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Brain-computer interfaces (BCIs) are real-time communication systems which bridge

the gap between human and machine, extracting useful neural signals from the

brain and converting them into commands which allow the user to interact with

computers or devices using their thoughts. BCIs have a wide range of applications,

including gaming, research and entertainment. And they can also be used as part

of an assistive device for disabled users.

This PhD thesis focuses on two BCI types: the steady-state visually evoked poten-

tial (SSVEP) BCI, which is operated using gaze control, and the motor imagery-

based BCI, which responds to imagined limb movements. Contained within are

novel methods designed to improve each BCI type with respect to performance and

user experience. New normalisation methods are found to improve SSVEP-BCI

performance. A new three-dimensional SSVEP-BCI game SnookerMaze is created,

along with the Predicted Optimal Colour (POC) SSVEP-BCI, which automati-

cally selects the optimal stimulus colours for a user in order to exploit differences

in the way the brain responds to different coloured stimuli. And a feasibility study

is conducted where we implement a new method for training users to operate a

motor imagery-based BCI, and investigate predictors of BCI performance.
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Chapter 1

Introduction

1.1 What is a BCI?

A brain-computer interface, or BCI, is a communication system which allows users

to send commands to external electronic devices such as computer, using signals

directly from their brain. These signals bypass the usual system of peripheral

muscles [1], and therefore, BCIs are often described as systems which provide an

additional communication channel.

BCIs have been used in a wide variety of applications and fields: gaming and en-

tertainment; intelligent mobility devices for disabled users; rehabilitation methods

for disabled users; neurofeedback devices; and used in research across a multitude

of disciplines. More details on BCI applications can be found in Chapter 3.

Work in this thesis focuses primarily upon two types of BCI: the steady-state visu-

ally evoked potential (SSVEP) BCI, which is operated using the brain’s response

to repetitively flickering visual stimuli, and the motor imagery BCI, which is op-

erated using the brain’s responses that are elicited when the user imagines moving

their limbs. More details on both of these BCI types can be found in Chapter 2.

1.2 Limitations of the BCI

The BCI suffers from several limitations, both in how it functions and how it is

set up. Most BCI-types are fatigue-inducing, meaning they cannot be comfortably

1



Chapter 1. Introduction

operated for long periods. Motor imagery-based BCIs in particular require large

amounts of training sessions, as well as calibration data on the day of use, in order

to be operated effectively. They also suffer from somewhat unreliable classification

accuracy, and a low information transfer rate. Another issue is ‘BCI deficiency’,

also known as ‘BCI illiteracy’, which is when a user is unable to control a type

of BCI to any reasonable standard, and despite research into the topic, it is not

particularly well understood.

1.3 Thesis Motivation

Brain-computer interfacing is an exciting research area that is still in its rela-

tive infancy. It has potential multidisciplinary applications to a huge number

academic and commercial fields; any field involving human behaviour has a po-

tential overlap with BCI research. As will be discussed in Chapter 3, promising

research demonstrates the positive impact that BCIs can have on disabled users,

as well as the strong technological advancements that have been made with gam-

ing BCIs. Despite the wide potential impact of BCIs, there is still a lot to do in

the field; BCI systems are currently used mainly as a research tool rather than

a widely-available, affordable piece of technology that can easily be used in one’s

own home. Commercial BCIs are currently available, therefore the focus should

be on developing automatic methods that require minimal user input. Despite

the application to gaming, most of the challenges undertaken in this thesis are

relevant to non-gaming areas of BCI research as well.

1.4 Contribution to Knowledge

This thesis contributes to knowledge in several ways; Firstly, in terms of auto-

maticity, by providing automatic methods that can be applied to improve BCI

performance without requiring expert input. This work will help to push BCIs

further towards being used in the home more easily. Additionally, it contributes

new methods which improve SSVEP-BCI performance both technologically and

from a user-centred viewpoint. Finally, it contributes a new multi-layered ap-

proach to training users to operate a BCI using imagined movements.

2
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1.4.1 Summary of Findings and Achievements

1. Two novel normalisation methods, Baseline-Corrected CCA (BC-CCA) and

Scaled CCA, are found to improve SSVEP-BCI performance without cali-

bration data

2. The Predicted Optimal Colour (POC) SSVEP-BCI is introduced, which au-

tomatically selects the best combination of stimulus colours for the user

3. The POC SSVEP-BCI is evaluated and found to improve users’ gaming

performance, and improve their mood

4. A new SSVEP-BCI game is developed

5. A novel approach to training participants to operate an SMR-BCI is em-

ployed

6. Correlations between resting alpha and BCI performance are found both

in an existing single-session dataset, and in our participant across a large

number of BCI training sessions.

1.5 Thesis Objectives

This thesis focuses on gaming BCIs, and the motivation behind the work is to al-

leviate many of the inherent limitations of BCIs in order to improve gaming BCIs

both in terms of performance and user experience. The topics investigated include:

improving BCI performance using normalisation; improving the gaming BCI by

using stimulus colour information; creating a BCI controlled by imagined move-

ments that takes both a technology- and user-centred approach; and predictors of

BCI performance while training to use a motor imagery BCI.

1.5.1 Solving the SSVEP-BCI Stimulus Selection Problem

One of the main limitations of the SSVEP-BCI is the restrictions related to stim-

ulus selection. Factors such as stimulus size, proximity, colour, and frequency can

have a large impact on SSVEP performance, the effects of which may vary from

user to user. For the SSVEP-BCI to successfully become part of a commercial
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gaming device that users can easily enjoy in their own homes, rather than perpet-

ually existing as a research application, solutions must be found to the stimulus

selection problem. Additionally, any solutions should ideally work automatically

without any expert input, and work without negatively affecting the BCI too

greatly. Due to the magnitude of the problem, this thesis will focus on two main

areas of SSVEP stimulus selection:

1. Stimulus frequency selection: Chapter 4 explores the problem of fre-

quency selection. Two novel solutions are proposed and evaluated.

2. Stimulus colour selection: In Chapter 5 the problem of frequency se-

lection is addressed. A new SSVEP-BCI with automatic stimulus colour

selection, the Predicted Optimal Colour (POC) SSVEP-BCI, is proposed

and evaluated.

1.5.2 A User-Centric BCI that Improves User Experience

Loup-Escande et al. [2] distinguish between a ‘technocentric’ and ‘anthropocen-

tric’ approaches to creating a gaming BCI. BCI research generally focuses on

improving one of these areas: either taking a technocentric approach by focus-

ing on increasing accuracy or speed for example, or taking the anthropocentric

approach of improving user experience. However, these approaches are actually

complementary — a good user experience would be expected to produce a good

performance, and vice versa — therefore, this thesis will use an approach which

focuses on improving both areas simultaneously.

Chapter 3 reviews BCI applications in order to assess the current technocentric

and anthropocentric state-of-the-art in BCI research, in order to fully understand

what can be expected from a modern BCI.

The POC-SSVEP-BCI, introduced in Chapter 5, is aimed at increasing BCI per-

formance and improving user experience. Several measures of user-experience are

taken, and the results contextualised both in terms of how both aspects of BCI

usage can be improved.

Chapter 6 details the design and evaluation of a user-centred BCI, controlled using

imagined movements. This chapter also investigates predictors of performance
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accuracy for new users as well as for a longtime user as they learn to use the BCI

over time, forming a feasibility study for this longitudinal approach.

The desired outcome of this approach is to advance knowledge on creating a BCI

that is both technocentrically and anthropocentrically sound.

1.6 Outline of the Thesis

Chapter 2 gives a detailed review of methods used in brain-computer interfacing,

including brief introductions to: brain function, neural imaging, signal process-

ing, and machine learning methods used in BCI research. Chapter 3 summarises

BCI applications in rehabilitation and gaming, as well as research into normalisa-

tions methods used in SSVEP-BCI research, the influence of stimulus colour on

the SSVEP-BCI performance, and the relationship between psychological factors

(mood and fatigue) and BCI performance. Chapter 4 proposes and evaluates nor-

malisation techniques aimed at improving the performance of the SSVEP-BCI.

Chapter 5 details the creation of an SSVEP-BCI controlled three-dimensional

game, and investigates whether stimulus colour information can be exploited to

improve SSVEP-BCI performance. Chapter 6 details the process of training a user

to operate a gaming BCI using imagined movements. Lastly, Chapter 7 contains

the thesis conclusions and plans for future work.
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Chapter 2

Technical Background

2.1 Introduction

This chapter covers the background material relevant to designing and imple-

menting a brain-computer interface, and includes an introduction to the brain’s

structure and functionality, reviews various recording and signal processing meth-

ods required to produce a usable signal, and discusses BCI classification methods.

Fig. 2.1 briefly outlines these steps, which include:

• Brain Signal Acquisition: Recording neural data

• Preprocessing: Applying signal processing methods such as filtering and

artifact removal, to improve signal quality

• Feature Extraction: Identifying and extracting informative features from

the recorded neural data

• Classification: Using the extracted features to create a classifier that can

distinguish between different cognitive states

• Device Control: Using the classifier outputs as a communication channel

that can directly interact with an external device

• Feedback: Providing real-time feedback to the user, which allows them to

adapt their strategy if necessary, to improve performance
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Figure 2.1: BCI block diagram

2.2 Definitions

2.2.1 Synchronous or Asynchronous BCI

A BCI can be either synchronous or asynchronous. When operating a synchronous

BCI, a user has no control over when a command is sent, and instead have to adjust

their actions to coincide with the BCI’s timing to achieve the best performance;

for example, minimising blinking and muscle movements whenever leading up to

the active period. Asynchronous BCIs, also known as self-paced BCIs, allow the

user to regulate the pace of the BCI, and voluntarily cease sending commands

to the BCI if desired. Technically, asynchronous BCIs are harder to implement

than synchronous BCIs. This is mainly due to difficulties detecting the brain’s

so-called ‘idle’ state, which is something of a misnomer, as the brain is constantly

active. As a result, it is difficult to know when the user does not want to sent

a command. However, several methods have been devised to achieve this asyn-

chronicity, including: using thresholding, where commands are only sent when

the user’s brain activity surpasses a predetermined threshold; using a so-called

‘brain-switch’, where a neural command is used to start or stop the BCI sending

commands; or even using muscle movements or blinks as a trigger to start or stop

BCI functions.
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2.2.2 Invasive or Non-invasive BCI

A BCI can be classified as invasive or non-invasive, based on whether or not it

penetrates the skin. They also differ in terms of the type of signals they acquire:

invasive BCIs measure local field potentials (LFP) directly by penetrating brain

tissue [3], whilst non-invasive BCIs measure scalp potentials from the surface of

the head. More details on invasive and non-invasive methods can be found in 2.4.

2.3 Neurophysiological Underpinnings of the BCI

Due to the complexity of the brain it is impractical to give a detailed summary of

its functions; instead, this section will outline aspects relevant to brain-computer

interfacing, and the work contained within this thesis, including: neuronal func-

tion, and an overview of the brain’s structure.

2.3.1 The Brain

The brain is a powerful organ made up of an estimated 86 billion neurons and

85 billion non-neuronal cells [4]. The largest part of the brain is know as the

cerebrum, which contains an outer layer of tightly-packed neurons known as the

cerebral cortex. The cerebral cortex is divided into four main lobes (Fig. 2.2):

• Frontal lobe: associated with maintaining working memory and the selection

of goals [5], as well as movement [6]

• Parietal lobe: plays a role in episodic memory retrieval [7] and directing

visual attention [8]

• Temporal lobe: associated functions include spatial awareness [9] and audi-

tory perception

• Occipital lobe: plays a large role in visual processing [10]
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Figure 2.2: Lobes of the cerebral cortex by Sebastian023 (licensed under CC
BY 3.0)

2.3.2 Neuronal Function

Neurons (Fig. 2.3) are the individual brain cells responsible for communication

within the brain, whose activity make brain function possible. Neurons commu-

nicate via electrical impulses and chemical transmissions; when enough neuro-

transmitters (chemical messengers) are received at the neuron’s tree-like dendritic

branches, it triggers an action potential (large voltage change) which travels from

the soma, along the axon, to the axon terminal, where it can trigger the release of

neurotransmitters.

2.4 Recording Methods

Methods for recording brain activity can be broadly grouped into two classes:

invasive methods, which require some components to be inserted into the body,

and non-invasive methods, which do not. This section outlines the most popular

methods available.
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Figure 2.3: Neuron diagram by Nicolas Rougier (licensed under CC BY 3.0)

2.4.1 Invasive Methods

Intracortical microelectrodes arrays implanted into the brain’s cerebral cortex give

an extremely high spatial and temporal resolution. Researchers have demonstrated

their potential for use in a number of BCI studies; Collinger et al. [11] and

Hochberg et al.’s [12] studies demonstrated that tetraplegic users could learn to

control a robotic arm with 7 degrees of freedom. The main disadvantages of intra-

cortical electrodes are that they require surgery, and that the brain can recognise

them as a foreign body, often leading to inflammatory responses such as ‘glial

scarring’ [13].

Electrocorticography (ECoG) involves measuring cortical field potentials using

electrode placed upon the outer surface of the brain, the cerebral cortex. Tech-

nically, ECoG could be classed as partially-invasive, as it is implanted below the

skull but outside of the brain. ECoG has the benefit of having both high tempo-

ral and spatial resolution. The main disadvantage is that surgery is required to

implant the electrodes.
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Figure 2.4: Dry EEG

2.4.2 Non-invasive Methods

Electroencephalography (EEG), which will be the main method of use in this the-

sis, measures differences in electrical potential which are caused by neural activity

within the brain. EEG signals are acquired via electrodes on the surface of the

scalp. Extracting a signal strong enough for use requires the synchronised action

of thousands or millions of cortical neurons [14], mainly because EEG scalp poten-

tials become blurred as they pass through the brain, skull, and scalp tissues. Scalp

electrodes are usually placed according to the 10-20 system, where electrode spac-

ing between adjacent electrodes is either 10 or 20% of the skull’s diameter, from

front-to-back or left-to-right [15]. Electrode locations are generally labelled based

on which brain area they are situated above, with Fp, F, C, P, and O representing

the frontopolar, frontal, central, parietal, and occipital brain regions, respectively.

EEG electrodes can be water-based, gel-based, or dry (Fig. 2.4). Gel electrodes

can be time-consuming to apply, and require that participants have gel applied to

their hair, which some users may find unpleasant. Dry electrodes are much quicker

to apply, albeit at the expense of signal quality, as they have been found to lead

to increased impedance, as well as increased broad-band noise [16].

Magnetoencephalography (MEG) measures the magnetic disturbance caused by

neuronal activity. MEG signals are acquired using superconducting quantum in-

ference devices (SQUIDs [17]), which are placed in an array over the scalp.

Functional magnetic resonance imaging (fMRI) detects changes in blood oxygena-

tion level; these changes are associated with neuronal activity. fMRI is performed
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in an fMRI machine, and works by creating a magnetic field which alters the state

of protons in the body. The different rates of ‘relaxation’ (the time required for

protons to return to their initial state) allow researchers to calculate the blood

oxygenation level in any part of the brain at a particular moment.

Near-infrared spectroscopy (NIRS) is also used to measure neural changes related

to blood oxygenation levels. Near-infared light is able to pass through skin and

bone on the surface of the head, and is absorbed by haemoglobin. Measuring

the absolute change in oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb) gives

researchers the ability to monitor the changes in haemoglobin, thereby monitoring

the oxygenation and haemodynamic activity associated with neural activity [18].

The aforementioned methods all differ in terms of strengths and weaknesses: EEG

has a high temporal resolution, which is on the order of milliseconds, but poor

spatial resolution (order: cm3); MEG has high temporal resolution (milliseconds)

and spatial resolution which is poor but superior to EEG; fMRI has poor temporal

resolution (1-2 seconds) and good spatial resolution (order: 64mm3) [19]. Near-

infrared spectroscopy (NIRS) methods can potentially achieve a spatial resolution

on the order of centimetres, but this comes with a poor depth resolution [20] .

2.5 Signal Production

BCI signal production is where the user produces brain activity that can be used to

operate a BCI. There are many different methods for producing this brain activity,

only some of which are utilised in this thesis. Therefore, in this section we discuss

the most relevant and most influential BCI signal production methods.

2.5.1 Evoked Potentials

Evoked potentials (EPs) refer to a group of signals that are elicited involuntarily

by external stimuli. EPs evoked by visual, auditory, or somatosensory stimuli have

all been used to operate a BCI.

Steady-State Visually Evoked Potentials (SSVEP): The steady-state visu-

ally evoked potential (SSVEP) refers to a type of visually evoked potential (VEP),

a brain response that is elicited by visual stimulus. The SSVEP is phase-locked
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and can be elicited by a repetitive visual stimulus (RVS) such as a flickering light

[21], or a reversing pattern [22], and becomes ‘steady’ if the stimulus presenta-

tion rate is above a certain frequency. SSVEP responses are detected mainly by

electrodes placed above the occipital and parietal lobes [23], and have a wave-like

spatial structure [24] with similar frequency characteristics to that of the trigger-

ing input. The RVS initiates the selection of a cortical network that can oscillate

at that same frequency [25], meaning the response matches the input with a good

signal-to-noise ratio. SSVEP-BCIs are popular due to their short training time,

high classification rate [26], and the fact that they can be detected using non-

invasive neuroimaging methods such as EEG. They have been used in a diverse

range of BCI types, including BCI-controlled exoskeletons [27], [28], wheelchairs

[29], [30], and robotic humanoids [31]. As with all other signal production meth-

ods, the overall goal is to maximize the signal-to-noise ratio (SNR) using various

methods. Researchers can determine which stimulus is being observed by search-

ing the brain signals for specific frequencies related to the RVS frequency. While

the brain has been found capable of producing SSVEP responses to RVS frequen-

cies ranging from 1-90 Hz [21], optimal stimulation frequencies are found within

the range of 5.6-15.3 Hz, with a strongest response at 12 Hz [22]. Bakardjian et

al. [22] reported that selection between 8 commands yielded a mean classifica-

tion accuracy of 98% (96-100%) and a mean command recognition delay of 3.4s

(2.5-4.2s). The main advantage of using an SSVEP-based BCI is the high signal-

to-noise ratio (SNR) and therefore high accuracy. The main disadvantage is that

viewing the RVS carries an epilepsy risk [32], and long sessions can cause the user

to become fatigued [33].

2.5.2 Neural Rhythms

Brain oscillations are usually categorised into specific frequency bands (Fig. 2.5);

delta: < 4 Hz, theta: 4-7 Hz, alpha: 8-12 Hz, beta: 12-30 Hz, and gamma: >

30 Hz [26]. Oscillations recorded from the somatosensory and motor cortices are

referred to as sensorimotor rhythms (SMRs) [34], and the alpha rhythm is referred

to as the mu rhythm. Changes in the amplitude of SMRs can be used to make

inferences about the user’s cognitive state, and is known as an SMR-BCI.
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(a) Delta rhythm

(b) Theta rhythm

(c) Alpha rhythm

(d) Beta rhythm

(e) Gamma rhythm

Figure 2.5: Brain waves recorded over one-second (credit: Hugo Gamboa)

2.5.3 Event-Related Desynchronisations/Synchronisations

Event-related desynchronisations (ERD) and event-related synchronisations (ERS)

are detectable changes in SMRs that accompany imagined or actual motor tasks.

The ERD is a decrease in power in the upper alpha (mu) band and lower beta

band, occurring in the contralateral hemisphere approximately two seconds before

movement onset, and becoming bilaterally symmetrical immediately before move-

ment onset [14]. The ERS is an increase in power which appears after completion

of the motor task. The ERS can also occur simultaneously with the ERD, but
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Figure 2.6: A 2-D cortical sensory homunculus, by OpenStax College (licensed
under CC BY 3.0)

in this case it occurs in a different cortical area [35]. ERD/ERS are produced

topographically with respect to the homuncular organisation of the sensorimotor

cortices (Fig. 2.6). This means that ERD and ERS activity generated in relation

to foot movement will appear most prominently over the foot region of the sensori-

motor cortex. The homuncular organisation also means that current non-invasive

BCIs struggle to distinguish between movements from the two feet, as they are

located close together (both are located approximately between the brain’s medial

longitudinal fissure), as well as between individual finger movements. They can,

however, distinguish between foot, right-, and left-hand movements due to their

large distance from one another.

2.5.4 Event-Related Potentials

Event-related potentials (ERPs) are brain responses that are elicited by some

event, and show a stable relationship with this event. The definition of ERPs is

similar to, and sometimes used interchangeably with that of EPs [36]; however, the
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ERP can essentially be seen as something that produces a measurable waveform

following an event’s onset.

P300: A P300 evoked potential (also known as P3b) is a positive peak registered

in the parietal cortex which occurs 300ms after stimulus onset, and is an example

of an ERP. It was discovered by Sutton et al. [37] and is elicited when unlikely

events occur between events with high probability. The P300’s main use in BCI

research is in the ‘P300 speller’ [38], which is a grid of letters (typically 6×6) from

which a user can select individual letters by focusing their gaze upon them. The

letters flash randomly, however, the BCI is time-locked to these flashes (termed, the

‘oddball paradigm’ [39]), and letter selection is based upon P300 wave generation.

Guger et al. [40] tested the P300 signal’s ability to be used for spelling, finding an

overall classification accuracy of 91%. Also, 72.8% of participants could use the

P300 signal to spell words with 100% accuracy, while less than 3% demonstrated

complete BCI deficiency with the P300. The main advantages of using a P300-

based BCI are the relatively short training times, and the high accuracy. The

main disadvantage is its lack of speed.

Error-related Potentials: Error-related potentials (ErrP) [41] refer to a brain’s

response to the user detecting a mistake, which can be used to operate a BCI,

usually for automatic error correction.
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Artefact Characteristic Cause Removal

EOG
High amplitude
deflections in
3-4 Hz range

Eye movements/
blinking

ICA, eye channel

EMG
Mainly in the
> 30 Hz range

Bodily movements,
e.g. head/face neck

Filtering high
frequency data

Signal
distortion

Signal drift
Skin conductance

change, e.g.
sweating

-

EKG
Very low

frequency artefacts
Heart beat

Low-pass filtering
(e.g. 0.5 Hz)

Table 2.1: Common EEG artifacts

2.6 Preprocessing

The goal of the preprocessing stage is to improve the signal-to-noise ratio (SNR)

and spatial resolution through the removal of artifacts. Artifacts are unwanted

additions to the signal which can contribute positively or negatively to a BCI’s

performance, and can be removed using methods such as referencing and filtering

the data. Sanei and Chambers [42] identify a number of possible artifact sources,

including muscles (electromyogram, EMG), eyes (electrooculogram, EOG), inter-

ference from electrical sources, and cable defect artifacts. To remove artifacts the

signal must be amplified and filtered. A list of common EEG artifacts is available

in Table 2.1. Another artifact removal technique is thresholding, where a thresh-

old is set for an input signal (e.g. EOG) and epochs where the signal’s amplitude

exceeds the threshold are deemed to be contaminated and are removed.

2.6.1 Downsampling

Due to the complexity of brain activity, EEG data is extremely high-dimensional,

which, as a result makes it inherently difficult to classify. Downsampling is a form

of dimensionality reduction that reduces the sampling rate. EEG recorded at 1000

Hz can be downsampled to 500 Hz by discarding every other sample. This reduces

complexity, and can improve BCI performance if used correctly.
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2.6.2 Temporal Filtering

Discrete Fourier Transform Filters

The Discrete Fourier Transform (DFT) is a method for converting a signal from

the time domain into the frequency domain, removing all temporal information

from the signal and representing it as a sum of sinusoids instead. DFT filtering of

a signal xn is a three-step process, which involves: transforming the signal into the

frequency domain; setting all coefficients outside of desired range to 0; and then

transforming the signal back to the time domain. DFT filtering can be performed

using:

Xk =
N−1∑
n=0

xne
− 2πi

N
kn (2.1)

where N is the number of samples, k reflects the sinusoidal frequency at k/N

samples, e is Euler’s constant, and i is an imaginary number with i2 = −1. Af-

ter setting all coefficients outside of the target frequencies to zero, the signal is

transformed back to the temporal domain using the inverse DFT (IDFT):

xn =
1

N

N−1∑
k=0

Xke
i2πkn
N (2.2)

Finite Impulse Response Filters

A finite impulse response (FIR) filter is a linear filter whose response to an input

is of finite length. The FIR response is calculated based upon the last M samples

of unfiltered signal s(n). Filtered signal y(n) is found using:

y(n) =
M∑
k=0

bks(n− k) (2.3)

where bk is a vector containing the feedforward filter coefficients, s(n) is the raw

unfiltered signal.
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Infinite Impulse Response Filters

Infinite impulse response (IIR) filters are recursive digital filters whose response

to an input is of infinite length. The IIR response is based on both the last M

samples of s(n), as well as the outputs of the previous P filter operations. Filtered

signal y(n) is found using:

y(n) =
M∑
k=0

bks(n− k) +
P∑

k=1

axy(n− k) (2.4)

where ax is a vector containing the feedback filter coefficients.

Temporal Filter Applications

High-pass filtering: Low-frequency signals are often associated with artifacts,

such as those that accompany breathing, amplifier drift, and changes in skin re-

sistance due to sweat. Most can be removed by a high-pass filter with a cut-off

frequency of around 0.5-1 Hz. Electrocardiogram (ECG) artifacts may also be

detectable by EEG [43]; however, the effects of this low-frequency signal can also

be reduced using a high-pass filter.

Low-pass filtering: High-frequency noise is often removed using low-pass filters

with a cut-off frequency around 50-70 Hz [42].

Band-pass filtering: Band-pass filters can be used to extract various useful

frequency bands, which can be those associated with motor imagery such as mu

and beta bands. Even BCIs that do not rely on spectral information, such as the

P300-BCI, are usually filtered before detection. P300-BCI signal detection usually

involves band-pass filtering between 0.1-20 Hz.

Notch filtering: Notch filters are a type of band-stop filter which is typically of

a very high order. They can be used to remove 50 or 60 Hz line noise.

Zero-phase filtering: Zero-phase filters apply a time reversal to data during

the filtering process in order to prevent phase distortions and signal delay. The

filter works by initially filtering the data, reversing and filtering again, and then

reversing the data again. Despite the benefits of zero-phase filtering, it is generally

reserved for offline data, as it is non-causal, and relies on future inputs.
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2.6.3 Spatial Filtering

2.6.3.1 Reference Electrodes

In EEG BCIs, reference electrodes are used to find the voltage for each channel.

The voltage, which is the difference in electrical potential between two points, is

found by placing the reference electrode on a nearby location and then calculating

the difference. The mastoid bone (behind the ear) is the most common refer-

ence location [44–46]; however, tactical reference placement can yield significant

advantages.

2.6.3.2 Scalp Reference

Choosing a scalp electrode as a reference removes noise that is common to that

part of the brain. This has been used in numerous studies, for example in SSVEP

studies using references in central and parietal locations [47–49] to isolate the

SSVEP activity, which is usually best detected by electrodes above the occipital

lobe.

2.6.3.3 Bipolar Reference

Subtracting sj, the signal from channel j, from si, the signal from channel i,

produces a new bipolar channel s̃i,j.

s̃i,j = si − sj (2.5)

2.6.3.4 Common Average Reference

Common average reference (CAR) works by subtracting the average signal of all

electrodes from each electrode, at each time point. This method is good at reducing

noise that is common to all electrodes (e.g. 50 or 60 Hz power source noise), and

at enhancing signals contained in a small number of electrodes. However it is not

good at reducing noise that is common only to a few electrodes, such as EOG, or

EMG. For this reason CAR is usually used in conjunction with other methods to
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remove other artifacts. Applying CAR to an electrode montage with N electrodes

uses:

s̃i = si −
1

N

N∑
i=1

si (2.6)

where N is the number of channels, and s̃i is a single spatially filtered channel.

2.6.3.5 Surface Laplacian

Laplacian reference works by adjusting the signal at each electrode, subtracting

the average of the four neighbouring electrodes (‘small Laplacian’) [50] or the four

next closest (‘large Laplacian’) [51]. This method is useful for reducing noise that

is specific to a certain region.

s̃i = si −
1

4

∑
i∈Θ

si, (2.7)

where Θ represents the electrodes of the small or large Laplacian reference.

Numerous referencing methods can be applied, individually or in some cases, to-

gether. The goal is to apply methods that remove the most noise without removing

too much useful information from the signals of interest.

2.6.3.6 Common Spatial Pattern (CSP)

CSP is a technique which finds spatial filters that maximise the variance between

EEG signals from two conditions. Its use in BCI research was popularised by

Ramoser et al. [52], and since then it has had numerous adaptations [53] and

expansions for multiclass classification [54].

Common Spatial Pattern (CSP) works by finding spatial filters w which maximise

variance in one class, and minimise variance in the other. A fully trained CSP

spatial filter filters the data into a form where the top row’s activity corresponds

mostly to one class, whilst the bottom row’s activity corresponds mostly to the

other class. CSP is particularly effective in BCIs based on oscillatory activity,
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for example, classifying between left and right hand motor imagery. Data is ini-

tially bandpass filtered into a relevant band, such as 8-30 Hz (which includes both

the alpha and beta rhythms). Next, the EEG’s normalised spatial covariance is

obtained, using:

C =
EET

trace(EET )
, (2.8)

where E is the bandpass filtered EEG data of size N × T , where N represents

the number of channels and T represents the number of samples. (·)T denotes the

transpose operator, while trace(·) is the sum of the diagonal elements of a square

matrix. Next, taking the average over trials of C for each class gives the spatial

covariance C̄d,∈ [l, r]. The composite spatial covariance is therefore:

Cc = C̄l + C̄r. (2.9)

C can be expressed in terms of eigenvalues and eigenvectors:

Cc = UcλcU
T
c , (2.10)

where λc is the diagonal matrix of eigenvalues, and Uc is the eigenvector matrix.

Next, variances within Uc are equalised using the whitening transform:

P =
√
λ−1
c UT

c . (2.11)

By transforming C̄l and C̄r, so that:

Sl = PC̄lP
T and Sr = PC̄rP

T (2.12)

it can be shown that Sl and Sr share common eigenvectors. If:

Sl = BλlB
T , then Sr = BλrB

T , and λl + λr = I, (2.13)

where I is the identity matrix, and B represents the eigenvectors. Two correspond-

ing eigenvalues sum to one, meaning that an eigenvector with a large eigenvalue
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for Sl will have a small eigenvalue for Sr, which gives the CSP algorithm its abil-

ity to separate the variances between classes so effectively. Finally, the projection

matrix W = (BTP )T is used to perform the spatial filtering:

Z = WE, (2.14)

where Z is the spatially filtered single trial. Details on how this method can be

used to extract useful class-relevant features from EEG are described in 2.9.

2.6.4 Source Localisation

Activity at EEG sensors placed over a certain brain location is not necessarily

representative of activity occurring at that brain location. EEG electrodes cover

a large area, and the signal must also pass through layers of bone, skin, and

hair. Source Localisation (SL) is a source reconstruction method which uses mul-

tichannel EEG data to model the spatiotemporal processes of the brain’s neural

currents. SL works by mapping EEG onto a higher dimensional source grid [55]

where dipoles represent individual source activity. Performing SL usually requires

an MRI image of the user’s head, from which an anatomical model can be created

although a standardised model can be adapted to match the user’s head if this is

not possible. There are two main aims of SL: either forward modeling, which aims

to reconstruct EEG data, given the source activity; or inverse modeling, which

aims to estimate the current source locations and strengths that produce a given

set of EEG data.

2.7 Feature Extraction

The aim of feature extraction is to select features that characterise the user’s cur-

rent activity and represent them as a feature vector. EEG data is too complex and

high-dimensional to control a BCI without being reduced; feature extraction effec-

tively discards unwanted data and retains data that is relevant to making the BCI

function. There are many different forms of feature extraction used in BCI. They

can be separated into several groups, including: time-domain, frequency-domain,

and spatial features. Switching between the time and frequency domains can be
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achieved through decomposition methods such as the Discrete Fourier transform

(DFT) and the inverse discrete Fourier transform (IDFT), via efficient algorithms

known as fast Fourier transforms (FFTs) which allow the DFT to be calculated

much faster. Analysing a signal plotted in the time-domain shows how the signal

varies over time and therefore allows one to view time-dependent phenomena, for

example the P300 wave, which appears 300ms after stimulus onset, would only

be visible in the time-domain. Analysing an EEG signal in the frequency-domain

produces no temporal information, but instead shows how much of a signal lies in

a particular frequency band with regards to a number of given frequencies. This

can be used to identify SSVEPs, assuming an appropriately sized time window is

selected.

2.7.1 Amplitude Features

The amplitude of a signal can be used to train a classifier, for example, with

detection of the P300 wave in the P300 speller.

2.7.2 Band power Features

The average power of a signal within a particular frequency band can be used as

a feature, known as a band power feature. This is found by bandpass filtering the

signal and taking the average of the absolute value within that band. A new type

of feature can be made by applying the log-transform to these features [56], which

approximates normal distribution, and produces what are sometimes known as

log-band power features. Either type of feature can be used to train a classifier

for use in a BCI.

2.7.3 Power Spectral Density Features

The process of transforming a signal into the frequency domain using the DFT can

be used to produce usable BCI features. Power spectral density (PSD) features can

be found by squaring the power spectrum and using the values at the frequency of

interest to train a classifier. This method can be used in motor imagery, SSVEP

[57–59], and many other BCI types.
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2.7.4 Canonical Correlation Analysis

CCA detects the underlying correlation between two multidimensional variables,

and can be used to perform unsupervised SSVEP detection on EEG data [60–64].

Given two multidimensional variables X and Y with weighted linear combina-

tions x = XTWX and y = Y TWY , CCA finds weight vectors WX and WY

which maximise the correlation between x and y. This is achieved by solving the

following optimisation problem:

max
WX ,WY

ρ(x,y) =
E[xy]√

E[xx]E[yy]

=
E[W T

XXY TWY ]√
E[W T

XXXTWX ]E[W T
Y Y Y TWY ]

,

(2.15)

where E[x] is the expected value of x, and ρ is the correlation value, which is

maximised with respect to weight vectors WX and WY , thereby calculating the

canonical correlation between X and Y .

During SSVEP detection, X ∈ RC×S is the multidimensional EEG signal with

C channels and S samples. Yf ∈ R2Nh×S is the set of multidimensional reference

signals based on stimulus frequency f , with 2Nh individual sine waves and S

samples, where Nh is the number of harmonics. The sine waves are assembled into

a matrix [60]:

Yf =



sin(2πft)

cos(2πft)

...

sin(2πNhft)

cos(2πNhft)


, (2.16)

where t is the time in seconds. By performing CCA on X and Yf for all f ,

the stimulation frequency with the maximal canonical correlation value can be

identified, which is selected as the estimated SSVEP frequency.
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2.7.5 Common Spatial Pattern Features

The method outlined in 2.6.3.6 details how to train spatial filter W , which filters

EEG data into spatially filtered signal Z. As the rows of Z are separated, max-

imally in terms of variance between classes one and two, the outer m rows are

selected. Taking the signals Zp (p = 1, ...,m), the log-variance features can be

extracted using:

fp = log

(
var(Zp)∑2m
i=1 var(Zi)

)
, (2.17)

where fp is the (1 × 2m) feature vector. Using the log-transformation provides

an approximation of normal distribution, and the features can be used to train a

classifier and predict the class of new data.

2.8 Feature Selection

Feature vectors created using feature extraction often require further reduction,

which can be achieved using feature selection algorithms. This reduces the effects

of a problem known as the “curse of dimensionality” [65], where the amount of

training data required increases exponentially relative to the size of the feature vec-

tor. Other benefits include reduced training times, reduced storage requirements,

improved prediction performance, and the facilitation of data visualisation [66].

Feature selection algorithms can be categorised into filters, which select subsets of

variables as a preprocessing step, and wrappers, which assess different subsets of

variables using the classifier of choice [67]. Filter methods attempt to identify the

best individual features using methods such as calculating the correlation between

the variable and the target. Wrappers assess subsets of features, meaning they

take into account interactions between features. Effective use of both methods

leads to a model which can correctly classify a large subset of the data without

‘overfitting’ [67], with overfitting referring to the phenomenon that occurs when a

trained model is too fixated on a small number of data points to accurately classify

new data. Forwards and backwards stepwise selection are two popular implemen-

tations of wrapper methods. In forward selection the model either begins with one
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feature, and sequentially adds one variable at a time as long as it improves accu-

racy [67]. Backwards stepwise selection works identically but in reverse, starting

with a full feature set, removing one at a time.

2.9 Classification

Classification uses the feature vectors created during feature extraction to make

inferences about a user’s current state. Classification methods can be placed into

two groups: supervised learning, where an algorithm is shown labelled samples of

each class and then learns the classes to identify them at a later point in time,

and unsupervised learning, where the algorithm is given the unlabelled data and

decides which categories best represent the data. For BCI-controlled robots, clas-

sification leads to a pre-determined action (e.g. movement). Many methods for

classification exist, including artificial neural networks, support vector machines,

linear discriminant classifiers, and many more. In BCI literature some the most

commonly used classification algorithms are linear discriminant analysis (LDA

[68]) and support vector machine (SVM [69]).

2.9.1 Linear Discriminant Analysis

Linear discriminant analysis is a popular supervised learning algorithm which sep-

arates classes using hyperplanes which maximise class separability. LDA states

that the separation of classes is equal to the ratio of between class variance to

within class variance [68]. LDA functions by finding the weight vector w which

maximises:

J(w) =
wTSBw

wTSWw
(2.18)

where SB represents the between class scatter matrix, and SW represents the within

class scatter matrix. LDA assumes normal distribution and equal class covariance.
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Figure 2.7: SVM hyperplane

2.9.2 Support Vector Machine

A support vector machine (SVM [69]) is another supervised classification method

which separates classes using a hyperplane, however, the focus is on maximising

the distance between the outer margins and the nearest training data points on

either side of the hyperplane (Fig. 2.7), known as the support vectors. While

initially used as a linear classification method, SVM can be extended to non-linear

classification by using the ‘kernel trick’ [70].

2.10 BCI Performance Assessment

2.10.1 Classification Accuracy

Classification accuracy measures the percentage of correct classifications made,

tested on a set of evaluation data or the whole dataset.
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2.10.2 Cross-Validation Accuracy

Cross-validation involves systematically separating a dataset into training and

evaluation sets of pre-determined size, in order to train the classifier repeatedly

and assess its performance. Numerous cross-validation methods exist [71], and can

be selected based on the situation:

• Holdout: Here, the data is split into a training set with approximately

two-thirds of the data, and a ‘holdout’ set with approximately one-third of

the data. This method uses random sub-sampling to select data, evaluates

the classifier using the holdout data. The method can be repeated k times,

averaging accuracy across runs.

• k-fold cross-validation: This method sees the data split into k random,

mutually exclusive, and approximately equally-sized subsets, known as folds.

The model is trained and evaluated k times, designating one fold as the

evaluation set and all others as the training folds, evaluating the classifier,

repeating for each fold, and averaging the accuracy across total number of

folds.

• Leave-one-out: This fits a classifier using all but one of the observations,

and attempts to classify the remaining observation. The process is repeated

for all observations, meaning it is useful for small datasets, but can be com-

putationally demanding.

2.10.3 Information Transfer Rate

Information transfer rate (ITR) [72] is a useful metric for comparing different BCI

speeds whilst taking the variability of BCIs in terms of accuracy and number of

possible commands, into account.

The ITR B (bits/symbol) can be found using:

B = log2N + P log2P + (1− P )log2

[
(1− P )

N − 1

]
(2.19)

where N is the number of possible classifier outputs, and P is the classifier accu-

racy. The bit rate in bits per minute usually preferred for BCIs:
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Bt = B ∗ (60/T ) (2.20)

where T is the time in seconds per symbol required to send one symbol

The ITR makes the assumption that classes are equally likely to be selected, which

is not always true. Additionally its use is not always appropriate, for example with

asynchronous BCIs or offline BCI studies [73].

2.10.4 Cohen’s Kappa

Cohen’s Kappa (κ) [74] is a criterion for assessing classifier performance based

on the classification accuracy and the accuracy that could be achieved by chance

alone. The κ coefficient can be found using:

κ =
p0 − pe
1− pe

(2.21)

where p0 is the accuracy, and pe is the expected result by chance. Both p0 and pe

are proportions, existing between 0 and 1.

2.11 Hybrid BCIs

A hybrid BCI (hBCI) refers to a system that combines at least two types of

input signals, with at least one signal originating from a BCI. The other signal or

signals can either come from: another BCI signal from the same modality, creating

a system known as a ‘pure’ hBCI; another BCI signal from a different modality,

such as combining EEG and fMRI; physiological signals such as heart rate or EMG,

although it could be debated whether using EMG constitutes a true hBCI; or from

an intelligent device such as an eye tracker or intelligent wheelchair. Pure hBCIs

can be categorised as either sequential or simultaneous: sequential hBCIs perform

a function from one modality at a time, whilst simultaneous hBCIs perform actions

from multiple modalities in parallel. Numerous combinations of hBCIs have been

demonstrated to work, such as P300 and SSVEP [75], ERD and SSVEP [76],

and ERD and P300 [77] among others. The main advantage of hBCIs is their
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Study Hybrid Problem Solution

[75]
P300/
SSVEP

Poor user
performance

Simultaneous: hBCI that uses two
modalities simultaneously to improve accuracy

[79]
P300/

SSVEP/
ERD

Standard BCIs
have limited

control commands

Sequential: Increases DoF by mapping
commands to P300 and SSVEP, switches

between them using ERD

[78]
P300/
SSVEP

Low ITR
Simultaneous Improves BCI by calculating
horizontal and vertical axes with different

BCI types, before cross-referencing location

[76]
SSVEP/

MI

Multi-
dimensional

control required

Simultaneous: Shares commands amongst two
different BCI types simultaneously

[80]
SSVEP/

ERD

Multi-
dimensional

control required

Simultaneous: Shares commands amongst two
different BCI types simultaneously

[41]
P300/
ErrP

Low ITR
Simultaneous: Monitors brain to detect errors,

which it removes automatically

[77]
P300/
ERD

Multiple tasks
to perform

Both: used a sequential setup
with simultaneous processing at each stage,
creating an accurate hBCI with enough DoF

Table 2.2: Hybrid BCIs designed to improve upon standard BCIs

ability to compensate for deficiencies that exist within the modality or modalities.

Examples of improvements hBCIs can make to standard BCIs include increasing

the available degrees of control (DoC) [76], increasing the ITR [78], and improving

accuracy [75]. Table 2.2 summarises the outcomes of several pure hBCI studies.

2.12 Conclusion

This chapter reviewed detailed the underlying processes that allow a BCI to func-

tion, and the various methods for implementing a BCI. There are a wide variety

of BCI types, and approaches can vary in terms of methods of signal detection

and production, feature extraction and selection, classification, and translation;

each with their own strengths and weaknesses. While several BCI-capable neu-

roimaging methods exist, EEG is the most convenient due to its relatively low

cost, and portability. For a fast responsive BCI, SSVEP-BCIs are preferred due

to the strength of the SSVEP response, and CCA-based detection methods are

ideal for this purpose due to their accuracy and the lack of training data needed.

32



Chapter 2. Technical background

However, motor imagery BCIs have the benefit of requiring no external input, and

can be detected using CSP-based methods.
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Chapter 3

The Current State of the Art

This chapter reviews the applications of BCIs, as well as establishing the current

state of the art.

3.1 Rehabilitation BCI

Arguably one of the most important applications for BCIs is in rehabilitation for

disabled users. Rehabilitation BCI can be grouped under two main categories:

motor recovery, which seeks to restore motor function to the disabled user, and

motor substitution, which seeks to replace the missing function using technology.

3.1.1 Motor Recovery

The most popular motor recovery method in BCI literature involves coupling a

BCI with a device to give participants added artificial control over their limbs.

Controlling this with a BCI is hypothesised to aid motor recovery because it allows

the brain to exert control over the muscle groups with reduced function, and

according to the principles of Hebbian learning (“cells that fire together, wire

together” [81] [p.21]), this could potentially promote use-dependent plasticity (U-

DP), strengthening the remaining connections between the brain’s motor area and

the affected area.

Of the motor recovery studies reviewed, all were non-invasive, with a strong pref-

erence shown for EEG. Pfurtscheller et al. [82] performed a feasibility study with
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a spinal cord injury (SCI) patient with tetraplegia (paralysis affecting all limbs)

is trained to use an EEG-BCI with functional electrical stimulation (FES), where

the nerves are stimulated to give the patient extra limb control. The patient used

imagined foot movements to generate beta oscillations in the sensorimotor cortex

(SMC), which act as a ‘brain-switch’ that activates a FES device attached to the

malfunctioning hand, thus aiding grasping function. The patient was then able to

grasp a cylinder while the FES device was active. One criticism is that this study

(and many other motor recovery studies) attempts to use activation from one limb

type to control a different limb type (imagined foot movements to control hand

movements). It is not clear as to whether this would promote neuronal reorganisa-

tion through Hebbian learning, because, due to the topographical arrangement of

the motor cortices, representations of hands and feet are located a relatively large

distance from one another, meaning there is less chance of overlapping activation

to trigger U-DP. Future work should use control groups to determine whether

BCI/FES gives preferable or inferior results to FES alone. Studies by Gollee et

al. [83] and Do et al. [84] demonstrate that BCI with FES can be used success-

fully in different areas: namely respiration control and lower extremity control.

Gollee et al. used the SSVEP response as a control signal, while Do et al. used

EEG-BCI with real foot movements. Both use multiple participants (12 and 5 Ps,

respectively) and report excellent classification rates for the BCI controlling the

FES (90% and 85.1 - 97.6%, respectively). Both showed minimal training times;

SSVEP typically requires little or no training, whereas Do et al.’s use of real foot

movements required only 23 minutes of training and calibration time. However,

both studies were restricted to neurologically healthy participants, which creates

two main problems: firstly, it cannot be taken for granted that these results are

transferable to a target demographic comprised of individuals whose brains may

have been damaged through stroke or traumatic brain injury; and secondly, these

studies cannot report whether these interventions actually improve symptoms.

Shindo et al. [85] did not utilise FES. Participants were eight stroke outpatients

demonstrating hemiparesis (unilateral weakness often associated with stroke). This

study coupled EEG-BCI and motor imagery (MI), allowing participants to control

sensorimotor rhythms (SMRs) using neurofeedback, a real-time display of infor-

mation relevant to the user’s brain activity. Successful MI activated an orthotic

device which extended the fingers. Five participants reported improved finger

function, with 3 of these showing reduced arm paresis. Measuring participant’s

voluntary surface EMG activity before and after the intervention showed that four
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participants had significantly increased voluntary EMG activity. A lack of a con-

trol group means it is impossible to disentangle the effects of the BCI, the orthotic

device, and the physical therapy, where applicable. Daly et al. [86] used EEG-BCI

with FES to restore hand function in a stroke patient, using nine training sessions.

This is one of the few early studies that involves actual patients and reports clini-

cal outcome. In this study the patient reportedly regained some volitional control

over their fingers. This is a positive result, though it is low in power due to having

only one patient.

Overall, research shows that BCI provides a fairly reliable method of controlling the

FES. It appears that some progress is being made, as the application of BCI+FES

is spreading to different parts of the body. However, more research needs to be

conducted using actual patients and reporting the clinical outcome, as well as

including a control group to separate the effects of the BCI from the FES. More

studies need to test whether these interventions create significant U-DP; initiating

U-DP is the central premise behind using BCI in motor recovery, and should

therefore be subjected to falsification testing.

3.1.2 Non-Invasive Motor Substitution

Using healthy participants in motor substitution studies carries fewer drawbacks

than in motor recovery, as the main goal is simply to produce an effective mo-

tor substitute rather than producing clinical improvements. Consequently, all

non-invasive studies reviewed used healthy participants. BCI-controlled robotic

movement studies can be separated into two main types: ‘Goal selection’ is when

the BCI is used to select a discrete output. The robot will then usually perform a

predefined action or set of actions, based on this output. Alternatively, ‘kinematic

control’ is when BCI outputs are used to create continuous outputs, giving the

user finer control over the robot. In this section we will review both non-invasive

and invasive motor substitution BCI studies.

Millán et al. [87] created an early demonstration of robotic control using non-

invasive BCI. Two healthy participants used EEG-BCI to drive a wheelchair-like

robot through a house-like environment (Fig. 3.1) using goal selection, operating

the BCI using mental tasks of their choice. The users entered one of four mental

states, for example by imagining themselves counting, relaxing, or rotating a cube.

The BCI converted this signal into a goal selection output to control the robot.
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The researchers demonstrated that this method works, and found high classifica-

tion accuracy (over 98%). Manual control with a joystick was found to be faster

by approximately 25%. It should be noted that this robot had extremely high

level commands (for example, “turn left at next available chance”); however, this

should not distract from the high classification accuracy obtained from this study.

Rebsamen et al. [88] demonstrated that this can be performed using P300-based

VEPs attaining 95% classification accuracy, and that stopping can be performed

by generating mu- or beta-rhythms in the SMC. Due to the slow reaction time

when registering a stop signal (5-6s) it may be dangerous to use the BCI to con-

trol stopping. Bell et al. [31], and Muller-Putz and Pfurtscheller’s [89] participants

performed assistive tasks using high-level goals, selected using EEG-BCIs. Bell et

al used P300-based ERPs to control an assistive robotic humanoid, reporting 98%

classification accuracy for selecting objects and then the area to transport them to

(number of false activations not reported). Similarly to Millán et al.’s [87] robot,

Bell et al.’s robot also requires high level commands, and for this reason would

not be useful outside of a structured environment. Muller-Putz and Pfurtscheller

used SSVEPs to control a prosthetic arm and found varying success rates, with

participants attaining 44-88% accuracy. This study is notable because it allowed

asynchronous control of the robot, and could feasibly lead to performing tasks in

an unstructured environment due to the low-level nature of the input commands

(i.e. rotate wrist, grasp). One issue to overcome is the number of false activations;

from the reported figures we are able to calculate that false positives (FP) were

experienced at an average rate of 6.75 FPs/min (with a four second refractory

period) during the no-control condition, while false negatives (FN) were experi-

enced at an average rate of 25%, meaning one in four commands was incorrect.

Due to the use of ERPs and SSVEPs both studies required 10 minutes training

or less. These studies show that motor substitution tasks can be performed using

non-invasive BCI; however current studies rely on goal selection, and accuracy

is greatest when commands are high-level, reducing the potential for use in an

unstructured environment.

3.1.3 Invasive Motor Substitution

Hochberg et al.’s [90] early work with a SCI patient used invasive methods to

record local field potentials through a 96-electrode array (as do all the invasive

studies included in this review). The patient performed grasping actions using the
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Figure 3.1: Early non-invasive robotic control experiment by Millán et al.
Image from [87]

neurally-controlled prosthetic, demonstrating that these actions can be performed.

In Hochberg et al.’s later work [12], two brainstem stroke patients were trained

to perform grasping tasks with a BCI-controlled prosthesis in near-weekly ses-

sions, using kinematic control. This produced a range of successful performances

(21.3%-62.2%) that were significantly higher than chance alone. A performance

of 21.3% success may sound poor compared to some of the previously discussed

research; however, these tasks took place using kinematic control and many de-

grees of control. To overcome this, researchers should report the probability of

performing one sequence of the task by chance alone. For example, in a goal se-

lection task with 4 possible outcomes this probability would be 0.25 (25%); the

success of the test should be assessed with regards to this. This would be less

useful in studies using kinematic control, where the probability would always be

very small. Instead we suggest devising a standard set of tests, which would allow

direct comparison across kinematic control studies. Collinger et al. [11] taught a

spinocerebellar degeneration patient to control a robotic arm with seven degrees of

control, using only invasive BCI. The patient was trained using observation-based

calibration, which is when the user watches the robot performing pre-determined

movements while visualising themselves controlling the robot. After 13 weeks of

training the patient was able to perform reach and grasp tasks, and cone-stacking
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tasks, among others. Results showed the participant reaching 91.6% completion of

target-based reaching tasks, and also that the number of neurons that were tuned

to seven degrees of control had increased linearly over the course of training. This

is undoubtedly the most positive result of all studies reviewed. Also, the increase

of neuronal tuning gives insight to the nature of adaptation that takes place while

using the BCI. It is unfortunate that studies with one patient have so little power,

however, considering the costs incurred it may have been unavoidable.

To summarise, motor substitution is being investigated using both invasive and

non-invasive methods; however, non-invasive BCIs appear to be primarily used

for goal selection outputs, while the latest invasive studies have had success with

kinematic control with up to seven degrees of control. The use of goal selection has

produced useful assistive devices which work well, but are primarily designed for

specific structured environments; however, the current aim of non-invasive studies

in this area should therefore be to make assistive devices that use simple signals

more effectively to produce complex yet controlled behaviours.

3.2 SSVEP BCI Gaming

Previous research has analysed various aspects of BCI games: studies have in-

vestigated the performance of games across different BCI modalities [91, 92], and

investigated the game design choices made by developers [93]. The current section

takes a different approach and investigates the game control mechanics used in

SSVEP-BCI games, focusing particularly on the BCI translation methods (kine-

matic control or goal selection) used and the pacing methods (synchronous or

asynchronous) used. A brief summary of these results can be seen in Table 3.1

3.2.1 Synchronous SSVEP-BCI Gaming

From the synchronous SSVEP-BCI games reviewed, each used goal selection. Lalor

et al.’s [104] ‘MindBalance’ was an early synchronous two-class SSVEP BCI game

where the player must correct the avatar’s balance on a tightrope by selecting the

appropriate target. The RVS was triggered at fixed intervals, and classification

was performed after a pre-determined length of time. Some BCI games can be

classed as synchronous due to external input pacing the BCI: Mühl et al.’s [103]
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Study Year Method Anthrop. Techno. Synchronicity

[94] 2015 GS A
[95] 2015 GS A
[96] 2015 GS A
[97] 2013 GS S
[98] 2013 KC A
[99] 2013 GS S
[100] 2012 GS A
[101] 2011 GS S
[102] 2010 KC A
[103] 2010 GS S
[104] 2005 GS S

Table 3.1: Game control methods used for SSVEP BCIs

‘Bacteria Hunt’, and Hakvoort et al.’s [101] ‘Mind the Sheep!’ were both hBCIs

which used mouse or keyboard inputs to pace the BCI, as well as being two of

the only four games to take an anthropocentric approach during their evaluation.

Bacteria Hunt, a hBCI utilising keyboard input, alpha waves, and the SSVEP re-

sponse, used one-class SSVEP classification to ‘eat’ targets that were within range

of the avatar after approaching using the keyboard. User’s game experience was

assessed across various metrics, including: pleasantness, naturalness, and enjoya-

bility. ‘Mind the Sheep!’, a hBCI utilising mouse input and the SSVEP response,

used three-class SSVEP classification to select which avatar to herd sheep char-

acters with. This study found that the BCI component significantly increased

immersion in four out of five categories: cognitive, dissociation, emotional, and

control, without a significant increase in challenge. Parafita et al.’s [99] spacecraft

game was controlled by selecting a direction using two-class classification, with the

authors reporting 96% accuracy and an ITR of 15 bits/min. Chumerin et al. [97]

performed the final synchronous gaming SSVEP-BCI reviewed, with their game

‘The Maze’ (Fig. 3.2); they used a “decision queue” method where incoming EEG

data was classified every 200ms within a decision queue of predetermined length,

the weighted outputs were summed after this time had passed, giving a movement

command in the direction of the highest overall output.

41



Chapter 3. The Current State of the Art

Figure 3.2: BCI game ‘The Maze’ by Chumerin et al. Image from [97]

3.2.2 Asynchronous SSVEP-BCI Gaming

The only two games reviewed that used kinematic control were both asynchronous

BCIs: Mehta et al.’s [102] shooter game updated classification every 500ms to give

the user a precise level of control, while Legény et al.’s [98] own SSVEP shooter

adjusted the feedback level on the cannon based upon the intensity of the user’s

SSVEP response. Asynchronous control in Mehta et al.’s shooter was accom-

plished through a method where a fixed number of consecutive classifications are

required before movement translation takes place. Legény et al achieved control

using log-bandpower features extracted using a one-second time window with a

100ms overlap, although the exact method for achieving asynchronous control is

not explicitly stated. Whilst evaluating the game they found that participants

prefer gaming BCIs to use context-dependent controls, such as removing the RVS

when not in use, or locking controls to prevent unnecessary misclassification. Asyn-

chronous BCIs using goal selection included van Vliet et al. [100] and Ali et al.

[95], who both utilised thresholding techniques to achieve asynchronous control.

Van Vliet et al. calculating the thresholds automatically based on mean ampli-

tudes detected from calibration data during RVS fixation and RVS-free periods.

Ali et al. used fixed predetermined thresholds for all participants, and combined

it with the ‘consecutive classifications’ method so that satisfying either condition

could trigger translation. Other games that utilised the consecutive classifications

method include Koo et al. [94] (Fig. 3.3), whose four-class maze games returned a

CCA classification every 500ms, and required three consecutive classifications to

perform translation. The authors reported an ITR of 25.58 bits per minute; and

Wong et al.’s [96] which similarly used CCA and three consecutive classifications

to elicit translation.
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Figure 3.3: A 3D virtual reality BCI game by Koo et al. Image from [94]

There are a number of consistencies across SSVEP-BCI games: they generally

use a small number of RVS (< 5); goal selection strategies are used a lot more

frequently than kinematic control; while older games were more likely to use syn-

chronous control, as advances are being made in BCI research asynchronous con-

trol is becoming more popular; and studies were generally technologically centred,

with fewer studies focused on user-experience. Regarding the technological state

of the art, SSVEP-BCI games are generally accurate and responsive, with a large

number of different available approaches for achieving asynchronous control. The

studies have also shown that regarding user-experience, the BCI increases the level

of immersion.

3.3 Motor Imagery BCI Gaming

Unlike SSVEP-BCI gaming, where different games often use similar methods, there

is a tremendous amount of variability in motor imagery BCI gaming methods. The

regular use of calibration data, and increased training periods create additional

sources of variability in terms of amount of data to use, and duration of training.

Hasan et al. [105] Hasam et al. developed an asynchronously controlled BCI

version of Hangman, the popular game where participants must guess a word

one letter at a time. Incorrectly selecting a letter draws one individual part of
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Hangman, with the game ending either when the word is correctly guessed or

when the whole picture has been drawn. The game itself used two classes to select

letters: one class to select the letter, and the other to move the selection to the

next letter. Both a static and adaptive LDA classifier were available for this game.

The gaming BCI functions by recording EEG activity from electrodes positioned

above the sensorimotor cortex, extracting features from the whole mu band (8-12

Hz) and part of the beta band (13-16 Hz) at each electrode. Calibration involved

collecting data from four classes (right hand, left hand, left or right foot, and idle)

and selecting the two most separable classes for online classification. The adaptive

classifer performed unsupervised adaptation by adapting the LDA classifier based

upon the average number of movements used to select a word. Testing the classifier

with healthy participants (n = 5) showed an improved the True-False rate. This

study took a technocentric approach in that it focused heavily on the methods,

finding that adaptive classification reduced the average amount of time required

to complete a task, when compared to static classification.

Asensio-Cubero et al. [106] tested their three-command endless running game us-

ing motor imagery. The commands used were stride left, stride right, and jump,

and used left hand, right hand, and feet motor imagery, respectively. Motor im-

agery features were extracted after applying a wavelet lifting transform and CSP

to EEG data filtered between 8 and 30 Hz. The number of number of CSP fea-

tures were selected using five-fold crossvalidation on 30 trials of training data per

class, before real-time classification using an LDA classifier. In this game the re-

searchers found a strong training accuracy (71%), but weaker accuracies during

online control (53%).

Zhao et al. [107] controlled a game called ‘Mind-Driven Car’ in a 3D virtual

environment using motor-imagery BCI. The game had two options: 1. steering

the car along a straight road, avoiding the traffic cones, and 2. steering the car

along a curved road, avoiding the road border. The game itself used four classes

to generate commands: motor imagery from the right hand, left hand, and feet, as

well as relaxation for the fourth class. Information from these four classes allows

the user to control the car’s speed and direction. The BCI implementation used

common spatial frequency patterns (CSFP [107]) and an LDA classifier, which

was trained using several three-minute training runs. CSFP is an extension of

CSP which allows the optimisation of spatial and frequency filters for improved

performance. Acceleration was initiated using foot MI, and steering direction
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was controlled by hand motor imagery (with right hand MI initiating a right

turn, and left MI initiating a left turn). MI duration was used as an additional

control parameter, with the turn output cumulating incrementally as the duration

increased. A trial was defined as ’relaxation‘ (and therefore no output sent) if the

confidence of the classifier was below a pre-determined threshold, such as 90%.

Due to the small sample size (n=4), it is difficult to draw any strong conclusions,

however, three out of the four participants gained control over 75%, with two of

these reaching 91%.

Leeb et al. [108] modified the game ‘PPRacer’ to be operated by their MI-BCI and

tested it with 14 participants. The game itself involves steering a penguin avatar

down a snowy mountain, and jumping to catch fish. Jumping was performed using

foot dorsiflexion, as a one-class classification problem. Features were extracted as

log-bandpower features taken from non-overlapping 2 Hz frequency windows from

6 to 40 Hz, and these features were reduces using Distinction Sensitive Learning

Vector Quantization (DSLVQ [109]) for feature selection. DSLVQ approximates

the optimal between-class borders using labeled reference data (codebook vectors)

and a weighted distance function.

Bonnet et al. [110] developed a two-player BCI football game called ‘BrainArena’,

where players use two-class classification to control the ball right or left (right

hand and left hand MI respectively). For each of the twenty participants, the CSP

algorithm was used to create subject-specific spatial filters, which were trained on

40 trials containing five seconds MI data, with each trial filtered between the 8-30

Hz range. The game contained solo, cooperative, and competitive modes, and the

experimenters looked at several aspects of user experience, including: difficulty,

fun, motivation, and global appreciation. It was found that collaborative mode

was significantly more fun and motivating than solo mode, whereas no significant

difference was found between collaborative and competitive mode. Mean accura-

cies of 71.3 and 73.9% were found for solo and collaborative mode, respectively.

Taken together these results show that asynchronous gaming MI-BCIs appear to

be more common than asynchronous rehabilitation BCIs, possibly in part due to

the lower cost associated with misclassifications. There is a much wider range of

methods used in comparison to gaming SSVEP-BCIs, however, they also tend to

use a small number of commands.
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3.4 SSVEP Normalisation

A notable characteristic of EEG is that the EEG frequency components from low

frequencies tend to have higher power than those from high frequencies, making

them easier to detect, and leaving a signal naturally skewed in favour of low fre-

quency RVS. One way to minimise this bias is to only use stimulus frequencies

from the same range. However, it would be preferable to adjust our feature ex-

traction methods in a way that gives a balanced result. Having access to more

stimulus frequencies means more unique commands can be sent and thus with a

higher information transfer rate. It is noted in [73] that uneven distribution be-

tween classification accuracy of classes leads to a skewed performance - the ideal

BCI will have an equal chance of selecting any command. This skewness can be

alleviated by normalisation, also known as feature scaling, which standardises fea-

tures based on some relationship within or between groups of features for reducing

the impact of extreme values and/or the difference between features of different

classes.

A number of studies have used methods of normalising EEG signals for SSVEP

detection. Nakashini and colleagues [62] took CCA features from their target

frequencies and normalised them against CCA features from neighbouring fre-

quency bands, to help compensate for poorer classification with higher frequency

RVS. They found that these features could perform as well as (and sometimes

outperform) the standard CCA, and performance improved as the number of

neighbours increased. Castillo et al. [57] applied a similar method of normal-

ising features against neighbouring frequencies using PSDA, where they would

normalise against a single value to find the largest ratio. This led to a more ac-

curate BCI and had less variance than using PSDA alone. Despite a relatively

low SNR of the high-frequency visual input, Sakurada et al. [111] created a high

frequency PSD SSVEP-BCI with good three-class classification accuracy, normal-

ising all the RVS frequencies against the inter-trial average of spectral power across

the fixation period, and also against competing frequencies. In effect each nor-

malised SSVEP amplitude was the baseline corrected amplitude with the mean

amplitude of the (baseline-corrected) competitors subtracted from it. Diez et al.

[112] had participants operate a BCI-controlled navigation robot using SSVEP

features from high-frequency (f > 35 Hz) RVS. PSD features were normalised

against the periodogram of baseline data collected prior to the study. There was

no direct comparison with other normalisation methods as this was a navigation
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study. However, all participants were able to successfully operate the BCI using

the baseline-corrected features.

The previous literature illustrates that there are a variety of different ways to im-

prove SSVEP performance using normalisation methods. However, the majority

of studies focus on PSDA-based techniques, whereas the current state-of-the-art

SSVEP-BCI algorithms use CCA and CCA-based methods. Previous research

has indicated that it is possible to improve CCA performance using normalisation

methods, and also that data from the pre-fixation period can be used to nor-

malise the SSVEP response across frequencies, albeit with PSDA. Therefore, we

hypothesise SSVEP-BCI performance can be improved by using CCA data from

the pre-fixation period.

3.5 Stimulus Colour

While a number of studies have investigated the effects of colour on SSVEP re-

sponse, it is a relatively under-explored area of BCI research. Yan et al. [113]

tested the effect with RVS that moves on an LCD (liquid crystal display) screen,

and found that users were more accurate when using red/green alternating RVS

checkerboards instead of black/white RVS. Another study investigating moving

RVS stimuli [114] reported that green/red alternating RVS can elicit brain re-

sponses with a higher amplitude at the target frequencies than black/white stimuli.

This suggests that red/green stimuli may perform better, although classification

was not performed in this study. Nezamfar et al [115] compared three sets of RVS

containing colour combinations based on the opponent-process theory of colour

vision [116]: black and white, red and green, and blue and yellow. The theory

posits that each of the three aforementioned pairs contain colours that cannot be

perceived together; for example, while a colour may be seen as a mix of black

and blue, a colour cannot be perceived as a mix of black and white. Flashing

stimuli that alternates between opponent colours could be expected to have max-

imal contrast. Comparison of stimuli containing the opponent colours revealed

that red/green outperformed black/white and blue/yellow checkerboard stimuli in

terms of classification accuracy. Wei et al.’s [117] experiment to determine the

optimal parameters for SSVEP stimuli reported that white stimuli outperformed

red, green, blue, and yellow in terms of classification accuracy. A number of stud-

ies have used LED (light-emitting diode) RVS rather than on-screen stimuli, for
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Authors Method Colours* Best* Metrics Frequencies (Hz)

[113]
PSDA

or CCA
R/G,
W/Bk

R/G
Amplitude and
classification

accuracy

11, 16, 18,
or 8, 9, 10,

or 10.5, 11.5, 12.5

[114] PSDA
W/Bk,
R/G

R/G
Amplitude
spectrum

7.5

[117] CCA
R, G, B,

Y, W
W

Classification
accuracy

Unknown

[118] PSDA
R, G, B,

Y, W
R or G SNR 10, 20, 30, 40

[115]
Template
matching

W/Bk
R/G,
B/Y

R/G -

[119] MSI
R, G,
B, Y

R
Classification

accuracy
8, 11, 13, 15

Chapter 5 CCA
W, R,
B, Y

POC
Game

completion
speed

6.5, 7, 7.5, 8

Table 3.2: Average game experience during real-time BCI control

Bk = black, W = white, R = red, B = blue, G = green, Y = yellow, MSI = multivariate
synchronization index

example, Jukiewicz et al. [118] found that green or red LED stimuli had the best

trade-off between eliciting high amplitude brain responses and providing visual

comfort. Tello et al. [119] found similar results when testing LEDs: red produced

the highest classification accuracy; however, green had the best trade-off between

accuracy and visual comfort. The results of these studies are summarised in Table

3.2.

Taken together, these results indicate that red RVS elicits the strongest and most

consistent SSVEP response, while it is unclear which colour is the most comfortable

visually for users.

3.6 BCI Use and Fatigue

Research into fatigue and BCI generally focuses on neurophysiological or psy-

chological changes caused by BCI induced fatigue, or the effects of fatigue on

classification accuracy. Cao et al. [120] tested the former with their offline-BCI

study, reporting: a significant negative relationship between fatigue and both the

amplitude and signal-to-noise ratio (SNR) of the SSVEP response; increased noise
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in the delta, theta, and alpha frequency bands; and a significant increase in self-

reported fatigue after viewing the RVS for an extended period. Another study [33]

validated the increase in fatigue, whilst Xie et al. [121] also confirmed BCI-induced

physiological changes finding an increase in both the alpha, and alpha plus theta

band. Tang et al. [122] found no significant decrease in SSVEP amplitude as

fatigue increased during their SSVEP-speller task, although they did find a sig-

nificant positive relationship between sleepiness and BCI use. It has been noted

that fatigue can also reduce the amplitude of the P300-response [123], presumably

decreasing the P300-BCI’s effectiveness. Regarding the effect of fatigue on BCI

accuracy, Chen et al. [124] saw no drop in classification accuracy after a one and

a half hour experiment, whilst Sprague et al. [125] found no significant correlation

between fatigue and BCI accuracy, although they did find a significant correlation

between mood and accuracy.

3.7 BCI Use and Mood

Across all BCI types, the effect of mood is highly under-researched. Subramaniam

and Vinogradov [126] found that positive mood can affect underlying neural pro-

cesses in a number of ways, including: helping broaden one’s scope of attention,

and helping processes involved in task switching, both of which could potentially

impact positively on BCI performance. While this was not a BCI study, it does

highlight the motivation behind researching mood and BCI. Paul et al [127] looked

at the impact of mood on ErrPs during a BCI task. They found that a positive

mood can decrease the Pe component of the ErrP, and speculate that this may

be because it makes errors less salient. Interestingly, this effect would likely lead

to the ErrP-BCI being less effective. Nijboer et al. [128] found a positive rela-

tionship between mood and performance while testing their auditory-BCI using

a group of healthy subjects. However, in later work [129] using seven tetraplegic

ALS (amyotrophic lateral sclerosis) patients operating a P300- or SMR-BCI, it was

concluded that mood did not affect BCI performance in any of the participants.

BCI-induced fatigue causes detectable changes in brain activity, and fatigue levels

increase whilst viewing SSVEP stimulus offline, however, this does not lead to any

appreciable reduction in classification accuracy. Positive mood can affect most

different types of BCI, either in a positive or negative manner. Due to a lack of

research in the area it is unclear what effect BCI use has on mood.
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3.8 Conclusions

3.8.1 BCIs and Rehabilitation

Numerous studies have been conducted into rehabilitation BCI. BCIs can be used

as assistive devices in two main ways: motor recovery or motor substitution. The

most popular method for motor recovery was to implement BCIs that work in

conjunction with FES. Non-invasive motor substitution BCIs generally used more

reliable methods for control such as gaze-dependent BCIs. Invasive motor substitu-

tion BCIs are currently much more effective than their non-invasive counterparts,

and allow for high classification accuracy, high degrees of control, and grant the

user the ability to complete complex tasks. As with all invasive BCIs the dis-

advantage is that they come with the risks associated with surgery. In the work

described in Chapter 6, we created a non-invasive motor imagery BCI for motor

substitution that can be used by disabled users.

3.8.2 BCIs and Gaming

There are a number of consistencies across SSVEP-BCI games: they generally

use a small number of classes (< 5); goal selection strategies are used a lot more

frequently than kinematic control; while older games were more likely to use syn-

chronous control, as advances are being made in BCI research asynchronous control

is becoming more popular; and studies were generally technologically centred, with

fewer studies focused on user-experience. Regarding the technological state of the

art, SSVEP-BCI games are generally accurate and responsive, with a large number

of different available approaches for achieving asynchronous control. The studies

have also shown that regarding user-experience, the BCI increases the level of im-

mersion. Previous research has shown that SSVEP-BCI games increase immersion

and can make gaming more enjoyable. There are a number of ways to implement

the games, including more complex control strategies such as kinematic control

and asynchronous control. Based on the previous research, we designed a three-

dimensional SSVEP-BCI game using state-of-the-art methods, which is described

in Chapter 5.
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3.8.3 SSVEP-BCIs and Normalisation

The majority of research into SSVEP-BCI normalisation has approached this topic

indirectly, applying normalisation methods to PSD- and CCA-based BCIs while

investigating a different topic.What can be deduced is that although the SSVEP

response is generally weaker at higher frequencies, effective SSVEP-BCIs can be

operated using low, medium, or high frequency RVS. However, studies tend to ei-

ther use frequencies within a relatively narrow band, or test the methods without

a control condition, meaning the full scope of this problem is not understood. Ad-

ditionally, the majority of work has been conducted using PSD-based BCIs, whilst

CCA is currently the more effective method. Therefore, as described in Chapter

4 we conduct a structured comparison of normalisation methods for SSVEP-BCI.

3.8.4 SSVEP-BCIs and RVS Colour, Fatigue, and Mood

Research suggests that red is the most effective RVS colour for BCI operation.

Experiments have focused primarily on the effect different colour RVS have on

the SSVEP response and classification accuracy; therefore, no definitive colour

has been identified as preferable for users, and there have been no attempts to

exploit these colour properties in an user-specific manner. The current evidence

suggests that BCI use increases fatigue and can make detectable changes to brain

activity during use. However, the evidence also suggests that despite this it does

not usually lead to an appreciable decrease in classification accuracy, meaning this

can be viewed an anthropocentric issue. Similarly, differences in mood have been

shown to impact on brain activity in a way that could impact on BCI performance,

but with no major negative impact on performance found. As a result, the work

described in Chapter 5 includes proposing and evaluate a method for improving

SSVEP performance using RVS colour properties, and evaluating aspects of user

experience related to fatigue and mood.
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Chapter 4

Improving the SSVEP BCI using

Normalisation

4.1 Introduction

SSVEP-BCIs are one of the fastest non-invasive BCIs; however, frequency selection

is still an issue, as seen in Section 3.4, and due to the mismatch in power the BCI

is biased towards certain frequencies. As discussed in chapter 3, to the authors’

knowledge there is currently very little research into SSVEP normalisation meth-

ods, however, they have been demonstrated to be effective at increasing SSVEP

detection accuracy with PSD-based methods. Currently there is no work investi-

gating the effects of normalisation on SSVEP-BCIs that use CCA-based methods,

which are currently the preferred detection method. The current chapter assesses

two normalisation methods which are aimed at improving the quality of SSVEP

features extracted using EEG: Baseline-Corrected CCA (BC-CCA), and Scaled

CCA. Both methods were found to be able to improve classification accuracy in

conditions using frequencies with a large range, whilst BC-CCA was found to be

the superior of the two, improving SSVEP detection accuracy by as much as 9.22%

[130].
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Figure 4.1: SSVEP stimulus screen layout

4.2 Methodology

4.2.1 Participants

Participants were 17 students recruited using the university mailing system (4

female, 13 male) with a mean age of 26.5 years old.

4.2.2 SSVEP Stimulus

An RVS was created and displayed on a separate computer, using code written

on MATLAB (MathWorks Inc.) plugin Psychtoolbox ([131], [132], [133]. Eight

SSVEP stimulus frequencies: 6.66, 7.5, 8.57, 10, 12, 15, 20, and 30 Hz, were

produced using the method outlined by Cecotti et al. [134], and displayed on a 60

Hz screen in a 3× 3 layout, as shown in Fig. 4.1.

4.2.3 Data Collection

Each participant’s EEG activity was recorded as they gazed at the on-screen stim-

ulus, using a Neuroelectrics1 Enobio 20-channel EEG system with AgCl electrodes,

referenced to the right mastoid. In a single group of eight trials, the participant

was instructed (via the fixation cross) to gaze at subsequent stimulus squares in

a left-to-right, top-to-bottom fashion, meaning the frequency values increased for

1www.neuroelectrics.com
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Figure 4.2: Trial outline

each of the eight trials. This pattern was repeated for all 30 groups of trials, giving

a total of 240 trials, which took 30 minutes per participant. Each individual trial

lasted seven seconds: a two-second fixation period, followed by five seconds of

SSVEP stimulation (Fig. 4.2). Participants were given a one-minute break every

nine minutes. During recording, participants were seated 60 cm away from the

screen, in a room with reduced natural light.

This study used CCA both for feature extraction and classification.

4.2.4 Normalisation

One of the main advantages of using CCA in SSVEP-BCIs is that it can be used

without any training data. In order to retain these benefits, this study is focused

on normalisation methods that can classify commands without the use of train-

ing data. The first step of normalisation requires data from the pre-trial fixation

period, during which no RVS is displayed on-screen (Fig. 4.2). A baseline correla-

tion score is calculated across the pre-fixation period by calculating the maximum

canonical correlation for each class multiple times using an overlapping window.

Taking the mean of these scores gives a single value for each class, which will be

termed the “baseline ρ” for convenience. Later in the trial, the baseline ρ is used

to perform normalisation against the standard CCA correlation scores.

Three CCA methods are compared: Standard CCA, which uses no normalisation

(Fig. 4.3); Baseline-Corrected CCA (BC-CCA), which subtracts the baseline ρ

values from the maximum correlation coefficient values at the target time (Fig.

4.4); and Scaled CCA, which divides the maximum correlation coefficient values

at the target time by the baseline ρ values (Fig. 4.5).
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Figure 4.3: Standard canonical correlation coefficients

Figure 4.4: Baseline-corrected canonical correlation coefficients
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Table 4.1: Frequency combination groups

Condition Freq. 1 Freq. 2 Freq. 3 Freq. 4 Range

Low 6.66 Hz 7.5 Hz 8.57 Hz 12 Hz 5.34 Hz

Medium 8.57 Hz 12 Hz 15 Hz 20 Hz 11.43 Hz

Wide Range 6.66 Hz 8.57 Hz 12 Hz 30 Hz 23.43 Hz

Figure 4.5: Scaled canonical correlation coefficients

4.2.5 Analysis

Normalisation requires calculating the correlation coefficients for each class sev-

eral times during a single trial. To achieve this, the EEG data was downsampled

to 250 Hz and separated into analysis windows using MATLAB plugin Field-

Trip [135]. Each analysis window contained one second of data, filtered from

1-49 Hz using a zero-phase Butterworth band-pass filter with two seconds of data

padding on either side. The ρ values of each class were calculated for every anal-

ysis window. The start points of the analysis windows, that is, the left corners,

were positioned as follows: the windows for calculating baseline ρ were offset to

t∆ = [−2,−1.8,−1.6,−1.4,−1.2] seconds, relative to t0 (stimulus onset). These

overlapping one-second windows effectively covered most of the two-second period

between the previous trial and stimulus onset of the current trial. The analysis

windows for calculating Standard CCA was offset to t∆ = 1 second relative to t0,

in order to avoid the “dead time” [136], the period occurring after RVS onset but

before the SSVEP response reaches maximum effectiveness.
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Condition Standard CCA (%) BC-CCA (%) Scaled CCA (%)

Low 73.48 72.99 71.13

Medium 64.46 71.72 70.20

Wide Range 57.84 67.06 64.41

Table 4.2: Mean Accuracy Across Conditions

Offline analysis tests were conducted using four different frequencies, which would

provide enough degrees of freedom to control many simple games or assistive de-

vices. The stimulation frequencies were separated into three conditions: Low

Frequency, Medium Frequency, and Wide Range condition (Table 4.1). These

three conditions allowed for combinations of RVS frequencies that had no inter-

frequency interference within the first three harmonics. Analysis included all 30

trials for each class, giving a total of 120 trials per condition. Each trial had

Standard CCA, Scaled CCA, and BC-CCA applied to it.

4.3 Results

Each participant had their data (120 trials per condition, three conditions) anal-

ysed using the Standard CCA, Scaled CCA, and BC-CCA methods (Fig. 4.6). The

highest accuracies were found in the Low Frequency condition (mean = 72.53%),

followed by the Medium Frequency condition (mean = 68.79%), with the low-

est accuracies found in the Wide Range condition (mean = 63.11%). Standard

CCA has a very slightly improved performance in the Low Frequency condition

(+0.49%); however, both Scaled CCA and BC-CCA outperformed it in the other

conditions (Table 4.2), with BC-CCA outperforming it by 7.26% in the Medium

Frequency condition, and by 9.22% in the Wide Range condition. A closer look

at the Wide Range condition (Table 4.3) shows that this effect is fairly consis-

tent across participants, with only one user performing better using Standard

CCA. Separating participants into performance-based groups using Tan et al.’s

[137] threshold for acceptable BCI control accuracy (>70% accuracy) produces

11 higher accuracy participants versus 6 lower accuracy participants. The perfor-

mance of these groups in the Wide Range condition suggests that the majority of

improvements are made by the more accurate participants (Fig. 4.7, +11.81%),

with less change attributed to the less accurate participants (Fig. 4.8, +4.45%).
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Figure 4.6: Mean classification accuracy

Table 4.3: Classification accuracy (Wide Range condition)

Participant Standard CCA (%) BC-CCA (%) Scaled-CCA (%)

1 33.33 34.17 33.33

2 75.83 87.50 89.17

3 50 50.83 49.17

4 75 87.50 83.33

5 35 40 44.17

6 61.67 70.83 70.83

7 76.67 96.67 90

8 50.83 57.50 51.67

9 55.83 64.17 66.67

10 35.83 41.67 42.50

11 26.67 34.17 30.83

12 61.67 74.17 74.17

13 72.50 85.83 86.67

14 70 87.50 80.83

15 74.17 94.17 85

16 70 80 70

17 58.33 53.33 46.67

Mean 57.84 67.06 64.41
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Figure 4.7: Higher accuracy participants (wide condition)

Figure 4.8: Lower accuracy participants (wide condition)

4.4 Discussion

This study has investigated the problem of whether it is possible to further improve

CCA performance without the use of training data. The results show that it

is indeed possible, and its effectiveness is dependent upon the RVS frequencies

selected for use. Both Scaled CCA and BC-CCA were found to be effective,
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with BC-CCA in particular found to improve performance for certain frequency

combinations, with no appreciable loss of performance for other combinations.

As shown by the plots of each method’s canonical coefficient values across time

(Figs. 4.3, 4.4, and 4.5), BC-CCA and Scaled CCA appear to minimize the dif-

ference between the CCA coefficients, thereby making it more likely that weaker

SSVEP responses such as at 20 and 30 Hz can be correctly detected. However, it

is unclear why BC-CCA appears to perform better than Scaled CCA on a fairly

consistent basis. As it is a baseline correction method, BC-CCA preserves the

changes of each frequencies correlation score over time, relative to itself; it simply

equalizes their value at t0. Whereas, Scaled CCA effectively applies a penalty to

frequencies with a high baseline ρ, and applies that to their correlation score at

every time point which should theoretically allow weaker frequencies a stronger

response. This should give some insight into why the methods perform differently,

although further work is required to determine which situations are preferable for

each method.

Future work should look at whether training data can be used to further improve

the results of BC-CCA and Scaled CCA, and test their effectiveness with a larger

number of frequencies. A more structured approach to selecting the pre-trial

fixation period may reduce the computations required for real-time control.

4.5 Conclusion

BC-CCA and Scaled CCA were both found to be effective normalisation methods,

mitigating the decrease in BCI performance seen as the distance between frequen-

cies increases, thus allowing a greater range of visual stimulus frequencies to be

selected. Of all the methods investigated, BC-CCA was found to be the most

effective.
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Chapter 5

Improving the SSVEP-BCI by

Exploiting Stimulus Colour

Properties

5.1 Introduction

As discussed in Section 3.5, research into stimulus colour has shown that it can have

a significant impact on user performance, with correct stimulus colour selection

leading to higher classification accuracy or higher SSVEP response amplitudes;

however, there is a lack of applied research. In this chapter an SSVEP-BCI game

is created that exploits RVS colour properties to improve performance, as well

as an automatic method for stimulus colour selection. We investigate whether it

is possible to improve BCI performance and user-experience by predicting each

individual user’s optimal combination of stimulus colours, as well as investigat-

ing the effect of operating a gaming BCI on mood and fatigue. Twenty-three

participants took part in the study, which involved: measuring brain responses

to different coloured visual stimuli in an online experiment; predicting individual

participants’ optimal colour combination using a correlation based approach; and

then comparing its performance against white stimuli using an online BCI game.

It is found that using predicted optimal colours can lead to significantly faster

game completion times, and a significantly higher overall mood. Operating a BCI

game is found to lead to a significant decrease in fatigue.
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5.1.1 Hypothesis

Based on previous research several hypotheses are proposed. We hypothesise that:

red RVS will lead to the highest offline classification accuracies; a BCI with pre-

selected RVS colours will outperform a BCI using white RVS; and finally that

fatigue levels will increase after playing a BCI game in real-time.

5.2 Methodology

Participants completed an offline and online BCI experiment. Game completion

times, as well as different metrics about their user experience were collected during

the study, including: questions regarding stimulus colour preference, and question-

naires measuring various aspects of mood and fatigue.

5.2.1 Participants

23 healthy participants (4 females, 19 males; aged 23-53 years, mean = 29.78) with

normal or corrected-to-normal vision participated in this study. Participants were

recruited via the university’s mailing system, were given an information sheet

outlining the experimental procedure, and signed a consent form before taking

part. All participants were informed of their right to withdraw at any time. One

additional participant (Participant 21) began the experiment, but withdrew due

to time constraints, and therefore their data has been excluded from analysis. This

study was approved by the University of Sheffield Ethics Committee.

5.2.2 Questionnaires and Assessments

• Colour Blindness Test1: An online test assessed whether participant’s

colour vision was Normal (no colour deficiency), Deutanopia (green cone de-

ficiency), Protanopia (red cone deficiency), or Tritanopia (poor yellow/blue

discrimination), using the ’Ishihara Test for Colour Blindness‘. This involved

discriminating a number against a different coloured background (Fig. 5.1).

1http://enchroma.com/test/
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Figure 5.1: Colour blindness test showing a purple number “6” on a green
background (or nothing, if you are viewing this in black-and-white!)

This test served as an exclusion criteria, colour blind participants would not

be included in the study.

• Mood/Fatigue Questionnaire: This was a combination of two validated

questionnaires: the Brief Mood Introspection Scale [138] (BMIS), and the

Fatigue Scale [139]. Duplicate, overlapping, or task-irrelevant questions were

removed.

• Task Preference Questionnaire: A custom-made questionnaire which

asked participants to rate their visual comfort levels during the offline BCI

experiment.

• Game Preference Questionnaire: A custom-made questionnaire which

asked task-relevant questions about their comfort during game control in the

online BCI experiment.

• Game Experience Questionnaire: A condensed 20-question version of

IJsselsteijn et al.’s [140] Game Experience Questionnaire. Duplicate or task-

irrelevant questions were removed.

All questionnaires were displayed using Google Forms2, and are available in

Appendix A.

2https://www.google.co.uk/forms/about/
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Figure 5.2: Electrode Layout

5.2.3 Data Collection

Participants were seated on a comfortable chair in front of a computer screen in

a well lit computer laboratory for the duration of the experiment. Each partici-

pant’s EEG data was acquired using a g.Nautilus3 32-channel EEG device (Guger

Technologies) with gold-plated dry electrodes, arranged using the 10-20 system

(Fig. 5.2) and referenced to the right mastoid. Data from the electrodes located

above the parietal and occipital brain lobes (P7, P3, Pz, P4, P8, PO7, PO3, PO4,

PO8, and Oz), was used for further analysis. In the online experiment, a Simulink

model was used both for data streaming and online SSVEP detection. In the

offline experiment, data analysis was conducted using a MATLAB script.

5.2.4 SSVEP Stimulus

An RVS displaying four unique frequencies (6.5, 7, 7.5, and 8 Hz) onscreen was

created and displayed on Windows Forms using code written in C# (Fig. 5.3). The

flickering RVS squares were made using a slightly modified version of Manyakov’s

‘sampled sinusoidal stimulation method’ [141], which calculates an RVS’s intensity

at any given time point, as a value between 0 and 1, using:

3http://www.gtec.at/Products/Hardware-and-Accessories/g.Nautilus-Specs-Features
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Figure 5.3: SSVEP stimulus layout

αf (t) =
1

2
(1 + sin(2πft+ ∆φ)) (5.1)

where f is the target stimulus frequency, αf [0, 1] is the stimulus intensity value of

frequency f , and ∆φ is the phase shift. During this study ∆φ = 0.

This method was slightly modified in order to display the stimulus intensity as

a three-element RGB vector α̃f , by multiplying the RVS intensity values by the

desired colour’s maximal RGB values

α̃f (t) = αf (t)× vvv (5.2)

where vvv ∈ R1×3 is a three-element vector containing the desired colour’s maximal

RGB values. As an example, for a blue RVS, vvv = [0, 0, 255].

Figure 5.4 gives examples of the brain’s response whilst the user is gazing at

the RVS. Typically, peaks can be seen either at the target frequency or at its

‘harmonics’, which are multiples of the target frequency.

The frequencies used in the current study were selected because: 1. They are

located away from the noisy occipital mu band (8-13 Hz), 2. Low frequency

flickering can be annoying, which is actually beneficial to the aims of this study in

terms of not underestimating fatigue levels, 3. They also fall outside of the 15-25

Hz range, which was reported to be the most provocative for epileptic seizures

[32].
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(a) 6.5 Hz response (b) 7 Hz response

(c) 7.5 Hz response (d) 8 Hz response

Figure 5.4: Sample power spectral density plots of the neural response to RVS
at different frequencies

5.2.5 SSVEP Classification

This study uses canonical correlation analysis (CCA) for SSVEP detection and

classification.

5.2.6 Predicted Optimal Colour (POC) Combination

The ‘Predicted Optimal Colour’ (POC) combination was the collection of colours

that were chosen for use in the online experiment. This is a correlation-based

method where POCs are selected based on the canonical coefficient values deter-

mined from calibration data collected in the offline experiment, with the highest

correlation value at each frequency selected. This was implemented by evaluat-

ing all 40 trials from the calibration data against the same sine wave templates

that are used in real-time control. Taking the mean correlation value in the ‘true’

condition allows us to compare identical frequencies with different colour stimuli.
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Red Blue Yellow White
6.5 Hz 0.67 0.56 0.59 0.57
7 Hz 0.66 0.57 0.59 0.59

7.5 Hz 0.61 0.6 0.61 0.59
8 Hz 0.68 0.55 0.64 0.57

Table 5.1: Average correlation scores (Participant 1)

Up Right Down Left
P1 R R R R
P2 Y Y B R
P3 R R R R
P4 Y R Y Y
P5 R R Y R
P6 R R Y R
P7 Y Y R Y
P8 R R R R
P9 Y R R R
P10 B B B Y
P11 R R R R
P12 R R R R
P13 Y R R Y
P14 R R Y R
P15 Y Y R Y
P16 R R R R
P17 R Y Y R
P18 R R R R
P19 R B B R
P20 Y R Y Y
P21 - - - -
P22 Y Y Y Y
P23 Y R B R
P24 Y Y Y R

Table 5.2: Participant’s predicted optimal colour for each direction

This is demonstrated in Table 5.1 for Participant 1, whose POC was red for each

frequency (note: the coefficients for red were slightly higher than yellow at the 7.5

Hz frequency, values have been rounded to two decimal places). This method of

colour selection was chosen instead of classification accuracy, as it allowed colours

of the same frequency to be compared. A full list of the colours selected for each

participant per frequency can be found in Table 5.2, while Fig. 5.5 displays the

total number of selections for each colour across all frequencies.
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Figure 5.5: Total number of times each colour was selected by the correlation-
based stimulus selection

5.2.7 BCI Game Design

The BCI game SnookerMaze was created using Unity Game Engine4 (Fig. 5.6).

Participants steered the ball by gazing at the RVS in the direction they wish to

travel. The game’s objective was to collect all 16 pink objects by rolling over

them, with the game ending either when all objects were collected or when users

exceeded the two-minute time limit.The maze was designed to resemble a snooker

table, with a brown outer border, green floor representing the felt table surface,

dark green obstacles as the cushions, and a white cue ball as the avatar. The

game had several realistic features to increase immersion, including: shadows and

a light source, a ‘heavy’ ball that accelerates and decelerates slowly, and slightly

bouncy cushions. Incorrectly steering the ball into a cushion provided feedback

even when the avatar’s initial position was against the cushion, as it bounced

against it slightly, indicating that an incorrect command had been made. The

avatar was controlled using a synchronous BCI, meaning commands were sent at

a pre-determined pace. The BCI would detect the user’s intent every four seconds

(based on the previous two seconds of data), then update the user’s position.

These time lengths were chosen in order to give the user enough time to identify

whether the command was detected successfully, pick their next direction, and

adjust their gaze.

4https://unity3d.com/
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Figure 5.6: Example layout from SSVEP game SnookerMaze, with coloured
RVS optimally selected for a single participant. Clockwise from top: red, yellow,

red, blue

Figure 5.7: Experimental outline

5.2.8 Experiment One - Offline BCI

This study contained two parts: and online and an offline BCI section, which are

outlined below. A visual display of both experimental outlines can be seen in Fig.

5.7. Experiment one was an offline BCI experiment which aimed to determine

which colour stimuli produced the largest neural response.

The experiment began with a colour blindness test. Next, participants had the
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Figure 5.8: Trial outline

EEG cap fitted and were seated 60 cm away from the screen. The visual stimulus

shown in Fig. 5.3 appeared on screen, preceded by a fixation cross indicating which

stimulus the participant should gaze at. The fixation cross appeared on-screen for

one second, followed by four seconds of RVS (Fig. 5.8). Participants gazed at each

of the four RVS squares ten times each, and repeated this for each of the four colour

conditions, giving a total of 160 trials (4 RVS × 10 repetitions × 4 conditions).

The four colours selected were the primary colours (red, blue, yellow), plus white.

Total recording time was 13.33 minutes (160 trials × 5 seconds). Colour order

was randomised between participants, who were offered a break every 40 trials to

reduce eye strain and fatigue levels between colours.

Next, participants completed the Task Preference Questionnaire, and a Mood/-

Fatigue Questionnaire. From the collected EEG data, each trial was analysed to

determine which four colours formed the POC, as described in 5.2.6.

5.2.9 Experiment Two - Online BCI

Experiment two was an online BCI experiment which aimed to determine whether

it was better to control a BCI using white stimuli or POC stimuli. This would be

determined based on game completion speed and participant experience.

Participants had six turns playing the game, steering by gazing at the RVS in the

direction that they wished to travel (Fig. 5.9). The stimuli alternated between

white and POC on subsequent game attempts, with this task order being coun-

terbalanced between participants. Participants had a maximum of two minutes
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Figure 5.9: BCI game control

per turn, giving a maximum play time of around 12 minutes. After playing, par-

ticipants were given the Game Preference Questionnaire, another Mood/Fatigue

Questionnaire, and the Game Experience Questionnaire.

5.3 Results

Offline Experiment

Participants reported their perceived levels of eye strain during experiment one,

and offline classification of their EEG data was performed. Statistical analysis was

performed using the Wilcoxon Signed Rank Test and the Friedman Test.

On a 10-point scale (1 = very uncomfortable, 10 = very comfortable), blue (6.74)

was visually the most comfortable, followed by yellow (6.35), red (6), and white

(5.87), as shown in Fig. 5.10. Offline SSVEP detection across all participants was

found to be significantly more accurate with red RVS (77.28 %) than the second

best performer yellow (69.13 %) (χ2(2) = 22.04, p < 0.05). White (66.2%) and blue

(52.17 %) were the worst performing RVS colours during the offline experiment,

as shown in Fig. 5.11, taken from the Task Preference Questionnaire. The lower

quartile of classification results from red RVS reaches approximately to the upper
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Red Blue Yellow White
P1 100 100 97.5 100
P2 70 42.5 62.5 40
P3 100 90 97.5 90
P4 75 37.5 90 82.5
P5 100 50 97.5 95
P6 100 47.5 87.5 92.5
P7 100 75 100 100
P8 95 95 92.5 85
P9 75 40 37.5 47.5
P10 100 100 87.5 82.5
P11 82.5 70 52.5 55
P12 45 45 30 25
P13 65 40 62.5 47.5
P14 65 32.5 45 35
P15 72.5 45 65 77.5
P16 100 52.5 67.5 75
P17 92.5 37.5 95 100
P18 87.5 30 72.5 45
P19 60 47.5 55 50
P20 40 37.5 45 70
P21 - - - -
P22 32.5 17.5 30 35
P23 35 35 27.5 27.5
P24 85 32.5 92.5 65

Mean 77.28 52.17 69.13 66.2

Table 5.3: Offline classification accuracies (%)

quartile of blue, and the median of the yellow and white RVS, as seen in Fig. 5.12.

Individual classification accuracies are shown in Table 5.3.

Online Experiment

Participants were assessed based on their mean game completion times for each

stimulus type, and self-reported various aspects to the game experience.

Fig. 5.13(a) shows that participants generally completed the game faster using

POC than white RVS (mean = 90.14 and 94.80s, respectively) Fig. 5.13(b), shows

that while POC stimuli worked better for more participants, the difference in

overall speed was balanced heavily by one participant, Participant 17. Participants

were significantly faster in completing the game when using the POC SSVEP-BCI
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Figure 5.10: Mean stimulus eye comfort level (offline) across all participants

Figure 5.11: Average classification accuracy (offline)

Figure 5.12: Classification accuracy (offline)
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Race 1 * Race 2 Race 3** Mean
White 98.26 97.43 98.38 98.02
POC 90.9 96.15 91.44 92.83

Table 5.4: Average race speeds across participants (in seconds), (∗ = p >
0.1, ∗∗ = p > 0.05)

White Colour
Eye Strain 5.783 6.174

Feeling of Control 6 6.348
Overall Fatigue 5.217 5.609
Overall Mood* 6.261 7

Table 5.5: Average game experience during real-time BCI control
(∗ = p > 0.1, ∗∗ = p > 0.05)

in race 1 (χ2(1) = 3.77, p < 0.1) and race 3 (χ2(1) = 5.333, p < 0.05), with

a small non-significant improvement over the white RVS also seen in race, as

shown in Table 5.4. Participants reported a preference for the POC stimulus (13,

56.52%) over the white stimulus (9, 39.13%), with only one participant reporting

no preference (4.35%) (Fig. 5.14, taken from the Game Preference Questionnaire).

Self-reported results from the Game Preference Questionnaire regarding user game

experience during real-time control are displayed in Fig. 5.15 and Table 5.5, and

show that white stimuli were deemed to cause the least eye strain and fatigue

during real-time control, while POC stimuli produced the highest feeling of control

and the best mood, which was a significant increase (Z = −1.732, p < 0.1).

The net changes in mood and fatigue across participants after playing the BCI

game, measured using the Mood/Fatigue Questionnaire, are shown in Figs. 5.16

and 5.17. Fatigue levels were found to decrease along every measured metric,

except for ‘problems thinking clearly’, which showed a small increase. Of these

decreases in fatigue, three were significant: ‘sleepy or drowsy’ (Z = −1.934, p <

0.1); ‘lacking energy’ (Z = −1.998, p < 0.05); and ‘less muscle strength’ (Z =

−1.732, p < 0.1). Regarding mood levels, most of the positive mood changes were

related to fatigue: tiredness (-13), liveliness (+5), and peppiness (+5). Generally

the majority of mood changes were negative: happiness (-2), sadness (+1), caring

(-4), contentment (-2), grouchiness (+2), nervousness (+4), and calmness (-1).

Only two metrics did not fit this pattern: loving (+2), and fed up (-1).
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(a) Game completion times

(b) Difference between RVS

Figure 5.13: Mean game completion times
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Figure 5.14: Stimulus type preference (online)

Figure 5.15: Participant experience during game control

Figure 5.16: Change in mood level
(∗ = p > 0.1, ∗∗ = p > 0.05)
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Figure 5.17: Change in fatigue
(∗ = p > 0.1, ∗∗ = p > 0.05)

5.4 Discussion

Results from the online experiment showed that on average, participants were able

to complete an SSVEP-BCI game faster using a specially selected combination of

coloured visual stimuli, the ‘POC’ combination (90.14s), than using white visual

stimuli (94.80s). More participants cited an overall preference for POC stimuli

than white, and reported that it produced a slightly higher feeling of control and

and a significantly better overall mood when compared to white stimuli. The white

stimuli were found to produce slightly less fatigue and eye strain during real-time

control. Participant’s fatigue levels were found to decrease on almost all available

metrics after controlling the BCI game, which was unexpected, as studies using

offline SSVEP-BCI reporting an increase in fatigue. Mood changed negatively,

albeit non-significantly, on several individual metrics after playing the BCI game

aside from mood aspects related to fatigue. The offline experiment showed that

the best RVS colour for SSVEP classification is red, which improved performance

significantly over all other RVS, which supports the majority of previous colour

SSVEP research. This was followed by yellow, white, and then blue. In terms

of visual comfort during the offline experiment, the colours were ranked as blue

(6.74), yellow (6.35), red (6), and then white (5.87).

One of this study’s interesting results was that overall participants found the

white RVS caused more fatiguing than uniform colour stimulus during the offline

training, but the POC SSVEP-BCI caused more fatigue during online control.

There could be a few possible reasons for this. Training against a black background
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means that a white flickering stimulus has the maximum possible contrast, which

could be quite tiring. However, during online control there is a colourful game to

navigate on the screen. It is possible that having a bright clear stimulus has some

benefits in this situation. Another interesting result is that participants were less

tired after playing the BCI game. This could imply that the enjoyment aspect

of operating a BCI compensates for the fatiguing effects, despite being arguably

more labour-intensive than passively watching a screen during training.

5.4.1 Critique

To the authors’ knowledge, this was the first experiment to determine individual

participant’s best stimulus colours for operating a real-time BCI. It also appears

to be the first paper to use canonical correlation coefficients for stimulus selection.

Additionally, no previous literature was found that measured the effect of SSVEP-

BCI usage on mood, using a validated questionnaire.

The online experiment could have been improved by increasing the amount of feed-

back received from the game, accomplished by reducing the time between player

avatar moves, as well as the distance it moved. This would give participants more

opportunities to reflect on their control techniques, and adjust them if necessary.

Additionally, the game itself could have been improved by implementing kinematic

control using an overlapping time window, however, due to time constraints on the

availability of the EEG equipment, this was not possible. Locking the stimulus

position to the player avatar (and overlaying the game map), would reduce the

amount of eye movements required by the player, and could potentially improve

completion times, albeit at the cost of partial map blocking. In the offline experi-

ment, having participants complete RVS training blocks one colour at a time may

have introduced some bias into the offline classification results; however, this was

unavoidable in order to properly assess participant’s visual comfort for each stim-

ulus colour. Attempts were made to reduce this bias by having each participant

complete this training in a unique order. Additionally, whilst using the canoni-

cal correlation coefficients for stimulus colour selection allows colours of the same

frequency to be compared fairly, it is still somewhat näıve.

80



Chapter 5. Improving the SSVEP-BCI by Exploiting Stimulus Colour...

5.4.2 Future Developments

Future research could look at the impact of including useful features such as base-

line coefficient values or coefficient variance, which could potentially lead to a

more accurate colour selection method. The current correlation-based selection

method, which selects stimulus colour based upon the highest mean correlation

between calibration data trials and sine wave templates, could be improved by

selecting colours with a similar chance of being selected. This could be achieved

by taking into account the variance in the correlation coefficients, or selecting

RVS with similar mean correlation values instead of simply taking the highest.

Another way that future research can build on these results is by comparing POC

SSVEP-BCI performance to the participants’ best individual set of colours instead

of white, which can also be determined by training data. Future developments for

SnookerMaze include: implementing kinematic control, as mentioned previously,

and using the customisable game to investigate control strategies and user expe-

rience in SSVEP-BCIs. Also, as mentioned in 5.4.1 an alternative method for

displaying the RVS (locked to avatar position) has been proposed.

5.5 Conclusion

The results of this study show that it is possible to exploit the colour properties of

SSVEP visual stimulus in order to improve performance. Stimulus colour selection

using the average canonical correlation coefficient values from training data has

produced a set of visual stimuli that improved BCI accuracy, and given participants

an increased feeling of control, and a significantly better overall mood.
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Chapter 6

Gaming Using a Motor

Imagery-Based BCI

6.1 Introduction

The research reviewed in Chapter 3 demonstrated the potential that rehabilitation

BCIs have for improving disabled users’ quality of life as part of an assistive

device, either by restoring motor function, or by replacing the missing function.

This chapter focuses on motor substitution; specifically, the process of training a

user to play a computer game using a novel SMR-BCI. Additionally, this work

forms a feasibility study for testing neural predictors of BCI performance using a

longitudinal study.

6.1.1 Cybathlon 2016

Cybathlon 20161 was a robotics competition that was billed as the “Worlds first

bionic Olympics”[142], and took place in Zurich, Switzerland in October 2016.

Each race involved disabled athletes with bionic enhancements competing against

each other. Along with a group of several other researchers, I joined a team

to help an athlete enter the BCI race. Team Gray Matter was comprised of:

Ivan Nixon (Team Leader); Peter Gray (BCI Pilot); Dr James Law (Resource

Manager); Dr Alexander Zaitcev, Dr Mahnaz Arvaneh, Dr Liat Levita, and James

1http://www.cybathlon.ethz.ch/en
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Figure 6.1: Brainrunners

Henshaw (Researchers - University of Sheffield); and Dr Rolando Grave de Peralta

(Researcher - Electrical Neuroimaging Group, Switzerland). Unfortunately, due

to health complications the BCI pilot had to withdraw from training around six

weeks prior to the competition, and eventually the competition itself. Dr Zaitcev

and I decided later to continue the work, following the competition restrictions

mentioned above, the results of which are described in this chapter.

6.1.2 Competition Rules

The BCI race involved groups of four competitors controlling an avatar using their

brainwaves, on a game called BrainRunners (Fig. 6.1). Each participant had to

be either paraplegic or tetraplegic, and had to control the avatar asynchronously,

using active BCI control. To clarify, the sending of movement commands had to

be self-paced, and not rely on brain signals elicited using external stimuli, such as

the SSVEP or P300 response.
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6.1.3 BrainRunners

BrainRunners is a BCI game designed by Swiss Realtime Solutions2. The player

must steer their avatar across a virtual course, using their brain signals to avoid

obstacles. Over the course of a single run, the player’s avatar runs across different

coloured blocks. The blocks would be randomly ordered, and one of three colours:

blue, purple, or yellow. Within each block was an obstacle corresponding to the

block’s colour.

• Blue blocks had moving tiles that the player must be sprint over

• Purple blocks had rising and descending objects that the player must jump

over

• Yellow blocks had electrical traps that the player must slide under

6.1.4 Work Allocation

Dr Zaitcev and I wrote and tested code to stream and record data from the gtec

EEG headset using MATLAB and Simulink. The feature selection algorithm used

in the post-Cybathlon online experiments used source localisation, and was imple-

mented by Dr Zaitcev, while I conducted the real-time recording sessions. Finally,

we each conducted our offline analysis separately, as Dr Zaitcev’s research inves-

tigated source localisation, while the current chapter investigates EEG predictors

of performance.

6.1.5 Predictors of BCI Performance

In their study into neurophysiological predictors of SMR-BCI performance with

eighty participants, Blankertz et al. [143] demonstrated that information extracted

during restful idling with eyes open can be sufficient to predict performance, by

estimating the strength of the SMR over the sensorimotor cortex. Ahn et al.

[144] found that data extracted from periods where users rested with eyes open

produced additional information about performance; BCI-deficient users showed

high theta and low alpha activity when compared to non-deficient users, which

2http://www.swissrealtimesolutions.com/project/BrainRunners/
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the authors suggested represented the low contribution levels of the alpha band

to the ERD response, whilst the theta waves may have played a role in attention.

Maeder et al [145] examined data from participants operating an SMR-BCI during

the one-second period prior to trial onset, and reported a higher amplitude in the

SMR bands (alpha and beta), finding a strong negative correlation (r = −0.61)

between pre-trial bandpower, and eventual classifier output.

Taken together, these results indicate that the idling rhythms and resting state

periods while operating an SMR-BCI are extremely informative with respect to

user performance, particularly in the alpha, beta, and theta bands.

6.1.6 Hypothesis

Based on previous research, it was hypothesised that resting alpha activity would

correlate positively with classification activity, while pre-trial alpha and beta ac-

tivity was hypothesised to correlate positively with trial outcome. We also hypoth-

esise that the correlation between pre-trial bandpower and classification outcome

will strengthen as the number of training sessions our participant completes in-

creases.

6.2 Methodology

6.2.1 Participants

This study used one participant, a 29 year-old, healthy, right-handed male, re-

cruited through the university.

6.2.2 BCI Training

The BCI training was comprised of three parts: preliminary offline training;

feedback training with PSD features; feedback training with source localisation-

selected CSP features (described in 6.2.2). EEG data was recorded using the

g.Nautilus device (Fig. 6.2) 500 Hz, 32 channel system, which is described in

more detail in Chapter 5.
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Figure 6.2: Electrode layout

Source CSP Features

This study used a novel real-time feature extraction approach, using features we

have termed ‘source CSP’ features for convenience. Source CSP features are CSP

features extracted from EEG data that has undergone an additional preprocessing

step, where source localisation is used to remove data that is estimated to have

occurred outside of a region of expected ERD/ERS activity. Source CSP is a multi-

step process, which can be summarised thusly: raw EEG data is transported into

source space to remove data outside of the region of expected ERD/ERS activity,

then back into sensor space. Next the EEG is filtered into a relevant sub-band, and

CSP spatial filters are trained and used to extract useful features from the EEG

data. Finally, the number of features are ranked and reduced using entropy-based

feature selection and forward selection.

• Source reconstruction: EEG data was transformed into source space us-

ing source localisation. A headmodel was constructed using forward model-

ing, based upon the ICBM 152 head atlas, which was created using non-linear

averaging of 152 MRI scans of adult participants [146, 147]. A linear inverse

operator G was created using weighted minimum norm estimates (WNME

[17]), in order to move the data between sensor and source space. In sen-

sor space, everything outside of the pre-selected region of interest (an area

spanning 1201 locations where ERD/ERS activity was predicted to occur)

was removed, and the data transported back to sensor space.
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• Band-pass Filtering: Initial filter bandwidth was decided based upon vi-

sual inspection of time-frequency representation (TFR) outputs from EEG

data collected during trials. These TFRs were averaged across each condition

in order to determine which band contained the most ERD/ERS activity.

For participant One this was the 10-15 Hz band.

• CSP feature extraction and selection: CSP feature extraction was per-

formed using CSP to train spatial filters. After spatial filtering the trials

from the calibration data, log-variance features were extracted for all classes.

These features were ranked initially using Kullback-Liebler (KL) divergence

(also known as relative entropy [65]), a technique which measures the di-

vergence between two probability distributions. Using KL divergence in a

one-versus-rest manner allowed us to compare similar predictors between

classes, with the aim of maximising the KL distance. After performing fea-

ture ranking based on KL distance, feature selection was completed using

forward selection with SVM classifiers.

More details on source CSP features can be found in Dr Zaitcev’s doctoral thesis

[148].

Preliminary Offline Training

Preliminary training consisted of the participant performing imagined movements

in the absence of visual feedback, in order to collect enough neural data to train

the initial SVM classifier. A single trial lasted approximately nine seconds; 0-2s

fixation, 2-3s blank screen, 3-4.5s visual cue, 4.25-8s motor imagery, 8-9s rest.

Sessions were grouped in sets of 3 to 5 runs of approximately 45 trials each.

Feedback Training with PSD or Source CSP Features

Feedback training involved completing multiple runs of the BrainRunners game

within a session, recording the EEG data between sets of runs, and updating the

classifier. Each run used seven randomly ordered trials from each of the three

classes, giving twenty-one in total. The mental tasks our participant performed

were: right hand punch to run (class one), left hand grab to jump (class two), and

dorsiflexion of both feet to slide (class three, Fig. 6.3).
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Figure 6.3: Avatar Control

In total, twenty sessions were recorded. Each session contained around 56 trials

per class (two sets of four runs, with each class having seven trials in a single run),

although due to fatigue levels some sessions were a little shorter. The classifier

was retrained after every set of runs using the last five sets.

The online classification process can be seen in Fig. 6.4. PSD online feature ex-

traction used a 3 Hz highpass filter to remove low frequency artifacts, removed

the latest one-second time segment and applied a Hamming window to reduce the

effects of spectral leakage. PSD features were extracted using the FFT, which

extracted the PSD coefficients for all Fs/2 frequency points, where Fs is the sam-

pling rate 500 Hz. The number of features were reduced from 8000 predictors,

giving 65-110 features per class after using entropy-based feature selection, which

were then classified using three OVR SVM classifiers. Source CSP online classifica-

tion worked similarly, except that data was bandpass filtered between 10-15 Hz to

focus on the participant’s mu activity. Source CSP feature extraction for each class

was applied using six CSP filters that were pre-selected using KL entropy-based

feature selection. Classification was performed using three OVR (one-versus-rest)

SVM multiclass classifiers, a set of classifiers where for each class a single classifier

is trained to detect one class against the rest.

Sessions 1-9 used PSD feature extraction, while sessions 10-20 used source CSP

feature extraction. Additionally, one minute of idle eyes open EEG data was

recorded at the beginning of each of the source CSP sessions.

6.2.3 EEG Datasets

One of the two datasets (longitudinal dataset) used for offline analysis was from

EEG recordings of our participant while they played BrainRunners during feedback

training. Due to this being feedback training trial lengths vary, as a successful
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Figure 6.4: BrainRunners online classification

classification causes the avatar to progress through the game quicker. However,

each trial is at least 2500ms long, in order to provide enough time for analysis.

Additional offline analysis was conducted using EEG data from BCI competition

(BRIC) IV, dataset 2 [149], provided by Gray BCI laboratory researchers Run-

ner, Lee, Roller-skate, Cheerfuller, and Sch.ölg In this dataset, EEG activity was

recorded from nine participants as they performed various motor imagery tasks.

Data was recorded using Ag Cl Electrodes positioned at twenty-two scalp loca-

tions, including Z, 3, Z, 4, and Z (Fig. 6.5). Data was referenced to the left mas-

toid, sampled at 250 Hz, and bandpass filtered between 0.5-100 Hz. Additionally,

three EGO sensors were placed along the forehead to detect eye movement-related

artefacts

A single trial lasted approximately 7.5 seconds and was broken down into: an

auditory beep signalling the beginning of the trial; two seconds of a fixation cross

appearing; a cue appearing on-screen for 1.25s which instructed the participant

which imagined movement task to perform next; three seconds of imagined move-

ments from the participant; and finally, a 1.5s break before the next trial, as shown

in Fig. 6.6. Each participant performed two sessions, with 288 trials per session,

which was broken down into: 12 trials per class for each run, with six runs per
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Figure 6.5: Electrode Montage - BCIC IV dataset 2a

Figure 6.6: Timing scheme for a single trial - BCIC IV dataset 2a

session. each of the two sessions began with: a two minute block of the participant

resting with eyes open, one minute with eyes closed, and one minute performing

eye movements, before moving onto the trial runs (Fig. 6.7).

To keep as much consistency as possible between the two datasets, two-second

long trials were extracted from both data sets.

6.2.4 Artifact Detection

Analysis of the BCIC data and offline longitudinal SMR data both utilised the

automatic variance-based trial rejection method described in [145]; the raw EEG
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Figure 6.7: Trial block order - BCIC IV dataset 2a

Data was low-pass filtered at 45 Hz and downsampled to 100 Hz. Trials were then

rejected based on their post-stimulus variance during the motor imagery phase;

trials whose standard deviation was two times greater than the mean standard de-

viation across all trials were removed. Standard deviations were then re-calculated,

and this process was repeated until no more trials were rejected.

6.2.5 Offline Data Analysis: Correlation

Offline analyses were performed on both the BCIC dataset and the participant’s

longitudinally recorded data, making it possible to investigate both interpartici-

pant and intraparticipant effects.

The relationship between resting alpha wave activity and BCI performance was

tested using both the BCIC dataset and the participant’s longitudinal EEG data.

For both datasets the evaluation data was classified, with the classification accu-

racy compared to the participant’s resting EEG levels on that day, and the band-

power calculated over a 60-second interval. Each participant’s resting EEG was

split into four bands (theta, alpha, beta, and gamma), and the Pearson product-

moment correlation coefficient between the two was calculated using:

ρX,Y =
cov(X, Y )

σXσY
, (6.1)

where cov(X, Y ) represents the covariance of X and Y , and σX and σY represent

the standard deviations of X and Y .

The relationship between pre-trial neural activity and classification outcome was

classified using the data occurring two seconds prior to motor imagery onset.

This data was also split into four bands (theta, alpha, beta, and gamma), and

compared to the eventual classification outcome of the trial. As a continuous
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Figure 6.8: BCIC data classification accuracy

variable (bandpower) was being compared to a dichotomous variable (classification

outcome), the point biserial correlation coefficient was found, using:

rpb =
M1 −M0

sn

√
n1n0

n2
, (6.2)

where n1 and n0 are the number of data points in each class (correct class versus

incorrect class), n is the total number of data points, M1 and M0 are the mean

bandpower values across the corresponding classes, and sn is the standard devia-

tion across the whole population. As an approximate guide of effect size, Cohen

[150] defines 0.1 as a small effect, 0.3 as a medium effect, and 0.5 as a strong effect.

6.3 Results

6.3.1 Offline Evaluation

Offline analysis shows that both the BCIC and longitudinal data was able to be

classified fairly well using CSP and an SVM classifier (Figs. 6.8 and 6.9).

Evaluation of the BCIC dataset showed there to be a strong positive correlation

between each participant’s resting alpha waves and classification accuracy (ρ =
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Figure 6.9: Session-to-session 10 × 10 cross-validation accuracy using CSP
features

0.78, Fig. 6.10b), while resting gamma activity was found to have a strong negative

correlation (ρ = −0.60, Fig. 6.10d). Theta and beta were also found to have strong

correlations (ρ = 0.50 and ρ = 0.49, respectively, Figs. 6.10a and 6.10c).

Evaluation of our participant’s longitudinal data found there to be weaker corre-

lations intra-participant bandpower and accuracy, although in similar proportions

to the BCIC data. Positive alpha and negative gamma correlations provided the

strongest effects (ρ = 0.19 and ρ = −0.19, respectively, Figs. 6.11b and 6.11d),

with a small-to-medium correlation. The beta band provided a small positive

correlation (ρ = 0.12, Fig. 6.11c), while theta activity provided no correlation

(ρ = 0.07, Fig. 6.11a).

The relationship between pre-trial bandpower in several bands and classification

outcome was tested using the biserial correlation coefficient, however, no effect was

found (Table 6.1). Additionally, the pre-trial correlations with trial outcome were

plotted across sessions to determine whether any strong correlations developed as

the participant’s training progressed, but no noticeable increases in correlation

were detected (Fig. 6.12).
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(a) Theta band (b) Alpha band

(c) Beta band (d) Gamma band

Figure 6.10: BCIC resting neural activity versus classification accuracy

Theta Alpha Beta Gamma
BCIC ρ 0.01397 -0.0225 -0.0236 -0.04294

Longitudinal ρ -0.0441 -0.0106 -0.0112 0.0069

Table 6.1: Point biserial correlation between pre-trial bandpower and trial
outcome

6.3.2 Race Performance Over Time

The participant’s online performance over time using classifiers trained using the

previous five runs of data can be seen in Fig. 6.13 which shows the race completion

speeds for each run performed. Initial training with PSD features produced mixed

results, as rather than improving results with increased number of training sessions,

the participant’s speed vary greatly from run to run and actually show a gradual

negative trend despite the participant reporting that the task seemed to become

easier over time. After switching to source CSP features, which occurs at run
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(a) Theta band (b) Alpha band

(c) Beta band (d) Gamma band

Figure 6.11: Our participant’s resting neural activity versus 10×10 cross-
validation accuracy

Figure 6.12: Participant point biserial correlation between pre-trial band-
power and trial outcome
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Figure 6.13: BrainRunners race completion speeds. Figure edited from [148]

120 and is denoted by the orange line, the participant’s performance improves, as

demonstrated by the shorter run times, which peak with a 116.6 second trial.

6.4 Discussion

The current chapter details the successful efforts towards creating a synchronous

three-command gaming BCI operated using motor imagery commands. The on-

line assessment of our participant’s performance suggests that the source CSP

features led to some benefits for this participant in terms of BCI accuracy; per-

formance was faster and more consistent after the introduction of source CSP

features. This may reflect improved class separability, although more work will

be required before establishing whether this effect is at all significant. The effects

of brain activity outside of the motor imagery period is also investigated, and it

is found that classification accuracy had a strong positive inter-participant cor-

relation with resting alpha activity (ρ = 0.78) which supports our hypothesis, as

well as a strong negative correlation with resting gamma activity (ρ = −0.60).

Theta (ρ = 0.50) and beta (ρ = 0.49), were found to have weaker, but strong

positive correlations. Weaker correlations of similar proportions were seen with

the longitudinal intraparticipant study, with the strongest correlations being seen

with a positive alpha (ρ = 0.19) and negative gamma correlation (ρ = −0.19).

No correlation was found between pre-trial bandpower and classification outcome,

97



Chapter 4. Gaming Using a Motor-Based BCI

meaning we were unable to reject our null hypothesis. There was also no evidence

of increasing correlation between pre-trial bandpower and classification outcome

as our participant’s number of training sessions increased.

6.4.1 Critique

Due to differences in the data collection methods between the BCIC study and the

longitudinal study, such as numbers of classes, trials per session, and tasks chosen,

comparisons between the two are difficult. The BCIC study used two large sessions

per participant, whilst the longitudinal motor imagery experiments used a larger

number of sessions with less trials. As a result 10 × 10 cross-validation was used

as the evaluation metric for this study. While it can be noted that some of our

hypotheses were not accepted, namely that no evidence was found to support the

existence of a correlation between pre-trial alpha and beta activity, this was a

feasibility study with one participant, so this should not detract from the overall

objectives of the study.

6.5 Conclusion

The results of this study have showed that there is a strong correlation between

classification accuracy and resting alpha activity. A new approach for designing

a motor imagery BCI using source CSP training was tested, and saw some suc-

cess, although due to the extremely limited sample size it is impossible to make

generalisations without further work.
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Conclusion

7.1 Thesis Summary and Contributions

This thesis has covered several aspects of the gaming BCI, with the aim of improv-

ing them. Each of the main studies approached BCI gaming in a different manner:

designing methods using offline BCI data, designing a BCI that can operate and

existing game using neural data, and building a game from scratch for BCI use

and implementing algorithms to control it. A number of approaches were used

throughout, including: taking both a technocentric and anthropocentric approach

to BCI research, in order to improve two aspects simultaneously, and developing

automatic methods for improving BCI function. These methods have been applied

across two of the main modalities in BCI research, SSVEP-BCI and MI-BCI.

Chapter 2 reviewed the underlying neural processes that make human operation

of a BCI possible, as well as the neuroimaging methods and algorithms that allow

a BCI to be implemented. Chapter 3 defined the state of the art across several

BCI areas: rehabilitation, SSVEP and motor-imagery BCI gaming, and SSVEP-

BCI normalisation. Additionally, this chapter reviewed research into RVS stimulus

colour, mood, and fatigue.

In Chapter 4 two normalisation methods which preserve the unsupervised clas-

sification abilities of CCA, have been tested. We addressed a problem relating

to stimulus selection, in that high and low RVS frequencies often perform badly

together, thus limiting the options for RVS selection in SSVEP-BCIs. BC-CCA

and Scaled CCA were both found to improve standard CCA, by reducing the
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performance mismatch between distant RVS frequencies. These methods are not

only for gaming, and can be used for CCA SSVEP detection outside of this area.

Whilst the results were positive, it is possible that such perfect conditions such

as a perfectly quiet, darkened room with only one source of electrical interference,

may have produced overly positive classification accuracies, although this would

be across all conditions, so may not affect the overall outcome.

The work in Chapter 5 is in response to questions regarding how the effect of

stimulus colour can influence SSVEP performance. We succeeded in improving

the SSVEP-BCI by exploiting the RVS colour information, as shown in in Chapter

5. A three-dimensional SSVEP-BCI game, SnookerMaze, was developed, as well

as the POC-SSVEP-BCI, which uses a novel method for stimulus colour selection

was introduced, and found to significantly improve game performance and increase

mood positively. A number of issues were found while conducting the study:

we only focused on four colours (red, blue, yellow, and white) as we wished to

investigate the primary colours, due to their opposite positions on the colour wheel.

However, in doing this we neglected green, which has shown some promising results

in other experiments. Additionally, whilst several benefits were found to using the

POC-SSVEP-BCI, it comes at the sacrifice of the ability to use CCA without

calibration data. Regarding the game itself, we believe that the layout of the

game, with the RVS set at fixed positions at the edges of the screen may make it

difficult for participants to elicit a strong SSVEP response and navigate the map

at the same time, although we have made suggestions on how to improve this in

future work (see 7.2).

Finally, the work in Chapter 6 demonstrated a novel approach to training users

to operate a BCI using motor imagery commands. Additionally, we were able

to create a training method that can be used by users to enjoy playing video

games with a BCI, using features extracted after preprocessing the data with an

additional source localisation step, referred to as ‘source CSP’ features. Additional

work conducted involved us contributing to the development of automatic BCI

methods by investigating predictors of BCI performance. Whilst making a critical

appraisal of our work, we believe the online control aspect study could be designed

in a more fair way, by using a between-participants design. The current method

tests one method after the other, giving an advantage to the BCI operated using

source CSP features. The study itself was somewhat hamstrung by a small number

of participants, although as a feasibility study it does highlight some promising
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areas for further research, and we were able to set up the experiment in a way

which tested several predictors simultaneously, whilst also testing the effectiveness

of source CSP features.

7.2 Future Work

Future research into the normalisation methods (Scaled CCA and BC-CCA) should

include application to CCA variants such as filter bank CCA [48] (FBCCA), an-

other method which requires no training data, but has higher dimensionality. The

normalisation methods can be further developed by investigating automatic meth-

ods of selecting the baseline period for improved performance.

Areas for building on the POC SSVEP-BCI were identified, including developing

an intelligent RVS colour selection method, such as one that takes the variance of

correlation coefficients, similarity of mean correlation coefficients, or even baseline

coefficient values into account in order to select colours with a more even likelihood

of selection. Various approaches for improving the functionality on the POC-

SSVEP-BCI game have been identified, including: adding kinematic control and

giving the option for different RVS layouts, such as one that is locked to the

avatar’s position instead of fixed positions on the screen, which would reduce

the amount of eye movements required by the player. Another way that future

research can build on these results is by comparing POC RVS performance to the

participant’s best individual set of colours instead of white. What we are proposing

is to compare two RVS groups: a group of identically-coloured RVS selected by

classification accuracy, and a group of individually-coloured RVS selected based on

their correlation coefficients, as done in Chapter 5. This would be another effective

way of testing the effectiveness of the POC-SSVEP BCI. This would effectively

compare the commonly used stimulus selection method with our new method. The

normalisation methods from Chapter 4 were not applied, however this could be a

promising avenue of research.

The approaches applied to motor imagery BCI were found to be successful for de-

veloping a user-centred BCI, although this was severely limited due to the sample

size. For the next step, more participants are required in order to test the source

CSP features, which will allow us to take a look at group-level statistics regarding

the impact of source-CSP. Some areas of interest would include: and an in-depth
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look can be taken at group-level neural changes over time. No user experience

data was collected during this experiment, as this was primarily a technical chal-

lenge, however it would be interesting to monitor levels of engagement as well as

participant feedback on the source CSP approach, as compared to others. One

major technological challenge to address in future work will be detecting the ‘idle

state’ in order to make this a truly asynchronous BCI. A number of approaches

were discussed in Chapter 3, such as setting confidence thresholds for each class

and setting the BCI output to idle if these thresholds are not met. Successfully

implementing this would allow the user much greater control over how they oper-

ate the game. In the current BCI, we limited ourselves to movement commands

based on three of the most popular commands (right hand, left hand, and feet),

although it would be appropriate to test source how our proposed training meth-

ods perform using other approaches for generating movement commands, such a

cube rotation and number subtraction. Additionally, more disabled users should

be recruited to test the BCI; the majority of research includes healthy participants

as they are easy to recruit, however disabled users have complex needs that cannot

be accounted for without including them in this process.
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[123] Ivo Käthner, Selina C. Wriessnegger, Gernot R. Müller-Putz, Andrea Kübler,
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8/22/2017 Colour 1: Participant Information

https://docs.google.com/forms/d/e/1FAIpQLSdd-niAnOiZKfFR2_Zt5q-Zmtf26cG0QGbU6EgdEC5TTzTu1w/viewform 1/2

Colour 1: Participant Information
*Required

Female

Male

Prefer not to say

Other:

Right

Left

Ambidextrous

Normal Colour Vision

Mild Deutan

Moderate Deutan

Participant Number *

Your answer

Sex

Age

Your answer

Handedness

Colour Perception (Completed By Researcher)
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https://docs.google.com/forms/d/e/1FAIpQLSdd-niAnOiZKfFR2_Zt5q-Zmtf26cG0QGbU6EgdEC5TTzTu1w/viewform 2/2

Moderate Deutan

Strong Deutan

Mild Protan

Moderate Protan

Strong Protan

Tritan

Never submit passwords through Google Forms.

This form was created inside University of She�eld. Report Abuse - Terms of Service - Additional Terms

SUBMIT

 Forms



8/22/2017 Colour 2: Task Preference Questionnaire - Google Forms

https://docs.google.com/forms/d/1ycRZ2VlCL9PnpQUnZ-8gFuoASThvH5Ldx-zAatt7AOw/edit 1/2

Colour 2: Task Preference Questionnaire
Please rate the level of visual comfort of each stimulus colour

*Participant Number

Short-answer text

Very uncomfortable

1 2 3 4 5 6 7 8 9 10

Very Comfortable

White

Very uncomfortable

1 2 3 4 5 6 7 8 9 10

Very Comfortable

Red

Very uncomfortable

1 2 3 4 5 6 7 8 9 10

Very Comfortable

Blue

Very uncomfortable

1 2 3 4 5 6 7 8 9 10

Very Comfortable

Yellow

Colour 2: Task Preference Questionnaire

QUESTIONS RESPONSES 21



8/22/2017 Colour 3: Mood/fatigue Questionnaire 1

https://docs.google.com/forms/d/1RhPbS02JD4963vXI4yXt60EhbFcGGeIOLt64qLf8UWk/edit 1/4

Colour 3: Mood/fatigue Questionnaire 1
This questionnaire assesses your current mood and fatigue levels

*Required

1. Participant Number *

2. I feel lively *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

3. I feel happy *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

4. I feel sad *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

5. I feel tired *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree
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6. I feel caring *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

7. I feel content (satisfied) *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

8. I feel grouchy (grumpy, moody) *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

9. I feel peppy (alert, active) *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

10. I feel nervous *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree
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11. I feel calm *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

12. I feel loving *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

13. I feel fed up *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

14. I feel active *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

15. Do you feel sleepy or drowsy? *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree
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Powered by

16. Are you lacking in energy? *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

17. Do you have less strength in your muscles than usual? *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

18. Do you feel weak? *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

19. Do you have difficulty concentrating? *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree

20. Do you have problems thinking clearly? *
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly Agree
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Colour 4: Game Preference Questionnaire
*Required

1. Participant Number *

2. During game control, which of these statements applies to you?
Mark only one oval.

 I preferred using the white stimuli

 I preferred using the colour stimuli

 I had no preference

3. Eye strain level (white stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high

4. Eye strain level (colour stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high

5. Feeling of Control (white stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high

6. Feeling of Control (colour stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high
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Powered by

7. Overall Fatigue (white stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high

8. Overall Fatigue (colour stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high

9. Overall Mood (white stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high

10. Overall Mood (colour stimuli)
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Very
low

Very
high



8/22/2017 Colour 6: Game Experience Questionnaire
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Colour 6: Game Experience Questionnaire
Please complete the following questionnaire with regards to your experience while playing the BCI 
game

*Required

1. Participant Number *

2. I felt content
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

3. I felt skilful
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

4. I thought it was fun
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

5. I was fully occupied with the game
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree
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6. I felt happy
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

7. I found it tiresome
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

8. I felt competent (efficient and capable)
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

9. I thought it was hard
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

10. It was aesthetically pleasing
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree
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11. I forgot everything around me
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

12. It felt good
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

13. I was good at it
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

14. I felt bored
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

15. I felt successful
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree
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16. I felt that I could explore things
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

17. I was fast at reaching the game's targets
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

18. I felt annoyed
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

19. I felt pressured
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree

20. I felt irritable
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree
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21. I was deeply concentrated in the game
Mark only one oval.

 Strongly disagree

 Disagree

 Neither agree or disagree

 Agree

 Strongly agree
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