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ABSTRACT 

Cutting tools with ceramic inserts are often used in the process of machining many types of 

super alloys, mainly due to their high strength and thermal resistance. Nevertheless, during 

the cutting process, the plastic flow wear generated in these inserts enhances and 

propagates cracks due to high temperature and high mechanical stress. This leads to a very 

variable failure of the cutting tool. Furthermore, in high-speed rough machining of nickel-

based super alloys, such as Inconel 718 and Waspalloy, it is recommended to avoid the use 

of any type of coolant. This in turn, enables the clear visualization of cutting sparks, which in 

these machining tasks are quite distinctive.  

The present doctoral thesis attempts to set the basis of a potential Tool Condition Monitoring 

(TCM) system that could use vison-based sensing to calculate the amount of tool wear. This 

TCM system would work around the research hypothesis that states that a relationship exists 

between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 

structure) inserts experience during a high-speed machining process, and the evolution of 

sparks created during the same process. A successful TCM system such as this could be 

implemented at an industrial level to aid in providing a live status of the cutting tool’s 

condition, potentially improving the effectiveness of these machining tasks, whilst 

preventing tool failure and workpiece damage. 

During this research, sparks were analyzed through various visual methods in three main 

experiments. Four studies were developed using the mentioned experiments to support and 

create a final predictive approach to the TCM system. These studies are described in each 

thesis chapter and they include a wear assessment of SiAlON ceramics, an analysis of the 

optimal image acquisition systems and parameters appropriate for this research, a study of 

the research hypothesis, and finally, an approach to tool wear prediction using Neural 

Networks (NN). To carry out some of these studies, an overall methodology was structured 

to perform experiments and to process spark evolution data, as image processing algorithms 

were built to extract spark area and intensity. Towards the end of this thesis, these spark 

features were used, along with measured values of tool wear, namely notch, flank and crater 

wear, to build a Neural Network for tool wear prediction. 
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1 INTRODUCTION 

1.1 Study Motivation 

Today’s manufacturing industry continues to have a strong dependence on traditional 

machining processes for piece formation such as Turning and Milling, and when great 

productivity is demanded, a High Chip Removal Rate (HCRR) becomes essential. Researchers 

have hence explored the effect of different machining properties and factors to achieve 

HCRR, as illustrated by Figure 1.1  (Grzesik 2008; Dashchenko 2012). There are several 

different parameters associated with the machining process, such as feed, depth of cut and 

cutting speed, which could be altered to obtain a high chip removal rate. The most common 

choice for increasing removal rate is to increase the cutting speed, given that increasing the 

other two parameters could result in a wider chip cross-section, and hence much higher 

cutting forces (Liu et al. 2002; Casto et al. 1993; Altin et al. 2007). High-speed machining, 

which produces high chip removal rates with low energy consumption, has proved to deliver 

these outcomes (X. Tian et al. 2013; Addhoum & Broussaud 1989).  

 

Figure 1.1: Machining sequence of factors for high productivity. 

However, when the cutting speed is increased, this results in higher stresses and higher 

temperatures in the cutting area, therefore demanding greater strength and thermal 

resistance from the cutting tool. Traditional cemented tungsten carbides have good 

performance up to around 800 °C however, at higher temperatures, their strength decreases 

dramatically. By contrast, ceramic cutting tools show good performance up to 1200 °C (Casto 

et al. 1993). These tools are hard materials with high hot-hardness that are unreactive with 

the workpiece. More importantly, these materials can machine at high cutting speeds, as 

they can work at 20 to 30 times faster than carbides (Sandvik Coromant n.d.; Sandvik 

Coromant 1994). Even though ceramic tools have a short tool life regarding machining time 

of between 4 to 8 minutes, they more than compensate this when compared to any other 

carbide tool, making them cost-effective (Richards & Aspinwall 1989). In the case of heat 

High 
Productivity

High Chip 
Removal Rate

High Speed 
Machining
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resistant super alloys (HRSA), in the current aero-engine manufacturing industry, the 

performance temperature for efficient combustion regimes has increased. This has resulted 

in tougher HRSA that are harder to cut and hence, slowing machining removal rates. 

Ceramics, however, have proved to enable very high-speeds, balancing performance and 

price (Bitterlich et al. 2008; Renz et al. 2015).  

SiAlON ceramic cutting tools are solid solutions based on the Si3N4 structure and are widely 

used in high-speed milling of nickel-based super alloys. This material has a high fracture 

toughness, hot strength and great thermal shock resistance, making them very efficient in 

rough milling alloys such as Inconel 718 and Waspalloy (Zheng et al. 2012; Xianhua Tian et 

al. 2013; Arunachalam & Mannan 2000). However, the plastic flow wear, due to high 

temperature and high mechanical stress generated in these cutting tools, enhances and 

propagates cracks. This condition can sometimes result in unpredictable wear, which could, 

in turn, result in catastrophic failure and possible damage to the workpiece. 

Kurada and Bradley (1997a) state that “Timely change of the cutting tool toward the end of 

its useful life prevents inferior surface finish quality (leading to scrap and re-work costs) or 

worse, damage to the machine tool itself.” Hence, tool replacement can be of extreme 

importance in machining processes. Furthermore, tool replacement can be catalogued into 

two categories, depending on the value of the workpiece. In the first, the workpiece value 

may be lower than the cost of machine downtime and tool change. This scenario is commonly 

found in a large production environment, where a constant flow of a manufacturing chain is 

highly important. Therefore, in these cases, a complete degradation of the tool is generally 

desired, regardless of potential damage to a workpiece. On the other hand, in the second 

category, the value of the workpiece is comparatively higher than possible machine 

downtime. In these cases, possible damage to the workpiece could be costly, and hence the 

tool has to be changed before unacceptable results are reached (D’Addona & Teti 2013). 

Workpieces composed from HRSA are regarded in the second category, as the value of these 

materials is extremely high, compared to the cost of a cutting tool such as SiAlON ceramics. 

For this reason, Tool Condition Monitoring (TCM) has become an important area of study in 

the manufacturing industry (Byrne et al. 1995). By continuously monitoring the actual wear 

that cutting tools develop, it would be possible to prevent either discarding of the tools when 

they are still usable or, alternatively, over-usage that could lead to failure and possible 

damage to the workpiece. This last is especially important with ceramics’ cutting speeds, 

where if a tool fails at a cutting speed of around 1000 m/min, the possibility of creating 
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significant damage to the workpiece and scrap it is quite high, compared to slower speeds 

with carbides where it is less severe and unlikely to be scrapped. 

Over the years, there has been a continuous transformation of manufacturing machines, 

evolving into more automated and unmanned systems. In modern industry, 20% of the 

downtime in production is attributed to tool failure and TCM systems could help prevent this 

by being integrated with an automation of manufacturing machines (Kurada & Bradley 

1997b). Furthermore, TCM can be divided into two areas: direct and indirect monitoring. In 

Direct methods, tool wear is measured by direct assessment of the worn cutting tool, using 

techniques such as optical measurements in a microscope or tactile sensors. Indirect 

methods, on the other hand, try to use parameters or signals such as acoustic emissions, 

cutting forces and visual sensors (acquiring visual data of other factors other than the actual 

cutting tool) to evaluate the state of the worn tool (Pfeifer & Wiegers 2000); where this last 

indirect technique of visual sensing has become the centre of study of the present research. 

Using Digital Image Processing (DIP), visual sensors can perform a live and continuous 

extraction of information from areas of interest, such as a cutting tool in a machining process 

(Kurada & Bradley 1997a). DIP refers to the processing of digital images through a computer, 

generally done through software that can manipulate the structure of the images and extract 

relevant information (Gonzalez & Woods 2010). The relatively low cost and high availability 

of vision sensor devices, such as CCD cameras or SLR cameras, has enabled their use in 

different aspects of TCM. At present, however, most of the vision-based TCM rely on 

processing direct images of the cutting tools; and to obtain these images, the machining 

process has to be interrupted and the tool removed (D’Addona & Teti 2013; Kurada & 

Bradley 1997b; Pfeifer & Wiegers 2000; Teshima et al. 1993). This can be a time-consuming 

process that can reduce cost-effectiveness in a process. As a representative example with 

information provided by Flores (2015), technical staff in the Mexican metal forging company 

FRISA use ceramic inserts during a standardised period of 5 minutes to prevent tool failure, 

regardless of the actual ceramic tools’ condition. Furthermore, tools are inspected every 

minute, with an average inspection time of 30 seconds and a mean insert changing time of 5 

minutes. Therefore, considering an average of 200 inserts used per day and a machining cost 

of 50 USD/hour, a successful low-cost live monitoring system could significantly improve 

machining cost effectiveness. This is apart from possible damage to workpieces that normally 

have a value of thousands of dollars. It is therefore also relevant to mention that the wear of 

ceramic tools is not fixed with time, as it varies greatly depending on machining parameters 

and the cutting tool composition. 
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The milling of nickel-based super alloys with SiAlON cutting tools is generally performed 

without the use of coolant, which could generate a thermal shock that could enable tool 

failure. This dry milling condition, however, enables the formation of large and very visible 

sparks emanating from the cutting area as shown in Figure 1.2.  

 

Figure 1.2: High-speed dry milling process of nickel-based super alloy using SiAlON cutting 
tools. 

Therefore, the present doctoral thesis intends to examine the main research hypothesis of 

an existing intrinsic relationship between the SiAlON ceramic cutting tool wear and the 

behaviour of the milling process’ cutting sparks. Through several machining experiments, 

different research objectives were analysed to support this hypothesis and develop the basis 

of a vision-based TCM system. Therefore, initially, a tool wear assessment was performed to 

understand and categorise tool wear mechanisms, presenting as well relevant methods of 

tool wear measurement. Then the behaviour of cutting sparks through computer vision and 

image processing was examined, and the suitable image acquisition systems and parameters 

were assessed. This spark behaviour would be later compared to the measured tool wear to 

understand the relationship established by the research hypothesis. Finally, a Multi-Layer 

Neural Network was developed and implemented to predict cutting tool life. The ultimate 

objective of this research would be to create a fully integrated live TCM that could be 

implemented at an industrial level. Such a system could be used by technical staff as a 

companion instrument that could increase machining time and prevent tool failure. 

Alternatively, machining sequences could be automatically modified to include a tool change 

in response to a wear level signal provided by such a TCM system, given the capabilities of 

the modern machines of online integration with other systems. 
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1.2 Aim and Objectives 

Given the previously stated research hypothesis, the main aim of this work was:  

To set the basis for a potential live tool condition monitoring system that, using digital image 

processing to analyse the cutting sparks behaviour, could predict the tool life of SiAlON 

ceramic inserts whilst high-speed milling nickel-based super alloys.  

Where the main research objectives were: 

1. To review existing literature on TCM systems, specifically research involving vision-

based TCM systems. 

2. To plan and carry out experimental testing to collect cutting spark data and tool wear 

data. 

3. To assess the wear of SiAlON ceramic inserted tools whilst analysing the appropriate 

wear measurement techniques for data collection. 

4. To evaluate and select the optimal image acquisition system and parameters, 

appropriate for the desired application.  

5. To evaluate and give evidence of the existence of a spark – tool wear relationship to 

support the research hypothesis. 

6. To implement a machine learning algorithm for tool life prediction and evaluate its 

accuracy. 

1.3 Thesis Structure 

As per the research aim and objectives, this section will summarise the structure that was 

chosen for the present written work. It is important to mention that, after careful and 

extended consideration, the traditional chronological layout of a doctoral thesis was not 

selected. During the four years of the doctoral programme, tackling each research objective 

mentioned above was highly dependent on the decisions and planning behind 

experimentation, material procurement and data processing. The main issue was that of 

material procurement, which took unexpected periods of time, and therefore, the order of 

the research activities had to be adjusted. For this reason, the present thesis was divided 

into a series of semi-independent studies, each using data from the different experiments 

carried out. This structure was deemed to be clearer for the reader, trying to avoid repetition 

and creating a web of support and justification between chapters. 

Chapter 2 attempts to give a broad picture of the literature that surrounds and supports this 

work. It includes a selection of articles about ceramic cutting tool wear and tool wear 
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measurement, as well as literature on tool condition monitoring, including articles of vision-

based, direct and indirect methods of TCM. Towards the end of that chapter, a review of the 

theoretical background of digital image processing and neural networks is included.  

Chapter 3 includes the methodology followed during experimentation and data processing, 

where a general experimental set-up is presented and explained, the data processing 

methods are stated, and the specific resources and parameters of each experiment are 

mentioned. 

In chapter 4, two techniques for measuring tool wear are explored, one using image 

processing to perform geometrical measurements, and the other technique includes an 

attempt to calculate wear volume through a stereovision approach. The successful 

techniques for wear measurement were used in subsequent chapters to extract wear data 

from experimental testing. Additionally, this chapter includes a wear assessment of SiAlON 

ceramic cutting tools, identifying the different primary and secondary wear mechanisms 

involved. The results obtained were compared and contrasted to the literature found. The 

findings that this chapter delivered were of high relevance for the final chapter of this thesis, 

supporting some of the decisions made. 

Chapter 5 carries out a study of the different image acquisition systems used in 

experimentation, analysing their strengths and limitations, as well as examining the 

parameters used in those systems. The chapter is subdivided into two analyses, 

corresponding to two experimental datasets, with the objective of selecting the optimal 

systems and parameters for the present research. The results and conclusions found in this 

chapter were of importance for the planning of other experimental tests, and the 

optimisation of the image processing algorithms used. 

Chapter 6 is also subdivided into two analyses with the objective of exploring and supporting 

the main research hypothesis. Two experimental datasets are used, processed and analysed 

to give evidence of the spark – tool wear relationship. This is a crucial chapter, as it would 

set the basis of the entire concept of a vision-based TCM system, cementing the foundations 

of the subsequent and final chapter. 

Chapter 7 combines the conclusions found in the results of previous chapters, as a Neural 

Network (NN) was implemented to predict the tool wear of ceramic inserts. At the beginning 

of this chapter, some testing parameters and a revision to the methodology used in previous 

tests was described. Then, the fundamentals of two-layer neural networks were included, 
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along with the structure of the implemented NN and a general NN algorithm. After this, the 

NN implementation and their results were divided into three approaches to understand the 

network’s behaviour. The first approach created individual networks for each test, whilst the 

second approach used randomised data points of the all the tests to build a single NN. The 

third and final approach included the full information of individual tests to build a single NN. 

All these approaches included different results of accuracy, and therefore, some important 

conclusions will be found in this chapter. 

 The final chapter 8 of general conclusions include a summary of all the discussions written 

in all the chapters of this thesis, followed by three sections: contributions, further research 

implications and further implementation implications. The second section refers to the 

future work and implications found if the research was continued research, whilst the third 

section refers to the implications of the implementation of the proposed system in a more 

realistic and industrial scenario. 

1.4 Background 

The research work presented in this thesis is a continuity of the authors MSc dissertation 

project. That research programme included a partnership with the University of Sheffield’s 

Advanced Manufacturing Research Centre, as the research project was in conjunction with 

them. It was there that the possibility of a spark - tool wear relationship was identified, as 

some technical staff could identify the wear condition of cutting tools with good accuracy by 

simple visual inspection. This motivated the idea of searching the features and relations that 

their expert eyes identified and try to replicate this for an automated system of tool 

condition monitoring. 

Inside that study, an initial approach to the basis of this tool condition monitoring system 

with image processing of sparks was established. Through the set of experiments described 

in section 3.3.1, it was possible to create the initial version of the image processing 

algorithms that would be optimised in this work. However, at that moment, only the spark 

intensity approach was explored, performing an analysis of the appropriate filtering 

techniques. Furthermore, the initial foundations of the crater wear area measurement 

approach described in section 4.1.1 were established.  

It was found in that initial study that the spark intensity was an appropriate feature for 

successful qualitative correlation with tool wear. Inside the mentioned study of the optimal 

filtering techniques, three frequency domain filters were tested, namely a high-pass filter, 

band-pass filter and low-pass filter. It was concluded that the best filtering technique for 
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spark intensity extraction was a low-pass filter, which will be furtherly described in section 

2.3.2 and implemented in section 3.2.2. Additionally, given that an initial comparison of spark 

evolution and tool wear was carried out, it was found that the main research hypothesis 

could be supported, but that more work was needed. This resulted in the continuation of 

this research into the present doctoral study. 
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2 LITERATURE REVIEW 

This chapter provides a critical review of the relevant literature along with justification for 

some of the choices made by the author during the experimental work. However, whilst the 

bulk of the relevant literature is discussed in this chapter, there will be a discussion of other 

relevant literature at upcoming chapters.  

2.1 Ceramic Cutting Tools and Wear 

As proposed in chapter 1 and described in section 1.4, the present research includes different 

aspects of tool wear condition monitoring. For this reason, it is important to lay out the 

foundations behind tool wear (with special regard to ceramic cutting tools and nickel-based 

super alloys), as well as general tool wear assessment theory with an interest in SiAlON 

ceramics. The focus on wear in SiAlON ceramics will be of great relevance for the assessment 

and discussion conducted in chapter 4. 

With the constant development and evolution of advanced manufacturing technologies, in 

conjunction with the pursuit of high productivity, the reduction of manufacturing costs and 

energy consumption have become widely desired. In metal cutting, this has translated into 

advanced machining technologies, where chip removal rates can be increased without 

sacrificing workpiece accuracy (Addhoum & Broussaud 1989; X. Tian et al. 2013a). There are 

two main methods of achieving high chip removal rates. These are (1) increase cutting speeds 

or (2) increase chip cross section. The second method is less desirable due to deflection and 

stability constraints, whereas the increase of cutting speeds has been the preferred option 

for modern industry, translated into what is known as high-speed machining. However, the 

increase of cutting speeds creates high stresses and high temperatures in the tool-workpiece 

interface, resulting mostly in tool material softening (Addhoum & Broussaud 1989; Liu et al. 

2002).  

High-speed machining has been applied in many manufacturing industries. One of these is 

the aerospace industry, where Heat Resistant Super Alloys (HRSA) are commonly used for 

many components (Liu et al. 2002). Nickel-based super alloys are a type of HRSA widely used 

for engine parts due to their high-temperature strength, high toughness and resistance to 

degradation by corrosion or oxidation (Zhu et al. 2013). Therefore, any machining process of 

these super alloys demands cutting tool materials that can cope with these workpiece 

properties whilst withstanding the extreme process conditions mentioned above. 
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2.1.1 Ceramic Cutting Tools: SiAlON 

Ceramic cutting tools have been found to possess excellent material properties for the 

turning and milling of super alloys and other hard materials. For instance, ceramic tools 

soften at about2200 °C, whereas carbide tools soften at about 870 °C. This condition is known 

as hot hardness, and Figure 2.1 shows the Vickers hardness against temperature for different 

cutting tool materials (Grzesik 2008). Ceramic cutting tools also demonstrate a good balance 

between performance and cost, being able to bear cutting speeds 20 to 30 times faster than 

carbides, making them quite cost effective (Casto et al>, 1993; Sandvik Coromant, 2010a).  

 
 

Figure 2.1: Tool hardness (Vickers) against temperature (°C) for different cutting tool 
materials (Grzesik 2008). 

Ceramic cutting tools can be divided into two main groups: ceramics based on aluminium 

oxide (Al2O3), and the ones based on silicon nitride (Si3N4). This last group has high fracture 

toughness, high strength and very good thermal shock resistance, making them able to 

maintain their hardness at very high temperatures (Grzesik 2008). SiAlONs are solid solutions 

based on the silicon nitride and are broadly used for machining nickel based super alloys. 

They are more chemically stable than fully dense silicon nitride tools, with high strength and 

fracture toughness (Grzesik 2008; Zheng et al. 2012). However, SiAlON cutting tools, as well 

as most other ceramic cutting tools, tend to have a short tool life. Richards & Aspinwall 

(1989) compared a machining process of a turbine engine compressor disc using carbide 

tools and SiAlON tools. Their results showed that carbide tools gave a tool life of around 20 

min whilst the ceramic cutters only gave 4 min of time life. However, when the machining 

parameters of speed and feed were compared, there was an increase by a factor of seven. 

In recent years, these cutting tools are extensively used in rough milling due to their cost 

effectiveness, being faster than regular carbides (Arunachalam & Mannan 2000). 



2.1  Ceramic Cutting Tools and Wear 

 

11 
 

2.1.2 Cutting Tool Wear 

The cutting parameters selected for every high-speed machining process are generally 

maximised to assure high productivity. This condition creates extreme cutting conditions 

where tool life becomes shortened. These conditions include high temperatures, prone to 

oxidation, diffusion and thermal wear and high sliding contact pressures that promote 

intense tool wear, leading to tool failure. Therefore, tool wear becomes a rich tribological 

phenomenon where different wear mechanisms can generally be identified (Astakhov 2006).  

Regarding tool wear, there are six different secondary tool wear mechanisms shown in Figure 

2.2, which are standardised by ISO 3685 and are widely studied and used to determine tool 

properties and tool life: 

1. Crater wear (or rake face wear) is found on the rake face of the cutting tool, generally 

caused by the chemical interaction of the insert’s rake face and the hot chip. 

2. Flank wear is found on the clearance side of the cutting tool and it is promoted by 

abrasion and sliding wear between tool and workpiece. This mechanism is commonly 

used in wear assessment studies of cutting tool materials. 

3. Built-up edge occurs when machining low carbon steels and nonferrous materials at 

low speeds, and where there is welding of the material chip onto the cutting tool. 

4. Notch wear can be found at the side of the flank face of the cutting tool, and it is 

mainly due to the abrasion of the hard, outer edge of the hot chip. This is especially 

serious with nickel-based super alloys, as they have high work-hardening properties 

and generate high cutting temperatures. This mechanism can lead to tool failure due 

to tool fracture and can be minimized using round inserted tool. 

5. Nose wear tends to occur in pointed cutting tools, where there is a deformation of 

the cutting tool edge. 

6. Thermal cracks are mainly present in cyclic processes like milling, where there is a 

thermomechanical fatigue from the constant heating and cooling of the tool. This 

mechanism can lead to the dilapidation of the cutting tool due to the growth of these 

cracks (Grzesik 2008).  
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Figure 2.2: Types of tool wear per ISO 3685. 

Flank wear is the tool wear mechanism mostly used for assessment, as it can be progressive 

and easier to monitor. In Figure 2.2 it can be seen how this secondary wear mechanism is 

divided into 3 zones: zone C is identified in this case for squared or pointed tools and this 

zone is where the rounded part of the cutting edge or corner is found, zone N includes the 

notch wear, and zone B is where assessment measurements are extracted. VBB is the average 

flank wear, broadly used to evaluate tool wear development and tool life, nevertheless, VBmax 

can also be used as tool life criterion by means of a threshold.  

Furthermore, the primary wear mechanisms that are present in these secondary tool wear 

mechanisms can also be classified into five main groups: 

 Abrasive wear from the relative motion between tool and workpiece, promoting 

material loss from the sliding of hard particles of the workpiece with the cutting tool; 

mostly present in flank wear. 

 Adhesive wear can be found as part of the built-up edge secondary tool wear 

mechanism, where fragments of the hot chip adhere to the cutting tool. 

 Diffusion wear is a thermally-activated mechanism where atom migration occurs, 

however, this primary mechanism is more commonly found in carbide and tungsten 

carbide tools. 

 Oxidation wear is also promoted by high temperatures, it depends greatly on tool-

workpiece materials and cutting conditions. It consists in a chemical reaction 

between the cutting tool and workpiece materials, along with exposed air. 

 Thermal wear that occurs due to thermal softening, leading to plastic deformation 

or material fracture. (Altintas 2000; Grzesik 2008) 

Geometrical indicators of tool wear: 
VBB – Average flank wear land width. 
VBBmax – Maximum flank wear land 
width. 
VBN – Width of notch wear. 
VBC – Width of flank wear at tool corner. 
KT – Crater depth. 
KM – Distance from the cutting edge to 
the deepest crater point. 
KB – Distance from the cutting edge to 
the back crater contour. 
KF – Width of the land between the 
crater and cutting edge. 
KE – Radial displacement of the tool 
corner. 



2.1  Ceramic Cutting Tools and Wear 

 

13 
 

All these primary wear mechanisms and their relation with cutting temperature can be 

represented by Figure 2.3, which is a generic figure by Grzesik (2008) for cutting tools in 

general. Therefore, this figure would vary depending of tool wear materials. However, a 

similar graphic could not be found specifically for ceramic tools. 

 

Figure 2.3: Machining physical primary wear mechanisms as a function of cutting 
temperature (Grzesik 2008). 

Authors like Casto et al. (1993) and Zhu et al. (2013) have investigated the characterisation 

and study of ceramic tool wear mechanisms and general tool wear in machining nickel-based 

alloys. However, more detailed and earlier assessments of SiAlON’s can be found in the work 

of Bhattacharyya et al. (1983) and Aucote & Foster (1986) where both deepened into the 

tool material composition and its wear mechanisms, finding a dominating presence of 

diffusion wear, abrasion, plastic deformation and chemical wear. However, a more updated 

and detailed review of recent studies of SiAlON cutting tool wear will be presented in the 

next section. 

Finally, it is important to mention that a crucial objective of tool wear assessment is the 

determination of tool life. While this will not be taken as part of the scope of this research, 

it is important to lay out the fundamentals of this for future work. Tool life defines the 

corresponding phases of a tool’s wear in a continuous manner (through time). Figure 2.4 

shows tool life curves with the different phases or wear zones that a tool may display, taking 

the value of flank wear with respect to cutting time. It can be seen how three main zones 

include a primary wear zone, better known as the running-in period of the cutting process. 

Then there is the secondary wear zone, where the flank wear is more uniform and 
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progressive; whereas in the tertiary zone, the flank wear increases dramatically, generally 

leading to catastrophic failure.  

 

Figure 2.4: Tool life curves (Ti) at different cutting speeds (Vi) (Altintas 2000). 

The most commonly used tool life model is given by Taylor’s tool-life (Equation 2.1), where 

a tool’s life (𝑇) is as expected, inversely related to the cutting speed of the process (𝑉𝑐).  

𝑉𝑐𝑇𝑛 = 𝐶𝑡 
Equation 2.1 

Where 𝐶𝑡 is a constant known as Taylor’s constant that represents cutting speed for one-

minute tool life, and  𝑛 is an exponent depending on the material tested. 

2.1.3 Wear of SiAlON Ceramic Cutting Tools 

The different primary and secondary wear mechanisms of SiAlON ceramic tools cutting 

Inconel 718 found in literature will be discussed fully in the chapter 4. However, it is 

appropriate to include a summary of these articles in the present section.  

Three pieces of research were found to be of relevance in the present research, as they 

include the exact same cutting tools and workpiece materials. Tian et al. (2013b) tested 

various cutting speeds, from 600 m/min to 3000 m/min, analysing as well cutting forces and 

finding secondary wear mechanisms such as crater wear, flank wear, notch wear and 

microcracks. These secondary wear mechanisms would vary between cutting speeds. Zheng 

et al. (2016) also tested various cutting speeds, but in a lower range from 200 m/min to 1000 

m/min, and found the same secondary wear mechanisms also dependant on the different 

cutting speeds. Finally, Renz et al. (2015) carried out a tribochemical approach and found 
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different phases of the tool’s wear at different cutting speeds, where evidence of lubricous 

tribolayers was found. Again, these findings will be discussed and explained furtherly in the 

chapter 4, where they will be compared to the present research’s findings. 

2.2 Tool Condition Monitoring 

Referring again to the aims and objectives of the present research, this work consists in 

developing the foundations of a Tool Condition Monitoring (TCM) for the assessment of tool 

wear. Having discussed the literature on tool wear, this section will now investigate the area 

of Tool Condition Monitoring (TCM). This section centres on exposing aspects of TCM and its 

application to machining operations, with a final section on the research that relates more 

closely to this work. 

The constant evolution and development of different advanced sensing devices have made 

the task of condition monitoring of different processes and tasks more diverse and 

accessible. Also, the different data and signal processing algorithms that can be implemented 

in software programmes, have opened new possible ways of monitoring. In the specific area 

of machining, the introduction of high-speed machining has made tool condition monitoring 

very important (Byrne et al. 1995). 

According to Ambhore et al. (2015), the different methods that can be used to monitor tool 

condition can be sorted into direct and indirect methods. Direct methods involve direct 

contact with the tool and process, requiring direct measurements and manipulation of the 

cutting tools. These methods include sensing techniques such as electric resistance, optical 

sensing, radioactive sensing, tool geometry measurements and vision systems. However, 

these methods deal with the ever-present difficulty of lack of access to the actual cutting 

area of a machining process, nevertheless they tend to be more accurate. Indirect methods 

like cutting forces, vibrations, temperature analysis, acoustic emissions, surface roughness 

and vision systems, on the other hand, are not directly measured and signal processing 

techniques are needed to analyse and correlate these signals to actual conditions. Vision 

systems appear in both lists because they can be used to directly photograph cutting tools, 

in the case of direct methods, or else record external features of the machining process that 

can be related to tool wear, such as surface roughness, or in the case of this research, cutting 

sparks evolution. Ambhore et al. also mentioned that these methods typically follow the 

general sequence in systems of tool condition monitoring shown in Figure 2.5. It is however 

in the last four sections where most of the research in TCM tend to concentrate. 
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Figure 2.5: Tool condition monitoring systems general sequence (Ambhore et al. 2015). 

The search of an accurate and efficient TCM system is the main objective of most authors. 

Nevertheless, due to the great variety of machining processes, as well as the different tool 

materials, their geometries and the workpiece materials, most proposed systems seem to 

only be applicable to the certain conditions presented by their authors.  

Direct methods of measuring tool geometry are perhaps the most widely used monitoring 

and inspection methods. As it was reviewed in section 2.1.2, there are some secondary wear 

mechanisms that are generally used for wear assessment and monitoring, such as flank wear 

(either average or maximum) and crater wear (area or depth). Therefore, most of the direct 

methods consist in directly measuring, in some manner, the geometry of one or all of these 

secondary wear mechanisms. In the next section, there will be some examples of these 

methods, using vision systems and algorithms; however, since the main research of this 

thesis concentrates in the creation of an indirect TCM method, there will be a deeper analysis 

of this second group. 

Inside the indirect TCM systems, the most commonly used and researched are cutting forces, 

vibrations and acoustic emissions. For instance, Ko & Koren (1989), in a very early publication 

of TCM, compared and correlated the cutting forces in a turning operation with flank wear 

(or clearance wear) to create a model of force-wear relationship. Similarly, Zhang et al. 

(2012) also compared and related cutting forces to tool wear to support that Minimum 

Quantity Cooling Lubrication (MQCL) was the optimal lubrication system for dry end-milling 

Inconel 718. On the other hand, other authors have used machine learning algorithms to 

create TCM systems with cutting forces. One example is the work of Wang et al. (2014), 

where they created a cutting forces-based TCM system using Relevance Vector Machine 

(RVM) and compared this to a Support Vector Machine (SVM). They developed a binary 

classifier RVM that delivered more accurate results than the SVM using several training 

samples. Furthermore, they also compared the classification processing time, finding that on 

average, the RVM was 35 faster than the SVM. Likewise, Azmi (2015) used cutting forces for 

an Adaptive Network-Based Fuzzy Interference Systems (ANFIS) to monitor tool wear in an 

end milling operation of glass fibre-reinforced polymer composites. This author compared 
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two ANFIS models with different partitioning techniques (grid partitioning and subtractive 

clustering). The resulting models successfully matched the nonlinear relationship of tool 

wear and cutting forces, presenting low values of root mean square errors. 

Also, several authors have taken different approaches to relate vibrations and tool wear, 

where some have also used machine learning for tool wear analysis and prediction. Orhan et 

al. (2007) used vibration as a general tool condition monitoring method during end milling, 

by finding threshold values that matched tool wear and vibration data. Furthermore, 

Möhring et al. (2016) also evaluated vibration signal in a milling operation to find its 

relationship with wear, proposing the integration of sensors inside the milling tool for future 

prediction work. There is also the work of Venkata Rao et al. (2013), who used a Taguchi 

design of experiments method to correlate tool wear with vibrations, implementing an 

ANOVA and regression analysis to evaluate tool life. On the other hand, inside the machine 

learning side of TCM, G. F. Wang et al. (2014) used a support vector machine (SVM) decision-

making algorithm in order to compare C-SVM to v-SVM in a vibration-wear TCM system. 

Krishnakumar et al. (2015) also extracted vibration data from a high-speed machining 

operation of titanium alloy, to classify tool condition using a J48 Decision Tree and Artificial 

Neural Networks. As well, Sevilla-Camacho et al. (2015) successfully designed and 

implemented an online and real time TCM system, where digitised vibration signal was 

introduced into a single field-programmable gate array for training and monitoring of their 

prototype device. 

On the side of acoustic emissions (AE), Kannatey-Asibu & Dornfeld (1982) showed an early 

use of AE for TCM, relating this signal to flank wear by finding that the kurtosis and skew of 

a β distribution for root mean square (RMS) acoustic emission signal is sensitive to chip 

contact to the tool’s rake face and tool wear. Zhou et al. (2011) on the other hand, used AE 

to monitor tool life by implementing an auto-regressive moving average and compare results 

with cutting forces. Additionally Pawade & Joshi (2012) and Olufayo & Abou-El-Hossein 

(2015) used correlational methods to evaluate AE signal, where the first research included 

tool wear and workpiece surface roughness in the correlations, finding AE waveforms and 

amplitudes that correspond to different conditions and behaviours; the second work, 

however, only correlated AE data with tool wear, but set the basis for a proposed Neural 

Network for tool life prediction. Lastly, Ren et al. (2014) extracted AE signal data from micro 

milling operation to implement machine learning through a type-2 fuzzy logic system to 

monitor tool wear and estimate tool life.  
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While these articles showed a successful implementation of each monitoring method, some 

other authors found a similarly successful approach to TCM through a combination of 

methods. An example of this is the work carried out by Dimla & Lister (2000), where they 

analysed both cutting forces and vibrations to find their relationship with tool wear, 

proposing future work with neural networks. There is also the work of Haber et al. (2004) 

that included the use of cutting forces, vibrations and AE signal to monitor tool life. Ghosh 

et al. (2007) also combined these three signals to estimate average flank wear by 

implementing a neural network for tool wear prediction. And finally, Marinescu & Axinte 

(2008 & 2009) present two articles where AE are backed up by cutting forces signal to 

monitor tool wear and workpiece surface integrity in milling operations.  

While all these approaches and methods are successful in evaluating, analysing and/or 

predicting tool wear, they are all highly dependent on the actual machining operation 

parameters and variables, namely: machining method, machining parameters, tool material 

and geometry and workpiece material. This is, therefore, an important disadvantage of 

indirect methods of TCM, however, when correctly implemented, they do perform a very 

accurate TCM in either a real time or an online manner. 

The TCM system proposed in this research, being an indirect vision method, share this 

dependency on machining operation parameters and variables. However, the flexibility and 

effectiveness that vision could provide to a monitoring system are worth exploring. The wide 

availability of cameras and vision systems, along with their lowering costs, make these 

sensing devices more accessible. Furthermore, some of these methods require careful and 

accurate installation of devices inside the machining system. Cutting forces and vibrations 

sensors are commonly installed inside machine-workpiece fixtures, or even directly on the 

workpiece. Vision systems, on the other hand, can generally be installed almost anywhere 

inside the machining area, depending on their objective. Therefore, these systems are worth 

exploring, and different examples can be found in the next section. 

2.2.1 Vision TCM Systems 

Vision is another widely used method for both Direct and Indirect TCM. The access and costs 

of image acquisition systems have become much more accessible, and the computational 

capabilities of vision-based systems have improved significantly in the past decade. 

Furthermore, there are various imaging techniques that can be implemented for monitoring. 

The most widely used include cameras with CCD and CMOS sensors. These two types of 

sensors can efficiently capture and process a scene in the visible spectrum, either in intensity 
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levels (grey-scale) or in full colour (RGB). The main difference between these is the 

processing speed, power consumption, light sensitivity, resolution and cost. CCD sensors 

generally have higher resolution and light sensitivity, with a reduced presence of noise, 

however, CMOS sensors are much less expensive and tend to have faster processing speeds 

and lower power consumption.  

On the other side, there are other imaging techniques that deal with other multispectral 

spectral bands of light or hyperspectral bands of the electromagnetic spectrum, are mostly 

to accentuate or extract other non-visible features of a physical scene. This is the case of 

infrared cameras, which are widely used to capture temperature values. These devices are 

also broadly implemented in TCM, however, these are extremely expensive and slow 

processing cameras, and they deal with an entirely different approach than the one proposed 

in this research, as the analysis of the process temperature is out of the scope of this 

research. Similarly, imaging of other spectral bands could aid in accentuating certain features 

of the machining scene.  

Another category of imaging techniques include modalities that are mostly used in medical 

imaging. These include X-Rays and Magnetic Resonance Imaging (MRI), where both can be 

captured in 2D or as 3D tomography. However, these techniques are very expensive and 

require configurations and resources that would be very difficult to implement in a 

machining environment.  

These alternative techniques of multispectral and medical imaging methods would require 

an entirely different analysis and approach to the one proposed in this research.  Therefore, 

the traditional visible spectrum imaging was selected for this research, but the use of other 

techniques could be part of this research’s future work. 

Many researchers have also worked on different approaches to monitor tool condition using 

traditional imaging, and in some cases, predict tool life. In Table 2.1 there is a selection of 

different authors that have worked with vision as a direct method of TCM.  

Limiting to the literature regarding milling operations deemed relevant for the present 

research, it was found that most authors carried out direct imaging or measuring of cutting 

tool wear by either dismounting the tool or insert from the machine, or else doing it in-

process. Xiong et al. (2011) presented a well-round and mathematically supported approach 

to tool wear measurement through an active contour detection methodology. They 

managed to accurately and repeatedly isolate tool wear by producing a binary image that 
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includes only the worn region and where background noise was successfully and completely 

removed. However, their approach was based on complete interruption of the machining 

operation, removal of the cutting insert and use of a separate image capturing apparatus. 

This method, whilst allowing the capture of very clean and clear images, appeared to be 

highly dependent on the carefully calibrated illumination system; making this approach in-

situ rather than in-process.  

Wang et al. (2005), on the other hand, managed to develop an in-process system that 

managed to capture tool flank wear data inside the machine and while the spindle is rotating. 

They applied relatively more complex image processing techniques that included 

thresholding, segmentation and morphology operations, and used a fairly simple 

illumination system. The ability of doing the wear measurement on-the-fly is a very 

interesting and highly desirable capability, as avoiding a constant stopping of the machining 

can help preserve more continuous machine dynamics and improve machine health. As 

described in their article, this gives a high potential for industrial application. 

Li et al. (2013) present a closer study to the one presented in the current research, exploring 

the measurement of tool wear for a milling process on Inconel 718, but using PVD coated 

carbides. They present an in-process image acquisition system to capture tool wear data with 

a simple illumination system. However, the measurement of tool wear was completely 

manual and without any complex manipulation of images through image processing. It could 

be argued that a manual assessment of tool wear could improve measurement accuracy, but 

this article presented only one test sample per material and no baseline with any other 

common method of wear measurement.  

Finally, Wang et al. (2006) present in their article a very relevant approach to 3D mapping of 

crater wear through the use of a phase shifting method using fringe patterns. The article has 

a well-supported methodology, successfully capturing crater wear depth, with, centre 

distance and front distance with high accuracy; with high robustness to illumination variance 

and background layout. Nevertheless, a limitation identified for this technology is the 

selection of the fringe pattern, as its width impacts directly on the system’s accuracy.   

Table 2.1: Articles using vision as a direct method of TCM. 

AUTHOR(S) MACHINING RESEARCH SUMMARY  

Teshima et al. 
(1993) 

Turning 

Imaging of cutting tools and processing to extract flank 
and crater wear. Wear information and cutting 
conditions introduced as inputs in a Neural Network to 
estimate tool life.  
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Weis (1993) 
Milling 

Imaging of cutting tools and processing to extract flank 
and crater wear information. 

Kurada & 
Bradley 
(1997a) 

Turning 
Processing of cutting tool images of flank wear, using 
texture-based segmentation. Proposes a simple, non-
contact method of tool wear assessment. 

Kurada & 
Bradley 
(1997b) 

CNC 
machines 

Review of the basic principles, instrumentation and 
processing techniques for vision-based TCM. 

Pfeifer & 
Wiegers 
(2000) 

Inserts 

Discussion of advantages of machine vision as direct 
measurement technique. Gives general image 
processing techniques appropriate for tool wear 
measurement. 

Lanzetta 
(2001) 

Milling and 
Turning 

Classification of tool morphologies and tool wear 
assessment, proposing a flow chart for defect 
recognition and quantitative assessment. Uses 
algorithms to recognise all the assessed defects 
implementing texture segmentation. 

Devillez et al. 
(2004) 

Turning 

Measurement of tool crater wear using white light 
interferometry, in conjunction with cutting tool forces 
to catalogue tool wear and set the foundations of a 
monitoring system. 

Wang et al. 
(2005) & 
Wang, Hong, 
et al. (2006) 

Milling 

In process system for flank wear measurement 
implementing enhancement, thresholding and 
segmentation in high-speed images, as the cutting tool 
is captured as it rotates. 

Dawson & 
Kurfess (2005) Turning 

Measurement of volumetric loss in tool crater wear and 
flank wear, comparing results with cutting forces and 
machined surface topography for too life assessment. 

Otieno et al. 
(2006) 

Micro-
milling 

Measurement and classification of tool wear through 
Gaussian filters and histogram equalization, comparing 
used and unused tool profiles. 

Wang, Wong, 
et al. (2006) Milling 

Measurement of crater wear by 3D image construction 
of cutting tool inserts using phase shifting fringe 
patterns. 

Castejón et al. 
(2007) & 
Barreiro et al. 
(2008) 

Turning 

Imaging of flank wear and use of segmentation to find 
and classify geometrical descriptors. Use of Fowlkes-
Mallows index along with other statistical analysis to 
evaluate wear evolution. 

Alegre et al. 
(2009) 

Turning 

Digital imaging of tools’ cutting edges, using contour 
signatures of wear region as input for classification and 
implementation of k-nearest neighbour and a neural 
network. 

Xiong et al. 
(2011) 

Milling 
Images of cutting tools are processed to locate the wear 
area contour for tool wear measurement.  

Zhang & Zhang 
(2013) Milling 

On-line measurement of flank wear in ball-end milling 
cutters, using subpixel edge detection to find tool wear 
area. 

D’Addona & 
Teti (2013) 

Turning 
Images of cutting tools are processed to extract crater 
wear values for a neural network to estimate tool wear. 
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Li et al. (2013) 
Milling 

Integrate an optical system with a CNC machine to 
inspect and measure flank, nose and crater wear; and 
the results are compared to SEM-based measurements. 

Zhu & Yu 
(2017) Milling 

Imaging of micro-milling tools and use of a region 
growing algorithm based on morphological component 
analysis to extract wear regions. 

 
There is as well work regarding indirect methods of TCM, and a selection of these researches 

can be found in Table 2.2. 

Table 2.2: Articles using vision as an indirect method of TCM. 

AUTHOR(S) MACHINING RESEARCH SUMMARY  

Bradley & 
Wong (2001) 

Milling 

Three techniques/parameters in the surface roughness 
assessment are taken for tool wear monitoring, using 
machine vision; these are histogram analysis, image 
frequency domain content and spatial domain surface 
texture. 

Kassim et al. 
(2002) & 
(2006) 

Turning & 
Milling 

Fractal analysis of surface texture and implementation 
of Hidden Markov Model to classify various states of 
wear for TCM. 

Kassim et al. 
(2004) & 
(2007) 

Turning & 
Milling 

Surface texture images are analysed for TCM using 
Hough transform, where in the 2004 publication, a 
multilayer perceptron neural network is applied to 
estimate flank wear. 

Kang et al. 
(2005) Milling 

Depending on tool wear, a relation is found between 
surface roughness and fractal dimension, and it is used 
as an in-situ TCM system. 

Bhat et al. 
(2016) 

Turning 

Images of the machined surfaces are processed using 
hidden Markov model, on features extracted from a 
grey level co-occurrence matrix, to classify and monitor 
tool wear. 

Lee et al. 
(2016) Turning 

Through in-process imaging of workpiece’s surface 
roughness, cutting tool failure by chipping is monitored 
using autocorrelation analysis with subpixel accuracy. 

 

It can be appreciated that many of the present articles on indirect measurement of tool wear 

through vision rely on the processing and analysis of surface roughness or surface 

topography. Most of these methods use different pattern recognition and machine learning 

methods to relate surface roughness to tool wear or to classify different stages of wear. 

However, a large percentage of these articles include a post-processing approach. Between 

these, most of their implementation was mainly to turning operations. Kassim et al. (2006), 

however, managed to implement fractal analysis of the surface texture to overcome the 

more variable surface roughness in milling operations. Kang et al. (2005) also used fractal 

analysis, however, they complemented the image data collected with a stylus type surface 
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profiler. This methodology enabled them to capture a full surface topography that was later 

used to correlate this surface roughness to tool wear.  

On the other hand, Bhat et al. (2016) managed to carry out the assessment of surface 

roughness in-process by locating a camera close to the machined workpiece inside the 

machine, acquiring images of the machined surface. They implemented a grey level co-

occurrence matrix analysis, which can calculate spatial correlation properties of the surface 

texture, and later used a hidden Markov model for tool condition classification. Their 

approach appears to be an accurate on-machine tool wear monitoring system, however, the 

robustness of the apparatus presented in their article may be affected by variable 

illumination and cleanliness of the workspace area.  

Lee, et al. (2016)also developed an in-process and potentially live tool chipping monitoring 

system through continuous assessment of workpiece surface roughness. This article includes 

a very well-round methodology and a very complete assessment of tool wear to evaluate 

tool chipping conditions and consequences. Using an autocorrelation sub-pixel analysis, the 

level accuracy of their technology appears high and their method quite robust. Their testing 

was close related to the present research, as their machining process used an aluminium 

oxide-based ceramic cutting tool on a hard to machine workpiece; and the apparatus was 

based in a common SLR camera.  

Whilst these two tables and articles are just a sample of the work being carried out, it can be 

appreciated how the quantity of research in indirect vision methods of TCM is less when 

compared with direct vision methods, leaving an important gap in this area where further 

methods of indirect TCM can be explored. 

2.3 Digital Image Processing 

Digital image processing (DIP) refers to the acquisition of digital images which are then 

processed by a computer. DIP has grown considerably in the last decade due to the important 

advances made in the development of different algorithms (Cuevas Jimenez et al. 2010). 

Also, the constant reduction in costs of different image acquisition devices has made them 

very affordable for different tasks, such as the monitoring of a machining process. Whilst this 

last application will be further explored in the next section, the different principles of image 

processing that will be used for the research will now be explored and described. 

A digital image can be defined as a two-dimensional function that quantifies light intensity 

(with the visible spectrum being the most commonly used). An image is commonly 
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represented as I (x , y), where the intensity value is taken by the indexed coordinates x and 

y; and these intensity values are known in a digital image as pixels. The most common 

representation model of an image is given through an M X N numerical array or matrix, as 

shown in Equation 2.2 (Gonzalez & Woods 2010).   

𝐼(𝑥, 𝑦) = (
𝐼(0,0)   𝐼(0,1) ⋯ 𝐼(0, 𝑁 − 1)

⋮ ⋱ ⋮
𝐼(𝑀 − 1,0)  𝐼(𝑀 − 1,1) ⋯ 𝐼(𝑀 − 1, 𝑁 − 1)

) 

Equation 2.2 

This digital image matrix can be then manipulated by different kinds of software for different 

purposes; MATLAB1 is one of these, as it can work with these images’ matrices and perform 

mathematical operations with them. This software was chosen for all the image processing 

carried out throughout the research, and for this reason, all the principles of DIP in the next 

sections will be oriented to their usage and representation in MATLAB, specifically to its 

Image Processing and Computer Vision toolboxes. 

2.3.1 Grey Scale, Binary and Colour Images 

There are three main types of image representation commonly used in image processing, 

these are: 

1. Grey-scale or intensity images. 

2. Binary or logical images. 

3. Colour or RGB images. 

Grey-scale or Intensity Images (see Figure 2.6) have 2D arrays of size M X N matrices, as 

mentioned previously, where each number of the matrix represents different values of 

intensity for a specific pixel. In MATLAB, each pixel has either an integer value in the range 

of [0,255] in the case of unit 8 images, or else floating-point values scaled in a range of [0,1] 

for double images.  

                                                           
1 MATLAB R2017a, Image Processing Toolbox and Computer Vision Toolbox, The MathWorks, Inc., 
Natick, Massachusetts, United States. URL: https://uk.mathworks.com/products/matlab.html 
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Figure 2.6: Grey-scale image of a machining process. 

Binary or logical images (see Figure 2.7) on the other hand, have a logical array of 0s and 1s 

in their matrices. These types of images are built through a threshold value of intensity that 

separates pixel values into these two logical possibilities, displaying images in two colours, 

usually black and white. 

 

Figure 2.7: Binary image of a machining process. 

Colour or RGB images are 3D arrays of M X N pixels or a stack of three grey-scale images, 

each with different intensity values. Each one of these matrices represents a colour channel 

in the resulting image: Red, Green and Blue. Colour images can also be represented with 

integer (unit8) and floating-point (double) values with ranges of [0,255] and [0,1] 

respectively (Cuevas Jimenez et al. 2010). 
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Figure 2.8: RGB image of the machining process. 

These three formats are widely used for different purposes of computer vision and image 

processing, and MATLAB has different algorithms for image conversion between these 

formats. The algorithms of image conversion from colour images to grey-scale images (RGB 

to grey), and from grey-scale to binary images (grey to binary) are represented by Equation 

2.3 and Equation 2.4 respectively. 

𝐼𝑔(𝑥, 𝑦) = 𝐶1𝐼𝑅𝐺𝐵(𝑥, 𝑦, 1) + 𝐶2𝐼𝑅𝐺𝐵(𝑥, 𝑦, 2) + 𝐶3𝐼𝑅𝐺𝐵(𝑥, 𝑦, 3) 

Equation 2.3 

𝑏𝑤(𝑥, 𝑦) = {
1 𝑖𝑓 𝐼𝑔(𝑥, 𝑦)  ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
 

Equation 2.4 

In the RGB to grey conversion,  𝐼𝑔(𝑥, 𝑦) is the created grey-scale image and 𝐼𝑅𝐺𝐵 is the original 

RGB image. The constants C1, C2 and C3 give a weight to each colour component (Red, Green 

and Blue respectively) of the colour image, and in MATLAB their default values are C1 = 

0.2989, C2 = 0.5870 and C3 = 0.1140. In a basic grey to binary conversion, 𝑏𝑤(𝑥, 𝑦) represents 

the binary image and the threshold discriminates intensity values to assign either 1 or 0 

values. 

2.3.2 Image Filtering 

There are three basic filters that would be applicable for the isolation of the cutting sparks, 

these are low-pass, high-pass and band-pass filters. These filters are commonly used to 

either increase or reduce an image sharpness, nevertheless, they can also be used to reduce 

noise. They are normally applied to images in the frequency domain, using Fourier 

transformations (Cuevas Jimenez et al. 2010).  

A low-pass filter 𝐻𝑙𝑝 has an ideal transfer function given by Equation 2.5. The term ideal 

indicates that all frequencies inside a defined circle radius are passed without attenuation, 

whereas all other frequencies outside are completely filtered out. 
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𝐻𝑙𝑝(𝑢, 𝑣) = {
1 𝑖𝑓 𝐷(𝑢, 𝑣) ≤ 𝐷0

0 𝑖𝑓 𝐷(𝑢, 𝑣) > 𝐷0
 

Equation 2.5 

Where 𝐷0 is a non-negative number and 𝐷(𝑢, 𝑣) is the distance from the point (𝑢, 𝑣) to the 

centre of the filter, therefore only allowing frequencies inside the radius 𝐷0 get through. In 

the present research, a rectangular shape of the low-pas filter was used and its visual 

representation is shown in Figure 2.9 (c). In Figure 2.9 (b), a shifted-absolute visual 

representation in the frequency domain of the cutting spark in Figure 2.9 (a) can be found. 

This visual representation shows the lowest frequency values in the centre, and increasing 

radially. Therefore, the low-pass multiplies by 1 the low frequency values inside the 

rectangular filter, and by zero all the rest, as shown in Figure 2.9 (d). The resulting image is 

shown in Figure 2.9 (e), where the image colour range was remapped to visualize the filtered 

image. 

 
(a) 

 
(b)                                                                      (c) 

 
(d)                                                                 (e) 

Figure 2.9: Original image (a), image in the frequency domain (b), ideal low-pass filter (c), 
result in frequency domain (d) and resulting image (e). 
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A High-pass filter, on the other hand, has the exact opposite structure to the low-pass filter, 

as shown in Figure 2.10 (a). For this reason, it can be expressed using Equation 2.6. 

𝐻ℎ𝑝(𝑢, 𝑣) = 1 − 𝐻𝑙𝑝(𝑢, 𝑣) 

Equation 2.6 

Where 𝐻ℎ𝑝 and 𝐻𝑙𝑝 are the high-pass and low-pass filters, respectively. This filter is also 

applied to the Fourier transformation of an image, as shown in Figure 2.10 (b). 

 
(a)                                                                   (b) 

Figure 2.10: Ideal high-pass filter (a) and the result (b). 

Finally, the band-pass filter is used to extract information in a certain direction (Figure 2.11 

(a)), allowing either high or low values of frequency, depending on the application. Figure 

2.11 (b) shows a horizontal band-pass filter, allowing through high values of frequency.   

 
(a)                                                              (b) 

Figure 2.11: Ideal band-pass filter (a) and the result (b). 

These filters can have different structures: they can have a circle or elliptical shape, instead 

of a rectangular one, or they can have a Gaussian distribution for a smooth transition from 0 

to 1. These structures depend mainly on the type of application for these filters.  
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2.4 Artificial Neural Networks 

In machine learning and pattern recognition, there are many models available for regression 

and classification of data. One of these are the Artificial Neural Networks (ANN), which are 

models that can effectively find relationships between datasets, even when their underlying 

rules are partially or completely unknown (Livingstone 2009).  

ANN have their origins from the early 1940’s to 1970’s as an attempt to mimic the biological 

mechanism of the brain. During these initial stages of rapid development, neural networks 

demonstrated good results in pattern recognition as the first neuro-computing systems were 

built. However, exaggerated claims of the capabilities of ANN led to rejection from 

researchers at the end of this period. It was until the 1980’s that the field of ANN 

experimented a resurgence as the model was revisited by many scientists and 

mathematicians, experimenting successful results as the capabilities of computer systems 

also improved, and resulting in a generalised renewed interest (Yadav et al. 2015). 

The most popular model of ANN is the Multi-Layer Perceptron (MLP), which consists of a 

series of logistic regression models in the form of layers. This MLP generally include two 

layers of adaptive weights that are interconnected between nodes. Other models of machine 

learning, such as Support Vector Machine (SVM) and Relevance Vector Machine (RVM), 

present different approaches to the MLP. In the case of SVM, the objective function is 

convex-shaped, and it is based in the definition of basis functions. However, the number of 

basis function can become large, depending on the number of training points, which can 

become costly in processing time. RVM on the other hand, include a nonconvex optimization 

during training, and unlike SVM, it produces probabilistic outputs. Compared to these two, 

the MLP present an alternative approach, as it uses an adaptive parametric approach during 

training, resulting in a more compact and faster model (Bishop 2006). Consequently, the MLP 

was selected for this research and more information on MLP will be discussed in chapter 7. 

2.5 Spark Formation 

A wide search for literature on spark formation in machining operations was carried out, 

however no articles were found on this subject. Most articles found concentrate on different 

aspects of cutting chip formation and cutting mechanics, but none of them include an 

analysis or characterisation of spark formation. This absence of literature suggests a gap in 

this research area that could be quite relevant for the present research. Nevertheless, this 

will not be addressed in the present work, as it was believed it this could be an entire 

research project of its own. 
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2.6 Summary 

This chapter attempted to give a broad idea of the literature that encompass and support 

the different approaches and decisions taken during the present research. Therefore, the 

chapter commenced with relevant information on ceramic cutting tools, regarding their 

composition and applications, leading to the material used in this research: SiAlONs. As 

described then, this material presents excellent properties for high-speed rough machining 

of nickel-based super alloys, giving an advanced effectiveness when compared to traditional 

carbide cutting tools. However, its effectiveness is somewhat limited by the quick way these 

materials get worn. Consequently, this was followed by literature that describes the different 

primary and secondary wear mechanisms that cutting tools experiment, followed by a 

summary of relevant articles that directly assessed SiAlON materials. 

This led to the introduction of Tool Condition Monitoring (TCM), as literature describing the 

importance in understanding and managing tool wear and tool life was included. The 

different types of TCM systems (direct and indirect) and their respective methods were 

described, and the most relevant method for this research was introduced: Vision TCM 

Systems. Therefore, a summarised collection of some of the relevant research on direct and 

indirect vision-based TCM was presented. This had the objective of locating the present study 

into its respective area of research. 

After these sections, some of the relevant knowledgebase found in literature of Digital Image 

Processing (DIP) was included to set the bases of the data processing tasks of the research. 

And finally, a short description of the historical and technical bases of Artificial Neural 

Networks (ANN) was included. 

The following chapters are based in the information and literature presented in this chapter, 

as the proposed system of TCM is a novel approach, and therefore, no other literature that 

attempts to use cutting spark information to evaluate tool wear was found.  
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3 COMMON METHODOLOGY 

As described briefly in the introductory chapter, the main purpose of the research concerns 

the implementation of a visual tool condition monitoring system. Such a system would, 

therefore, require the use of an image acquisition device, recording still pictures or video 

feed of the evolution of the cutting process’s sparks. To analyse and select different aspects 

of the “optimal” method of image acquisition, and to explore other relevant aspects of this 

research, three main sets of experiments were carried out. In this chapter, these experiments 

will be described to lay out the foundations of the different studies and work included in the 

subsequent chapters.  

3.1 General System Configuration 

Even though different image acquisition devices, CNC machines and materials were used 

during the present research, they all followed the general system configuration shown in 

Figure 3.1.  

 

Figure 3.1: General system configuration. 

It can be seen in the figure how this visual monitoring system was configured. It included the 

use of a digital camera or image acquisition device, recording images of the cutting area. The 

inserts tool holder used in the experiments can be seen in Figure 3.2. 
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Figure 3.2: Round ceramic inserts tool holder by Sandvik. 

The different parameters and configurations of the camera and general layout would assure 

the inclusion of as much visual contact with the entire cutting spark as possible. The digital 

camera had to be placed on the exterior of the machine due to its size and in order not to 

alter the general function of the CNC machine. In the author’s opinion and experience with 

the different experiments, a recording device could also be placed inside the machine. This 

could improve the general stability and consistency of the image feed and would be ideal for 

a finalised system of visual tool condition monitoring (TCM). General lighting conditions were 

kept as constant as possible, however, due to the position of the machine in the workshop, 

there was still some variation of natural light. To mitigate the effect of this variable, the 

acquisition parameters selected in each test would attempt to obscure the image, so that 

the main source of light would come from the spark itself; this will be fully described in 

section 3.3.3.2.  

After every session, the image data was sent to a computer, where image processing 

algorithms were used to extract relevant image features or spark descriptors. The software 

used for image processing was MATLAB (R2015b), which is a matrix-based platform used to 

manipulate computational mathematics in its own native programming language. It is also 

important to mention that the specific toolboxes used for this research are the “IMAGE 

PROCESSING TOOLBOX” and the “COMPUTER VISION SYSTEM TOOLBOX.”  

To obtain direct measurements of tool wear of the ceramic inserts, two additional tasks were 

performed in most of the experiments: insert weighing and insert digital microscope imaging, 

as shown in Figure 3.3 (a). By using high precision scales, it was possible to obtain mass loss 
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data of the inserts after ever run (see section 4.2.2). This task was especially important to 

understand some of the tool wear mechanisms found in the cutting tools; this will be 

furtherly described in section 4.2.2. Also, the ceramic insert’s crater and flank faces were 

photographed using a portable digital microscope, as shown in Figure 3.3 (b), after every run. 

Again, these images would be used to measure and assess different tool wear mechanisms. 

 
(a) 

 
(b) 

Figure 3.3: Additional tasks during experiments: (a) set-up, (b) digital microscope 
imaging. 

3.2 Data Processing and Analysis 

To extract the relevant data from the cutting process through the images acquired, spark 

descriptors had to be chosen to monitor and evaluate the change of spark evolution. Two 

main features were selected: spark intensity and spark area. These two were easy to identify, 

evaluate and analyse, being the most prominently changing features; while creating a 

smooth and very similar evolution to tool wear. Other descriptors such as spark angle, spark 

length and colourimetry were also analysed previously, however they did not remotely 

match the evolution of tool wear (Dominguez Caballero 2012).  
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Algorithms were written for the extraction of each spark descriptor, containing different 

operations relevant for each extracted feature (area and intensity). However, both these 

algorithms can be summarized by a general algorithm that was designed and segmented into 

the four stages shown in Figure 3.4. 

 

Figure 3.4: Feature extraction general algorithm segmentation. 

The first stage of the algorithm included the image capture procedure, which varied between 

tests depending on the imaging device and type of feed recorded (still pictures or video). This 

stage was the same for both spark features. 

3.2.1 Area Extraction 

At the pre-processing stage, all images were downloaded into the algorithm in the form of 

three-dimensional matrices for RGB images, and one-dimensional matrices for the greyscale 

images. Still pictures were read directly by a sequential loop and into a multidimensional 

array. In the case of RGB images, they were stored in a MATLAB’s structure array, and 

greyscale images were stored into a k-dimensional variable (m ×  n ×  k); where m is the 

height of the pictures in pixels, n is the width in pixels and k is the total number of images.  

In the case of the video feed, a section for frame extraction was included in the algorithm, 

before the mentioned image storage. This section would read the video file and use a loop 

to separate it into its respective frames. These frames could be then treated as still pictures 

and hence proceed to the previously mentioned image storage routine.  

Image Capture

Pre-Processing

Image Processing

Feature Extraction
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Even though it could have potentially simplified the image processing tasks, it was decided 

not to do a manual cropping of the images to isolate the area of interest. Instead, a more 

unsupervised system of spark detection and isolation of the full image was implemented. 

Having a full field image helps acquiring a wider view of the sparks and its variation. Also, this 

unsupervised approach is related to the future of the research into a potentially fully 

automatic and unsupervised system.   

After these tasks, the first picture of each compound was stored as a reference image, where 

the idea was to select an image with all the background layout, but with almost no visible 

spark. 

Then, the image processing stage started with the matrix subtraction of the mentioned 

reference image 𝑅 from each one of the images 𝐼𝑘 (Figure 3.5) and creating a resulting 

subtracted image 𝐼𝑠𝑢𝑏𝑡. This task had the purpose of eliminating the background information 

using Equation 3.1, and as shown in Figure 3.5 (b), where the area of interest is encircled. As 

there were irrelevant bright sections in the image that could be wrongly isolated by the 

algorithm instead of the cutting spark, this step assured that high intensity areas would come 

from the spark itself; therefore, removing noise from illumination inconsistency.  

 
(a)                                                          (b) 

Figure 3.5: Result of image subtraction: original image (a) and resulting image (b). 

𝐼𝑠𝑢𝑏𝑡(𝑘) = 𝐼𝑘 − 𝑅 
Equation 3.1 

After this, the algorithm performed image enhancements and conversions. In the case of 

greyscale images, enhancements consisted in re-mapping intensity values of certain low and 

high values into a new image. In this way, only the intensity values belonging to the spark 

would be enhanced, making an appropriate spark isolation. In the case of RGB images, a re-

mapping of intensity values was also performed, however, this was applied to each colour 

channel (red, green and blue). Re-mapping enhancement was found to be more effective in 

RGB images, rather than in greyscale images; given that the cutting spark contained very 
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specific colours, improving the effectiveness of the spark isolation. Later, the mentioned 

image conversions consisted of converting images into greyscale, in the case of RGB, and 

then into binary images, in both cases. The greyscale conversion was performed using a 

standard MATLAB command, which uses Equation 2.3 in section 2.3.1 to weight each colour 

(R, G and B).  

The binary conversion was performed through the luminance threshold level in the range 

[0,1] previously shown in Equation 2.4 in section 2.3.1. Figure 3.6 (b) shows an array of 

binarizations of the original image (a), displaying on the top of each image the threshold 

value used for the conversion. For each experiment and algorithm, the threshold value used 

was selected visually, choosing the image that included the largest portion of the spark whilst 

introducing the least noise.   

 
(a) 

 
(b) 

Figure 3.6: Binary conversion (a) original image, and (b) binary conversion threshold 
selection. 
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Through this logical format of the image, it was easier to identify and isolate elements in the 

image, such as the spark. However, the presence of noise was an ever-present problem, as 

demonstrated by the encircled areas in Figure 3.7.  

 

Figure 3.7: Binary image with examples of noise. 

The next step was then to isolate the area of interest even further by image segmentation, 

implementing connected components filtering. Connected components are pixels that when 

centred in a 3 x 3 window, they have at least another non-zero component around. 

Connected components filtering consists in using a threshold value to define the minimum 

quantity of pixels that will be considered as an image element (Gonzalez & Woods 2010). 

Figure 3.8 illustrates this method of filtering, where only image elements that have 4 

(threshold) or more than connected components are allowed through. Therefore, the image 

on the right only includes the largest image element with 10 connected components, 

eliminating the other two. Inside the present area algorithm procedure, the threshold value 

was selected to define the minimum quantity of pixels regarded as a spark, assigning zero 

values to components below this number. 

 

Figure 3.8: Connected components filtering. 
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The final stage of feature extraction consisted of computing the spark area in each image. 

Given that all previous steps were oriented to isolate the spark, it can be concluded that the 

sole component in each image was the spark. Therefore, Equation 3.2 shows how the spark 

𝐴𝑟𝑒𝑎 was computed, where 𝑐𝑐[𝑖, 𝑗] is the resulting image after connected components 

filtering. Given that the image is binary, with logical values with dimension [0.1], the total 

value of this summation will be equivalent to the total number of pixels in the spark. 

𝐴𝑟𝑒𝑎 = ∑ ∑ 𝑐𝑐[𝑖, 𝑗]

𝑚

𝑗=1

𝑛

𝑖=1

 

Equation 3.2 

3.2.2 Intensity Extraction 

For the extraction of intensity, the general algorithm shown before in Figure 3.4 was also 

applicable. The initial stage of image production and pre-processing included the exact same 

structure as in the area extraction. It is, however, in the image processing and feature 

extraction stages that some different processing techniques were used.  

In the image processing stage, the same image subtraction and image enhancement process 

as in the area extraction was used. However, to isolate the intensity information of the spark, 

a filtering technique was introduced and a low-pass filter was selected. A description of 

different filters can be found in the literature review in section 2.3.2. An analysis of these 

filters and parameters was conducted in previous work, and a low-pass filter was found to 

be an appropriate option for the present application. This was concluded given that the spark 

would generally be a solid and consistent element in the image, including low-frequency 

values. High-frequency elements on the other hand, generally comprise of repeated and 

drastic changes in intensity, which is the case of edges and noise. Therefore, while low pass 

filters tend to blur or even decompose an image, in the present case the high, and to a certain 

degree, constant intensity inside the spark is successfully isolated (Dominguez Caballero 

2012).  

To select the size of the low-pass filter window, a sub-task compared the lowest frequency 

value found in the centre of image in frequency domain with its surrounding values in a 

horizontal and vertical line. If a surrounding value exceeded a certain threshold, this value’s 

position would describe an edge of the filter window. This threshold was derived from the 

same lowest frequency so it could be adapted to different images; and it was selected 

experimentally by trying different levels and assessing results. 
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Accordingly, the algorithm implemented a low-pass filter to each image in the frequency 

domain by a Fourier transformation ℱ, as shown in Equation 3.3.  

𝐵 = I ⨂ℱ−1(𝐻𝑙𝑝) 

Equation 3.3 

Where 𝐵 is the resulting image, I is the image processed to this point in the algorithm and 

𝐻𝑙𝑝is the low-pass filter. In Figure 3.9 (a) - (d), the implementation of this equation can be 

appreciated. 

 

 
(a)                                                            (b) 

 
(c)                                                           (d) 

Figure 3.9: Original Image (a), image in the frequency domain (b), a low-pass filter (c) and 
resulting image (d). 

 

Figure 3.9 (d) displays how the image intensity is now governed by the spark. Figure 3.10 

shows a series of images taken during a milling operation and their respective resulting 

images when a low-pass filter was applied (Dominguez Caballero 2012). The resulting images 

show more detail of the original background than Figure 3.9 (d) because a wider low-pass 

filter window was used to illustrate the filter interaction with the original image. However, 

the intensity of the spark again governs the image intensity. 
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Figure 3.10: Images from a milling operation including their respective low-pass filtered 
resulting image, and intensity level (background graph) (Dominguez Caballero 2012). 

Therefore, at the feature extraction stage of the algorithm, a summation of all the elements 

in the image matrix 𝐵 was performed to calculate total 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, as shown in Equation 3.4. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = ∑ ∑ 𝐵[𝑖, 𝑗]

𝑚

𝑗=1

𝑛

𝑖=1

 

Equation 3.4 

3.3 Experiments 

As mentioned at the beginning of this chapter, three main experiments sessions were carried 

out during this research. This was the maximum number possible, given the availability of 

materials and resources, as well as the accessibility to machine time greatly reduced the 

possibility of performing more tests. However, the experiments carried out were successful, 

the specific session objectives were achieved, and the data obtained was adequate. 

In this section, the three main experiment sessions will be described, including the materials, 

parameters and devices used. Nevertheless, all the experiments will be revisited in the 

upcoming chapters to describe in more detail their planning and the selection of their various 

resources, as well as to support the different analyses carried out in each chapter. 

3.3.1 First Experiments – Previous Work Revisited 

It was stated in the introductory chapter, in the background section, that this research 

follows on from previous work, initiated at the author’s Master’s degree. In that study, the 
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main results were the successful extraction of spark intensity, analysing different filtering 

approaches, and the first approach to comparing spark evolution with actual tool wear.  

In the present research, on the other hand, the initial objectives were to create a spark area 

extraction approach and to improve the algorithms already created in the previous work. For 

this reason, these first experiments describe the testing parameters used in that previous 

work, as they would be revisited and reused to lay some of the foundations of this research 

in the chapter 6. It is important to mention that these tests were carried out at the University 

of Sheffield’s Advanced Manufacturing Research Centre (AMRC) as part of a different project, 

therefore, the machining parameters were preselected for that project.  

This initial monitoring system was built using a regular SLR Canon EOS 60D digital camera, 

set to record images of the cutting area of the machining process, as shown in Figure 3.11. 

The milling machine used was a Starrag ZT 1000 5 axis CNC with a Siemens Sinumerik 840D 

controller. Four tests were carried out and during the machining time, the camera captured 

images at a constant rate, with a special focus on the sparks that this process produced. 

These images were later transferred from the camera to a computer to implement the 

different image processing algorithms.  

 

Figure 3.11: First set of experiments system set-up at the workshop. 

3.3.1.1 Image Acquisition 

In contrast to the human eye or a video feed, still pictures are a single sample of a short 

period of time. In an SLR camera, the shutter speed parameter is the one that controls the 

sample length in a single image. Therefore, the selection of speed parameters can be a 

common dilemma that is mainly dependent on the application. In Table 3.1 the parameters 

of the four tests can be appreciated, where these parameters were categorised as fast, 

medium and slow.  Parameters in the third and fourth tests were the same given some 
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conclusions that were drawn at that point of the research. Additionally, the fourth test 

included machine stops between 8 runs for tool wear measurements. The first objective of 

these tests was to assess which of these parameters were the most appropriate for this 

application using test one, two and three, discussed in the chapter 5. The second objective, 

discussed in the chapter 6, was to support the research hypothesis of a spark-wear 

relationship using test four.  

Table 3.1: First experiments tests using fast, medium and slow shutter speeds. 

 TEST 1 TEST 2 TEST 3 TEST 4 

PARAMETER FAST MEDIUM SLOW SLOW 

Speed 1/640 1/125 1/5 1/5 

Aperture F3.2 F5.0 F22 F22 

 

3.3.1.2 Machining and Parameters 

The study was performed using a five-axis high-speed milling machine and all of the tests 

used the machining parameters shown in Table 3.2. The cutting tools used were SiAlON 

ceramic inserts RNGN120400E 6060 from Sandvik Coromant, in a 4 inserts and 63 mm tool 

holder. The workpiece was a Waspaloy ring (Figure 3.12) and the general standardized 

composition of this material is shown in Table 3.3.  

Table 3.2: Milling machining cutting parameters. 

PARAMETER VALUE 

Cutting Speed Vc (m/min) 875 

Feed per minute Vf (mm/min) 1843 

Spindle speed n (rpm) 4761 

Cutting Depth ap (mm) 1.5 

Tool Diameter D (mm) 63 

Radial Immersion ae (mm) 29.25 

Feed per tooth fz (mm) 0.097 

Number of inserts zc 4 
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Figure 3.12: Waspalloy workpiece ring. 

Table 3.3: Standardized waspalloy composition. 

ELEMENT MIN % MAX % 

Carbon 0.02 0.10 

Manganese -- 0.50 

Silicon -- 0.75 

Chromium 18.0 21.0 

Nickel Balance 

Boron 0.003 0.008 

Iron -- 2.00 

Cobalt 12.0 15.0 

Titanium 2.60 3.25 

Aluminium 1.00 1.50 

Molybdenum 3.50 5.00 

Zirconium 0.02 0.12 

Copper -- 0.10 

Sulphur -- 0.02 

 

3.3.2 Second Experiments – High-speed Feed 

To fully assess the impact of image acquisition parameters in this application, this second set 

of experiments included the use of a high-speed feed. Inside these experiments, two tests 

were carried out using two different sets of machining parameters. Their results and analysis 

can be found in the chapter 5. 

In this new configuration, a Phantom v210 high-speed camera was used to record grayscale 

video feed, using a Nikon AF 24-85mm f2.8-4 D IF lens. The camera manufacturer’s software 

(PCC 2.5.744.0) was used to download the video feed and to extract images from each video 

frame. The milling process was carried out using a 3 axis XYZ 1060HS VMC milling machine 

with a Siemens Sinumerik 840D controller. Again, Sandvik ceramic SiAlON inserted tools 

RNGN120700E grade 6060 were used, with a 50mm S-R120R-038C5-12x03 inserts tools 

holder and a C5-390.55-40 030 attachment to fit into the CNC machine. The workpiece 

Camera Location 

 
Tool 

Workpiece 
rotation / 
Feed  

Cutting 
Depth 
(continuous) 

Workpiece 
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material in this new test was an Inconel 718 round block of 254 mm in diameter, where a 

197 mm x 197 mm square was machined for tests consistency, as shown in Figure 3.13. The 

CNC programme used to machine this square can be found in Appendix I. Furthermore, this 

material was provided by the Mexican Forging Company FRISA and its general composition 

can be found in Table 3.4.  

 
Figure 3.13: Inconel 718 workpiece.  

Table 3.4: Inconel 718 general composition. 

ELEMENT MIN % MAX % 

Carbon - 0.08 

Manganese - 0.35 

Silicon - 0.35 

Phosphorus - 0.015 

Sulphur - 0.015 

Chromium 17.00 21.00 

Nickel 50.00 55.00 

Mo 2.80 3.30 

Niobium 4.75 5.50 

Titanium 0.65 1.15 

Aluminium 0.20 0.80 

Cobalt - 1.00 

Tantalum - 0.05 

Boron - 0.006 

Copper - 0.30 

Lead - 0.0005 

Bismuth - 0.00003 

Selenium - 0.0003 

Iron balance 

 

3.3.2.1 Image Acquisition 

The high-speed camera was used to obtain video feed from the cutting process, enabling 

later extraction of frames as individual images for future processing. The camera and video 

software settings used during the experimental sessions are shown in Table 3.5. These 

settings were primarily selected due to the functionality of the high-speed camera, as only 

19.7 cm 

19.7 cm 
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specific configurations enabled the recording time required for each run. Inside these 

configurations, the resolution was selected after different trials, as it presented a good and 

clear image size that enabled a shorter processing time. The sample rate was selected as the 

fastest sample rate possible when selecting the image size and exposure time (this relation 

is constrained by the software). This last parameter and the aperture were selected after 

trials with different configurations. The combination selected of 3300 µs and aperture of 5.6 

provided an adequate general illumination in the images for processing.  

Table 3.5: Camera and video software settings. 

SOFTWARE 

PARAMETER VALUE 
Resolution (Pixels) 800 x 600 

Sample Rate (Frames per second) 300 

Exposure time (µs) 3300 

CAMERA 

PARAMETER  VALUE 
Aperture 5.6 

 

3.3.2.2 Machining and Parameters 

For the two experimental sessions that were carried out, it was decided to use only one 

ceramic insert per session, Figure 3.14.  

 
Figure 3.14: Single Insert tool configuration. 

By using only one insert, the wear data can be isolated, facilitating data acquisition from 

spark evolution. The chosen cutting speeds (Vc), feeds per tooth (fz), cutting depth (ap) and 

radial immersion (ae) were recommended by the machining section of the Sandvik’s 

Ceramic Insert 



CHAPTER 3: COMMON METHODOLOGY 

 

46 
 

Ceramics Application Guide (Sandvik Coromant 2010). Afterwards, their corresponding feed 

speed (Vf) and spindle speed (n) were calculated. The parameters for both experimental 

sessions are shown in Table 3.6. 

Table 3.6: Milling machining cutting parameters for Test 1 & 2. 

PARAMETER TEST 1 TEST 2 

Feed per minute Vf (mm/min) 620 636.62 

Spindle speed n (rev) 6200 6366.2 

Cutting Speed Vc (m/min) 973.89 1000 

Feed per tooth fz (mm) 0.1 0.1 

Cutting Depth ap (mm) 1.5 1.5 

Number of inserts zc 1 1 

Radial DOC (%) 77.04 77.04 

Tool Diameter D (mm) 50 50 

Radial Immersion ae (mm) 38.52 38.52 

Number of Runs 8 5 

 

The Inconel workpiece was up-milled horizontally, performing 5 runs per level of material, 

as shown in Figure 3.15. The solid black circle represents the cutting tool, machining 

horizontally from left to right, through the dash-lined arrow, on each run. The other four 

dash-lined circles represent the next positions of the tool for the rest of the runs.  

 

Figure 3.15: Runs sequence and orientation. 

Furthermore, between runs in Test 1, the ceramic insert was extracted from the tool to be 

weighed and photographed. In Test 2 the insert was also photographed, but in-situ, whilst 

still mounted into the tool, and in this test, no mass measurements were extracted.  

Camera Location 

19.7 cm 

19.7 cm 
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Tool Feed Step-over 
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3.3.3 Third Experiments – Final Set 

The analysis of the optimal image acquisition system and parameters can be found in the 

chapter 5, where still pictures from the first test and the high-speed video feed from the 

second test were compared. Conclusions drawn are the main justification for the selection 

of devices and parameters implemented in this final set of tests. In summary, the first 

experiments showed better results while using slow image acquisition settings. Later the 

second experiments proved that indeed, fast settings delivered noisy and unsteady results. 

This analysis also proved that the use of a common video feed device would deliver more 

data than a still picture device; and that in conjunction with an image combination algorithm, 

it would be possible to control and emulate slow imaging settings. 

Therefore, this final set of experiments included again the use of a Canon EOS 1200D Digital 

SLR Camera with an EF-S 18-55 mm f/3.5-5.6 III Lens. The general test configuration was 

again the same as described at the beginning of this chapter, having the camera outside the 

CNC milling machine. Furthermore, and such as in the previous experiments, a video feed 

was acquired instead of still pictures. Similarly, the CNC milling machine, cutting inserts and 

tool holder were the same ones used in the second set of experiments, as well as the 

workpiece material and dimensions. However, in the final set of experiments, a Design of 

Experiments (DOE) was implemented meaning that the machining parameters were varied 

from test to test. 

3.3.3.1 Design of Experiments for Machining Parameters 

Designs of experiments (DOE), as its name dictates, is a method used to plan a set of 

experiments, selecting the appropriate data for further analysis, generally giving valid and 

objective conclusions (Mandal et al. 2011). DOE is mostly used to find relationships between 

input variables or parameters and output performance in an experiment (Antony 2003). Even 

though some correlations between tool wear and machining parameters will be discussed 

later in this thesis, the main objective of using a DOE was to plan these new tests in a way 

that different combinations could be tested. 

Some widely-used methods of DOE are factorial designs and the Taguchi method. Full and 

fractional factorial designs are the most commonly used experimental designs in 

manufacturing. However full factorial designs tend to require a large quantity of tests, as all 

the possible combinations of input variables or factors, and their respective values or levels 

are tested. Fractional factorial and Taguchi methods, on the other hand, can greatly reduce 

the number of tests, whilst delivering enough data. However, in the present research, it was 
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decided to use Taguchi methods of orthogonal arrays, given that fractional factorial designs 

can leave interactions between variables undetermined. 

Taguchi methods have been widely used in machining research (Mandal et al. 2011; Ghani 

et al. 2004), as it allows researchers to accurately find correlations between cutting 

parameters and different outputs, such as surface finish, chip removal rate, wear, etc. These 

are especially important to optimise procedures and find the best combinations of 

parameters for specific tasks. Taguchi methods are based on orthogonal arrays that have a 

specific structure that provides justification for the selection of variables for each test. In 

these arrays, the possible pairs of factors are all explored the same number of times, as 

shown in Table 3.7. This table shows the orthogonal array denoted as L9, with four factors 

(A, B, C and D) and three levels (1,2 and 3), organised into only nine tests, instead of the 81 

tests required by a full factorial. Therefore, this method reduces the number of tests, but 

successfully explores every possible relation between these pairs of factors and levels 

(Kacker et al. 1991).  

Table 3.7: Orthogonal array for L9 DOE using Taguchi. 

TEST NO. FACTOR A FACTOR B FACTOR C FACTOR D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

 

For the present research, it was deemed relevant to obtain a good coverage of data for the 

approach presented in chapter 7, which is an important advantage of using DOEs. 

Furthermore, given that the relation between machining parameters and tool wear may not 

be linear, three levels were chosen assuming a possible quadratic relationship. This would 

also impact in chapter 7, allowing a curved hyperplane of the design neural networks.  

The four factors and three levels each are shown in Table 3.8. These factors and levels were 

in accordance to the window of parameters that Sandvik Coromant recommend in their 

manual of Ceramic tools, in the section concerned with ceramic milling (Sandvik Coromant 

2010).  
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Table 3.8: Factors and levels selected for DOE. 

FACTORS LEVEL 1 (LOW) LEVEL 2 (MEDIUM) LEVEL 3 (HIGH) 

Cutting Speed (Vc) 700 m/min 850 m/min 1000 m/min 

Feed (fz) 0.07 mm 0.09 mm 0.11 mm 

Cutting Depth (ap) 1 mm 1.5 mm 2 mm 

Radial Immersion (DOC) 50% 70% 90% 

 

Given that the selected parameters include the exact same number of factors and levels as 

in Table 3.7, the L9 structure could have been used. However, given that the objective of the 

present experiments was to obtain training and verification data for a neural network (see 

chapter 7), it was decided to double the number of tests into an L18 array of 18 tests, 

generated from two L9 arrays. Therefore, these parameters were introduced into the 

statistical software SPSS Statistics to generate the orthogonal array shown in Table 3.9.  

Table 3.9: Orthogonal array L18, generated using SPSS Statistics. 

TEST 
NUMBER 

CUTTING SPEED Vc 
(m/min) 

FEED fz 
(mm) 

CUTTING DEPTH ap 
(mm) 

RADIAL IMMERSION 
(%) 

1 1000 0.09 1.5 70 

2 700 0.09 1 70 

3 700 0.09 2 90 

4 850 0.11 2 70 

5 1000 0.07 2 90 

6 850 0.09 1 50 

7 1000 0.11 1 90 

8 700 0.07 1 50 

9 700 0.07 1.5 90 

10 700 0.11 1.5 50 

11 1000 0.07 1 70 

12 850 0.07 1.5 70 

13 1000 0.09 2 50 

14 1000 0.11 1.5 50 

15 700 0.11 2 70 

16 850 0.09 1.5 90 

17 850 0.11 1 90 

18 850 0.07 2 50 

 
This array, for neural network implementation, could be divided into two L9 arrays A and B, 

as shown Table 3.10 and Table 3.11; each table for training and verification respectively. 
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Table 3.10: L9 array A, extracted from the generated L18 array. 

TEST 
NUMBER 

CUTTING SPEED 
Vc (m/min) 

FEED fz 
(mm) 

CUTTING DEPTH 
ap (mm) 

RADIAL IMMERSION 
(%) 

8 700 0.07 1 50 

2 700 0.09 1 70 

10 700 0.11 1.5 50 

12 850 0.07 1.5 70 

16 850 0.09 1.5 90 

4 850 0.11 2 70 

5 1000 0.07 2 90 

13 1000 0.09 2 50 

7 1000 0.11 1 90 

 

Table 3.11: L9 array B, extracted from the generated L18 array. 

TEST 
NUMBER 

CUTTING SPEED 
Vc (m/min) 

FEED fz 
(mm) 

CUTTING DEPTH 
ap (mm) 

RADIAL IMMERSION 
(%) 

9 700 0.07 1.5 90 

3 700 0.09 2 90 

15 700 0.11 2 70 

18 850 0.07 2 50 

6 850 0.09 1 50 

17 850 0.11 1 90 

11 1000 0.07 1 70 

1 1000 0.09 1.5 70 

14 1000 0.11 1.5 50 

 

The robustness of the data acquired through these experiments could have been affected 

and potentially improved by test repeats instead of wide ranges of parameters. However, 

the purpose of the research was mainly related to the objective of the final chapter and its 

machine learning algorithms. Therefore, it was deemed more relevant to widen the range of 

variable levels to improve data coverage for the interpolating approach of those algorithms, 

rather than testing the process variability and robustness through repeats. Ideally, both of 

these would have been beneficial, yet the time and budget constraints of the research 

limited this to one of the two options. 

Along with the output of spark evolution data, tool wear values were also taken as outputs 

for wear analysis in the chapter 7. These last outputs were obtained as described in the 

beginning of this chapter, through a scale and a digital microscope, acquiring data of mass, 

crater wear and flank wear. 
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3.3.3.2 Image Acquisition  

A video feed was recorded using a common SLR camera and the respective camera settings 

used can be seen in the Table 3.12. 

Table 3.12: Camera settings. 

PARAMETERS VALUE 

Resolution (pixels) 1280 x 720 

Sample Rate (frames per second) 50 

Aperture 5.6 

ISO 400 

 

The selected resolution and sample rate were the highest values that the camera could 

provide, whilst the aperture and ISO were chosen to partially obscure the image, as shown 

in Figure 3.16. This obscuring effect was found to improve the consistency of the recorded 

data, reducing the effects of random illumination, such as natural light and workshop 

lighting. It mainly aided in removing background noise, whilst maintaining spark information. 

 

Figure 3.16: Partially obscured image using low ISO and wide aperture. 

3.3.3.3 Machining and Parameters 

The machining operation, as mentioned at the beginning of this section, had the same 

characteristics as in the second experiments (section 3.3.2.2). The workpiece was again an 

Inconel 718 round block and a square was machined for the tests, as shown previously in 

Figure 3.13 and Figure 3.15. Furthermore, the machining parameters used are described in 

section 3.3.3.1, and the Table 3.13 shows the calculated machining input. The real radial 

immersion had to be calculated for each combination of cutting depth and radial immersion 

percentage, as shown in the last column. 
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Table 3.13: Milling machining cutting parameters calculated from DOE. 

TEST 
NUMBER 

FEED SPEED Vf 
(mm/min) 

SPINDLE SPEED n 
(rpm) 

RADIAL IMMERSION ae 
(mm) 

1 573 6366 32.2 

2 401 4456 31.15 

3 401 4456 42.3 

4 595 5411 32.9 

5 446 6366 42.3 

6 487 5411 22.25 

7 700 6366 40.05 

8 312 4456 22.25 

9 312 4456 41.4 

10 490 4456 23 

11 446 6366 31.15 

12 379 5411 32.2 

13 573 6366 23.5 

14 700 6366 23 

15 490 4456 32.9 

16 487 5411 41.4 

17 595 5411 40.05 

18 379 5411 23.5 

Every test included a total of 11 runs, up-milling the squared workpiece, and therefore 

delivering 11 videos and tool wear values for each test. 

3.4 Summary 

The general system configuration described at the beginning of this chapter was shared by 

the subsequent experiments, as well as the data processing analysis. However, as it was 

described by each experiment, the chosen devices, parameters and configurations where 

different depending on the specific objectives of that each experiment. Additionally, all the 

experiments were planned according to the different results and conclusions found in each 

experiment, constantly attempting to solve and improve the testing and processing 

conditions.  

It could be seen how in the first experiments, a very simplistic system was used, with only 

still pictures as image acquisition feed, which presented limitations that had to be fixed, and 

this will be described in the chapter 5. Furthermore, these conclusions led to the introduction 

of a high-speed feed in the second experiments. Similarly, the conclusions drawn by these 

second experiments aided in the selection of the image acquisition device and the video feed 

chosen in the third experiments.  

The purpose of including all the experiments here was to avoid repetition in subsequent 

chapters, as the data acquired from each test was used in each chapter to address different 
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objectives. Therefore, during the rest of this written thesis, these experiments will be 

constantly referenced, and their relevant aspects will be revisited to analyse results and 

conclusions.  
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4 WEAR OF SIALON CERAMIC CUTTING TOOLS 

The purpose of this research is to lay the foundations of a successful wear prediction system 

using image processing. In the literature review chapter, information regarding the wear 

mechanisms found in cutting tools was described. In the methodology chapter, on the other 

hand, the basis of the image processing techniques used to analyse and obtain data from 

cutting sparks was described. The current chapter has the twin aims of better understanding 

the tool wear mechanisms of SiAlON ceramic cutting tools and obtaining data that could be 

used in the later stages of the research.  For this reason, the next sections will lay out the 

different wear assessment techniques used in this research to obtain wear data, as well as a 

comparison of other literature’s findings with the current research’s findings on tool wear 

assessment. 

4.1 Wear Assessment Techniques 

In the literature review some vision-based systems of direct TCM were reviewed, where most 

of them consisted of using images of cutting tools to obtain geometric measurements. This 

technique can be a useful in-situ procedure, with special effectiveness in measuring flank 

wear and crater wear. 

To successfully compare the spark evolution of the machining processes with actual tool 

wear, it was necessary to obtain real tool wear values. As described in the methodology 

chapter, experiments included several runs of machining in each test, stopping the process 

between runs. This was done to obtain weight measurements and microscope images of the 

cutting tools. In this way, image processing could also be used to obtain wear data from the 

microscope images. 

Therefore, this chapter includes the algorithms and procedures used to extract crater wear 

area and flank wear measurements from the microscope images. Furthermore, as an 

attempt to use image processing to find the volumetric loss of tool material, a stereo vision 

approach was investigated. The different results obtained with these techniques will be 

discussed, as the optimum techniques would be used for each experiment.   

4.1.1 Flank wear and Crater Wear Area 

The image processing algorithms previously created for the spark evolution had to perform 

spark analysis in a more “automated” fashion, given the number of frames or images for each 

test. Also, it was in the interest of the general research to build automated algorithms for a 

possible future integration in a stand-alone system. However, in the case of the cutting tools, 
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a more supervised approach could be used, as the number of images per test was not very 

large. 

For the extraction of flank wear measurements, a software named Tracker was used. This 

software enables the use of a calibration line tool to input a known geometric value, shown 

in blue in Figure 4.1. This calibration step uses these measured inputs to assign values to the 

image’s pixels. For this reason, another software tool can be used to measure a distance 

accurately, shown in red. In this way, maximum VBmax and notch wear values could be 

extracted from the microscope images. Unfortunately, given that the insert lost material with 

the machining process, manual compensation had to be used to account for the uneven and 

worn tool edge.  

 

Figure 4.1: Flank and notch wear measuring using Tracker. 

Whilst this seemed in the beginning as a simple and rapid task, it is relevant to mention that 

conducting manual measurement of each image ended up consuming much more time than 

expected. Therefore, it can be said that for future work a more careful recollection of images 

could have enabled the use of an image processing approach, like the one used next for 

crater wear area. Also, the measuring of each insert was deemed important for the 

implementation of the Neural Network, described further ahead in the chapter 7.  

On the other hand, to extract crater wear area, an approach similar to the spark area 

extraction was taken, where an image processing algorithm was built to isolate, enhance and 

quantify the worn area. In Figure 4.2 (a), an image taken with a digital microscope of a SiAlON 

ceramic insert’s rake face can be found.  The wear area is easily distinguishable due to the 

change in colour and texture, compared to the rest of the insert and the background. Figure 

4.2 (b) shows how the image was manually cropped to only process the area of interest. The 
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next step consisted in extracting a section of the worn area to calculate means of the 

maximum values of each column. These values were later input into an image enhancement 

step shown in Figure 4.2 (c); the same enhancement step used in the spark processing 

algorithms, with the objective of isolating the worn area. After this, as shown in Figure 4.2 

(d), different binarization thresholds were tested, selecting manually the best value that 

contained the least noise, as shown in Figure 4.2 (e). Finally, this binarized image is later 

filled, so that no empty spaces are found inside the worn area, as shown in Figure 4.2 (f).  

 
(a)                                                                     (b) 

 
(c)                                                                      (d) 

 
(e)                                                                      (f) 

Figure 4.2: Crater wear area extraction: original image (a), cropped image (b), enhanced 
image (c), binary threshold selection (d), logical image (e), and final image (f). 

Finally, after the worn area was successfully isolated, connected components discrimination 

and area computation was carried out (see section 3.2.1). The area extracted was in number 

of pixels, so an extra step was taken, where the algorithm is calibrated to know what is the 

size of each pixel in mm. This was done by counting the number of pixels that encompass the 

diameter of the cutting tool, knowing that the tool’s diameter is 12.54 mm. Once this was 

calculated, the resulting value was squared to find the value of a pixel’s area; this last value 

was then multiplied by the worn area in pixels to find out the actual worn area value in mm 

(algorithms can be found in Appendix II).  
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4.1.2 Stereo Vision 

To assess wear as volume loss in the rake face of the ceramic insert, where most of the flaking 

and chipping occurred, it was decided to test a stereo vision, image processing approach. 

Stereo vision consists of processing two or more images of the same scene, matching specific 

pixels in these images. By doing this, the disparities of the analysed pixel positions can be 

used to calculate depth distances, and hence build a 3D representation of the scene (Szeliski 

2010). 

Figure 4.3 illustrates a stereo vision system of two cameras with the same focal length 𝑓, 

where Equation 4.1, Equation 4.2 and Equation 4.3 show how the value of disparity 𝑑 can be 

calculated in such a system.  

 

Figure 4.3: Stereo vision system using two cameras and equal focal length. 

𝑈𝐿 = 𝑓
𝑋𝐿𝑒𝑓𝑡

𝑍𝐿𝑒𝑓𝑡
 

Equation 4.1 

𝑈𝑅 = 𝑓
𝑋𝑅𝑖𝑔ℎ𝑡

𝑍𝑅𝑟𝑖𝑔ℎ𝑡
 

Equation 4.2 

𝑑 = (𝑈𝐿 − 𝑈𝑅) = 𝑓
𝑏

𝑍𝑅
 

Equation 4.3 

Where 𝑈𝐿  and 𝑈𝑅 are the coordinates of the Real-world point P projected on the left and 

right camera sensors respectively; 𝑏 is the distance between the cameras and 𝑍𝑅 is the Real-

world distance to point P. 
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For the present research, the stereo vision system consisted of using an SLR camera (the 

same as the one used in the last set of experiments) with a LOREO 3D Macro lens for stereo 

vision mounted, shown in Figure 4.4. The acquired images would be processed using 

MATLAB’s Stereo Calibration App for 3D reconstruction, with the objective of volume 

extraction.  

 

Figure 4.4: LOREO 3D Macro lens for stereo vision, mounted in Canon SLR camera. 

The MATLAB’s Stereo Calibration App calculates the intrinsic and extrinsic parameters of a 

stereo configuration of cameras for 3D reconstruction. To perform this, it was necessary to 

acquire and upload various images of a checkerboard in different orientations and locations. 

It was important to make sure that the square pattern was always visible, but that different 

cases of rotation and distortion could be included. Once applied, the calibration app detects 

points in the black and white square pattern, as shown in Figure 4.5. Through these points 

and by inputting the size of a checkerboard square in millimetres, the application calculated 

the disparities by computing their different locations about the rotations and distortions that 

were recorded. This system also provides both a graphic of reprojection errors, as shown in 

Figure 4.6, and a 3D visualization of the extrinsic parameters, as shown in Figure 4.7. The 

latter includes the orientation of the cameras (each sub-lens of the Loreo lens) in red and 

blue at the top right corner; as well the analysed checkerboards in different orientations and 

locations shown as squares in several colours. 



CHAPTER 4: WEAR OF SIALON CERAMIC CUTTING TOOLS 

 

60 
 

 

Figure 4.5: Examples of checkerboard points detection in different orientations. 

 

Figure 4.6: Stereo reprojection errors. 
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Figure 4.7: 3D visualization of stereo vision training system including analysed 
checkerboards (right squares) and cameras (top right). 

Once these steps were taken, the stereo parameters that the application calculated were 

exported to the MATLAB workspace. A programme was then written to perform the 3D 

representation of a ceramic insert (Appendix III). Through this programme, a series of visual 

representations of the stereographic analysis of the insert were produced. Figure 4.8 (a) 

shows the images before rectification, and Figure 4.8 (b) shows the images after rectification. 

 
(a)                                                                      (b) 

Figure 4.8: Stereo images of insert: before rectification (a) and after rectification (b). 

Camera 1 Camera 2 

Checkerboards  
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This rectification consisted of aligning each point in the left image, to its corresponding point 

in the right images, so that these were placed in the same row. This step is especially 

important to compute the new values of disparity of the insert’s image. A visual 

representation of the disparity or distance between corresponding points can be found in 

Figure 4.9. In this figure, the pixels with stronger shades of red represent points with the 

highest disparity values whilst shades of blue represent lower disparity values or distance 

between pixels. It is expected that in a stereo configuration, objects closer to a lens should 

have higher disparity values, due to the perspective from each camera. Objects in the 

background, being comparatively “farther” have lower disparity values. 

 

Figure 4.9: Disparity map of distances between pixels in insert’s images. 

The result of this stereographic analysis can be appreciated in Figure 4.10, where the 3D 

world coordinates of points corresponding to each pixel from the disparity map are used to 

reconstruct the scene. 

 It was found that the general geometric layout of the scene was successfully obtained by 

this approach. However, as it can be appreciated in the 3D scene, there is a high quantity of 

noise, yielding undefined shapes and lacking a good level of accuracy in volumetric 

measurements. Furthermore, the overall mean reprojection error value was of 0.95 (Figure 

4.6), and although this was the lowest value obtained after several tests and configurations, 

it was still too high. 
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A “good” stereographic calibration would provide an overall mean reprojection error 

between 0.08 and 0.15 pixels. However, these values would be found in a scene where two 

cameras are used, and distances to objects could be between 1.5 and 4 meters. Therefore, 

it can be argued that in the present case, the configuration used could have contributed to 

this high error value, given that a macro lens was used, where the general focal distance was 

quite small, between 30 and 40 mm. 

 

 

Figure 4.10: Views of 3D reconstruction of the insert from stereo vision analysis. 

It was consequently concluded that this stereographic approach may not be an appropriate 

method to calculate the tool’s volumetric material loss, since the reconstructed scene was 

filled with noise, and for this application, high accuracy was necessary. 3D scanners in the 

market generally back up the stereo vision with some system of image correlation, where a 

map of points, lines or shapes are cast, so the calibration can be more accurate. Therefore, 

for future work, it could be recommended to explore the possible implementation of an 

image correlation system, along with stereo vision. However, in the author’s opinion, and 

with the results obtained, stereography alone does not seem to be accurate enough to 

become a successful tool wear assessment technique. 
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4.2 Tool Wear Assessment, Results and Discussion 

In the literature review chapter, different properties and aspects of SiAlON cutting tools were 

explored, and a general overview of nickel-based super alloys was included. Furthermore, in 

section 2.1.3, a summary of the contributions of three authors who explored the same 

cutting tools and material used in this research was included. However, the present section 

will provide an extended summary of these references, comparing them with the wear 

mechanisms and parameters found during the current research experiments. 

4.2.1 Literature Summary 

In their work Xianhua Tian et al. (2013b) tested up and down milling with different high 

cutting speeds, and compared these with the wear present in SiAlON cutting tools, while also 

analysing cutting forces. They used a range of cutting speeds that varied from 600 m/min to 

3000 m/min. It is important to mention that whilst this analysis of very high-speeds delivered 

diverse and interesting results, the manufacturer of the cutting tools (Sandvik Coromant) 

recommend the use of speeds between 700 and 1000 m/min. Tian et al. found the presence 

of the next secondary tool wear mechanisms: 

 Crater wear (rake face wear) – Flaking and chipping of tool material occurred in the 

rake face, with a tendency to decrease with the increase of cutting speed (see Figure 

4.11).  

 

Figure 4.11: Rake face wear patterns under different cutting speeds (Xianhua Tian et al. 
2013b). 

 Flank wear – Dominant under higher speeds and in down-milling, edge chipping 

occurs due to the large compressive and shear stresses (see Figure 4.12). 
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Figure 4.12: Flank face wear patterns under different cutting speeds (Xianhua Tian et al. 
2013b). 

 Notch wear – This was found to be very serious and dominant for tool failure at 

speeds up to 1400 m/min. Further increase of cutting speed presented a decrease of 

notch wear due to thermal softening. 

 Microcracks – These were found on the flank face of the cutting tool, with an 

increase of cutting speed, and hence increase in temperature, these microcracks also 

increased in number (see Figure 4.13).   

 

Figure 4.13: SEM images of the flank face at Vc = 1800 m/min (Xianhua Tian et al. 2013b). 

They found a serious presence of adhesion when speeds ranged from 1800 and 3000 m/min, 

mainly due to the increase of temperature. Finally, they also discourage the use of cutting 

speeds under 1000 m/min when face milling, as notch wear becomes very serious and 

leading to tool failure.  
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Zheng et al. (2016) on the other hand, tested these materials and cutting tools using lower 

cutting speeds from 200 m/min to 1000 m/min. They also found similar secondary wear 

mechanisms and mechanisms, but the conclusions differed from the use of different cutting 

speeds. For instance, in the case of the crater wear, they also found flaking at speeds of 500 

and 700 m/min, while adding the presence of adhesion after 900 m/min. For their flank wear 

analysis, they found this was more severe at lower speeds around 200 m/min, with some 

decrease with the increase of cutting speeds. As well, they found wear mechanisms of 

adhesion, abrasion and flaking in the flank edge of the cutting tool at 700 m/min. They also 

found evidence of notch wear, microcracking and chipping of the edge of the tool, with 

important crack propagation. 

Finally, Renz et al. (2015) studied the tribochemical wear of SiAlONs at different sliding 

speeds on Inconel 718. They did not use Sandvik SiAlON cutting tools as with the other 

authors but rather they used a SiAlON block sample for sliding tests instead. However, they 

are the only authors that have analysed this pair of materials in a tribochemical approach. 

These authors divided the tool wear in “mechanically activated,” referring to the wear 

mechanisms explored by the previous authors, and “tribochemical wear.” They found 

through Scanning Electron Microscopes (SEM) and Energy Dispersive X-Ray (EDX) analysis, 

the presence of multiple “tribolayers” with mainly chromium and silicon oxides that, with 

the increase of sliding velocity and hence frictional power, could be divided into three 

phases: 

1. Phase 1: at a low velocity of around 300 m/min and low frictional power, a brittle 

behaviour was found in tribolayer, increasing the COF and resulting in high wear. 

2. Phase 2: higher speeds and an increase in frictional power created a stable and 

protective lubricious tribochemical layer, promoting optimal sliding conditions. 

3. Phase 3: further increase in velocity and frictional power resulted in a dramatic 

increase in temperatures, where the tribolayer became mechanically unstable and 

started to breakdown and dilapidate. This, in turn, caused very high wear. 

While this last author did not explore the mechanically activated tool wear, the speeds and 

temperatures they reported are in accordance with the other two authors. Furthermore, 

those two authors also used EDX analysis that matches the high concentrations of chromium, 

Silicon and Oxide, however, they used this information to support the presence of adhesion 

wear.   
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4.2.2 Tool Wear Assessment 

Having performed an important number of experiments in this research, including different 

parameter and implementing different wear measurements (explained in section 4.1), it 

became relevant to make this research’s own wear assessment. Even though wear 

measurements were carried out in all the three experiment sessions described in the 

methodology, the session that included a wide variety of parameters and results was the 

third experiment. For this reason, in this section, only the results obtained in the last set of 

experiments will be included and discussed. It is important to mention that the conclusions 

found, successfully matched the results and conclusions already found in the previous 

experiments. 

Three main primary and secondary wear mechanisms were found in all the tests carried out. 

In some cases, certain primary or secondary wear mechanisms would be more intense than 

others, but in general, they all appeared at some point of the machining operation. The three 

main secondary tool wear mechanisms found were: 

 Flank wear: this wear mechanism was found to be caused by the intense abrasive 

wear that occurred at the insert’s flank face. This mechanism was present from the 

beginning of the machining process, originated by scar marks that were longitudinal 

and perpendicular to the insert’s rake face. These scars increased gradually, 

intensified in some cases by chipping due to thermal wear and adhesion, as shown 

in Figure 4.14.  

Figure 4.15 displays a progression of five images (from within the eleven runs that 

each test included), showing how flank wear has a continuous and progressive 

behaviour.  

 Notch wear: this wear mechanism tended to have a slow start, showing a small effect 

in the first runs. However, this mechanism dramatically increased well into the 

machining process, creating large scars and promoting chipping from thermal wear, 

as can be seen in Figure 4.14. In a few tests, notch wear was higher than flank wear, 

nevertheless, most of the tests showed larger flank wear than notch wear.  

Figure 4.15 also shows the progression of notch wear.  
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Figure 4.14: Primary and secondary wear mechanisms found in SiAlON inserts. 

 

Figure 4.15: Sequence of insert’s flank face microscope images in Test 6. 

 Crater wear: this mechanism appeared from the beginning of the cutting process, 

gradually increasing in severity. It was found to be caused by the constant flaking 

and chipping of the inserts rake face, due to adhesion and thermal wear. However, 

this mechanism did not show a continuous or progressive behaviour, instead, crater 

wear seemed to increase by sudden leaps of severity. Figure 4.16 shows this 

behaviour through a progression of five images or stages of wear during a machining 

test. This wear mechanism was found to be a leading factor for tool failure, as this 

loss of material weakened the ceramic tool and increased the possibility of tool 

breakage.  

Flank 
Wear 

Notch 
Wear Chipping 

Adhesion 

Flank Wear Flank Wear Flank Wear 

Flank Wear Flank Wear 

Notch Wear Notch Wear Notch Wear 

Notch Wear Notch Wear 
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Figure 4.16: Sequence of insert’s rake face microscope images in Test 3. 

Regarding primary wear mechanisms, three main ones were found. Even though these were 

already mentioned inside the secondary mechanism descriptions, they were deemed 

relevant to analyse and explain individually; and these mechanisms were: 

 Abrasion: this mechanism was evident and mainly present in flank wear, where the 

continuous sliding of the insert’s flank face on the workpiece would promote high 

levels of friction. Due to the high temperatures and forces, the material is removed 

from the workpiece, as expected by cutting mechanics, however, particles from the 

cutting chips and breakage of the workpiece surface roughness would create long 

scarring of the cutting tool flank face.  

 Adhesion: this mechanism can be found from early stages of the cutting process, 

identifiable by the incrustations of workpiece material found in the worn area after 

every run, as shown in Figure 4.14. Evidence of this can also be found in Figure 4.17, 

where the cutting insert’s mass loss in Test 1 was obtained for each test run. From 

the 1st to the 2nd run, from the 3rd to the 4th, and even from the 7th to the 8th run mass 

loss decreased as the insert gained mass instead of losing it, and this is due to the 

adhesion of workpiece material.  

 

Crater Wear 

 

Crater Wear 

 

Crater Wear 

 Crater Wear  Crater Wear 
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Figure 4.17: Mass loss in Test 1. 

 Thermal wear: this last mechanism was expected in a process like this due to the 

high temperatures it involved, and it was present in all wear mechanisms. Inside the 

literature review in this subject, two authors talked about the development of 

microcracks as a cause of high cutting temperatures. Inside this research, it was not 

possible to carry out an analysis of these microcracks through SEM. However, it was 

mentioned by these authors, and confirmed by the different findings of this 

research, that these microcracks are present throughout the cutting process, 

developing flaking and chipping; both leading causes of tool dilapidation and failure 

These primary and secondary wear mechanisms were found throughout all the different 

tests, however, they had different levels of severity. Therefore, the next section will explore 

the individual results obtained, to understand and discuss the relationship between wear 

and the machining parameters tested. 

4.2.3 Results and Discussion 

The individual results for each test of the third set of experiments can be found in the 

Appendix IV, however, Figure 4.18 shows the maximum values of flank wear, notch wear and 

crater wear. As may be appreciated, the values of these three wear mechanisms varied with 

each test. Figure 4.19 shows again the maximum values of flank wear and notch wear, along 

with the mass loss. In both figures, specific tests with high values of wear can be easily 

identifiable. However, there are different dimensions between wear descriptors and in both 

figures, the bar-type chart values (VBmax and VBN) are in accordance with the left vertical 
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axis, whilst the area-type chart values (crater area and mass loss) are in accordance with the 

right vertical axis.  

 

Figure 4.18: Maximum values of: Flank wear (VBmax), notch wear (VBN) (left vertical 
axis), and crater wear area (right vertical axis). 

 

Figure 4.19: Maximum values of: Flank wear (VBmax), notch wear (VBN) (left vertical 
axis), and mass loss (right vertical axis). 

As it was mentioned in chapter 3, the machining parameters of each test varied in 

accordance with a design of experiments. It is therefore deemed relevant to re-insert Table 

3.9, to re-display the machining parameters for each test. This is shown in Table 4.1. 

Table 4.1: Orthogonal array L18, generated using SPSS Statistics. 
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TEST 
NUMBER 

CUTTING SPEED Vc 
(m/min) 

FEED fz 
(mm) 

CUTTING DEPTH 
ap (mm) 

RADIAL 
IMMERSION (%) 

1 1000 0.09 1.5 70 

2 700 0.09 1 70 

3 700 0.09 2 90 

4 850 0.11 2 70 

5 1000 0.07 2 90 

6 850 0.09 1 50 

7 1000 0.11 1 90 

8 700 0.07 1 50 

9 700 0.07 1.5 90 

10 700 0.11 1.5 50 

11 1000 0.07 1 70 

12 850 0.07 1.5 70 

13 1000 0.09 2 50 

14 1000 0.11 1.5 50 

15 700 0.11 2 70 

16 850 0.09 1.5 90 

17 850 0.11 1 90 

18 850 0.07 2 50 

 

In order to compare the different states of wear regardless of their dimensional variation, a 

scaling procedure was applied. The scaling was set between a range of 0 to 10 for each wear 

mechanism, where the maximum value was assigned the value of 10. This new dimension 

was named wear severity and Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23 show all 

wear descriptors; grouped in the different machining parameters of cutting speed, feed, 

cutting depth and radial immersion. 

 

Figure 4.20: Wear severity of crater wear area, flank wear (VBmax), notch wear (VBN) 
and mass loss grouped in cutting speeds (Vc). 
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Figure 4.21: Wear severity of crater wear area, flank wear (VBmax), notch wear (VBN) 
and mass loss grouped in feeds (fz). 

 

Figure 4.22: Wear severity of crater wear area, flank wear (VBmax), notch wear (VBN) 
and mass loss grouped in cutting depths (ap). 
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Figure 4.23: Wear severity of crater wear area, flank wear (VBmax), notch wear (VBN) 
and mass loss grouped in radial immersions. 

As it can be appreciated in these figures, it is still difficult to identify relations or a 

dependency in a specific parameter. For this reason, a sum of wear severity values into a 

total severity value was carried out for each test and the results are shown in Figure 4.24, 

Figure 4.25, Figure 4.26 and Figure 4.27. 

 

Figure 4.24: Total severity, grouped in cutting speeds (Vc). 
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Figure 4.25: Total severity, grouped in feeds (fz). 

 

Figure 4.26: Total severity, grouped in cutting depths (ap). 

 

Figure 4.27: Total severity, grouped in radial immersions. 
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As it can be appreciated in Figure 4.25, the variation of feed did not seem to have a clear 

relation with the total severity of wear in the inserts, as the high and low values seemed to 

be scattered. In Figure 4.24 however, cutting speed variation seemed to suggest that the 

lowest values of total severity were found in the region between 850 m/min and 1000 

m/min, nevertheless, this relation was not entirely clear. It was in the cutting depth and 

radial immersion, Figure 4.26 and Figure 4.27 respectively, that an increase in total severity 

was apparently found in the highest values of each parameter. Cutting depths of 2mm and 

radial immersions of 90% seemed to achieve very severe values of wear. Figure 4.28 shows 

this in a clearer manner by grouping the values of total severity, both by radial immersion 

and cutting depth. Again, this figure appears to indicate that more severe wear is likely to 

occur at higher values of radial immersion and cutting depth.  

 

Figure 4.28: Total severity, grouped in radial immersions and cutting depths. 

Nevertheless, and as shown throughout the figures, the results simply did not show clear 

trends or relationships. This could be related to the scatter that may be inside the actual 

trends. It could be argued that, with the methodology and experimental setup chosen for 

this assessment, it would be possible to mistakenly generalise the behaviours of these single 

tests’ trends.  Therefore, perhaps more tests or repeats could have aided in obtaining an 

acceptable level of statistical significance in the correlations mentioned before. However, it 

may also be the case that the standard deviation may be too high, showing that even with 

test repeats, these are not entirely representative. Regardless, as mentioned in section 

3.3.3.1, the time and cost constraints of the project limited the amount of tests, but this 

could be a relevant future work. 
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Furthermore, Table 4.2 shows again the severity of each wear mechanism and total severity 

values on the far right. This table represents a qualitative approach to show the combined 

effect of all wear mechanisms, as the summation approach was arbitrary. Arguably, some 

weighting of these mechanisms or regression analysis could have been used to give a more 

quantitative reference of total wear severity. However, an in depth characterisation of the 

impact of tool wear mechanisms in tool failure, which would be required for the weighting 

or regression analysis approaches, was not deemed necessary for the research objectives 

and the research scope. Therefore, Table 4.2 simply attempts to show an overview of the 

wear mechanisms and their magnitude, as well as illustrate a simple comparative wear 

reference of each test.  

A colour coding was applied to the total severity values to highlight the tests were the highest 

values were found. Tests 3, 4, 9 and 15 show the highest levels of severity, while tests 1, 2, 

4, 6, 8, 13, and 18 show medium-high levels. The rest of the tests show mild to low levels of 

severity. 

Table 4.2: Wear mechanism severity values and total severity. 

Test 
No. Crater Area VBmax VBN Mass Loss 

Sum of 
Severity 

1 6.205 5.589 8.870 7.500 28.164 

2 7.791 5.025 3.908 10.000 26.724 

3 10.000 8.516 9.184 8.889 36.590 

4 5.958 7.778 9.017 1.667 24.420 

5 9.329 10.000 5.726 10.000 35.054 

6 4.769 6.536 7.055 6.389 24.749 

7 4.097 6.155 5.536 3.806 19.593 

8 4.893 7.945 6.816 7.222 26.876 

9 6.026 9.471 10.000 4.722 30.220 

10 4.104 6.437 4.802 3.889 19.231 

11 5.123 7.483 4.196 0.556 17.358 

12 4.952 6.968 5.801 0.833 18.554 

13 6.618 6.150 5.817 5.278 23.863 

14 4.126 5.170 5.640 2.778 17.714 

15 9.156 8.516 9.184 8.889 35.746 

16 5.813 5.098 3.429 2.222 16.562 

17 5.452 5.331 2.647 3.889 17.318 

18 7.737 7.177 4.216 4.444 23.574 
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Except for test 10, the lowest levels were found in cutting speeds between 850 and 1000 

m/min, and all of them included cutting depths between 1 and 1.5 mm. However, these 

lowest levels include the entire range of feeds and radial immersions. 

When all these results are compared to literature, it is found that Tian et al. (2013b) 

suggested a decrease in crater wear with the increase of cutting speed, whilst this current 

research suggests that this wear mechanism is more dependent of cutting depth. Tian et al. 

(2013b) also suggested that flank wear was more dominant at higher speeds. However, the 

current findings are more in accordance with Zheng et al. (2016) suggesting that flank wear 

seems to be slightly more dominant at the lowest speed of 700 m/min.  

Even though a Tribochemical analysis, similar to the one carried out by Renz et al. (2015) was 

not carried out, by analysing the different phases and the behaviour of the tribolayers that 

they described in their article, it can be argued that the results of the experiment have some 

correlation with their findings. They mentioned a series of phases that described the sliding 

contact between SiAlON ceramic and Inconel 718. These phases showed how there seemed 

to be an area of sliding parameters where the low values of wear can be achieved. The results 

obtained also seemed to suggest the existence of this area of low wear. 

In general, it can be said that a “linear-like” behaviour, such as it is suggested by both authors 

in their articles, was not evident with the variation of machining parameter. Instead, as 

mentioned in the previous paragraph, the findings of this research seem to suggest that 

there is a window of optimum parameters to assure low values or wear. This, in turn, can be 

attributed to the brittleness of ceramic materials, which seemed to initially create 

randomised values of wear. Yet, as it was described before, some relations were found 

through the different tests carried out. Nevertheless, it can be argued that the number of 

tests included in the design of experiments, along with the selected values of variables and 

levels, may not be enough to carry out a calculation of this window of parameters. 

Furthermore, since the scope of this research does not encompass the optimization or 

characterisation of these cutting tools’ parameters, this window will not be suggested. 

However, this could be an interesting topic for future work.  

4.2.4 Summary 

As not many studies on SiAlON tool behaviour were found, this chapter attempted to enrich 

this area by filling some gaps. Therefore, the two main objectives of this chapter were: (1) to 

describe the different techniques explored in the present research to measure wear, and (2) 

to perform a tool wear assessment to identify the main wear mechanisms involved.  
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The approaches described for tool wear measurement included a basic geometric 

measurement of wear through image processing, and an approach to tool wear volume 

measurement through stereo vision. It was found that the first approach was successful in 

generating wear data, with high efficiency in the crater wear area measurement, but some 

inefficiency regarding man hours in the flank and notch wear measuring approach. On the 

other hand, the stereo vision attempt to measure wear volume was unsuccessful, mainly due 

to the low level of accuracy that this approach produced. Therefore, the techniques of 

geometric measurement through image processing of flank and notch wear, as well as crater 

wear area, will be used in the subsequent chapters. 

Regarding tool wear assessment, this chapter found four main wear mechanisms worth 

exploring; these were: crater wear area, flank wear, notch wear and mass loss. These findings 

were quite relevant for the main objectives of this research, and therefore the analysis of 

crater wear would be used to explore the research hypothesis in the next chapter. 

Afterwards, in the chapter 7, some of these wear mechanisms will be used for the prediction 

of tool wear.  
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5 IMAGE ACQUISITION SYSTEMS AND PARAMETERS 

Throughout the current research, improvements were made to methodological aspects of 

the experiments and to the data processing algorithms. One of these improvements was the 

selection of the image acquisition systems and parameters implemented in each experiment. 

This is generally an important aspect of any analytic vision-based system, where the 

procurement of successful and accurate data is essential, and this is almost entirely 

dependent on the hardware used and their respective settings. It was, therefore, decided to 

first compare the results obtained in the first set of experiments, which included the use an 

SLR camera with different shutter speeds. After this, and due to some conclusions that were 

drawn, the second set of experiments were conducted using a high-speed video camera.  

In general, the main objective of the present chapter was to present the process of selecting 

the optimal image acquisition system and parameters for a vision-based TCM system of 

spark-wear relationship. Additionally, it is important to mention that all this chapter’s results 

and conclusions were published, reviewed and presented as a conference article by the 

author (Dominguez Caballero et al. 2016a).  

5.1 Methodology 

The first and second set of experiments were used to evaluate the best image acquisition 

system and parameters in this chapter. Therefore, as a summary of the first set of 

experiments described in the section 3.3.1, these consisted of four tests using fast, medium 

and slow shutter speeds respectively. However, as it was mentioned then, only the first three 

tests (test 1, 2 and 3) were used for the present study. Furthermore, images in all these tests 

were acquired at a constant rate of 1 image every 5 seconds throughout the machining 

operation.  

In the second set of experiments described in the section 3.3.2, on the other hand, two tests 

were carried out, one included 8 runs and the other 5 runs. This difference was mainly due 

to the variation in machining parameters, the amount of workpiece material and the state 

of wear of the insert at the end of the tests. Furthermore, only one insert was loaded into 

the tool holder to isolate the wear values. Also, a different machine and workpiece material 

to that used in the previous experiments were introduced. This change of materials and 

machine was due to availability, however, these variations were not believed to affect the 

present study, as only image acquisition systems and parameters were analysed. 

Furthermore, given the conclusions that were drawn in the first set of experiments, a new 
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image acquisition system was introduced. A Phantom v210 high-speed camera was used, 

recording a video feed instead of still pictures, at a high frame rate of 300 fps. 

5.2 Still Pictures Using SLR Camera and Parameters 

In an SLR camera, the amount of light captured by the imaging sensor is controlled by the 

shutter speed, the diaphragm (or aperture) and the ISO value (Nakamura 2005). This makes 

these three variables dependent upon each other, as varying the shutter speed would mean 

varying the other two as well. Therefore, to test different shutter speeds, it was decided to 

leave the ISO value as constant and simply adjust the aperture to enable the selected shutter 

speed. For this reason, the three speeds tested, included previously in the description of 

these experiments were of 1/640 (fast), 1/125 (medium) and 1/5 (slow) seconds.  

Figure 5.1 shows the resulting images obtained using each one of the shutter speeds. It can 

be seen that, for fast settings (a), the spark seemed quite sharp but segmented. This was 

problematic at the processing stage of the spark features, as the randomness of the spark 

delivered very scattered results. The medium settings (b) on the other hand, provided a more 

solid spark, however, there was still some segmentation and randomness of the spark 

outline. Slow settings (c), successfully managed to acquire a solid and well-defined spark, 

with a clear outline and structure that would enhance the readability of the spark evolution 

results.  

       
(a)                                            (b)                                            (c) 

Figure 5.1: Resulting images of first experiments’ tests using fast (a), medium (b) and 
slow camera settings (c). 

The next step was to extract the spark descriptors for each set of speeds, to compare the 

readability and behaviour of each set of settings. Nevertheless, when implementing the 

corresponding algorithms, the already mentioned randomness and segmentation of the 

sparks when using fast and medium speeds yielded unreliable spark area results. For this 

reason, Figure 5.2 only shows the spark intensity evolution for each test and speed. In this 

figure, it can be seen how the fast settings (a) produced the expected scattered and spiky 

results that would be unreliable, as some jumps of intensity could be caused by the spark 

randomness, instead of its actual growth. The medium speed results (b) produced a 
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smoother evolution, but still showing sudden jumps that have the appearance of noise, again 

due to the spark segmentation and randomness. The slow settings (c) however, as expected, 

produced a much smoother and semi-continuous spark evolution.  

 
(a) 

 
(b) 

 
(c) 

Figure 5.2: Spark Intensity in first experiments for tests 1: fast settings (a), test 2: medium 
settings (b)  and test 3: slow settings (c). 

Given that, in this first set of experiments, the biggest challenge of the spark algorithms was 

to successfully isolate the spark from the background, the mentioned segmentation and 
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randomness caused by medium and fast speeds, increased this difficulty. On some occasions, 

the spark isolation algorithms would choose the wrong section of the spark or a strong glass 

reflection, creating those random variations of the spark evolution trend.  

Furthermore, there was an important limitation related to this type of image acquisition 

system. The sample rate of these tests was significantly wide, and there was plenty of spark 

information was lost in the 5-second spaces. For this reason, the conclusion of a more 

favourable set of results through slow settings was carried on, however, another image 

acquisition system with more robustness seemed necessary to test this statement further. 

5.3 Video Feed Using High-speed Camera and Parameters 

The conclusions mentioned above led to this second set of experiments, where a high-speed 

camera, recording a video feed was chosen. The wide gaps of data in the first experiments 

were solved by the introduction of a video feed, which is a near-continuous way of acquiring 

image data. Also, the need for a more robust system was addressed by using a high-speed 

feed. The idea was to record the high-speed video feed in a high frame rate, so that again 

fast and slow acquisition setting could be compared with a single set of data. This also 

enabled the extraction of as much information as possible.  

The camera manufacturer’s software enabled the segmentation of the high-speed video in 

images of each video frame, therefore delivering 300 images per second. However, given 

that a high-speed camera and only one insert were used, the process was quite intermittent 

and some images had almost no visible spark, as can be seen in Figure 5.3.  

   

  

Figure 5.3: Second experiments, Test 1 - Run 4: sequence of frames 2356, 2357, 2358, 
2359 and 2360 respectively. 
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Therefore, the use of the area extraction algorithm was again not possible, as this algorithm 

would try to find bright areas like the spark, extracting the area of the whole image instead. 

For this reason, it was decided to again only use the intensity algorithm to produce intensity 

evolution graphs from both tests, as shown in Figure 5.4. These graphs show how 

intermittent and noisy the extracted intensity signal was once processed. 

 
(a)                                                                   (b) 

Figure 5.4: Second experiments spark intensity evolution for Test 1 (a) and Test 2 (b). 

To smooth this noisy spark intensity trend, some sort of filtering technique was required, and 

between the many options available, a moving average was selected. Moving averages are 

commonly used to smooth quick variations of nearby points, which is the case of the spark 

intensity trend, and the code used for this filter followed Equation 5.1. 

𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑛) =  
1

𝑊
(𝑦(𝑛) + 𝑦(𝑛 − 1) + ⋯ + 𝑦(𝑛 − (𝑊 − 1))) 

Equation 5.1 

Where 𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the new averaged value of 𝑦 data points inside the window 𝑊.  

To select the moving average window size W, kurtosis values were extracted using different 

window sizes, as shown in Figure 5.5. Kurtosis is the measurement of the “peakedness” of a 

distribution, and it can help selecting a window size value that smooth data while keeping 

important information. 
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(a)                                                                             (b) 

Figure 5.5: Kurtosis values for Test 1 (a) and Test 2 (b). 

It was found that in a range between 10 and 600, some very similar overall smoothing results 

were perceived in the intensity graph, and even though kurtosis settled down at around 50, 

in closer inspection some variability was found. In the range of 300 however, there was a 

good balance between extracting relevant data and obtaining a general smoothness in the 

trend’s outline. In Figure 5.6 the result of the implementation of the moving averaging filter 

can be found, where the intensity averaged values produced the much readable outline of 

spark intensity.  This made in turn, easier to analyse and understand the spark behaviour, 

and it became clear once again that very instantaneous images were too problematic.  

 
(a)                                                                             (b) 

Figure 5.6: Averaged Spark intensity evolution for Test 1 (a) and Test 2 (b). 

Even though these results and technique were promising for further analysis, there was still 

the limitation of not being able to implement the area extraction algorithm. Therefore, in 

order to compare this approach with the still image acquisition methodology in the section 

5.2, and to be able to successfully extract spark area, an image combination step was 

introduced.  
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Through image combination, most of the information in each image could be considered and 

packed into a single frame. Also, the erratic variance of the spark and the problematic images 

with no spark could be overcome. Consequently, after analysing different methods and 

programming commands available for image combination, an arithmetic summation and 

averaging of the images was selected for its reliability and processing time efficiency. This 

method is described by Equation 5.2.  

𝑌 =
1

𝑘
∑[𝐼(𝑘) − 𝑅]

𝑘

𝑘=1

 

Equation 5.2 

Where 𝑌 is the resulting image, I represents each image used in the combination, R is the 

reference image for background elimination (described in the chapter 3) and k the total 

number of images. In Figure 5.7 (a) & (b) this image combination step was implemented, 

using a sample length of 300 images per combination. This value was selected in accordance 

to the Moving Average, also delivering a good direct relation with machining time.  
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Figure 5.7: Spark evolution in  Test 1: Intensity (left) and Area (right) (a), and Test 2: 
Intensity (left) and Area (right) (b). 

Both, the moving average and the image combination algorithms seemed to successfully 

emulate the result of a conventional camera with a slow shutter speed. Furthermore, the 

image combination approach proved that an increased sample length produced richer 

images with a more consistent spark, easier to isolate and process. Evidently, there is a limit 

to the length of the sample, which in the present case was set to 300 images, as over-

averaging could create a loss of important spark information. On the other hand, this image 

combination approach made clear that the use of a high-speed feed was unnecessary. The 

frame by frame processing provided high frequency and noisy results, and the image 

combination made such a high frame rate redundant. Also, even though the video feed was 

segmented in frames, which could arguably be like acquiring still images as in the first 

experiments, the sample rate from the video feed is a clear advantage. Still picture cameras 

can be very dependent on the internal capacity of the camera hardware and memory speed, 

which in the first experiments lead to the wide 5 second gaps between images. Video feeds, 

on the other hand, produce higher sample rates, ranging from around 20 to 60 frames per 

second in conventional video cameras.  

Therefore, it can be concluded that for the present vision-based TCM system, a video feed 

acquisition system with a sample rate of at least 20 frames would be optimal. On the other 

hand, the video feed obtained in the second experiments was grayscale, while in the first 

experiments it was in full colour. The distinctive colour gamma of the spark aids greatly in 

the spark isolation section of the algorithms. Consequently, another important requirement 

for the optimal image acquisition system would be to include a full-colour feed. All this 

proves that a conventional, low-cost video camera device could be used, improving the 

effectiveness of the general TCM system.  

5.4 Summary 

The objective of the present chapter was to evaluate and select the best image acquisition 

system and its optimal parameters. In the first sections, a comparison of different camera 

shutter speeds was carried out, showing how slow speeds yielded readable and accurate 

results. However, a highly important limitation was identified, as photographic devices taking 

still pictures are highly dependent on hardware capabilities, creating in those experiments 

wide gaps in the acquired data. This limitation was solved by the introduction of a video feed, 

and the use of a high-speed camera enabled the analysis of different approaches related to 

the speed of the acquisition parameters.  
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The next chapter presents a study of the spark-wear relation, where data was used from the 

two experiments explored in this chapter. Even though the conclusions drawn in this chapter 

suggested that the first experiments’ acquisition system was not optimal, the spark-wear 

results are important to support the research’s hypothesis. Later on, the second set of 

experiments were analysed, using the optimal results obtained in this chapter, to further 

support this hypothesis.  
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6 SPARK EVOLUTION AND TOOL WEAR RELATION 

This chapter explores the core of this research, in that it addresses the main hypothesis 

where the entire study is based: the relationship between the continuous wear that ceramic 

SiAlON cutting inserts experience during high-speed milling machining, and the evolution of 

sparks created by this metal cutting procedure. Furthermore, this chapter is greatly based 

on a conference publication by this work’s author (Dominguez Caballero et al. 2016b), where 

all the following statements were presented. 

The data obtained by the author’s previous work and described in chapter 3 as the first set 

of experiments were revisited for this chapter. Algorithms were updated and optimized, and 

new algorithms were created to generate a more conclusive evidence of the research’s main 

hypothesis. 

The second set of experiments was also used to evaluate the hypothesis in this chapter, 

where evidence of the spark-tool wear relationship was also found.  

6.1 Methodology 

The first set of experiments was discussed in detail in the chapter 5, and therefore will not 

be once again fully described. Yet, it would be relevant to remember that an SLR camera was 

used in four test that included high, medium and slow shutter speeds. However, in the 

present chapter, only the fourth test will be assessed. This is because the fourth test included 

machine stops to measure tool wear, as well as slow shutter speed, given the conclusions 

that were drawn in the previous chapter. 

In the second set of a high-speed video camera was used to record the cutting sparks. It is 

important to remember from the methodology chapter that in test 1, the ceramic insert was 

extracted from the tool then weighed and photographed between runs. In Test 2 however, 

the insert was also photographed, but this was conducted with the insert still mounted in 

the tool and consequently, no mass measures were extracted. For this reason, only the 

results from test 1 of this second set of experiments will be explored in the present chapter. 

Furthermore, the image combination algorithm will be used as these tests included a video 

feed. 
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6.2 Spark – Wear in First Experiments 

6.2.1 Spark Feature Results 

The images obtained through the fourth test in the first set of experiments were downloaded 

into the MATLAB software for processing. After this, the two algorithms described in chapter 

3 for extraction of intensity and area were implemented. Also, as mentioned there, the 

cutting process was divided in 8 runs where the process was stopped to measure tool wear. 

This presented a problem when analysing data from the spark algorithms, as the stops 

created low or zero values of intensity and area. For this reason, an extra processing step 

was introduced to remove those sections of data where these stops occurred. Figure 6.1 

shows the resulting spark evolution in intensity (a) and area (b) (see Appendix V for the raw 

data with the machining stops). Both graphs have, on the horizontal axis, time in seconds, 

regarding machining time of the milling process. The vertical axes, on the other hand, are for 

intensity metric in the first and area in number of pixels in the second. As may be expected, 

both figures display some similar behaviour. There is a sudden increase in spark intensity and 

spark area at 60 seconds, highlighted by a red square. Also, there is a similar high gradient 

between 80 and 100 seconds, encircled in green. Both figures also display a similar gradually-

increasing trend of the descriptors throughout the machining time. This shows that these 

descriptors are correlated and are representative of the spark development.  

 
(a) 
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(b) 

Figure 6.1: Spark evolution: intensity (a) and area (b). 

6.2.2 Insert Wear Results 

In this set of experiments, only microscope images of the rake face of the inserts were 

recorded. This was one of the main changes that were introduced during the following 

experiments after the realisation of how it limited the quantity of wear data. However, since 

these first experiments were performed in collaboration with the AMRC (Advanced 

Manufacturing Research Centre), the author had little influence in how the tests were 

conducted. 

For the rake face images, the procedure described in the section 4.1.1 was used, and crater 

wear area was extracted from each insert’s image. The results are shown in Figure 6.2, where 

the trend starts from time zero, where the insert has no wear marks, up to its maximum 

value of 12.11 mm2. It is important to mention that this value of maximum crater wear area 

is in accordance with the results obtained in the wear assessment chapter. 
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Figure 6.2: Insert’s crater wear area. 

6.2.3 Spark – Tool Wear Relation and Discussion 

Figure 6.3 shows both spark descriptors along with the wear measurements of crater wear 

area. The vertical axes are applicable for each value graphed in the figure, where the left side 

vertical axis in blue corresponds to the spark intensity values, also in blue and with a dashed 

line. On the right, there are two vertical axes, the one in black and nearest to the figure 

corresponds to the spark area, with its trend graphed also in black, with a dashed line and 

markers for each recorded value. Finally, the vertical axis in red and in the far-right 

corresponds to the insert’s crater wear area, found in a solid red line inside the figure.  

 

Figure 6.3: First experiments - Test 4: spark area, spark intensity and insert’s crater wear 
area. 

Crate
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In the figure, it is possible to see that all three measures have a general qualitative 

correlation, as the steepness of them all is very similar, particularly between zero and 120 

seconds of machining time. However, it was impossible to calculate a quantitative correlation 

of all these trends, as there is a dimensional mismatch between the number of data points 

in each one. While both spark descriptors have the same amount of values, the crater wear 

area measurement only includes 8 points. It could be argued that some curve fitting could 

be done between these data points to calculate correlation values, but given the nature of 

the crater wear area (described in section 4.2.2), it was decided not to do it at this point of 

the research.  

On the other hand, the optimised algorithms for the area and intensity extraction appeared 

to be working correctly in isolating and extracting spark data. The trend lines of both 

descriptors seemed to run smoothly and with very little presence of noise. The expected 

general and gradual increase of both features with machining time occur, supporting that 

these descriptors are indeed most relevant for spark behaviour analysis. Furthermore, the 

tool crater wear extraction algorithm and results also seem to be creating a clear and smooth 

path throughout the machining time.  

Another limitation that was encountered was the image acquisition system. As it was 

described in chapter 5, the use of an SLR camera taking still pictures every five seconds 

created very wide gaps of data in the spark evolution behaviour. While conducting the 

experiments, interesting variations of spark evolution could be spotted with the naked eye, 

which were lost in the normalisation that these gaps create. Furthermore, there was a lack 

of other tool wear mechanism measurements; and whilst the crater wear area was 

successfully extracted and related to the other descriptors, more wear data would have been 

certainly beneficial. 

Regardless of these multiple limitations, the intrinsic similarity of these three resulting trends 

successfully supports the basic hypothesis of this research, enabling the further exploration 

of the desired tool monitoring system using this phenomenon. For this reason, and given the 

limitation already mentioned of the dimensional difference of the variables, a predictive 

scheme using neural networks was chosen for the next step in the research. As it was 

described in the literature review chapter, these machine learning tools can absorb 

dimensional differences in variables given the robustness they can attain if the correct 

number of layers and weights are chosen. 
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6.3 Spark – Wear in Second Experiments 

The second set of experiments attempted to overcome some of the limitations described 

previously by implementing the continuous high-speed video feed and introducing in the first 

test the weighting of the cutting tools. Therefore, this section has the objective of supporting 

the conclusions drawn before by giving additional evidence of the spark-wear relationship 

found in these new experiments. However, as mentioned in section Error! Reference source n

ot found., only the first test will be assessed since it included both weight measurements 

and microscope images of the cutting inserts. Additionally, only the spark area trend will be 

used to compare spark and tool wear to improve the data readability at the end of this 

section. 

6.3.1 Insert Wear Results 

All the tool wear mechanisms described in the chapter 4 were also found in the cutting tool 

used in this test. The presence of adhesion and flaking of the inserts rake face was evidenced 

by the mass loss shown in Figure 6.4, where each marker on the mass loss trend corresponds 

to a machining run. It can be appreciated how there are small mass loss decrements from 

run 1 to 2, from run 3 to 4 and from run 5 to 6, showing the presence of adhesion. 

Additionally, there are clear increases of mass loss from run 2 to 3, from run 4 to 5 and from 

run 6 to 8, showing the flaking mechanism. 

 

Figure 6.4: Insert’s mass loss. 

Figure 6.5 shows the resulting crater wear areas obtained by using again the image 

processing procedure described in section 4.1.1. Comparable to mass loss, the presence of 

flaking was found in the clear increases of crater wear from run 2 to 3 and from run 4 to 5. 

Run 1 Run 2 

Run 3 Run 4 

Run 5 Run 6 

Run 7 

Run 8 
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However, it was found that from run 5 to 6 there was a discrepancy in these wear descriptors, 

as mass loss decreased while crater wear area increased. This was found to be caused by the 

adhesion mechanism, which occluded the insert’s material loss when weighed. This variance 

shows how the crater wear area assessment can overcome this issue, which could otherwise 

be misleading. 

 

Figure 6.5: Insert’s crater wear area. 

6.3.2 Spark – Tool Wear Relation and Discussion 

At the results of the first set of experiments in section 6.2.3, it was easier to observe a 

qualitative correlation between spark and wear. The wide gap between images enabled a 

very gradual behaviour of spark evolution, with a continuous increase. In this second set of 

experiments, on the other hand, the rise in sample rate provided a more detailed spark 

evolution, where a similar continuous trend was not easily identifiable. Figure 6.6 shows the 

spark area evolution in solid blue line (left-hand axis), along with a mass loss in dashed black 

with diamond markers (first right-hand axis), and with crater wear area in dashed red with 

triangle markers (second right-hand axis). Although the spark evolution had a generally 

increasing trend throughout time, it can be seen in the figure that there were plenty of 

discontinuities in spark area evolution. However, on closer inspection, it was found that 

these spark “fluctuations” could be attributed to important events in the cutting insert’s 

wear behaviour.  

Run 1 Run 2 

Run 3 Run 4 

Run 5 

Run 6 

Run 7 Run 8 
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Figure 6.6: Second experiments – Test 2: spark area, insert’s mass loss and insert’s crater 
wear area. 

The sudden increase of mass loss and crater wear area from run 2 to run 3 coincide with 

important drops of spark area. This is also the case from run 4 to 5 and run 6 to 7, where 

spark evolution drops are met with mass loss and crater wear area leaps. Analysing these 

results, and performing a detailed examination of the video feed, it was apparent that every 

time the cutting tool suffered a flaking or chipping of material, the spark seemed to rapidly 

decrease in size. The proposed explanation for such behaviour was that every time the 

cutting tool lost an important amount and area of material, a new sharp edge was revealed. 

This new sharp edge would create a temporary new low worn surface of the insert, reducing 

the size and intensity of sparks, but creating poorer and poorer surface finish. Additionally, 

the loss of cutting tool material would also impact in the accuracy of the cutting depth and 

feed per tooth.  

This phenomenon of sudden cutting tool material loss appears to be of great importance for 

the current research. These events seemed to be crucial to accurately monitor the actual 

tool condition and possible tool failure. It was therefore proposed that these “flaking events” 

were the failure mechanisms that could lead to tool breakage. As was described in the 

chapter 4, flank and notch wear were found to be important mechanisms to continuously 

map the tool’s condition, even though they did not seem to be the main causes of tool failure.  

Nevertheless, as it was also described in that chapter, these two mechanisms are significant 

precursors of the microcracks that appear to weaken the cutting tool material and lead to 

the mentioned tool flaking and chipping.  
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6.4 Summary 

It is almost impossible to accurately and constantly measure the tool wear of cutting tools 

whilst machining, otherwise this research and many other mentioned in the literature review 

would be unnecessary. Therefore, the different ways in which indirect methods of TCM are 

compared with actual wear can always appear to be quite empirical. However, a well-

supported method of comparing and aligning these two can be successful when enough 

evidence of correlating behaviour and event recognition can be discovered.  

The present chapter had the already mentioned objective of exploring and studying the main 

research hypothesis. The two experiments chosen accurately proved that this hypothesis has 

a very strong foundation and that further work was possible. The first experiments accurately 

showed that there was an intrinsic qualitative correlation between tool wear (crater wear 

area) and spark evolution (area and intensity). The second experiments, on the other hand, 

expanded this correlation by showing the presence of spark events that could be directly 

related to tool wear.  

Even though these correlations could not be fully quantified due to the dimensional 

discrepancy of the data in those tests, other methods could overcome this by using a more 

robust method of fitting spark behaviour with wear data. This is the case of Neural Networks, 

which are effective models of pattern recognition through statistical analysis. Fed by a 

compound of experimental data as training, neural networks can accurately obtain a 

compact model, with fast data processing (Bishop 2006). Therefore, the next chapter will 

present the design and application of a neural network for the prediction of tool wear. This 

neural network was entirely based on the conclusions drawn by all of the previous chapters. 

For instance, based on the conclusions exposed in the chapter 5, the thrid set of experiments 

incuded the use of a video feed to implement the image combination algorithm, emulationg 

the mentioned “slow camera settings”. On the other hand, the selection of output variables 

of the neural network came from the assessments and conclusions drawn in the chapter 4. 

And finally, the general use of variables and the interpretation of results were mainly based 

on the conclusion and discussion presented in this chapter.  
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7 PREDICTIVE TOOL CONDITION MONITORING VIA NEURAL 

NETWORKS 

All the previous chapters included different objectives that together, had the goal of 

supporting the decisions included in this final chapter. Having shown in chapter 6 that there 

is an apparent empirical or qualitative correlation between the spark evolution and the 

measured cutting tool wear, it was decided to attempt to implement a method of tool life 

prediction. As was described in the literature review in section 2.4, Artificial Neural Networks 

(ANN) are mathematical models which are capable of representing input-output 

relationships via a process of pattern recognition and supervised learning. Therefore, the 

current chapter describes the implementation of this model to the data extracted from the 

final experiments, with the objective of building a neural network capable of predicting tool 

wear. 

7.1 Methodology 

In section 3.3.3, the third set of experiments was described, where a design of experiments 

(DOE) was used to plan different tests, varying different relevant machining parameters. It 

was mentioned then that the conclusions found during the analysis of the first and second 

set of experiments were essential to the planning and execution of these final tests. It was 

found through the assessment described in chapter 5 that the best image acquisition feed 

for this research would be a video feed, and that the image combination algorithm as a 

method of simulating slow acquisition settings was fit for purpose. In chapters 4, the third 

set of experiments was also used, given the richness of data obtained from those tests. 

However, these tests were not revisited or described, as it was deemed important to do this 

in the present chapter, where all the data extracted from these tests would be used. 

Nevertheless, in that chapter, as well as in the literature review section 2.1.2 and chapter 6, 

the importance of certain tool wear values was stated, and this was also an important factor 

for the design of that third set of experiments. Therefore, as it was described then, the DOE 

included different machining parameters organised into orthogonal designs to reduce the 

number of tests whilst achieving a good mix of values. The collected wear datasets have 

already been presented and described in chapter 4, however, the area and intensity datasets 

have not been discussed. These two features had to be extracted from the many video 

recordings of each machining run inside each test.  
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As was described in section 3.2, the general intensity and area extraction algorithms followed 

a similar structure and order throughout all the experiments, however, these had to be 

adapted for each set of experiments. In the case of the present third set of experiments, 

there were two major corrections to the general algorithm, where the subtraction of a 

reference image from all frames was eliminated, and an additional step to remove data from 

time periods when the tool was not engaging the workpiece was introduced.  

Firstly, the elimination of the use of a reference image to reduce background information 

presented a problem during these experiments. Given that the workshop where the tests 

were conducted was relocated, the new location presented a problem that the previous sets 

of experiments did not experience. As was mentioned a few times in chapter 3, the external 

illumination conditions in the first and second sets of experiments were kept as constant as 

possible. Nevertheless, the new location of the milling machine included direct incidence of 

natural light, and hence, different illumination conditions throughout the day and the 

seasons. Even though minimisation of this effect was attempted by reducing the ISO 

parameter (also described in chapter 3), as well as by partially blocking windows, this 

variation was observed in all the videos. The way this variation caused a problem with the 

existing algorithm was that, since the reference image was the first image of the data 

compound, this picture would generally have a very different illumination that the rest. 

Consequently, as the reference image subtraction was an arithmetic subtraction of intensity 

levels of the images, in some cases this would not eliminate any of the background, 

producing unreliable spark intensity and area data results. Therefore, this step was replaced 

by a different approach in the general algorithm. Instead of subtracting a reference image 

from all the frames, each frame was subtracted from itself by using an image morphological 

opening technique. Each frame was partitioned in each of its RGB channels, as shown in 

Figure 7.1, and given that the spark is mostly present in the Red channel, this technique was 

applied only to the other two channels.  
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(a) 

 
(b)                                                (c)                                                 (d) 

Figure 7.1: Partitioning of original image (a) into Red (b), Green (c) and Blue (d) channels. 

Through the morphological opening technique, the image’s pixels experience an erosion 

followed by a dilatation, based on a determined structuring element. The structuring 

element represented a neighbourhood of pixels, limited by a certain distance and a certain 

shape, where this erosion and dilatation would be implemented. The erosion consists of 

mapping structuring elements so that the centres of these elements are distributed 

throughout the image and small image elements inside are eroded. The dilatation 

mechanism does the opposite, using again the structuring element, but incrementing the 

area of picture elements. In the present approach, a “disk” shaped element was chosen, as 

it is an element commonly used for these tasks, for it improves processing time whilst its 

shape has distinct advantages for background removal. With these elements, the radius 

determines its size and another value is used to approximate the disk shape. After this 

technique was applied to the Green and Blue channels, these were concatenated to reform 

a three-channel image, but with a structure BGB, as shown in Figure 7.2. This last image is 

the one that is subtracted to the original image and the resulting effect can be observed in 

Figure 7.3, where most of the background has been removed and the spark has been 

isolated.  
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Figure 7.2: Concatenated BGB image from the morphological opening of the green and 
blue channel. 

 

Figure 7.3: Resulting image from subtraction of concatenated GBG image. 

The second adjustment to the general algorithm methodology was the introduction of a step 

to remove the spark area and intensity values obtained from frames where the tool did not 

engage the workpiece, as shown in Figure 7.4 where these values are encircled. During 

testing, the video feed was initiated as the machining run was started, and since the cutting 

tool would travel some distance before engaging the workpiece, those frames were also 

recorded. Likewise, at the end of the run, the cutting tool would exit the workpiece and 

frames would include small sparks from the disengagement and no spark from the remaining 

tool path. This was the same situation as in the second set of experiments, where all 

throughout section 5.3 the resulting graphs would have a fluctuating outline that showed 

each machining run. However, in the present set of experiments and for this chapter’s 

objectives, it was important to eliminate these apparent “low values” of spark intensity and 

area, as they could be problematic for the neural network. Therefore, this step would 

evaluate the area and intensity results extracted from each video (each run), calculating the 

standard deviation of their values. Then, the first value found to be above a certain 

percentage of the standard deviation would be located and regarded as the first value of 

actual tool – workpiece engagement. The percentage value was introduced to give this 

discrimination step more flexibility, and it was set to 80% after repeated trials as the spark 
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behaviour varied significantly from test to test. After this, a certain number of the following 

values was recorded, ending this window with the last value of actual tool – workpiece 

engagement. Since this task did not need to be automated, the selection of this window of 

values and the evaluation of the last value was done manually, mainly to avoid loss of 

relevant data. Also, the window of values was the same for all the runs in the same test, as 

they all had the same toolpath, and hence, the same machining time. The full algorithm for 

this set of experiments can be found in Appendix VIII. 

 

Figure 7.4: Spark intensity in Test 1, third set of experiments, with tool disengagements 
encircled. 

In section 4.2.3, the tool wear measurements of all the tests were presented. However, it is 

important to mention that during data processing it was discovered that the video recordings 

of test number 15 were missing; and whilst its tool wear measurements were recorded 

successfully, this test had to be omitted during this chapter. Retesting was considered but, 

given that the workpiece material and cutting tools had been completely used, preparing 

new material and purchasing more tools for one test was not deemed a good use of 

resources.  

7.2 Two-Layer Neural Networks and Netlab Overview 

As was mentioned in the literature review, in section 2.4, the Multi-Layer Perceptron is a 

widely used architecture of a Neural Network (NN) for its adaptability and its processing 

Disengagements 
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efficiency. This architecture generally consists of two layers of weights interconnected 

between the nodes, as shown in Figure 7.5. Furthermore, this architecture is generally 

capable of “universal approximation,” as they can approximate any function with a certain 

level of accuracy, assuming there are enough hidden nodes (Nabney 2002). In Figure 7.5, 

from left to right, the first layer corresponds to the input layer of variables 𝑥𝑖 where 𝑖 =

1, … , 𝐷. Then the second layer corresponds to the hidden layer, with its hidden units or 

hidden nodes 𝑧𝑗 with values 𝑗 = 1, … , 𝑀. The variables 𝑥0 and 𝑧0 correspond to the bias 

parameters associated with these two layers. Finally, the last layer corresponds to the 

outputs layer, denoted with the variable 𝑦𝑘, where 𝑘 = 1, … , 𝐾. 

 

Figure 7.5: Diagram of a two-Layer feed-forward architecture of NN (Bishop 2006). 

In any neural network, the weights 𝑤𝑗 that are interconnected between layers are the ones 

that are adapted throughout the training phase, as they act during the feed-forward 

propagation. This propagation is carried out by a set of intermediate activation variables 

that, from the first to the second layer, are given by Equation 7.1. Every 𝑎𝑗
(1)

 variable is 

associated with each hidden unit and the variable 𝑏𝑗
(1)

 correspond to the bias parameters 

associated with the hidden units.  

𝑎𝑗
(1)

∑ 𝑤𝑗𝑖
(1)

𝑥𝑖 + 𝑏𝑗
(1)

𝐷

𝑖=1

                  𝑗 = 1, … , 𝑀 

Equation 7.1 

After this, the activation variables are transformed using a non-linear activation function at 

the hidden layer, and their outputs are given by Equation 7.2. 
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𝑧𝑗 =  tanh (𝑎𝑗
(1)

) 

Equation 7.2 

Finally, the 𝑧𝑗 is then transformed into a second set of activation values by the weights and 

biases in the second layer, given by Equation 7.3. 

 

𝑎𝑘
(2)

∑ 𝑤𝑘𝑗
(2)

𝑧𝑗 + 𝑏𝑘
(2)

𝑀

𝑗=1

                  𝑘 = 1, … , K 

Equation 7.3 

For regression problems, which is the case of this study, the output layer variables take the 

form of the linear function 𝑦𝑘 =  𝑎𝑘
(2)

. In the case of classification problems, the activation 

output units are transformed using other different functions that will not be discussed in this 

work. 

As mentioned previously, neural networks are capable of approximating continuous 

functions by supervised learning through a set of training data points. The way a NN’s training 

phase enables the adaptation of the weights between layers is a technique named 

backpropagation. This is a complex technique that is repeated during training by a defined 

number of iterations, until the NN achieves in approximating, to a certain accuracy, the input-

output relationship. Initially, the NN model assigns random values to the weights. The 

obtained output values are then compared to the already known target values 𝑡𝑘 in the 

manner given by Equation 7.4, for each pattern n in the data set. After this, error values 𝛿 

are calculated and through error backpropagation, the weights are updated to a new value. 

This process is repeated a certain number of times as the error gets reduced; arriving at an 

input-output function approximation with a certain level of error. 

𝛿𝑘
(2)𝑛 = 𝑦𝑘

𝑛 − 𝑡𝑘
𝑛 

Equation 7.4 

To find the best neural network for a certain set of input-output data, it is important to select 

the correct number of hidden nodes. If the number of hidden nodes is too high the network 

can become overcomplicated, impacting in processing efficiency, and most importantly, in 

possible “overfitting” of the data. In the other hand, if the number is too low, the network 

may be underfitting data, delivering a low level of accuracy. Overfitting is a common problem 

in the implementation of neural networks. When this issue occurs, the networks may appear 

to deliver low values of error for the points used during the supervised learning, but when 

new data is presented, the error becomes very high.  
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The common practice to build and select a fully functional NN is by a cross-validation 

method, where the input data is divided into three data sets, namely for Training, Validation 

and Testing. The way data points are divided can be arbitrary, depending on the type of input 

data and the purpose of the NN; similarly, the number of data points for each section of the 

cross-validation can also be selected arbitrarily. However, for the latter, the number of 

training points can generally be around the 70% as it is desirable to use most of the examples 

for the supervised learning but leaving some instances for validation and testing. 

Consequently, the number of validation and testing points can be around 15% each. Later in 

this chapter, these quantities will be selected as per the analysis of the type of data used. 

The software used to create NN in this research was a toolbox for MATLAB software named 

Netlab2 by Nabney (2002). This toolbox includes different commands and operations that aid 

in building and cross-validating a NN. As an overview, to create a NN in this toolbox, the initial 

step would be to set-up the network parameters, declaring the number of inputs, outputs, 

hidden nodes and hyperparameters. Then, through a separate command, the network’s 

structure is initialised using all the parameters previously declared. After this, some 

optimising parameters are introduced to control the NN, where the most relevant parameter 

relates to the desired number of training cycles. Finally, the algorithm uses another 

command to optimise or train the neural network using some input values and their 

respective known target values. This trained network would be the one used in the validation 

step to select the best network and avoid overtraining, and in the testing step to report the 

NN final error value.  

Even though this overview mentions the general procedure of the Netlab toolbox, there are 

some commands, factors and operations that are worth analysing before the NN can be 

implemented on the research’s data. Firstly, there are different optimisation algorithms that 

can be applied to the main operation of “network optimisation,” which is the Netlab 

command that trains the network. In the present research, the optimisation algorithm 

selected is the “Scaled Conjugate Gradient,” given that this algorithm is widely used in two-

layer neural networks in MATLAB. According to Nabney (2002), it can provide conjugate 

searched directions, without performing line search or calculating the Hessian matrix, and it 

can outperform other conjugate gradients and quasi-Newton algorithms.  

                                                           
2 Netlab Neural Network Toolbox by Nabney and Bishop, Aston University, Birmingham. URL: 
http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/ 



7.2  Two-Layer Neural Networks and Netlab Overview 

 

109 
 

Furthermore, before building and optimising the NN the hyperparameters, as well as the 

number of training cycles or iterations, can be declared. For the NN built in this chapter, only 

the weight-decay hyperparameter ∝ was declared. It is a regularisation parameter used in 

Netlab’s neural networks to penalise large values of weights, and hence avoid overfitting. On 

the other hand, the number of training cycles declared is the number of times that the 

optimisation procedure will be carried out. For both parameters, it is advised to use cross-

validation to select their values; however, the amount of time required, compared to the 

possible benefit of doing this long study was not deemed necessary by the author. Therefore, 

a fixed ∝ value and a fixed number of iterations were selected and implemented in all neural 

networks, and their values were selected by recommendation of the Netlab literature.  

Another set of commands and values worth analysing are the error values that the toolbox 

algorithms calculate, as these are relevant for the presentation of results later in this chapter. 

During the training cycle of the NN, each iteration automatically calculates and records a 

Bayesian error value. This type of error value is widely used in Netlab, where is also known 

as “overall error,” as it uses the regularisation parameter ∝. The value of this Bayesian error 

is given by Equation 7.5. The variable 𝐸𝐷 is a “data error” calculated in Netlab by Equation 

7.6, where 𝑁 is the number of data points; and 𝐸𝑊 is a “weight error” term in the form of 

Equation 7.7 inside the toolbox, where 𝑊 is the total number of weights. 

𝐸 = 𝐸𝐷 + ∝ 𝐸𝑊 
Equation 7.5 

𝐸𝐷 =
1

2
∑{𝑦(𝑥𝑛; 𝑤) − 𝑡𝑛}2

𝑁

𝑛=1

 

Equation 7.6 

∝ 𝐸𝑊 =
∝

2
∑ 𝑤𝑖

𝑊

𝑖=1

 

Equation 7.7 

Given that the recording of the Bayesian error is done automatically throughout training, this 

type of error will be used to present training results. On the other hand, to present all other 

results of the cross-validation process, the mean-squared error (MSE) will be used instead, 

which can be calculated using the data error by implementing Equation 7.8. The MSE is used 

in most literature regarding neural networks’ performance, and therefore, this was deemed 

the most appropriate for this work. 

𝑀𝑆𝐸 =  
2𝐸𝐷

3𝑁
 

Equation 7.8 
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In the following sections, the different decisions regarding data manipulation and NN 

algorithm implementation will be presented and discussed. Therefore, it would be relevant 

to relate back to this section to understand the different concepts used for the neural 

networks and for Netlab.  

7.3 Neural Networks and Results 

In the present section, the different neural networks that were created and the cross-

validations that were carried out for the third experiments’ data will be presented. In an ideal 

set-up, a single NN would be created using all the data obtained in those experiments. This 

would mean using some tests for training, some for validation and some for testing. 

However, to successfully understand and analyse the neural network’s behaviour, it was 

decided to divide this section into three steps. Firstly, to see whether it was possible to relate 

the spark features as network’s inputs to the wear parameters, this step consisted in carrying 

out a cross-validation for each test individually. This permitted an isolated analysis of tests’ 

results, making possible to understand the behaviour of the networks and their respective 

levels of accuracy. After this, the machining parameters were included in a cross-validation 

with all the tests’ data to observe their impact on the neural network. However, in this step, 

the tests’ data points were randomly selected and assigned to the training, validation and 

testing data sets. This attempt permitted the creation of a single NN for all the tests and with 

data points from all the tests inside the training, validation and testing steps, enabling a more 

direct interpolation of the targeted outputs. Finally, a cross-validation was carried out using 

again the entire tests’ data, such as in the previous step. However, all the points of each 

entire test were taken together into the training, validation and testing data sets; such as it 

was described above as the ideal set-up of the NN. The objective of this approach was to 

evaluate whether a single trained NN could correctly predict the wear outputs using data 

from unseen tests. Consequently, the sorting of these tests was done using the DOE 

orthogonal designs, which had certain properties that were useful for this final approach. 

Therefore, in a summary, the first individual step helped to understand the challenges that 

the NN could face by isolating their implementation, whilst the other two steps provided a 

good idea of how these networks would work in a more demanding scenario. Nevertheless, 

some challenges were found during each cross-validation, and some changes were required 

and implemented.  

Some parameters were kept constant in all the three steps; these were the optimisation 

algorithm, the hyperparameter, the number of training cycles and the use of error values. 

Furthermore, regarding the number of data points for each cross-validation section, it is 
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important to mention that neural networks tend to have a better performance when a high 

number of examples and data points are used during training. However, given that a DOE 

was conducted to minimise the number of tests due to resource and time limitations, the 

total number of examples and data points was not very high. Therefore, it was decided to 

assign 80% of the data points for training, allowing a high number for the supervised learning 

phase of the optimisation. Hence, 10% of the data points were assigned for validation and 

10% for testing.  

The input and output variables chosen for the networks can be found in Figure 7.6. 

 

Figure 7.6: Two-layer neural network for machining spark – wear prediction. 

As can be appreciated, the neural networks inputs include the spark features and the 

machining parameters. In a real-time scenario, these parameters are the only factors that 

the NN could know during the machining process, as the spark features could be processed 

in real-time and fed into the NN. On the other hand, the outputs are the wear measurements 

discussed and presented in section  4.2, where their importance was described, whilst their 

relationship with spark features was already explored in chapter 6. However, the wear 

measurement of mass loss was not included here, given that it was not a continuously 

increasing parameter, where adhesion acted to give potentially problematic gains of mass. 

This could affect and confuse the NN, and it was decided that the crater wear area was also 

capable of providing the information that the mass loss parameter could provide. 
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Furthermore, it is common practice to normalise the data points fed into a NN to avoid 

unbalanced networks and large weights. Therefore, all the inputs and outputs were 

normalised using a MATLAB resource that centres the data to have a mean at 0 and scale the 

data to have a standard deviation of 1. This can be appreciated in Equation 7.9, where 𝜇 is 

the mean and 𝜎 is the standard deviation. Thus, all the results in this chapter will be 

presented in normalised values. 

𝑧 =
𝑥 − 𝜇

𝜎
 

Equation 7.9 

Finally, the algorithms built for these networks followed the structure shown in Figure 7.7.  

 

Figure 7.7: Neural network algorithm for machining spark – wear prediction. 

Where each step has the following description: 

1. Data Loading: In this step, all the data that was collected in the third set of 

experiments is loaded into the algorithm (Spark Area and Intensity as inputs, as well 

as Flank, Notch and Crater Wear as target values). 

2. Data Pre-Processing: The pre-processing task included the regularisation of 

variables, followed by a curve fitting of the wear parameters. Given that wear 

measurements were carried out between runs, only 11 data points were recorded 

for each test. Therefore, the curve fitting step created the additional points required 

to match the spark features dimensions. In all algorithms, a linear interpolation was 

used for curve fitting, as other methods such as cubic interpolation were tested, but 

Data Loading

Data Pre-Processing

Data Assignment

NN Initialisation

NN Training

NN Validation

NN Testing
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their results were not adequate. The final processing of this step included the 

creation of the machining variables, assigning values of -1, 0 and 1 to each level of 

the variable (see section 3.3.3.1).  

3. Data Assignment: In this step, the data points of the test or tests were assigned to a 

different cross-validation section (Training, Validation, Testing). This step was 

different for each one of the following approaches, and its implementation will be 

described in each section.  

4. NN Initialisation: This step includes all the sub-steps described at the beginning of 

this section for Netlab, where the number of inputs, outputs, hidden nodes and 

hyperparameters was declared. Then, the network’s structure was initialised and 

some optimising parameters were introduced to control the NN, including the 

number of training cycles. This step also included some changes in each approach, 

and these changes will also be described in each section. 

5. NN Training: In Netlab, this step is also known as network optimisation, and for 

cross-validation, only the training data points were used to optimise the network. 

This step provided training error values that could be used to assess the network’s 

performance.  

6. NN Validation: This validation step consisted in forward-feeding the trained NN 

using the validation data points, providing error values to assess the network’s 

performance. 

7. NN Testing: This final step consisted in forward-feeding the testing data points 

through the same trained NN as the previous step. Again, these steps delivered 

output error values that gave the final accuracy result of the neural network. All the 

NN steps from 4 to 7 were the actual cross-validation steps, which were repeated to 

report the best network’s training error.  

The selection of the number of hidden nodes for a NN is crucial for its performance and 

complexity. Therefore, it was important to test different numbers of hidden nodes in each 

cross-validation, using the different error values to evaluate the best quantity. Additionally, 

since the NN optimisation includes randomisation of the initial weight values, each 

optimisation task can provide different results, even whilst using the exact same parameters 

and data sets. Consequently, it was also decided to repeat each training, validation and 

testing ten times for each number of hidden nodes, to select the optimal NN. This process is 

depicted in Figure 7.8, where the tables for training, validation and testing include their 

respective error values. The manner of selecting the optimal NN was by analysing the 
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validation errors and selecting the optimal one, which had the lowest value with the least 

complex NN. This decision was performed manually using the author’s criteria and will be 

furtherly described in each approach. Once this optimal NN was selected, the testing error 

value for that specific NN was the reported value to assess the final accuracy and 

performance of the NN. 

 

Figure 7.8: Optimal NN selection for different numbers of hidden nodes and neural 
networks. 

7.3.1 Individual Tests Networks 

For this first approach, each test was processed separately, so that individual networks were 

created for each test. Therefore, referring to the NN algorithm presented previously in Figure 

7.7, this approach followed the described initial steps of “data loading” and “data pre-

processing”. However, since the machining parameters in a single test were constant, instead 

of having six inputs only the spark area and spark intensity were used. After this, during the 

“data assignment” step of this approach, a variable was created of the same size as input’s 

dimension and with random values between 0 and 1. Then, using a conditional argument in 

the algorithm, it was possible to separate each test’s data points into the training, validation 

and testing data sets. Therefore, in a single test, all data points that had a corresponding 

value in the randomised variable between 0 and 0.8 were assigned for training, whilst the 

ones between 0.8 and 0.9 were used for validation, and between 0.9 and 1 were used for 

testing. This was therefore in accordance with the mentioned data sectioning of 80% of data 

points for training, and 10% each for validation and testing.  

Furthermore, there exists a difference in opinions regarding the best number of hidden 

nodes for a NN. For a two-layer NN, the number of hidden nodes dictates the number of 

weights required. Using Equation 7.10 it is possible to calculate the number of weights in a 

NN, provided the number of hidden nodes ℎ, the number of inputs 𝑖 and outputs 𝑜.  

𝑁𝑜. 𝑜𝑓 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = (𝑖 + 1)ℎ + (ℎ + 1)𝑜 
Equation 7.10 
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The number of weights of a NN should be significantly lower than the number of input data 

points. A NN with the same or higher amount of weights as input data points would create 

an unnecessarily complex, over-trained and overfitted network. Therefore, this “ratio” of a 

number of weights per number of data points can vary depending on the type of data and 

neural network. In the case of the present research, three ratios were calculated to 

understand the results of each tests’ NN, and these were 3x1, 2x1 and 1x1; as can be seen 

for each test in Table 7.1.  

Table 7.1: Number of hidden nodes for different weight-input data points ratios. 

TEST NO. 
NO. OF NODES 

RATIO 3 X 1 
NO. OF NODES 

RATIO 2 X 1 
NO. OF NODES 

RATIO 1 X 1 
MAX NO. TO 

EVALUATE 

Test 1 7 11 23 30 

Test 2 12 18 37 45 

Test 3 12 19 39 50 

Test 4 8 13 27 35 

Test 5 12 28 37 45 

Test 6 10 15 31 40 

Test 7 7 11 23 30 

Test 8 14 22 45 55 

Test 9 17 25 52 60 

Test 10 10 15 31 40 

Test 11 11 17 36 45 

Test 12 13 20 42 50 

Test 13 8 13 27 35 

Test 14 7 11 23 30 

Test 15 10 15 31 40 

Test 16 8 13 27 35 

Test 17 14 21 43 50 

 

The ratio of 1x1, whilst undesired, was considered to correctly evaluate each network to the 

appropriate number of hidden nodes. The maximum number hidden nodes to evaluate a test 

was set to a value slightly higher than the 1x1 number, as shown in the fourth column of 

Table 7.1. Therefore, for instance, in test number 9 a good number of hidden nodes with the 

3x1 ratio would be 17, whilst the test was evaluated up to 60 hidden nodes. It is relevant to 

remember that, since different machining parameters were used, each test has a different 

number of data points corresponding to their different machining times. It is also important 

to mention that, since there are two factors in the algorithm that depends on randomisation, 

namely the randomised variable and the actual NN, each random generator seed was stored 

to preserve repeatability. 
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Once the maximum number of hidden nodes to evaluate a test was calculated, the rest of 

the algorithm would be implemented. Using the selection process described in Figure 7.8, 

the optimal NN was selected for each test. It was mentioned then that this task was 

performed manually, where the method of selecting the NN started by finding the minimum 

values of error with the lowest number of hidden nodes. However, in some occasions, these 

minimum values would include a number of hidden nodes closer to the 2x1 or even the 1x1 

ratio. Regardless of this, the difference in the error value between these complex networks 

and networks with a low number of hidden nodes was generally quite small. This is where 

the author’s discretion would be used to select the most appropriate NN, finding a balance 

between the least complex and most accurate one. Therefore, Table 7.2 shows these optimal 

networks selected, with the number of neural network, number of hidden nodes and final 

testing error for each test. 

Table 7.2: Optimal networks, given by the NN’s number and a number of hidden nodes, 
with final testing error values. 

TEST NO. NN NUMBER 
NO. OF 

HIDDEN NODES 
FINAL TESTING 

ERROR 

Test 1 2 7 0.8063 

Test 2 9 13 0.455 

Test 3 6 11 0.3241 

Test 4 6 7 0.2808 

Test 5 1 8 0.3386 

Test 6 9 12 1.2134 

Test 7 9 7 0.1630 

Test 8 6 14 0.3640 

Test 9 2 3 0.1278 

Test 10 10 8 0.0665 

Test 11 1 8 0.0559 

Test 12 2 7 0.1818 

Test 13 10 7 0.0849 

Test 14 9 6 0.1896 

Test 15 3 10 0.3098 

Test 16 1 5 0.5662 

Test 17 1 10 0.1954 

 

As can be seen in the table, in most tests the optimal NN was achieved with a number of 

hidden nodes equal or lower than the 3x1 ratio, with the exception of tests 2 and 6. On the 

other hand, it was interesting to find that test 9 had the lowest number of hidden nodes, 

regardless of having the highest number of input data points. 
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Taking test 2 as a representative example, Figure 7.9 shows the training mean-squared errors 

for each number of hidden nodes, where the line shows the mean values of these errors. It 

can be appreciated that the training errors behaved as expected in a NN, as the error 

decreases rapidly until about 0.27, where the trend stabilises around the error value of 0.25.  

 

Figure 7.9: Test 2 training mean-squared errors for different numbers of hidden nodes. 

Similarly, Figure 7.10 shows the validation mean-squared errors for each number of hidden 

nodes. Here again, the general trend shown by the mean value line had the expected 

behaviour, with a rapid descend, followed by a stabilisation, and then a mild increase. As 

shown in Table 7.2, the chosen optimal neural network for test 2 was the 9th network with 

13 hidden nodes, delivering a validation error of 0.2766 and a final testing MSE value of 

0.4555.  
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Figure 7.10: Test 2 validation mean-squared errors for different numbers of hidden 
nodes.  

The number of iterations or training cycles was declared as 1,000, and the selection of data 

points for the cross-validation was divided in 80%, 10% and 10%. However, it may be argued 

that if these quantities were changed, there would be important changes in the accuracy 

results of the selected NN. Nevertheless, the actual changes that these factors provided were 

not very dramatic and arguably not worth the time expense of investigation. For the present 

case of test 2, if the number of iterations was increased to 10,000, the final training error 

would decrease to 0.4528. However, in the author’s opinion, the improvement in error of 

less than 0.003 did not justify the increase of processing time by 10 times. Furthermore, 

whilst in this test’s case, the training Bayesian error appears to continue to descend after 

1,000 iterations, there were tests where the continuous flat slope would be obtained below 

this number. Therefore, it would also impact in general pre-processing and processing time 

of the networks, the labour of deciding which tests would benefit from more iterations. 

Similarly, by altering the cross-validation sections for test 2 into 70% training, 20% validation 

and 10% testing, the validation MSE would rise to 0.5227, even though the number of 

validation points was increased, whilst the final testing error would be 0.6564. Furthermore, 

whilst this change delivered poorer results, the difference in testing error was not too great. 
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Yet, this test could aid in supporting that the initially chosen separation of data points was 

advantageous. 

Going back to the results obtained with the optimal NN, at closer inspection there were 

interesting factors found. In Figure 7.11 the individual validation errors of the selected NN 

number 9 appear to be quite disperse, showing the same initial rapid descend expected in 

validation errors, but followed by constant sharp fluctuations.  

 

Figure 7.11: Test 2 validation MSE for different number of hidden nodes in NN 9. 

Figure 7.12 shows the input values of spark area and intensity in (a), and the regularised 

training notch wear target and predicted values in (b). It can be seen in (b) that the prediction 

outline has a similar overall trend as the target values, however, there are plenty of leaps 

and sudden decreases. In closer inspection, it was found that these leaps and decreases 

matched the spark behaviour’s leaps and decreases. This can be evidenced by the encircled 

areas 1, 2 and 3, around data points 23, 88 and 211, where the input’s behaviour in (a) is very 

similar to the prediction outline in (b). 
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(a) 

 
(b)  

Figure 7.12: Test 2 input values (a), and training notch wear original target values and 
network prediction (b). 

This was the same situation for the other two output variables of flank wear and notch wear 

in Figure 7.13, where again the general trend of both appears similar, but with a lot of 

fluctuations at the same data points as the input values. 

1 
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(a)                                                                     (b) 

Figure 7.13: Test 2 original training output values and network prediction for flank (a) and 
crater wear (b). 

It is relevant to remember that, even though some data filtering was performed to eliminate 

the effect of tool engagements and disengagements, some of these remained noticeable in 

the spark outline. Additionally, there were the “flaking events” described in section 6.3.2, 

where the spark trend experimented a sudden decrease of area and intensity due to the 

newly exposed edge of the cutting tool. Therefore, whilst the small noise present in the 

inputs’ signal appears to be absorbed by the NN, it was found that these larger changes may 

be confusing the NN. This effect can be explained by  Figure 7.14, which on the left figure, 

one of the spark features (area or intensity) is represented, and on the right, its respective 

wear feature (flank, notch or crater wear) is also shown. On the spark feature, points 1 and 

2 appear to have the same value of the spark feature, S1 = S2, even though they have different 

time values, T1 < T2. On its respective wear feature, on the other hand, the wear values are 

different, as the wear of the tool is always increasing, W1 < W2. Therefore, it was found that 

the network appears to be attempting to assign two different output values to the same 

inputs.  
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Figure 7.14: Representation of network behaviour regarding a spark feature (left) and a 
wear feature (right). 

It could be a common misconception that neural networks are complicated black box models 

that do not have limitations, or that can overcome almost any type of difficulty with input 

data. However, this issue provided a good idea of how this NN is behaving, as well as the 

causes for such predictions. Therefore, the neural network appeared to be affected by these 

apparent “confusing variations” during training, and it seemed to be attempting to average 

the predicted values for every recurrent input value.  

All tests had a great deal of fluctuation in their outline, as disengagements and flaking events 

were present in all of them. However, not every test had these “confusing variations,” where 

the spark feature would decrease frequently to previous input values. Test 2 and test 6, as 

mentioned previously, where the tests that required a larger number of hidden nodes that 

the minimum for a ratio of 3x1. For test 2, it could be seen before that it contained many 

confusing variations, and after a similar analysis, test 6 also appeared to contain many of 

these. On the other hand, tests 9, 10 and 11 with low MSEs and low NN complexity, whilst 

also presenting many input fluctuations, they appeared to contain less confusing variations, 

as shown in (a), (b) and (c). Therefore, it was found that the complexity of the NN and the 

final testing value of MSE appeared to be correlated to the number of confusing variations 

in a test. 
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(a) 

 
(b)                                                                                (c) 

Figure 7.15: Training inputs of spark area and intensity in test 9 (a), test 10 (b) and test 11 
(c). 

After careful analysis, it became clear that the main difficulty relayed in finding a way to 

inform the NN that a new input that had the exact same value as a previous one, was 

occurring at another moment of the machining task. Therefore, a possible solution found for 

this problem, caused mainly by disengagements and flaking events, was the introduction of 

a new input. This would allow the existence of a three-dimensional input array, where this 

new value would allow the NN to change the plane of input values when a disengagement 

or flaking event was found. This is represented by Figure 7.16, where SA is the spark area and 

SI is the spark intensity. There, when the input level arrives to point (1), where a 

disengagement or flaking event occurs, the new “spark event” input SE would switch to 

another plane in point (2). This way, the decrease in the spark features to point (3) would 

occur without overlapping previous values at the initial plane. 
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Figure 7.16: Representation of the introduction of a spark event SE input variable. 

Therefore, this new approach would require the addition of a step at the pre-processing 

stage of the NN algorithm, where this spark event was calculated. As was mentioned in 

section 6.3.2, flaking events generally included a sudden decrease in the spark evolution, 

where the lower level of spark area and intensity was maintained for a few seconds. After 

careful analysis, it was found that five seconds was generally the minimum number of 

seconds that the new level of spark was maintained. Therefore, this new step compared five 

past values of spark features with a buffer of the next five data points. If the buffer points 

were all lower than a certain percentage of the past five values, the spark event variable 

would be assigned a 0.01 value. Then, the spark event vector would have this value of 0.01 

in subsequent points until the next event was detected, where the value would be increased 

to 0.02, and so on. 

This solution was applied to the representative example of test 2, and the changes in the 

prediction and error values were dramatic. In Figure 7.17 the training predicted outputs and 

target values of notch, flank and crater wear are shown. It can be seen how the correlation 

between the trends was importantly improved in the three outputs, and the testing MSE was 

reduced by more than 90%. This can be appreciated in Table 7.3, where the number of 

hidden nodes and the resulting testing errors of the previous method without the spark 

event input are compared with this new approach with the spark event input. In most tests, 

the number of hidden nodes was reduced achieving less complex networks, and the final 

accuracy of all test was significantly improved. 
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(a) 

 
(b)                                                                             (c) 

Figure 7.17: Test 2 original training output values and network prediction for notch (a), 
flank (b) and crater wear (c), using spark event input. 

Table 7.3: Compared results with and without the use of the Spark Event input, given by 
number of hidden nodes and final testing error values. 

 RESULTS WITHOUT SPARK EVENT RESULTS WITH SPARK EVENT 

TEST NO. 
NO. OF 

HIDDEN NODES 
FINAL TESTING 

ERROR 
NO. OF 

HIDDEN NODES 
FINAL TESTING 

ERROR 

Test 1 7 0.8063 7 0.0455 

Test 2 13 0.455 4 0.0225 

Test 3 11 0.3241 9 0.0618 

Test 4 7 0.2808 5 0.0418 

Test 5 8 0.3386 7 0.0151 

Test 6 12 1.2134 6 0.0087 

Test 7 7 0.1630 3 0.0789 

Test 8 14 0.3640 14 0.0198 

Test 9 3 0.1278 3 0.0294 

Test 10 8 0.0665 6 0.0392 

Test 11 8 0.0559 6 0.0278 

Test 12 7 0.1818 9 0.0125 

Test 13 7 0.0849 6 0.0356 

Test 14 6 0.1896 6 0.0144 

Test 15 10 0.3098 6 0.0234 

Test 16 5 0.5662 8 0.0179 

Test 17 10 0.1954 11 0.0257 
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Before the implementation of this new input, there was a concern that, given that the spark 

event variable would have a less fluctuating and overall increasing trend, the NN would 

instead attempt to only map that variable for the prediction. However, it could be seen in 

the previous figures that the general fluctuation of the spark features is still present in the 

network prediction outlines. Therefore, this approach result was found to be successful and 

applicable for the next steps of this chapter.  

7.3.2 Randomised Data Network 

This second approach, as summarised at the beginning of this section, consisted of using all 

the data points from all the tests. The same approach as in the section 7.3.1 was 

implemented at the data assignment step of the NN algorithm, where a variable was created 

to randomly divide all points into the training, validation and testing data sets. Also, at the 

NN initialisation step of the NN algorithm, the other inputs related to the machining 

parameters were included. Finally, the same approach of optimal NN selection was used as 

in section 7.3.1, however, in the present approach, only 5 NN were processed, instead of 10. 

This was decided due to the processing time of the networks in this approach, where the 

amount of data points was much larger than in the individual tests networks, and hence, the 

number of hidden nodes tested was higher. In this approach, the total number of data points 

of all the tests ascended to 4,428, providing an 80% training data set of around 3,542, and 

10% validation and testing data sets each of around 442 data points. With this larger number 

of training data points, the previous low data to weight ratios of 3x1, 2x1 and 1x1 would 

mean 118, 177 and 356 hidden nodes each. Therefore, the processing time for 10 networks 

with 356 hidden nodes was found to require almost a week of processing time. 

However, in addition to that reduction of networks and given the large number of data 

points, it was found that the ratio of input data points per weight could be improved into an 

8x1 ratio, where around 44 nodes would be expected. Consequently, it was finally decided 

to evaluate 5 networks and a maximum number of hidden nodes of 200, in this approach. It 

is relevant to mention that even this “reduced” number of loops in the NN algorithm took 

around 25 hours of processing time. 

These parameters were implemented, and optimal networks were evaluated, both with the 

initial 6 input variables (spark area and intensity, cutting speed, feed, cutting depth and radial 

immersion) and with the inclusion of the spark event variable. The resulting validation 

predictions and the original target values can be found in Figure 7.18, where (a) was obtained 

with the original 6 inputs and (b) with the inclusion of spark events. 
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(a) 
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(b) 

Figure 7.18: Crater wear validation target values and network prediction for 6 inputs (a) 
and 7 inputs (b) 

The optimal neural network selected for the first had 27 hidden nodes and a testing MSE of 

0.3025, whilst the inclusion of spark event approach reduced the number of hidden nodes 

to 25 with a testing MSE of 0.0673. Here again, the spark event input aided in the general 

performance of the NN, improving its accuracy by about 77%. Yet, there is still much 

fluctuation in the prediction outline as the disengagements and flaking events still impact in 

the NN performance. 
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These results showed a successful NN performance, validating the use of the machining 

parameters and the spark event as inputs of the NN. However, the manner of selecting points 

for the cross-validation greatly aided the NN performance, as the interpolation was more 

direct, having data points from all tests at training. Therefore, for the next step, it was 

decided to use entire tests to get results of a more demanding scenario. 

7.3.3 Full Test Data Network 

This final step consisted of using the entire data points of a number of tests for cross-

validation. For this reason, at the data assignment step of the general NN algorithm, the use 

of orthogonal arrays at the DOE helped in sorting the tests into the different data sets. As it 

was mentioned in section 3.3.3.1, the full orthogonal array with the 18 tests could be divided 

into two arrays of 9, previously shown in Table 3.10 and Table 3.11 in that section. However, 

in the second array, the 15th test had to be omitted due to the error in the video feed 

described in this chapter’s section 7.1, making a total of 17 tests. Therefore, given the 

mentioned assignment of 80%, 10% and 10% for cross-validation, these tests were divided 

into 13 tests for training, 2 for validation and 2 for testing. Furthermore, as orthogonal 

designs have the property of providing pairs of combinations in experiments, the entire first 

array along with four more tests of the second array, were assigned to training, as shown in 

Table 7.4. The remaining four tests of the second array were sorted into the validation and 

testing data sets shown in Table 7.5 and Table 7.6 respectively. 

Table 7.4: Tests for training in final network’s cross-validation. 

TEST 
NUMBER 

CUTTING SPEED 
Vc (m/min) 

FEED fz 
(mm) 

CUTTING DEPTH 
ap (mm) 

RADIAL IMMERSION 
(%) 

8 700 0.07 1 50 

9 700 0.07 1.5 90 

2 700 0.09 1 70 

3 700 0.09 2 90 

10 700 0.11 1.5 50 

12 850 0.07 1.5 70 

18 850 0.07 2 50 

16 850 0.09 1.5 90 

4 850 0.11 2 70 

5 1000 0.07 2 90 

13 1000 0.09 2 50 

7 1000 0.11 1 90 

14 1000 0.11 1.5 50 
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Table 7.5: Test for validation in final network’s cross-validation. 

TEST 
NUMBER 

CUTTING SPEED 
Vc (m/min) 

FEED fz 
(mm) 

CUTTING DEPTH 
ap (mm) 

RADIAL IMMERSION 
(%) 

17 850 0.11 1 90 

11 1000 0.07 1 70 

 

Table 7.6: Tests for testing in final network’s cross-validation. 

TEST 
NUMBER 

CUTTING SPEED 
Vc (m/min) 

FEED fz 
(mm) 

CUTTING DEPTH 
ap (mm) 

RADIAL IMMERSION 
(%) 

6 850 0.09 1 50 

1 1000 0.09 1.5 70 

 

Furthermore, the spark event input was included at the NN initialisation of the general 

algorithm, as it was previously demonstrated that this input improved the NN accuracy. 

Given that this would be the final NN approach, it was decided to build again 10 networks, 

each evaluated to a maximum of 200 hidden nodes. The processing time of this NN was 

extremely long, as it took several days to finalise, however, it was deemed relevant to 

improve the network’s possibility of providing the best results.  

The neural network selected was the 9th network with only 6 hidden nodes, and its validation 

predictions against target values are shown in Figure 7.19, Figure 7.20 and Figure 7.21 for 

each wear output. It can be seen how this final approach required a much lower number of 

hidden nodes to obtain a low value of validation MSE, and the trends of the target values 

and network predictions are again quite similar. However, the resulting testing MSE was of 

1.3792, and its predictions against target values can be seen in Figure 7.22, Figure 7.23 and 

Figure 7.24. In these images, it is possible to see that the trends are again quite similar, but 

growing in parallel with a gap between each other.  
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Figure 7.19: Notch wear validation target values and network prediction for full tests 
network. 

 

Figure 7.20: Flank wear validation target values and network prediction for full tests 
network. 

 

Figure 7.21: Crater wear validation target values and network prediction for full tests 
network. 
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Figure 7.22: Notch wear testing target values and network prediction for full tests 
network. 

 

Figure 7.23: Flank wear testing target values and network prediction for full tests 
network. 

 

Figure 7.24: Crater wear testing target values and network prediction for full tests 
network. 

This approach included a more demanding scenario, as the validation and testing data sets 

included entirely unseen states of spark evolution and new combinations of machining 
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parameters. The performance of the NN was successful in approximating the known wear 

values at validation, however, the resulting testing MSE was quite high. Nevertheless, the 

testing data set included test 1 and 6, which were some of the most challenging tests 

regarding spark events and input fluctuation. It could be argued that by selecting other 

combinations the NN could provide more accurate results. However, it is almost certain that 

the improvement would not be very high. Additionally, in an industrial scenario, which would 

be the final objective of this research, it would be desired to have a robust NN that could 

overcome such difficulties. Furthermore, the possibility of carrying out all the possible 

combinations to test these arguments would have exceeded this research’s timeframe due 

to processing time.  

The data acquisition methodology for the research should also be taken into consideration 

when assessing these results, as the NN performance is also related to decisions made then. 

The constant interruption of machining created the disengagements, which is one of the 

main reasons of the undesired fluctuation of inputs. Also, the general illumination problem 

described at the testing parameters section, whilst tackled by the revisions mentioned to the 

algorithm methodology, they may be furtherly explored to achieve less variable spark results.  

However, the main reason for the result obtained in this last approach was more related to 

the quantity of data and the spectrum of testing examples. Therefore, it is relevant to 

remember that all this analysis was based on the orthogonal arrays of the DOE, as this 

method was selected to minimise the number of tests whilst assuring that all pairs of 

combinations were tested in each 9 tests array. This property had the apparent advantage 

of providing enough combinations for the training of the NN by including an entire array plus 

four more examples from the second array. However, it was found that these designs did not 

provide enough tests data to successfully populate a suitable cloud of examples for the 

window of machining parameters chosen and their respective combinations. Instead, these 

examples seemed to provide isolated and punctual cases for training, forcing the NN to 

extrapolate at the validation and testing steps. Neural networks are excellent in 

interpolating, as they are very good approximators of input functions where enough 

examples are provided during training. However, they can be quite unsuccessful in 

extrapolation, given the nature of their design and optimisation. This explains why the 

behaviour of the NN was apparently less accurate in this final approach.  

Therefore, more tests would have been necessary to achieve more accurate results in this 

last scenario, where the entire range of machining parameters should have been tested and 
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used for training. Also, it would have been desirable to carry out some tests with the same 

parameters, to further understand the repeatability of the ceramic behaviour. Nonetheless, 

this study was performed in the final stages of the author’s doctoral research, and the 

timeframe was limited, preventing more material acquisition, experimental planning, and in 

general, more testing. Yet, the results and conclusions described in this chapter were very 

interesting and representative of this approach’s capabilities and limitations.  

7.4 Summary 

In the current chapter, a two-layer neural network structure was implemented to predict 

notch, flank and crater wear; including initially six inputs, namely spark area, spark intensity, 

cutting speed, feed, cutting depth and radial immersion. Also, a general NN algorithm was 

presented, which included the steps that were implemented in all the networks created. 

To fully understand and analyse the behaviour of the NN with the data that was acquired 

during the third set of experiments, three approaches were developed. In the first approach, 

each test was used individually to build and select an optimal NN through cross-validation. It 

was found that the created networks, whilst showing a correct general performance, they 

were being confused by the very variable inputs’ outline. These inputs included many spark 

feature fluctuations due to tool disengagements and flaking events. Therefore, to overcome 

this issue, a new input named spark event was introduced. This new input was created by 

processing the spark features’ data information so that disengagements and flaking events 

could be identified and used to extend the inputs’ dimensional distribution. Through this 

spark event input, it was possible to improve the individual tests networks’ accuracy by a 

90%. 

The second approach, on the other hand, included all the data points from all the 17 tests of 

the third set of experiments. The data points were randomly sorted between the cross-

validation data sets, and the resulting testing accuracy using the original 6 inputs was 

compared to the testing accuracy of the inclusion of the spark event input. The results 

showed that the neural networks appeared to be delivering a general adequate 

performance, and again the NN’s accuracy was improved by around 77% in the second 

instance, proving that this input was successfully improving the networks. 

The final approach consisted in using the entire data points of the tests, dividing them into 

the cross-validation data sets using the orthogonal designs of the DOE. Furthermore, the 

spark event input was directly included and an optimal NN was selected through the cross-

validation. However, the final performance of this NN was less accurate than the previous 
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two steps, as the final testing error was higher. However, this lower accuracy was mainly 

caused by the low number of tests and data points during the training of the NN. The selected 

DOE had, at first glance, the apparent capability of providing an appropriate range of 

combinations for training, enabling the desired interpolation of data points. Nevertheless, 

the number of examples obtained through the DOE was not enough, and at the validation 

and testing steps, the NN was forced to extrapolate.  

Yet, the final NN’s prediction trend was quite close to the target’s outline, and the final value 

of error was quite low, considering all the difficulties previously mentioned. Therefore, it 

could be argued that if the number of test examples was extended to a suitable amount, and 

the illumination and disengagements difficulties were also tackled, a much more accurate 

model of tool wear prediction could be achieved.   
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8 GENERAL DISCUSSION AND CONCLUSIONS 

Even though there were some discussion and conclusions included in each chapter of this 

thesis, this chapter will gather all these and provide some insights into the author’s views on 

the different findings. 

8.1 Conclusions 

This research was based around the six main objectives presented in section 1.2. Therefore, 

this section will include the conclusions drawn against each one of these objectives. 

1. The first objective consisted on reviewing the literature available on Tool Condition 

Monitoring (TCM), with a special focus on the research involving vision-based 

systems. Section 2.2 included this literature review on TCM, with a section (2.2.1) 

dedicated to vision TCM systems. In these sections, the foundations and main 

theoretical bases of TCM were described, along with a summary and critical analysis 

of the different literature on vision-based systems. There, the importance of TCM in 

the machining industry was laid out, showing that there is plenty of research work 

on this area and on the different techniques to monitor tool wear. It was concluded 

that vision-systems of TCM constitute a relevant area of research, but that it has a 

much lesser development when compared to other systems and techniques. 

However, an important conclusion that could be drawn from these sections is that 

there is a strong increase in the use of pattern recognition and machine learning 

techniques in TCM. 

2. The second objective was to carry out experimental tests to collect machining cutting 

sparks and tool wear data. Therefore, chapter 3 included the common methodology 

of the research, describing the different experiments carried out for each chapter’s 

objectives, with the general aim to support the final conclusions. This was evidenced 

in the evolving nature of the experiment, as the conclusions found in each set helped 

in planning the subsequent ones. Therefore, in the first experiments, where the 

author had little control on the apparatus set-up and test planning, the image 

acquisition approach was quite simplistic, acquiring still pictures at a much-extended 

sample rate. Next, the second set of experiments attempted to overcome this by 

increasing the sample rate of image acquisition. Finally, the third set of experiments 

took all the conclusions from these two initial tests, to create a final set of 

experiments. This final set of experiments attempted to avoid too many time 

consuming and highly costly tests by using a DOE with orthogonal designs. It would 
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have been beneficial to have a higher number of tests, as the unpredictable nature 

of ceramic wear was corroborated by this research. However, a larger DOE such as a 

factorial design would have required a large quantity of materials and long machine 

times, as well as a massive, and perhaps difficult to store, amounts of data. Similarly, 

it would have been interesting to have acquired a parallel set of data such as acoustic 

emissions or cutting forces, as these have been used to evaluate wear data in the 

past, as described in the chapter 2. This could have made possible to expand this 

study into a mixed monitoring model. Nevertheless, this would have required more 

time to simultaneously process those factors, creating other challenges and 

impacting on the storage of data. 

3. The third objective consisted on assessing the wear of SiAlON inserts and to analyse 

and select the appropriate wear measuring technique to be used in the present 

research. Chapter 4 included the wear measuring techniques used to collect flank 

wear and crater wear area data. A stereo vision approach to measure wear volume 

was attempted, and whilst unsuccessful, it provided interesting conclusions. The 

concept of using regular cameras with a stereo vision analysis could potentially 

provide a low-cost and in-situ wear assessing technique. However, the capabilities 

of the system used in the present research were limited and perhaps additional 

resources and technologies could have aided.  At present, there are low-cost and 

highly accessible systems and technologies that would be worth exploring for this 

purpose, such as the Microsoft’s Kinect or Digital Image Correlation (DIC) techniques. 

Nevertheless, the low accuracy of these types of systems is a continuously 

challenging issue, as the dimensions of tool wear are quite small. Therefore, further 

work in that area could be beneficial to find a way to improve these systems’ 

accuracy or to potentially create a bespoke system using similar technology.  

Regarding the wear assessment of cutting tools, chapter 4 provided evidence that 

lower levels of total tool wear were found with the highest cutting speeds and with 

the lowest cutting depths. A comparison with the literature found on SiAlON wear 

by Tian et al. (2013b), Zheng et al. (2016) and Renz et al. (2015) was included, finding 

common and contrasting conclusions. Compared with the first author, the severity 

of crater wear was found to be more closely related to cutting depth instead of 

cutting speed. Regarding flank wear, that source found that flank wear was more 

severe at higher speeds, whilst the current research’s findings were closer to the 

conclusions presented by Zheng et al. (2016) who also found higher flank wear 
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severity at low speeds. Furthermore, a correlation between Renz et al. (2015) and 

their “tribolayers” was found when compared with the research’s wear assessment 

conclusions. These conclusions were that there appears to be a window of optimal 

parameters for SIAlON cutting tools machining nickel-based super alloys. It is 

believed that the composition and general brittleness of these ceramics may require 

certain cutting parameters to achieve specific temperatures and contact conditions 

to successfully cut the material with a low tool wear. This may be the cause of the 

increased wear results with higher cutting depths and radial immersions, as the 

contact area was higher between the tool and the workpiece. However, the main 

findings of the wear assessment section were the ones related to the flaking and 

chipping effect found in crater wear. It was identified that this mechanism had a very 

particular and relevant development, which was furtherly explored and used in 

chapter 7. 

4. The fourth objective consisted on evaluating and selecting the optimal image 

acquisition systems and parameters for the application described in this research. To 

carry out this analysis, chapter 5 used the first two experiments described in sections 

3.3.1 and 3.3.2. The first experiments included datasets from fast, medium and slow 

image acquisition speeds. After extracting and analysing intensity as a spark 

descriptor, it was shown and concluded that slow speed images delivered the most 

suitable representation of the spark for this research. Slow acquisition settings 

captured a more solid and consistent spark, which displayed a clearer evolution. 

Faster speeds, on the other side, tended to capture instantaneous conditions of the 

spark, which created a more randomised spark evolution. However, the low sample 

rate used in the first tests was identified to be limiting the overall vision of the spark 

behaviour evolution. In the second experiments, a video feed was captured using a 

high-speed camera to tackle the first tests’ limitation and to be able to test a wider 

spectrum of possible sample rates or acquisition speeds. Through those tests, the 

processing of very high sample rates proved again that these were not suitable. On 

the other hand, an image combination algorithm was implemented to emulate low 

speeds, which delivered more flexible, richer and adequate results. Therefore, it was 

concluded that a continuous image acquisition system consisting of a video feed was 

better than using still pictures. Furthermore, the use of lower sample rates was 

found to be more adequate, whilst the introduction of an image combination task 

successfully emulated the longer exposure found in slow image acquisition settings. 
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There, a video feed with an SLR camera was used, to have a rich data set with high 

levels of acquisition control. Also, the image combination was implemented to 

process the video frames, emulating the slow settings, as the combinations were 

made according to the video framerate. A combination of all the 50 frames in a 

second of video was selected, which was found to deliver excellent results, as the 

tool speed was considerably faster at around 5000 rpm. 

5. The fifth objective, regarding the evaluation and confirmation of a spark-tool wear 

relationship, was undertaken in chapter 6, using again the first and second 

experiments. Through the results obtained by processing the spark area and 

intensity evolution in the first tests, it was possible to find a very close qualitative 

correlation with wear. Both trends appeared to be increasing through time, with a 

similar slope. However, the low sample rate used in the first tests delivered low-

resolution approach for closer assessment. Therefore, the second experiments, 

provided a more detailed level of information, which showed the existence of a 

phenomenon described in this research as “flaking events”. These events consisted 

of a loss of material from the cutting tool’s rake face that created a dramatic increase 

in crater wear and mass loss whilst showing a sudden drop in spark evolution. This 

flaking effect appeared to be creating a newly sharpened edge of the cutting tool, 

lowering the spark evolution, but weakening the insert. Even though flank and notch 

wear mechanisms created poorer surface finish and accuracy, they did not seemed 

to be weakening the ceramic inserts as much as the crater wear. Therefore, crater 

wear, along with its flaking mechanisms, was found to be the main mechanisms of 

tool failure. Consequently, when the spark area and intensity descriptors were 

compared to crater wear and mass loss, again a close qualitative correlation was 

found. These flaking events were visibly identifiable in the spark evolution trend, and 

they successfully described some of the spark feature changes found throughout a 

machining operation. Thus, it was concluded that both tests successfully confirmed 

the research hypothesis, finding evidence of a spark – tool wear relationship. 

6. Finally, the sixth objective included the implementation of a machine learning 

algorithm to predict tool life. Chapter 7 included the use of neural networks to 

attempt to predict tool wear values, given certain spark information and machining 

parameters. Three approaches were used to understand and test the accuracy of the 

created neural networks. The first approach consisted of randomly dividing data 

points from each test into training, validation and testing data sets; generating and 
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selecting a neural network per test. The second approach consisted of the same 

random distribution of data points, but from all the tests into a single neural 

network. Finally, the third approach divided entire tests sets into the cross-validation 

data sets to create a single neural network, fed with completely new data at the 

testing phase. The general performance of the networks in all these approaches 

showed that the selected toolbox and algorithms were performing successfully. 

However, in the first approach it was found that the NN was attempting to map two 

different output values of wear to recurrent similar spark input values; this was 

because the spark area and intensity were constantly reduced during tool 

disengagements and flaking mechanisms. Therefore, the implementation of a new 

input denominated spark event was successful in mitigating this problem. The 

improvement in accuracy was quite considerable in the first and second approach. 

The final approach, however, had a more demanding set-up, as the NN was 

presented with completely unseen tests at the validation and testing sections of the 

cross-validation. In that final step, the testing error was noticeably higher than in the 

previous approaches, yet there were specific reasons for that lower NN accuracy. 

The DOE was used to divide the tests into the cross-validation data sets, relying on 

its property of generating a good coverage of data. Nevertheless, the performance 

of the NN suggested that the tests included very isolated conditions of machining 

parameters that did not manage to provide enough input information to the NN. 

Therefore, the NN was forced to perform extrapolation with both, the validation and 

testing data sets. It was mentioned in chapter 7 that neural networks are capable of 

interpolation if the training data has a good coverage of the input data points. This 

is the reason for the successful performance of networks in the first and second 

approaches, as the interpolation was done inside the cloud of data points. 

Regardless, the final NN achieved a quite low level of error considering these 

limitations, and the general trends of the predicted and target values were quite 

similar. 

Therefore, in the author’s opinion and considering the data acquired, the experience 

at experimental testing and the analysis of the behaviour of the network, it is 

believed that with further work, a successful system could indeed be achieved. To 

accomplish this, more testing would definitively be necessary to get a wider range of 

examples for the training of the NN. Perhaps another type of DOE would be 

beneficial to get more combinations of testing examples, and in the author’s opinion, 
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repeated tests of similar machining properties would be useful to better understand 

the ceramic’s wear behaviour and to test the NN capabilities. 

It can be concluded that the novelty of this research resides mainly in the use of an 

unconventional machining signal output, such as the cutting sparks, to monitor a cutting 

process. This could lead to an industrial uptake in the use of image processing and computer 

vision to analyse different manufacturing process, using visual information and conditions 

that may have been overlooked before. Furthermore, in the case of the spark-tool wear 

technology, future advancement in TRL could generate an uptake in its implementation and 

use in all the machining process where it may be applicable.  

In the research side of this work, a publication could be generated to present the research 

hypothesis and the conclusions shown in chapter 6. Another publication could include the 

selection of the image acquisition systems and parameters. And a third publication could 

include the predictive algorithms described in chapter 7, which show the capabilities of this 

technology and the need of further research.  

8.2 Contributions 

The main contribution that this research attempted to provide was the basis of a spark – tool 

wear relationship for high-speed machining of nickel-based super alloys, using SiAlON cutting 

tools. In the previous chapters, evidence of this hypothesis was presented, and the existence 

of such a relationship was proved. This relationship is the pillar of the proposed Tool 

Condition Monitoring (TCM) system that could potentially perform a live assessment of tool 

wear. 

Inside the mentioned main contribution, several aspects of this TCM system were 

established for possible further work. This was the case of the optimal image acquisition 

systems and parameters, where it was concluded that a video feed and an image 

combination algorithm as an emulator of slow acquisition settings, where the optimal 

options for this approach. Similarly, the main variables that were important to assess the 

evolution of cutting sparks and its relationship with tool wear were established. The spark 

area and intensity extraction approaches were successful in providing a constant sensing of 

spark evolution, whilst the flank, notch and crater wear mechanisms were found to be the 

most relevant for comparison. And finally, the approach on tool wear prediction using neural 

networks provided a good idea of the type of challenges and capabilities of this pattern 

recognition method could encounter in this approach. Most importantly could be the 

challenge found regarding the confusing behaviour for the NN of the spark inputs, and the 
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suggested solution of an event counter, which enables the expansion of the input 

dimensional array. 

Parallel to these, other general contributions were made around the present research. One 

of them was regarding wear measurement of cutting tools, where a model of crater wear 

area was described. Other researchers have developed similar wear measurement 

techniques through tool imaging, however, the one presented in this research was in the 

author’s opinion, more simplistic and quite accurate. Additionally, the wear assessment of 

cutting tools using stereo vision was a novel approach that, whilst unsuccessful in the present 

research, could be furtherly explored to create a low-cost and effective in-situ tool measuring 

technique. Another parallel contribution was made regarding the results and conclusions of 

the wear assessment of SiAlON materials, where interesting results were found and 

contrasted to the limited existing literature. This assessment could have an important input 

to the area of tool wear assessment of SiAlON ceramics, as it is the author’s opinion that 

more research on this area is required, as these materials are widely used. Yet, the main 

contribution of this assessment would be related to the found relationship between tool 

flaking events, crater wear and the microcracks. Even though a detailed analysis of the 

microcracks was not carried out, their existence and relationship with the other two could 

be crucial to potentially unify a tool failure model. Furthermore, these findings led to the 

novel implementation of the spark event detector at the NN, which had a huge effect on the 

results obtained. This spark event detector was used to detect flaking events, providing the 

networks with a dimensional expanding solution, given the behaviour of spark evolution in 

these machining operations. This solution consequently led to a significantly improved 

accuracy in the networks created.  

8.3 Further Research Implications 

It is believed that this research has plenty of further research, as there is much potential in 

this type of vision-based TCM systems. Therefore, it would be important to carry out more 

tests, building a new DOE that perhaps includes more levels of machining parameters, 

allowing a larger orthogonal design. As mentioned earlier, considering the time and material 

required for the tests carried out in this research, a full factorial design is believed to be too 

time-consuming. However, it would be desirable to have some repeated tests with the same 

parameters. This is something that has been mentioned earlier, and it would have helped 

greatly in understanding the complexity of the ceramic tool’s wear, aiding in finding out how 

unpredictable their wear can really be. 
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Furthermore, testing with other materials and different machining paths would be important 

for further research. In the present study, it was shown that in dry machining operations (no 

coolant), the cutting sparks can give a good relationship with tool wear. In this research, only 

Waspalloy and Inconel 718 materials were used, and the former was only used in the initial 

experiment in the author’s previous degree. Therefore, this material could be an example of 

a material for future research, as it was proven in the initial experiments that cutting sparks 

were very visible and later in section 6.2, that these can be related to tool wear. Therefore, 

if there are more materials and cutting tools that are commonly used with dry machining, 

and where cutting sparks are visible, they would definitively be worth exploring. In the case 

of the cutting tools, there are other ceramic materials that could be interesting for further 

research, and that perhaps have less complex wear mechanisms. Also, it would have been 

desirable to carry out tests with all the inserts mounted in the cutting tool. A number of these 

tests could be very interesting to continue to test the capabilities of the neural networks. 

Therefore, a full study of how the use of all tools change the results shown in this research 

would be quite relevant, and perhaps compare them with other tools that can hold a larger 

number of inserts. 

Regarding the flank and notch wear measurement used in section 4.1.1, it would be 

beneficial to find a more automated way to perform this task. It was mentioned in that 

section that this task ended up taking considerably more time than was expected, given the 

number of inserts to measure, and the fact that it was done manually. Therefore, considering 

the many image processing capabilities of MATLAB and other pieces of software, it should 

certainly be possible to build a better and faster way of doing this.  

Additionally, in that same chapter, the stereo vision approach was described, and the 

unsuccessful results explained. However, as mentioned previously, this approach has very 

good potential, if more factors can be added; as the concept of having a system that could 

give an accurate in-situ direct wear measurement would be quite beneficial. At present, the 

capabilities of computer vision algorithms for image descriptor recognition, largely used in 

face recognition systems, could be coupled with a parallel technique to map surface 

topography. There are systems in the market such as the Microsoft’s Kinect, which uses a 

projected array of infrared points and an infrared camera to compute the depth of a scene. 

Similarly, other 3D scanners on the market use laser beams to do this scene depth mapping. 

These scanners are quite expensive devices, but the principles they use are well known. 

Therefore, with the continuous improvement of image processing techniques and image 
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acquisition capabilities, it is believed that the design of a system like this for tool wear 

measurement could be a strong possibility. 

The objective of chapter 5 was to present a final analysis and selection of the optimal image 

acquisition systems and parameters for this research. During that analysis, it was considered 

that cameras can vary in the type of acquisition sensor that they possess, e.g. CCD or CMOS; 

and that the mechanism of image acquisition, power management, analogue to digital 

conversion, and other processes can vary. However, even between cameras with similar 

hardware, the performance of the internal image processors can change. For instance, 

between SLR cameras, such as the one used in this research, the performance of the ISO 

parameter, white balance, noise reduction, and so on can different between brands. 

Therefore, further work could be beneficial to understand the variability that another 

acquisition system could generate in the results presented. 

The absence of literature on spark formation mentioned in section 2.5 also suggested future 

work in that area. A characterisation and analysis of the sparks generated in the described 

machining operations would be key to support the hypothesis of this research. The 

experience extracted from the present work suggests that the spark formation phenomenon 

can be quite stochastic, which could impact in the repeatability of the testing carried out. 

Therefore, exploring spark formation could greatly impact in the robustness of the 

parameters used in this work, as well as any other parameters used in future testing  

The general relationship between spark evolution and tool wear was proved in this research. 

Therefore, a deeper analysis of this relationship would be important, and where the “flaking 

event” phenomenon could be further explored. It would be interesting to find other ways to 

correlate this flaking event behaviour in the spark with tool wear. In the present research, 

the “spark event” input feature was added to the neural networks to improve their accuracy 

and solve some of the NN limitations. Yet, this spark event identifier could be key to further 

research on these TCM systems. Perhaps a simpler approach, where a number of these 

events is taken as a threshold of tool wear could be implemented. Alternatively, perhaps 

there is a way to quantify these flaking events to understand their magnitude and judge the 

tool condition through this. Still, this feature was beneficial for the NN performance, and 

therefore, more research would be required in more tests. 

There is definitively much further research regarding the prediction of tool wear with the NN 

approach. There were some parameters and factors mentioned in section 7.3 that were fixed 

for all the tests, such as the hyperparameter of weight-decay and the number of training 
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cycles. In the present research, the timeframe limited the possibility of exploring them, and 

hence, it would be worth exploring their impact on the results, possibly carrying out a cross-

validation to select them. Furthermore, as was mentioned towards the end of that chapter, 

the lower accuracy of the final approach was related to the low number of input examples, 

which led to an extrapolation task for the NN. Therefore, it would be very important to carry 

out further testing, so that a wider range of machining conditions can be included during the 

network’s training. 

Finally, it would be worth exploring other methods or perhaps combinations of methods of 

pattern recognition. Even though the NN approach was selected given their high levels of 

effectiveness, perhaps other methods could treat the confusing effect of the input’s outline 

in a different way. Still, the mentioned further work with NN alone could be quite extended, 

possibly arriving at an accurate and robust NN, capable of TCM through prediction of tool 

wear. 

8.4 Further Implementation Implications 

In the case that the proposed system of TCM was implemented in a realistic scenario, some 

further implications would be relevant to consider, given the experience and conclusions 

found by the author throughout this research.  

One of these implications would be the situation regarding general lighting conditions. It was 

described in this research that the initial experiments had somewhat constant lighting 

conditions, but that the last experiments suffered from a workshop relocation that changed 

this. Even though there was a methodology revision in section 7.1 to overcome this variation, 

the general variance of spark feature outline in all tests showed a small noisy fluctuation all 

the time, regardless of the disengagements and flaking events. This noise may be caused by 

differences in lighting conditions, and in an industrial scenario, it would be quite expected 

that lighting conditions may be quite variable. Therefore, this general issue should be further 

explored to arrive, if necessary, at a more robust method, where this variable has a lower 

impact. 

Furthermore, if a TCM system was implemented as a support system of CNC machine, it 

would require interaction from the user, so that some inputs can be introduced. In the case 

of the NN described in chapter 7, these inputs would be the machining parameters. As 

mentioned previously, the initial approach of individual tests’ networks was quite successful, 

therefore, perhaps in this user interaction, the selection of the required NN could also be a 

factor. 
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Also, considering the different algorithm implementations carried out in this research for 

image processing, it would be expected that a fully functional TCM would require some initial 

time to auto-adjust. The different colour enhancement and binarization steps described in 

this work would probably require being adaptive to the lighting conditions, camera 

orientation and focal parameters. Therefore, it would be important to assure that the camera 

has a good and constant view of the spark and that the lighting conditions are considered by 

the system. 

Finally, and as mentioned in the initial section of this chapter, such a system would still 

require a constant human interaction, as the complexity of the ceramics’ wear is still an 

important factor. Furthermore, the working conditions of such a system could include plenty 

of signal noise, possible machine vibrations and even high or low-temperature conditions. 

These factors could be important in the general accuracy and robustness of this system, and 

the human criteria would be beneficial as a parallel condition monitor. Moreover, in the 

author’s opinion, it is believed that an online approach, where the TCM system could 

communicate directly with the machine, appears not to be achievable with the current 

results. However, with further work and testing, this may become a possibility. In such a case, 

the TCM system could communicate with the CNC sequence and automatically decide tool 

changes and perhaps, even tool paths to improve tool life.  

Therefore, this vision-based TCM has plenty of future work, that combined with the findings 

presented in the present research, could become an essential system for the machining 

industry. 
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APPENDIX I – CNC PROGRAMMES FOR EXPERIMENTS 

CNC programme for machining of square shape for tests: 

G17 
 G90 
 G71 
 T="CERAMIC INSERT" M6 
 G55 S5000 M3 
 G0 X-110.892 Y-105.013 
 Z5 
 Z-0.5 
 G1 G94 Z-1.5 F100 
 X-110.167 Y-104.288 F750 
 X-110.542 Y-103.752 
 X-111.046 Y-102.974 
 X-111.632 Y-101.974 
 G2 X-113.054 Y-98.975 I21.968 J12.248 
 G1 X-113.429 Y-97.975 
 X-113.749 Y-96.976 
 G2 X-114.452 Y-93.976 I26.743 J7.851 
 X-114.803 Y-89.977 I26.955 J4.383 
 G1 Y89.977 
 G2 X-114.6 Y92.977 I29.781 J-0.51 
 G1 X-114.452 Y93.976 
 G2 X-113.749 Y96.976 I27.446 J-4.851 
 G1 X-113.429 Y97.975 
 G2 X-112.64 Y99.975 I29.96 J-10.666 
 G1 X-112.163 Y100.975 
 X-111.972 Y101.354 
 X-111.632 Y101.974 
 X-111.046 Y102.974 
 X-110.607 Y103.654 
 X-110.18 Y104.274 
 X-110.905 Y104.999 
 G0 Z5 
 X-110.889 Y-105.028 
 Z-2 
 G1 Z-3 F100 
 X-110.163 Y-104.303 F750 
 G2 X-111.05 Y-102.974 I22.025 J15.654 
 
CNC programme for tests: 

G17 
 G90 
 G71 
 T="CERAMIC INSERT" M6 
 G55 S5411 M3 
 G0 X-74.7 Y125 
 Z0 
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 BEGIN: G1 Y-125 F595 
 G0 Z50 M0 
 Y125 M3 
 G91 X40.05 
 END: G90 Z0 
 REPEAT BEGIN END P=3 
 G0 Z200 
 TRAFOOF 
 ROT 
 TRANS 
 M30  
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APPENDIX III – STEREO VISION ALGORITHM FOR 3D 

RECONSTRUCTION. 
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APPENDIX IV – INDIVIDUAL TESTS’ TOOL WEAR RESULTS 

 

 

 



APPENDIX IV – INDIVIDUAL TESTS’ TOOL WEAR RESULTS 

 

164 
 

 

 

 

 



    

165 
 

 

 

 

  



APPENDIX V – RAW AND FINAL RESULTS OF FIRST EXPERIMENTS. 
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APPENDIX V – RAW AND FINAL RESULTS OF FIRST 

EXPERIMENTS. 
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APPENDIX VI – ALGORITHM OF FIRST SET OF EXPERIMENTS 
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APPENDIX VII – ALGORITHM OF SECOND SET OF EXPERIMENTS 
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APPENDIX VII – ALGORITHM OF SECOND SET OF EXPERIMENTS 

Area Extraction with Tool Wear Values 
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Intensity Extraction 
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APPENDIX VIII – ALGORITHM OF THIRD SET OF EXPERIMENTS 

 

188 
 

APPENDIX VIII – ALGORITHM OF THIRD SET OF EXPERIMENTS 

Example of Test 3. 
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APPENDIX IX – INDIVIDUAL TESTS NETWORKS ALGORITHM 
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APPENDIX IX – INDIVIDUAL TESTS NETWORKS ALGORITHM 

Example of Test 2 with Spark Event Input. 

 



    

193 
 

 



APPENDIX IX – INDIVIDUAL TESTS NETWORKS ALGORITHM 

 

194 
 

 



    

195 
 

 



APPENDIX IX – INDIVIDUAL TESTS NETWORKS ALGORITHM 

 

196 
 

 



    

197 
 

 



APPENDIX IX – INDIVIDUAL TESTS NETWORKS ALGORITHM 

 

198 
 

 



    

199 
 

 



APPENDIX IX – INDIVIDUAL TESTS NETWORKS ALGORITHM 

 

200 
 

 

  



    

201 
 

APPENDIX X – RANDOMISED DATA NETWORK ALGORITHM 

WITH SPARK EVENT 
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APPENDIX X – RANDOMISED DATA NETWORK ALGORITHM WITH SPARK EVENT 
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APPENDIX XI – FULL TEST DATA NETWORK ALGORITHM 

 



APPENDIX XI – FULL TEST DATA NETWORK ALGORITHM 

 

210 
 

 



    

211 
 

 



APPENDIX XI – FULL TEST DATA NETWORK ALGORITHM 

 

212 
 

 



    

213 
 

 



APPENDIX XI – FULL TEST DATA NETWORK ALGORITHM 

 

214 
 

 



    

215 
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APPENDIX XI – FULL TEST DATA NETWORK ALGORITHM 
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APPENDIX XII – PHOTOS OF APARATUS SET-UP IN THIRD SET 

OF EXPERIMENTS 

 Camera set-up. 

 

 Inconel 718 workpiece mounted and prepared with square shape for testing. 

 

 In-situ wear assessment and microscope imaging. 
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 Cutting tool. 
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