the instantaneous gradient of (5.19) is taken with respect to wH[i], yielding

∇wH [i]J = −b[i − 1]r[i](b[i]wH[i − 1]r[i − 1] − b[i − 1]wH[i]r[i])H

−b[i − 2]r[i](b[i]wH[i − 2]r[i − 2] − b[i − 2]wH[i]r[i])H

−b[i − 2]r[i − 1](b[i − 1]wH[i − 2]r[i − 2] − b[i − 2]wH[i]r[i − 1])H.

(5.20)

At this point, in order to improve the convergence performance of the NLMS algorithm,

the bracketed error terms of (5.20) are modified by replacing the filters with the most

recently calculated one, w[i − 1]. The resulting gradient expression is given by

∇wH[i]J = −b[i − 1]r[i]
(

b[i]wH[i − 1]r[i − 1] − b[i − 1]wH[i − 1]r[i]
)H

︸                                                         ︷︷                                                         ︸

e1[i]

−b[i − 2]r[i]
(

b[i]wH[i − 1]r[i − 2] − b[i − 2]wH[i − 1]r[i]
)H

︸                                                         ︷︷                                                         ︸

e2[i]

−b[i − 2]r[i − 1]
(

b[i − 1]wH[i − 1]r[i − 2] − b[i − 2]wH[i − 1]r[i − 1]
)H

︸                                                                    ︷︷                                                                    ︸

e3[i]

.

(5.21)

Placing in the steepest descent filter update expression yields

w[i] = w[i − 1] +
µ

M[i]|wH[i − 1]r[i − 1]| · · ·
[

b[i − 1]r[i]e∗
1
[i] + b[i − 2]r[i]e∗

2
[i] + b[i − 2]r[i − 1]e∗

3
[i]

]

,

(5.22)

where µ is the step-size and the normalisation factor, M[i], is given by

M[i] = λM M[i − 1] + (1 − λM)rH[i]r[i], (5.23)

where λM is an exponential forgetting factor [15]. Enforcement of the constraint is

performed by the denominator of (5.22) and ensures that the filter, w[i], does not tend
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towards a zero correlator as the adaptation progresses.

Incorporation of the variable switching and mixing factors of Section 5.3 has the po-

tential to improve the performance of the above algorithm by optimising the weighting

of the error terms of (5.21). Integration of the factors given by (5.13) and (5.16) yields

w[i] = w[i − 1] +
µ

M[i]
· · ·

[

ρ1[i]b[i − 1]r[i]e1[i] + ρ2[i]b[i − 2]r[i]e2[i] + ρ3[i]b[i − 2]r[i − 1]e3[i]
]

(5.24)

as the updated filter adaptation equation.

5.4.2 Least Squares Algorithms

To achieve faster convergence and increased robustness to fading a LS based solution

is now pursued. Firstly, the bidirectional cost function of (5.4) is cast as a LS problem,

yielding

J =

i∑

l=1

λi−l

[∣
∣
∣b[i]wH[i − 1]r[i − 1] − b[i − 1]wH[i]r[i]

∣
∣
∣
2
+

∣
∣
∣b[i]wH[i − 2]r[i − 2] − b[i − 2]wH[i]r[i]

∣
∣
∣
2
+

∣
∣
∣b[i − 1]wH[i − 2]r[i − 2] − b[i − 2]wH[i − 1]r[i − 1]

∣
∣
∣
2
]

, (5.25)

where λ is an exponential forgetting factor. Proceeding as with the conventional LS

derivation, and modifying the equivalent error terms in a similar manner to as in (5.21),

the following expressions for the component autocorrelation matrices can be reached

R̄1[i] = λR̄1[i − 1] + b[i − 1]r[i]rH[i]b∗[i − 1]

R̄2[i] = λR̄2[i − 1] + b[i − 2]r[i]rH[i]b∗[i − 2]

R̄3[i] = λR̄3[i − 1] + b[i − 2]r[i − 1]rH[i − 1]b∗[i − 2]

(5.26)
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and the component cross-correlation vectors

t̄1[i] = λt̄3[i − 1] + b[i − 1]r[i]rH[i − 1]w[i − 1]b∗[i]

t̄2[i] = λt̄2[i − 1] + b[i − 2]r[i]rH[i − 2]w[i − 1]b∗[i]

t̄3[i] = λt̄3[i − 1] + b[i − 2]r[i − 1]rH[i − 2]w[i − 1]b∗[i − 1]

. (5.27)

The overall correlation structures are then formed from the summation of the preceding

expressions, yielding

R̄[i] = R̄1[i] + R̄2[i] + R̄3[i] (5.28)

and

t̄[i] = t̄1[i] + t̄2[i] + t̄3[i]. (5.29)

where

w[i] = R̄−1[i]t̄[i]. (5.30)

As for the NLMS implementation, performance improvements can be expected if the

variable switching and mixing factors, (5.13) and (5.16), are incorporated into the cor-

relation expressions. The resulting expressions are

R[i] = ρ1[i]R1[i] + ρ2[i]R2[i] + ρ3[i]R3[i] (5.31)

t[i] = ρ1[i]t1[i] + ρ2[i]t2[i] + ρ3[i]t3[i] (5.32)

Introducing the above expression into the RLS framework would lead to a low-complexity

algorithm with improved convergence and robustness compared to the NLMS of Sec-

tion 5.4.1. This requires the integration of (5.26) with the matrix inversion lemma

(2.47) [38, 127]. However, the derivation requires an expression of the form

R[i] = R[i − 1] + λr[i]rH[i] (5.33)
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for the autocorrelation matrix; a form which (5.26) is unable to fit into without assump-

tions that cause a significant performance degradation. Consequently, an alternative

low-complexity algorithm to implement the LS solution given by (5.26) - (5.30) is re-

quired.

5.4.3 Conjugate Gradient

Due to the incongruent form of the bidirectional LS formulation and the conventional

RLS implementation, an alternative low-complexity method is now derived. The CG

is chosen due to the lack of a matrix inversion and its excellent convergence properties

[57, 58].

Inserting the autocorrelation (5.26) and cross-correlation (5.27) structures of Section

5.4.2 into the standard CG quadratic form yields

wH[i]R[i]w[i] − tH[i]w[i]. (5.34)

From [57], the unique minimiser of (5.34) is also the minimiser of

R[i]w[i] = t[i]. (5.35)

This shows the suitability of the CG algorithm to the bidirectional problem. At each time

instant a number of iterations of the following method are required to reach an accurate

solution, where the iterations are indexed with the variable j. Other single iteration

CG methods are available but these depend upon degeneracy - a term that describes the

situation where the successive CG vectors are not orthogonal [128,129]. Consequently,

the conventional method is utilised to ensure satisfactory convergence. At the ith time

instant the gradient and direction vectors are initialised as

g0[i] = ∇w[i]JLS (w[i]) = R[i]w0[i] − t[i] (5.36)
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and

d0[i] = −g0[i], (5.37)

respectively, where the gradient expression is equivalent to those used in the previous

algorithm derivations. The vectors d j[i] and d j+1[i] are R[i] orthogonal with respect to

R[i] such that d j[i]R[i]dl[i] = 0 for j , l. At each iteration the filter is updated as

w j+1[i] = w j[i] + α j[i]d j[i] (5.38)

where α j[i] is the minimiser of JLS (w j+1[i]) such that

α j =
−dH

j
g j[i]

dH
j
[i]R[i]d j[i]

. (5.39)

The gradient vector is then updated according to

g j+1[i] = R[i]w j[i] − t[i] (5.40)

and a new conjugate gradient direction vector found

d j+1[i] = −g j+1[i] + β j[i]d j[i] (5.41)

where

β j[i] =
gH

j+1
[i]R[i]d j[i]

dH
j
[i]R[i]d j[i]

(5.42)

ensures the R[i] orthogonality between d j[i] and dl[i] where j , l. The iterations (5.38)

- (5.42) are then repeated until j = jmax.

The variable switching and mixing factors can be incorporated into the algorithm to

improve performance. This is achieved by operating the CG algorithm over the modified

correlation structures given by (5.31) and (5.32).
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5.5 Analysis

In this section, the proposed bidirectional algorithms are analysed to gain an indica-

tion of expected performance but also to obtain further insight into the operation of

the proposed and existing algorithms. The unconventional form of the differential cost

function precludes the application of standard MSE analysis. Consequently, the SINR

of the proposed algorithms is used in order to analyse their interference suppression and

tracking performance. Firstly, the NLMS algorithm and the features of its weight error

correlation matrix are studied in order to arrive at an analytical SINR expression. Fol-

lowing this, the analogy between the form of the bidirectional expression and convex

combinations of adaptive filters is explored [130–132].

5.5.1 SINR Analysis

To begin, consider the following SINR expression

SINR =
wH[i]RSw[i]

wH[i]RIw[i]
, (5.43)

where RS and RI are the signal, and interference and noise correlation matrices, respec-

tively. Substituting in the filter error weight vector

ε[i] = w[i] − wo[i], (5.44)

where wo is the instantaneous standard MMSE receiver, yields

SINR =
ε

H[i]RSε[i] + ε
H[i]RSwo[i] +

PS,opt[i]
︷          ︸︸          ︷

wH
o [i]RSwo[i]+wH

o [i]RSε[i]

ε
H[i]RIε[i] + εH[i]RIwo[i] + wH

o [i]RIwo[i]
︸          ︷︷          ︸

PI,opt[i]

+wH
o [i]RIε[i]

. (5.45)
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Taking the trace and expectation of (5.45) and defining K[i] = E[ε[i]εH[i]] and G[i] =

E[wo[i]εH[i]], allows the following expression to be formed

SINR =
K[i]RS +G[i]RS + PS,opt[i] +GH[i]RS

K[i]RI +G[i]RI + PI,opt[i] +GH[i]RI

. (5.46)

From (5.46) it is clear that expressions for K[i] and G[i] are required in order to reach

an analytical interpretation of the bidirectional NLMS scheme.

Substituting the filter error weight vector into the filter update expression of (5.22)

yields a recursive expression for the filter error weight vector

ε[i] =
[

I + µr[i]b[i − 1]rH[i − 1]b∗[i] − µr[i]b[i − 1]rH[n]b∗[i − 1]

+µr[i]b[i − 2]rH[i − 2]b∗[i] − µr[i]b[i − 2]rH[n]b∗[i − 2]

+µr[i − 1]b[i − 2]rH[i − 2]b∗[i − 1] − µr[i − 1]b[i − 2]rH[i − 1]b∗[i − 2]
]

ε[i − 1]

+µr[i]b[i − 1]e∗
o,1

[i]

+µr[i]b[i − 2]e∗
o,2[i]

+µr[i − 1]b[i − 2]e∗
o,3[i]

(5.47)

where the terms eo,1−3 denote the errors terms of (5.21) when the optimum filter wo is

used. Utilising the direct averaging approach given by Kushner [133], and invoked in a

number of other texts, the solution to the stochastic difference equation of (5.47) can be

approximated by the solution to a second equation [38, 134], such that

E
[

I + µr[i]b[i − 1]rH[i − 1]b∗[i] − µr[i]b[i − 1]rH[n]b∗[i − 1]

+µr[i]b[i − 2]rH[i − 2]b∗[i] − µr[i]b[i − 2]rH[n]b∗[i − 2]

+µr[i − 1]b[i − 2]rH[i − 2]b∗[i − 1] − µr[i − 1]b[i − 2]rH[i − 1]b∗[i − 2]
]

=

I + µF1 − µR1 + µF2 − µR2 + µF3 − µR3

, (5.48)

where F and R are correlations matrices. Specifically, R1−3 are autocorrelation matrices
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given by

R1 = E
[

µr[i]b∗[i − 1]rH[i]b∗[i − 1]
]

R2 = E
[

µr[i]b∗[i − 2]rH[i]b∗[i − 2]
]

R3 = E
[

µr[i − 1]b∗[i − 2]rH[i − 1]b∗[i − 1]
]

(5.49)

and F1−3 cross-time instant correlation matrices, given by

F1 = E
[

µr[i]b∗[i − 1]rH[i − 1]b∗[i]
]

F2 = E
[

µr[i]b∗[i − 2]rH[i − 2]b∗[i]
]

F3 = E
[

µr[i − 1]b∗[i − 2]rH[i − 2]b∗[i − 1]
]

.

(5.50)

Using (5.48) and the independence assumptions of

E
[

eo,1−3[i]ε[i]
]

= 0

E
[

rH[i]r[i − 1]
]

= 0

E [bk[i]bk[i − 1]] = 0

(5.51)

an expression for K[i] is reached

K[i] =
[

I + µF1 − µR1 + µF2 − µR2 + µF3 − µR3

]

K[i − 1] · · ·
[

I + µF1 − µR1 + µF2 − µR2 + µF3 − µR3

]

+µ2R1Jmin,1[i]

+µ2R2Jmin,2[i]

+µ2R1Jmin,3[i]

(5.52)

where Jmin, j[i] = |eo, j|2. Following a similar method, an expression for G[i] can also be

reached

G[i] = G[i − 1]
[

I + µF1 − µR1 + µF2 − µR2 + µF3 − µR3

]

. (5.53)

They preceding expressions can now be studied to gain an insight into the operation of

the bidirectional algorithm and the origins of its advantages over the conventional differ-

ential scheme. Equivalent expressions for the conventional stochastic gradient scheme
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are given by

K[i] =
[

I + µF1 − µR1

]

K[i − 1]
[

I + µF1 − µR1

]

+µ2R1Jmin,1[i]

G[i] = G[i − 1]
[

I + µF1 − µR1

]

.

(5.54)

The bidirectional scheme has a number of additional correlation terms compared to the

conventional scheme. Evaluating the cross-time instant matrices yields

F1 = |a1|2c1cH
1

E [h[i]h∗[i − 1]]
︸              ︷︷              ︸

f1[i]

F2 = |a1|2c1cH
1 E [h[i]h∗[i − 2]]
︸              ︷︷              ︸

f2[i]

F3 = |a1|2c1cH
1 E [h[i − 1]h∗[i − 2]]
︸                   ︷︷                   ︸

f3[i]

. (5.55)

From the expressions above, it is clear that the underlying factors that govern the SINR

performance of the algorithms are the correlation factors between the considered time

instants and data-reuse. Accordingly, it is the additional correlation factors that the

bidirectional algorithm possesses that enhances its performance compared to the con-

ventional scheme. This confirms the initial motivation behind the proposition of the

bidirectional approach. Lastly, the f1−3 expressions of (5.55) can be seen to be the fac-

tors that influence the optimum number of time instants to consider.

5.5.2 Combinations of Adaptive Filters

To further our understanding of the bidirectional algorithms, a heuristic and comple-

mentary approach is now taken and leads to an analogy with a combination of adaptive

filters [131]. The bidirectional LS solution given by (5.30) is made up of 6 constituent

correlation structures that result in a filter output of

y[i] =
[

(ρ1R1[i] + ρ3R2[i] + ρ3R3[i])−1 (ρ1t1[i] + ρ2t2[i] + ρ3t3[i])
]H

r[i]. (5.56)
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Decomposing the expression above leads us to an expression where the signal y[i] is

formed from the output of 3 individual adaptive filters

y[i] =

[(

R1[i] +
ρ2

ρ1
R2[i] +

ρ3

ρ1
R3[i]

)−1
t1[i]

]H

r[i]

+

[(

R1[i] +
ρ1

ρ2
R2[i] +

ρ3

ρ2
R3[i]

)−1
t2[i]

]H

r[i]

+

[(

R1[i] +
ρ1

ρ3
R2[i] +

ρ2

ρ3
R3[i]

)−1
t3[i]

]H

r[i]

. (5.57)

This is equivalent to a convex combination of adaptive filters with varying λ [130–132],

where each of the 3 filters focuses on the correlation between the 2 of the 3 considered

time instants. However, the presence of autocorrelation matrices in the inverses of the

expression also indicates that the remaining time instants also influence the structure of

each filter. Although the mixing factors are not separable, it is possible to interpret them

as a form of weighting that is present in conventional combinations of adaptive filters

and partly explain the additional control and performance they provide.

5.6 Simulations

In this section, the proposed adaptive algorithms are applied to conventional multiuser

and cooperative DS-CDMA systems with short spreading sequences. The individual

Rayleigh fading channel coefficients, h[i], are generated using Clarke’s model [79]

where 20 scatterers are assumed and the power of the interfering users is between 0dB

and 10dB relative to the user of interest. In all simulations the number of packets is

denoted by Np and the fading rate is given by the dimensionless normalized fading pa-

rameter, Ts fd, where Ts is the symbol period and fd is the Doppler frequency shift. The

filters’ convergence parameters have been optimised resulting in step-sizes forgetting

factors of 0.1 and 0.99, respectively, λe = 0.95, λM = 0.99 and the number of CG

iterations, jmax = 5.
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As covered in Section 5.5, the proposed algorithms do not minimise the same MSE

as a conventional MMSE receiver and it is therefore not an adequate performance met-

ric. As a result, BER and SINR based metrics are chosen for the purposes of comparison

between existing algorithms and the optimum MMSE solution. Due to the rapidly fad-

ing channel the instantaneous SNR, SNRi, is highly variable and so the SINR alone

is also not a satisfactory metric. To overcome this the SINR is normalised by the in-

stantaneous SNR to give S INR
S NRi

. This value is negative in all simulations and directly

reflects the MUI interference suppression and tracking capabilities of the proposed al-

gorithms [15, 125].

5.6.1 Conventional DS-CDMA

Here the adaptive algorithms of Section 5.4 are applied to interference suppression in

the uplink of a multiuser DS-CDMA system given by Figure 3.1. Each simulation is

averaged over Np packets and detailed parameters are specified in each plot. The M × 1

received signal after chip-pulsed matched filtering and sampling at the chip rate is given

by

r[i] = A1b1[i]H1[i]c1[i] +

K∑

k=2

Akbk[i]Hk[i]ck[i]

︸                    ︷︷                    ︸

MUI

+η[i] + n[i], (5.58)

where M = N + L − 1, and ck[i] and Ak are the spreading sequence and signal ampli-

tude of the kth user, respectively. The M × N channel matrix with L paths is given by

Hk[i] for the kth user, η[i] ISI vector and n[i] is noise vector. Conventional schemes

use BPSK modulation and the differential and bidirectional schemes utilise differential

BPSK where the sequence of data symbols to be transmitted by the kth user are given by

bk[i] = ak[i]bk[i − 1] where ak[i] is the unmodulated baseband data.

Analytical Results

Firstly, the analytical expressions derived in Section 5.5.1 and their agreement with sim-

ulated results are assessed. Central to the performance of the differential and bidirec-
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tional schemes are the correlation factors f1−3 and the related assumption of h1[i] ≈

h1[i − 1]. Examining the effect of the fading rate on the value of f1−3 shows that

f1 ≈ f2 ≈ f3 at fading rates of up to Ts fd = 0.01. Consequently, after a large num-

ber of received symbols with high total receive power

3
[

I + µF1 − µR1

] ≈ [

I + µF1 − µR1 + µF2 − µR2 + µF3 − µR3

]

, (5.59)

due to the decreasing significance of the identity matrix. This indicates that the ex-

pected value of the SINR, of the bidirectional scheme, once f1 ≈ f2 ≈ f3 have sta-

bilised, should be similar to the differential scheme. A second implication is that the

bidirectional scheme should converge towards the MMSE level due to the equivalence

between the differential scheme and the MMSE solution [15]. Figure 5.2 illustrates the

analytical performance using the expressions given in Section 5.5.1. The correlation
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Figure 5.2: SINR comparison of simulated and analytical performance curves of the

proposed NLMS algorithms over a single path channel.

matrices are calculated via ensemble averages prior to commencement of the algorithm

and G[0] = K[0] = I. In Figure 5.2 one can see the convergence of the simulated
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schemes to the analytical and MMSE plots, validating the presented analysis. Due to

the highly dynamic nature of the channel, using the expected values of the correlation

matrix alone cannot capture the true transient performance of the algorithms. However,

the convergence period of the analytical plots within the first 200 iterations can be con-

sidered to be within the coherence time and therefore give an indication of the transient

performance relative to other analytical plots. Using this justification and the aforemen-

tioned analysis, advantages should be present in the transient phase due to the additional

correlation information supplied by F2 and F3. This conclusion is supported by Figure

5.2 and the similar forms of the analytical and simulated schemes relative to each other

and their subsequent convergence.

SINR Performance

The SINR/SNR performance of the proposed algorithms is given by Figures 5.3 to 5.5.

The performance of the CG implementations of the differential and bidirectional algo-

rithms is significantly above that of the RLS during convergence; however, a contribut-

ing factor towards this is the extra initialisation flexibility and convergence performance

that the CG provides. Figure 5.4 shows in more detail the performance improvement

obtained during convergence by the bidirectional CG scheme compared to the CG im-

plementation of the existing differential scheme. This improvement can be attributed to

the additional correlation information that the bidirectional scheme utilises. A 1dB gain

is present during convergence but as the algorithms approach steady state this margin

diminishes; however, this convergence improvement leads to significant BER gains as

illustrated in Figure 5.6. As expected from the previous analysis, the differential and

bidirectional algorithms converge close to the MMSE optimum and the conventional

non-differential schemes are unable to track the unfaded symbols at such a high fading

rate and therefore do not converge.

The bidirectional NLMS algorithm provides more significant improvements over

the differential scheme, both in the final stages of convergence and steady-state. As
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Figure 5.3: SINR/SNR performance comparison of proposed CG algorithms over a

single path channel where all schemes have been trained with 150 symbols and then

switched to decision directed mode.
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Figure 5.4: Detailed SINR/SNR convergence performance comparison of proposed CG

algorithms over a single path channel where all schemes have been trained with 150

symbols and then switched to decision directed mode.
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with the CG implementations, these differences can be accounted for by the reduced

receive signal power, the matrices equivalent to F2 and F3 improving the consistency

of the steady-state performance by reducing the impact of weakly-correlated samples,

and the NLMS’s suitability to data reuse as in the AP algorithm. Once again the con-

ventional adaptive schemes are unable to converge or track the solution due to the more

demanding task of tracking both the fading coefficients and suppressing MUI.
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Figure 5.5: SINR/SNR performance comparison of proposed NLMS algorithms over

a single path channel where all schemes have been trained with 150 symbols and then

switched to decision directed mode.

The BER performance of the differential and bidirectional schemes is illustrated in

Figure 5.6 where the system parameters are equal to those of Figures 5.3 and 5.5. The

RLS and CG algorithms converge to near the MMSE level with the bidirectional scheme

providing a significant performance improvement. The NLMS schemes exhibit slower

BER convergence compared to their SINR performance but reach a level where deci-

sion directed operation can take place in a severely fading channel. Due to the superior

performance of the CG and RLS based algorithms it is their performance that is the

predominant focus of the remainder of this chapter. As expected, the poor SINR/SNR

performance of the conventional schemes has translated into equally poor BER perfor-
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mance in as much that the schemes do not converge and are unable to reliably obtain

the transmitted symbols.
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Figure 5.6: BER performance comparison of proposed schemes during training over a

single path channel.
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Figure 5.7: SINR/SNR performance versus fading rate of the proposed CG schemes

over a single path channel after 200 training symbols.
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Figure 5.8: BER performance versus fading rate of the proposed CG schemes over a

single path channel after 200 training symbols.

Figures 5.7 and 5.8 illustrate the SINR/SNR and BER performance of the pro-

posed CG and RLS algorithms over a range of fading rates. Although the conventional

schemes provide good performance at slow fading rates, they are unable to perform

adequate interference suppression at fading rates in excess of Ts fd = 0.001. The bidi-

rectional schemes provide improved performance at low fading rates compared to the

differential methods but also provide extended performance until fading rates above

Ts fd = 0.01 are reached, at which point their performance declines in line with the

differential CG. Although the 200 symbol data-record of Figure 5.8 has not allowed

the BER plots to fully converge (see Figure 5.6) and the bidirectional and differential

schemes to reach their error floor, the advantages of the bidirectional schemes are still

evident up to a fading rate of approximately 0.04. Similarly, considering Figure 5.7, the

200 symbol data-record has extended beyond the initial stages of convergence during

which the bidirectional CG schemes obtain their SINR/SNR advantage over the differ-

ential schemes (see Figure 5.4). Consequently, the full extent of the SINR/SNR gains

provided by the bidirectional schemes are not evident in Figure 5.7. Once again, the
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increase in performance provided by the bidirectional schemes can be accounted for

by the increased correlation information supplied by the matrices F2 and F3, and data

reuse. The introduction of the mixing factors into the bidirectional algorithm improves

performance further, especially at higher fading rates. A first reason for this is the im-

provement in consistency as previously mentioned. However, a second more significant

reason can be established by referring back to the observations on the correlation factors

f1−3. Although fading rates of 0.01 may be fast, the assumption h[i−2] ≈ h[i−1] ≈ h[i]

is still valid. Consequently, f1 ≈ f2 ≈ f3 and equal weighting is adequate. However,

as the fading rate increases beyond Ts fd = 0.01 this assumption breaks down and the

correlation information requires unequal weighting for optimum performance, a task

fulfilled by the adaptive mixing factors.
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Figure 5.9: SINR/SNR performance over a single path channel of the proposed CG

schemes with switching and mixing factors.

A more detailed plot illustrating the performance advantages of the CG switching

and mixing parameters presented in Section 5.3 is given by Figure 5.9. The switching

approach provides little improvement over the standard bidirectional scheme due to its

discrete and non-adaptive operation. As previously covered, a low instantaneous value

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



CHAPTER 5. BIDIRECTIONAL ALGORITHMS FOR INTERFERENCE SUPPRESSION IN

DS-CDMA SYSTEMS 168

of f1−3, as indicated by a large power differential, does not indicate that all informa-

tion gathered on f1−3 is redundant. The mixing parameter implementations address this

shortcoming by adaptively setting the parameters via the error weight expression (5.16)

that accurately reflects the averaged correlation factors. At a fading rate of Ts fd = 0.02

the assumption of f1 ≈ f2 ≈ f3 begins to diminish in accuracy and therefore unequal

weighting is required for performance in excess of the standard bidirectional scheme,

this is shown in Figure 5.9.
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Figure 5.10: SINR/SNR performance over a single path channel of the proposed NLMS

schemes with mixing factors.

Figure 5.10 illustrates the performance improvements brought about by introducing

the mixing parameters to the bidirectional NLMS scheme. As for the CG scheme, im-

provements are present both during convergence and steady-state. The origin of these

benefits is once again the increased correlation information available to the algorithm

and the unequal weighting of the correlation information.

The MUI suppression of the proposed and existing schemes is given by Figure 5.11.

The bidirectional scheme has significantly improved multiuser performance compared

to the differential algorithms at low system loads but diminishes as the number of users
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Figure 5.11: BER performance against system loading after 500 symbols of the pro-

posed schemes over a single path channel. Schemes are trained with 150 symbols and

then switch to decision directed operation.

increases. This characteristic supports the analytical conclusions of Section 5.5.1 by

virtue of the convergence of the differential and bidirectional schemes and the increasing

accuracy of (5.59) as system loading, and therefore received power, increases.

5.6.2 Cooperative DS-CDMA

To further demonstrate the performance of the proposed schemes they are now applied

to an AF cooperative DS-CDMA system given by Figure 5.12. The expressions for the

received signals after chip-pulsed matched filtering and sampling at the nth relay and the

destination nodes are given by

rsrn
[i] =

K∑

k=1

ask
[i]bk[i]hsrn

[i]ck[i] + nrn
[i], (5.60)

rrd[i] =

Nr∑

n=1

arn
[i]hrnd[i]rsrn

[i] + nd[i] (5.61)
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Figure 5.12: Cooperative DS-CDMA system model

and

rrd[i] =

Nr∑

n=1

K∑

k=1

ask
[i]arn

[i]hsrn
[i]hrnd[i]ck[i]bk[i] +

Nr∑

n=1

arn
[i]hrnd[i]nrn

[i] + nd[i]. (5.62)

where hsrn
[i] and hrnd[i] are the channel fading channel coefficients between the source

and nth relay, and nth relay and the destination, respectively, and nrn
[i] and nd[i] are

vectors of AWGN at the relays and destination, respectively.

Figure 5.13 shows that the bidirectional scheme obtains performance benefits over

the differential schemes during convergence but, as expected, the performance gap

closes as steady-state is reached. The inclusion of variable mixing parameters improves

performance but to a lesser extent than non-cooperative networks due to the more chal-

lenging scenario of compounding highly time-variant channels.

The BER improvement brought about by the bidirectional schemes is evident from

Figure 5.14. However, the more challenging environment of a cooperative system with

compounded rapidly fading channels has impacted on the BER performance of the

schemes as evidenced by the increased performance gap between the proposed schemes

and MMSE reception.
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Figure 5.13: SINR/SNR performance of the proposed CG schemes during training in a

single path cooperative DS-CDMA system.
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Figure 5.14: BER performance of the proposed CG schemes during training in a single

path cooperative DS-CDMA system.
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5.7 Summary

In this chapter, a bidirectional MMSE framework that exploits the correlation charac-

teristics of rapidly varying fading channels to overcome the problems associated with

conventional adaptive interference suppression techniques in such channels has been

presented. The ratio between successive received vectors is tracked using correlation

information gathered at 3 or more time instants in order to avoid tracking of the channel

or unfaded symbols. Variable mixing factors were introduced to optimise the weight-

ing of information from each of the considered time instants and were shown to bring

further benefits in addition to those obtained by the bidirectional scheme. An analysis

of the proposed schemes was performed and the reasons behind their performance im-

provements shown to be the additional correlation information, data reuse and optimised

correlation factor weighting. The conditions under which the differential and bidirec-

tional schemes are equivalent have also been established and the steady-state implica-

tions of this detailed. Finally, the proposed algorithms were implemented in standard

and cooperative DS-CDMA systems and were shown to outperform both differential

and conventional schemes during convergence and steady-state.
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6.1 Summary of Work

In this thesis, efficient interference suppression and resource allocation for mobile net-

works have been investigated. The current and future mobile systems of DS-CDMA

and MIMO have been considered, and the motivation behind their use detailed. Iterative

adaptive algorithms were derived and utilised to address the problems of reception in

fast-fading channels, computational complexity, interference suppression and resource

optimisation, all of which are commonly associated with mobile systems.

In Chapter 3, the problem of interference suppression in multiuser DS-CDMA was

considered. The use of extended spreading sequences in DS-CDMA systems increases

flexibility and MUI suppression capabilities but complicates the task of reception. To

address this, an SM reduced-rank framework based on JIO of adaptive filters was pro-

posed. This enabled the use of direct detection without the requirement of large dimen-
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sionality adaptive filters. The application of SM techniques to reduced-rank methods

resulted in improved convergence and complexity through the use of optimised con-

vergence parameters and the removal of redundancy associated with SM techniques.

NLMS and BEACON algorithm were derived and analyses of their stability and MSE

performance presented. Simulations showed equivalent or improved performance of the

proposed algorithms compared to existing techniques whilst achieving a significant re-

duction in computational complexity.

In Chapter 4, the task of resource allocation in cooperative MIMO systems was

addressed. A novel combination of jointly operating DSAs was utilised to provide a

low-complexity TDS and RS framework that performed antenna and relay optimisation

of the second phase whilst avoiding exhaustive searching. The RS process discarded

the most poorly performing relays thereby refining and reducing the set over which

TDS then takes place. This minimises the chance of channel mismatch between the

first and second phases, leading to increases in achieved diversity and interference sup-

pression performance over a range of MMSE reception techniques. The use of DSAs

was extended to joint operation with adaptive continuous power allocation. RS was

utilised to constrain the transmit power of poorly performing relays to zero, thereby

reducing the dimensionality of structures used in the optimisation process. This led to

improved convergence and steady-state performance. Conditions for the convergence

of the DSAs were stated, and the diversity effects and feedback characteristics of the

proposed schemes established. The derived algorithms were applied to a cooperative

MIMO system and their interference suppression and diversity performance confirmed.

Lastly, non-Wiener performance of LMS interference suppression was exploited in the

cooperative system to achieve performance in excess of the ‘optimum’ linear MMSE

interference suppression filter.

In Chapter 5, a bidirectional MMSE scheme that achieves robust interference sup-
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pression in severely time-varying fading channels was derived. The proposed algorithms

exploit the correlation between channel coefficients at 3 or more time instants to track

the ratio between successive receive vectors as opposed to tracking unfaded or faded

symbols. Variable mixing factors were introduced to optimise the use of correlation

information from the plurality of time instants and extend and improve the performance

of the proposed algorithms. NLMS and CG algorithms were given and their improved

performance confirmed via simulation in standard and cooperative DS-CDMA systems.

An SINR based analytical framework was derived and applied to the proposed algo-

rithm. This provided insight into the operations of the proposed algorithms but also the

factors behind their improved convergence and steady-state performance.

6.2 Future Work

The frameworks and algorithms presented in this thesis can be applied to a wide range

of systems beyond those covered, including WSNs, beamforming, and multi-carrier

CDMA. Future extensions of the work presented in this thesis are as follows.

Joint discrete-continuous optimisation problems are found in a large number of com-

munications systems. In the future, OFDM based mobile protocols are anticipated due

to their capacity and robustness [18]. The allocation of subcarriers and transmit power

in these systems are discrete-continuous optimisation problems, respectively, due to the

finite number of subcarrier and data rates. Consequently, the joint DSAs and continu-

ous SG algorithms of Chapter 4 have great potential in these systems and is a promising

avenue of research.

The bidirectional algorithms of Chapter 5 achieve significantly improved robust-

ness to fast-fading compared to existing DS-CDMA schemes. However, although these

schemes also exhibit improved convergence, it is limited by the length of the adap-
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tive filters, which in turn is determined by the length of the channel and spreading

sequences. Reduced-rank methods of the sort presented in Chapter 3 and related re-

search literature [70] can address this limitation by performing signal estimation and

detection based on bidirectional principles in a reduced-rank subspace. The integration

of these methodologies will allow reduced dimensionality adaptive structures to be used

in reception and interference suppression thereby obtaining further improved MUI sup-

pression, convergence and tracking performance.

The application of bidirectional techniques to direct detection schemes in frequency

domain interference suppression and equalisation [135] would be of significant interest.

In such a methodology it is envisaged that a process with a similar structure to that

presented in Chapter 5 would be performed after the inverse Fourier transform has been

applied to a received signal that has been matched filtering and had any cyclic prefix

removed. The bidirectional procedure would then be able to exploit the correlation

present in the frequency domain of the received signal, leading to improved convergence

and robustness of the direct adaptation process.

The work in this thesis assumes perfect synchronisation between multiuser/multinode

transmissions; however, achieving this or suppressing the effects of imperfect synchro-

nisation are not trivial tasks. Investigation into methods of achieving synchronisation

in cooperative MIMO networks and the effects of asynchronous transmission on all the

proposed schemes would be of great interest and practical importance [31,33,136,137].

Patrick Clarke, Ph.D Thesis, Department of Electronics, The University of York 2011



List of Symbols

E[·] Expectation

IM M × M Identity matrix

trace(·) Trace of a matrix

∇ Gradient

‖ · ‖ Euclidean Norm

| · | Absolute value

diag[x] Matrix whose main diagonal is composed of the elements of x

j∑

i

Summation with limits i→ j

ℑ(·) Imaginary part

ℜ(·) Real part

⊗ Kronecker product

x ∈ y x is an element of Y

#(·) Cardinality of a set

∅ Null set

x ⊂ y x is a subset of y

sgn[·] Signum function
(

x

y

)

From x choose y

x ∩ y Intersect of x and y

177



Glossary

AF Amplify-and-Forward

AoA Angle of Arrival

AP Affine Projection

AS Angle Spread

AVF Auxiliary-Vector Filtering

AWGN Additive White Gaussian Noise

BEACON Bounding Ellipsoid Adaptive Constrained Least Squares

BER Bit-Error-Rate

BPSK Binary Phase Shift Keying
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CG Conjugate Gradient

DF Decode-and-Forward

DS Direct Sequence

DS-CDMA Direct-Sequence Code-Division Multiple-Access
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GSM Global System for Mobile Communications
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178



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 179

I-METRA Intelligent Multi-Element Transmit and Receive Antennas

ISI Intersymbol Interference

JIDF Joint and Iterative Interpolation, Decimation and Filtering

JIO Joint Iterative Optimization

LMS Least Mean-Square

LS Least Squares

LTE Long Term Evolution

MAI Multiple-Access Interference

MAP Maximum A Posteriori

MI Mutual Information

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MLE Maximum Likelihood Estimator

MMSE Minimum Mean-Square Error

MSE Mean Square-Error

MSWF Multistage Wiener Filter

MUD Multiuser Detection

MUI Multiuser Interference

NLMS Normalised Least Mean Square

OBE Optimal Bounding Ellipsoids

OFDM Orthogonal Frequency Division Multiplexing

PC Principal Components

PDF Probability Density Function

PIC Parallel Interference Cancellation

PR Pseudo-Random

PSD Power Spectral Density
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RS Relay Selection

SG Stochastic Gradient

SIC Successive Interference Cancellation

SINR Signal-to-Interference-plus-Noise Ratio

SISO Single-Input-Single-Output

SM Set-Membership

SNR Signal-to-Noise Ratio

SOP State Occupation Probability

STBC Space-Time Block Coding
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TDMA Time Division Multiple Access
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UMTS Universal Mobile Telecommunications System
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