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Abstract

The coupled coherent states method has demonstrated itself as an accurate and efficient
method of studying the quantum dynamics of various systems. In recent years, its appli-
cability has been extended by incorporating a number of new numerical expansions and
modifications to generate a closely related family of methods. In this thesis, two new
augmentations are developed to further broaden the scope of problems that are able to
be treated. The first of these is a 2-layer extension of coupled coherent states, capable of
providing an increased mathematical description of a degree or degrees of freedom within
a quantum mechanical system, as well as beneficial numerical and scalability properties.
The newly developed method is tested on a model system-bath Hamiltonian consisting of
a tunnelling mode governed by an asymmetric double well potential coupled to a harmonic
bath. It is found to compare well to previous methods of studying the Hamiltonian, as
well as a benchmark calculation on the system conducted in this thesis, and demonstrate
the beneficial numerical and scalability properties expected. The second development is
to extend coupled coherent states to treat systems of indistinguishable bosons in the sec-
ond quantisation representation. The method is tested on the same Hamiltonian as the
2-layer coupled coherent states scheme, where the harmonic bath is second quantised as
it is comprised of oscillators of the same frequency, so they may be thought of as indis-
tinguishable. Exploiting this symmetry property is found to be extremely advantageous,
with remarkable agreement to the benchmark calculation. The method is then tested on
a model Hamiltonian consisting of 100 bosons in a shifted harmonic trap, with oscillations
in the 1-body density calculated. The results are found to compare favourably with a
multiconfigurational time-dependent Hartree for bosons calculation that is equivalent to
the Gross-Pitaevskii equation, providing impetus for future studies on systems of Bose-
Einstein condensates. The existing ab initio multiple cloning extension of coupled coherent
states for nonadiabatic dynamics is also used to study the ultrafast photodissociation of 2-
ethylpyrrole. The results are compared to experimental data, and a novel insight into the
dissociation mechanism is obtained, with it shown to be composed of a two step process.
Firstly, molecules that are able to dissociate immediately over the barrier along the N-H
coordinate do so in < 50 fs, and this is followed by a second slower dissociation process
from molecules that must sample the potential energy surface before finding a way around
the barrier. This is not observed experimentally due to the temporal widths of the laser
pulses obscuring the dynamics in the < 50 fs window.
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Notation

Throughout this thesis, the following conventions are used:

i, j, k, l Basis function index, given as subscript, i.e. zk
m,n Dimensional/degree of freedom index, given as superscript in paren-

theses, i.e. z(m)

α, β, γ, ζ Quantum state index, given as superscript in parenthesis, i.e. z(α)

s,b System and bath degrees of freedom label, given in Roman as su-

perscript in parenthesis, i.e. Ψ(s)

z Refers to a single dimensional coherent state

z Refers to a multidimensional coherent state, where |z〉 =
∏
m |z(m)〉

in CCS and 2L-CCS and |z〉 =
∏
α |z(α)〉 in CCSB

Any other notation convention used is specified in the text.
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Chapter 1

Background and Theory

Since the inception of computational chemistry, a central aim has been to develop meth-
ods that are capable of treating chemical systems with ever increasing complexity or
dimensionality. New methodologies, combined with the growth of computing power in
the previous few decades has allowed the simulation of chemical interactions to become a
valuable tool to understand processes on an atomic scale, predict bulk properties, and ex-
amine the relationship between the two. In the classical regime, molecular dynamics has
been used extensively in modelling large biomolecules due to the relatively inexpensive
solution of Newton’s equations required for a simulation to progress, alongside modern
parallelisation techniques, GPU processing, and the development of solvent and coarse
graining models [1].

In the quantum regime the most common way of approaching a problem is to solve
the Schrödinger equation. This is a considerably more challenging task than calculating
the solution of Newton’s equations, and places a greater limit on the size of system that
can be studied. The Schrödinger equation may be cast into a time-independent picture,
where the wavefunction and Hamiltonian form an eigenvalue problem requiring diagonal-
isation, or a time-dependent picture where the wavefunction is propagated according to
the Hamiltonian. In either case, the wavefunction is traditionally represented as a basis
set expansion of orthonormal time-independent basis functions and associated amplitudes.
This representation requires exponentially more basis functions for every degree of freedom
in the system studied, and solution of the equations generated rapidly becomes intractable
for current computational hardware to deal with. In the time-dependent picture, which is
the focus of this thesis, powerful integrators such as the split-operator [2, 3], Chebyshev
expansion [4] and short iterative Lanczos [5] methods have been developed for propagation
of the wavefunction, however they are limited to low dimensionality problems with not
more than a few degrees of freedom.

Attempts to find some middle ground between the speed of classical simulations and the
accuracy of quantum ones has been offered by semiclassical theory, in particular with work
by Heller, Herman and Kluk, and Miller and Marcus [6–14]. Heller developed the time-
dependent “thawed” and subsequent “frozen” Gaussian approaches [6, 7], whilst Herman
and Kluk [8, 9] reconciled this frozen Gaussian approach with earlier work by Miller and
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2 Chapter 1. Background and Theory

Marcus on initial value representations (IVR) [10–14]. Miller and Marcus’ IVR work
was for scattering calculations, although Herman and Kluk applied the IVR treatment
to the semiclassical van Vleck-Gutzwiller propagator [15, 16]. These approaches were
seminal in the development of time-dependent semiclassical methods that are capable of
studying the dynamics of atoms and molecules, and were an important stepping stone
to time-dependent fully quantum approaches. Fully quantum approaches are desirable,
because semiclassical methods — as their name suggests — do not completely take into
account quantum effects. The multiconfigurational time-dependent Hartree (MCTDH)
method [17–19] has emerged as a very accurate method of wavepacket propagation, capable
of treating higher dimensional problems than the integrators mentioned above [20–23].
However MCTDH still suffers from exponential scaling, albeit with a smaller base to be
exponentiated, limiting the size of the system that can be studied to tens of degrees of
freedom.

Fully quantum methods capable of scaling more favourably with system size utilise
Gaussian basis sets in the spirit of Heller’s work. Examples of these include Gaussian-based
multiconfigurational time-dependent Hartree (G-MCTDH) [24], variational multiconfigu-
rational Gaussians (vMCG) [25, 26], full multiple spawning (FMS) [27], and matching
pursuit split-operator Fourier transform (MP/SOFT) [28], as well as the coupled coherent
states (CCS) family of methods that are the subject of this thesis [29–35]. The Gaussian
functions are used as time-dependent basis functions, as opposed to the time-independent
basis functions used traditionally, and evolve as the wavefunction evolves. Extensive grid-
based sampling of the Gaussian basis functions is not required, instead they are guided by
trajectories (with the exception of MP/SOFT), mininising basis set size and ensuring the
methods do not scale exponentially with system size. The downside of this non-grid-based
sampling approach is that noise and slow convergence can become apparent in calcula-
tions. However, all methods mentioned above have been successfully applied to a number
of multidimensional quantum problems [36–49].

Whilst CCS has been applied to a number of problems [42–49], it is desirable to develop
new numerical extensions to the method to further extend its applicability, and provide a
toolkit of options for studying a particular quantum mechanical problem. The aim is that
these extensions may exploit certain properties of a problem, such as different dynamical
descriptions for different degrees of freedom, symmetries arising from indistinguishabili-
ties, or nonadiabatic effects, to provide a calculation with increased accuracy, numerical
efficiency, or combination thereof. By exploiting these properties, the extensions will be
particularly suited to certain classes of quantum problems, such as system-bath, Bose-
Einstein condensates, and ultrafast photochemical reactions, respectively. This thesis will
develop two new extensions to treat the former two class of problems, and a recent third
extension [34] will be applied to the latter.

As this thesis aims to develop and apply new approaches to the CCS family of quan-
tum dynamics methods, in the following introductory chapter it is beneficial to present
the historical origins of CCS. CCS may be considered a quantum initial value representa-
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tion method, using trajectory guided frozen Gaussian basis functions, and each of these
components that make up the method will be reviewed in turn. Firstly, a brief overview of
classical Lagrangian and Hamiltonian mechanics will be presented in Sec. 1.1.1 and 1.1.2,
as well as their quantum analogues in Feynmans’s path integral approach to quantum me-
chanics, and Schrödinger’s approach to quantum mechanics in Sec. 1.1.3 and 1.1.4. The
classical mechanics formulations are used in the description of trajectories in CCS, and
Schrödinger mechanics sets the foundation for the quantum solution of the CCS working
equations. Feynman’s path integral approach can be used to evaluate the semiclassical
propagator in terms of trajectories, as shown in Sec. 1.1.5, which leads on to the initial
value representation of the propagator in Sec. 1.2.1. Gaussians were first used for dynam-
ics by Heller, and this will subsequently be reviewed in Sec. 1.2.2. Initially the thawed
formalism will be presented [6], followed by the frozen formalism [7] that is used in CCS.
The Herman-Kluk (HK) method will then be covered in Sec. 1.2.3, which reconciles the
semiclassical propagator and frozen Gaussian methods. The HK method is one of the
most popular semiclassical time-dependent approaches, and can serve as a comparison to
CCS. After this background theory has been shown, the derivation and working equations
of CCS will be presented, and applications of the method will be reviewed in Sec. 1.3.
The generalisation of CCS to the multiconfigurational Ehrenfest (MCE) method [31–33]
for nonadiabatic dynamics will also be derived and reviewed in Sec. 1.4. The methodology
used in the derivation of MCE is used in the development of a 2-layer extension of CCS
(2L-CCS) in Chapter 3, as well as providing the foundation for “on-the-fly” nonadiabatic
dynamics in the ab initio multiple cloning (AIMC) method, which is used in Chapter 5.
The final aspect of the introductory review will be a comparison between CCS and alter-
native quantum dynamics methods in Sec. 1.5. A summary, conclusions, and an outline
of the thesis will then be given in Sec. 1.6.

Following this introductory chapter, in Chapter 2 a model double well tunnelling prob-
lem will be presented that has previously been studied by CCS, as well as other quantum
dynamics methods, and a benchmark calculation will be carried out for it. This enables
the newly developed 2L-CCS method to be tested against it in Chapter 3, as well as
CCS for indistinguishable bosons (CCSB) that is developed in Chapter 4. For the latter
method, a model Bose-Einstein condensate problem is also considered, as the aim of CCSB
is to be used to study such systems. The derivation of working equations for both new
methods will be presented, and suitable further applications of these numerical extensions
of CCS will be suggested. In the penultimate chapter, Chapter 5, the extension of the
MCE method to on-the-fly nonadiabatic dynamics with AIMC will be briefly reviewed,
and then applied to study the ultrafast photodissociation of 2-ethylpyrrole. In the final
chapter, Chapter 6, the methods developed and applied in this thesis will be summarised,
conclusions drawn, and future applications discussed. In the appendices, the program
code developed to conduct the calculations in this thesis will be described in Appendix A,
and additional calculations performed by the CCSB method on the double well tunnelling
problem will be presented in Appendix B.
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4 Chapter 1. Background and Theory

1.1 Classical Lagrangian and Hamiltonian Mechanics, Path
Integral Formulation and the Semiclassical Propagator

The foundation of the CCS method, and indeed much of quantum mechanics, can be
found in classical Lagrangian and Hamiltonian mechanics. The working equations and
trajectories guiding basis functions in CCS incorporate elements of both Lagrangian and
Hamiltonian mechanics, and more generally Feynman’s path integral approach stems from
Lagrangian mechanics, and Schrödinger’s approach stems from Hamiltonian mechanics.

1.1.1 Classical Lagrangian Mechanics

Beginning chronologically, Lagrangian mechanics was first introduced by the eponymous
Joseph-Louis Lagrange in 1788 as an alternative to the classical Newtonian mechanics that
had preceded it. Lagrangian mechanics possesses two main advantages over Newtonian
mechanics: the first is that any forces of constraint in a system (which may not be known)
are explicitly needed in Newtonian mechanics but may be bypassed in Lagrangian me-
chanics. The second is that the equations for Lagrangian mechanics take the same form
in different coordinate systems (invariant under canonical transformation in coordinate
space), whereas representation of the force in Newtonian mechanics is different in different
coordinate systems, and is suited primarily to Cartesian coordinates.

Defining the main features of the approach, the Lagrangian function L (simply referred
to as the Lagrangian) is given by

L(q̇, q, t) = T (q, q̇)− V (q, t), (1.1.1)

where T is the kinetic and V the potential energy. The Lagrangian is a function of
“generalised coordinates” q, “generalised velocities” q̇, and time if the potential is time-
dependent (although it will be assumed not to be below). The kinetic energy may depend
on coordinates q, as well as the usual q̇2 factor depending on the system studied. For a
particle that follows a trajectory connecting q′ and q′′ in a time interval from t′ to t′′ (i.e.
q(t′) = q′ and q(t′′) = q′′), a quantity known as the action S may be computed

S =
∫ t′′

t′
L(q̇, q) dt. (1.1.2)

The classical trajectory the particle follows is one for which S is an extremum,

δS = S(q + δq)− S(q) = 0, (1.1.3)

where δq is some small variation in q that leaves S unchanged to a first order approxima-
tion. This is known as the principle of least action, or more accurately stationary action
— the reason for which will be discussed below. Using the definition of the action given
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in the integral in Eq. (1.1.2) alongside a first order Taylor expansion gives

S(q + δq) =
∫ t′′

t′
L(q̇ + δq̇, q + δq) dt

=
∫ t′′

t′

[
L(q̇, q) + δq̇

∂L
∂q̇

+ δq
∂L
∂q

]
dt

= S(q) +
∫ t′′

t′

(
δq̇
∂L
∂q̇

+ δq
∂L
∂q

)
dt.

(1.1.4)

Rearranging the above so it is equivalent to Eq. (1.1.3), and integrating the first term in
the integrand using integration by parts yields

δS =
[
δq
∂L
∂q̇

]t′′
t′
−
∫ t′′

t′
δq

[ d
dt

(
∂L
∂q̇

)
− ∂L
∂q

]
dt. (1.1.5)

Since the value of δq is zero at the end points, the first term on the right hand side of
the above equation is zero. Between the end points δq can take any value, therefore the
condition that satisfies S as an extremum is

d
dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0, (1.1.6)

which is the classical Lagrangian equation of motion, or Euler-Lagrange equation. For
kinetic energy T = 1

2mq̇
2 and some time-independent potential V = V (q), evaluation of

the Euler-Lagrange equation gives

d
dt

(mq̇) = −∂V (q)
∂q

, (1.1.7)

which is simply Newton’s second law. As such, the derivative ∂L
∂q̇ can be thought of as a

generalised momentum, and ∂L
∂q as a generalised force.

The principle of stationary action is occasionally referred to as the principle of least
action, however to determine whether the extremum is a maximum, minimum, or saddle
point, the second variation must be determined

δ2S = δS(q + δq)− δS(q). (1.1.8)

This isn’t strictly relevant to classical mechanics, as the Euler-Lagrange equation of motion
remains the same whether the action is maximum, minimum or a saddle point. However,
the second variation becomes important when discussing the path integral derivation of
the semiclassical propagator in Sec. 1.1.5.

Using the definition of the first variation in the action δS from Eq. (1.1.5), remembering
that the first term in that expression is equal to zero, substituting in a general Lagrangian
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6 Chapter 1. Background and Theory

L = 1
2mq̇

2 − V (q), and using a Taylor expansion gives

δ2S =
∫ t′′

t′
δq

[
−m(q̈ + δq̈)− ∂V (q + δq)

∂q

]
dt−

∫ t′′

t′
δq

[
−mq̈ − ∂V (q)

∂q

]
dt

=
∫ t′′

t′
δq

[
−mδq̈ − ∂2V (q)

∂q2
δq

]
dt

=
∫ t′′

t′
δq

[
−m d2

dt2
− ∂2V (q)

∂q2

]
δq dt.

(1.1.9)

At this point, it is useful to expand δq in an orthonormal basis of eigenfunctions un of the
operator Λ = −m d2

dt2 −
∂2V (q)
∂q2 , such that

Λun(t) = λnun(t) (1.1.10)

and
δq(t) =

∑
n

anun(t) (1.1.11)

where un(t′) = un(t′′) = 0. It then follows that

δ2S =
∑
n

λna
2
n (1.1.12)

and there are an infinite number of eigenvalues.
For a short time (τ = t′′ − t′) the potential does not change much, the motion is

free particle-like, the eigenvalues λn are all positive, and δ2S is positive. Therefore, the
extremum of the action is a minimum. As τ increases the influence of the potential is
greater, and one or more of the eigenvalues may become negative and will not return to
being positive. For these longer time periods the paths of extreme action become saddle
points, heading closer to the character of a maximum as τ increases. The number of
negative eigenvalues ν is known as the Morse index, and this will appear in Sec. 1.1.5.

In all the discussion thus far equations have been presented in a 1-dimensional form,
however the Lagrangian formalism can be readily extended to M -dimensions

d
dt

(
∂L
∂q̇(m)

)
= ∂L
∂q(m) [m = 1, 2, . . . ,M ]. (1.1.13)

If the Lagrangian is independent of a particular coordinate q(m) then it can be said that
the coordinate is ignorable or cyclic. The derivative of L with respect to that coordinate,
i.e. the right hand side of Eq. (1.1.13) for given m, will be equal to zero. Therefore,
the time derivative of ∂L

∂q̇(m) , i.e. generalised momentum p(m), will also be equal to zero
meaning it is conserved. This is an example of Noether’s theorem which states that when-
ever there is a continuous symmetry in the Lagrangian (transformation of the generalised
coordinates, velocities or time that leaves the Lagrangian unaffected), there is an associ-
ated conservation law. The above was an example of conservation of momentum, whilst
another important example is independence of time that leads to conservation of energy.

The time derivative of the Lagrangian, taking into account the time-dependence of
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1.1. Lagrangian & Hamiltonian Mechanics, Path Integrals, Semiclassical Propagator 7

q(m) and q̇(m), can be given as

d
dt
L =

M∑
m=1

∂L
∂q(m) q̇

(m) +
M∑
m=1

∂L
∂q̇(m) q̈

(m) + ∂L
∂t

=
M∑
m=1

d
dt

(
∂L
∂q̇(m)

)
q̇(m) +

M∑
m=1

p(m)q̈(m) + ∂L
∂t

= d
dt

M∑
m=1

(
p(m)q̇(m)

)
+ ∂L
∂t
.

(1.1.14)

In the case that ∂L
∂t = 0,

d
dt

[
M∑
m=1

(
p(m)q̇(m)

)
− L

]
= 0. (1.1.15)

The portion of the above equation inside the time derivative is the classical Hamiltonian

H =
M∑
m=1

(
p(m)q̇(m)

)
− L. (1.1.16)

Therefore, when L does not depend explicitly on time, the Hamiltonian and hence total
energy is conserved.

1.1.2 Classical Hamiltonian Mechanics

The Hamiltonian serves as the main function used in a further development of classi-
cal mechanics in 1834 by William Hamilton, named Hamiltonian mechanics. In most
cases H corresponds to the total energy, which as mentioned above is conserved in time-
independent potentials

H(q, p) = T (q, p) + V (q). (1.1.17)

Note that H depends on generalised coordinates and momenta (q, p) rather than gener-
alised coordinates and velocities (q, q̇) like in Lagrangian mechanics. The Hamiltonian
approach therefore defines points in phase space as opposed to state space in the La-
grangian approach, and H is invariant under canonical transformation in phase space.
Using this phase space formulation a more explicit relation of H to L than Eq. (1.1.16)
may be provided by using a Legendre transformation with dependency of all variables
explicitly stated

H(q, p) = pq̇(q, p)− L(q, q̇(q, p)). (1.1.18)

The equations of motion for the Hamiltonian approach to classical mechanics may be
obtained via the derivatives of H(q, p) in this Legendre transformation form with respect
to q and p, which are known as Hamilton’s equations. Firstly, the derivative with respect
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to q is

∂H
∂q

= p
∂q̇

∂q
−
[
∂L
∂q

+ ∂L
∂q̇

∂q̇

∂q

]
= p

∂q̇

∂q
−
[ d
dt

(
∂L
∂q̇

)
+ p

∂q̇

∂q

]
= − d

dt
p

= −ṗ.

(1.1.19)

Secondly, the derivative with respect to p is

∂H
∂p

=
[
q̇ + p

∂q̇

∂p

]
− ∂L
∂q̇

∂q̇

∂p

=
[
q̇ + p

∂q̇

∂p

]
− p∂q̇

∂p

= q̇.

(1.1.20)

As with the Lagrangian formalism, this may be readily extended to M -dimensions

∂H
∂q(m) = − ˙p(m) [m = 1, 2, . . . ,M ] (1.1.21a)

∂H
∂p(m) = ˙q(m) [m = 1, 2, . . . ,M ]. (1.1.21b)

An important advantage Hamiltonian mechanics possesses over Lagrangian mechanics
can be found in Liouville’s theorem. This states that the volume occupied by a “cloud” of
trajectories moving through phase space under the influence of Hamilton’s equations does
not change from an initial time to some time later. There is no corresponding theorem for
Lagrangian mechanics in state space.

1.1.3 Schrödinger’s Approach to Quantum Mechanics

Turning to quantum mechanics, the Hamiltonian is also a central feature in Schrödinger’s
approach where it describes time evolution and total energy. However, rather than a
function like in classical mechanics, the Hamiltonian appears as an operator H → Ĥ

Ĥ = T̂ + V̂

= p̂2

2m
+ V (q̂).

(1.1.22)

Kinetic and potential energies also appear as operators, which are in turn dependent on
coordinate and momentum operators (q̂, p̂). The time-dependent Schrödinger equation
(TDSE) describes how the state of a system, represented by the wavefunction |Ψ(t)〉,
evolves in time

ih̄
d |Ψ(t)〉

dt
= Ĥ |Ψ(t)〉 . (1.1.23)

The TDSE is often solved in position space, using a basis set expansion of orthonormal
time-independent basis functions χ, and associated time-dependent amplitudes C(t) to

8
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represent the M -dimensional wavefunction. The TDSE in position space is given by

ih̄
dΨ(q, t)

dt
=
[
− h̄

2

2µ
∇2 + V (q)

]
Ψ(q, t), (1.1.24)

where Ψ(q, t) = 〈q|Ψ(t)〉, µ is the reduced mass, and ∇ is the differential operator. The
basis set expansion is given by

Ψ(q, t) = Ψ(q(1), . . . , q(M), t) =
N(1)∑
i(1)=1

· · ·
N(M)∑
i(M)=1

Ci(1)...i(M)(t)
M∏
m=1

χ
(m)
i(m)

(
q(m)

)
, (1.1.25)

where N (m) are the number of basis functions for the mth degree of freedom. When
substituted into the TDSE, multiplied by the conjugate of the orthonormal basis functions
χ∗, and integrated over all space, the time-dependence of the amplitudes are obtained

iĊi(1)...i(M)(t) =
N(1)∑
j(1)=1

· · ·
N(M)∑
j(M)=1

Cj(1)...j(M)(t)

×
∫

dq
M∏
m=1

χ
(m)∗
i(m)

(
q(m)

) [
− h̄

2

2µ
∇2 + V (q)

]
M∏
n=1

χ
(n)
j(n)

(
q(n)

)
,

(1.1.26)

which forms a set of linear equations to be solved. The amount of these equations that are
necessary to be solved rises exponentially with number of degrees of freedom M , rapidly
becoming impossible to compute and providing motivation for alternative methods.

Another way of finding the time-dependence of the wavefunction is in terms of the time
evolution operator, also known as the propagator Û(t′′, t′). The propagator describes the
transformation from an initial state of the system studied |Ψ(t′)〉 to some later state |Ψ(t′′)〉

|Ψ(t′′)〉 = Û(t′′, t′) |Ψ(t′)〉 . (1.1.27)

To determine the form of the propagator, a number of properties it possesses must be
defined. Firstly, the propagator is unitary

Û∗Û = Î , (1.1.28)

where Î is the identity operator. Secondly, it has the composition property such that

Û(t2, t0) = Û(t2, t1)Û(t1, t0). (1.1.29)

Finally, it is continuous in time
Û(t, t) = 1. (1.1.30)

The final property allows the following to be written for an infinitesimal time evolution

lim
dt→0

Û(t′ + dt, t′) = 1. (1.1.31)

9



10 Chapter 1. Background and Theory

Assuming that the difference between Û(t′ + dt, t′) and 1 is first order in dt gives

Û(t′ + dt, t′) = 1− iΩ dt, (1.1.32)

where Ω̂ is some Hermitian operator and i is included to satisfy unitarity. The operator
Ω̂ has units of inverse time (frequency), and as energy is related to angular frequency by
E = h̄ω, it can be written that

Ω̂ = Ĥ

h̄
. (1.1.33)

Therefore, the infinitesimal time evolution operator is written as

Û(t′ + dt, t′) = 1− iĤ dt
h̄

. (1.1.34)

Using the composition property,

Û(t′′ + dt, t′) = Û(t′′ + dt, t′′)Û(t′′, t′) =
(

1− iĤ dt
h̄

)
Û(t′′, t′), (1.1.35)

where t′′− t′ is not infinitesimal. This can be rearranged and given in differential equation
form

ih̄
∂

∂t
Û(t′′, t′) = ĤÛ(t′′, t′). (1.1.36)

For a time-independent Hamiltonian the solution to this equation is

Û(t′′, t′) = eiĤ(t′′−t′)/h̄, (1.1.37)

which gives a mathematical form for the propagator based on its properties. The propa-
gator may also be written as

K(q′′, t′′; q′, t′) = 〈q′′|eiĤ(t′′−t′)/h̄|q′〉 , (1.1.38)

which can be interpreted as the propagator of a particle or wavefunction initially localised
at point q′ at time t′ going to some point q′′ at time t′′. If the initial wavefunction is
delocalised at time t′ then K acts as the kernel of an integration over q′ to go to q′′

Ψ(q′′, t′′) =
∫ ∞
−∞

K(q′′, t′′; q′, t′)Ψ(q′, t′) dq′. (1.1.39)

For this reason it is given the symbol K to distinguish it from the unitary time evolution
operator Û .

The propagator K is also the Green’s function for the TDSE(
Ĥ(q′′)− ih̄ ∂

∂t

)
Θ(t′′ − t′)K(q′′, t′′; q′, t′) = −ih̄δ(q′′ − q′)δ(t′′ − t′) (1.1.40)

where Θ(t′′− t′) is the Heaviside unit step function and δ(q′′− q′) and δ(t′′− t′) are Dirac
delta functions.

10



1.1. Lagrangian & Hamiltonian Mechanics, Path Integrals, Semiclassical Propagator 11

A final representation of the propagator, is in terms of a transition or probability
amplitude for a particle or wavefunction to go from point q′ at time t′ to q′′ and time t′′

K(q′′, t′′; q′, t′) = 〈q′′, t′′|q′, t′〉 . (1.1.41)

This representation becomes relevant in the following section, with discussion of Feynman’s
path integral approach to quantum mechanics.

1.1.4 Feynman’s Path Integral Approach

Whilst Schrödinger’s approach to quantum mechanics incorporates elements of classical
Hamiltonian mechanics, Feynman’s path integral approach incorporates elements of clas-
sical Lagrangian mechanics. Considering a particle that travels from point q′ at time t′ to
q′′ at time t′′, in classical Lagrangian mechanics the path this particle takes is one that
has stationary action. Feynman stated that rather than a particle taking a single path of
stationary action, all the paths (including those that are classically forbidden) contribute
with equal magnitudes but different phases to the transition amplitude K(q′′, t′′; q′, t′).
This is represented approximately as

K(q′′, t′′; q′, t′) = 〈q′′, t′′|q′, t′〉 ∼
∑

all paths
eiS/h̄. (1.1.42)

The exponential factor eiS/h̄ is the phase, and the action S is discretised in units of h̄.
Before proceeding with a more complete definition of the above, it is worth considering

what happens in the classical limit to ensure classical Lagrangian mechanics emerges from
this quantum picture. In the classical limit S will be much larger than h̄, and the phase
will be highly oscillatory as small changes in S will be large in comparison to h̄. This
means that nearby paths will tend to cancel each other out, as one path with a positive
phase will destructively interfere with a nearby one with a negative phase. However, for
paths near to the path of extreme action there will be no change in S to a first order
approximation, and they will constructively interfere. Therefore, only those paths near to
the extremum contribute and the classical trajectory emerges from Feynman’s quantum
approach.

Now that the emergence of classical dynamics is confirmed qualitatively, a more quanti-
tative definition of the path integral approach may be considered. In the quantum picture,
the action will be comparable to h̄ and all trajectories will contribute to the amplitude
K(q′′, t′′; q′, t′). The sum in Eq. (1.1.42) is therefore over an infinite number of trajecto-
ries, and a definition involving integrals is more appropriate. The approach used involves
time-slicing, where the interval between t′ and t′′ is split into a set of N gaps that are some
small amount ε apart, with t0 = t′, tn = t0 + nε, and tN = t′′. At each time there are also
a set of coordinates, with q(t0) = q0 = q′, q(tn) = qn and q(tN ) = qN = q′′. Integrating
over all qn in the region between q′ and q′′ yields all possible paths connecting the two in

11



12 Chapter 1. Background and Theory

the limit of N →∞ or ε→ 0

K(q′′, t′′; q′, t′) = lim
N→∞
ε→0

A

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
eiS/h̄ dq1 dq2 . . . dqN−1. (1.1.43)

Note that the integration is not over q0 or qN as these points are fixed at q′ and q′′, and
the limits for qn in the region between are [−∞ : ∞] as all paths connecting q0 and qN

are included. In order for a limit of this integral to exist, an appropriate normalisation
factor A must be evaluated. As the time interval is so small, the path between qi(ti) and
qi+1(ti+1) may be approximated as a straight line. The action for each of these slices may
then be evaluated as follows

S =
∫ ti+1

ti

L(q̇, q) dt =
∫ ti+1

ti

mq̇2

2
− V (q) dt

= ε

[
m

2

(
qi+1 − qi

ε

)2
− V

(
qi+1 + qi

2

)]
.

(1.1.44)

Considering the simplest possible case of a free particle where V = 0 (other examples may
be found in Ref. [50]), Eq. (1.1.43) now becomes

K(q′′, t′′; q′, t′) = lim
N→∞
ε→0

A

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
exp

(
im

2h̄ε

N−1∑
i=0

(qi+1 − qi)2
)

dq1 dq2 . . . dqN−1.

(1.1.45)
Carrying out the integration of each of these Gaussian functions in turn gives

K(q′′, t′′; q′, t′) = lim
N→∞
ε→0

A

(2πh̄εi
m

)N/2 ( m

2πh̄iNε

)1/2
exp

(
im

2h̄Nε
(qN − q0)2

)
. (1.1.46)

For the limit of N →∞, ε→ 0 and Nε→ (tN − t0) to exist, it is clear the normalisation
factor must be

A =
(2πh̄εi

m

)−N/2
. (1.1.47)

Feynman’s path integral approach is then commonly written as

K(q′′, t′′; q′, t′) =
∫
D[q(t)]eiS/h̄ (1.1.48)

where

∫
D[q(t)] = lim

N→∞
ε→0

(2πh̄εi
m

)−N/2 ∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dq1 dq2 . . . dqN−1. (1.1.49)

The path integral approach is mathematically equivalent to the Schrödinger formulation
of quantum mechanics, however the path integral approach is global and determines what
occurs over an entire time period, whereas Schrödinger mechanics determines what occurs
in the next infinitesimal time period. As the path integral approach is simply an alternative
viewpoint on quantum mechanics to the Schrödinger equation, applying it still suffers
from exponential scaling, and finding the correct path integral can be difficult. However,

12



1.1. Lagrangian & Hamiltonian Mechanics, Path Integrals, Semiclassical Propagator 13

conceptually the ideas it presents can be used to develop other methods, and the following
section uses the path integral approach to derive the semiclassical propagator.

1.1.5 The Semiclassical (van Vleck-Gutzwiller) Propagator

A semiclassical approximation to the propagator, known as the van Vleck propagator, was
originally derived based on WKB theory [15]. However, it can also be obtained via path
integrals by considering all classical paths plus second order corrections from functional
variations around the classical paths

KSC(q′′, t′′; q′, t′) =
(

m

2πih̄(t′′ − t′)

)1/2 ∑
classical

paths

∫
D[q(t)]ei(S+δS+ δ2S

2 )/h̄. (1.1.50)

For classical paths δS = 0, and using the expansion of δ2S given in Eq. (1.1.12), a series
of Gaussian integrals may be obtained for the above expression that can be evaluated to
give

KSC(q′′, t′′; q′, t′) =
∑

classical
paths

( 1
2πih̄

)1/2
(

∂2S

∂q′′∂q′

)1/2

eiS/h̄. (1.1.51)

The phase and magnitude of this expression can be factored out explicitly by taking into
account the number of negative eigenvalues (i.e. the Morse index ν) in the expansion
of δ2S

KSC(q′′, t′′; q′, t′) =
∑

classical
paths

( 1
2πih̄

)1/2
∣∣∣∣∣ ∂2S

∂q′′∂q′

∣∣∣∣∣
1/2

e
iS
h̄
− iνπ2 . (1.1.52)

The above is known as the van Vleck-Gutzwiller (VVG) propagator, as the factoring of
the van Vleck propagator to include the Morse index was first proposed by Gutzwiller [16].

The VVG propagator is an important semiclassical result, showing that quantum in-
terference can be incorporated to the sum over classical paths via the phase. However, it is
not without its numerical difficulties that must be resolved before it can be put to practical
use. Considering the following equalities governing the ∂2S

∂q′′∂q′ prefactor, derived from the
position space derivatives of the action with the Lagrangian in the form of Eq. (1.1.18),

− ∂2S

∂q′′∂q′
= −∂p

′′

∂q′
= ∂p′

∂q′′
=
(
∂q′′

∂p′

)−1
, (1.1.53)

it can be seen that it is equal to the inverse of the sensitivity of the final position to
the initial momentum. When trajectories that have a broad range of initial momenta
lead to the same final position, the value of ∂q′′

∂p′ goes to zero, and the VVG propagator
explodes to infinity as it is proportional to the inverse of this quantity. These points where
trajectories intersect are known as conjugate points or caustics, and the value of the Morse
index increases by 1 at them. As well as counting the number of negative eigenvalues in
the expansion of δ2S, the Morse index therefore also counts the number of times a caustic
is encountered. This can be demonstrated clearly with the following identity from Levit

13



14 Chapter 1. Background and Theory

and Smilansky [51,52]
∞∏
n=1

λn
λ0
n

= Mqp

M0
qp

, (1.1.54)

where Mqp = ∂q′′

∂p′ , and λ
0
n and M0

qp are eigenvalues and partial derivatives for free particle
dynamics, respectively. From this relationship, it can be seen that when Mqp goes to zero
at a caustic, the product of eigenvalues will also. As the eigenvalues start positive and
once they become negative they never return to being positive, it follows that at a caustic
one of the eigenvalues becomes zero, and immediately following the caustic it is negative
such that the Morse index increases by one.

The Mqp partial derivative is also known as an element of the monodromy or stability
matrix M, which includes the partial derivatives of final positions and momenta with
respect to initial positions and momenta

M =

Mpp Mpq

Mqp Mqq

 =

∂p′′

∂p′
∂p′′

∂q′

∂q′′

∂p′
∂q′′

∂q′

 . (1.1.55)

This matrix, or elements of it, enters into almost all semiclassical propagators, and another
example will be seen in Sec. 1.2.3.

Returning to the VVG propagator, there are further problems with the form given in
Eq. (1.1.52), in addition to the caustic issue. Firstly, there are an unspecified number of
non-unique trajectories connecting the boundary conditions of points q′ and q′′. Obtaining
these trajectories is a numerically difficult root search problem due to multiple possible
values of initial momentum p′. Furthermore, if there are nearby root trajectories, adding
their contributions is no longer accurate as a “uniformising” procedure is required that
goes beyond the second order correction from functional variations around the classical
path [53]. A final problem is that the Morse indices are non-trivial to calculate. Fortu-
nately, these issues may be addressed by the initial value representation (IVR) method,
and changing the propagator from coordinate to coherent state or “frozen” Gaussian rep-
resentation. These alterations permit a useful, tractable semiclassical formulation to be
used and are discussed in the following section.

14



1.2. Initial Value Representations and Frozen Gaussians 15

1.2 Initial Value Representations and Frozen Gaussians

The IVR method was first introduced by Miller [10–13] and Marcus [14] with their work
on calculating classical S-matrix elements. The S-matrix (or scattering matrix) is a prob-
ability amplitude in quantum scattering theory, relating initial and final states of atoms
and/or molecules undergoing a collision process. Miller and Marcus demonstrated that a
semiclassical approach to the S-matrix, known as the classical S-matrix, can be obtained
by considering classical trajectories originating from the initial state, ending at the final
state, and carrying an associated phase that incorporates quantum mechanical effects.
This is analogous to the semiclassical approximation to the propagator described in the
previous section. The additional step they took however, was to negate the numerically
difficult root search for final conditions and compute the classical S-matrix as an integral
over initial conditions. The following section describes this initial value representation as
it pertains to the semiclassical propagator, rather than the classical S-matrix, however the
principle applied is the same.

1.2.1 Initial Value Representation of the Semiclassical Propagator

A matrix element of the propagator between some initial state ψ(q′) and a final state ψ(q′′)
can be given as

〈ψ(q′′)|e−iĤ(t′′−t′)/h̄|ψ(q′)〉 =
∫

dq′
∫

dq′′ ψ∗(q′′) 〈q′′|e−iĤ(t′′−t′)/h̄|q′〉ψ(q′). (1.2.1)

Inserting the VVG expression for the propagator into the above gives

〈ψ(q′′)|e−iĤ(t′′−t′)/h̄|ψ(q′)〉 =
∑

classical
paths

∫
dq′

∫
dq′′ ψ∗(q′′)

( 1
2πih̄

) 1
2
∣∣∣∣∣ ∂2S

∂q′′∂q′

∣∣∣∣∣
1
2

e
iS
h̄
− iνπ2 ψ(q′)

(1.2.2)
where the summation is over all classical trajectories starting at q′ and finishing at q′′,
with multiple possible values of initial momentum p′ requiring a root search. The key
result of the IVR approach that avoids this root search is to use the following integration
relationship ∑

classical
paths

dq′′ = dp′∂q
′′(q′, p′)
∂p′

, (1.2.3)

which is possible because q′′ may be determined from initial positions and momenta, and
q′ is constant inside the q′′ integral. Substitution of this relationship into Eq. (1.2.2) gives

〈ψ(q′′)|e−iĤ(t′′−t′)/h̄|ψ(q′)〉 =
∫

dq′
∫

dp′ ψ∗(q′′)
( 1

2πih̄

)1/2 ∣∣∣∣∂q′′∂p′

∣∣∣∣1/2 e
iS
h̄
− iνπ2 ψ(q′).

(1.2.4)
The above expression is now an integration over only initial conditions (q′, p′), hence no
difficult root search is required. Furthermore, the partial derivative ∂q′′

∂p′ now appears

15



16 Chapter 1. Background and Theory

in the numerator rather than the denominator of the expression meaning that there are
no singularities at caustics, the propagator simply equals zero. A number of studies
have been performed on this IVR of the VVG propagator, see Refs. [54–63] for further
details. Although the IVR of the VVG propagator does overcome some of the difficulties
associated with it in its original form, there is another that remains — the evaluation
of the Morse indices. This final difficulty is overcome by switching from a coordinate to
coherent state basis, which will be described in the following sections with Heller’s frozen
Gaussian approach, and the subsequent HK method.

1.2.2 Thawed and Frozen Gaussians

Following Miller’s work on the classical S-matrix, Heller considered treating dynamics
using a Gaussian form for the wavepacket [6,7,64,65]. Initially a formalism was used where
the Gaussian was allowed to spread in time [6, 64], retrospectively called the “thawed”
Gaussian approach [65], with the wavefunction represented as

Ψ(x, t) = exp
(
i

h̄
α(t)(x− q(t))2 + i

h̄
p(t)(x− q(t)) + i

h̄
β(t)

)
. (1.2.5)

The parameters α and β are complex and time-dependent, with α representative of the
width of the Gaussian and β the phase. The position and momentum centres q and p are
real and time-dependent. The evolution of these parameters is found via expansion of the
potential in a Taylor series with up to quadratic terms kept

V (x) ' V (q) + dV
dx

∣∣∣∣
x=q

(x− q) + 1
2

d2V

dx2

∣∣∣∣∣
x=q

(x− q)2. (1.2.6)

Substitution into the Schrödinger equation, comparison of like powers of (x − q), and
defining the energy as E = p2/2m+ V (q) gives

q̇ = ∂H

∂p
= p

m
(1.2.7a)

ṗ = −∂H
∂q

= − dV
dx

∣∣∣∣
x=q

(1.2.7b)

α̇ = −1
2

d2V

dx2

∣∣∣∣∣
x=q
− 2α2

m
(1.2.7c)

β̇ = ih̄α

m
+ pq̇ − E = ih̄α

m
+ L (1.2.7d)

where L is the Lagrangian. The Eqs. (1.2.7a) and (1.2.7b) are simply the classical Hamil-
ton’s equations of motion as seen in Eqs. (1.1.19) and (1.1.20), and as Eq. (1.2.7d) involves
the Lagrangian it can be seen that β will include the action. The motivation behind this
approach was given by a quote from Dirac: “for any dynamical system with a classical
analogue, a state for which the classical description is valid as an approximation is repre-
sented in quantum mechanics by a wavepacket ... Schrödinger’s wave equation fixes how
such a wavepacket varies with time, so in order that the classical description may remain
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1.2. Initial Value Representations and Frozen Gaussians 17

valid, the wavepacket should remain a wavepacket and should move according to the laws
of classical dynamics” [66]. This statement, coupled with the fact that a Gaussian in a
harmonic potential remains a Gaussian, and the equations of motion for its position and
momentum centres are classical, provided justification for the method. However, a num-
ber of deficiencies immediately became apparent: due to the quadratic approximation to
the potential, there are naturally errors associated with any potential that is not locally
quadratic which grow as the wavepacket spreads [60]. Furthermore, if the potential causes
bifurcation of the wavepacket a single Gaussian function cannot represent this.

To remedy these issues, Heller heuristically proposed to use a wavepacket represen-
tation consisting of a swarm of Gaussian functions instead, which for mathematical ease
had a fixed or “frozen” width parameter. This was then known as the frozen Gaussian
approach, with wavefunction representation [7]

Ψ(x, t) =
N∑
n=1

cngn(x, qn(t), pn(t)) (1.2.8)

where

gn(x, qn(t), pn(t)) = 〈x|qn, pn〉 =
(
γ

π

)1/4
exp

(
−γ

2
(x− qn(t))2 + i

h̄
pn(t)(x− qn(t))

)
,

(1.2.9)
and the cn carry the initial phase and amplitude of the wavepacket. The centres of
each Gaussian function are guided by classical trajectories, as with the thawed Gaussian
approach, with the overall motion following a “guiding” trajectory. The phase of the
wavepacket is the classical action along the path of the guiding trajectory. The collective
motion of the frozen Gaussians was found to provide an accurate description of wavepacket
motion, able to account for spreading and contraction, as well as the bifurcation that was
not possible with a single Gaussian function. It should be noted that the width parameter
is time-independent, and if it is set to γ = mω/h̄ then the frozen Gaussian is a minimum
uncertainty wavepacket, ∆q∆p = h̄/2, also known as a coherent state. The concept of
coherent states was first proposed in 1926 by Schrödinger, with their dynamics most closely
resembling that of a classical harmonic oscillator [67]. They were subsequently popularised
with seminal work by Glauber on the description of photon statistics in 1963 [68–70].

The numerical propagation in Heller’s methods depends only on the initial trajectories,
similar to the IVR method, so no difficult root search is required. A closer link to the IVR
method incorporating the semiclassical propagator was proposed a few years after Heller’s
work by Herman and Kluk [8, 9].

1.2.3 Herman-Kluk Method

Starting with the VVG propagator (without the explicit dependence on the Morse index),
Herman and Kluk twice inserted the resolution of the identity in a basis of frozen Gaussians

Î = 1
2πh̄

∫
dq
∫

dp |q, p〉 〈q, p| (1.2.10)
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18 Chapter 1. Background and Theory

and carried out stationary phase integrals to obtain

KHK(x′, x′′) = 1
2πh̄

∫
dq′

∫
dp′C(q′, p′)eiS/h̄ 〈x′′|q′′, p′′〉 〈q′, p′|x′〉 . (1.2.11)

The prefactor C(q′, p′) was missing from Heller’s frozen Gaussian method, and is equal to

C(q′, p′) =
∣∣∣∣12
(
∂p′′

∂p′
+ ∂q′′

∂q′
− iγh̄∂q

′′

∂p′
+ i

h̄γ

∂p′′

∂q′

)∣∣∣∣1/2 . (1.2.12)

This prefactor ensures theoretical semiclassical rigour in the method, as it is derived from
the VVG propagator as opposed to heuristically, leading to an improvement in accuracy
over the frozen Gaussian method [63]. It also contains all elements of the monodromy
matrix, shown in Eq. (1.1.55). Furthermore, despite not using the form of the VVG
propagator with explicit dependence on the Morse index, Kay showed that if the phase of
the prefactor is chosen such that it is continuous in time, the Morse index is automatically
taken into account [54]. This resolves the final problem with the semiclassical propagator
that the initial value representation on its own did not. Finally, the HK method permits
better norm conservation than the frozen Gaussian approach (basis sets consisting of a
superposition of coherent states do not conserve the norm by default). These factors
have lead to the HK method being one of the most popular time-dependent semiclassical
treatments.

Further extensive reviews of semiclassical initial value representation methods can be
found in Refs. [53, 60–63] and [71]. Whilst semiclassical methods have proven to be very
popular, they are not without their drawbacks, as by their very nature they only permit
partial treatment of many quantum problems. Subsequent developments have been made
from the standpoint of exact quantum mechanics including, but not limited to, the coupled
coherent states method.
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1.3. Coupled Coherent States (CCS) 19

1.3 Coupled Coherent States (CCS)

The coupled coherent states method of quantum dynamics was first proposed by Sha-
lashilin and Child in 2000 [29], following on from the work by Heller, and Herman and
Kluk mentioned in the previous section, along with subsequent research involving Gaus-
sian wavepackets by Metiu et al. [72,73], and Shalashilin and Jackson [74]. In the original
paper [29] an approach for propagating the wavefunction exactly in a coherent state rep-
resentation was presented, as opposed to semiclassically in the frozen Gaussian and HK
methods. In CCS the time-dependent coherent state basis set is guided by classical tra-
jectories, similar to the frozen Gaussian and HK methods. However, unlike those methods
the coherent states are paired with fully quantum amplitudes. It is these amplitudes that
ensure CCS is a fully quantum technique, whilst the guiding trajectories keep the basis in
the dynamically important region and economise basis set size. CCS depends only on the
initial choice of coherent state basis and amplitudes, therefore it may be thought of as a
fully quantum initial value representation method.

1.3.1 Properties of Coherent States

Before proceeding any further to describe the CCS method, it is worth briefly reviewing
some properties of coherent states that will be useful in determining the CCS working
equations. In CCS so called |z〉 notation is used, rather than the |q, p〉 notation used in
the frozen Gaussian approach. A coherent state in |z〉 notation is represented as

〈x|z〉 =
(
γ

π

)1/4
exp

(
−γ

2
(x− q)2 + i

h̄
p(x− q) + ipq

2h̄

)
, (1.3.1)

where an additional phase factor exp
(
ipq
2h̄

)
has appeared compared to Eq. (1.2.9) due to the

change of notation. The width parameter γ = mω/h̄. Coherent states are eigenfunctions
of the creation and annihilation operators, respectively

〈z| â† = 〈z| z∗ (1.3.2a)

â |z〉 = z |z〉 , (1.3.2b)

where the creation and annihilation operators are given by

â† =
√
γ

2
q̂ − i

h̄

√
1
2γ
p̂ (1.3.3a)

â =
√
γ

2
q̂ + i

h̄

√
1
2γ
p̂. (1.3.3b)

In the context of the quantum harmonic oscillator, the creation and annihilation operators
are also known as the raising and lowering operators, and they act on eigenfunctions of
the harmonic oscillator to generate another eigenfunction with an eigenvalue 1 larger or
smaller, respectively. The eigenvalues of the creation and annihilation operators them-
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selves z and z∗ can be used to label a coherent state, and from Eqs. (1.3.3a) and (1.3.3b)
it can be seen they are given by

z∗ =
√
γ

2
q − i

h̄

√
1
2γ
p (1.3.4a)

z =
√
γ

2
q + i

h̄

√
1
2γ
p. (1.3.4b)

An important consequence of the above is that one may write a Hamiltonian in terms
of creation and annihilation operators rather than position and momentum operators. A
normal ordered Hamiltonian may then be obtained when the creation operators precede
the annihilation ones

Ĥ(q̂, p̂) = Ĥ(â, â†) = Hord(â†, â). (1.3.5)

From this, matrix elements of the Hamiltonian are simple to calculate in a coherent state
basis

〈z′|Hord(â†, â)|z〉 = 〈z′|z〉Hord(z′∗, z). (1.3.6)

Coherent states form a non-orthogonal basis set, so the overlap 〈z′|z〉 in Eq. (1.3.6) is not
the Dirac delta function, but instead is given by

〈z′|z〉 = exp
(
z′∗z − 1

2
(z′∗z′ + z∗z)

)
. (1.3.7)

Another important property is that coherent states form an overcomplete basis set, mean-
ing that any coherent state can be expressed as a superposition of all others (completeness),
even if a basis vector is removed (overcompleteness). This is represented by

|z′〉 = 1
π

∫
d2z |z〉 〈z|z′〉 , (1.3.8)

where d2z = dqdp
2h̄ . An expression for the identity operator in the coherent state basis then

follows straightforwardly
Î = 1

π

∫
d2z |z〉 〈z| . (1.3.9)

The identity operator can then be used to express the wavefunction |Ψ〉 in a coherent state
representation

|Ψ〉 = Î |Ψ〉 = 1
π

∫
d2z |z〉 〈z|Ψ〉 . (1.3.10)

A final useful relationship is that M -dimensional coherent states may be generated from
the product of 1-dimensional coherent states for multidimensional problems

|z〉 =
M∏
m=1
|z(m)〉 . (1.3.11)

Note that in the multidimensional representation, singular powers of π will be changed to
πM . Henceforth, the multidimensional representation shall be utilised.
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1.3.2 Development of Working Equations for CCS

As mentioned in the introduction to this section, the premise of the CCS method of
multidimensional quantum dynamics is that a time-dependent basis set of coherent states
is guided by classical trajectories, whilst being paired with fully quantum mechanical
time-dependent amplitudes. As with Heller’s frozen Gaussian method, the centre of each
coherent state is guided by a classical trajectory, and this classical trajectory may be
found by applying the principle of stationary action. The Lagrangian in z notation can
be written as

L[z(t)] = ih̄

2
(z∗ż− ż∗z)−Hord(z∗, z). (1.3.12)

Applying the principle of stationary action, Eq. (1.1.3), to z and z∗ in turn, a pair of
Euler-Lagrange equations may be obtained

∂L
∂z∗
− d

dt
∂L
∂ż∗

= 0 (1.3.13a)

∂L
∂z
− d

dt
∂L
∂ż

= 0. (1.3.13b)

These may each be solved to arrive at the trajectories for the basis functions

ż = − i
h̄

∂Hord(z∗, z)
∂z∗

(1.3.14a)

ż∗ = i

h̄

∂Hord(z∗, z)
∂z

, (1.3.14b)

which are simply Hamilton’s equations, a z notation analogue of Eqs. (1.2.7a) and (1.2.7b).
However, it should be noted that the ordered Hamiltonian is subtly different to the classical
Hamiltonian, due to terms arising from the commutator between powers of â′ and â,
with Hord = Hcl + Hcomm. These terms add small quantum corrections to the classical
Hamiltonian, influencing the trajectories due to the average over the ordered Hamiltonian.

The TDSE may be cast into a coherent state integro-differential form via substitution
of the wavefunction in coherent state representation, Eq. (1.3.10), closing with a basis bra
〈z| and accounting for the time-dependence of the basis

d 〈z|Ψ〉
dt

= 〈ż|Ψ〉+ 〈z|Ψ̇〉

=
∫ [
〈ż|z′〉 − i

h̄
〈z|Ĥ|z′〉

]
〈z′|Ψ〉 d2z′

πM
.

(1.3.15)

The term 〈ż|z′〉 is given by

〈ż|z′〉 = 〈z|z′〉
(
ż∗z′ − 1

2
(zż∗ + żz∗)

)
. (1.3.16)

It then follows from Eqs. (1.3.6), (1.3.12), (1.3.14) and (1.3.16) that Eq. (1.3.15) can be
written as

d 〈z|Ψ〉
dt

=
∫
〈z|z′〉

(
i

h̄
L[z(t)]− i

h̄
δ2Hord(z∗, z′)

)
〈z′|Ψ〉 d2z′

πM
, (1.3.17)
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where δ2Hord(z∗, z′) is given by

δ2Hord(z∗, z′) = Hord(z∗, z′)−Hord(z∗, z) + ih̄ż∗(z′ − z)

= Hord(z∗, z′)−Hord(z∗, z)− ∂Hord(z∗, z)
∂z

(z′ − z).
(1.3.18)

If the following coherent state wavefunction representation is used

〈z|Ψ〉 = C[z(t)]eiS[z(t)]/h̄, (1.3.19)

where S[z(t)] is the action in z notation given by virtue of the Lagrangian in Eq. (1.3.12)
as

S[z(t)] =
∫ [

ih̄

2
(z∗ż− ż∗z)−Hord(z∗, z)

]
dt, (1.3.20)

then the time-dependence of the amplitudes C[z(t)] is given as

dC[z(t)]
dt

= − i
h̄

∫
〈z|z′〉 δ2Hord(z∗, z′)C[z′(t)]ei(S[z′(t)]−S[z(t)])/h̄ d2z′

πM
. (1.3.21)

This allows the amplitudes coupled to the coherent state basis set to be propagated in a
fully quantum manner, and is one of the main working equations of the CCS method, along
with Eq. (1.3.14) that guides the trajectories. This result was the nascent methodology
behind CCS published in the initial paper [29].

In practice, the integral given in Eq. (1.3.21) should be evaluated by a finite sum. The
simplest initial idea was to replace the integral over d2z with a Riemann sum over small
volumes of phase space

dCk
dt

= − i
h̄

K∑
l=1
〈zk|zl〉 δ2Hord(z∗k, zl)Clei(Sl−Sk)/h̄

∆2zl
πM

. (1.3.22)

The sum is over K configurations, with ∆2z = ∆q∆p/(2h̄) the average phase space
volume for each coherent state.

This discretisation was employed for the first few studies with CCS [29, 42, 43, 75],
however it is non-unitary, and subsequently a unitary representation was proposed [30].
The unitary discretisation represents the identity operator as

Î =
K∑

k,l=1
|zk〉 (Ω−1)kl 〈zl| , (1.3.23)

where (Ω−1)kl is an element of the inverse of the overlap matrix, Ωkl = 〈zk|zl〉. When
acting on |Ψ〉, this produces a discretised version of the wavefunction as

|Ψ〉 =
K∑

k,l=1
|zk〉 (Ω−1)kl 〈zl|Ψ〉 =

K∑
k,l=1

|zk〉 (Ω−1)klCleiSl/h̄, (1.3.24)
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and discretised version of the coherent state integro-differential equation, Eq. (1.3.15), as

d 〈zj |Ψ〉
dt

=
K∑

k,l=1

[
〈żj |zk〉 −

i

h̄
〈zj |zk〉 〈zj |Ĥ|zk〉

]
(Ω−1)kl 〈zl|Ψ〉 . (1.3.25)

Repeating the derivation of Eq. (1.3.21) in this discrete form yields

dCj
dt

= − i
h̄

K∑
k,l=1

〈zj |zk〉 δ2Hord(z∗j , zk)(Ω−1)klClei(Sl−Sj)/h̄. (1.3.26)

This approach was used until a paper in 2008 [76] used a slightly modified representation
of the wavefunction that had been suggested previously in a 2004 review [30]. This in turn
was based on work by Miller in 2002 comparing the HK method to an exact expansion of
the wavefunction in coherent states [77]. The modified representation of the wavefunction
gives an integral expression of it as

|Ψ〉 =
∫
D[z′(t)]eiS[z′(t)]/h̄ |z′〉 d2z′

πM
. (1.3.27)

Substituting this into the Schrödinger equation, closing with a basis bra 〈z| and performing
various substitutions, as with the derivation for C[z(t)], yields

∫
〈z|z′〉 dD[z′(t)]

dt
eiS[z′(t)]/h̄ d2z′

πM
= − i

h̄

∫
〈z|z′〉 δ2Hord∗(z∗, z′)D[z′(t)]eiS[z′(t)]/h̄ d2z′

πM
,

(1.3.28)
where

δ2Hord∗(z∗, z′) = Hord(z∗, z′)−Hord(z′∗, z′)− ih̄ż′(z∗ − z′∗)

= Hord(z∗, z′)−Hord(z′∗, z′)− ∂Hord(z′∗, z′)
∂z′∗

(z∗ − z′∗).
(1.3.29)

To discretise this form of the CCS equation, rather than perform an identity operation,
the following discrete wavefunction ansatz for Eq. (1.3.27) may be given

|Ψ〉 =
K∑
k=1

DkeiSk/h̄ |zk〉 . (1.3.30)

Repeating the derivation of Eq. (1.3.28) in this discrete form yields

K∑
l=1
〈zk|zl〉 eiSl/h̄

dDl

dt
= − i

h̄

K∑
l=1
〈zk|zl〉 δ2Hord∗(z∗k, zl)eiSl/h̄Dl. (1.3.31)

This set of linear equations for D obviates the need to calculate the inverse of the overlap
matrix like for C in Eq. (1.3.26), which could potentially be problematic if the overlap
matrix is large and sparse. It can also be seen that the relationship between the C and D
amplitudes is given by

DkeiSk/h̄ =
K∑
l=1

(Ω−1)klCleiSl/h̄. (1.3.32)
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The latter form of the discrete CCS equations involving D amplitudes have been used
from 2008 onwards, are a foundation for the multiconfigurational Ehrenfest method that
will be reviewed in Sec. 1.4, and is the form of the equations used in this work.

Several attractive features of the CCS formalism presented have been noted previ-
ously [29, 30, 42], such as the C and D amplitudes having a smooth time-dependence due
to being paired with the phase factor eiS/h̄. Also, the expressions for δ2Hord(z∗, z′) and
δ2Hord∗(z∗, z′) vanish for z′ = z, are small for close lying coherent states, and the overlap
〈z|z′〉 vanishes for remote coherent states. The coupling is therefore almost always small
and sparse. Finally, by virtue of the Liouville theorem mentioned in Sec. 1.1.2, as the
trajectories are guided by Hamiltonian mechanics the volume occupied by them does not
change from an initial time to some time later d2z(t) = d2z(0). This means the integrals
in Eqs. (1.3.21) and (1.3.28) may be performed over the initial phase space and biased
to the peak of the initial propagating wavefunction, yielding a distribution for the ini-
tial coherent states. This permits importance and Monte Carlo sampling to allow the
initial basis to best represent the wavefunction. This basis set sampling is a key feature
of CCS, permitting accuracy of the calculation and reduction in basis set size as long as
it is performed correctly. Many different methods to approach this initial sampling have
been suggested over the years, and the following section will review them, alongside a brief
introduction to Monte Carlo and importance sampling.

1.3.3 Basis Set Sampling in CCS

A significant proportion of the accuracy of a CCS calculation depends upon an appropriate
choice of sampling for the initial coherent state basis functions in phase space. A good
initial sample means that the initial wavefunction is well represented, the number of basis
functions required are minimised, and thereafter the trajectories will keep the basis in the
dynamically important region. A number of different approaches for doing this have been
developed over the years.

In the paper that introduced the CCS formalism [29], a static uniform rectangular
grid was used where the phase space volume of each of the basis functions was used to
carry out the Riemann sum in Eq. (1.3.22). A moving grid was also tested, guided by an
average over each of the basis functions trajectories. The possibility of using Monte Carlo
and importance sampling to evaluate the integral in Eq. (1.3.21) was also mentioned here.
The Monte Carlo method relies on random sampling of points to approximate an integral,
and importance sampling samples the random points from a probability distribution that
aims to place more points where the contribution from the integrand is high or “important”.
As a straightforward example, the integral

I =
∫ b

a
f(x) dx (1.3.33)

may be evaluated in a Monte Carlo fashion by using a set of N uniform randomly dis-

24
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tributed variables Xi ∈ [a, b] to give

I ≈ (b− a) 1
N

N∑
i=1

f(Xi). (1.3.34)

Importance sampling may be incorporated by noting that the integral may be written as

I =
∫ b

a

f(x)
P (x)

P (x) dx, (1.3.35)

where P (x) is a probability distribution that can be used to generate the random variables
Xi to approximate the integral as

I ≈ (b− a) 1
N

N∑
i=1

f(Xi)
P (Xi)

. (1.3.36)

As long as an appropriate probability distribution is chosen to bias the random points to
the important parts of the integral, the accuracy of the Monte Carlo integration will be
improved for a given number of samples N .

Returning to initial CCS paper [29], it was shown that Eq. (1.3.21) can be replaced by

dC[z(t)]
dt

= − i
h̄

∫
〈z(t)|z′(t)〉 δ2Hord(z∗(t), z′(t))ei(S[z′(t)]−S[z(t)])/h̄C[z′(t)]

f [z′(0)]
f [z′(0)] d2z′(0)

πM
,

(1.3.37)
where the Liouville theorem has been utilised to perform the integration over the initial
phase space d2z(0), and f [z′(0)] is a distribution function from which the initial coherent
state basis functions may be sampled in a Monte Carlo fashion, biased to the initial
wavefunction. The integral can then be computed by

dCk[zk(t)]
dt

= − i
h̄

K∑
l=1
〈zk(t)|zl(t)〉 δ2Hord(z∗k(t), zl(t))ei(Sl[zl(t)]−Sk[zk(t)])/h̄

Cl[zl(t)]
f [zl(0)]πM

.

(1.3.38)
Quite often the initial wavefunction is a Gaussian, so a common choice for the distri-

bution function in CCS is a Gaussian distribution centred around initial coordinates and
momenta z(0)

f(z) ∝ exp
(
−σ|z− z(0)|2

)
. (1.3.39)

The parameter σ is a compression factor determining the width of the distribution. Al-
though an initial wavefunction that is Gaussian is being represented by Gaussians, the
basis must be sampled sufficiently to allow proper spreading in time. When the initial
wavefunction is not Gaussian, a distribution function can be obtained from | 〈z|Ψ〉 |2. The
coherent state derivative of this function may be obtained to find its maximum and allow
the distribution to be centred around it.

Fig. 1.1 demonstrates the economisation of basis set size that may be obtained by this
biased random sampling combined with the trajectory guided basis functions, compared
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Ψ(0) Ψ(t)

(a)

Ψ(0) Ψ(t)

(b)

Figure 1.1: Representation and propagation of a wavefunction via (a) grid-based sam-
pling and (b) trajectory guided methods with biased random sampling.

to traditional grid-based sampling. In the grid-based sampling method each basis function
enters into the calculation at all times, even when not dynamically relevant, whereas CCS
seeks to only contain basis functions that are dynamically relevant at all times. This allows
a CCS calculation with random sampling to scale in principle quadratically with respect
to basis set size, compared to exponentially with grid-based sampling.

A 2008 paper by Shalashilin and Child provided an account of basis set sampling
techniques in CCS, covering two that had been used in previous applications and a third
new technique [76]. One of the two previous techniques was that of the random sampling
mentioned above (also known as a “swarm”), whilst another previously used but unnamed
technique was dubbed “pancake” sampling. Pancake sampling is used when there are two
(or more) different types of mode in a particular system that require different distributions
for accurate representation of the initial wavefunction, such as in a system-bath problem.
In the example presented of a Henon-Heiles potential, a Gaussian distribution was used
for both the system and bath, but with different compression parameters for each. More
generally, different distributions may be used for different modes to qualify as pancake
sampling. The third sampling technique, which had not been utilised before, was that of
a “train” basis. In this sampling technique batches of coherent state basis functions are
initiated on the same trajectory but with successive time delays, producing “carriages” of
coherent state basis functions that together form a “train”. The idea behind this method-
ology was to to combine the beneficial properties of random sampling and regular grids
(good scaling with dimensionality and fast convergence, respectively), whilst minimising
the undesired properties of each (slow convergence and poor scaling, respectively). Also,
for systems where the coherent state basis spreads rapidly over phase space and loses
coupling, the trains will remain coupled to one another.

An additional technique proposed to tackle the issue of the basis spreading rapidly
over phase space and uncoupling is that of adaptive reprojection [78]. In this approach
the basis is initially sampled in a usual way by a regular grid, random swarm, or other
distribution, then during the propagation when the basis functions are beginning to run
away from one another any trajectories not significantly contributing to the propagation
are discarded, and the basis is reprojected back onto the initial distribution. The time
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for reprojection is user defined, whilst a quantity C ′j is calculated to determine which
trajectories should be discarded

C ′j =
K∑
k=1
〈zinit
j |zk〉DkeiSk/h̄. (1.3.40)

Any values of C ′j that do not satisfy the condition

|C ′j | ≥ ζ (1.3.41)

correspond to trajectories zj that should be discarded, where ζ is a user defined param-
eter that controls how much of the basis is to be discarded. Once those trajectories are
discarded K ′ trajectories remain, and the wavefunction is reprojected back onto the initial
distribution

|Ψ〉 =
K′∑
i,j=1

K∑
k=1
|zinit
i 〉 (Ω−1

init)ij 〈z
init
j |zk〉DkeiSk/h̄

=
K′∑
i=1

D′i |zinit
i 〉 .

(1.3.42)

The new amplitudeD′i ensures that the wavefunction remains unchanged, and is calculated
from the set of linear equations

C ′j = 〈zinit
i |zinit

j 〉D′i, (1.3.43)

where the action is set to 0.
All of these sampling techniques have been used with CCS for a variety of applications

that are reviewed in the following section.

1.3.4 Applications of CCS

The first application of CCS, in the paper that introduced the formalism, was simply
to a Morse oscillator in 1D [29]. The probability distribution of the wavefunction at the
end of the calculation was compared to the exact split-operator Fourier transform (SOFT)
method [3]. It was also compared to the HK method where it was noted that an advantage
CCS possessed (aside from being fully quantum) was that there are no problems arising
from exponentially growing prefactors.

A second application proved the effectiveness of CCS in combating a fully quantum
problem, and the advantage it possessed over semiclassical methods [75]. A 1D tunneling
problem was considered, and characteristic beatings in the autocorrelation function were
observed. This allowed tunneling splittings to be calculated that were seen to be in
good agreement with the SOFT method. Contrastingly, no beating pattern was observed
in the autocorrelation function when using the HK method [79]. A 2D problem was also
considered, but convergence could only be achieved for times much shorter than the beating
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period. However, the number of trajectories needed for this was an order of magnitude
less than the HK method.

A following paper in the same year introduced multidimensional equations for CCS that
were presented in Sec. 1.3.2 [42]. This allowed the full potential of CCS to be realised, as
the ability to sample the initial coherent states in a Monte Carlo fashion and benefit from
the improved mathematical scaling mentioned in the previous section could be exploited.
The Henon-Heiles potential was investigated in 2D, 6D, 10D and 14D; with the latter
dimensions being out of reach for traditional grid sampling methods. To illustrate this
point, the 2D problem was found to be propagated accurately using sampling from a grid,
whilst the 6D, 10D and 14D problems could not and required importance sampling for
convergence. However, it was observed that the use of importance sampling resulted in the
initially compact sample spreading over a large phase volume and uncoupling, imposing a
long time limit on the technique. Note that this does not imply a breakdown of Liouville’s
theorem, because as the trajectories uncouple they spread out into “filaments” that occupy
small volumes of phase space that in total are the same as the initial compact distribution.
The filaments themselves are simply well spread in phase space. The results from the
Henon-Heiles potential were compared to the HK method, where close agreement was
found [80]. A subsequent thorough comparison of CCS with the HK method, and Heller’s
frozen and thawed Gaussians displayed how they can be derived as approximate analytic
solutions of the CCS integro-differential Schrödinger equation [81].

The first application of CCS to a real molecule, simulating Fermi-resonance and in-
tramolecular vibrational energy redistribution of CHD3, illustrated the capability to pro-
vide real quantum mechanical molecular models [43]. All 9 vibrational modes were taken
into account for this simulation, and the advantages CCS possesses with respect to scaling
with dimensionality were demonstrated once more. Furthermore, due to appropriate ini-
tial conditions a narrow part of the spectrum corresponding to the Fermi-resonance was
able to be focussed on. However, the long time limit of the technique was observed once
more with the autocorrelation function exhibiting decay due to noise from the Monte Carlo
sampling. Despite this, it was observed that noise could be reduced to a level sufficient
for obtaining eigenvalues from the autocorrelation function.

Further real molecular systems were then tested, with CCS being applied to the far
infrared absorption spectrum of a water trimer [44], and the absorption spectrum of
pyrazine [45]. In the former application, to produce the infrared absorption spectrum
of a water trimer the dipole moment autocorrelation function was calculated which re-
quired propagation in imaginary time. A couple of issues arose whilst doing this, firstly, in
complex time the coordinates q and momenta p are imaginary so z∗ must be replaced by
z† in all CCS working equations as it is no longer conjugate to z. Secondly, classical tra-
jectories are unstable when propagated in imaginary time, so after a short time step they
were re-projected back onto their initial distribution. The latter application to pyrazine is
a common benchmark for testing multidimensional quantum mechanical techniques, and
a number of methods have previously attempted to treat the problem [20, 82–84]. Prop-
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agation over two electronic potential energy surfaces (PESs) is required, unlike one in all
previous CCS applications. This was achieved by the mapping Hamiltonian approach [85]
that combines the 24 vibrational modes with the 2 electronic modes to create a 26D prob-
lem. The results were shown to compare reasonably well with experiment [86] and the HK
method [84], however the spectrum was missing some of the features that appeared in the
MCTDH calculation [20,82].

Following this, the first application of CCS to electron dynamics was published [87,88],
as previously only nuclear dynamics had been considered, and potential energy curves for
the two lowest electronic levels of H2 were generated via the propagation of two electrons in
a field of two fixed protons. The same CCS working equations as employed previously for
nuclear dynamics were used, the only difference was that the Coulombic potential terms
in the Hamiltonian had to be evaluated by integration rather than the usual normal-
ordering. The evaluation of these integrals included the error function that resulted in
the removal of Coulombic singularities at the nuclei. This ensured the system remained
bound, rather than one electron falling into the Coulombic well and the other escaping to
infinity. Additionally, the use of trajectory guided coherent states ensured that electron
correlation was included. This resulted in potential energy curves being within good
chemical accuracy (10−3 a.u./1 kcal mol−1) of the most accurate ab initio calculations.

A second application of CCS to electron dynamics followed a few years later, simulating
the strong laser field double ionisation of a He atom and providing physical insight into the
mechanism [89]. Once more integrals over the Coulombic potential were required, which
included the error function and lead to the averaged Hamiltonian remaining bound. It
was noted that this provided an advantage over another trajectory guided method, Full
Multiple Spawning [27], whose integrals over the Coulombic potential would not include
the error function, and hence would lead to autoionisation.

The success of these applications lead to the development of a specialised adaptation
of CCS to treat electron dynamics, known as fermionic CCS (FCCS) [90]. This adaptation
takes the exchange symmetry of fermions into account, and uses fermion molecular dy-
namics to propagate trajectories. It was applied to the double ionisation of He once again,
with FCCS providing double ionisation yields in much closer agreement to experiment
than standard CCS. The calculation was run over a great many laser periods, a feat that
would be extremely difficult with standard quantum dynamics methods. A second version
of FCCS was proposed by Eidi et. al. that provides an alternative symmetrisation of the
spatial wavefunction [91].

Standard CCS has also been used for other strong field phenomena in recent years:
firstly to model the dynamics of an electronic wave packet in a strong laser field [92], and
subsequently to high harmonic generation [78]. In the former application, CCS accurately
identified signatures of over-the-barrier and tunnelling ionisation, reproducing the results
of an exact TDSE solver and providing an improved result over the HK method. In the
latter application, high harmonic generation is a phenomenon where extreme ultraviolet
to soft x-ray wavelengths of light may be produced from an input near-infrared field. This
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occurs via a three step process: firstly, an electron tunnels through the barrier formed by
the Coulomb potential and the near-infrared laser field; secondly, it oscillates and gains
kinetic energy under the influence of the laser field; and thirdly, it recombines with its
parent ion when the laser field inverts direction resulting in a harmonic photon being
emitted. CCS was used to simulate this high harmonic generation phenomenon for a
single electron interacting with a strong laser field, where an adaptive reprojection of the
basis set (discussed in Sec. 1.3.3) was utilised. The adaptive reprojection technique had
to be used because the trajectories were rapidly being led away from the initial position
of the wavefunction by the dynamics of the system, causing them to be uncoupled. By
reprojecting onto the initial basis, this issue was remedied. Also, the initial basis had to
be placed on a exponentially scaling regular grid, rather than a random sample, so the
adaptive size reduced the cost of the calculation when trajectories weren’t contributing
significantly. The high harmonic spectra produced by CCS were found to be in very good
agreement with that produced by an exact TDSE solver.

Returning to nuclear dynamics, CCS has also been used to simulate tunnelling through
a symmetric and an asymmetric double well potential [46]. The symmetric double well was
calculated in 2D and 10D, and showed good agreement to the SOFT method in 2D, and
MP/SOFT in 10D. The asymmetric double well was calculated in 2D and 20D, with the 2D
calculation showing good agreement to the SOFT method. However, the 20D calculation
was not as successful and did not compare as well to the MP/SOFT method. This system
will be the subject of Chapters 2 to 4 in this thesis, and more on this will be discussed
there. Other molecular applications of CCS include intramolecular vibrational energy
redistribution and dissociation of HO−SO2 [47,48], and predissociation of NenBr2 [49,93].
In the latter CCS was implemented in a Cartesian frame, similar to classical molecular
dynamics, allowing simulations to be performed on large molecules without requiring the
identification of appropriate normal modes to describe the molecule.

A generalisation of CCS for nonadiabatic dynamics occurring on two or more potential
energy surfaces known as the multiconfigurational Ehrenfest (MCE) method was presented
a number of years after CCS was initially proposed [31–33], and is reviewed in the following
section.
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1.4 Multiconfigurational Ehrenfest (MCE)

The MCE method can be viewed as a generalisation of CCS for nonadiabatic processes
occurring on two or more PESs. It was first proposed by Shalashilin in 2009 [31], with
modifications to the working equations presented in 2010 [32]. These will both be re-
viewed below, with derivation of the working equations and subsequent applications and
developments, alongside the relevant background theory to the Ehrenfest approximation.

1.4.1 Ehrenfest Theorem and Approximation

The main crux of the MCE method relies on the Ehrenfest approximation introduced by
Meyer and Miller [94], and Billing [95], which in turn relies on Ehrenfest’s theorem. The
Ehrenfest theorem relates the time derivative of the expectation value of the momentum
operator to the expectation of the position operator derivative of the potential. The
expectation value of the momentum operator is in turn related to the time derivative of
the expectation value of the position operator. This is derived as follows: consider the
expectation value of a generic operator Â

〈Ψ|Â|Ψ〉 = 〈Â〉 =
∫

Ψ∗ÂΨ dτ, (1.4.1)

where dτ implies an integration over all space. The time derivative of this expectation is
given as

d
dt
〈Â〉 =

〈dΨ
dt

∣∣∣∣ ÂΨ
〉

+
〈

Ψ
∣∣∣∣ ÂdΨ

dt

〉
+
〈

Ψ
∣∣∣∣∣ dÂdt Ψ

〉

= 1
ih̄
〈−ĤΨ|ÂΨ〉+ 1

ih̄
〈ΨÂ|ĤΨ〉+

〈
Ψ
∣∣∣∣∣ dÂdt Ψ

〉 (1.4.2)

where the derivation from lines 1 to 2 proceeds via the TDSE. If Â has no explicit time-
dependence then

d
dt
〈Â〉 = 1

ih̄
〈Ψ|[Â, Ĥ]|Ψ〉 . (1.4.3)

If Â is either the position or momentum operator, then for Hamiltonians of the form
Ĥ = p̂2/(2m) + V (q̂) the following may be evaluated

d
dt
〈q̂〉 = 1

ih̄
〈Ψ|[q̂, Ĥ]|Ψ〉 = 〈p̂〉

m
(1.4.4a)

d
dt
〈p̂〉 = 1

ih̄
〈Ψ|[p̂, Ĥ]|Ψ〉 =

〈
−∂V
∂q̂

〉
. (1.4.4b)

The above is the mathematical representation of Ehrenfest’s theorem, and from these
relationships it can (loosely) be said that the expectation values of quantum mechanical
operators obey Newtonian mechanics.

Turning to the Ehrenfest approximation, the assumption made here is that certain
problems can be split into the sum of quantum and classical parts, for example light
electrons being quantum and heavy nuclei being classical. The total Hamiltonian can
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then be written as

Ĥ(q̂, p̂,Q,P) = Ĥq(q̂, p̂) + Ĥcl(Q,P) + V̂ int(q̂, p̂,Q,P), (1.4.5)

where Ĥq(q̂, p̂) is the Hamiltonian of the quantum subsystem, Ĥcl(Q,P) is the Hamil-
tonian of the classical subsystem and V̂ int(q̂, p̂,Q,P) is their interaction. The operators
(q̂, p̂) are position and momenta operators for the quantum part, and (Q,P) are vectors
of position and momentum for the classical part. The equations of motion for the classical
part can be determined by the Ehrenfest average over the Hamiltonian, and the following
Hamilton equations may be given

Q̇ = ∂HEhr

∂P
(1.4.6a)

Ṗ = ∂HEhr

∂Q
. (1.4.6b)

The Ehrenfest Hamiltonian, HEhr is the Hamiltonian averaged over the quantum wave-
function

HEhr = 〈Ψq|Ĥ(q̂, p̂,Q,P)|Ψq〉 , (1.4.7)

with the quantum wavefunction represented on a suitable basis,

|Ψq〉 = a1 |φ1〉+ a2 |φ2〉+ . . . . (1.4.8)

The evolution of the quantum system is then found through the time-dependence of the
coefficients

dai
dt

= − i
h̄

J∑
j=1
〈φi|Ĥ(q̂, p̂,Q,P)|φj〉 aj . (1.4.9)

The accuracy of the Ehrenfest approximation is dependent on how good the treatment of
the classical part is (in the example of nuclei being classical, the obvious downfall will be
when quantum effects such as tunnelling occur), in addition to how well the interaction
between classical and quantum subsystems is evaluated. The MCE method aims to remedy
these deficiencies by using an ensemble of trajectories for the classical part rather than
a single one, and treating it in a fully quantum manner to take into account any small
amounts of quantum behaviour.

1.4.2 MCE Working Equations

1.4.2.1 MCE v1

The derivation of MCE working equations begins with the Ehrenfest approximation that
the Hamiltonian can be split into the sum of quantum and classical parts, and hence
the wavefunction can be split into quantum and classical parts (although the classical
part is treated in a fully quantum manner). For simplicity it will be assumed that the
quantum part consists of orthogonal states |φi〉 as above (which could for example represent
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electronic states), whilst coherent state basis functions are used to represent the classical
part. In the first version of MCE the wavefunction ansatz was given as

|Ψ〉 =
K∑
k=1
|ϕk〉

=
K∑
k=1

[
J∑
i=1

aik |φi〉
]
|zk〉

=
K∑
k=1

[
J∑
i=1

dikeisik/h̄ |φi〉
]
|zk〉 ,

(1.4.10)

where a discretised version was employed from the outset [31]. The amplitudes aik are
factored into the product of dik amplitude and phase factor eisik/h̄ like in CCS. The action
in this representation is given as

sik =
∫ [

ih̄

2
(z∗kżk − żk∗zk)−Hord

ii (z∗k, zk)
]

dt (1.4.11)

where Hord
ii (z∗k, zk) = 〈zk|Ĥii|zk〉 = 〈zk| 〈φi|Ĥ|φi〉 |zk〉. The evolution of the wavefunction

is determined by the time-dependence of the a amplitudes, or equivalently the smoothed
d amplitudes and action like with CCS, and the trajectories of the coherent states. The
time-dependence of the action follows straightforwardly from its definition in Eq. (1.4.11),
whilst the time-dependence of the amplitudes and trajectories may be obtained by applying
the time-dependent variational principle (TDVP) [96],

δ

∫
L dt = 0, (1.4.12)

which is the quantum equivalent of the principle of stationary action. The quantum
Lagrangian is given as

L = 〈Ψ|ih̄ ∂̂
∂t
− Ĥ|Ψ〉 . (1.4.13)

The time-dependence of the d amplitudes is then given as

K∑
l=1
〈zk|zl〉 eisil/h̄

ddil
dt

=− i

h̄

[
K∑
l=1
〈zk|zl〉 δ2Hord∗

ii (z∗k, zl)eisil/h̄dil

+
K∑
l=1

∑
j 6=i
〈zk|zl〉Hord

ij (z∗k, zl)eisjl/h̄djl

] (1.4.14)

where

δ2Hord∗
ii (z∗k, zl) = Hord

ii (z∗k, zl)−Hord
ii (z∗l , zl)− ih̄(z∗k − z∗l )żl, (1.4.15)
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analogous to CCS Eq. (1.3.29), and 〈zk|zl〉Hord
ij (z∗k, zl) = 〈zk|Ĥij |zl〉 = 〈zk| 〈φi|Ĥ|φj〉 |zl〉.

The time-dependence of the trajectories is given as

żk = − i
h̄

∂HEhr(z∗k, zk)
∂z∗k

(1.4.16a)

żk∗ = i

h̄

∂HEhr(z∗k, zk)
∂zk

, (1.4.16b)

where the Ehrenfest Hamiltonian HEhr is averaged over the quantum subsystem

HEhr(z∗k, zk) =
∑J
i,j=1H

ord
ij (z∗k, zk)a∗ikajk∑J

i,j=1 δija
∗
ikajk

, (1.4.17)

and δij is the Kronecker delta. The Eqs. (1.4.11), (1.4.14) and (1.4.16) comprise the
working equations of the initial version of MCE.

1.4.2.2 MCE v2

A second version was proposed a year later [32], where the wavefunction ansatz was given
as

|Ψ〉 =
K∑
k=1

Dk |ϕk〉

=
K∑
k=1

Dk

[
J∑
i=1

aik |φi〉
]
|zk〉

=
K∑
k=1

Dk

[
J∑
i=1

dikeisik/h̄ |φi〉
]
|zk〉 .

(1.4.18)

The difference here is the multiconfigurational amplitude Dk that was not included in the
first version given in Eq. (1.4.10). In the first version, the amplitudes dik are coupled
within the same configuration (same k) and across different configurations (different k)
which makes the zk effectively coupled also. In the second version the dik amplitudes and
zk trajectories are no longer interacting with other configurations, as the Dk amplitude is
responsible for that. Trajectories can therefore be run individually for each configuration
before coupling them together with the Dk amplitudes. This makes the second version
convenient for future use with on-the-fly dynamics, where expensive electronic structure
calculations are required for each trajectory. It is much more efficient to calculate the
electronic structure for each trajectory individually rather than all simultaneously. The
uncoupling of configurations also adds stability to the Ehrenfest trajectories, as well as
flexibility to the wavefunction representation due to the additional time-dependent pa-
rameter.

The time-dependence of the trajectories are the same as for the first version, given by
Eq. (1.4.16), whilst the time-dependence of the dik amplitudes is now given by

ddik
dt

= − i
h̄

J∑
j 6=i

Hord∗
ij (z∗k, zk)ei(sjk−sik)/h̄djk. (1.4.19)
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This was calculated by applying the TDVP to a single configuration |ϕk〉 so the amplitudes
are no longer coupled across configurations. The action and its time-dependence is still
given by Eq. (1.4.11). The time-dependence of the D amplitudes is found via substitution
of the wavefunction into the TDSE

K∑
l=1
〈ϕk|ϕl〉

dDl

dt
= − i

h̄

K∑
l=1
〈zk|zl〉∆2Hord∗

ij (z∗k, zl)Dl (1.4.20)

where

〈ϕk|ϕl〉 = 〈zk|zl〉
J∑

i,j=1

[
δijd

∗
ikdjlei(sjl−sik)/h̄

]
(1.4.21)

and

∆2Hord∗
ij (z∗k, zl) =

J∑
i,j=1

d∗ikdjlei(sjl−sik)/h̄
[
Hord
ij (z∗k, zl)−Hord

ij (z∗l , zl)− ih̄δij(z∗k − z∗l )żl
]

(1.4.22)
with δij being the Kronecker delta. The Eqs. (1.4.11), (1.4.16), (1.4.19) and (1.4.20) make
up the working equations for the second version of MCE.

1.4.3 Applications of MCE

The paper that presented the first version of MCE applied it to simulate the spin-boson
model [31], a system-bath problem consisting of a two-level system coupled to a bath of
oscillators. It is used in physics to describe things such as light-harvesting complexes,
quantum dots and decoherence. This problem had already been tackled with up to a
few thousand degrees of freedom with the multilayer MCTDH (ML-MCTDH) method by
Wang and Thoss with great success [97,98]. Using basis sets of only 50–300 coherent states,
the ML-MCTDH results at short times were reproduced for tens, hundreds and thousands
of degrees of freedom. Prior to MCE no other simulation technique could achieve this level
of accuracy for the spin-boson model on that scale, and it is much more algorithmically
straightforward than ML-MCTDH. However, a long time limit on the technique — as
with CCS — was observed, with some deviation from ML-MCTDH as the simulation
progressed. Due to the success of this first version of MCE to treat the spin-boson model,
a number of years later it was utilised to model quantum information processing in an
entangling quantum gate that had spin-boson like couplings [99]. At present, the above
two papers are the only ones that have used the MCE equations in their first form.

The paper that reformulated the MCE equations into the second version [32] applied
the method to study the nonadiabatic dynamics of pyrazine on two coupled electronic
states, enabling the absorption spectrum to be simulated. As mentioned in Sec. 1.3.4, this
is a common benchmark test for multidimensional quantum mechanical techniques, and
MCE performed much better than the prior CCS application [45]. It was also in good
agreement with MCTDH [20], something that the CCS calculation could not manage,
whilst requiring only 500 configurations for the converged calculation.

The following year this figure was reduced down to 290 configurations by introducing
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some regularity in the initial sampling of the coherent states, ensuring the more important
modes were well represented [33]. A separate calculation utilising a mere 34 configurations
also managed to produce the main features of the spectrum. Another application presented
in this paper was the sticking of a hydrogen atom to a surface [33]. A system-bath model
can represent this process, where the interaction of hydrogen with the surface is given by a
Morse oscillator coupled to a harmonic bath of phonons. The sticking probability followed
the MCTDH result [23] at a range of incident energies of the hydrogen atom wavepacket,
although it was uniformly 15% lower. A final remark made in this paper was that MCE
could be paired with electronic structure theory to calculate PESs as the simulation was
running, or on-the-fly, for fully quantum nonadiabatic dynamics calculations. This is in
contrast to MCTDH, which requires determination of the PES before the simulation is
started. The use of Gaussians in MCE requires only information about the potential in the
region where the functions are, and typically the potential and its derivatives at the centre
of each Gaussian wavepacket are used to approximately evaluate the electronic integrals
required as the calculation proceeds.

In the following year Saita [100] implemented this on-the-fly dynamics approach, formu-
lating a technique known as the ab initio multiconfigurational Ehrenfest (AI-MCE) method
that uses the MOLPRO [101, 102] electronic structure program to calculate PESs. To be
able to interface with MOLPRO, the MCE working equations presented in Sec. 1.4.2.2
had to be modified as they are in diabatic representation and MOLPRO calculates adi-
abatic electronic states. This modification is presented in Chapter 5, when nonadiabatic
calculations are performed using an extension of AI-MCE mentioned below.

AI-MCE was applied to the excited state ππ∗ dynamics of ethylene, previously studied
by ab initio multiple spawning (AIMS) [103, 104]. The AIMS technique also uses Gaus-
sian basis functions to treat nonadiabatic quantum dynamics, with electronic structure
calculations on-the-fly [104, 105]. The results of AI-MCE and AIMS were comparable,
despite the trajectories used by AI-MCE being different to those of AIMS. It should be
noted that in AI-MCE when a small number of trajectories are used they run away from
one another quickly, the D amplitude becomes constant and the simulation is essentially
a semiclassical one. In an example given, 16 trajectories were found to be uncoupled after
10 fs, although AI-MCE can still produce good results in the semiclassical limit as infor-
mation about the quantum phases is retained. In a subsequent paper [106], a significantly
increased number of trajectories (1000) was used to simulate the ultrafast x-ray scattering
from ethylene and provide aid to analysis of recent experiments on the process [107]. This
was then compared to simulation of ultrafast electron diffraction from ethylene [108]. Both
diffraction techniques were found to be qualitatively similar for short times, demonstrating
carbon-carbon dynamics due to oscillations of the C-C bond length, pyrimidisation and
twisting around the bond, and dispersion of the carbon-carbon wavepacket. However for
longer times, when the carbon-carbon wavepacket is dispersed, dynamics due to motion
of the hydrogen atoms becomes prominent and ultrafast electron diffraction was observed
to be more sensitive to this than ultrafast x-ray diffraction.
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AI-MCE has also been applied to study the photodynamics of pyrrole, looking at N−H
bond fission and subsequent radical formation [109]. Experimental results for this process
by way of hydrogen (Rydberg) atom photofragment translational spectroscopy (HRA-
PTS) were available [110], and AI-MCE provided evidence for the correct assignment
of the spectra. The simulations were once again not fully quantum, with uncoupling
of trajectories occurring at 50 fs. To address this problem, recently Makhov et al. [34]
proposed adding a “multiple cloning” scheme to AI-MCE where the basis set is expanded
at longer time periods, analogous to the spawning procedure of FMS/AIMS. The ab initio
multiple cloning (AIMC) method is the subject of Chapter 5 and a thorough review will
be presented there, alongside the conversion of MCE working equations from diabatic to
adiabatic representation.

Very recently a couple of alternative methods to carry out nonadiabatic calculations
that use the CCS/MCE formalism have been proposed: surface hopping CCS [111], and
MCE in a time-dependent diabatic basis (MCE-TDDB) [112]. In the former, CCS was
combined with Tully’s fewest switches surface hopping algorithm [113, 114] to describe
nonadiabatic transitions between electronic states. It was posited that this method will
allow a more intuitive description of a trajectory as it will be assigned to a specific elec-
tronic state, as opposed to an Ehrenfest trajectory that has contributions from many.
However, the working equations are given in diabatic form, which means that the method
cannot be paired with electronic structure software in its current guise, and instead model
potentials must be used. The example application given in the paper is of a 2 state 2D
model potential for a conical intersection. The method reproduced state probabilities com-
pared to a numerically exact solution of the Schrödinger equation, as well as interference
effects of the nuclear wavepacket between the two states.

The latter development offers a variation on the AI-MCE method, where the overlap
between electronic states on different trajectories is explicitly taken into account rather
than assumed to be Kronecker delta. The premise behind this modification is to allow
MCE-TDDB to better model large conjugated systems where electronic states can change
character significantly along the width of a Gaussian. The dynamics of electronic and
vibrational energy transfer in a phenylene ethynylene dendrimer was simulated via this
method [112]. The absorption spectrum was produced (which had not been directly mea-
sured previously), illustrating the contributions of different electronic states on different
portions on the molecule due to localisation within the conjugated system. It should be
noted that the name “time-dependent diabatic basis” does not imply the electronic states
are calculated in a diabatic basis, they are calculated in a adiabatic basis by electronic
structure software the same as AI-MCE and AIMC. The difference is that each trajectory
carries its own time-dependent diabatic electronic basis that coincides with the adiabatic
basis at the centre of each Gaussian. A further review of the MCE method and its devel-
opments may be found in Ref. [115].
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1.5 Other Quantum Dynamics Methods

1.5.1 MCTDH

Of all the quantum dynamics approaches that have been developed in the past few decades,
the most widely used are those of the MCTDH family. The original scheme was first
proposed in 1990 by H.-D. Meyer, U. Manthe and L. S. Cederbaum [17] as a multiconfig-
urational extension of the earlier time-dependent Hartree (TDH) method [116, 117]. The
wavefunction is represented as a linear combination of Hartree products of time-dependent
orthonormal single particle functions ϕ with expansion coefficients A

Ψ(q(1), . . . , q(M), t) =
K(1)∑
k(1)=1

· · ·
K(M)∑
k(M)=1

Ak(1),...,k(M)(t)
M∏
m=1

ϕ
(m)
k(m)(q(m), t)

=
∑

k
AkΦk.

(1.5.1)

The second line defines the composite index for the configurations k = k(1), . . . , k(M) and
the Hartree product Φk. The single particle functions are usually expanded on a set
of primitive time-independent basis functions that are chosen dependent on the problem
studied

ϕ
(m)
k(m)(q(m), t) =

I(m)∑
i(m)=1

a
(m)
i(m),k(m)(t)χ

(m)
i(m)(q(m)). (1.5.2)

Applying the Dirac-Frenkel variational principle [116] to the MCTDH wavefunction repre-
sentation yields a set of equations for the time-dependence of the single particle functions
and expansion coefficients. Note that the Dirac-Frenkel variational principle is subtly
different to the TDVP presented in Eq. (1.4.12), being given by

〈δΨ|ih̄ ∂
∂t
− Ĥ|Ψ〉 = 0. (1.5.3)

Both variational principles can give equivalent solutions, but differ in their application.
Further information on the equivalence of these variational principles and the as yet un-
mentioned McLachlan variational principle [117] may be found in Ref. [118].

Returning to MCTDH, the time-dependence of single particle functions and expansion
coefficients permit a fully quantum propagation of the wavefunction to occur, and as
such MCTDH is highly numerically accurate [18]. This high numeric accuracy has some
drawback however, as the method scales exponentially with dimensionality, albeit with a
smaller base to be exponentiated than the traditional method of quantum dynamics as
presented in Eq. (1.1.25). This is generally due to requiring fewer time-dependent single
particle functions in MCTDH than the time-independent basis functions in the traditional
method. The exponential scaling makes MCTDH particularly suited to problems of four
to twelve degrees of freedom, although mode combination can be utilised to increase this
value. In mode combination, degrees of freedom are grouped together in the single particle
functions to generate multimode single particle functions. As long as appropriate mode
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combinations are chosen the method may treat higher dimensionality problems, such as
the dynamics of pyrazine with 24 degrees of freedom studied in Ref. [82].

Another modification of the single particle functions to allow higher dimensionality
problems to be treated is offered by ML-MCTDH [97, 119]. In this approach the sin-
gle particle functions are built in several layers, where the single particle functions of a
particular layer are multiconfigurational expansions of further single particle functions

ϕ
(m)
k(m)(t) =

L(1)∑
l(1)

· · ·
L(N)∑
l(N)=1

Bl(1),...,l(N)(t)
N∏
n=1

ζ
(m,n)
l(n) (t)

ζ
(m,n)
l(n) (t) =

J(1)∑
j(1)

· · ·
J(R)∑
j(R)=1

Cj(1),...,j(R)(t)
R∏
r=1

ξ
(m,n,r)
j(r)

(t)

· · · .

(1.5.4)

This allows the top layer to contain many more degrees of freedom than standard MCTDH,
and is capable of simulations of a few hundred to a few thousand degrees of freedom. As a
representative example, Ref. [120] simulated the Henon-Heiles Hamiltonian in 1458D using
a 7-layer MCTDH scheme. The multilayer extension of MCTDH serves as inspiration for
a 2-layer extension of CCS, which is developed in Chapter 3.

Other extensions of the MCTDH approach include taking account of exchange symme-
try to treat systems of indistinguishable bosons and fermions with MCTDHB [121,122] and
MCTDHF [123–125], respectively, and the unification thereof [126]. In these approaches,
rather than the single particle functions consisting of a Hartree product, they are sym-
metrised permanents for bosons and antisymmetrised Slater determinants for fermions.
They have both also been extended into multilayer formalism by Wang and Thoss [127].
The MCTDH extension to indistinguishable bosons serves as inspiration for a CCS ex-
tension to indistinguishable bosons developed in Chapter 4. As such, the theory behind
indistinguishable particles will be discussed in greater detail there.

MCTDH has also been modified to include Gaussian basis functions in G-MCTDH [24].
In this approach the configurations in the wavefunction ansatz of Eq. (1.5.1) are given as

Φk(q(1), . . . , q(M), t) =
µ∏

m=1
ϕ

(m)
k(m)(q(m), t)

M∏
m=µ+1

G
(m)
k(m)(q(m), t), (1.5.5)

where the first µ degrees of freedom are described by the single particle functions as before,
whilst the remaining degrees of freedom are described by Gaussian wavepackets. In the
limit that only Gaussians are used to describe the wavefunction, the method is termed
variational multiconfigurational Gaussians (vMCG) [25]. VMCG was first formulated in
2003, and subsequently reformulated in the style of CCS equations in 2013 by Ronto
and Shalashilin [26]. Like MCE, in vMCG the Gaussian basis functions may be paired
with electronic structure theory to perform on-the-fly dynamics, and this has been im-
plemented in the direct dynamics variational multiconfigurational Gaussians (DD-vMCG)
method [128].

39



40 Chapter 1. Background and Theory

1.5.2 Multiple Spawning

Another set of methods that utilise Gaussian basis functions and are capable of performing
on-the-fly dynamics calculations is the multiple spawning family. Full multiple spawning
(FMS) was first proposed in 1996 by Martínez, Ben-Nun and Levine as a way to simul-
taneously solve nuclear dynamics and electronic structure problems in a fully quantum
manner, whilst retaining some classical flavour in the spirit of Heller’s frozen Gaussian
approach [27]. The wavefunction ansatz in FMS is given as

Ψ(R, r, t) =
J∑
i=1

φi(r;R)Gi(R, t)

=
J∑
i=1

φi(r;R)
[
K∑
k=1

Cik(t)eiSik/h̄gik(R,Qik(t),Pik(t), γik)
]
,

(1.5.6)

where R is the set of nuclear coordinates, r are the electronic coordinates, the sum is
over J electronic states, φi is the electronic wavefunction for state i, Gi is a superposition
of time-dependent frozen Gaussian basis functions gik with associated coefficients Cik,
eiSik/h̄ is the usual phase factor, and γik a time-independent width parameter that takes
different values for different atoms. The time-dependence of the coefficients is found via
substitution of the wavefunction representation into the TDSE, much like CCS and MCE.
The time-dependence of the position and momentum centres of the Gaussians are given
by Hamiltons equations evolving on a single electronic state

∂Qik

∂t
= Pik

m
(1.5.7a)

∂Pik

∂t
= − ∂Vii(R)

∂R

∣∣∣∣
R=Qik

. (1.5.7b)

In the original formulation, the potential energy surface was assumed to be known a
priori. In a subsequent modification FMS was paired with electronic structure theory
(and is included in the MOLPRO software [101, 102]) to calculate these potential energy
surfaces on-the-fly. This development was named ab initio multiple spawning (AIMS) [104,
105,129].

For both FMS and its generalisation to on-the-fly dynamics with AIMS, a key feature in
the propagation of the wavefunction is a “spawning” procedure. This procedure adaptively
expands the basis set size in a physically motivated way, describing quantum mechanical
effects associated with electronic nonadiabaticity. When an existing basis function passes
through a region of significant electronic coupling from one state to another, an additional
“child” basis function may be “spawned” on a different electronic state to the “parent”
basis function that generates it. This permits modelling of wavepacket splitting, and
allows parent and child to be coupled together for a period of time to model nonadiabatic
effects due to the superposition of states. This is in contrast to Tully’s surface hopping
technique where a trajectory only evolves on a single electronic state at a time, and so
does not include these superposition effects [113,114].
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As the nuclear dynamics are computed in a similar way to CCS and MCE, they
are relatively inexpensive. However, often high level electronic structure calculations
are required that limits the method to small molecule systems, such as ethylene and
cyclobutene [103, 129]. Recently, electronic structure calculations on graphical process-
ing units (GPUs) have been developed [130–133], that allow much faster computation
of electronic integrals. This has been paired with AIMS to allow nonadiabatic simula-
tions of much larger molecules to be conducted, such as provitamin D3 [134] and 4-(N,N-
dimethylamino)benzonitrile (DMABN) [135].

1.5.3 Others

Whilst the MCTDH and MS methods of quantum dynamics have been the chief alterna-
tives to CCS and MCE in the literature, two additional methods are reviewed here as they
have been applied to the problem studied in Chapters 2 to 4. The first of these is matching-
pursuit split-operator Fourier transform (MP/SOFT) [28]. The essence of this method is
that it extends the exponentially scaling grid-based SOFT method into a dynamically
adaptive coherent state representation to scale more favourably with system size. Firstly,
a wavefunction representation is generated via the matching pursuit algorithm applied to
a basis set expansion of coherent states. Then the wavefunction is propagated according
to the SOFT scheme, with an approximation of the short time-propagator to second order
(known as the Trotter expansion) applied. This requires Fourier transforms of the wave-
function representation between position and momentum space to apply the potential and
kinetic energy components of the propagator. The coherent states in the wavefunction
representation allow analytical Fourier transforms to be carried out straightforwardly, and
is the reason the method does not scale exponentially with system size. After the wave-
function is propagated forward in time, it is re-expressed in terms of coherent states to
adaptively adjust the size of the basis in accordance with the needs of the wavefunction.
MP/SOFT has been extended to study nonadiabatic dynamics [41, 136, 137], however
parameterised model Hamiltonians are required as the method does not incorporate on-
the-fly dynamics.

The second method, or more accurately class of methods, developed by Habershon and
Saller uses trajectories in an alternative way to that discussed previously. Rather than
utilising them to guide time-dependent basis functions, they are used to sample a potential
energy surface to determine appropriate places to use time-independent basis functions.
The first implementation of this was authored by Habershon in 2012 for dynamics on a
single potential energy surface, and was named a trajectory guided configuration inter-
action (CI) expansion [138]. The prescription for the method proceeds in three steps:
firstly, trajectory simulations are used to generate dynamically relevant configurations on
a potential energy surface; secondly, these configurations are used to construct a repre-
sentation of the potential energy surface using an algorithm similar to matching pursuit;
and thirdly, a CI expansion of the wavefunction using time-independent basis functions
that are eigenfunctions of this approximate potential energy surface is performed, and the
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wavefunction is propagated forward in time. The CI expansion of the approximate po-
tential energy surface requires many fewer basis functions than the exact potential energy
surface, and is the reason the method does not scale exponentially with system size.

The second implementation of this approach was given by Saller and Habershon is
2015 [139]. In this development, rather than using the trajectories to generate an approxi-
mate potential energy surface, they are used to generate probabilities that basis functions
would be found at coordinates on the actual potential energy surface. This allows a non-
uniform grid of time-independent Gaussian wavepackets to be sampled, the wavefunction
expanded in terms of them and propagated via coefficients. Unlike the previous trajectory
guided approach, this method incorporates nonadiabatic effects. It was retrospectively
named a standard trajectory guided (sTG) scheme, to differentiate it from the modified
approach that followed.

The modified approach incorporates an adaptive basis set to mininise the size of the
calculation, and was named adaptive trajectory guided (aTG) [140]. This is achieved by
splitting the propagation time into repetitions of short “bursts” of trajectory sampling
and basis set propagation, as opposed to performing trajectory sampling for the entire
propagation time and then basis set propagation for the entire propagation time. As before,
the wavefunction representation is given via time-independent Gaussian wavepackets and
time-dependent coefficients, with the Gaussians placed on a nonuniform grid defined by the
trajectory sampling. The difference is that the coefficients are only propagated for a certain
number of steps before minimisation of the basis occurs via a matching pursuit algorithm.
Following this, the potential energy surface is sampled for the next few propagation steps,
additional Gaussian basis functions are placed according to the probabilites generated,
and the coefficients are propagated again before matching pursuit mininisation.

1.5.4 Comparisons to CCS and MCE

When comparing quantum dynamical methods, the two main factors are accuracy and
speed. As MCTDH implements a fully variational solution to the TDSE it is highly
accurate, however CCS and MCE have demonstrated comparable accuracy at a lower
computational cost providing appropriate basis set sampling is chosen [31, 32, 45]. The
lower computational cost of CCS/MCE arises due to random, rather than grid-based,
sampling of the basis functions so that scaling with basis set size is in principle quadratic
as opposed to exponential. Furthermore, for nonadiabatic dynamics MCTDH needs an
analytical form of the PES that is known a priori due to the nonlocal nature of the basis
functions used. In contrast, MCE — due to its use of local Gaussian basis functions
— can compute PESs on-the-fly for direct dynamics. The generalisation of MCTDH
to vMCG is capable of direct dynamics however, due to its exclusive use of Gaussian
basis functions. Variational trajectories can follow the evolution of a wavefunction more
closely than classical trajectories, especially in regions with large quantum effects such as
tunnelling. However, they can also run into numerical instabilities [141].

FMS and AIMS are more directly related to MCE (and its on-the-fly extensions in AI-
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MCE and AIMC) than MCTDH, due to their use of time-dependent frozen Gaussian basis
functions guided by classical trajectories. The main difference arises in the trajectories
themselves. FMS and AIMS evolve based on the potential and derivative of the current
electronic state the trajectory finds itself on, and nonadiabatic effects are only incorpo-
rated in the region of a spawning process occuring at a conical intersection. However, as
MCE and its extensions use Ehrenfest trajectories that incorporate effects from multiple
potential energy surfaces, they include nonadiabatic effects at all times and not just in the
region of a conical intersection. Ehrenfest trajectories also do not separate as quickly as
purely classical trajectories, which can aid convergence in the short time period.

A review of the AIMC method and further comparison to AIMS will be offered in
Chapter 5, as the technique is used there for simulation of ultrafast photodissociation.
Numerical comparison to the MP/SOFT and trajectory guided sampling approaches will
be offered in Chapters 2 to 4, as they have been applied to the same problem as CCS,
and the CCS extensions developed in this thesis. Further extensive comparison between
quantum dynamics methods may also be found in the recent review articles in Refs. [142,
143]

A summary of the quantum dynamics methods mentioned in this section in shown in
Fig. 1.2. Each method is shown in a box with coloured stripes, with different coloured
stripes representing different properties of each method. The first stripe indicates the
method incorporates trajectories, with different colours representing different kinds of
trajectories. The second stripe indicates the method incorporates nonadiabatic dynamics,
either on-the-fly or with an a priori PES. The third stripe indicates the method uses
Gaussian basis functions. The fourth stripe indicates the method adapts its basis set size,
either by expanding or contracting. Uncoloured stripes indicates the method does not
incorporate that property.
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Quantum Dynamics
Methods

CCS
Family

CCS MCE

AI-MCE AIMC

• Ehrenfest trajectories
include nonadiabatic
effects at all times

• Currently does not
have GPU accelerated
electronic structure

• CCS can treat nuclear
dynamics with similar
accuracy to MCTDH,
but requires good
sampling and can suffer
from slow convergence

MCTDH
Family

MCTDH
ML-MCTDH

G-MCTDH
vMCGDD-vMCG

• MCTDH and ML-MCTDH highly
accurate

• MCTDH suited for 4–50 degrees of
freedom

• ML-MCTDH can treat up to
thousands, but multilayer equations
can be complicated and potential
must be relatively simple

• G-MCTDH and vMCG can converge
quickly due to variational trajectories

• DD-vMCG must run trajectories
simultaneously unlike AIMS and
AIMC, meaning electronic structure
can be bottleneck

Multiple
Spawning
Family

FMS

AIMS

• AIMS can treat
over 100 degrees
of freedom due to
GPU accelerated
electronic
structure

• Spawning
expands basis in
regions of large
nonadiabatic
coupling
(analagous to
cloning in AIMC)

• Nonadiabatic
effects only
incorporated in
these regions

Others

aTG

MP/SOFT

Trajectory
Guided

CI

• MP/SOFT and
aTG both employ
similar algorithms
to adaptively
minimise basis size

• Trajectory guided
CI and aTG
trajectories sample
PESs rather than
guide basis

Key:
1) Trajectory Based: Classical = Ehrenfest = Variational =
2) Nonadiabatic Dynamics: On-the-fly = A priori PES =
3) Gaussian Basis Functions=
4) Adaptive Basis Size =

Figure 1.2: Summary of comparison between different quantum dynamics methods, with
different coloured stripes representing different properties of each method.
Uncoloured stripes indicate the method does not incorporate that property.
Brief summary of salient information for each method is given in the bullet
points surrounding.
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1.6 Concluding Remarks and Thesis Outline

This chapter has provided a review of the historical basis of CCS, with origins in Heller’s
frozen Gaussian approach, Miller’s IVR treatment, the semiclassical VVG propagator,
and the HK method. The theoretical foundation of these methods in classical Lagrangian
and Hamiltonian mechanics has also been presented, as well as their quantum analogues
in Feynmans’s path integral and Schrödinger’s wavefunction approaches to quantum me-
chanics. The derivation of working equations for CCS has been shown, and applications
of the method reviewed. The generalisation of CCS to the MCE method for nonadiabatic
dynamics has been presented, and the combination with electronic structure theory for
on-the-fly dynamics mentioned. This latter development is the subject of an application
in a later chapter in this thesis, however first two new formulations of the CCS method
are developed and applied to a model tunnelling problem in the following chapters. A full
outline of the rest of the thesis is as follows:

• Chapter 2: A fully converged result for a model system-bath asymmetric double
well tunnelling problem is obtained. This problem has been studied by quantum
dynamics methods previously, however it has never been converged properly, and
as such no standard benchmark result has been obtained. The benchmark result is
obtained in this chapter, compared to the previous methods of studying the problem,
and used to provide a reference test for the CCS extensions developed subsequently.

• Chapter 3: CCS is extended into 2-layer formalism (2L-CCS), providing a more
flexible wavefunction representation than standard CCS, and increased mathematical
treatment for a degree or degrees of freedom where necessary. After presentation of
the working equations, the method is applied to the double well tunnelling problem
and compared to the reference result obtained by the benchmark calculation.

• Chapter 4: CCS is extended to treating systems of indistinguishable bosons (CCSB)
in the second quantisation formalism. It is applied to the double well tunnelling prob-
lem, where the bath may be second quantised, and the results are compared to the
benchmark calculation. CCSB is also applied to a model Bose-Einstein condensate
problem, as the ultimate aim of the method is to be used to study such systems.

• Chapter 5: The extension of CCS to nonadiabatic on-the-fly dynamics in AIMC
is applied to the ultrafast photodissociation of 2-ethylpyrrole. The results are com-
pared to experimental data, demonstrating the ability of the method to reproduce
observable quantites whilst providing novel insight into the dissociation mechanism.

• Chapter 6: The results obtained in the previous chapters are summarised, conclu-
sions drawn, and future areas of research discussed.

• Appendix A: Program code used to calculate the results in the thesis is described.

• Appendix B: Additional calculations for the CCSB method applied to the double
well tunnelling problem are shown.
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Chapter 2

Benchmark Calculation for the
Double Well Tunnelling Problem

2.1 Introduction

Tunnelling is a fundamentally quantum feature, absent from classical dynamics calcula-
tions and only partially treated by semiclassical ones. Tunnelling events are vital for many
processes in biology, chemistry and physics, including hydrogen tunnelling in enzyme catal-
ysis [144,145], proton transfer in proteins [146], tunnelling through a reaction barrier [147],
and atomic tunnelling of a Bose-Einstein condensate in a double well trap [148, 149]. In
order to correctly treat the dynamics of such problems, fully quantum techniques must
be used. Whilst CCS is fully quantum, tunnelling can pose difficulties if the basis set
is initially sampled naively, as the classical trajectories that guide it thereafter may not
sample sufficient regions of phase space.

A model Hamiltonian exhibiting tunnelling dynamics through a multidimensional asym-
metric double well potential therefore presents an appropriate challenge for the CCS meth-
ods developed in this thesis, testing initial sampling of the basis set and ability to deal
with a multidimensional problem that exhibits quantum behaviour. The Hamiltonian
consists of a 1-dimensional tunnelling mode coupled to an (M − 1)-dimensional harmonic
bath, and has previously been studied withM = 20 by the matching pursuit split-operator
Fourier transform (MP/SOFT) method [28,39], standard CCS [46], trajectory guided con-
figuration interaction (CI) [138], and the adaptive trajectory guided (aTG) scheme [140].
It is a system-bath problem that bears some similarity to the Caldeira-Leggett model of
tunnelling in a dissipative system [150, 151]. However, unlike the Caldeira-Leggett model
this Hamiltonian has a finite bath, and the harmonic modes all have the same frequency.
System-bath models play an important role in physics, and an example of their use is
to describe superconductivity at a Josephson junction in a superconducting quantum in-
terface device [152], for which the Caldeira-Leggett model provides a theoretical basis.
Quantum dissipation is also of great interest, describing irreversible energy transfer to
the environment (relaxation) and decoherence effects. System-bath problems with finite
harmonic baths containing tens of degrees of freedom can be important for short time

47



48 Chapter 2. Benchmark Calculation for the Double Well Tunnelling Problem

dynamics, and examples of these have been investigated previously [36,153].
Whilst the model Hamiltonian has been studied previously, it has never been converged

properly. As such, no standard reference result has thus far been proposed, and instead
comparison to other methods and indication of tunnelling taking place has been used to
evaluate the effectiveness of the methods used to study it. Therefore, in this chapter
a benchmark result will be proposed for this problem to permit comparison to previous
methods, and provide a reference result for the methods developed in this thesis. Details of
the model Hamiltonian, alongside a description of the method used to provide a benchmark
result for it are described in Sec. 2.2; results of the benchmark calculation and comparisons
to previous methods are given in Sec. 2.3; and conclusions are offered in Sec. 2.4. The
results from this chapter have been published in Ref. [154].
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2.2 Numerical Details

2.2.1 Hamiltonian

The model Hamiltonian consists of a 1-dimensional system tunnelling mode coupled to an
(M − 1)-dimensional harmonic bath. It is given by

Ĥ = p̂(1)2

2
− q̂(1)2

2
+ q̂(1)4

16η
+ P̂2

2
+

(
1 + λq̂(1)

)
Q̂2

2
(2.2.1)

where (q̂(1), p̂(1)) are the position and momentum operators of the 1-dimensional system
tunnelling mode, and (Q̂, P̂) are the position and momentum operators of the (M − 1)-
dimensional harmonic bath modes, with Q̂ =

∑M
m=2 q̂

(m) and P̂ =
∑M
m=2 p̂

(m). The
coupling between system and bath is given by the constant λ, whilst η determines the
well depth. The system is governed by an asymmetric double well potential, which when
coupled quadratically to the bath decreases the well depth for q(1) < 0 and increases it for
q(1) > 0. As the coupling between the system and bath increases or the number of bath
modes increases, the separation of the two wells increases. As the initial position of the
system wavefunction Ψ(s)(0) is in the lower left hand well, the separation of the two wells
is the effective tunnelling barrier. This is illustrated in Fig. 2.1, where the 1D λ = 0.0
case is the pure or uncoupled tunnelling potential.

Previous studies [39,46,138,140] have considered the case of a 19-dimensional bath, so
in total a 20-dimensional problem, M = 20, with system-bath coupling constant λ = 0.1.

−4 −3 −2 −1  0  1  2  3  4

Ψ(s)(0)

Ψ− (s)(0)
V(q

(1)
)

q
(1)

1D λ=0.0
20D λ=0.1
20D λ=0.2
40D λ=0.1

Figure 2.1: Tunnelling potential V (q(1)) with different couplings of the system and bath
and different dimensionalities of the bath. The 1D λ = 0.0 case represents
the pure or uncoupled tunnelling potential. The initial position of the system
wavepacket Ψ(s)(0) is shown in the lower well, with its mirror image Ψ̄(s)(0)
in the upper well.
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These parameters will also be used initially to provide comparison to existing methods,
before providing a benchmark for more challenging cases of higher dimensionality bath
(M = 40 and M = 80, λ = 0.1) and stronger system-bath coupling (M = 20, λ = 0.2).
The well depth parameter η = 1.3544 for all dimensions and coupling constants. Atomic
units are used throughout, with h̄ = 1.

2.2.2 Quantum Dynamics

The wavefunction is represented as a basis set expansion

|Ψ(t)〉 =
Nbth∑
j=1

Nsys∑
l=1

cjl(t) |ψ
(b)
j 〉 |ψ

(s)
l 〉 , (2.2.2)

where cjl(t) are complex, time-dependent amplitudes, |ψ(b)
j 〉 is a time-independent basis

function for the bath modes and |ψ(s)
l 〉 is a time-independent basis function for the system

mode. The number of bath and system basis functions are given by Nbth and Nsys,
respectively. Substitution into the TDSE leads to an equation for the time-dependence of
the amplitudes

dcik(t)
dt

= −i
Nbth∑
j=1

Nsys∑
l=1

Hikjlcjl(t), (2.2.3)

where Hikjl is the Hamiltonian matrix

Hikjl = 〈ψ(b)
i ψ

(s)
k |Ĥ|ψ

(b)
j ψ

(s)
l 〉

= 〈ψ(s)
k |

p̂(1)2

2
− q̂(1)

2

2
+ q̂(1)

4

16η
|ψ(s)
l 〉 δij + 〈ψ(b)

i |
P̂2

2
+ Q̂2

2
|ψ(b)
j 〉 δkl

+ λ

2
〈ψ(b)

i |Q̂
2|ψ(b)

j 〉 〈ψ
(s)
k |q̂

(1)|ψ(s)
l 〉 .

(2.2.4)

The bath and system basis functions are orthonormal (see below), a fact that has been
exploited in the above.

The basis functions for the system are those of a particle in a rectangular box

〈q(1)|ψ(s)
l 〉 =

√
2
L

sin
(
lπ

L
(q(1) − qbox)

)
, (2.2.5)

where L is the size and qbox the lower coordinate of the box. Both these values may be
adjusted to ensure a large enough area of coordinate space is sampled by the system basis
functions to properly account for the double well potential.

The bath modes are harmonic, therefore they can be represented by harmonic oscillator
basis functions. A complete description of the bath would involve all excited state har-
monic oscillator configurations, however in practice configurations can simply be added
on until a converged result is achieved. For an (M − 1)-dimensional bath, an excited
state is comprised of the product of (M − 1) single particle harmonic oscillator functions∏M
m=2 |α(m)〉, with different permutations of this product yielding different configurations,

and α(m) is the number of harmonic oscillator quanta in a particular bath mode m. As the
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coupling of system and bath modes is proportional to Q̂2 and all bath modes are initially
in the ground state, only excitations with an even number of quanta are involved.

The size of the bath basis can be reduced further by exploiting the effective indistin-
guishability of the bath modes. The amplitudes of the harmonic oscillator excited state
configurations, which correspond to similar vibrational excitations but differ only by the
bath modes involved, will be identical for a given excited state. This means that configu-
rations corresponding to these similar excitations can be grouped together and associated
with a single amplitude. This simplification reflects the permutational symmetry of the
Hamiltonian in Eq. (2.2.1), with the harmonic bath modes all having the same frequency.
For example, including all even excitations up to a total quanta of 8 (the reasons for
this choice will become apparent later), the bath basis functions obtained by grouping
configurations are:

|ψ(b)
1 〉 = |0000 . . . 0000〉

|ψ(b)
2 〉 = 1/

√
M − 1 (|2000 . . . 0000〉+ · · ·+ |0000 . . . 0002〉)

|ψ(b)
3 〉 = 1/

√
M − 1 (|4000 . . . 0000〉+ · · ·+ |0000 . . . 0004〉)

|ψ(b)
4 〉 =

√
2!/
√

(M − 1)(M − 2) (|2200 . . . 0000〉+ · · ·+ |0000 . . . 0022〉)

|ψ(b)
5 〉 = 1/

√
M − 1 (|6000 . . . 0000〉+ · · ·+ |0000 . . . 0006〉)

|ψ(b)
6 〉 = 1/

√
(M − 1)(M − 2) (|4200 . . . 0000〉+ · · ·+ |0000 . . . 0024〉)

|ψ(b)
7 〉 =

√
3!/
√

(M − 1)(M − 2)(M − 3) (|2220 . . . 0000〉+ · · ·+ |0000 . . . 0222〉)

|ψ(b)
8 〉 = 1/

√
M − 1 (|8000 . . . 0000〉+ · · ·+ |0000 . . . 0008〉)

|ψ(b)
9 〉 = 1/

√
(M − 1)(M − 2) (|6200 . . . 0000〉+ · · ·+ |0000 . . . 0026〉)

|ψ(b)
10 〉 =

√
2!/
√

(M − 1)(M − 2) (|4400 . . . 0000〉+ · · ·+ |0000 . . . 0044〉)

|ψ(b)
11 〉 =

√
2!/
√

(M − 1)(M − 2)(M − 3) (|4220 . . . 0000〉+ · · ·+ |0000 . . . 0224〉)

|ψ(b)
12 〉 =

√
4!/
√

(M − 1)(M − 2)(M − 3)(M − 4)(|2222 . . . 0000〉+ · · ·+ |0000 . . . 2222〉)
(2.2.6)

with relevant normalisation factors included. The square of the normalisation factors is
simply equal to the number of configurations grouped; in the case of M = 20 there are
8855 bath configurations governed by only 12 distinct bath basis functions, and hence 12
distinct amplitudes. This reduction of parameters due to indistinguishability of modes
or particles and permutational symmetry of the Hamiltonian is well known and exploited
by the second quantisation approach, which will be covered in more detail in Chapter 4.
Here the idea is used in a more straightforward fashion. The basis functions take explicit
account of excitations with degenerate energy, for example |ψ(b)

3 〉 and |ψ
(b)
4 〉.
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2.2.3 Matrix Elements

Now the basis functions have been defined, the matrix elements of the Hamiltonian may
be evaluated. The system elements

〈ψ(s)
k |

p̂(1)2

2
− q̂(1)

2

2
+ q̂(1)

4

16η
|ψ(s)
l 〉 =

l2π2

2L2 δkl + 2
L

qbox+L∫
qbox

sin
(
kπ

L
(q(1) − qbox)

)

× sin
(
lπ

L
(q(1) − qbox)

)(
q(1)4

16η
− q(1)2

2

)
dq(1),

(2.2.7)

are the particle in a box energy levels, plus an additional potential term. This integral
may be evaluated analytically for l 6= k, however for l = k a division by zero appears in the
analytic solution, so the integral must be evaluated numerically. The composite Simpson’s
rule is used for this, due to the highly oscillatory nature of the integrand for large values
of l and k. For a function f(y) integrated on a region [a, b], the composite Simpson’s rule
is [155]

∫ b

a
f(y) dy ≈ c

3

f(y0) + 2
R/2−1∑
s=1

f(y2s) + 4
R/2∑
s=1

f(y2s−1) + f(yR)

 , (2.2.8)

where R is the number of subintervals the interval [a, b] is split up into by Simpson’s rule,
c is the “step length” given by c = (b− a)/R and ys = a+ sc for s = 0, 1, . . . , (R − 1), R.
Evaluating Eq. (2.2.8) for the integral in Eq. (2.2.7) when l = k gives

〈ψ(s)
k |

p̂(1)2

2
− q̂(1)

2

2
+ q̂(1)

4

16η
|ψ(s)
l 〉 ≈

≈ k2π2

2L2 + L

3R

 4
L

R/2−1∑
s=1

sin2
(2skπ

R

)( [(qbox + 2sL)/R]4

16η
− [(qbox + 2sL)/R]2

2

)

+ 8
L

R/2∑
s=1

sin2
((2s− 1)kπ

R

)( [(qbox + (2s− 1)L)/R]4

16η
− [(qbox + (2s− 1)L)/R]2

2

) .
(2.2.9)

The maximum error bound of the composite Simpson’s rule approximation is [155]

c4

180
(b− a)

∣∣∣∣∣ d4f(ξ)
dy4

∣∣∣∣∣
max

, (2.2.10)

for some ξ ∈ [a, b]. The number of subintervals was chosen to be R = k × 104 to give
an error on the order of 10−14 for a matrix element on the order of 1. The number of
subintervals was related to k, because an increase in k leads to increased oscillation of the
integrand and a larger value of

∣∣∣ d4f(ξ)
dy4

∣∣∣
max

.
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The bath elements

〈ψ(b)
i |

P̂2

2
+ Q̂2

2
|ψ(b)
j 〉 = δij

(
M∑
m=2

α
(m)
i + M − 1

2

)
(2.2.11)

are simply the harmonic oscillator eigenvalues, where α(m)
i is the number of quanta in one

mode.
The system-bath interaction elements are comprised of a bath term multiplied by a

system term. The bath term is given by

〈ψ(b)
i |Q̂

2|ψ(b)
j 〉 =



Aij
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√
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j + 2 in only one mode

and α(m)
i = α

(m)
j in all other modes

M∑
m=2

α
(m)
i + M − 1

2
if α(m)

i = α
(m)
j in all modes

0 if states differ by more than two
quanta in one mode, or two
quanta in more than one mode

(2.2.12)
where Aij is a constant that depends upon the normalisation factors and the number of
configurations that differ by only two quanta in one mode. Returning to the example of
including all harmonic oscillator excited states with even quanta up to and including a
total quanta of 8, the 〈ψ(b)

i |Q̂2|ψ(b)
j 〉 matrix elements may be evaluated for clarity:



|ψ(b)
1 〉 |ψ(b)

2 〉 |ψ(b)
3 〉 |ψ(b)

4 〉 |ψ(b)
5 〉 |ψ(b)

6 〉 |ψ(b)
7 〉 |ψ(b)

8 〉 |ψ(b)
9 〉 |ψ(b)

10 〉 |ψ(b)
11 〉 |ψ(b)

12 〉

〈ψ(b)
1 | M−1

2

√
2(M−1)

2 0 0 0 0 0 0 0 0 0 0

〈ψ(b)
2 |

√
2(M−1)

2 2 + M−1
2

√
3

√
M − 2 0 0 0 0 0 0 0 0

〈ψ(b)
3 | 0

√
3 4 + M−1

2 0 1
2
√

30
√

2(M−2)
2 0 0 0 0 0 0

〈ψ(b)
4 | 0

√
M − 2 0 4 + M−1

2 0
√

6
√

6(M−3)
2 0 0 0 0 0

〈ψ(b)
5 | 0 0 1

2
√

30 0 6 + M−1
2 0 0 1

2
√

56
√

2(M−2)
2 0 0 0

〈ψ(b)
6 | 0 0

√
2(M−2)

2
√

6 0 6 + M−1
2 0 0 1

2
√

30 1
2
√

24
√
M − 3 0

〈ψ(b)
7 | 0 0 0

√
6(M−3)

2 0 0 6 + M−1
2 0 0 0 1

2
√

36
√

2(M − 4)
〈ψ(b)

8 | 0 0 0 0 1
2
√

56 0 0 8 + M−1
2 0 0 0 0

〈ψ(b)
9 | 0 0 0 0

√
2(M−2)

2
1
2
√

30 0 0 8 + M−1
2 0 0 0

〈ψ(b)
10 | 0 0 0 0 0 1

2
√

24 0 0 0 8 + M−1
2 0 0

〈ψ(b)
11 | 0 0 0 0 0

√
M − 3 1

2
√

36 0 0 0 8 + M−1
2 0

〈ψ(b)
12 | 0 0 0 0 0 0

√
2(M − 4) 0 0 0 0 8 + M−1

2


(2.2.13)

Of course, this can be easily extended to take into account additional excitations as nec-
essary for the calculation to converge. For the system term

〈ψ(s)
k |q̂

(1)|ψ(s)
l 〉 =

2
L

∫ qbox+L

qbox
sin
(
kπ

L
(q(1) − qbox)

)
sin
(
lπ

L
(q(1) − qbox)

)
q(1) dq(1).

(2.2.14)

This may be evaluated analytically, with the value of the integral equal to zero when k = l
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because the integrand is symmetric as long as the box is symmetric around the origin.

2.2.4 Initial Values

As with previous studies [39,46,138,140], the initial wavepacket is defined by

〈q|Ψ(0)〉 =
( 1
π

)M
4

M∏
m=1

exp
(
−1

2

(
q(m) − q(m)(0)

)2
)
, (2.2.15)

where the initial tunnelling coordinate q(1)(0) = −2.5 is located in the lower well, and
initial bath coordinates q(m)(0) = 0.0 for m > 1. The initial momenta for all modes is
p(m)(0) = 0.0. Thus, the initial conditions for all bath modes are identical, which along
with their identical Hamiltonian parameters makes them indistinguishable.

The initial amplitudes are calculated via projection onto the initial wavepacket, with
all bath modes in the ground state at t = 0

cik(0) = 〈ψ(b)
i ψ

(s)
k |Ψ(0)〉 = δ1k 〈ψ

(s)
k |Ψ

(s)(0)〉

=δ1k
√

2
L

qbox+L∫
qbox

sin
(
kπ

L
(q(1) − qbox)

)( 1
π

) 1
4
exp

(
−1

2

(
q(1) − q(1)(0)

)2
)

dq(1).

(2.2.16)

The above integral may be evaluated numerically using the composite Simpson’s rule once
more, and substitution of Eq. (2.2.16) into Eq. (2.2.8) gives

cik(0) ≈δ1k
2
√

2L
3R

( 1
π

)1/4
R/2−1∑

s=1
sin
(2skπ

R

)
exp

(
−1

2

(
qbox + 2sL

R
− q(1)(0)

)2
)

+2
R/2∑
s=1

sin
((2s− 1)kπ

R

)
exp

(
−1

2

(
qbox + (2s− 1)L

R
− q(1)(0)

)2) .
(2.2.17)

As with the evaluation of the system matrix elements, Eq. (2.2.9), a value of R = k× 104

was chosen to give an error on the order 10−14 for an initial amplitude in the range
[10−3, 10].
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2.3 Results

The quantity of interest is the cross-correlation function (CCF) between the wavefunction
at time t and the mirror image of the initial wavepacket, |Ψ̄(0)〉. The mirror image of
the initial state is located in the upper well of the asymmetric potential (as indicated on
Fig. 2.1), therefore non-zero values of the CCF are indicative of tunnelling. Rather than
express |Ψ̄(0)〉 as a Gaussian wavepacket in the CCF, it is simpler to represent it as the
basis set expansion instead, with initial amplitudes c̄ calculated according to Eq. (2.2.16)
using the mirror image coordinates (i.e. q̄(1)(0) = +2.5)

CCF(t) = 〈Ψ̄(0)|Ψ(t)〉

=
Nbth∑
i,j=1

Nsys∑
k,l=1

c̄∗ik(0)cjl(t) 〈ψ
(b)
i ψ

(s)
k |ψ

(b)
j ψ

(s)
l 〉

=
Nbth∑
i,j=1

Nsys∑
k,l=1

c̄∗ik(0)cjl(t)δijδkl

=
Nbth∑
i=1

Nsys∑
k=1

c̄∗ik(0)cik(t).

(2.3.1)

The spectra of the real component of the CCFs are also presented via a Fourier trans-
form (FT):

I(ω) =
T∫

0

Re(CCF(t)) exp(−iωt) dt. (2.3.2)

The FT makes it simpler to identify the long-time propagation accuracy of a quantum
dynamical method, due to a small number of sharp peaks as opposed to the highly oscilla-
tory nature of the CCF. Total propagation time is T = 120 a.u for all results that follow,
with step size δt = 0.001 a.u.

2.3.1 20D

2.3.1.1 λ = 0.1

The first set of parameters used are those that have been previously studied [39, 46, 138,
140], with a 19-dimensional bath, 1-dimensional tunnelling mode, and system-bath cou-

M λ Nsys Nbth L qbox
20 0.1 50 12 12 -6
20 0.2 50 45 12 -6
40 0.1 50 30 12 -6
80 0.1 50 45 14 -7

Table 2.1: Parameters for the fully converged benchmark calculations: number of degrees
of freedomM , system-bath coupling constant λ, number of system basis func-
tions Nsys, number of bath basis functions Nbth, size of box for system basis
functions L, and lower box coordinate qbox.
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56 Chapter 2. Benchmark Calculation for the Double Well Tunnelling Problem

pling constant λ = 0.1. The calculation can be converged with respect to the system
box length L to ensure sufficient coordinate space sampling of the tunnelling mode and
allow correct representation of the initial wavepacket. The calculation can also be con-
verged with respect to the number of system basis functions Nsys and number of bath basis
functions Nbth to ensure sufficient basis functions, and hence amplitudes, are included to
represent the system and bath modes and their time-dependence over the timeframe of the
calculation. Each of these parameters may be increased until the CCF and FT show no
observable change, and this is illustrated in Figs. 2.2 to 2.4 to establish that the method
performs correctly. When the calculation is converged with respect to one parameter,
the other two are held fixed at their fully converged value. The fully converged values
of the parameters are shown in the figure captions, and also Table 2.1. As well as visual
inspection, a quantitative illustration of convergence is shown in the bottom panel of the
CCFs in Figs. 2.2 to 2.4. This quantitative measure is given via the cumulative error of
the difference between the absolute value of the CCF for the fully converged benchmark
calculation, and unconverged benchmark calculations

χbench =
∫ ∣∣∣Abs(〈Ψ̄(0)|Ψ(t)〉)benchconv −Abs(〈Ψ̄(0)|Ψ(t)〉)benchunconv

∣∣∣ dt. (2.3.3)

Firstly, the change in the calculation with respect to system box length L is illustrated
in Fig. 2.2. A box symmetric around the origin is chosen for all values of L, therefore the
lower coordinate of the box qbox = −L/2. A box size of L = 6 is clearly inadequate as
seen in the (a) panes of Fig. 2.2, with L = 8 an improvement in (b), and L = 10 being
very close to being converged in (c). The L = 12 case is fully converged in (d), with small
differences from the L = 10 case seen in the CCF at t > 90 a.u, which are very subtly
manifested in the FT at the peaks of ω = 12.5 and ω = 13.5. The L = 14 case exhibits
no difference from the L = 12 case (not shown here). This is quantitatively shown in
panel (e) on the left hand side of the figure, with the error term χbench decreasing upon
increasing L and qbox. Therefore the initial system wavefunction and system wavefunction
at time t until t = 120 a.u. samples coordinate space in the region [−6 : 6].

The change in the benchmark calculation with respect to the number of system basis
functions Nsys is illustrated in Fig. 2.3. The calculation converges rapidly with respect to
Nsys, with virtually no difference between Nsys = 30 and Nsys = 50, as shown in the (b)
and (c) panes of the figure. This is quantitatively shown in panel (d) on the left hand
side of the figure, with the error term χbench decreasing upon increasing Nsys, with the
Nsys = 30 line lying virtually on top of the time axis. Although this is a relatively small
number of basis functions, only a single mode is being treated by them and they cover a
large amount of coordinate space. This indicates a significant amount of delocalisation, as
may be expected from a tunnelling mode, hence accurate treatment of the system by other
methods may not be as trivial as for this benchmark calculation. The range of momentum
values needed to be sampled by other methods can be estimated based on the wavelengths
of the particle in a box basis functions and the De Broglie relationship. The basis function
with longest wavelength occurs when n = 1 in Eq. (2.2.5) and smallest when n = Nsys.
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Figure 2.2: Convergence of the cross-correlation function (left, real part in black and
absolute value in red), and the Fourier transform of the real part of the CCF
(right) with increasing system box length L and lower box coordinate qbox:
(a) L = 6, qbox = −3, (b) L = 8, qbox = −4, (c) L = 10, qbox = −5,
(d) L = 12, qbox = −6. Panel (e) on the left hand side shows the cumulative
error χbench between the converged benchmark calculation and unconverged
benchmark calculations obtained via Eq. (2.3.3).

This gives a range of wavelengths from λ = 2L and λ = 2L/Nsys, leading to momenta of
p = π/L and p = πNsys/L. Therefore, as well as a significant amount of coordinate space,
a large amount of momentum space must also be sampled.

The change in the benchmark calculation with respect to the number of bath basis
functions Nbth is illustrated in Fig. 2.4. The different number of bath basis functions used
in each panel of the figure corresponds to including excited harmonic oscillator energy
states with increasing even numbers of quanta, i.e. Nbth = 1 corresponds to 0 quanta
(only the harmonic oscillator ground state), Nbth = 2 corresponds to including 2 quanta
(ground state and first excited state with even quanta), Nbth = 4 corresponds to including
4 quanta (ground state, first excited state with even quanta, and next two degenerate twice
excited states with even quanta), etc. The benchmark is fully converged by Nbth = 12,
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Figure 2.3: Convergence of the cross-correlation function (left, real part in black and
absolute value in red), and the Fourier transform of the real part of the
CCF (right) with an increasing number of system basis functions Nsys:
(a) Nsys = 10, (b) Nsys = 30, (c) Nsys = 50. Panel (d) on the left hand side
shows the cumulative error χbench between the converged benchmark cal-
culation and unconverged benchmark calculations obtained via Eq. (2.3.3).
The Nsys = 30 line lies virtually on top of the time axis.

when even excited harmonic oscillator states up to and including 8 quanta are present, as
shown visually in panels (a)-(e), and quantitatively in panel (f) on the left hand side. The
explicit form of these basis functions has been demonstrated in Eq. (2.2.6). Whilst this
may not seem like a very large amount, the simplification made earlier may be recalled: all
configurations for a particular state with similar vibrational excitations are governed by
the same amplitude. So for the fully converged calculation there are 8855 configurations
governed by only 12 bath basis functions, a significant reduction. Taking into account that
the number of system basis functions Nsys = 50, the total wavefunction is a superposition
of 50 × 8855 configurations, described only by 50 × 12 amplitudes that evolve according
to Eq. (2.2.3). For calculations where this trick is not possible, a large amount of basis
functions may be required for accurate modelling of the wavefunction, requiring a large
amount of phase space to be sampled for the system and bath.

A comparison of the fully converged benchmark calculation (with L = 12, Nsys = 50
and Nbth = 12) to previous methods of studying this problem [39,46,138,140] is shown in
Fig. 2.5. Evaluating each of the methods in turn, MP/SOFT [39] in panel (a) compares
well to the benchmark for short time propagation, although there is a loss of structure
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Figure 2.4: Convergence of the cross-correlation function (left, real part in black and
absolute value in red), and the Fourier transform of the real part of the CCF
(right) with an increasing number of bath basis functions Nbth: (a) Nbth = 1,
(b) Nbth = 2, (c) Nbth = 4, (d) Nbth = 7, (e) Nbth = 12. Panel (f) on
the left hand side shows the cumulative error χbench between the converged
benchmark calculation and unconverged benchmark calculations obtained
via Eq. (2.3.3).

and amplitude in the CCF at t > 25 a.u. This suggests that the calculation is less able
to treat tunnelling as the propagation progresses, and is affected by noise due to the
matching pursuit algorithm. In panel (b) the CCS calculation from Ref. [46] does not
reproduce the converged result, with the CCF deviating from the benchmark after ∼ 5
a.u. Furthermore, the large peak splitting in the FT is missing at ω = 9.5, as well as the
smaller splittings at ω = 10.8 and ω = 11.6. There is also a peak at ω = 9.0 that does not
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Figure 2.5: Comparison of the cross-correlation functions (left, real parts in black and
absolute values in red) and the Fourier transforms of the real part of the CCF
(right) for different methods that have studied the Hamiltonian Eq. (2.2.1):
(a) MP/SOFT [39], (b) CCS [46], (c) trajectory guided CI expansion [138],
(d) aTG [140], (e) Benchmark.

appear in the fully converged benchmark calculation. The CCS calculation does however
resemble an unconverged benchmark result in panel (a) of Fig. 2.4 when Nbth = 1 (only
ground harmonic oscillator state included in basis). An indication for this resemblance
may be found in Ref. [46]: when the sampling procedure for the bath basis functions in
the CCS calculation is discussed it was noted that they are sampled from a narrow distri-
bution. This indicates that an insufficient area of phase space is sampled by the CCS basis
functions for the bath, and a broader distribution may be required to accurately model
the contributions from the excited harmonic oscillator states. The trajectory guided CI
expansion [138] performs best out of all methods in panel (c), with a CCF that is accurate
with respect to the benchmark for a longer time than MP/SOFT and CCS, leading to a
FT spectrum that is also more accurate. This is to be expected as the CI expansion is
similar to the benchmark calculation through the use of a regular time-independent basis
set. The small differences arise with the choice of this basis set expansion: the trajectory
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guided CI expansion initially samples the potential energy surface to determine the most
important configurations for the expansion, and so may miss some small features. How-
ever, the present calculation exploits symmetry properties in the Hamiltonian to include
all configurations at a reduced cost of calculation, and so does not need to make any ap-
proximation. The aTG method in panel (d) reproduces the CCF well for the first ∼ 5 a.u.,
and thereafter the absolute value of the CCF is broadly similar to the benchmark until
t ∼ 85 a.u. However, there is a significant loss of structure in the oscillations of the real
part of the CCF, which leads to a FT spectrum that does not reproduce the benchmark
result well, as the peaks in the ω = 9.5–11.6 region are significantly less intense and not
split, and the peaks at ω > 11.6 do not appear.

2.3.1.2 λ = 0.2

The λ = 0.2, M = 20 case has not been explored by any previous work, but it presents
a more stringent test as the increase in coupling between system and bath will cause
greater perturbation of the bath by the system. One would therefore expect an increased
number of bath basis functions required for convergence in the calculation. The fully
converged result is shown in Fig. 2.6, with the CCF on the top of the figure, and the FT
on the bottom. Figures illustrating how this calculation converges are not included for
brevity, as the same procedure as the 20D λ = 0.1 case was followed. The fully converged
calculation parameters are shown in Table 2.1.

The system box size L is the same as for the λ = 0.1 case, and the number of system
basis functions required is also the same. Therefore, the tunnelling mode appears to be as
delocalised as for the λ = 0.1 case, requiring no further sampling of phase space over the
timeframe of the calculation. The increase in complexity arises with the modelling of the
bath, as a much greater number of bath basis functions are required with Nbth = 45. This
corresponds to involving even harmonic oscillator excited energy states up to and including
14 quanta. Without exploiting the indistinguishability of the excited state configurations,
an extremely large number of basis functions would be required; in this result there are
657800 bath configurations governed by only 45 basis functions. The total wavefunction is
a superposition of the 50× 657800 configurations, which can be described by only 50× 45
independent amplitudes. As expected, this strongly coupled system and bath illustrates
the significant perturbation of the bath by the system due to the large number of bath
configurations required for convergence. The amplitude of the CCF is slightly smaller than
the λ = 0.1 case, indicating that there is a small decrease in the amplitude of tunnelling.
This is because, as shown in Fig. 2.1, increasing the coupling between system and bath
causes an increase in the separation of the two wells.

2.3.2 40D & 80D

Calculations have also been performed for 40D and 80D cases, i.e. with 39 and 79 bath
modes. There is no obvious computational scaling with dimensionality for the benchmark
calculation as the bath basis functions represent harmonic oscillator excited states of the
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Figure 2.6: Fully converged benchmark calculation for the 20D, λ = 0.2 case. Top: real
part (black line) and absolute value (red line) of the cross-correlation func-
tion. Bottom: Fourier transform of the real part of the cross-correlation
function.

entire bath rather than individual modes. However, a greater number of excited states
may be required due to the increase in dimensionality of the bath. The weak coupling case
of λ = 0.1 is reverted to for this reason, as an increase in the number of bath modes and
their coupling may result in a calculation that is prohibitively expensive to converge, even
when exploiting mode indistinguishabilities. Furthermore, both increasing the coupling
and increasing the dimensionality of the bath causes the wells to separate in the double
well potential, and eventually the upper well becomes unbound.

The fully converged result for the 40D case is shown in Fig. 2.7, with the CCF on the
top of the figure, and the FT on the bottom. The fully converged calculation parameters
are shown in Table 2.1. It can be seen that the CCF oscillates at a higher frequency than
the 20D, λ = 0.1 case, which is demonstrated in the FT with a shift to higher frequencies.
The greater frequency of tunnelling for 40D compared to 20D is due to the greater number
of bath modes the tunnelling coordinate q(1) is coupled to. As the dimensionality increases,
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Figure 2.7: Fully converged benchmark calculation for the 40D, λ = 0.1 case Top: real
part (black line) and absolute value (red line) of the cross-correlation func-
tion. Bottom: Fourier transform of the real part of the cross-correlation
function.

so does the separation between the two wells, therefore one would expect a decrease in the
amplitude of tunnelling. By comparison of the CCF’s for the 20D and 40D case it can be
seen that there is a small decrease in the amplitude for the 40D case, indicative of a small
decrease in the amplitude of tunnelling.

For the 80D case, the fully converged result is shown in Fig. 2.8, with the CCF on the
top of the figure, and the FT on the bottom. The fully converged calculation parameters
are shown in Table 2.1. There is a large decrease in the amplitude of the CCF compared
to the 20D and 40D cases, indicating a large decrease in the amplitude of tunnelling due to
the increase in separation of the wells. As with the 40D case, the frequency of tunnelling
increases because of coupling to a larger number of bath modes.

For both the 40D and 80D cases, the number of system basis functions required for
convergence does not increase from the 20D case. Therefore, even though the tunnelling
mode is coupled to more bath modes, more system basis functions are not required. The

63



64 Chapter 2. Benchmark Calculation for the Double Well Tunnelling Problem

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  20  40  60  80  100  120

Benchmark 80D λ=0.1

C
C

F

Time (a.u.)

 0

 0.05

 0.1

 0.15

 36  38  40  42  44  46  48  50

Benchmark 80D λ=0.1

I(
ω

)

ω

Figure 2.8: Fully converged benchmark calculation for the 80D, λ = 0.1 case Top: real
part (black line) and absolute value (red line) of the cross-correlation func-
tion. Bottom: Fourier transform of the real part of the cross-correlation
function.

size of the box required for the system basis functions does not increase for the 40D case
relative to 20D; however, there is a small increase for the 80D case, meaning a small
increase in the region of coordinate space required to be sampled by the tunnelling mode.
As the increased dimensionality will result in bath modes that cover a larger region of
coordinate space, and the fact that the tunnelling mode is coupled to all of them, this can
be explained. The most significant change for both the 40D and 80D cases when compared
to the 20D case is the number of bath basis functions required. For the 40D caseNbth = 30,
corresponding to the bath basis functions involving even harmonic oscillator excited states
up to and including 12 quanta. For the 80D case Nbth = 45, corresponding to the bath
basis functions involving even harmonic oscillator excited states up to and including 14
quanta, the same as required for 20D, λ = 0.2. As expected, the increased dimensionality
of the bath has required more harmonic oscillator excited states to converge. The total
wavefunction is a superposition of the 50×8145060 and 50×5373200880 configurations for
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the 40D and 80D cases respectively, which is described by sets of only 50× 30 and 50× 45
independent amplitudes. The much larger number of bath configurations for the 40D and
80D cases compared to 20D is due to the increased number of bath modes. Note that
in Ref. [154] these configuration totals were miscalculated, and they have been corrected
here.
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2.4 Conclusions

In this chapter a benchmark calculation has been presented for tunnelling through a
multidimensional asymmetric double well potential. The model Hamiltonian, previously
used by the MP/SOFT [39], CCS [46], trajectory guided CI expansion [138], and aTG
methods [140] consists of a 1-dimensional system tunnelling mode coupled via a constant
λ to an (M − 1)-dimensional harmonic bath — a system-bath problem. The dynamics
were computed via a basis set expansion of the wavefunction, comprising of separate
time-independent basis functions for the system and bath, and associated time-dependent
amplitudes. The basis functions for the system were those of a particle in a box, and those
for the bath were harmonic oscillator basis functions. The number of bath basis functions
required to converge the calculation was reduced by noting two useful properties of this
problem. Firstly, the coupling of bath and system is proportional to the square of the
bath coordinate; therefore, as initially all modes are in the ground state, only excited state
harmonic oscillator configurations with even numbers of quanta were required. Secondly,
and more significantly, the indistinguishability of the harmonic oscillator excited state
configurations was exploited so that only one amplitude was required to be associated to
each set of indistinguishable configurations, rather than one amplitude per configuration.

A fully converged result for the 20D, λ = 0.1 problem has been presented, with com-
parison to the methods that have previously studied this Hamiltonian. The MP/SOFT
and CI expansion methods compared well to the benchmark, whereas the aTG [140] and
CCS calculations [46] did not perform as well. For the latter, it was suggested this it is
due to insufficient sampling of the bath. Guidance for sampling this problem has also
been presented, with the tunnelling mode being delocalised and requiring a considerable
amount of phase space to be sampled, as may be expected. Ranges for sampling the co-
ordinates and momenta of the system have been given in Sec. 2.3.1.1. The bath required
a large number of configurations for convergence, although it greatly benefited from the
exploitation of indistinguishability to reduce the number of basis functions required in this
calculation.

A stronger system-bath coupling case, not previously studied, using λ = 0.2 was com-
puted and it was observed that the system did not need additional basis functions to
accurately represent it, although the bath did due to increased perturbation by the sys-
tem. Higher dimensional cases of 40D and 80D have also been presented, in the λ = 0.1
regime once more. As with the stronger coupling case additional basis functions were
required for the bath, but no additional basis functions for the system were required.
However, a larger box size in the 80D case for the system particle in a box basis functions
was necessary.

The fully converged CCFs and FTs for each of these calculations has been presented,
providing a point of comparison for future tests on tunnelling/system-bath problems us-
ing this model Hamiltonian, including the new CCS methods that are developed in the
following chapters.
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Chapter 3

2-Layer Coupled Coherent States
(2L-CCS)

3.1 Introduction

Multilayer formulations of numerical methods in multidimensional quantum dynamics can
offer a flexible representation of the wavefunction and improved scaling with dimensionality
without any loss of theoretical rigour. The MCTDH method has been extended into
multilayer formalism (ML-MCTDH) [97, 119], and has been shown to be able to treat a
Henon-Heiles Hamiltonian in over a thousand degrees of freedom [120]. Gaussian-based
MCTDH has also been extended into a 2-layer formalism, expected to improve performance
and convergence properties of the G-MCTDH method [156]. Motivated by these multilayer
approaches, in this chapter CCS will be extended into a 2-layer formalism, dubbed 2-layer
CCS (2L-CCS), and tested on the model Hamiltonian presented in the previous chapter.

The numerical details, including wavefunction ansatz and working equations are pre-
sented in Sec. 3.2, the application to the double well problem is in Sec. 3.3, and conclusions
and possible future applications of the method are offered in Sec. 3.4. The application to
the double well model includes derivation of the normal ordered form of the Hamiltonian,
initial calculation parameters, and comparison of the results to the benchmark calcula-
tion and previous methods of studying the problem. The numerical efficiency and parallel
scalability of the method when applied to this model is also investigated in this section,
and compared to standard CCS.

The results from this chapter have been published in Ref. [35].
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68 Chapter 3. 2-Layer Coupled Coherent States (2L-CCS)

3.2 Numerical Details

The proposal for the 2L-CCS method is that it takes a similar form to MCE v2, reviewed
in Sec. 1.4.2.2, where a quantum mechanical problem may be split into quantum and
classical subsystems — although both are treated in a fully quantum manner. However,
unlike MCE where the quantum part consists of regular time-independent basis functions
such as electronic states |φi〉, in 2L-CCS both the quantum and classical parts will be
represented on a basis of coherent states. The wavefunction ansatz for 2L-CCS is then
given by

|Ψ〉 =
K∑
k=1

Dk |ϕk〉

=
K∑
k=1

Dk

[
J∑
i=1

aik |z
(q)
ik 〉

]
|z(c)
k 〉

=
K∑
k=1

Dk

[
J∑
i=1

dikeisik/h̄ |z
(q)
ik 〉

]
|z(c)
k 〉

=
K∑
k=1

Dk

[
J∑
i=1

dikeisik/h̄ |zik〉
]
,

(3.2.1)

where |z(q)
ik 〉 are the coherent states describing the quantum part, whilst |z(c)

k 〉 describe the
classical part.

The sums are over K “outer layer” configurations and J “inner layer” quantum basis
functions per configuration. When J = 1 the 2L-CCS ansatz is equivalent to the CCS
ansatz with K configurations. When J > 1 the additional summation gives 2L-CCS its 2-
layer nature, and permits more accurate treatment of the degree(s) of freedom represented
by |z(q)

ik 〉. The amplitude aik is factorised into the product of oscillating action exponent
eisik/h̄ and smooth pre-exponential factor dik, as with CCS and MCE. In the last line
of Eq. (3.2.1), the separate basis coherent states describing the quantum and classical
subsystems have been combined for simplicity. For a given configuration k all |zik〉 with
different i differ by only the |z(q)

ik 〉 part.
The time-dependence of the coherent state basis functions may be determined “layer

by layer”. Initially, considering only the inner layer with basis functions |z(q)
ik 〉, amplitudes

dik and action exponent eisik/h̄, it can be observed that it resembles the CCS ansatz given
in Eq. (1.3.30) but with an extra index i. Therefore the time-dependence of |z(q)

ik 〉 can be
intuitively assigned to be the same as for CCS, i.e. Hamilton’s equations

ż(q)
ik = − i

h̄

∂Hord(z∗ik, zik)
∂z(q)∗

ik

(3.2.2a)

ż(q)∗
ik = i

h̄

∂Hord(zik, zik)
∂z(q)

ik

. (3.2.2b)

This can be justified by application of the principle of stationary action to the inner layer
coherent states |z(q)

ik 〉, like with CCS at the start of Sec. 1.3.2.

68



3.2. Numerical Details 69

The outer layer of Dk amplitudes and |z(c)
k 〉 basis functions closely resembles that of

MCE (Eq. (1.4.18)), therefore the time-dependence of |z(c)
k 〉 can be assigned to be governed

by Ehrenfest trajectories

ż(c)
k = − i

h̄

∂ 〈ϕk|Ĥ|ϕk〉
∂z(c)∗

k

= − i
h̄

J∑
i,j=1

d∗ikdjk 〈zik|zjk〉
∂Hord(z∗ik, zjk)

∂z(c)∗
k

ei(sjk−sik)/h̄
(3.2.3a)

ż(c)∗
k = − i

h̄

∂ 〈ϕk|Ĥ|ϕk〉
∂z(c)

k

= − i
h̄

J∑
i,j=1

d∗ikdjk 〈zik|zjk〉
∂Hord(z∗ik, zjk)

∂z(c)
k

ei(sjk−sik)/h̄.
(3.2.3b)

As with Eq. (3.2.2), the above may also be justified by application of the principle of
stationary action. This time however, the Lagrangian is written in terms of ϕk as

L[ϕk] = ih̄ 〈ϕk|ϕ̇k〉 − 〈ϕk|Ĥ|ϕk〉

= ih̄
J∑

i,j=1

(
a∗ik 〈z

(q)
ik |z

(q)
jk 〉 ȧjk + a∗ik 〈z

(q)
ik |ż

(q)
jk 〉 ajk

)
+ ih̄

2

(
z(c)∗
k ż(c)

k − ż(c)∗
k z(c)

k

)
− 〈ϕk|Ĥ|ϕk〉 .

(3.2.4)

Applying the principle of stationary action to the variation in z(c)
k , the following Euler-

Lagrange equations are obtained

∂L
∂z(c)∗

k

− d
dt

∂L
∂ż(c)∗

k

= 0 (3.2.5a)

∂L
∂z(c)

k

− d
dt

∂L
∂ż(c)

k

= 0, (3.2.5b)

which may each be solved to yield Eqs. (3.2.3a) and (3.2.3b).
It can seen from Eq. (3.2.3) that the trajectories for z(c)

k are averaged over z(q)
ik , just

as the Ehrenfest trajectories in the MCE method (Eq. (1.4.16)) were averaged over the
quantum subsystem. The only difference is that for 2L-CCS the |z(q)

ik 〉 are non-orthogonal,
as opposed to the orthogonal |φi〉 in MCE, meaning there is an overlap term 〈zik|zjk〉
rather than the Kronecker delta.

The time-dependence of the amplitudes may also proceed layer by layer, as with the
trajectories. The equations of motion for dik can be calculated via substitution of |ϕk〉
into the TDSE and closing with a basis bra 〈zik|, which yields

J∑
j=1
〈zik|zjk〉 eisjk/h̄ḋjk = − i

h̄

J∑
j=1
〈zik|zjk〉 eisjk/h̄djkδ2Hord∗(z∗ik, zjk). (3.2.6)

This is exactly analogous to CCS in Eq. (1.3.31), which should be expected as |ϕk〉 has
exactly the same form as the wavefunction ansatz for CCS. However, the equality on
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the second line of Eq. (1.3.29) cannot be applied for δ2Hord∗(z∗ik, zjk) in 2L-CCS because

ih̄żjk does not equal ∂H
ord(z∗jk,zjk)
∂z∗
jk

, as the time-dependence of zjk are governed by separate

equations for z(c)
k and z(q)

jk .
The time-dependence of the Dk amplitudes may be calculated by substitution of the

entire wavefunction into the TDSE and closing with 〈ϕk|

〈ϕk|Ψ̇〉 =
K∑
l=1
〈ϕk|ϕl〉 Ḋl + 〈ϕk|ϕ̇l〉Dl = − i

h̄

K∑
l=1
〈ϕk|Ĥ|ϕl〉Dl. (3.2.7)

After taking into account the time-dependence of all elements of the basis set and following
considerable substitution and rearrangement, the following is obtained:

K∑
l=1

J∑
i,j=1

d∗ikdjl 〈zik|zjl〉 ei(sjl−sik)/h̄Ḋl

= −
K∑
l=1

J∑
i,j=1
〈zik|zjl〉 d∗ik

(
ḋjl +

i

h̄
djlδ

2Hord∗(z∗ik, zjl)
)

ei(sjl−sik)/h̄Dl.

(3.2.8)

The trajectories Eqs. (3.2.2) and (3.2.3), and time-dependence of the amplitudes Eqs. (3.2.6)
and (3.2.8) therefore comprise the working equations of the 2L-CCS method, and they are
applied in the following section to the model Hamiltonian of Eq. (2.2.1).
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3.3 Application to the Double Well Tunnelling Problem

The double well tunnelling problem as described in Chapter 2 is a system-bath problem,
where the tunnelling mode is the system coupled to a harmonic bath. The wavefunction
ansatz of 2L-CCS makes it appropriate for application to such a system-bath problem,
as it is conveniently split to represent two kinds of mode. The 1-dimensional tunnelling
mode will be represented by the inner layer of z(q)

ik , as its delocalised nature may require a
large number of basis functions to model accurately. The bath is represented by the outer
layer of z(c)

k , benefitting from trajectories that are averaged over the tunnelling mode.
The bath basis functions are also initially sampled in an improved manner compared
to Ref. [46], explained in the following section. The 2L-CCS calculations are therefore
capable of improving both the system and bath description compared to the previous
CCS calculation. The coherent state basis functions for 2L-CCS may be defined as z(q)

ik =
(q(1)ik + ip

(1)
ik )/
√

2 and z(c)
k = (Qk + iPk)/

√
2 =

∑M
m=2(q

(m)
k + ip

(m)
k )/

√
2 to follow the

nomenclature of the Hamiltonian Eq. (2.2.1).
To be able to be used in 2L-CCS, like with CCS, the Hamiltonian must be in normal

ordered form. Therefore, the position and momentum operators q̂ and p̂ must be replaced
by creation and annihilation operators â† and â, with the creation operators preceding
the annihilation ones. This allows matrix elements of the Hamiltonian in the coherent
state basis to be straightforwardly evaluated, as given by Eq. (1.3.6). To convert the
Hamiltonian of Eq. (2.2.1) into normal ordered form and obtain the matrix elements, the
operator identities in Eq. (1.3.3) and coherent state relationships in Eq. (1.3.2) may be
applied to obtain

Hord(z∗ik, zjl) =− 1
2

(
z
(1)∗2
ik + z

(1)2
jl

)
+ 1

64η

(
z
(1)∗4
ik + z

(1)4
jl + 4z(1)∗3

ik z
(1)
jl + 4z(1)∗

ik z
(1)3
jl

+6z(1)∗2
ik z

(1)2
jl + 12z(1)∗

ik z
(1)
jl + 6z(1)∗2

ik + 6z(1)2
jl + 3

)
+

M∑
m=2

z
(m)∗
ik z

(m)
jl + 1

2
+ λ

4
√

2

(
z
(m)∗2
ik + z

(m)2
jl + 2z(m)∗

ik z
(m)
jl + 1

)
×
(
z
(1)∗
ik + z

(1)
jl

)
.

(3.3.1)

The simplest case treated by the benchmark calculation (although still a challenging prob-
lem) of 19-dimensional bath (M = 20), with system-bath coupling constant λ = 0.1
is studied in the following by 2L-CCS (and nominally CCS when J = 1). The initial
wavepacket is a multidimensional Gaussian, as with the benchmark calculation shown in
Eq. (2.2.15), with initial tunnelling coordinate q(1)(0) = −2.5 located in the lower left
hand well, and initial bath coordinates q(m)(0) = 0.0 for m > 1. The initial momenta
for all modes is p(m)(0) = 0.0. This is used to define the initial amplitudes and basis set
sampling procedure employed for 2L-CCS, described in the following section.
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J K J ×K σ(b) σ(s) Rel. t 1 proc. Rel. t 16 proc.
1 2000 2000 0.8 1.0 1.0 1.0
2 2000 4000 0.8 1.0 3.2 2.6
4 2000 8000 0.8 1.0 11.5 8.3
4 100 400 5.0 1.0 0.028 0.023
4 500 2000 1.2 1.0 0.69 0.52

Table 3.1: Sampling parameters for the 2L-CCS calculations: number of inner layer basis
functions per configuration J , number of configurations K, compression for
the distribution sampling the bath modes σ(b), compression for the distribu-
tion sampling the system tunnelling mode σ(s), relative execution time t for
a single propagation step on 1 and 16 processors, where a single 2L-CCS step
with K = 2000, J = 1 is taken as unity.

3.3.1 Initial Values

The initial coherent state basis functions are sampled from a “pancake” distribution, as
mentioned in Sec. 1.3.3 and introduced in Ref. [76], where different distributions are used
for the system and bath modes. For this Hamiltonian, a Gaussian distribution is used for
both the system and bath mode coherent states, but with different compression parameters
for each. The system tunnelling mode uses a compression parameter σ(s) = 1.0 with the
distribution centered around the initial tunnelling mode coordinates like in the previous
CCS study [46]. Other compression parameters were tested, however this gave the best
results as it permits the basis to be sufficiently compact to allow accurate representation
of the initial wavepacket, whilst at the same time being sufficiently broad to model the
subsequent spreading and delocalisation.

For the bath modes, it was noted in Sec. 2.3.1.1 that the previous CCS study sampled
them from a distribution that was too narrow, therefore in the present work it is desirable
to sample from a broader distribution. However, it is not possible to sample all bath modes
from a broad distribution, as this results in coherent states that are coupled inadequately
and an initial distribution that does not represent the initial wavefunction, leading to
a norm far away from unity. Therefore, drawing on inspiration from the benchmark
calculation in which a number of individual bath modes are “excited”, a random two
bath modes per configuration k are sampled from a broad distribution (“excited”) with
compression parameter σ(b), whilst all others are sampled with an infinite compression
parameter. This allows the value of σ(b) to be smaller than if all bath modes had the
same compression parameter, permitting a greater range of phase space to be sampled.
The other modes being sampled with an infinite compression parameter also allows better
representation of the initial wavefunction, as the initial conditions are q(m)(0) = 0.0 and
p(m)(0) = 0.0 for m > 1. Choosing two modes to be decompressed rather than any other
number was found to lead to an appropriate balance of ample bath sampling and well
conserved norm near unity; though admittedly this is quite an ad hoc approach. The values
of σ(b) for the 2L-CCS calculations performed in this chapter are shown in Table 3.1, along
with other calculation parameters. As the number of configurations K increases, the value
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of σ(b) decreases, as a broader distribution is able to be obtained whilst still conserving the
norm. The relationship between basis set size, compression parameter and conservation
of the norm has been demonstrated in Ref. [76] for CCS, and the same principle applies
for 2L-CCS.

The initial amplitudes are calculated in two stages. Firstly, the initial set of J dik

amplitudes for configuration k are calculated by projecting the coherent state distribution
for the tunnelling mode |z(q)

ik (0)〉 onto the initial wavefunction for the tunnelling mode
|Ψ(s)(0)〉

〈z(q)
jk (0)|Ψ(s)(0)〉 =

J∑
i=1

dik(0) 〈z(q)
jk (0)|z(q)

ik (0)〉 . (3.3.2)

The overlap 〈z(q)
jk (0)|Ψ(s)(0)〉 can be calculated using the overlap of Gaussians, Eq. (1.3.7),

as |Ψ(s)(0)〉 is a Gaussian.
Once the initial dik amplitudes have been calculated forK configurations, the initialDk

amplitudes may be determined by projection of the entire initial coherent state distribution
|zik(0)〉 with dik amplitudes onto the entire initial wavepacket |Ψ(0)〉

〈zjl(0)|Ψ(0)〉 =
K∑
k=1

Dk(0)
J∑
i=1

dik(0) 〈zjl(0)|zik(0)〉 . (3.3.3)

Once more, the overlap 〈zjl(0)|Ψ(0)〉 can be calculated using the overlap of Gaussians.
The action sik is initially set to zero. The coherent state width parameter is set to
γ = mω/h̄ = 1.

3.3.2 Results

As with the benchmark calculation, the quantity of interest is the CCF between the
wavefunction at time t and mirror image of the initial wavepacket. This is calculated via
the overlap of the 2L-CCS wavefunction representation with the mirror image of the initial
wavepacket, which can be written as

〈Ψ̄(0)|Ψ(t)〉 =
K∑
k=1

J∑
i=1

Dk(t)dik(t)eisik(t)/h̄
M∏
m=1

exp
[ 1√

2

(
q̄(m)(0)− ip̄(m)(0)

)
z
(m)
ik (t)

−1
2

(1
2

(
q̄(m)(0)− ip̄(m)(0)

) (
q̄(m)(0) + ip̄(m)(0)

)
+ z

(m)∗
ik (t)z(m)

ik (t)
)]

,

(3.3.4)

where (q̄(m)(0), p̄(m)(0)) are the mirror image coordinates and momenta of the initial
wavepacket. The spectra are also presented via the FT of the real part of the CCF to
assess the long time propagation accuracy of the method. Total propagation time T = 120
a.u. and step size for the calculations is δt = 0.1 a.u.

Initially, the convergence of 2L-CCS with respect to the benchmark calculation in the
short and long time regimes will be tested by varying the number of configurations K and
inner layer tunnelling mode basis functions per configuration J . As 2L-CCS, like CCS,
is based on random sampling of basis functions it is expected to be affected by noise as
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the calculation progresses. Therefore, it will perform best for short times, which is why
convergence with respect to the benchmark in this regime will be illustrated. For this
short timescale, the CCF obtained from 2L-CCS will be qualitatively compared to that of
the benchmark in the first 25 a.u. of the calculation, as well as the quantitative measure
introduced in Eq. (2.3.3), describing the cumulative error of the difference between the
absolute value of the CCF for 2L-CCS and the benchmark. It will be labelled χ2L-CCS to
differentiate it from χbench in Eq. (2.3.3)

χ2L-CCS =
∫ ∣∣∣Abs(〈Ψ̄(0)|Ψ(t)〉)bench −Abs(〈Ψ̄(0)|Ψ(t)〉)2L-CCS

∣∣∣ dt. (3.3.5)

The long time accuracy can be assessed via the FT, and how it compares to the benchmark
result. Following this, the method will be compared to others that have studied the
Hamiltonian, as presented in Sec. 2.3.1.1, and the numerical efficiency of the method in
comparison to CCS (i.e. when J = 1) will be demonstrated.

3.3.2.1 Convergence of 2L-CCS

The quality of short time propagation with respect to the number of configurations K
and number of inner layer tunnelling mode basis functions per configuration J is shown
in Fig. 3.1, with the former in the left panel and the latter on the right. The calculation
with K = 2000 and J = 1 can be regarded as a CCS calculation with K = 2000. It can be
seen qualitatively in panels (a)-(c) that both increasing K and J improves the quality of
the calculation, with the phase and amplitude of the 2L-CCS CCF more closely matching
the benchmark. In the (d) panels the quantitative improvement of the calculation with
respect to K and J is demonstrated, with the error term χ2L-CCS (defined in Eq. (3.3.5))
decreasing upon increasing these parameters.

The quality of long time propagation with respect to the number of configurations K
and number of inner layer tunnelling mode basis functions per configuration J is shown in
Fig. 3.2, with the former in the left panel and the latter on the right. Increasing the value
of K appears to have a significant effect on the FT spectrum, with an anomalous peak at
ω = 9 for K = 100 and K = 500 that disappears by K = 2000. There is also no splitting
of the peak at ω = 9.5 for K = 100 and K = 500, although it appears by K = 2000.
Increasing the value of J appears to have a more modest effect on the FT spectrum, with
no anomalous peak at ω = 9.0 for J = 1, J = 2 and J = 4, and some degree of peak
splitting at ω = 9.5 for each. The main difference is the correct reproduction of the relative
intensities of the peaks at ω = 9.5 and ω = 10.2 by J = 4. The intensity of the peak
at ω = 10.8 is also more closely matched to the benchmark by this point, despite not
reproducing the peak splitting.
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Figure 3.1: Convergence of 2L-CCS method with respect to the benchmark in the short
time regime by varying number of configurations K (left) and number of
tunnelling mode basis functions per configuration J (right). Panels (a)-(c)
show how the calculated 2L-CCS CCFs compare to the benchmark calcula-
tion for increasing K and J . Panel (d) shows the cumulative error χ2L-CCS
between the 2L-CCS calculation and benchmark obtained via Eq. (3.3.5).
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Figure 3.2: Convergence of 2L-CCS method with respect to the benchmark in the long
time regime by varying number of configurations K (left) and number of
tunnelling mode basis functions per configuration J (right). Panels (a)-(c)
show how the calculated 2L-CCS FTs compare to the benchmark calculation
for increasing K and J .

3.3.2.2 Comparison to Benchmark and Other Methods

The 2L-CCS calculation can be compared to the previous methods of studying this Hamil-
tonian and the benchmark calculation shown in Sec. 2.3.1.1. This comparison is demon-
strated in Fig. 3.3, with CCFs on the left hand side of the figure, and FT spectra on the
right hand side. The 2L-CCS calculation is that presented in the previous section with
K = 2000 and J = 4. It can be seen that the 2L-CCS calculation is a vast improvement
on the previous CCS calculation, with the CCF remaining accurate with respect to the
benchmark and other methods up to t = 25 a.u. as opposed to ∼ 5 a.u. The FT is also an
improvement over the previous CCS calculation, with peak splitting beginning to appear
at ω = 9.5, and the anomalous peak at ω = 9 disappearing. It should be noted that this is
largely due to the improved sampling of the bath however, as it was shown in Fig. 3.2 that
the 2L-CCS calculation with K = 2000 and J = 1 (hence equivalent to a CCS calculation)
produced a similar FT spectrum. Further sampling of the bath was attempted, and 2L-
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Figure 3.3: Comparison of the 2L-CCS cross-correlation functions (left, real parts in
black and absolute values in red) and Fourier transforms of the real part
of the CCF (right) to other methods that have studied the Hamiltonian
Eq. (2.2.1): (a) MP/SOFT [39], (b) Trajectory Guided CI Expansion [138],
(c) Adaptive Trajectory Guided [140], (d) CCS [46], (e) 2L-CCS, (f) Bench-
mark.
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CCS calculations were run with the inner and outer layer modes switched (i.e. tunnelling
mode represented by the outer layer z(c)

k and bath modes represented by z(q)
ik ), however

no further improvement of the CCF beyond 25 a.u. or the FT spectrum was observed.
The peak splitting at ω = 9.5 also only begins to appear in the benchmark calculation
beyond 50 a.u., which is the reason it is not more pronounced in the 2L-CCS calculation.
Furthermore, the peak splitting at higher frequencies are not reproduced as the basis is
not able to cover the high energy region effectively. A similar effect was noted in Ref. [44]
when CCS was applied to the far infrared absorption spectrum of a water trimer.

The only method capable of reproducing the high frequency peak splitting is the tra-
jectory guided CI expansion, which as mentioned in Sec. 2.3.1.1 is due to its similarity to
the benchmark calculation. Aside from this point, the CCF from the 2L-CCS calculation
is comparable to that from the trajectory guided CI expansion for the first 40 a.u., and the
splitting of the main peak at ω = 9.5 in the FT spectrum is reproduced as well as in the CI
expansion. Comparing to MP/SOFT, it can be seen that the structure of oscillations and
amplitude of the 2L-CCS CCF does not decay as quickly, and the higher frequency peaks
in the FT spectrum are better resolved (despite neither method reproducing the splitting).
The 2L-CCS method also performs better than the aTG method, with the CCF and FT
spectrum much more closely matching the benchmark.

3.3.2.3 Numerical Performance of 2L-CCS

Numerically, the 2-layer method scales with the number of inner layer basis functions per
configuration J and the number of configurations K, but its performance — similar to
CCS — does not depend explicitly on the number of degrees of freedom. This is due to
the fact that none of the working equations (Eqs. (3.2.2), (3.2.3), (3.2.6) and (3.2.8)) scale
directly with dimensionality.

For the standard CCS method with K configurations, a K×K linear system has to be
solved at each time step (Eq. (1.3.31)). For 2L-CCS a K ×K linear system must also be
solved at each time step (Eq. (3.2.8)), in addition to a J×J linear system (Eq. (3.2.6)) that
must be solvedK times. SolvingK linear systems of size J×J and one linear system of size
K×K is more efficient than solving a single [J×K]×[J×K] linear system, as long as J and
K are balanced adequately. This is the essential idea of improved numerical performance in
multilayer formulations, and means that 2L-CCS will be numerically favourable to a CCS
calculation that has J ×K configurations. A comparison of the numerical performance of
the 2L-CCS calculations in this work can be seen in Table 3.1, where the relative times
shown are for a propagation step. Basis set generation is not included in the relative times,
however it is rapid in comparison to propagation. The calculation with K = 2000 and
J = 1, which is equivalent to a CCS calculation with K = 2000, and the calculation with
K = 500 and J = 4 illustrates the point made above, solving K linear systems of size J×J
and one linear system of size K×K is more efficient than solving a single [J×K]× [J×K]
linear system. On 1 processor the K = 500, J = 4 calculation is approximately 1.5× as
fast, and on 16 processors it is approximately 2× as fast. For problems where K and

78



3.3. Application to the Double Well Tunnelling Problem 79

 2

 4

 6

 8

 10

 12

 14

 16

 2  4  6  8  10  12  14  16

S
pe

ed
up

Number of threads

Perfect scaling
2L-CCS (K = 2000, J = 1)
2L-CCS (K = 2000, J = 2)
2L-CCS (K = 2000, J = 4)
2L-CCS (K = 100, J = 4)
2L-CCS (K = 500, J = 4)

Figure 3.4: Parallel speedup for the 2L-CCS calculations studied in this chapter.

J can be even more evenly balanced, this numerical efficiency is expected to be further
improved.

The 2L-CCS calculation also benefits from parallelisation to a greater extent as J is
increased, and this is partially demonstrated in Table 3.1 and more profoundly shown in
Fig. 3.4. The bottleneck of the calculation is the solution of the K × K linear system,
however as J is increased and the number of processors is increased, the rest of the
propagation can be sped up around the parallel solution of K linear systems of size J ×J ,
leading to greater parallel efficiency. This is particularly significant for the K = 2000,
J = 4 calculation compared to K = 2000, J = 1, where both have the same K × K

linear system to solve. On 1 processor a propagation step is 11.5× slower for the former
compared to the latter, whilst for 16 processors this has been reduced to 8.3× slower.

The time for a propagation step and the parallel speedup is slightly different to that
presented in Ref. [35], as a newer version of code compiled with an Intel rather than GNU
compiler was used. The conclusions drawn above are broadly the same, however the code
benefits from an approximate 4× speedup overall when compiled with an Intel compiler
and run on Intel hardware, compared to when compiled with a GNU compiler and run on
Intel hardware. A calculation to determine the numerical efficiency of CCS with K = 2000
was also carried out, as 2L-CCS with K = 2000 and J = 1 uses slightly different routines
in the program code for the propagation despite being numerically equivalent. However,
the calculation times were virtually the same therefore it has not been included.

The OpenMP shared memory construct was used to parallelise the code, requiring
limited modification to the serial version. This did limit the number of threads to a max-
imum of 16, as computational hardware with 16 processors was used for the calculations
and the general rule of thumb of 1 processor per thread was obeyed. More than 1 thread
per processor could have been used, however this can lead to increased overhead that may
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slow down the program, and large matrices could run into memory trouble. For larger
and more complicated calculations, Message Passing Interface (MPI) parallelisation could
be implemented, although this may require significant restructuring of the serial code.
Further details of the code and parallelisation may be found in Sec. A.2.
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3.4 Conclusions

In this chapter a 2-layer coupled coherent states scheme has been developed, drawing inspi-
ration from the multilayer extension of MCTDH and the 2-layer extension of G-MCTDH.
The working equations have been derived and presented, with different dynamical descrip-
tions employed in each layer for different subsystems of a quantum mechanical problem.
The outer layer is represented by a sum over K coherent state basis functions that are
guided by Ehrenfest trajectories and describe more “classical” degrees of freedom, albeit in
a fully quantum manner. The inner layer is represented by coherent state basis functions
that are guided by CCS trajectories and are summed over K, as well as an additional sum
over J . This provides a factor of J more basis functions for a more “quantum” degree or
degrees of freedom that may require an increased mathematical description.

The 2L-CCS method has been applied to the system-bath asymmetric double well
tunnelling problem studied in Chapter 2, where a benchmark calculation was provided for
it. The simplest case treated by the benchmark calculation of 19-dimensional bath coupled
to 1-dimensional tunnelling mode with system bath coupling λ = 0.1 was attempted by
2L-CCS. It should be noted that whilst this was the simplest parameter set treated by the
benchmark calculation, it is still a challenging problem as evidenced by previous methods of
studying it achieving varying degrees of success [39,46,138,140]. The 2L-CCS wavefunction
representation is particularly suited to a system-bath Hamiltonian such as this, as it is
split into inner and outer layers. The system tunnelling mode was represented by the
inner layer, providing improved description to take into account delocalisation, whilst the
bath was represented by the outer layer.

The 2L-CCS calculation was observed to compare well to the benchmark and other
methods for the first 25 a.u. of the calculation, and thereafter showed divergence that
is apparent in all the other methods of studying the problem. 2L-CCS was shown to
converge appropriately with respect to K and J , as the calculation improved relative to
the benchmark in both the short and long time regimes upon increasing these parameters.
However, in the long time regime increasing K had a more profound effect than increasing
J .

As well as an improved description for a subsystem of a quantum mechanical problem,
one of the primary motivations for the multilayer formalism is the improved numerical
efficiency of the method. The essential idea behind this is that solving K linear systems
of size J × J and one linear system of size K ×K is more efficient than solving a single
[J ×K] × [J ×K] linear system, as long as J and K are adequately balanced. This was
demonstrated by the calculations of size K = 2000, J = 1 and K = 500, J = 4, where the
latter was over 1.5× as fast for a single propagation step on 1 processor, and around 2×
as fast for a single propagation step on 16 processors. Improved parallel efficiency of the
method as J is increased was also demonstrated with the calculations of size K = 2000,
J = 4 and K = 2000, J = 1. On 1 processor a propagation step is 11.5× slower for
the former compared to the latter, whilst for 16 processors this has been reduced to 8.3×
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slower.
Both of these effects are expected to be enhanced for a problem where J and K

can be more evenly balanced. In particular, the method may be utilised to study the
phenomenon of high harmonic generation that has previously been studied by CCS [78],
and was briefly reviewed in Sec. 1.3.4. It was noted that modelling the electron ionisation
and recombination responsible for high harmonic generation required trajectories that
occupy extremely large regions of phase space. Therefore, 2L-CCS may be a suitable
candidate to model the process, with its inner layer able to provide an improved description
of this highly delocalised electron. As 2L-CCS is most accurate for short timescales, it will
also be particularly suited to the attosecond regime over which high harmonic generation
occurs. Future work where an increased value of J will be used can also investigate the
behaviour of the z(q) trajectories with respect to J , to ensure they remain stable.

The above avenues of research are left to future work however, and in the follow-
ing chapter a further development of the CCS method is presented: to indistinguishable
bosons. As the present chapter built upon a previous CCS treatment of the double well
tunnelling problem via improved bath sampling and an increased treatment of the tun-
nelling mode but still left some room for improvement, a different method of tackling the
problem with CCS will be presented. Drawing inspiration from the benchmark calculation,
where the permutational symmetry and effective indistinguishability of the bath modes
was exploited, a similar approach is derived for CCS in the second quantisation picture.
The ultimate aim for the method is to be used to model Bose-Einstein condensates, and
this will be put into context in the following chapter.
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Chapter 4

Coupled Coherent States for
Indistinguishable Bosons (CCSB)

4.1 Introduction

In the past two decades there has been significant interest in systems of indistinguishable
bosons, due to experimental generation of Bose-Einstein condensates of ultracold alkali
metal atoms [157–159]. These condensates, first posited by the eponymous Bose and
Einstein in 1924–25, have permitted macroscopic observations of quantum phenomena
and lead to a wealth of experimental research in areas such as atomic interferometry [160],
bosonic Josephson junctions [161,162] and quantum vortices [163,164].

From the theoretician’s point of view, the Gross-Pitaevskii equation (GPE) [165, 166]
has been the predominant method used to study Bose-Einstein condensates [149,167–173].
However the GPE is a mean-field theory and as such cannot describe many-body effects in
condensates. It also assumes that all bosons occupy a single state at all times, and therefore
cannot describe fragmentation. In recent years, the multiconfigurational time-dependent
Hartree method for bosons (MCTDHB) [121, 122], and its extension to multilayer for-
malism (ML-MCTDHB) [127] have been used to treat indistinguishable bosons from the
standpoint of exact quantum mechanics (see Refs. [174–183] and [184–187] for applications
of MCTDHB and ML-MCTDHB respectively).

In this chapter the CCS method is extended to the study of indistinguishable bosons,
as MCTDH and ML-MCTDH have been, and the new formalism is named CCS for indis-
tinguishable bosons (CCSB). Due to the use of coherent states in CCS and their relation
to the creation and annihilation operators of second quantisation, it is expected that the
method will be particularly suited to this problem. Initially, indistinguishable particles
and second quantisation are introduced briefly in Sec. 4.2, before the CCSB method is
presented in Sec. 4.3, then it is applied to the double well tunnelling problem with sec-
ond quantised bath modes in Sec. 4.4, and a model Bose-Einstien condensate problem
in Sec. 4.5. In the latter application, a brief overview of the Gross-Pitaevskii equation
and MCTDHB method is given first. Conclusions and potential future applications of the
method are discussed in Sec. 4.6.
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4.2 Indistinguishable Particles and Second Quantisation

When two particles possess the same physical properties such as mass, charge, and spin,
they may be referred to as identical. Classically, if two particles are identical it is still pos-
sible to distinguish them due to differing positions or momenta. However, in the quantum
regime the positions and momenta are delocalised in the wavefunction representation, as it
describes probabilities of finding particles at certain positions and momenta. It is therefore
impossible to assign measurements of positions and momenta to specific particles, and the
particles are said to be indistinguishable.

The wavefunction for indistinguishable particles is subject to exchange symmetry,
which describes what happens to the sign of the wavefunction if particles are swapped.
The Pauli principle states that the wavefunction is antisymmetric with respect to exchange
of identical fermions, and symmetric with respect to exchange of identical bosons. Con-
sidering a two state system |α〉 and |β〉 occupied by two particles r′ and r′′ with single
particle wavefunctions ψ(α) and ψ(β), there is the following wavefunction representation if
the particles are fermions

Ψ(α,β)
f (r′, r′′) = 1√

2

(
ψ(α)(r′)ψ(β)(r′′)− ψ(α)(r′′)ψ(β)(r′)

)
, (4.2.1)

and the following wavefunction representations if the particles are bosons

Ψ(α,β)
b1 (r′, r′′) = 1√

2

(
ψ(α)(r′)ψ(β)(r′′) + ψ(α)(r′′)ψ(β)(r′)

)
(4.2.2a)

Ψ(α,β)
b2 (r′, r′′) = ψ(α)(r′)ψ(α)(r′′) (4.2.2b)

Ψ(α,β)
b3 (r′, r′′) = ψ(β)(r′)ψ(β)(r′′). (4.2.2c)

It can be seen that if r′ and r′′ are switched in the above then Ψ(α,β)
f (r′, r′′) = −Ψ(α,β)

f (r′′, r′)
for the fermionic state, and Ψ(α,β)

b (r′, r′′) = Ψ(α,β)
b (r′′, r′) for the bosonic states. A fur-

ther consequence of the above is the Pauli exclusion principle, which states that no two
fermions may occupy the same quantum state. On the other hand, multiple bosons may
occupy the same quantum state. These statistical properties are known as Fermi-Dirac
statistics for fermions, and Bose-Einstein statistics for bosons.

For multiparticle states, second quantisation may be used to keep track of the occu-
pation of quantum states. In the “first” quantisation representation shown above, the
properly symmetrised wavefunctions are described by assigning specific particles to spe-
cific states. In the “second” quantisation representation, the states are instead given an
occupation number that describes the number of particles belonging to that state, rather
than assigning specific particles to specific states. This can be represented as

|n〉 = |n(α), n(β), . . . , n(Ω)〉 (4.2.3)

where n(α) is the occupation number of state |α〉, i.e. there are n(α) particles in state |α〉.
The set of occupation number states |n〉 is known as a Fock state, and the sum of the
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occupation numbers is equal to the total number of particles. Fermions can take values
of 0 or 1 for each occupation number, whilst bosons can take any value. The Fock state
with all occupation numbers equal to zero is known as the vacuum state

|0〉 = |0(α), 0(β), . . . , 0(Ω)〉 . (4.2.4)

A Fock state with a single non-zero occupation in state |α〉 is known as a single mode Fock
state

|n(α)〉 = |n(α), 0(β), . . . , 0(Ω)〉 . (4.2.5)

To build multimode Fock states, or alter the occupation number of an existing Fock
state, creation and annihilation operators must be used. These operators were presented
in Sec. 1.3.1, and the coherent states |z〉 used as basis functions for the CCS method
were shown to be eigenfunctions of them, with eigenvalues z∗ and z, respectively. In the
context of first quantisation, it was mentioned that they are also known as raising or
lowering operators of the quantum harmonic oscillator, where they act on eigenfunctions
of its Hamiltonian to generate another eigenfunction with eigenvalue 1 larger or smaller,
respectively. In second quantisation, the creation and annihilation operators act on Fock
states to populate or depopulate them. They have slightly different effects on bosonic and
fermionic Fock states to maintain the occupation rules and proper symmetry. The effect
of the creation and annihilation operators on bosonic Fock states is

â
(Ω)†
b |n(α), n(β), . . . , n(Ω)〉 =

√
n(Ω) + 1 |n(α), n(β), . . . , n(Ω) + 1〉 (4.2.6a)

â
(Ω)
b |n(α), n(β), . . . , n(Ω)〉 =

√
n(Ω) |n(α), n(β), . . . , n(Ω) − 1〉 , (4.2.6b)

whilst the effect on fermionic Fock states is

â
(Ω)†
f |n(α), n(β), . . . , n(χ), n(Ω)〉 = (−1)

∑
χ<Ω n

(χ)
(1− n(Ω)) |n(α), n(β), . . . , n(χ), 1− n(Ω)〉

(4.2.7a)

â
(Ω)
f |n(α), n(β), . . . , n(χ), n(Ω)〉 = (−1)

∑
χ<Ω n

(χ)
n(Ω) |n(α), n(β), . . . , n(χ), 1− n(Ω)〉 .

(4.2.7b)

The term (−1)
∑

χ<Ω n
(χ)

in the above for fermions is known as the Jordan-Wigner string,
and maintains proper symmetry of the fermionic Fock state. It involves a sum over the
preceding fermion occupation numbers to obtain the parity of the state.

The creation and annihilation operators in the above have both acted on state |Ω〉
to populate or depopulate it by a single particle, respectively. For bosons, multiparticle
states can be formed by repeated application of the creation operator on the vacuum state
to populate it with an arbitrary number of particles

|n(α), n(β), . . . , n(Ω)〉 =

(
â

(α)†
b

)n(α)

√
n(α)!

(
â

(β)†
b

)n(β)

√
n(β)!

. . .

(
â

(Ω)†
b

)n(Ω)

√
n(Ω)!

|0(α), 0(β), . . . , 0(Ω)〉 . (4.2.8)
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The converse, the annihilation operator acting on the vacuum state will equal zero for
both bosons and fermions. Also for fermions, action of the creation operator on a singly
occupied state will equal zero.

The bosonic and fermionic creation and annihilation operators obey the following com-
mutation and anticommutation rules

[â(α)†
b , â

(β)†
b ] = â

(α)†
b â

(β)†
b − â(β)†

b â
(α)†
b = 0 (4.2.9a)

[â(α)
b , â

(β)
b ] = â

(α)
b â

(β)
b − â(β)

b â
(α)
b = 0 (4.2.9b)

[â(α)
b , â

(β)†
b ] = â

(α)
b â

(β)†
b − â(β)†

b â
(α)
b = δαβ (4.2.9c)

{â(α)†
f , â

(β)†
f } = â

(α)†
f â

(β)†
f + â

(β)†
f â

(α)†
f = 0 (4.2.10a)

{â(α)
f , â

(β)
f } = â

(α)
f â

(β)
f + â

(β)
f â

(α)
f = 0 (4.2.10b)

{â(α)
f , â

(β)†
f } = â

(α)
f â

(β)†
f + â

(β)†
f â

(α)
f = δαβ, (4.2.10c)

where δαβ is the Kronecker delta. From the latter commutation and anticommutation
relationship in the above, the number operator may be defined as

N̂ =
∑
α

â(α)†â(α). (4.2.11)

This counts the total number of particles via a sum over all quantum states, and is appli-
cable for both bosons and fermions.

A connection between position space ~r and the creation and annihilation operators
can be offered by their generalisation to creation and annihilation quantum field operators
Ψ̂†(~r) and Ψ̂(~r). The transformation is given by

Ψ̂†(~r) =
∑
α

ψ(α)∗(~r)â(α)† (4.2.12a)

Ψ̂(~r) =
∑
α

ψ(α)(~r)â(α), (4.2.12b)

where ψ(α)(~r) is the single particle wavefunction for a particle at ~r in state |α〉. The
quantum field operators create and annihilate a particle at position ~r, and obey similar
commutator and anticommutator relationships for bosons and fermions as â† and â

[Ψ̂b(~r′), Ψ̂†b(~r′′)] = δ(~r′ − ~r′′) (4.2.13a)

{Ψ̂f(~r′), Ψ̂†f (~r
′′)} = δ(~r′ − ~r′′), (4.2.13b)

where δ(~r′ − ~r′′) is the delta function as opposed to the Kronecker delta used previously,
as ~r is a continuous variable. In the quantum field representation, the number operator is
given by

N̂ =
∫

Ψ̂†(~r)Ψ̂(~r) d~r =
∫
ρ̂(~r) d~r, (4.2.14)
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where ρ̂(~r) is known as the density operator.
This completes the brief introduction to indistinguishable particles and second quan-

tisation, and in the following a CCS method will be developed that is capable of treating
systems of indistinguishable bosons. The “b” symbol will therefore be omitted wherever
creation and annihilation operators appear, as bosons are exclusively treated from this
point onwards. Fermions were merely included in the above discussion for comparison and
completeness.
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4.3 Numerical Details

In standard CCS, the coherent state basis vector |z〉 is the product of M 1-dimensional
coherent state basis functions for each particle, as shown in Eq. (1.3.11). When dealing
with indistinguishable bosons it is not possible to keep track of them individually, therefore
it does not make sense for the coherent state basis functions to represent individual bosons.
Instead a different interpretation is provided, using the coherent state basis functions for
a basis set expansion of Fock states

|n〉 =
K∑
k=1

DkeiSk/h̄ |zk〉 (4.3.1)

where

|zk〉 =
Ω∏
α=0
|z(α)〉 . (4.3.2)

The multidimensional coherent state |z〉 is now a product of coherent states that describe
occupations of each quantum state |α〉. As the representation of Fock states by CCSB is
the same as the wavefunction representation in standard CCS, the dynamical equations
are also the same, with the time-dependence of the coherent state centers z given by
Eq. (1.3.14), amplitudes D by Eq. (1.3.31) and action S by Eq. (1.3.20). The only dif-
ference, other than the representation of the multidimensional coherent state, is that any
Hamiltonian used must be second quantised before appearing in the dynamical equations.
The approach used to second quantise a Hamiltonian is well known [188], and it may be
written in terms of 1-body ĥ(Q) and 2-body Ŵ (Q,Q′) operators as

Ĥ =
∑
α,β

〈α|ĥ|β〉 â(α)†â(β) + 1
2
∑

α,β,γ,ζ

〈α, β|Ŵ |γ, ζ〉 â(α)†â(β)†â(ζ)â(γ), (4.3.3)

where |α〉, |β〉, |γ〉, and |ζ〉 are quantum states. This conveniently gives a second quan-
tised Hamiltonian in normal ordered form, which is required in CCSB to evaluate matrix
elements, as with standard CCS. This procedure is employed to second quantise specific
Hamiltonians in the following sections where CCSB is applied to two test problems.
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4.4 Application 1: Double Well Tunnelling Problem

The first application of CCSB is to the double well tunnelling problem studied in the
previous two chapters, where the benchmark calculation for it was produced in Chapter 2
and the newly developed 2L-CCS method was applied to it in Chapter 3. In the benchmark
calculation, permutational symmetry of the Hamiltonian and effective indistinguishability
of the bath modes was exploited to reduce the expense of the calculation. In the present
application the same idea is applied, with the bath modes treated as indistinguishable
oscillators, and the bath part of the Hamiltonian is second quantised for use with CCSB.
As the tunnelling mode is not part of this indistinguishable system, the portion of the
Hamiltonian that describes it will not be second quantised. However, this will not pose a
problem as the dynamical equations are identical for CCS and CCSB, the only subtlety is
the interpretation of the coherent state basis vectors |z〉 as will be discussed below.

4.4.1 Second Quantisation and Normal Ordering of Hamiltonian

The starting point for the second quantisation of the bath part of Hamiltonian is the
distinguishable representation in Eq. (2.2.1), where it is given in terms of 1-body operators
(Q̂, P̂). Using the definition of a second quantised Hamiltonian in Eq. (4.3.3), and the
fact that there are no 2-body operators in Eq. (2.2.1), it may be written as

Ĥ = p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+

 Ω∑
α,β=0

〈α|P̂
2

2
+ Q̂2

2
|β〉 â(α)†â(β)


+ λq̂(m=1)

2

 Ω∑
α,β=0

〈α|Q̂2|β〉 â(α)†â(β)


= p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+
[ Ω∑
α=0
〈α|P̂

2

2
+ Q̂2

2
|α〉 â(α)†â(α)

]

+ λq̂(m=1)

2

 Ω∑
α,β=0

Q(α,β)2 â(α)†â(β)


= p̂(m=1)2

2
− q̂(m=1)2

2
+ q̂(m=1)4

16η
+
[ Ω∑
α=0

ε(α)â(α)†â(α)
]

+ λq̂(m=1)

2

 Ω∑
α,β=0

Q(α,β)2 â(α)†â(β)

 .

(4.4.1)

The quantum states |α〉 and |β〉 are those of the harmonic oscillator with α and β numbers
of quanta, and the equality on the second line for 〈α| P̂2

2 + Q̂2

2 |β〉 follows because this is
non-zero with eigenvalue ε(α) only when α = β. The sums are from the ground level α = 0,
to some upper level Ω. In principle, one should choose Ω =∞ for a complete description
of the bath, however in practice additional oscillator levels may simply be added on until
a converged result is achieved. The degenerate vibrational excitations in the benchmark
calculation, illustrated in Eq. (2.2.6), are taken into account automatically in the second
quantisation representation for a particular harmonic oscillator level, and do not need to
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90 Chapter 4. Coupled Coherent States for Indistinguishable Bosons (CCSB)

be explicitly written.
The position and momentum operators of the tunnelling mode have explicitly been

labelled with (m = 1) to distinguish them from the α labelling scheme of the second quan-
tised bath modes. The matrix Q(α,β)2 is evaluated in a similar manner to the benchmark
calculation, Eq. (2.2.12), however the normalisation factors that appear due to the bath
basis functions in the benchmark are not necessary here

〈α|Q̂2|β〉 =



1
2

√
(α+ 2)(α+ 1) if α = β − 2

1
2

√
α(α− 1) if α = β + 2

ε(α) if α = β

0 otherwise.

(4.4.2)

As this matrix is non-zero only for quanta α = β and α = β ± 2, and all bath modes are
initially in the ground state, only harmonic oscillator levels with even numbers of quanta
will be included. Using this fact and the definition of the normal ordered Hamiltonian
matrix elements for the tunnelling mode in Eq. (3.3.1), Eq. (4.4.1) can be written in normal
ordered matrix element form as

Hord(z∗k, zl) =− 1
2

(
z
(m=1)∗2
k + z

(m=1)2
l

)
+ 1

64η

(
z
(m=1)∗4
k + z

(m=1)4
l + 4z(m=1)∗3

k z
(m=1)
l + 4z(m=1)∗

k z
(m=1)3
l

+6z(m=1)∗2
k z

(m=1)2
l + 12z(m=1)∗

k z
(m=1)
l + 6z(m=1)∗2

k + 6z(m=1)2
l + 3

)
+

Ω∑
α=0

z
(2α)∗
k z

(2α)
l ε(2α) + λ

2

 Ω∑
α,β=0

z
(2α)∗
k z

(2β)
l Q(2α,2β)2


×
(
z
(m=1)∗
k + z

(m=1)
l

)
.

(4.4.3)

The multidimensional coherent state basis vector |z〉 is therefore represented as

|z〉 = |z(m=1)〉 ×
Ω∏
α=0
|z(2α)〉 (4.4.4)

where |z(m=1)〉 is a basis function for the tunnelling mode and |z(2α)〉 is a basis function
for the second quantised bath modes.

4.4.2 Initial Conditions

Sampling the initial coherent state basis functions for the tunnelling mode proceeds in the
same way as Chapter 3, from a Gaussian distribution centered around the initial tunnelling
mode coordinates and momenta. Sampling the initial coherent states for the bath can be
performed by obtaining a probability distribution from the square of the coherent state
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M λ K Ω σ(2α=0) σ(2α>0) σ(s) dt (a.u.)
20 0.1 4000 5 1.0 100 1.0 0.1
20 0.2 12000 9 1.0 2000 1.0 0.05
40 0.1 7000 8 1.0 20000 1.0 0.05
80 0.1 12000 9 1.0 1000000 0.5 0.025

Table 4.1: Sampling parameters for the CCSB calculations: number of degrees of free-
dom in distinguishable representation M , system-bath coupling constant λ,
number of configurations K, number of harmonic oscillator levels in bath
basis Ω, compression parameter for ground harmonic oscillator state distri-
bution σ(2α=0), compression parameter for excited harmonic oscillator state
distributions σ(2α>0), compression parameter for system tunnelling mode dis-
tribution σ(s), and timestep dt.

representation of the initial bath Fock state. The initial bath Fock state is equal to

|n〉 =
Ω∏
α=0
|n(2α)〉 = |n(2α=0), n(2α=2), . . . , n(2α=2Ω)〉 = |(M − 1), 0, . . . , 0〉 , (4.4.5)

where there are M − 1 bath oscillators all in the ground harmonic oscillator state. Using
the representation of a coherent state in a basis of Fock states

|z〉 = e−
|z|2
2
∑
α

zn
(α)√

n(α)!)
|n(α)〉 (4.4.6)

the following may be obtained

| 〈z(2α)|n(2α)〉 |2 =
e−|z(2α)|2

(
|z(2α)|2

)n(2α)

πn(2α)!
, (4.4.7)

where the value of π has appeared to enforce normalisation. This resembles a Poissonian
distribution, however |z(2α)|2 is continuous so a gamma distribution is used instead

f(|z(2α)|2) ∝ 1

Γ(n(2α) + 1)
(
σ(2α))n(2α)+1

(
|z(2α)|2

)n(2α)

e
−|z(2α)|2

σ(2α) , (4.4.8)

where σ(2α) is a compression parameter controlling the width of the distribution, and Γ is
the gamma function that is calculated using n(2α) + 1 because Γ(n) = (n− 1)!.

The gamma distribution will be centred around σ(2α)n(2α), however | 〈z(2α)|n(2α)〉 |2

should be centred around |z(2α)|2 = n(2α) as its maximum is found by

d| 〈z(2α)|n(2α)〉 |2

d|z(2α)|2
= 1
πn(2α)!

(
−e−|z(2α)|2

(
|z(2α)|2

)n(2α)

+ n(2α)e−|z(2α)|2
(
|z(2α)|2

)n(2α)−1
)

= 0.

(4.4.9)

Fortunately, for all the calculations in this work this is not an issue, as when n(2α) = 0
the distribution will be centred around 0 irrespective of the compression parameter, and
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92 Chapter 4. Coupled Coherent States for Indistinguishable Bosons (CCSB)

for n(2α=0) = M − 1 a compression parameter of σ(2α=0) = 1.0 is used. Full details of the
compression parameters and other calculation parameters used in this application may be
found in Table 4.1

The initial amplitudes are calculated by projection of the initial basis onto the initial
wavefunction with the action set to zero

〈zk(0)|Ψ(0)〉 =
K∑
l=1

Dl(0) 〈zk(0)|zl(0)〉 . (4.4.10)

The overlap of the initial coherent state basis with the initial wavefunction can be decom-
posed to

〈zk(0)|Ψ(0)〉 = 〈z(m=1)
k (0)|Ψ(s)(0)〉 〈

Ω∏
α=0

z
(2α)
k (0)|n)〉 . (4.4.11)

The coherent state overlap with initial tunnelling mode wavefunction 〈z(m=1)
k (0)|Ψ(s)(0)〉

can be calculated via a Gaussian overlap, Eq. (1.3.7), similar to 2L-CCS. The coherent state
overlap with initial bath Fock state can be calculated by once more using the coherent state
representation in a basis of Fock states, Eq. (4.4.6). The overlap with the unoccupied states
will be equal to 1, therefore only the ground harmonic oscillator state with occupation
n(2α=0) = M − 1 will contribute

〈
Ω∏
α=0

z
(2α)
k (0)|n)〉 = 〈z(2α=0)

k (0)|n(2α=0)〉

= e−
|z(2α=0)
k

(0)|2

2
(z(2α=0)∗
k (0))M−1√

(M − 1)!
.

(4.4.12)

The coherent state width parameter is set to γ = mω/h̄ = 1.

4.4.3 Results

As with the previous chapters, the quantities of interest are the CCF between the wave-
function at time t and the mirror image of the initial wavepacket, and the FT of the
real part of the CCF. The CCF is calculated via the overlap of Gaussians for the tun-
nelling mode like Eq. (3.3.4), and the overlap of coherent states with bath Fock state like
Eq. (4.4.12), alongside the D amplitude and phase factor eiS/h̄. This gives

〈Ψ̄(0)|Ψ(t)〉 =
K∑
k=1

Dk(t)eiSk(t)/h̄ 〈Ψ̄(s)(0)|z(m=1)
k (t)〉 〈

Ω∏
α=0

z
(2α)
k (t)|n〉

=
K∑
k=1

Dk(t)eiSk(t)/h̄ exp
[ 1√

2

(
q̄(m=1)(0)− ip̄(m=1)(0)

)
z
(m=1)
ik (t)

− 1
2

(1
2

(
q̄(m=1)(0)− ip̄(m=1)(0)

) (
q̄(m=1)(0) + ip̄(m=1)(0)

)
+z(m=1)∗

ik (t)z(m=1)
ik (t)

)]
e−
|z(2α=0)
k

(0)|2

2
(z(2α=0)
k (0))M−1√

(M − 1)!
.

(4.4.13)
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Figure 4.1: Comparison of the cross-correlation functions (left, real parts in black and
absolute values in red) and Fourier transforms of the real part (right) for the
CCSB calculation and benchmark, with M = 20 and λ = 0.1. The CCSB
calculation uses K = 4000 and Ω = 5.

Initially the same parameter set as the 2L-CCS calculations will be used, with M = 20
and λ = 0.1.

4.4.3.1 20D λ = 0.1

The results of the CCSB calculation compared to only the benchmark (as the other meth-
ods of studying the problem have been compared thoroughly in previous chapters) is shown
in Fig. 4.1. The CCSB calculation uses K = 4000 configurations and Ω = 5 even harmonic
oscillator levels in the bath basis. This corresponds to including even harmonic oscillator
levels up to a total quanta of 10, as opposed to the benchmark calculation in Sec. 2.3.1.1
that included even harmonic oscillator levels up to a total quanta of 8. This was necessary
to ensure a stable propagation at the compression parameter σ(2α>0) used for the excited
levels. A smaller value of Ω required a smaller value of σ(2α>0), and this resulted in the
coherent state basis functions spreading too quickly and the CCF rapidly losing amplitude.
Despite the increase in the number of harmonic oscillator levels used in the basis compared
to the benchmark, the dimensionality of the problem has been reduced from 20 to only 6.
Larger values of Ω also do not significantly increase the cost of the calculation, as none
of the CCS working equations depend explicitly on dimensionality. The only additional
overhead is calculation of extra Hamiltonian matrix elements, however this is not a large
expense.

As can be seen from the CCF and the FT spectrum in Fig. 4.1, the CCSB results
compare extremely favourably to the benchmark with the CCF being virtually identical
for the duration of the calculation, and all peaks with splitting reproduced in the FT
spectrum. Therefore, for this problem it appears taking account of the symmetry of the
Hamiltonian is tantamount to achieving a good quality propagation. Due to the success of
this calculation the more challenging cases put forward by the benchmark of M = 40 and
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Figure 4.2: Comparison of the cross-correlation functions (left, real parts in black and

absolute values in red) and Fourier transforms of the real part (right) for the
CCSB calculation and benchmark, with M = 40 and λ = 0.1. The CCSB
calculation uses K = 7000 and Ω = 8.

M = 80 with λ = 0.1, and M = 20 with λ = 0.2 have been considered, and are presented
in the following.

4.4.3.2 40D λ = 0.1

The results of the CCSB calculation compared to the benchmark for M = 40 is shown
in Fig. 4.2, where the CCSB calculation uses K = 7000 configurations and Ω = 8 even
harmonic oscillator levels for the bath. This corresponds to including even harmonic
oscillator levels up to a total quanta of 16, as opposed to 12 for the benchmark calculation
in Sec. 2.3.2. As with theM = 20, λ = 0.1 case, this was to enable the use of a large σ(2α>0)

compression parameter on the distribution for the excited levels. The σ(2α>0) parameter
is larger than the M = 20, λ = 0.1 case, as the basis for the excited levels spreads rapidly,
and so needs to be highly compressed initially to ensure the basis functions do not become
uncoupled. The dimensionality of this problem has been reduced from 40 to 9, an even
greater reduction than the M = 20 case, albeit with additional configurations required in
the basis. More configurations are required because the occupation number of the α = 0
level is greater initially, therefore representation of it with coherent state basis functions
occupies a greater region of phase space. Furthermore, as the tunnelling mode is coupled
to more bath modes, it will also require more basis functions to represent accurately.

It can be seen that the CCSB calculation compares very well to the benchmark cal-
culation once more, with the CCF remaining accurate for the duration of the calculation,
although there is some loss of structure and amplitude at t > 45 a.u. The peaks of FT
spectrum also match those of the benchmark, with only minor differences in the intensities
of the high frequency peaks.
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Figure 4.3: Comparison of the cross-correlation functions (left, real parts in black and
absolute values in red) and Fourier transforms of the real part (right) for the
CCSB calculation and benchmark, with M = 80 and λ = 0.1. The CCSB
calculation uses K = 12000 and Ω = 9.

4.4.3.3 80D λ = 0.1

The results of the CCSB calculation compared to the benchmark for M = 80 is shown in
Fig. 4.3, where the CCSB calculation uses K = 12000 configurations and Ω = 9 harmonic
oscillator levels for the bath. This corresponds to including even excited levels up to a total
quanta of 18, as opposed to 14 for the benchmark calculation in Sec. 2.3.2. As shown in
Table 4.1, a value of σ(s) = 0.5 was found to be necessary for the compression parameter
on the distribution for sampling the tunnelling mode, as opposed to σ(s) = 1.0 for the
M = 20 and M = 40, λ = 0.1 cases. A very large value of σ(2α>0) was necessary, as the
basis for the excited levels spread even more rapidly than for the M = 40, λ = 0.1 case.

The CCF and FT spectrum are much more challenging to reproduce than the previous
M = 20 and M = 40 cases due to the higher frequency oscillations of the CCF, increase
in the number of peaks in the FT spectrum, and decrease in tunnelling amplitude due to
larger separation of the two wells in the double well potential. This can be seen in Fig. 4.3,
as the CCSB calculation does not reproduce the benchmark calculation as accurately as
the prior cases, with the CCF only following the benchmark result for the first 10 a.u.
Despite not reproducing the benchmark result exactly, the FT spectrum does however
display a number of similar peaks, in particular the low frequency peaks in the region
ω = 36–37, and the main peak at ω = 42, albeit without the same intensity.

As a large contribution to the accuracy of a CCS calculation depends on the initial
conditions chosen, a number of different input parameters and techniques were attempted
to try and improve the accuracy of the result. These included: an increased number of
configurations K and harmonic oscillator levels in the basis Ω; altering the σ(2α>0) and
σ(s) compression parameters; using variable compression parameters for excited levels in
the bath, with smaller compression parameters for lower levels as they are more likely
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Figure 4.4: Comparison of the cross-correlation functions (left, real parts in black and

absolute values in red) and Fourier transforms of the real part (right) for the
CCSB calculation and benchmark, with M = 20 and λ = 0.2. The CCSB
calculation uses K = 12000 and Ω = 9.

to be occupied; and placing basis functions for the tunnelling mode in the upper part
of the well to compensate for any trajectories that may not effectively take the basis
there over the course of the calculation. However, none of these modifications lead to
significant improvements over the present calculation, and it can be concluded that the
M = 80 parameter set is a limiting case for CCSB applied to this problem. The additional
calculations performed are shown in Appendix B.

4.4.3.4 20D λ = 0.2

The results of the CCSB calculation compared to the benchmark for M = 20, λ = 0.2 is
shown in Fig. 4.4, where the CCSB calculation uses K = 12000 configurations and Ω = 9
harmonic oscillator levels for the bath. This corresponds to including even excited levels
up to a total quanta of 18, as opposed to 14 for the benchmark calculation in Sec. 2.3.1.2.
Like the M = 80 case, it was expected that this problem would be difficult to treat, due
to the higher level calculation required for the benchmark. Furthermore, due to the larger
coupling constant, any deficiencies in treating either the bath or tunnelling mode are likely
to be compounded through it. It can be seen from Fig. 4.4 that, like the M = 80 case,
the CCF only matches the benchmark for the first 10 a.u. of the calculation. The peaks
in the FT spectrum are mainly of the same frequency as the benchmark result, however
the intensity and splittings of most are not well matched. The low frequency peaks in the
FT spectrum are well reproduced however, like in the M = 80 case, which for M = 20,
λ = 0.2 amount to the ω = 7–9 region. The same modifications to the input parameters
as the M = 80 case were attempted to try and improve the accuracy of the calculation,
however, again this did not lead to any significant improvement over the present case.
These additional calculations are shown in Appendix B.

Despite the CCSB calculations not getting the last two cases to agree with the bench-
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mark perfectly, the first two show promise, and the latter two are significantly more
challenging and would pose problems for any quantum dynamical method. Success at
treating first two cases provides impetus to use the method on Bose-Einstein condensates,
and this is attempted with a model problem in the following application.
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4.5 Application 2: Indistinguishable Bosons in a Displaced
Harmonic Trap

The second application of CCSB is to a system composed purely of indistinguishable
bosons, with M weakly interacting bosons placed in a harmonic trap displaced from the
origin. The oscillations in the density are calculated and compared to an MCTDHB
result that is equivalent to the Gross-Pitaevskii equation. It should be noted that this is
a relatively straightforward problem, however it serves as an introductory challenge for
CCSB in the realm of pure Bose-Einstein condensates, and establishes how to calculate
matrix elements of 2-body operators due to the weakly interacting nature of the bosonic
cloud. Initially, the Gross-Pitaevskii equation and MCTDHB will be reviewed briefly to
provide background to the methods, before discussing the Hamiltonian, how the matrix
elements are obtained, and the results.

4.5.1 Gross-Pitaevskii Equation and MCTDHB

4.5.1.1 Gross-Pitaevskii Equation

The Gross-Pitaevskii equation is a mean field nonlinear Schrödinger equation, assuming
that all bosons reside in the ground state. It is given in time-dependent form by

ih̄
∂Ψ(q, t)

∂t
=
(
− h̄2

2m
∇2 + V (q) + 4πh̄2as

m
|Ψ(q, t)|2

)
Ψ(q, t), (4.5.1)

where as is a scattering length that is positive for a repulsive interaction between bosons,
and negative for an attractive interaction. The ground state solution to this equation is
usually determined variationally [169], and the wavefunction represented as a symmetrised
Hartree product of single particle states. It has been applied to a number of theoretical
studies on Bose-Einstein condensates [149, 167–173], however it cannot describe fragmen-
tation of condensates and many body effects, and an improved description can be provided
by MCTDHB.

4.5.1.2 MCTDHB

In MCTDHB the wavefunction for M bosons is represented as

Ψ(q(1), q(2), . . . , q(M), t) =
∑

n
Cn(t)Φn(q(1), q(2), . . . , q(M), t) (4.5.2)

where the Φn are properly symmetrised Hartree products (permanents) constructed of
θ = 1, . . . ,Θ orthonormal time-dependent orbitals {φ(θ)(q, t)}. The summation is over all
possible occupations n = n(1), n(2), . . . , n(Θ) such that

∑
θ n

(θ) = M . The time-dependence
of the orbitals and coefficients Cn are found variationally, and allow the wavefunction to
be propagated. In second quantisation representation, the wavefunction ansatz can be
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written as
|Ψ(t)〉 =

∑
n
Cn(t) |n; t〉 (4.5.3)

where the Fock state |n; t〉 is assembled from

|n; t〉 = |n(1), n(2), . . . , n(Θ)〉

= 1√
n(1)!n(2)! . . . n(Θ)!

[
â(1)†(t)

]n(1) [
â(2)†(t)

]n(2)

. . .
[
â(Θ)†(t)

]n(Θ)

|0(1), 0(2), . . . , 0(Θ)〉 .

(4.5.4)

The â(θ)† are creation operators, and they are related to the orbitals via the field creation
operator

â(θ)†(t) =
∫
φ(θ)∗(q, t)Ψ̂†(q) dq. (4.5.5)

Note the difference between the use of Fock states and creation and annihilation operators
in MCTDHB compared to CCSB. In CCSB, the Fock states represent the occupation of
quantum states, for example harmonic oscillator states, and the creation and annihilation
operators add or remove bosons from these quantum states. In MCTDHB, the Fock
states represent the occupation of orbitals, and the creation and annihilation operators
add or remove bosons from these orbitals. The orbitals are time-dependent, and may be
represented as a basis set expansion of primitive functions, such as harmonic oscillator
basis functions. Therefore the orbitals incorporate a description of different quantum
states, but do not relate to their occupation directly. MCTDHB with multiple orbitals
can describe fragmented condensates, and it is expected that CCSB should be able to
provide a similar description, but in a Monte Carlo fashion. This is left to future work
however, and in this introductory example CCSB is compared to MCTDHB with 1 orbital,
such that it is equivalent to the Gross-Pitaevskii equation. It should be noted that for
this problem increasing the number of orbitals for MCTDHB does not change the result
obtained for the density oscillations.

4.5.2 Hamiltonian

The Hamiltonian (in dimensionless units and distinguishable representation) for this prob-
lem consists of a shifted harmonic potential and a 2-body interaction term

Ĥ = P̂2

2
+ (Q̂− ξ)2

2
+ Ŵ (Q,Q′). (4.5.6)

where Q̂ and P̂ are the position and momentum operators of the M bosons, ξ = 2.1
is a parameter that shifts the harmonic potential from the origin, and Ŵ is the 2-body
interaction, given by the contact interaction

Ŵ (Q,Q′) = λ0δ(Q−Q′). (4.5.7)
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The constant λ0 = 0.001 which indicates weak interactions and accounts for the mean-field
effects in MCTDHB with 1 orbital (demonstrated in Ref. [189]), whilst δ(Q −Q′) is the
Dirac delta function. As with the previous application to the double well problem, the
Hamiltonian must be second quantised and normal-ordered before it can be used with
CCSB. Once more, the definition for a second quantised Hamiltonian in Eq. (4.3.3) may
be utilised, and this time the 2-body elements are included to obtain

Ĥ =
Ω∑

α,β=0
〈α|P̂

2

2
+ Q̂2

2
|β〉 â(α)†â(β) −

Ω∑
α,β=0

〈α|2.1Q̂|β〉 â(α)†â(β)

+
Ω∑

α,β=0
〈α|2.205|β〉 â(α)†â(β) + 1

2

Ω∑
α,β,γ,ζ=0

〈α, β|λ0δ(Q−Q′)|γ, ζ〉 â(α)†â(β)†â(ζ)â(γ)

=
Ω∑
α=0
〈α|P̂

2

2
+ Q̂2

2
|α〉 â(α)†â(α) −

Ω∑
α,β=0

〈α|2.1Q̂|β〉 â(α)†â(β)

+
Ω∑
α=0
〈α|2.205|α〉 â(α)†â(α) + 1

2

Ω∑
α,β,γ,ζ=0

〈α, β|λ0δ(Q−Q′)|γ, ζ〉 â(α)†â(β)†â(ζ)â(γ)

=
Ω∑
α=0

ε(α)â(α)†â(α) −
Ω∑

α,β=0
2.1Q(α,β)â(α)†â(β) +

Ω∑
α=0

2.205â(α)†â(α)

+ 1
2

Ω∑
α,β,γ,ζ=0

λ0δ
(α,β,γ,ζ)â(α)†â(β)†â(ζ)â(γ).

(4.5.8)

In the above, ε(α) is the eigenvalue of the harmonic oscillator for state |α〉, like in Eq. (4.4.1),
and Q(α,β) is a matrix given by

Q(α,β) = 〈α|Q̂|β〉 =



√
α
2 α = β + 1√
β
2 β = α+ 1

0 otherwise.

. (4.5.9)

Evaluation of the δ(α,β,γ,ζ) matrix is slightly more involved, as it is required to solve the
integral

δ(α,β,γ,ζ) = 〈α, β|δ(Q−Q′)|γ, ζ〉

=
∫ +∞

−∞

∫ +∞

−∞

1√
2αα!

( 1
π

)1/4
e−Q2/2He(α)(Q) 1√

2ββ!

( 1
π

)1/4
e−Q′2/2He(β)(Q′)

× δ(Q−Q′) 1√
2γγ!

( 1
π

)1/4
e−Q2/2He(γ)(Q) 1√

2ζζ!

( 1
π

)1/4
e−Q′2/2He(ζ)(Q′)

dQ dQ′

(4.5.10)
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where He(α)(Q) is a Hermite polynomial of order α. However, an analytic solution is
possible, and the above may be simplified using the relationship

∫ +∞

−∞
f(x′)δ(x− x′) dx′ = f(x), (4.5.11)

and like terms collated to obtain

δ(α,β,γ,ζ) = 1

π
√

2(α+β+γ+ζ)α!β!γ!ζ!

∫ +∞

−∞
e−2Q2

He(α)(Q)He(β)(Q)He(γ)(Q)He(ζ)(Q) dQ.

(4.5.12)
This will only be non-zero if the integrand is an even function, so the product of Hermite
polynomials can only have even powers of Q

δ(α,β,γ,ζ) = 1
π
√

2α+β+γ+ζα!β!γ!ζ!

∫ +∞

−∞
e−2Q2

(α+β+γ+ζ)/2∑
τ=0

c2τQ2τ dQ (4.5.13)

where c2τ is a constant obtained from the product of Hermite polynomial coefficients.
Using the following identity

∫ +∞

−∞
x2ne−

1
2ax

2 =
√

2π
a

1
an

(2n− 1)!! forn > 0 (4.5.14)

combined with a Gaussian integral for τ = 0, Eq. (4.5.13) can be evaluated as

δ(α,β,γ,ζ) = 1
π
√

2α+β+γ+ζα!β!γ!ζ!

√π

2
c0 +

(α+β+γ+ζ)/2∑
τ=1

c2τ

√
π

2
1
4τ

(2τ − 1)!!

 . (4.5.15)

4.5.3 Results

4.5.3.1 Initial Conditions

For this problem M = 100 bosons in the trap are used, where all reside in the ground
harmonic oscillator state initially

|n〉 =
Ω∏
α=0
|n(α)〉 = |n(0), n(1), . . . , n(Ω)〉 = |100, 0, . . . , 0〉 . (4.5.16)

As with the double well problem, the coherent states are sampled via a gamma distribu-
tion like in Eq. (4.4.8). The ground state with occupation n(α=0) = 100 is sampled with
compression parameter σ(α=0) = 1.0, whilst the excited states with occupation n(α>0) = 0
are sampled with compression parameter σ(α>0) = 10000. The large compression parame-
ter for the latter is necessary to ensure the coherent states do not become uncoupled over
the course of the calculation.

Initial amplitudes are calculated by projecting the basis onto this initial Fock state

〈zk(0)|n〉 =
K∑
l=1

Dl(0) 〈zk(0)|zl(0)〉 , (4.5.17)
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Figure 4.5: Space-time representation of the evolution of the 1-body density for MCT-
DHB (left) and CCSB with K = 250 configurations and Ω = 25 harmonic
oscillator levels in the basis (right).

where

〈zk(0)|n〉 = 〈
Ω∏
α=0

z
(α)
k (0)|n)〉

= 〈z(α=0)
k (0)|n(α=0)〉

= e−
|z(α=0)
k

(0)|2

2
(z(α=0)∗
k (0))100
√

100!
.

(4.5.18)

The coherent state width parameter is set to γ = mω/h̄ = 1.

4.5.3.2 Dynamics

The dynamics are followed by observing the evolution of the density matrix over the course
of the calculation, which in CCSB can be evaluated as

ρ(α,β) = 〈Ψ|â(α)†â(β)|Ψ〉 =
K∑
k,l

D∗kDlei(Sk−Sl) 〈zk|zl〉 z
(α)∗
k z

(β)
l . (4.5.19)

As the creation and annihilation operators have different interpretations in CCSB and
MCTDHB (acting on quantum states vs orbitals), the density matrix in this form also has
a different interpretation. Therefore, to compare the two methods on the same footing, the
1-body density is evaluated as a function of position, which for CCSB can be calculated
by the following

ρ(Q) = 〈α|ρ(α,β)|β〉

=
Ω∑

α,β=0

1√
2αα!

( 1
π

)1/4
e−Q2/2Heα(Q)ρ(α,β) 1√

2ββ!

( 1
π

)1/4
e−Q2/2Heβ(Q).

(4.5.20)
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The 1-body density can also be calculated by MCTDHB, and this allows a direct com-
parison between the methods to be made as shown in Fig. 4.5. The CCS calculation uses
K = 250 configurations and Ω = 25 harmonic oscillator levels in the basis. It can be seen
from the figures that CCSB compares well with the MCTDHB calculation, reproducing
the oscillation in the 1-body density of the bosonic cloud due to the displacement of the
potential from the origin. This brief initial application to a Bose-Einstein condensate
system provides impetus for investigation of further problems in this vein with CCSB.

103



104 Chapter 4. Coupled Coherent States for Indistinguishable Bosons (CCSB)

4.6 Conclusions

In this chapter CCS has been extended to investigate systems of indistinguishable bosons,
as MCTDH and ML-MCTDH have been. The modification to the method is relatively
small, and more of an interpretive one rather than reformative. Instead of the coherent
state basis functions being used to represent individual degrees of freedom like in the
standard distinguishable representation of CCS, in CCSB they are used as a basis for
Fock states that represent all degrees of freedom, and their occupation of quantum states,
simultaneously. CCSB therefore treats problems involving indistinguishable bosons in
second quantisation representation, and any Hamiltonians studied by the method must be
in this form, and subsequently normal-ordered like in standard CCS.

Two example model Hamiltonians have been studied in this chapter, illustrating how
the second quantisation and normal ordering may be carried out. In the first example,
CCSB was applied to the system-bath asymmetric double well tunnelling problem studied
in Chapters 2 and 3. As the bath is comprised of oscillators of the same frequency,
they were treated as indistinguishable and the bath portion of the Hamiltonian second
quantised. The system tunnelling portion of the Hamiltonian was kept in distinguishable
representation, therefore this first application was a hybrid of standard CCS and CCSB.
This does not pose a problem however, as the wavefunction representation and working
equations for trajectories and time-dependence of amplitudes are the same in each. The
previously studied 20D, system-bath coupling λ = 0.1 case was investigated initially.
The second quantised bath required Ω = 5 harmonic oscillator levels in the basis for
the converged result, thus the dimensionality of the problem was reduced from 20 to 6.
The CCSB calculation was in excellent agreement with the benchmark result, illustrating
the accuracy of the method and providing incentive to study the more difficult cases put
forward by the benchmark in Chapter 2. For the 40D, λ = 0.1 problem CCSB also
performed well, producing a result that was in very good agreement with the benchmark
calculation, and reducing the dimensionality of the problem from 40 to 9. The 80D,
λ = 0.1, and 20D, λ = 0.2 cases were not as successful, however these are much more
challenging problems and the fact that CCSB was successful in treating the first two cases
is promising. In particular, no previous quantum dynamics method that has studied the
Hamiltonian [39, 46, 138, 140] has produced a result as accurate as CCSB for the 20D,
λ = 0.1 case.

In the second example, a model Hamiltonian for a system of 100 bosons in a shifted
harmonic trap was studied, and oscillations in the 1-body density calculated. This is
a system composed entirely of indistinguishable bosons, and provided an introductory
test for CCSB in the realm of Bose-Einstein condensates. Ultimately, the method is
aimed for use in studying such systems. Matrix elements of 2-body operators had to be
calculated, as is common for interacting condensates, and it was demonstrated that these
could be computed analytically by CCSB. The density oscillations were compared to a
MCTDHB calculation that was equivalent to using the Gross-Pitaevskii equation, which
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are two of the main methods used for studying condensates theoretically. The CCSB result
compared well to that of MCTDHB/GPE, and provides motivation for further study on
more challenging Bose-Einstein condensate systems.

This chapter concludes the portion of this thesis concerning developing extensions to
the CCS family of methods. In the following chapter there is a change of tack, with the
existing AIMC method used to study the nonadiabatic dynamics of 2-ethylpyrrole, and
compare to pyrrole.
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Chapter 5

Ultrafast Dynamics of
2-Ethylpyrrole

5.1 Introduction

A number of fundamental processes in chemistry and biology involve ultrafast excited
state dynamics following photo-absorption, including light harvesting in plants and natural
fluorescence. Nitrogen containing aromatic heterocycles are found in molecules responsible
for the above processes, and in particular pyrrole is a component of chlorophyll as well as
being present in chromophores of other important natural compounds such as: vitamin
B12; heme; bilirubin; biliverdin; and tryptophan. Due to this prevalence, in recent years
there has been significant interest in its excited state dynamics both experimentally [110,
190–205] and theoretically [109,204–224].

Whilst a large component of effort has been directed to understanding the excited
state dynamics of pyrrole, much less well studied are its derivatives. This is also an
important area to explore how modification alters its function. Recently, 2-ethylpyrrole
(2-EP) has been studied experimentally by H (Rydberg) atom photofragment transla-
tional spectroscopy (HRA-PTS) [222], time-resolved velocity map imaging (TR-VMI) and
time-resolved ion yield (TR-IY) mass spectrometry [225] to examine the effects of ring-
substitution on pyrrole. The only theoretical investigations on 2-EP have consisted of
electronic structure calculations [222], therefore in the present chapter nonadiabatic quan-
tum dynamics calculations are performed on the molecule via the ab initio multiple cloning
(AIMC) method [34], to offer insight to experiment [225]. The effect of selective deuter-
ation at the N-H bond has also been studied experimentally [225], so this is modelled as
well to illustrate the capability of AIMC to reproduce experimental kinetic isotope effects.
Pyrrole has been studied previously by AIMC [223, 224], and these results are presented
with additional analysis, as well as unpublished deuterated pyrrole calculations performed
by D. Makhov, and comparison to experiment [203].

A description of the AIMC method, including the diabatic to adiabatic modification of
the MCE working equations from Sec. 1.4.2.2 to allow on-the-fly dynamics will be presented
in Sec. 5.2. Following this, a brief overview of the experiments [203, 225] that the AIMC
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Figure 5.1: Potential energy curve for the ground and two lowest lying πσ∗ singlet states
of 2-EP calculated at the SA3-CAS(8,7) level of theory, overlaid with a brief
schematic of the photoexcitation process, and image of the 2-EP molecule.

calculations are being compared to will be given in Sec. 5.3. The computational details
for the AIMC calculations will then be shown in Sec. 5.4, and subsequently the results of
these and comparison to experiment will be given in Sec. 5.5, with 2-EP in Sec. 5.5.1 and
pyrrole in Sec. 5.5.2. Finally, conclusions drawn from these results and possible future
molecules of photochemical interest to be studied will be presented in Sec. 5.6. Initially
however, it is worthwhile to briefly summarise the current understanding of the ultrafast
excited state dynamics of pyrrole, and to contrast and compare to 2-EP.

Early electronic structure work on pyrrole [206–209] helped to characterise the lowest
energy excited states, with the seminal work by Sobolewski et al. [207, 208] identifying
the importance of the low lying πσ∗ states. These states are dissociative along the N-H
stretch coordinate, and provide an ultrafast radiationless transfer route through a coni-
cal intersection with the ground state, deactivating potentially reactive excited species.
There are two low lying πσ∗ states in pyrrole that have spin symmetry labels 11A2 and
11B1 due to its C2v molecular symmetry. Transitions from the X1A1 ground state to the
lower energy of these two, the 11A2(πσ∗) state, are formally electric dipole forbidden.
However, it can become directly populated through vibronic mixing with nearby higher
lying ππ∗ states 11A1 and 11B2 (albeit with low transition cross-sections), or indirectly via
internal conversion from the 11B2(ππ∗) state at shorter wavelengths. Electronic structure
calculations for 2-EP revealed an increase in oscillator strength for the ground to first
excited πσ∗ state transition compared to pyrrole [222], which is to be expected due to
the reduction in molecular symmetry to Cs in the anti conformation and C1 in the lowest
energy gauche conformer. Fig. 5.1 shows a potential energy curve along the N-H stretch
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coordinate for the ground and two lowest lying singlet πσ∗ states for 2-EP, calculated at
the SA3-CAS(8,7) level of theory (further details of this are in Sec. 5.4). The curves are
labelled by their adiabatic electronic states, and are overlaid with a brief schematic of the
photoexcitation process, and image of the 2-EP molecule.

Early experimental studies on pyrrole observed two H atom dissociation channels: one
with a sharp high kinetic energy distribution of H atoms emitted perpendicular to the
transition dipole moment; and one with a broader lower kinetic energy distribution, and
a more isotropic emission [110, 190–194]. It was posited that the former high kinetic
energy dissociation channel was due to rapid N-H dissociation along the 11A2(πσ∗) state,
followed by conical intersection with the ground state to produce a pyrrolyl radical in the
12A2 state. The latter lower kinetic energy dissociation channel was thought to be due
to internal conversion to a “hot” ground state, followed by statistical dissociation. The
high kinetic energy channel is believed to be dominant at longer pump wavelengths, with
Wei et al. [191] observing approximately 76% following this route at λ = 243.1 nm via the
integration of the kinetic energy spectrum. At shorter pump wavelengths (λ < 218 nm)
the lower kinetic energy channel is dominant [110], with 11B2(ππ∗) populated initially
before passing through conical intersections to reach the ground state of the radical (either
sequentially via 11B2(ππ∗) → 11A2(πσ∗) → 12A2, or by some other mechanism). The
addition of a σ donating ethyl group in 2-EP causes the onset of H atom dissociation to
appear at longer wavelengths: 267 nm in 2-EP [222] vs 254 nm in pyrrole [110]. Excitation
in the range 248 ≤ λ ≤ 263 nm leads to a single high kinetic energy peak in the H atom
total kinetic energy release (TKER) spectrum due to dissociation from the lowest energy
πσ∗ state [222].

Time-resolved studies on pyrrole provided quantitative measures of the H atom appear-
ance lifetimes in each of these dissociation channels [200–205]. Lippert et al. [200] con-
ducted the first of these studies by using TR-IY to obtain time-constants of τ1 = 110±80 fs
for the high kinetic energy channel and τ2 = 1.1 ± 0.5 ps for the lower kinetic energy
channel at λ = 250 nm. Subsequently, Roberts et al. used both TR-VMI and TR-IY
to observe a single time constant of 126 ± 28 fs for the high kinetic energy channel at
λ = 250 nm [203]. It was postulated that tunnelling out of the quasi-bound region of
the 11A2(πσ∗) state played a role at this excitation wavelength, as a time constant of
1.4± 0.3 ps for selectively deuterated pyrrole-d1 dissociation gave a kinetic isotope effect
(KIE) of ∼ 11. Further pump wavelengths were used by Roberts et al. in this study,
with excitation at λ = 238 nm yielding a time constant of 46 ± 22 fs for undeuterated
pyrrole, and 136 ± 38 fs for pyrrole-d1. Due to the smaller KIE (∼ 3), this was therefore
attributed to faster, over the barrier dissociation with negligible contribution from tun-
nelling. Finally, at λ = 200 nm a time constant of 52± 12 fs was observed, attributed to
initial population of the 11B2(ππ∗) state and subsequent rapid internal conversion to the
11A2(πσ∗) state and dissociation. A low kinetic energy feature was observed at this wave-
length, however it had a time-constant of 1.0±0.4 ns rather than the picosecond timescale
observed by Lippert et al. [200] It was suggested that the nanosecond time-constant was
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110 Chapter 5. Ultrafast Dynamics of 2-Ethylpyrrole

due to C-H statistical dissociation, that N-H statistical dissociation may have an even
longer timescale, and the picosecond timescale observed by Lippert et al. could be due to
undesired multiphoton dissociative ionisation events [203]. The TR-VMI study by Roberts
et al. at pump wavelength λ = 238 nm is used for comparison to AIMC calculations on
pyrrole in Sec. 5.5.2, and the experimental details will be discussed further in Sec. 5.3.

TR-VMI and TR-IY studies on 2-EP in the 248 ≤ λ ≤ 265 nm range found high kinetic
energy H atom appearance lifetimes on the order of 50–80 fs, similar to the over the barrier
dissociation times for pyrrole [225]. Selectively deuterated 2-EP-d1 at λ = 257 nm had an
appearance lifetime of 140± 20 fs giving a KIE of ∼ 2, further suggesting that tunnelling
is not involved in the dissociation mechanism. At excitation wavelengths shorter than
248 nm, an additional low kinetic energy feature appeared in the H atom TKER spectrum,
similar to pyrrole. However, the appearance lifetime was ∼1.5 ps, intimating it was not due
to statistical dissociation [225]. The same experimental methodology and kinetic fits were
used as Roberts et al. with pyrrole [203], suggesting undesired multiphoton dissociative
ionisation events were not the cause. Furthermore, the same low kinetic energy feature
was observed with 2-EP-d1 at λ = 238 nm, implying this feature is due to fission of the N-
H/N-D bond. Involvement of higher lying excited states (such as ππ∗) and slow migration
from them was proposed, with coupling to a number of vibrational modes. The TR-VMI
studies by Cole-Filipiak et al. in this work are used for comparison to AIMC calculations
on 2-EP in Sec. 5.5.1, and the experimental details will be discussed further in Sec. 5.3.

Previous quantum dynamics calculations on pyrrole have used reduced dimensionality
potential energy surfaces [210–212], surface hopping [214–218], and MCTDH with param-
eterised potential energy surfaces [204, 205, 219–221]. The AI-MCE [100] and AIMC [34]
methods have also previously been used for dynamics studies on pyrrole [109,223,224]. In
the former, using the AI-MCE method, conical intersections of the 12A2 and 12B1 radical
states following H dissociation were observed, helping to explain the lack of experimentally
observed pyrrolyl radicals in the 12B1 state [109]. In the latter, using the AIMC method,
it was suggested that some low kinetic energy H atoms are formed in an ultrafast manner
as a result of dissociation where the radical does not transfer to the ground state immedi-
ately [223,224]. These AIMC results are re-analysed in this chapter and compared to the
2-EP calculations, as well as the newly calculated deuterated pyrrole results performed by
D. Makhov. Before this however, the AIMC method is described in the following section.

The results from this chapter have been written into a manuscript that is in preparation
to be published [226].
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5.2 Ab Initio Multiple Cloning (AIMC)

The AIMC scheme is based on the second version of the MCE method described in
Sec. 1.4.2.2, and its subsequent interface with electronic structure software to produce
AI-MCE mentioned in Sec. 1.4.3. A deficiency of the MCE and AI-MCE methods that
AIMC seeks to address is the poor convergence at long times, due to the mean-field Ehren-
fest trajectories producing unphysical dynamics when they have significant components
on multiple electronic states. AIMC achieves this by expanding the basis set, or “cloning”,
when a trajectory has significant amplitude on more than one electronic state, and the
forces on these electronic states are considerably different. In this case, the Ehrenfest
dynamics would be a poor description as they contain an average over all the states. This
cloning procedure typically occurs following a nonadiabatic transition, or in regions of
strong nonadiabatic coupling. It splits the affected basis function into two new basis func-
tions, one with amplitude on only one electronic state, and another with amplitude on all
the remaining states (although usually one state is dominant). This is analogous to the
spawning procedure in AIMS, reviewed in Sec. 1.5.2.

5.2.1 Working Equations

The wavefunction ansatz for AIMC is that of MCE v2, given in Eq. (1.4.18). The work-
ing equations describing the trajectories and amplitudes are given in Sec. 1.4.2.2 in dia-
batic representation. However, electronic structure programs calculate adiabatic electronic
states, so the matrix element Ĥij = 0 ∀ i 6= j. Therefore, the working equations of MCE v2
need to be modified to allow the interface with electronic structure software for on-the-fly
calculations.

Rather than the off diagonal elements of the Hamiltonian, electronic structure software
can calculate the nonadiabatic coupling vector dij(qk) at the coordinate centre of the
kth basis function |zk〉, which couples the ith and jth electronic states in the adiabatic
representation via the gradient ∇q

dij(qk) = 〈φi|∇q|φj〉 . (5.2.1)

The equations of motion for the trajectories can then be given in adiabatic representation,
with the time-dependence of the phase space centres (qk,pk) of the coherent states given
as

q̇k = pkm−1 (5.2.2a)

ṗk = Fk (5.2.2b)

Fk =
J∑
i=1

a∗ikaik∇qVi(qk)

+
J∑
i=1

∑
j 6=i

a∗ikajkdij(qk) [Vi(qk)− Vj(qk)] .
(5.2.2c)
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112 Chapter 5. Ultrafast Dynamics of 2-Ethylpyrrole

In the above, m is a vector of atomic masses, Fk is the Ehrenfest force, Vi(qk) is the
adiabatic electronic energy of the ith electronic state, and aik is the electronic state am-
plitude, given by aik = dikeisik . Comparison of the above with the trajectories for AIMS in
Eq. (1.5.7) reveals the main difference between the two methods — AIMC uses Ehrenfest
trajectories that incorporate effects from multiple electronic states, whereas AIMS uses
classical trajectories that evolve only on the potential energy surface the trajectory finds
itself on. This has two advantages: firstly, the Ehrenfest trajectories take into account
nonadiabatic effects at all times, whereas nonadiabatic effects are only incorporated in the
region of conical intersections in AIMS; secondly, Ehrenfest trajectories do not separate
as quickly as classical ones, which can aid convergence in the short time period.

The time-dependence of the electronic state amplitudes aik is given by

ȧik = − i
h̄

J∑
j=1

Hel
ij(zk)ajk, (5.2.3)

where the elements of the electronic Hamiltonian Hel
ij(zk), evaluated at the phase space

centres of zk, are

Hel
ij(zk) =

Vi(qk) i = j

−ih̄pkdij(qk)m−1 i 6= j
. (5.2.4)

The time-dependence of the multiconfigurational amplitudes Dk is given by

K∑
l=1
〈ϕk|ϕl〉 Ḋl = − i

h̄

K∑
l=1

[
〈ϕk|Ĥ|ϕl〉 − ih̄ 〈ϕk|ϕ̇l〉

]
Dl. (5.2.5)

In the above, the overlap 〈ϕk|ϕl〉 is given by Eq. (1.4.21) in MCE v2, whilst the right-
hand time-derivative of this overlap 〈ϕk|ϕ̇l〉, which accounts for the time-dependence of
the basis functions, is given by

〈ϕk|ϕ̇l〉 = 〈zk|żl〉
[
J∑
i=1

a∗ikail

]
+ 〈zk|zl〉

[
J∑
i=1

a∗ikȧil

]
. (5.2.6)

The entire Hamiltonian matrix elements 〈ϕk|Ĥ|ϕl〉 are the sum of kinetic energy and
potential energy components, as well as a nonadiabatic coupling term

〈ϕk|Ĥ|ϕl〉 =
J∑

i,j=1
a∗ikajl 〈zkφi|Ĥ|φjzl〉

=
J∑

i,j=1
a∗ikajl

[
δij 〈zk|T̂ |zl〉+ δij 〈zk|Vi(q)|zl〉 − h̄2 〈zk|dij(q)q̇|zl〉

]
.

(5.2.7)

The kinetic energy component may be calculated analytically using the usual normal
ordering

〈zk|T̂ |zl〉 = 〈zk|zl〉
h̄2γ

4
(z∗kz∗k + zlzl − 2z∗kzl), (5.2.8)

where γ is a vector of widths for the multidimensional coherent state zk, which will have

112



5.2. Ab Initio Multiple Cloning (AIMC) 113

different values for the different atoms the basis is representing. The potential energy
and nonadiabatic coupling matrix elements (NACMEs) must be calculated approximately,
and a bra-ket averaged Taylor (BAT) expansion is utilised that takes the average of two
Taylor expansions centred around the maximum of one of the basis functions involved in
the matrix element. For the potential energy term, expansion to first order gives

〈zk|Vi(q)|zl〉 ≈ 〈zk|zl〉
(
Vi(qk) + Vi(ql)

2

)
+
(〈zk|(q − qk)|zl〉∇qVi(qk) + 〈zk|(q − ql)|zl〉∇qVi(ql)

2

)
.

(5.2.9)

The potential energy and its derivative has already been evaluated at coordinates qk and ql
for the trajectories in Eq. (5.2.2), therefore no additional electronic structure calculations
are required to evaluate the potential energy matrix element. A zeroth order expansion
has been used previously in AI-MCE [100, 109], however this first order expansion is no
more expensive and should be more accurate. Going to second order is possible, but would
be more expensive as second derivatives of the potential energy surfaces would be required.

The NACME is approximated by a zeroth order BAT expansion to give

〈zk|dij(q)q̇|zl〉 ≈
i

2h̄
〈zk|zl〉 (q̇kdij(qk) + q̇ldij(ql)) . (5.2.10)

As with the potential energy matrix element, the NACME requires no extra electronic
structure calculations to evaluate the BAT expansion. Each trajectory may also be propa-
gated individually and then combined via the time-dependence of the multiconfigurational
amplitudesD after the calculations have taken place, provided that the electronic structure
information is saved at each time step.

5.2.2 Cloning Procedure

The previous section described the working equations and matrix element evaluation for
the AIMC method, and this present section describes the cloning procedure that expands
the basis to address the mean-field deficiency of the Ehrenfest trajectories, and take into
account wavepacket splitting. The cloning procedure is applied when a trajectory |ϕk〉 has
significant population, or equivalently significant amplitude, on multiple electronic states
with differing forces. In this circumstance, the Ehrenfest force guiding the trajectory would
be an unphysical average of the different forces and lead to a poor reproduction of the
dynamics occurring. The difference between the force on the ith state and the Ehrenfest
average force is given by

∆Fik = ∇qVi(q)−
J∑
j=1

a∗jkajk∇qVj(q). (5.2.11)

The “breaking force” that triggers cloning is then defined as

Fbr
ik = a∗ikaik∆Fik. (5.2.12)
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114 Chapter 5. Ultrafast Dynamics of 2-Ethylpyrrole

When |Fbr
ikm−1| > ξclon and the nonadiabatic coupling vector is small |dij(qk)| < ξnac

cloning occurs. The thresholds ξclon and ξnac are determined empirically. For the former,
ξclon needs to be large enough to limit the rate of basis set expansion so that it does not rise
exponentially, but small enough to allow cloning to take place at all. The latter threshold
ξnac is utilised to ensure that cloning does not take place in regions of large population
transfer, again to limit the size of the basis expansion. Furthermore, when there is large
population transfer cloning should not need to be applied since the state the population
is transferred to will be dominant in the dynamics.

When the cloning procedure is applied, one trajectory |ϕk〉 becomes two: |ϕ′k〉 and
|ϕ′′k〉. The amplitudes of the electronic states are adjusted to ensure that one trajectory
has population on the ith electronic state with zero on the rest, whilst the other is the
opposite — zero population on the ith electronic state, and non-zero on the rest

|ϕ′k〉 =

 aik
|aik|

|φi〉+
∑
j 6=i

0× |φj〉

 |zk〉 (5.2.13a)

|ϕ′′k〉 =

0× |φi〉+
1√

1− |aik|2
∑
j 6=i

ajk |φj〉

 |zk〉 . (5.2.13b)

The multiconfigurational amplitudes are then adjusted to ensure that the wavefunction
remains unchanged as a result of the cloning procedure

D′k = Dk|aik| (5.2.14a)

D′′k = Dk

√
1− |aik|2. (5.2.14b)
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5.3 Experimental Details

A brief overview of the experiments conducted by Cole-Filipiak et al. [225] and Roberts et
al. [203] on 2-EP and pyrrole, respectively, and their selectively deuterated forms will be
presented herein, to provide some background to the results AIMC is aiming to add insight
to. Both sets of experiments use TR-VMI apparatus with temporally delayed femtosec-
ond “pump” and “probe” laser pulses to provide ultrafast time-resolved photochemical
measurements. The pump pulse initiates the photochemistry, whilst the probe ionises the
resulting photoproducts. The ionised photoproducts are accelerated down a time-of-flight
tube, and impact an imaging stack that is gated to allow exclusive detection of H+ (or
D+). This detector projects the 3-dimensional photofragment velocity distribution onto
a 2-dimensional image to produce a VMI, and the VMI may then be transformed into
a TKER spectrum. Multiple TKER spectra may be recorded at various time delays to
produce H/D transients, which are used to obtain their appearance lifetimes.

The pump and probe laser pulses are both generated from an 800 nm laser pulse
produced by a Ti:sapphire oscillator with temporal width at half maximum of ∼ 40 fs.
This laser pulse is split and used to pump two optical parametric amplifiers that produce
the pump laser pulse in the wavelength range 238 ≤ λpump ≤ 265 nm for 2-EP, and 238 ≤
λpump ≤ 250 nm for pyrrole; and the probe laser pulse at wavelength λprobe = 243.1 nm.
The pump laser pulse at λpump = 200 nm for pyrrole is produced in a different manner via
frequency doubling, however this result is not included for comparison, and only the over
the barrier dissociation at λpump = 238 nm is considered. The probe pulse is produced
at λprobe = 243.1 nm to facilitate the 2+1 resonance enhanced multiphoton ionisation
(REMPI) of H/D atom photofragments via the two photon allowed 2s←1s transition, and
subsequent one photon ionisation. A Gaussian instrument response function GIRF(t) may
be obtained via the convolution or cross-correlation of the pump and probe laser pulses,
and fitting to a Gaussian distribution. The temporal width at half maximum for GIRF(t)
was found to be ∼ 90 fs for 2-EP [225], and ∼ 120 fs for pyrrole [203].
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5.4 Computational Details

As with previous AIMC studies [34, 223, 224], dynamics were simulated using a modified
version of AIMS-MOLPRO [101, 102, 104] that incorporates Ehrenfest trajectories. Elec-
tronic structure calculations were performed using the complete active space self-consistent
field (CASSCF) method. The electronic basis set used was Dunning’s cc-PVDZ set [227],
with one additional additional diffuse s function, one additional set of p functions, and
one additional set of d functions added to the nitrogen atom attached to the dissociative
hydrogen atom; as well as one additional diffuse s function, and one additional set of p
functions added to the dissociative hydrogen atom, for both 2-EP and pyrrole. The active
space used for both 2-EP and pyrrole has 8 electrons in 7 orbitals: three ring π orbitals
and two corresponding π∗ orbitals, and the N-H σ and corresponding σ∗ orbital. State
averaging was performed over three states for 2-EP and four states for pyrrole, and dy-
namics were performed on three states: the ground and two lowest excited singlet states.
The active space and the electronic configurations for the lowest three electronic states of
2-EP are illustrated in Fig. 5.2 at equilibrium and extended N-H bond length. The width
of the Gaussian basis functions γ was taken to be 4.7 Bohr−2 for hydrogen, 6.6 Bohr−2

for deuterium, 22.7 Bohr−2 for carbon, and 19.0 Bohr−2 for nitrogen, as suggested previ-
ously [228].

Initial positions and momenta for the nuclei were sampled from the ground state vibra-
tional Wigner distribution in the harmonic approximation using vibrational frequencies
and normal modes calculated at the same level of CASSCF theory as above. As in previ-
ous AIMC works [34,223,224], excitation from ground to excited state is approximated by
simply placing the trajectory on the excited electronic state surface. It is noted that the

σ π π π σ∗ π∗ π∗

S0 2 2 2 2 0 0 0
S1 2 2 2 1 1 0 0
S2 2 2 1 2 1 0 0

π σ π π σ∗ π∗ π∗

S0 2 2 2 1 1 0 0
S1 2 2 1 2 1 0 0
S2 2 1 2 2 1 0 0

Figure 5.2: Active space orbitals and electronic configurations at the SA3-CAS(8,7)-SCF
level of theory for the lowest three electronic states of 2-EP at equilibrium
N-H bond length (top), and an N-H bond length of 2.5 Å (bottom).
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Molecule Initial Starting Adiabatic Cloning
Label Trajectories Electronic State Events

2-EP(S1) 600 S1 142
2-EP(S2) 600 S2 51

2-EP-d1(S1) 600 S1 18
pyrrole 900 S1 250

pyrrole-d1 900 S1 39

Table 5.1: Molecule labels, initial number of trajectories, starting electronic state and
number of cloning events for each AIMC calculation carried out in this chap-
ter.

finer details of initial photoexcitation are not accounted for completely by this approxi-
mation, and there may be some small energetic sampling deficiencies that are discussed in
the following section. The temporal widths of the pump and probe laser pulses from the
photoexcitation are taken into account when calculating time-constants for H dissociation
however, the details of which shall also be explained in the following section.

The initial number of trajectories, starting adiabatic electronic state, and number
of cloning events for each calculation carried out in this work are shown in Table 5.1.
The pyrrole and deuterated pyrrole and 2-EP calculations all start their dynamics on
the S1 state, whilst undeuterated 2-EP calculations are performed starting on the S1 and
S2 states. Hereafter, the 2-EP calculations are referred to with the starting adiabatic
electronic state in parenthesis afterwards. The thresholds for cloning were set to ξclon =
5 × 10−6 a.u. and ξnac = 2 × 10−3 a.u. The number of cloning events per branch was
restricted to three, to limit the rate of basis set expansion. The smaller number of cloning
events for 2-EP(S2) compared to 2-EP(S1) is due to more complete population transfer at
conical intersections. The smaller number of cloning events for 2-EP-d1(S1) and pyrrole-d1

compared to 2-EP(S1) and pyrrole, respectively, is due to the lower frequency of the N-D
vibration compared to N-H, meaning fewer conical intersections are encountered along this
coordinate. Furthermore, the cloning procedure models wavepacket splitting, and this is
less likely to occur for D than H as it is heavier. Calculations were run for 350 fs for 2-EP
and 200 fs for pyrrole, both using a timestep of ∼0.6 fs (2.5 a.u.), or until the N-H bond
exceeded 4 Å, which was defined as the point of dissociation.
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5.5 Results

In the following section, calculated H/D atom TKER spectra are presented for 2-EP and
pyrrole and compared to experiment. The dissociation energies obtained from calculation
are smoothed with Gaussian functions (σ = 200 cm−1) to create a curve for the TKER
spectrum, as opposed to a stick spectrum of delta functions. This allows better compar-
ison to experiment, and this procedure has been used before to obtain simulated TKER
spectra [223,224].

Calculated dissociation times are also presented, in terms of raw dissociation times
from the trajectory data, and following a smoothing procedure to take into account exper-
imental laser pump and probe temporal widths. This smoothing procedure is applied to
obtain dissociation time constants that are comparable to experiment, as the simulation
has well defined start and end points, however, experimentally these points are “blurred”
by the laser pump and probe temporal widths. The process for this smoothing procedure
is as follows: the pump and probe laser pulses are assumed to be Gaussian in shape, with
widths obtained from experimental cross-correlation measurements. These widths are used
to convert the raw dissociation times from the trajectory data into Gaussian probability
distributions, centred around each raw dissociation time, with width parameters σpump

and σprobe. These Gaussian distributions are summed up for each trajectory with associ-
ated weights from calculated amplitudes, enabling a smoothed transient to be produced
that can be compared to experimental data. The σpump and σprobe parameters used are
defined in the relevant section for 2-EP and pyrrole. This smoothed transient is then
fitted to the kinetic model employed in experiment [203, 225] to obtain time constants,
and these fits are analysed relative to the raw dissociation times to better understand the
kinetic model and add insight to experimental results. The kinetic model is given by an
exponential rise with time constant τ and time zero correction t0, convoluted with a Gaus-
sian instrument response function GIRF(t) (with width parameter σXC, obtained from the
cross-correlation/convolution of pump and probe pulses), multiplied by amplitude A and
Heaviside unit step function Θ(t)

S(t) = A ·GIRF(t) ∗
[(

1− e−(t−t0)/τ
)

Θ(t)
]
. (5.5.1)

Calculated velocity distributions of ejected H atoms are also produced relative to the
molecular axes for 2-EP(S1), rather than experimental velocity map images (VMIs) that
are relative to the electric component of the laser field.

5.5.1 2-Ethylpyrrole (2-EP)

Calculated TKER spectra for 2-EP are shown in Fig. 5.3, with experimental TKER spectra
shown on the insets [225]. The theoretical spectra show good qualitative agreement with
those obtained by experiment, with one main peak and some smaller features at lower
kinetic energies. Comparing the spectra from S1 and S2 dynamics in Fig. 5.3a, a broader
profile of the main peak from 2-EP(S2) than 2-EP(S1) is observed. This is also seen
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Figure 5.3: (a) Calculated H atom TKER spectrum for 2-EP(S1) and 2-EP(S2),
with experimental results at a pump wavelengths of λpump = 262 nm
and λpump = 252 nm on inset [225]. (b) Calculated H atom TKER spectrum
for 2-EP-d1(S1) overlaid with that of 2-EP(S1), and experimental results at
a pump wavelength of λpump = 257 nm on inset [225].

experimentally upon decreasing the pump wavelength, where the effect of going from a
262 to 252 nm pump pulse is illustrated on the inset. This indicates that excitation at
shorter wavelengths may involve some population of the S2 state initially, rather than
just the S1 state. Quantitatively, the energy of the main peak is roughly 1.5 times larger
from simulation than experiment, due to inaccuracies in the CASSCF potential energy
surface. A similar effect has been noted previously with pyrrole [109,223]. There are also
slightly larger shoulders on the high energy side than experiment that can be ascribed to
the sampling procedure producing some artificially high energy trajectories. This issue
may be remedied by a new sampling procedure, currently in development, that simulates
the initial photoexcitation by taking into account the laser pump wavelength and pulse
shape. Preliminary results using this procedure appear to confirm this hypothesis [229].

The TKER spectrum for 2-EP-d1(S1) is shown in Fig. 5.3b, with the 2-EP(S1) TKER
spectrum overlaid for comparison. An experimental spectrum for 2-EP-d1 at a pump
wavelength of 257 nm is shown on the inset, with undeuterated 2-EP at the same pump
wavelength overlaid [225]. It can be seen that AIMC correctly reproduces the shift of the
main peak to lower kinetic energies, due to the difference in zero point energies of the
deuterated and undeuterated forms of 2-EP. Both parts of Fig. 5.3 therefore demonstrate
the ability of AIMC to reproduce spectral features observed experimentally.

Turning to the kinetics of dissociation, a cumulative sum of raw dissociation times,
alongside smoothed H/D atom appearance transients with associated fits, and experimen-
tal data are presented in Fig. 5.4 for 2-EP(S1), 2-EP(S2), and 2-EP-d1(S1). The proportion
of trajectories that are dissociated by the end of each calculation is shown by a bar chart
on the insets. The smoothing procedure is performed as outlined in the introduction to
this section, taking into account the temporal widths of the pump and probe laser pulses.
As discussed in Sec. 5.3, the pump and probe laser pulses are both produced in the same
manner, so it is expected that their temporal widths will be similar. However, as the
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Figure 5.4: Raw cumulative sum of dissociation times from trajectories, alongside
smoothed H atom appearance transients with associated fits and experi-
mental data for (a) 2-EP(S1) with experimental data at a pump wavelength
of λpump = 262 nm, (b) 2-EP(S2) with experimental data at a pump wave-
length of λpump = 252 nm, (c) 2-EP-d1(S1) with experimental data at a
pump wavelength of λpump = 257 nm. Proportion of trajectories that are
dissociated by the end of the calculations are shown on the insets of each.
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Figure 5.5: Averaged electronic state populations for 2-EP(S2) trajectories.

probe consists of a 2+1 REMPI of H atom photofragments, this simultaneous absorption
of 3 photons will reduce the width of the Gaussian probability distribution that models
the probe pulse by a factor of

√
3, such that σprobe = σpump/

√
3. Using the experimen-

tally obtained cross-correlation width of the pump and probe pulses σXC = 38 fs [225],
(which gives a temporal width at half maximum of ∼ 90 fs), the Gaussian probability
distribution widths are σpump = 31 fs and σprobe = 31/

√
3 = 18 fs. Fitting the smoothed

transients obtained from these trajectory dissociation time probability distributions to
the kinetic model of Eq. (5.5.1) then uses σXC for the width of GIRF(t). The time zero
correction is applied to the experimental data as determined in Ref. [225], whilst it is not
necessary (t0 = 0) for the AIMC data. The experimental data shows a non-zero baseline
at negative times due to “reverse dynamics”. In these reverse dynamics, the probe pulse
acts as a pump to photoexcite 2-EP, and then subsequently provides two photons in the
2+1’ REMPI scheme for the dissociated H atom, whilst the third photon is provided by the
“pump” pulse. This phenomenon has been explained previously in Refs. [200] and [203].

Visually, it can be seen that the smoothed transients compare well to experimental
data, albeit with a slight time shift for 2-EP-d1(S1). The lifetimes obtained of 65.9±0.5 fs,
71.8±0.5 fs, and 107.3±1.2 fs for 2-EP(S1), 2-EP(S2), and 2-EP-d1(S1), respectively, also
compare well to the experimentally obtained 55± 13 fs and 70± 20 fs at λpump = 262 nm
and 252 nm for 2-EP, and 140 ± 20 fs at λpump = 257 nm for 2-EP-d1. The KIE from
simulation of ∼ 1.6 is slightly less than the experimentally obtained KIE of ∼ 2, however if
the calculation was extended for a longer period of time so that more trajectories dissociate
it is expected that this value will increase.

From the lifetimes obtained from the fit, it would appear that the kinetics of dissocia-
tion are similar from the S1 and S2 surfaces. However, when considering the proportion of
total trajectories that are dissociated by 350 fs (shown on the insets of Figs. 5.4a and 5.4b)
it is observed that a greater proportion have dissociated from the S2 surface (81 %) than
the S1 surface (61 %). The reason for both of these effects may be seen from the aver-
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122 Chapter 5. Ultrafast Dynamics of 2-Ethylpyrrole

aged electronic state populations for 2-EP(S2) trajectories in the first 50 fs, illustrated in
Fig. 5.5. This figure shows that there is an immediate and significant transfer of popula-
tion from S2 to S1 as the calculation begins, indicating that the S2 state is unstable with
respect to S1. Around 10 fs later some trajectories reach the S1–S0 conical intersection,
there is steady population transfer, and trajectories begin to dissociate. The immediate S2

to S1 transfer produces trajectories in the S1 state with high energy, and is the reason why
a larger percentage of 2-EP(S2) trajectories dissociate compared to 2-EP(S1). Further-
more, this may also explain the broader profile of the main peak in the 2-EP(S2) TKER
spectrum compared to 2-EP(S1) in Fig. 5.3a, as the higher energy trajectories result in a
broader distribution of kinetic energies for the emitted H atoms.

Returning to the transients in Fig. 5.4, further insight into the dissociation kinetics
may be obtained by considering the raw cumulative sum of dissociation times from the
trajectories. Examining these a few things may be noticed, particularly in the sub 50 fs
regime, that are masked by the temporal widths of the laser pulses experimentally. Firstly,
no trajectories dissociate until 14.6 fs for 2-EP(S1), 12.3 fs for 2-EP(S2), and 24.8 fs for 2-
EP-d1(S1). This is merely a consequence of defining the point of dissociation as 4 Å, with
the delay the time taken for the N-H/D bond to stretch to this distance. Experimentally
this will also occur, as the N-H bond extends over the πσ∗ surface following the pump
laser pulse. However, lack of temporal resolution does not permit this to be observed in
the experimental transient, and the exact point of dissociation is less easy to define. The
longer time for 2-EP-d1(S1) trajectories to begin to dissociate compared to 2-EP(S1) is
due to the lower vibrational frequency of the N-D bond compared to N-H.

More interestingly, from the initial dissociation point onwards for the next ∼40 fs a
rapid increase in the number of trajectories dissociating is observed, as those prepared in
geometries with the correct orientation and sufficient energy to dissociate over the barrier
do so immediately. The majority of trajectories that dissociate within the calculation
time do so by this mechanism in the first 50 fs for 2-EP(S1) and 2-EP(S2), and in the
first 70 fs for 2-EP-d1(S1). This rapid increase of dissociating molecules is not seen to the
same extent experimentally, instead there is a much smoother rise due to the “blurring”
effect of the laser pulses. Following this initial rapid rise, the rate of dissociation slows
for the rest of the calculations as the remaining trajectories do not have enough energy to
immediately dissociate, and must first sample more of the potential energy surface to find
a way around the barrier.

A calculated velocity distribution of the spread of ejected H atoms relative to the
molecular axes is shown in Fig. 5.6 for 2-EP(S1), with the x component of the velocity
versus the projection on the yz plane in panel (a), and the y component of the velocity
versus the projection on the xz plane in panel (b). The definitions of the molecular axes are
shown at the top of the figure. It can be seen that the H atoms are ejected predominantly
in the direction of the N-H stretching coordinate, however there is some small preference
for the negative x and y directions, i.e. away from the ethyl group. Also, low velocity
(and hence low kinetic energy) dissociated H atoms appear to be emitted in a relatively
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Figure 5.6: Calculated velocities of the ejected H atom with respect to the orientation of
2-EP, for dynamics starting on the S1 state. Panel (a) shows the x component
of the velocity versus the projection on the yz plane, and panel (b) shows
the y component of the velocity versus the projection on the xz plane.

isotropic manner in the x axis and yz plane, as shown in Fig. 5.6a. These isotropically
emitted low kinetic energy H atoms are primarily due to trajectories that undergo cloning
events and retain some character on the excited states as dissociation occurs. This effect
has also been noted to be responsible for the similar weak intensity low kinetic energy
portion of the pyrrole TKER spectrum [223].

Isotropic emission with low kinetic energy H atoms is also seen experimentally, albeit
with a more intense feature in the TKER spectrum. This is due to a second N-H dissocia-
tion channel that appears at λpump < 248 nm, with a longer (∼ 1.5 ps) time constant [225].
This feature begins to appear predominantly in the TKER spectrum after 200 fs, and is
the main source of ejected H atoms at λpump = 238 nm. The calculations showed no large
increase in the low kinetic energy feature in the 200–350 fs range, and is unlikely to appear
if the calculations were continued beyond 350 fs, as the majority of trajectories have disso-
ciated by this point. This, combined with the fact that the absorption edge of the higher
lying ππ∗ states begins to appear at λpump < 248 nm, suggests that initial excitation to
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Figure 5.7: Calculated H atom TKER spectrum for pyrrole-d1, overlaid with that of
undeuterated pyrrole, with experimental results at a pump wavelength
of λpump = 238 nm on the inset [203].

the S3 or S4 ππ
∗ states occurs at these pump wavelengths rather than S1 (or S2). From

that point, the mechanism of the low kinetic energy H dissociation is unclear, as currently
dynamics calculations involving additional excited states (hence greater active space for
the CASSCF calculation) are prohibitively expensive. However, it is possible that it will
involve 2-EP molecules that retain some ππ∗ excited state character as they dissociate,
similar to the much less intense low kinetic energy feature seen in 2-EP(S1) dynamics,
where the trajectories retain some πσ∗ excited state character.

5.5.2 Pyrrole

The calculated TKER spectrum for pyrrole-d1 is shown in Fig. 5.7, overlaid with the
pyrrole spectrum calculated previously [224], and with experimental spectra at a pump
wavelength of 238 nm shown on the inset [203]. The pump wavelength of 238 nm was
chosen for comparison as the simulated dynamics show over the barrier dissociation, rather
than tunnelling. Similar to 2-EP, for pyrrole AIMC correctly reproduces the shift of the
main peak to lower energies as a result of the lower zero point energy of the N-D bond
compared to N-H. Furthermore, comparing the spectra of pyrrole and 2-EP(S1) directly, a
shift of the main peak to higher energy is observed (∼ 11000 cm−1 for pyrrole and ∼ 10000
cm−1 for 2-EP(S1)). This is also seen experimentally (∼ 7200 cm−1 for pyrrole and ∼ 6600
cm−1 for 2-EP), where the overestimation of the simulated peaks is due to inaccuracies of
the CASSCF potential energy surface as noted in the previous section.

Turning to the kinetics of dissociation, a cumulative sum of raw dissociation times,
alongside smoothed H/D atom appearance transients with associated fits and experimental
data is presented in Fig. 5.8 for pyrrole and pyrrole-d1. The proportion of trajectories that
are dissociated by the end of the calculation is shown via bar charts on the insets. The
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Figure 5.8: Raw cumulative sum of dissociation times from trajectories, alongside
smoothed H atom appearance transients with associated fits and experi-
mental data for (a) pyrrole and (b) pyrrole-d1 with experimental data at a
pump wavelength of λpump = 238 nm [203]. Proportion of trajectories that
are dissociated by the end of the calculations are shown on the insets of each.

smoothing procedure is performed in the same manner as for 2-EP, with the experimental
pump and probe pulses produced from the same source and the probe consisting of a 2+1
REMPI mechanism as discussed in Sec. 5.3. The only difference with pyrrole compared to
2-EP is that the experimental cross-correlation σXC = 52 fs (which gives a temporal width
at half maximum of ∼ 120 fs) as opposed to σXC = 38 fs for 2-EP. This yields σpump = 37 fs
and σprobe = 37/

√
3 = 21 fs for the widths of the Gaussian probability distributions

modelling the smoothed trajectory dissociation times. The smoothed transients obtained
from these probability distributions were then fitted to the kinetic model in Eq. (5.5.1),
which uses σXC for the width of GIRF(t). An arbitrary time zero correction was applied
to the experimental data in Fig. 5.8, as the true t0 could not be established. Due to
this arbitrary correction, visually the experimental transients compare extremely well to
those obtained from simulation. The lifetime obtained of 44.4 ± 0.4 fs for pyrrole also
compares extremely well to the experimentally obtained 46 ± 22 fs, and the arbitrary t0
correction is not a factor for this comparison as it was known at the time of publication.
For pyrrole-d1 the calculated lifetime of 80.0±0.9 fs gives a KIE of ∼ 1.8, which is slightly
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smaller than the experimentally obtained 136 ± 38 fs with KIE ∼ 3. However, as with
2-EP, if the calculation was extended for a longer period of time so that more trajectories
dissociate it is expected that this value will increase. Furthermore, the pyrrole calculation
correctly produces a larger KIE than for 2-EP, despite a shorter calculation time. The raw
cumulative sum of dissociation times displays a similar profile to that of 2-EP, with an
initial delay for the first trajectory to dissociate, followed by a steep rise as the trajectories
prepared in such a geometry to immediately dissociate do so, and a final slower rise time
from the trajectories that need to sample more of the potential energy surface before
finding a way around the barrier.
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5.6 Conclusions

AIMC has been used to simulate the ultrafast photodissociation of 2-EP with dynamics
starting on the S1 and S2 πσ

∗ states, and deuterated 2-EP with dynamics starting on the
S1 state. Calculations have also been performed by D. Makhov for deuterated pyrrole with
dynamics starting on the S1 state, and further analysis has been performed on previous
calculations involving undeuterated pyrrole with dynamics started on the S1 state [223,
224]. TKER spectra and H/D atom appearance lifetimes from the N-H/D dissociation
have been obtained and compared to experimental results for 2-EP [225] and pyrrole [203].
The TKER spectra are qualitatively accurate with respect to the experimental results,
reproducing the structure of the main peak and less intense low kinetic energy features in
each. Comparative features observed experimentally have also been reproduced in each
of the spectra, such as the shift of the main peak to lower energies due to deuteration,
the lower energy of the peak for pyrrole compared to 2-EP, and the broadening of the
peak due to shorter pump wavelengths for 2-EP. The latter effect was observed in the 2-
EP(S2) calculations compared to 2-EP(S1), and was explained by considering the averaged
electronic state populations of 2-EP(S2) trajectories. These populations demonstrated that
the S2 state is unstable with respect to S1, leading to rapid transfer from S2 to S1 that
produced trajectories in a high energy S1 state, and led to a broad distribution of kinetic
energies for the dissociated H atoms.

The H/D atom appearance lifetimes were obtained by applying a smoothing procedure
to the raw dissociation times obtained from calculation. This smoothing procedure took
into account the experimental pump and probe laser pulse temporal widths to allow a
direct comparison between simulation and experiment. Visually, these smoothed transients
compared well to the experimental results, and the time constants obtained from fitting
to the kinetic model used in the experiments were also in close agreement. Insight into the
kinetic model and sub-50 fs dynamics was achieved by considering the raw dissociation
time data, and how it compared to the smoothed transients and experimental data. The
raw dissociation time data showed that the dissociation was essentially a two-step process:
firstly, 2-EP/pyrrole molecules with the correct geometry to dissociate over the barrier do
so immediately; and secondly, this is followed by a slower rate of dissociation for the 2-
EP/pyrrole molecules that must sample more of the potential energy surface before finding
a way around the barrier. This two-step process is “blurred” by the temporal width of the
pump and probe laser pulses, leading to a single lifetime for the smoothed transients and
experimental data.

Velocity distributions were also calculated for 2-EP(S1), illustrating predominant dis-
sociation in the direction of the N-H bond, but with a slight preference for the H atom
to be ejected away from the ethyl group. Furthermore, a somewhat isotropic distribution
of low kinetic energy H atoms was observed, primarily due to trajectories that retain πσ∗

excited state character upon dissociation. This low kinetic energy emission of H atoms
is a small feature of the dynamics on the S1 state, and the intense isotropic low kinetic
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energy emission of H atoms observed experimentally at λpump < 248 nm were not seen in
these calculations. However, it was posited that a similar mechanism for their production
may occur, but with coupling to the ππ∗ states rather than πσ∗ states.

The ability of AIMC to reproduce experimental quantities and add insight into them
makes it a very useful theoretical technique, with further calculations into molecules of
photochemical interest either currently underway or planned; including pyrazole, imida-
zole, and aniline.
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Chapter 6

Conclusions and Outlook

In this thesis two new numerical extensions to the coupled coherent states (CCS) family of
multidimensional quantum dynamics methods have been developed and tested, alongside
an application of the existing ab initio multiple cloning (AIMC) extension to nonadiabatic
dynamics. The two new numerical extensions to CCS were both tested on the same
model Hamiltonian, consisting of a 1-dimensional system tunnelling mode governed by
an asymmetric double well potential, coupled to a bath of M − 1 oscillators. The model
Hamiltonian has been utilised by CCS and other quantum dynamics methods previously
with M = 20 [39, 46, 138, 140], however it had never been converged properly, and as
such no standard benchmark result had been proposed. Therefore, in Chapter 2 for the
first time a properly converged result was obtained, providing this benchmark result. The
calculation exploited the permutational symmetry of the Hamiltonian to produce a basis
set expansion of the wavefunction that required no approximation, as the symmetry of the
problem permitted a reduction in the cost of the calculation. The fully converged result
allowed comparison to the previous quantum dynamics methods, and provided a reference
result for the CCS extensions developed in this thesis. Benchmark results for higher
dimensional cases of M = 40 and M = 80 were also obtained, as well as an M = 20 case
with stronger system bath coupling constant. These provide more challenging reference
results for any future method that wishes to use the model Hamiltonian.

In Chapter 3 the first of the two numerical extensions to CCS was developed, a 2-layer
version of CCS (2L-CCS). The motivation behind this approach was the multilayer exten-
sion of MCTDH to ML-MCTDH, and the 2-layer extension of G-MCTDH. The aim for this
method was to provide a more flexible wavefunction representation than standard CCS,
increased numerical treatment of a degree or degrees of freedom in a quantum mechani-
cal problem where necessary, and to give improved numerical and scalability properties.
The working equations were derived and presented, and the method tested on the model
Hamiltonian with the same parameter set as the previous methods of studying it. The
additional numerical treatment provided by the inner layer of 2L-CCS was used for the
tunnelling mode. 2L-CCS was found to converge appropriately in the short and long time
regimes by increasing the number of basis functions in both the inner and outer layers.
The final result obtained was in closer agreement to the benchmark than the previous
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CCS calculation, although this was determined to be primarily due to improved sampling
of the bath, rather than the increased treatment of the tunnelling mode.

The numerical performance and parallel scalability of 2L-CCS was demonstrated, with
improvements of each upon increasing the number of inner layer basis functions. It was
posited that this will be an extremely attractive feature when dealing with problems where
a large number of inner layer basis functions are required, such as if the method is applied
to studying high harmonic generation. High harmonic generation has been studied by
standard CCS previously [78], and the dynamics of the phenomenon involves a highly
delocalised electron that requires extensive phase space sampling to model. This highly
delocalised electron could be treated by the inner layer of 2L-CCS to provide increased
phase space sampling. The method could also be paired with electronic structure theory
for on-the-fly dynamics. The effect of increasing the number of inner layer basis functions
may also be used to investigate the behaviour of the trajectories, to ensure they remain
stable.

In Chapter 4 the second of the two numerical extensions to CCS was developed, coupled
coherent states for indistinguishable bosons (CCSB). The modification required compared
to standard CCS was relatively small, changing the interpretation of the coherent states
to be basis functions for Fock states that represent all particles and their occupation of
quantum states, rather than basis functions for individual particles. The wavefunction
ansatz remained the same as standard CCS, and the working equations for trajectories
and amplitudes also remained the same. However, as the Fock basis is in second quantisa-
tion representation, any Hamiltonians studied by CCSB must be second quantised. The
procedure for doing this was demonstrated as CCSB was applied to two example problems.

In the first example problem, the model Hamiltonian studied in the prior two chapters
was used. The bath portion of this Hamiltonian could be second quantised as it is com-
prised of oscillators of the same frequency, hence they could be treated as indistinguishable.
This was a similar approach to that used in Chapter 2, where the permutational symmetry
of the bath part of the Hamiltonian was exploited. The parameter set previously studied
was tested initially, the results were found to be almost identical to the benchmark. The
dimensionality of the problem was also reduced from 20 to 6. The more challenging cases
put forward by the benchmark were then tested, with the M = 40 case also showing
very good agreement with the benchmark, and the dimensionality was reduced from 40
to 9. The M = 80 case and M = 20 case with stronger coupling were not as successful,
demonstrating accuracy with respect to the benchmark for only the first 10 a.u. of the
calculation. However, these are much more challenging problems, and would be difficult
for any quantum dynamical method.

The second example problem was a model Hamiltonian consisting of a system of 100
bosons in a shifted harmonic trap, where oscillations in the 1-body density were calculated.
The aim for this example was to provide an introductory test for CCSB in the realm of
Bose-Einstein condensates, as ultimately the method is aimed for use in studying such
systems. 2-body matrix elements were required to be calculated, a prominent feature for
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interacting condensates, and it was demonstrated that these could be computed analyti-
cally by CCSB. The results were compared to a MCTDHB calculation that was equivalent
to the Gross-Pitaevskii equation, the two main time-dependent approaches for studying
condensates, and CCSB was shown to compare favourably. Future avenues of research
for CCSB include more complicated Bose-Einstein condensate problems, such as that in
Ref. [122] of a condensate in a double well trap, and the combination of the method with
one to treat identical fermions.

In Chapter 5 there was a change of tack, with the existing extension of CCS to nonadi-
abatic dynamics in AIMC used to study the ultrafast photodissociation of 2-ethylpyrrole
(2-EP), and compare to calculations on pyrrole and experimental results. Total kinetic
energy release spectra were produced and shown to be qualitatively accurate with respect
to experiment, reproducing the structure of the main peak and less intense low kinetic
energy features. Other features seen experimentally were also shown to be reproduced by
AIMC, such as the shift of the main peak to lower energies due to deuteration, the lower
energy of the peak for pyrrole compared to 2-EP, and the broadening of the peak due to
shorter pump wavelengths for 2-EP.

The dissociation time constants from experiment were also reproduced, using a smooth-
ing process on the raw calculated dissociation times to produce a H/D atom appearance
transient that could be directly compared to the experimental transient. The smoothing
process took into account the experimental pump and probe laser pulse temporal widths
to model the uncertainty in the start and finish points in the experimental photochemistry.
Novel insight into the dissociation mechanism was also obtained by comparing raw cal-
culated dissociation times to these smoothed dissociation times, and experimental data.
The raw dissociation time data showed that the dissociation was essentially a two-step
process: firstly, 2-EP/pyrrole molecules with the correct geometry to dissociate over the
barrier do so immediately; and secondly, this is followed by a slower rate of dissociation for
the 2-EP/pyrrole molecules that must sample more of the potential energy surface before
finding a way around the barrier. This two-step process is “blurred” by the temporal width
of the pump and probe laser pulses, leading to a single lifetime for the smoothed transients
and experimental data. The ability of AIMC to reproduce experimental quantities and
add novel insight into them was therefore demonstrated by this chapter, providing further
motivation to study molecules of photochemical interest, such as pyrazole, imidazole and
aniline. Further work on the AIMC method may also be to incorporate GPU accelerated
electronic structure theory to permit studies of larger molecules, for longer times, or to
be able to include more excited states in the calculation. This could permit simulation
of 2-EP up to the picosecond timescale, including the ππ∗ states in the active space of
the CASSCF electronic structure theory, allowing the dynamics of the low kinetic energy
hydrogen dissociation channel to be observed. The recently developed modelling of the
initial pump laser pulse [229] should also be investigated, to compare with the sampling
of initial conditions from the Wigner distribution that was used in the present study.
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Appendix A

Programming Details

A.1 Benchmark Calculation

The program code described herein was used to perform the calculations in Chapter 2 for
the benchmark calculation on the system-bath asymmetric double well tunnelling Hamil-
tonian of Eq. (2.2.1). The code was designed in modular form as follows:

• Main program: controls program flow.

• Constants module: stores global variables that are used by various subroutines,
such as the parameters read from input file, propagation time and timestep, Hamil-
tonian parameters, and physical constants.

• Initialisation module: reads parameters from input file, initialises arrays, and sets
initial amplitudes according to Eq. (2.2.16).

• Hamiltonian module: sets the matrix elements of Hamiltonian Eq. (2.2.1).

• Propagation module: propagates the amplitudes according to Eq. (2.2.3).

• Auxiliary module: performs the composite Simpsons numerical integration for
matrix elements and initial amplitudes, Eqs. (2.2.9) and (2.2.17).

• Output module: calculates CCF and FT and puts them in output files.

The layout of the program is shown in the flow chart in Fig. A.1.

A.1.1 Program Overview

The code is written in Fortran90, with separate files for each of the modules listed above.
The names of these files and their dependencies are shown in Table A.1. The code is
compiled via a compile.sh file that creates a run_as2.exe executable to conduct the cal-
culation.
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Start
Read input
parameters

Input
parameters

Make output files Output
file headers

Allocate arrays

Set Hamiltonian
matrix elements

Initialise
amplitudes

Begin time
propagation

Propagate
amplitudes
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Calculate CCF Output CCF
to file

Has propa-
gation time
reached end?

Calculate FT Output FT
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Stop

no

yes

Figure A.1: Flow chart showing the layout of the program used to generate the re-
sults for the benchmark calculation of the asymmetric double well model in
Chapter 2.
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File Module Module Purpose Dependencies
Name Name
const.f90 constants Contains parameters read from

input file, propagation time and
timestep, Hamiltonian parame-
ters, and physical constants.

none

aux.f90 auxiliary Performs the composite Simp-
sons numerical integration for
matrix elements and initial am-
plitudes

constants

init.f90 initialise Reads parameters from input file,
initialises arrays and sets initial
amplitudes

constants
auxiliary

ham.f90 hamiltonian Computes matrix elements of the
Hamiltonian

constants
auxiliary

prop.f90 propagation Finds time derivative of ampli-
tudes and propagates them via a
Runge-Kutta 4 scheme

constants

out.f90 outputs Calculates CCF and FT and puts
them in output files

constants
auxiliary

Main.f90 main Controls program flow constants
initialise
hamiltonian
propagation
outputs

Table A.1: Source code files/modules for the benchmark calculation program.

A.1.2 Input Parameters

The input parameters for the calculation are found in the input.dat file and are shown
in Table A.2. Variables of the same name as these parameters are found in the const.f90
file, to be used by various routines in the program. The const.f90 also contains other
parameters and constants that are set as default and used by the program, but can be
changed and the code recompiled. These additional parameters are shown in Table A.3.

A.1.3 Output

The program outputs two files:

• ccf.out: The cross-correlation function, with data given in 4 columns as: time,
Re(CCF), Im(CCF) and Abs(CCF). A header with the calculation input parameters
is also displayed.

• ft.out: The Fourier transform of the real part of the cross-correlation function.
Data is given in two columns as: ω and I(ω). A header with the calculation input
parameters is also displayed.
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Parameter Value Description
nbf <integer> Number of system basis functions Nsys
nbth <integer> Number of bath basis functions Nbth
L <real number> Size of box for system basis functions L
q0 <real number> Lower coordinate of box qbox
lambda <real number> System-bath coupling constant λ
dim_bth <integer> Dimensionality of bath M − 1
omega_start <real number> Starting frequency for Fourier transform
omega_end <real number> End frequency for Fourier transform

Table A.2: Parameters in input.dat file for benchmark calculation program.

Parameter Value Description
q_init -2.5 Initial position for system wavefunction
Pi 4 arctan(1) Value of constant π
eta 1.3544 Well depth parameter η
time_end 120 End propagation time
dt 0.001 Propagation timestep
dft 0.05 Stepsize for discrete Fourier transform
im i Imaginary number

Table A.3: Additional parameters and constants found in the const.f90 file for benchmark
calculation program.
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A.2 CCS Program

The program designed to perform CCS, 2L-CCS and CCSB calculations is described in
this section. As with the benchmark calculation program, it is designed in modular form
as follows:

• Main program: controls program flow.

• Initialisation module: reads parameters from input file (including if a prior basis
set is read in), initialises arrays, and generates seed for random number generators.

• Constants module: stores global variables that are used by various subroutines,
such as the parameters read from input file, various Hamiltonian parameters, and
physical constants.

• Basis module: generates the initial coherent state basis distribution and sets initial
amplitudes.

• Hamiltonian module: sets the normal ordered z matrix elements for various
Hamiltonians, as well as their z derivatives.

• Propagation module: propagates the trajectories, action, and amplitudes.

• Auxiliary module: calculates coherent state overlap, norm, CCF, 1-body den-
sity, and performs linear equation handling for the initialisation and propagation of
amplitudes equations.

• Output module: creates output files for calculated quantities and basis, and writes
data to them.

The layout of the program is shown via flow charts for the basis set generation portion
in Fig. A.2, and basis set propagation in Fig. A.3.
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Figure A.2: Flow chart showing the layout of the basis set generation portion of the
program used for the 2L-CCS and CCSB calculations in Chapters 3 and 4.
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Figure A.3: Flow chart showing the layout of the basis set propagation portion of the
program used for the 2L-CCS and CCSB calculations in Chapters 3 and 4.
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File Module Module Purpose Dependencies
Name Name
const.f90 constants Contains parameters read from

input file, Hamiltonian parame-
ters, and physical constants

none

init.f90 initialise Reads parameters from input file,
initialises arrays and generates
random seed

constants

aux.f90 auxiliary Calculates coherent state over-
lap, norm, CCF, 1-body den-
sity, and performs linear equa-
tion handling

constants

ham.f90 hamiltonian Computes z matrix elements of
the Hamiltonian and z deriva-
tives

constants

basis.f90 basis Generates initial coherent state
distribution and sets initial am-
plitudes

constants
auxiliary

prop.f90 propagation Propagates the trajectories, ac-
tion, and amplitudes via a
Runge-Kutta 4 scheme

constants
auxiliary
hamiltonian

out.f90 outputs Creates output files for calcu-
lated quantities and basis, and
writes data

constants

main.f90 main Controls program flow constants
initialise
auxiliary
basis
hamiltonian
propagation
outputs

Table A.4: Source code files/modules for the CCS, 2L-CCS and CCSB calculation pro-
gram.

A.2.1 Program Overview

The code is written in Fortran90 with separate files for each of the modules listed above.
The names of these files and their dependencies are shown in Table A.4. The source code,
executables, input files, output files and object files are split into a folder structure as
follows: src/, bin/, in/, out/, and obj/. The code is compiled via a compile.sh file in the
bin/ directory to create a run_QD.exe executable.
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Parameter Value Description
dof <integer> Number of degrees of freedom M

in basis for CCS/2L-CCS
Number of excited states Ω
in basis for CCSB

sys_dof <integer> Number of degrees of freedom
for “inner layer” in 2L-CCS
Default 1 for CCS and CCSB

nbv <integer> Number of “inner layer” basis
functions J in 2L-CCS
Default 1 for CCS and CCSB

nconf <integer> Number of configurations K
dt <real number> Timestep for propagation
time_end <real number> End time for propagation
cmprss <real number> Compression parameter for

basis set sampling
σ(b), σ(2α>0), and σ(α>0)

sys_cmprss <real number> Compression parameter for
tunnelling mode basis functions
in double well calculations σ(s)

method CCS Flag for method used:
2LCCS CCS(B) or 2L-CCS

qsystem Flag for system studied:
FP free particle
HP harmonic potential
MP Morse potential
AS asymmetric double well
2Q second quantised asymmetric

double well
BC model Bose-Einstein condensate

sampling SWARM Type of sampling used
PANCAKE for coherent states

as_upper_well_dim <integer> Used to put basis functions in
upper well of asymmetric
double well potential
Default 0

bsout Y/N Output the basis to file for
calculations that need to be
stopped and restarted

readbs Y/N Read basis from previous output
file to restart calculation

reporting Y/N Dump trajectories and
amplitudes at all times
(for error reporting)

n_prtcls <integer> For CCSB, number of particles
in ground state

Table A.5: Parameters in input.dat file for CCS, 2L-CCS and CCSB calculation pro-
gram.
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Parameter Value Description
fp_max_norm 1.001 Max. value of the norm of the wavefunction for

free particle Hamiltonian
fp_min_norm 0.999 Min. value of the norm of the wavefunction for free

particle Hamiltonian
hp_max_norm 1.001 Max. value of the norm of the wavefunction for

harmonic potential Hamiltonian
hp_min_norm 0.999 Min. value of the norm of the wavefunction for

harmonic potential Hamiltonian
mp_max_norm 1.001 Max. value of the norm of the wavefunction for

Morse potential Hamiltonian
mp_min_norm 0.999 Min. value of the norm of the wavefunction for

Morse potential Hamiltonian
mp_diss_en 10.25 Dissociation energy for Morse potential
mp_well_param 0.2209 Well width parameter for Morse potential
as_max_norm 1.01 Max. value of the norm of the wavefunction for

asymmetric double well Hamiltonian
as_min_norm 0.99 Min. value of the norm of the wavefunction for

asymmetric double well Hamiltonian
as_eta 1.3544 Well depth parameter for asymmetric double well

Hamiltonian
as_lambda 0.1 (Default) System-bath coupling parameter for asymmetric

double well Hamiltonian
bc_max_norm 1.001 Max. value of the norm of the wavefunction for

model Bose-Einstein condensate Hamiltonian
bc_min_norm 0.999 Min. value of the norm of the wavefunction for

model Bose-Einstein condensate Hamiltonian
bc_lambda 0.001 (Default) Strength of 2-body interaction for model Bose-

Einstein condensate Hamiltonian
bc_W_mnop <empty> Dirac delta function matrix elements for model

Bose-Einstein condensate Hamiltonian. Array size
(dof,dof,dof,dof).
Calculated at runtime.

hermite_coeff <empty> Coefficients for Hermite polynomials. Array size
(dof,dof). First array index is the power of the
variable, second array index is the order of the Her-
mite polynomial.
Calculated at runtime.

sigq 1/
√

2 Conversion factor between q and real z
sigp 1/

√
2 Conversion factor between p and imag. z

im i Imaginary number
acf_ccf_flag 1 or 2 Flag for autocorrelation function (1) or cross-

correlation function (2)
Pi 4 arctan(1) Value of constant π
n_prtcls_fact <real number> Factorial of n_prtcles. Assigned at runtime.
filename <string> Name appended to output files. Assigned at run-

time.

Table A.6: Additional parameters and constants found in the const.f90 file for CCS,
2LCCS and CCSB calculation program.

162



A.2. CCS Program 163

A.2.2 Input Parameters

The input parameters for the calculation are found in the input.dat file in the in/ directory
and are shown in Table A.5. Variables of the same name as these parameters are found
in the const.f90 file, to be used by various routines in the program. The const.f90 also
contains other parameters and constants that are set as default and used by the program,
but can be changed and the code recompiled. It also contains global variables that are used
by various modules. These additional parameters and variables are shown in Table A.6,
and examples of the parameters that may be changed include as_lambda and bc_lambda.
The free particle, harmonic potential and Morse potential Hamiltonians were included to
ensure the code was working correctly when first written.

A.2.3 Output

The program produces output files in the out/ directory, with three data output files
generated by default: the initial coherent state basis, final coherent state basis, and cross-
correlation function file. For the Bose-Einstein condensate problem, an additional 1-body
density output file is generated. Files to automatically plot these quantities with gnuplot
are also generated, one for the CCF, one for the FT (whose data is generated by a separate
standalone program, discussed below), and two for the 1-body density: a space-time map
as shown in Fig. 4.5, and an animated GIF of the density oscillations, for inspection. If the
bsout flag is set to “Y”, an output file for the basis during the propagation is produced
to restart the calculation if it is stopped. A list of these files and their descriptions are
shown in Table A.7, a number are appended with the filename parameter.

If the reporting flag is set to “Y”, an additional output file is generated in the out/-
dump/<filename> directory for the values of the trajectories, action and amplitudes at
all times, alongside gnuplot files to plot them. A list of these files and their descriptions
are shown in Table A.8.
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File Description
ccf_<filename>.out Propagation time, real, imaginary and abso-

lute values of the cross correlation function,
and norm of the wavefunction

ft_<filename>.out Fourier transform of the real part of the cross-
correlation function, generated by separate
standalone program

density_<filename>.out 1-body density for Bose-Einstein condensate
Hamiltonian

basis_<filename>.out Initial distribution of coherent state basis
functions

final_basis_<filename>.out Final distribution of coherent state basis func-
tions

plotccf.gnu Gnuplot plotting file to generate an .eps image
of the cross-correlation function

plotft.gnu Gnuplot plotting file to generate an .eps image
of the Fourier transform spectrum

plot_density_map.gnu Gnuplot plotting file to generate an .eps image
of the space-time map of the 1-body density
for the Bose-Einstein condensate Hamiltonian

plot_density_gif.gnu Gnuplot plotting file to generate an animated
.gif image of the 1-body density for the Bose-
Einstein condensate Hamiltonian

outbs.out If the bsout flag is set to “Y”, output of the
basis to enable the calculation to be restarted
if it is stopped

Table A.7: Output files generated by the CCS, 2LCCS and CCSB calculation program

File Description
var_dump.out If reporting is set to “Y”, output of trajectories,

action and amplitudes throughout propagation
in dump/<filename> directory

plot_traj_dofm.gnu If reporting is set to “Y”, gnuplot plot-
ting file to plot evolution of trajectory m in
dump/<filename> directory

plot_action.gnu If reporting is set to “Y”, gnuplot plotting file
to plot evolution of action in dump/<filename>
directory

plot_d_amps.gnu If reporting is set to “Y”, gnuplot plotting
file to plot evolution of real vs imaginary d in
dump/<filename> directory

plot_abs_d_amps.gnu If reporting is set to “Y”, gnuplot plotting file
to plot evolution of |d| in dump/<filename> di-
rectory

plot_bigD_amps.gnu If reporting is set to “Y”, gnuplot plotting
file to plot evolution of real vs imaginary D in
dump/<filename> directory

plot_abs_bigD_amps.gnu If reporting is set to “Y”, gnuplot plotting file
to plot evolution of |D| in dump/<filename>
directory

Table A.8: Output files generated by the CCS, 2LCCS and CCSB calculation program
if reporting is set to “Y”.
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Variable Description
z(dof,nbv,nconf) Coherent state basis function array z(m)

ik for
2L-CCS, and z(m)

k for CCS(B) with nbv=1
d(nbv,nconf) 2L-CCS amplitude array for dik

For CCS(B) all elements are set to 1
bigD(nconf) 2L-CCS and CCS(B) amplitude vector Dk

s(nbv,nconf) Classical action array sik for 2L-CCS, and
Sk for CCS(B) with nbv=1

H(nbv,nbv,nconf,nconf) Normal ordered Hamiltonian array
Hord(z∗ik, zjl) for 2L-CCS, and Hord(z∗k, zl)
for CCS(B) with nbv=1

ovrlp(nbv,nbv,nconf,nconf) Coherent states overlap array 〈zik|zjl〉 for
2L-CCS, and 〈zk|zl〉 for CCS(B) with nbv=1

density_fock(dof,dof) Density matrix array for CCSB ρ(α,β)

Unused for 2L-CCS
psi0(dof) Initial wavepacket vector Ψ(0)
t Propagation time
norm Norm of wavefunction representation
acf_ccf ACF or CCF depending on acf_ccf_flag
restart Basis set regeneration flag (1=regenerate ba-

sis, 0=basis has been generated correctly)
norm_fail_counter Counter for number of basis regenerations

Terminates program when exceeds threshold

Table A.9: Variables and arrays used by the main.f90 file in the CCS, 2LCCS and CCSB
calculation program.

A.2.4 Program Implementation

As the program written to conduct the 2L-CCS and CCSB calculations is significantly
more complicated than that for the benchmark calculation, it is worthwhile to explain in
further detail how various tasks are carried out in the source code.

A.2.4.1 Variables and Arrays

The key variables and arrays used by the program for the basis, Hamiltonian, and calcu-
lated quantities are defined in the main.f90 file. These are then passed to other modules
and subroutines that perform various operations. These variables and arrays (with dimen-
sions in terms of input parameters) are shown in Table A.9
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1 subroutine gen_basis (z,d,bigD ,ovrlp ,psi0)
2
3 implicit none
4
5 complex (kind =8) ,intent ( inout )::z(: ,: ,:) ! coherent state array (dof ,nbv , nconf )
6 complex (kind =8) ,intent ( inout )::d(: ,:) ! single config amplitude (nbv , nconf )
7 complex (kind =8) ,intent ( inout ):: bigD (:) ! multi config amplitude ( nconf )
8 complex (kind =8) ,intent ( inout ):: ovrlp (: ,: ,: ,:) ! Overlap <z1|z2 > (nbv ,nbv ,nconf ,

nconf )
9 complex (kind =8) ,intent ( inout ):: psi0 (:) ! Initial wavepacket (dof)

10
11 select case (trim( sampling ))
12 case (" SWARM ")
13 call gen_z_swarm (z,psi0)
14 case (" PANCAKE ")
15 call gen_z_pancake (z,psi0)
16 end select
17
18 call calc_ovrlp (ovrlp ,z)
19
20 call gen_d (d,z,ovrlp ,psi0)
21 call gen_bigD (bigD ,z,d,ovrlp ,psi0)
22
23 return
24
25 end subroutine gen_basis

Listing A.1: Code for the gen_basis subroutine of the basis module

A.2.4.2 Basis Set Generation

Basis set generation is carried out in the basis module, with the process initiated from
the main module with a call to the gen_basis subroutine shown in Listing A.1. This
subroutine in turn calls subroutines for the generation of the coherent state basis and
initial amplitudes.

The “PANCAKE” sampling type for coherent state generation is used for the asym-
metric double well tunnelling problem in both 2L-CCS and CCSB, as there are two types
of modes that are sampled via different distributions (tunnelling mode and bath modes).
For both methods, the tunnelling mode is sampled from a Gaussian distribution centered
around the initial tunnelling mode coordinates and momenta with compression parameter
sys_cmprss (σ(s) in the main text). The ZBQLNOR external routine, part of LAPACK
(Linear Algebra Package), [230] was used for this Gaussian distribution. The code snippet
of its use is shown in Listing A.2, with the additional options of placing basis functions in
the upper well of the double well potential, and using multiple degrees of freedom for the
inner layer in 2L-CCS (neither of these options are exercised in the calculations presented
in the main text, although the former is used in Appendix B).

For 2L-CCS, a random two bath modes per configuration are sampled from a Gaussian
distribution with compression parameter cmprss (σ(b) in the main text), whilst all others
remain at the origin, which is equivalent to sampling from a Gaussian distribution with
infinite compression parameter. The code snippet for this process is shown in Listing A.3.
For CCSB, the bath modes are sampled from separate gamma distributions for the ground
and excited states respectively. The ZBQLGAM external routine, part of LAPACK, was used
for this with compression parameter cmprss utilised for the excited states (σ(2α>0) in the
main text), whilst the compression parameter for the ground state is set to 1. The code
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1 if (trim( method ).eq."2LCCS") then ! System part
2 do m=1, sys_dof
3 if ((m.eq .1).and .( as_upper_well_dim .ne .0).and .( uw_counter .lt. as_upper_well_dim )

) then !For upper well basis function sampling
4 z(m,i,k) = cmplx (( ZBQLNOR (real(-psi0(m)),sigq/ sys_cmprss )) ,( ZBQLNOR (imag(-

psi0(m)),sigp/ sys_cmprss )),kind =8)
5 uw_counter = uw_counter +1
6 else
7 z(m,i,k) = cmplx (( ZBQLNOR (real(psi0(m)),sigq/ sys_cmprss )) ,( ZBQLNOR (imag(psi0(

m)),sigp/ sys_cmprss )),kind =8)
8 end if
9 end do

10 else
11 if (( as_upper_well_dim .ne .0).and .( uw_counter .lt. as_upper_well_dim )) then !For

upper well basis function sampling
12 z(1,1,k) = cmplx (( ZBQLNOR (real(-psi0 (1)),sigq/ sys_cmprss )) ,( ZBQLNOR (imag(-psi0

(1)),sigp/ sys_cmprss )),kind =8)
13 uw_counter = uw_counter +1
14 else
15 z(1,1,k) = cmplx (( ZBQLNOR (real(psi0 (1)),sigq/ sys_cmprss )) ,( ZBQLNOR (imag(psi0 (1)

),sigp/ sys_cmprss )),kind =8)
16 end if
17 end if

Listing A.2: Code for the Gaussian distribution of tunnelling mode coherent states in
the asymmetric double well tunnelling problem for 2L-CCS and CCSB

1 m=1 ! Define m=1 to loop over bath_sampling bath modes
2
3 do while (m.le. bath_sampling ) !loop bath_sampling number of bath modes to be

decompressed
4 call random_number ( rand_num )
5 rand_mode = int( rand_num *(dof -1))+2
6 if (z(rand_mode ,i,k).ne .(0.d0 ,0. d0)) then
7 cycle !if the random number is the same as previous (z already occupied ) then

cycle the loop to find another
8 else
9 z(rand_mode ,:,k) = cmplx (( ZBQLNOR (real(psi0( rand_mode )),sigq /( cmprss ))) ,&

10 ( ZBQLNOR (imag(psi0( rand_mode )),sigp /( cmprss ))),kind =8)
11 m=m+1
12 end if
13 end do

Listing A.3: Code for the Gaussian distribution of bath mode coherent states in the
asymmetric double well tunnelling problem for 2L-CCS

snippet for this is shown in Listing A.4.
The “SWARM” sampling type is used for the CCSB calculation of the model Bose-

Einstein condensate problem, as well as the free particle, harmonic oscillator and Morse
potential test examples in the code. The CCSB calculation uses separate gamma distri-
butions for the ground and excited state levels, as with the second quantised asymmetric
double well problem. The code for this is shown in Listing A.5, with compression parame-
ter cmprss utilised for the excited states (σ(α>0) in the main text), whilst the compression
parameter for the ground state is set to 1.

The initial amplitudes are calculated according to Eqs. (3.3.2) and (3.3.3) for 2L-CCS
applied to the asymmetric double well tunnelling problem, and Eqs. (4.4.10) and (4.5.17)
for CCSB applied to the asymmetric double well tunnelling problem and model Bose-
Einstein condensate problem, respectively. The code for the gen_d subroutine that calcu-
lates initial d amplitudes in 2L-CCS is shown in Listing A.6, where the routine sets them
to 1 for CCS(B) calculations. The code for the gen_bigD subroutine that calculates initial
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1 if (m.eq .2) then
2 call random_number ( phase_fact )
3 z_abs = ZBQLGAM ( n_prtcls +1.d0 ,1. d0)
4 z(m,:,k) = cmplx (sqrt(abs( z_abs ))*cos( phase_fact *2. d0*Pi),sqrt(abs( z_abs ))*sin(

phase_fact *2. d0*Pi),kind =8)
5 else
6 call random_number ( phase_fact )
7 z_abs = ZBQLGAM (1.d0 , cmprss )
8 z(m,:,k) = cmplx (sqrt(abs( z_abs ))*cos( phase_fact *2. d0*Pi),sqrt(abs( z_abs ))*sin(

phase_fact *2. d0*Pi),kind =8)
9 end if

Listing A.4: Code for the gamma distributions of bath mode coherent states in the
asymmetric double well tunnelling problem for CCSB

1 call random_number ( phase_fact )
2 if (m.eq .1) z_abs = ZBQLGAM ( sys_cmprss *( n_prtcls +1. d0),sys_cmprss )
3 if (m.ne .1) z_abs = ZBQLGAM (1.d0 , cmprss )
4 z(m,i,k) = cmplx (sqrt(abs( z_abs ))*cos( phase_fact *2. d0*Pi),sqrt(abs( z_abs ))*sin(

phase_fact *2. d0*Pi),kind =8)

Listing A.5: Code for the gamma distributions of coherent states in the model Bose-
Einstein condensate problem for CCSB

D amplitudes in 2L-CCS and CCSB is shown in Listing A.7, with different options for the
different methods and systems studied. Both subroutines feature a call to lineq, which
is in the auxiliary module and handles linear equation solving. This routine is shown in
Listing A.8, it uses the zgesv external routine from LAPACK that computes the solution
to a complex set of linear equations via LU decomposition.
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1 subroutine gen_d (d,z,ovrlp ,psi0)

2
3 implicit none

4
5 complex (kind =8) ,intent ( inout )::d(: ,:) ! single config amplitude (nbv , nconf )

6 complex (kind =8) ,intent (in)::z(: ,: ,:) ! coherent state array (dof ,nbv , nconf )

7 complex (kind =8) ,intent ( inout ):: ovrlp (: ,: ,: ,:) ! Overlap <z1|z2 > (nbv ,nbv ,nconf ,

nconf )

8 complex (kind =8) ,intent (in):: psi0 (:) ! Initial wavefunction

9 complex (kind =8) ,allocatable ::c(:) !<z^q|Psi^q(0) > overlap for 2LCCS (nbv)

10 integer ::i,k

11
12 if (trim( method ).eq."CCS") then

13 d(1 ,:) = (1.d0 ,0. d0)

14 else if (trim( method ).eq."2LCCS") then

15 allocate (c(nbv))

16 do k=1, size(d ,2) ! nconf

17 do i=1, size(d ,1) !nbv

18 c(i) = exp(sum( conjg (z(1: sys_dof ,i,k))*psi0 (1: sys_dof ) -0.5 d0 *( conjg (z(1:

sys_dof ,i,k))*z(1: sys_dof ,i,k)&

19 + conjg (psi0 (1: sys_dof ))*psi0 (1: sys_dof ))))

20 end do

21 call lineq ( ovrlp (:,:,k,k),c,d(:,k))

22 end do

23 deallocate (c)

24 end if

25
26 return

27
28 end subroutine gen_d

Listing A.6: Code for the calculation of initial d amplitudes

1 subroutine gen_bigD (bigD ,z,d,ovrlp ,psi0)

2
3 implicit none

4
5 complex (kind =8) ,intent ( inout ):: bigD (:) ! multi config amplitude ( nconf )

6 complex (kind =8) ,intent (in)::z(: ,: ,:) ! coherent state array (dof ,nbv , nconf )

7 complex (kind =8) ,intent (in)::d(: ,:) ! single config amplitude (nbv , nconf )

8 complex (kind =8) ,intent (in):: ovrlp (: ,: ,: ,:) ! Overlap <z1|z2 > (nbv ,nbv ,nconf , nconf )

9 complex (kind =8) ,intent (in):: psi0 (:) ! Initial wavepacket (dof)

10 complex (kind =8) ,allocatable ::C(:) !<z|Psi (0) > overlap ( nconf )

11 complex (kind =8) ,allocatable :: LHS_bigD (: ,:) ! Overlap *d (nconf , nconf )

12 integer ::i,j,k,l

13
14 allocate (C(size(bigD)),LHS_bigD (size(bigD),size(bigD)))

15 C(:) = (0.d0 ,0. d0)

16 LHS_bigD (: ,:) = (0.d0 ,0. d0)

17
18 do k=1, size(bigD) ! nconf

19 do i=1, size(z ,2) !nbv (=1 for CCS)

20 if ( qsystem .eq.’2Q’) then

21 C(k) = C(k) + exp(sum( conjg (z(:,i,k))*psi0 (:) - 0.5 d0 *( conjg (z(:,i,k))*z(:,

i,k)+ conjg (psi0 (:))*psi0 (:))))&

22 * conjg (z(2,i,k))** real( n_prtcls )/sqrt( n_prtcls_fact )

23 else if ( qsystem .eq.’BC ’) then

24 C(k) = C(k) + exp(sum ( -0.5 d0 *( conjg (z(:,i,k))*z(:,i,k))))&
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25 * conjg (z(1,i,k))** real( n_prtcls )/sqrt( n_prtcls_fact )

26 else

27 C(k) = C(k) + exp(sum( conjg (z(:,i,k))*psi0 (:) - 0.5 d0 *( conjg (z(:,i,k))*z(:,

i,k)+ conjg (psi0 (:))*psi0 (:))))

28 end if

29 end do

30 end do

31
32 do l=1, size(ovrlp ,4) ! nconf

33 do k=1, size(ovrlp ,3) ! nconf

34 do j=1, size(ovrlp ,2) !nbv (=1 for CCS)

35 do i=1, size(ovrlp ,1) !nbv (=1 for CCS)

36 LHS_bigD (k,l) = LHS_bigD (k,l) + d(j,l)* ovrlp (i,j,k,l)

37 end do

38 end do

39 end do

40 end do

41
42 call lineq (LHS_bigD ,C,bigD)

43
44 deallocate (C, LHS_bigD )

45
46 return

47
48 end subroutine gen_bigD

Listing A.7: Code for the calculation of initial D amplitudes

1 subroutine lineq (LHS ,RHS ,D) ! Linear equation : LHS*D=RHS

2
3 implicit none

4
5 complex (kind =8) ,intent (in):: LHS (: ,:) !left hand side of linear equation , usually

coherent state overlap (nbv ,nbv for d; nconf , nconf for D)

6 complex (kind =8) ,intent ( inout ):: RHS (:) !RHS of linear equation to calc amplitudes

(nbv for d; nconf for D)

7 complex (kind =8) ,intent ( inout )::D(:) ! amplitude ( nconf /nbv)

8 integer ::N,NRHS ,INFO ! Parameters for zgesv routine

9 integer , allocatable :: IPIV (:)

10 complex (kind =8) ,allocatable :: LHS_temp (: ,:) !Temp placeholder for LHS , as zgesv

will overwrite its contents

11
12 N=size(RHS)

13 NRHS =1

14 INFO =0

15 allocate (IPIV(N),LHS_temp (size(LHS ,1) ,size(LHS ,2)))

16 LHS_temp (: ,:)=LHS (: ,:)

17
18 call zgesv (N,NRHS ,LHS_temp ,N,IPIV ,RHS ,N,INFO)

19
20 D=RHS ! zgesv routine assigns the answer , D to the RHS input array

21
22 deallocate (IPIV , LHS_temp )

23
24 return

25
26 end subroutine lineq

Listing A.8: Code for the subroutine that handles linear equation solving
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A.2.4.3 Basis Set Propagation

Propagation of the trajectories, action, and amplitudes in the basis is achieved via the
Runge-Kutta 4th order (RK4) method of numerical integration. For a function y, where
its initial value and time-dependence is known, y(tn) = yn and ẏ = f(y, t), the RK4
method propagates it to find y(tn + dt) = y(tn+1) = yn+1 via

yn+1 = yn + dt
6

(k1 + 2k2 + 2k3 + k4) (A1.2.1)

where

k1 = f(yn, tn) (A1.2.2a)

k2 = f

(
yn + k1

dt
2
, tn + dt

2

)
(A1.2.2b)

k3 = f

(
yn + k2

dt
2
, tn + dt

2

)
(A1.2.2c)

k4 = f(yn + dtk3, tn + dt). (A1.2.2d)

This is conducted in the program via a call to the rk4_prop subroutine in the propagation

module from the main module. This subroutine is shown in Listing A.9 and features calls
to the derivs subroutine in the propagation module, shown in Listing A.10. This derivs

subroutine in turn calls the subroutines for calculation of Hamiltonian matrix elements;
Hamiltonian coherent state derivative; overlap of coherent states; and time-derivatives of
trajectories, action, and amplitudes. For the latter, the calculation of the time-derivatives
of amplitudes features a call to the lineq subroutine shown in Listing A.8 that solves the
linear systems in Eqs. (1.3.31), (3.2.6) and (3.2.8). The time-derivatives subroutines are
contained within the propagation module, the coherent state overlap is calculated in the
auxiliary module, and the matrix elements of the Hamiltonian and the coherent state
derivatives of the Hamiltonian are calculated within the hamiltonian module. The source
code for the majority of these routines is relatively straightforward, and therefore will not
be presented for brevity. However, the calculation of the Dirac delta matrix elements
bc_W_mnop in the Bose-Einstein condensate Hamiltonian given by Eq. (4.5.15) is slightly
more involved, so this will be discussed below.
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1 subroutine rk4_prop (z,d,bigD ,s,ovrlp ,H)

2
3 implicit none

4
5 complex (kind =8) ,intent ( inout )::z(: ,: ,:) ! coherent state array (dof ,nbv , nconf )

6 complex (kind =8) ,intent ( inout )::d(: ,:) ! single config amplitude (nbv , nconf )

7 complex (kind =8) ,intent ( inout ):: bigD (:) ! multi config amplitude ( nconf )

8 real(kind =8) ,intent ( inout )::s(: ,:) ! action (nvb , nconf )

9 complex (kind =8) ,intent ( inout ):: ovrlp (: ,: ,: ,:) ! Overlap <z1|z2 > (nbv ,nbv ,nconf ,

nconf )

10 complex (kind =8) ,intent ( inout )::H(: ,: ,: ,:) ! Hamiltonian (nbv ,nbv ,nconf , nconf )

11 complex (kind =8) ,allocatable :: dHdz (: ,: ,: ,:) ! Hamiltonian derivative (dof ,nbv ,nbv ,

nconf )

12 complex (kind =8) ,allocatable :: dzdt (: ,: ,:) !Time derivative of z (dof ,nbv , nconf )

13 complex (kind =8) ,allocatable :: dddt (: ,:) !Time derivative of d (nbv , nconf )

14 complex (kind =8) ,allocatable :: dbigDdt (:) !Time derivateive of bigD ( nconf )

15 real(kind =8) ,allocatable :: dsdt (: ,:) !Time derivative of s (nbv , nconf )

16 complex (kind =8) ,allocatable :: k_z (: ,: ,: ,:) !Runge - Kutta increments of z (dof ,nbv ,

nconf ,inc) where inc is k1 , k2 etc

17 complex (kind =8) ,allocatable :: k_d (: ,: ,:) !Runge - Kutta increments of d (nbv ,nconf ,

inc) where inc is k1 , k2 etc

18 complex (kind =8) ,allocatable :: k_bigD (: ,:) !Runge - Kutta increments of bigD (nconf ,

inc) where inc is k1 , k2 etc

19 real(kind =8) ,allocatable :: k_s (: ,: ,:) !Runge - Kutta increments of s (nbv ,nconf ,inc)

where inc is k1 , k2 etc

20 complex (kind =8) ,allocatable :: z_new (: ,: ,:) !Runge - Kutta temp variable for coherent

state array (dof ,nbv , nconf )

21 complex (kind =8) ,allocatable :: d_new (: ,:) !Runge - Kutta temp variable for factored

single config amplitude (nbv , nconf )

22 complex (kind =8) ,allocatable :: bigD_new (:) !Runge - Kutta temp variable for multi

config amplitude ( nconf )

23 real(kind =8) ,allocatable :: s_new (: ,:) !Runge - Kutta temp variable for action (nvb ,

nconf )

24
25 allocate (dHdz(size(z ,1) ,size(z ,2) ,size(z ,2) ,size(z ,3)))

26 allocate (dzdt(size(z ,1) ,size(z ,2) ,size(z ,3)),dddt(size(d ,1) ,size(d ,2)),dbigDdt (

size(bigD)),dsdt(size(s ,1) ,size(s ,2)))

27 allocate (k_z(size(z ,1) ,size(z ,2) ,size(z ,3) ,4),k_d(size(d ,1) ,size(d ,2) ,4),k_bigD (

size(bigD) ,4),k_s(size(s ,1) ,size(s ,2) ,4))

28 allocate ( z_new (size(z ,1) ,size(z ,2) ,size(z ,3)),d_new (size(d ,1) ,size(d ,2)),bigD_new

(size(bigD)),s_new (size(s ,1) ,size(s ,2)))

29
30 z_new (: ,: ,:) = z(: ,: ,:)

31 d_new (: ,:) = d(: ,:)

32 s_new (: ,:) = s(: ,:)

33 bigD_new (:) = bigD (:)

34
35 call derivs (z_new ,d_new ,bigD_new ,s_new ,dzdt ,dddt ,dbigDdt ,dsdt ,ovrlp ,H,dHdz)

36
37 k_z (: ,: ,: ,1) = dzdt (: ,: ,:)

38 k_d (: ,: ,1) = dddt (: ,:)

39 k_s (: ,: ,1) = dsdt (: ,:)

40 k_bigD (: ,1) = dbigDdt (:)

41
42 z_new (: ,: ,:) = z(: ,: ,:) + dt /2. d0*k_z (: ,: ,: ,1)

43 d_new (: ,:) = d(: ,:) + dt /2. d0*k_d (: ,: ,1)

44 s_new (: ,:) = s(: ,:) + dt /2. d0*k_s (: ,: ,1)

45 bigD_new (:) = bigD (:) + dt /2. d0* k_bigD (: ,1)
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46
47 call derivs (z_new ,d_new ,bigD_new ,s_new ,dzdt ,dddt ,dbigDdt ,dsdt ,ovrlp ,H,dHdz)

48
49 k_z (: ,: ,: ,2) = dzdt (: ,: ,:)

50 k_d (: ,: ,2) = dddt (: ,:)

51 k_bigD (: ,2) = dbigDdt (:)

52 k_s (: ,: ,2) = dsdt (: ,:)

53
54 z_new (: ,: ,:) = z(: ,: ,:) + dt /2. d0*k_z (: ,: ,: ,2)

55 d_new (: ,:) = d(: ,:) + dt /2. d0*k_d (: ,: ,2)

56 s_new (: ,:) = s(: ,:) + dt /2. d0*k_s (: ,: ,2)

57 bigD_new (:) = bigD (:) + dt /2. d0* k_bigD (: ,2)

58
59 call derivs (z_new ,d_new ,bigD_new ,s_new ,dzdt ,dddt ,dbigDdt ,dsdt ,ovrlp ,H,dHdz)

60
61 k_z (: ,: ,: ,3) = dzdt (: ,: ,:)

62 k_d (: ,: ,3) = dddt (: ,:)

63 k_bigD (: ,3) = dbigDdt (:)

64 k_s (: ,: ,3) = dsdt (: ,:)

65
66 z_new (: ,: ,:) = z(: ,: ,:) + dt*k_z (: ,: ,: ,3)

67 d_new (: ,:) = d(: ,:) + dt*k_d (: ,: ,3)

68 s_new (: ,:) = s(: ,:) + dt*k_s (: ,: ,3)

69 bigD_new (:) = bigD (:) + dt* k_bigD (: ,3)

70
71 call derivs (z_new ,d_new ,bigD_new ,s_new ,dzdt ,dddt ,dbigDdt ,dsdt ,ovrlp ,H,dHdz)

72
73 k_z (: ,: ,: ,4) = dzdt (: ,: ,:)

74 k_d (: ,: ,4) = dddt (: ,:)

75 k_bigD (: ,4) = dbigDdt (:)

76 k_s (: ,: ,4) = dsdt (: ,:)

77
78 z(: ,: ,:) = z(: ,: ,:) + dt /6. d0 *( k_z (: ,: ,: ,1) +2. d0*k_z (: ,: ,: ,2) +2. d0*k_z (: ,: ,: ,3)+

k_z (: ,: ,: ,4))

79 d(: ,:) = d(: ,:) + dt /6. d0 *( k_d (: ,: ,1) +2. d0*k_d (: ,: ,2) +2. d0*k_d (: ,: ,3)+k_d (: ,: ,4))

80 s(: ,:) = s(: ,:) + dt /6. d0 *( k_s (: ,: ,1) +2. d0*k_s (: ,: ,2) +2. d0*k_s (: ,: ,3)+k_s (: ,: ,4))

81 bigD (:) = bigD (:) + dt /6. d0 *( k_bigD (: ,1) +2. d0* k_bigD (: ,2) +2. d0* k_bigD (: ,3)+ k_bigD

(: ,4))

82
83 deallocate (dzdt ,dddt ,dsdt ,dbigDdt ,k_z ,k_d ,k_s ,k_bigD ,z_new ,d_new ,s_new ,bigD_new ,

dHdz)

84
85 return

86
87 end subroutine rk4_prop

Listing A.9: Code for the subroutine that conducts the RK4 numerical integration to
propagate the wavefunction
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1 subroutine derivs (z,d,bigD ,s,dzdt ,dddt ,dbigDdt ,dsdt ,ovrlp ,H,dHdz)
2
3 implicit none
4
5 complex (kind =8) ,intent ( inout )::z(: ,: ,:) ! coherent state array (dof ,nbv , nconf )
6 complex (kind =8) ,intent ( inout )::d(: ,:) ! single config amplitude (nbv , nconf )
7 complex (kind =8) ,intent ( inout ):: bigD (:) ! multi config amplitude ( nconf )
8 real(kind =8) ,intent ( inout )::s(: ,:) ! action (nvb , nconf )
9 complex (kind =8) ,intent ( inout ):: dzdt (: ,: ,:) !Time derivative of z (dof ,nbv , nconf )

10 complex (kind =8) ,intent ( inout ):: dddt (: ,:) !Time derivative of d (nbv , nconf )
11 complex (kind =8) ,intent ( inout ):: dbigDdt (:) !Time derivateive of bigD ( nconf )
12 real(kind =8) ,intent ( inout ):: dsdt (: ,:) !Time derivative of s (nbv , nconf )
13 complex (kind =8) ,intent ( inout ):: ovrlp (: ,: ,: ,:) ! Overlap <z1|z2 > (nbv ,nbv ,nconf ,

nconf )
14 complex (kind =8) ,intent ( inout )::H(: ,: ,: ,:) ! Hamiltonian (nbv ,nbv ,nconf , nconf )
15 complex (kind =8) ,intent ( inout ):: dHdz (: ,: ,: ,:) ! Hamiltonian derivative (dof ,nbv ,nbv

, nconf )
16
17 call calc_H (H,z)
18
19 call calc_dHdz (dHdz ,z)
20
21 call calc_ovrlp (ovrlp ,z)
22
23 call calc_dzdt (dzdt ,d,s,dHdz , ovrlp )
24
25 call calc_dddt (dddt ,dzdt ,z,d,s,ovrlp ,H)
26
27 call calc_dsdt (dsdt ,dzdt ,z,H)
28
29 call calc_dbigDdt (dbigDdt ,dzdt ,dddt ,z,d,bigD ,s,ovrlp ,H)
30
31 return
32
33 end subroutine derivs

Listing A.10: Code for the subroutine that handles calculation of the time-derivatives
of basis set elements

The bc_W_mnop matrix is set via a call to the calc_bc_W_mnop subroutine in the
auxiliary module, shown in Listing A.11. This is conducted after reading the initial
parameters in the main module, as the size of the array depends on the dof parameter.
After bc_W_mnop is initially set, it remains unchanged for the duration of the calculation.
The calc_hermite_int function that the calc_bc_W_mnop subroutine uses calculates the
integral of the product of 4 Hermite polynomials, shown in the parenthesis of Eq. (4.5.15).
The code for this function is shown in Listing A.12.

The coefficients for the Hermite polynomials, stored in the hermite_coeff array, are
calculated via a prior call from the main module to the calc_hermite_coeff subroutine
in the auxiliary module. The code for this is shown in Listing A.13. The code uses the
fact that for a Hermite polynomial He(α)(Q) of order α, the coefficient for the highest
power of the variable Q will be 2α. Then the following recurrence relationship is used to
generate the coefficients an for the preceding powers of Q

an = (n+ 2)(n+ 1)
2(n− α)

an+2 (A1.2.3)

where n = 1, 3, . . . , (α− 2) if α is odd, and n = 0, 2, . . . , (α− 2) if α is even.
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1 subroutine calc_bc_W_mnop

2
3 implicit none

4
5 integer ::m,n,o,p

6
7 bc_W_mnop (: ,: ,: ,:) = 0. d0

8
9 do p=1, size(bc_W_mnop ,4) !dof

10 do o=1, size(bc_W_mnop ,3) !dof

11 do n=1, size(bc_W_mnop ,2) !dof

12 do m=1, size(bc_W_mnop ,1) !dof

13 if (mod (((p -1) +(o -1) +(n -1) +(m -1)) ,2).eq .0) then !Only even overall

functions will integrate out to nonzero matrix elements

14 bc_W_mnop (m,n,o,p) = 1/ Pi&

15 *1/ sqrt(real (2. d0 **(m -1) ,kind =8)* calc_factorial (m -1))&

16 *1/ sqrt(real (2. d0 **(n -1) ,kind =8)* calc_factorial (n -1))&

17 *1/ sqrt(real (2. d0 **(o -1) ,kind =8)* calc_factorial (o -1))&

18 *1/ sqrt(real (2. d0 **(p -1) ,kind =8)* calc_factorial (p -1))&

19 * calc_hermite_int (m,n,o,p)

20 end if

21 end do

22 end do

23 end do

24 end do

25
26 return

27
28 end subroutine calc_bc_W_mnop

Listing A.11: Code for the subroutine that calculates the Dirac delta matrix elements

1 function calc_hermite_int (m,n,o,p)

2
3 integer , intent (in)::m,n,o,p ! Order of the Hermite polynomials

4 real(kind =8) :: calc_hermite_int ! Function to calculate the integral of the product

of Hermites

5 real(kind =8) ,allocatable :: hermite_prod_coeff (:) ! Array for product of 4 Hermite

polynomial coefficients ( power of x)

6 integer :: pow_x_m ,pow_x_n ,pow_x_o , pow_x_p

7 integer :: high_pow_x , pow_x

8
9 high_pow_x = (m -1) +(n -1) +(o -1) +(p -1) +1 ! Highest power of x (+1) for this

combination of Hermite polynomials (+ -1 involved as array index = power +1)

10
11 allocate ( hermite_prod_coeff ( high_pow_x )) ! Allocate the array for the coefficients

of the product of 4 Hermite polynomials to be the largest power of x possible

for that combination

12
13 hermite_prod_coeff (:) = 0. d0

14
15 calc_hermite_int = 0. d0

16
17 do pow_x_p =1,p

18 do pow_x_o =1,o

19 do pow_x_n =1,n

20 do pow_x_m =1,m

21 hermite_prod_coeff (( pow_x_m -1) +( pow_x_n -1) +( pow_x_o -1) +( pow_x_p -1) +1) =&
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22 hermite_prod_coeff (( pow_x_m -1) +( pow_x_n -1) +( pow_x_o -1) +( pow_x_p -1) +1)+

hermite_coeff (pow_x_m ,m)* hermite_coeff (pow_x_n ,n)&

23 * hermite_coeff (pow_x_o ,o)* hermite_coeff (pow_x_p ,p)

24 end do

25 end do

26 end do

27 end do

28
29 calc_hermite_int = hermite_prod_coeff (1)*sqrt(Pi /2. d0) !0 state

30
31 do pow_x = ( high_pow_x -1) /2,1,-1 ! pow_x is actual power of x in product of

hermite polynomials , not array index

32 calc_hermite_int = calc_hermite_int +sqrt(Pi /2. d0)/( real (4. d0 ** pow_x ,kind =8))*

calc_factorial (2* pow_x )&

33 /real (2. d0 ** pow_x ,kind =8)/ calc_factorial ( pow_x )& ! relationship between double

factorial and single

34 * hermite_prod_coeff (2* pow_x +1) !plus 1 because array starts at 1

35 end do

36
37 deallocate ( hermite_prod_coeff )

38
39 return

40
41 end function calc_hermite_int

Listing A.12: Code for the function that calculates the integral of the product of 4
Hermite polynomials

1 subroutine calc_hermite_coeff !To calculate array of hermite coefficients

2
3 implicit none

4
5 integer ::m, pow_x

6
7 hermite_coeff (: ,:) = 0. d0 !Set array initally to zero , then only change non -zero

elements

8
9 do m=1, size( hermite_coeff ,2) ! order of Hermite

10 do pow_x =m,1,-2 !Loop counter -2 as hermite function powers will either be all

even or all odd

11 if ( pow_x .eq.m) then

12 hermite_coeff (pow_x ,m) = real (2. d0 **( pow_x -1) ,kind =8) ! coefficient for

largest power is 2^ Hermite_order . Minus 1 because array index is one greater

than power of x (can ’t have array index 0)

13 else

14 hermite_coeff (pow_x ,m) = ( pow_x +1. d0)* pow_x /(2. d0 *( pow_x -m))* hermite_coeff (

pow_x +2,m) ! Recurrance relation for generating hermite polynomial coefficients

from the largest power

15 end if

16 end do

17 end do

18
19 return

20
21 end subroutine calc_hermite_coeff

Listing A.13: Code to calculate the array that stores the coefficients of Hermite
polynomials
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1 subroutine gen_filename ()
2
3 implicit none
4
5 character (len =10) :: nconf_char ,nbv_char ,dof_char , cmprss_char , plot_low_char ,

plot_high_char , ndof_char
6 character (len =100) :: cmprss_char_tmp
7
8 write ( nconf_char ,"(i0)") nconf
9 write (nbv_char ,"(i0)")nbv

10 write (ndof_char ,"(i0)")dof
11 write ( cmprss_char_tmp ,"( ES100 .10 E2)")real(cmprss ,kind =4)
12
13 cmprss_char = cmprss_char_tmp ((101 - len(trim( adjustl ( cmprss_char_tmp )))):(104 - len(

trim( adjustl ( cmprss_char_tmp )))))&
14 // cmprss_char_tmp (97:100)
15
16 filename = trim( method )//"_"// trim( qsystem )//"_"// trim( ndof_char )//"dof_"// trim(

nconf_char )//" conf_ "&
17 // trim( nbv_char )//"bv_"// trim( cmprss_char )//" cmprss "
18
19 return
20
21 end subroutine gen_filename

Listing A.14: Code for the subroutine that generates the filename parameter to label
output files

A.2.4.4 Output Generation

The output files documented in Tables A.7 and A.8 are generated in the outputs mod-
ule. The filename parameter appended to a number of them is generated with the
gen_filename subroutine, shown in Listing A.14. It labels the output files with various
calculation parameters to identify them.

The data for the output files, namely the CCF for the double well tunnelling problem,
and 1-body reduced density for the Bose-Einstein condensate problem, is generated in the
auxiliary module. For the former, the CCF is calculated via the calc_acf_ccf function
shown in Listing A.15 and stored in the acf_ccf variable in the main module. This variable
is passed to the outputs module to be written to file. For the latter, the 1-body reduced
density is calculated via a call from the outputs module to the calc_density_1_body

function, shown in Listing A.16. This function takes position x as an input, and there is
a loop over a range of values for x in the outputs module. The calc_density_1_body

function converts from the density matrix in the Fock basis to the position basis according
to Eq. (4.5.20). The density matrix in the Fock basis is calculated according to Eq. (4.5.19),
and in the program it is obtained via a call to the calc_density_fock subroutine from the
main module, and stored in the density_fock array. The calc_density_1_body function
also features a call to the hermite function, that evaluates a Hermite polynomial of a given
order at position x, and utilises the Hermite coefficients calculated in Listing A.13 and
stored in the hermite_coeff array.

For the asymmetric double well problem, the FT spectrum is calculated via a separate
standalone program fourier.exe in the bin/ directory that performs a discrete Fourier
transform on the real part of the CCF. The code for this program is shown in Listing A.17.
It takes the starting frequency and end frequency of the spectrum as input, as well as the
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propagation time, timestep and name of the CCF output file, and outputs the FT to file
as detailed in Table A.7.

1 function calc_acf_ccf (z,d,bigD ,s,ovrlp ,psi0)

2
3 implicit none

4
5 complex (kind =8) ,intent (in)::z(: ,: ,:) ! coherent state array (dof ,nbv , nconf )

6 complex (kind =8) ,intent (in)::d(: ,:) ! single config amplitude (nbv , nconf )

7 complex (kind =8) ,intent (in):: bigD (:) ! multi config amplitude ( nconf )

8 real(kind =8) ,intent (in)::s(: ,:) ! action (nvb , nconf )

9 complex (kind =8) ,intent (in):: ovrlp (: ,: ,: ,:) ! Overlap <z1|z2 > (nbv ,nbv ,nconf , nconf )

10 complex (kind =8) ,intent (in):: psi0 (:) ! Initial wavepacket (dof)

11 complex (kind =8) ,allocatable :: temp_psi0 (:) !Temp variable for psi0 so it doesn ’t

get changed

12 complex (kind =8) :: calc_acf_ccf

13 integer ::i,k

14
15 allocate ( temp_psi0 (size(psi0)))

16
17 calc_acf_ccf =(0.d0 ,0. d0)

18
19 temp_psi0 (:) = psi0 (:)

20
21 if ( acf_ccf_flag .eq .2) temp_psi0 (:)=-psi0 (:) !If CCF , make initial wavepacket its

mirror image

22
23 do k=1, size(z ,3) ! nconf

24 do i=1, size(z ,2) !nbv (=1 for CCS)

25 if ( qsystem .eq.’2Q’) then

26 calc_acf_ccf = calc_acf_ccf + exp(sum( conjg ( temp_psi0 (:))*z(:,i,k) -0.5 d0 *(

conjg ( temp_psi0 (:))* temp_psi0 (:)&

27 + conjg (z(:,i,k))*z(:,i,k))))*d(i,k)*exp(im*s(i

,k))*bigD(k)&

28 *z(2,i,k)** real( n_prtcls )/sqrt( n_prtcls_fact )

! Extra bit due to second quantisation

29 else

30 calc_acf_ccf = calc_acf_ccf + exp(sum( conjg ( temp_psi0 (:))*z(:,i,k) -0.5 d0 *(

conjg ( temp_psi0 (:))* temp_psi0 (:)&

31 + conjg (z(:,i,k))*z(:,i,k))))*d(i,k)*exp(im*s(i

,k))*bigD(k)

32 end if

33 end do

34 end do

35
36 deallocate ( temp_psi0 )

37
38 return

39
40 end function calc_acf_ccf

Listing A.15: Code for the function used to calculate the cross-correlation function in
the asymmetric double well problem
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1 function calc_density_1_body (x, density_fock )

2
3 implicit none

4
5 real(kind =8) ,intent ( inout )::x !x coordinate for the 1 body density element you

are calculating

6 complex (kind =8) ,intent (in):: density_fock (: ,:) ! Density indexed in terms of HO

levels = <Psi | a* a |Psi >

7 complex (kind =8) :: calc_density_1_body !1 body density , in terms of coordinate

8 integer ::m,n

9
10 calc_density_1_body = cmplx (0.d0 ,0. d0)

11
12 do n=1, size( density_fock ,2)

13 do m=1, size( density_fock ,1)

14 calc_density_1_body = calc_density_1_body + 1/ sqrt (2**(m -1)* calc_factorial (m

-1))*(1/ sqrt(Pi)) **0.25 d0*exp (-(x**2. d0)/2. d0)&

15 * hermite (m-1,x)* density_fock (m,n)&

16 *1/ sqrt (2**(n -1)* calc_factorial (n -1))*(1/ sqrt(Pi))

**0.25 d0*exp (-(x**2. d0)/2. d0)* hermite (n-1,x)

17 end do

18 end do

19
20 return

21
22 end function calc_density_1_body

Listing A.16: Code to calculate the 1-body density for the Bose-Einstein condensate
problem

1 program fourier

2
3
4 implicit none

5 real(kind =8) :: reCCF ,t,omega ,dt ,dft ,omega_end , time_end

6 complex (kind =8) ::im , fourier_sum

7 character (len =10) :: omega_start_char , omega_end_char , time_end_char , dt_char

8 character (len =100) :: filename

9 integer ::r

10
11 if ( IARGC ().ne .5) then

12 print *, " Arguments should be starting frequency , end frequency , time , timestep

and filename "

13 stop

14 end if

15
16 call getarg (1, omega_start_char )

17 call getarg (2, omega_end_char )

18 call getarg (3, time_end_char )

19 call getarg (4, dt_char )

20 call getarg (5, filename )

21
22 read( omega_start_char ,*) omega

23 read( omega_end_char ,*) omega_end

24 read( time_end_char ,*) time_end

25 read(dt_char ,*) dt

26
27 open (410 , file="../ out/"// trim( filename ))
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28
29 open (411 , file="../ out/ft"// trim( filename (4:)))

30
31 dft =0.05 d0

32 im= cmplx (0.d0 ,1. d0)

33
34 do while ( omega .le. omega_end )

35 fourier_sum = cmplx (0.d0 ,0. d0)

36 read (410 ,*)

37 read (410 ,*)

38 read (410 ,*)

39 do r=1, int( time_end /dt +1)

40 read (410 ,*)t, reCCF

41 fourier_sum = fourier_sum + cdexp (-im* omega *t) * reCCF * dt

42 end do

43
44 rewind (410)

45 write (411 ,*) omega ,real( fourier_sum )

46
47 omega = omega +dft

48
49 end do

50
51 close (410)

52 close (411)

53
54 stop

55
56 end program fourier

Listing A.17: Code for the standalone Fourier transform program that computes the FT
spectra for the asymmetric double well tunnelling problem
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Figure A.4: Illustration of the difference between an a) serial process and b) parallel
process that uses the fork-join model.

A.2.4.5 Parallelisation

Parallel computing consists of the execution of multiple calculations simultaneously on
multiple processing threads. There are two main methods of achieving this: using a shared
memory architecture, such as OpenMP (Open Multi-Processing); and using a distributed
memory architecture, such as MPI (Message Passing Interface). In the shared memory
architecture, all threads involved in the parallelisation have access to the same data stored
in memory. This means that independent processes may be carried out concurrently
without messages being passed between them. In the distributed memory architecture, the
data is spread out amongst many memory locations, and messages must be passed between
separate threads to transfer data from one thread to another. Generally, the shared
memory architecture is capable of fewer parallel processes than the distributed memory
architecture. In a high performance computing environment, there are interconnected
nodes of processors each with their own memory store. The shared memory architecture
will be possible on only one of these nodes, whilst the distributed memory architecture
will be possible between nodes. The shared memory architecture is generally easier to
implement than the distributed memory architecture as it requires minimal alteration to
the serial code, so OpenMP was chosen to parallelise the 2L-CCS/CCS(B) program.

The OpenMP scheme consists of a “fork–join” model, where a master thread runs
a controlling serial process, before approaching a region where parallel calculations are
possible. At this parallel region multiple threads fork off from the master thread and
then rejoin the master thread when the parallel region is complete. This is illustrated
in Fig. A.4. In OpenMP the directives !$omp parallel and !$omp end parallel are
used to initiate and terminate this fork-join process, and they appear above and below
the region in the serial code that is being parallelised, respectively. Within the parallel
region variables may be declared as shared if they are able to be viewed and modified by
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1 !$omp parallel shared (temp_psi0 ,z,d,s,bigD) private (i,k) reduction (+: calc_acf_ccf )
2 !$omp do collapse (2)
3 do k=1, size(z ,3) ! nconf
4 do i=1, size(z ,2) !nbv (=1 for CCS)
5 if ( qsystem .eq.’2Q’) then
6 calc_acf_ccf = calc_acf_ccf + exp(sum( conjg ( temp_psi0 (:))*z(:,i,k) -0.5 d0 *(

conjg ( temp_psi0 (:))* temp_psi0 (:)&
7 + conjg (z(:,i,k))*z(:,i,k))))*d(i,k)*exp(im*s(i,k

))*bigD(k)&
8 *z(2,i,k)** real( n_prtcls )/sqrt( n_prtcls_fact )

! Extra bit due to second quantisation
9 else

10 calc_acf_ccf = calc_acf_ccf + exp(sum( conjg ( temp_psi0 (:))*z(:,i,k) -0.5 d0 *(
conjg ( temp_psi0 (:))* temp_psi0 (:)&

11 + conjg (z(:,i,k))*z(:,i,k))))*d(i,k)*exp(im*s(i,k
))*bigD(k)

12 end if
13 end do
14 end do
15 !$omp end do
16 !$omp end parallel

Listing A.18: Code for the parallelisation of the function used to calculate the cross-
correlation function in the asymmetric double well problem

all threads, or private if every thread should have its own copy of the variable.
All of the parallel regions in the 2L-CCS/CCS(B) code feature a do loop, which is

parallelised by the !$omp do and !$omp end do directives. Perfectly nested loops may
be parallelised via the collapse(n) directive, where n is the number of nested loops that
should be included. When a loop is performing an associative operation on a variable,
such as an addition, the reduction directive may be applied to that variable to collate all
values obtained by individual threads once the parallel region is complete. An example of
all these directives is shown in Listing A.18, as they have been applied to the serial code
for the calc_acf_ccf function shown in Listing A.15.

As well as the implementation of OpenMP directives in the code, parallelised LAPACK
routines were used courtesy of the Intel Math Kernel Library. [231,232] All of these parallel
modifications lead to near perfect speedup of the code, demonstrated in Sec. 3.3.2.3. MPI
parallelisation may be considered in future applications that require further speedup.
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Appendix B

Additional CCSB Calculations for
the Double Well Tunnelling
Problem

As discussed in Sec. 4.4, the M = 80, λ = 0.1 and M = 20, λ = 0.2 calculations for
the second quantised double well tunnelling problem were not as well matched to the
benchmark result as the M = 20, λ = 0.1 and M = 40, λ = 0.1 cases. Additional
calculations were performed to attempt to converge these problematic cases with limited
success. It was mentioned in the section that a large contribution to the accuracy of a CCS
calculation depends upon the initial conditions chosen, therefore a number of different
input parameters were selected to attempt to improve the accuracy. These included:
an increased number of configurations K and harmonic oscillator excited levels in the
basis Ω; altering the σ(2α>0) and σ(s) compression parameters; using variable compression
parameters for excited levels in the bath, with smaller compression parameters for lower
levels as they are more likely to be occupied; and placing basis functions for the tunnelling
mode in the upper well of the double well potential to compensate for any trajectories
that may not effectively take the basis there over the course of the calculation. When
one parameter was altered, the rest were kept fixed at the value used in Sec. 4.4 unless
otherwise stated. The results from these with brief comment are shown below.
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B.1 80D λ = 0.1

B.1.1 Altering the Number of Configurations in the Basis
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Figure B.1: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 80 and λ = 0.1 CCSB calculations with different
numbers of configurations K.

The effect of changing the number of configurations K for M = 80, λ = 0.1 CCSB
calculations is illustrated in Fig. B.1. The K = 12000 calculation in panel (b) was pre-
sented in Sec. 4.4.3.3. It can be seen that the amplitude of the CCF in the K = 10000
case in panel (a) decays slightly quicker than the K = 12000 case, resulting in a slightly
less intense FT spectrum. The amplitude of the CCF in the K = 15000 case in panel (c)
decays more slowly than the K = 12000 case, however the oscillations are not more closely
matched to the benchmark. This slower decay of the CCF results in a FT spectrum that
is slightly more intense, in particular the main peak at ω = 42. However, there is limited
other difference despite being a much more expensive calculation.
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B.1.2 Altering the Number of Excited Levels in the Basis
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Figure B.2: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 80 and λ = 0.1 CCSB calculations with different
numbers of excited levels Ω.

The effect of changing the number of excited levels Ω for M = 80, λ = 0.1 CCSB
calculations is illustrated in Fig. B.2. The Ω = 9 calculation in panel (b) was presented in
Sec. 4.4.3.3. It can be seen that when Ω = 7 in panel (a) the amplitude of the CCF decays
slightly quicker than when Ω = 9, resulting in a slightly less intense FT spectrum. When
Ω = 11 in panel (c) there is virtually no difference to when Ω = 9, so it can be concluded
that increases in the number of excited levels in the basis beyond Ω = 9 will lead to no
improvement in the calculation.
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B.1.3 Altering the Excited Level Sampling Compression Parameter
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Figure B.3: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 80 and λ = 0.1 CCSB calculations with differ-
ent compression parameters on the distribution for sampling the excited
levels σ(2α>0).

The effect of changing the compression parameter on the distribution for sampling the
excited levels σ(2α>0), for M = 80, λ = 0.1 CCSB calculations is illustrated in Fig. B.3.
The σ(2α>0) = 1000000 calculation in panel (c) was presented in Sec. 4.4.3.3. It can be
seen that when σ(2α>0) = 10000 in panel (a), the amplitude of the CCF decays faster
than when σ(2α>0) = 100000 and σ(2α>0) = 1000000 in panels (b) and (c), resulting in
a slightly less intense FT spectrum. It can be concluded that the excited levels need
a large compression parameter on their sampling distribution because, as mentioned in
Sec. 4.4.3.3, the trajectories for these basis functions cause them to rapidly spread in phase
space.
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B.1.4 Altering the Tunnelling Mode Sampling Compression Parameter
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Figure B.4: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 80 and λ = 0.1 CCSB calculations with differ-
ent compression parameters on the distribution for sampling the tunnelling
mode σ(s).

The effect of changing the compression parameter on the distribution for sampling the
tunnelling mode σ(s) for M = 80, λ = 0.1 CCSB calculations is illustrated in Fig. B.4.
The σ(s) = 0.5 calculation in panel (b) was presented in Sec. 4.4.3.3. A smaller value
for this parameter than the M = 20 and M = 40 cases was found to be necessary as a
broader distribution was required for the tunnelling mode. It can be seen in panel (c)
that increasing the value to σ(s) = 0.6 causes a slight decay in the amplitude of the CCF,
and a slight decrease in the intensity of the FT spectrum. This effect is exacerbated upon
further increases of σ(s) (not shown here). Decreasing the value of this parameter in panel
(a) caused a slight increase in the intensity of the peak at ω = 42, however there was
limited other effect, and decreasing the value further than σ(s) = 0.4 led to a basis being
unable to be formed, as the basis functions were not sufficiently coupled.
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B.1.5 Placing Tunnelling Mode Basis Functions in the Upper Well
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Figure B.5: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the real
part (right) for M = 80 and λ = 0.1 CCSB calculations with tunnelling
mode basis functions placed in the upper well of the potential.

The effect of initially placing a number of tunnelling mode basis functions in the upper
well of the asymmetric double well potential for M = 80, λ = 0.1 CCSB calculations
is illustrated in Fig. B.5. No tunnelling mode basis functions were placed in the upper
well in the calculation presented in Sec. 4.4.3.3, and this is shown in panel (c). The
number of basis functions placed in the upper well are noted in each of the panels of
the figure, and they are centered around the mirror image coordinates q̄(1)(0) = +2.5.
Visually, it appears that there is limited change to the CCF as a result of initially placing
tunnelling mode basis functions in the upper well, however the peaks in the FT spectrum
at ω > 42 become better resolved, and match the benchmark calculation more closely. In
particular, the splitting and intensity of the main peak at ω = 42 more closely resembles
the benchmark when placing 6000 of the 12000 tunnelling mode basis functions in the
upper well in panel (a). Despite these small improvements, the CCSB calculation is still
not as closely matched to the benchmark as the M = 20 and M = 40, λ = 0.1 cases.
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B.1.6 Variable Excited Level Sampling Compression Parameter
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Figure B.6: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 80 and λ = 0.1 CCSB calculations with variable
compression parameter for sampling excited levels.

The effect of having a variable compression parameter for sampling excited levels in
the basis forM = 80, λ = 0.1 CCSB calculations is illustrated in Fig. B.6. A simple linear
scaling on the compression parameter is used, with the value of σ(2α>0) = Nα, where
N = 10000, 50000 and 200000 in panels (a), (b) and (c), respectively. Lower excited levels
have a smaller compression parameter, as they are more likely to be occupied so their basis
should occupy a greater region of phase space. It can be seen that this has a limited effect
in comparison to previous calculations with a constant σ(2α>0) = 1000000 parameter, and
all values of the variable compression parameter produce similar results. The σ(2α>0) =
10000α case in panel (a) is an improvement over the constant σ(2α>0) = 10000 case in
panel (a) of Fig. B.3 however, indicating that the higher compression parameters on the
levels α > 1 are beneficial. Other variable compression parameter schemes were tested,
such as quadratic scaling with excited level, however these also had limited effect.
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B.2 20D λ = 0.2

B.2.1 Altering the Number of Configurations in the Basis
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Figure B.7: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 20 and λ = 0.2 CCSB calculations with different
numbers of configurations K.

The effect of changing the number of configurations K for M = 20, λ = 0.2 CCSB cal-
culations is illustrated in Fig. B.7. The K = 12000 calculation in panel (b) was presented
in Sec. 4.4.3.4. The K = 15000 calculation required a smaller compression parameter for
sampling the excited states than the K = 12000 and K = 10000 cases to preserve norm
conservation. A value of σ(2α>0) = 1000 was used as opposed to σ(2α>0) = 2000. It can be
seen that the amplitude of the CCF in the K = 10000 case decays slightly quicker than
the K = 12000 case, resulting in a slightly less intense FT spectrum. The K = 15000
case exhibits virtually no difference to the K = 12000 despite being a more expensive
calculation.
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B.2.2 Altering the Number of Excited Levels in the Basis
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Figure B.8: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 20 and λ = 0.2 CCSB calculations with different
numbers of excited levels Ω.

The effect of changing the number of excited levels Ω for M = 20, λ = 0.2 CCSB
calculations is illustrated in Fig. B.8. The Ω = 9 calculation in panel (b) was presented in
Sec. 4.4.3.4. The Ω = 8 calculation required a smaller compression parameter for sampling
the excited states than the Ω = 9 and Ω = 10 cases to preserve norm conservation. A
value of σ(2α>0) = 1000 was used as opposed to σ(2α>0) = 2000. The amplitude of the
CCF in the Ω = 8 case decays slightly quicker than the Ω = 9 case, resulting in a slightly
less intense FT spectrum. The Ω = 10 case exhibits virtually no difference to the Ω = 9
case, so it can be concluded that increases in the number of excited levels in the basis
beyond Ω = 9 will lead to no improvement in the calculation.
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B.2.3 Altering the Excited Level Sampling Compression Parameter
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Figure B.9: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 20 and λ = 0.2 CCSB calculations with differ-
ent compression parameters on the distribution for sampling the excited
levels σ(2α>0).

The effect of changing the compression parameter on the distribution for sampling the
excited levels σ(2α>0) for M = 20, λ = 0.2 CCSB calculations is illustrated in Fig. B.9.
The σ(2α>0) = 2000 calculation in panel (c) was presented in Sec. 4.4.3.4. The compression
parameter σ(2α>0) = 100 in panel (a) results in basis functions for the excited levels being
sampled from too broad a distribution. The CCF rapidly loses amplitude, resulting in a
low intensity FT spectrum as the trajectories guiding the basis functions cause them to
separate too quickly. Increasing the compression parameter in panels (b) and (c) reme-
dies this issue, although increasing it further than σ(2α>0) = 2000 causes the calculation
to become unstable with respect to norm conservation. However, there is limited differ-
ence between panels (b) and (c), and it can be concluded that further increases on the
compression parameter would have limited effect on the calculation.
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B.2.4 Altering the Tunnelling Mode Sampling Compression Parameter
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Figure B.10: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 20 and λ = 0.2 CCSB calculations with different
compression parameters on the distribution for sampling the tunnelling
mode σ(s).

The effect of changing the compression parameter on the distribution for sampling the
tunnelling mode σ(s) forM = 20, λ = 0.2 CCSB calculations is illustrated in Fig. B.10. The
σ(s) = 1 calculation in panel (b) was presented in Sec. 4.4.3.4. Sampling from a broader
distribution with σ(s) = 0.75 in panel (a) has limited effect on the calculation, whilst
sampling from a narrower distribution with σ(s) = 1.25 in panel (c) has a significantly
detrimental effect on the calculation. It can be concluded that sampling the tunnelling
mode from a broader distribution is not necessary, whilst sampling it from a narrower
distribution results in the basis not spreading quickly enough.

193



194 Appendix B. Additional CCSB Calculations for the Double Well Problem

B.2.5 Placing Tunnelling Mode Basis Functions in the Upper Well
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Figure B.11: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the real
part (right) for M = 20 and λ = 0.2 CCSB calculations with tunnelling
mode basis functions placed in the upper well of the potential.

The effect of initially placing a number of tunnelling mode basis functions in the upper
well of the asymmetric double well potential for M = 20, λ = 0.2 CCSB calculations is
illustrated in Fig. B.11. No tunnelling mode basis functions were placed in the upper well
for the calculation presented in Sec. 4.4.3.4, and this is shown in panel (c). The number
of basis functions placed in the upper well are noted in each of the panels of the figure,
and they are centered around the mirror image coordinates q̄(1)(0) = +2.5. It can be seen
that there is some improvement to the CCF at t = 5 a.u. by placing basis functions in the
upper well, however the effect is relatively small. The higher frequency peaks in the FT
spectra are also slightly better better resolved, however again this effect is relatively small,
and these calculations are not significantly more accurate with respect to the benchmark.
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B.2.6 Variable Excited Level Sampling Compression Parameter
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Figure B.12: Comparison to the benchmark of the cross-correlation functions (left, real
parts in black and absolute values in red) and Fourier transforms of the
real part (right) for M = 20 and λ = 0.2 CCSB calculations with variable
compression parameter for sampling excited levels.

The effect of having a variable compression parameter for sampling excited levels in the
basis for M = 20, λ = 0.2 CCSB calculations is illustrated in Fig. B.12. A simple linear
scaling on the compression parameter is used, like in the M = 80, λ = 0.1 calculation,
with the value of σ(2α>0) = Nα, where N = 100, 200 and 500 in panels (a), (b) and (c),
respectively. Lower excited levels have a smaller compression parameter, as they are more
likely to be occupied so their basis should occupy a greater region of phase space. It can be
seen that this has a limited effect in comparison to previous calculations with a constant
σ(2α>0) = 2000 parameter, only the σ(2α>0) = 100α case shows any difference with a
decrease in amplitude of the CCF and intensity of the FT spectrum, as the excited levels
are too decompressed and separate too rapidly. However, like in the M = 80, λ = 0.1
calculations in Fig. B.6, this is an improvement over the constant σ(2α>0) = 100 calculation
in panel (a) of Fig. B.9.
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