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Abstract

Simple nonlinear systems do not

necessarily have simple dynamical

properties

The aim of this thesis is to investigate nonlinear dynamical systems that exist in var-

ious fields such as engineering and science. Nonlinear dynamical systems permit the

understanding and development of models of simple and complex phenomena. Specif-

ically, this thesis includes an investigation of the following systems; the logistic model,

the Gompertz model, predator-prey model, and three species model. In addition, we

perform a comparison between the two most popular growth models; logistic and Gom-

pertz models from the viewpoint of variability. The main focus is on the use of Fisher

information as a measure of variability/sustainability which depends on the gradient of

Probability Density Function (PDF).

In this work, we present two case studies for each dynamical system. The first case

study describes the analysis of these systems in their deterministic conditions whereas

the second one presents the investigation of these systems in their indeterministic con-

ditions (perturbed conditions), where the model parameters involve perturbations, elu-

cidating the effects of these perturbations on the behaviour of the system. The variation

in the model parameter values is considered in order to observe the behaviour of the

different dynamical systems and detect dynamical changes in the behaviour of each

species.

Since Fisher information is considered as a measure of an intrinsic accuracy of the

dynamical systems, therefore, we obtain Fisher information for different values of pa-

rameters in order to select the optimal parameter value where a peak of Fisher infor-

mation is observed, which indicates to less variability in the behaviour of the system.

Thus, the existence of Fisher information peak which linked to the narrowest PDF is

investigated in the frame of time trace analysis.
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In summary, the main contribution of this work to the field is to assess the significance

of Fisher information index for nonlinear dynamical systems including perturbations

in the model parameters. Applying this measure to more complicated systems and

comparing the results to other widely used measures would be of interest for future

work.
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Chapter 1

Introduction

1.1 Background and motivation

The concept of dynamics refers to change, forces capable of action, whereas the static

state means fixed or stationary. It is necessary to understand and even to change the

rules governing our world and how they influence us; in order to achieve this, the con-

cept of “dynamics” has been employed. We need dynamical systems to explain the

environment we live in and even to make changes to the environment that surrounds us

in order to shape it and develop a full understanding.

The origin of dynamical systems theory derives from the mechanisms of Newton,

which have been developed and used to analyse systems of moving particles under

the influence of outer intensity [16]. Dynamical systems are groups of variables whose

values vary over time and may display an interaction. In this respect, we can divide

dynamical systems into two sets: deterministic which have no randomness involved in

their mechanism (the state of a system for all the coming stages can be determined by

obtaining full knowledge of the state for a system at certain point of time), or stochas-

tic dynamical systems include randomness. Depending on the systems’ variables, the

state of a system can be determined over time. The state of a system is described by a

1
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vector (a state variable of the dynamical system is defined as x1, x2, ..., xn ) and a trajec-

tory in the state space can be determined through the evolution of a dynamical system

which can be displayed in a geometrical figure, constructing an attractor. An inves-

tigation must be conducted to specify the effects of change in the individual system

variables, which are considered as functions of time, on the evolution of a dynamical

system [16, 51, 71, 79].

On the other hand, dynamical systems can be divided into two large groups: discrete-

time or continuous-time systems. Discrete-time systems can be represented by dif-

ference equations whereas continuous-time systems can be described by differential

equations. In our work, we will only consider systems described by differential equa-

tions, which means in their continuous conditions which develop in continuous time.

In the following, we display the dynamical systems in the form of first-order differen-

tial equations [68] as:

dx1

dt
= f1(t, x1, x2, . . . , xn),

dx2

dt
= f2(t, x1, x2, . . . , xn),

... =
...

dxn

dt
= fn(t, x1, x2, . . . , xn),

(1.1)

which can be displayed in a vector style as:

ẋ =
dx
dt

= f (t, x) , (1.2)

here, t represents time and x is the system state. ẋ indicates the differentiation of

x with respect to t . f (t, x) represents a density dependence according to biologists

whereas for mathematicians it stands for nonlinearity. From the above equation, we

can conclude the dynamical characteristics and valuable details of the corresponding

system. For example, for the logistic equation, f (t, x) has its maximum population

size K (carrying capacity of the system) where f (t, x) increases monotonically as x

2
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increases, f (t, x) decreases monotonically as x exceeds its maximum size K , and

f (t, x) = 0 when x = 0 [4, 61]. Investigating these properties starts with the equilib-

rium points 1 from the following quantity:

dx
dt

= 0 ,

where the rate of change of the state variable x is zero over the time taken for the

system to attain equilibrium. As a result, it is possible to investigate the stability of the

system as it achieves its equilibrium. That is, including a small disturbance in the sys-

tem to determine whether the equilibrium is a stable point that attracts all the solutions

or an unstable point. For steady states, the characteristics of stability and dependence

on initial conditions and other parameter values are very important in different dy-

namical systems [16, 61]. The importance of perturbations in the model parameters

in different forms has become a significant subject of debate in several fields of study

such as biology, medicine and ecology [11,38,44]. In this thesis, as a robust method to

understand the biological system’s response to the parameter changes and its basic dy-

namics, we emphasise the significance of computational study on biological processes,

specifically, by employing several population growth models with different interactions

and perturbations such as logistic and Gompertz models with one species (see Chap-

ters 2 & 3), predator-prey model with two species (see Chapter 4), and finally, a three

species model (see Chapter 5).

The main difference between the linear and nonlinear dynamical systems is represented

by their ability to produce an analytical solution. Linear systems can be divided into

parts that are then regrouped to obtain the exact solution, with nonlinear dynamical

systems it is difficult to find the solution; instead, numerical calculations can be ob-

tained. As a result, an obvious explanation of the parameters’ role and their physical

or biological significance can be concluded from a simple model regardless of its dy-

namics. In this regard, the example cited by Strogatz [92] provides a good analogy for

1equilibrium points for the mean value of the perturbation in the non-autonomous systems.
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the linear and nonlinear systems, “if you listen to your two favorite songs at the same

time, you won’t get double the pleasure ”.

When the growth of yeast cell population depends only on the biological environ-

ment, the use of growth models can be justified but this is not the case with human

populations, where other factors such as war, emigration and unemployment play an

important role in the growth process [97]; as a result, this motivated us to manipulate

the parameters in several dynamical systems. Also, a growth model is proposed to rep-

resent two consumers with a single resource where the consumer’s body size displays

a significant role in their interaction. The results of this study show that the consumer

with larger size obtains greater benefits in contrast to the consumer with smaller size

in the facilitation area [77]. The models in this thesis are based on models studied

earlier by many researchers to investigate their dynamics and stability using different

approaches and mechanisms (see [3, 17, 32, 40, 42, 94, 96, 101, 107]). In our study, we

modify those models by including a periodic modulation in the model parameters and

study the influence of this perturbation on the behaviour of the system.

Significant efforts have been made to analyse dynamical systems through allocation of

human and economic resources, resulting in effective findings as well as failures. Sev-

eral researchers have applied intrinsic and extrinsic modifications to different dynam-

ical systems with different approaches to track these systems’ behaviour and capture

some of their basic characteristics.

A dynamical system of first-order differential equation is used in many fields such as

economic, biological, social sciences, genetic and engineering as a popular mathemat-

ical model. An astonishing set of dynamic behaviours can arise from this simple and

deterministic equation. One of these models is the logistic model which is widely used

and investigated [24, 38, 56, 88]. Investigating the functionality of this model leads to

information about its equilibrium solutions and its stability from stable point, stable

limit cycle to chaotic (though absolutely deterministic), also, can be studied by in-

cluding a small perturbation in the model parameters. Even the simple logistic model,

which has been investigated in different area using different techniques, still has much

4
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to offer. In the same behaviour as the logistic model, the so called Gompertz model

has earned special consideration. Both models are used to describe growth processes.

The usual growth style for any population is a lag phase or transient growth followed

by exponential growth, to then approach the maximum population size (carrying ca-

pacity of the population) (see Fig 2.1). Although the logistic equation has been more

studied, the Gompertz growth equation may better meet the features of some growth

processes [17,32,40,61,67,73,97]. One common property between the two models is

that they share as a characteristic an S-shaped growth process that manifests as a slow

early phase, followed by rapid growth, then finally, a static steady solution (static state

remains the same) [66,97]. On the other hand, a comparison study has been conducted

to compare these two models in their stochastic conditions, investigating the response

of the two models after including different types of stochastic noises and comparing

their time-dependent PDF. Also, an information length index is used to measure the

change that occurs within the process of growth for the two models and compare the

results [94]. On the other hand, another study by Nobile et al. [67] has been found

which concentrates on comparison between the logistic and Gompertz equations in the

context of the dynamics of population described by first order difference equation.

The logistic and Gompertz models are the most common models which have been

used for tumour cell population (see [10, 46] and the references there in). For more

insight into the general behaviour of these models, it is recommended to investigate

their dynamics after including both internal and external perturbations. In spite of the

simplicity of the logistic and Gompertz models, they cover a wide range of dynamic

behaviours.

such models but with more species as the predator-prey model. The Lotka-Volterra

predator-prey model consists of two simple differential equations (coupled logistic

equations) and has the ability to understand the interaction between species. For each

initial value, the model shows a limit cycle solution where the phase plane is a sim-
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ple closed curve, implying that the solution is a simple periodic solution. Abrams et

a1. [1, 2] made changes to the predator-prey model in order to study the effects of

enhancing population size on species; as a result, it was observed that increasing the

population size of the predator may have a negative impact on the prey population size,

whereas increasing the prey population size may have a positive impact on the popu-

lation size of the predator. Additionally, the effects of this interaction on each species’

growth rate and the functional response which represents the rate of prey consump-

tion by the predator population density has been studied. The functional response of

a predator such as a spider, hunting dangerous prey (it has a unique set of defences)

such as ants has been investigated using a new proposed model of the type 4 func-

tional response (predator-prey model) [53]. Another example of dangerous prey is the

zebra, due to its ability to defend itself from the attack of a predator by biting and kick-

ing [36]. We further cite another example of employing a system of two differential

equations for two associated species, where the first species will grow and multiply

depending on the food available in its environment, and the second species will die

because of lack of food if live alone; otherwise, the two species could both survive in

the case of the second species feeding on the first type [98]. Further investigation on

the predator-prey model has been done by such as by Costa et al. [90] who studied the

predator-prey model by including new terms for the influence of cytokines on cancer,

the aggressiveness of cancer and the spread of lymphocytes. On the other hand, the

authors of [31] presented and investigated a predator-prey model with the possibility

of infection of both prey and predator, based on examining the stability of the model

equilibrium points and studying the effects of the infection rate numerically. In regard

to the above examples of predator-prey model, it must be mentioned that these models

have been studied and developed to understand the dynamic evolution of populations

by many researchers using different techniques (see [7, 18, 69, 70, 105, 106]).

Since 1975, cancer has been amongst the most commonly diagnosed disease around

the world as a cause of death. Approximately 32.5 million people diagnosed with

cancer within the five years previously were alive at the end of 2012. However, be-
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cause surgery and/or radio- and chemotherapies are unable to destroy the cancer in

all patients, more efforts are required in eradicating cancer cells. Current efforts are

focused on destroying cancer populations by developing different dynamical popula-

tion systems. Many publications have demonstrated great progress by putting forward

mathematical models for the cancer population which are supported by experimental

results of population dynamics ([22, 43] and the references there in).

It must be remarked that there are many different kinds of anticancer therapies, includ-

ing Hormonal therapy, Chemotherapy, Immunotherapy, etc., and the kind of therapy

given may be critical in determining whether the cancer population will be eliminated

or not ([22] and the references there in). Immunotherapy involves the use of cytokines,

usually along with adoptive cellular immunotherapy (ACI). Cytokines are a group of

proteins secreted by cells of the immune system in both natural and artificial immune

responses, whereas ACI refers to the injection of cultured immune cells that contain

anti-tumour reactivity into a tumour bearing host ([43,80] and the references there in).

d’Onofrio et al. [22] show in their investigation of “aggressive” and “non-aggressive”

cancer models that the system is sensitive to the initial values whereas it does not de-

pend on the amplitude of the perturbations included in the system. This finding can

be compared to our conclusions drawn in Chapters 4 & 5 where the behaviour of our

models of two and three species, is found to depend on the amplitude of the periodic

perturbations and not on the initial conditions. Furthermore, they noticed that addition

of new features to a set of equations to investigate their dynamics instead of employing

another specific model is an interesting phenomenon in human biology. The numerical

simulations of many immunotherapy models show that while immunotherapy will not

completely destroy the cancer cells, the rest may be eradicated by the immune system,

or may continue in the case of dormant cancer. Cancer dormancy means that the tu-

mour stays in an inanimate state in the host body for months or maybe for years before

it begins to be visible, due to its cell population not increasing during this period (see

[22, 47] and the references there in).

In 2005, Sarkar and Banerjee [82] conducted a stability analysis of the stochastic tu-
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mour system, both analytically and numerically, based on the possibility that the ob-

servation obtained could help to control the growth of tumour cells. Introducing a

small periodic perturbation in the system parameters was found useful through giving

a significant opportunity to control the functionality of the system. Later, in 2007,

when Perez et al. [80] studied the effects of including a cytokine-based periodic im-

munotherapy treatment in the tumour growth model with a delay, it was observed that

while the immunotherapy applied was not able to eradicate the cancer cells, it did at

least keep them under control, suggesting that different therapeutic process may be

applicable. In the presence of a periodic perturbation, cancer cells show lower func-

tionality and become a target for immune cells, thereby affecting the cancer growth

rate. Hence, many studies to investigate the effects of different noises applied for tu-

mour growth system have been found such as that of Bose and Trimper [10] who used

a stochastic model for tumour growth with immunisation. They determined the death

rate in the logistic model as an immunisation, whereas they included a multiplicative

internal noise in the birth growth rate. In addition to adding noise to the logistic model

in order to reduce the effects of the environment of tumour, a specific dose was found

useful to eliminate tumour growth. Also, Pillis et al. [20,21] conducted several studies

on tumour growth with an immune response and chemotherapy from the viewpoint of

phase-space analysis by varying the model parameters. The results show the impor-

tance of using optimal control therapy which is able to push the model into a desirable

basin of attraction, in contrast to the classical periodic chemotherapy. By driving the

model to the healthy stable state (disease-free state), the treatment can be stopped.

More examples of using mathematical models to optimize chemotherapy treatment

have been discovered by many researchers (e.g. [9, 93]), because the response of the

immune system is not adequate on its own to defeat the tumour cells’ growth where the

tumour is immunogenic. The model studied by Pillis et al. [21] consisted of tumour

cells, immune cells and normal or healthy cells where the competition between these

cells varied depending on the cells themselves, the competition between the normal

and tumour cells relying on the resources available, whereas the tumour and immune
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cells compete in a predator-prey style.

Among all previous examples of different dynamical systems in different areas, re-

searchers have investigated and drawn observations from the system behaviour analyt-

ically and numerically using different approaches while the dynamics of such systems

has hardly been investigated from the perspective of information theory. We will now

present a brief summary of the origin of information theory as an approach to examine

the variability/sustainability of dynamical systems, supported by some examples.

In 1925, R. A. Fisher [26] was the first researcher to introduce the concept of infor-

mation from a technical point of view during his work on estimation theory and to

provide a definition of information for statisticians. In mathematics, information the-

ory has developed as a relatively modern discipline for investigating systems such as

decision making, estimating parameters, etc. Later, in 1948, Shannon and Wiener pub-

lished their works describing the logarithmic procedure of information to be used in

communication theory. Information theory can be applied in a wide range of fields due

to its importance as a branch of the mathematical theory of probability and mathemat-

ical statistics [23, 26, 45, 84]. Fisher information is expressed as a measure to estimate

a parameter or as a measure of collecting information, more than likely about the state

of a system or as a measure of disorder of a system. Fisher, Shannon and Wiener were

the people most responsible for developing and stimulating the basic mathematical

and statistical characters of the theory of information. Later, Frieden [30] published a

book that presented a measurement theory involving a new measure of information (

not dependent on Shannon or Boltzmann Measures for entropy) which was relatively

unknown to physicists by “Fisher information”. Therein he demonstrated how Fisher

information flows from a physical source impact to a data space and describes mea-

surement scenarios not only in terms of physics but also science in general.

To that effect, information theory mathematically plays a significant role in the concept

of entropy in thermodynamics and statistical mechanics. Comprehensive literature can

be found regarding investigation of the relation between information theory and en-

tropy (see [13, 27, 85]). It is recognized that Fisher information, regardless of the time
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difference between the two (nearly twenty years), is a more robust tool when explored

in relation to the concept of Shannon entropy and this is demonstrated by many differ-

ent examples. To demonstrate this more logically, we now display the mathematical

definition of Shannon entropy by the following formula:

H = S (p) = −

∫
p(x) ln p(x) dx, (1.3)

where p(x) is a probability density in its continuous state. Whereas Fisher information

index is defined as:

I =

∫
1

p(x)

(
∂p(x)
∂x

)2

dx. (1.4)

x is vector-valued and p(x) is the probability density function of x . From the two def-

initions above, we can conclude that both distinguish the contents of information from

the probability density. On the other hand, there is a significant difference between

them, namely that Shannon entropy is a global quantity while Fisher information is a

local measure which strongly relies on the gradient of the Probability Density Function

(PDF), Fisher information is a function of p(x) and measures the degree of disorder

(variability) of the system [74].

Since many researches have proved that the concept of Shannon entropy has an in-

sufficient role in investigating quantum problems we do not have a “principle of en-

tropy conservation” as such. Therefore, the evolution of a new concept of informa-

tion is useful which goes beyond Shannon entropy ([58] and the references there in).

The first information measure was applied by Fisher in 1925 [26] in mathematical

statistics in order to measure information about an unknown parameter using the data

provided. Then it became of interest for engineers, biologists, physicists and others.

Generally, we require information whenever we start working on designing an exper-

iment or conducting a statistical investigation. Based on the publication of a growing

body of research to investigate deterministic and stochastic systems and their variabil-

10



1.1. Background and motivation

ity/sustainability, the usage of Fisher information index has been widely explored. For

example, Zwietering et al. [109] studied the similarities and differences among dy-

namical models in the view of sustainability. The models are rewritten in such a way

that they contain perturbations in the model parameters.

The study of the variability/sustainability of dynamical systems is assessed in terms of

Fisher information analysis. Based on its function as an index of the system’s disor-

der, Cabezas et al. [14] used Fisher information as a statistical measure of change in

order to investigate the sustainability of the model of five functional groups in addi-

tion to perturbation scenarios, seasonal forcing function. The regime of the model is

determined by a set of values in which the state of the model fluctuates; in the case

of absence of changes in the model variables, the model will continue to fluctuate in

a stable state. On the other hand, it is more desirable to have changes in the model

regimes because of their importance from the viewpoint of sustainability. Also, Nagy

[65] showed that Fisher information can define the intrinsic accuracy where used to

measure the narrowness of a distribution.

The simulation outcomes show that plausible steps such as improving the efficiency of

immune cells and reducing cancer cells lead to a better ordered, more functional, and

possibly more sustainable behaviour. On the other hand, simulation may display op-

posite results, leading to a less ordered, less functional and less sustainable behaviour.

Therefore, due to its sensitivity, Fisher information is used to investigate the changes

in dynamic regimes. Systems in the steady state do not lose or gain Fisher information

over time. If a system has larger Fisher information this indicates that its variability

has decreased (increasing its order), although these results may not be desirable. On

the other hand, in the case of low Fisher information, this means that the system’s vari-

ability has increased (loss of order) [13, 14, 29, 72].

The use of Fisher information has been suggested by many researchers who have con-

ducted studies on the dynamical behaviour in prey as well as predators in different

models that include oscillatory terms from the perspective of sustainability. For exam-

ple, Rico-ramirez et al. [78] used Fisher information to choose the optimal parameter
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values in three different dynamical systems for performing an assessment of the be-

haviour of Fisher information against the model parameters to measure which would

lead to reduction of the variability in these systems. As a result, even Fisher infor-

mation was not found very useful as a measure of sustainability in some dynamical

systems but it was observed to have importance for detecting the variability in the dy-

namical systems presented in [78].

The above verbal description can be seen from a simple analysis of simple dynamical

systems such as logistic model, Gomertz model and predator-prey model. The study’s

objective is inspired by the observed effects of modifications applied to these models.

Specifically, for the predator-prey model (coupled logistic equations), we observe that

a nonzero immunisation rate has an important effect on the functionality of the sys-

tem. The fundamental difference between the previous works with dynamical systems

and our work is that we are employing Fisher information as a measure of variabil-

ity/sustainability.

A family of models have been investigated analytically as well as numerically to

demonstrate different cases such as perturbed and non-perturbed models. In this thesis,

we focus on the importance of parameters in the dynamical systems because changing

parameter values allows the same model to show different behaviours. Therefore, the

objective of this work is to evaluate and apply measures based on different dynami-

cal models in order to detect these changes in their behaviour. A statistical tool was

needed in order to deduce the statistical value of the simulation results. Instead of as-

suming the birth and death rates to be constant, we are interested in exploring some

models in which the parameters fluctuate over time and both birth and death rates are

density-dependent, otherwise the population will grow exponentially and there will

be no crowding effects on the birth and death rates. In order to study the behaviour

of dynamical systems using Fisher information, it is necessary to measure probability

density function as a derivative of the Fisher information index.

Modifications on the model parameters have been applied by including a periodic mod-

ulation in order to track the behaviour of the system, such as to distinguish between
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a non-oscillatory behaviour where the solution tends directly to the steady state, and

an oscillatory behaviour where the solution fluctuates around the steady state. In other

words, we extend the deterministic systems to make them stochastic by including a

random perturbation in the systems’ parameters in different positions. How do these

modifications in the model parameters affect the functionality of those models?

Several dynamical systems were compared to describe a bacterial/tumour growth curve

(or to describe the systems’ sustainability/functionality) with and without a periodic

perturbation from the viewpoint of the systems’ sustainability and robustness. They

were compared statistically by using Fisher information index as a measure of vari-

ability. Moreover, the models were compared with respect to their ease of use. Exper-

imental scientists may find those results helpful to implement clinical trials. Specifi-

cally, we believe that special attention is required to control the growth of the cancer

population as cancer is the most terrifying killer in the modern world.

A system of three dynamical equations is performed for three species (a group of cells)

that coexist and fight for survival, to detect the relation of changes in Fisher information

with this system’ sustainability, regime change and performance. Fisher information

has been used as a variability/sustainability index by looking for a nonsustainable case

which exists when one of the species (cancer population) becomes extinct. Different

treatment doses are estimated in order to obtain the most desirable case (optimal dose)

for eradication of the cancer cells [78].

This thesis specifically focuses on the dynamics and variability/sustainability for dif-

ferent dynamical systems and aims to improve Fisher information efficiency in the case

of including a periodic fluctuation in the system parameters. One way to achieve this

goal is to track the behaviour of the models presented in this thesis by changing the

parameter values. In order to do so, we extend the deterministic models to include a

periodic modulation in the model parameters, then we use Fisher information index as

a measure of variability/sustainability, followed by a sequence of tests with the aim of

drawing a general conclusion. The results from other researchers, in addition to our

extensions, are assumed to be very valuable and significant.
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1.2 Overview of the thesis

In this work, for the convenience of the reader, we briefly review several models with

one, two and three components (one or more species) in their deterministic conditions,

then, we modify them by including perturbations in the model parameters, and in-

vestigate these models analytically as well as numerically from the point of view of

variability/sustainability using Fisher information approach. The structure of this the-

sis is organized as follows:

Chapter Two begins with a brief introduction about the logistic model and Fisher infor-

mation. First we describe the deterministic logistic model by giving a short summary

of its dynamic and stability. Then, we explain the modification made to the logistic

model in three different cases, with focus on the first case where a periodic modula-

tion is added to the positive and negative feedback, and the behaviour of the model

monitored for different parameter values. For each case from the above, the analytical

study and numerical simulations are described. We present the calculations of Prob-

ability Density Function (PDF) formula to characterise the detailed dynamics of the

logistic model at different values of ω and x0 . We also explain the construction of

the mathematical definition of Fisher information in order to investigate the variabil-

ity/sustainability of the logistic model at different values of ω and x0 with particular

attention to the description of the significant characteristics of the perturbed logistic

model. The other two cases of the logistic model with perturbations in the positive or

negative feedback are presented in addition to the PDF at different values of ω . The

conclusions are also included in this chapter. (This work is already published in the

Mathematical Bioscience Journal [5]).

In Chapter Three, we explain calculation of the Fisher information index for the per-

turbed Gompertz model and compare the results with those for the logistic model

presented in Chapter Two. This chapter begins with a brief summary regarding the

work done for the Gompertz model, and then we present the investigation of the de-
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terministic and perturbed Gompertz model analytically and numerically. Our goal is

to observe the different behaviours of the Gompertz model by monitoring the model

parameter values which regulate its behaviour. Modifications are applied to the Gom-

pertz equation and we concentrate on the case where a periodic modulation appears in

both positive and negative feedback for different parameter values. Then, we find PDF

and Fisher information values at different initial conditions. In section 3.8, we display

the other cases of Gompertz equation when a periodic perturbation is considered in the

positive or negative term. Finally, conclusions are included in the last section. (The

observations above are organised in a draft and ready for submission).

In Chapter Four, we provide an overview of the predator-prey model which represents

the tumour-immune system in the first section. The analysis of local stability is con-

ducted about the equilibrium points, and the corresponding biological effects are noted

for the deterministic coupled logistic equations in addition to Fisher information plot

as a function of prey mortality rate connected to the PDF. We also modify the two-

components system to include a logistic expression in the prey growth rate (cancer

cells population) and a periodic modulation (immunotherapy treatment) is included in

the second equation which stands for immune cells population to mimic the cancer

population and enhance the growth of the immune cells. Again, Fisher information

index is employed in this section. This chapter ends with brief conclusions. A dimen-

sionless formula for the predator-prey model is provided in separated appendix.

The first section in Chapter Five provides an introduction to the three-components sys-

tem. Then, we introduce a mathematical model of three interacting cell populations,

its dynamics and equilibria. It is hard to obtain the analytical solution as the model

contains complex mathematical expressions. Valuable modifications to the model pa-

rameters are introduced in order to deduce their effects on the behaviour of the cancer

cells population and to conclude the most important properties of the three species sys-

tem. The analysis of the impact of the model with a periodic perturbation is performed.

Moreover, the importance of the choice of amplitude value is demonstrated along with

the Fisher information. In this chapter, Fisher information index is successfully em-
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ployed in order to detect the significant parameter values in which the cancer cells are

eradicated. Finally, a summary of findings is included in the last section.

The final chapter concludes the thesis by discussing the key observations and possible

refinements of the proposed Fisher information index. We also offer a future perspec-

tive of potential topics which may be worthy of study by future researchers. It is

hoped that the results and explanation for the three different models will help clarify

the purpose of using Fisher information and provide simple solutions to deal with such

problems.
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The logistic model

2.1 Introduction

The nonlinear dynamical systems have been applied to complex phenomena as simple

models, e.g. in astrophysical and geophysical, environmental and biological systems.

Specifically, in the last few years, it has been observed that these models can make a

useful contribution in understanding biological systems as ever-improved experimental

data has become available. In 1838, Verhults was the first scientist to suggest the use

of a logistic model (which is sometimes called the Verhulst model) to describe popu-

lation growth (see [56, 88]). In particular, the logistic model is widely used to model

the growth of biological systems such as tumour cells, bacteria, etc. (see e.g. [39,108]

and the references there in). As an average field equation, the comprehensive impact

of micro-scale (small-scale) variables is found by control parameters for both positive

and negative feedback, while the time evolution of macroscopic (large-scale) variables

has been described by the logistic model.

The logistic equation is often used in its continuous state and is expressed by a differ-

ential equation rather than being a discrete variable expressed by a difference equation

(see [35, 67]). An equilibrium point (the so-called carrying capacity) results from the
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balance between the positive and negative feedback where the system reaches its equi-

librium point over a long period of time regardless of the initial condition of the system.

Therefore, we observe a single value of a carrying capacity with the loss of the memory

of the initial point (The system does not remember its initial condition). The simplic-

ity of the complementary effects of the positive feedback which represents the growth

of the population in the logistic equation and the negative feedback (which regulates

its growth) provided the motivation to investigate the logistic model in detail, thus we

employ the simplest model for a self-regulated system where the growth is organized

within a system.

The dynamic and sustainability of complex nonlinear dynamical systems have been

investigated using information theory. They have been especially studied using Fisher

information as a valuable measure of variability/sustainability of dynamical systems

including self-organising systems. This is mainly achieved by investigating the logistic

model’s variability/sustainability for different perturbations in positive and/or negative

feedback using Fisher information.

The logistic model with perturbations in the model parameters by periodic or random

modulation (e.g. [3,39,50,52,57,76,101,102,104]) or to couple the evolution of other

systems (e.g. [15]) has been investigated by many researchers to study its response

and behaviour, such as, a bimodal probability density function was found in the case

of a correlation between a multiplicative noise in the positive feedback and an additive

noise. Our motivation is to investigate the logistic model’s variability/sustainability

for different perturbations. Here we calculate Probability Density Function (PDF) for

different modulations in the model parameters and clarify the basic mechanisms that

determine the form of PDF. We will see the case where the system maintains a long-

term memory of initial values leading to a broad bimodal distribution. This is mainly

achieved when the perturbation time scale is much shorter than the system’s response

time. We compute Fisher information averaged over the total time (FT ) to study the

variability/sustainability of a system in different cases. We illustrate that a purely os-

cillatory growth rate can lead to a finite amplitude solution, while self-organisation
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of these systems can grow exponentially as the negative feedback includes a periodic

fluctuation. Also, a periodic stimulus is added to the logistic model to examine the

most sustainable state derived from FT analysis.

It should also be noted that the growth of cell populations driven by fluctuating en-

vironments has been investigated (see e.g. [95]); furthermore, the effect of different

oscillatory modulations in the system’s parameters has been studied in other dynam-

ical systems (e.g. [25, 62, 63, 75, 87, 89]), whereas the functionality of these systems

from the information theory perspective is not obvious.

The remainder of Chapter Two is organized as follows. We introduce our model in

Section 2.2 and the logistic model with perturbations in different cases in Section 2.3.

In Section 2.4 we describe the characteristic properties of the logistic model when the

model parameters for both positive and negative feedback have the same periodic per-

turbation, the computation of PDF, and Fisher information analysis. Additionally, we

describe testing the stability of our system by adding periodic stimulus. In Section 2.5,

we summarise the results for different types of modulation of the model parameters.

Conclusions are provided in Section 2.6.

2.2 The model

We can represent the dynamics of a population x (> 0) with a logistic equation as

follows:

dx
dt

= Nx
(
1 −

x
K

)
. (2.1)

Here, N (> 0) is the net growth rate, and K (> 0) is the carrying capacity of the sys-

tem representing the maximum population size that can be supported by the system, in

other words, the carrying capacity is specified through the system resources in which

the population will be embedded. The system in Eq. (2.1) has two possible steady
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Chapter 2. The logistic model

states x∗1 = 0 and x∗2 = K . While x can represent the population of any species of

interest such as tumour, rabbit, bacteria, etc., it must be remarked that x in this study

is assumed to be the population of bacteria to be specific unless stated otherwise. The

linear term Nx with N > 0 represents the net effect of bacteria growth (e.g. by eat-

ing food) and its death (e.g. by nature death, or antibiotics) which affords a positive

feedback, whereas the nonlinear term Nx2/K represents a negative feedback due to

the crowding effect as their growth is inhibited by limited resources. For a constant

N > 0, x reaches the carrying capacity K as t → ∞ regardless of the initial value of

x(t = 0) = x0 (see Fig. 2.1). The numerical and analytical solution is easily found for

Eq. (2.1).

If the population x is smaller than K , the growth of the population will increase expo-

nentially with a high percentage whereas for small value of x , the parenthesis is small

in which the population grows very slowly. Finally, if the population x exceed the

certain carrying capacity (K), then the growth of the population will grow negatively

where “The death rate is higher than the growth rate” [60, 91, 92]. Fig. 2.1 shows the

behaviour of the population for different initial conditions x(t = 0) = x0 .
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Figure 2.1: Different colours represent different initial conditions,
the population shows a transient growth followed by exponential growth,
then approaches the equilibrium point at x = K = 10 where convergence

to K happens from any initial state.

2.3 The logistic model with oscillatory parameters

For the constant net growth rate N in Eq. (2.1), the logistic model has widely been

investigated. This is in contrast to the case when the negative feedback contains a pe-

riodic perturbation such as the results presented in [50, 104], where a decrease in self-

regulation is noticed. We show some characteristics of the cases where the model pa-

rameters for only positive or negative feedback contain a periodic perturbation (cyclic

variations) while our main concern is the case where the a periodic perturbation in pos-

itive and negative feedback is strongly correlated. This is mainly achieved by replacing

the constant growth rate N by the following periodic modulation:

N = B + N0 sin(ωt), (2.2)
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where B is a constant growth, while N0 and ω are the amplitude and frequency of the

periodic modulation.

We use numerical and analytical methods to analyse the logistic system (after adding a

combined term of constant and purely oscillatory part) in three different cases. It must

be pointed out that for the first two cases, the oscillatory control parameter effects van-

ish for the large values of ω , while the results are different for the third case of the

logistic system. For this reason, we examine the behaviour of the system for B = N0

where we observe that the solution grows boundlessly for smaller values of ω .

The three different cases of the logistic equation are governed by the following nonlin-

ear ordinary differential equations:

Case-1:The same perturbation in the positive and negative feedback

dx
dt

= [B + N0 sin(ωt)] x (1 −
x
K

).

Case-2: Perturbation in the positive feedback

dx
dt

= [B + N0 sin(ωt)] x −
Cx2

K
.

Case-3: Perturbation in the negative feedback

dx
dt

= Cx −
[B + N0 sin(ωt)] x2

K
.

We will go through each case separately as in the following sections:

2.4 Case-1 : The same perturbation in the positive and negative feedback

dx
dt

= [B + N0 sin(ωt)] x (1 −
x
K

). (2.3)
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2.4. Case-1 : The same perturbation in the positive and negative feedback

The analytical solution to Eq. (2.3) is found as in the following expression:

x(t) =

−Kx0 exp
(
Bt + N0

ω
(1 − cos(ωt))

)
(x0 − K) − x0 exp

(
Bt + N0

ω
(1 − cos(ωt))

) , (2.4)

where x0 is the initial value of x at t = 0 and K = 10. For comprehensive understand-

ing of the system, for B = 0, we present results for different values of N0 and ω in 3D

plot, with x− axis represents the values of N0 , y− axis stands for the values of ω and

z − axis shows maximum values of x in Eq. (2.3) as follows:
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Figure 2.2: 3D plot of the maximum values of x , Max(x), in z − axis ,
N0 in x − axis and ω in y − axis . Max(x) values are monotonically

decreasing as ω increases for K = 10, B = 0, and x0 = 0.1.

Fig. 2.2 shows maximum values of x as a function of N0 and ω . We observe that the
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maximum values tend to monotonically increase with the modulation amplitude for

small values of ω and decrease as ω increases. This leads to conclude that x does not

deviate far from its initial values, effectively leading to the maintenance of the memory

of its initial values for large values of ω .

2.4.1 Results for fixed ω and varying N0

In this section, we consider the effect of varying N0 on the behaviour of the system

in Eq. (2.3) for different values of ω = 1, 5, and 10 (these particular values of ω are

chosen arbitrarily).

Fig. 2.3 shows that for ω = 1 (red dashed-line), the solution grows exponentially

as N0 increases, then a stable equilibrium point at the carrying capacity K = 10 is

observed, and convergence to K occurs when N0 > 5. That is, the effect of the periodic

perturbation disappears for a sufficiently large N0 , such as N0 > 5. Similar behaviour

is noticed for ω = 5 and 10 (blue and green dashed-lines), but the difference is the

value of N0 where the solution approaches its asymptotic value as shown in Fig. 2.3.
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Figure 2.3: Maximum values of x for varying N0 and different values of ω ,
x0 = 0.1, B = 0. The difference between the above curves is the time that the

population spend before showing a steady state at the carrying capacity K = 10.

In consideration of the above figure, there has been much interest in finding the re-

lationship between N0 and ω , where the other parameter values are fixed, such as

x0 = 0.1, B = 0 and K = 10. We vary N0 and ω in order to observe the dynamics

of the system. The system is linearly increasing as N0 and ω increase, this leads to

a linear relationship as we can see in table (2.1) and Fig. 2.4, which means that as ω

increases, then N0 increases.
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Table 2.1: Different values of ω and N0

ω N0 mean ω N0 mean

1 5 5.2809 42 210 5.2808

1.5 7.5 5.2804 56 280 5.2808

2 10 5.2806 62.7 313.5 5.2808

4.4 22 5.2809 75 375 5.2808

6 30 5.2807 78 390 5.2808

10.1 50.5 5.2808 80 400 5.2808

15 75 5.2807 90 450 5.2808

18 90 5.2808 105.9 529.5 5.2808

24.5 122.5 5.2808 120 600 5.2808

30 150 5.2808 150 750 5.2808

For example, when ω = 1, we plot Max(x) on the y−axis and N0 on the x−axis , we

observe that the solution reaches carrying capacity K = 10 when N0 = 5, by choosing

different values of ω , we obtain the above table (Table 2.1), and we present the results

from the above table in the following figure:
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Figure 2.4: The linear relationship between N0 and ω with
fixed values of K = 10, B = 0 and x0 = 0.1.

The most common characteristic in Fig. 2.4 is that ω shows a linearly increasing

function of N0 . The stars in the above figure represent the intersection values of N0

and ω where we find a basic fitting for our data as y = 0.2x + 1.3077e − 14, with

1.3077e − 14 as a norm of residuals and this fitting curve can be seen as a yellow line

in Fig. 2.4.

2.4.2 Results for fixed N0 and varying ω

In this section, for B = 0, we fix N0 and K to be N0 = 5 and K = 10 in order to inves-

tigate the influence of varying ω (the angular frequency in the periodic modulation)

on the logistic model response as t and x can always be re-scaled by N0 and K , re-

spectively. From the analytical solution in Eq. (2.4), our interesting observation is the

cross-over behaviour of x between x0 and K in the limit of increasing t . For instance,

when B = 0, the fluctuates between |N0| and −|N0| in time with zero average. More
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specifically, at times when ω = 0, cos (ωt) = 1, x takes its minimum value xmin = x0

while at times when cos (ωt) = −1, x reaches its maximum value as in the following

expression:

xmax =
Kx0

x0 + (K − x0) exp
(
−

2N0
ω

) . (2.5)

One interesting feature of the case B = 0 is where the killing impact from natural

death or antibiotics is quite strong. In population genetics, this case would correspond

to the random sampling of gametes with no selective advantage (see §6-7 in [42]) if the

periodic modulation is replaced by a short-correlated noise. In the following, we show

one of the results of the same periodic perturbation in positive and negative feedback

which is the maintenance of an initial condition and bimodal distribution.
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Figure 2.5: Time trace of x for different values of x0 = 0.1, 5 and
ω = 1, 10. For a small value of ω , x tends to reach the carrying

capacity K = 10 while for large ω , x maintains its initial conditions.

In Fig. 2.5, we investigate the dynamics of the logistic model for different values of

ω and x0 . The first interesting observation of this model is that the minimum values
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2.4. Case-1 : The same perturbation in the positive and negative feedback

of x are equal to x0 , as analytically predicted above. On the other hand, maximum

values of x according to Eq. (2.5) are the same maximum values in Fig. 2.5(a)-(d).

For example, xmax = 0.2672 in Fig. 2.5(b) and this is mainly obtained by Eq. (2.5)

where K = 10, x0 = 0.1, N0 = 5 and ω = 10. One more interesting characteristic

is that the system maintains its initial conditions for sufficiently large ω in which the

time-scale of the perturbation is much shorter than the system’s response time. This

is because as the population x starts with a small initial value, can never reach the

carrying capacity of the system x = 10 due to frequent periodic change in the constant

growth rate N , staying close to x = x0 as the bacteria do not have enough time to

undergo a fundamental exponential growth before they dissolve. That is, the time

interval when N > 0 is too short for large ω . As a result, the population of bacteria

fluctuates only near x = x0 , never reaching the carrying capacity K . In comparison,

for a sufficiently small ω , the time-scale of the perturbation becomes much larger than

the growth rate (i.e. the mean square root value of the growth rate), and in this case, x

will be able to reach the carrying capacity regardless of x0 . That is, as there is enough

time for the bacteria to grow when N > 0 before decaying when N < 0, allowing the

bacteria to increase. Mathematically, this is because a fast exponential growth during

the time with N > 0 wins over the decay during the time with N < 0.

In consideration of the above figure, there have been two cases of the population, and

much interest on the case where a cross-over between x→ K and x→ x0 is observed.

We illustrate these cases of x in Fig. 2.6(a)-(d), where we plot the maximum and

minimum values of x (in time) on the y − axis in blue solid line and red dashed-line,

respectively, against ω on the x − axis . In detail, we use two different initial values

for x to be x0 = 0.1 and x0 = 5 in Panels (a) and (b), respectively while we show

Panels (a) and (b) in log-log scale in Panels (c) and (d) in order to have a close look

for small ω . As a result, we present how the maximum values of x are monotonically

decreasing as ω increases.
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Figure 2.6: Maximum and minimum values of x against ω for
N0 = 5 and K = 10 with x0 = 0.1 in panels (a), (c) and (e) and
x0 = 5 in panels (b), (d) and (f). (c), (d), (e) and (f) are shown

in log-log scale.

There is also an evidence from the analytical solution in regards to the minimum of

x which is approximately equals to x0 as we can see in panels (a), (b), (c), and (d).

On the other hand, for the maximum values of x and for the two cases of different

initial points x0 = 0.1 and x0 = 5, there is an essential difference which is a much

steeper decrease in the maximum curve for x0 = 0.1 than for x0 = 5. As the maximum

values of x are obtained by the approach to the carrying capacity, the steep drop in

the maximum represents the inability of the system to grow and reach this carrying

capacity when the control parameter changes too rapidly in time for larger values of

ω , as noted previously. In this light, x does not deviate far from its initial values,

effectively leading to the maintenance of the memory of its initial values. This is

consistent with the results shown in Fig. 2.5. In the following expression we compute

the ratio of the change in the maximum of x to determine the maintenance of initial

30



2.4. Case-1 : The same perturbation in the positive and negative feedback

conditions.

(Initial value −Maximum of x
Maximum of x

)
× 100 %. (2.6)

For sufficiently large ω � 1, we observe nearly straight lines in Fig. 2.6(e)-(f) which

indicates that the percentage change decreases with ω as a power-law in both cases

where Panels (e) and (f) are presented in log-log scale.

2.4.3 Probability Density Function

In this section, we present our efforts to show the influence of ω and x0 on the Prob-

ability Density Function (PDF). According to the method proposed by Cabezas et al.

[13, 25] and Rico-ramirez et al. [78], we calculate the PDF of x by relating the prob-

ability of observing the system at a particular value of x to the amount of time the

system state spends at x through conservation of the probability:

p[x] dx = p[t] dt. (2.7)

Since t is a continuous variable with a uniform probability density:

p[t] = constant = A, (2.8)

we obtain PDF of x from Eqs. (2.7)-(2.8) as:

p[x] = p[t]
∣∣∣∣∣ dt
dx

∣∣∣∣∣ = A
∣∣∣∣∣ dt
dx

∣∣∣∣∣ =
A
u
, (2.9)

where

u =
dx
dt
. (2.10)

Since u is simply given by Eqs. (2.1)-(2.2), then, we can express p[x] in Eq. (2.9) as:
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p[x] =
A

(B + N0 sin (ωt)) x
(
1 − x

K

) . (2.11)

Here, we need to consider Eq. (2.4) and replace it by a function which only depends on

x , as Eq. (2.11) contains the time-dependent function (sinωt ). As a result, we present

(cosωt ) as follows:

cos (ωt) = 1 +
ω

N0
ln

[
x0 (x − K)
x (x0 − K)

]
, (2.12)

and by using the expression
(
sin (ωt) =

√
1 − cos2 (ωt)

)
, we obtain (sin (ωt)) in Eq.

(2.11) from Eq. (2.12). By using Eqs. (2.11) and (2.12), we present the PDFs of x for

different values of ω in Fig. 2.7.
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Figure 2.7: PDF of x for N0 = 5, B = 0, K = 10 and x0 = 0.1.
Different values of ω are used in panels (a)-(f). A bimodal PDF is

observed for all the cases.

The most interesting feature in Fig. 2.7 is a bimodal PDF for different values of ω with

different distance between the two peaks. This bimodal distribution is the outcome of
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2.4. Case-1 : The same perturbation in the positive and negative feedback

the maintenance of the initial condition x0 = 0.1 (left peak) against the tendency of x

getting closer to a carrying capacity (10 = K ) (right peak), as mentioned earlier. In

particular, we observe that for sufficiently large ω � N0/2π and small initial condi-

tions (far from the carrying capacity), x can never reach x = 10 because of frequent

periodic change in N , where the time-scale of perturbation is much shorter than the

growth rate. Therefore a very tight distribution has found close to the initial values due

to the case when the system remember its initial values (population at the start). On

the other hand, for small ω � N0/2π , x reaches the carrying capacity regardless of

x0 where the time-scale of the perturbation is much larger than the growth time. As

a result, it must be noted that the figure above show a PDF with two peaks, the first

one at the initial value x0 = 0.1 and the second peak appears at the carrying capacity

x = 10. In this light, for the parameter N0/ω = 5, it is observed a bimodal PDF with

broadest distance between the two PDF peaks. Therefore, we can conclude that the

right peak reduces for large ω in contrast with the left peak at the starting point which

is getting higher followed by the narrowing of the PDF.

In consideration of the above observations about the system’s PDF and its initial con-

ditions, in Fig. 2.8 we show a PDF for different values of ω when x0 = 5. A bimodal

PDF with different distance between the two peaks is noticed for all cases as ω in-

creases. For small ω , x reaches the carrying capacity while for large ω , x starting

far from x = 10 can never reach x = 10 and only fluctuates around x0 = 5. In a

comparison between the PDF in Figs. 2.7 and 2.8, the left PDF peak around x0 = 5

has no significant growth for any value of ω before the PDF get tight in Fig. 2.8. In

other words, narrowing of the PDF occurs while the right PDF peak is still larger than

the left PDF peak. Specifically, in Fig. 2.7(c) just before the narrowing of the PDF, the

height of the left peak is about [99.9981]% of the height of the right peak while in Fig.

2.8(b), the height of the left peak is only [49.6632] % of the right peak.
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Figure 2.8: PDF of x for N0 = 5, B = 0, K = 10 and x0 = 5 by using
different values of ω in panels (a)-(f). A bimodal PDF with different

distance between the two peaks is observed for all the cases.

The fact that the PDFs in Fig. 2.8 show significant peaks at x = x0 and x = K

leads to the difference in PDFs with x0 = 0.1 and x0 = 5. In particular, for a constant

amplitude N (population growth rate), the logistic equation possess a stable fixed point

and unstable point which correspond to the blow-up points of Eq. (2.11) at x = 0 and

x = 10. Thus, the closest x0 to x = 0, the higher the left peak around x0 as seen in the

case of x0 = 0.1. When x0 is far from x = 0 (as in the case of x0 = 5), the PDF does

not form such a high peak around x0 .

We illustrate these features using Fisher information as indicated below. For initial

conditions x0 = 0.1 (much less than K ), there is an optimal value of ω (satisfying N0
ω

=
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5), which can maintains the distinct bimodal PDF with the largest distance between the

two PDF peaks whereas for the initial condition x0 = 5 (closer to K ), such an optimal

value of ω does not exist because the peak at x0 = 5 is not significant, as noted above.

The implication of the existence of such an optimal value of ω will later related to the

utility of Fisher information as a measure of the sustainability.

2.4.4 Fisher information

Previous sections discussed the behaviour of the logistic model when the model pa-

rameters contain a periodic fluctuation. We now use Fisher information index to track

this behaviour. In Fig. 2.9, we show different levels of Fisher information as a measure

of variability of the observations, for example, we observe larger Fisher information

where a PDF bias to a certain x values while a system with high disorder leads to small

Fisher information (e.g. ”unbiased” PDF).

Low variability
Higher variability
Flat distribution

(c) High Fisher Information

(b) Medium Fisher Information

     (a) Zero Fisher Information

Figure 2.9: (a) A uniform PDF with zero Fisher information, (b) A PDF
of x with medium Fisher information and (c) A steeply sloped PDF of x

with large Fisher information (high gradient).

35



Chapter 2. The logistic model

Previous work suggested the following sustainability hypothesis: “sustainable systems

do not lose or gain Fisher information over time” [25, 28, 78].

Fisher information index plays a significant role in the improvement of the sustain-

ability fundamental theory, for example, this has been especially invoked to determine

whether a system is sustainable or not in various physical systems (see [34, 78, 81]

and the references there in). We recall that Fisher information is a very special un-

certainty measure; in contrast to a global measure of uncertainty (e.g., variance, or

Shannon’s entropy), Fisher information strongly depends on the gradient of the PDF,

consequently, it is sensitive to the local oscillatory character of the PDF and relabelling

[72, 81, 86, 87].

Cabezac and Fath [25] computed Fisher information for a single variable x from the

PDF of x , p(x, t), as follows:

I =

∫
1

p[x]

(dp[x]
dt

)2

dt. (2.13)

We note that Eq. (2.13) can be extended to n-dimensional system as follows:

I =

∫
1

p[x]

[ n∑
i

(
∂p[x]
∂xi

dxi

dt

) ]2

dt.

The time averaged Fisher information (FT ) is calculated by employing Eqs. (2.9),

(2.10) along with

dp[x]
dt

= −
A
u2

du
dt
,

in Eq. (2.13) as follows:

FT =
1
T

∫ T

0

1
A

(dp[x]
dt

)2

dt =
A
T

∫ T

0

1
u4

(du
dt

)2

dt. (2.14)

Here, A is a normalization constant, and FT is the Fisher information averaged over

the total time duration T . In the following figures, we examine the logistic model’s
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2.4. Case-1 : The same perturbation in the positive and negative feedback

variability/sustainability through calculating FT for different cases using Fisher infor-

mation form in Eq. C.4 1. We display FT for different values of ω and for the two

initial values of x0 , x0 = 0.1 and 5, and as before we fix values of N0 = 5, B = 0 and

K = 10.

By changing the total time period T for fixed ω and x0 , we calculate FT , for example,

by using t = [0, 10] with T = 10, t = [0, 20] with T = 20, and so on and show

FT as a function of T . For fixed initial value x0 = 0.1 which is the same as in Fig.

2.7 and for different ω = 0.1, 0.5, 1, 2, 5, 10, we show FT against T in panels (a)-(f)

in Fig. 2.10. For each panel in Fig. 2.10, we employ 1000 data points for T = 10n

(n = 1, 2, 3, ..., 1000). The common feature for each panel is that FT is initially subject

to transient state then show a static state for a sufficiently large T . In this light, it must

be pointed out that the higher asymptotic value of FT can be seen at ω = 1, whereas

the smallest FT value observed for ω = 0.1.

In consideration of the results in Fig. 2.10, we present FT with ω in Fig. 2.11 in order

to observe how FT values change as ω increases.

1The whole calculation of finding Eq. C.4 is presented in Appendix C
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Figure 2.10: FT against the total time T for N0 = 5, x0 = 0.1, K = 10,
B = 0 and different values of ω . We observe a larger value of FT at ω = 1.

The interesting feature of the curve in Fig. 2.11 is the existence of a featured max-

imum FT around ω ' 1 which is associated to the presence of the optimal ω with

the maintenance of a bimodal PDF with the two well-separated peaks, discussed with

regard to Fig. 2.7.
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Figure 2.11: Asymptotic values of FT against ω for x0 = 0.1,
N0 = 5, B = 0 and K = 10.

In consideration of the above results, we show another case with different initial value

x0 = 5 with respect to Fig. 2.8. FT values increase as ω increases without showing

any distinct maximum in a comparison of Fig 2.11.
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Figure 2.12: FT against T for N0 = 5, K = 10, B = 0 and x0 = 5.
Panels (a)-(f) are for different values of ω .
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Figure 2.13: Asymptotic values of FT against ω for x0 = 5, N0 = 5,
B = 0 and K = 10. FT increases monotonically as ω increases.
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In Figs. 2.12 and 2.13, we present FT against T for different values of ω and the

asymptotic values of FT against ω , respectively, for x0 = 5. FT values are monotoni-

cally increasing in Fig. 2.13, in a precise contrast to Fig. 2.11 and the smaller FT value

has been found at ω = 1 while the higher value of FT is at ω = 500. In other words,

we observe a general tendency of FT monotonically increasing as ω increases. These

observations indicate that the distinct maximum of FT at optimal ω when x0 = 0.1

does not occur in the case when x0 = 5 as we can relate this finding to the absence

of the bimodal PDF with two distinct peaks for x0 = 5 as previously discussed with

respect to Fig. 2.8.

2.4.5 Role of Fisher information as a measure of sustainability

Our interesting findings in previous section (2.4.4) show that there is maximum FT

around the optimal value of ω ∼ N0/5 = 1 when x0 = 0.1 and B = 0. One can there-

fore, give a better understanding by investigating the optimal case with maximum FT .

We added a periodic stimulus (B1sin(ω1t)) to Eq. (2.3) to investigate the variability of

this optimal case (ω = 1) as follows:

dx
dt

= (B + N0 sin(ωt))x
(
1 −

x
K

)
+ B1sin(ω1t), (2.15)

then compare the results from the optimal case with non-optimal case’s observations.

For different values of ω , B1 and ω1 , we show a PDF for the optimal and non-optimal

cases. For example, we investigate the following values ω = 1 (optimal case), ω = 10

(non-optimal case), B1 = 1, 10, ω1 = 1,
√

2 and the results are presented in Fig. 2.14.
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Figure 2.14: PDF of x for x0 = 0.1, K = 10, B = 0 and N0 = 5, with
a periodic stimulus. Left panels are for the optimal case (ω = 1) while

the right panels are for non-optimal case (ω = 10). The PDFs with
optimal value N0 = 5ω in left panels are more resilient to the a

periodic stimulus than the PDFs for ω = 10.

In Fig. 2.14, we display how the PDFs are influenced by different periodic stimulus in

the left panels when ω = 1 and ω = 10 in the right panels. We notice that the com-

prehensive change in PDFs for the optimal case ω = 1 in Fig. 2.14 is extremely less

than the change in the PDFs in Fig. 2.7(c) and 2.7(f), respectively, indicating that the

effectiveness of the periodic stimulus on the optimal case with higher FT is less than in

the non-optimal case. Thus, to strengthen this argument, it is important to employ an-
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2.4. Case-1 : The same perturbation in the positive and negative feedback

other index such as the mean value to track the system’s behaviour. Specifically, Table

(2.2) shows the mean values without periodic stimulus for ω = 1 in the left panel and

ω = 10 in the right panel, then presenting the results of computing the ratio of change

in the mean values in the case of the periodic stimulus using the following expression

in Table (2.3):

Mean without periodic stimulus −Mean with periodic stimulus
Mean value without periodic stimulus

× 100 % (2.16)

In Table (2.3), it must be remarked that for the optimal case ω = 1, the ratio of change

in the mean values for different parameter values in the periodic stimulus is much less

than that in the non-optimal case (ω = 10). For instance, we observe that the ratio of

change in the optimal case is 15.3% while it is 656.1% in the non-optimal case for

B1 = 1 and ω1 = 1 in the periodic stimulus. In other words, the results show that the

ratio of change in the non-optimal case is almost 44 times bigger than its equivalent in

the optimal case. As a result, we can see that the non-optimal case is more affected by

the perturbations in the model parameters compared to the optimal case.

Table 2.2: Mean values for x0 = 0.1, K = 10 and B = 0
without periodic stimulus.

Mean value in optimal case Mean value in non-optimal case
5.5433 0.1733

Table 2.3: % Change in mean values for x0 = 0.1, K = 10 and B = 0 with periodic
stimulus.

Optimal case Non-optimal case
Mean value % Change Mean value % Change

B1 = 1, ω1 = 1 6.3927 15.3 % 1.3103 656.1 %
B1 = 1, ω1 =

√
2 5.5515 0.2 % 0.8814 408.6 %

B1 = 10, ω1 = 1 8.8326 59.3 % 15.2631 8707.3 %
B1 = 10, ω1 =

√
2 6.5509 18.2 % 7.2068 4058.6 %

It is also important to investigate more values of initial conditions such as x0 = 5 in
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order to study the importance of Fisher information for the logistic system’s sustain-

ability. We thus perform similar experiment for x0 = 5 by changing the parameter

values in the periodic stimulus as we can see in Fig. 2.15 and Tables 2.4, 2.5. Based

on the results from Fig. 2.13 as the FT does not show a maximum value for this initial

condition, x0 = 5, as a result, there is not any specific value of ω which is most re-

silient to perturbations and this indicates the lack of apparent connection between the

value of FT and sustainability. Therefore, one can assume that the FT is a valuable

metric of variability/sustainability if only there is a distinct Maximum of FT (linked to

the presence of PDF with two distinct bimodal peaks).

For a different initial condition such as x0 = 5, we use different values of ω , ranging

from ω = 1 with lower value of FT to ω = 500 which it shows a higher value of FT

to investigate the excitation’s effect on the system’s dynamics over time with different

values of B1 and ω1 as we can observe that from the following figure (Fig. 2.15) and

Tables 2.4, 2.5.
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Figure 2.15: PDF of x for B = 0, x0 = 5, K = 10 and N0 = 5, with periodic
stimulus. We use the smallest ω in the left panel and the largest ω in the

right panel in regards to Figs. 2.12 and 2.13.

In Figure 2.15, we show how the PDFs behave with a periodic stimulus for fixed N0 =

5, x0 = 5, K = 10, B = 0 and different ω in comparison with PDFs in Fig. 2.8 with

the same values of ω .
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Table 2.4: Mean values for x0 = 5, K = 10 and B = 0
without periodic stimulus.

Mean value for ω = 1 Mean value for ω = 500
8.9308 5.0239

Table 2.5: % Change in mean values for x0 = 5, K = 10 and B = 0 with periodic
stimulus.

ω = 1 ω = 500
Mean value % Change Mean value % Change

B1 = 1, ω1 = 1 9.1074 1.98 % 6.0771 20.96 %
B1 = 1, ω1 =

√
2 6.4373 27.9 % 5.6782 13.02 %

B1 = 10, ω1 = 1 10.4778 17.3 % 15.571 209.9 %
B1 = 10, ω1 =

√
2 7.0713 20.8 % 11.5765 130.4 %

2.4.6 Fisher information dependence on x0

In this section, we fix ω and varying x0 to see how FT values behave with changing

the initial values x0 .
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Figure 2.16: FT against x0 for N0 = 5, B = 0, K = 10 and ω = 0.5
(ω is an arbitrary value). The important feature of the above figure is

a distinct peak of FT at x0 ' 10. Panel (b) is in log-scale.
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In Fig. 2.16, FT values are monotonically increasing as x0 increases which means

that the variability is decreasing in the system’s behaviour as we get closer to the

stable point at x∗ = K = 10. The existence of a maximum in the above curve is

the identifying characteristic of FT which means that we have larger value of FT at

the initial condition closer to the carrying capacity of the population x0 (= 9.95) '

x∗ (K = 10) which leads to the state with a less variability (unsustainable state with

less dynamics to investigate).

Now, we turn back to the PDF of fixed ω and different x0 as in the following figure.

All the values of initial conditions display a bimodal PDF regardless ω . Also, we can

observe that the right peak is higher than the left peak for all initial values less than the

carrying capacity K = 10. In contrast to the initial conditions larger than the carrying

capacity K = 10, we can see that the higher peak is moved to the left as the other peak

represents the system at x0 which are larger than the maximum population size.
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Figure 2.17: PDF of x for N0 = 5, B = 0, K = 10 and ω = 0.5 with
different values of x0 . A bimodal PDF is observed for all the initial

conditions with different distance between the two peaks.

The most interesting feature of Figs. 2.16 and 2.17 is the distinct peak of FT at x0 ' 10
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which related to the panel x0 = 9.95 in Fig. 2.17 with a PDF bias to a certain x value

which is the carrying capacity.

To complete our investigation on the implication of Fisher information for variabil-

ity/sustainability with different initial conditions, we also perform similar experiments

for larger ω such as ω = 2 (figures not shown), similar results were observed with

higher Fisher information at the initial conditions which is closest to the carrying ca-

pacity K = 10.

2.4.7 The logistic model with extra modification

As we are dealing with a population dynamic, let’s consider x to be cancer cells pop-

ulation or bacteria population, etc. Specifically, for cancer cells population, our goal

is to eliminate the cancer cells in order to reduce their growth and stop their spread to

a new area by including a negative term in Eq. 2.3 as a treatment. We investigate its

effects on the system’s behaviour as in the following equation:

dx
dt

= (B + N0 sin(ωt)) x (1 −
x
K

) − cx. (2.17)

We investigate different values of c (a dose of treatment) in order to track its function-

ality in which the cancer population is more response to the treatment (more steeply).

In other words, to locate the optimal value of c . For B = 0, N0 = 5, ω = 1, and

different values of c , we calculate the mean values of the population and slopes in Fig.

2.18 where we display time on the x − axis and the mean values on the y − axis as

follows:
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Figure 2.18: Mean values of cancer population at different
values of c and fixed K = 10, N0 = 5, ω = 1, B = 0. Similar
behaviour is observed for all the values of c with a difference

in the time where cancer cells start to eradicate.

From Fig. 2.18, we observe that the higher value of c shows a more steepest curve

which means that the system is more flexible to the larger value of the treatment dose

but it will be of interest to detect the optimal value of c where the treatment at this

optimal value will eliminate the cancer population. Also, may including perturbations

in the constant c in the decaying term (−cx) will be of interest.

2.5 Comments on different modulations

To go beyond the investigation presented in previous sections regarding the case where

the same periodic modulation is included in the positive and negative feedback. In the

following, we build an investigation to track the behaviour of the logistic equation over
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all possible parameter values in two different modulations.

2.5.1 Case-2: Perturbation in the positive feedback

In this section, we present the logistic model (Eq. 2.3) with a constant in the negative

feedback (nonlinear term) whereas we vary the parameter N in the positive term (linear

term) by including a periodic modulation as in the following equation:

dx
dt

= (B + N0 sin(ωt)) x −
Cx2

K
, (2.18)

here, we consider B, C , and K as constants. The analytical solution for Eq. 2.18 is

the solution for the following quantity:

x =
e(Bt− N0

ω cos(ωt))

N0
K

∫
e(Bt− N0

ω cos(ωt))dt
(2.19)

We focus our efforts at changing the values of ω and N0 in the periodic perturbations

and study their effects on PDF of x for B = 0, K = 10, C = 1, and x0 = 0.1, and

investigate these effects on the system’s behaviour as in Fig. 2.19. Once more, we

concentrate on the case where the linear growth rate in Eq. (2.18) has zero average,

B = 0, and is only driven by a periodic modulation. Although B = 0, we realize the

existence of the finite amplitude solution. The common feature of this finite amplitude

solution is a PDF with one peak appears around the starting value x0 = 0.1 for all the

values of N0 and ω (see Fig. 2.19). This leads to a unimodal PDF for all parameter

values in comparison to the bimodal PDF in previous sections due to the influence of a

periodic fluctuation in driving a unimodal PDF. We also observe that the PDF becomes

shorter as ω increases for different values of N0 and this is similar to our conclusion

in regards the bimodal PDF in previous sections.
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Figure 2.19: PDF of x for different N0 and ω . x0 = 0.1, B = 0, K = 10
and C = 1. We observe a notable unimodal PDF for all the cases.

In consideration of the above, we present maximum values of x and study the system’s

behaviour for N0 = C = 5, x0 = 0.1 and vary ω as follows:
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Figure 2.20: Max(x) as a function of ω for N0 = C = 5, x0 = 0.1
and B = 0. Max(x) values are monotonically decreasing as ω

increases and finally show a static state at x0 .

An interesting behaviour of Fig. 2.20 is observed, the maximum values of x are mono-

tonically decreasing as ω increases and finally approach a static state at the initial con-

dition x0 . We used different initial conditions such as x0 = 2 which show us similar

behaviour.

2.5.2 Case-3: Perturbation in the negative feedback

In the absence of a periodic modulation in the positive feedback, we focus in the case

where only the negative feedback consists of a periodic modulation whereas the pa-

rameter in the positive feedback kept to be a constant C , as in the following equation:

dx
dt

= Cx −
(B + N0 sin(ωt)) x2

K
. (2.20)
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The exact solution to Eq. (2.20) is found as in the following expression:

x =
K a b C x0

KCa + N0 C b x0 c + N0 Cω x0 + Bx0 a (b − 1)
, (2.21)

where

a = C2 + ω2,

b = exp(Ct),

c = C sin(ωt) − ω cos(ωt).

From Eq. (2.20), we expect the solution to grow boundlessly for B = 0 as the effect of

the nonlinear term is reduced due to the periodic modulation in the model parameters.

This means that the population exponentially grows as the amplitude of N0 relative to

B increases and as the nonlinear damping becomes ineffective (e.g. [50, 104]).
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Figure 2.21: PDF of x for two different N0 ; N0 = 0.5 in the upper
panels and N0 = 1 in the lower panels. We fix x0 = 0.1, B = 1,

K = 10 and C = 1. A bimodal PDF is observed.
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In Fig. 2.21, we present PDF of x for two different values of the amplitude, N0 = 0.5

in the upper panels and N0 = 1 in the lower panels, respectively, and we fix the other

parameter values such as x0 = 0.1, B = 1, K = 10, and C = 1. In the lower

panels when N0 = 1, the PDF becomes broader as ω decreases due to the powerful

intermittency of x which is reflected from the high-amplitude peaks as ω decreases.

In regards the results in Fig. 2.21, we show the time evolution of x for different values

of N0 and ω in the following figure.

0 200 400 600 800 1000
0

1000

2000

3000

(a)  N
0
= 1, ω=0.1

Time

x

0 10 20 30 40 50
0

5

10

15

(b)  N
0
= 1, ω=10

Time

x

0 10 20 30 40
0

200

400

600
(c)  N

0
= 10, ω=0.1

Time

x

0 10 20 30 40 50
0

500

1000

1500

2000

2500
(d)  N

0
= 10, ω=10

Time

x

Figure 2.22: The time evolution of x for different values of N0

and ω and fixed x0 = 0.1, K = 10, B = 1 and C = 1. The population
grows boundlessly for small ω and larger N0 as in panel (c).

For sufficiently large values of N0 and small ω as in panel (c), it is obvious that the

solution grows exponentially whereas for small N0 and larger value of ω as in panel

(b), a static steady state at the carrying capacity K = 10 is observed.
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2.6 Conclusions

The logistic model with different perturbations in the model parameters for both posi-

tive and/or negative feedback has been employed in the view of variability/sustainability;

the influence of varying initial values and model parameters has been investigated.

In the case of the same periodic modulation of the model parameters for the positive

and negative feedback, one potential feature of our analytical and numerical investiga-

tion is that the logistic model shows a bimodal PDF with different distance between

the two peaks where it maintains a long-term memory of initial conditions as the sys-

tem’s response time is much longer than the characteristic time scale associated with

the disturbance.

From the perspective of information theory, for initial values far from the carrying

capacity K = 10 such as ( x0 = 0.1), we observe a distinct maximum of FT for an

optimal value of parameters N0 ∼ 5ω . On the other hand, the maximum Fisher in-

formation does not exist for x0 = 5 where FT monotonically increases with ω . The

analysis of the logistic model under different perturbations in the context of its variabil-

ity/sustainability yields valuable insight to understand the small population of bacteria

or tumour population which do not get killed off by antibiotics (or tumour cells pop-

ulation continued to survive), and the origin of their survival (e.g. [83]), as observed

from a PDF peak around this small population x0 . Specifically, a bacteria population

of small size (symmetrical to the small starting value x0 in the logistic model) can stay

alive under powerful antibiotics. This leads to maintenance of a bimodal PDF for an

optimal condition with the maximum Fisher information. Therefore, the optimal case

has the best survival likelihood.

Also, we calculate Fisher information from PDFs for the logistic model at different

initial conditions and compare the results with the Gompertz model in the next chap-

ter. This latter investigation leads us to conclude that Fisher information can be used

as a measure of sustainability in the case that it has a distinct maximum as a result
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of the existence of a bimodal PDF, with two distinct peaks appearing at the initial

conditions and at the carrying capacity, respectively. FT increases with x0 up to

x0 (= 9.95) ' x∗ (K = 10) and decreases beyond this initial value. This behaviour re-

sults from the high variability in the model parameters beyond x0 (= 9.95) ' x∗(= 10).
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Chapter 3

The Gompertz model

3.1 Introduction

The Gompertz equation is widely used to describe the growth of plants, birds, fish, bac-

teria and cancer population, even economic phenomena, while earlier actuaries only

showed interest in it [33, 96, 103]. Laird, for example, [48, 49] proposed a family of

sigmoidal Gompertzian curves to model the growth of diverse malicious cancers over

time. Also, it is important to mention that the changes in the growth rate of the Gom-

pertz equation give a sigmoidal curve (see Fig.1 in [109]) with three stages. The first

stage of growth presents an initial transient which does not make it clear what is actu-

ally going on, followed by an exponential growth stage, then finally a stationary state.

Significant examples of such growth curves are human height and mass, a fish com-

munity, and rabbit population (see [99, 109] and the references there in).

The first successful attempt to apply the Gompertz equation to fit cancer growth data

was made in the 1960s by Laird [48], where cancer was considered as a cellular popula-

tion growing in a bounded space with a limited availability of nutrients. Subsequently,

many researchers have employed the Gompertz law of growth to fit experimental data

on such as tumour cells; in addition, mathematical modifications have been made to the
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Gompertz equation by such as Waliszewski [100] who introduced a number of Gom-

pertz model characteristics mathematically. The Gompertz equation (3.2) is found in

different fields of applied studies, for example, in medicine for modelling the growth

of cancer populations, in actuarial science for determining a mortality law, in biology

as a model for characterizing the growth of organisms, in marketing, in ecology, etc.

(see [41, 96, 103] and the references there in).

We explore the dynamics of the Gompertz growth model in detail by investigating

the behaviour of this model with perturbations in different cases. In particular, we

investigate the Gompertz growth model driven by a periodic modulation in different

positions from a point of view of variability/sustainability using Fisher information,

and make a comparison with the results presented in the previous chapter of the logis-

tic equation. The implicit general findings are that a periodic solution is observed for

the perturbed model in addition to a cross-over behaviour between x0 and x∗ = e . To

estimate the variability/sustainability of the Gompertz equation, we employ the theory

and methodology needed for using Fisher information, a large value of Fisher infor-

mation is observed at x0 which is closer to x∗ = e with shortest PDF.

The remainder of Chapter Three is presented as follows: Section 3.2 sets out our model

and motivation. Then, perturbation of the Gompertz equation is explained in Section

3.3. Section 3.4 includes the same periodic modulation in positive and negative feed-

back, studying its dynamics by computing PDFs and Fisher information analysis. Sec-

tion 3.5 describes our simple investigation of the Gompertz equation with different

types of modulations of the model parameters. Finally, Section 3.6 presents conclu-

sions.
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3.2 The model and motivation

For actual purposes, the Gompertz curve is generally written in the following form:

x(t) = ea(1−e−bt), (3.1)

where a and b are essentially positive quantities (a > 0, b > 0) (see [41, 100, 103]).

From Eq. (3.1), when t tends towards negative infinity, x approaches zero whereas

as t tends towards positive infinity, x approaches the equilibrium point x∗ = ea . For

our purpose of investigating the variability/sustainability of the Gompertz equation and

making a comparison with other dynamical systems, it is more convenient to write the

Gompertz equation as a solution of the mathematical model [48] as in the following

form:

dx
dt

= cx − bx log (x). (3.2)

Here, c and b (c > 0, b > 0) are experimental coefficients determining the slope

of the curve (see [100] and the references there in). c is the net growth rate, and b

is the death rate, t stands for scalar time, while x is the population of any species,

and x0 is the population size at the starting observation time. Eq. (3.2) describes a

population asymptotically reaching the carrying capacity value x∗1 = e(c/b) , x∗1 is the

stable equilibrium point whereas the second equilibrium point is x∗2 = 0 which is an

unstable point. The linear term cx with c > 0 represents a positive feedback while

the nonlinear term bx log (x) with b > 0 represents a negative feedback. We notice

the same observations as for the logistic equation in section (2.2) where x reaches the

equilibrium point x∗1 , as t increasing

for a constant c, b > 0, regardless of the initial value of x(t = 0) = x0 .

Benjamin Gompertz (1825) was the first to suggest and employ the Gompertz model,

where he formulated his law of population mortality as in Eq. (3.1) which is a sigmoid
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function [11,33,37,96]. It is also explained mathematically as a model for time series,

where there is a lack of growth after t = 0 before attaining the equilibrium point. Some

more examples of using Gompertz curve in modelling different population as follows:

• fashion uptake; initially, costs were high, a period of fast growth was reached,

followed by slower absorption where saturation was reached.

• Population in a limited area; at the beginning, the birth rates of population in-

crease then slow as resource limits are reached.

3.3 The Gompertz equation with oscillation

Our focus in this section is the case where a periodic modulation appears in the model

parameters. Specifically, when the parameters b and/or c in Eq. (3.2) are modified to

include a periodic modulation as follows:

b = c = B + D0 sin(ωt), (3.3)

where D0 and ω are the amplitude and frequency of the periodic modulation, respec-

tively, B is a constant growth and more focus on the case B = 0, in which our model

is only driven by a periodic modulation (D0 sin(ωt)), we investigate the influence of

changing ω and x0 on the response of the Gompertz model.

Numerical and analytical calculations have been used to investigate the Gompertz

equation (after adding a combined term of constant and purely oscillatory part) in dif-

ferent three cases which are illustrated by the following nonlinear ordinary differential

equations:

Case-1: The same perturbation in the growth and death rates

dx
dt

= (B + D0 sin(ωt)) x (1 − x log x).
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Case-2: Perturbation in the growth rate

dx
dt

= (B + D0 sin(ωt)) x − bx log x.

Case-3: Perturbation in the death rate

dx
dt

= cx − (B + D0 sin(ωt)) x log x.

Again as in the logistic model, the impact of the oscillatory control parameters vanish

in the first two cases for sufficiently large ω while it shows different behaviour for the

third case where the solution grows boundlessly for smaller ω when B = D0 . Each

case will be consider separately in the following sections:

3.4 Case-1: The same fluctuation in the growth and death rates

A periodic modulation is included in the model parameters for both positive and neg-

ative feedback as follows:

dx
dt

= (B + D0 sin(ωt)) x (1 − log x). (3.4)

By integrating Eq. (3.4), we obtain the analytical solution as shown in the following

form:

x(t) = exp
(
1 −

[(
1 − log (x0)

)
exp(−Bt − α)

])
, (3.5)

where

α =
D0

ω
(1 − cos(ωt)).

Here x0 is the initial value of x at t = 0 and log() refers to the natural logarithm
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(a logarithm to the base e (= 2.71828 )). It must be remarked that Eq. (3.4) has two

equilibrium points, the first one is x∗1 = e and the second one is x∗2 = 0. By checking

the stability of these fixed points, we observe that the first point is stable whereas the

second point is an unstable point.

From the analytical solution (Eq. 3.5), a cross-over behaviour of x between x0 and

x∗1 = e in the limit of increasing t is observed. For example, when ω = 0, cos (ωt) = 1

and B = D0 = constant , the population tends to reach x∗1 = e as t → ∞ regardless

initial conditions. While, when B = 0, the net growth rate takes its minimum value

xmin = x0 at times when cos (ωt) = 1.

3.4.1 Results for fixed ω and varying D0 in the oscillatory term

We investigate the effects of changing the amplitude D0 for B = 0 and fixed values

of ω by choosing ω = 1, 2, 5, and 10, respectively, where these values are chosen

arbitrarily [63, 104].

From the following figure (Fig. 3.1), we present maximum values of x , Max(x)

against amplitude D0 . A similar behaviour is observed for all the values of ω . Specif-

ically, for ω = 1, the curve shows that the model has an initial transient then it starts

to increase rapidly as D0 increases until the solution approaches asymptotic value at

x∗1 = e . For the other values of ω , ω = 2, 5 and 10, the only difference is the value of

D0 where the solution approaches its asymptotic value (see Fig. 3.1).
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Figure 3.1: Maximum values of x for fixed ω = 1, 2, 5, 10 and varying
D0 with x0 = 0.1, and B = 0. The difference between the above curves

is the time that the population spend before approaches its
maximum values at e .

For sufficiently large D0 , the effects of the periodic perturbation disappear for different

values of ω , similar to the observations concluded for the logistic model dynamics.

3.4.2 The cross-over behaviour between x = x0 and x = x∗1

In this section, we show the Gompertz model with a periodic modulation in both posi-

tive and negative feedback. The solution maintains its initial condition for sufficiently

large values of ω . We fix the constant growth rate to be equal zero (B = 0), and is an

interesting model where a growth is strongly inhibited as in the case of bacteria under

the action of antibiotics, etc. Thus, Fig. 3.2 displays the typical time history of x for

different values of ω and x0 .

63



Chapter 3. The Gompertz model

Time
0 10 20 30 40 50

x(
t)

0

1

2

3
(a) x0= 0.1, ω= 1

Time
0 2 4 6 8 10

x(
t)

0

0.5

1

1.5
(b) x0=0.1, ω=10

Time
0 10 20 30 40 50

x(
t)

2

2.2

2.4

2.6

2.8

3
(c) x0=2, ω=1

Time
0 2 4 6 8 10

x(
t)

2

2.2

2.4

2.6
(d) x0=2, ω=10

Figure 3.2: The time evolution of x for different values of x0 = 0.1, 2
and ω = 1, 10. For a small value of ω , x(t) tends to reach the carrying

capacity e while for large ω , x(t) maintains its initial condition.

We observe that x(t) tends to reach its maximum values at x∗1 = e = 2.7183 for a small

value of ω regardless x0 , while for large ω , x(t) maintains its initial condition and can

never reach x∗1 = e (see Fig. 3.2).

We display the time evolution for small ω and different x0 in the left panels, where

the time scale of perturbation becomes much larger than the growth rate, leading the

system to reach x∗1 , in comparison with panels (b) and (d) where the time scale of

perturbation is much shorter than the system’s response time, therefore, the system

does not approach x∗1 (similar observations can be seen in section 2.4.2).

In order to explain the behaviour in Fig. 3.2 in detail, we show another figure which

contains maximum and minimum values of x in the y− axis in blue solid line and red

dashed line, respectively, and ω in the x−axis for different values of initial conditions.

We display the figures in panels (a)-(b) in log-log scale in panels (c)-(d), respectively.
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Figure 3.3: Maximum and minimum values of x against ω for D0 = 7
and x0 = 0.1 in panels (a), (c) and (e) and x0 = 2 in panels (b), (d) and

(f). (c), (d), (e) and (f) are explained in log-log scale.

A visual analysis of Fig. 3.3 shows a general tendency of Max(x) monotonically

decreasing as ω increases. Furthermore, we notice that Min(x) approximately equals

to x0 in panels (a), (b), (c) and (d) as expected from the analytical solution.

We also observe a difference between the left and right panels which is due to the

different initial conditions, for x0 = 0.1, the maximum values of x show a much

steeper decrease than for x0 = 2, as Max(x) is obtained by the approach to x∗1 = e .

To support these findings, we employ the relative deviation measure of Max(x) to

determine the maintenance of initial values.

The ratio of change in Max(x) is found according to Eq. (2.6) (Chapter Two), and the

results are shown in Fig. 3.3 (e) and (f) by using log-log scale. In Fig. 3(e)-(f), we

observe almost straight lines for ω � 1, leads to a power-law relation in both cases as

the percentage change decreases with ω .
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3.4.3 Probability Density Function

From a statistical perspective, we compute the Probability Density Function (PDF)

of x to examine the effects of ω and x0 on PDF by relating the time spends by the

system state at x to the probability of observing the system at a particular value of x

(see [13, 25, 78]). Following the procedure developed for the logistic model in section

(2.4.3), we comput PDF for the Gompertz model as follows:

p[x] =
A

(B + D0 sin (ωt)) x
(
1 − log (x)

) . (3.6)

Since p[x] is define according to the following expression:

p[x] = p[t]
∣∣∣∣∣ dt
dx

∣∣∣∣∣ = A
∣∣∣∣∣ dt
dx

∣∣∣∣∣ =
A
u
,

where u = dx
dt is simply given by Eq. (3.4). In order to replace Eq. (3.5) by a func-

tion which only depends on x , we solve Eq. (3.5) for (cos (ωt)) as in the following

expression:

cos (ωt) = 1 +

(
ω

D0
log

( 1 − log (x)
1 − log (x0)

))
, (3.7)

by using the identity
(
sin (ωt) =

√
1 − cos2 (ωt)

)
, and substituting it in Eq. (3.6), the

resulting equation is used to produce the figures in this section.

To illustrate how PDF depends on x0 for fixed value of ω , we show that in Fig. 3.4

by using ω = 0.5, a bimodal PDF with different distance between the two peaks for

different parameter values is observed. The first peak appears at x = x0 whereas the

second peak can be seen at x∗1 = e . For x0 < x∗1 , the right peak at x∗1 = e is always

higher than left peak at initial value while for x0 > x∗1 , the left peak becomes higher

than right peak as the initial condition is greater than x∗1 = e .
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Figure 3.4: PDF of x for D0 = 7 and ω = 0.5 with different values
of x0 . A bimodal PDF is observed for all x0 with different distance

between the two peaks.

For small values of x0 , the system shows a PDF with a broad distance between the two

peaks while this broadness is getting smaller as x0 increases, in other words, we can

see that the PDF started to shrink and this behaviour can be related to the functionality

of the system in Fig. 3.2, where the system can never reach x∗1 = e but maintains its

initial condition. In consideration of Fig. 3.4, we use another value of ω to be ω = 2

to produce the following figure. Similar behaviour is observed.
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Figure 3.5: PDF of x for D0 = 7 and ω = 2 with different values
of x0 . We notice a bimodal PDF for all x0 with different distance

between the two peaks.

The findings from Figs. 3.4 and 3.5 may have an interesting relation to Fisher informa-

tion. Therefore we show Fisher information dependence on the initial conditions x0 in

the following section. We observe a large value of FT at x0 ' x∗1 , due to the shortest

PDF at this initial value (see Fig. 3.5) with low variability, whereas for x0 > x∗1 , the

curve is monotonically decreasing as x0 increases due to the higher variability as the

system loses its functionality so we obtain lower FT . In comparison with the logistic

equation in Chapter 2, we observe similar behaviour in regards of the relation between

Fisher information and PDF for fixed value of ω and different initial conditions.

3.4.4 Fisher information

Here we limit ourselves to monitoring Fisher information as the Gompertz equation

shows a significant change due to the periodic modulation in the model parameters.
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By using the results in Section (2.4.4) to find Fisher information, we calculate the time

averaged Fisher information (FT ) for the Gompertz equation by using Eq. (2.14) with

Eq. (3.4), as follows:

FT =
A
T

∫ T

0

1
u4

(du
dt

)2

dt (3.8)

Since u is equal to the equation in (3.4), then we calculate FT as follows:

FT =
A
T

∫ T

0

[
α − log(x)(B + D0 sin(ωt))

]2

[
(B + D0 sin(ωt)) (x − x log(x))

]2 dt. (3.9)

where

α =
D0ω cos(ωt)

B + D0 sin(ωt)
,

Here, FT is the Fisher information averaged over the total time duration T ; A is a

normalization constant. In the following, we examine the variability/sustainability of

the Gompertz equation with perturbation in positive and negative feedback by comput-

ing FT for different cases using the formula in Eq. (3.9). We use the same values of

D0 = 7, B = 0 as before, and present FT for different initial values and for the two

values of ω , ω = 0.5 and 2. To observe how FT behaves with different x0 , the results

for ω = 0.5 plotted in Fig. 3.6. It shows that FT increases as x0 increases close to

(x∗1 = e).

69



Chapter 3. The Gompertz model

x
0

0 1 2 3 4 5 6 7 8 9 10

F
T

104

106

108

1010

1012

1014
Gompertz case-1, ω=0.5,B=0,D

0
=7

Figure 3.6: Asymptotic values of Fisher information averaged
over time, FT , against x0 for ω = 0.5, D0 = 7 and B = 0.

In Fig. 3.6, the initial values on the left of x∗1 = e yield values of FT which are mono-

tonically increasing to x∗1 as x0 increases, then FT values decreases as x0 increases

beyond x∗1 . Furthermore, this figure shows a local maximum at x0 ' x∗1 . Similar re-

sults are found for ω = 2 (figure not shown).

In this section, logistic and Gompertz equations have been compared and discussed

by using PDF and Fisher information approach for different initial conditions. Both

systems show larger value of FT at initial condition closer to x∗ = K = 10 for the

logistic model and x∗ = e for the Gompertz model and we connect these results to the

PDF for different initial values. larger FT means less variability (unsustainable state

with less dynamics to investigate) which relate to PDF with a short distance between

the two peaks at the value of x0 which is closer to x∗ .
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3.5 The Gompertz equation with different modulations

In previous sections, we investigated the Gompertz equation where the same modula-

tion is applied to both positive and negative feedback. To pursue further analysis of the

Gompertz equation, it is convenient to complete our investigation on the effects of the

two different modulations; perturbation in the positive feedback or perturbation in the

negative feedback.

3.5.1 Case-2: Perturbation in the positive feedback

We modify the birth rate c in Eq. (3.2) by including a periodic modulation, whereas

we fix the death rate b as a constant as follows:

dx
dt

=

(
(B + D0 sin(ωt)) x

)
− bx log (x). (3.10)

The exact solution to Eq. (3.10) is found as:

x = exp
[
(D0 b c) + (B a (1 − d)) + (b D0 ω d) + (a b d log (x0))

a b

]
, (3.11)

where

a = b2 + ω2,

c = b sin(ωt) − ω cos(ωt),

d = exp(−bt).

From the analytical solution in Eq. 3.11, we show the typical time history of x for

various values of ω , b and D0 as in the following figure:
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Figure 3.7: Time trace of x for different values of D0 = b = 1, 2, 7
with x0 = 0.1 and ω = 1, 10, 50. For sufficiently small ω , the amplitude

of the fluctuation is larger than the amplitude for larger values of ω .

In Fig. 3.7, we fix x0 , B and varying b (= D0) and ω . One interesting characteris-

tic is the difference in the duration of the initial transient (the system’s starting time),

specifically, for small values of b , the system displays longer time before approaches

the asymptotic state. If we remove the initial transient, the population settles and os-

cillates around a fixed point. On the other hand, for a sufficiently small ω , x fluctuates

with a large amplitude in comparison for sufficiently large ω where x fluctuates with a

very tight fluctuation around a fixed point. Also, for small values of ω , we observe that

the time scale of perturbation becomes much larger than the growth rate in comparison

with sufficiently large ω where the time scale of perturbation is much shorter than the

system’s response time. In this regards, we display another figure in relation to Fig.

3.7 for the same parameter values.
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Figure 3.8: PDF of x for different D0 and ω with x0 = 0.1, B = 0 and
b = D0 . The distance between the two peaks is getting smaller as ω

increases.

In Figure 3.8, we illustrate the effects of different values of ω and b (= D0) on PDF

of x for B = 0, and x0 = 0.1. We fix B to be B = 0, where the population’s

growth is strongly inhibited and is driven only by a periodic perturbation. Also, from

our observations, we conclude that the model in Eq. (3.10) is independent of initial

conditions, in other words, for different x0 and large value of ω , the system shows a

very tight PDF around x = 1. One more interesting feature of Fig. 3.8 is that a bimodal

PDF is observed for all the parameter values with different distance between the two

peaks. The distance between the two peaks of PDF becomes shorter for larger values

of ω .

To make more sense, for D0 = b = 7 and x0 = 0.1, we compute maximum values of x

for different values of ω in regards the results in Figs. 3.7 and 3.8 as follows:
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Figure 3.9: Max(x) as a function of ω for D0 = b = 7, x0 = 0.1 and
B = 0. Max(x) values are monotonically decreasing as ω increases

and finally show a static state at x ' 1.

An interesting behaviour of Fig. 3.9 is observed, for D0 = b = 7, x0 = 0.1 and B = 0,

the maximum values of x are monotonically decreasing as ω increases and finally

approach a static state at x ' 1.

The difference between the logistic case-2 (Fig. 2.20) and Gompertz case-2 (Fig. 3.9)

is in the logistic case-2 analysis, Max(x) is monotonically decreasing as ω increases

and finally fluctuate around the initial conditions whereas in the Gompertz case-2, the

same behaviour is observed for the Max(x) but the difference is that the solution is

ends at x ' 1.

In the following figure, we investigate the effects of varying the initial values on the

behaviour of the Gompertz case-2. From the analytical solution in Eq. (3.11), we show

the typical time history of x for different initial conditions in addition to PDFs of x in

Fig. 3.10 as follows:
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Figure 3.10: Time evolution of x in the left panels and PDFs of x
in the right panels for different values of x0 = 0.1, 5, 10, and fixed

D0 = b = 7 and ω = 1.

Both, the time evolution in the left panels and PDFs in the right panels, demonstrate

that the Gompertz case-2 model is independent of x0 , similarly to the logistic model.

This leads to the Fisher information independence of the initial values, since Fisher

information depends on the variability (gradient of PDF) of the system..

3.5.2 Case-3: Perturbation in the negative feedback

In this section and differently from case-2 just discussed, we investigate the Gompertz

equation with a periodic modulation in the negative feedback whereas we have a con-

stant in the positive feedback as follows:

dx
dt

= cx − (B + D0 sin(ωt)) x log (x). (3.12)
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A periodic modulation is added to the second term which includes log() where this

perturbation reduces the effect of the death rate, pushing the system to grow exponen-

tially.

Fig. 3.11 presents PDFs for D0 = 0.5 in the upper panels and D0 = 1 in the lower

panels, respectively, for the same x0 = 0.1, B = 1, and c = 1. We observe similar

results as in Figure 2.20 for the logistic equation case-3 in Chapter 2.
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Figure 3.11: PDF of x for two different amplitude to be D0 = 0.5 and 1
in the upper and lower panels, respectively. We fix the other parameter

values to be x0 = 0.1, B = 1, and c = 1.

In the above figure, the PDF of x becomes broadest as ω decreases and this is similar

to our observation for the logistic equation case-3 whereas for larger values of ω , the

system show narrowest PDF around a fixed point. For both values of D0 , the left peak

at the initial condition is higher than the right peak for the small values of ω . We show

these observations in detail in Fig. 3.12:
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Figure 3.12: Time trace of x for two different D0 ; D0 = 1 and D0 = 10
in the upper and lower panels, respectively and different ω . For all cases,

we fix x0 = 0.1, B = 1, and c = 1.

From Fig. 3.12 (b), for small D0 and large value of ω , the solution approaches a static

steady state at x∗1 = e . On the other hand, for sufficiently large values of D0 and small

ω such as in panel (c), the system shows an unbound grow.

3.6 Conclusions

This chapter presents the evolution of Fisher information approach and PDFs of x

for the Gompertz equation for different parameter values to examine the variabil-

ity/sustainability of this model. Considered jointly, the analytical and numerical anal-

ysis provide an interesting characteristics of the Gompertz equation, namely that the

features of the Gompertz equation in three different cases are similar to those described
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in Chapter 2 for the logistic equation.

In the case where the same periodic perturbation is added to the positive and negative

feedback, the effect of different parameter values and initial conditions on the func-

tionality of the Gompertz equation is examined. Simulation results for the Gompertz

model show that the potential maintenance of a long-term memory of initial values

when the characteristic time scale commitment to the disturbance is much shorter than

the response time of the model, in addition to a bimodal PDF. From the point of view

of variability/sustainability, maximum FT exists at the initial condition that is closer

to x0 ' x∗1 which is connected to the narrowest PDF (a short distance between the two

peaks) with less variability (unsustainable state with less dynamics to investigate), fol-

lowed by a decrease in FT beyond x0 ' x∗1 which leads to an increase of the variability

of the system while moving away from x0 ' x∗1 (beyond x0 ' x∗1 ).

That is, population of small size (corresponding to small x0 in Gompertz model) main-

tains a broad bimodal PDF regardless of the value of ω whereas large values of x0 and

closer to x∗1 = e show a narrowest PDF with larger FT .
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Chapter 4

A dynamical system with

two-components

4.1 Introduction

Immunotherapy is an interesting therapeutic approach which is applied by modifying

the tumour-immune system to achieve better results in terms of destroying the cancer

population ([22]). Therefore, more attention has been paid to the characteristic inter-

action between the cancer cells and immune cells and, in this light, many researchers

have used different mathematical models of cancer diffusion to investigate the tumour-

immune behaviour (see [8] and the references there in). For example, the predator-prey

model (coupled first-order differential equations) was described by [1, 13, 25] as a de-

terministic system in different contexts where the behaviour of the system shows a

stable limit cycle solution (the solution can be seen in the same neighbourhood of the

equilibrium point and they never cross each other), and the solution exhibits sensitive

dependence on the initial values (Butterfly effect), in other words, a slight difference

in the initial population produces a significant difference in the behaviour of the sys-

tem over a long-term period. In this regard, we could observe a different trajectory for
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each initial condition which leads to a family of nested closed loops or a limit cycle

attractor where both variables will vary periodically with time, for example, at initial

value x0 , the solution path moves in a simple limit circle over time and finally gets

back to the initial value x0 (see [12, 13, 64, 68]). For initial conditions close to the

equilibrium point, x fluctuates around the equilibrium point in a tight limit close cycle

where a narrow PDF is observed, while for initial points far from the equilibrium point,

x fluctuates around the equilibrium but in a wider closed cycle and the PDF shows the

broadest distance between the two peaks.

Our goal in this chapter is to investigate the system of two differential equations de-

scribing the interaction dynamics between cancer and immune cells from the point

of view of variability/sustainability using Fisher information. In addition, we intend to

explore how different sets of system parameter values could affect its dynamics; specif-

ically, we examine in detail the system’s evolution under different parameter values and

its dynamics in the case of including perturbation. The main difference between our

model and the classical deterministic model is the inclusion of a new term (F sin2(ωt))

which represents the immunotherapy dose. A further consideration in our model is that

the immune population has been promoted and cancer population has been forced to

vanish by analysing a particular immunisation term.

The chapter is arranged as follows: Section 4.2 presents the predator-prey model in

its deterministic conditions; we demonstrate the existence of equilibria, the stability

and dynamics, variability, and estimate the system parameters’ values; such as varying

the prey mortality rate (cancer species) and finding its Fisher information. Section 4.3

presents details of the modifications made to the predator-prey model: replacement

of the cancer growth rate with a logistic equation, addition of a periodic perturbation

to the second equation, and then the investigation of variability/sustainability of the

model using Fisher information measure. Finally, Section 4.4 presents conclusions to

the chapter.
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4.2 The predator-prey model

It is interesting to study the predator-prey model (coupled logistic equations for the

growth of two species), due to its rich dynamics, in addition to further investigation

and illustration for Fisher information as a measure of variability/sustainability. We

employ the model of two differential equations given by:

dx
dt

= ax − bxy = f1(x, y),

dy
dt

= −cy + exy = f2(x, y).
(4.1)

The two-species Lotka-Volterra equations given in Eqs. (4.1) without any fluctuation,

describe a simple interaction between the population variables of two different species.

Lotka (1925) and Volterra (1926) developed this model to characterize the evolution of

the predator and prey fish populations where these species are referred to as the prey

species x(t), and its predator y(t), using four parameters a, b, c, e as positive constants;

(a) prey growth rate (intrinsic rate of prey population increase), (b) prey mortality rate

due to predator feeding, (c) predator death rate (the mortality rate of the predator)

and (e) predator growth rate. In our model, we assume the prey x(t) to be cancer

cells population which is attacked by the immune cells, whereas the predator y(t) is

the immune cells population which destroy the cancer cells. In the case of y(t) = 0,

which means that there is no predator (immune cells), the prey population will grow

exponentially according to the following equation:

dx
dt

= ax. (4.2)

The total predation is commensurate with lots of prey and lots of predators; there is no

slowdown of predation in high prey abundance, and no interference between predators.

The model state is defined through the densities of the population of the two species.

The model has stable limit cycle behaviour, cycling with no trend either in towards the
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equilibrium or out away from it, with x(0) = x0 and y(0) = y0 as initial conditions

which initialize our analysis [25, 62, 78, 87].

The predator-prey model offers a simplistic mathematical performance of the observed

dynamics of different species population in nature [87]. If the competition between the

two species is not strong enough, then the two population can coexist stably but can

never reach their carrying capacity in contrast to the case where one species is absent.

In order to solve the differential equations, there are two different procedures: an-

alytical and numerical approaches. As many dynamical systems have no analytical

solutions under no conditions, therefore, the best choice is using numerical methods

which is effortless and more common. The focus of the simulation is to examine the

system’s response to the different modulations.

4.2.1 Estimating parameters in predator-prey model

It is important to determine the appropriate values of the model parameters in order to

better understanding the evolution of the behaviour of Eqs. (4.1). We employ the same

parameter values that used in the predator-prey model presented by Cabezas et al. [13].

Furthermore, to meet our observations, we change a few parameter values and display

the oscillation in the model. Details of these parameter variations and modifications

applied to the model in Eqs. 4.1 are examined in the following sections.

By making the right hand side of the equations in (4.1) equal to zero ( ẋ = ẏ = 0 1) as

in the following set of equations, we obtain all the equilibrium points for the system.

0 = x(a − by),

0 = y(ex − c).
(4.3)

From the analytical solution for Eqs. (4.3), there are two fixed points for the above

system, the first one at the origin [( x∗1, y
∗
1) = (0, 0)] and the second point which relies

1 ẋ = dx
dt and ẏ =

dy
dt .
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on the system parameters is [( x∗2, y
∗
2) = ( c

d ,
a
b )], we analyse the stability of these points

by examining the eigenvalues of the Jacobian matrix at each of these points. The

Jacobian of the dynamics in Eqs. (4.1) is given by:

J(x, y) =

 a − by −bx

ey −c + ex

 . (4.4)

By analysing the eigenvalues of J(x, y) in Eq. (4.4) using the above two equilibrium

points, for the first point ( x∗1, y
∗
1), we observe it is an unstable saddle point as we get

one positive eigenvalue and one negative eigenvalue, whereas the second point ( x∗2, y
∗
2)

is found to be a centre as we can see from panel (c) in Fig. (4.1).

4.2.2 The dynamics and variability of predator-prey model

Although the mathematical models for predator-prey interaction are often determinis-

tic, later, a periodic perturbation is added simply by modulating a deterministic model.

The variability helps to investigate the sustainability of the predator-prey population

where it depends on the kind of variability that could affect the dynamics of predator-

prey model. For example, the reason of variability between the individuals of one

species or variability between individuals from another species returns to the degree

of bias for each individual or variation in the environment due to the random variation

such as not all places offer good homes for animals in the same manner [19, 55, 98].

In the following figure, we present one of the effects of the variation that could affect

the behaviour of the model in Eqs. (4.1) such as varying the initial conditions of the

model. Here, the state of the system is now given by (x(t), y(t)).
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Figure 4.1: Time evolution in the upper panels and phase portrait in
panel (c) for different initial conditions. A sensitivity to initial values

(x0, y0) is observed for predator-prey model. Same parameter values are
used for both curves but differ by the initial conditions.

In Fig. 4.1, the same parameter values (a = 15, b = 3, c = 5, e = 0.5) are used

(similar to those used in [13]) with different initial densities for prey and predator. The

graphical illustration given in Fig. 4.1 shows that this model has no asymptotic sta-

bility as it does not converge to an attractor (does not forget its initial conditions), for

example, prey population may grow limitlessly without any resource limits and preda-

tors do not have saturation, their consuming average is indefinite.

In panel (c), where we construct a phase plot, i.e. a picture of the solution paths as-

signed by points (x(t), y(t)), a proportional change is observed in prey and predator

densities for both initial conditions. Trajectories are closed lines. For the second ini-

tial value [x0, y0] = [5, 4], the phase plot is very tightly distributed while for the other

initial condition [x0, y0] = [12, 2], we observe a wide elliptical phase diagram. This

means that, one characteristic of the coupled logistic equations is sensitivity to the ini-
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tial points. That is varying the initial values will affect the behaviour of the system

which differs as time goes on (the intrinsic dynamic is controlled by the law that slight

causes lead to significant effects). The amplitude and period of the cyclic population

reveal its properties, (see Fig. 4.1), in which the amplitude is displayed on the y− axis

of panels (a) and (b) with a unit of population size. The period is the time duration of

one population cycle and we can observe it on the x − axis with time unit.

The predator-prey model has two equilibrium points, the first one is a saddle point at

the origin of the phase portrait and the second one is a centre. This centre reflects the

oscillating behaviour of the competition among both predator and prey (for food, nest-

ing sites, etc.), which is distinguished by an oscillation frequency (number of cycles

per unit time around the centre of the phase diagram).

4.2.3 Effects of changing the prey mortality rate

A convenient way to visualize the behaviour of the system is to plot the evolution of

time of the population when varying the parameter values such as prey mortality rate

and fixed the other parameter values to be [x0, y0] = [12, 5] and a = 15, c = 5,

e = 0.5. The selection of parameter values is the same as in [13].
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Figure 4.2: The evolution of predator-prey model for different prey
mortality rate (b = 1, 3, 6, 10). This figure gives representation of
different possible behaviour corresponding to various b . A blue

line represents prey population and the green line stands for
predator population.

In Fig. 4.2 we present the predator-prey model at different values of prey mortality

rate. It is obvious that the dynamic of the model is different at different b . Specifically,

from panel (b), we observe that there is no interaction between the cancer cells (blue

line) and immune cells (green line) which leads to the state with less variability. On

the other hand, for larger b , both species show a periodic behaviour spending much

time near the equilibrium point as we observe from panels (c) and (d). Changing the

prey mortality rate b leads to the monotonically decrease in the equilibrium points

because the equilibrium points for the predator-prey model are (x∗1, y
∗
1) = (0, 0) and

(x∗2, y
∗
2) = (c/d, a/b) = (10, 15/b), where the second equilibrium point completely

depends on the model parameters a, b, c, e , since a, c, e have fixed values, then ( x∗2, y
∗
2 )

relies only on the value of b , as we can see from the following figure:
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Figure 4.3: The evolution of predator equilibrium points for different
prey mortality rate. Other parameters are c = 5, d = 0.5, a = 15 and

[x0, y0] = [12, 5]. The equilibrium points are monotonically decreasing
as b increases.

It is a power-law relation between the prey mortality rate and the equilibrium point

as we observe from Fig. 4.3, if the prey mortality rate (cancer cells death rate) is

increased, a flatten fluctuation for the predator population (immune cells) near the

equilibrium point is noticed (see Fig. 4.2).

4.2.4 Fisher information for the predator-prey model

Based on the procedure of Fisher information theory presented in Appendix D, we

calculate FT , Fisher information averaged over the total time duration T from Eq.

(4.1) for both species and each species, since Fisher information quantity as in Eq.

87



Chapter 4. A dynamical system with two-components

(2.14) is:

FT =
A
T

∫ T

0

ṡ 2

s 4 dt , (4.5)

where s =
√

ẋ 2 + ẏ 2 , A is a normalization constant and T is the total time duration,

then

∂s
∂t

=
∂s
∂x

ẋ +
∂s
∂y

ẏ , (4.6)

by calculating ∂s
∂x and ∂s

∂y and substituting the results in 4.6, we obtain the following

Fisher information quantity:

FT =
A
T

∫ T

0

(
ẋ2(a − by) + ẋẏ(ey − bx) + ẏ2(−c + ex)

)2

(
ẋ2 + ẏ2

)3 dt , (4.7)

In consideration to the results in section (4.2.3), for different values of prey mortality

rate b and fixed [x0, y0] = [12, 5], we compute FT as a function of b as in Fig. 4.4,

larger FT is observed at b = 3, where the model shows a very tight cycle around the

equilibrium point (less variability), (see Fig. 4.5), on the other hand, the model at this

value is an undesirable state to investigate due to the lack of interaction between the

two species and less dynamics. In comparison with the other values of b (, 3), where

the state variables go through large oscillations and the system has lower FT due to it

is probably not functioning well (high variability). We consider b within a wide range

to make significant observations.
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Figure 4.4: FT against prey mortality rate b . We fix [x0, y0] = [12, 5],
a = 15, c = 5, e = 0.5 and varying b , A local maximum for FT is

noticed at b = 3.

In Fig. 4.4, we show FT at different prey mortality rate which related to Figs. 4.2

and 4.3. The most interesting feature of the above figure is the local maximum of FT

at b = 3, then the curve begins to decrease beyond b = 3. In order to strength our

conclusion, we display the PDF of x with a phase portrait in the following figure at

different values of b .
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Figure 4.5: PDF of predator and prey population in the upper panels
and phase portrait for different prey mortality rate (b = 1, 3, 6) in the
lower panel. Other parameter values are taken as [x0, y0] = [12, 5],

a = 15, c = 5, e = 0.5. A very tight cycle is noticed for b = 3.

The dynamics of the model (pairs of first-order differential equations) is different at

different b , such as when b = 3, we have a narrowest PDF around the equilibrium

point [10, 5], this is obvious from the phase portrait (red circle) for b = 3 which show

a very tight cycle around the equilibrium point [10, 5], in contrast to the other values

of b where they show a wide elliptical. In addition to the lack of interaction between

the two species. However, the global behaviour is a limit cycle but these x − y cycles

increase or decrease their amplitude depending on the value of b .

We perform another investigation for the model in Eqs. 4.1 by calculating FT from

both species in addition to FT from each species for different initial conditions and

fixed the other parameter values (figure not shown). Fisher information values ob-

tained from one species (Predator or prey) are larger than Fisher information values

which calculated from both species and there is one explanation for this trend which
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is that the larger values of FT from each species indicates to the less variability in the

system as there is only one species survive but it is not necessarily to be a more desir-

able state.

The above results indicate the importance of Fisher information as a function of vari-

ability/sustainability, where we conclude from the above figures that we have a peak

at b value where there is no interaction between the two species. This leads to the less

sustainable case (boring case) in which there is no real interaction.

Here, we present the observations of the deterministic model which means that the

cancer and immune population are behaving under natural conditions whereas modifi-

cations in the model (4.1) are considered in the following sections.

4.3 Modifications to the predator-prey model

4.3.1 Prey density dependence

As discussed earlier, the predator-prey model behaviour has been studied by many

researchers in its deterministic form and a random or periodic form. Here, replacing

the exponential growth of the prey population (cancer cells) by a logistic growth with

a carrying capacity N = 1
K yields the model:

dx
dt

= ax (1 − Nx) − bxy,

dy
dt

= −cy + exy.
(4.8)

In this model, the prey growth (cancer cells) is given by the logistic equation with a

deterministic growth rate a . N is the reciprocal of the carrying capacity of the cancer

cells population ( 1
N is the maximum population size of cancer cells). By investigating

the stability of the above model, we found three equilibrium points, the first equilib-

rium point is at the origin (x∗1, y
∗
1) = (0, 0), the second one which depends on the value
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of N is (x∗2, y
∗
2) = ( 1

N , 0), and the third one is (x∗3, y
∗
3) =

(
c
e ,

a
b (1 − c N

e )
)
. The Jacobian

matrix of the dynamics in Eqs. (4.8) is given by

J(x, y) =

 a − 2aNx − by −bx

ey −c + ex

 . (4.9)

The first equilibria (x∗1, y
∗
1) is a saddle point everywhere. The stability of the system

depends on the parameter values, for example, if a = b = c = e = 1, then the system

has a stable spiral at
(

c
e ,

a
b (1 − cN

e )
)

= (1, 0.9) whereas if a = 15, b = 3, c = 5, e = 0.5,

then the system stabilize at a stable node ( 1
N , 0) = (10, 0) with fixed N = 0.1, as we

can see from Fig. 4.6.
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Figure 4.6: Time evolution for different parameter values with a logistic
equation in the prey density. Same parameter values are used in the
upper panels, but with different [x0, y0], similar case for the lower
panels. A blue line for cancer cells and green for immune cells.

We use two different initial conditions in Fig. 4.6 for the sake of completeness where
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the system shows its independence on the initial values. For the different initial values

and different parameters, the solutions tend to positive equilibrium points. In the lower

panels, we observe that the amplitude of the solution becomes smaller and smaller over

time, this means that the stability of the equilibrium point becomes more robust as t

increases. The only difference between the two initial conditions is the initial transient

for the model.

The predator-prey model is given as follows after applying a dimensionless procedure

(the details are presented in Appendix A)

du
dT

= u(1 − u) − αuv ,

dv
dT

= −βv + γuv .
(4.10)

where the quantities in Eqs. (4.8) are rescaled according to

u =
b
a

x, v =
e
c

y and T = a t,

As a result, we obtain the model (4.10) with less parameters. The parameter T is an

arbitrary time constant. Solving a dimensionless version in (4.10) yields three equi-

librium points, (u∗1, v
∗
1) = (0, 0), (u∗2, v

∗
2) = (1, 0) and (u∗3, v

∗
3) =

(
β

γ
, 1
α
(1 − β

γ
)
)
. The

Jacobian matrix of the dynamics in Eqs. (4.10) is given by

J(x, y) =

 1 − 2u − αv −αu

γv −β + γu

 . (4.11)

By analysing the stability of these equilibrium points which depends on the nature of

the solutions to the linear system of ODEs, we can classified the equilibrium points as

either stable or unstable points. An equilibrium point (u∗1, v
∗
1) = (0, 0) is found to be a

saddle point (eigenvalues with different signs), whereas the second equilibrium point

(u∗2, v
∗
2) = (1, 0) is found to be a stable point regardless initial conditions as we can see

in Fig. 4.7.
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Figure 4.7: Time trace and phase portrait for different initial values and
fixed parameter values α = β = γ = 1. The left panels represent the

time trace and right panels stand for the phase portrait.

In Fig. 4.7, we show the predator-prey model presented in Eqs. 4.10 with a logistic

growth for the cancer population, fixed values of α , β and γ are used to be = 1 and

different values of initial conditions in the upper and lower panels, respectively. One

interesting characteristic of the model in Eqs. (4.10), where the cancer and immune

cells grow without any control this means in the absence of therapy, is that the system

shows a stable solution at the equilibria (u∗2, v
∗
2) = (1, 0) with no interaction between

the two species after passing the initial transient.
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4.3.2 The predator-prey model with a periodic function in the im-

mune population

The predator-prey model (4.8) is exposed to an external periodic stimulus such as

adding a periodically function to the second equation in order to control the period-

ical dose of the treatment (immunotherapy), which is expected to affect the behaviour

of the non-infected (immune cells), and infected cells (cancer cells) by promoting and

inhibiting their growth and/or death, (immune cells win, whereas the cancer population

is driven to extinction) [8]. Therefore, Eqs. (4.8) can be rewritten as

dx
dt

= ax(1 − Nx) − bxy , (4.12a)

dy
dt

= −cy + exy + F sin2(ωt). (4.12b)

Here, x(t) represents cancer cells population at time t with a growth rate a and carry-

ing capacity N , y(t) denotes to the population of immune cells and the term F sin2(ωt)

represents the external source of immune cells (immunotherapy), where F is the pe-

riodic signal amplitude with ω as a periodic signal frequency. The effects of these

parameters (the amplitude F and frequency ω) are analysed numerically, in order to

find out under any circumstances the cancer cells can suffer extinction (the cancer cells

show zero average at specific values of parameters). The model shows a periodic form

after applying a periodic modulation to the model parameters such as a sinusoidal form

[39]. Also, we observe that the population has enough time to reach the equilibrium

point (equilibrium point for the mean value of the perturbation) for small values of

ω [5, 39]. All of the following analysis seeks to observe the changes in both species

as changing the amplitude, frequency and initial values. It is also important to show

if the cancer population can reach an extinction state because of the external periodic

stimulus. The equations in (4.12), can be present in a dimensionless form as follows:
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du
dT

= u(1 − u) − αuv,

dv
dT

= −βv + γuv + δFsin2(ΩT ),
(4.13)

we rescaled the quantities in Eqs. (4.12) according to

T = at, u =
b
a

x, v =
e
c

y, N =
b
a
, α =

cb
ae
,

β =
c
a
, γ =

e
b
, δ =

e
ac

and Ω =
ω

a
.

The first equation in (4.13) indicates the rate of change of the cancer cells popu-

lation and the second equation represents the immune cells dynamics. In order to

find the equilibrium points for the model (4.13) (equilibrium points for the mean

value of the perturbation), we make the right-hand sides of the equations equal to

zero and fixed the values of α = 1, β = 1.291, γ = 1, δ = 1 and Ω = 1,

three fixed points are found. The first one is (u∗1, v
∗
1) = (0, F

2.582 ), the second one is

(u∗2, v
∗
2) = (1.1455−

√
0.0847+2F

2 ,−0.1455 +

√
0.0847+2F

2 ), and the third equilibrium point

is (u∗3, v
∗
3) = (1.1455+

√
0.0847+2F

2 ,−0.1455−
√

0.0847+2F
2 ). By utilizing the Jacobian ma-

trix for the model (4.13), we investigate the stability of these equilibrium points (equi-

librium points for the mean value of the perturbation) depending on the value of ampli-

tude F such as, when F = 0.1, (u∗1, v
∗
1) = (0, 0.0387) and (u∗3, v

∗
3) = (1.4123,−0.4123)

are unstable saddle points, whereas (u∗2, v
∗
2) = (0.8787, 0.1213) is a stable spiral as we

can see from Fig. 4.8:
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Figure 4.8: Time evolution in the left panels and phase portrait in the
right panels for α = 1, β = 1.291, γ = 1, δ = 1, Ω = 1 and F = 0.1
with different initial conditions. We observe a fixed point (u∗2, v

∗
2) =

(0.8032, 0.1968) which is stable and attracts all the solutions.

In Fig. 4.8, we fix the initial value of the system to be [u0, v0] = [1, 1] in the upper

panels and [u0, v0] = [2, 5] in the lower panels, where the left panels represent the time

evolution of the model (4.13), while the right panels represent the phase portrait.

On the other hand, for larger values of amplitude F such as F = 3, the model (4.13)

have three equilibrium points (equilibrium points for the mean value of the perturba-

tion) but with different stability behaviour. When F = 3, the three fixed points are

(u∗1, v
∗
1) = (0, 1.1619), (u∗2, v

∗
2) = (−0.0879, 1.0879) and (u∗3, v

∗
3) = (2.3789,−1.3789).

The first equilibrium point is a stable node while the other points are unstable saddle

points as in the following figure.
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Figure 4.9: Time evolution in the left panels and phase portrait in the
right panels for α = 1, β = 1.291, γ = 1, δ = 1, Ω = 1 and F = 3

with different initial conditions. We observe a stable node
(u∗1, v

∗
1) = (0, 1.1619) for all initial conditions.

The observations obtained can be explained in terms of a biological model of cancer

growth. For simplicity, we fix α = 1, β = 1.291, γ = 1, δ = 1 and Ω = 1 in our

computation. For larger values of the amplitude F in the periodic function (a periodic

therapy which enhance the growth of immune cells and destroy the cancer population),

the solution is still stable everywhere but we observe how the prey (cancer cells) vanish

as it is obvious from Fig. 4.9 (left panels), regardless the initial values.

From the perspective of variability/sustainability, for F = 3, the variability/sustainability

of the model (4.13) is less than that in model (4.10) (without immunotherapy term),

because one of the species is vanishing at specific value of F .

Changing parameter values such as F and x0 in the model (4.13) may change our

observations which is quite normal because the whole treatment plan relies on the con-
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ditions of the patient, their defence mechanism, gender and more various factors. The

following figures will illustrate the advantages of adding an effective immunisation

against the evolution of cancer growth. Also, for sufficiently small values of Ω , it is

observed that this convergence occurs for any initial value in the limits of initial values

and the equilibrium points (equilibrium points for the mean value of the perturbation).

The prey which represents cancer cells population in Fig. 4.8 where F = 0.1 and Fig.

4.9 with F = 3, is switch from the steady stable state for sufficiently small values of

the amplitude F to the extinct state for sufficiently large F . The amount of the therapy

dose (the amplitude of a periodic modulation in the second equation in model (4.13)

is added to control the growth of the cancer density and keep them in their lower level

in the host body. Thus, in consideration of the above observations and to make more

sense, we display Max(x) for cancer and immune cells as a function of Ω for fixed

amplitude value in the following figure.
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Figure 4.10: Maximum values of population against Ω for different amplitude
with α = 1, β = 1.291, γ = 1 and δ = 1. Max(x) values are monotonically

decreasing as Ω increases for both amplitude values. The difference between
panels (a) and (b) is that for larger values of amplitude, we observe the

eradication of the cancer cells.

In Fig. 4.10, we display maximum values of cancer and immune population (blue and

green lines, respectively), with two different amplitude values against Ω (F = 0.1 in

panel (a) and F = 3 in panel (b)). We notice that for F = 3, the immune cells are in a

higher level than the cancer cells for all the values of Ω in comparison with the results

in panel (a). Also, the cancer cells eradicated at F = 3.

In the following figure, since our goal is to reduce or at least control the number of

cancer cells, we only consider maximum values of cancer population (prey species)

due to its harmful effects on the host body. In order to complete our investigation

regarding the optimal values of F and Ω in the periodic modulation in Eqs. (4.13), we

provide Fig. 4.11 which presents 3D figure for Ω , F and Max(x).
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Figure 4.11: Maximum values of cancer population (prey) on the z − axis ,
F on the x − axis and Ω in the y − axis in a 3D plot. A monotonic decrease

is noticed in the prey population for a sufficiently large Ω . We fixed
[u0, v0] = [1, 1], α = 1, β = 1.291, γ = 1 and δ = 1.

Maximum values of prey in the above figure show a monotonic decrease as Ω in-

creases. In this light, we select all the values of F and Ω where Max(prey) is ob-

served around zero. The results are displayed in the following figure (Fig. 4.12), in

order to determine the optimal value of the amplitude which eliminate the cancer cells

population.
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Figure 4.12: Maximum values of cancer population (prey species)
when it is equal and less than 0.0e-05 for [u0, v0] = [1, 1], α = 1,

β = 1.291, γ = 1 and δ = 1.

In Fig. 4.12, the existence of fluctuation in the values of Max(prey) is due to the

frequency Ω of the periodic modulation in model (4.13). Based on this, instead of in-

cluding the periodic modulation ( sin2(ΩT )) (periodic therapy dose), we only consider

the anti-cancer therapy in the second equation of model (4.13) as a constant such as

( F
2 ) (mean value of the perturbation), this means without any fluctuation, and the re-

sults are presented in the following figure, in order to compare between the two cases

(with fluctuation and with a constant).
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Figure 4.13: Time trace of population for different values of F with and
without fluctuation for [u0, v0] = [1, 1], α = 1, β = 1.291, γ = 1, δ = 1

and Ω = 1. Blue line represents prey while the green line stands for predator.

The difference between the left panels which include fluctuation ( sin2(ΩT )) and the

right panels which only include a constant ( F
2 ) is obvious. It is also important to clarify

that the output ω in left panels from Fig. 4.13, is twice as the frequency in Eqs. (4.13),

ωOutput = 2Ω . For example, when F = 0.1 and Ω = 1, we observe that the distance T

between two peaks is 3.15 on the x − axis , then we calculate ωOutput according to the

following form:

ωOutPut =
2π
T
,

here, we obtain ωOutput ≈ 2 which is twice as the frequency Ω (ΩInput ) in Eqs. (4.13),

that is equal to 1. Similar observations have been obtained for different values of Ω .
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4.3.3 Fisher information in the modified predator-prey model

We investigate the model in (4.13) from the perspective of information theory. By

following the procedure of Fisher information theory presented in Appendix D for the

deterministic predator-prey model, we calculate FT for the model in (4.13) as follows:

FT =
A
T

∫ T

0

ṡ 2

s 4 dt , (4.14)

where s =
√

u̇ 2 + v̇ 2 , A is a normalization constant and T is the total time duration,

then

∂s
∂t

=
∂s
∂u

u̇ +
∂s
∂v

v̇, (4.15)

by calculating ∂s
∂u and ∂s

∂v and substituting the results in 4.15, we obtain:

FT =
A
T

∫ T

0

(
[u̇2 (1 − 2u − αv)] + [v̇2 (γu − β)] + [u̇v̇(γv − αu)]

)2

(
u̇2 + v̇2

)3 dt, (4.16)

Using Eq. 4.16, for different control values of F which represents immunotherapy

treatment and fix [u0, v0] = [1, 1], α = 1, β = 1.291, γ = 1, δ = 1 and Ω = 1 to find

Fisher information as an index of variability/sustainability.

For F = 0, which means that there is no external effects (no doses of immunotherapy)

included in the system, a periodic behaviour is noticed for the two population and from

the point of view of sustainability, the system is less sustainable in this case due to the

absence of the interaction between the two species (boring case study) with large value

of Fisher information [8, 78]. Based on the background theory displayed in thousands

of references on cancer. it is worth to investigate the interaction between the two

species.
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Figure 4.14: Fisher information against F for [u0, v0] = [1, 1], α = 1,
β = 1.291, γ = 1, δ = 1 and Ω = 1. A peak for FT is observed at

F = 2.62 which leads to state with less variability.

In Fig. 4.14, we focus on the second panel in log-scale for the y − axis . We observe

that FT is monotonically increasing as F increases until we get to the optimal value of

the amplitude F = 2.62, where one of the population which is the cancer cells starts

to vanish, then FT is monotonically decreasing beyond F = 2.62, because the cancer

cells population is vanishing (unsustainable state due to lack of dynamics). Finally, we

performed simulations for the model at three specific values of the amplitude as we

can see in Fig. 4.15 in relation to Fig. 4.14.
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Figure 4.15: Time evolution of x , PDFs and phase portrait for different
values of F and fix other parameter values as [u0, v0] = [1, 1], α = 1.291,

β = 1 and Ω = 1.

In the upper panels, when F = 2, the cancer cells population is surviving with a small

fluctuation near zero in contrast to F = 2.62, this population is eradicated, while the

immune cells population show a stable behaviour. For larger F such as in the lower

panels, the amplitude for the immune cells fluctuation is growing while the cancer cells

appeared at zero.

Furthermore, we investigate the predator-prey model with and without perturbation

for different initial conditions. For example, for initial values close to the equilibrium

point (equilibrium point for the mean value of the perturbation), we obtain larger Fisher

information because their PDF are very tightly distributed, while for starting points far

from equilibrium (equilibrium point for the mean value of the perturbation), the system
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is more spread and have lower Fisher information with a broad elliptical phase charts.

The probability of finding the system in a particular state is low because each variable

transports among a wide range of states, and this leads to the lower values of Fisher

information.

4.4 Conclusions

In this chapter, the influence of the immunisation term on the dynamical properties of a

tumour-immune growth model described by coupled logistic equations is investigated.

We improve a deterministic predator-prey model by including a periodic perturbation

in the model parameters and then we study the effects of changing the model parame-

ters on the behaviour of the system.

Using the predator-prey model which describes the cancer cells population as prey and

immune cells population as predator, worthwhile observations are made through inves-

tigating the dynamical characteristics and interaction of the predator-prey model in its

original condition (deterministic model) as well as its behaviour after modifications in

the model parameters.

The common features of the predator-prey model in its original condition are a periodic

behaviour with a limit cycle in addition to sensitive dependence on the initial condi-

tions where the system behaviour is varied by varying the initial points. Also, changing

the prey mortality rate b (cancer death rate), in the first equation leads to monotonic

decrease in the equilibrium point, based on our observation that the equilibrium point

depends on the parameter values. From the point of view of information theory, we

observe a peak for FT at b = 3 where the PDF of (x, y) at this value shows a shorter

distance between the two peaks, leads to conclude that the model at this value is an

undesirable state to investigate due to the lack of interaction between the two species

(less variability). In comparison with the other values of b (, 3), where the state vari-

ables go through large oscillations and the system has lower FT due to is probably not
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functioning well (high variability).

The conclusions of our investigation for the case of the predator-prey model with mod-

ifications in the model parameters are presented simply as follows: the population of

cancer cells is consumingly affected by a periodic modulation (immunisation term)

where the optimal value of the amplitude in the periodic dose which is F = 2.62 could

induce the number of cancer cells in the host body to decrease and at the same time can

motivate the growth of the immune cells. In other words, prey density will break down

at sufficiently specific doses of immunotherapy. Furthermore, switching from the sta-

ble steady state to the extinct state for the prey population is accelerated by specific

value of F . This leads us to conclude that for a specific value of the periodic perturba-

tion, a decline in the cancer cells’ density occurs to a very low value at F = 2.62. In

addition, we notice a maximum FT at this value which means that our system has less

variability and shows a static steady state but from the viewpoint of sustainability, this

state is the most unsustainable state since the survival of only one species renders the

dynamics insufficient to conduct an investigation.
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A dynamical system with

three-components

5.1 Introduction

Researchers have employed many different mathematical models for tumour-immune

dynamics and applied modifications in different mechanisms to investigate the effects

of immunotherapy (external stimulus of the immune cells). They observed that while

this treatment may reduce the number of tumour cells they may regrow and begin to in-

crease (see [43,54]). As a result, it is observed that the elimination of cancer cells relies

on the average values of the therapy term for realistic values of the T period [22, 47].

In our work, we show that a mathematical model with a periodic perturbation is able to

eradicate the cancer cells population. On the other hand, whereas those results relate

to the effectiveness of immunotherapy treatment in destroying the cancer cells, at the

same time we believe that large doses of such treatment can have negative side effects.

The population of cancer cells is consumingly affected by a periodic therapy. In other

words, prey density will break down at sufficiently specific doses of immunotherapy

(biological treatment).
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A third species is considered in the predator-prey model which represents healthy cells

population along with cancer and immune cells populations. We examine the effects

of the periodic perturbation on the evolution of the system to show how the oscillatory

behaviour persists for a long time and is sustained at certain parameter values in the

immunotherapy treatment.

This chapter is arranged as follows: Section 5.2 deals with the introduction of a

three species model, the investigation of the three species stability and dynamics, and

demonstrates the existence of equilibrium points (equilibrium point for the mean value

of the perturbation). Section 5.3 describes in detail the modification of the three species

model to track its behaviour, the variation of the parameter values, and presents figures

to show the variability/sustainability of the model. Section 5.4 contains the conclu-

sions. Our goal in this chapter is to show the changes in the functionality of the three

species model through inclusion of immunotherapy and to describe the influence of the

periodic therapy on the behaviour of the species from the point of view of information

theory.

5.2 Mathematical definition of the three species model

We expand the model in (4.12) to include a third species which represents the healthy

cells, and we construct our dynamical equations as follows:

dx
dt

= ax (1 − N1x) − bxy − dxz, (5.1a)

dy
dt

= −cy +
eyx

g2 + x
− f yx + F sin2(ωt), (5.1b)

dz
dt

= gz(1 − N2z) − hzx. (5.1c)

Here, x(t) represents cancer cells population, y(t) stands for immune cells population,

and z(t) represents the healthy cells population. We consider the growth of the cancer
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and healthy population to be logistic with including two different carrying capacities

N1(> 0) and N2(> 0), respectively. a(> 0) is the growth of cancer cells, e(> 0) is the

growth of the immune cells, g(> 0) is the growth of the healthy cells, c(> 0) is the

natural death rate of the immune cells, b(> 0) is the rate of predation of cancer cells

by the immune cells, f (> 0) is the rate of predation of immune cells by the cancer

cells, d(> 0) is the rate of predation of cancer cells by the healthy cells, h(> 0) is the

rate of predation of healthy cells by the cancer cells, F and ω are the amplitude and

angular frequency of the periodic therapy, respectively. The second term in the second

equation is of Michaelis-Menten form to reference the saturated effects of the immune

reaction (the finite interaction between the immune and cancer cells) (see [43, 78]).

The model in (5.1) has to be reformulated by minimizing the number of parameters,

the result is presented in the following dimensionless form (see Appendix B for the

detailed proof of the following equations):

du
dT

= u(1 − u) − uv − a13ur,

dv
dT

= a21[
uv

g2 + αu
− v] − a22uv + a23 sin2(ΩT ),

dr
dT

= a31r(1 − r) − a32ru.

(5.2)

Here, u stands for the density of cancer cells, v represents the density of immune

cells and r represents the density of healthy cells. u0 = u(t = 0) is the cancer initial

density, v0 = v(t = 0) is the initial density of immune population and r0 = r(t = 0) is

the starting point of the healthy cells population. The competition mode divided into

two, the first competition is between the healthy cells population r and cancer cells

population u on the available resources, whereas the cancer cells population u and

immune cells population v are competing in the predator-prey style. We perform a set

of numerical simulations for the parameter values in Eqs. (5.2) where we consider a

set of parameters given in the following table and the choice of parameters are similar

to the one used in [54]:

111



Chapter 5. A dynamical system with three-components

Table 5.1: Parameter values for numerical simulation
Deterministic parameters Values
a13 1.2
a21 1.291
g2 0.3
α 1
a22 1.1
a31 1.2
a32 4.8
u0 1
v0 1
r0 1
Stochastic parameters Values
a23

Ω 1

5.2.1 Local stability analysis and equilibria

By taking the right hand sides of the Equations in (5.2) equal to zero, we find all the

equilibrium points (equilibrium point for the mean value of the perturbation) recog-

nized by the system 5.2 and examine the dynamics of the system. The equilibrium

points (equilibrium point for the mean value of the perturbation) for the system are

(0, a23
2a21

, 0), (0, a23
2a21

, 1), (u∗ = 1 − v∗, v∗, 0), where v∗ is the solution for the following

equation:

a21

[
v(1 − v)

g2 + α(1 − v)
− v

]
− a22v(1 − v) +

a23

2
= 0

and the other point is (u∗∗ =
a31v∗∗+a31(a13−1)

a32a13−a31
, v∗∗, r∗∗ = a32−a31−a32v∗∗

a32a13−a31
) where v∗∗ is the

solution to the following equation:

a21

 v
(

a31v+a31(a13−1)
a32a13−a31

)
g2 + α

(
a31v+a31(a13−1)

a32a13−a31

) − v

 − a22v
(
a31v + a31(a13 − 1)

a32a13 − a31

)
+

a23

2
= 0
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The Jacobian of the dynamics in Eqs. 5.2 is given by:

J(u, v, r) =


1 − 2u − v − a13r −u −a13u

a21 g2v
(g2+αu)2 − a22v a21u

(g2+αu) − a21 − a22u 0

−a32r 0 a31 − 2a31r − a32u

 (5.3)

We analyse the stability of the above equilibrium points (equilibrium point for the

mean value of the perturbation) through the study of the eigenvalues of the Jacobian in

(5.3) at each fixed point. For example, when a23 = 1, the first point (0, 0.3873, 0) is

a saddle point with one negative eigenvalue and two positive eigenvalues, whereas the

point (0, 0.3873, 1) has three negative eigenvalues (smaller than zero) lead to a stable

solution where only immune and healthy cells exist whereas the cancer cells are zero.

In consideration of the above, in the following figures we attempt to understand the

dynamics of the model in (5.2). For example, in Fig. 5.1, we fix almost parameter

values as in table (5.1), and we use different values of the amplitude a23 . When a23 =

5, we observe that the orbit is derived from the initial values (in the right panels, we

display the phase portrait after removing the initial transient), is characterized by low

values of cancer cells. From the point of view of biology, this means that the therapy

is helpful in eliminating the cancer population in comparison with the case when the

amplitude is small such as the results in the upper panels in Fig. 5.1.

Changing the initial values for the above system will not make any changes to the

system’s behaviour as all the equilibrium points (equilibrium point for the mean value

of the perturbation) depend on the value of the amplitude in the immune equation

(second equation). On the other hand, varying the value of the amplitude leads to the

change in the dynamics of the system as in the following figure:
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Figure 5.1: Time evolution and phase portrait of Eqs. (5.2) for different a23 , the
other parameters are shown in Table (5.1) and [u0, v0, r0] = [1, 1, 1]. A blue line
represents cancer, green for immune and red for healthy cells. The right panels

are a phase portrait for each a23 after removing the initial transient.

The right panels show a representation of possible behaviours at different parameter

values with plots of the xyz − plane which is usually called “phase portrait”, whereas

the left panels display the corresponding solutions for the model in (5.2). Investigating

the behaviour of the system in (5.2) by varying the parameter values, enable us to

build an idea about its dynamics. From Fig. 5.1, it is obvious that our model has an

optimal value of the amplitude a23 where the cancer cells start vanishing and induce

the immune population to grow, so we perform another figure to display the average

of each species at different values of a23 , also, to determine the optimal value of a23

in which the cancer cells population eradicate, the results are display in the following

figure:
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Figure 5.2: The average of x as a function of the periodic
amplitude, fixing all the parameter values as shown in Table
(5.1), [u0, v0, r0] = [1, 1, 1] and changing the value of a23 .

In comparison between the results from Chapter 4 (two species model) and Chapter

5 (three species model) where healthy cells are presented in model (5.1) as a third

species, in Fig. 4.15, we observe that the cancer population is eradicated at F = 2.62,

whereas in the above figure (Fig. 5.2), we observe similar observations for cancer

population but with a difference in the value of amplitude which is a23 = 1.5 (the am-

plitude F in the two species model (4.13) is equal to a23 in the three species model

(5.2)). On the other hand, from Fig. 5.2, we notice that the healthy population shows a

static state at 1, whereas the immune population increases as a23 increases because we

have a stable equilibrium point (equilibrium point for the mean value of the perturba-

tion) at (0, a23
2a21

, 1).

For more details, we examine the time evolution of the model (5.2) for fixed parameter

values and different values of a23 as in the following figure:
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Figure 5.3: Time evolution of x for different values of a23 ,
[u0, v0, r0] = [1, 1, 1] and the other parameters are shown in Table (5.1).

From the above figure, we observe that the cancer cells population started to eradicate

at a23 = 1.5, as a result, we conclude that at this amplitude value, the solution show

a steady state equilibrium which leads to the less variability in the model’s behaviour.

The difference between the three panels in Fig. 5.3, is the optimal value of a23 where

the immunotherapy induced immune cells to grow and eliminate the cancer cells.

Our concern is to observe the variability/sustainability of the tumour-immune system.

Thus we are, looking for the unsustainable state where one of the species (cancer cells)

eradicated, so we obtain Fisher information at different values of amplitude a23 , and

the results are presented in the following figure:

116



5.2. Mathematical definition of the three species model

Amplitude
0 1 2 3 4 5 6 7 8 9 10

F
T

0

0.005

0.01

0.015

0.02

0.025

0.03

X: 1.5
Y: 0.02988

Figure 5.4: FT as a function of amplitude for [u0, v0, r0] = [1, 1, 1]
and fixed other parameter values. A peak is noticed at a23 = 1.5
which is the same value where the cancer cells begin to vanish in

Figs. 5.2. and 5.3.

FT peak in the above figure is observed at a23 = 1.5 which is the value of the amplitude

where the cancer population is eradicated and the immune cells increase (see Fig.

5.3), this leads to the unsustainable state (less variability) where the model loses one

of its species which means not enough dynamics available in the model to build an

investigation. The large value of FT means again that the system show low disorder

which is obvious from Fig. 5.4, and the system is expected to display a narrow PDF

at this amplitude value due to the less variability. FT curve decreases as the amplitude

increases and this is because the immune population is kept increases and one of the

species is vanishing.
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5.3 Modifications to the three species model

We further enhance the model in (5.2) by including perturbation in the cancer growth

rate, then we investigate the functionality of the model (5.4) by following similar anal-

ysis as we performed for the model (5.2). The only difference between the two models

is that we reduce the growth of cancer cells by including perturbation of a constant in

addition to a periodic modulation with amplitude ε and frequency Ω , as follows:

du
dT

= (1 + εsin(ΩT )) u (1 − u) − uv − a13ur,

dv
dT

= a21[
uv

g2 + αu
− v] − a22uv + a23 sin2(Ω1T ),

dr
dT

= a31r (1 − r) − a32ur.

(5.4)

The first equation stands for the rate of change in the number of cancer cells u , the

second equation describes the dynamics of immune cells population v , and the last

equation describes the rate of change in the number of healthy cells r . The stability

analysis of the model (5.4) recognizes the positions of the critical points along with

their stability conditions where we notice similar equilibrium points (equilibrium point

for the mean value of the perturbation) to those in model (5.2), with a small difference

due to the enhancement of the cancer growth in the first equation.

5.3.1 Dynamic properties of the model

By varying the parameters in the cancer cells perturbation, we conclude our observa-

tions for the behaviour of the system. Using Ω = 0, ( sin(Ωt) = 0), leads to similar

behaviour as for the model (5.2). On the other hand, for different values of ε such as

ε = 0.1, 1.5, 5 and fixed Ω = Ω1 = 1, and [u0, v0, r0] = [1, 1, 1], we vary the amplitude

a23 in the immune equation, in order to compare the results with those for the model

(5.2), (see Fig. 5.2).
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Figure 5.5: Average values of each population against the amplitude a23

for [u0, v0, r0] = [1, 1, 1], different ε and fixed the other parameter values.
A blue line for cancer cells, green for immune cells and red for healthy cells.

In Fig. 5.5, we fix all parameter values according to table (5.1), in addition to Ω =

Ω1 = 1 and varying the amplitude a23 in the periodic perturbation for different ε . We

obtain similar observations as in Fig. 5.2, which means that adding little perturbations

ε to cancer growth population with different values of ε and Ω = 1 does not induce a

significant change. On the other hand, cancer population started to vanish at a23 = 1.5,

and to investigate its variability at this value, we plot Fisher information in Fig. 5.6

using ε = 0.1.
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Figure 5.6: FT against the amplitude a23 for Ω = Ω1 = 1, ε = 0.1 and
[u0, v0, r0] = [1, 1, 1]. A peak is observed at a23 = 1.5 which is the same

value where the cancer cells start vanishing in Fig. 5.5.

We notice that the results in Fig. 5.6 above have a distinct shape with a distinct FT

peak at a23 = 1.5 and are very close to those in Fig. 5.4. In this case, we conclude that

the perturbation ε does not induce a significant change. Similar findings are reported

for different values of ε such as 1.5 and 5 in the next section.

5.3.2 Effects of varying the amplitude ε

To introduce these effects into our model, we fix a23 , Ω , Ω1 and varying ε to inves-

tigate the effects of changing this parameter on the growth of cancer population. We

show the time-history of each species against ε in Fig. 5.7:
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Figure 5.7: We use different values of ε to plot the dynamics of the
model for fixed parameter values such as a23 = 1.5, Ω = Ω1 = 1

and [u0, v0, r0] = [1, 1, 1]. Blue line for cancer cells, green for
immune cells and red for healthy cells.

Figure 5.7 shows the effects of changing ε on the time evolution of the model. We

fix a23 = 1.5, Ω = Ω1 = 1 and the other parameter values, and different values of

ε . In all cases, all species approach the same final state. However, the larger ε , the

shorten transient time before approaching such final state. In this light, we show the

average evolution of the populations in model (5.4) for various rates of growth as in

the following figure:
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Figure 5.8: We display the average of each species in different colours
as a function of ε with fixed values for the other parameters. No changes

are noticed in the average values which means that our model is independent
of ε .

To track the behaviour of the model (5.4) presented in Figs. 5.7 and 5.8 from the point

of view of Fisher information, we calculate FT at different values of ε and fixed Ω

to be Ω = 1, and amplitude to be a23 = 1.5 (figure not shown). We observe that FT

values don’t change over time, which means again that the system at a steady state

solution does not loss or gain Fisher information. We attempt another value of a23 = 4

in which we realize the same behaviour for Fisher information.

5.3.3 Effects of varying Ω

In order to examine the behaviour of the model in (5.4), and the effects of changing

parameter values within the perturbation included in the cancer growth, such as Ω , we

display the results in the following figure:
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Figure 5.9: The average values of each species against Ω for two
different values of ε with fixed Ω1 = 1, [u0, v0, r0] = [1, 1, 1] and

a23 = 1.5. No changes are observed in the average values as
Ω increases.

In Fig. 5.9, we use initial condition to be u(0) = v(0) = r(0) = 1, and other parameter

values are similar to those in table (5.1), and we display the results of increasing Ω .

It is obvious that there is no change in the average values for the three species as Ω

increases. From the perspective of information theory, we employ Fisher information

index as a function of Ω at two different values of ε , and we observe a fixed value

for FT for all the values of Ω , which means that at a steady state solution, Fisher

information do not change over time.
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5.4 Conclusions

We improve the predator-prey model by including a third equation to represent healthy

cells population and by including perturbation in the model parameters. We investigate

the behaviour of this model by varying the model parameters. On the other hand, the

concept of Fisher information is used as a measure of variability and to determine the

optimal value of immunotherapy which enhances the growth of immune and healthy

cells while helping to eradicate the cancer cells, or at least to control the growth of

cancer population.

We study two different mechanisms of the three species model, with and without mod-

ifications. For the model in (5.2) without any additional adjustment, we note that the

value of the amplitude (a23 = 1.5) leads the cancer cells to vanish and the model

reaches an equilibrium relationship between the three species. Similar results are ob-

served in the second case of the model (5.4) which includes modifications in the model

parameters, (1 + εsin(ΩT )) in the first equation. As confirmed earlier, in the presence

of immunotherapy at different values of the amplitude, the results show a periodic

solution. One interesting feature of this chapter is the optimal value of amplitude

(a23 = 1.5) at which the cancer cells start vanishing and we confirm our results by

exploring Fisher information dynamics with different values of amplitude, with a peak

observed at a23 = 1.5. In this light, we conclude that our inclusion of (1 + εsin(ΩT ))

in the growth of the cancer cells in the first equation does not change the long-time

behaviour where the only difference in the behaviour of the system was the initial tran-

sient for different values of Ω and ε .

Finally, the main difference between the two species model and three species model is

the value of the amplitude in the periodic perturbation (in the second equation) which

reduced the number of cancer cells (F = 2.62 in the two species model and a23 = 1.5

in the three species model). Our work could help to identify the right doses of treatment

of cancer, one of the leading causes of mortality worldwide.
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Conclusions and future work

6.1 Summary of the results

The dynamical features and the complications of dynamical systems can largely be

controlled by varying some parameter values. Mathematical models have been pro-

posed for modelling the population growth dynamics and to study the interaction be-

tween several species. The models we suggest in this thesis are quite simple and of

a general type. Specifically, we investigate and discuss different nonlinear dynamical

models with perturbations in the model parameters which can affect the behaviour of

the system depending on the parameter values, in addition, we use Fisher information

index as a measure of variability/sustainability. Also, we offer numerical and/or ana-

lytical results in which our models can represent some significant biological cases.

In the second chapter, we employ the simple logistic equation to study its behaviour

after including perturbation in the model parameters and study the effects of the per-

turbation on the dynamics of the logistic equation from the point of view of Fisher

information. One interesting characteristic of the logistic equation with a periodic

modulation in both positive and negative feedback is a bimodal PDF with different

distance between the two peaks for different parameter values, which is a result of its
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cross-over behaviour between its initial values and the carrying capacity of the popu-

lation. Particularly, for small initial conditions (far from carrying capacity which we

fixed to be K = 10) and different values of periodic frequency ω such as ω = 1, the lo-

gistic equation shows a bimodal PDF with two peaks, at x0 and K , respectively. From

the point of view of information theory, we observe a distinct maximum for Fisher

information at a specific parameter value which means that the modal at this parameter

value has less variability, whereas this characteristic does not exist for different initial

values such as x0 = 5 where Fisher information monotonically increases as ω in-

creases. Then we perform another investigation regarding varying x0 with fixed value

of ω , we notice a local maximum for Fisher information at initial condition which is

closer to K , ( x0 ' K ) and we linked this to the narrowest PDF at this initial value

with less variability (unsustainable state with less dynamics to investigate). The inves-

tigation of the logistic equation with perturbation from the perspective of sustainability

leads to significant information to understand the population with small density such

as bacteria or tumours which continue to survive regardless of the use of antibiotics

(e.g. [83]), as observed from a PDF peak around small population x0 .

In chapter 3, we discuss the significant features of the analytical and numerical calcu-

lations of the Gompertz equation. We observe similar findings to those obtained for the

logistic equation in three different cases with only one difference for case-2. Specifi-

cally, we include a periodic modulation in the model parameters for positive and nega-

tive feedback in order to investigate the behaviour of the model from the point of view

of variability/sustainability using Fisher information index, and we obtain a distinct

maximum for Fisher information at initial condition which is closer to the equilibrium

point ( x0 ' x∗1 ) and which is related to the narrowest PDF (a short distance between

the two peaks) with less variability that leads to unsustainable state due to the lack

of functionality, followed by Fisher information decreasing beyond ( x0 ' x∗1 ), which

leads to the increase of variability in the system while moving away from the equilib-

rium point.

In the fourth chapter, we present the predator-prey mode. We induce the growth of
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immune cells that can potentially stop the growth of cancer cells which offers an in-

teresting topic for research because cancer being one of the most deadly diseases in

the modern world and one that can affect all people regardless of their age, gender,

or ethic background, controlling its growth is an urgent task; therefore we investigate

the functionality of a two species model (tumour-immune system) over all possible

parameter values. The main characteristic of the predator-prey model (in its determin-

istic conditions) is the sensitivity dependence on initial points in addition to a periodic

behaviour with a limit cycle. The presence of a periodic modulation term (periodic

dose of treatment) tends to destroy the cancer population and to promote the growth of

immune cells. This leads us to conclude that for a specific value of amplitude in an im-

munotherapy term such as F = 2.62, a decrease occurs in the cancer cells’ density to a

very low value; also, we notice larger Fisher information at this value which means that

our model has less variability and shows a static steady state, although from the per-

spective of sustainability, it is necessary to say that this is the most unsustainable state

where the existence of only one surviving species renders the dynamics insufficient to

conduct an investigation. Also, we study the effects of varying the prey mortality rate

on the behaviour of both species from the point of view of information theory, and

we observe a peak for Fisher information at b = 3 with narrowest PDF at this value

(shorter distance between the two peaks) in comparison with other values of b .

In chapter 5, we discuss the inclusion of another species in the predator-prey model

in the form of healthy cells in order to provide a complicated task that could be sum-

marised. We vary the parameter values in an attempt to detect and determine accurately

the value of the immunotherapy dose where eradication of the cancer cells population

starts. One interesting feature of this chapter’s findings is the optimal value of a23

(a23 = 1.5) at which the cancer cells start vanishing, a result which we confirm by

exploring Fisher information dynamics with different values of the amplitude, with a

peak observed at a23 = 1.5. Furthermore, we include perturbation (1 + εsin(ΩT )) in

the growth of the cancer cells which does not improve our observations. Finally, The

main difference between the two species model and three species model is the value of
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the amplitude in the periodic perturbation which reduces the number of cancer cells.

The study of nonlinear differential equations has a long history. Although many pub-

lications have offered sufficient outlines of dynamical systems, our efforts move in the

direction of adding new and detailed knowledge by investigating the functionality of

the above mentioned models from the point of view of variability/sustainability, which

leads us to conclude that Fisher information can be used as a measure of disorder in

the case where it has a distinct maximum as a result of the existence of a narrowest

bimodal PDF with two distinct peaks.

6.2 Future work

The main difference between this work and that of other researchers is that we include

a periodic modulation in the model parameters, investigating the dynamics of these

models in addition to their variability/sustainability from the point of view of informa-

tion theory. An alternative approach in this direction is to include a stochastic noise

rather than a periodic modulation in components in the above models.

The above observations may be useful to all people concerned with controlling the

growth of this terrifying disease cancer and that it would be useful to study the above

systems with inclusion of a time delay in one or more species as, according to observa-

tions by Marchuk (see [6,59]), involving a time delay in the immune system modelling

is a significant factor in terms of its influence on the cancer model, with and without

immunotherapy.

The models investigated in this thesis present only a few of the possible modifications

of models for eradication of cancer cells, and suggestions for future work could include

constructing the growth of the cancer or the interaction for the cancer and immune cells

by using a non-exponential function or conducting a similar investigation on models

containing medicine resistance and more kinds of specific immune cells.

It is hoped that new approaches and new theories will be develop to support the results
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from our suggested models and strengthen our findings to enable their future inclusion

in the treatment of cancer sufferers.
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Appendix A

A dimensionless form for the

predator-prey model

As discussed earlier, the predator-prey model behaviour has been studied by many

researchers in its deterministic conditions as well as stochastic variations. Here, re-

placing the predator-prey model’s exponential growing of the prey population by a

logistic growth equation with a carrying capacity N = 1
K yields the model:

dx
dt

= ax(1 − Nx) − bxy, (A.1a)

dy
dt

= −cy + exy. (A.1b)

Our purpose is to simplify the above model and work with a dimensionless version.

It has two species in addition to five parameters, which means that there are lots of

choices for the dimensionless parameters. By dividing the first equation (A.1a) by a

and the second equation (A.1b) by c as follows:

dx
dat

= x(1 − Nx) −
b
a

xy,

dy
dct

= −y +
e
c

yx.
(A.2)
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Appendix A. A dimensionless form for the predator-prey model

We rescale the parameters in Eqs. (A.2) according to:

u =
b
a

x, v =
e
c

y and T = a t,

where T is a time constant. As a result, the following model has been emerged from

the evolution of Eqs. (A.2) with the latter quantities

d
dT

a
b

u =
a
b

u(1 − N
a
b

u) −
c
e

uv, (A.3a)

1
c

ad
dT

c
e

v = −
c
e

v +
a
b

uv. (A.3b)

For simplicity, we multiply Eq. (A.3a) by b
a and Eq. (A.3b) by e

a to derive the follow-

ing equations:

du
dT

= u(1 −
a
b

Nu) −
bc
ae

uv,

dv
dT

=
−c
a

v +
e
b

uv.
(A.4)

Furthermore, lets consider the following quantities in Eqs. (A.4) in order to get a

dimensionless form.

N =
b
a
, α =

bc
ae
, β =

c
a

and γ =
e
b
.

Then, the predator-prey model can be displayed as follows after a dimensionless pro-

cedure (fewer parameters) is applied:

du
dT

= u(1 − u) − αuv,

dv
dT

= −βv + γuv.
(A.5)

As a result, we obtain a model with less parameters which is easier to investigate and

examine its dynamical properties such as the equilibrium point (u∗ ,v∗ ) that can be
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obtain at which u̇ and v̇ vanish. This means

u∗(1 − u∗) − αu∗v∗ = 0 = −βv∗ + γu∗v∗.
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A dimensionless form for the three

species model

We expand the predator-prey model by including a third species which represents the

healthy cells population as we can see from the following equations:

dx
dt

= ax(1 − N1x) − bxy − dxz, (B.1a)

dy
dt

= −cy +
eyx

g2 + x
− f yx + F sin2(ωt), (B.1b)

dz
dt

= gz(1 − N2z) − hzx. (B.1c)

By dividing the first equation (B.1a) by a , the second equation (B.1b) by c and the

third equation (B.1c) by g , we obtain the following equations:

dx
dat

= x(1 − N1x) −
b
a

xy −
d
a

xz,

dy
dct

= −y +
eyx

c(g2 + x)
−

f
c

yx +
F
c

sin2(ωt),

dz
dgt

= z(1 − N2z) −
h
g

zx.

(B.2)
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In order to simplify the latter model in (B.2), we introduce cancer x , immune y and

healthy z populations in addition to the time t in terms of dimensionless quantities as

follows:

T = at, u =
e
c

x, v =
b
a

y and r =
h
g

z.

As a result, we obtain the following model after including all the above dimensionless

quantities and more simplification:

c
e

du
d T

=
c
e

u(1 − N1
c
e

u) −
c
e

uv −
cdg
aeh

ur,

a2

cb
dv

d T
= −

a
b

v +
a
b

vu
g2 + c

eu
−

a f
be

vu +
F
c

sin2(
ω

a
T ),

a
h

dr
d T

=
g
h

r(1 − N2
g
h

r) −
c
e

ru.

(B.3)

Furthermore, lets consider the following quantities in Eqs. (B.3) in order to get a form

with less parameters.

N1 =
e
c
, N2 =

h
g
, Ω =

ω

a
and α =

c
e
.

The three species model in its final form can be display as follows, as a result of

applying a dimensionless and simplification procedure.

du
d T

= u(1 − u) − uv − a13ur,

dv
d T

= a21

[
vu

g2 + αu
− v

]
− a22vu + a23 sin2(ΩT ),

dr
d T

= a31r(1 − r) − a32ru.

(B.4)
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Appendix C

Fisher information construction for

the logistic model

By following the procedure presented by several researchers, we calculate Fisher in-

formation index for the logistic model. We display the logistic model expressed in Eq.

(2.3) as follows:

dx
dt

= [B + N0 sin(ωt)] x (1 −
x
K

). (C.1)

We fix the constant growth B to be B = 0. Since Fisher information quantity as in Eq.

(2.14) is:

FT =
A
T

∫ T

0

u̇ 2

u 4 dt, (C.2)

where u̇ = du
dt and u = dx

dt , A is a normalization constant and T is the total time

duration. We may now differentiate the function u with respect to x as follows:

u̇ =
∂u
∂x

dx
dt
, (C.3)
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substituting the results of Eq. C.3 and Eq. (C.1) together in Eq. C.2, we obtain the

following Fisher information quantity:

FT =
A
T

∫ T

0

(N0 sin(ωt) (ẋ − 2xẋ
K )) + (N0 ω cos(ωt) (x − x2

K ))
u2 dt, (C.4)

We employ the formula in (C.4) to produce the figures in subsection (2.4.4) for different

parameter values. Similar form for Fisher information is calculated for the Gompertz

equation.
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Fisher information construction for

the predator-prey model

Fisher information can be calculate based on the background theory explained by sev-

eral researchers. In the following, we present the procedure of obtaining Fisher infor-

mation for the predator-prey model. We display the predator-prey model expressed in

Eqs.(4.1) by the following set of equations:

dx
dt

= ax − bxy = f1(x, y),

dy
dt

= −cy + exy = f2(x, y).
(D.1)

We expand Fisher information quantity in Eq. (2.14) as follows:

FT =
A
T

∫ T

0

ṡ 2

s 4 dt , (D.2)

where s =
√

ẋ 2 + ẏ 2 , A is a normalization constant and T is the total time duration.

In consideration of the above, we obtain ṡ = ds
dt as follows:

ṡ =
∂s
∂x

dx
dt

+
∂s
∂y

dy
dt
, (D.3)

138



or the equation in (D.3) could be written as:

ṡ =
∂s
∂x

ẋ +
∂s
∂y

ẏ,

we may now differentiate the function s with respect to cancer population x as follows:

∂s
∂x

=
ẋ(a − by) + eyẏ

s
, (D.4)

and the next derivative is for s with respect to y as follows:

∂s
∂v

=
−bxẋ + ẏ(−c + ex)

s
, (D.5)

substituting the results of Eqs. (D.4) and (D.5) together in Eq. (D.3) and finally in-

cludes the outcome results in Eq. (D.2), we obtain the following Fisher information

quantity:

FT =
A
T

∫ T

0

(
ẋ2(a − by) + ẋẏ(ey − bx) + ẏ2(−c + ex)

)2

(
ẋ2 + ẏ2

)3 dt, (D.6)

The latter formula (D.6) is used to produce the figures in subsection (4.2.4), and similar

calculations can be follow in order to construct Fisher information equation in the other

sections in Chapter 4 with small differences.
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Appendix E

Fisher information construction for

the three species model

We calculate Fisher information by an integral equation, and its computation is subject

to a group of ordinary differential equations (ODEs). Here, we show how to calculate

Fisher information for the three species model.

We display the dimensionless form for the three species model which is expressed in

(5.2) by the following set of equations:

du
dT

= u (1 − u) − uv − a13ur,

dv
dT

= a21[
uv

g2 + αu
− v] − a22uv + a23 sin2(Ω1T ),

dr
dT

= a31r (1 − r) − a32ur.

(E.1)

Since Fisher information quantity is:

FT =
A
T

∫ T

0

ṡ 2

s 4 dt, (E.2)

where s =
√

u̇ 2 + v̇ 2 + ṙ 2 , A is a normalization constant and T is the total time

duration. In consideration of the above Fisher information (Eq. E.2), we obtain ṡ = ds
dt
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as follows:

∂s
∂t

=
∂s
∂u

du
dt

+
∂s
∂v

dv
dt

+
∂s
∂r

dr
dt
, (E.3)

or the derivative of s in equations (E.3) could be written as:

ṡ =
∂s
∂u

u̇ +
∂s
∂v

v̇ +
∂s
∂r

ṙ,

we may now apply the calculus of a simple differentiation for the function s with

respect to cancer population u as follows:

∂s
∂u

=
u̇(1 − 2u − v − a13r) + v̇(a21v(g2+αu)−a21αuv

(g2+αu)2 − a22v) − a32rṙ

s
, (E.4)

the next derivative is for s with respect to v as follows:

∂s
∂v

=

a21uv̇
g2+αu − uu̇ − a21v̇ − a22uv̇

s
, (E.5)

and the evolution equation of the derivative of s with respect to r can be as follows:

∂s
∂r

=
a31ṙ − a13uu̇ − 2a31rṙ − a32uṙ

s
, (E.6)

by substituting the results of Eqs. (E.4), (E.5) and (E.6) together in the Eq. (E.3)

and finally includes the outcome results in Eq. (E.2), we obtain the following Fisher

information quantity:

FT =
A
T

∫ T

0

(
u̇2a + v̇2b + ṙ2c + u̇v̇d − u̇ṙe

)2

(
u̇2 + v̇2 + ṙ2

)3 dt, (E.7)
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where:

a = 1 − 2u − v − a13r,

b =
a21u

g2 + αu
− a21 − a22u,

c = a31 − 2a31r − a32u,

d =
a21v(g2 + αu) − a21αuv

(g2 + αu)2 − a22v − u,

e = a32r + a13u.

As a result, we obtain Fisher information index which it has been used to produce

Fisher information figures in Section (5.2), similar quantity can be compute for dif-

ferent dynamical systems by following the same procedure in Appendixes C, D, & E.
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