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Abstract 

Semiconductor quantum dots (QDs) are a quintessential example of nanotechnology; their 

useful optoelectronic properties (including bright photoluminescence) that distinguish them 

from bulk semiconductors arise primarily due to their nanoscopic size, and the discrete, 

quantum mechanical nature of matter. 

The “redox environment”, defined as the general tendency of molecules to be reduced or 

oxidised in a given microenvironment, is one of the central concepts of the field of redox 

biology. Current methods of measuring the redox environment within living cells are 

unsatisfactory. To address this, a number QD-based redox sensors have been developed, 

however, there are still open questions about the physics of such sensors, particularly with 

respect to their excited-state electron dynamics. 

This thesis details the excited state dynamics of QD-based redox sensors, as well as their 

application to biology. Chapter 1 contains an overview of the photophysics of such QD 

biosensors, as well as a review of the relevant literature.  

Chapter 3 details electron microscopy-based studies of the internal structure of CuInS2 QDs, 

aimed at understanding their defect-related excited state dynamics, with a view to their 

application as less toxic biosensors.  It was concluded that the emissive transition in CuInS2 

QDs is associated to an electronic state that arises due to large, polydisperse defect clusters 

that exist within the CuInS2 lattice.  

Chapter 4 details ultrafast spectroscopic studies of a QD redox sensor that consists of a 

CdTe/CdS core/shell QD coupled with a quinone-derived electron acceptor (Q2NS), which 

acts as a redox-switching, photoluminescence-quenching electron acceptor. It was found 

that the comparatively efficient switchable quenching is due to an ultrafast trapping scheme, 

involving an electron energy state associated with a surface-based lattice defect. Application 

of the redox sensors to biological cells was then studied, particularly with respect to the 

mechanism by which cells internalise the QDs, and the resulting QD microenvironment. It 

arises that endocytosis and subsequent compartmentalisation of QDs by cells presents a 

significant challenge to the application of QDs as intracellular biosensors.   
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1 Introduction 

1.1 Motivation – Redox in disease 

Redox reactions are those which involve transfer of electrons from an electron donor (a 

reducing agent, which is oxidised) to an acceptor (the oxidising agent, which is reduced). A 

“half-reaction” is the term given to oxidation or reduction alone – one cannot happen 

without the other. Redox reactions are present almost everywhere, from combustion of 

organic material (where oxygen is reduced by carbon) to the rusting of iron (where iron is 

oxidised). For this process, the half-reactions can be written: 

𝐹𝑒 → 𝐹𝑒2+ + 2𝑒− 

1

2
𝑂2 + 𝐻2𝑂 + 2𝑒− → 2𝑂𝐻−    ( 1 ) 

Given their ubiquity, it is not a surprise that redox reactions are also critically important in 

biology. The classical example of redox within biology is in aerobic respiration, where glucose 

is oxidised in the presence of oxygen to form carbon dioxide and water, however redox 

reactions are present in almost all cellular processes, from signalling during the cell cycle to 

anaerobic respiration.[1] 

There is a large number of redox “pairs” involved in various biological processes, including 

the reduced and oxidised forms of nicotinamide adenine dinucleotide (NADH/NAD+), 

ubiquinone/ubiquinol, and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) 

among many others; these are biomolecules that can exist in either an oxidised or a reduced 

state, and tend to be cofactors in enzymatic redox reactions.[2]  These pairs are often 

reversibly oxidised and reduced between each state, and usually act to transport electrons 

within biochemical processes. When discussing redox within the context of biology it is often 

helpful to consider the concept of the “redox environment” of the cell; this can be considered 

the concentration balance between the oxidised and reduced forms of these redox pairs. 

Redox balance was first implicated in the cell cycle in the early 1930s,[3] and it is now 

understood that it is involved in, or can be a reporter on a number of disease states, 

particularly cancer. Increasing understanding of the notion of the cellular redox 

environment, and its consequences in redox control and redox signalling, has led to the field 

of redox biology, which has relevance across the breadth of biological study.  
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Figure 1. Redox behaviour of nicotinamide adenine dinucleotide (NAD). NAD+ (left) is 

reversibly reduced to form NADH (right) involving addition of one proton and two electrons. 

The opposite reaction is termed oxidation. 

In the understanding of disease, the redox environment is often an important factor. 

Oxidative stress is an increase in the presence of reactive oxygen species (ROSs), or a 

decrease in the effectiveness in antioxidants used to cope with them, and is implicated in the 

development of a broad gamut of diseases,[4] including cancer,[5, 6] atherosclerosis, 

neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease,[7, 8] 

developmental disorders such as Asperger syndrome,[9] and mental disorders such as 

ADHD.[10, 11] 

The Warburg effect is the observation that cancer cells tend to produce large amounts of 

lactate through glycolysis, even with an ample supply of oxygen, sometimes termed “aerobic 

glycolysis”. Glycolysis is an alternative metabolic pathway used for energy production which 

does not require oxygen. In healthy cells, glycolysis is usually minimised when there is 

abundant oxygen, in favour of aerobic respiration. The cause of the Warburg effect was 

initially assigned to dysfunction of mitochondria in diseased cells, however current 

hypotheses differ.[12] In any case, the result of the Warburg effect in combination with other 

factors means that cancer triggers dysregulation in the cellular redox environment.[13] It has 

also been shown that an increase in glycolysis is necessary for the proliferation of cancer.[14] 

Glycolytic inhibitors, which are drugs or drug candidates that inhibit glycolysis, are therefore 

under investigation as possible future cancer treatments; their discovery might depend on 

assessing their effects on the redox environment as it is dysregulated by the Warburg effect. 

For the reasons outlined above, for the study of disease it is useful to have techniques for 

measurement of the redox environment within model cell lines. In the modern lab 
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fluorescence techniques are ubiquitous, and so this provides an ideal platform for the 

development of new redox sensing technologies. An ideal redox sensor will allow long term, 

time-resolved measurement of the redox potential, with minimal setup and high accuracy, 

and preferably will not affect the chemistry of the cell itself. There are a number of 

commercially available redox probes based on fluorescence of transfected small molecules 

(including Thermo Scientific CellROX™ range), or genetically encoded fluorescent proteins 

(Premo™). In either case, the reliance on photo-bleachable fluorophores severely limits the 

maximum timescale of any single experiment. For the case of the genetically encoded redox 

probes, there are also concerns of reproducibility between cell lines, as well as the long and 

complex experimental setup. The separate technique of measurement of NADH fluorescence 

allows quantification of the amount of NADH within a cell, however it is difficult to derive 

information about general redox balance from this.  

New sensing strategies must therefore be developed to avoid the limitations of current redox 

probes. The potential of photoluminescent quantum dots in bioimaging and biosensing has 

been recognised since the late 1990s,[15-17] and therefore it is no surprise that their 

application as potential redox probes is now widely researched and discussed in the 

literature; the work discussed in this thesis involves design and optimisation of such QD-

based redox sensors.  

1.2 Quantum dots 

Semiconductor quantum dots (QDs) are nanocrystalline semiconductors with diameter close 

to or below the exciton Bohr radius (typically <10 nm). Amongst their other interesting 

properties, and depending on the composition of the QD, this leads to a tuneable 

photoluminescence (PL), similar to fluorescence observed in molecular fluorophores. 

However, the useful physical properties of QDs are not limited to photoluminescence. The 

broad optical excitation spectrum of QDs makes them excellent candidates for absorbing 

material in photovoltaic applications,[18-20] and their robust and controllable emission has 

seen them applied in fields ranging from bioimaging[21] to display technology.[22] Recently, 

high-spec televisions with displays based on quantum dot technology have become available 

to consumers.[23, 24] For information technology, semiconductor QDs are one of the 

possible materials being explored for potential application to store qubits, the unit of 

quantum computing.[25] 

In bioimaging and biosensing, quantum dots are rapidly developing from a nascent 

technology into a flexible platform for primarily fluorimetric analysis of biological systems. 



20 
 
 
Compared to traditional molecular fluorophores, quantum dots have a number of 

advantages: they exhibit high photoluminescent quantum yield (PLQY), are resistant to 

photobleaching, and provide a surface which allows for facile and possibly multiplexed 

functionalisation. They can exhibit sharp, accurately tuneable emission that can span from 

the UV to near infra-red. Their large Stokes shift, coupled with broad absorption also allow 

for single-excitation multiplexing of quantum dots for use in complex imaging and assaying 

techniques.  

It is due to these useful properties that QDs are increasingly being applied in bioimaging and 

biosensing, including sensing of redox environment within cells. [21, 26-29] This thesis 

focusses on the development and understanding of such redox sensors, and their application 

to biology. 

1.3 Photophysics of quantum dot sensors 

This section discusses the properties of colloidal semiconductor quantum dots, and how 

these properties can be exploited to create redox-sensitive photoluminescent probes.  

1.3.1 Introduction to semiconductors 

Every solid material contains a large number of electrons. For bulk crystalline solids, we can 

consider a lattice made up of an arbitrarily large number of atoms, where the electron 

orbitals associated with these constituent atoms have broadened into continuous energy 

bands. Depending on the interaction of the wavelike electrons with the atomic cores of the 

crystal, there will be “forbidden” regions between bands in momentum space where there 

are no available states. It is the scheme by which electrons are distributed between bands, 

as well as the magnitude of the gaps between bands that determines whether a given 

crystalline material is classified as an insulator, a metal, or a semiconductor. 

Electrons, as fermions, obey the Pauli Exclusion Principle, which states that no two fermions 

can occupy the same quantum state. As such, a collection of fermions at temperature T will 

have energies described by the Fermi-Dirac distribution: 

𝑓(𝐸) =  
1

𝑒

𝐸−𝐸𝑓
𝑘𝐵𝑇 +1

     ( 2 ) 

Here, 𝑓(𝐸) is the probability that an electron will have energy E, and kB is the Boltzmann 

constant. EF is known as the Fermi level, and describes the limiting energy for fermions at 

absolute zero. At finite temperatures, the Fermi level describes the energy for which the 

occupation probability 𝑓(𝐸𝐹) = 0.5.  
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For a metal at absolute zero, electrons fill states up to the Fermi energy, which exists outside 

of a forbidden region. The consequence of this is that the material is capable of conducting, 

as there is no lower bound on the energy required to reach the next available state; even the 

smallest “ripple” on the surface of the “Fermi sea” results in conduction.  

  

 

Figure 2. Schematic of filling of energy bands at 0 K for typical insulator, semiconductor and 

metal. Grey areas represent filled states. The “band gap” energy Eg is small enough in 

semiconductors such that a proportion of electrons can inhabit the conduction band at 

finite temperatures. 

For the case of both insulators and semiconductors at 0 K, an energy gap of forbidden states 

exists between a band that is completely filled with non-conducting electrons (known as the 

valence band) and another, higher energy band which will be unfilled at 0 K. For the case of 

insulators, the Fermi energy lies within this gap, which is wide enough that no electrons can 

reach the next energy band. In a semiconductor, this “band gap” is narrow enough that at 

finite temperatures, equation 2 would predict that carriers can be thermally excited to the 

higher energy band, which is unfilled and therefore capable of conduction. This energy band 

is known as the conduction band for the semiconductor. In an intrinsic (pure) semiconductor, 

the Fermi level lies exactly halfway between the conduction and valence bands.  

The band gap of any given semiconductor can be characterised as being one of two types: 

direct or indirect. The band gap is said to be direct if the minimum energy state of the 

conduction band (conduction band minimum, or CBM) and the maximum energy state in the 

valence band (VBM) lie at the same crystal momentum in the energy-momentum relation 
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(or dispersion relation). This means that any transition that happens between these two 

energy states is achieved without imparting any momentum to the crystal, and so can involve 

simple absorption or emission of a photon. In an indirect band gap semiconductor, the VBM 

and CBM lie at different momentum states, and so any transition that occurs must also 

impart momentum to the lattice, which happens usually through emission or absorption of 

a phonon, the quant of collective vibration of the crystal lattice.  

 

Figure 3. Schematic diagram of energy-momentum relations in direct (left) and indirect 

(right) band gap semiconductors. With a direct band gap, minimum energy transitions can 

occur vertically in E-p space, and do not impart momentum to the crystal lattice. In the 

indirect case, the minimum energy transition occurs via emission of a phonon (green) which 

provides the momentum necessary to avoid violation of conservation of momentum. 

The electronic properties of a semiconductor can be modified through “doping” which 

involves addition of impurities of a different valence, which act as electron donors or electron 

acceptors within the lattice. This has a drastic effect on the carrier concentration and 

therefore the conductivity of the semiconductor. For example, doping silicon with boron (an 

acceptor) with a B:Si ratio of 1:105 results in an increase in conductivity of the order of 

103.[30] Such doping is known as “p-type” doping. In p-type doping, added electron 

acceptors leave empty orbitals in the valence band. This empty orbital is known as a “hole” 

and can be treated as a pseudoparticle with both effective mass and a charge +𝑒, where – 𝑒 

is the electron charge. Holes are charge carriers, and therefore it is the motion of these holes 

throughout the valence band that results in the increased conductivity of p-type 
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semiconductors. An n-type semiconductor works on the opposite principle; a semiconductor 

doped with electron donors provides charge carriers in the form of electrons to the 

conduction band, which carry charge as they would in a metal (albeit at a much lower 

concentration). This is possible as all valence band states are already filled by electrons, 

before considering those provided by the dopant. Doped semiconductors of both types will 

exhibit conductivity at 0 K for the reasons outlined above. 

A bulk, stoichiometric semiconductor that is not doped is known as an intrinsic 

semiconductor. A deficit semiconductor is the name given to a non-stoichiometric 

compound semiconductor, where the excess of one constituent acts as a dopant impurity.  

An electron excited to the conduction band via thermal excitation or otherwise results in the 

creation of a hole in the valence band. The opposite charges of the electron and hole will 

mean they will electrostatically attract, and unless there is a large excess in kinetic energy 

after excitation from a lower energy state, they will be bound to one another. This electron-

hole pair is collectively termed an “exciton” and propagates with a reduced mass µ, where: 

1

𝜇
=

1

𝑚𝑒
∗ +

1

𝑚ℎ
∗      ( 3 ) 

The masses me* and mh* are the effective masses of the electron and hole, respectively.  

1.3.2 Effects of confinement in 0-D semiconductors 

When considering size dependent effects for excitons within semiconductors, it is useful to 

define a characteristic radius for the exciton. For the equilibrium separation of electron and 

hole, the following expression can be written in terms of the kinetic energy of the mutual 

motion and the electric potential energy: 

1

2
𝜇𝑣2 =

1

4𝜋𝜀𝑟𝜀0

𝑒2

𝑟
.     ( 4 ) 

Here, µ is the reduced mass, r is the separation, and v is the relative angular velocity of the 

electron-hole pair. The parameters εr and ε0 are the relative permittivity of the material, and 

the permittivity of free space respectively.  

The Bohr model describes a quantised angular momentum 𝐿 =  𝜇𝑣𝑟 with minimum value ℏ. 

It is therefore possible to define a separation r = a0* for this value, giving: 
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𝑎0
∗ =

4𝜋𝜀𝑟𝜀0ℏ2

𝜇𝑒2 = 𝜀𝑟
𝑚𝑒

𝜇
𝑎𝑏                      ( 5 ) 

Here, ab is the hydrogen Bohr radius, and me is the mass of a free electron. The length a0* is 

known as the characteristic Bohr radius for the semiconductor. 

As the size of a semiconductor object is decreased towards and below the characteristic Bohr 

radius, any generated exciton becomes confined. One consequence of this is that the 

continuous energy bands described in the previous section separate into states analogous to 

a simple atom. The confinement energy associated with these states also results in an 

increase of the effective band gap of the semiconductor; the band gap is therefore heavily 

size dependent below the Bohr radius. Producing a useful theoretical model that describes 

the behaviour of confined excitons within quantum dots is difficult; for typical QD materials 

such as CdTe, CdSe and CuInS2 the number of atoms at the size where confinement becomes 

important can be of the order of 103-105, and the proportion of constituent atoms that makes 

up the surface of the particle can become significant (up to 60%).[31] Aside from the surface 

effects that preclude treating the QD as a continuous material, the small number of atoms 

means that even in perfectly stoichiometric ensembles of QDs, individual particles are 

unlikely to be perfectly stoichiometric, manifesting as an intrinsic doping of the 

semiconductor (a deficit semiconductor). Computational approaches to simulate electronic 

behaviour within QDs are common. Traditionally, density functional theory (DFT) approaches 

have been applied, however they are often inaccurate in predicting band gap values, often 

requiring large ad-hoc empirical corrections.[32] More recently, developments in the 

application of the atomistic semiempirical pseudopotential method has allowed accurate in-

silico interrogation of more complex QD systems, including simulation of Auger and ultrafast 

trapping processes.[33-35] For a general description of excitonic confinement within QDs, it 

is nevertheless instructive to consider a simplified “particle in a box” treatment, which is 

described here. 

As before, an optically generated electron-hole pair within a semiconductor can be 

considered as a single “exciton” with effective mass given by equation 3. To approximate a 

quantum dot, we can define a spherical potential of the form  

𝑉(𝑟, 𝜑, 𝜃) = {
0, 𝑟 < 𝑑

∞, 𝑟 ≥ 𝑑
         ( 6 ) 

Here, r, φ, and θ are the radial distance, azimuthal angle and polar angle respectively, and d 

is the radius of the dot. This potential is the spherical equivalent of the famous “particle in a 



25 
 
 
box” where the infinite potential outside the prescribed radius d precludes any nonzero 

value of the exciton’s wavefunction, and is the simplest approximation available for a 

spherical system. The time-independent Schrodinger equation for this system is written: 

[
−ℏ2

2µ
(

𝜕2

𝜕𝑟2 +
2

𝑟

𝜕

𝜕𝑟
−

𝐿2

ℏ2𝑟2) + 𝑉(𝑟)] 𝜓(𝑟, 𝜑, 𝜃) = 𝐸𝜓(𝑟, 𝜑, 𝜃)             ( 7 ) 

We can use the time-independent Schrodinger equation as the Hamiltonian is time-

independent. In this expression, ℏ is the reduced Planck constant, and L2 is the square of the 

angular momentum operator, with eigenvalues as follows: 

𝐿2𝜓(𝑟, 𝜑, 𝜃) =  𝑅(𝑟)𝐿2𝐴(𝜑, 𝜃) =  𝑅(𝑟)𝑙(𝑙 + 1)2ℏ2𝐴(𝜑, 𝜃)          ( 8 ) 

Here the wavefunction 𝜓(𝑟, 𝜑, 𝜃) has been decomposed into radial and angular parts 𝑅(𝑟) 

and 𝐴(𝜑, 𝜃) respectively; the radial wavefunction 𝑅(𝑟) commutes with 𝐿2.  The integer 𝑙 is 

a quantum number associated with angular momentum.  

Within the QD, 0 ≤ 𝑟 < 𝑑, and 𝑉(𝑟) = 0. Introducing the new quantum number n, the 

Schrodinger equation can therefore be written: 

𝑑2𝑅𝑛,𝑙

𝑑𝑟2 +
2

𝑟

𝑑𝑅𝑛,𝑙

𝑑𝑟
+ (𝑘2 −

𝑙(𝑙+1)

𝑟2 ) 𝑅𝑛,𝑙 = 0,      ( 9 ) 

where we have defined the variable k, so that 

𝑘2 =
2𝜇𝐸

ℏ2 .        ( 10 ) 

We can further define the scaled variable 𝑎 = 𝑘𝑟, which allows us to simplify and write the 

radial Helmholtz equation: 

𝑎2 𝑑2𝑅𝑛,𝑙

𝑑𝑎2 + 2𝑎
𝑑𝑅𝑛,𝑙

𝑑𝑎
+ [𝑎2 − 𝑙(𝑙 + 1)]𝑅𝑛,𝑙 = 0.           ( 11 ) 

The linearly independent solutions of this expression are known as the spherical Bessel 

functions 𝑗𝑙(𝑎) and 𝑦𝑙(𝑎). The functions  𝑦𝑙(𝑎) are unphysical as they are not square 

integrable at 𝑟 = 0, instead tending toward negative infinity. However, the functions 𝑗𝑙(𝑎) 

are well behaved, and are written: 

𝑗𝑙(𝑎) = 𝑎𝑙 (
−1

𝑎

𝑑

𝑑𝑎
)

𝑙
(

sin 𝑎

𝑎
)      ( 12 ) 

As the potential is infinite for radii 𝑟 ≥ 𝑑, the value of the wavefunction must disappear to 

zero at the boundary. To achieve this, we choose a value of k such that 𝑎 = 𝑘𝑑 corresponds 



26 
 
 
to a zero of 𝑗𝑙(𝑎). We can write the nth zero of 𝑗𝑙(𝑎) as 𝛼𝑛,𝑙, and therefore state that for 

positive integer values of n: 

𝑘𝑑 = √
2𝜇𝐸𝑛,𝑙

ℏ2 𝑑 =  𝛼𝑛,𝑙        ( 13 ) 

The value of zeros 𝛼𝑛,𝑙   is an increasing function for both quantum numbers 𝑛 and 𝑙. 

Rearranging gives the following expression for the energy levels of a particle trapped in an 

infinite spherical potential: 

𝐸𝑛,𝑙 =
𝛼𝑛,𝑙

2 ℏ2

2𝜇𝑑2 .                   ( 14 ) 

For our quantum dot, this is the energy associated with confinement of the exciton within 

the interior of the dot. The lowest energy state is for quantum numbers 𝑛 = 1, 𝑙 = 0, with 

value 𝛼1,0 = 𝜋 and corresponds to the “1s” state of the analogous atom for both electron 

and hole. The total energy required to obtain this first excited state in a quantum dot is the 

band gap energy of the quantum dot, and is given by the following expression: 

𝐸𝑔,𝑄𝐷 = 𝐸𝑔,𝑏𝑢𝑙𝑘 + 
𝜋2ℏ2

2𝜇𝑑2 −
1.786𝑒2

𝜀𝑑
.             ( 15 ) 

The final term is included as a consequence of the electrostatic attraction between the 

oppositely charged electron and hole.[36, 37] As it is inversely proportional to the particle 

radius d, it will only have large effect with respect to the confinement term for larger 

quantum dots, where it will serve to decrease the band gap. The important result is the 

inverse square size dependence of the confinement term, which predicts and explains the 

strong size dependence of quantum dot luminescence for small sizes. 

1.3.3 Photon Absorption by Quantum Dots 

In the previous section an expression was derived for the minimum energy required to 

promote an electron to from the valence band into the conduction band, achieving an 

exciton of the lowest energy state. Quantum dots are typically much smaller than the 

wavelength of light, so this can often reliably achieved by absorption of a photon with energy 

greater than the band gap: 𝐸 = ℏ𝜔 ≥ 𝐸𝑔,𝑄𝐷. In a general case, an electron will be excited 

from the ground state |𝑖⟩ into an excited state |𝑓⟩  by a photon of energy 𝐸𝑖,𝑓 = ℏ𝜔𝑖,𝑓 where 

𝐸𝑖,𝑓 is the difference in energy between these states.  

The density of states for a material expresses the number of states per energy interval 

available for occupation at each energy level. Quantum dots can neither be considered a 
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perfect 0D nor a bulk 3D material. However, it is possible to accurately express the density 

of states for a QD in the form:[38] 

𝑁0𝐷(𝐸) =
1

𝑉𝑄𝐷
∑ (2𝑚 + 1)𝛿(𝐸 − 𝐸𝑖)𝑖,𝑚           ( 16 ) 

In this expression, 𝐸𝑖  are the energy levels with degeneracy m, and 𝑉𝑄𝐷 is the geometric 

volume of the QD. For a real system, this volume can be obtained by averaging over a 

polydisperse sample. From this expression, Sun and Goldys derive the following expression 

of the linear optical absorption coefficient of a single quantum dot subject to incident light 

of angular frequency ω, which is necessarily proportional to the density of states: 

𝛼𝑄𝐷(𝐸 =  ℏ𝜔) =
𝜋𝑒2𝐸𝑝𝑎𝑝

2𝑚𝑒𝑐𝑛𝑟𝜀0𝜔

1

𝑉𝑄𝐷
∑(2𝑚 + 1)𝛿(ℏ𝜔 − 𝐸𝑖)

𝑖,𝑚

 

=
𝐴

𝜔𝑉𝑄𝐷
∑ (2𝑚 + 1)𝛿(ℏ𝜔 − 𝐸𝑖)𝑖,𝑚           ( 17 ) 

In this expression, 𝑒 is the unitary charge, 𝑎𝑝 is the average over polarisation directions for 

the incident light (2/3 for unpolarised light), and 𝑛𝑟 is the frequency dependent refractive 

index for the QD material. This model assumes the infinite spherical potential approximation 

for the QDs used in the previous section. For a sample of QDs, the size polydispersity must 

be taken into account; the variation in size results in a distribution of quantised energies, 

with widths ∆𝐸𝑖𝑚. This can be achieved by replacing the delta function by a Gaussian 

distribution of energies: 

𝛼𝑄𝐷(𝐸 =  ℏ𝜔) =
𝐴

𝜔𝑉𝑄𝐷
∑

(2𝑚+1)

√2𝜋𝐸∆𝐸𝑖𝑚
exp (−

(ℏ𝜔−𝐸𝑖𝑚)2

2∆𝐸𝑖𝑚
2 )𝑖,𝑚 .    ( 18 ) 

For experimental measurement of a sample of colloidal QDs in solution, the molar extinction 

coefficient is a more useful quantity. It is defined and expressed as a function of photon 

energy E as follows: 

𝜖(𝐸) =
𝑁𝐴𝑉𝑄𝐷𝛼𝑄𝐷(𝐸)

ln (10)
 .       ( 19 ) 

In the above expression, the constant 𝑁𝐴 is Avogadro’s number.   

The above treatment considers absorbance events that result in the promotion of an 

electron from the valence band to the conduction band. At low excitation energies, QD states 

are more discrete and “atom-like”, however at increased energies the QD states become 

more “band-like” as discrete states exist closer together. This is evident in a typical 



28 
 
 
absorbance spectrum for a sample of quantum dots, an example of which is given in figure 

4. At longer wavelengths, which correspond with photon energies insufficient to achieve 

photoexcitation of the quantum dot, absorbance is zero. As the wavelength decreases (to 

higher photon energies) there exists a peak which corresponds to the “1s” excitation. The 

width of this peak depends on the polydispersity or size variation present in the QD sample. 

At further decreased wavelengths the absorbance continues to increase with the number of 

accessible electronic states. Spectral features associated with particular electronic 

transitions become more difficult to resolve at increase excitation energies due to their width 

and energetic proximity. Some QDs made from materials such as CuInS2 display 

characteristically broad absorption and emission features, which is often characteristic of a 

high size polydispersity or a defect-rich crystal structure.[39, 40]  

 

Figure 4. Typical absorption spectrum for a sample of colloidal QDs. The peak at 525 nm 

corresponds to the first “1s” excitation. The absorption increases at shorter wavelengths, 

corresponding with an increase in available states at higher energies. 

1.3.4 Excited State Dynamics – Emission and Trapping 

In the previous section, absorbance of photons by QDs was discussed. Each absorbance 

event results in a QD that is in an excited state; in almost all cases with the exciton at an 

energy at least that derived in section 1.3.2. In other words, the promoted electron has an 
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energy that lies at least above the conduction band minimum, with the hole at least below 

the conduction band maximum. These electrons and holes are termed “hot”. In bulk 

semiconductors, hot carriers rapidly return to the band edge via phonon emission, in a 

process known as thermalisation. The continuum of energy states present in bulk 

semiconductors allows cooling of the electron and hole in approximately one 

picosecond.[41] The picture is different, however, when the carriers are confined as in 

quantum dots. As the size of the QD decreases, energy bands separate into discrete states, 

and the energy separation of these states will tend to increase with the confinement. Below 

a certain size for a given material, the separation between electron states will exceed the 

maximum phonon energy, which will disallow direct thermalisation of electrons. The phonon 

energy is limited; its minimum wavelength cannot be less than twice the atomic separation. 

For example, the distance between the two lowest energy electron states in CdSe QDs (the 

1s and 1p states) can be 10 times greater than the phonon energy. This prevention of direct 

thermalisation is known as the phonon bottleneck.[42] In early theoretical treatments of 

quantum dots, the phonon bottleneck was expected to result in arbitrarily long cooling 

lifetimes in QDs,[43, 44] however lifetimes typically measured are of the order of a few 

picoseconds[42, 45, 46] suggesting the presence of other cooling processes. Auger processes 

describe some of these; the closer spacing of energy levels in the valence band allows holes 

to cool quickly via phonon emission. A hot electron can therefore transfer energy to a hole 

that has already cooled to the VBM.[35, 46] This process is illustrated in figure 5.  
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Figure 5. Avoiding the phonon bottleneck. 1) Excitation creates a hot electron-hole pair. The 

hole cools to the VBM via phonon emission. 2) The hot electron cools to the CBM via 

transfer of energy to the hole (an Auger process), which is excited again. 3) The hole cools 

to the band edge via phonon emission. 4) The electron and hole recombine from the band 

edges. 

Even the largest QDs are of the order of a few nm in size; a consequence of this is that a large 

proportion (up to 60%) of the constituent atoms of any QD are associated with the 

surface.[31] In a typical sample of colloidal QDs, some of these atoms will be passivated by 

organic ligands, but steric limitations usually dictate that a number of atoms will be left with 

unsaturated “dangling bonds”. It is these under-coordinated atoms in particular that can 

provide “trap” states for both electrons and holes, which can provide additional cooling 

pathways. These “shallow” surface states are also commonly associated with non-radiative 

recombination of the electron and hole, and therefore are associated with losses in 

photoluminescent quantum yield (PLQY), which is usually an undesirable property.[47, 48] 

“Deep” intra-gap trap states are common in defect tolerant materials such as chalcopyrites, 

and have been shown to be involved in efficient radiative recombination of excitons. They 

usually exist due to point-defects within the structure of the QD and so are not necessarily 

associated with the surface.[49, 50]   



31 
 
 
It is the presence of both trap-mediated and Auger-mediated cooling processes that account 

for the apparent lack of the phonon bottleneck; these processes are fast and usually result 

in cooling of electrons in a few (1-10) picoseconds.[46]  

To passivate surface trap states associated with non-radiative recombination of excitons, it 

is common to over-coat the “core” quantum dot with a shell of a material of a different band 

gap. The excitonic properties of these core/shell QDs depend on the relative band structures 

of the core and shell material, illustrated in figure 6.  

 

Figure 6. Schematics of various band alignment behaviours in core/shell QDs. a) Type-I 

behaviour: the shell has wider band gap than the core, and the electron and hole are 

energetically confined to the core. b) Type-II behaviour: the electron is confined to the shell 

and the hole to the core. c) An example of quasi-type-II behaviour: the electron is 

delocalised while the hole is confined to the core. 

If the core is over-coated by a material of much wider band gap, type-I behaviour is typically 

observed. Due to the wider band gap of the shell, the exciton is confined to the core, similarly 

to how it would be were there no shell present. However, addition of the shell material 

usually serves to passivate the dangling bonds of the atoms on the core surface, and so the 

trap states associated with them are no longer present. The result is usually an increase in 

the quantum yield of the QD sample as non-radiative recombination via trap states is 

decreased.[51] Type-I behaviour is observed in CdSe/ZnS and CuInS2/ZnS as examples.[39]  

Type-II behaviour exists when the band alignment between core and shell exists such that 

one of the charge carriers of any given exciton is localised to the core, and the other is 

localised to the shell. This behaviour typically results in longer recombination lifetimes, and 
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the localisation of one of the charge carriers to the shell can allow for efficient charge 

extraction, while also typically supressing Auger recombination. CdTe/CdSe, CdSe/ZnTe and 

GaSb/GaAs are all examples of core/shell QDs that can exhibit type-II behaviour.[52-54] 

Also illustrated in figure 6 is a quasi-type-II behaviour, where one charge carrier (either the 

electron or hole) is localised (usually to the core) and the other is delocalised across the 

whole QD. This behaviour can exist in CdTe/CdS and CdSe/CdS QDs.[55, 56]  

For effective passivation of surface states, a shell material must be chosen that not only has 

the correct band alignment with the core, but has a lattice that can be closely matched. It is 

for this reason that ZnS is the most popular shell material; it has a small lattice mismatch (< 

5%) with the most common QD materials, such as CdX and most chalcogenides, has a 

significantly wider band gap, and is more resistant to oxidation. A small lattice mismatch 

allows epitaxial growth of the shell on the core QD, allowing effective passivation with thin 

shells.[57]  A large lattice mismatch, or an excessively thick shell can result in dislocations in 

the lattice due to strain, and these can provide “trapping” centres for non-radiative 

recombination.[58]  

All QDs discussed in this thesis are colloidal QDs, meaning that they exist in a suspension 

either in organic solvents or the aqueous phase. Colloidal stability requires the presence of 

ligands on the surface of the QD compatible with the dispersion medium. It is also common 

to have other ligands in order to functionalise the QD; the roles of ligands with respect to 

stability and functionalisation will be discussed in sections 1.5-1.7. As mentioned before, 

atoms on the surface of a given QD represent a high proportion of the total, and contribute 

to the optical properties, particularly with respect to the excited state dynamics.  

Consequently, surface–bound ligands are likely have an effect on the excited state dynamics 

of the QD. 

Electron-donating ligands are effective at passivating electron traps; as mentioned before, 

these traps are typically associated with “dangling” bonds on the QD surface, which in CdX 

QDs typically arise from under-coordinated cations (Cd2+). Thiolates and amines are 

particular examples of highly passivating ligands, as they are capable of donating σ electrons, 

whose symmetry matches that of the electron accepting orbital in Cd2+. Thiolates are 

particularly important in this regard; they often have a large binding constant for many of 

the most common QD materials, which makes them popular choices for use in QD 

functionalisation.[59] Aside from passivating electron traps, thiolates can act to introduce 

hole traps, thus making their effect on the excited state dynamics of the QDs complex. The S 
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atom present in a thiolate has three lone pairs; the first of these lone pairs serves to supply 

electron density to the under-coordinated cation, while the other two can act as mid-VB hole 

trapping states.[60, 61] Other ligands such as phosphines and carboxylic acids have also been 

shown to display similar hole trapping behaviour.[62, 63] In CdTe QDs, which are one of the 

main foci of the experiments in this thesis, thiolate ligands tend to result in an improved QY, 

as they do not form hole trap states energetically accessible by VBM holes.[60] 

 

Figure 7. Scheme of possible recombination or trapping processes in colloidal QDs. Typically 

emissive and typically non-emissive processes are denoted with red and green lines, 

respectively. 

1.3.5 Charge transfer from quantum dots 

As discussed before, excitation of a QD results in the creation of an exciton consisting of an 

electron and hole, which are to some degree delocalised about the QD. If either of these 

charge carriers is extracted from the QD, radiative recombination will not occur. This can 

happen in two ways: 

1) An excited electron is transferred to an external electron acceptor; the QD is 

therefore the electron donor. 

2) An electron is externally donated to the valence band of the excited QD, non-

radiatively recombining with a hole. In this case, the QD is the electron acceptor. 

Alternatively, this can be considered as a transfer of a hole to an external hole 

acceptor, where the QD is a hole donor. 
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For the discussion of electron transfer, this thesis will use the notation whereby the transfer 

of electrons is considered. For molecular electron donors (or acceptors) a general rule can 

be stated that the highest occupied molecular orbital (HOMO) of a donor quencher must lie 

energetically above the valence band, and the lowest unoccupied molecular orbital (LUMO) 

of an acceptor must lie below the conduction band.[28] Exceptions to this rule exist if the 

transfer involves states other than those at the CBM or VBM in the QDs, such as high-lying 

hot states or trap states. These transfer events, however, are rare, as the rate of electron 

transfer is typically slower than that associated with cooling to the minimum energy QD 

state.  

 

 

Figure 8. Simplified schematic of quenching by electron transfer in quantum dots. For 

quenching by charge transfer to be likely, the HOMO of a donor quencher must lie 

energetically above the valence band, and the LUMO of an acceptor must lie below the 

conduction band. 

The rate of an electron transfer event is described by the following expression, as derived by 

Freeman and Willner: 

𝐾𝐶𝑇 =
4𝜋2

ℎ
(𝑇𝐷𝐴

0 )
2

𝑒−𝛽(𝑅−𝑅0) 1

√4𝜋𝜆𝑘𝑏𝑇
𝑒

−
(∆𝐺0+𝜆)

2

4𝜆𝑘𝑏𝑇            ( 20 ) 

In this expression, R is the distance between donor and acceptor, ΔG0 is the free energy 

change associated with the transfer event, and λ is the associated reorganisation energy. IN 

addition to these, R0 is the van der Waals distance, β is the electronic coupling constant, and 
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kbT is the thermal energy.[28] The important result for sensors is that the rate has an 

exponential dependence on the distance, as well as an exponential dependence on the 

square of the free energy. The consequences are that the electron transfer, and therefore 

the quenching of luminescence by electron transfer, are strongly sensitive to and therefore 

can be altered by the distance between donor and acceptor. In addition to this, the free 

energy will depend on the chemical state of the acceptor – oxidising or reducing the acceptor 

in a reversible fashion will therefore reversibly change the transfer efficiency.  

1.3.6 Stern-Volmer Theory 

Transfer of a photo-excited electron results in quenching of PL, as radiative recombination 

of the exciton is no longer possible. For QDs in solution with free quenchers, the degree of 

quenching is described by the Stern-Volmer equation: 

𝐼0

𝐼
= 1 + 𝑘𝑞𝜏0[𝑄] = 1 + 𝐾𝐷[𝑄]          ( 21 ) 

In this expression, I0  and I are the PL intensities without and with quenchers, respectively, 

τ0 is the PL lifetime with no quenchers, [Q] is the quencher concentration, and kq is the 

quenching constant; KD is known as the Stern-Volmer quenching constant for the particular 

system.[64]  

For free quenchers, 
𝐼0

𝐼
 will be linearly proportional to quencher concentration. However, for 

the case where quenchers permanently associate with QDs (such as QDs conjugated to redox 

sensitive acceptors) the statistical distribution of quenchers across the QD population 

becomes important. If the proportion of a sample of QDs with n quenchers is 𝑃(𝑛), then the 

total intensity of a sample can be written as follows: 

𝐼 =  𝐼0 ∑ 𝑃(𝑛)(1 − 𝐾𝐷)𝑛∞
𝑛=0           ( 22 ) 

For quenchers randomly populated around QDs to which they are permanently bound, 𝑃(𝑛) 

will follow a Poissonian distribution, if each quencher is responsible only for the quenching 

of PL of a single QD.[59, 65] This treatment considers the average effect of quenchers 

populating QDs; variations between QDs in a real sample (such as variations in the number 

of traps on each QD) will mean some QDs are more quenched than others.[45] 

1.4 Synthesis of Quantum Dots 

To accurately tune the emission of QDs, synthesis procedures that allow accurate control 

over the average size of QDs as well as the size-polydispersity of a sample must be used. For 

colloidal QDs suitable for use in biosensing, “bottom-up” wet chemical techniques are 
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universally preferred over top-down subtractive techniques used to fabricate some of the 

first QDs. Using wet chemistry allows QDs to be synthesised in large batches with tight 

control over size and polydispersity, and provides opportunities for formation of hetero-

structured QDs (such as core/shell morphologies) for better optical properties.[66] 

Typical synthesis techniques involve growth from solutions prepared by pyrolysis of 

organometallic precursors in organic solvents, or dissolution of suitable metal salts. In order 

for a crystal to grow from the resulting solution, an initial nucleation event must occur, the 

thermodynamics of which can be modelled using classical nucleation theory. The free energy 

change associated with this nucleation is given by: 

∆𝐺 = 𝑛(𝜇𝐶 − 𝜇𝑠) + 𝐴𝛾.          ( 23 ) 

In this expression, n is the number of atoms in the newly formed crystal nucleus, 𝜇𝐶  and 𝜇𝑠 

are the chemical potentials of the atoms in the crystal and solution phase respectively, A is 

the surface area of the crystal, and γ is the surface energy associated with the crystal-solution 

interface. Defining the nanocrystal length scale a, the above expression can be generalised 

to the following: 

∆𝐺 = 𝑁𝐶𝑎3(𝜇𝐶 −  𝜇𝑠) + 𝐷𝑎2𝛾.               ( 24 ) 

Here, C and D are constants that relate the crystal’s size to its volume and area respectively, 

and N is the number of atoms per unit volume. Typically, 𝜇𝐶 −  𝜇𝑠  will take a small negative 

value, and the barrier to nucleation will therefore be due to the surface energy of the new 

crystal. As the first, negative term is proportional to the cube of the size, above a certain 

critical size ac, the change in free energy for an increase in size will be negative, and therefore 

above this size any crystal that is formed will be stable.  

The free energy change required to obtain the critical nanocrystal size is the nucleation 

energy, ΔGnuc, and is obtained from thermal fluctuations.[67] In order to achieve nucleation 

at practical temperatures, the nucleation energy can be tuned by changing solvent 

conditions, concentration of precursors, as well as concentrations of ligands that coordinate 

crystal precursor ions in solutions and modify their solubility. 

Once a stable crystal has nucleated, further growth will be limited by the rate at which new 

constituent atoms can diffuse to the surface from the solution. At the same time, as the 

crystals in a solution grow larger, the concentration of precursor materials will decrease. This 

has a limiting effect on the size of the crystals growing in any particular solution; as the 

concentration of precursors in the solution decreases, the value of μs will decrease, and 
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therefore the value of ac will be larger. The result is known as Ostwald ripening, the 

phenomenon that larger crystals grow at the expense of smaller crystals; the maximum size 

of the crystals is limited by diffusion.[68] By controlling the reactivity of the precursor 

materials by choosing appropriate solvents, coordination ligands and concentrations, as well 

as the growth temperature, this behaviour can be exploited to produce high quality, 

monodisperse samples of QD nanocrystals.[66] This is typically achieved by limiting the 

reactivity of precursors to achieve gradual nucleation of crystals. If the nucleation and initial 

growth step occurs too quickly, all precursor materials are instantly consumed, and growth 

occurs only through Ostwald ripening, resulting in a broad final size distribution.[69] 

 

Figure 9. Free energy vs crystal size. Crystals larger than the critical size ac are stable as an 

increase in their size results in a net decrease in free energy. ΔGnuc is the free energy 

required for nucleation. 

In 1993, Bawendi et al demonstrated trioctylphosphine (TOP)-directed growth of CdX (X= Te, 

Se, S) QDs in solution, which exhibited excellent, controlled optical and colloidal 

properties.[70] Since then, organic-phase synthesis routes have perhaps been the most 

popular; the high temperatures achievable using low-volatility long-chain organic solvents is 

ideal for a wide range of semiconductor materials. 
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To achieve water-dispersible QDs without requiring ligand exchange or other phase-transfer 

techniques, recent literature has shifted toward aqueous synthesis routes for a number of 

QD materials.  

1.5 Colloidal properties of QDs 

QDs for biosensing are universally colloidal QDs, meaning that they exist in some suspension, 

usually in the aqueous phase. This necessitates the presence of some sort of water-

compatible stabilising agent on the surface of the QD. Typically, but not universally, high 

(>150°C) temperatures are required to synthesise the QDs, which precludes the use of 

aqueous synthesis routes. The result of this is that most colloidal QDs post synthesis have 

surfaces populated with hydrophobic ligands, which presents a challenge when transferring 

into the aqueous phase for application. There are a number of ways to achieve this phase 

transfer, however; these ligands can be replaced by careful exchange procedures, removing 

hydrophobic ligands while simultaneously replacing with hydrophilic ones, and transferring 

into the opposite phase. An advantage of this is that the overall hydrodynamic size of the 

particle is not greatly affected. Ligand exchange procedures, as they are called, are however 

notoriously finicky and highly sensitive to concentrations of reagents, as well as ambient salt 

conditions, pH and temperature. In a number of QD types, losses of PLQY are likely to occur 

due to incomplete replacement of ligands involved in passivation of surface trap states.[71-

73]  

Encapsulation in hydrophilic polymers represents another strategy for transferring 

hydrophobic QDs into the aqueous phase. Polymers can be grafted onto QDs by covalent 

reaction with already present ligands, or amphiphilic polymers can conceal the QD surface 

via hydrophobic interactions. Due to the addition of large molecular weight polymers, 

encapsulation techniques usually result in a greater final hydrodynamic size, however these 

phase transfer procedures tend to be more reproducible than ligand exchange 

strategies.[74-76] In a similar manner to polymer encapsulation techniques, the amphiphilic 

nature of lipids is often used to achieve transfer of QDs into the aqueous phase; the 

hydrophobic QDs are concealed within lipid micelles.[77] 

More recently, aqueous-phase synthesis techniques have been developed that produce QDs 

with excellent optical properties. These QDs typically have small molecule surface ligands in 

situ that provide charge mediated colloidal stability provided by carboxyl or primary amine 

functional groups. A drawback of this strategy is the sensitivity of the colloidal stability to 
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changes in pH or high salt concentrations that act to screen the stabilising surface 

charges.[78] 

Almost all of the above strategies for achieving transfer of hydrophobic QDs into the aqueous 

phase can be used for more specific modification of the QD surface chemistry. Importantly 

for biosensing QDs, additional functionality can be added to the QDs by addition of ligands 

with purposes other than achieving colloidal stability. These can include small molecules, 

polymers, peptide and large proteins, and can fulfil functions from targeting of certain 

biological structures to chemical sensing. More exotic surface modifications are also 

possible; QDs can be conjugated to PL-quenching metal nanoparticles, or to QDs with 

different emissive properties for multiplexed sensing.  

1.6 Toxicity of QDs and Cell Uptake 

QDs for biosensing applications are most commonly based on CdX (X= Te, Se, S) 

chalcogenides usually with a ZnS or CdS shell, but a gamut of materials from PbS to CuInS2 

chalcopyrites have been used. Other than achieving improved optical properties by 

passivation of trap states, as described in the previous section, the shell may be used to 

improve the chemical properties of the QD, particularly in relation to toxicity and resistance 

to oxidation. For example, “leaching” of cadmium from CdX (X= Te, Se, S) quantum dots is 

associated not only with short-term toxicity in in-vitro experiments, but with chronic toxic 

effects in vivo as well.[79-82] Addition of a ZnS shell has been shown to reduce these effects, 

in tandem with greatly improving their optical properties.[83] Other efforts to develop less-

toxic QDs for biological application have focussed on semiconductors that do not contain 

cadmium, such as CuInS2 and InP.[84, 85]  

It is not only the constituent chemistry of the QD that dictates their biocompatibility (or, at 

a minimum, their toxicity). Both the chemical properties of the capping ligands, and the 

physical properties of the QD as a colloid can affect toxicity. It has been shown that toxicity 

of CdX QDs stabilised by small molecules can vary greatly depending on surface charge. 

Hydrodynamic size also plays a role; depending on the properties of the capping ligand, 

different QD sizes can result in different fates once taken up by cells, which can greatly affect 

toxicity.[86]  

For most biosensing applications it is necessary to achieve uptake of colloidal QDs into 

biological cells. Many cell types are capable of naturally taking up QDs by means of 

endocytosis. Endocytosis describes a number of processes whereby matter exterior to the 

cell is taken in, and includes phagocytosis (“cell eating” or ingestion of solid matter) and 
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pinocytosis (“cell drinking” or ingestion of the solution exterior to the cell). Endocytosis of 

QDs is sensitive to both biological and physical factors, particularly the surface charge and 

size of the QD, as well as extraneous properties such as pH, salt concentration, and viscosity 

of the surrounding medium. Endocytic processes can be vectored by a number of biological 

processes, but can be enhanced for QDs by functionalisation with endocytosis-promoting 

agents, from positively charged lipids to cell penetrating peptides. For QDs intended for 

biosensing, the major limitation of endocytosis-mediated uptake into cells is that the QD 

typically resides within a vesicle (termed an endosome), and is chemically isolated from the 

cell cytosol.[87] QDs tend to remain aggregated within the endosomes, and their usefulness 

as a biosensor or label is likely to be compromised. Within the literature discussing QD 

biosensors, there is also unfortunately often limited discussion of the fate of the QDs within 

the cell, and limited evidence that QDs imaged within the cell truly are within the chemical 

environments in which they are purported to be.[88, 89]  

Some polymeric transfection reagents, such as PEI (polyethylenimine) are proposed to allow 

endosomal escape by the “proton-sponge effect”; these polymers are effective buffers and 

can counteract the usual drop in pH experienced during endocytosis. Un-protonated amines 

can absorb protons as they enter the endosome, preventing the reduction in pH. To 

counteract this, the number of protons pumped into the endosomes is increased, which 

eventually results in a greatly imbalanced salt gradient (particularly with respect to Cl- ions) 

and subsequent osmotic lysis of the endosome.[90]  

To avoid the problems posed by endocytosis for biosensing QDs, there has been a 

development in efforts to achieve non-endocytic uptake of QDs. Most of these technologies 

involve inducing the formation of holes or pores in the cell membrane (poration), allowing 

non-specific diffusion of functionalised QDs into the cell interior. Sonoporation and 

electroporation trigger poration of the membrane from cavitation of ultrasound-generated 

microbubbles near the cell membrane and high-frequency electric fields respectively, and 

typically do not have a greatly adverse effect on the viability of the cells; use on QDs is 

developing but these techniques are widely used for achieving non-specific uptake of small 

molecules.[91, 92] Microinjection, where cells are individually injected with small volumes 

of QD solution, allows guaranteed delivery of QDs to the cytosol at the cost of very low 

throughput.[89, 93]  
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1.7 Current QD Redox Sensors 

The majority of QDs biosensors operate on a fluorimetric principle, whereby either the 

photoluminescent emission intensity or lifetime is altered depending on the state of a 

sensing moiety of some molecule close or attached to the surface. It is therefore a necessity 

that there is some interaction between any photogenerated exciton within the quantum dot 

and the sensing moiety, and that this interaction is modified (ideally reversibly switched) 

depending some interaction between the sensing moiety and the intended analyte. Most 

redox-sensing and pH-sensing QDs operate on the principle of quenching of luminescence 

depending on the chemical state of the sensing moiety, either by Förster resonance energy 

transfer (FRET) or photo-induced charge transfer, which most commonly involves transfer of 

the excited electron to an external acceptor.[27] A typical QD sensor will consist of a QD, the 

sensing moiety, and a “linker” which connects the two. This linker may be formed by the use 

of bioconjugate techniques, such as by exploitation of the affinity of biotin and streptavidin, 

or by a simple alkyl chain. 

FRET is a non-emissive energy transfer process whereby an excited fluorophore (termed the 

donor) loses energy associated with its excitation by transfer to an acceptor, which can be 

fluorescent or non-fluorescent itself. This occurs over short distances when the emission 

spectrum of the donor has overlap with the absorption spectrum of the acceptor. The energy 

transfer does not involve the emission and re-absorption of a photon, but occurs via a dipole-

dipole interaction between donor and acceptor.[64] The efficiency of a FRET process scales 

with the inverse sixth power of the separation between donor and acceptor, and therefore 

is often termed a “spectroscopic ruler” due to the sensitivity this affords.[94]  

While FRET between QDs and molecular dyes has been understood and achieved since soon 

after high quality photoluminescent colloidal QDs were first synthesised, development of the 

first applicable  biosensors operating on this principle took until the mid-2000s. A 

breakthrough came in 2003, when Medintz et al reported a competitive binding assay for 

sugars based on QDs self-assembled with maltose binding protein. Adding β-cyclodextrin-

QSY9, a dye-conjugated sugar, served to quench QD luminescence via non-emissive FRET. 

Addition of maltose competitively inhibited the binding of β-cyclodextrin-QSY9, resulting in 

the recovery of luminescence.[95] A particularly elegant early example of a FRET-based redox 

biosensor is that by Freeman and Willner, who developed an NADH-sensitive probe 

consisting of a CdSe/ZnS core shell QD conjugated with the dye Nile blue. Before addition of 

NADH, photoluminescence of the QDs was largely quenched due to non-emissive FRET to 
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the conjugated Nile blue. Upon addition of NADH to an aqueous solution of these QDs, the 

Nile blue was reduced along with NADH oxidation and fluorescence was seen to recover. The 

same QDs were then shown to be sensitive to the activity of alcohol dehydrogenase in the 

oxidative breakdown of ethanol.[96]  

Charge-transfer (CT) based sensors are distinct from FRET-based sensors in that the 

depopulation of excited states involved in photoluminescence is achieved by removal of the 

excited electron or hole, and not by energy transfer between charge carriers. This has a 

number of consequences for the properties of such sensors. The dependence on distance for 

electron transfer between QDs and is exponential, which means acceptors must still be near 

the QD, however at relevant distances this dependence is not as steep as the distance 

dependence for FRET sensors.[28] Compared to FRET based systems, there is a wide library 

of useful acceptors that do not exhibit their own fluorescence. For FRET acceptors that do 

exhibit their own fluorescence, the signals from donor an acceptor must be deconvolved 

from one another to find the FRET efficiency, which is not necessary in charge transfer 

systems where the electron transfer is typically measured by observing the degree of 

quenching. Another advantage is the possibility of using QDs of different emission 

wavelengths with the same acceptor, as there is no requirement for matching of emission 

and excitation. Both of these properties allow for multiplexing of a number of different QDs 

which can be excited at the same wavelength. Despite the above, studies on CT-based QDs 

biosensors are less numerous than on FRET-based systems. This is likely due to the simplicity 

involved in pairing a particular QD and FRET acceptor; initially these can usually simply be 

chosen on the basis of spectral overlap. Furthermore, the numerous possible processes 

involved in any transfer event, along with sometimes conflicting results for some systems 

(examples being QDs with ferrocene and dopamine, discussed later) make their study more 

difficult.[97-99] 

There are many ways of exploiting the charge transfer from an excited QD to an acceptor (or 

vice versa) for the purposes of sensing, however the most notable strategies are: 

1) Measuring the change in transfer efficiency, and in turn the degree of quenching as 

the acceptor/donor undergoes a conformational change, increasing or decreasing 

the transfer distance. 

2) Measuring association or dissociation of the acceptor/donor from the QD surface 

through the degree of quenching. This can involve reversible or non-reversible 

processes in either direction. 



43 
 
 

3) Changing the redox state of the acceptor, allowing or disallowing transfer of an 

electron or hole. For these QDs, the acceptor is usually attached to the surface of the 

QD by some sort of molecular “linker”. 

Since approximately 2005 the literature on charge-transfer-based QD biosensors has 

increased dramatically. Sandros et al published a number of studies on probes of the first 

type in the list above, for detection of sugars.[100, 101] These represented some of the first 

applicable CT probes, and involved quenching of the QDs by charge transfer from a 

ruthenium complex linked to the surface by maltose binding protein (MBP) which binds a 

number of sugars with varying affinity. A binding event of a sugar to the MBP resulted in a 

conformational change which increased the charge transfer distance, reducing the 

quenching from approximately 22% to almost zero. This PL-quenching charge transfer event 

was suggested to be electron transfer from the ruthenium complex to the QD valence band. 

A later study by the same group extended the concept for detection of low concentrations 

of lead in solution,[102] however this technology is not limited to conformational changes in 

proteins; other small molecules such as nucleic acids have also been used to achieve change 

in the charge transfer distance.[103] 

For sensors in the second type in the above list the literature is much broader, and similar 

strategies have been used for both FRET and charge transfer (CT)-based probes. The simplest 

cases involve attaching some quencher with a “linker” that is cleavable by the desired 

analyte, freeing the quencher and increasing the photoluminescence. CT-based systems that 

use this strategy started with work by Mattoussi et al, who again used PL-quenching 

ruthenium complexes, this time conjugated to QDs of varying emissive properties by 

carefully chosen peptides. These peptides were selected as they are digestible by thrombin 

and chymotrypsin, enzymes involved in blood coagulation and digestion respectively. Adding 

these enzymes resulted in the recovery of PL from approximately 80% quenched, due to the 

digestion of the peptides and subsequent separation the QD and acceptor. This results in a 

probe that is useful for measuring enzyme velocity and reactivity, but can also be adapted 

for more in-depth studies of enzyme inhibition.[104] A separate ground-breaking 

development came with the work of Raymo et al in 2006, using the famous biotin-

streptavidin binding interaction as their model system. Biotinylated cationic electron 

acceptors based on methyl viologen were electrostatically immobilised on the surface of the 

negatively-charged QD, resulting in efficient quenching of the PL. Addition of streptavidin, 

which binds tightly to biotin, disrupted the electrostatic attraction between QD and acceptor, 

and resulted in recovery in the PL as the methyl viologen dissociated.[105] 
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More recently, focus has been on systems of the third type in the above list, which involve 

changing the redox state of a bound electron or hole acceptor (or electron donor) ligand to 

energetically allow or disallow any particular transition. If the reduction potential of this 

ligand is chosen carefully, it can allow fluorimetric redox sensing in a regime useful for 

biology. It is these systems in particular that are the subject of this thesis.  

An early study of particles of this type was from the Nadeau group, who in 2006 measured 

the variation in PL of dopamine-conjugated CdSe/ZnS core shell QDs within cells, as the 

reducing environment within the cell was changed via biological means. In this study, more 

oxidising conditions resulted in higher luminescence, particularly in cells expressing high 

levels of dopamine receptors. The quenching was attributed to hole trapping by the reduced 

dopamine.[99] Since then, dopamine-conjugated QDs continue to be widely studied; in 2010, 

Mattoussi et al reported a similar dopamine-conjugated CdSe/ZnS system which exhibited 

redox sensitivity in the opposite sense. In this case, reducing QD-bound dopamine disallowed 

transfer of an excited electron from the QD to the dopamine, and resulted in an increase in 

PL. The pH-dependent nature[106] of the reduction potential of dopamine was then 

exploited to produce a charge-transfer coupled pH sensor, which was applied for pH sensing 

within biological cells.[98] Dopamine is an ideal choice as a sensing moiety for these 

biosensors, as it has a reduction potential that is biologically relevant; it participates in redox 

reactions in its numerous roles in biology.[107, 108] In order to design other QD biosensors 

of this type, it is therefore often useful to take inspiration from other biologically-relevant 

redox pairs.  

Nicotinamide adenine dinucleotide (NAD) is one of these compounds; it is a coenzyme found 

in all living cells and is involved in a number of steps in the metabolic pathway, as well as 

other reactions. It is principally involved in electron transfer, and therefore exists in two 

forms; the oxidised NAD+, and the reduced NADH. One example of a biochemical process in 

which NAD is involved is the conversion of alcohols into aldehydes via alcohol dehydrogenase 

(alc-DH) enzymes, via reduction of NAD+ into NADH. In yeasts and bacteria involved in 

fermentation, alc-DH enzymes operate in the opposite sense, producing alcohols and 

oxidising NADH into NAD+. Willner and Freeman have exploited this biological relevance to 

develop high quality biosensors for NADH/NAD+-dependent enzymes. In this case, NAD was 

conjugated to CdSe/ZnS core/shell QDs, and the PL was dependent on the redox state of the 

NAD in the same sense as described before; the oxidised NAD+ is an electron acceptor, and 

is therefore capable of quenching PL due to electron transfer from the excited QD. The 

resulting probes were able to follow in vitro the activity of the alc-DH in the breakdown of 
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ethanol. The probes were then used for the detection of the explosive RDX in a similar 

manner.[109]  

Coenzyme Q10 (CoQ10, also known as ubiquinone) is another important metabolic coenzyme, 

most importantly involved in aerobic cellular respiration.[110] It exists in three forms: fully 

oxidised, semi-reduced (an unstable intermediate), and fully reduced. These forms are 

known as ubiquinone, semiubiquinone, and ubiquinol repectively, and are illustrated in 

figure 10. This important property allows ubiquinone to act both as a single- and double 

electron carrier when involved in redox reactions. The Long group published a study of 

ubiquinone derivatives conjugated to CdTe/ZnS QDs. The QD conjugates exhibited redox-

sensitive fluorescence, again due to an electron transfer from the excited QD to the oxidised 

ubiquinone derivatives (QnNS), resulting in quenching. This quenching was prevented by 

chemical reduction of the quinones. Using spectroelectrochemical measurement 

techniques, the dependence of the PL on the redox state of the attached quinones was 

investigated; it was possible to relate the redox state of the quinones as determined by cyclic 

voltammetry to the PL emission of the QDs. Another important result in this work was the 

investigation of the distance-dependence of the PL-quenching electron transfer; quinone 

molecules with shorter “linker” units exhibited more efficient quenching due to increased 

electron transfer probability. The QDs were then used to measure the concentration 

dependence of the oxidation of NADH to NAD+ by NADH dehydrogenase; the electrons from 

the oxidation of NADH are accepted by the QD-bound quinone, and the PL of the QD sensors 

increases as electron transfer to the quinones is disallowed. Within cells, the QD sensors 

were shown to be sensitive to the concentration of oxygen radicals, suggesting this 

technology could be used to assess the degree of damage by reactive oxygen species (ROS) 

in cells in various degree states.[111] In a later study, they moved to a different ubiquinone 

analogue, again with the intention of mimicking its behaviour within the cell, this time 

measuring reduction achieved by the enzyme complex I, an NADH dehydrogenase specific to 

ubiquinone. Within SH-SY5Y cells (a human neuroblastoma cell line) these QD probes were 

then shown to be reduced by complex I, switching “on” the PL, allowing visualisation of the 

spatial distribution of complex I within the cell.[112] 
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Figure 10. Ubiquinone (left) semiubiquione (centre) and ubiquinol (right). These are the fully 

oxidised, unstable intermediate, and fully reduced states of the electron-transporting 

cofactor coenzyme Q10. 

1.8 Scope for Further Research and Chapter Overview 

The majority of research mentioned above has focussed on developing various sensing 

strategies, with regards to investigation of their chemical or biological function. There is still 

very limited literature discussing the importance of the excited state dynamics of the QD-

acceptor system, and how these properties can be affected by the choice of the QD used. 

Most current QD-acceptor redox sensors are based on CdSe/ZnS or other type-I core/shell 

QDs, which do not typically offer efficient charge extraction, due to the location of the 

exciton within the core. There is therefore scope for further research into the mechanisms 

of charge transfer in QD-acceptor systems, especially for type-II, or quasi-type-II systems 

which may display greater charge extraction efficiency, and therefore greater sensitivity.  

A general problem limiting the application of QDs in bioimaging and biosensing is their 

toxicity; especially for the most common or well-characterised QD types (typically Cd-based 

QDs). Particularly for redox sensing, where it is desirable to perform long-timescale 

experiments, it is desirable to have a QD that has little or no toxicity, and limited effects on 

biochemical processes of the cell. As mentioned above, CuInS2/ZnS QDs have been posited 

as an excellent alternative QD due to their reduced toxicity, however, their excited state 

dynamics are poorly understood, and synthetic techniques that allow CuInS2/ZnS in the 

aqueous phase without polymer encapsulation are not optimised.[49, 74, 113] A better 

understanding of the mechanisms of photoluminescence of these QDs is therefore required 

to understand and optimise charge extraction.  

The experiments reported in Chapters 3, 4 and 5 of this thesis attempt to address these gaps 

in the literature. Chapter 3 details a study of the internal structural properties of CuInS2/ZnS 

and CuInS2 QDs and how they relate to the optical properties, with a view to improving their 

usefulness for biosensing. 
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In Chapter 4, a QD redox sensor based on quasi-type-II CdTe/CdS core/shell QDs, and the 

ubiquinone-derivative electron acceptor molecule Q2NS, is synthesised and characterised 

with a view to improve the understanding of the excited state dynamics of such a type-II 

QD/acceptor system. Chapter 5 discusses the application of these probes to live cell 

experiments. 
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2 Experimental Procedures 

2.1 Synthesis of QDs 

Two main QD types were synthesised; CdTe and CdTe/CdS core and core/shell QDs were 

synthesised via aqueous methods, stabilised by short charged organic thiol ligands 

(cysteamine, for an amine surface, and thioglycolic acid, for a carboxylic acid surface). These 

QDs were later used for most of the redox experiments. Also synthesised were CuInS2 and 

CuInS2/ZnS core and core/shell QDs, stabilised in hydrophobic organic solvents by 

dodecanethiol. These are candidates for less toxic QDs for bioimaging applications. 

2.1.1 Thioglycolic acid-stabilised CdTe QDs 

Zinc-blende CdTe/CdS core/shell quantum dots were synthesised via modification of 

literature methods.[78, 114] QDs suitable for redox sensing in live cells must be hydrophilic. 

In order to maximise charge transfer efficiency, the acceptor must be as close to the QD as 

possible, so phase transfer by polymer encapsulation is not ideal. The following synthesis 

procedure was chosen as it achieves stable, highly luminescent QDs that are dispersible in 

the aqueous phase, and does not involve a potentially difficult ligand exchange. 

Typically, cadmium chlorate hexahydrate was dissolved in 50-100 ml ultra-pure water at a 

concentration of approximately 50 mM. Thioglycolic acid (TGA) was then added to the 

solution to achieve a TGA:Cd2+ ratio of 1.4, resulting in the formation of insoluble Cd2+-

thiolate complexes which cause the solution to become cloudy. The pH was then adjusted to 

11.2-11.6 by careful dropwise addition of 1 M aqueous sodium hydroxide (NaOH). The 

increased pH serves to deprotonate the TGA so that the Cd2+-TGA complexes are rendered 

soluble, and a clear, colourless solution is obtained. This solution was decanted into a three-

necked flask, placed in a cool heating mantle, and attached to a reflux column within a fume 

hood. In a separate flask, lumps of aluminium telluride (Al2Te3 0.2-0.4 g) were added, and 

connected with and a supply of oxygen free N2 gas such that the gas bubbled through the 

Cd2+-TGA solution, as illustrated in figure 11. The aim of this step is to remove as much oxygen 

from the solution as possible; excess oxygen can cause oxidation of the CdTe and poor quality 

QDs. After an hour, around 10 ml 0.5 M degassed sulphuric acid was added to the flask 

containing the Al2Te3 lumps, resulting in the evolution of H2Te gas, which travels with the N2 

flow into the main flask. CdTe precursor complexes are seen in the main flask as the solution 

turns a dark yellow/orange colour. After approximately 2 minutes, the gas flow is stopped, 

and the mixture is heated and stirred under reflux at 100 °C. An N2 atmosphere at positive 

pressure was achieved using an oil bubbler. A disadvantage of this synthesis method is that 
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it is difficult to precisely control the amount of tellurium that ends up dissolved in the 

reaction mixture; it is expected that there is therefore an excess of cadmium precursor 

present, and the tellurium deficit limits the size of the QDs. This is exploited in the shell 

growth step, where the excess cadmium is used to grow a CdS shell. 

 

Figure 11. Schematics of equipment for synthesis of CdTe QDs. a) Apparatus during 

degassing of solution. Nitrogen is bubbled through the solution to remove oxygen. b) H2SO4 

is added to the flask containing Al2Te£ lumps, and H2Te gas that is evolved bubbles through 

the Cd2+-TGA solution forming coloured CdTe complexes. c) The resulting precursor solution 

is heated under reflux, resulting in nucleation and growth of CdTe QDs. 

Once the QDs have reached the desired size, the growth is stopped by quickly cooling the 

reaction vessel by immersion in a room-temperature water bath. The solution turns from 

yellow-orange to deep red as the QDs nucleate and grow. The colour darkens with increased 

heating time as the QDs grow larger, and the absorption shifts further towards the red. Using 

this method, CdTe core QDs with emission wavelengths of approximately 520-650 nm can 

be achieved, with QD diameters from 1.8-6 nm, with growth times ranging from 2 minutes 

to 3 days.  

In order to grow a CdS shell, an amount of thiourea sufficient to achieve a Cd:S ratio of 

between 1 and 3 was dissolved in a small amount (2-5 ml) ultra-pure water.  This solution 

was added to the CdTe-TGA core QD solution, and the pH was readjusted to 11.2-11.6 to 

ensure colloidal stability. The solution was then refluxed at 100 °C for 1-2 hours, then 

stopped by immersion of the flask into a room-temperature water bath. This method relies 

on the presence of excess Cd-TGA precursor complexes in solution. 
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Figure 12. Size series of TGA-capped CdTe QDs, showing range of PL emission from green to 

red, achieved by varying the reaction time from 5 min (left, green) to 2 days (right). 

2.1.2 Cysteamine-stabilised CdTe QDs 

Positively charged, cysteamine-stabilised QDs were synthesised by the above method, with 

slight adaptations; thioglycolic acid was replaced with an equivalent amount of cysteamine 

hydrochloride, and the pH was instead adjusted to 5.5-5.9 to ensure colloidal stability.  

 

Figure 13. Scheme of surface capping strategies for CdTe/CdS QDs. TGA-capped QDs (left) 

have negative surface charge due to de-protonation of TGA, whereas cysteamine-capped 

QDs display positive charge due to protonation of the amine group in cysteamine. 

2.1.3 CuInS2 and CuInS2/ZnS QDs 

CuInS2 core and CuInS2/ZnS core/shell quantum dots were synthesised by a solvothermal 

method in octadecene (ODE).[39, 40] Typically, copper iodide (0.25 mmol) and indium 

acetate (0.25 mmol) were weighed into a three-necked flask, followed by 6 ml ODE and 4 ml 

dodecanethiol (DDT). The DDT exists in vast molar excess with respect to the copper and 

indium precursors, and acts both as a source of sulphur and a stabilising ligand for the 

resulting QDs. The mixture was then stirred under a protective argon atmosphere for 1-2 

hours to remove oxygen. The temperature was then raised to 120 °C and monitored by 

means of a thermometer immersed in the reaction solution. The reaction mixture then 

changed from cloudy to a clear yellow colour as the powder metal precursors dissolve. The 

temperature was then raised to 180 °C, where nucleation of nanoparticles was indicated by 

the presence of a deep red colour. As the reaction progresses, the colour becomes darker, 
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and becomes nearly black after about 30 mins, indicating large nanoparticles which absorb 

across the visible spectrum. For the QDs discussed in this thesis, the reaction was stopped 

after 30 mins by rapidly cooling the flask by submerging in a room-temperature water bath. 

If the synthesised cores were to be used for the growth of CuInS2/ZnS core/shell QDs, the 

solution was cooled to approximately 100 °C to arrest growth, otherwise the solution was 

allowed to cool to room temperature.   

The shell growth step follows a similar mechanism to the growth of the cores; the DDT acts 

as both a sulphur source and as a stabilising ligand for the resultant core/shell QDs. For 

addition of a ZnS shell to the CuInS2 QDs, an amount of zinc stearate, sufficient to achieve a 

Cu:Zn ratio of 1:2 was added to a mixture of 1 ml ODE and 1 ml DDT. This solution was 

degassed under argon for 1 hour, and then heated to 100 °C and stirred, until the zinc 

stearate powder was seen to dissolve. This ZnS precursor solution was then added to the 

still-warm CuInS2 core solution, which was subsequently refluxed at 180 °C for 1 hour. The 

growth is then stopped by quickly cooling the reaction vessel by immersion in a room-

temperature water bath. 

 

Figure 14. Apparatus for synthesis of CuInS2 core and CuInS2/ZnS core/shell QDs. The growth 

solution is heated in a temperature-controlled three-necked flask attached to a reflux 

condenser. 

2.1.4 Cleaning of QD dispersions 

After growth of the QDs has ceased, the QDs are suspended in an impure solution containing 

unreacted precursor materials and their by-products from pyrolysis. In the case of those QDs 
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synthesised in the aqueous phase, this solution will likely have a high salt concentration, 

incompatible with long-term stability of the QDs. The QDs were therefore purified by 

precipitation, then solvent extraction of impurities. 

For the CdTe/CdS and CdTe QDs, the crude QD solution was diluted with a ten-fold excess of 

propan-2-ol at room temperature. This provides a solvent mixture in which the QDs will 

precipitate, but reaction by-products will still be dissolved. After 1 minute, the QDs were 

seen to precipitate as the solution became cloudy. The solution was then centrifuged for 10 

minutes at 400 g in order to pellet the QDs. The supernatant containing impurities was 

discarded, and the QDs were resuspended in the minimum possible ultra-pure water (2-5 

ml). The above procedure was repeated a further three times, and the QDs were suspended 

in ultra-pure water at a concentration of 5-10 µM for storage. Some of the QDs were then 

further cleaned by dialysis: the QD dispersions were decanted into regenerated cellulose 

membrane dialysis tubing (10 kDa) and sealed in volumes of 5-10 ml. The tubes were then 

dialysed in 2 l ultra-pure water for 24 hours.  

Cleaning procedures were similar for the hydrophobic CuInS2/ZnS and CuInS2 QDs; the crude 

solution was diluted ten-fold by a 10:1:1 acetone:chloroform:methanol mixture to 

precipitate the QDs, which were pelleted by centrifugation at 400 g. The supernatant was 

discarded, and the QDs were resuspended in the minimum possible volume of chloroform. 

Subsequent precipitation and centrifugation steps were performed by addition of enough 

methanol and acetone to preserve the 10:1:1 acetone:chloroform:methanol ratio. Similar 

dialysis procedures to those above were also followed; the same membranes were used, but 

chloroform was used as the dialysis medium. 

2.2 Synthesis of Electron Acceptor Ligands 

The quinone molecule Q2NS, initially described by Long et al, was used for the majority of 

the redox experiments. Q2NS consists of a quinone “head” group, which acts as the electron 

acceptor in charge transfer from QDs, conjugated via “click” chemistry to a disulphide 

“linker”. Reduction of this disulphide bond allows thiolate bonds to form between the 

sulphur of the Q2NS and the cadmium ions on the CdS surface of the QDs. 
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Figure 15. Synthesis route of electron acceptor Q2NS. 

The synthesis method was adapted from that published by Long et al.[112] A modification 

was made to avoid isolation of any small azide compounds, which are potentially explosive; 

bis-(2-azidoethyl)-disulphide was synthesised by the method of Zhang et al.[115] The 

reaction involves concatenation of alkyne-terminated quinone 3 to an azide-terminated 

disulphide linker via azide-alkyne Huisgen cycloaddition, a highly facile, high yield, copper 

catalysed conjugation strategy.[116] The resultant Q2NS was characterised by nuclear 

magnetic resonance (NMR) and high-performance liquid column-mass spectrometry (LC-

MS). Full synthesis details are provided below.    

[2,3-Dimethoxy-5-methyl-6-(2-propyn-1-ylamino)-2,5-cyclohexadiene-1,4-dione] 3. To a 

stirred solution of 2,3-dimethoxy-5-methyl-p-benzoquinone 1 (1.82 g, 10 mmol, 2 equiv) in 

methanol (MeOH) (5 ml), a solution of propargylamine 2 (0.28 g, 5 mmol, 1 equiv) in MeOH 

(10 ml) was added dropwise over 10 min. The resulting solution was stirred at room 

temperature under atmospheric conditions for three hours, then diluted with water (50 ml) 

and extracted with ethyl acetate (3 x 5 ml). The combined organic layers were washed with 

brine (20 ml) and dried over MgSO4. Flash column chromatography was used to isolate 3 as 

a purple solid (0.49 g, 2.1 mmol, 21%). 1H NMR (400 MHz, CD3OD) δ (ppm) 4.22 (2H, s) 4.02 

(3H, s) 3.83 (3H, s) 2.72 (1H, t) 1.95 (3H, s) 

Q2NS 6. Concentrated HBr (45% wt, 15 ml) was added dropwise to concentrated H2SO4 (10 

ml) at 0°C. To this mixture, bis-(2-hydroxyethyl) disulphide 4 (0.15 g, 1 mmol) was added 

dropwise. The reaction mixture was stirred for 24 hours at room temperature. Then, the 

reaction mixture was extracted with dichloromethane (3 x 5 ml). The combined organic 

layers were washed with water (3 x 20 ml), brine (20 ml), and dried over MgSO4. The solution 

was concentrated in vacuo to give bis-(2-bromoethyl) disulphide 5 as a yellow oil (0.24g, 0.87 

mmol, 87%). 1H NMR (400 MHz, CDCl3) δ (ppm) 3.63 (4H, t) 3.12 (4H, t) 
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Without further purification, this oil was dissolved in dry dimethylformamide (DMF, 5 ml) 

under an atmosphere of dry nitrogen, followed by addition of sodium azide (0.28 g, 4.35 

mmol, 5 equiv). The reaction mixture was stirred under reflux at 80 °C for 14 hours. Then, 

the reaction mixture was diluted with ultrapure water (50 ml) and extracted with diethyl 

ether (5 x 10 ml). The combined organic layers were washed with water (5 x 50 ml) to remove 

DMF, then washed with brine (20 ml) and dried over MgSO4. DMSO (1 ml) was added before 

removing the diethyl ether in vacuo; this avoids isolating the potentially explosive bis-(2-

azidoethyl) disulphide, the resulting solution of which was used without further purification. 

This solution was combined with a solution of 2,3-Dimethoxy-5-methyl-6-(2-propyn-1-

ylamino)-2,5-cyclohexadiene-1,4-dione] 3 in DMSO (0.5 ml). Separately, a solution of copper 

(II) sulfate (8 mg, 0.05 mmol) and tris(benzyltriazolylmethyl)amine (TBTA; 26 mg, 0.05 mmol) 

in DMSO (0.5ml) was prepared and added to a solution of sodium ascorbate (0.4 g, 2 mmol) 

in ultrapure water (1 ml). The solutions were mixed, and the reaction mixture was stirred for 

1 hour at room temperature. Then, the reaction mixture was diluted with ultrapure water 

(30 ml) and extracted with ethyl acetate (3 x 5 ml). The combined organic layers were washed 

with brine (20 ml), dried over MgSO4, and concentrated in vacuo. Q2NS 6 was purified from 

the crude reaction mixture using mass-directed high-performance liquid chromatography 

(HPLC) to give Q2NS 6 as a purple solid (52 mg, 0.08 mmol, 10% from 5). 1H NMR (400 MHz, 

CD3OD) δ (ppm) 7.91 (2H, s) 4.63 (4H, t) 4.22 (4H, s) 4.04 (6H, s) 3.86 (6H, s) 3.18 (4H, t) 2.05 

(6H, s).  13C NMR (100 MHz, CD3OD) δ (ppm) 182.6 (2C) 182.2 (2C) 147.6 (2C) 142.8 (2C) 142.1 

(2C) 139.7 (2C) 124.1 (2C) 109.6 (2C) 61.8 (2C) 52.3 (2C) 38.4 (2C) 38.2 (2C) 10.6 (2C). 

Post-synthesis, the Q2NS was dissolved in methanol and distributed into weighed glass vials, 

before the solvent was evaporated, leaving aliquots of 2-10 mg of Q2NS per vial. The vials 

were then stored in the dark at -80 °C. Full proton NMR spectra are shown in the appendix 

9.1. 
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Figure 16. Top: LC-MS trace of purified Q2NS. The peak labelled “1” corresponds to the 

detection of ions as they are eluted from the column. Bottom: Positive (left) and negative 

(right) electrospray ionisation mass spectra of integrated peak “1”. The peaks labelled “1+” 

and “2+” represent m/z of singly and doubly-protonated Q2NS. 

2.3 Ligand Exchange Procedure 

The disulphide group present in the structure of Q2NS makes it suitable for conjugation to 

CdTe/CdS core/shell QDs via formation of a thiolate complex to the QDs surface, after 

cleavage of the disulphide bond. Briefly, aliquots of Q2NS were dissolved in a small amount 

of DMSO (10-100 µl). The CdTe/CdS QD solution was degassed by sonication under vacuum, 

filtered, and stored in an oxygen-free glove box in 4 ml aliquots at a concentration of 1µM. 

A small amount (0.1-10 µl) of the Q2NS DMSO solution was added to each aliquot, and the 

solutions were left stirring in the dark, under N2, overnight. The resultant conjugates were 

then cleaned twice via centrifugation after dilution with excess propan-2-ol, and 

resuspended in ultrapure water. Success of the ligand exchange was ascertained by 

measuring the absorbance spectrum of the supernatant after cleaning for traces of unbound 

Q2NS. 

2.4 Optical Spectroscopy 

Optical spectroscopy techniques are those which involve measuring the interactions 

between light and matter, including absorption, photoluminescent emission and reflection, 

and dependent on factors such as polarisation, wavelength, and intensity, among others. It 

is obvious, therefore, that optical spectroscopy techniques are critical for the 

characterisation of systems involving QDs. Ultra-fast spectroscopic techniques such as PL 

lifetime and transient absorption (TA) spectroscopy allow for precise interrogation of excited 
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state dynamics in optical systems, and time resolved spectroscopic techniques are useful for 

the measurement of their emergent properties, including photoluminescent quantum yield 

(PLQY) and absorption spectra.   

2.4.1 Steady State Photoluminescence Spectroscopy  

Photoluminescence (PL) or fluorescence spectroscopy is the measurement of the properties 

of photoluminescent emission, and the excitation that leads to this emission. This is distinct 

from being a measurement of excitation in general. In a typical steady state PL spectroscopy 

experiment, a sample in a quartz or plastic cuvette is continuously illuminated with a 

collimated beam of unpolarised light, with wavelength controlled by a monochromator. A 

separate monochromator is used to collect the light that is emitted from the illuminated 

sample. To account for fluctuations in the intensity of the excitation, as well as wavelength-

dependent intensity in an imperfect light source, a reference signal is also measured directly 

from the excitation. 

PL scans can be obtained in two domains:  

1) PL emission spectroscopy, where the excitation wavelength is kept constant, and the 

emission intensity of the sample as a function of wavelength is recorded. The 

resulting spectrum is known as the emission spectrum. 

2) PL excitation spectroscopy, where the emission monochromator is maintained to 

measure the emission intensity at a fixed wavelength, while the excitation 

wavelength is varied (holding the intensity at a fixed value). The spectrum 

maintained is known as the excitation spectrum of the sample.  

These scanning regimes can be combined to obtain 2D spectra of excitation vs emission. PL 

spectra were acquired for this work on an Edinburgh Instruments FLS 980 spectrometer with 

double excitation and emission monochromators. Constant temperature was maintained 

and controlled using a liquid Peltier cooler/resistance heater system. 
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Figure 17. Schematic of Edinburgh Instruments FLS 980 spectrometer system, in steady 

state PL mode. Excitation of the sample is achieved using a doubly monochromated halogen 

light source. Emission is measured by monochromators leading to a switchable PMT-900 

photomultiplier detector. Image adapted from Edinburgh Instruments FLS 980 manual. 

2.4.2 PLQY Determination with Integrating Sphere 

For a photoluminescent sample, the photoluminescent quantum yield (PLQY), is defined as 

the number of photons emitted via photoluminescence as a proportion of the number of 

photons absorbed, and is usually expressed as a percentage. Depending on the QD type, and 

the presence, or otherwise, of non-radiative recombination paths, values of PLQY for QDs 

can range from ~4% to almost unity.[39, 117] In order to accurately evaluate the PLQY for a 

particular sample, it is important to be able to accurately measure both the absorption of 

photons by a sample as well as emission. 

An integrating sphere consists of a hollow spherical cavity, with all internal surfaces coloured 

in a reflective, diffuse, white coating. Small ports in the sphere allow light to be directed into 

and collected from the sphere. The sample that is to be investigated is placed within the 

sphere, in a non-absorbing cuvette or holder. Any light that enters the sphere will be 

scattered in a diffuse fashion around the inside of the sphere, preserving intensity but 

destroying any spatial information; the light within a sphere of sufficiently high quality will 

be of roughly equal intensity at all points within the sphere. Entry and exit ports are 

separated by a baffle, to prevent light immediately exiting the sphere without being diffused. 

In order to measure PLQY of a photoluminescent sample, light of a wavelength sufficient to 

excite the sample is directed into the sphere, and is collected, along with the light 
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subsequently emitted by the sample, at the exit port. The proportion of light absorbed by 

the sample can be ascertained by comparing intensities of the relevant wavelength at the 

exit port of the sphere, with and without the sample present. The number of photons 

absorbed is calculated by considering the frequency-energy relation 𝐸 = ℎ𝜈. This is 

compared to the number emitted by the sample, collected at the exit port to obtain the 

PLQY.  

Spectra were recorded for QDs dispersed in ultra-pure water and chloroform in sealed quartz 

cuvettes, using the aforementioned Edinburgh Instruments FLS 980 with integrating sphere 

attachment. PLQY was calculated from these spectra using FL980 software. 

 

Figure 18. Principle of operation of integrating sphere, for PLQY determination. Light 

emitted from the sample (red) as well excitation light that is not absorbed is reflected an 

arbitrary number of times within the volume of the sphere, before collection at the exit port. 

2.4.3 UV-Vis-NIR 

Ultra-violet/visible/near-Infra-red (UV-Vis-NIR) absorption spectroscopy describes steady-

state techniques used to measure how a given sample absorbs light as a function of 

wavelength. Many electronic transitions in QDs have energies in this range of the 

electromagnetic spectrum, so UV-Vis-NIR spectroscopy is ideal for interrogating the 

optoelectronic properties of QDs. Distinctly from PL excitation spectroscopy, UV-vis-NIR 

spectroscopy measures absorption by all excitation events, not only those that eventually 

result in radiative recombination. Importantly, a colloidal QD sample’s absorbance is 
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proportional to its concentration; if the molar extinction coefficient is known, then the molar 

concentration of a given sample of QDs can be ascertained via the Beer-Lambert law: 

𝐴 = 𝜀(𝜆)𝐶𝐿.     ( 25 ) 

Here, A is the absorbance, C is the molar concentration, L is the path length of the light 

through the sample and ε(λ) is the wavelength-dependent molar extinction coefficient. The 

molar extinction coefficient of a particular QD type is both size and material dependent, and 

can be estimated from features of both PL and UV-Vis-NIR absorbance spectra.[40, 118]  

Within a UV-Vis-NIR spectrometer, a beam of light of controlled wavelength divided in two 

by a beam splitter, with each part of the divided beam heading through a separate, identical 

cuvette, before the intensity is measured by photodetectors. Typically, only one cuvette 

contains the sample of interest; the other contains a “blank” which is the solvent or dispersal 

medium in which the sample of interest is dissolved or dispersed. If the path length of the 

beam through the cuvettes is known, the absorbance of the sample can be calculated by 

noting the difference in intensity between the intensity of the beam that has passed through 

the sample, and that which has passed through the blank. The subtraction can also be 

performed with a single beam by measuring the absorbance of the blank and then the 

sample (or vice versa) but this does not account for fluctuations in the intensity of the lamp 

light. An absorbance spectrum is generated by varying the wavelength of the light using a 

monochromator, and measuring the absorbance as a function of the wavelength. UV-Vis-NIR 

spectra were obtained using an Agilent Technologies Cary Series UV-Vis-NIR 

spectrophotometer.  
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Figure 19. Example UV-Vis (black) and PL emission (red) spectra for a typical sample of 

CdTe/CdS core/shell QDs. The first excitonic transition is visible in the UV-Vis spectrum at 

520 nm, and the emission wavelength of the sample is at 557 nm. 

2.4.4 PL Lifetime 

The advent of highly-controllable pulsed laser sources, as well as highly sensitive, time-

accurate photomultipliers has allowed for the development of useful time-resolved PL 

spectroscopy/ fluorescence lifetime spectroscopy. A typical lifetime experiment works on 

the principle of time-correlated single photon counting (TCSPC); the sample (in a cuvette) is 

illuminated with a short (~100 ps) pulse from a laser of relevant wavelength, resulting in 

excitation of the sample. The time between the pulse and the first detection of an emitted 

photon is then recorded, via photomultiplier and fast electronics, for a very large number of 

pulses, and plotted on a histogram. The experiment is stopped when the largest histogram 

bin reaches a sufficient, user defined value; when enough data is recorded, the frequency 

density of each histogram bin is proportional to the probability of detecting the first photon 

at the corresponding time after excitation. Immediately after photoexcitation, the maximum 

number of fluorophores (in this case QDs) are in the excited state, and so the probability of 

emission is at a maximum. After a certain amount of time, some excited states have 

depopulated, and so the probability decreases. The resulting plot is the emission intensity as 

a function of time after excitation, usually described by a sum of exponential decays: 
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𝐼 = 𝐴0 + ∑ 𝐴𝑖𝑒
−

𝑡

𝜏𝑖  𝑖     ( 26 ) 

Here, A0 is a constant which considers decay timescales longer than those measured in the 

experiment, τi are the time constants and Ai are the associated amplitudes. This contains a 

wealth of information about the excited state dynamics of the photoluminescent system; the 

time constant of the dominant process is known as the PL lifetime, and is the characteristic 

timescale that describes excited states that can lead to radiative recombination. In simple 

cases, it is possible to identify individual recombination processes or mechanisms by the 

assignment of different time constants, however in QDs, excited state dynamics are complex, 

and due to factors including size polydispersity, any given ensemble of QDs may have an 

arbitrarily large number of recombination processes. 

 

Figure 20. Typical transient PL trace for a sample of CdTe/CdS QDs. Immediately after 

excitation, PL intensity is at maximum. PL intensity decays with a multi-exponential time 

dependence as excited states are depopulated. 

 

In this work, transient PL spectra were obtained for CdTe/CdS QDs and CdTe/CdS-Q2NS 

conjugates using the aforementioned Edinburgh Instruments FLS 980. Typically, samples 

were prepared in ultra-pure water at 0.01-2 µM and sealed in a quartz cuvette under a 
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protective N2 atmosphere.  Excitation was achieved with an Edinburgh Instruments EPL 475 

diode laser emitting at 472.8 nm, with average pulse width of 79.5 ps. The pulse period was 

set to 200 ns and the average power incident on the sample was approximately 2 mW. TCSPC 

was performed on photons emitted at the PL peak, and the resulting data was analysed using 

Edinburgh Instruments PL980 software. The instrument response function (IRF) was 

obtained by measuring scattering from a dilute solution of milk and subtracted from 

obtained traces. 

2.4.5 Transient Absorption Spectroscopy 

The Pauli Exclusion Principle states that no two fermions can ever simultaneously occupy the 

same quantum state. In QDs, this means that no two electrons or holes can inhabit the same 

excited state at once; a QD that has been excited into the minimum-energy excited state will 

therefore be unable to absorb a photon whose energy corresponds to this transition. For an 

ensemble of similar QDs, the result of this is that a short time after excitation, the absorbance 

that corresponds to the minimum energy transition is decreased, as the population of 

electrons at the CBM is increased. As the CBM population decreases, through radiative 

recombination, or otherwise, the absorbance recovers.  

For QDs, transient absorption spectroscopy allows insight into excited state dynamics of QDs, 

typically with finer time-resolution than PL lifetime spectroscopy. TA experiments have 

another advantage over transient PL experiments, in that they are not only sensitive to 

electronic states which can result in radiative recombination. In a typical experiment, a 

sample of QDs is excited by a short pulse of light with photon energy sufficient to achieve 

excitation of electrons to an energy state higher than the CBM. This is known as the “pump” 

pulse. A short time later, a “probe” pulse of a specified wavelength is incident on the sample, 

and the absorption of this pulse by the sample is recorded. When the probe pulse 

corresponds to the minimum-energy transition, a characteristic behaviour is observed; 

absorbance quickly decreases after the “pump” pulse as electrons cool to the CBM. This is 

termed a “bleach” as states are no longer accessible. As these electrons recombine with 

holes, radiatively or otherwise, or are extracted from the QD, the absorbance recovers, due 

to the depopulation of the minimum energy electron state. Similarly to PL lifetime 

spectroscopy, this recovery can be fitted with a multi-exponential function, and time 

constants can be ascribed to specific processes that lead to depopulation of the minimum 

energy state. In this mode, TA spectroscopy is typically considered to be sensitive only to the 
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electron population at the CBM, as the cooling of holes to the VBM is much faster and cannot 

be resolved by current instrumentation. 

 

Figure 21. Typical absorption transient. Fractional absorbance by CdTe/CdS QDs at a 

wavelength consistent with the first excitation in QDs is plotted as a function of time after 

application of a “pump” pulse. Soon after excitation (1-2 ps) absorbance decreases, as 

electrons arrive at the CBM, having cooled from hot states. The subsequent multi-

exponential decay is due to depopulation of the CBM due to recombination processes. 

It is also possible to perform wavelength-resolved TA experiments, where the absorption at 

a fixed time point after the pump pulse is measured as a function of wavelength, allowing 

for time-resolved probing of states at varying energy levels after excitation. It is typical to 

choose a time point soon after excitation, where carrier population at the CBM is maximised. 

Such a plot of the pump-induced absorbance change is termed a TA spectrum, or bleach 

spectrum, and allows assessment of the degree of bleaching of states involved in radiative 

recombination. The time point at which bleach spectra are obtained can be varied to produce 

a 2-D spectrum.  
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Figure 22. Typical pump-induced absorbance change for the sample of QDs from figure 21. 

A short time after application of the pump pulse, absorption decreases as conduction band 

states are filled. The decrease in absorbance is greatest at approximately 530 nm, a 

wavelength that corresponds to the band edge excitation. 

 

Figure 23. Simplified schematic of TA spectroscopy setup. Control of time delay between 

pump and probe is achieved using a time-of-flight delay stage. 
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TA spectroscopy experiments were performed on CdTe/CdS QDs and CdTe/CdS-Q2NS 

conjugates. A Ti:sapphire laser was used to pump a Topas Prime optical parametric amplifier 

(OPA) to achieve pump pulses at 420, 450 and 480 nm (∼10 nm full width at half-maximum, 

100 fs, 250 nJ). The rest of the OPA output was passed through a sapphire crystal to generate 

a white light continuum which was used as the probe to record changes in absorption 

between 435 nm and 720 nm. Ultrafast broadband transient absorption measurements were 

carried out at randomly ordered time points in a Helios (Ultrafast Systems LLC) spectrometer 

(-20 ps to 3 ns, ∼0.2 ps resolution). The samples were magnetically stirred to avoid 

photocharging effects during the measurements and low pump fluences were used to 

decrease the probability of multi-photon absorption. The experimental setup is illustrated in 

figure 23. 

2.5 X-ray Crystallography 

The wavelengths of x-rays are similar to inter-atomic distances in ionic crystals. X-rays 

incident on a crystal are can reflect from atomic nuclei. Bragg’s law describes the condition 

of constructive interference of the reflected radiation from a crystal with lattice spacing d: 

𝑛𝜆 = 2𝑑 sin 𝜃.     ( 27 ) 

Here, λ is the wavelength of the incident x-rays, θ is the angle of incidence and n is the order 

of the interference peaks, an integer. For a known wavelength and controlled angle, it is 

therefore possible to determine the crystal lattice spacing in a given sample. A sample of QDs 

dried onto a substrate can be considered a powder, with a random and isotropic distribution 

of lattice orientations. As the number of QDs is large, it can be assumed that a significant 

number of lattices are orientated appropriately for acquisition of a diffraction spectrum; 

however to avoid the effects of potential anisotropic structure, the sample can be slowly 

rotated to sample all orientations. 

Diffraction peaks obtained from nanoparticle samples are subject to broadening that is 

dependent on the particle size, described by the Scherrer equation: 

𝑎 =  
𝜅𝜆

𝛽 cos 𝜃
          ( 28 ) 

Here, a is the nanoparticle size, β is the peak width, and κ is a unitless factor that accounts 

for the shape of the nanoparticle, which usually takes a value of about 0.9.[119] For roughly 
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monodisperse, monocrystalline QDs, the average size can therefore be estimated from x-ray 

diffraction spectra. 

X-ray spectra for this work were obtained for CuInS2 QDs using a P’Analytical X’Pert MPD 

Bragg-Brentano diffractometer, with a Cu kα1/kα2 radiation source (λ=0.15418 nm). Samples 

were prepared by repeatedly drop-casting solutions of QDs dispersed in chloroform onto a 

silicon zero-diffraction plate, and waiting for the solvent to evaporate, leaving a dry powder. 

Angle scans for values of 2θ from 15°-60° were performed over approximately 25 minutes 

with a 0.05° step size. Obtained spectra were compared with International Centre for 

Diffraction Data (ICDD) database values for chalcopyrite CuInS2.  

2.6 X-ray Photoelectron Spectroscopy 

The energy of x-ray photons is of the same order of magnitude as the energy by which 

electrons are electrostatically bound to atomic nuclei in many materials. The specific value 

of this binding energy will depend on the identity and chemical state of the element in 

question. X-ray photoelectron spectroscopy allows identification, quantification and 

characterisation of elements in a sample by determination of the binding energies of the 

electrons within a sample.  

An x-ray of energy hν incident on a sample has the chance to eject an electron; the kinetic 

energy of this ejected electron Ek can be related to the binding energy of the initial state Eb 

as follows: 

𝐸𝑏 = ℎ𝜈 − (𝜑 + 𝐸𝑘).          ( 29 ) 

In this expression, 𝜑 = 𝐸𝑣𝑎𝑐 − 𝐸𝐹 is the work function of the material, where Evac is the 

vacuum level, and EF is the Fermi energy. If the energy of incoming photons is accurately 

known, measurement of the energy of emitted electrons therefore allows for calculation of 

the binding energies of electrons within the sample. Auger processes also result in emission 

of electrons. Here, energy from higher-level valence electron moving into a vacated state is 

transferred to another electron, which is subsequently ejected. The energies of 

photoelectrons and Auger electrons alike can be compared with database values for 

identification of elements present in a sample; these elements can be quantified by 

application of appropriate sensitivity factors to measured photoelectron peaks.  

In this work, samples of QDs were prepared by drop casting QDs onto a template-stripped 

gold surface, before evaporation of the solvent. X-ray photoelectron spectra were obtained 

for Cd, Te, Cu, In, S, and C overnight, depending on the QD type. The positions of 
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photoelectron peaks were calibrated to the position of the C1s peak. Peaks were fitted and 

used for determination of particle stoichiometry using Thermo Scientific Avantage software 

using Scofields relative sensitivity factors. Emission of electrons from a sample can result in 

a build-up of positive charge, particularly for samples consisting of a large amount of non-

conductive organic matter; this can result in skewing of acquired peaks. To avoid this, an 

electron-emitting “flood gun” was incident on the sample during data acquisition.   

2.7 Electron Microscopy  

The Abbe limit provides an estimation for the diffraction limited best resolution for an optical 

microscope: 

𝑑 =  
𝜆

2𝑛 sin 𝜃
     ( 30 ) 

In this expression, d is the minimum resolvable distance, λ is the wavelength of the light, and 

𝑛 sin 𝜃 is the numerical aperture of the lens, where n is the refractive index of the medium, 

and θ is half the convergence angle of the focus of the lens. For visible light (λ ~ 550 nm), and 

realistic values of the numerical aperture (~0.9) the maximum achievable resolution will be 

approximately 250 nm. Clearly, this is insufficient for the study of the structure of most 

nanomaterials.  

Wave-particle duality is one of the central principles of the theory of quantum mechanics. 

For a massive particle, such as an electron, with momentum p, the de Broglie wavelength 

can be defined: 

𝜆 =
ℎ

𝑝
          ( 31 ) 

Electron microscopic techniques are those which use electrons to illuminate the sample. The 

wavelength, and therefore the diffraction limit, depends on the momentum of the electrons 

in the imaging beam, but the most powerful electron microscopic techniques (such as 

Scanning Transmission Electron Microscopy, or STEM) now achieve resolutions up to 50 pm 

(0.5 Å), less than an atomic radius. These techniques therefore allow imaging of the atomic 

structure of nanomaterials.  

2.7.1 Sample Preparation for Electron Microscopy 

For imaging of crystal structures, it is necessary to have a substrate material that has no 

crystallinity itself. For this reason, amorphous carbon substrates are commonly used; the 

crystal structure of the QDs can be resolved against the amorphous, isotropic background. 

For this work, ultrathin amorphous holey carbon on gold grids were used for imaging of QDs; 
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the grids consist of a gold mesh with 50 µm pitch coated with an ultra-thin layer of 

amorphous carbon of varying thickness. Gold was chosen over more common copper to 

prevent background contributions during elemental analysis of copper-containing CuInS2 

QDs. Samples were prepared by drop-casting 1-5 µM QD dispersions in chloroform or ultra-

pure water onto the TEM grids, and wicking away excess solvent using filter paper. For QDs 

in aqueous dispersions, the grids were subsequently cleaned under argon plasma for 10 

seconds to remove any unwanted organic material, which can cause accumulation of charge 

at the surface. For CuInS2 and CuInS2/ZnS QDs in chloroform, the grids were also cleaned 

under argon plasma, and stored in an oxygen-free glove box. QDs prepared for the scanning 

transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) 

experiments were additionally baked overnight, under vacuum at 100 °C to further remove 

organic material.  

For imaging of QDs within cells, cells were fixed as described in section 2.8 and embedded in 

epoxy. 100 nm sections were then cut using a microtome, which were mounted on the 

sample grid.  

2.7.2 Bright-Field Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is one of the two major modes of electron 

microscopy, along with scanning electron microscopy. In the TEM experiments described 

here, electrons are accelerated across a specified potential, and focussed to a tight beam a 

pair of condenser lenses. The beam then passes through an aperture, and is then incident on 

the sample. Electrons are either absorbed by the sample, are scattered by reflection from 

atomic nuclei, or are transmitted straight through. At high magnifications, the contrast is 

obtained mostly due to scattering, and atomic nuclei therefore appear dark. An image of the 

sample is obtained by collecting the transmitted electrons using a further aperture and pair 

of lenses, directing them onto a charge-coupled-device (CCD) detector. The TEM is kept 

evacuated to a low pressure (10-5 - 10-4 Pa) to avoid collisions between electrons and air 

molecules. In this work, images of QD samples prepared as described above were obtained 

using a FEI Titan3 Themis G2 TEM fitted with 4 EDX silicon drift detectors. The electron 

accelerating voltage was 300 kV, and images were acquired using a Gatan One-View CCD.  

2.7.3 High-Angle Annular Dark Field STEM 

Scanning transmission electron microscopy (STEM) involves raster-scanning of a finely-

focussed beam of electrons over the sample, building up an image pixel-by-pixel. This is 

opposed to standard TEM where the entire sample is illuminated with electrons, and 
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interference effects between electrons can cause losses in fidelity. High-angle annular dark 

field (HAADF) STEM describes an image acquisition strategy where electrons that are 

scattered from the sample at a sufficient angle are detected by an annular array of detectors. 

The acquired image is therefore in the opposite contrast to bright-field TEM; scattering 

centres show up brighter than the surroundings.  HAADF techniques necessitate the use of 

STEM, as opposed to standard TEM, as electrons can be scattered in any direction. HAADF-

STEM images were acquired for this work on a Nion UltraSTEM instrument, with hardware 

aberration correction. 

2.7.4 Electron Energy Loss Spectroscopy 

High quality STEM images are achieved using a beam of electrons with narrow energy 

distribution. There are a number of ways that these electrons can scatter inelastically from 

a sample of interest, including ionisation processes, excitation of inter-band transitions, and 

electron-plasmon interactions. In any case, as long as the energy distribution of the electron 

beam is narrow, the energy loss associated with any of these scattering processes can be 

measured. Similarly to XPS, the energies associated with ionisations by removal of strongly 

bound “core” electrons are element-specific; it is therefore possible to identify, and quantify 

the elemental composition of a material by detection of electrons of energy loss consistent 

with these specific transitions. 

Electron energy loss spectroscopy (EELS) involves measurement of the energies of these 

scattered electrons. If the initial energy of each electron in the beam is precisely known, then 

energy losses can be determined, and associated with a particular mechanism. It is a 

techniques which is highly complementary to TEM, particularly in a scanning mode (STEM) 

due to the requirement of both for a highly controllable monochromatic electron beam. 

Combination with a STEM system also allow spatially resolved EELS to be performed (STEM-

EELS). 

Particularly for CuInS2 and CuInS2/ZnS QDs, features of spatially resolved EELS spectra are 

often very weak due factors determined by the thinness of the sample.[120] However, the 

QDs exhibit a large peak associated with plasmonic excitation, as well as resolvable and 

quantifiable edges consistent with core-loss ionisation of Cu, In and S, as illustrated and 

described in figure 24. 



71 
 
 

 

Figure 24. Example EEL spectrum for QDs. A large number of electrons are not subjected to 

inelastic scattering, giving rise to the zero loss peak. The background peak is due to the 

amorphous carbon film on the sample grid. Energy losses from ionisation of atoms by 

emission of “core” electrons result in “edges” in the fine structure of the decay at high 

electron energy losses; it is these core loss edges that are analysed to determine elemental 

composition. 

For this work, EELS was used in an imaging mode on CuInS2 and CuInS2/ZnS QDs. During 

acquisition of a HAADF-STEM image of single QDs, EEL spectra were recorded, and stored so 

that each pixel had a corresponding EEL spectrum. For each spectrum, Cu and In edges were 

located, and after subtraction of the background signal using a power-law fit immediately 

prior to the relevant edge, the intensities were extracted to produce maps showing the 

spatial distribution of these elements. These measurements were performed on the Nion 

UltraSTEM microscope in parallel with HAADF-STEM measurements. Each EELS “map” took 

between 7-15 minutes to acquire. An accelerating voltage of 60 kV was used. 

2.8 Live Cell Experiments 

2.8.1 Cell culture 

MCF-7 cells were obtained from the European Collection of Authenticated Cell Cultures 

(ECACC) as frozen stock, and subsequently cultured in 75 cm2 flasks in Dulbecco’s Modified 

Eagle Medium (DMEM, Sigma) with 10% foetal bovine serum (FBS, Sigma), and 20 mM 

GlutaMAX (Sigma). Cells were stored in a moisture-controlled incubator at 37 °C with a 5% 
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CO2 atmosphere. The adherent MCF-7 cells were subcultured every 3-4 days. This was 

achieved by washing with Dulbecco’s phosphate buffered saline (DPBS), before submersion 

in TrypLE dissociation reagent. One fifth of the resulting cell suspension was then diluted in 

growth media, then transferred to a new flask. Passage numbers for all cells used in 

experiments were less than 20. 

Most experiments were performed on cells plated on 96-well plates. During subculture, the 

number concentration of cells was counted using a haemocytometer. The cell suspension 

was then diluted with the relevant medium to a concentration of 5x104 cells/ml. Each well 

on the 96-well plate was then inoculated with 100 µl of the diluted suspension, in order to 

achieve 5000 cells per well. The plates were then incubated overnight to allow the cells to 

adhere to the surface.  

2.8.2 Toxicity studies 

Cell viability was measured using CCK-8 (Cell counting kit 8, Sigma), a colourimetric assay. 

CCK-8 consists of a water-soluble tetrazolium salt (2-(2-methoxy-4-nitrophenyl)-3-(4-

nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt, or WST) in buffered 

aqueous solution. In the presence of live cells, WST is reduced to an orange-coloured, water-

soluble formazan dye, with absorption maximum at 450 nm. The rate of production of the 

reduced dye is proportional to the number of metabolically active cells present in the 

solution, as well as their rate of metabolism. It is therefore possible to measure cell viability, 

by measuring the absorption due to the presence of reduced dye a fixed time after 

introduction to the cells.[121] 

MCF-7 cells were plated in 96-well plates at a confluency of 5000 cells per well, and incubated 

overnight. QDs were sterilised before addition to the cells by passing them through a 0.22 

µm Acrodisc syringe filter. QD dispersions in DMEM were prepared and added to the cells, 

with QD concentrations ranging from 0.1-100 nM, so that the total volume in each well was 

100µl. A control was also prepared without QDs. The cells were then incubated for 24-48 

hours in the presence of the QDs. After the chosen incubation time, 10 µl CCK-8 solution was 

added to each well, and the plate was further incubated for 2 hours. The absorbance at 450 

nm (concurrent with the absorption maximum of the formazan dye) was then measured 

using a plate reader. Viability of cells was calculated, for each QD concentration, by 

measuring the absorbance at 450 nm in each well containing QDs, normalised to control. The 

absorption due to the QDs was accounted for by subtracting absorbance of wells containing 

QDs but no CCK-8. 
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Figure 25. Format of well plate for toxicity experiments. All wells contained 5000 cells in 100 

µL culture media. Pink wells represent wells where cells were incubated with QDs and CCK-8 

(n=3 for each of 7 concentrations). Orange wells represent a negative control (no QDs). 

Green wells contained the relevant amount of QD solution but no CCK-8. 

2.8.3 Non-directed Endocytic Uptake of QDs 

Endocytic uptake of QDs by MCF-7 cells was investigated. Typically, cells were plated at 5000 

cells/well in a 96-well plate and incubated overnight, as described above. In a similar fashion 

to the toxicity studies, sterile QD dispersions in 100 µl of the appropriate medium were 

prepared, with concentrations ranging from 0.1-50 nM, and added to the cells. The plates 

were then returned to the incubator. In some cases, the cells were incubated within a 

fluorescence plate imager (BioTek Cytation 5) and continuously imaged (details of imaging 

protocols are in section 2.9). After a fixed time point, typically 1-48 hours after addition of 

the QDs, the QD-containing medium was removed, and the cells were washed with DPBS 

before medium not containing QDs was re-added.  The resulting plated cells were then 

imaged as described in section 2.9.  

2.8.4 Use of Cell-Penetrating Peptides 

TAT is a protein within human immunodeficiency virus (HIV) that is responsible for 

transduction of the virus into the cell. The peptide sequence TAT-c (sequence 

CGRKKRRQRRR) consists of amino acid residues 48-57 of HIV TAT, and is known for its ability 

to facilitate transfection of material into cells; it is therefore termed a cell-penetrating 

peptide (CPP). [122, 123] An important feature is the thiol-containing cysteine residue at the 

n-terminus, which allows binding to the surfaces of QDs.  

To prepare the TAT-c conjugated QDs, 10 mg TAT-c (provided by Dr. Masayoshi Tanaka, 

Tokyo Institute of Technology) was dissolved in 50 µl DMSO. Dispersions of TGA-stabilised 
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CdTe/CdS QDs in ultra-pure water were prepared at concentrations of 1µM and volumes 1-

2 ml. A sufficient volume of the TAT-c DMSO solution was then added to the QDs to achieve 

an average TAT-c:QD ratio of 10:1. The dispersions were then gently mixed overnight, in the 

dark, using a tube rotator. The QDs were the cleaned by centrifugation as described in 

section 2.1.4. Success of the conjugation was ascertained by measuring the absorbance 

spectra of the solutions before and after cleaning, and comparing with that of an equivalent 

solution of TAT-c. The resulting QDs were then used in QD uptake experiments using the 

same protocols described in section 2.8.3. 

2.8.5 Cell Squeezing 

Developments in on-chip microfluidic systems in recent years allow for precise manipulation 

of very small volumes of liquid (such as cell suspensions in media) in a sterile environment. 

Recently, it has been shown that cells which are rapidly mechanically deformed form 

transient pores in the membrane; this allows for diffusion of molecules or nanomaterials into 

the cell interior.[124] An advantage of this is that endocytosis is avoided; delivered 

nanomaterials end up in the cell cytosol.  

Cell squeezing experiments were performed using a cross-flow deformation scheme, 

illustrated in figure 26. Briefly, opposing microfluidic channels direct the cell suspension at a 

predetermined flow rate to a stagnation point, where shear forces deform the cells to a 

degree determined by the flow rate. Cells were suspended in running buffer (DPBS with 0.5% 

methyl cellulose, viscosity ~39 mPas). QDs were sterilised using a 0.2µm Acrodisc 25mm 

syringe filter. QDs were added to the cell suspension at a final concentration of 100 nM, 

before passing through a cell strainer (40µm pore size, Fisher Scientific Ltd) to remove 

aggregated cells. The solution was then loaded into a sterile syringe and injected into the 

cross-flow device by a syringe pump at a flow rate of 100 µl/min. The deformation of the 

cells was recorded with high speed camera mounted on an inverted microscope (Nikon 

Eclipse Ti). The cells were collected and incubated for 15 mins at room temperature. The cells 

were then washed with DPBS to remove excess QDs. Control cells were incubated and 

treated in the same manner (forgoing deformation) for the same duration of time (~30 mins). 
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Figure 26. Light microscope image stack of cell squeezing apparatus. A suspension of cells is 

flowed into the device through opposing channels (A) before meeting at a stagnation point, 

where cells are deformed by shear forces, before exiting the chip (B). Image courtesy of Fern 

Armistead. 

The cells with QDs were suspended in 200 µl culture media in 8 well cover-glass incubation 

chambers. The chamber was mounted on confocal microscope, (DMi8 Leica) for fluorescence 

and bright field imaging of the cells. The images were analysed and intensity of the 

fluorescence from each cell was measured using ImageJ. 

2.8.6 Immunostaining 

Immunostaining describes biological techniques that use antibodies to label proteins 

through specific antibody-protein interactions. Antibodies are large, y-shaped proteins that 

recognise other, particular proteins (such as those of a virus causing an infection, known as 

antigens) and bind to them, as part of the immune response. In this work, the goat derived 

antibody anti-EEA-1 was used to label early endosomes within MCF-7 cells, as early 

endosomes are associated with the protein early endosome antigen-1 (EEA-1), the antigen 

to anti-EEA-1. A mouse-derived fluorescent antibody that binds to goat anti-EEA-1 is then 

added, in order to fluorescently label the endosomes, an example of indirect 
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immunostaining. Simultaneous fluorescent imaging of these labelled endosomes, as well as 

QDs allows the degree of co-localisation to be established; strong co-localisation of QDs and 

endosomes suggests that QDs are mostly within endosomes, and that uptake of QDs has 

been dominated by endocytic processes. 

In a typical experiment, QD-containing cells (as prepared in 96-well plates, by protocols 

detailed in sections 2.8.1) were “fixed” using paraformaldehyde (PFA). The PFA solution 

preserves the cells from decaying by covalently crosslinking proteins within the cell, resulting 

in a penetrable but stable cell structure.  Briefly, the media was aspirated from the cells, 

which were subsequently washed twice using 200 µl DPBS. A 4% PFA in DPBS solution was 

added, and the plates were left in the dark at 4 °C. After 30 minutes, the PFA solution was 

aspirated, and replaced with 100 µl DPBS per well, to keep the cells moist. 

 

Figure 27. Scheme of immunostaining strategy used to label endosomes. 

After fixing, a solution containing goat anti-EEA-1 (Thermo) was added, in a volume such that 

the concentration of anti-EEA-1 in each well was 1 µg/ml. The plates were then left at 4 °C 

for 3 hours to allow antibody-antigen binding. The plates were then washed with DPBS, 

before introduction of Alexa-514-labeled mouse anti-goat immunoglobulin (Thermo), which 

binds to the anti-EEA-1, as illustrated in figure 27. Simultaneously, Hoescht 33342 stock 

solution in DPBS (Thermo) was incubated with the cells, at a volume sufficient to achieve 1 

µg/ml in each well; Hoescht 33342 stains DNA, allowing visualisation of the nuclei of the cells. 
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The plates were left for a further 3 hours, before further washing with DPBS. The resulting 

stained cells were imaged by confocal microscopy, as detailed in section 2.9.2.  

2.9 Fluorescence microscopy 

Fluorescence microscopy involves any microscopic technique where contrast is achieved by 

detection of light emitted from fluorophores, rather than be detection of scattered or 

reflected light. This is often performed in tandem with bright field reflection or transmission 

images. In this work, two major forms of fluorescence microscopy were used, and are 

described in this section.  

2.9.1 Epifluorescence Microscopy 

 

Figure 28. Cartoon of principle of operation of an epifluorescence microscope. A dichroic 

mirror separates the excitation beam from light emitted by the sample, which is collected 

by a camera. 
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Epifluorescence microscopy is the more simple of the two techniques used in the work 

described in this thesis. In a typical epifluorescence microscope, a light source, usually an 

incandescent lamp, emits white light, which is collimated and then filtered to the chosen 

wavelength for excitation of the relevant fluorophore. This parallel light is then reflected by 

a dichroic mirror, before it is directed onto the back of an objective lens, which is focussed 

on the fluorescent sample. Fluorescent emission from the sample is collected by the 

objective lens, and is transmitted through the dichroic mirror, before passing through 

another filter (to remove extra light) and impinging on the camera or other detection optics. 

A dichroic mirror is an optical device which reflects light of short wavelengths, but transmits 

longer wavelengths. The cut-off wavelength below which light is reflected can be chosen. In 

order for the excitation beam to be reflected, and the emitted light to be transmitted and 

detected, the correct dichroic mirror for the fluorophore in use must therefore be chosen. 

Resolution in epifluorescence microscopy is limited by the Abbe limit, and therefore cannot 

be much better than about 200 nm for green light. In this work, a Nikon e600 epifluorescence 

microscope was used to analyse samples of cells.  

2.9.2 Confocal Fluorescence Microscopy 

 

Figure 29. Simplified cartoon of principle of operation of confocal microscope. Light from 

the image plane (red) is focussed through a pinhole, and light from other depths (orange) is 

blocked, resulting in acquisition of a fine “slice” in depth.  
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Confocal microscopic techniques can achieve increased resolution over traditional 

epifluorescence microscopy by blocking any out-of-focus light using a pinhole.  Some 

confocal-based techniques that rely on stochastic emission by fluorophores can allow for 

features as small as 10-50 nm to be resolved.[125] In epifluorescence microscopy, light 

emitted from each depth level in the sample is detected (a significant amount of which, 

particularly for powerful objective lenses, will be out of focus). Elimination of this light using 

a pinhole, as in confocal microscopy (figure 29), allows a much narrower depth slice to be 

acquired in a single images. This allows 3-dimensional images of objects to be acquired, by 

obtaining and stacking a number of 2-dimensional images at varying depth.[126] High 

resolution in the x and y (horizontal) directions is additionally achieved by raster-scanning a 

laser spot over the sample for excitation. The resulting images have excellent horizontal 

resolution (as low as 10 nm) and improved depth resolution (~50-100 nm) compared to 

epifluorescence techniques.[125, 126] 

Confocal microscopy was performed on samples of cells incubated with QDs using a Leica 

DMi8 using laser excitation at 488 nm, with adjustable emission filters. For the 

immunostaining experiments, a Yokogawa CV7000 (AstraZeneca) automated confocal 

imaging system with selectable monochromated excitation and emission systems was used. 

2.10 Cyclic Voltammetry of Q2NS-QD Conjugates 

The reduction potential, or redox potential of a species is a measure of the tendency of that 

species to accept an electron. In other words, for redox species, it is the potential energy of 

an electron that will reduce that species, or alternatively the potential at the cathode 

(electron source) for the half reaction at equilibrium, and is connected to the energy level of 

the orbital that will accept the electron. Redox potential is therefore expressed in volts, often 

with respect to a standard electrode with well-characterised potential. In electrochemistry, 

conventionally the standard hydrogen electrode (SHE) is the defined zero-point by which 

reduction potentials are calibrated, and describes the ideal oxidation of hydrogen, with half 

reaction: 

1⁄2 H2 → H+ + e− 

The absolute electrode potential (defined as the potential relative to an electron at rest in a 

vacuum) of the SHE is 4.44 ± 0.02 V. In solid state physics, when discussing energies of 

electrons in solids, convention is to use opposite signage (to account of the negative charge 

of the electron).[127] For redox species in solution, cyclic voltammetry allows direct 

measurement of the redox potential, with reference to an electrode with known potential 
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with respect to SHE. The potential difference between a “working electrode” and a “counter 

electrode” of conductive metal immersed in the solution is measured against a “reference 

electrode” maintained at a constant potential. The potential is scanned forward and 

backward at a controlled scan rate, and the current measured at the working electrode is 

recorded. The resulting plot is termed a cyclic voltammogram; an example is shown in figure 

30. The peaks labelled Vpa and Vpc are the peak anodic and cathodic potentials respectively. 

The peak cathodic current is reached when all of the substrate at the working electrode has 

been reduced, and conversely the peak anodic current is reached when it is all oxidised. For 

a sweeping potential, these are offset from the reduction potential (defined for equilibrium 

conditions) due to the limitation of diffusion of ions to the electrode. The reduction potential 

V° is therefore halfway between the potentials of peak measured anodic and cathodic 

current:  

𝑉° =  
𝑉𝑝𝑐+𝑉𝑝𝑎

2
      ( 32 ) 

 

Figure 30. Example cyclic voltammogram, obtained for Q2NS-conjugated CdTe/CdS QDs 

immobilised on a gold working electrode, against a mercury/mercurous sulphate reference 

electrode. 

For this work, cyclic voltammetry was performed on CdTe/CdS QDs conjugated with the 

acceptor molecule Q2NS. A working electrode consisting of a 100 nm gold layer on glass was 

incubated with a solution of 1 mM 6-mercaptohexanol and 0.2 mM 6-amino-1-hexanethiol 
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in ethanol to form a self-assembled monolayer (SAM), which was then gently rinsed with 

water. A sample of Q2NS CdTe/CdS conjugates (Q2NS:QD ratio 20:1) in 1 mM HEPES buffer 

was incubated with the electrode for 1 hour, so that the QDs became electrostatically 

immobilised on the electrode. Cyclic voltammetry was then performed at 50 mVs-1 against a 

mercury/mercurous sulphate reference electrode in order to obtain the reduction potential. 

 

Figure 31. Immobilisation of Q2NS-conjugated QDs on the working electrode. A mixed SAM 

of 6-mercaptohexanol and 6-amino-1-hexanethiol is used to impart net positive charge to 

the electrode. The QDs, which are stabilised by TGA, are electrostatically immobilised on the 

electrode. 

 

2.11 Zeta Potential Measurements – Electrophoretic Light Scattering 

Stability of a colloidal dispersion, particularly in aqueous environments, or very polar 

solvents is often mediated by charge. That is, in a charged homocolloid (where every particle 
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has similar properties, particularly size and charge) electrostatic repulsion between 

individual particles will prevent flocculation and preserve the dispersion. The zeta potential 

(also ζ-potential) is a measure of the degree of this electrostatic repulsion, and is defined as 

the electric potential, relative to a point far away in medium, of the stationary boundary 

layer of dispersant on the surface of the particle. For very polar solvents (such as water), this 

layer of fluid can be quite thick, as strongly charged particles co-ordinate with dipolar 

solvents to produce highly-ordered layers.  

Colloids with large populations of charged ligands or functional groups on their surfaces will 

therefore exhibit large zeta-potentials. For solutions with high ionic strength, screening of 

charges by mobile ions in the solution can serve to reduce the zeta potential of a colloid. As 

a rule of thumb, colloids which exhibit zeta potentials of magnitude greater than 30 mV can 

be considered stable, with stability generally increasing for higher potentials.[128, 129]  

Electrophoresis is the motion of charged particles within a dispersion as a response to an 

electric field. For an applied electric field E, the electrophoretic mobility is defined as: 

𝜇𝑒 =  
𝑣

𝐸
             ( 33 ) 

Here, v is the drift velocity of the particle as a result of the electric field. The mobility is 

related to the zeta potential ζ  by:[130] 

𝜇𝑒 =
𝜖𝑟𝜖0𝜁

𝜂
.              ( 34 ) 

Light undergoes Rayleigh scattering, in all directions, when incident upon small, dilute and 

diffuse particles. Particularly for monochromatic light, scattered light can interfere from that 

which is scattered from neighbouring particles. The result is structure in the image of 

scattered light, known as a “speckle pattern” where constructive and destructive 

interference causes bright and dark spots depending on the random distances between 

particles. As the particles undergo Brownian motion (random, jiggling motion due to thermal 

fluctuations) this speckle pattern will change, according to a timescale related to the speed 

of motion of the particles. The correlation function g(τ) describes this timescale. After long 

times τ0+τ, particles have diffused due to Brownian motion long enough that their new 

configuration has no correlation to that at τ0, and the value of g(τ) is zero. However, at short 

times, correlations are high, as the particles have not had much time to move, and g(τ) takes 

some positive value; perfect correlations (stationary systems, or time differences of zero) 

give a unitary value to the correlation function.   
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For particles that are also undergoing drift due to electrophoresis, the frequency of scattered 

light is Doppler shifted by a frequency νD with respect to incident light. The correlation 

function of the mixed signal of scattered and reference light is given by the following 

expression: 

𝑔𝑚𝑖𝑥𝑒𝑑(𝜏) = 𝐴 + 𝐵𝑐𝑜𝑠(2𝜋𝜈0)𝑒−Γ𝜏 + 𝐶𝑒−Γ𝜏.           ( 35 ) 

Here, A, B, C and Γ are constants. The frequency ν0 is related to the Doppler frequency by 

the equation: 

𝜈0 = |𝜈𝐷 − 𝜈𝑀|     ( 36 ) 

Here, the frequency νM is the modulation frequency, which relates incident and reference 

light. The correlation function can be acquired by collecting an image of the speckle pattern 

of a given scattering system undergoing electrophoresis, and extracting the time-resolved 

intensity at each pixel. The Doppler frequency is related to the drift velocity v by the 

expression: 

𝜈𝐷 =
𝑣𝑞

2𝜋
         ( 37 ) 

Here, q is the amplitude of the scattering vector. The velocity can therefore be extracted and 

used in combination with equations 33 and 34 to determine the zeta potential for the 

colloidal system.  

In this work, zeta potential measurements were made for 50 nM solutions of QDs dispersed 

in 0.1 M HEPES buffer, adjusted to pH 7.2, using a Malvern Instruments Zetasizer Nano. 

Briefly, small volumes of solutions are placed in a cell consisting of a thin, U-shaped tube with 

a gold electrode at each terminus. The instrument then applies an oscillating electric field, 

and automatically measures and returns the relative population distribution of zeta 

potentials via the methodology outlined above. Some representative outputs for a sample 

of TGA-capped CdTe/CdS QDs are presented in figure 32. 
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Figure 32. Typical zeta-potential distributions for 5 samples of a solution of TGA-capped 

CdTe/CdS QDs, as produced by the Malvern Instruments Zetasizer Nano. A common, narrow 

peak at -39 mV is measured, suggesting stable colloid. 
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3 Compositional Domains in CuInS2 Quantum Dots 

Understanding the excited state dynamics of a particular QD type is critical for its 

development into a redox sensor. CuInS2/ZnS QDs were attractive candidates for 

development of redox sensing QDs due to their reduced toxicity[113] and synthetic simplicity  

in comparison to Cd-based QDs. For the case of CuInS2/ZnS QDs, the excited state dynamics 

are intrinsically linked to the atomic structure of the QDs, particularly with respect to point 

defects. The following study was performed in order to more fully understand the internal 

structure of CuInS2 core and CuInS2/ZnS core/shell QDs, and how this relates to their unusual 

optical properties. 

3.1 Background 

As mentioned in section 1.6, toxicity is a significant setback in the application of QDs in 

biosensing, an issue that is particularly prevalent in cadmium-based QDs. Even outside of 

biosensing, European regulations (2016/217) that limit the use of cadmium in commercial 

products provide motivation to work towards cadmium-free QD technologies. Chalcopyrite 

(I-III-VI2) copper indium sulphide (CuInS2) QDs are emerging as a potentially less toxic 

alternative.[113, 131-133] Aside from their reduced toxicity compared to CdX (X = S, Se, Te) 

QDs, CuInS2 QDs are particularly technologically important; they exhibit PL emission from 

yellow to the near infra-red, the wavelengths where light can penetrate most deeply through 

biological tissue.[134] As well as the usefulness that this affords to development of 

biosensors, their broad absorption and large Stokes shift make them ideal candidates for 

absorbing material in photovoltaics, as well as for use in light-emitting devices.[135, 136]  

Compared to most CdX (X = S, Se, Te) QDs, CuInS2 QDs typically display a wide Stokes shift 

and broad emission, with particularly strong size-dependence; empirical exponential 

functions that relate particle size to excitonic features have greater exponents for CuInS2 QDs 

than Cd-based QDs.[40, 118] This behaviour has been ascribed to a radiative recombination 

mechanism involving crystal lattice defects as the donor state, in a donor-acceptor pair (DAP) 

recombination scheme,[137-139] although there has been broad discussion in the literature 

positing varying dominant mechanisms for a wide range of CuInS2 materials.[140-143] In 

generalised QD systems, energy states associated with structural point defects are shown to 

be strongly dependent on the size of the QD, which explains the strong size dependence of 

defect state-related luminescence.[40, 139, 144]  
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CuInS2/ZnS core shell QDs display a type-I band alignment, which results in the expected 

increase in PLQY due to passivation of surface trapping states; over-coating CuInS2 cores with 

a ZnS shell typically results in improvement in PLQY from approximately 4% to around 65%. 

However, this increase in PLQY is often accompanied by a significant blue shift in the 

emission wavelength, attributed to exchange of cations between the lattices of chalcopyrite 

CuInS2 and zinc blende ZnS, whose lattice mismatch is approximately 2%. The result is a 

partially alloyed structure rather than a true “core/shell” particle with a sharply defined 

boundary. This alloyed structure has a wider band gap than the core particle.[145] 

In 2014, Kraatz et al reported evidence from transient absorption experiments that indicate 

that the transition responsible for emission in chalcopyrite CuInS2/ZnS QDs involves 

recombination from an electronic state consistent with an InCu anti-site defect (a point defect 

where a copper(I) is replaced by an indium(III) within the lattice).[49] Furthermore, studies 

have identified that Cu-poor QDs typically display higher photoluminescent quantum yield 

(PLQY) than their equivalent stoichiometric (Cu:In:S = 1:1:2) counterparts, which is attributed 

to an increase in the number of InCu and VCu  in these QDs; these defects are expected to have 

a lower formation energy in Cu-poor chalcopyrite.[146-149]  

 

Figure 33. Proposed recombination mechanisms in chalcopyrite CuInS2 . Non-emissive 

transitions are shown with dotted arrows. The emissive transition is assigned to an intra-

gap state-to-valence band transition, with the donor state arising as a result of InCu 

displacements within the lattice.[49] 
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The presence of these luminescence-related defects in the QDs has been inferred from 

spectroscopic data, as well as understanding of the properties of the bulk material, however 

their nature within the QD crystals had until the time of this work not been investigated. The 

stated aims of the study are: 

 Synthesise and characterise high-quality examples of typical CuInS2 core and 

CuInS2/ZnS core/shell QDs, which exhibit luminescent properties in line with those 

currently present in the literature. 

 Image the internal crystal structure of the resulting CuInS2 core and CuInS2/ZnS 

core/shell QDs using electron energy loss spectroscopy (EELS). 

 Relate the observed crystal structures to current models for defect-related PL in 

these QDs. 

3.2 Optical Properties 

CuInS2 core and CuInS2/ZnS core/shell QDs were synthesised according to the procedures 

outlined in section 2.1.3. In order to provide a valid control, the core/shell particles that were 

analysed in this work were grown from the same cores. Both core and core-shell QDs display 

typical broad band emission, consistent with the defect-related recombination mechanism. 

Emission spectra and PLQY data were acquired for 50 nM solutions of QDs in chloroform, 

and are shown in figure 34 and table 1. The core particles displayed a typical broad band PL 

emission at 688 nm (FWHM 121 ± 1 nm) Addition of the ZnS shell led to a blue shift in the PL 

emission maximum by 43 nm (maximum 645 nm, FWHM 119 ± 1 nm). This blue-shifting is 

consistent with literature,[145] and is likely due to incorporation of zinc into the CuInS2 core 

via exchange of cations.  Core particles displayed weak luminescence with a PLQY of 4.1 ± 

0.8 %, improving to 36 ± 1 % upon addition of a shell, again consistent with passivation of 

surface trap states involved with non-radiative recombination of excitons.  

UV-Vis spectra were acquired for the same QD dispersions, recorded against a chloroform 

blank. Both core and core/shell particles show absorption spectra typical for particles with 

either high size polydispersity or a defect-rich structure, with broad excitonic features. These 

spectra are included in figure 35. The location of the first excitonic transition is enabled by 

finding minima in the second derivatives of the absorbance spectrum; the spectra were 

smoothed using a fast Fourier transform filter included in OriginPro 8.6, before calculation 

of the derivative. Local minima consistent with the first excitation were located at 572 nm 

and 582 nm for core and core/shell particles respectively. The red-shift in the position of the 

first excitation upon shell addition is attributed to a decrease in the band gap energy as the 
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particle size is increased. The result of this red shift, in combination with the blue shift in PL 

peak positon upon shell addition, is a large decrease in the Stokes shift, from 116 nm before 

shell addition to 63 nm post-addition. It is important to note that the first excitonic transition 

is consistent with excitation to the conduction band minimum, and not the deep intra-gap 

defect state that is theorised to be principally involved in photoluminescence. Estimation of 

particle size based on the position of the emission maximum was perfomed by fitting to the 

empirical equation:[40] 

𝑑 = 68.952 − 0.2136𝜆𝑃𝐿 + 1.717 × 10−4𝜆𝑃𝐿
2           ( 38 ) 

This returns an average size of 2.6 ± 0.2 nm for the core particles. This calculation was not 

performed for core/shell QDs, as it would be unwise to approximate them to the core CuInS2 

QDs given the blue-shifted PL.  

 

 

Figure 34. PL emission spectra for core CuInS2 (dashed) and core/shell CuInS2/ZnS QDs 

(solid) with excitation at 450 nm. Spectra are normalised to the measured PLQY for each QD 

type. Addition of a ZnS “shell” results in a 43 nm blue shift of the PL peak, as well as an 8.9-

fold increase in the PLQY. 
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Figure 35. Absorbance spectra and their second derivatives for core CuInS2 (left) and 

core/shell CuInS2/ZnS (right) QDs. 

Importantly, the optical properties of these QDs are typical of those found in the 

literature.[40, 49, 74, 85, 113, 131, 132, 138, 147] A summary of the most important results 

is given in table 1.   

 PL Emission max PLQY 1st Excitation Stokes shift 

CuInS2  688 nm 4.1 ± 0.8 % 572 nm 116 nm 

CuInS2/ZnS 645 nm 36 ± 1 % 582 nm 63 nm 

Table 1. Summary table of optical properties of CuInS2 core and CuInS2/ZnS core/shell QDs.  

3.3 Verification of Stoichiometry 

Stoichiometry of the core particles was ascertained using x-ray photoelectron spectroscopy 

(XPS) as described in section 2.6. Samples were prepared by repeatedly drop-casting a 5 µM 

dispersion of QDs in chloroform onto a gold substrate, resulting in a thick layer of QDs. The 

poor conductivity of this thick layer required use of an electron-emitting “flood gun” to avoid 

positive charge accruing over time as electron are ejected. Photoelectron peaks at binding 

energies of 932.3 eV, 445.8 eV, 161.2 eV and 162.2 eV, corresponding to Cu 2p3/2, In 3d5/2 

and an S 2p doublet respectively, were observed in good agreement with literature data for 

CuInS2 nanoparticles.[150] These peaks were fitted and used for determination of particle 

stoichiometry using Thermo Scientific Avantage software with Scofield’s relative sensitivity 

factors; analysis gave the ratio of Cu:In:S to be 1.0:0.9:2.7. The excess of sulphur is attributed 

to the dodecanethiol (DDT) capping ligand. Importantly, the measured Cu:In ratio is 

stoichiometric, within the expected instrumental uncertainty. 
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Figure 36. X-ray photoelectron peaks for Cu2p3/2 (left) and In3d (right) used to quantify 

Cu:In ratio for CuInS2 QDs.  

3.4 Crystal structure and Particle Sizing 

X-ray diffraction was used to confirm the crystal structure of the QDs, and performed as 

described in section 2.5 Diffraction patterns from both core and core-shell QDs agreed well 

with literature data for chalcopyrite CuInS2.[151] The similarity in diffraction patterns for 

core and core/shell particles is expected due to the thin geometry of the shell and low lattice 

mismatch (2%).  

Assuming a shape factor of 0.9, Scherrer analysis of the peak widths suggests an average 

particle size of 2.1 ± 0.2 nm, slightly smaller than that calculated from optical data.  

 

Figure 37. Powder X-ray diffraction (XRD) pattern for a dried sample of core CuInS2 QDs. The 

spectrum correlates well with literature data for chalcopyrite CuInS2.[151] (ICDD 04-005-

5202) 
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HAADF-STEM was used to image both core and core/shell particles, as described in section 

2.7.3. The QDs display a triangular projection, consistent with a tetrahedral shape and in 

agreement with the literature.[40, 113] The mean size (in this case, defined and measured 

as the distance from one vertex of the triangular projection of the QD to the opposite side) 

was determined to be 2.4 ± 0.3 nm (n = 32) for the cores, increasing to 2.7 ± 0.4 nm (n=37) 

upon the addition of the ZnS shell. Uncertainties in sizes reported here are standard 

deviations of Gaussian functions used to fit histograms of particle sizes. 

 

Figure 38. HAADF-STEM images of CuInS2/ZnS core/shell QDs showing triangular projections 

and monocrystalline structure.  
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Figure 39. Histograms of particle sizes as measured by HAADF-STEM for CuInS2 core (left, 

n=32) and CuInS2/ZnS core/shell QDs (right, n=37). Overlaid curves are Gaussian fits used to 

determine average size and uncertainty. 

Imaging parameters were optimised during acquisition of survey images, to avoid effects 

detrimental to image quality. At high magnifications, using accelerating potentials over 

approximately 100 kV resulted in damage to the particles, evidenced by morphological 

changes in the particles during image acquisition, as illustrated in figure 40. For this reason 

further images, including EELS maps, were obtained using an accelerating voltage of 60 kV. 

Particularly for the core CuInS2 QDs, surface charging effects were observed at high 

magnification in areas with high particle density, manifesting in a “blurring” of the image and 

loss of contrast. For this reason, high-magnification images and EELS maps were acquired 

only for particles in areas of relatively low particle density. 
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Figure 40. Effects of surface charging (top, left to right) and particle damage (bottom, left 

to right) on survey image quality for core CuInS2 QDs. Scale bars 2 nm. 

3.5 EELS Mapping 

Samples of core and core/shell QDs were prepared for EELS measurements as described in 

section 2.7.4. EELS maps of Cu and In were obtained for samples core and core/shell QDs. 

Maps were obtained of QD in areas of the TEM grid with a relatively low surface number 

density, to avoid surface charging effects experienced during acquisition of survey images. 

Measurements were taken with an accelerating voltage of 60kV; beam energies higher than 

approximately 100 kV caused damage to the particles in-situ. Depending on the resolution 

used, the acquisition time for each map was between 7–15 minutes; to minimise imaging 

time, the parameters for each image were varied, depending on how many particles were to 

be imaged at once, and how extreme the effects of surface charging were deemed to be for 

the current sample. Each pixel of an acquired map consists of an EEL spectrum for the 

corresponding location in the image plane. For each spectrum, core-loss edges 

corresponding to copper and indium were located, and after subtraction of the background 

signal using a power-law fit immediately prior to the relevant edge, the intensities were 

extracted to produce maps showing the spatial distribution of these elements. Intensities of 

each copper and indium map were normalised to unity to allow convenient reproduction as 

images; due to the weak signal from the QDs, the acquired data was not deemed to be 

quantitative to high resolution. 
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Figure 41. Elemental maps of Cu and In for CuInS2 core (a) and CuInS2/ZnS “core/shell” (b) 

QDs. The column labelled “Contrast” is a subtractive RGB difference overlay of the 

respective Cu and In maps. On each QD, areas of high In signal correspond with a low Cu 

signal and vice versa, showing segregation of Cu and In within particles. Scale bars 2 nm. 

As shown in figure 41, STEM-EELS elemental maps of the particles systematically show 

separation of copper and indium within individual particles, giving both In-rich and In-poor 

areas, which spatially correspond to Cu-poor and Cu-rich, respectively. This is observed in 

both CuInS2 core and CuInS2/ZnS core/shell particles. In general, indium-rich areas are 

distributed seemingly randomly within the QD, and are between 4–8 Å in size. For these 

samples, the number of In-rich segregated areas per particle ranged between 1 and 4. 

Evidence of these segregated areas immediately suggests an origin of the InCu antisite defect 

suggested from spectroscopic data; In-rich/Cu-poor regions are expected to have a number 

of InCu displacements in stoichiometric CuInS2 if the chalcopyrite lattice structure is 

preserved, which XRD experiments suggest is the case. Furthermore, studies of formation 

energies in CuInS2 and the analogous chalcopyrite copper indium selenide (CuInSe2) suggest 

a low formation energy for these InCu defects, especially when present as part of a InCu + 2VCu 

defect pair.[149, 152] In fact, presence of the InCu + 2VCu defect system is also known to 

promote formation of CuIn + InCu defect pairs, resulting in large “clusters” of defects within 

the lattice.[153] It is worth noting that the formation energy of InCu is expected to be lowered 

in Cu-poor CuInS2, concurrent with the observation of increased quantum yield in these off-

stoichiometric QDs.[148] In fact, the large tolerance to off-stoichiometry displayed by the 

analogous CuInSe2 in the Cu-poor regime has been explained by the stability of the InCu + 2VCu 

pair.[154] 
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This compositional heterogeneity within particles will lead to a wide variance in 

environments for the donor-state InCu defects; the length scale across which composition 

varies is frequently larger than that of the size of a single InCu + 2VCu defect pair. It has 

previously been shown that the energy level of an impurity or defect-related electronic state 

is strongly dependent on its environment – in this case this is not only the location of the 

defect within the particle, but the local composition; the band gap of CuInS2 has been shown 

to be closely related to the Cu:In ratio, and the energy of these defect states is dependent 

on the local band gap.[155, 156] Compositional heterogeneity therefore leads to 

heterogeneity in both band gap and defect state energy within individual particles. This 

effective broadening of features of the band structure in turn therefore leads to the broad 

PL emission characteristic of CuInS2 QDs. 

 

Figure 42. HAADF TEM image, along with elemental maps of Cu and In for a CuInS2/ZnS QD., 

showing lattice structure and elemental segregation. 

For the CuInS2/ZnS core/shell QD, the degree of segregation in some particles appears 

smaller than that of the core CuInS2 QDs. This may be due to an annealing process that occurs 

during the shell growth step, as well as the internal rearrangement of the lattice as the 

aforementioned cationic exchange with ZnS takes place. In combination with the integration 

of Zn into the QD, this suggests an origin for the discrepancy in Stokes shift between the core 

and core/shell QDs for the same reasons as outlined above; variation in local composition, 

and therefore local bandgap will change the energy level associated with the emissive InCu 

defects.  

3.6 Concluding remarks 

The optical characteristics of both CuInS2 core and CuInS2/ZnS core/shell QDs are in 

agreement with the previously posited model of InCu-defect mediated DAP emission. A new 

insight is the observed compositional heterogeneity, which is identified as the origin of these 



96 
 
 
luminescent centres. Although many synthesis routes for these QDs are present in the 

literature, and it is not possible to confirm that these will all yield equivalent internal 

compositional distribution, the characteristic wide PL and large Stokes shift displayed by 

chalcopyrite QDs from a broad gamut synthesis routes does suggest internal compositional 

heterogeneity is an inherent feature of chalcopyrite CuInS2 QDs; it is a feature of the defect-

tolerant nature of chalcopyrite CuInS2.[132]  

The close lattice mismatch with ZnS and favourable band alignment means that ZnS can act 

as an effective passivant of CuInS2 surface states that might otherwise lead to non-radiative 

recombination. However, spectroscopic data also suggests a certain amount of Zn is 

incorporated into the core of CuInS2/ZnS core/shell particles during the shell growth step, 

however the segregated, defect-rich structure of the CuInS2 core is conserved.  

 

 

Figure 43. Band gap alignment at minimum energy transition for chalcopyrite CuInS2 and 

ZnS. The band alignment is such that any photogenerated exciton in a CuInS2/ZnS core/shell 

is confined to the core, and ZnS acts as an effective passivant of CuInS2 surface states.[157] 

The observed separation of Cu and In is consistent with a large population of InCu defects, 

which support intra-band electronic states involved in radiative recombination of excitons, 

leading to the characteristic photo-physical properties of CuInS2 QDs. The energies 

associated with these states are highly dependent on the local bandgap, which in turn is 

strongly dependent on local composition. This accounts for the broad spectral features 

associated with absorption and luminescence in these QDs, as well as the marked change in 

spectral properties when zinc is introduced during the shell addition step. 
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This new understanding of the presence of natural intrinsic defects within CuInS2 QDs 

identifies them as an ideal platform for further study of the control and effects of defects on 

QD properties. The segregated, defect-rich nature of these particles can be considered 

analogous to that of highly doped semiconductor QD, providing a simple model platform for 

their study.[158] A limitation in this approach to studying doping in QDs is that it is difficult 

to precisely control individual particle stoichiometry; many particles displayed segregation 

of differing degrees to others. However, the ease of production and high luminescence of 

these QDs, as well as advances in microscopic and spectroscopic techniques (such as those 

described in this chapter, as well as electronic-optical techniques such as single-particle 

cathodoluminescence) will mean these QD can provide a model platform for developing 

mechanistic understanding of doping in QDs.  
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4 Excited State Dynamics of CdTe/CdS QD-Acceptor Systems 

The excited state dynamics of charge transfer-based QD/acceptor redox sensors is currently 

under-investigated; most studies focus on steady state optical properties of such sensors and 

their applications to biology. In this chapter, the excited state dynamics of a model QD-

acceptor conjugate were investigated by a number of time-resolved and steady state 

techniques, with the aim of providing insight into how current technologies might be 

improved.  

4.1 Background 

Most of the QD-based redox sensing strategies described in section 1.7 are based on the 

principle of photo-induced charge transfer between a QD and some redox-active ligand. For 

these sensors, understanding the time dynamics of the charge transfer process between a 

QD and its conjugated acceptor/donor enables strategies to be designed to enhance the 

efficiency of transfer, and limit the impact of any competing processes. Aside from 

development of redox sensors, charge extraction from QDs is already a widely studied 

field.[59] For example, in QDs applied to photovoltaics, extraction is required before charges 

recombine either radiatively, with typical timescales of tens to hundreds of ns, or non-

radiatively, where trapping or Auger recombination can occur in the first few ps after 

excitation.[159] While it is often straightforward to predict steady-state optical properties of 

QDs of a number of different materials, given information about particle size and band 

structure, the excited state dynamics in QDs is less widely understood, and often differs 

greatly between apparently similar particles.[160] 

For effective redox-sensitive QDs, a system must be designed which exhibits a redox-

switchable, luminescence-quenching charge or energy transfer process that is significantly 

faster than the timescale associated with radiative recombination. For sensors based on 

charge transfer, this can be achieved either by increasing the radiative recombination 

timescale, decreasing the charge transfer timescale, or by employing a combination of the 

two. Ideally this is achieved without increasing the influence of other non-radiative 

relaxation processes. 

CdTe/CdS core-shell QDs exhibit a type-II heterostructure which results in spatial separation 

of the electron and hole after excitation, as illustrated in figure 44. The band alignment is 

such that a photo-excited electron will be confined to the CdS shell, with the resulting hole 

being confined to the core. Thinner CdS shells will result in a quasi-type-II alignment where 
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the hole is confined to the CdTe core, and the electron is delocalized across the whole QD. 

This charge separation greatly increases the recombination lifetime vs the core-only QDs, 

even for thin shells. [161, 162] Another advantage of the charge separation is the expected 

increase in charge extraction efficiency due to the location of the electron on the CdS surface. 

This charge separation and long recombination lifetime compared to other QD types means 

that CdTe/CdS core/shell QDs are expected to be excellent candidates for the development 

of charge transfer-based QD redox sensors.  

 

Figure 44. Band gap alignment at minimum energy transition for bulk zinc blende CdTe and 

CdS. The close energetic proximity of the conduction band minima result in a type-II or 

quasi-type-II band structure in QDs, where the electron is confined to the shell or 

delocalised, and the hole is confined to the core.[161, 162] 

Quinones are a popular choice for electron acceptors in redox-sensing QD-acceptor 

conjugates.[17, 21, 98, 111, 112] Q2NS is an electron acceptor based on the structure of the 

metabolic cofactor coenzyme Q10, which has previously been shown to exhibit redox-

switchable quenching of luminescence of conjugated CdSe/ZnS core/shell QDs, both in 

solution and in within living cells, where changes in redox environment were resolved.[112] 

The proposed mechanism of quenching is by electron transfer to Q2NS, when the quinones 

of Q2NS are in the oxidised state. Reduction of Q2NS moves the LUMO to a level inaccessible 

by conduction band electrons in the CdSe/ZnS QDs, in turn preventing the quenching due to 

electron transfer.  
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Figure 45. Structure of electron acceptor Q2NS (top). Conjugating to QDs (bottom) involves 

reduction of the disulphide bond to form a thiolate bond with the cations on the QD surface. 

For the reasons outlined, coupled with the synthetic simplicity of Q2NS, CdTe/CdS QDs were 

chosen for use with Q2NS for the study of excited state dynamics in QD-acceptor redox 

sensors, shown in figure 45. Although it has previously been concluded in the literature that 

electron transfer to oxidised Q2NS is responsible for quenching of luminescence, the precise 

mechanism has not been investigated. The aims of this study are therefore: 

 Synthesise CdTe/CdS QD-Q2NS conjugates with varying ratios of Q2NS:QDs, 

 Assess whether luminescence can be reversibly switched by changing the redox 

state, and determine whether quenching is more efficient than for type-I CdSe/ZnS 

QDs, 

 Employ optical spectroscopic techniques, combined with theoretical calculation, to 

determine the precise mechanism of quenching. 

4.2 QD Synthesis 

TGA-stabilised CdTe/CdS core/shell QDs were synthesised according to the method 

described in section 2.1.1 The solution was heated under reflux for 1 hour to grow the core 

CdTe QDs. Thiourea was added in a Cd:S ratio of 1.5, and the solution was refluxed for a 

further 1 hour to allow formation of the CdS shell. The resulting QD dispersions were cleaned 

using procedures described in section 2.1.4 and dispersed in ultra-pure water. The resulting 

QDs displayed bright emission at 557 nm (FWHM 44 nm), with absorption characterised by 



102 
 
 
a first excitation feature at 528 nm (Stokes shift 29 nm), as located by a minimum in the 2nd 

derivative of the absorption, shown in figure 46.  

 

Figure 46. Absorbance and PL emission spectra (λex=420 nm) for CdTe/CdS QDs. The red line 

represents the second derivative of the absorption spectrum. 

Two minima are visible in the second derivative of the absorbance spectrum, at 528 nm 

(consistent with the band edge transition) and 460 nm (consistent with a higher-level 

transition). For core-only CdTe QDs, studies comparing experimental observations with 

theoretical calculation show that these minima can be associated with specific excitonic 

transitions.[163, 164] However, it has been shown that adding a shell to a core CdTe QD, 

particularly one that achieves a type-II structure, significantly changes the position of higher 

level transitions.[165] It is therefore only possible to assign the band edge as the 1S3/2-1s 

excitation, resulting in a hole in the 1S3/2 state and electron in the 1s excited state.[163, 164]   

The concentration of the QD solution, as well as an estimate of the QD size, was determined 

using the methods of Yu et al. For simplicity, the approximation that the QDs were CdTe only 

was made. The average diameter was determined by the empirical equation:  

𝑑 = (9.8127 × 10−7)Λ3 − (1.7147 × 10−3)Λ2 + 1.0064Λ − 194.84         ( 39 ) 

Here, Λ is the wavelength of the first excitation (determined from figure 46) and d is the 

diameter, calculated to be 3.0 nm. The molar extinction coefficient at the wavelength for the 

first excitonic transition is then calculated by: 
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𝜖(Λ) = 10043𝐷2.12     ( 40 ) 

This was found to be equal to 9.9 × 104 𝑀−1𝑐𝑚−1. The concentration of the stock solution 

was calculated, then diluted to yield a 4 µM dispersion in ultra-pure water.  

QD sizes were then also determined by TEM. Bright-field TEM images of samples prepared 

as described in section 2.7.1 were acquired as described in section 2.7.2 (figure 47). The QDs 

are approximately spherical in shape, and diameters were calculated by manually fitting 

ellipses to the QDs using ImageJ, and recording the length of both semi-major and semi-

minor axes. Sizes for 82 QDs were measured. Fitting a histogram of particle sizes to a normal 

distribution (shown in figure 48) gave an average diameter d = 3.2 ± 0.4 nm, which 

corroborates with the size determined by optical spectroscopy.  

 

Figure 47. Typical bright-field TEM image of CdTe/CdS QDs, used for determination of 

average particle size. 
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Figure 48. Histogram of diameters of CdTe/CdS QDs measured via TEM. The black curve is a 

normal distribution with peak at 3.2 nm with standard deviation of 0.4 nm (n=82). 

4.3 Ligand exchange 

The molecule Q2NS was synthesised as described in section 2.2. QD/Q2NS conjugates were 

produced in QD:quinone ratios of 1:10, 1:20, and 1:40, as well as a control sample where no 

Q2NS was added, by the methods described in section 2.3. These samples are referred to as 

10Q, 20Q, 40Q and 0Q respectively. Note that the notation used here is based on the number 

of quinones per QD, not the amount of Q2NS; one unit of dimeric Q2NS accounts for two 

quinone groups. Completion of the ligand exchange was determined by measuring the 

absorbance of the samples before and after cleaning via precipitation and centrifugation, as 

shown in figure 49. Subtracting the normalised absorbance of the sample before cleaning 

from the absorbance of the sample after, leaves a residual signal that can be compared to 

the absorbance of a solution of Q2NS. No significant signal from absorbance of Q2NS is visible 

in the residual, suggesting that all added Q2NS is strongly associated with the surface; this is 

interpreted as completion of the ligand exchange reaction. 
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Figure 49. UV-Vis absorbance spectra of Q2NS-QD conjugated before and after cleaning. 

The residual (green) is the signal obtained by subtracting the absorbance of conjugates 

after cleaning (pink) from that before cleaning (blue). The black and red curves are the 

absorbance of equivalent amounts of QDs and Q2NS in solution. 

The progress of the ligand exchange was also followed using PL spectroscopy. The sealed 

reaction vessel (a 4 mL cuvette) was placed in the spectrometer, and the PL intensity at the 

max emission wavelength was measured once per minute. The beam was blocked between 

measurements to reduce the effects of photo-degradation, and the sample was continuously 

stirred. After introduction of Q2NS to the QD solution, the PL intensity rapidly drops off as 

Q2NS associates with the surface, as shown in figure 50. This reduction in PL intensity is 

preserved after cleaning, as shown in figure 51. 
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Figure 50. PL intensity vs time for 0.5 µM CdTe/CdS QDs incubated with 5 µM Q2NS (20Q). 

A control experiment was performed, where Q2NS was replaced by the quinone molecule 

2,3-Dimethoxy-5-methyl-p-benzoquinone (CoQ0), the starting material in the synthesis of 

Q2NS. This molecule consists of the quinone “sensing” part of Q2NS without the “linker” that 

attached to the QD. Ligand exchange procedures were followed with both Q2NS and CoQ0, 

to obtain a quinone: ratio of 20:1, in both cases. The resulting particles were cleaned, and 

their PL spectra acquired. Samples with Q2NS display a significantly quenched PL vs control 

(no quinone). However, samples with CoQ0 do not display a significant decrease in the PL, 

suggesting that CoQ0 has been removed during the cleaning procedure, and therefore does 

not strongly associate with the QDs. This further suggests that the mechanism of binding of 

Q2NS to the QDs is via formation of a thiolate bond; CoQ0 does not possess the disulphide 

or thiol group necessary to form this bond. 
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Figure 51. PL spectra (λex = 420 nm) of samples of QDs after following ligand exchange and 

cleaning procedures with Q2NS (black) and CoQ0 (red). Binding of Q2NS to the QD surface 

strongly quenches the QD luminescence. Inset: structure of CoQ0. 

4.4 Measurement of Per-Quinone Quenching Efficiency 

A consequence of the presence of a “linker” between the QD and quinone acceptor group is 

that each acceptor is likely only to be responsible for the quenching of luminescence of a 

single QD. Importantly for small acceptor:QD ratios, the population of Q2NS bound to the 

QDs can be assumed to follow Poissonian statistics.[59] For a given Q2NS:QD ratio λ, the 

photoluminescence quantum yield (PLQY) can therefore be expressed as 

𝐼𝜆  =  𝐼0 ∑
𝜆𝑛𝑒−𝜆

𝑛!
(1 − 2𝜅𝑞)𝑛.∞

𝑛=0      ( 41 ) 

Here, κq is the per-quinone quenching efficiency, defined as the probability that a single 

quinone group will quench an event that would otherwise result in radiative recombination, 

with κmol = 2κq as the per-molecule efficiency. The parameter κq is related to the Stern-Volmer 

quencher rate coefficient kq by the expression κq = kqτ, where τ is the excitation lifetime. In 

equation 41, the parameter n is the number of Q2NS on any particular QD, found with 

probability 𝑃(𝑛)  =
 𝜆𝑛𝑒−𝜆

𝑛!
, and I0  is the PLQY for an unquenched sample. 

To measure the efficiency κq, Q2NS:QD conjugates were prepared with Q2NS:QD ratios of 0 

to 10. Figure 2 shows the measured PLQY for these samples; the above expression was fitted 
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using a weighted least-squares regression scheme to his data, as also shown in figure 52, 

resulting in a value for κq = 0.21 ± 0.02. 

 

Figure 52. PLQY vs Q2NS:QD ratio (λ in equation 41)  for Q2NS-QD conjugates in the 

ambient oxidised state. The dotted curve represents fitting to a quenching function that 

considers a Poissonian distribution of quenchers around QDs.  

This quenching is highly efficient compared to other systems in the literature, where a large 

number (~100) of acceptors are typically required to achieve ~70% quenching of PLQY.[98, 

111, 112] This suggests either that charge transfer from type-II or pseudo-type-II QDs is more 

efficient due to charge separation, or that there is a new and distinct mechanism that is 

responsible for charge transfer in these CdTe/CdS core/shell QDs.  

4.5 Redox-dependent PL of Conjugates 

PL spectra and PLQY for 4 mL, samples with 0, 10, 20 and 40 quinones per QD (termed 0Q, 

10Q, 20Q and 40Q respectively) were measured with excitation at 420 nm. In order to reduce 

the quinones, 100 µl of a solution containing 100 mg/ml sodium dithionite and 100 mg/ml 

sodium ascorbate were added to each cuvette in a protective atmosphere. The solutions 

were thoroughly stirred and the PL spectra and PLQY measured. Results are summarised in 

table 2 and figure 53.  

For oxidised samples 10Q, 20Q, and 40Q the luminescence was quenched by 98.7%, 99.8%, 

and 99.9%, with respect to the control (0Q) sample, as measured by comparison of PLQY. 
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This quenching is accompanied by a 6 nm blue shift in the luminescence peak position. The 

quenching is attributed to a fast electron transfer process between the QD and the quinones 

of Q2NS. The blue shift is attributed to the slight size polydispersity of the QDs; larger 

particles which possess longer-wavelength emission are less likely to possess a small number 

of Q2NS due to their increased surface area. The blue shift is more pronounced for 10Q and 

less for 40Q; at higher ratios of Q2NS:QD the number of QDs with few (1-6) quinones is very 

small, if a Poissonian distribution is assumed. 

 0Q 10Q 20Q 40Q 

Oxidised 38.7 % 0.7 % 0.08 % 0.03 % 

Reduced 57.9 % 50.0 % 42.7 % 36.9 % 

Table 2. Photoluminescent quantum yields of samples 0Q, 10Q, 20Q and 40Q before and 

after addition of reducing agents. 

 

Figure 53. PL spectra (λex = 420 nm) for QD:Q2NS conjugates 0Q to 40Q before and after 

addition of reducing agent. For samples with Q2NS, reducing agents cause recovery in 

luminescence from a highly-quenched state. Inset: Structure of QD-bound Q2NS in oxidised 

and reduced states. 

Addition of the reducing agents suppresses the quenching effects of the quinones to an 

extent proportional to the number of Q2NS per QD, consistent with almost total suppression 

of the electron transfer event that results in quenching. The fact that PL does not recover to 
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100% of that exhibited by the control QDs is attributed to incomplete reduction of quinones 

in the aqueous environment, which cannot be made totally free of oxidants such as diatomic 

oxygen; samples with large Q2NS populations will therefore still have a small fraction of 

oxidised quinones even after introduction of the reducing agent. For the 0Q sample, the PL 

was red-shifted with respect to that of the 10Q, 20Q, and 40Q samples after addition of the 

reducing agents. This is attributed to passivation of surface traps by the Q2NS, which 

employs a thiolate binding complex.[166] Again for the 0Q sample, the improvement in PLQY 

after addition of reducing agents is attributed to their passivation of surface states, and the 

resulting suppression of non-radiative recombination pathways. The exact mechanism of this 

passivation is unclear, but improvement in PLQY upon addition of electron-donating or 

negatively-charged surface treatments is commonly observed for CdTe QDs.[45, 117] This is 

corroborated by transient PL and TA data, mentioned in the next sections.  

4.6 Transient PL Spectroscopy 

Transient PL traces were acquired for the QD samples, and fitted to multi-exponential decay 

functions (equation 25) as described in methods section 2.4.4. These traces are shown in 

figure 54. 

 

Figure 54. PL decay traces (λex = 420 nm, λem = 560 nm) of samples in oxidized (filled circles) 

and reduced state (empty circles) for samples 0Q (black), 10Q (red), 20Q (green) and 40Q 

(blue). Bi-exponential or tri-exponential fits are displayed as continuous lines. 
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The oxidised samples display two distinctive behaviours; samples with Q2NS display a rapid 

drop in PL intensity after excitation which is adequately described by a tri-exponential decay 

of the form 𝐼 = 𝐴0
𝑃𝐿 + 𝐴1

𝑃𝐿𝑒−𝑡/𝜏1
𝑃𝐿

+ 𝐴2
𝑃𝐿𝑒−𝑡/𝜏2

𝑃𝐿
+ 𝐴3

𝑃𝐿𝑒−𝑡/𝜏3
𝑃𝐿  and characterised by time 

constants 𝜏1
𝑃𝐿

 = 0.14 ± 0.01 ns, 𝜏2
𝑃𝐿 = 0.46 ± 0.03 ns and 𝜏3

𝑃𝐿 = 4.0 ± 0.9 ns. It is important to 

note that the fastest time constant is approximately the same as the response time of the 

instrument (0.10 ± 0.01 ns) and so it is not possible to resolve the underlying process behind 

this time constant, as shown in figure 55. 

 

Figure 55. Instrument response function (IRF) of spectrometer used for transient PL 

measurements (λex = 420 nm, λem = 560 nm). The “decay” signal due to scattering precludes 

measurements faster than about 0.1 ns. 

Still in the oxidised state, the sample 0Q shows a much slower decay, that can be fitted by a 

bi-exponential equation using only 𝜏2
𝑃𝐿

 and 𝜏3
𝑃𝐿. This is a clear indication that a fast (at least 

0.14 ± 0.01 ns) charge transfer occurs from the QDs to the oxidized Q2NS, causing the 

quenching observed in static PL measurements. In contrast, only very small differences are 

observed between the samples with and without Q2NS in the reduced state, shown in figure 

54. Reduced samples with Q2NS (10Q, 20Q, 40Q) no longer exhibit the abrupt decay 

associated with the supposed fast transfer process. The fast time constant (𝜏1
𝑃𝐿) is no longer 

needed to adequately fit these decays, which can again be described as bi-exponential with 

time constants 𝜏2
𝑃𝐿

 and 𝜏3
𝑃𝐿. The disappearance of this fast decay constant is in agreement 

with the recovery in PL observed in the static PL experiments, and is consistent with the 

reduced Q2NS no longer acting as a PL-quenching electron acceptor after it is chemically 
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reduced. The small discrepancies between transient PL traces of reduced samples agree with 

the recovery in PL shown in figure 53, and are again attributed to incomplete reduction of 

quinones. The difference in transient PL traces of the 0Q sample for the oxidised and reduced 

states agrees with the assumption that the reducing agent is also capable of passivating 

states associated with non-radiative recombination pathways, for example those associated 

with surface trap states. 

 

Figure 56. PL decay amplitudes for all samples, in oxidised (left) and reduced (right) states. 

PL decays for oxidised samples with Q2NS are dominated by a fast process with amplitude 

𝐴1
𝑃𝐿; this increases for increased Q2NS populations, but disappears for reduced samples. 

Decay parameters for the reduced samples are largely independent of the population of 

Q2NS. 

4.7 Transient Absorption Spectroscopy 

TA traces and pump-induced absorbance change spectra (bleach spectra) were acquired for 

all samples as described in section 2.4.5. Figure 57 shows the bleach spectra for a pump 

photon energy of 2.95 eV (wavelength 420 nm, obtained at the time of maximum bleach 

signal) for both oxidised and reduced samples. Each spectrum exhibits a prominent bleach 

that corresponds to the peak in the UV-Vis absorbance spectrum. This bleach is due to the 

filling of states by electrons at the conduction band minimum. For samples that have not 

been reduced, the magnitude of the bleach is significantly reduced for samples that have 

Q2NS (10Q, 20Q, 40Q) compared to control (0Q) suggesting fewer electrons cool to the CBM 

when there are oxidised quinones present. Upon addition of the reducing agent, the bleach 

signals are similar across all samples, suggesting that this effect has been suppressed. This 

therefore suggests that the oxidised Q2NS is capable of accepting an electron from the QD 

before it has reached the CBM. 
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Figure 57. TA bleach spectra for all samples in oxidised (left) and reduced (right) states. 

Pump wavelength λpump=420 nm.  

Figure 58 shows the first 50 ps of the corresponding time resolved absorption transients for 

each of the samples, obtained at a wavelength near the peak of these bleach features (530 

nm). Also shown are tri-exponential fits to these transients. The reduction of absorbance is 

again due to the filling of states by electrons cooled to the CBM, and the value of 
∆𝐴

𝐴
 (the 

fractional absorbance change) is proportional to the average occupation of the CBM.[167] 

These bleach transients rapidly reach an initial peak that then decays to a plateau over a few 

10s of ps. This is typically observed in colloidal QD systems in which hot electrons created by 

the high energy pump pulse quickly cool down to the CBM giving rise to the initial peak. The 

decay is then produced by sub-nanosecond depopulation of the CBM, including by trapping 

of these cooled electrons, while the plateau represents long-lived electrons that may 

eventually contribute to emission by radiative recombination.  Previous studies have shown 

that typical samples of CdTe QDs exhibit heterogeneity in the recombination pathways 

employed by individual QDs; some QDs contain a number of traps, where some are trap-

free.[45, 168] The significant plateau in the TA transients confirms the presence of sufficient 

number of these trap free QDs (or QDs with very slow trapping rates), and explains why a 

PLQY of ~40% can be observed when the apparent trapping rate observed from the TA decay 

is much faster than radiative recombination. Sub-nanosecond decays to a plateau can also 

be observed during Auger recombination of excitons, when multiple excitons are generated 

in a QD due to absorption of more than one photon per QD, per pulse. However, in this case, 

low enough excitation fluences were used to make the probability of this process negligible 

(<1.5×10-05). A table of biexciton formation probabilities is available in the appendix (9.2).  
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Figure 58. Absorbance transients obtained at 530 nm for all samples in oxidised (left) and 

reduced (right) states. Pump wavelength λpump=420 nm. The solid lines are guides for the 

eye, while the dashed lines represent multi-exponential fits. 

For samples that have not been reduced, the peak amplitude is significantly reduced in 

samples with Q2NS (10Q, 20Q and 40Q) compared to control (0Q). The peak amplitude 

decreases as the ratio of Q2NS:QD increases, reaching approximately 40%, 30% and 20% of 

the peak amplitude for 10Q, 20Q and 40Q respectively. This agrees with the previous 

evidence that suggests electrons are extracted from the QD to the Q2NS before they cool to 

the CBM. Furthermore, for the oxidised samples with Q2NS, the “plateau” amplitude, 

associated with long-lived electrons that contribute to radiative recombination, is almost 

zero. This is in agreement with the observed quenching of PL, and further suggests that 

electrons that do cool to the CBM can also be transferred to the oxidised Q2NS. 

After the samples have been reduced, a large increase of both peak and plateau amplitudes 

is seen for the samples with Q2NS. The increase in plateau amplitude, in particular, is in 

agreement with the improvement in PL observed after reducing the Q2NS. The increase in 

peak amplitude is consistent with suppression of transfer to the quinones that occurs before 

cooling to the CBM, as seen in the bleach spectra in figure 57. For the 0Q sample, a small 

increase in the bleach signal is observed. This increase in bleach signal, in combination with 

longer PL decay and improved PLQY for the 0Q sample upon addition of reducing agent 

further suggests that the reducing agent also affects other non-radiative recombination 

pathways, besides controlling quenching by changing the oxidation state of the quinones.  

The decay curves for all samples are well described by a tri-exponential fit, of the form 𝐼 =

𝐴0
𝑇𝐴 + 𝐴1

𝑇𝐴𝑒−𝑡/𝜏1
𝑇𝐴

+ 𝐴2
𝑇𝐴𝑒−𝑡/𝜏2

𝑇𝐴
+ 𝐴3

𝑇𝐴𝑒−𝑡/𝜏3
𝑇𝐴  with time constants of 𝜏1

𝑇𝐴= 2.0 ± 0.1 ps, 𝜏2
𝑇𝐴 

= 13.4 ± 0.8 ps and 𝜏3
𝑇𝐴 = 480 ± 50 ps. 𝐴0

𝑇𝐴 is a time-independent constant, which represents 
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the plateau in the traces. The longest of the time constants, 𝜏3
𝑇𝐴, agrees with the value of 

𝜏2
𝑃𝐿. The other two, 𝜏1

𝑇𝐴 and 𝜏2
𝑇𝐴, are much shorter than the time response of the PL lifetime 

experiment, and so cannot be resolved in the transient PL data. However, the processes 

associated with these time constants would still contribute to the amplitude associated 

with 𝜏1
𝑃𝐿. Due to the inhomogeneity in QD samples mentioned before, rigidly assigning 

transfer timescales precisely to transitions is difficult; it is possible to fit almost any decay 

function with an arbitrarily large number of terms, however a small number of terms fairly 

safely allows a sensible general description of the de-excitation dynamics of an ensemble of 

QDs. 

 

Figure 59. TA decay amplitudes for all samples in oxidised (left) and reduced (right) states.  

Figure 59 shows the amplitude associated with each decay component for each sample in 

both oxidised and reduced states. For oxidised samples, increasing the ratio of Q2NS to QDs 

increases the amplitude associated with 𝜏1
𝑇𝐴  at the expense of those associated with 𝜏2

𝑇𝐴 

and 𝜏3
𝑇𝐴, indicating that it is 𝜏1

𝑇𝐴  that is associated with the electron transfer process from 

the CBM of the QD to oxidized Q2NS. For reduced samples, decay parameters are largely 

unaffected by Q2NS:QD ratio, indicating that this electron transfer process is suppressed.  

To study the energy dependence of the charge transfer process, absorption transients for 

both oxidised and reduced samples 0Q and 40Q were obtained for pump photon energies of 

2.75 eV and 2.58 eV, corresponding to pump wavelengths of 450 nm and 480 nm, 

respectively; these results are summarised in figure 60. 
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Figure 60. Fractional changes in absorption for samples a) 0Q in oxidized state, b) 40Q in 

oxidized state, c) 0Q in reduced state and d) 40Q in reduced state. Traces normalised by 

controlling absorbed photon flux density, JApump, to 1.7 x 1012 photons cm-2 per pulse.   

The peak bleach for the oxidised 40Q sample compared to the oxidised 0Q sample is reduced 

approximately 6-fold, independent of pump wavelength. This indicates that transfer to the 

Q2NS by hot electrons is competes with cooling to the CBM, which reduces the number of 

electrons reaching the CBM. However, for both the oxidized 40Q and 0Q samples the peak 

when pumping at 420 nm is about one–third of that obtained when pumping at 450 nm or 

480 nm. This indicates that significantly fewer electrons cool to the band edge after being 

initially excited to this higher energy state, suggesting the presence of a “hot” trapping 

process, accessible when pumping at higher energies, which later results in transfer to the 

quinone. After reduction of the quinones, the transients for 40Q and 0Q are largely similar, 

indicating that the electron transfer to the quinones has been switched off, both for “hot” 

transfer, as well as transfer from the CBM. For both 0Q and 40Q, in the reduced state, the 

peak bleach when pumped at 420 nm is now approximately two-thirds that when pumped 

at 450 nm or 480 nm. This suggests that the hot trapping mechanism allows later transfer to 

the quinones; reducing the quinones prevents transfer of electrons from traps, and a larger 
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fraction of these trapped electrons can now cool to the band edge. Additionally, the initial 

amplitudes of the reduced samples when pumped at either 450 nm or 480 nm were reduced 

compared to the oxidized 0Q, by a third and half for the reduced 0Q and 40Q, respectively. 

This is attributed to the effect of the reducing agents on the hot trapping process, which has 

been shown previously to be sensitive to surface treatments,[45, 117] also indicating the 

occurrence of some hot trapping when pumping at 450 nm and 480 nm.  

4.8 Cyclic voltammetry of conjugates  

As discussed in section 1.3.5, in order for efficient electron transfer to take place between 

the CBM of a QD and an external acceptor, the LUMO of the acceptor must lie energetically 

between the CBM and VBM. Additionally, for theoretical calculation of transfer timescales, 

it is important to have accurate estimates for the energies of the states involved; in this case 

the donor state is one associated with the QD, and the acceptor is the LUMO of Q2NS. A 

good approximation for the LUMO is the redox potential as determined by cyclic 

voltammetry.[169-171] 

To estimate the LUMO of oxidised Q2NS, cyclic voltammetry was performed on the 40Q 

sample in order to determine the redox potential of Q2NS in its QD-bound conformation, 

using methods described in section 2.10. A cyclic voltammogram obtained at a scan rate of 

50 mVs-1 is shown in figure 61. Peak anodic and cathodic currents were observed at 0.36 V 

and 0.56 V versus the normal hydrogen electrode respectively. Although redox of Q2NS is 

expected to be a two-electron process, only single peaks were observed. This is explained by 

the expected instability of the semi-reduced intermediate; a similar situation to the 

analogous ubiquinone/semiubiquinone/ubiquinol. The calculated redox potential is the 

average position of these two peaks, and is found at V° = 0.46 V vs NHE. This is higher than 

the value for the analogous ubiquinone-ubiquinol, which has reduction potential V° = 0.04 V 

Converting to vacuum level to find the estimated LUMO gives ELUMO=-4.90 eV. This lies within 

the band gap of both bulk CdTe and CdS (as shown in figure 62) and therefore will do so for 

QDs, where the band gap is wider due to size confinement effects.  
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Figure 61. Cyclic voltammogram of sample 40Q obtained vs mercury/mercurous sulphate 

electrode, presented vs normal hydrogen electrode potential.  

 

Figure 62. Band structure alignments for bulk zinc blende CdTe and CdS, with redox 

potential of Q2NS. The redox potential of Q2NS lies within the band gap (which will be 

wider for QDs) which enables it to accept photoexcited electrons. 

4.9 Atomistic Semiempirical Pseudopotential Calculations 

To gain further insight into the nature of the electron transfer process, calculations for 

transfer times for a simplified CdTe core QD-acceptor system were performed within the 

framework of the atomistic semiempirical pseudopotential method.[172] The QD core was 

represented by a CdTe core particle of radius 3 nm. To ensure the absence of any electronic 

coupling between QD and acceptor, the "linker" part of Q2NS was modelled as a one-atom-

thick arm made of a zinc blende semiconducting material with a band gap much greater than 
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that of CdTe. The oxidised Q2NS was modelled, according to an established procedure,[159] 

as a localised acceptor state positioned at the end of the linker, whose energy coincided with 

the experimental estimate for the lowest unoccupied molecular orbital (LUMO) of Q2NS. For 

direct transfer of an electron from the CBM, calculated transfer times are of the order of 

nanoseconds, and increase for electrons excited to higher energy states. These transfer times 

are significantly longer than what is observed from TA measurements. Transfer times from a 

simulated surface trap state, however, agree closely with those observed. Depending on the 

relative position of the simulated trap state and attached acceptor, predicted transfer times 

range from a few (2-8) ps for the shortest distance trap, to tens (40-70) of ns for the furthest, 

covering all values in between. The transfer times are calculated assuming an Auger-

mediated process, whose rates depend on the dielectric constant of the nanocrystal’s 

environment. This process involves transfer of energy from the excited electron to VB holes, 

and is thought to be much faster than direct electron transfer for electrons resident in 

surface traps.[159] Dielectric constants ranging from 2.5 to 6 were considered, in order to 

represent the effects of ligands, solvents and shell material. The variation in the calculated 

transfer times for each particular distance accounts for this variation in dielectric 

environment. These simulations strongly suggest transfer to the Q2NS is dominated by a 

stepwise process involving an intermediate surface trap state. Despite the simplicity of this 

approach, where the linker is replaced by an atomic chain made of an insulating material and 

the electron acceptor is modelled only through the position of its LUMO, the calculated 

transfer rates reproduce the observed trends, particularly when considering the large 

number of quinones per QD. 

4.10 Concluding remarks 

These observations discussed in this are consistent with a step-wise electron transfer 

process. Regardless of the presence of Q2NS, hot electrons can be trapped in a localised QD 

state, at an energy that lies above the CBM, rather than cool directly to the band edge. Such 

trapped electrons can (i) cool to the band edge, (ii) non-radiatively recombine or (iii) transfer 

to an oxidized quinone (if present). The latter process is able to largely outcompete the 

others. Electrons that have reached the CBM can also transfer to an oxidised Q2NS, or can 

recombine, either radiatively or non-radiatively. These processes are summarised in figure 

63  
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Figure 63. Schematic diagram of quantum dot energy levels and possible charge excitation 

and relaxation processes.Thin blue lines represent non-radiative processes, and the thin red 

line represents radiative recombination. Pumping at 2.95 eV (420 nm) allows efficient 

electron transfer to attached Q2NS via a high-lying intermediate surface trap state. The 

efficiency of this transfer is strongly dependent on the spatial separation of the attached 

Q2NS acceptor and trap state donor. 

In conclusion, data from TA and transient PL experiment showed that electron transfer from 

colloidal CdTe/CdS QD to a surface bound electron acceptor is possible both by “hot” 

electrons and those that have cooled to the CBM. Analysis of the absorption bleach at varying 

wavelengths implicates a particular hot trap state that exhibits efficient transfer to the Q2NS.  

Transfer timescales predicted by calculations within the framework of the semiempirical 

atomistic pseudopotential method concur with these experimental observations. Upon 

chemical reduction of Q2NS, electron transfer from the QD is seen to be suppressed, so 

electrons cool to the band edge and undergo recombination as normal. Employing this 

bimodal electron transfer route greatly increases the quenching efficiency of the QD-

acceptor system vs other QDs (as measured by comparison of per-quinone quenching 

efficiency) and extends their applicability as a useful biosensor. In addition to this, the new 

insight that hot trapped electrons can be efficiently extracted from the QDs using this organic 

molecule may have important consequences for other semiconductor industries, particularly 

in photovoltaics where charge extraction is one of the main barriers to improved solar cell 

efficiency.  
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5 Redox Sensitive QDs in Cells 

The previous chapter discussed the synthesis and characterisation of a QD redox sensor 

consisting of a CdTe/CdS QD conjugated with the quinone molecule Q2NS. This chapter 

discusses the interaction of these CdTe/CdS QDs and their conjugates with Q2NS to MCF-7 

cells, a breast cancer cell line. These cells were chosen as they are easy to grown and 

maintain, and display a particularly reduced redox environment.[173] 

A major hurdle in the development of nanoparticle redox sensors is achievement of non-

endocytic uptake, as well as determination of the location of the nanoparticles within the 

cell. With this in mind, a number of strategies for achieving uptake of the CdTe/CdS QDs are 

detailed here. The first, and simplest strategy involves the use of amine-terminated 

stabilising ligands (cysteamine) for the QDs. This may be expected to facilitate uptake in two 

ways: firstly, the net positive charge of the amine-functionalised QDs may improve uptake 

due to electrostatic attraction to the negatively-charged plasma membrane. Secondly, the 

proton-sponge effect exhibited by amine-rich species may allow for endosomal escape.  

As detailed in section 1.6, cell-penetrating peptides (CPPs) are often used effectively for 

transfection of small molecules, and have been shown to improve delivery of nanoparticles 

into cells. Section 5.5 details the use of the CPP TAT-c for improvement of uptake of QDs into 

cells, and determination of the QDs fate.  

The final method used for encouraging uptake was via cell squeezing, using protocols 

detailed in section 2.8.5.  Experiments were performed using QDs with and without Q2NS. 

A QD redox sensor of the type discussed here will be effective for a particular cell type if 

enough of the surface-bound Q2NS is reduced that PL recovers from the quenched, oxidised 

state. However, if all the Q2NS is reduced, the PL will be maximised, and the sensor will be 

unable to resolve changes in the redox potential. Here, work to ascertain the effectiveness 

of the Q2NS-conjugated QDs as redox sensors for MCF-7 are performed.  

The aims for the work detailed in this chapter are as follows: 

 Determine whether cysteamine-capped CdTe/CdS QDs escape endosomes after 

endocytosis by MCF-7. 

 Determine whether TAT-c can allow enhanced uptake of QDs into MCF-7 cells, and 

determine fate of QDs after uptake. 
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 Use cell squeezing to achieve non-endocytic uptake, and then determine whether 

Q2NS-conjugated QDs are an effective redox sensor for MCF-7 using the criteria 

outlined above.  

5.1 QD Synthesis 

Red-emitting cysteamine-stabilised and orange-emitting TGA-stabilised CdTe/CdS core/shell 

QDs were synthesised as described in sections 2.1.1 and 2.1.2, and suspended in HEPES 

buffer (Sigma) with pH adjusted to 7.2. Optical spectroscopic data obtained for these QDs is 

given in figures 64 and 65. The QDs displayed the expected optical properties, with narrow 

emission and relatively broad Stokes shift. From absorption data, estimates for the average 

diameters of the QDs were calculated at 3.4 nm and 3.3 nm for the TGA- and cysteamine-

stabilised QDs respectively (procedure detailed in the previous section). The zeta potentials 

were measured as -39 mV and +32 mV for the TGA- and cysteamine-stabilised QDs 

respectively, consistent with colloidally stable QDs. A summary of optical properties, as well 

as measured zeta potentials is available in table 3. 

 

 

Figure 64. UV-Vis absorbance (black) and photoluminescence (red) spectra for red, 

cysteamine-stabilised CdTe/CdS core/shell QDs. 
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Figure 65. UV-Vis absorbance (black) and photoluminescence (red) spectra for orange, TGA-

stabilised CdTe/CdS core/shell QDs. 

 

QD 1st Excitation Emission 
max 

PLQY Estimated 
size 

Zeta 
potential 

TGA-
CdTe/CdS 

555 nm 601 nm 46% 3.4 nm -39 mV 

Cysteamine-
CdTe/CdS 

570 nm 616 nm 42% 3.3 nm +32 mV 

Table 3. Summary of physical properties of TGA- and cysteamine-stabilised CdTe/CdS QDs 

used in cell experiments. 

5.2 Viability Studies 

An effective biosensor must not be highly toxic in the environment for which it is designed 

to be used. As mentioned in section 1.6, Cd-containing QDs have been shown to exhibit 

toxicity due to “leeching” of Cd into the cytosol. In addition, generation of reactive oxygen 

species at the surfaces of optically-active nanoparticles may also contribute to cell 

malfunction and death.[174] However, small doses of QDs may exhibit low enough toxicity 

to cancer cells to avoid their preclusion as effective redox sensors. Viability studies for both 

TGA-and cysteamine-capped QDs were performed to assess cytotoxicity of the QDs, using 

methods outlined in section 2.8.2.  The results are summarised in the following figure 66. 
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Figure 66. Viability of MCF-7 cells after 24 (red) and 48 (black) hours incubated with varying 

concentrations of TGA- and cysteamine-capped QDs. For both timescales, toxicity remains 

low until the concentration is increased to around 100 nM. For higher QD concentrations, 

toxicity is increased for longer timescales.  

For small and intermediate concentrations (1-30 nM) viability remains high (>95%) for both 

24 hour and 48 hour incubations with both QD types, consistent with low toxicity. For higher 

concentrations (100-1000 nM) toxicity begins to increase, and viability is reduced to around 

75-80% after 48 hours, for both QD types. However, for shorter times, the toxicity still does 

not increase dramatically. This suggests that toxicity is largely due to slow leeching of toxic 

Cd into the cell. The QD concentrations necessary to obtain this toxicity, however, are very 

high (typical experiments use QD concentrations of 0.1-10 nM) and so we can conclude that 

for these cells, the QDs have limited toxic effects over the intended concentration range. 

5.3 Passive Uptake of QDs 

Both the TGA- and cysteamine-capped CdTe/CdS QDs were incubated with MCF-7 cells at 

varying concentrations, to determine whether the cysteamine-capped QDs would escape 

endosomes via the proton-sponge effect, as described in section 1.6. To this end, the 

experiments with TGA-capped QDs were performed as control.  
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5.3.1 Cysteamine-capped QDs 

Cysteamine-capped QDs were incubated for 24 hours at concentrations of 0.1-10 nM with 

MCF7 cells as detailed in methods section 2.8.3 and then washed with DPBS. Confocal 

microscopy shows uptake of QDs into the cells, evidenced by bright, uniform fluorescence, 

as shown in figure 67.  

 

Figure 67. Bright field (left) and confocal fluorescence image (right) of MCF-7 cells 

incubated with 3 nM cysteamine-capped CdTe/CdS QDs. Bright fluorescence, co-localised 

with the cell is evidence for uptake of QDs by the cell.  

To determine whether QDs had escaped from endosomes, an immunostaining study was 

performed in a separate experiment, as described in methods section 2.8.6. A representative 

image is presented in figure 68. Nuclear staining by Hoescht 33342 shows that QDs remain 

outside of the cell nucleus.  By comparison of signals from the QDs and Alexa-416-conjugated 

EEA-1 (which stains endosomes), the QDs are almost completely co-localised with 

endosomes, which indicates that endosomal escape has not occurred. There are some areas 

on each image which show the presence of QDs not associated with EEA-1. This shows that 

the observed co-localisation is not merely an artefact due to crosstalk between the emission 

of the QDs and Alexa-416, however these areas are typically outside of the cells, and are 

thought to be due to aggregates of QDs in the solution which have not been endocytosed or 

washed away.  
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Figure 68. Confocal fluorescence image of fixed MCF-7 cells stained with Hoescht 33342 

(blue) cysteamine-capped QDs (red) and Alexa-416-goat-EEA-1 (green). Almost total co-

localisation of red and green channels is observed. 

5.3.2 TGA-capped QDs 

The same experiments were performed for the TGA-capped CdTe/CdS QDs, with largely the 

same results: bright emission was observed from the QDs within cells, shown in figure 69. 

However, immunostaining with EEA-1 (figure 69) showed that QDs were completely co-

localised with endosomes, suggesting that the QDs are universally within endosomes after 

24 hour incubation. This is not an unexpected result, as there is no known reason these QDs 

would necessarily be capable of endosomal escape.  
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Figure 69. Top: Bright field (left) and confocal fluorescence image (right) of MCF-7 cells 

incubated with 3 nM TGA-capped CdTe/CdS QDs. Bottom: Confocal fluorescence image of 

fixed MCF-7 cells stained with Hoescht 33342 (blue) cysteamine-capped QDs (red) and 

Alexa-416-goat-EEA-1 (green), showing co-localisation of QDs and EEA-1.  
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5.3.3 Q2NS-Conjugated TGA-QDs 

In the previous section, it was established that the TGA-conjugated CdTe/CdS QDs reside 

within endosomes after being taken up by the MCF-7 cells. The result of this is that sensors 

based on these QDs are unlikely to be useful in chemical sensing within the cytosol, if taken 

up by endocytosis. However, they will be useful in sensing of redox biology involved in the 

endocytic pathways, an area critically important to scientists working in the fields of drug 

delivery and discovery.[175-177]  

A preliminary study was therefore performed to determine whether the endocytic 

environment possesses sufficient reductive capability to switch on the luminescence of the 

Q2NS-conjugated QDs, which would confirm their viability as a redox sensor in this context.  

Q2NS-conjugated TGA-stabilised CdTe/CdS were synthesised, from the same stock as used 

in the uptake experiment, with a Q2NS:QD ratio of 20:1 (40Q, using notation from the 

previous chapter). Emission spectra of these QDs in both oxidised state (as expected from 

QDs in ambient lab conditions) and reduced state (reduced by addition of sodium ascorbate 

and sodium dithionite, detailed in section 4.5) are shown in figure 70. 

 

Figure 70. Emission spectra of Q2NS-conjugated (40Q) TGA-stabilised CdTe/CdS QDs, as 

used in uptake experiments, in oxidised (red) and reduced (black) states. 
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The resulting QD-Q2NS conjugates exhibit peak PL intensity that is almost completely 

quenched. Addition of reducing agent, as before, results in recovery of the PL to a large 

measurable value, in keeping with previously discussed observations. 

 

Figure 71. Epifluorescence image of (red) overlaid with bright field optical micrograph 

(greyscale) of MCF-7 incubated with 3 nM Q2NS-QD conjugates (40Q). Fluorescent signal 

indicates switch-on of the QDs PL by the reducing conditions within endosomes.  

Cells were incubated with the redox-QDs as reported in section 5.3.1. Epifluorescence images 

of the cells post-incubation show strong red fluorescence, indicating that the redox 

environment within the endosomes is sufficient to reduce the Q2NS of the QDs, in turn 

indicating that these Q2NS-QD conjugates are a viable tool for measuring redox during the 

endocytic pathway. 
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5.4 Cell Squeezing 

In the previous section, the redox-QDs were shown to be reduced within cells, albeit within 

endosomes (or later vehicles of the endocytic pathway). However, it is desirable to design a 

sensing strategy that allows measurement of the redox environment within the cytosol. For 

QD sensors, this means achieving QDs in cells that are not contained within any sort of 

vesicle, especially as a result of endocytosis.  

Cell squeezing was employed to achieve non-specific, non-endocytic delivery of the TGA-

capped CdTe/CdS QDs into cells (both with and without the redox sensing functionality 

imparted by Q2NS) according to procedures detailed in section 2.8.5. 

 

Figure 72. Example low-magnification confocal fluorescence image of MCF-7 cells squeezed 

with Q2NS-conjugated CdTe/CdS QDs. Red fluorescence indicates presence of reduced QD 

sensors.  
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To assess the effectiveness of the cell squeezing technique in achieving delivery of QDs into 

cells, MCF-7 cells were squeezed in the presence of 100 nM QDs and left for 30 mins. A 

control sample was processed in parallel, with the squeezing step omitted. Figure 73 shows 

a scatter plot of measured total PL intensity per cell vs cell radius. The squeezed and control 

cells are observed in two distinct populations, with the squeezed cells exhibiting a two-fold 

increase in PL emission per cell. This is concluded to be due to improved uptake of QDs by 

the cells.  

 

Figure 73. Scatter plot of total PL intensity per cell vs cell radius, as determined by confocal 

fluorescence microscopy, for cells squeezed with QDs (red) and control (black) where no 

squeezing was performed.  

TEM images (figure 74) of microtomed slices of squeezed MCF-7 cells show QDs dispersed 

throughout the cytosol of the cell, as well as a small number or QD aggregates within 

endosomes. This is direct evidence of the success of non-specific uptake of QDs through the 

transient pores caused by mechanical deformation. It is, however, difficult to quantify the 

proportion of endocytosed QDs by STEM; the QDs that are in endosomes are typically 

aggregated and are therefore difficult to individually count. 
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Figure 74. STEM image of slice of fixed MCF-7 cell after squeezing with QDs. QDs are visible 

as bright spots throughout the cytosol. Some endosomes containing aggregates of QDs are 

also visible (bottom right). 

The improved uptake for the squeezed cells (compared to the control sample) is attributed 

to non-specific, diffusive uptake of QDs, which is likely to result in the majority of QDs 

populating the cytosol of the host cell. However, there is still a significant PL signal measured 

from the control cells, suggesting endocytosis is still taking place, even over the short 

timescales and relatively low temperatures that the cell squeezing experiments are 

performed at. Another possible explanation for the significant PL signal from non-squeezed 

cells is that QDs have become adhered to the cell surface, and have not been removed by 

washing. The relatively small number of QDs observed in endosomes supports this idea.   
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In any case, it can be concluded that the cell squeezing achieves a significant number of 

cytosol-borne QDs per cell. With this in mind, the cell squeezing experiment was performed 

with the redox-sensing Q2NS-conjugated CdTe/CdS QDs, using the same protocols. Figure 75 

shows a scatter plot of PL intensity per cell vs cell radius for cells squeezed with Q2NS-

conjugated QDs (red) and control QDs (black). 

 

Figure 75. Scatter plot of total PL intensity per cell vs cell radius, for cells squeezed with 100 

nM Q2NS-conjugated QDs (red) and control QDs (black). 

Two populations are again observed. Surprisingly, the redox-sensitive QDs exhibit greatly-

improved PL in relation to their non-redox sensitive counterparts. This is not expected to be 

a result of higher rates of uptake for the redox-QDs; the relatively small population of Q2NS 

relative to the other capping agents (TGA) is not expected to make a large effect on the 

surface or colloidal properties. Instead, the improved PL per cell from the redox-QDs is 

attributed to the enhancement in fluorescence observed when the capping Q2NS is fully 

reduced (as thoroughly explored in the previous chapter). Although more studies must be 

performed in this area, it is therefore likely that the quinones of the redox sensitive QDs are 

fully reduced within MCF-7 cells. Further study could be performed on cells with a less-

reducing cytosolic redox environment, or with QDs conjugated to a ligand with increased 

reduction potential.  

 



134 
 
 

 

Figure 76. Average PL intensity per cell for cells squeezed with control (left) and redox-

sensitive Q2NS-conjugated QDs (left). Error bars represent the standard deviation.  

5.5 Cell-penetrating peptides 

Cell-penetrating peptides (CPPs) have been applied for transfection or delivery of a broad 

variety of cargo, from DNA to large proteins.[178-180] The CPP TAT-c is a particularly 

common example due to its small size and synthetic simplicity, and has been demonstrated 

to enhance uptake of nanoparticles in literature studies.[181-183] Importantly, the peptide 

possesses a thiol-containing cysteine residue at its N terminus, which allows for simple 

functionalisation of QDs or metal nanoparticles.  

Here, TAT-c-conjugated QDs were incubated with MCF-7 cells, in order to determine their 

fate. The mechanism of uptake for small TAT-conjugated nanoparticles is unclear, however 

free TAT is understood to stimulate and undergo micropinocytosis in most cells (a specific 

case of endocytosis).[184]  

5.5.1 Cysteamine-capped QDs 

TAT-conjugated cysteamine-capped CdTe/CdS QDs (10 TAT-c per QD) were prepared using 

protocols described in section 2.8.4, with the same QDs as described in section 5.3.1. Uptake 

experiments were performed for these QDs in an identical fashion to those in section 5.3. 

Confocal images of the live cells after incubation, as well as confocal images of fixed and 

stained cells are shown in figure 77. TAT-c conjugation was successful only with positively-

charged cysteamine-capped QDs; it is thought that the positive charge of TAT-c reduced the 

surface charge of the TGA-capped QDs, decreasing their colloidal stability. 
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Figure 77. Top: Bright field (left) and confocal fluorescence image (right) of MCF-7 cells 

incubated with 3 nM TAT-c conjugated, cysteamine -capped CdTe/CdS QDs. Bottom: 

Confocal fluorescence image of fixed MCF-7 cells stained with Hoescht 33342 (blue) 

cysteamine-capped QDs (red) and Alexa-416-goat-EEA-1 (green), showing co-localisation of 

QDs and EEA-1. 

The results are strikingly similar to what was observed for the QDs without TAT-c; the QDs 

exhibit bright PL from within the cells, but on study of confocal micrographs, appear to be 
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completely co-localised with endosomes. This suggests uptake is almost completely due to 

endocytosis.   

PL intensities for QDs with and without TAT-c were compared in a similar fashion to the 

squeezing experiments, to determine whether the presence of TAT-c increased uptake for 

these QDs. An intensity scatter plot is shown in figure 78. 

 

Figure 78. Scatter plot of total PL intensity per cell vs cell radius, as determined by confocal 

fluorescence microscopy, for cells incubated with control cysteamine-capped CdTe/CdS QDs 

(black) and with 10:1 TAT-c per QD (red). 

As before, two populations are visible; cells incubated with TAT-c-conjugated QDs appear 

2.1-fold brighter on average, attributed to an increase in the degree of endocytosis, as 

stimulated by the TAT-c peptide. This confirms that TAT-c is effective at stimulating uptake 

of QDs by MCF-7 cells. Results from confocal microscopy of fixed and stained cells suggests 

this increased uptake is due to an increase in endocytosis by these cells.  
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Figure 79. Average PL intensity per cell for cells incubated with control cysteamine-capped 

CdTe/CdS QDs (left) and with 10:1 TAT-c per QD (right). 

5.6 Concluding remarks 

The aim of the work in this chapter was to determine whether any one of various techniques 

would allow non-endocytic delivery of QDs into MCF-7 cells, or endosomal escape, resulting 

in QDs that are dispersed in the cell cytosol. The literature on this area of study is very thin; 

a large number, possibly a majority of papers that discuss QD biosensor systems in cells  do 

not report on investigations of where the QD is located within the cell (at least to a 

satisfactory degree of precision).  

It was found that the possible proton-sponge effect that is theorised to allow for endosomal 

release for amine-rich species was insufficient for the cysteamine-capped QDs. However, 

these QDs, as well as the negatively-charged, TGA-capped CdTe/CdS QDs, were readily 

endocytosed by the cells, and seemed to remain in endosomes at least 24 hours after initial 

incubation. If Q2NS-capped, redox sensitive QDs are incubated with the cells, endocytosis 

occurs, and the PL of the initially quenched, oxidised QDs recovers. By comparison to 

experiments discussed in chapter 5, this is interpreted as reduction of the quinones of Q2NS, 

resulting in a suppression of the PL-quenching electron transfer process, and suggests that 

these QDs may be useful for understanding changes in redox environment within the 

endocytic machinery. This may provide a useful tool for scientists who wish to perform long-

term longitudinal studies of these processes, particularly for drug delivery and drug discovery 

applications.[175-177]    



138 
 
 
The cell-penetrating peptide (CPP) TAT-c was conjugated to cysteamine-capped QDs, and 

was shown to increase uptake of the QDs into MCF-7 cells by a factor of 2. Free TAT-c is taken 

up into cells by pinocytosis (or “cell drinking”). Similarly to QDs that had simply been 

incubated with the cells, all TAT-c-functionalised QDs found within the cells were within 

endosomes, suggesting TAT-c promotes uptake of QDs into cells by increasing the degree of 

endocytosis; this is not a surprise considering the understanding of the uptake of free TAT, 

as well as evidence from studies with gold nanoparticles.[185] It can be concluded that 

functionalisation with TAT-c is an effective strategy for increasing uptake of QDs into MCF-7 

cells, if endocytic uptake is acceptable. If it is required that QDs are free of the endocytic 

pathway, then strategies for achieving endosomal release must be built in.  

Mechanical “squeezing” of MCF-7 cells by application of shear forces in a microfluidic device 

was also shown to greatly improve uptake in comparison to simple co-incubation. 

Mechanical deformation of the cell membrane causes the formation of transient pores, 

which allow the diffusion of colloidal QDs in the surrounding medium into the interior of the 

cell. Analysis of TEM data shows that QDs are largely well distributed within the cytosol when 

this method has been applied. When the cells are squeezed in the presence of the redox 

sensitive, Q2NS-conjugated QDs, PL was seen to recover in a similar fashion to that observed 

for the redox QDs that are reduced within endosomes. However, the fact that PL recovers to 

a degree of intensity much greater than that exhibited by the control QDs, suggests that the 

redox active quinones of Q2NS are highly reduced within the cytosol of MCF-7 cells. For these 

cells, at least, the molecule Q2NS is therefore unsuitable for cytosolic redox sensing; a 

sufficient proportion of quinones must be oxidised that PL is slightly, but not completely 

quenched. In this ideal case, a small shift in redox environment will result in a change in the 

proportion of oxidised ligands, which will result in a measurable change in PL. It was expected 

that Q2NS would have similar redox properties to ubiquinone (which exists in an 

approximately 95% reduced state) due to structural similarities, however CV measurements 

(discussed in chapter 4) show that there is a considerable difference in redox potential for 

the QD-bound Q2NS.[186, 187]  

Further work must therefore be performed in this area. It is the opinion of the author that a 

startling number of publications discussing intracellular biosensing with nanoparticles are 

not sufficiently rigorous in their determination of the fate of the nanoparticles, and therefore 

what part of the cell is actually subject to sensing. Understanding of nanoparticle uptake by 

cells is currently good when considering larger particles (20 nm and up) and for small 

molecules, however it is generally agreed that there is a gap in understanding for small 
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particles such as QDs.[188-190] This is perhaps a job for the cell biology community, 

considering the unsatisfactory rigour that has historically been applied by physicists studying 

such systems.  

To design a redox sensor for MCF-7 cells based on the CdTe/CdS QD-acceptor strategy, an 

acceptor molecule must be chosen with a suitable redox potential. This should simply be a 

matter of synthesising and trialling a number of different redox active ligands. Quinones and 

similar molecules are common in biology, have well understood chemical behaviour and can 

span a wide range of reduction potentials, making them excellent candidates for 

development of further redox-sensing ligands.[191] Developing a library of redox sensing 

electron acceptor ligands, capable of efficiently quenching QD luminescence, while 

possessing a range of redox potentials will be the most practical way of realising QDs as 

flexible intracellular redox sensors.  
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6 Conclusions 

The previous three chapters concerned development of QDs for application as redox 

biosensors. This thesis has discussed at length the necessity of thorough understanding of 

excited state dynamics in these QDs, for the enhancement or refinement of charge or energy 

transfer processes that are involved in sensing.  

The aims of the work discussed in chapters 3, 4 and 5 can be distilled to the following: 

 Synthesise and characterise optical properties of a library of candidate QDs for 

application in redox sensors, mainly based on CdTe and CuInS2 QDs. 

 Use STEM-EELS and crystallographic techniques to determine atomic structure, and 

therefore understand defect-related excited state dynamics in CuInS2 and CuInS2ZnS 

QDs with a view to their application as redox sensors. 

 Synthesise redox sensitive QDs based on CdTe/CdS QDs and the quinone ligand 

Q2NS, and characterise their redox-dependent optical properties. 

 Perform time-resolved spectroscopy to elucidate excited state dynamics and 

recombination mechanisms of such sensors.  

 Trial various surface capping agents on CdTe/CdS QDs in tandem with 

immunostaining studies to determine fate after uptake of QDs by MCF-7 cells. 

 Determine whether CdTe/CdS-Q2NS redox sensors can be applied as redox sensors 

within MCF-7 cells, by measuring photoluminescence of internalised QDs. 

CuInS2 core and CuInS2/ZnS QDs were the main focus of chapter 3. They are excellent 

potential candidate QDs for biosensing applications owing to their reduced toxicity in 

comparison to more common QD types (namely CdX, X=S, Se, Te), combined with excellent 

quantum yields. However, the defect-tolerant nature of CuInS2 leads to some interesting 

excitonic properties, which are currently of much debate and discussion in the literature.  

Previous work by Kraatz et al concluded that the emissive process in CuInS2 QDs involved a 

defect state-to-valence band transition involving an InCu anti-site defect. These defects are 

predicted to have low formation energy in chalcopyrite CuInS2, particularly when the lattice 

is copper-poor. This evidence was based on ultrafast TA spectroscopy studies, along with 

computational estimates of the energy of states associated with these defects, and 

supported by the circumstantial evidence that Cu-poor CuInS2 QDs exhibited better PLQY. 

However, the nature of these defects within the lattice of CuInS2 QDs was still unclear.  
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CuInS2 core and CuInS2/ZnS core/shell QDs were synthesised, and their optical properties (PL 

and absorbance spectra) were found to be in keeping with QDs discussed in the literature. 

This is characterised by a wide stokes shift, as well as a broad (>100 nm) photoluminescence, 

consistent with defect-state related emission. X-ray diffraction experiments also showed 

that the lattice structure of the core QDs was chalcopyrite CuInS2. HAADF- STEM images of 

QDS showed the expected tetrahedral shape. 

STEM-EELS images of both core CuInS2 and core/shell CuInS2/ZnS QDs, however, showed a 

high degree of segregation of the cationic elements in the QD structure. This was attributed 

to the high stability of the 2VCu + InCu defect cluster. The high degree of heterogeneity 

between QDs, in terms of the degree of segregation, was therefore concluded to contribute 

to the broad excitonic features observed in ensembles of CuInS2 QDs. As the local band gap 

is dependent on composition, energy levels of emissive defects are expected to cover a wide 

range, relative to the valence band. This is also expected to depend heavily on the location 

of the defect site within the highly-faceted tetrahedral nanoparticle.  

The fact that high PLQY is observed for these QDs, despite the highly defected nature, 

suggests that they may be excellent candidates for future studies on doping in QDs. However, 

issues with achieving transfer of the hydrophobic CuInS2 QDs into aqueous environment still 

present challenges for their application as redox sensors.  

In chapter 4, excited state dynamics of CdTe/CdS QDs conjugated to the redox-sensitive 

quinone ligand Q2NS were explored. This conjugate behaves as a redox sensor, where PL is 

switched depending on the redox state of the Q2NS ligand; oxidised Q2NS received an 

electron from the photo-excited QD, and the PL is quenched. When the quinones of Q2NS 

are reduced, this electron transfer is suppressed, and the PL recovers. Compared to other 

redox sensors present in the literature, only relatively small amounts of conjugated quinone 

were required to completely quench PL (around 20 per QD), suggesting a particularly 

efficient and unique mechanism of electron transfer for these conjugates. Optical and 

structural properties (as determined by TEM) of these QDs are similar to those of QDs found 

in the literature.  

Transient absorption (TA) studies, in combination with transient PL studies implicated an 

intermediate hot trap state in the electron transfer to the quinones. This trap state allows 

efficient transfer to oxidised quinones of Q2NS. Critically, however, electrons that are not 

transferred from the trap state (in the cases where Q2NS is not present or has been reduced) 

are later able to cool to the conduction band minimum and undergo radiative recombination 
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as normal. The surprising efficiency of the trapping process was reinforced by evidence from 

atomistic semiempirical pseudopotential calculations, which suggest that transfer times as 

fast as approximately 2 ps are possible if the Q2NS is bound to a cation close to the trap. This 

high efficiency, along with the previously-understood type-II nature of CdTe/CdS core/shell 

QDs, (which causes the electron to be associated with the QD shell) suggests that the 

intermediate trap state is likely to be associated with the surface.  

This new understanding of an extremely efficient charge transfer mechanism from QDs is 

expected to be useful for the development of new redox sensors, where efficient quenching 

can be achieved with only a small number of acceptor ligands. This diminishes the negative 

impact of these ligands on the colloidal properties of the QD, and leaves more space for 

further functionalisation, which could involve targeting to specific organelles such as 

mitochondria, where many metabolic processes take place. Aside from biosensing, this 

technology may also be of use in photovoltaics, where increasing charge extraction efficiency 

from semiconductors is of paramount importance for improving overall device performance.  

Critically, the CdTe/CdS QDs discussed in chapter 4 were synthesised via an aqueous route. 

Aside from the practical and environmental benefits this affords (the latter of which is 

admittedly largely offset by the grossly environmentally harmful heavy metals involved), the 

result is that these QDs are readily dispersible in water (or other aqueous solutions). This is 

critical for their application to biology, which is aqueous by nature. In addition, a wide range 

of molecules can be used as capping agents. The best results are achieved with small thiols, 

which regulate growth and provide colloidal stability to the QD. In this work, both positively 

charged (in solution), amine-terminated and negatively charged carboxylic acid terminated 

capping ligands were used, to achieve charge mediated colloidal stability in both senses. 

In chapter 5, QDs capped with both amine- and carboxylic acid-terminated molecules, as well 

as QDs conjugated to a cell penetrating peptide, were incubated with MCF-7 cells to 

determine their fate after expected endocytosis. In addition, it was intended to determine 

the degree of toxicity the QDs pose to MCF-7 cells; a useful biosensor must have little effect 

on cell viability.  

MCF-7 cells are a human breast cancer cell line, and were chosen as they exhibit a particularly 

reduced cellular redox environment. The rationale was that the effectiveness of the redox 

sensors could be determined by demonstrating switch-on of luminescence by the reducing 

environment within the cell. This was the final objective of the work presented in chapter 5.  
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Endocytosis describes a number of processes by which cells internalise material from their 

surroundings, and includes pinocytosis (cell drinking, where liquid from the exterior of the 

cell is taken up) or phagocytosis (solid material). After materials are endocytosed, they 

typically spend some time within compartments or vesicles of the endocytic pathway, 

termed endosomes. This presents a problem for redox biosensors introduced to the cell in 

this way; the redox environment is greatly different within an endosome compared to the 

cytosol, and so useful redox sensing will not be achieved unless the sensors can escape the 

endosomes.  

Cysteamine-capped QDs were incubated with the MCF-7 cells, in the hope that the “proton-

sponge effect” would allow escape from endosomes by triggering their osmotic lysis. After 

24 hours of co-incubation, immunostaining studies revealed absolute co-localisation of QDs 

with endosomal markers, suggesting that endosomal escape had not been achieved. This 

was also true for the control QDs, which were capped with TGA, a carboxylic acid-terminated 

ligand. It was therefore concluded that the proton-sponge effect that is commonly observed 

for polymeric transfection reagents (which can have a very large number of amine groups) 

would be difficult to reproduce for QDs, where the number of amine groups is limited by the 

surface area of the QD. 

An experiment where the cells were incubated with cysteamine-capped QDs conjugated with 

the cell-penetrating-peptide TAT-c was performed. The aim was to assess if this peptide 

could increase the rate of internalisation of QDs by the MCF-7 cells, and whether this 

internalisation would happen via endocytosis or some other process. While it was found that 

the TAT-c-conjugated QDs were internalised by cells approximately twice as efficiently as 

control QDs, it was again found that the QDs resided within the endosomes of cells 24 hours 

after initial incubation. Again, this prevents their application as a useful biosensor for 

measuring cytosolic redox environment. 

Although the previous methods for obtaining internalisation of QDs into cells demonstrated 

only reliable delivery of QDs to endosomes, this is not useless; understanding the redox 

behaviour of the endocytic process is important to biologists studying internalisation. Q2NS-

conjugated, redox sensitive QDs were shown to be reduced after uptake by endocytosis, 

suggesting that these QDs could be useful candidates for measurement of redox 

environment within the endosomes.  

Finally, cells that were mechanically deformed in the presence of QDs were shown to have 

taken up QDs both by endocytosis, as well as by diffusion of QDs into the cell cytosol, via 
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transient pores in the cell membrane that arise as a result of the deformation. When Q2NS-

conjugated, redox-sensitive QDs were used, the PL was switched on by the reducing 

environment of the cytosol. However, this switch-on of luminescence was absolute, 

suggesting that the Q2NS was completely reduced by the cytosol. Unfortunately this places 

a limitation on these particular QD-acceptor conjugates for use as redox sensors with MCF-

7 cells; an ideal system would have a proportion, but not all, of acceptors in the oxidised, 

electron-accepting state.  

The work with QDs in cells suggests a number of challenges that face the QD and biosensing 

communities. Firstly, for each type of sensor that is internalised by a cell, the exact 

microenvironment must be identified. It is the opinion of the author that many of the sensors 

mentioned in section 1.7 of this thesis likely reside in endosomes, or at least in a variety of 

microenvironments, and that this is not considered in enough depth by the reporting 

authors. To overcome this challenge, new strategies must be designed that allow endosomal 

release, or prevention of endocytic uptake (where it is not desired). 

Adaptation of the current redox sensors to different reducing environments is the other 

challenge, and this is likely to be significantly simpler. Changing the redox-active ligand to 

another with higher or lower redox potential will allow for only a proportion of an ensemble 

of sensing ligands to be in either the oxidised (and electron-accepting) or reduced state, 

affording the greatest possible sensitivity.   
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7 Future work 

7.1 Peptides as “Soft” Ligands for QDs 

The role of ligands in the excited state dynamics of colloidal QDs was discussed in section 

1.3.4, with particular respect to the passivation or introduction of electron or hole trapping 

states, which can negatively affect the photoluminescent properties. For QDs applied to 

biosensing, it was shown that difficulty is often encountered when performing ligand 

exchanges, in order to impart functionality to the QD or transfer previously hydrophobic QDs 

into the aqueous phase. Thiols are popular ligands due to their high affinity for materials 

such as CdSe and CdTe, but, depending on the material, their removal or replacement can 

introduce new trap states that negatively affect photoluminescence. There is therefore a 

need to develop strategies for specific binding to QDs that do not involve thiols, and do not 

necessarily require stripping away of ligands that are passivating surface trap states.  

Bacteriophages are viruses which propagate by attacking bacteria. Because of this, they are 

easy to maintain, and their lack of danger towards humans has turned them into flexible 

biological tools. Phage display is a technique whereby the genome of phage viruses is 

modified so that a random sequence of a set number of amino acid residues is presented on 

the surface of the virus, usually by appendage to one of the coat proteins. A large number 

(~108-109) of these phage, each with a different sequence, can then be panned against a 

target of choice, in an attempt to find peptide sequences that effectively bind. This is very 

useful for biologists who wish to develop antibodies for specific targets, but has been 

employed in a wide variety of fields by those who require specific binding between objects 

including small molecules,  large proteins or even solid materials.[192, 193]  

Phage display has previously been used to find peptides that can bind to gold nanoparticles, 

as well as act as growth-directing ligands for various nanoparticle morphologies.[194, 195] 

In addition, peptides have been discovered that bind to specific facets of semiconductor 

materials, and have been shown to allow for assembly of semiconductor nanocrystals.[196] 

The surfaces of QDs, however, are highly curved and faceted, and so may warrant discovery 

of different peptides for efficient binding.  

Early work has demonstrated promise; phage display experiments performed in May 2017 

identified five candidate peptides which bind efficiently to CdTe/CdS QDs. These peptides 

are shown in figure 80, which plots their binding efficiency vs control (a sequence of 5 

astatine residues), as ascertained by measuring PL emission from QDs immobilised on a 
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surface by the respective peptide. Further experiments will involve binding assays with 

truncated versions of the identified peptides, in order to elucidate any specific short 

sequences that are involved in binding to the CdS surface.  

 

Figure 80. Left - List of discovered peptides that bind to TGA-capped CdTe/CdS QDs. Bottom 

– negative of fluorescence image of QDs immobilised on surface by discovered peptides. The 

magnitude of the PL signal is proportional to the number of adsorbed QDs. Right – Intensity 

of binding as measured by PL experiment, normalised to control.  

 Importantly, early work shows that binding of free peptides does not reduce PLQY of the 

QDs, suggesting that PL-damaging problems so often associated with ligand exchange or 

ligand addition processes will be avoidable by using these peptides as binding groups.   

7.2 Single-particle Cathodoluminescence of CuInS2 QDs 

Chapter three of this thesis discusses the defect-mediated photoluminescence of CuInS2 QDs, 

and the resulting broad excitonic features exhibited by ensembles of these QDs. Perhaps the 

most striking result from this work is the large degree of heterogeneity between particles, 

with respect to the elemental segregation between them. It is now apparent that the number 

of radiative centres per particle may vary widely, as well as the energies of the states 

associated with them (as the energy is dependent on location within the particle as well as 

local band gap, which depends on composition). To date, we have only been able to perform 
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large scale ensemble measurements of optical properties (on relatively concentrated QD 

solutions) and so spectral features associated with individual particles are not resolvable.  

Cathodoluminescence, broadly speaking, is the opposite of the photoelectric effect, and 

describes the situation whereby photons of visible light are emitted from a material or object 

that is impinged upon by an electron beam. A classic example of cathodoluminescence is the 

glowing phosphor used to generate an image in the first electron microscopes, but now 

cathodoluminescence spectrometry is used as a (usually TEM-based) tool to study energy 

transitions in a wide range of materials. Measurements can be performed in the way as the 

STEM-EELS experiments described in chapter 3, albeit collecting visible wavelengths rather 

than x-rays. For QDs, the luminescent transition is expected to be the same for both optical 

and electronic excitation, and so single-particle cathodoluminescence studies allow 

interrogation of the emissive transitions for individual particles. [197, 198]  

Cathodoluminescence studies of QDs that undergo band-edge emission yield a single, ultra-

narrow single-particle emission.[199] The breadth of the emission spectrum of an ensemble 

of these QDs is therefore explained mostly by the size polydispersity of the ensemble. This 

may be different for the CuInS2 QDs, which are expected to have a variable number of 

emissive centres per particle. It may be that individual QDs are capable of emitting at a 

number of distinct wavelengths, one for each emissive point defect the particle has. With 

very high-resolution HAADF-STEM systems, it may also be possible to excite individual 

emissive point defects within the lattice of a single QD in parallel with high-resolution 

imaging. A STEM-based cathodoluminescence study of these CuInS2 could therefore yield a 

lot of information about the nature of their defect-related luminescence.  
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9 Appendix 

9.1 NMR Spectra of Synthesised Compounds 

 

Proton NMR Spectrum of alkyne-terminated quinone 2,3-Dimethoxy-5-methyl-6-(2-propyn-
1-ylamino)-2,5-cyclohexadiene-1,4-dione (400 MHz, MeOD) 

 

Proton NMR spectrum of bis-bromoethyl disulphide (400 MHz, CDCl3) 
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Proton NMR spectrum of Q2NS (400 MHz, CDCl3) 
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9.2 Biexciton Formation Probabilities for TA Experiments 

The table shows calculated values of pump fluences per pulse (𝐽), with average number of 

created excitons, 〈𝑁〉=𝜎 𝐽, and biexciton formation probability, P(𝑁)=〈𝑁〉𝑁𝑒−〈𝑁〉/𝑁!,[200] 

where 𝑁 = 2 for TA experiments for samples 40Q and 0Q. Biexciton formation probability is 

consistently less than 5×10-5 per QD, per pulse, which means Auger effects can be ignored. 

Values are calculated according to the model of de Mello Donega et al,[201] assuming a zinc 

blende CdTe QD of diameter 3.1 nm. 

Sample Pump 
Wavelength 
(nm) J (photons/cm2*pulse) 

Absorption cross 
section at pump 
wavelength (cm2) 

number of excitons 
created per QD per 
excitation <N> 

Biexciton formation 
probability P(2) 

0Q 
Oxidised 

420 

5.38±0.10×1012 

1.02±0.02×10-15 5.48±0.15×10-03 1.49±0.08×10-05 

 450 

5.77±0.12×1012 

7.48±0.15×10-16 8.63±0.24×10-03 3.69±0.20×10-05 

 480 

6.15±0.12×1012 

6.75±0.14×10-16 8.30±0.23×10-03 3.41±0.20×10-05 

0Q 
Reduced 

420 

5.38±0.11×1012 

9.51±0.19×10-16 5.11±0.14×10-03 1.30±0.07×10-05 

 450 

5.77±0.12×1012 

6.90±0.14×10-16 3.98±0.11×10-03 7.89±0.44×10-06 

 480 

6.15±0.12×1012 

5.84±0.12×10-16 3.59±0.10×10-03 6.42±0.36×10-06 

40Q 
Oxidised 

420 

5.38±0.11×1012 

1.01±0.20×10-15 5.46±0.15×10-03 1.48±0.08×10-05 

 450 

5.77±0.12×1012 

8.10±0.16×10-16 4.67±0.13×10-03 1.08±0.06×10-05 

 480 

6.15±0.12×1012 

8.31±0.17×10-16 5.11±0.14×10-03 1.29±0.07×10-05 

40Q 
Reduced 

420 

5.38±0.11×1012 

9.44±0.19×10-16 5.08±0.14×10-03 1.28±0.07×10-05 

 450 

5.77±0.12×1012 

6.66±0.13×10-16 3.85±0.11×10-03 7.36±0.40×10-06 

 480 

6.15±0.12×1012 

6.01±0.12×10-16 3.70±0.10×10-03 6.81±0.40×10-06 
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