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Abstract 

    In recent years, the decreasing cost of ‘Next generation’ sequencing has spawned 

numerous applications for interrogating whole genomes and transcriptomes in research, 

diagnostic and forensic settings. While the innovations in sequencing have been explosive, 

the development of scalable and robust bioinformatics software and algorithms for the 

analysis of new types of data generated by these technologies have struggled to keep up. 

As a result, large volumes of NGS data available in public repositories are severely 

underutilised, despite providing a rich resource for data mining applications. Indeed, the 

bottleneck in genome and transcriptome sequencing experiments has shifted from data 

generation to bioinformatics analysis and interpretation.  

    This thesis focuses on development of novel bioinformatics software to bridge the gap 

between data availability and interpretation. The work is split between two core topics – 

computational prioritisation/identification of disease gene variants and identification of RNA 

N6 -adenosine Methylation from sequencing data.  

    The first chapter briefly discusses the emergence and establishment of NGS technology 

as a core tool in biology and its current applications and perspectives.  

    Chapter 2 introduces the problem of variant prioritisation in the context of Mendelian 

disease, where tens of thousands of potential candidates are generated by a typical 

sequencing experiment. Novel software developed for candidate gene prioritisation is 

described that utilises data mining of tissue-specific gene expression profiles (Chapter 3). 

The second part of chapter investigates an alternative approach to candidate variant 

prioritisation by leveraging functional and phenotypic descriptions of genes and diseases 

from multiple biomedical domain ontologies (Chapter 4).  

    Chapter 5 discusses N6 AdenosineMethylation, a recently re-discovered post-

transcriptional modification of RNA. The core of the chapter describes novel software 

developed for transcriptome-wide detection of this epitranscriptomic mark from sequencing 

data. Chapter 6 presents a case study application of the software, reporting the previously 

uncharacterised RNA methylome of Kaposi’s Sarcoma Herpes Virus. The chapter further 

discusses a putative novel N6-methyl-adenosine -RNA binding protein and its possible 

roles in the progression of viral infection. 
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1. Introduction 

1.1 Nucleic acid sequencing. 

    At the heart of molecular biology lies the central dogma – DNA encodes RNA; 

RNA encodes proteins. Detailed in a landmark 1970 paper (Crick 1970) by Francis 

Crick, this philosophy of information flow from nucleic acids to protein cemented 

the role of biological polymers as the foundation of all life. The central dogma was 

the culmination of much of the work earlier in the 20th century – perhaps the most 

noteworthy of which was the discovery of the double-helix structure of DNA 

(Watson and Crick 1953b, 1953a), which unravelled the molecular basis of 

heritability. 

    The importance of sequence in biological polymers, however, was first 

recognised somewhat earlier by Frederick Sanger in his studies of bovine insulin 

protein, which established that proteins have a defined amino acid composition 

(Sanger and Tuppy 1951; Sanger 1949). The link between protein and DNA 

sequence was recognised soon after (Gamow 1954), though it is interesting to note 

that the ‘coding problem’ was solved more than a decade prior to the determination 

of the first DNA sequence. 

    Indeed, while the structure of DNA provided insight into the importance of 

nucleotide sequences, it was some years before the exact order of nucleotides 

could be determined – early methods could provide insights into nucleotide 

composition of DNA, but not its sequence (Holley et al. 1961). Moving forward from 

his work on protein sequences, Frederick Sanger began development of methods 

for nucleic acid sequence determination – but was beaten to the publication of the 

first nucleic acid sequence, that of alanine tRNA (Holley et al. 1965). This first 

generation of sequencing methods relied on ribonuclease treatments to produce 

partially-digested RNA fragments which could be radioactively labelled and 

separated using two dimensional ionophoresis (Sanger et al. 1965) and was used 

to determine a number of ribosomal and transfer RNA sequences (Adams et al. 
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1969; Brownlee and Sanger 1967; Cory et al. 1968). The chemical cleavage-based 

Maxam-Gilbert method (Maxam and Gilbert 1977) dominated the early sequencing 

efforts, where radioactively end-labelled DNA fragments would be cleaved in four 

separate, base-specific reactions. The DNA sequence could then be determined by 

size-separating the cleaved fragments produced by each reaction. 

    However, it was the later sequencing methods developed by the Sanger lab that 

would become the mainstay of biological research, which relied on the premature 

termination of DNA elongation by DNA polymerases, rather than chemical 

cleavage The first such sequencing method pioneered by Sanger and Coulson was 

termed “plus-minus” sequencing and was used to determine the sequence of 

bacteriophage phiX174 (Sanger and Coulson 1975; Sanger et al. 1978), the first 

complete genome to be sequenced. The technique uses an initial reaction that 

generates all possible radioactively labelled DNA products of increasing length, 

which can be used in eight subsequent reactions where synthesis is terminated in 

a sequence-specific manner by limiting the supply of nucleoside triphosphates - 

four ‘plus’ reactions are supplied with only one of the four nucleotides, while the 

four ‘minus’ reactions use three of the four. These fragments are then resolved on 

a polyacrylamide gel in the order of increasing chain length Thus, DNA strands 

differing by only a single nucleotide could be resolved as discrete bands across 8 

lanes on the resulting autoradiograph of the polyacrylamide gel.  

 

    While not without issues – for example, difficulty in resolving homopolymer runs 

– the chain termination approach formed the basis of modern DNA sequencing 

methods. A few years later, Sanger et al (1977) further refined the chain-

termination approach by using dideoxy-nucleotides, which had been shown some 

years earlier to inhibit DNA polymerase activity if incorporated in place of deoxy-

nucleotides during chain synthesis (Atkinson et al. 1969). Thus, a polymerase 

reaction incubated with a mixture of four dNTPs and one ddNTP would yield 

varying length chains all terminating at a particular base, which can then be 

resolved by gel electrophoresis (Figure 1).  
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Figure 1. Sanger sequencing method by ddNTP chain-termination.In the 

presence of four nucleotides, DNA polymerase extends the primer based on the 

template DNA strand. An incorporation of a dideoxynucleotide, however, results in 

chain termination. Four parallel reactions, each including a different 

dideoxynucleotide, will generate fragments of varying length, which can then be 

resolved by electrophoresis and the base sequence of the template read. 
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   The refined technique was widely adopted and subsequently used to sequence 

human mitochondrial DNA in 1981 (Anderson et al. 1981), the lambda phage 

genome in 1982 (Sanger et al. 1982) and EBV genome in 1984 (Baer et al. 1984). 

The next few years saw a number of improvements made to Sanger sequencing 

that allowed ever-increasing automation of the approach, including elimination of 

radioactive labelling in favour of fluorescent dyes (Ansorge et al. 1986). 

In parallel with the advances in the sequencing reactions, the first commercial 

DNA sequencing instruments, which appeared in the mid-1980s, also underwent 

development. In 1986, Applied Biosystems (ABI) developed an automated Sanger 

sequencing machine using patented fluorescent dye-labelled ddNTPs which 

allowed sequencing in one reaction rather than four (Smith et al. 1986). The report 

also demonstrated that sequence data could be read directly by a computer by 

recording the sequence of colours as DNA fragments passed a detector at the end 

of the gel. Automation thus enabled the sequencing of more complex genomes, 

and the following decade saw the first cellular genome sequences published, 

starting with the bacterium Haemophilus influenza in 1995 (Fleischmann et al. 

1995) (Figure 2).  

The ABI 370A DNA sequencer launched in 1986 could produce approximately 

1000bp of sequence per day. By 1995, the new ABI PRISM 377 instrument had 

optimised the method, but it wasn’t until the following year that a breakthrough 

which saw the replacement of slab gels with capillary electrophoresis dramatically 

improved throughput. By 1998, the ABI PRISM 3700 96 capillary system could 

produce approximately 900 kbs of sequence data per day – a substantial leap 

forward, yet a single instrument would still have required more than 45 years to 

sequence the 3 billion bases of the human genome at 5X coverage.  
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Nevertheless, by this time the efforts to sequence the human genome were well 

under way. The Human Genome project was conceived as a collaborative, publicly 

funded endeavour and, by the late 1990s, significant strides had been made 

towards its completion. The advent of truly automated capillary sequencing, 

however, attracted commercial attention and Celera Genomics was founded with 

the aim of completing the sequence of the human genome cheaper and faster than 

the publically funded efforts. By 1999, the first human chromosome sequence was 

published by The Human Genome Consortium (Dunham et al. 1999), now in direct 

competition with Celera Genomics. Despite the controversy, the completion of the 

project was announced in 2000 – officially a tie between the publicly funded efforts 

and Celera Genomics (Lander et al. 2001; Venter et al. 2001). This began a new “-

omics” era in biology, with a proven capability to study whole genomes and 

transcriptomes.  

1.2 ‘Next-Generation’ Sequencing 

     When the first human genome sequence was nearing completion, the National 

Human Genome Research Institute of the US National Institutes of Health outlined 

plans for the future of genomics research – among which was the then near 

fictional goal of sequencing individual human genomes at the cost of less than 

$1000 per genome (Bennett et al. 2005; Schloss 2008).  

Yet in the 15 years since the completion of the human genome draft sequence, 

the technological progress has been explosive. With commercial interest, 

massively parallel methods of sequencing emerged that were finally able to 

challenge the traditional Sanger approach. 

The first of the ‘Next Generation’ sequencing (NGS) instruments were produced 

by 454 Life Sciences (Margulies et al. 2005) and used the pyrosequencing 

approach conceived some 20 years earlier (Nyrén and Lundin 1985). Initially, 

sheared DNA molecules are captured on a bead array and amplified in an 

emulsion droplet. As with the Sanger method, sequencing is carried out via primed 

DNA polymerase synthesis – the array is exposed to each dNTP in turn and the 
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amount of incorporation is monitored by the amount of pyrophosphate produced in 

a two enzyme process: ATP sulfurylase converts pyrophosphate into ATP, which 

acts as the substrate for luciferase, and produces light proportional to the amount 

of pyrophosphate incorporated which can be monitored in real time. 

Following the commercial success of 454 instruments, a number of competitors 

quickly emerged. One of the most important developments was in the Solexa 

(which was later acquired by Illumina) instruments, that differed from 454 

technology in several key areas. In contrast to the bead emulsion PCR method 

used in 454 instruments, the company patented an approach dubbed ‘bridge 

amplification’, wherein adapter-ligated DNA molecules are passed over a flow cell 

surface of complimentary oligonucleotides. Subsequent PCR cycles would 

generate neighbouring clusters of clonal populations of the original DNA strands, 

where each replicating DNA molecule would arch over in order to prime the next 

round of amplification off the flowcell surface bound oligonucleotides (Bentley et al. 

2008). Additionally, rather than measuring pyrophosphate incorporation, the 

instrument still relied on a traditional Sanger approach, with improved, reversible 

chain-termination chemistry (Turcatti et al. 2008): after the incorporation and 

identification of each fluorescently-labelled nucleotide, the 3’ terminator which 

would normally inhibit further polymerisation is cleaved off and thus a new ‘cycle’ 

can be performed. 

A number of competitors in the early sequencing market emerged (and some 

also disappeared), including ligation-based chemistry of SOLiD systems 

(McKernan et al. 2009; Shendure et al. 2005), DNA ‘nanoballs’ technology 

(Drmanac et al. 2010) by Complete Genomics, and Ion Torrent, wherein nucleotide 

incorporation is measured by the difference in pH caused by release of protons 

during polymerisation, rather than conventional light detection (Rothberg et al. 

2011). However, none have yet matched the success of the widely adopted 

Illumina instruments (Greenleaf and Sidow 2014), which have brought rapid 

improvements to quality, through-put and cost of sequencing (Check Hayden 

2014). 
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The rapid development of ever-improving DNA sequencing technologies has 

even outpaced the ‘computer revolution’, with the sequencing cost per nucleotide 

halving every five months between 2004 and 2010 (Stein 2010). Recent years 

have now seen the emergence of ‘third generation’ instruments, which are capable 

of single molecule sequencing (thus negating the requirement for the amplification 

of DNA and avoiding amplification-related biases), as well as producing much 

longer reads than the established Illumina technologies (Schadt et al. 2010). 

The developments in DNA sequencing instrumentation have drastically 

decreased not just the cost, but also the ease of sequencing, and as such, the 

numbers of sequencing experiments performed have increased exponentially. The 

first major sequencing project following The Human Genome Project – the 1000 

Genomes Project (Project Consortium et al. 2012) – generated twice as much 

sequencing data in the first 6 months than had been deposited in the entire 

GenBank database (Benson et al. 2005) in the preceding 30 years (Stein 2010) 

(Figure 3). 
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Figure 3. Annually deposited ‘Next Generation’ sequencing data in public data 

repositories. Top panel shows the number of annually deposited datasets in 

ArrayExpress database (Kolesnikov et al. 2015). The numbers of experiments 

using array technologies have been steadily declining, while sequencing 

experiments have become more popular. Similarly, the annually submitted 

sequencing runs within SRA sequence archive (Leinonen et al. 2011a) have been 

increasing (bottom panel).[Date accessed: 09/02/2017] 
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1.3 “Next-Generation” Sequencing Applications 

    The increasing levels of automation and ease of library preparation together with 

the rapidly decreasing sequencing costs have also driven the application of NGS 

beyond simple determination of DNA sequences.  

In human genetics, DNA sequence variant characterisation has proved hugely 

successful in disease gene identification. In the past, as the whole genome of an 

individual was simply too big, costly and time-consuming to sequence, large 

families were required in order to first map the disease-causing locus. However, 

NGS-based approaches, such as Whole-Exome sequencing (WES) (Rabbani et al. 

2014) of parent-child trios, have led to many successes in identifying causative 

genes for de novo, dominant and recessive diseases (Vissers et al. 2010; Ng et al. 

2010b; Zhang et al. 2013). Similarly, NGS has enabled DNA structural/copy 

number variation detection via break-point mapping and/or coverage-based 

methods, with successful applications in both human genetics (Coe et al. 2014) 

and cancer studies (Wang et al. 2015a). Targeted sequencing has also become a 

routinely adopted clinical diagnostics tool (Trujillano et al. 2017). 

The field of epigenetics has also benefitted extensively from the advent of NGS 

technologies. Various types of genome-wide DNA methylation analyses have 

gained popularity in recent years, including the sequencing of bisulfite treated DNA 

or immunoprecipitation-based techniques, such as MeDIP-Seq (Wilson et al. 2012) 

and MIRA-Seq (Jung et al. 2015). Novel insights into genome regulation have also 

been gained via other NGS applications, such as genome-wide mapping of DNase 

I hypersensitive sites (Crawford et al. 2006) or transcription factor binding sites via 

ChIP-seq (Ren et al. 2000). The ENCODE project  (ENCODE Project Consortium 

et al. 2012) was launched shortly after the completion of The Human Genome 

Project with the aims to characterise functional genome elements largely via the 

use of NGS technologies such as transcription factor ChIP-Seq, histone mark 

enrichment ChIP-Seq and DNase-Seq, has proven – in terms of amount of data 

generated - a landmark success. Indeed, the original aims of the project have since 
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expanded, and now encompass cataloguing of RNA gene expression and RNA-

protein interactions. 

In the studies of RNA gene expression, NGS has come to replace microarray 

technologies as a transcriptome profiling method of choice, due to its higher 

sensitivity and specificity. Transcriptome-wide RNA sequencing has enabled not 

only accurate quantification, but also characterisation of alternative splicing events 

and allele-specific expression (Edsgärd et al. 2016; Ding et al. 2017). Many areas 

of molecular biology were re-discovered, including the study of small RNA species 

(e.g. microRNAs) by small RNA-sequencing methodologies (Persson et al. 2017; 

Campbell et al. 2015); or circular RNAs via the sequencing of RNAse-treated 

samples (Salzman et al. 2012).  

More recent additions to the NGS toolbox for the study of RNA include 

ribosome/polysome profiling (Ingolia et al. 2009) for the identification of actively 

translated RNA species; nascent RNA sequencing for characterising transcriptional 

events (Carrillo Oesterreich et al. 2010); antibody pull-down based methods for the 

identification of RNA-protein interaction sites, such as eCLIP, PAR-CLIP, RIP-Seq 

and fRIP-Seq (Van Nostrand et al. 2016; Spitzer et al. 2014; Wessels et al. 2016; 

G Hendrickson et al. 2016); characterisation of RNA modifications such as 

pseudouridylation, adenosine methylation or deamination via mutation-detection, 

reverse-termination or antibody-based methods (Carlile et al. 2015; Dominissini et 

al. 2013; Chepelev 2012); or even transcriptome-wide RNA secondary structure 

analysis via methods such as PARS (Wan et al. 2013). 

The rise in the variety of NGS applications have naturally resulted in 

unprecedented amounts of data generated. Sequence data in public repositories 

has grown exponentially from a small handful of assembled genomes less than two 

decades ago: NCBI now hosts 103,417 complete prokaryotic and 4,586 eukaryotic 

genome sequences, while SRA boasts 3,179,619,260,782,116 total sequence 

bases (Leinonen et al. 2011a) [Accessed 29/07/2017]. Thus, it is clear that the 
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bottleneck in ‘omics’ research has shifted from data generation to data analysis, 

bringing about a new set of challenges and opportunities.  

 1.4 Bioinformatics Challenges in ‘Next-Generation’ Sequencing Era 

    In any type of NGS experiment - clinical, forensic or research - once samples are 

sequenced, bioinformaticians must tackle the task of storing, analysing and 

interpreting the data. Yet, the field of bioinformatics has struggled to keep up with 

the rapidly advancing NGS technologies. While there are many challenges posed 

in terms of data storage, quality control, assembly, alignment or annotation, this is 

mostly felt in the area of analysis and interpretation. Translating huge NGS 

datasets into interpretable biological hypotheses or actionable clinical diagnoses 

remains perhaps the biggest challenge in bioinformatics. 

    As with any new research avenue, algorithms in these areas will take time to 

develop and mature. To an extent, this has already happened in several key areas, 

such as short read sequence alignment. Some of the early algorithms of this type, 

such as Needleman–Wunsch (Needleman and Wunsch 1970), Smith-Waterman 

(Waterman 1984), BLAST (Altschul et al. 1997) and CLUSTAL (Chenna et al. 

2003), are either still utilised today or have served as a basis for more scalable 

improvements, which balance accuracy, speed and memory requirements. Indeed, 

there have been few notable improvements on the performance of the gold 

standard short read sequence alignment software (Engström et al. 2013; Shang et 

al. 2014), such as BWA (Li and Durbin 2009) and Bowtie (Langmead and Salzberg 

2012) (or STAR (Dobin et al. 2013) and Tophat (Trapnell et al. 2009) for split-read 

alignment), and with only seemingly marginal gains still to be exploited, the 

problem can be considered largely ’solved’ for current datasets 

    Thus, while a community consensus has been reached in many core areas of 

current applications in NGS data analysis, much still remains an open problem. 

Tools to aid the biological interpretation of large datasets are still lacking, and as 

such, NGS data is largely under-utilised. It is not only the typical research projects 

that suffer from this failing. Large sequencing projects, such as the 1000 genomes 
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project (Project Consortium et al. 2011) or ENCODE (ENCODE Project Consortium 

et al. 2012), focused very much on the data generation aspects and less so on the 

interpretation of the resulting data. Thus, it will take the bioinformatics community 

years to fully digest the outcome of these large-scale efforts, which have yielded 

enormous databases but relatively few biological insights.  

    This presents a ripe opportunity for biological data mining, which can greatly aid 

hypothesis generation and data interpretation. How does one extract biological 

meaning from tables of gene expression values? How can a disease-causing or a 

susceptibility variant be pinpointed from the tens of thousands of potential 

candidates identified in an NGS experiment? There are many such open problems 

in bioinformatics. 

    However, the lack of available software is not the only bottleneck in NGS data 

interpretation. It is important for bioinformatics to interface closely with biology 

specialists, as while much of the NGS data analysis can be automated, data 

interpretation requires significant human input. Yet there is currently a large 

accessibility issue– software and algorithms are largely created by and for those 

with computer science skills and may inhibit their use by bench scientists with little 

computing training. Projects such as BioPython (Cock et al. 2009), BioPerl (Stajich 

et al. 2002) and Bioconductor (Gentleman et al. 2004) between them boast many 

state-of-the-art bioinformatics algorithms, yet require programming knowledge to 

use. Similarly, the majority of bioinformatics software is limited to Unix-type 

systems, have complicated installation procedures and typically require the user to 

be proficient at command line and bash scripting. Thus, in order to overcome the 

chasm dividing the NGS data generation from data interpretation, not only are 

novel bioinformatics software and algorithms are needed, but their implementation 

must also focus on improving accessibility and usability. 
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1.5 Overview of this work 

    In light of the bioinformatics challenges outlined above, this thesis focuses on 

the development of novel bioinformatics software/algorithms to aid NGS data 

analysis and interpretation in the biomedical domain. As the current availability of 

open access NGS data allows for unprecedented integration of data mining 

approaches, much of this work describes re-purposing public data sets to extract 

the most out of this under-utilised resource. Furthermore, in contrast to much of the 

bioinformatics software, this work aims to implement the algorithms described 

herein as user-friendly, cross-platform software accessible without specialist 

programming knowledge or the use of command line.  

    The first part of the thesis presents novel algorithms for candidate disease gene 

and variant prioritisation and interpretation. Two different approaches are 

described and implemented as database-driven online web applications: 

• GeneTiER: an unbiased, data driven approach explores the possibility of 

prioritising disease genes based on RNA expression profiles 

• OVA: a knowledge-based approach that focuses on data mining biomedical 

domain ontology resources, which have recently become the standard for 

describing biological knowledge in machine-readable way 

    The second part of this work focuses on the development of m6aViewer – a 

novel application to detect, visualise and interpret transcriptome-wide N6-methyl 

adenosine (m6A) RNA modifications from sequencing data. The software focuses 

on probabilistic modelling to achieve higher resolution than other currently 

available approach and uses data mining and machine learning techniques to 

improve the specificity of detected residues. 

    Finally, the last part of this work describes the application of m6aViewer to 

characterise transcriptome-wide cellular and viral m6A landscapes during the 

course of Kaposi’s Sarcoma Herpes Virus (KSHV) infection. KSHV transcriptome is 
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revealed to be heavily m6A methylated, with m6A present in key viral genes that 

control progression from latent to lytic stages in the viral life cycle. The work also 

describes a putative novel m6A reader protein, SND1, and its potential role as an 

effector protein of an m6A –mediated regulation of KSHV latent-lytic cycle 

progression. 
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2. Candidate Disease Gene and Variant Prioritisation 

2.1 Disease Gene/Variant Identification 

    There are more than 6000 rare inherited diseases currently catalogued by Online 

Mendelian Inheritance In Man (OMIM) (Amberger et al. 2015). While individually 

they affect less than 0.1% of the population, collectively, rare disease represents a 

significant public health issue, affecting up to 8% of the population (Forman et al. 

2012). Rare diseases comprise a very heterogeneous set of conditions, varying in 

rareness, onset, prognosis, penetrance and organ systems affected. This presents 

barriers for accurate diagnosis and treatment, as well as limiting commercial 

interest in research investment and treatment development. Furthermore, due to 

the rarity of individual conditions, the numbers of eligible participants for research 

studies are often extremely limited; such patients may be geographically dispersed; 

or even be misdiagnosed due to the lack of knowledge by the treating physician 

about the disease. As a result, more than a quarter (1640 out of 6218) of all rare 

conditions indexed by OMIM have an unknown molecular basis [accessed 

11/11/2015]. 

2.1.1 Genetic Linkage and Association Studies 

There are several experimental methods commonly used to elucidate the 

inherited basis of human disease. The molecular aetiology of the majority of the 

conditions catalogued by OMIM has largely been determined through linkage 

mapping, historically a difficult and labour-intensive process. 

Linkage analysis relies on the co-segregation of sequences – that is, 

polymorphisms at the same chromosomal loci tend to be inherited together. Thus, 

disease-causing variants can be mapped by identifying known polymorphisms that 

co-segregate with the disease phenotype.  By linking the disease to a number of 

polymorphic alleles, a disease haplotype can be identified and the limits of the 

disease locus can be narrowed down to the chromosomal regions where affected 

family members share the same haplotype.  
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The early linkage maps were composed of a series of microsatellite markers. 

One of the first linkage maps in humans consisted of some 400 common DNA 

markers (Donis-Keller et al. 1987), but had grown to more than 5000 in 1996 (Dib 

et al. 1996), and with it, the number of known disease genes. 

Initially, disease gene mapping was hampered by the poor level of annotation of 

the human genome, which meant it was both difficult to identify genes in a disease 

locus and to rapidly screen the sequences for possible deleterious variants. 

However, there were notable early successes, such as Huntingdon’s disease 

(Gusella et al.) and cystic fibrosis (Kerem et al. 1989), as well as identification of 

Mendelian subtypes of more common diseases, such as diabetes (Bell and 

Polonsky 2001) and hypertension (Lifton 2004). 

In the cases of complex disease, association studies that evolved alongside 

linkage mapping were less successful. Although many studies claiming 

associations between genetic variants and affected individuals were reported, the 

statistical significance would often be weak or the results could not be replicated 

(Moskvina and O’Donovan 2007; Ioannidis et al. 2006; Lohmueller et al. 2003). 

Furthermore, even in successful studies, the effect sizes tended to be small, with 

most identified alleles increasing disease risk by a factor of less than 1.5. A few 

notable exceptions have been the linking of APOE4 to Alzheimer’s disease 

(Strittmatter and Roses 1996) and CFH to age-related macular degeneration (Klein 

et al. 2005). 

    In the last 20 years, both linkage and association studies have been greatly 

aided by the sequencing and annotation of the human genome, and then by the 

advances in NGS technologies. Where previously the sequencing of even a small 

genomic locus was a time and labour-intensive task, modern high-throughput 

approaches generate large volumes of sequence data, which after comparison to 

the human genome reference sequence, allow rapid identification of variants on a 

genome-wide scale in a short time frame. Consequently, purely NGS-based 

approaches have largely superseded traditional linkage studies.  
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2.1.2 Whole Exome and Whole Genome Sequencing Studies 

Whole Genome Sequencing (WGS) is a relatively unbiased method for disease 

gene identification and typically involves sequencing the human genome at 30-fold 

or greater coverage. Whole Exome Sequencing (WES), on the other hand, is the 

selective sequencing of only the coding parts of the human genome and has been 

more widely applied due to the dramatically lower cost per sample. WGS and WES 

share much of the same workflow, which is summarised in Figure 4. Downstream 

of sequencing data generation, the short sequence reads are aligned to the 

reference genome and analysed to detect and genotype single nucleotide 

substitutions, insertions and deletions. These can be compared to the unaffected 

samples and/or allele frequencies in the general population in order to identify 

candidate disease variants.  

Thus far, NGS-based approaches have been hugely successful. In a relatively 

short time frame, WES has been used to identify hundreds of disease-gene 

associations in both dominant and recessive cases, including Miller syndrome (Ng 

et al. 2010b), Kabuki syndrome (Ng et al. 2010a) and Joubert syndrome (Srour et 

al. 2012).  

WES has proved so successful largely due to the tendency of highly penetrant 

phenotypes to arise from deleterious changes/loss of function in proteins, with only 

a small proportion of Mendelian disease variants found in non-coding/regulatory 

regions of the genome (Botstein and Risch 2003). This may be due at least in part 

to an observational bias, as coding sequences are often the major focus of 

diagnostic and research projects in human genetics. As WGS is becoming more 

cost-effective, however, more disease-causing mutations in regulatory regions can 

be expected to be uncovered. Putative disease variants in non-coding regions 

have been found for diseases such as autism (Turner et al. 2016); preaxial 

polydactyly (Furniss et al. 2008); Hirshsprung disease (Emison et al. 2005) and 

Pierre Robin sequence (Gordon et al. 2014), amongst others. Where in the past 

novel disease gene discovery would take many years, given a suitable pedigree, 

NGS-based approaches can identify a deleterious variant in a matter of months.  
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However, some disease-causing mutations are easier to identify than others. 

As autosomal recessive diseases are defined by the presence of two deleterious 

alleles (compared to only one in dominant disease), the link to a causative variant 

is more easily made. The use of autozygous mapping strategies with either 

consanguineous families or patients from genetically isolated populations has 

further aided identification of deleterious recessive variants. For instance, in 

affected individuals from consanguineous families, disease causing variants are 

typically inherited from the same ancestral allele via both parents, and can be 

characterised by an extended run of homozygous polymorphic variants at the 

disease locus. The higher incidence rate of rare diseases in such populations, 

combined with reduced search space by isolation of runs of homozygosity, has led 

to the discovery of many novel autosomal recessive disease genes. Consequently, 

autosomal recessive diseases have been over-represented in the early WES 

studies.  
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Figure 4. Overview of typical workflow in WGS and WES studies in disease 

gene identification. Samples are typically obtained from patients recruited together 

with unaffected family members. Sequencing libraries are prepared from extracted 

DNA (WGS), or in the case of WES, post exon capture. The libraries are 

sequenced, raw intensity values are converted to base calls and stored in Fastq 

format. Fastq reads are quality checked and trimmed to remove sequencing 

adapters and poor-quality bases before aligning to the reference human genome. 

Variants are called by comparing genomic reference positions to the sequenced 
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data and allelic ratios can be obtained from the proportion of total aligned reads 

supporting each allele. Typically, detected variants are compared to the unaffected 

samples and further filtered based on expected inheritance mode, type of variant or 

allele frequencies in general population. The remaining variants are typically 

prioritised based on available biological information and the relevance to disease 

can be validated by functional studies. 

 

    When data on the patient and both parents is available, de novo dominant 

mutations are typically straight-forward to identify, as comparatively few novel 

variants exist between the parents and affected children.  

    One of the most exciting applications of NGS to disease gene discovery, 

however, has been in identifying mosaic mutations. Mosaic mutations are often 

identified as an unexpected allele read depth ratio in the sequencing data, for 

example a de novo mutation in PIK3CA gene, attributed as a cause of 

megalencephaly–capillary malformation, was present in only 11% of reads 

mapping to the variant site in an affected patient’s leukocytes (Rivière et al. 2012). 

While NGS has contributed to many successes in disease gene discovery, the 

failure rate is harder to estimate as negative findings are rarely published. It is clear 

that even in familial cases with well-defined pedigrees, NGS approaches can 

generate thousands of candidate variants with the expected segregation 

characteristics, with hundreds or more of these resulting in non-synonymous 

substitutions, most of which will have no effect on the phenotype of interest. 

Similarly, linkage or association studies may reveal the genomic location of the 

disease causing gene; however, these intervals are often several mega bases in 

length and can contain a large number of candidate genes and associated 

sequence variants. Consequently, it is a non-trivial task, both in terms of time and 

resources, to deduce the disease-causing mutation(s) via experimental verification 

of putative disease-causing variant. 
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2.1.3 Putative disease variant prioritisation 

A more common and economical approach of identifying deleterious variants in 

a large set of benign polymorphisms relies on examination of information pertaining 

to each candidate, a wealth of which is available to researchers in the form of 

biological databases or literature. This includes data from sources such as 

previous studies, functional annotations, protein-protein interactions, biological 

pathways or model organism phenotypes, all of which can be taken into 

consideration in order to choose the candidates most likely to be disease 

causative. 

    For cases where similar disease phenotypes have been previously 

characterised, prioritising candidates based on information pertaining to gene 

molecular functions is perhaps the most intuitive approach. Mutations in genes 

acting in the same or similar biological processes are also likely to cause similar 

phenotypes. A growing number of databases catalogue biological function and 

pathway information obtained either via automated text-mining approaches or 

manual literature curation. However, this approach is inherently biased towards 

well-studied genes and processes, and may miss better candidates solely because 

our understanding of biological processes is far from complete.  

    Protein and gene interaction databases could stand in as a less biased 

alternative to manually curated, but smaller, curated pathway databases such as 

KEGG (Kanehisa and Goto 2000) and Reactome (Fabregat et al. 2016) are still 

largely based on scientific literature. Data from a number of high-throughput 

protein-protein interaction screens are publicly available in databases such as 

STRING (Jensen et al. 2009); however, such data is mostly obtained via in vitro 

studies such as yeast-two-hybrid screens and may not always be representative of 

real world protein interactions in vivo. For example, while two proteins may exhibit 

strong interactions in vitro, in vivo they may be trafficked to separate cellular (or 

extra-cellular) compartments and participate in largely unrelated pathways. 

Similarly, important protein interaction may only occur after protein modification, 

such as phosphorylation, which may not occur in yeast. Furthermore, proteins are 
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often multi-functional and may have different interacting partners across different 

tissues.  

    In general, when prior knowledge about the molecular phenotype of the disease 

is available, ‘guilt-by-association’ principle can be employed to identify other 

candidate genes which, when perturbed, would contribute to the same phenotype. 

Knowledge-based approaches, such as database/literature search, often fail to 

identify poorly characterised genes which participate in disease pathways. 

However, when the molecular mechanism of a disease is known, these genes are 

often the prime disease gene candidates.  

    Another common approach to disease gene prioritisation is to consider the 

effects of mutations/knock-outs of a putative candidate gene in a model organism 

system, as phenotypic effects of mutations in animal homologs are often similar to 

those seen in humans. This approach suffers from similar shortcomings, however, 

in that it is biased towards better studied genes. In the future, this may be at least 

partially rectified by large scale projects, such as Mouse Phenotyping Consortium 

(Meehan et al. 2017; Koscielny et al. 2014), which aim to characterise and 

catalogue the effects of individual phenotypic effects of null mutations in all mouse 

proteins.  

    Still, often mutations which have severe phenotypic effects in humans have very 

different or even no observable effect in model organism counterparts, and vice 

versa. For example, Amish infantile epilepsy syndrome is an autosomal recessive 

disorder characterised by recurrent seizures, developmental regression and hypo- 

or hyper-pigmented skin macules, whereas in mice the null mutation of the disease 

gene ST3GAL5 manifests in hypoglycaemia and increased insulin sensitivity 

(Boccuto et al. 2014; Blake et al. 2017). Similarly, null mutations of TGIF1, the 

gene responsible for Holoprosencephaly-4, have no observable phenotypic effect 

in mice (Petryk et al. 2015; Blake et al. 2017). 

Animal model systems are also further complicated by the spectrum of potential 

mutations – that is, mutations in different parts of a gene may have very different 
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phenotypic effects and it is infeasible to induce every possible mutation in model 

organisms to facilitate an unbiased search. As a result, data from knock-out and 

mutation studies in model organisms may be even more limited for discerning the 

genetic causes of a gain-of-function disease, rather than a loss-of-function one. 

However, even in loss-of-function diseases, the essentiality of a gene cannot 

always be adequately assessed in the lab, for instance in immune-related genes or 

in late-onset diseases. 

    Gene expression information can also aid in prioritising candidate disease genes 

based on a number of different approaches. Gene co-expression analysis is an 

unbiased way of highlighting genes which are likely to act together and therefore, 

have closely related functions, participate in the same pathways or directly interact 

to form protein complexes.  

    Similarly, where gene expression data is available in both patient and normal 

samples, differential expression analysis may highlight perturbed pathways and 

genes. A differentially expressed gene/pathway can point to a mutation in 

regulatory regions, while RNA sequencing data in particular can also highlight 

aberrant splicing events, which may arise as a consequence of a splice-site   

mutation.  

    However, gene expression data is not frequently used in such a manner, as it 

can be expensive to generate, is inherently noisy, and often, tissue-specific 

samples that would be required are impossible to obtain. Furthermore, variant 

calling and genotyping from RNA-Seq data is difficult due to varying transcript 

abundances, allele-specific expression or post-transcriptional editing events. 

Matched WGS or WES data is nevertheless required for variant identification; thus, 

increased sequencing costs often prohibit matched RNA-DNA sequencing 

experiments. 

In high-throughput sequencing approaches, alternative methods of prioritising 

disease genes without relying on prior knowledge often compare gene sequence 

properties between candidates. Intrinsic features such as the length of a gene, or 
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the number of paralogs it has, are known to be predictive of disease genes. Longer 

genes, for example, have been shown to be statistically more likely to be disease 

causative genes, even when normalised for sequence length (Lopez-Bigas and 

Ouzounis 2004). Genes which have few closely related paralogs may be more 

likely to be disease causative, as there are likely to exist fewer functionally similar 

proteins to compensate for loss-of-function mutations, resulting in a more penetrant 

phenotype (Lopez-Bigas and Ouzounis 2004). 

    Similarly, highly conserved genes or residues across multiple species can be 

indicative of their importance, and such genes harbouring putative loss-of-function 

mutations present a case for a strong candidate gene. On the other hand, genes 

which are extremely well conserved even across distant species are unlikely to 

tolerate mutations and thus genetic defects in these genomic regions are more 

likely to result in perinatal or in utero termination, as opposed to presenting as a 

childhood or later onset disease (Huang et al. 2004). Still, sequence variants 

altering conserved positions in protein sequences are considered a priori more 

likely to be damaging, as these positions are more likely to have important 

molecular functions. Indeed, rare human alleles have been shown to be strongly 

negatively correlated with purifying selection pressure (Kryukov et al. 2007). 

Indubitably, sequence is one of the most valuable indicators of the 

pathogenicity of a variant. While most sequence variation is considered neutral 

(Dudley et al. 2012), nucleotide substitutions, insertions and deletions can have an 

effect on gene expression and protein function. Some of these changes can be 

well tolerated, some beneficial, while others can manifest a deleterious phenotype.  

In general, non-synonymous variants which change the amino acid sequence of a 

protein are considered more likely to be deleterious than synonymous 

substitutions, as this type of variation can have a dramatic impact on the function of 

a protein. In the OMIM database, which catalogues genetic causes of inherited 

disease, more than half of all reported deleterious human variation is comprised of 

non-synonymous substitutions (Amberger et al. 2015) [Accessed 11/11/2015]. This 

suggests that these types of mutations are more likely to have a disease-causing 
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effect; however, these variants are also easier to identify and this may also 

contribute to this observed imbalance. 

Naturally, not every amino acid change has an equal effect – the type of 

substitution and where it occurs is very important. For example, a change from one 

hydrophobic amino acid to another may not result in as damaging a perturbation to 

protein function as a change to a hydrophilic one. Similarly, a change from a small 

amino acid to a larger one may cause steric hindrance and perturb protein folding 

or protein ligand binding, while a more subtle change may have no effect. Location 

is just as important – an amino acid change within an active site of an enzyme may 

be more deleterious to protein function than one occurring in less structured or 

non-catalytic regions. Similarly, it has been demonstrated that disease-causing 

mutations are more likely to affect internal protein residues, with solvent 

accessibility of the mutation site being a key predictor of a deleterious mutation 

(Chen and Zhou 2005). However, as a typical human genome is thought to contain 

approximately 24,000 to 40,000 heterozygous non-synonymous SNPs (Auton et al. 

2015), it is clear that the majority of non-synonymous variation is neutral. 

Similarly, insertions and deletions also occur regularly within the genome and 

may have differing effects on the fitness of a protein. Small, in-frame insertions or 

deletions are more likely to be tolerated and are thus more common than indels 

resulting in a translational frame-shift. Frame-shift mutations towards at the end of 

a protein may have a less damaging effect than those earlier in the sequence, as 

the latter are more likely to affect key downstream protein domains. 

Nevertheless, variants deleterious to protein function do not necessarily 

produce a disease phenotype; some cases may be dosage-insensitive, and thus a 

damaging heterozygous allele may be compensated by the non-mutant copy; 

similarly, homozygous loss-of-function variation may be compensated by other 

proteins with paralogous functions. In fact, it is estimated that the average human 

genome harbours approximately a hundred genuine loss-of-function mutations 

(MacArthur et al. 2012). 



27 

 

    While synonymous mutations are generally considered silent, they may have 

subtle, but critical effects that are less easily understood. Mueller et al (2015) argue 

that as much as 45% of synonymous mutations may impact pre-mRNA splicing 

(Mueller et al. 2015). While the integrity of the open reading frame sequence in an 

mRNA is very important, synonymous changes in transcript sequence can affect a 

wide range of crucial regulatory functions. Thus, mutations considered silent can 

still impact a transcript’s ability to bind proteins or other regulatory RNAs in a 

sequence- or secondary structure specific manner. This may then affect RNA 

splicing, export and localisation, the stability of the mRNA, translation efficiency, or 

even the final sequence of an encoded protein via aberrant RNA 

editing/modifications. Indeed, functional synonymous mutations in regulatory 

regions have been identified in diseases like autism, schizophrenia (Takata et al. 

2016) and melanoma (Gartner et al. 2013). 

Variants in non-coding regions may also be damaging. A mutation in a 

promoter or enhancer region may have a severe impact on gene expression and 

may result in dysregulation of otherwise tightly-controlled proteins.  

    In summary, candidate disease genes/variants can be prioritised based on 

multitude of different criteria. Examining biomedical literature and databases, as 

well as sequence properties, has often proved successful. This approach, 

however, can be painstakingly slow and prone to human errors and biases, as 

each candidate is not independently classified; nor is this likelihood quantified 

when the choice is formed solely by the impressions of the researcher.  

2.2 Computational Candidate Disease Gene Prioritisation 

In light of these challenges, various computational gene prioritisation 

approaches have been proposed in recent years that aim to automate this task to 

various degrees. Candidate gene prioritisation remains an active area of research 

despite a considerable number of algorithms and applications that have been 

developed (Adie et al. 2006; Chen et al. 2011b; Britto et al. 2012; Nitsch et al. 

2011; Zhang et al. 2013; Seelow et al. 2008; Aerts et al. 2006; Smedley and 
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Robinson 2015; Bornigen et al. 2012; Chen et al. 2009; Jiang 2015). Table 1 

summarises candidate disease gene and variant prioritisation tools published prior 

to this work and the diverse data sources that they utilise. Thus far, while new 

methods and improvements continue to be introduced, there has been no 

universally applicable or precise approach. 

Classically, gene prioritization tools have been geared towards scrutinizing 

regional gene sets obtained from linkage studies. However, in recent years, next 

generation sequencing has become a de facto standard method for disease gene 

discovery in Mendelian diseases. Consequently, a few applications have recently 

emerged that expand and/or adapt currently used gene prioritization approaches to 

be more applicable for the evaluation of variants found in exome datasets. For 

example, the Exomiser tool (Robinson et al., 2014) supplements variant 

pathogenicity scoring with an algorithm for comparing human diseases with mouse 

phenotypes, while ExomeWalker (Smedley et al., 2014) incorporates interactome 

data from STRING (Jensen et al., 2009). PriVar (Zhang et al., 2013) combines 

variant pathogenicity scores from multiple sources together with pedigree 

information to rank variants.  

    Variant prioritization is not a novel concept – established algorithms like SIFT  

(Kumar et al., 2009) and POLYPHEN (Adzhubei et al., 2013) assess the likelihood 

of pathogenicity using information such as positional conservation across 

homologs or the effects the change is likely to have on the protein. However, this 

approach is not without drawbacks – often variants predicted to be deleterious will 

produce no visible changes in phenotype due to, for example, the redundancy in 

the genome, as demonstrated by cases of synthetic lethality (Lord and Ashworth 

2017). This approach is also limited to phylogenetically conserved regions; 

consequently, SIFT and PolyPhen can only score 60-81% of the proteome 

(Adzhubei et al. 2010). 

 

    Variant filtering approaches tailored to individual situations provide an alternative 

to pathogenicity scoring for reducing the size of candidate variant lists. Tools like 
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AgileExomeFilter (Watson et al., 2014) allow filtering of variants on a variety of 

criteria, such as inheritance mode, regions of autozygosity, sequencing quality or 

variant types thought to mostly be benign, for example synonymous substitutions 

or small in-frame insertions or deletions. However, as human exomes typically 

contain in excess of 30,000 variants, often neither approach proves adequate for 

pinpointing the correct mutation. 
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aGeneApart 

Van Vooren et al., Mapping biomedical 
concepts onto the human genome by mining 
literature on chromosomal aberrations, 
Nucleic Acids Res. (2007) 

Text-mining of 
MEDLINE/abstracts to 
annotate/associate genes to 
biomedical concepts 

No No No Yes No No No No No No 

Biomine 

Eronen et al., Biomine: predicting links 
between biological entities using network 
models of heterogeneous databases, BMC 
Bioinformatics (2012) 

Integration of data from 
heterogeneous data sources 

Yes Yes No Yes Yes Yes No Yes Yes Yes 

Bitola 
Hristovski et al., Using literature-based 
discovery to identify disease candidate 
genes, Int. J. Med. Inform. (2005) 

Text-mining of 
MEDLINE/abstracts to 
annotate/associate genes to 
biomedical concepts 

No No No Yes No No No No No No 

Candid 
Hutz et al., CANDID: a flexible method for 
prioritizing candidate genes for complex 
human traits, Genet. Epidemiol. (2008) 

Integration of data from 
heterogeneous data sources 

Yes Yes No Yes Yes No Yes No Yes Yes 

CGI 

Ma et al., CGI: a new approach for 
prioritizing genes by combining gene 
expression and protein-protein interaction 
data, Bioinformatics (2007) 

Network-based 
prioritisation by 
combination of gene 
expression and protein 
interaction data 

No Yes No No Yes No No No No No 

DIR 
Chen et al., In silico gene prioritization by 
integrating multiple data sources, PLoS One. 
(2011) 

Integration of data from 
heterogeneous data sources 

No Yes No No Yes Yes No No No No 

Table 1. Summary of a number of candidate gene and variant prioritisation tools published prior to this work. 

The right hand side columns indicate the types of information used for prioritisation by each tool.  
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DomainRBF 

Zhang et al, DomainRBF: a Bayesian 
regression approach to the prioritization of 
candidate domains for complex diseases. 
BMC Systems Biology (2011) 

Prioritises genes based on 
domain information 

No No No No No No Yes No No No 

Endeavour 

Aerts et al., Integrating Computational 
Biology and Forward Genetics in Drosophila, 
PLoS Genetics (2009) ;Aerts et al., Gene 
prioritization through genomic data fusion, 
Nature Biotechnology (2006) 

Integration of data from 
heterogeneous data sources 

Yes Yes Yes Yes Yes Yes Yes No No Yes 

ExomeWalker 

Smedley et al,  Walking the interactome for 
candidate prioritization in exome 
sequencing studies of Mendelian diseases. 
Bioinformatics (2014) 

Integration of pathogenicity 
scoring with protein 
interaction network 

No No No No Yes No Yes No Yes Yes 

Exomiser 
Smedley et al,  Next-generation diagnostics 
and disease-gene discovery with the 
Exomiser, Nature Protocols (2015) 

Integration of pathogenicity 
scoring with protein 
interaction network and 
phenotype information 

No No No No Yes No Yes Yes Yes Yes 

G2D 

Perez-Iratxeta et al., Update of the G2D tool 
for prioritization of gene candidates to 
inherited diseases, Nucleic Acids Res. 
(2007) ;Perez-Iratxeta et al., G2D: a tool for 
mining genes associated with disease, BMC 
Genet. (2005) 

Integration of data from 
heterogeneous data sources 

Yes No No Yes Yes No Yes No No No 

GeneDistiller 
Seelow et al., GeneDistiller--distilling 
candidate genes from linkage intervals, PLoS 

Integration of data from 
heterogeneous data sources 

Yes Yes No Yes Yes Yes No Yes No No 
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ONE (2008) 

GeneFriends 

van Dam et al., GeneFriends: an online co-
expression analysis tool to identify novel 
gene targets for aging and complex diseases, 
BMC Genomics (2012) 

Prioritisation via gene co-
expression networks 

No Yes No No No No No No No No 

GeneProspector 

Yu et al., Gene Prospector: an evidence 
gateway for evaluating potential 
susceptibility genes and interacting risk 
factors for human diseases, BMC 
Bioinformatics (2008) 

Prioritisation via highly 
curated literature database 

No No No Yes No No No No No No 

GeneRank 

Morrison et al., GeneRank: Using search 
engine technology for the analysis of 
microarray experiments, BMC Bioinformatics 
(2005) 

Functional annotation and 
gene co-expression network 
prioritisation 

Yes Yes No No No No No No No No 

GeneRanker 

Gonzales et al., GeneRanker: An Online 
System for Predicting Gene-Disease 
Associations for Translational Research, 
Summit on Translat Bioinforma. (2008) 

Integration of data from 
heterogeneous data sources 

Yes No No Yes Yes No No Yes No No 

GeneSeeker 

van Driel et al., GeneSeeker: extraction and 
integration of human disease-related 
information from web-based genetic 
databases, Nucleic Acids Res. (2005)  

Integration of data from 
heterogeneous data sources 

No Yes No Yes No No No Yes Yes No 
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GeneWanderer 
Kohler et al., Walking the interactome for 
prioritization of candidate disease genes, 
Am. J. Hum. Genet. (2008) 

Network-based 
prioritisation by 
combination of gene 
expression, protein 
interaction and other data 
types 

Yes Yes No Yes Yes Yes No No No No 

Génie 
Fontaine et al., Génie: literature-based gene 
prioritization at multi genomic scale, Nucleic 
Acids Res. (2011) 

Text mining and sequence 
homology 

No No No Yes No No No No Yes No 

GenTrepid 

George et al., Analysis of protein sequence 
and interaction data for candidate disease 
gene prediction, Nucleic Acids Research 
(2006) 

Integration of data from 
heterogeneous data sources 

No No No Yes Yes Yes Yes No No No 

GLAD4U 
Jourquin et al., GLAD4U: deriving and 
prioritizing gene lists from PubMed 
literature, BMC Genomics (2012) 

Prioritisation based on 
resources at NCBI 

No No No Yes No No No No No No 

GPSy 

Britto et al., GPSy: a cross-species gene 
prioritization system for conserved biological 
processes--application in male gamete 
development, Nucleic Acids Research (2012) 

Integration of data from 
heterogeneous data sources 

Yes Yes Yes Yes Yes Yes Yes Yes Yes No 

GUILD 
Guney et al., Exploiting protein-protein 
interaction networks for genome-wide 
disease-gene prioritization, PLoS One (2012) 

Text mining gene-disease 
associations 

No No No No Yes No No No No No 
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MedSim 
Schlicker et al., Improving disease gene 
prioritization using the semantic similarity of 
Gene Ontology terms, Bioinformatics (2010) 

Integration of data from 
heterogeneous data sources 

Yes No No No Yes No No Yes Yes No 

MetaRanker 

Pers et al., MetaRanker 2.0: a web server for 
prioritization of genetic variation data, 
Nucleic Acids Research (2013)  ;Pers et al., 
Meta-analysis of heterogeneous data 
sources for genome-scale identification of 
risk genes in complex phenotypes, Genet 
Epidemiol. (2011) 

Integration of data from 
heterogeneous data sources 

No No No Yes Yes No No No No Yes 

MimMiner 
Van Driel et al., A text-mining analysis of the 
human phenome, Eur. J. Hum. Genet. (2006) 

Integration of data from 
heterogeneous data sources 

Yes No No Yes Yes No Yes Yes No No 

PGMapper 
Xiong et al., PGMApper: a web based tool 
linking phenotype to genes, Bioinformatics 
(2008) 

Text mining OMIM and 
Pubmed 

No No No Yes No No No No No No 

Phenodigm 

Smedley et al,  PhenoDigm: analyzing 
curated annotations to associate animal 
models with human diseases, Database 
(2013) 

Prioritisation based on 
model organism phenotypes 

No No No No No No No Yes No No 

Phenolyzer 

Yang et al, Phenolyzer: phenotype-based 
prioritization of candidate genes for human 
diseases. Nature Methods (2015) 
 

Prioritisation based on 
disease phenotypes 

No No No No No No No Yes No No 
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PhenoPred 
Radivojac et al., An integrated approach to 
inferring gene-disease associations in 
humans, Proteins (2008) 

Integration of data from 
heterogeneous data sources 

Yes No No No Yes No Yes Yes No No 

Pinta 
Nitsch et al., PINTA: a web server for 
network-based gene prioritization from 
expression data, Nucleic Acids Res. (2011) 

Integration of data from 
heterogeneous data 
sources; requires gene 
expression data set 

Yes Yes No Yes Yes Yes No No No No 

PolyPhen 2.0 
Adzhubei et al, A method and server for 
predicting damaging missense mutations. 
Nature Methods (2010) 

Sequence information, 
homology and conservation 

No No No No No No Yes No Yes No 

PolySearch 

Cheng et al., PolySearch: a web based text 
mining system for extracting relationships 
between human diseases, genes, mutations, 
drugs and metabolites, Nucleic Acids 
Research (2008) 

Integration of data from 
heterogeneous data sources 

Yes No No Yes Yes Yes No No No Yes 

PosMed 

Makita et al., PosMed: ranking genes and 
bioresources based on Semantic Web Association 
Study, Nucleic Acids Research (2013); Yoshida et 
al., PosMed (Positional Medline): prioritizing 
genes with an artificial neural network 
comprising medical documents to accelerate 
positional cloning, Nucleic Acids Research (2009) 

Integration of data from 
heterogeneous data sources 

Yes No No Yes Yes Yes No Yes No Yes 
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PRINCE 
Vanunu et al., Associating genes and protein 
complexes with disease via network propagation, 
PLoS Computational Biology (2010) 

Integration of data from 
heterogeneous data 
sources; network analysis 

No No No No Yes No No No No Yes 

ProDiGe 

Mordelet et al., ProDiGe: Prioritization Of Disease 
Genes with multitask machine learning from 
positive and unlabeled examples, BMC 
Bioinformatics (2011) 

Integration of data from 
heterogeneous data 
sources; network analysis 

Yes Yes No Yes Yes Yes Yes No No No 

ProphNet 
Martínez et al., Network-based gene-disease 
prioritization using PROPHNET, EMBnet.journal 
(2012) 

Integration of data from 
heterogeneous data 
sources; network analysis 

Yes No No Yes Yes No No No No No 

S2G 
Gefen et al., Syndrome to gene (S2G): in-silico 
identification of candidate genes for human 
diseases, Hum Mutat. (2010) 

Integration of data from 
heterogeneous data sources 

Yes No Yes No Yes Yes Yes Yes Yes No 

SIFT 

Kumar et al, Predicting the effects of coding 
non-synonymous variants on protein 
function using the SIFT algorithm, Nature 
Protocols (2009) 

Sequence information, 
homology and conservation 

No No No No No No Yes No Yes No 

SNPs3D 
Yue et al., SNPs3D: Candidate gene and SNP 
selection for association studies, BMC 
Bioinformatics (2006) 

Integration of data from 
heterogeneous data sources 

Yes No No Yes Yes Yes Yes Yes No No 

TargetMine 
Chen et al., TargetMine, an integrated data 
warehouse for candidate gene prioritisation 
and target discovery, PLoS One. (2011) 

Integration of data from 
heterogeneous data sources 

Yes No Yes No No Yes No Yes No Yes 
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ToppGene 

Chen et al., ToppGene Suite for gene list 
enrichment analysis and candidate gene 
prioritization, Nucleic Acids Res. (2009); Chen 
et al., Improved human disease candidate 
gene prioritization using mouse Phenotype, 
BMC Bioinformatics (2007) 

Integration of data from 
heterogeneous data sources 

Yes Yes No Yes Yes Yes Yes Yes No No 



 

 

Many gene and variant prioritisation approaches rely extensively on data 

mining, taking advantage of vast amounts of data available in public repositories, 

databases or from in-house experiments. Along with this wealth of data come a 

number of inherent limitations stemming from a universal lack of standardisation 

across and within databases. Reliance on the open access data makes it 

extremely difficult to perform any standardised quality controls, and thus any such 

data are vulnerable to accumulation of errors. Often, datasets are incomplete or do 

not provide enough information about how the data was generated. Discarding 

such data would limit the build-up of errors further downstream; conversely, it also 

results in the loss of valuable information. Furthermore, poor quality data is not 

always easy to detect and therefore filter – often, it is impossible to deduce the 

quality of the dataset. A poorly described dataset may not be constituted of poor 

quality data, and vice versa.  

Large datasets can be assembled by automated or semi-automated text-mining 

pipelines. However, even recognition of named entities such as genes in free-form 

text still presents challenges that arise from inaccuracies and ambiguities in text. 

Consequently, automated data mining often sacrifices accuracy to improve 

coverage (Cohen and Hersh 2005). For example, while Gene Ontology (GO) – one 

of the biggest gene functional annotation resources – provides a set of manually 

curated annotations, most annotations are still electronically inferred and thus 

prone to errors (Ashburner et al. 2000).  

    Despite these difficulties, computational gene prioritisation tools boast several 

successes. Established web tools such as ToppGene (Chen et al. 2009), 

Endeavour (Aerts et al. 2006) and CANDID (Hutz et al. 2008) employ a modular 

approach to prioritization, scoring candidates based on a consensus from multiple 

data sources. Even though it has been demonstrated that consensus methods are 

more accurate than approaches utilizing fewer data categories (Bornigen et al. 

2012), the former have been criticized for both the ‘guilt-by-association’ bias (i.e. 

genes already known to be important in a disease are scored highest) and failure 
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to exploit the best performing methods for each component (Chen et al. 2011c).    

Knowledge-based approaches are often supplemented by the use of high-

throughput data. Some algorithms integrate gene expression data into a 

heterogeneous (Chen et al. 2011c; Nitsch et al. 2011) or homogenous (van Dam et 

al. 2012) network, where distance between genes can be derived from and/or 

weighted by differential expression or co-expression values. Alternatively, some 

methods (Chen et al. 2009; Masotti et al. 2008; Seelow et al. 2008) consider gene 

co-expression in a non-network context, utilizing common statistical vector 

correlation measures to rank candidate disease genes based on how well their 

expression patterns correlate with those of genes known to be directly or indirectly 

linked to the disease. 

 

    Fewer applications attempt to apply tissue-specific expression patterns for gene 

prioritization tasks. Endeavour (Aerts et al. 2006) incorporates gene expression 

data from 79 normal human tissues found in the Gene Expression Atlas dataset 

(Kapushesky et al. 2010), comparing gene expression between candidate and 

user-supplied seed genes across tissues. A recent update to PhenoDigm (Smedley 

et al. 2013; Robinson et al. 2014) has incorporated tissue-specific, binary 

(expressed/not expressed) mouse gene expression data from a small number of  

mouse tissues and derived phenotype-tissue associations in order to supplement 

its phenotype-based queries.  

    Similar to PhenoDigm, Phenolyzer (Yang et al. 2015) also focuses on phenotype 

information obtained from disease databases and ontologies to score candidate 

genes. Each gene is scored on the confidence of the gene-disease relationship; 

thus, the system is more suited for diagnostic use than novel disease gene 

predictions. Similarly, text-mining applications which focus largely on disease 

databases, such as MinMiner (van Driel et al. 2006), are also largely unsuitable for 

novel disease gene discovery.   
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    Thus, it is clear that development of disease gene prioritisation methods that 

focus on less biased data types and are more universally applicable data would be 

of great benefit to the scientific community. 
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3. GeneTiER: gene Tissue Expression Ranker 

3.1 Motivation 

 

    Gene expression data presents a particularly attractive data mining opportunity 

for candidate gene prioritisation, mostly due to the ever-increasing publicly 

available data in repositories such as ArrayExpress (Kolesnikov et al. 2015) or 

Gene Expression Omnibus (GEO) (Barrett et al. 2013). Recent methods allow 

relatively inexpensive characterisation of thousands of mRNAs at a time and 

therefore the number of experiments performed and made publicly available is on 

the rise.This trend has in part been driven by a growing number of biological 

journals requiring all published data to be made available via public data 

repositories. Furthermore, due to the large volume of data being deposited and in 

the interest of enhancing experiment reproducibility, stricter data submission 

standards have been established to comply with the MIAME (Minimum Information 

About a Microarray Experiment) conventions (Brazma et al. 2001). As a result, 

more of the recently released datasets now contain useful meta data, such as 

experimental design and methodology.  

Utilising gene expression data in order to prioritise genes largely overcomes the 

biases that affect information-based methods. Approaches which rely on 

annotations and literature, or any data sources which are derivatives thereof, will 

almost always score the better understood, more studied genes ahead of novel 

candidates for which little information is known. On the other hand, gene 

expression is bound only by the experimental platform limitations. RNA 

sequencing, for example, is able to quantify expression at a level of high sensitivity 

and completely independently of any prior knowledge. 

While the use of high throughput sequencing methodologies to measure gene 

expression is on the rise, hybridisation-based technologies, such as microarrays, 

are still highly prevalent. Microarray-derived expression data is limited to 
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preselected sequences and does not cover the entire transcriptome; however 

improvements in array and probe design have allowed for quantification of a vast 

number of transcripts. A typical microarray design can incorporate tens of 

thousands of probes which correspond to most known transcripts in the given 

genome. While microarray data does not allow for detection of expression to the 

level of specificity of NGS due to the inherent limitation of measurement of light 

intensity produced by the hybridisation, it still gives an insightful measure of gene 

expression. 

Gene expression information is often utilised to supplement other data types 

(Table 1), with, to the best knowledge of the author, no standalone gene 

prioritisation tool in existence at the start of this thesis. One of the most common 

approaches of this type relies on coupling gene expression data with some type of 

network-based analysis. Typical network-based methods prioritize genes under the 

assumption that a disease gene will exist in a local network of genes which are 

highly differentially expressed between affected and unaffected tissues; or, co-

expressed with genes in a known disease pathway.  

An expression network can be constructed from heterogeneous data types, 

such as functional or phenotypic associations, often sourced from ontological 

annotations; regulatory pathways; or, known protein-protein interaction networks, 

such as STRING (Jensen et al. 2009), Reactome (Fabregat et al. 2016) or KEGG 

(Kanehisa and Goto 2000). Random walker algorithms, distance-based measures 

or even search engine technologies such as PageRank algorithm are then used to 

identify the most likely candidate genes (Smedley et al. 2014; Morrison et al. 

2005). Algorithms of this type judge the relatedness of all candidate genes to a set 

of query nodes of the network – which can be known disease genes, phenotypes 

or other entities. Edges in the network, representing physical interactions or 

indirect associations between genes, can also be weighted by gene expression 

data. 
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    Similarly, some methods use network analysis approaches to consider co-

expression rather than differential expression patterns. Co-expression with genes 

already known to be associated with the query disease (or genes functionally 

related to the query) can be used to implicate a candidate. Typical analysis, 

however, requires the user to supply ‘seed’ genes, thus making the assumption 

that pre-existing knowledge about the disease is either available or relevant to the 

particular disease phenotype. This may not be the case; for example, OMIM 

currently contains several thousand disease entries for which no contributing 

genes are yet known.   

 

    Alternatively, protein-protein interaction data allow for clustering of molecular 

pathways and differential gene expression or co-expression data in a network of 

known interactions, thus allowing identification of upstream or downstream 

candidates which might not be otherwise linked to the query. This approach has 

proven successful, and a number of algorithms and web tools have been 

implemented that allow this type of analysis. However, the majority of applications 

of this type nevertheless suffer from bias towards better characterised genes, as 

any interaction or functional network, no matter how extensive, does not currently 

contain complete knowledge for all genes and pathways. Alternatively, less biased 

approaches, such as implemented by weighted gene correlation network analysis 

(WGCNA) algorithm (Langfelder and Horvath 2008), can derive the gene network 

structure entirely from gene expression data using hierarchical gene clustering, 

which can then be used to identify closely linked modules of co-expressed genes. 

However, there are often difficulties in wider applicability of such approaches. 

The algorithm implementations can be disease-specific, drawing the underlying 

data from a small number of specific experiments. In cases of generalised use, it is 

a typical requirement for the user to supply their own expression datasets for the 

analysis. MetaRanker 2.0 supports the integration of tissue-specific baseline as 

well as differential gene expression datasets, however these must be provided by 

the user (Pers et al. 2013). This is in contradiction to a major aim of computational 
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candidate prioritisation methods - to reduce the number of experiments, not require 

the user to perform further studies.  

The methods that do not fall into the categories described – i.e. do not require 

the user to supply an expression dataset and are generalised methods – often do 

not differentiate between datasets. For example, GeneFriends (van Dam et al. 

2012) performs large scale co-expression analysis utilising thousands of 

microarray experiments across different conditions, however the data for each 

gene are pooled regardless of the user query. While the application has been 

benchmarked and proven to have significant classification power, it is of some 

concern that predictions may suffer from increased false positive rate due to the 

utilisation of data from vastly heterogeneous conditions, such as normal and 

cancer tissues, as genes expression patterns in cancer tissues may not accurately 

represent normal cell biology.  

In contrast to network-based methodologies, ‘data fusion’ approaches often use 

expression data to effectively supplement knowledge-based data sources; 

expression data can serve as a weighting to confirm or contradict a predetermined 

link between gene and disease. Similarly to the well-established gene prioritisation 

software Endeavour (Aerts et al. 2006), POCUS (Turner et al. 2003) - a now retired 

tool -integrated a basic, non-quantitative level of expression information obtained 

from UniGene database (Wagner and Agarwala 2013). Therefore, these types of 

approaches still share all the failings of ‘guilt-by-association’ methodologies. 

As the human genome becomes increasingly saturated with annotations, the 

problem of data completeness will dwindle in importance. At the time of writing, 

however, this is still very much an issue – Gene Ontology annotations, for 

example, while representing the most complete set of functional gene annotations 

currently available, still comprise less than half of the total human genes in the 

current reference human genome assembly by Ensembl (Cunningham et al. 2014) 

(Figure 5). On the other hand, quantitative high throughput sequencing and 

microarray data is available for the majority human genome transcripts.  
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Figure 5. Venn diagram (to scale) illustrating the incompleteness of Gene 

Ontology annotations in comparison to gene expression data availability. hg19 

human reference genome release comprises 64,249 Ensembl human gene 

annotations. Out of these, 49,513 contain some quantitative expression values in 

the set of 141 human and mouse ortholog normal tissue expression datasets used 

in this work. In comparison, Gene Ontology annotations downloaded using  

BioMart (Smedley et al. 2015) tool (download date: 10/03/2014) are only available 

for 14,137 Ensembl genes. This illustrates the limitations of the information-based 

approaches, such as those which consider functional information derived from 

literature or ontologies. 
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    Thus, while a number of methods have previously been employed for the 

prioritization of candidate disease genes, none are universally applicable. Typical 

gene prioritisation software tends to rely heavily on prior knowledge about the 

disease, phenotype and/or genes, making them unsuitable for classifying novel 

and/or poorly characterized genes. The best performing methods have been 

shown to rely on a variety of information sources to compensate for inadequacies 

in knowledge in any single domain (Bornigen et al. 2012); however, gene 

prioritisation tools are most commonly benchmarked using testing data sets 

generated from OMIM disease genes. Due to circularity of knowledge in literature 

and public databases, validation results in these cases might not reflect true 

performance with respect to novel disease genes. Our knowledge of even well-

understood disease mechanisms is rarely entirely complete, and many novel 

disease cases could benefit from an unbiased prioritisation approach. Therefore, 

particularly where little prior knowledge about the disease and/or gene is available, 

prioritisation of putative disease genes remains a challenge. 

 

    Consequently, there is value to be found in approaches which distance 

themselves entirely from the ‘guilt-by-association’ principle and instead use 

algorithms that depend solely on large genome-wide datasets generated in a 

hypothesis free manner, such as high throughput gene expression data. 

 

    In this work, a novel application for candidate disease gene prioritization is 

presented that aims to address these shortcomings by taking advantage of both 

microarray and RNA sequencing data available in the public domain to create an 

extensive tissue-specific expression database that can support a wide variety of 

gene prioritization queries. The use of publicly available gene expression data is 

investigated as the sole means of prioritizing candidate disease genes. The 

resulting web application, GeneTiER (Gene Tissue Expression Ranker), scores 

candidate disease genes based on the hypothesis that genes responsible for a 

tissue(s)-specific phenotype are expected to be more highly expressed in affected 
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than unaffected tissues. GeneTiER depends on an extensive database that has 

been built using publicly available microarray and RNA sequencing datasets and is 

comprised of several million expression values for numerous healthy tissues. This 

enables the creation of a global, cross-tissue expression profile for each candidate 

disease gene, permitting expression profile-based prioritization without reliance on 

or requirement for other prior knowledge about the disease or candidate genes. 

GeneTiER should thus be suitable for prioritization of candidates for poorly 

characterized diseases. 

 

3.2 Methods 

3.2.1 Software Implementation 

 

    The GeneTiER methodology was implemented as a web-based application, 

which is currently hosted on an instance of the Apache Tomcat 8.0 web server 

running on a CENTOS server and is freely accessible at dna2.leeds.ac.uk. The 

implementation follows the classical design of logical separation of different 

functions into four software tiers and is summarised in Figure 6. The user interface 

has been implemented using a mixture of HTML, CSS and JavaScript, and accepts 

and validates user input before passing it to server-side tiers for data processing. 

Java Server Pages links the client-side interaction to the server-side data 

processing by further validating user input and generating dynamic web content in 

response to user queries. The 3rd tier is implemented in Java and handles all the 

‘business’ logic: the execution of algorithms and analysis tasks after receiving 

validated user input and the required data from the MySQL database (4th tier). The 

results are then passed back to the user using Java Server Pages, which generate 

dynamic content for further client-side interaction.  



48 

 

 

Figure 6. Overview of GeneTiER implementation. User input is validated both 

client- and server-side. The required data based on the query is retrieved for 

prioritisation from the MySQL database and user input genes are prioritised 

according to the input parameters. The results are returned as dynamic web pages 

and can be visualised and downloaded by the user. 

 

3.2.2 User Input Processing 

    All user input is subjected to two validation steps. Initially, client-side validation 

code implemented in JavaScript checks that all the appropriate information is 

supplied and is in the correct format, while the more stringent server-side validation 

implemented in Java classes checks all of the uploaded data for the correct format, 

structure and composition. For instance, client side JavaScript is used to ensure 

that the supplied gene list is not empty, while the server-side validation would 

check that an uploaded VCF file is correctly formatted. 
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The selection of query tissue types is dynamically generated and limited by the 

web interface to those present in the GeneTiER database, and thus requires little 

validation. However, the list of candidate genes can be supplied in multiple formats 

(list of genomic regions, list of gene or transcript identifiers or variants contained in 

a .VCF file), and therefore more extensive parsing logic is required. Each input 

type requires a different validation method; however, all inputs are eventually 

mapped to the same standardised set of internal database genes (Figure 7).  

Genomic regions may be specified by the user via hg19 human reference 

genome coordinates. All the genes contained within these regions are retrieved for 

prioritisation via database look-up. The coordinates are reversed in the case of 

regions smaller than 0 base pairs. A region must contain at least 2 genes in order 

to proceed. VCF files are parsed for genomic positions of variants and the 

corresponding genes retrieved. Gene list input is parsed for common gene names, 

aliases or commonly used gene database identifiers. These can be any of Ensembl 

(Flicek, Amode et al. 2014), Entrez (Maglott, Ostell et al. 2011) or Refseq (Pruitt, 

Brown et al. 2014) accessions and HGNC-approved gene names (Gray, Daugherty 

et al. 2013), as well as common aliases. Conversions between human genes and 

their mouse orthologs are automatic and based on Homologene (Sayers et al. 

2012). Any ambiguous gene input can either be discarded, resolved manually by 

the user or resolved automatically.  
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Figure 7. Following client and server-side validation, different input types are all 

mapped to a standardised set of human genes. 
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3.2.3 GeneTiER Database 

 

    The GeneTiER expression database contains 9,972,862 baseline gene 

expression values from microarray and RNA-Seq experiments, encompassing 140 

different mouse and human tissue types. The database was assembled from public 

domain sources and includes datasets from Gene Expression Atlas (Kapushesky 

et al. 2010), RNA-Seq Expression Atlas (Krupp et al. 2012), ArrayExpress 

(Kolesnikov et al. 2015) and Gene Expression Omnibus (Barrett et al. 2013).  

 

    For RNA-Seq datasets, where available, raw read count tables per transcript 

were downloaded from the respective databases and high abundance RNA 

species (rRNA and tRNAs) counts were filtered out. Otherwise, raw data in Fastq 

format was downloaded, quality trimmed using Cutadapt (Martin 2011) software 

and aligned to human hg19 reference genome using STAR aligner (Dobin et al. 

2013). HTSeq-Count software (Anders et al. 2015) was used to obtain raw read 

counts. 

 

    Microarray datasets were downloaded either as within-array normalized intensity 

tables, or raw intensity CEL, txt or IDAT files for Affymetrix, Agilent or Illumina array 

designs, respectively. Any raw microarray data was first normalized for within-array 

comparability using Bioconductor package ‘limma’ (Smyth 2005). 

 

    Microarray probes were mapped to Ensembl gene transcript identifiers using the 

Biomart resource (Smedley et al. 2015). As per recommended practice, ambiguous 

data arising from microarray probes which hybridize to more than one distinct gene 

were discarded (Ramasamy et al. 2008). Similarly, HGNC, Ensembl, and Entrez 

and RefSeq gene identifiers were obtained from Biomart. UCSC gene names and 

exon boundary coordinates were downloaded using the UCSC Genome Browser’s 

‘Table Browser’ tool (Karolchik et al. 2004) using the hg19 human genome 

assembly. Mouse-human gene orthologs were downloaded from MGI (Blake et al. 

2014) and mapped using HomoloGene (Sayers et al. 2012). 
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The database was implemented using MySQL Community Server version 

5.6.15. Figure 8 shows the enhanced entity–relationship (EER) diagram of 

database design (raw data and intermediate tables are not shown for clarity 

purposes). The database contains three main data components –tissue, gene and 

gene expression data. These components are linked between all members of the 

schema, enforced by the use of foreign keys. The database design is such that the 

majority of tables conform to recommended database schema normalisation 

practices (3rd normal form, (Codd and F. 1982)) in order to facilitate referential 

integrity and reduce data redundancy. Some tables were exempt from this 

requirement in order to optimise query speed by removing the need for complex 

table joins. 
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Figure 8. GeneTiER MySQL database schema. [PLACEHOLDER FOR FOLDOUT 

FIGURE IN PRINT] 
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3.2.4 The gene prioritization algorithm 

    Candidate genes are ranked based on several factors derived from gene 

expression data. These comprise the expression levels in the affected tissues; 

variance in expression across all tissues; and expression level differences between 

affected and unaffected tissues. The base score, Sg, for each candidate disease 

gene is calculated as follows: 

 

 

    Where t is an affected tissue in a set of all affected tissues T; 𝑍�̅� is the mean of 

modified z-scores (see below) for tissue t; and z ̃ is the median modified z-score 

across all tissues. If gene expression in an affected tissue is greater than its 

baseline expression the natural logarithm ratio is positive; otherwise the value is 

negative. The value of Sg is a fractional modifier, favoring genes which show 

elevated gene expression in disease-associated tissues, compared to tissues not 

linked to the disease phenotype, even if the expression value is relatively low. The 

score can be further adjusted for highly expressed genes which takes into account 

the level of variance in expression across all tissues in order to reduce the 

contention of highly ubiquitously expressed housekeeping genes. When included in 

the analysis, the results from human RNA sequencing, human microarray, mouse 

RNA sequencing and mouse microarray data are each considered separately, and 

combined to generate the final ranking score. When the final ranking score is 

derived from human and mouse data, the relative contribution of mouse tissue 

datasets relative to the human datasets can be adjusted by the user. 
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    Modified z-scores for all RNA sequencing and microarray datasets were 

calculated as shown below: 

 

 

    Where E denotes a set of normalized expression values in an experiment, with 

individual elements e; �̅�is thus the mean value of E and the denominator is the 

median absolute deviation, where e is an individual element of E and E ̃ is the 

median of all elements in E.   

 

    The modified z-scores enable the transformation of non-normally distributed 

gene expression data and measure how each data point differs from the typical 

observations within the dataset. This transformation serves both to aid the 

prioritization and to facilitate better comparability between microarray datasets, as 

it has been suggested that rank-based transformations of microarray data alleviate 

some of the issues associated with comparing cross-platform, cross-laboratory 

data (Irizarry et al. 2005). 

3.3 Results and Discussion 

3.3.1 Performance Assessment 

3.3.1.1 Benchmarking Datasets 

    In order to assess how applicable the strategy detailed above can be for disease 

gene prioritisation in practice, the performance of the GeneTiER application was 

evaluated using two test sets of gene-disease associations. These were generated 

using the Human Phenotype Ontology (HPO) annotations (Kohler, Doelken et al. 

2014) as a source for disease genes and associated phenotypes. The HPO is a 
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curated ontology, organizing human disease phenotypes described in OMIM 

(Amberger et al. 2015), as well as Orphanet (Pavan et al. 2017) databases and 

medical literature using a structured, controlled vocabulary. This enabled the 

generation of large testing datasets while bypassing any inaccuracies that can 

arise from the lack of precision when text-mining unstructured entries in OMIM. 

 

    Initially, a sub-group of all HPO phenotypes was selected based on the following 

criteria: terms with high specificity (defined as the distance of a term from the root 

of the ontology) and terms which could be unambiguously mapped to tissues 

through axiomatic links to an anatomical ontology (Golbreich et al. 2006) (Kohler, 

Doelken et al. 2013) (Hoehndorf, Oellrich et al. 2010) or manual assignment. 2922 

distinct known disease genes in total were found to be annotated as associated 

with these HPO disease phenotypes. To further improve the testing dataset, 

phenotypes with the associated frequency modifier for the annotated disease 

denoted as ‘very rare’ and/or ’occurring in fewer than 2% of all cases reported’, 

were not considered. Ultimately, from the resulting data, 1000 disease-genes 

associations were selected at random for testing (Dataset 1). 

 

    Additionally, in order to ascertain how tissue selection affects prioritization with 

GeneTiER, diseases with a distinct, localized phenotype were categorized based 

on Disease Ontology (Kibbe et al. 2015) annotations, using definitions which are 

descendants of the term ‘disease of anatomical entity’ (DOID:7). This has led to the 

selection of another dataset consisting of 500 disease-gene associations with 

strong links to a single, specific tissue type (Dataset 2). 

 

    All test genes were prioritized using GeneTiER together with a set of control 

genes selected by random sampling from the GeneTiER gene database. Gene 

rankings were collated and the results were processed in R using ROCR package 

(Sing et al. 2005). 
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3.3.1.2 Performance Assessment Using Receiver Operating Curve (ROC) Analysis 

    The algorithm implemented in GeneTiER works on the assumption that tissue-

specific phenotypes often manifest due to disruption of tissue-specific genes, and 

as such, a disease gene’s expression would be higher and/or more localized to 

affected tissues compared to unaffected tissue. To test the generality of this 

assumption, expression values were retrieved from the geneTiER database for all 

genes in the benchmarking data sets and a two-sample Kolmogorov-Smirnov test 

for non-normally distributed data was performed, using an alternative hypothesis 

that the cumulative frequency distribution function of modified z-scores from 

unaffected tissues lies below that of modified z-scores from disease-associated 

tissues. For RNA-sequencing data this resulted in statistic D = 0.1517, with 

respective p-value <2.2𝑒−16 and for microarray data D= 0.1334, p-value < 2.2𝑒−16 . 

 

    In order to assess how well this observation translates into practicable gene 

prioritization, Receiver Operating Curve (ROC) analysis was carried out. ROC 

curves provide a way to visualize and compare classifier performance. Here, the 

candidate gene prioritization algorithm can be viewed as a non-binary scoring 

classifier, where disease-linked genes are positive instances and other candidates 

are negatives. The values -or ranks- from the classifier output can be converted 

into binary positive and negative scores using cut-off thresholds. Thus, a confusion 

matrix can be calculated for every integer rank cut-off value from which comparison 

metrics, such as sensitivity and specificity values are to be derived. ROC graphs 

allow the visualization of sensitivity and specificity, as well as how the trade-offs 

between the two are linked for different cut-off values. The line running from the 

origin (0,0) to the maximum point of 1,1 (Y=X), which corresponds to an area under 

the curve (AUC) of 0.5, thus represents gene prioritisation performance that is no 

better than random predictions. Points on a ROC curve that occur above this line 

represent an algorithm with better than random classifier performance, while those 

below the line have worse than random results, i.e. a bias towards classifying 

positives as negatives. An algorithm with an AUC of 1 represents perfect classifier 

performance.  
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    ROC analysis was initially carried out using the benchmarking dataset (see 

Methods section) comprised of 1000 known associations between disease genes 

and tissues expected to be affected by each gene’s dysfunction. For each disease 

gene, four sets of random genes were generated by sampling from the GeneTiER 

database, each comprising 50, 100, 200 and 500 genes in order to simulate gene 

prioritisation tasks of varying difficulty. The disease genes were prioritized against 

the genes in the randomly generated gene sets using GeneTiER and the results 

analyzed using ROC analysis.  

 

    Figure 9 shows the resultant ROC graph, while Table 2 shows the 

corresponding AUC scores. This analysis suggests that the algorithm’s 

performance is inversely related to the number of non-disease genes in the 

analysis, but does not decline in a linear manner. In fact, the differences in 

performance when assessed on candidate lists consisting of 100, 200 or 500 

candidates are minor and do not suggest that in practice there is a maximum 

candidate gene list size that will be exceeded in typical gene mapping experiments.  

Overall, the obtained AUC values are sufficiently high to suggest that disease 

genes are typically ranked considerably higher than the randomly selected genes 

in each data set by this algorithm. Figure 10 visualizes this rank distribution. 
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Figure 9. ROC curve showing classifier performance on different size input 

generated using disease genes from the benchmarking Dataset 1 (see Methods). 

Random Gene Sample Size Area Under The ROC Curve 

50 0.83 

100 0.80 

200 0.81 

500 0.78 

Table 2. AUC scores for classifier performance when assessed using 1000 known 

disease genes. 
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Figure 10. Gene rank distributions generated using the benchmarking Dataset 1 

and 50 randomly selected genes. 

 

In order to ascertain whether GeneTiER is more appropriate for certain disease 

types, geneTiER performance was also analysed across a range of tissues. Figure 

11 highlights that GeneTiER can accurately prioritise genes across many tissue 

categories, recognising endocrine and integumentary system-specific genes 

particularly well, with 73% and 76% of disease genes respectively ranked in the top 

10. However, genes in the sensory category, comprising mostly of eye-related 

disorders, ranked poorly. 
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Which data type - RNA-seq or microarray – enabled more accurate prioritisation 

results was also tested. Initially, all diseases where both RNA-seq and microarray 

data were available for all the identified affected tissue types were selected from 

the benchmarking dataset. Figure 12 shows the ROC curves obtained using only 

RNA-Seq data or only microarray data when the dataset was prioritised together 

with 100 random genes. The difference in performance between RNA-seq and 

microarray data is minimal, with RNA-sequencing data giving better results (ROC 

0.80 vs 0.78), but slightly worse than the combined score approach (ROC 

0.81).This is in concordance with a recent study by Wang et al, (Wang et al, 2014), 

who found that while more differentially expressed genes identified by RNA-

sequencing than microarray studies could be verified by qPCR, the gain was 

mostly from the improved quantification of low abundance transcripts. 

Furthermore, while sequencing data does provide a small improvement over 

microarray data in prioritisation, this is offset by a more limited public availability of 

sequencing datasets. At the time of developing GeneTiER, 41,124 microarray 

datasets were deposited in ArrayExpress database - in contrast to only 5,745 RNA-

sequencing experiments (accessed 01/03/2014).  

    It was further investigated whether GeneTiER is able to prioritize genes equally 

well across different inheritance modes (Figure 13) and different disease onset 

times (Figure 14). While no markedly large differences in performance emerged, it 

is notable that young adult onset diseases were prioritized with lower accuracy 

than other types; however, the test dataset contained only six young adult onset 

diseases, thus this could be due to a random sampling effect arising due to small 

sample size. 
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Figure 11 (previous page) shows GeneTiER performance across a range of tissue 

types using Dataset 2. 500 disease genes known to cause a localised phenotype 

were prioritised together with 100 randomly selected genes. Tissues are grouped 

by Disease Ontology terms which are descendants of ‘disease of anatomical 

entity’. The percentage of disease genes in each category is shown by rank 

distribution – e.g. darkest blue represents the percentage of disease genes in each 

category ranked first. 

 

 

Figure 12. ROC curve comparison of prioritization using RNA-Seq data only; 

Microarray data only; or combined data using benchmarking Dataset 1. 
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Figure 13. GeneTiER performance visualised as ROC curves for different disease 

inheritance modes using Dataset 1. 
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Figure 14. ROC curves showing GeneTiER prioritisation performance across a 

range of diseases with different onset age using Dataset1. 

 

3.3.2 Case Study Genes 

    In order to further investigate the circumstances where the methodology 

presented here either failed or succeeded, a case study of the global expression 

patterns was conducted using genes implicated in retinitis pigmentosa 

(OMIM:610282), a degenerative eye disease causing severe vision impairment. 

Figure 15 shows the expression profiles across multiple normal tissues of 5 

disease genes known to underlie retinitis pigmentosa (Ali et al. 2017), while Table 

3 and Table 4 shows the summary of the mean and mean reciprocal ranks 
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obtained using the GeneTiER methodology. Mean reciprocal ranks is a common 

metric for evaluating ranking algorithms, which is calculated as: 

 

𝑀𝑒𝑎𝑛 𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑅𝑎𝑛𝑘 =  
1

𝑁
∑

1

𝐺𝑒𝑛𝑒 𝑅𝑎𝑛𝑘𝑖

𝑁

𝑖=1
 

 

where N is the number of ranked lists used for evaluation.  

 

 

Table 3. Mean ranks and standard deviations of 5 case-study genes shown in 

Figure 15. Each gene was ranked 30 times against a set of 50, 100, 200 and 500 

randomly generated genes. 

Mean Reciprocal Rank 

Input   

Size 

PR1 ROM1 PRPF6 PRPF31 PRPF3 

50 0.78 0.09 0.09 0.08 0.08 

100 0.66 0.17 0.23 0.04 0.07 

200 0.86 0.27 0.14 0.10 0.14 

500 0.58 0.13 0.28 0.08 0.08 

Table 4. Mean reciprocal ranks of 5 case-study genes assessed against a set with 

50,100, 200 and 500 randomly generated genes; 30 replicates. 

Gene

Input 

Size

Mean 

Rank

Standard 

Deviation

Mean 

Rank

Standard 

Deviation

Mean 

Rank

Standard 

Deviation

Mean 

Rank

Standard 

Deviation

Mean 

Rank

Standard 

Deviation

50 34.7 11.03 8.16 11.7 8.8 4.2 2.9 1.78 5.4 3.01

100 66.03 8.9 17.07 6.38 22.7 5.53 4.13 2.21 7.1 2.54

200 172.07 5.75 53.87 6.47 28.33 3.2 20.3 3.91 28 4.08

500 288.11 13.33 67.4 10.03 140.65 15.07 39.24 4.45 41.65 6.51

PR1 ROM1 PRPF6 PRPF31 PRPF3
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Figure 15 (previous page). Expression profiles of PRPF3, PRPF31, PRPF6, 

ROM11 and RP1 genes, associated with retinitis pigmentosa (OMIM: 610282) 

across a selection of tissues from RNA-Seq data in GeneTiER database. 

 

 

The genes PRPF3 and PRPF31 show distinct, tissue-specific expression in eye 

tissues with negligible expression in non-ocular tissue; disease genes with similar 

expression profiles are ranked very highly by GeneTiER. While PRPF6 is also 

highly expressed in eye tissues, unlike PRPF3 and PRPF31 its expression is not 

limited to ocular tissues, resulting in a reduced, but still strongly suggestive 

ranking. ROM1 is expressed in a number of non-ocular tissues as well as in 

corneal epithelial cells but still ranked highly. This was in spite of its lower 

expression in corneal epithelial cells than that of the PRPF genes and comparable 

expression in adipose tissue. Unsurprisingly, in view of its ubiquitously low 

expression levels, the methodology failed to identify PR1. 

   The eye is a complex organ with many specialised tissue types. While the 

geneTiER database contains expression data from corneal epithelial cells, stromal 

cells and lens from a mouse, these don’t encompass all the diverse cell types 

present in the eye. For example, rod photoreceptor rhodopsin gene, a major cause 

of retinal dystrophy (Broadgate et al. 2017), is not expressed in any of the eye 

tissues in the geneTiER database. Conversely, diseases affecting vision can be 

neurodegenerative in nature, where the causative gene does not have a function in 

the eye. 

 

   While this work shows that GeneTIER is capable of accurate disease gene 

prioritization through ROC analysis (with AUC values of up to 0.83), it should be 

noted that the disease gene is rarely ranked first in the output. This ranking should 

therefore be used as a guide to the order in which candidate genes should be 

analyzed further. Even so, it must be noted that not all disease gene expression 

patterns conform to the assumptions underlying our model. For example, some 

disease genes show universally high or low gene expression across all tissues 
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(see RP1 in Figure 15). Indeed, ectopic expression of genes can result in a 

disease phenotype, as is the case in many cancers. However, in order to detect 

these patterns, the differential expression change must be observed between the 

normal and affected state. While including differential expression data from normal 

and affected patients would no doubt improve geneTiER performance, public 

availability of such data is mostly limited to a small number of well-studied diseases 

and therefore would enhance the results for only a small proportion of cases. 

 

     Furthermore, as Oellrich et al (2014) note in their analysis, the site of gene 

expression and the visible phenotype do not always coincide. Consequently, the 

limitations of this method must be understood and taken into consideration when 

examining the final gene rankings. This is especially true where the link between 

tissue and phenotype may not be immediately obvious. For example, congenital 

dysfibrinogenemia (OMIM:616004) is a blood clotting disorder caused by defective 

fibrinogen genes FGB,FGG and FGA. Circulating factors affecting blood clotting 

are synthesized by hepatocytes, and indeed, data collated in GeneTiER database 

shows that fibrinogen genes are highly and exclusively expressed in the liver 

(Figure 16). However, GeneTiER would not identity these disease genes if the 

user failed to take this into account and selected blood, rather than liver, as the 

affected tissue. 

 

    Narcolepsy-cataplexy (ORPHANET:2073) is a sleep disorder with multiple 

causative genes identified. GeneTiER scores a number of these highly, for 

example MOG and ZNF365, due to localized expression in parts of the brain 

(Figure 17). However, the disease can have an autoimmune component and in 

some patients the phenotype has been attributed to the loss of neurons in the 

hypothalamus due to autoimmune attacks. Consequently, this methodology fails to 

identify histocompatibility genes HLA-DQB1 and HLA-DRB1 as causative genes for 

the disease and therefore may also find other phenotypes arising from 

heterogeneous causes challenging (Figure 18). Furthermore, tissue samples are 

often a heterogeneous mix of different cell types and may also contain other 
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contaminating cell types, in particular immune cells, which can confound the 

GeneTiER methodology. 

 

 

 

Figure 16. Expression of fibrinogen genes across a range of tissues from RNA-

Seq data in GeneTiER database. 
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Figure 17. Expression of MOG and ZNF365 genes across a range of tissues from 

RNA-Seq data in GeneTiER database. 
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Figure 18. Expression of HLA-DQB1 and HLA-DRB1 genes across a range of 

tissues from RNA-Seq data in GeneTiER database. 
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Figure 19. Expression of REN gene across a range of tissues from RNA-Seq data 

in GeneTiER database. 
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    In spite of these challenges, there are numerous cases where the observed 

phenotype correlates with the site of expression exceedingly well. For example, 

renal tubular dysgenesis (OMIM:267430) is characterized by a congenital 

abnormality of the kidneys with low amniotic fluid during pregnancy. The protein 

associated with the disease, REN, is produced mostly by juxtaglomerular cells of 

the kidney. The data in GeneTiER database agrees with this, showing elevated 

expression in the kidney, as well as a secondary major site of expression in the 

placenta (Figure 19). 

3.3.3 GeneTiER Application  

 

GeneTiER algorithm and database access has been implemented and made 

publicly available via a web interface. This is summarised in Figure 20. The 

workflow is designed to allow the user to select from the database of affected 

tissues and provide the candidate disease genes in multiple formats. The options 

include a list of commonly used gene identifiers, region inputs mapped to hg19 

(e.g. a linkage region or a region of homozygosity), or a VCF file containing variant 

coordinates again mapped to hg19. Positional data (variants and regions) are 

internally parsed and mapped to genes using hg19 annotation metadata.  

The prioritisation results are provided in a tabular format, while gene expression 

profiles across any available tissues can be visualised as an interactive, JavaScript 

powered chart. The application has been specifically designed to require only 

minimal user input, and takes care of conversions between a variety of commonly 

used gene identifiers and between human/mouse orthologs. 

GeneTIER does not require the user to have any prior knowledge of the 

disease, other than the ability to unambiguously identify affected tissues. Organs 

are made up of many functionally diverse tissue cell types and this can be reflected 

in the experimental data. Therefore, this work strives to collate data from multiple, 

distinctive datasets, to enable the user to make tissue cell type-specific queries 

which are not supported by many of the popular databases.  
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Figure 20.  Overview of GeneTiER application. The web-based interface allows 

the user to supply candidate disease genes to prioritise and to select affected 

tissues. Top prioritisation results are returned in a tabular form and are available to 

visualise and compare using an interactive chart. Full results are available for 

download. 
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3.3.4 Discussion 

     

One of the major limitations for data miners attempting to utilise publicly 

available gene expression data sets stems from the inability to accurately, directly 

compare the data. In particular for expression data derived from microarray 

experiments, the raw data is not comparable even within the same experiment until 

some level of normalisation has been imposed. Furthermore, different array 

designs make direct comparisons difficult, regardless of the rigidity of the 

normalisation process. High throughput sequencing data is not exempt from this - 

sequenced reads must be normalised to library size and/or composition in order to 

achieve some degree of comparability. 

Here, rather than comparing expression values directly, relative expression is 

compared per experimental condition by calculating modified z-scores. As 

discussed in the Methods section, standard z-scores are used to measure the 

distance of data points from the mean of the distribution. However, the 

transformation is only representative if the data are normally distributed – which is 

not the case for expression data. RNA-Seq data in particular is heavily skewed and 

can be more optimally represented by a negative binomial distribution. This makes 

comparisons between RNA sequencing and microarrays particularly difficult, as 

RNA-Seq is capable of accurately quantifying highly expressed genes where 

microarrays have an inherent light intensity limit that can be accurately measured. 

Modified z-scores take into account the median absolute distance of each data 

point, and thus the transformation enables quantification of relative gene 

expression within an experiment. Thus, while direct comparisons between raw 

expression values could be highly inaccurate, comparing relative expression 

through modified z-scores is more intuitive and meaningful, as the expression 

value being compared is relative to the abundance of all other mRNAs measured. 

Indeed, it has been shown that similar relative rank-based transformations facilitate 

more accurate comparisons between heterogeneous datasets (Liu et al. 2008; 

Welsh et al. 2013; Kvam et al. 2012). 
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    Performance assessment using ROC curves presented here indicates that 

tissue expression-based ranking is capable of meaningful candidate gene 

prioritization and performs strongly in a substantial proportion of cases tested.     

However, direct performance comparisons between gene prioritization tools are 

difficult. Many popular gene prioritization methods that rely on prior knowledge 

about a disease use either text-mining approaches or Gene Ontology annotations 

to score candidates based on relevance to query. Thus, to provide a meaningful 

performance comparison, a cross-validation approach is required – that is, for each 

test case of a known disease gene, any direct associations to the query disease 

must be removed from the test. However, to the best of the knowledge of the 

author, no web gene prioritization application allows for such performance 

assessment.  

 

Currently, there are still thousands of human genes with no available GO 

annotations and many more with ‘shallow’ annotations. While this presents a 

problem for disease gene inference by similarity, the method described here would 

not be any less applicable. For example, at the time of developing GeneTiER, no 

Gene Ontology annotations have yet been ascribed to human CDR1 gene, known 

to contribute to paraneoplastic cerebellar degeneration (OMIM:302650). This gene 

shows localized expression in brain tissues, in particular in the cerebellum, and as 

such is scored highly by GeneTiER, whereas approaches reliant on prior 

knowledge are likely to fail.  

 

   On the other hand, it is also worth considering that the data and sample quality 

collected in the GeneTiER database may have an impact on the accuracy of the 

prioritization results. Human tissues are often donated through various 

circumstances. However, these can alter the tissue state or environment, and thus 

the expression patterns may become perturbed. Tissues donated after removal 

through various surgical procedures, often due to injury or illness, cannot be 

considered to be wholly in their native state. Trauma can induce genes to be 

expressed that would not normally be active in the tissue under normal 
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circumstances – for example, genes acting in stress response, repair or apoptosis 

pathways. Furthermore, donated tissue samples are removed from their 

immediate, normal extracellular environment, the loss of the influence of which will 

also invariably affect gene expression. Similarly, tissues removed during a post 

mortem may have been deprived of an oxygen supply from several hours to days, 

perturbing normal gene expression. Thus, this may have a negative impact on 

gene prioritization accuracy that is difficult to assess. 

 

Similarly, GeneTIER will not be able to identify disease genes that are expressed 

exclusively in tissues not present in the collected dataset. Likewise, diseases 

caused by genes that are expressed in response to either an environmental 

stimulus or within a short development time frame will not perform well if the 

appropriately stimulated tissue is absent from the database. 

 

Nevertheless, this chapter has highlighted that an unbiased tissue expression 

prioritisation approach can provide meaningful candidate gene scoring. GeneTiER 

aims to highlight genes with tissue-specific expression patterns to the user from 

among other candidate genes in their dataset, and as such will perform best for 

diseases with distinct, localized phenotypes. A broad selection of tissues allows for 

scoring of complex phenotypes affecting any combination of tissues. Thus, 

GeneTiER offers great utility value to the research community and can effectively 

supplement the in silico toolbox of any researcher. 
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4 OVA: Ontology Variant Analysis Tool 

4.1.1 Motivation 

    The candidate gene prioritisation method implemented in GeneTiER is a largely 

unbiased approach that does not rely on any prior information about candidate 

genes. This can be particularly useful where knowledge-based approaches fail, as 

can be in cases of novel phenotypes caused by de novo mutations; or mutations 

present in genes of yet unknown function. However, while this method is capable 

of prioritising candidate disease genes with better than random accuracy, there are 

also many cases where it fails and/or is not appropriate to use. Thus, here the 

author investigates an alternative method for candidate gene prioritisation that 

could be used as a complement to the GeneTiER application. 

As discussed previously, knowledge-based approaches often suffer from biases 

towards the better characterised genes, as well as often failing to identify disease 

genes of yet unknown functions. However, as the body of knowledge in biological 

literature is constantly growing, the issues stemming from gaps in available 

knowledge are likely to become less of a concern. Thus, as the practical gains that 

can be obtained from incorporating prior knowledge to candidate gene prioritisation 

outweigh the potential concerns, here a knowledge-based approach is 

reconsidered.  

4.1.2 Representing Biomedical Knowledge in Machine-Readable Ways 

In order to utilise biomedical domain knowledge for computational candidate 

gene prioritisation, a machine-readable way of describing biological entities, such 

as genes, diseases, phenotypes, functions and pathways is required. There are a 

number of approaches that could be used.  

A common method to obtaining data for gene prioritisation is text mining. Text 

mining could be used to obtain information from free form text databases such as 

OMIM; PubMed abstracts; or, open access full-text articles. However, text mining 
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information presents a number of challenges, from recognition of named entities, 

such as genes or diseases, to interpreting the types of association described in 

free text. Named entity recognition can be particularly hard in the biomedical 

domain, as gene and protein names are not fully standardised and are often 

referred to, particularly in older literature, by legacy names or synonyms. Other 

terms, such as phenotypes, can be even more difficult to fully characterise.  

Additionally, text mining can lead to inaccuracies - OMIM entries, for example, can 

be misleading as some entries may contain information retained for historical 

overview, which could not be easily distinguished from current scientific consensus 

by an automated system.  Furthermore, it can be difficult to successfully extract 

associations between biomedical entities when written in natural language, as 

entity co-occurrence can imply a negative as well as a positive relationship. Even 

the most advanced natural language processing systems do not achieve 100% 

precision or recall. In a system which attempts to utilise text-mined data in order to 

prioritise candidates, this inadequacy would further add to concerns such as 

incompleteness of data. Furthermore, not all biomedical literature is available for 

text mining – in fact, only approximately 600,000 full text articles are available for 

download through Medline. While this number is on the rise and more journals than 

ever are making full text articles available for free access, currently the majority of 

the associations to be made by a text mining system would be missed. 

Alternatively, a text mining tool may choose to limit its scope to Medline abstracts 

only; however, key information may not always be mentioned in the abstract. 

In order to overcome these difficulties, a number of resources exist which 

attempt to describe biological knowledge in a standardised way. Many databases 

could function as a controlled vocabulary – for example, GeneTiER already uses 

Ensembl database (Cunningham et al. 2014) to obtain gene symbols, aliases, 

synonyms and database identifiers to describe genes. Pathway databases such as 

KEGG (Kanehisa and Goto 2000) or Reactome (Fabregat et al. 2016) could be 

used to describe broad molecular functions of these entities. Medical subject 

header (MeSH) terms, which are used to index articles by their subject at NCBI, is 

a thesaurus currently containing over 87,000 entries describing biological concepts 
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and entities such as genes, diseases and chemicals (Dhammi and Kumar 2014), 

and could also form as part of the controlled vocabulary needed.  

However, in recent years, ontologies have become a de facto standard for 

organising knowledge in the biomedical domain in a structured, controlled manner 

(Figure 21). Ontologies serve to organise concepts of a particular domain in a 

structured, hierarchical way by utilising a small number of relationship types 

between entities. Collectively, ontology terms represent a controlled vocabulary 

describing a particular domain, and subsequently, this controlled vocabulary can 

be used to annotate other entities. Ontology annotations can thus facilitate 

computational analysis of entities and concepts they relate to within a given 

domain. Ontological annotations largely circumvent the problems that arise from 

the use of natural language descriptions, such as ambiguity and subjectivity, and 

have been invaluable in large scale annotation projects in the biological domains, 

such as whole genome annotations. 

From a computational stand-point, an ontology is a directed, acyclic graph 

(Figure 21) in which vertices generally correspond to controlled vocabulary terms 

and the edges represent the relationships between terms. Edges can correspond 

to different relationship types, though often the most common type of edge is an 

‘is_a’ relationship. As ontology terms are organised in a hierarchical manner, with 

broad terms nesting towards the root of the ontology, while more specific terms are 

further away from the root. The directed acyclic graph organisation of concepts 

allows for the application of several graph-theory algorithms in order to analyse 

and extract relevant information.  
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Figure 21. Gene Ontology sub-graph example of directed, acyclic graph ontology 

structure. Broader, less informative terms nest at the top of the hierarchy, while the 

descendant terms are more specific and informative. 
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4.1.3 Biomedical Domain Ontologies 

Biological and biomedical ontology development is largely coordinated and 

organised by the Open Biological and Biomedical Ontologies (OBO) Foundry, a 

collaborative endeavour that aims to standardise and create controlled 

vocabularies for use across multiple biological domains (Smith et al. 2007). To 

date, OBO Foundry contains over a hundred ontologies, 8 of which are considered 

to be mature. 

Three of these, cellular component, biological process and molecular function, 

comprise Gene Ontology, which attempts to standardise terms used to describe 

characteristics of genes and proteins across multiple species. Gene Ontology 

represents perhaps the most extensive collaborative effort to standardise the 

characteristic descriptions of genes and their products, and as such lends itself to a 

number of applications. As Gene Ontology has received significantly more 

development effort than other ontologies that are part of the OBO Foundry project, 

a number of diverse applications have been developed that utilise this resource, 

including gene set enrichment analysis (Yu et al. 2012, 2015), interaction network 

analysis (Maere et al. 2005; Garcia et al. 2007; Vlasblom et al. 2006) and gene 

prioritisation (Chen et al. 2009).  

While Gene Ontology annotations have been exploited by many applications for 

candidate disease gene prioritisation, to date very little effort has been made to 

explore the potential of integration of data from multiple ontology types, such as 

gene, phenotype, disease or pathway ontologies for candidate gene prioritisation. 

This is perhaps due to the later development of some of these resources. For 

example, the Mammalian Phenotype Ontology is the oldest phenotype ontology, 

however, the annotation set available is very limited and a lot of terms are 

redundant or irrelevant for human data. The Human Phenotype Ontology (HPO) 

(Köhler et al. 2014) was first proposed in 2008 and is used in a number of different 

applications (Smedley et al. 2013; Köhler et al. 2009), while the UberPheno (Köhler 

et al. 2013) – a cross-species ontology integrating phenotype data from human, 

zebra fish and mouse was not established until 2013. The development of HPO, 
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and subsequently UberPheno, can facilitate computation analysis of the human 

phenome in applications where previously text mining of unstructured text-based 

databases was the only alternative, and as such, was impeded by low 

precision/recall associated with the application of such techniques to the biological 

domain. 

Currently, to the best knowledge of the author, only a single gene prioritisation 

tool, PHIVE (Robinson et al. 2014), takes advantage of Uberpheno a recently 

made available cross-species ontology. PHIVE uses a phenotype similarity 

measure to score genes from a list of candidates generated by exome sequencing 

studies relative to the phenotype of the disease and is proposed to be applicable 

more to clinical diagnostics than gene discovery, as it relies solely on phenotype 

annotations. Even when taking into account phenotypic annotations that stem from 

model organism ortholog data, phenotype annotations still present very low 

coverage of the human genome and as such, it is likely that the majority of novel 

disease genes would be missed by approaches such as PHIVE.  

This work therefore proposes the integration of data and annotations from 

multiple ontologies, including the Human Phenotype Ontology (Köhler et al. 2014), 

UberPheno cross-species ontology (Köhler et al. 2013), the three domains of Gene 

Ontology (Ashburner et al. 2000), the anatomical entity ontology Uberon (Mungall 

et al. 2012), Disease Ontology (Kibbe et al. 2015) and Pathway Ontology (Petri et 

al. 2014) to develop a candidate gene prioritisation method that increases the 

coverage, applicability and precision of standalone phenome-based tools, such as 

PHIVE (Robinson et al. 2014), Phenolyzer (Yang et al. 2015) or PhenoDigm 

(Smedley et al. 2013).   

An automated method of linking phenotypes to molecular pathways and 

functions would also be of practical benefit. Currently, the majority of knowledge-

based gene prioritisation methods require the user to have extensive domain 

knowledge, as genes are prioritised with respect to human selected functions and 

pathways. However, this input is subjective to perceptions of the researcher and 
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therefore could be inaccurate; furthermore, the user may not be aware of cases 

where a similar phenotype is caused by perturbation of different biological process, 

and thus vital associations could be missed, whereas an automated approach is 

likely to overcome some of these biases. 

Thus, the remainder of this chapter focuses on a method for close integration of 

multiple biomedical domain ontologies that can facilitate complex queries and be 

applied for prioritising candidate disease genes and variants. This approach has 

been implemented and made available as a web application, Ontology Variant 

Analysis (OVA) tool.  

4.2 Methods 

4.2.1 Overview 

    As implemented, OVA workflow consists of three main steps, summarized in 

Figure 22.  User may supply candidate genes in the form of a list, a genomic 

region or a VCF file. In the case of the latter, additional filtering steps are 

implemented in the software. Uploaded VCF files are passed through custom user 

variant filters in order to substantially reduce candidate search space by removing 

likely benign variation. Each remaining variant is mapped to a gene, for which an 

extensive multi-ontology annotation profile is derived using publicly available 

annotation data sets consisting of direct annotations and inferred annotations from 

model organism data and data from the local interactome neighbourhood – i.e. 

proteins that are known to directly interact with the query. For a given query 

phenotype or disease, a comparison annotation profile is computed from known 

phenotype-genotype associations, phenotype similarities and cross-links between 

multiple ontologies. OVA compares each candidate gene’s annotation profile to the 

phenotype/disease annotation profile and calculates a series of similarity metrics. 

These scores, together with a number of other related features, are used as an 

input to a model built using a supervised, decision tree based learning approach, 

which computes the probability of each candidate gene harbouring the disease-

causing variant. 
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    OVA follows the same software multi-tier design patterns as implemented in 

GeneTiER application, with user input collected and validated client-side and 

before being passed to the server-side ‘business’ tier for database queries and 

execution of the analysis algorithms. 

 

Figure 22. Overview of OVA workflow for VCF file input.  
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4.2.2 Software Implementation 

4.2.2.1 User Interface and User Input Processing 

    OVA has been made available as a web-based application, currently hosted on 

a CENTOS server and accessible at dna2.leeds.ac.uk. HTML, CSS and 

JavaScript were used to implement the user interface. JQuery and Java Server 

Pages were used to facilitate client-server interactions and generate dynamic page 

content. Gene and variant input validation follows the same procedure as in 

GeneTiER (Figure 7), with gene list, genomic region and variant input types 

eventually mapped to the same set of reference genes. Disease and phenotype 

user input is limited to database entries by implementing a database auto-complete 

free text database search system and as such, limited validation was required. 

Server-side validation, all algorithms and other data processing tasks were 

implemented in Java programming language.   

4.2.2.2 OVA database 

    All required data for candidate gene prioritisation is stored in a MySQL 

database. Database tables are summarised in Table 5. The data in the database is 

queried through Java classes implementing the JCDB database connector. 

Ontology terms were downloaded from respective databases (Smith et al. 2007; 

Köhler et al. 2014; Mungall et al. 2012; Köhler et al. 2013; Golbreich et al. 2006; 

Petri et al. 2014; Ashburner et al. 2000; Kibbe et al. 2015). Ontology graph paths 

were parsed from OBO or OWL formatted data using custom code and stored in 

MySQL database in a pairwise format, where each row stores a pair of terms, the 

relationship type between them and distance between. While storing all ancestors 

of a term in a graph path increases the redundancy in the database, this approach 

facilitates easier and faster database queries. For each ontology, information 

content and pairwise term similarity scores were pre-computed using custom code 

and stored in the database. Ontology cross-link tables were assembled from cross-

references made available in the original ontologies and extracted via custom code 

by: 
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1) reasoning across multiple ontologies;  

2) key word searches across the ontology graph structure;  

3) manually curated from the data 

and stored in the MySQL database. Ontology annotations were downloaded from 

their respective web sites and standardised using custom code before insertion 

into the MySQL database. Disease databases were downloaded from OMIM 

(Amberger et al. 2015), DECIPHER (Firth et al. 2009) and ORPHANET (Pavan et 

al. 2017) web sites respectively. Tissue tables were assembled from manually 

curated Uberon (Mungall et al. 2012) ontology terms. Human and model organism 

gene information, including identifiers, gene names, coordinates and coding exon 

sequences were downloaded via UCSC Table Brower tool (Karolchik et al. 2004) 

or from the Ensembl database via Ensembl Biomart (Smedley et al. 2015). Gene 

Ontology terms were mapped to GO Slim terms via custom code by traversing the 

GO and GO Slim graph paths and mapping each GO term to the GO Slim term 

with highest information content. Interactome data was downloaded from the 

STRING (Jensen et al. 2009) and mentha databases (Calderone et al. 2013), pre-

processed using custom code to standardise the format and stored in the MySQL 

database. For each human gene, its closest interactome partners were selected 

and ontology enrichment analysis was performed for each group. Fisher’s Exact 

test was used to select ontology terms significantly enriched in the direct 

neighbourhood (direct edges only) of each gene, and this was stored as a pre-

computed table in MySQL database. A curated transcription factor list was 

downloaded from UniProtKb database (Magrane and Consortium 2011) by 

querying reviewed entries for human species and “transcription factor” keywords. 

Uniprot identifiers were linked to gene identifiers using Ensembl Biomart. Codon 

tables were downloaded from GenScript web page 

[http://www.genscript.com/tools/codon-table – accessed 01/01/2014].  

    Semantic similarity table between diseases was computed using custom codes, 

using a best match average of HPO terms assigned to each disease. Allele 

frequencies from 1035 individuals in the Born in Bradford cohort were computed 
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using custom code that processed all VCF files and counted all heterozygous and 

homozygous alleles, with the results stored in the MySQL database. All database 

tables were indexed and optimised for query speed due to their large size. 

Table Name Description 

Gene Ontology (GO) Tables 

GO Graph Path 

Graph path of gene ontology terms, containing 

term 1, term 2, type of relationship and 

distance 

GO Mouse Annotations GO mouse ortholog annotations 

GO Zebrafish Annotations Gene ontology annotations for zebrafish 

GO Human Annotations 

Gene ontology annotations, mapping of gene 

identifier to term identifier; includes evidence 

code 

GO Rat Annotations Gene ontology annotations for rat 

MF Information Content 
Information content of GO Molecular Function 

ontology terms 

BP Information Content 
Information content of GO Biological Process 

ontology terms 

CC Information Content 
Information content of GO Cellular Component  

ontology terms 

Pairwise Similarity BP 
Pre-computed GO pairwise similarity scores 

between Biological Process terms 

Pairwise Similarity CC 
Pre-computed GO pairwise similarity scores 

between Cellular Component terms 

Pairwise Similarity MF 
Pre-computed GO pairwise similarity scores 

between Molecular Function terms 

GO Slim Graph Path Graph path of GO slim ontology 

Human Phenotype Ontology (HPO) Tables 

Human HPO Annotations HPO term to gene annotations 

HPO Information Content Information content of HPO terms 
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HPO Pairwise Similarity 
Pre-computed pairwise similarity of HPO 

terms 

HPO Terms HPO terms and their descriptions 

HPO Graph Path HPO graph path 

Uberpheno Ontology Tables 

UberPheno Human Annotations UberPheno Gene annotations 

UberPheno Terms Uberpheno terms and their full descriptions 

UberPheno Graph Path Uberpheno graph path 

UberPheno Information Content Information content of Uberpheno terms 

UberPheno Semantic Similarity 
Pre-computed pairwise similarity of 

Uberpheno terms 

UberPheno Mouse Annotations UberPheno Gene annotations 

UberPheno Zebrafish Annotations UberPheno Gene annotations 

Pathway Ontology (PO) Tables 

PO Annotations PO term to gene annotations 

PO Information Content Information content of PO terms 

PO Pairwise Similarity Pre-computed pairwise similarity of PO terms 

PO Terms PO terms and their descriptions 

PO Graph Path PO graph path 

PO Rat Annotations PO term to rat gene annotations 

Uberon Ontology Tables 

Uberon Annotations Uberon term to gene annotations 

Uberon Information Content Information content of Uberon terms 

Uberon Pairwise Similarity 
Pre-computed pairwise similarity of Uberon 

terms 

Uberon Terms Uberon terms and their descriptions 

Uberon Graph Path Uberon graph path 

Disease Ontology (DO) Tables 

DO Annotations DO term to gene annotations 

DO Information Content Information content of DO terms 
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DO Pairwise Similarity Pre-computed pairwise similarity of DO terms 

DO Terms DO terms and their descriptions 

DO Graph Path DO graph path 

Foundational Model of Anatomy (FMA) Tables 

FMA Annotations FMA term to gene annotations 

FMA Information Content Information content of FMA terms 

FMA Pairwise Similarity Pre-computed pairwise similarity of FMA terms 

FMA Terms FMA terms and their descriptions 

FMA Graph Path FMA graph path 

Gene Tables 

Human Genes Human genes and common identifiers 

Rat Genes Rat genes and common identifiers 

Mouse Genes Mouse genes and common identifiers 

Zebrafish Genes Zebrafish genes and common identifiers 

Orthologs Human to Rat Mapping between human and rat Orthologs 

Orthologs Human to Mouse 
Mapping between human and mouse 

Orthologs 

Orthologs Human to Zebrafish 
Mapping between human and zebrafish 

Orthologs 

Synonyms 
Common synonyms and aliases for human 

genes 

Gene Type 
Information about gene type-  coding, non-

coding, etc. 

Exon coordinates 
hg19 coordinates of human exon starts and 

ends 

CDS sequences Sequences of hg19 human coding exons 

Codons 
Table of human genomic and mitochondrial 

codons 

Cross-link tables 

GO to GO Slim Mapping of GO ontology terms to less 
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descriptive, higher level 'slim' annotation terms 

HPO to Uberpheno 
Mapping of HPO terms to equivalent 

Uberpheno terms 

PO to DO Mapping of PO terms to equivalent DO terms 

FMA to HPO Mapping of FMA to HPO equivalent terms 

Uberon to FMA Mapping of FMA to Uberon equivalent terms 

UberPheno to GO 
Mapping of UberPheno to GO equivalent 

terms 

Uberon to GO Mapping of Uberon to GO equivalent terms 

GO to PO Mapping of GO to PO equivalent terms 

Diseases to HPO Mapping of  diseases to HPO term mapping 

HPO to Tissue Mapping of any HPO terms specific to a tissue 

HPO to Uberon 
Mapping of HPO terms to equivalent Uberon 

terms 

DO to Disease Mapping of DO terms to  diseases 

Uberon to Tissue Mapping of Uberon terms to a tissue type 

Other 

Tissues List of human tissue types 

Diseases 
Information about OMIM, ORPHANET and 

DECIPHER diseases 

Disease  Annotation 
Human genes annotated to OMIM, 

ORPHANET and DECIPHER diseases 

Disease to OMIM Categories Diseases to disease category 

Transcription Factors Gene table of known transcription factors 

Disease semantic similarity 

Pre-computed OMIM, ORPHANET and 

DECIPHER disease to disease semantic 

similarity based on HPO annotations 

Interactome (mentha) 
Protein-protein interactions from mentha 

(mapped to genes) 

Interactome (STRING) Protein interactions from STRING (mapped to 
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genes) 

Enriched Interactome GO Terms 
Pre-computed, enriched GO terms in each 

gene's local interactome neighbourhood 

Born in Bradford 
Allele Frequencies for all variants in Born in 

Bradford dataset 

 

Table 5. Summary of OVA MySQL database tables. 

 

 

4.2.2.3 Variant Filtering 

    OVA combines classic variant filtering techniques together with ontology-based 

gene prioritisation in a single application. Variant filtering implementation has been 

designed to be optional, highly flexible and customisable for most datasets. VCF 

file and user-selected parameters undergo initial client-side validation via custom 

JavaScript functions before being uploaded to the server for processing. VCF files 

are read as a data stream from the client and are not stored server-side, thus 

circumventing some potential data security concerns stemming from long-term 

user data storage. VCF files are processed using custom Java code with variants 

passing user-selected screening criteria retained and stored in an intermediate 

binary, serialised file for later processing. Processed variants which have been 

stored on the server are automatically deleted after a month.  

    Variant filtering can be performed on a number of different user-selected criteria. 

These include variant classes which are often deemed benign variation, such as 

synonymous single base substitutions, small in-frame insertions or deletions 

(customisable size) or variation in intronic and/or untranslated regions. Additionally, 

a chromosomal region filter can be used to exclude variants outside regions of 

interest, for example, in cases where autozygosity mapping data is available. 

Genotype filtering integrates support for multi-sample VCF files, which can be used 

in a number of ways. For instance, in a case of an autosomal recessive phenotype, 
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only variants which are homozygous or compound heterozygous in the affected but 

not the unaffected patient samples will be retained.  

    A number of additional filtering options are also implemented, such as cut-offs 

based on the variant call quality score or allele frequency from exome data of 1024 

mothers in the Born in Bradford project. It is also worth noting that the variant 

filtering approach implemented in OVA uses transcript, rather than gene, 

sequences in order to take codon position plurality (Subramanian, 2015) into 

account.  

4.2.2.4 Semantic Similarity Quantification 

    Semantic similarity refers to any metric defined for a set of terms, concepts or 

entities where the distance between each is quantified based on the 

meaning/semantic content, rather than from their lexical or syntactical 

representations.  

    OVA leverages the rigid, hierarchical structure of the ontology directed acyclic 

graphs to computationally quantify similarities and differences between biomedical 

and biological domain entities such as genes, diseases, tissues, pathways and 

functions. Concepts, or terms, close together on the ontology graph can be broadly 

considered to have similar meaning, while terms further apart are more 

semantically different. As an ontology is arranged as a hierarchical graph, terms 

further away from the root of the ontology are more specific, while terms closer to 

the root describe broad concepts. Consequently, two specific terms are more 

similar than two broad terms when separated by the same distance on the ontology 

graph. Thus, a semantic similarity measure needs to take into account not only the 

distance between two terms, but also their topographical position. 

    In order to quantify the semantic similarity between complex entities such as 

genes that are annotated by multiple ontology terms, one must first quantify the 

similarity of individual terms used to describe them. Semantic similarity between 



95 

 

two terms, a and b, can be described as the amount of information shared by the 

two terms. Given a hierarchical ontology structure, this can be quantified thus:  

 

𝑺𝒊𝒎(𝒂, 𝒃) =
𝑰𝑪𝑴𝑰𝑪𝑨(𝒂,𝒃)

𝐦𝐚𝐱 {𝑰𝑪𝒂 , 𝑰𝑪𝒃}
 

    Where 𝑰𝑪𝑴𝑰𝑪𝑨(𝒂,𝒃) is the information content (IC) of the most informative 

common ancestor (MICA) of the terms a and b. In information theory, the 

information content of a term t is often given as: 

 𝑰𝑪𝒕 = −𝐥𝐧 (𝑷𝒕)              

    Where 𝑷𝒕 is the probability of observing the term in a gold standard corpus 

(Lord et al. 2003). UniprotKB (Magrane and Consortium, 2011) annotations is a 

frequently used corpus for estimating information content of Gene Ontology terms 

and has been shown to facilitate fairly robust semantic similarity measurements 

(Pesquita, Faria, et al., 2009). However, the annotation corpora that could be used 

to calculate the information content of terms in other biomedical ontologies are 

rarely complete or bias-free. Furthermore, there are a number of issues that can 

arise when estimating information content using a corpus, including bias towards 

the better characterized concepts, ‘orphan’ terms which cannot be meaningfully 

scored and the variability of the measure due to the evolution of the corpus (Lord et 

al., 2003). Thus, in order to quantify similarities between terms within multiple 

ontologies in an accurate, static and systematic way that enables comparability 

between different ontologies, a different approach is needed. Consequently, here, 

a modified version of a previously described topology-based measure (Mazandu 

and Mulder, 2012) is used as follows. In the absence of a standard corpus, the 

probability of occurrence of a term can be estimated using the intrinsic ontology 
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structure - terms further away from the root are expected to be more specific and 

thus be observed less frequently in a hypothetical corpus. For example, The 

Human Phenotype Ontology term ‘Abnormality of the eye’ (HP:0000478) is less 

informative than its descendant terms such as ‘Glaucoma’ (HP: 0000501). 

    The level of the term in the ontology graph does not always correlate with its 

specificity. Fortunately, a number of topological characteristics in the ontology 

graph can help correct where this is not the case. The number of direct 

descendants of each term can be interpreted thus: if a term has a large number of 

children, its children are more specific than those of a term that has fewer children, 

as it encompasses more branches in the sub-domain. Furthermore, parents and 

their positions within the ontology graph should be taken into account. A term that 

descends from highly specific parent terms can be reasoned to be more 

informative than a term descending from less specific parent terms. The original 

approach (Mazandu and Mulder, 2012) considers the specificity of all direct 

ancestors of a term, using a product formula to calculate probabilities of 

occurrence, which, for ‘deeper’ ontologies in particular, can result in the inflation of 

specificity of terms with more than one direct ancestor; an issue that propagates 

down the ontology tree. To address this issue, here only the most informative direct 

ancestor of a term is considered in order to model a lower rate of information 

content gain while traversing down the ontology tree.  

    An ontology is never cyclic – thus, while a term may have multiple parents, it is 

impossible for a term to have a parent that is also its descendant. However, 

multiple direct ancestors of a given term may have child-parent relationships of 

their own. This property of the ontology graph allows calculating the information 

content of each term recursively, starting from the root of the ontology: 
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𝑷𝒕 = 

{
 
 

 
 

𝟏                              𝒊𝒇 𝒓𝒐𝒐𝒕
𝑷𝒂
𝑪𝒂
 ∙ 𝟎. 𝟐           𝒊𝒇  𝒕 ′𝒊𝒔_𝒂′ 𝒂   

  
𝑷𝒂
𝑪𝒂
 ∙ 𝟎. 𝟒      𝒊𝒇 𝒕 ′𝒑𝒂𝒓𝒕_𝒐𝒇′  𝒂

 

    Where 𝑷𝒂 is the probability of occurrence of a direct ancestor of term 𝒕 and 

𝑪𝒂represents the number of children direct parents of term t have. Here, only 

“is_a” and “part_of” relationship types are considered in all ontologies, which 

comprise the majority of all edges across ontologies used here. Each edge type is 

given a weight, with more weight (0.2 vs 0.4 multiplier) assigned to “is_a” type 

edges. The addition of a weight factor to different edge types also allows for terms 

which are sole children of their ancestor to be assigned higher information content 

than that of their ancestor, which otherwise under this scheme would be equal. 

While it could be argued that a term with only a single descendant has not 

differentiated, and thus no new information is gained by the descendant, here it is 

important to consider that not all ontologies used are complete and may not fully 

describe the domains they attempt to characterise. Consequently, many such 

branches may exist that evidently gain in specificity, and thus require a measure 

that captures this.  

    Using this approach, the similarity of a term to itself is 1, as the most informative 

common ancestor of a term and itself is itself. Similarly, because the information 

content of the root is -ln (1) = 0, any two terms for which the only common ancestor 

is root will have a similarity of 0. This definition defines a normalized range of 

semantic similarity for two terms.  

    As the estimated probability of occurrence becomes very small at the end of the 

ontology hierarchy, in particular for ‘deep’ ontologies like HPO, this can become 

impossible to calculate directly due to floating point precision. Thus, here the 
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logarithm product rule (log(x ∙ y) = log(x) + log(y)) was employed to enable 

multiplication of small fractions. The estimated probability of occurrence, 

information content and semantic similarity was thus computed for the three 

domains of the Gene Ontology, The Human Phenotype Ontology (Köhler et al. 

2014), Uberpheno (Köhler et al. 2013), Uberon (Mungall et al. 2012), Disease 

Ontology (Kibbe et al. 2015), Foundational Model of Anatomy (Golbreich et al. 

2006) and The Pathway Ontology (Petri et al. 2014), with information content of 

each term, and information content of terms and pairwise similarities between all 

terms within each ontology stored in a pre-calculated MySQL database table.  

    As each gene (or disease) can be described using ontology annotations, 

semantic similarity between genes (or diseases) can be computed by comparing 

their respective annotation sets. A gene/disease is rarely annotated with just a 

single term – thus, a measure to combine individual pairwise term similarities into a 

single score is needed. While three approaches are frequently used in the literature 

(Pesquita et al., 2008) – the average, maximum or best match average of pairwise 

similarities. Here, the best match average approach, which averages only the 

highest scoring match for each pair, is used, as this provides the highest score 

resolution (Pesquita, Pessoa, et al., 2009). 

    Pairwise semantic similarity approaches for gene semantic similarity can suffer 

from a bias arising from ‘shallow’ annotations. While a pair of terms deep within the 

ontology separated by the same distance will have higher semantic similarity than 

those closer to the root, the semantic similarity between a term and itself is always 

1. Thus, two highly functionally divergent genes could contain a high-level 

annotation such as ‘protein binding’ and the resulting match would lead to an 

increase in the final pairwise score which may bias the results. In order to address 

this issue, information content of a term is taken into consideration for perfect 

matches. Thus, for gene pairwise similarities, if the best match similarity for a pair 

of terms is 1, then this is modified by factor 1-M, which is the percentile where 

information content for that particular term falls within the distribution of information 

content scores for that ontology. Thus, high level, low information content term like 
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‘protein binding’ will not result in inflated similarity values, whereas informative 

terms with high information content will be affected very little: 

𝑺𝒊𝒎(𝒂, 𝒃) = 𝑴 ∙
𝑰𝑪𝑴𝑰𝑪𝑨(𝒂,𝒃)

𝐦𝐚𝐱 {𝑰𝑪𝒂 , 𝑰𝑪𝒃}
 

 

4.2.2.5 Candidate Disease Gene Scoring 

    Initially, an annotation profile of functions, processes, cellular and anatomical 

components, pathways and model organism phenotypes that may be relevant to 

the query human disease or phenotype is derived by querying the annotation and 

ontology tables in the assembled OVA database. This is accomplished in two 

ways. Firstly, using phenotype semantic similarity, all genes are selected which 

have been previously linked to diseases presenting similar phenotypes to the 

query. Secondly, given a query disease, further annotations for query are derived 

where possible by reasoning across ontologies, starting from phenotype terms. For 

example, UberPheno phenotype term ‘abnormal(ly) disrupted determination of 

left/right symmetry’ (ZP:0000333) can be directly linked to GO Biological Process 

term ‘determination of left/right symmetry’ (GO:0007368); following the GO 

ontology graph, similar/more informative terms can be inferred as related, for 

example ‘TGF-beta receptor signalling pathway involved in determination of 

left/right asymmetry’ (GO:0035463). Similarly, Uberon anatomical ontology term 

‘heart’ (UBERON:0000948) can be linked to multiple Gene Ontology terms such as 

‘heart morphogenesis’ (GO:0009653), phenotype terms such as ‘Cardiomegaly’ 

(HP:0001640) and pathway ontology terms such as ‘cardiovascular system 

disease pathway’ (PW:0000020). Furthermore, model organism data is also 

leveraged this way. For example, ‘abnormal snout morphology’ (MP:0000443) in 

UberPheno describing a mouse phenotype can be mapped to its human 

counterpart ‘abnormality of the nose’ (HP:0000366). 
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    For each candidate gene, ontology annotations are then compared to the 

disease or phenotype derived annotation profile. Using the semantic similarity 

measure described above, similarity scores are computed between each candidate 

gene and the query annotation profile of the disease for each ontology domain. For 

each candidate gene, where possible, model organism ortholog annotations are 

also queried. Finally, in order to at least partially overcome the challenge presented 

by incompleteness of gene annotations, for each candidate disease gene, the 

neighbourhood genes within the human interactome are also considered. 

Interacting groups of proteins are more likely to participate in the same or similar 

processes, and thus, if a protein lacking in quality functional annotations is known 

to interact with a group of proteins for which informative annotations are available, 

these can be extended to apply to the poorly annotated gene. Here, an interactome 

neighbourhood is defined as a set of genes sharing direct interactions with the 

gene in question. These are derived from mentha (Calderone et al., 2013), a 

collection of curated physical protein-protein interactions from several primary 

databases. For cases where a particular gene is not covered by mentha database, 

the STRING interactome is used, which is comprised of higher coverage but lower 

confidence gene interaction data. A gene set enrichment approach is then used to 

select only annotations which are over-represented in the interactome 

neighbourhood in order to reduce noise and extract common functions. A Fisher’s 

exact test is used to test for term enrichment within the interactome neighbourhood 

against whole interactome background. Bonferroni correction (Armstrong 2014) is 

applied to account for multiple testing. Terms with corrected p-values < 0.01 in the 

interactome neighbourhood are retained for comparison. These results are pre-

computed for each gene and stored in the OVA database in order to enable faster 

gene prioritisation.  

    To aggregate this information and arrive at a ranked candidate gene/variant list, 

multiple approaches were considered and implemented: the average of similarity 

scores across all domains; a weighted average; and a supervised learning 

approach. 
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    The average of similarity scores simply works out the average across all 

domains. The weighted average approach gives more weight to features which can 

be considered more informative – for example, while information about cellular 

localization of a protein is important, a mouse model with a highly similar 

phenotype to the query disease is a much stronger predictor of a good candidate 

disease gene. Additionally, this approach can dynamically adjust the similarity 

score weights based on information available about the candidate gene. A low 

score for a gene poorly annotated in a particular domain is not always comparable 

to a low score derived from multiple informative annotations. Consequently, OVA 

implementation allows the user to customise domain weights. 

    Lastly, in order to find an optimum scoring function for the multiple derived 

metrics, a supervised learning approach is considered. Supervised learning 

approaches attempt to classify data based on a learned set of features from a 

labelled training data set. In order to produce such a data set, all OMIM diseases 

were selected that have at least one known causative disease gene and split into 

two sets – two thirds were selected for training, while one third was retained for 

testing. To serve as negative (i.e. not associated with the disease) training 

examples, a matched set of random genes not documented by OMIM was 

selected. For each disease example, both the positive and negative training genes 

were scored based on semantic similarity profile in each category for disease. For 

each example, a number of other features were obtained, including the number 

and informativeness of annotations that support each score; proximity in the 

interactome to known disease genes; and disease category based on OMIM 

classifications. Each instance was thus labelled as either ‘disease gene’ or ‘non-

disease gene’. Using this labelled data set, a Random Forest (RF) model was 

trained using Java package WEKA (Hall et al. 2009). RF is an ensemble learning 

algorithm which constructs and combines information gained from multiple decision 

trees and is robust to over fitting.  

    Given a training data set consisting of n instances of genes, let Vi={f1…fm} be a 

feature vector describing the ith gene and Li its class label (“disease gene” or “non-
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disease gene”). Briefly, in a RF model, each decision tree is constructed using a 

bootstrapped sample of instances from the training data n and a randomly selected 

subset of features f, consisting of x < m features. In a decision tree, a set of rules 

describing L are learned from the training data by recursively splitting the feature 

space at each node until all leaf nodes contain instances from only one L class. 

Given an unknown instance, each tree in an RF model ‘votes’ for the likeliest class 

label, with the percentage of individual trees voting for a given class representing 

the posterior probability that the instance belongs to that particular class based on 

the training data (Breiman, 2001). 

    The optimum performance/accuracy trade off was reached with a model of 600 

decision trees, each considering 6 random features. Once the optimum training 

parameters were obtained, the training dataset was pruned by removing 

misclassified instances using 10-fold cross-validation of the original model, as 

these likely represent outliers. The final model was then rebuilt using the optimised 

training parameters and optimised training data set.  

    The model was saved as a binary, serialised Java object file. Given a disease or 

phenotype profile, any given gene can then be classified using this model. While 

the classification is binary, this is based on the confidence score cut-off, where the 

confidence score is effectively a proportion of random trees in the model which 

have ‘voted’ in favour of a particular label. Thus, this score is used directly to 

provide a confidence-based ranking of genes (Figure 23).  
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Figure 23. Schematic representation of Random Forest algorithm. Each tree 

makes a decision based on information learnt from training data. The confidence 

score can then be derived from the proportion of trees ‘voting’ in favour of an 

outcome. 

4.3 Results and Discussion 

4.3.1 Performance Assessment 

4.3.1.1 Gene Semantic Similarity Measure Assessment 

    In order to ascertain whether the semantic similarity measure proposed here 

enables the generation of meaningful comparisons between entities such as 

diseases and putative causal genes, the measure was first compared to several 

alternative semantic similarity measures proposed in literature. Gene Ontology-

based semantic similarity was computed for 12,430 protein pairs in the CESSM 
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dataset, a proposed standard for comparing semantic similarity measures 

(Pesquita et al. 2009). For each protein pair, the semantic similarity score was 

compared to sequence similarity. This is calculated by CESSM using elative 

reciprocal BLAST scores (Pesquita et al. 2009, 2008) and has been suggested to 

be a good general indicator of functional similarity (Joshi and Xu 2007). 

Furthermore, the semantic similarity measure used here was compared to 11 other 

frequently used measures: simGIC (Pesquita et al. 2007), simUI (Gentleman, 

2005), and the average (Lord et al. 2003), maximum (Sevilla et al. 2006) and best-

match average (Couto et al. 2007) combinations of the term similarities by Resnik 

(1995), Lin (1988) and Jiang & Conrath (1997). Correlations between semantic 

similarity scores and protein sequence similarity for each measure are shown in 

Figure 24.  

    Approaches which consider only the maximum of all pairwise ontology term 

similarities tend to systematically overestimate protein functional similarity; 

whereas the average-based approaches tend to severely underestimate functional 

similarity even for very similar proteins. A good semantic similarity measure, then, 

is one that has high resolution in such a comparison. The Jiang & Conrath average 

method shows the worst resolution out of all measures considered, with the 

semantic similarity scores produced by this method covering only 14% of the 

spectrum of protein sequence similarity scores (Table 6). The semantic similarity 

measure proposed here has the resolution of 91% across the range of sequence 

similarities. While this is slightly lower than that achieved by Lin’s best match 

average method (93%), it is evident (Figure 24) that the semantic similarity 

measure proposed here correlates better with sequence similarity across the entire 

range, whereas Lin’s method does not score protein pairs uniformly, with very few 

proteins pairs given a score of 0, and then rising sharply and scoring protein pairs 

with less than 10% sequence similarity as being 30-50% functionally similar, 

whereas the method presented here scores the similarity of these proteins far more 

conservatively (15-20% functional similarity for the same pairings), thus effectively 

achieving higher resolution across the dynamic range of data. 
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Measure Resolution 

Topology 0.912130203 

simGIC 0.837303181 

simUI 0.862813741 

Resnik average 0.336733651 

Resnik maximum 0.645218076 

Resnik best match average 0.900413686 

Lin average 0.370578176 

Lin maximum 0.458924175 

Lin best match average 0.932665166 

Jiang & Conrath average 0.145241479 

Jiang & Conrath maximum 0.232779576 

Jiang & Conrath best match average 0.334555302 

Table 6. Resolution of semantic similarity methods shown in Figure 24, computed 

using CESSM tool. 
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Figure 24. Sequence similarity vs semantic similarity for a number of different 

semantic similarity methods considered. Topology is the measure presented here, 

whereas other methods are denoted as follows: simGIC (GI), simUI (IU), Resnik 

average (RA), Resnik maximum (RM), Resnik best match average (RB), Lin 

average (LA), Lin maximum (LM), Lin best match average (LB), Jiang & Conrath 

average (JA), Jiang & Conrath maximum (JM) and Jiang & Conrath best match 

average (JB). 
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4.3.1.2 Testing Datasets for the Assessment of Prioritisation Accuracy 

    Multiple datasets were employed to benchmark the capabilities of OVA. Initially, 

all OMIM and Orphanet disease entries with a known molecular basis were 

selected to create a dataset comprised of 1340 disease/gene combinations for 

which two or more known causative genes have been attributed and 2964 

disease/gene pairs with only one known causative gene. As described in section 

4.2.2.5, two thirds of these were used to train the random forest model, while the 

remaining disease/gene pairs form testing Datasets 3 and 4, as described below. 

    Dataset 3 consists of all OMIM or Orphanet disease entries not used for training 

with at least two known causative genes attributed. This dataset comprises of 442 

disease-gene sets and aims to simulate use cases where a novel disease gene 

causes a disease with a previously described genetic basis. 

    Dataset 4 consists of all OMIM or Orphanet disease entries not used for training 

where only one known causative gene is known. This dataset is comprised of 978 

disease-gene sets and aims to simulate use cases where a novel disease gene 

causes a disease with no previously known genetic basis. 

    All VCF files used for testing OVA were generated by simulating the presence of 

a single known deleterious variant by inserting it into VCF files obtained from WES 

from healthy individuals. 

    Dataset 5 consists of 150 VCF files, each containing a known deleterious 

variant from ClinVar (Landrum et al. 2014) database. Deleterious variants were 

selected on the following criteria: 

1. Annotated as “Pathogenic” 

2. An insertion, deletion or single nucleotide substitution 

3. Annotated to an OMIM disease with at least one other known disease gene 
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    Dataset 6 consists of 20 VCF files, each containing a deleterious variant that 

has been published since the beginning of January 2015. These variants have 

been curated from peer-reviewed articles and are summarized in Table 7.  

Gene Publication 

AFF4 Germline gain-of-function mutations in AFF4 cause a developmental 

syndrome functionally linking the super elongation complex and 

cohesin, Krantz ID et al, 2015 

CACNA1

B 

CACNA1B mutation is linked to unique myoclonus-dystonia syndrome, 

Tijssen MA et al, 2015 

CEP120 A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy 

expands the role of centriolar proteins in skeletal ciliopathies. Hum. 

Molec. Genet. 24: 1410-1419, 2015 

CHCHD1

0 

Mutation in the novel nuclear-encoded mitochondrial protein 

CHCHD10 in a family with autosomal dominant mitochondrial 

myopathy Neurogenetics, Ajroud-Driss et al, 2015 

COL17A1 Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause 

Epithelial Recurrent Erosion Dystrophy (ERED), I. Golovleva et al, 

2015 

COQ4 COQ4 Mutations Cause a Broad Spectrum of Mitochondrial Disorders 

Associated with CoQ10 Deficiency, Calvo et al, 2015, American 

Journal Of Human Genetics 

DCDC2 DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt 

signaling. Am. J. Hum. Genet. 96: 81-92, 2015 Schueler et al 

DDX58 Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-

Merten syndrome. Am. J. Hum. Genet. 96: 266-274, 2015 

DTNA Identification of two novel mutations in FAM136A and DTNA genes in 

autosomal-dominant familial Meniere's disease, Lopez-Escamez JA et 

al, 2015 

ETV6 Germline ETV6 mutations in familial thrombocytopenia and 

hematologic malignancy. Nature Genet. 47: 180-185, 2015 Zhang et 
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al 

KCNA2  De novo loss- or gain-of-function mutations in KCNA2 cause epileptic 

encephalopathy, Lemke JR et al, 2015 

KCNC1 A recurrent de novo mutation in KCNC1 causes progressive 

myoclonus epilepsy. Nature Genet. 47: 39-46, 2015 Muona et al 

NALCN De novo mutations in NALCN cause a syndrome characterized by 

congenital contractures of the limbs and face, hypotonia, and 

developmental delay, Chong et al, 2015, American Journal of Human 

Genetics 

PTRH2 Accelerating novel candidate gene discovery in neurogenetic 

disorders via whole-exome sequencing of prescreened multiplex 

consanguineous families, Alazami et al, 2015, Cell Reports 

SEMA3D Disruption of the SEMA3D Gene in a Patient with Congenital Heart 

Defects, Le Caignec C. et al, 2015 

SLC9A1 Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes 

ataxia-deafness Lichtenstein-Knorr syndrome. Hum. Molec. Genet. 

24: 463-470, 2015 

SNRPB Mutations in SNRPB, Encoding Components of the Core Splicing 

Machinery, Cause Cerebro-Costo-Mandibular Syndrome, Cormier-

Daire V et al, 2015 

USP8  Mutations in the deubiquitinase gene USP8 cause Cushing's disease, 

Komada M et al, 2015 

WWOX WWOX-related encephalopathies: delineation of the phenotypical 

spectrum and emerging genotype-phenotype correlation J. Med. 

Genet. 52: 61-70, 2015 Mignot et al 

PNKP Mutations in PNKP cause recessive ataxia with oculomotor apraxia 

type 4, Bras et al, 2015, American Journal of Human Genetics 

Table 7. Summary of novel disease gene variants comprising OVA benchmarking 

Dataset 6. 
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4.3.1.2 Candidate disease gene prioritisation accuracy 

    OVA’s prioritisation accuracy was assessed using multiple datasets, assembled 

as described in the previous section. A leave-one-out cross validation type of 

approach was used, where for each known disease gene in a dataset, all 

associations between that gene and disease/human phenotype were temporality 

removed from OVA database, simulating a previously unknown disease gene. 

While this is not a perfect approach, as knowledge tends to be somewhat circular 

(i.e. functional annotations often result from further work validating a gene-

phenotype association), there are no alternative methods for performance 

assessment that encompass such a large range of disease-gene associations. 

 

   Dataset 3 and Dataset 4 were used to assess OVA performance for simulated 

disease cases both with and without a previous known molecular basis. Each test 

gene was ranked with respect to disease together with 200 randomly selected 

genes. The selection of random genes was limited to the pool of all human genes 

which have at least minimal Gene Ontology annotations (2 or more terms) in order 

to avoid any potential bias that could lead to overestimation of performance, as 

known disease genes are rarely entirely unannotated. Three methods for obtaining 

the final scores were assessed, as discussed in the Methods section  – average, a 

weighted average approach and a Random Forest classifier model approach.  

 

    In each case, the datasets were prioritized using OVA and the ranking results 

were collated and analysed in R using the package ‘ROCR’ (Sing et al. 2005). 

Figure 25 shows the ROC curves obtained using Dataset 3, while Figure 26 

shows the ROC curves obtained using Dataset 4. There is a notable difference in 

performance between the three methods that is consistent across the two datasets. 

The average score method performed the worst, while the Random Forest 

classifier approach was able to prioritize the test cases with the best accuracy. It is 

worth re-iterating that the test genes in either dataset did not form part of the 

training data for the model, thus the increase in classification accuracy is unlikely to 

be due to biases from improper controls. 
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    Additionally, as expected, there is a notable difference in prioritization accuracy 

between Dataset 3 and Dataset 4. Performance of OVA is greatly enhanced (AUC 

up to 0.9636) where knowledge about previously identified molecular causes of the 

disease is available. However, extending the search to diseases which cause 

similar phenotypes allows the prioritization of cases where little is known about the 

molecular causes of a disease that is still robust (AUC up to 0.8985). 

 

   The key parameter in OVA is a phenotype selection step. In the previous step, 

the OVA algorithm was provided perfectly accurate disease descriptions for each 

test instance, which might not accurately reflect real world use of the application. In 

order to ascertain how sensitive the algorithm is to various amounts of input noise, 

Dataset 3 was used to simulate cases where the phenotype is inaccurately or 

inadequately described. To simulate such cases, each input phenotype term 

describing the query disease in Dataset 3 was supplemented with additional, 

randomly selected phenotype terms to simulate inaccurate descriptions; or, some 

phenotype terms were removed in order to simulate an incomplete phenotype 

description. As expected, introducing any type of noise to the phenotype input 

negatively impacts gene prioritization accuracy (Figure 27 and 28). Unsurprisingly, 

higher levels of additional noise negatively impact the method’s performance more. 

Introducing additional irrelevant query phenotypes, however, had less of an impact 

on the accuracy of the results than excluding relevant terms.  
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Figure 25. ROC curves obtained from prioritizing disease genes in Dataset 3 

using leave-one-out cross validation. Three different approaches of score 

aggregation are compared – average, weighted average and Random Forest 

classifier. Area under ROC curve of 0.5 (x=y) indicates no better than random 

performance; area under ROC curve of 1 indicates 100% accuracy. 



113 

 

 

Figure 26. ROC curves obtained from prioritizing disease genes in Dataset 4 

using leave-one-out cross validation. Three different approaches of score 

aggregation are compared – average, weighted average and Random Forest 

classifier. Area under ROC curve of 0.5 (x=y) indicates no better than random 

performance; area under ROC curve of 1 indicates 100% accuracy. 
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Figure 27. Dataset 3 was used to assess how well OVA tolerates input noise. For 

each test disease gene, additional phenotype search terms were randomly 

generated and added to the pool of accurate phenotype descriptions to simulate 

inaccurate user input. The original phenotype descriptions for each disease were 

supplemented with 20% (black) and 50% (red) noisy input (rounding up, minimum 

1 extra phenotype added). The figure compares the resulting ROC curves. 
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Figure 28. Dataset 3 was used to assess how well OVA tolerates input noise. For 

each test disease gene, some phenotype terms were randomly removed from the 

disease description to simulate inadequate user input. 20% (black) and 50% (red) 

of total phenotype terms used to describe a disease were removed from the input 

(rounding up, minimum 1 phenotype removed). The figure compares the resulting 

ROC curves. 
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4.3.1.3 Comparison with other gene prioritisation tools 

    It can be useful to compare the performance of a tool with others currently 

available in literature. Such comparisons, however, are often hard to make. The 

majority of available tools are implemented as web applications and do not expose 

an API for large scale queries that would be required to make such a comparison. 

Additionally, even in cases where large scale queries can be automated, it can be 

impossible to use a leave-one-out cross-validation approach without direct access 

to underlying databases.  

 

    Here, in order to assess how well the algorithm implemented in OVA compares 

with other candidate gene prioritization tools, a comparison was made with Genes-

2-Diseases (G2D) tool (Perez-Iratxeta et al., 2007). G2D can prioritize candidates 

using data from GO annotations, sequence similarity, MeSH terms and STRING 

protein-protein interactions. Additionally, G2D requires known disease genes as 

input ‘seeds’, rather than phenotypes; this type of approach, while not directly 

comparable to OVA, enables a comparison of both tools using a cross-validation, 

as the test disease gene can be withheld from input ‘seed’ gene list. Furthermore, 

the G2D tool is a good choice for comparison due to parallels in data sources also 

used by OVA, allowing the comparison to be put in context of the capabilities of the 

methodology rather than the underlying data types.  

 

    The G2D web application uses a simple submission form, allowing the 

application to be automated via HTTP post requests. Custom code was written to 

facilitate a large number of such requests and to retrieve and parse the results. As 

G2D requires a genomic region as input, using Dataset 3, for each test case, a 

100MB genomic region containing the known disease gene was provided as 

genomic region input, while other genes associated with the disease were provided 

as ‘seeds’. OVA was used to prioritize the same queries after the removal of the 

test gene/disease associations from the OVA database in each test instance. While 

OVA significantly outperformed G2D (AUC 0.9593 vs 0.8524, Figure 29), some of 
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the differences in accuracy could be accounted for by somewhat outdated data 

used by G2D (as of this writing, last updated in 2010).  

 

 

 

Figure 29. Performance comparison between OVA and G2D, another gene 

prioritisation tool using Dataset 3. Area under ROC curve of 0.5 (x=y) indicates no 

better than random performance; area under ROC curve of 1 indicates 100% 

accuracy. 
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4.3.1.4 Comparison with other variant prioritisation tools 

    Gene prioritization approaches can be much more successful if the search 

space could be effectively reduced, for example by identifying likely candidate 

disease regions through techniques such as autozygosity mapping, or removal of 

all common and benign variation from a patient VCF file. Thus, in order to enable a 

more streamlined approach, an extensive variant filtering step for VCF files was 

implemented in OVA application. 

    This includes support for multi-sample VCF files with multiple 

affected/unaffected patients that may be available to researchers from parent-child 

trios or familial studies. For the purposes of this assessment, however, single 

patient VCF files in Dataset 5 were used, comprising 150 pathogenic variants 

found in ClinVar database (Landrum et al. 2014) that were inserted into VCF files 

from healthy (unaffected by severe pediatric disease) human WES data, which 

were obtained from SRA (Leinonen et al. 2011b).  

 

    As before, a leave-one-out cross-validation type of approach was employed, 

except each test VCF file was passed through the OVA variant filter. Variants were 

filtered based on inheritance mode (e.g. homozygous or compound heterozygous 

for autosomal recessive), synonymous substitutions, intronic variants and small in-

frame deletions and insertions were removed in each case. Splice-site variants 

were retained. The remaining variants were then prioritized using OVA’s RF 

classifier mode.  

 

    In order to compare the accuracy of OVA to other candidate variant prioritization 

methods, these results were compared to those obtained from prioritisation of 

Dataset 5 with ExomeWalker (Smedley et al., 2014), which uses a current state-of-

the-art algorithm for network-based gene prioritization coupled with a variant 

scoring approach. As ExomeWalker is provided as a stand-alone Java application, 

large scale comparisons between these tools are feasible.  
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    Figure 30 and Table 8 show the disease gene rank distributions obtained by 

both tools. Out of 150 VCF files, in 20% of the cases OVA ranked the true disease 

gene first, with ExomeWalker performing similarly at 16%. A total of 64% of 

instances were ranked in the top 10 by OVA, compared to 51% by ExomeWalker. 

While ExomeWalker scored 51% of all cases very accurately (Top 10), 42% ranked 

very poorly (outside of Top 100), whereas only 10% test cases were ranked 

outside the top 100 by OVA. 

 

Figure 30. Performance comparison between OVA and ExomeWalker using 150 

exomes. ExomeWalker identified the correct disease variant in 16% (24 out of 150) 
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cases, whereas OVA prioritized the correct gene in 20% (30 out of 150) cases. In 

64% of all cases, OVA placed the correct disease gene in the top 10, compared to 

51% by ExomeWalker. ExomeWalker ranked the correct variant outside the top100 

in 42% of the cases, compared to only 10% in OVA rankings. 

 

Prioritisation Result ExomeWalker Gene Ontology Analysis Tool 

Top 1 16.46% 19.62% 

Top 10 51.90% 60.76% 

Top 20 55.06% 81.01% 

Top 50 58.86% 89.87% 

Top 100 58.86% 91.77% 

 

Table 8. Variant prioritization comparison between OVA and ExomeWalker, 

summarized in Figure 30. 

 

4.3.1.5 Prioritisation of novel disease gene variants 

    Finally, in order to verify that these results are consistent with real cases of novel 

disease gene discovery, OVA was used to prioritize 20 recently published novel 

disease gene mutations not present in the OVA database. As before, disease 

causing variants were inserted into VCF files obtained from healthy individuals 

(Dataset 6) and prioritised using OVA. The results of the analysis are summarised 

in Table 9. The ranking is overall somewhat poorer than that observed using the 

other datasets, with 14 out of 20 genes ranked in the top 25. This may be in part 

due to the small size of the dataset; or, due to overestimated accuracy when 

testing using other datasets, as despite the best attempts to remove associations 

between test genes and diseases, some indirect circularity of knowledge 

nevertheless is likely to remain. 
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Table 9.The prioritization results of Dataset 6, consisting of 20 novel disease gene 

VCF. 

4.3.2 OVA Application 

    All the methods described here are implemented and made available as a web-

based application. The landing page allows the user to configure prioritization 

parameters and select the scoring method (from RF model, average and weighted 

average, with configurable weights) (Figure 31A). 

 

    Phenotype/disease selection screen requires the user to provide a set of input 

phenotype terms or disease(s) that describe their query. All queries are facilitated 

by a responsive, user-friendly auto-complete search (Figure 31B), which draws 

data directly from the OVA database to ensure only phenotypes/diseases present 

in the database are selected. Each query term is coloured by specificity, with green 

indicating more informative terms and red indicating very broad terms which should 

be avoided where possible.  

 

    Candidate genes can be supplied as a list (Figure 31C), a genomic region 

(Figure 31D) or a VCF file (Figure 31E). Gene and Pathway Ontology annotations 

identified as relevant to selected phenotype are displayed under the ‘Review’ 

screen (Figure 31F). Often, if the user has extensive knowledge of the disease 

Ranking Count Percentage Genes 

1st 3 15% CACNA1B, COQ4, WWOX 

Top 10 8 40% CACNA1B, COQ4, WWOX, KCNA2, 

NALCN, SEMA3D, SLC9A1, USP8 

Top 25 14 70% CACNA1B, COQ4, WWOX, KCNA2, 

NALCN, SEMA3D, SLC9A1, USP8, 

AFF4, DCDC2, DTNA, ETV6,KCNC1, 

PNKP 

Not in Top 25 6 30% CHCHD10, COL17A1, DDX58, PTRH2, 

SNRPB, CEP120 
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under study, it can be useful to prune identified annotations to retain only the most 

relevant ones. Additionally, a user may choose to remove all terms which are very 

broad descriptions (e.g. ‘protein binding’), while retaining only most specific 

functions and pathways. For this purpose, a specificity filter is made available. 

Furthermore, addition functional and pathway annotations which were not picked 

up by the OVA algorithm can be added via this page (Figure 31F).  

 

    Prioritization results are provided as a sortable, interactive table (Figure 31G), 

which can be downloaded as a tab-delimited text file. If VCF files were provided as 

input, variant column in each row allows the user to view all filtered variants 

retained for each gene, as well as their effects on the protein sequence. 

Furthermore, gene functional annotations can also be viewed for each gene. The 

annotations are presented as a word cloud, with the size of the annotation scaling 

with how relevant it was found to query phenotype. 

 

 

 

Figure 30. OVA application user interface. A. Start  screen. B. 

Phenotype/Disease input screen. C.  Gene list input screen.  D.  Genomic region 

selection screen.  E.  VCF file upload screen. F-G.  Annotation review screen. This 

allows the user to query the back-end database and provide additional pathway 

and functional terms for prioritisation that might not have been picked up by the 

OVA algorithm (or, were unwantedly removed in the previous screen). H. Results 

screen. Prioritisation results are displayed in an interactive, sortable table. 

Individual annotations and sequence variants can be viewed for each gene.  
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4.3.3 Discussion 

    The development of open biomedical ontologies has exploded in the last decade 

and alongside it the coverage and accuracy of annotations. The work presented 

here takes advantage of this rich resource to bring together ontologies from across 

multiple domains to produce OVA, a knowledge-based gene and variant 

prioritization tool. OVA utilizes human and model organism phenotypes, functional 

annotations, curated pathways, cellular localizations and anatomical terms to find 

genes most relevant to a query phenotype using semantic similarity.  

    While gene similarity has been classically compared using sequence similarity 

(an evolutionary measure), the strength of semantic similarity is that the 

comparison is driven by the meaning of the descriptions pertaining to each entity. 

For example, simple lexical comparison of the words ‘foal’ and ‘horse’ would 

classify them as unrelated. Similarly, sequence-based comparisons will tell us 

nothing about the similarity of two genes which differ in sequence greatly, but 

perform key functions in the same biological process or pathway. 

    OVA exploits The Human Phenotype Ontology and Uberpheno structure and 

annotations to facilitate comparisons between human diseases and animal models 

of human diseases. Terms pertaining to model organism phenotypes (e.g. 

‘Abnormal snout morphology’ (MP:0000443)) are bridged to human phenotype 

terms (e.g.  ‘Abnormality of the nose’ (HP:0000366)) by using Uberpheno, allowing 

the quantification of similarities between them from the ontology graph. As 

numerous large-scale model organism phenotyping efforts are currently under way, 

such as those undertaken by The International Mouse Phenotype Consortium 

(Skarnes et al., 2011), utilizing model organism phenotype data in a generalized 

gene prioritization approach is becoming more viable as coverage increases.  

 

    Gene ontology annotations have proved to be one of the most frequently utilized 

sources of gene functional knowledge in computational biology, with numerous 

applications taking advantage of this structured and highly curated resource. GO 

has also been heavily utilized as a data source for various candidate disease gene 
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prioritization applications. However, while candidate prioritization methods using 

Gene Ontology semantic similarity measures have generally been demonstrated to 

be effective, there are a number of drawbacks that this type of methodology suffers 

from that can detract from usability, accuracy and utility.  

 

    The majority of tools catalogued by the Gene Prioritization Portal (Bornigen et 

al., 2012) require the user to supply ‘seed’ genes – genes already known to be 

associated with the disease – and score candidates based on similarity to these. 

This is a major limitation of this approach, as in the case of rare or novel 

phenotypes, any prioritization based on similarity to known disease genes is 

impossible. Furthermore, the quality of available annotations of the supplied genes 

largely determines the success of this type of approach, while also allowing for little 

functional heterogeneity among disease genes.  

 

    Here, this approach is supplemented by building links across multiple ontologies. 

This allows enhancing the functional profile against which all candidate genes are 

scored by reasoning directly from a disease phenotype, as well as known genes.  

Consequently, this approach eliminates the requirement for the user to supply 

known ‘seed’ genes and reduces the reliance on quality seed gene annotations.  

    One of the major hurdles to overcome in a knowledge-based approach to 

candidate gene prioritization is the inconsistency of the level and quality of 

annotations across the genome. While the better studied genes are more likely to 

have high quality annotations, less well characterized yet more relevant genes can 

be overlooked simply because information available about them is incomplete. This 

issue is further addressed in OVA by the use of gene and phenotype annotations 

from model organism (mouse, rat and fish) orthologs to both support the human 

data and to compensate where data for human genes remains incomplete.   

    The integration of data from across multiple ontologies can supplement 

knowledge where it may be incomplete or inadequate in a particular domain. While 

most human genes now have associated Gene Ontology annotations available, 
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‘shallow’ annotations – that is, low information content terms– are still prevalent. 

Similarly, there are a number of terms that while they may not be considered 

uninformative, are not meaningful for candidate gene prioritization without further 

context. For instance, two genes annotated with the term ‘regulation of 

transcription, DNA-templated’ (GO:0006355) would be considered highly 

functionally similar, and yet could participate in regulation of entirely different 

pathways. Accordingly, pathway ontology annotations can serve to fill in this 

knowledge gap, helping to decide whether a gene is truly relevant to the query 

phenotype and thus improving prioritization accuracy. 

 

    Here, novel gene discovery is simulated in well and poorly characterized 

diseases in order to demonstrate that the method presented here is capable of 

meaningful candidate gene prioritization even when direct functional knowledge 

about the disease is lacking. By inferring new gene-disease associations through 

phenotype semantic similarity search and cross-ontology bridges, OVA attempts to 

deduce missing annotations, enabling gene prioritization for new and rare human 

diseases while supplementing the functional profile of better characterized 

phenotypes. Furthermore, this work shows that OVA RF model distinguishes 

relevant genes accurately and, coupled with a variant filtering approach, performs 

better than another recently published variant prioritization tool, ExomeWalker. 

 

    Knowledge-based candidate gene/variant prioritization methods have been 

known to perform worse than reported when predicting novel disease genes 

(Bornigen et al., 2012). However, large scale assessment using novel disease 

genes is not feasible. Cross-validation-based methods of individually removing 

direct disease-gene associations can serve to simulate novel gene discovery by 

ensuring that the test gene does not contribute to the query annotation profile. 

However, there is a degree of knowledge circularity in literature, and thus ultimately 

in ontology annotations that is difficult to account for. By prioritizing VCF files 

containing 20 newly reported mutations in novel disease genes, this work shows 

that there is agreement between these results and those obtained from a larger, 
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simulated dataset, although the novel variant dataset prioritization was somewhat 

less accurate.  

 

    Thus, the author maintains that the results based on previously described 

disease genes represent a reasonable approximation of the true accuracy of OVA. 

 

    Through an interactive and intuitive web interface, OVA allows the user to 

control many aspects of the prioritization process. OVA employs The Human 

Phenotype Ontology to facilitate detailed phenotypes queries in addition to 

previously described diseases, enabling prioritization for novel diseases which may 

not yet have been described in frequently-used databases such as OMIM.
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5. N6-Methyl Adenosine Sequencing 

5.1 Introduction 

    Since the early years of RNA research it has been known that RNA can be 

subject to numerous, chemically distinct post-transcriptional modifications. 

Starting with the discovery of the ‘fifth’ nucleotide – pseudouridine (Davis and 

Allen1957; Cohn and Volkin 1951), over a hundred RNA modifications have 

been characterised to date (Machnicka et al. 2013), collectively termed the RNA 

‘epigenome’ or ‘epitranscriptome’. RNA modifications can be seen as analogous 

to those of DNA and histones, adding a yet to be fully understood layer of 

intricate regulation to the transcriptome.  

As with any complex regulatory network, there is potential for things to go 

wrong. Numerous studies implicate RNA modifications in disease, including 

diabetes (Vasan et al. 2014), obesity (Fawcett and Barroso 2010), infertility 

(Zheng et al. 2013), dyskeratosis congenital (Heiss et al. 1998), mitochondrial 

myopathy (Bykhovskaya et al. 2004) and various cancers (Chen et al. 2015b; 

Steinman et al. 2013). It is thus important to understand the dynamics of RNA 

modifications and the effects varying physiological conditions have on the 

epitranscriptomic landscape. However, until recently, methods for 

transcriptome-wide profiling of RNA modifications have proved elusive.  

The advent of high-throughput sequencing technologies has facilitated the 

development of several approaches for the global characterisation of the 

epitranscriptome, including N6-methyl adenosine (Dominissini et al. 2013; 

Meyer et al. 2012), pseudouridine (Lovejoy et al. 2014; Carlile et al. 2015), 5-

methylcytosine (Schaefer et al. 2009) and A-to-I RNA editing (Bahn et al. 2012). 

‘Next-generation’ sequencing, while classically used to identify deleterious DNA 

variants or aberrant gene expression changes, has now opened up new 

avenues for understanding the contribution of RNA modifications to human 

disease. 
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However, bioinformatics efforts have struggled to keep up with the rapid 

developments in epitranscriptome sequencing. While numerous algorithms 

have been developed for DNA epigenome sequence data analysis, few yet exist 

for epitranscriptomics data. Where dedicated methods for epitranscriptomics 

data analysis have been lacking, DNA analysis software – if not entirely 

appropriate for the task- had been adapted (Dominissini et al. 2013). In light of 

this, this chapter introduces novel bioinformatics approaches for the analysis of 

RNA N6-methyl adenosine sequencing data. 

The chapter is structured as follows. First, a review of the current body of 

knowledge on the molecular biology of N6-methyl adenosine, as well as its 

physiological roles, is presented. Means for the detection of N6-methyl 

adenosine are summarised, with the emphasis on discussion of available 

computational methods for data analysis of high-throughput epitranscriptomic 

sequencing data. The remainder of the chapter discusses the development of 

novel software and methodology pertaining to N6-methyl adenosine sequencing 

data analysis. The methods presented here have been implemented as a stand-

alone, GUI-driven desktop software application – m6aViewer. The last section 

of the chapter discusses the details of the software implementation. 

5.1.2 N6-Methyl Adenosine Molecular Biology 

5.1.2.1 Overview 

N6-methyl adenosine (henceforth referred to as m6A) was first discovered in 

the 1970s and was found to be one of the most highly abundant RNA 

modifications (Desrosiers et al. 1974; Lavi and Shatkin 1975; Wei et al. 1975). 

The addition of a methyl group to adenosine is catalysed by RNA 

methyltransferases in the presence of co-substrate S-adenosyl methionine 

(SAM) (Figure 32A). While initially m6A was thought to be a static modification, 

the discovery of the first RNA demethylase - FTO (fat mass and obesity-

associated protein) - has indicated that the m6A modification is reversible and 

dynamic (Jia et al. 2011). Further investigation into the molecular dynamics of 

FTO-mediated RNA demethylation has uncovered two stable, intermediate 

products – hydroxymethylated and formylated adenosines (Fu et al. 2013) 
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(Figure 32B). These intermediates could have a role in regulating m6A 

dynamics – or even have functional roles of their own; however, little is yet 

known about them. 

Figure 32A. The enzymatic conversion of adenosine into N6-

methyl adenosine by RNA methyltransferase in the presence of a 

co-substrate, S-Adenosyl methionine. 

 

Figure 32B. Enzymatic demethylation of N6-methyl adenosine by 

RNA demethylase FTO creates two stable intermediates. 
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The discovery of FTO as an RNA demethylase was largely responsible for 

the rekindled interest in m6A research, which had dwindled since the early 

studies of the modification. Several RNA methyltransferases, demethylases and 

mediator “reader” proteins have been discovered and m6A landscape has 

emerged as both dynamic and highly conserved (Batista et al. 2014; 

Dominissini et al. 2012; Meyer et al. 2012), hinting at its crucial biological 

functions. To date, the precise biological roles of m6A remain poorly 

characterised. There is emerging - and often conflicting - evidence that 

implicates m6A in RNA nuclear export (Zheng et al. 2013; Camper et al. 1984), 

degradation (Wang et al. 2014a), splicing (Zhong et al. 2008; Dominissini et al. 

2012) and translation (Zhou et al. 2015; Meyer et al. 2015), as well as miRNA 

dynamics (Alarcón et al. 2015b; Chen et al. 2015b; Berulava et al. 2015; Ke et 

al. 2015). 

Indeed, it is not infeasible that m6A may have multiple distinct functional 

roles within the cell, mediated by different “reader” proteins or via structural 

changes within the methylated RNA molecule. This is further evidenced by the 

apparent non-random distribution of m6A within mRNA molecules – adenosine 

methylation preferentially occurs within 3’ and 5’ untranslated regions (UTR) 

and long and/or alternatively spliced exons (Meyer et al. 2015; Schwartz et al. 

2014; Ke et al. 2015; Meyer et al. 2012), suggesting that distinct functional roles 

may exist for different classes of m6A. 

Thus far, m6A has been shown to occur in mRNA (Meyer et al. 2012), rRNA 

(Iwanami and Brown 1968), tRNA (Saneyoshi et al. 1969), snRNA (Bringmann 

and Lührmann 1987), miRNA (Berulava et al. 2015) and lncRNA (Meyer et al. 

2012; Dominissini et al. 2012) and has been found in transcripts from diverse 

organisms, including mammals (Dominissini et al. 2012), plants (Luo et al. 

2014; Li et al. 2014b), yeast (Schwartz et al. 2013), bacteria (Deng et al. 2015) 

and viruses (Lichinchi et al. 2016). It has been implicated in a range of different 

diseases including obesity and diabetes (Vasan et al. 2014; Fawcett and 

Barroso 2010); various forms of cancer (Lin et al. 2016; Zhang et al. 2016); 

depression (Du et al. 2015); infertility and asthenozoospermia (Yang et al. 2016; 
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Zheng et al. 2013); and may play a role in the dynamics of HIV infection 

(Lichinchi et al. 2016).  

Despite the renewed interest in m6A, the precise roles this modification plays 

in RNA metabolism and the physiological consequences these may have are 

yet to be elucidated. Recent research has raised as many new questions as it 

has answered. How does the position of m6A within mRNA influence its 

function? Cancer cells are intrinsically associated with methionine metabolism 

(Leach and Tuck 2001; Tuck et al. 1996) – what are the roles of m6A in cell 

transformation? What physiological outcomes does the disruption of m6A 

manifest in? What role do differentially expressed RNA methyltransferases play 

during development (McGraw et al. 2007; Meyer et al. 2012)? What roles do 

tissue-specific RNA demethylases have? How does m6A interact with other 

aspects of RNA lifecycle? In order to identify the functions of m6A, it is 

imperative to characterise these not yet fully explored aspects of RNA biology. 

5.1.2.2 Dynamic Epitranscriptome – readers, writers and erasers 

    m6A is a dynamic modification, with its changing landscape shaped by 

diverse groups of proteins that can be classified into the broad roles of ‘writers’, 

‘erasers’ and ‘readers’. A number of RNA methyltransferases, RNA 

demethylases and effector “reader” proteins have been identified, with many 

more still likely to be discovered. Figure 33 summarises the roles these 

proteins have been attributed in shaping the RNA methylome. 

5 1.2.2.1 RNA Methyltransferases 

    Although METTL3 was the first identified mammalian RNA methyltransferase, 

it was known that it belonged to a much larger, 200 kDa protein complex (Bokar 

et al. 1997). To date, three additional components of the mammalian RNA 

methyltransferase complex have been identified – METTL14, WTAP and 

KIAA1429 (Schwartz et al. 2014; Ping et al. 2014). METTL3 and METTL14 both 

possess RNA methyltransferase activity, and while WTAP and KIAA1429 are 

not catalytic, both have been shown to interact with METTL3 and/or METTL14 

and to be required for RNA methylation (Ping et al. 2014; Schwartz et al. 2014). 

WTAP has been shown to be required for METT3/METTL14 localisation to 

nuclear speckles (Ping et al. 2014). A number of other proteins were found to 
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physically interact with the RNA methyltransferase complex through proteomics 

screens, although some of these associations could be spurious (Schwartz et 

al. 2014; Horiuchi et al. 2013). 

 

 



142 

 

 

 

F
ig

u
re

 3
3
. 

S
u
m

m
a

ry
 o

f 
k
e

y
 p

ro
te

in
s
 i
n

 m
a
m

m
a

lia
n
 m

6
A

 m
e

th
y
la

ti
o
n

 a
n
d

 t
h

e
 p

ro
p

o
s
e

d
 r

o
le

s
 f

o
r 

m
6
A

 ‘
re

a
d

e
r’
 p

ro
te

in
s
.R

N
A

 
m

e
th

y
la

s
e

s
 M

E
T

T
L
1

4
 a

n
d

 M
E

T
T

L
3

 a
c
t 

to
g
e

th
e

r 
w

it
h

 n
o

n
-c

a
ta

ly
ti
c
 s

u
b

-u
n

it
s
 W

T
A

P
 a

n
d

 K
IA

A
1

4
2

9
 t
o

 m
e

th
y
la

te
 m

R
N

A
s
, 

w
h

ile
 

d
e

m
e

th
y
la

s
e

s
 F

T
O

 a
n
d

 A
L
K

B
H

5
 a

re
 c

a
p

a
b

le
 o

f 
re

v
e

rs
in

g
 t

h
is

 m
o

d
if
ic

a
ti
o

n
. 
E

ff
e

c
ts

 o
f 

R
N

A
 m

e
th

y
la

ti
o
n

 a
re

 m
e

d
ia

te
d

 v
ia

 ‘
re

a
d
e

r’
 

p
ro

te
in

s
 t
h

a
t 

a
re

 c
a

p
a

b
le

 o
f 

d
ir
e

c
tl
y
 o

r 
in

d
ir
e

c
tl
y
 r

e
c
o

g
n

is
e
 m

6
A

 r
e

s
id

u
e

 a
n

d
 p

ro
m

o
te

 p
ro

c
e
s
s
e

s
 s

u
c
h
 a

s
 n

u
c
le

a
r 

e
x
p

o
rt

, 
tr

a
n

s
la

ti
o
n

, 
d

e
g
ra

d
a

ti
o
n

 a
n

d
 s

p
lic

in
g
. 

 



143 

 

 

Figure 34.  Proteins shown to interact with WTAP, identified through 

proteomic screens (Schwartz et al. 2014; Horiuchi et al. 2013). Functions 

ascribed to these proteins here are derived from their respective Gene 

Ontology annotations using the following procedure.  Experimental RNA 

methyltransferase component protein interaction data was downloaded 

from the publishers’ websites as supplementary data (Schwartz et al. 

2014; Horiuchi et al. 2013), common contaminants were filtered out using 

CRAPOME database (Mellacheruvu et al. 2013). Protein interactions 

were visualised using Cytoscape(Shannon et al. 2003). Gene Ontology 

annotations were obtained through Cytoscape plug-ins BinGO (Maere et 

al. 2005) and GOlorize (Garcia et al. 2007). 

Interestingly, WTAP has been shown to interact with a number of different 

RNA binding proteins, as well as RNA Methyltransferases METTL3 and 

METTL14. Further investigation into this data revealed that notable sub-groups 

of these proteins are involved in splicing and translation, confirming m6A as a 

key player in these processes (Figure 34). Of particular note are BCLAF1 and 

TGM2 – proteins implicated in regulation of apoptosis (Lee et al. 2012; Hsieh et 

al. 2013), although it is unclear what role these may play in m6A metabolism. 
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Consistent with this observation, METT3 or WTAP silencing in D.rerio embryos 

causes early developmental defects and increased apoptosis (Ping et al. 2014). 

That the in vitro interaction between BCLAF1 and WTAP may not be spurious is 

further evidenced by the observation that BCLAF1 is also enriched in nuclear 

speckles in vivo, and directly impacts WTAP localisation therein (Horiuchi et al. 

2013).  

    Before its characterisation as an RNA methyltransferase complex component, 

WTAP was heavily implicated as a component of the splicing machinery, but 

without a defined function. Its interaction with several proteins involved in 

splicing (Figure 33) also supports this role. However, the part m6A plays in 

splicing is less clear. Transcriptome-wide PAR-CLIP data from HeLa cells show 

that the majority of RNA methyltransferase METTL3 binding sites are intronic or 

intergenic (Liu et al. 2014) – a feature not reported in similar experiments by 

Ping et al (Ping et al. 2014); however this may be due to a data analysis 

approach that considers mature transcripts only. Indeed, in contrast to 

transcriptome-wide m6A screens (Meyer et al. 2012; Dominissini et al. 2012), 

early experiments indicated that m6A methylation is also prevalent in nascent 

RNA intronic regions (Carroll et al. 1990), suggesting a possible role in RNA 

splicing. Depletion of METTL3 or WTAP leads to a general disruption of splicing 

processes, including an alteration of splice isoform ratios. Indeed, 

transcriptome-wide m6A analyses indicate that adenosine is preferentially 

methylated in exons which are involved in alternative, rather than canonical 

splicing. Taken together with co-localisation of RNA methyltransferase complex 

and splicing machinery to nuclear speckles, this data suggests a tight 

integration between splicing and RNA methylation processes, although the 

precise role of m6A is as yet unknown. 

It is worth noting that while a small number of intronic m6A sites were 

identified through transcriptome-wide m6A profiling, current RNA sequencing 

based approaches are not best suited for an unbiased characterisation of 

nascent RNA transcripts. Poly-(A) selection for mRNA sequencing, for example, 

excludes these transcripts. Likewise, in total RNA libraries, it can be difficult to 
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distinguish genuine intronic RNA sequencing reads from reads arising from 

DNA contamination. 

RNA methylation machinery is highly conserved. In S.cerevisae, RNA 

methylation is catalysed by a METTL3 homolog Ime4, in complex with a WTAP-

like protein Mum2. Slz1, which has no mammalian counterpart, is also known to 

interact with yeast RNA methyltransferase complex by guiding the methylation 

machinery to the nucleolus. FIP37, a plant WTAP homolog, has been shown to 

be required for methylation in A. thaliana (Zhong et al. 2008).  

In E. coli – an early system used to study RNA methylation – a number of 

methyltransferases have been identified. trmB6 is responsible for A37 tRNA 

methylation, rlmF has been shown to methylate A1618 in 23S rRNA (Sergiev et 

al. 2008) while RlmJ is specific to A2030 in 23S rRNA (Golovina et al. 2012).  

Interestingly, while the loss of these methyltransferases is not lethal, trmB6 

mutants show an impaired ability to grow under stress, while rlmF null mutant 

cells exhibit growth retardation compared to wild type strains (Golovina et al. 

2012; Sergiev et al. 2008).  

Recently, it has been shown that bacterial mRNA, as well as tRNA and 

rRNA, undergo methylation, with over 100 m6A residues detected in 

P. aeruginosa mRNA and over 200 detected in E.coli mRNA (Deng et al. 2015). 

The methyltransferase(s) responsible for bacterial mRNA methylation remain 

unidentified, however, as rlmJ and rlmF null mutants do not significantly alter 

the m6A/A ratio found in bacterial RNA (Deng et al. 2015), suggesting these 

enzymes are rRNA-specific. It is possible that this elusive mRNA 

methyltransferase is also specific to certain bacteria, as in the species studied 

thus far, only gram-negative bacterial mRNAs have been shown to be 

methylated (Deng et al. 2015). 

RNA methyltransferases have been shown to recognise several related RNA 

sequence motifs, mostly notably the mammalian ‘DRACH’, although only a 

fraction of these are methylated, indicating that additional factors are required 

for RNA methyltransferase binding (Csepany et al. 1990; Narayan et al. 1994; 

Ke et al. 2015; Dominissini et al. 2012). It has been proposed that secondary 



146 

 

RNA structure plays a key role in guiding RNA methyltransferases. Early 

studies showed that m6A formation was impaired in double-stranded RNA 

constructs (Narayan et al. 1994), while computational predictions of RNA 

structure around detected m6A residues have indicated a correlation with a 

more relaxed secondary structure (Zhou et al. 2016b). However, other studies 

failed to find any overlap between secondary RNA structure and m6A residues 

(Dominissini et al. 2012). Conversely, transcriptome-wide PARS (parallel 

analysis of RNA structure)(Kertesz et al. 2010) data from GM12878  cells 

suggests that the bases preceding m6A exhibit a strong tendency to be 

unpaired, while the methyl-adenosine itself shows no such enrichment (Roost et 

al. 2015). This suggests that RNA secondary structure may indeed play a role in 

RNA recognition by RNA methyltransferase machinery and highlights the poor 

precision inherent in computational RNA secondary structure prediction. 

In addition to secondary RNA structure, miRNAs have been implicated in 

RNA methyltransferase binding. Chen et al ( 2015b) show that in mouse 

embryonic stem cells, formation of m6A can be modulated by miRNAs through 

sequence pairing. Strong correlation was observed between global m6A levels 

and the over- and under-expression of Dicer (a key enzyme in miRNA 

maturation pathway), while RNA methyltransferase or RNA demethylase levels 

were unaffected. Similarly, individual m6A sites could be thus manipulated by 

over- or under-expressing their corresponding miRNAs. Interestingly, the 

depletion of Argonaute proteins - main mediators of miRNA binding to target 

mRNAs - did not affect global m6A levels, suggesting a different mechanism for 

miRNA targeting to methylation sites. 

While miRNAs have been shown to aid RNA methyltransferase binding, 

miRNAs themselves can be methylated (Berulava et al. 2015; Alarcón et al. 

2015b). The m6A modification in primary miRNAs has been recently shown to 

be the means by which the miRNA microprocessor complex targets primary 

miRNA stem-loops, conferring specificity (Alarcón et al. 2015b). This dual 

relationship between m6A and miRNAs suggests potentially coupled regulation 

dynamics might exist between RNA methylation and miRNA maturation, where 

one is required for the other. 
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5.1.2.2.2 RNA Demethylases 

    To date, two mammalian RNA demethylases - FTO and ALKBH5 - have been 

discovered (Jia et al. 2011; Zheng et al. 2013). FTO is ubiquitously expressed, 

with higher expression levels in the brain, and localises either to the cytoplasm, 

or to nuclear speckles. The localisation to nuclear speckles suggests a level of 

interaction between methylation and demethylation processes, while the 

presence of FTO in the cytoplasm indicates that RNA could be demethylated 

both during and after processing and export from the nucleus. On the other 

hand, export to cytoplasm could be a way of regulating FTO activity via 

compartmentalisation. How/whether this dynamic corresponds to distinct m6A 

functions remains to be established. 

In contrast to FTO, ALKBH5 has been shown to be expressed exclusively in 

the testes and is not present in the cytoplasm. ALKBH5 depletion results in 

increased export of poly-(A) RNA from the nucleus, suggesting a role for m6A 

as a regulator of gene expression through dynamic RNA nuclear export and 

retention.  

The tissue specificity of ALKBH5 points to distinct physiological roles of RNA 

demethylases; indeed, a number of tissue- or condition-specific demethylases 

may yet be revealed. Recently, a method for selective inhibition of FTO and 

ALKBH5 demethylases has been developed (Huang et al. 2015), which will 

likely aid in elucidating any functional and physiological differences these two 

RNA demethylases may have. 

Finally, while FTO and ALKBH5 are highly conserved across eukaryotes, 

there is no evidence for RNA demethylase existence in bacteria, suggesting 

that bacterial RNA methylomes are largely static; or are regulated by other 

mechanisms, such as RNA decay. 

5.1.2.2.3 m6A ‘readers’ 

The characterisation of m6A ‘reader’ proteins is key to elucidating the 

functional roles of m6A, as they are likely to be the foremost mediators of m6A 

roles. The first m6A readers to be described were YT521-B homology (YTH) 

domain proteins, encompassing five human paralogs (YTHDF1, YTHDF2 and 
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YTHDF3, YTHDC1, YTHDC2) (Luo and Tong 2014; Dominissini et al. 2012; 

Wang et al. 2014a; Schwartz et al. 2013), all of which - with the exception of 

YTHDC2 - have been shown to bind m6A in vitro. 

Crystal and solution structures have provided insights into the basis of m6A 

recognition by the YTH domain. Methylated adenosine nestles into a 

hydrophobic binding pocket of the domain, and is stabilised by the formation of 

four hydrogen bonds, while the methyl group nests in a ‘cage’ formed by three 

aromatic side chains (Zhu et al. 2014; Theler et al. 2014; Li et al. 2014a). The 

YTH domain also interacts with the guanine adjacent to the methylated 

adenosine (Theler et al. 2014), suggesting that at least part of the observed RR-

m6A-CH methylation consensus sequence also plays a role in m6A recognition 

by reader proteins. This may suggest that the degeneracy of the m6A 

consensus could be in part due to divergent m6A functions, with different 

consensus sequences surrounding the methylation site required to bind distinct 

m6A readers. 

YTHDF2 is a cytoplasmic m6A reader, and has been found to be responsible 

for guiding methylated RNA to processing bodies for degradation (Wang et al. 

2014a). This role is highly conserved. The YTHDF2 homolog Pho92 also binds 

m6A in S.cerevisae, with individual mRNA stability inversely correlated with the 

number of YTHDF2 binding sites it harbours. Depletion of Pho92 in S.cerevisae 

increases the half-life and abundance of its target mRNAs. It is interesting to 

note that the S.pombe YTHDF2 homolog, Mmi1, also participates in meiotic 

mRNA decay, in spite of the absence of RNA adenosine methylation in this 

species (Chen et al. 2011a).  

In contrast to the negative regulatory role of YTHDF2, the cytoplasmic 

YTHDF1 has been shown to promote mRNA translation. Recent findings 

suggest that YTHDF1 increases translation efficiency of its target transcripts in 

an m6A-dependent manner by ‘loading’ the mRNA onto the ribosomes via 

interactions with transcription initiation factors. YTHDF1 depletion abolishes this 

effect and results in reduced ribosome occupancy of target transcripts (Wang et 

al. 2015b). The distinct roles of YTHDF1 and YTHDF2 suggest divergent 

regulatory functions of m6A that may be transcript- and context-dependent. 
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However, YTHDF1 and YTHDF2 share approximately half of their target 

transcripts, thus indicating that they may act in concert with each other, 

regulating gene expression via dynamic, perhaps enzymatic concentration 

dependent determination of methylated mRNA fate.  

In addition to YTHDF1-3, the YTH domain (Zhang et al. 2010) family also 

includes YTHDC1 and YTHDC2. Initially predicted to bind m6A, akin to the 

confirmed m6A readers YTHDF1-3, YTHDC1 has recently been shown to 

regulate mRNA splicing through its recognition of methyl-adenosine (Xiao et al. 

2016). YTHDC1 promotes the exclusion of its targeted exons– in line with the 

observation that m6A modification is frequently found on alternatively spliced 

transcripts. 

While YTHDF3 has been shown to bind m6A (Dominissini et al. 2012) its 

precise function remains unclear. Similarly to YTHDF3, little is known about 

YTHDC2, beyond its structural similarities to the YTH domain proteins, and thus 

further investigation into its role as a putative m6A reader is required. 

In addition to YTH domain proteins, heterogeneous nuclear 

ribonucleoproteins (hnRNPs) have been implicated as m6A readers (Alarcón et 

al. 2015a; Liu et al. 2015; Sparmann 2015). hnRNPs belong to a class of 

predominantly nuclear RNA binding proteins involved in the regulation of 

various aspects of the life cycle of RNA, including nascent RNA processing, 

splicing and trafficking (Yeap et al. 2014; Martinez-Contreras et al. 2007; Singh 

2001; Dreyfuss et al. 1993). The basis of m6A recognition by hnRNPs has thus 

far been revealed as two-fold - either direct methyl-adenosine recognition 

(Alarcón et al. 2015a) or indirect, structure-mediated binding (Liu et al. 2015, 

2013). 

In a RNA homo- or hetero-duplex, adenosine will base pair with uracil, 

however, when methylated, the strength of this base pairing is reduced. 

Therefore, methylation of an adenosine may affect the stability of any 

secondary structure the residue is part of (Kierzek and Kierzek 2003). 

Consequently, it has been proposed that adenosine methylation and 

demethylation in RNA can regulate the binding affinity of RNA binding proteins 
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by inducing structural changes within RNA (Liu et al. 2015). Liu et al (2015) 

showed that the binding of heterogeneous nuclear ribonucleoprotein C 

(hnRNPC) – a protein involved in RNA splicing (Rajagopalan et al. 1998; 

McCloskey et al. 2012; König et al. 2010) - to RNA is greatly increased in the 

presence of m6A near the site of the uridine-track recognised by hnRNPC 

(Cieniková et al. 2014) and proposed the m6A ‘switch model’ (Figure 35), 

whereby the accessibility of the uridine track to bind hnRNPC is dependent on 

the local secondary structure, which in turn is dependent the presence of m6A. 

Indeed, mutations of key m6A residues thought to base pair with or close to 

hnRNPC binding sites result in greatly reduced binding of hnRNPC, thereby 

inducing a reduction in the abundance of alternatively spliced transcripts of its 

target RNAs (Liu et al. 2015). Transcriptome-wide screening revealed several 

thousand putative m6A ‘switches’, while investigations into structural changes 

induced by m6A in the lncRNA metastasis associated lung adenocarcinoma 

transcript 1 (MALAT1) provides further evidence for this mechanism (Zhou et al. 

2016a; Liu et al. 2013, 2015). 

 

 

Figure 35. The m6A hairpin switch regulates the binding of 

hnRNPs to RNA, modulating their functions. 
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In contrast to the hnRNPC, hnRNPA2B1 has been shown to bind to m6A 

sites directly, implicating it as another m6A reader (Alarcón et al. 2015a). 

hnRNPA2B1 has been shown to participate in a wide array of biological 

processes (He and Smith 2009), including miRNA-related pathways (Villarroya-

Beltri et al. 2013) and splicing (Berson et al. 2012). Alarcón et al propose that 

hnRNPA2B1 may be the mediator of m6A-dependant alternative splicing, acting 

downstream of METTL3, as hnRNPA2B1 depletion replicates alternative 

splicing patterns observed in METTL3 depleted cells (Alarcón et al. 2015a). 

Consistent with reports implicating hnRNPA2B1 in miRNA synthesis, a 

significant number of hnRNPA2B1 binding sites were found to closely overlap 

with m6A sites in primary miRNAs; hnRNPA2B1 depletion consistently affected 

the levels of most of these miRNAs (Alarcón et al. 2015a). 

Finally, ELAVL1 was also identified as a putative m6A binding protein 

through its statistically significant association with an m6A bait in RNA affinity 

chromatography (Dominissini et al. 2012); however the basis for this association 

and its functions relating to m6A remain unclear. Indeed, aligning ELAVL1 

binding sites with m6A positions indicates that the majority of ELAVL1 binding 

sites are more than 100bp away from the nearest m6A site (Chen et al. 2015a). 

This suggests that either the initial association found between m6A and ELAVL1 

was a false positive result; ELAVL1 acts in an indirect manner, similarly to the 

m6A ‘switches’ described earlier; or ELAVL1 is specific to a small proportion of 

m6A residues - perhaps recognising m6A in a context-dependent manner- and 

thus transcriptome-wide analysis is unlikely to reveal significant associations. 

Further analysis by Wang et al indicated that ELAVL1 preferentially targets 

methylated RNA only if its binding site is next to an m6A position, confirming the 

in vitro results by Dominissini et al (2012). However, if the ELAVL1 binding site 

is located further away (12-nt were used for this test), then ELAVL1 shows 

strong binding preference for unmethylated RNA and in fact, this preference for 

demethylated RNA has been observed in total mRNA extracted from mESCs 

(Wang et al. 2014b). As such, further investigations are needed to confirm 

ELAVL1’s status as an m6A reader. 
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5.1.2.3 m6A physiological  roles 

    Renewed investigations in the dynamics of RNA methylation have attributed 

a number of distinct functions for this epitranscriptomic mark. The widespread 

nature of m6A across several eukaryotic RNA species indicates that methylation 

could indeed play a number of diverse roles in the RNA life cycle.  

    While more recent efforts have focused on mRNA, miRNA and lncRNA 

methylation, early studies of m6A molecular functions investigated the more 

abundant tRNAs and rRNAs. In E.coli, tRNA1Val is methylated at A37, a 

position postulated to be necessary for stabilising the anticodon loop structure. 

Curiously, the knockout of the methyltransferase responsible for A37 tRNA 

methylation does not have detrimental effects on growth under normal 

conditions, but rather impairs survival of E.coli cells under osmotic and oxidative 

stress (Sergiev et al. 2008). In rRNA, methylation of A2058 in 23S has been 

linked to antibiotic resistance (Skinner et al. 1983). These modifications, along 

with other methyl-adenosines in E.coli, are thought to be static, serving a 

structural role, as no RNA demethylases have yet been found in bacterial 

species. As m6A appears to be involved in regulating alternative splicing, 

nuclear export and translation in eukaryotes – processes absent or distinctly 

different in prokaryotes – it is likely that the dynamic nature of this modification 

evolved in eukaryotes. Indeed, while S.pombe RNA is not methylated, m6A has 

been reported to be present in all other eukaryotes studied to date. On the other 

hand, S.pombe is just as likely to have lost m6A machinery –S.pombe retains 

the conserved YTH domain proteins, although these have been shown 

incapable of binding m6A (Wang et al. 2016). 

m6A is emerging as an important, multi-facetted regulator of the RNA life 

cycle. It is not surprising then, that there is increasing evidence linking the 

disruption of m6A regulation with adverse physiological effects. m6A metabolism 

has been strongly implicated in several human diseases, including obesity and 

cancer (Zhang et al. 2015; Lin et al. 2016; Zhang et al. 2016). In fact, the 

rekindled interest in m6A methylation research in recent years has been largely 

attributed to the discovery that FTO - a gene implicated in obesity - is an RNA 

demethylase (Jia et al. 2011). The genetics of obesity have been a popular 
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research avenue, as 40-70% of all variation in BMI may be explained by genetic 

factors (Maes et al. 1997). In 2007, FTO was identified as the first gene to be 

significantly associated with obesity in several independent genome-wide 

association studies(GWAS) across multiple population groups (Dina et al. 2007; 

Hinney et al. 2007; Scuteri et al. 2007; Frayling et al. 2007). As the identified 

variants were all found to be located within the first intron of FTO, it has been 

suggested that the association with obesity may be due to the distal, regulatory 

effects the locus may exert on the expression of other genes (Claussnitzer et al. 

2015); the variants were found to have no impact on FTO gene expression 

itself. However, overexpression of catalytically active FTO in pre-adipocytes 

enhances adipogenesis (Zhang et al. 2015), suggesting that the FTO protein 

itself contributes to obesity. That this effect may be mediated through its m6A 

demethylation activity is further evidenced by the mirrored outcomes of METTL3 

knockdown in adipocytes (Zhao et al. 2014; Wang et al. 2015c).   

FTO-deficient mouse models have shown inconsistency in phenotypes - 

germline FTO loss manifests with high perinatal lethality and reduction in lean 

and fat mass (Fischer et al. 2009), while, paradoxically, adult onset FTO 

depletion led to an increase in fat mass (McMurray et al. 2013). The mechanism 

of FTO action could partially explain these phenotypic discrepancies. It has 

been proposed that FTO regulates splicing through m6A demethylation - a well-

documented role of m6A - in a number of transcripts involved in sterol 

metabolism. It is conceivable that different isoform ratios of these transcripts 

could have significant effects on adipogenesis. Congruently, FTO has been 

shown to regulate the splicing of RUNX1T1 (Zhao et al. 2014), which has two 

alternatively spliced isoforms with antagonistic effects on adipogenesis. Thus, 

substantial evidence implicates FTO-mediated m6A demethylation in obesity; 

however, how this process can be disrupted by the presence of intronic FTO 

variants is less clear. 

FTO is heavily expressed in the brain, thus leading to the speculation that 

disruption of m6A methylation patterns could contribute to the manifestation of 

neurological disorders. Indeed, while the main focus of homozygous FTO 

variants was in the context of obesity, they are also associated with other 
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phenotypes, including attention deficit disorder (Choudhry et al. 2013), major 

depressive disorder (Rivera et al. 2012; Milaneschi et al. 2014) and reduced 

brain volume in otherwise healthy, elderly subjects (Ho et al. 2010). FTO 

seemingly exerts these phenotypes through demethylation of mRNAs involved 

in dopaminergic pathways (Hess et al. 2013). Indeed, a number of FTO variants 

have been linked to dysregulation of D2/3R-signaling (Sevgi et al. 2015), 

suggesting that alterations in reward response processing could be another way 

in which FTO influences obesity. This notion is further supported by the 

observed association between certain FTO variants and susceptibility to 

addictive behaviours, including alcohol dependence (Wang et al. 2013). 

Interestingly, while FTO and ALKBH5 demethylases have been attributed 

very distinct physiological functions, possibly because FTO is ubiquitously 

expressed and ALKBH5 is limited to the testes, polymorphisms in ALKBH5, like 

FTO, have also been associated with major depressive disorder (Du et al. 

2015). The mechanism of ALKBH5 role in depression is less clear, as the gene 

is expressed only in the testes. This association has not yet been confirmed in 

independent studies, thus it is possible that the finding is a false positive - an 

unfortunately common failing in complex disease genome-wide association 

studies (Hirschhorn et al. 2002; Sullivan 2007). 

Mutations in ALKBH5, consistent with its limited expression in the testes, 

have been recently revealed to contribute to male infertility in a cohort of 77 

men undergoing infertility treatment (Landfors et al. 2016). Interestingly, the 

same report found significant associations between infertility and mutations in 

FTO. An independent study also found that increased m6A methylation was a 

risk factor for asthenozoospermia (Yang et al. 2016), consistent with the 

findings that ALKBH5 deficiency impairs fertility in male mice (Zheng et al. 

2013). 

Besides the genetic associations in human disease, research into 

physiological effects of components of the RNA methylation pathway has 

yielded interesting observations. m6A methylation, in general, seems to be 

required for the viability of many organisms. In D. melanogaster, METTL3 

homolog Ime4 is required for gametogenesis and its homozygous deletion is 
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lethal, with death occurring in larval and pupal stages (Hongay and Orr-Weaver 

2011). The methyltransferase is also required for viability in A. thaliana, with 

death in knockouts occurring during early developmental stages (Zhong et al. 

2008), similarly to D. melanogaster. This embryo-lethal phenotype is also 

observed in the WTAP homolog AtFIP37 null mutants of A. thaliana (Vespa et 

al. 2004). In D.rerio, MO knockdown of METTL3 or WTAP disrupts early 

development, increases apoptosis and leads to various physiological defects 

(Ping et al. 2014). In line with these findings, METTL3 and METTL14 

knockdowns in mouse embryonic stem cells decreased the levels of many 

transcripts involved in pluripotency, while differentiation-specific mRNAs were 

not diminished (Chen et al. 2015b). 

In S.cerevisae, RNA methylation is required for meiosis, and knockdown of 

Ime4 results in a cell cycle arrest at G2 prophase – the stage that correlates 

with the highest levels of m6A accumulation in wild type yeast (Agarwala et al. 

2012). Methylated RNA transcripts in yeast were reported to be enriched for 

meiosis-related functions (Schwartz et al. 2013), however it is difficult to tell 

whether this effect on m6A distribution is independent or is observed due to 

stage-specific gene expression. 

Perhaps the most interesting role yet ascribed to m6A is the regulation of 

circadian rhythms. The loss of METTL3 elongates the circadian period by 

affecting the nuclear export and stability of clock gene mRNAs (Fustin et al. 

2013) - an observation in line with reported global effects of m6A on RNA 

nuclear export. Furthermore, the putative m6A reader ELAVL1 has been 

previously reported to be involved in transcriptional circadian control (Lehmann 

et al. 2015; Keller et al. 2009). 

5.1.3 m6A detection 

Until recently, scalable and reliable methods for transcriptome-wide 

detection of novel m6A residues have eluded researchers. N6-methyl adenosine 

does not disrupt normal Watson-Crick base pairing, and therefore cannot be 

readily detected from RNA sequencing data using mutation detection methods 

that are, for example, used to detect A-to-I deamination (Chepelev 2012) or 

RNA/DNA cytosine-5 methylation using bisulphite sequencing techniques 
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(Schaefer et al. 2009). Likewise, m6A also cannot be easily chemically 

converted into a residue that would terminate reverse transcription – a method 

used for transcriptome-wide profiling of pseudo-uridylation (Lovejoy et al. 2014). 

Early methods for m6A detection relied heavily on mass spectrometry 

(Kowalak et al. 1993) or thin layer chromatography (Kane and Beemon 1985). 

The first anti-m6A antibody was described in 1987 (Bringmann and Lührmann 

1987), which subsequently enabled the use of immunoblotting-based 

techniques.  

SCARLET (site-specific cleavage and radioactive labelling followed by 

ligation-assisted extraction and thin-layer chromatography) for m6A detection 

and quantification was proposed by Liu et al (2013). This very recent technique 

can be used to assess the m6A status of potentially any base within the 

transcriptome and obtain reliable measures of stoichiometry; however it relies 

on thin-layer chromatography, which precludes any transcriptome-wide 

analysis. 

While m6A does not disrupt Watson-Crick base pairing, it is still likely to have 

an effect on the physical properties of RNA, such as base-stacking interactions. 

On this basis, Golovina et al proposed a method for monitoring individual m6A 

residues using high resolution melting analysis; however this method requires 

the precise position of the methylated adenosine to be known (Golovina et al. 

2014). 

In 2007, Dai et al proposed a ligation-based technique for pseudouridine and 

methyl-adenosine detection and quantification (Dai et al. 2007) that could 

potentially be adapted for use with microarrays. In brief, the technique exploits 

non-Watson-Crick base-pairing between adenosine and guanine – the N6-

methyl group, if present, sterically clashes with the phosphate backbone in this 

non-canonical purine-purine pair. This greatly affects ligation efficiency, thus 

guanine can be used as a reporter residue to detect and quantify the presence 

of m6A. However, while theoretically scalable for high-throughput use, this 

approach screens for the presence of modifications at defined positions only, 

and therefore has proven hard to adapt for novel m6A site detection. 
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Harcourt et al noted that T.thermophilus DNA polymerase I (which can act 

as a reverse transcriptase in the presence of Mn2+) displayed substantial 

selectivity against m6A in reverse transcription reactions and thus could be used 

for m6A detection (Harcourt et al. 2013) in a similar manner to the approach 

described by Dai et al. However, this approach also suffers from similar 

drawbacks. 

In light of these challenges, two independent groups proposed an 

immunoprecipitation based method for transcriptome-wide m6A detection 

(Meyer et al. 2012; Dominissini et al. 2012). In essence, the method is a 

marriage between ChIP-Seq and RNA-Seq (Figure 36). RNA is fragmented into 

approximately 100bp length fragments, and fragments bearing the m6A 

modification are recovered using an anti-m6A antibody. Following a standard 

RNA library preparation protocol, these fragments are then sequenced together 

with a normal RNA-Seq control library. In a manner similar to ChIP-Seq, aligned 

read coverage from the immunoprecipitated fraction is expected to form a 

detectable peak, about twice the sequenced fragment length, indicating the 

region wherein a methylated adenosine lies. However, unlike DNA 

immunoprecipitation, sequenced read coverage for any position is also heavily 

dependent on the underlying gene expression and is also subject to various 

sequencing biases – thus, an RNA-Seq control is required to detect regions 

which are genuinely enriched in immunoprecipitated fragment reads. This 

method for m6A detection was termed m6A-seq, or Me-RIP (hereby referred to 

as m6A-seq only).  

Further improvements to m6A-seq were proposed by Schwartz et al, who 

used smaller RNA fragments, thereby allowing the detected regions harbouring 

m6A to be further refined (Schwartz et al. 2014). Despite these advances, m6A-

seq remains a low-resolution technique rife with difficulties.  
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Figure 36. Immunoprecipitation-based method for transcriptome 

wide m6A detection. Initially, RNA is fragmented into short 

fragments and an anti-m6A antibody is used to enrich for m6A-

modified molecules prior to library preparation and sequencing. An 

RNA-Seq input control is sequenced together with 

immunoprecipitated fragments and m6A positions can then be 

detected by identifying read pile-up peaks in the transcript 

coverage distribution. 

    Analysis of m6A-seq data from RNA methyltransferase knockdowns indicates 

that a substantial proportion of all detected m6A peaks are false positives 

(Schwartz et al. 2014).These could potentially arise from non-specific antibody 

binding, DNA contamination during sample preparation and/or sequencing read 

alignment errors, for example due to low-complexity sequence regions. 
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Furthermore, it has been noted that the method struggles to accurately capture 

the stoichiometry of m6A, although no direct comparisons with more accurate 

methods for m6A stoichiometry quantification (such as SCARLET) have yet 

been performed to the knowledge of the author.  

The approach suffers from low resolution – ideally, a single m6A residue 

would generate a peak approximately 200nt wide at its base, with the peak 

summit indicating the position of the residue. In practice, a combination of non-

specific antibody binding, immunoprecipitation specificity, alignment and 

amplification errors and the potential for several modified bases to be in close 

proximity can result in regions enriched in immunoprecipitated reads that can 

span several kilobases. Furthermore, Linder et al note that the summits of the 

m6A-seq peaks in their analysis only rarely precisely corresponded to the m6A 

position detected at single nucleotide resolution (Linder et al. 2015). The 

presence of a m6A consensus sequence within the enriched region may 

indicate the position of the methylated residue; however, the RRACH motif is 

degenerate, and several consensus sequences can appear within enriched 

regions due to chance. 

Finally, while the work described herein was underway, a mutation-based 

method for transcriptome-wide detection of m6A at single nucleotide resolution 

was described (Linder et al. 2015), which substantially improves on some of the 

shortcomings of m6A-seq. Similar to m6A-seq, the authors propose the use of 

anti-m6A antibodies, whereby UV cross-linking of antibody to RNA induces 

signature mutations which can be detected in sequencing data. While greatly 

improving the resolution at which m6A can be detected, this approach still 

suffers from all the concerns associated with antibody use. 

5.1.4 Computational methods for m6A-seq data analysis 

Initially proposed in 2012, m6A-seq has been quickly embraced by the 

research community, with a sizable body of work already reporting applications 

of the technique (Dominissini et al. 2012; Schwartz et al. 2014; Meyer et al. 

2012; Meyer and Jaffrey 2014; Meyer et al. 2015; Hess et al. 2013; Berulava et 

al. 2015; Alarcón et al. 2015b; Chen et al. 2015b). Accordingly, RNA methylome 

sequence data deposited online has also increased substantially (Kolesnikov et 
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al. 2015; Barrett et al. 2013) – however, bioinformatics efforts have struggled to 

keep up with this rapidly advancing field. The lack of dedicated software for 

m6A-seq data analysis has been particularly telling, with one popular protocol 

(Dominissini et al. 2013) suggesting adapting the ChIP-Seq peak-calling 

software MACS (Zhang et al. 2008) for the task. Indeed, both Dominissini et al 

(2012) and Meyer et al ( 2012) used in-house scripts for m6A-seq data analysis. 

5.1.4.1 m6A-Seq analysis software 

    An early dedicated m6A-seq analysis pipeline was described and 

implemented in Perl by Li et al (Li et al. 2013); however it is no longer 

accessible via the published URL. In brief, sequenced reads from the 

immunoprecipitated and control samples are aligned to the reference genome 

using BWA read alignment software (Li and Durbin 2009) and uniquely mapped 

read coverage across the reference sequence is computed using SAMtools (Li 

et al. 2009) and BEDtools (Quinlan and Hall 2010). The reference sequence is 

subdivided into small, 25nt width windows and each window from 

immunoprecipitated fraction is compared to the control using Fisher’s Exact 

test, in order to detect statistically significant enrichment. This approach allows 

different library sizes between the immunoprecipitated and the control samples 

to be taken into account. Adjacent regions enriched in the immunoprecipitated 

sample are then concatenated. This part of the pipeline represents a near-

faithful implementation of the original methodology described by Meyer et al ( 

2012), with one key difference. Meyer et al (2012) artificially extend sequencing 

reads in the 5’-to-3’ direction up to 100bp in their analysis in order to account for 

the difference between the RNA library insert size (sheared and size-selected to 

an average of 100bp) and sequencing read length, which at the time was still 

largely limited to 36bp. 

In the original report by Dominissini et al (2012), the authors take a 

conceptionally similar approach for m6A-seq data analysis. Similarly to Meyer et 

al (2012), uniquely aligned sequenced reads are extended in the 3’ direction 

and per-nucleotide reference coverage is computed. The reference sequence is 

scanned using partially overlapping 100 bp windows, in contrast to the smaller, 

non-overlapping windows used by Li et al (2013) and Meyer et al (2012). As an 
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alternative to Fisher’s Exact method for detecting significantly enriched regions, 

Dominissini et al ( 2012) compute a unique ‘window score’: 

𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝑐𝑜𝑟𝑒

= 𝑙𝑜𝑔2(
𝑀𝑒𝑎𝑛 𝑊𝑖𝑛𝑑𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑃  /  𝑀𝑒𝑑𝑖𝑎𝑛 𝐺𝑒𝑛𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑃

𝑀𝑒𝑎𝑛 𝑊𝑖𝑛𝑑𝑜𝑤 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 / 𝑀𝑒𝑑𝑖𝑎𝑛 𝐺𝑒𝑛𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑡𝑟𝑜𝑙
) 

This method does not inherently compute a statistical significance level for 

detected regions. Thus, the authors empirically estimate the false discovery rate 

of this method by simply reversing the immunoprecipitated and control samples. 

Finally, another key difference between Meyer et al (2012) and Li et al’s (2013) 

application of statistical testing and the window score computed by Dominissini 

et al (2012) is the scaling – while Meyer et al (2012) take into account total 

sequencing library sizes, the window score accounts for background differences 

by only considering local, median gene coverage in the immunoprecipitated and 

control fractions. 

Following this established principle of ‘binning’ reference coverage data, 

Meng et al developed an R and MATLAB package ‘exomePeak’ for m6A-seq 

data analysis (Meng et al. 2013, 2014). In contrast to the previously discussed 

approaches, rather than extending the reads in the 3’ direction, the authors 

instead shift the reads by half the fragment length. Under sufficient coverage, 

there should be little practical differences between the two approaches; 

however, the shifting method does not accurately represent the sequenced 

fragment, only the central position of its alignment, and the coverage peaks are 

artificially ‘slimmer’ as a result. 

Using the sliding window approach, significantly enriched regions are 

identified by modelling the read coverage in the immunoprecipitated and control 

fractions as a Poisson distribution. The conditional probability that reads are 

enriched in the immunoprecipitated fraction is estimated using the Przyborowski 

and Wilenski’s C-test, which compares the means of two Poisson distributions 

(Przyborowski and Wilenski 1940). While Dominissini et al (2012) used gene-

level and Meyer et al (2012) transcriptome-level background, Meng et al (2013) 

opt to test for both. ExomePeak combines two significance values to derive the 

final p-value (Fisher 1925). 
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Meng et al also highlight the advantages of exome-based analysis - the 

approach that is implicit in previously discussed work - in circumventing the 

difficulties arising from transcriptome heterogeneity. However, as peak 

discovery in this approach is directed by the location of known exons, it crucially 

fails to detect intronic and intergenic peaks that may be detected from pre-

mRNA or in annotated transcripts. For similar reasons, the exomePeak package 

cannot be readily used to detect RNA methylation in organisms with poorly 

annotated transcriptomes. Data generated by m6A-seq protocols which 

sequence poly-A selected RNA should not, in theory, generate intronic reads – 

and any that are present are often attributed to DNA contamination, rather than 

the presence of nascent mRNA. However, alternative m6A-seq protocols that do 

not exclude non-poly-adenylated RNA are also popular, and indeed, have 

provided insights into the methylation status of other RNA species, such as 

lncRNA and miRNA. 

Following the development of the exome-based ‘exomePeak’ algorithm, the 

same group recently introduced the R package HEPeak, which marginally 

improves upon both sensitivity and specificity of ‘exomePeak’ m6A peak-calling 

in tests on simulated data (Cui et al. 2015). As an extension to the sliding 

window – or ‘binning’ – approach described previously, the authors model the 

sequence read coverage distributions using a hidden Markov model (see Box 

1). In this approach, each genomic window can be considered to have a binary, 

‘hidden’ methylation status to be determined, with consecutive windows forming 

a 1st order Markov chain (Figure 37A). Unlike previously described approaches, 

which incorrectly assume independence between each window tested for 

enrichment, a Markov model can capture the sequential nature of the data. This 

allows for a more intuitive identification of enriched regions, wherein the outer 

‘slopes’ of each peak can be included in the called region (Figure 37B). The 

authors suggest that this approach also permits disregarding of some degree of 

noise in the data, whereas an independent testing approach would identify 

small, local spikes as significantly enriched regions.  
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Box 1. Hidden Markov models   
A hidden Markov model (HMM) is a ubiquitous tool for modelling probability distributions for 

sequential, periodical or time series data(Baum and Petrie 1966; Eddy 2004). Often used for signal 

processing problems, such as voice recognition, it can also be naturally applied to problems in the 

biological domain e.g. for modelling DNA or protein sequences. 

HMM represents a series of ‘hidden’ states, S, and observations, X, that can be emitted by each 

state with differing probabilities: 

 

The observations are assumed to be generated by some stochastic process that satisfies the 

Markov property – that is, at any step in the process, the state S at step t is independent of all states 

prior to t – k, where k is the order of the Markov process modelled. The model can be effectively 

represented as two matrices of transition and emission probabilities. 

HMM is a probabilistic model, thus for any sequence of observations, given the transition and 

emission probabilities, the most likely sequence of hidden states to have generated said observations 

can be computed using standard Bayesian principles. That is, the probability that a HMM generates any 

given hidden sequence with respective series of observations is the product of the corresponding 

emission and transition probabilities. In many problems, emission and transition probabilities can be 

directly obtained from the frequencies observed in labelled training data. 
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Figure 37. A. HEPeak Hidden Markov Model representation of 

m6A-seq coverage data. B. A schematic comparison between 

enriched regions (indicated by dashed lines) called using 

independent testing, and a first order hidden Markov model which 

models dependency between consecutive windows. 
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In HEPeak, initial emission probabilities are estimated using a binomial 

approximation of the ratios between mean read counts in the 

immunoprecipitated and control fractions. Expectation maximisation (Box 2) is 

used to estimate the model parameters given the observed data and the Viterbi 

algorithm (Box 3) is used to obtain the final solution of likeliest methylation state 

of each interval. The statistical confidence level for each region X is estimated 

using log odds ratios of posterior probabilities: 

𝑆𝑐𝑜𝑟𝑒 =  𝑙𝑜𝑔
𝑃(𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 | 𝑋)

𝑃(𝑈𝑛𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 | 𝑋)
 

These scores are transformed into standard z-scores and the p-value is 

estimated as a one-tailed probability from the resulting Gaussian distribution. 

To date, to the best knowledge of the author, ExomePeak and HEPeak R 

packages remain the only accessible, dedicated software for the detection of 

m6A peaks from m6A-seq data. While the authors of these programs claim high 

sensitivity and specificity of these tools in simulated tests, an objective 

evaluation has not been performed due to the lack of testing data sets – that is, 

there is no m6A-seq dataset wherein all the m6A positions are known and 

independently verified. The exome-based approach used by both HEPeak and 

ExomePeak, while it avoids ambiguities that may arise from non-canonically 

spliced transcripts, precludes detection of peaks within intronic regions and 

unannotated transcripts.  

However, perhaps the major drawback of the HEPeak and ExomePeak 

packages is the low resolution of detected regions. Enriched regions can span 

several kilobases, often encompassing peaks arising from several m6A 

residues. Indeed, using the HEPeak approach will result in larger detected 

regions than those called by ExomePeak in some cases. This makes it difficult 

to verify the m6A status of individual sites, as well as precluding any accurate 

comparisons between multiple samples. 
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Box 2.  Expectation Maximisation algorithm 

Expectation Maximisation (EM) is an iterative method for approximating the maximum 

likelihood and is often used to estimate the parameters of probabilistic models, where data 

may be incomplete (Do and Batzoglou 2008; Dempster et al. 1977). HMMs (see Box1) are 

problems of this form, as they contain unobserved, or ‘hidden’, states; however EM algorithm 

has a wide variety of applications, such as clustering problems and natural language 

processing. 

The EM algorithm alternates between two steps: estimating the probability distribution of 

the incomplete data and re-estimating the model parameters: 

 

In essence, EM attempts to iteratively find parameters that maximise the probability of the 

observed data by reducing the problem into simpler sub-problems. Given an initial guess at the 

model parameters, the algorithm computes the probability distribution of all possible 

completions of the missing data in the E-Step. During the M-Step, the model parameters are 

re-estimated using the weighted training examples provided by the probability distribution of 

completions obtained in the E-Step. The algorithm iterates for a fixed number of steps, or until 

convergence (as with each iteration, the model likelihood increases, at a diminishing rate). 
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Box 3. Viterbi Algorithm 

Viterbi algorithm is often used to find efficient solutions to HMM problems. Given a 

sequence of observations in a HMM, a naïve solution to finding the likeliest sequence of 

hidden states that generated the observations would be to compute the likelihood of all the 

possible solutions. However, given n states and a sequence of length l, this would require nl 

probability computations – an impractical number for all but small problems. Viterbi algorithm 

reduces the number of calculations required. 

In a HMM sequence of states, at any given step, we can compute the likeliest path (state 

sequence) to that particular state: 

 

 

 

Therefore, when computing a transition between one state and the next, instead of 

calculating the probabilities of all the possible paths in the HMM, we need only consider the 

likeliest path. At the end of the sequence, we have computed the likelihood of the most 

probable solution, and the likeliest sequence of hidden states can be obtained by backtracking 

through the trellis. 
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5.1.4.2 Use of ChIP-Seq Peak callers for m6A-Seq data 

    While m6A-seq data differs from ChIP-seq data in several key aspects, it has 

been suggested that ChIP-Seq peak-calling software could also be used for the 

analysis of m6A-Seq data. Thus far, one such protocol has been proposed 

(Dominissini et al. 2013), using peak-calling software MACS (Zhang et al. 

2008). Similarly to previously discussed methods, using a sliding window 

approach, MACS detects significantly enriched windows by considering the 

sequenced read coverage as a Poisson distribution, not unlike the approach 

employed in ExomePeak. In order to account for local fluctuations and biases in 

the read distribution, MACS considers the surrounding read distribution in the 

immunoprecipitated sample at 1kb, 5 kb and 10kb resolution, and uses the 

maximum coverage to determine significant p-value cut-offs. Alternatively, this 

background distribution can be estimated from the control sample, if such is 

available. This feature makes MACS somewhat compatible with m6A-seq data, 

which heavily relies on the RNA-Seq control. In contrast to the long, enriched 

regions detected by tools like ExomePeak, MACS attempts to predict the 

protein-DNA (or, in this case, m6A to antibody) binding sites by reporting the 

location with the highest fragment pile-up within detected regions. 

The use of ChIP-Seq peak-callers for m6A-seq data, nevertheless, is not 

entirely appropriate. There are several key differences between these two types 

of data that inevitably arise from the differences between RNA and DNA. While 

ChIP-Seq data also exhibits some regional coverage variation due to mapping 

biases, chromatin structure and copy number variations, the background read 

coverage is generally assumed to be fairly uniform in DNA sequence data 

models. On the other hand, the major determinant of regional coverage in m6A-

Seq data is the level of individual gene expression, which yields very varied 

regional coverage. 

Additionally, due to the fragmentation and size selection steps, the 5’ and/or 

3’ ends of RNA transcripts are frequently lost, resulting in the bias in coverage 

at the ends of the transcript (Figure 38A) – an issue DNA sequence data is not 

subject to. As ChIP-Seq peak-callers typically estimate background read 

coverage from the immunoprecipitated data, this can lead to overestimation of 
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background coverage at the 5’ and 3’ ends of the transcript and increased false 

negative rate in those regions. Conversely, due to read depletion at the ends of 

transcripts, the overall background coverage for internal regions with higher 

coverage may be underestimated, leading to an increase in false positive peak 

calls. These concerns preclude the use of ChIP-Seq peak-calling software that 

does not facilitate the inclusion of non-immunoprecipitated background control.  
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Figure 38. A. The RNA fragmentation step in m6A-seq can induce 

the loss of coverage at 5’ or 3’ ends of the transcript, depending 

on library preparation protocol, the bias not seen in sequenced 

fragments from DNA immunoprecipitation experiments. B. Where 

sequencing read length is shorter than immunoprecipitated 

fragment length, non-stranded library preparation protocols 

produce a bimodal coverage distribution, whereas stranded RNA 

sequencing can result in a shifted coverage distribution. The read 

coverage distributions are shown as blue (all reads aligning to 

forward strand) and green (all reads aligning to reverse strand) 

lines, whereas the expected fragment coverage distribution is 

illustrated as a black dashed line. C. Paired-end sequencing 

allows to accurately infer sequenced fragment length in DNA 

sequencing (left), however, ChIP-Seq algorithms will consistently 

over-estimate fragment length if the paired reads spans an intron 

(thin black line). 

    While high-throughput sequencing technology has considerably improved in 

recent years, with sequenced reads commonly covering 100 bases or more, 

many ChIP-Seq algorithms (Zhang et al. 2008; Boeva et al. 2012; Fejes et al. 

2008; Valouev et al. 2008) make provisions for cases where the DNA library 

insert length is longer than the sequenced read. In DNA (and non-stranded 

RNA) library preparation protocols, aligned reads generate a bimodal coverage 

distribution (Figure 38B, left). The mid-point between the two peaks generated 

by forward and reverse strand reads is often used to estimate the sequenced 

fragment length and shift reads accordingly to correct for this, thus improving 

the accuracy of called binding sites in ChIP-Seq data (Zhang et al. 2008; 
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Valouev et al. 2008). However, this becomes impossible for m6A-seq data 

generated with stranded library preparation methods (Figure 38B, right), and 

will result in consistently displaced peak calls, thus making many ChIP-Seq 

peak-callers, including MACS, unsuitable for this type of data.  

Due to advances in sequencing technology, paired-end sequencing – 

wherein each fragment is sequenced from both ends – has become 

commonplace. While paired-end data greatly improves the accuracy of read 

alignment, in particular in repetitive sequence regions (Chen et al. 2012), 

perhaps the main benefit of paired-end data for ChIP-Seq and m6A-Seq is the 

ability to accurately infer each individual sequenced fragment length (Figure 

37C, left), foregoing the need to shift or artificially extend aligned reads. 

However, RNA of eukaryotes invariably contains introns, complicating the direct 

inference of sequenced fragment boundaries from the ends of read mate pairs. 

As MACS and other ChIP-Seq peak-callers were not designed to work with 

large gapped alignments, read mate pairs mapping potentially several kilobases 

apart over intronic regions can lead to wildly inappropriate results.  

Furthermore, split-read mapping across intron-exon boundaries is a key 

feature in RNA-Seq data, with several dedicated RNA sequence aligners 

available (Dobin et al. 2013; Trapnell et al. 2009). However, such alignments 

are rare in DNA sequence data (or may even be discarded by DNA sequence 

alignment algorithms) and are primarily exploited for the detection of DNA 

structural variants (Rausch et al. 2012). Consequently, even single-end RNA 

sequence data is problematic for ChIP-Seq peak detection algorithms, as 

additional provisions must be made for gapped alignments. Indeed, an m6A site 

close to an intron-exon boundary would be identified as two separate peaks by 

MACS or similar ChIP-Seq peak-callers. 

In summary, it is thus apparent that currently available algorithms for the 

analysis of m6A-Seq data are inadequate. Dedicated m6A-seq analysis software 

is limited to the R environment, which requires knowledge of this statistical 

programming language to use. Furthermore, while these methods properly take 

intron-exon boundaries into account, they are unsuitable for m6A detection in 

poorly annotated transcriptomes. On the other hand, as ChIP-Seq is an older 
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technology, methods for peak-calling from DNA sequence data are more 

advanced and can offer increased sensitivity, specificity and resolution – 

nonetheless, these fail to capture the key biases and intricacies present in RNA 

sequence data. 

5.1.5 Computational prediction of m6A sites 

    As m6A-seq has become more widespread in use, an increasing amount of 

sequence data has become available. This has spawned a new branch of 

research for computational prediction of new m6A sites from primary sequence. 

In addition to the benefits the predictive power of these models provides, e.g. 

for hypothesis generation, feature-based models of m6A sites can also provide 

new insights into the biological context and roles of this modification. 

Chen et al developed the first m6A prediction web server - m6Apred - based 

on a support vector machine (SVM) model (Chen et al. 2015d), followed by 

iRNA-Methyl, a predictor utilising a different set of features, but still utilising the 

same supervised learning algorithm (Chen et al. 2015c,Chang and Lin 2011). In 

iRNA-Methyl, the authors utilise the S.cerevisiae RNA methylome data (first 

published by Meyer et al (2012)) to identify a set of yeast m6A sites as positive 

training examples, and use randomly selected unmethylated positions 

containing the yeast methylation consensus GAC as negative training 

examples. Short (50 nt) RNA sequences surrounding the methylation site are 

represented as feature vectors using a pseudo-component approach, originally 

developed for representing protein sequences (Chou 2001) and later further 

extended for nucleotide representation (Chen et al. 2015e; Guo et al. 2014). In 

this approach, instead of considering sequences as composed on four 

nucleotides, they can be ‘encoded’ using physiochemical properties instead. 

Sequences are represented as a measure of translational (rise, shift, slide) and 

angular (twist, tilt, roll) properties of adjacent RNA bases. kmer content 

information and sequence enthalpy, entropy and free energy based on 

dinucleotide composition are also included. Physiochemical properties of bases 

directly affect the structure of RNA, and therefore are likely to play a role in m6A 

deposition/recognition, and as such, yield more predictive power for m6A sites in 

yeast than RNA sequences alone. 
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m6Apred represents an extension of this work, instead comparing chemical 

properties, such as ring structure, functional groups and hydrogen bonding 

properties of each training sequence. Additionally, pRNAm-PC – a web server 

for predicting m6A sites from pseudo-dinucleotide composition using iRNA-

Methyl training data - was established by the same co-authors (Liu et al. 2016). 

The differences between the approach used in iRNA-Methyl and pRNAm-PC 

are unclear. 

The three classifiers have been shown to be able to distinguish true m6A 

sites in yeast from randomly selected, unmethylated consensus sites with 65-

78% accuracy. These performance rates, while encouraging, highlight the 

difficulty in developing an accurate m6A site predictor. These difficulties may be 

due, in part, to the accuracy of training data sets. While the SVM algorithm used 

by Chen et al (2015) has been demonstrated to be tolerant of somewhat noisy 

training data (Glick et al. 2006; Kumar et al. 2011), RNA methyltransferase 

knockout experiments across various organisms have suggested that a large 

proportion of all enriched sites detected by m6A-seq could in fact, be false 

positives. The high proportion of false positive sites mislabelled as genuine m6A 

sites in the training dataset could heavily confound the results, and as 

performance was assessed using a cross-validation based approach, this would 

further skew the reported results.  

Additionally, these classifiers consider only base composition and physical 

and/or chemical properties of sequences. While this allows for an unbiased 

classification, requiring no further information for making predictions than the 

RNA sequence of interest, additional data could serve to improve prediction 

accuracy. For example, it has been suggested that RNA secondary structure 

may play a role in m6A site formation and/or recognition by reader proteins, and 

thus could be used as a predictor feature for a classifier. Furthermore, it has 

been noted that the distribution of m6A residues in mRNA is non-random, with 

enrichment in UTR regions, and long and/or alternatively spliced exons. Thus, 

positional information could be used to further enhance the predictive power of 

such classifiers, although this may preclude its use for sequences which are 

poorly annotated. 
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Finally, SVM parameters can be difficult to tune, often requiring exhaustive 

and time-consuming grid searches to achieve optimal classification 

performance (Gaspar et al. 2012). It is thus possible that further m6A site 

prediction accuracy could be eked out by additional parameter optimisation. 

m6a-pred and iRNA-Methyl classifiers have been trained on yeast data, and 

therefore are likely to perform worse if applied for mammalian sequence 

classification. To address this issue, Zhou et al developed a mammalian m6A 

prediction server SRAMP (sequence-based RNA adenosine methylation site 

predictor) (Zhou et al. 2016b). Similar to methods used by Chen et al (2015), 

SRAMP uses only sequenced-based features for classification derived from a 

mammalian (human and mouse) m6A training data sets. SRAMP encodes 

features based on positional sequence information with respect to the 

methylated adenosine and predicted secondary structure (using RNAfold tool 

(Lorenz et al. 2011)) information. Zhou et al trained a Random Forest (Breiman, 

2001) classifier, which outperforms both m6a-pred and iRNA-Methyl on a 

mammalian testing dataset, but not an independent yeast one, suggesting there 

are crucial biological differences between methylated RNA in yeast and 

mammals that prevent the training of a universal, species-independent 

classifier. 

Zhou et al (2016) used a largely unbalanced (1:10 positive to negative 

instance ratio) training data set in order to simulate the observation that only a 

small proportion of m6A consensus motifs are actually methylated. However, 

unbalanced training data sets are problematic for many supervised learning 

algorithms (Maimon and Rokach 2010) and can result in inaccurate predictions 

for the minority group, as the penalty for misclassifying minority instances is 

significantly lessened (i.e. 90% total classification accuracy on the training 

dataset can be achieved simply by classifying every instance as belonging to 

the majority group). This unbalance in the training data set can result in a 

misleading assessment of the overall classifier accuracy, if the precision with 

respect to individual groups is not reported.  

Zhou et al’s results indicate that there is strong positional nucleotide 

preference not just within the short consensus sequence surrounding the m6A 
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site, but also at more distal regions. However, positional binary encoding of 

nucleotide sequence is unable to fully capture the sequential nature of the data, 

such as sequence motif enrichment or periodicity around the m6A site.  

Overall, current work in computational prediction of m6A sites is promising; 

however, these methods still suffer from fairly low classification accuracy, such 

that their use for real world problems is not yet practicable.  

5.1.6 Summary 

    Research into the RNA methylome has exploded in recent years, with the 

development of transcriptome-wide methods for m6A site detection. As a result, 

functional roles surrounding this modification are being slowly elucidated. 

Several RNA methyltransferases, demethylases and m6A binding proteins have 

been discovered, forming a dynamic, regulatory network. m6A is emerging as a 

key regulator of RNA fate, with strong evidence to suggest that adenosine 

methylation exert control over processes as diverse as RNA splicing, nuclear 

export, translation and degradation. Disruption of this delicate balance of m6A 

modifications within the cell has been shown to result in diverse phenotypes. 

Whether through knockdown experiments, or genetic associations, RNA 

methylation is implicated in complex human disease, including obesity, infertility 

and various neurological disorders.  

 

RNA methylome sequencing data presents not only a unique analytical 

challenge, but also an unprecedented opportunity for gaining new insights into 

RNA biology. However, while wet-lab investigations have flourished, 

bioinformatics have floundered. Implementations of dedicated algorithms for 

m6A-seq data analysis have thus far been limited to R packages ‘ExomePeak’ 

and ‘HEPeak’. Both of these algorithms take an exome-based approach for 

transcriptome analysis and therefore are unable to detect m6A sites in intronic 

regions, novel transcripts or transcriptomes of poorly annotated organisms.  

Current methods for the analysis of m6A-seq data fail to address the 

plethora of problems inherent to this type of data. Detected m6A sites suffer 

from low resolution, high false positive rate and inability to detect m6A sites in 
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low expression transcripts. These issues could be at least partially addressed in 

silico.  

Furthermore, computational prediction of m6A sites from primary RNA 

sequence could open additional avenues for m6A data analysis. In conjunction 

with m6A-seq data, it could be used to call m6A sites with increased resolution, 

sensitivity and specificity. However, this avenue remains largely unexplored. 

While the accuracy of m6A site prediction algorithms developed thus far has 

been too low for practical applications, there is scope for improvement. The use 

of alternative training datasets could be explored together with algorithmic 

improvements. The predictive power of many sequence features remains to be 

investigated, and could provide not only improvements in m6A prediction 

accuracy, but also yield insights into the biological context and dynamics of this 

modification. 

5.2.  m6aViewer application methods 

5.2.1 Overview  

    The following section discusses how some of the issues in m6A-seq data 

analysis can be addressed. A new tool for m6A-seq data analysis – m6aViewer- 

is introduced for this purpose, implementing novel methods for m6A-seq data 

processing, peak-calling and visualisation. Developed using the programming 

language Java, m6aViewer is a cross-platform tool controlled through a 

graphical user interface. In contrast to exomePeak and HEPeak packages, it 

requires no programming skills to use. 

The rest of this chapter is dedicated to the implementation of m6aViewer’s 

major features and the m6A peak-calling and processing methodology applied. 

5.2.2 Sequence Read Processing   

    m6A-seq sequence data alignment should be performed using a programme 

that implements a splicing-aware split-read mapping algorithm. All m6A-seq 

data analysed here has been aligned using the STAR aligner (Dobin et al. 

2013). Introduced in 2013, STAR is a relatively new alignment algorithm, built 

exclusively for RNA sequence alignment problems, unlike several more 



177 

 

established tools such as Tophat (Trapnell et al. 2009; Kim et al. 2013), which 

represent the natural adaptation of DNA sequence aligners to the problem. The 

STAR aligner has been shown by its authors (Dobin et al. 2013), as well as 

independently (Engström et al. 2013), to compare favourably to other alignment 

algorithms in terms of specificity, sensitivity and novel splice junction discovery. 

Most importantly, the algorithm utilises uncompressed suffix arrays stored in 

local memory and thus, while it requires substantial computational resources to 

run, high quality alignments can be generated up to two orders of magnitude 

faster than with other popular RNA-Seq data aligners (Engström et al. 2013). 

Aligned RNA sequence reads are typically stored in a SAM or BAM 

formatted file (Li et al. 2009), a widely accepted file format for storing sequence 

alignment data. While recently a number of alternative and/or improved ways of 

storing sequence alignment data have emerged (Cochrane et al. 2012; Hsi-

Yang Fritz et al. 2011), the timeliness of SAM/BAM file format has thus far 

ensured its dominance. Due to its universal adoption, sorted and indexed BAM 

format files are used as m6aViewer input and as a starting point for all the 

subsequent analyses described herein.  

 The SAM file format consists of the header and alignment sections, where 

each alignment is stored on a single line containing 11 mandatory fields 

describing the read, reference and the alignment (Table 10), while the header 

stores meta-data that mainly describes the reference sequence to which the 

data was aligned to.  

Table 10 summarises the types of data stored in the alignment line. This file 

format stores key information required for computing sequenced RNA fragment 

coverage across the reference that is an integral part of m6A-seq data analysis. 

Read depth can easily be inferred from each read’s starting coordinate and 

length, simply by tallying up the coverage at any given position. There are 

several concerns, however, that make this a less trivial task than could be 

initially supposed. 
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 Field Description 

1 QNAME Name of read 

2 FLAG A bitwise flag field, storing binary information on the read, including 

primary/secondary alignment status, PCR/optical duplicate status and 

paired/unpaired read flags 

3 RNAME Name of the reference sequence 

4 POS Left-most mapping position of the read on the reference 

5 MAPQ Quality score of the alignment 

6 CIGAR CIGAR string, encoding alignment matches, mismatches, 

insertions/deletions, clipping, etc. with respect to reference sequence 

7 RNEXT Name of reference sequence of the next read or mate pair read 

8 PNEXT Position of the next read or mate pair read 

9 TLEN Length of the read 

10 SEQ Sequence of the read 

11 QUAL ASCII encoded quality score 

Table 10.  Summary of mandatory read alignment information 

stored in BAM/SAM file format. 

 

Figure 39. In paired-end RNA sequencing, if the mates are 

aligned to non-consecutive exons, the sequenced fragment 

cannot be easily inferred, as potentially several differently spliced 

transcripts could give rise to the observed paired-end read 

alignment. 
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In RNA sequencing, reads spanning intron-exon boundaries are 

commonplace; such split-read alignments should be properly accounted for, 

else the obtained coverage will be inaccurate. While this is a seemingly 

straightforward adjustment in coverage calculations, it can be more complicated 

in paired-end sequence data, however. Consider the case where mates within a 

read pair are aligned to non-consecutive exons – potentially, the read pair could 

have been generated by an RNA fragment including any sequential permutation 

of skipped exons (Figure 39). This issue is perhaps decidedly less frequent in 

m6A-seq data than in other forms of RNA sequencing due to current m6A-seq 

protocols necessitating a size selection of RNA fragments, averaging 100 nt. A 

reasonable estimation, based on the mean expected fragment size, can be 

made in cases where the insert size is smaller - that is, only small exons can be 

wholly spanned by the read pair while still conforming to the assumption of a 

limited fragment size. 

Additionally, in paired-end sequence data, some conformations of mate pair 

alignment can be indicative of mapping errors – for example, where both mates 

are aligned to the same strand. While these types of arrangement can be 

indicative of genuine RNA transcripts that can arise from genomic duplications, 

rearrangements,  chimeric transcripts, or even circular RNAs (Qu et al. 2015), 

the fragment reference coverage becomes impossible to deduce. It is important 

to identify these scenarios, as these cases can cause program runtime errors 

due to violated assumptions; or worse, result in inaccurate coverage 

estimations without any indication of a problem. 

Other considerations must also be taken into account that could result in 

errors when computing coverage. Read base calling and alignment quality 

scores are encoded within the SAM file and are indicative of the level of 

confidence one should place in the data. Typically, sequence data quality 

control steps are performed at fastq as well as post-alignment stages. Should 

additional quality control steps be included at runtime to discard poor quality 

reads and alignments? Blindly including every read regardless of mapping 

quality can lead to an increase in noise in the coverage data; on the other hand, 

quality score-based checks are bound to exclude some correctly aligned reads, 
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thus resulting in a decrease in coverage, which can be problematic for detecting 

m6A residues in poorly expressed transcripts. Furthermore, additional quality 

checks, while individually trivial, are likely to substantially increase computation 

time, as they will need to be performed on millions of reads in a typical m6A-seq 

experiment. 

There is also the matter of duplicate reads. In DNA sequencing, duplicate 

reads are typically assumed to be PCR amplification artefacts and their filtering 

is recommended (Dozmorov et al. 2015). These will naturally arise during the 

amplification step, as some fragments become preferentially enriched due to 

smaller size or low GC content, and therefore are more likely to be sequenced. 

Sample availability can be another major contributor – low input amounts will 

require more PCR cycles to achieve the concentrations required for sequencing 

and result in further reduction of library complexity. Some fragment duplication, 

however, can also be expected to arise due to sampling coincidence from 

fragmentation in RNA sequencing for genes with very high expression. Thus, 

removal of duplicate reads is only fully justified when the sequencing depth is 

low, and sampling coincidence is unlikely (Zhou et al. 2014). This is problematic 

for RNA sequencing data, as coverage across the transcriptome is extremely 

variable - filtering duplicates on the assumption that they have arisen because 

of PCR amplification would be beneficial for genes with low expression, but 

pose problems for genes which are highly expressed. For a peak-calling 

strategy that is more concerned with limiting the false positive rate than the 

false negative rate of called peaks, removal of duplicate reads using software 

such as SAMtools (Li et al. 2009) can be beneficial. If limiting the false negative 

peak calling rate is an issue, then an alternative strategy may be required.  

As touched upon previously, sequence reads are often not an entirely 

accurate reflection of the RNA fragments. Most current sequencers can only 

read short fragments, as errors accumulate with increased read length, resulting 

in a substantial drop in sequencing quality. This often results in reads which are 

shorter than the fragment/library insert size. Paired-end data can more 

accurately represent the sequenced fragment; however while paired-end 
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sequencing is becoming the norm, single-end reads still constitute a large share 

of m6A-seq data that is currently publicly available.  

For a single enriched region that constitutes an m6A site, the observed 

coverage distribution can be remarkably different under varying methods of 

sequencing and coverage computations. Consider the case where averaged 

fragmented RNA size is 100 nt and sequencing read length is also 100 bp, 

obtained using non-stranded library preparation (Figure 40A). The difference 

between counting fragment coverage and read coverage is slight. Paired-end 

data results in a slightly wider peak, suggesting that some information is lost at 

the end of the read in case of single-end data. If the read length is shorter than 

the insert size, the difference becomes more pronounced, and a bimodal read 

coverage distribution can be observed (Figure 40B). In paired-end data, this 

can be corrected by including the gap between mates, as well as the reads 

themselves, in the coverage. For single-end data, extending the reads up to 

100bp in length also corrects this bimodal pattern. If the sequencing data is 

stranded, instead of the bimodal coverage pattern, the bias manifests as a shift 

in the distribution for single-end reads (Figure 40C) that can also be corrected 

by read extension. 

Extending single-end reads up to the average sequenced fragment size 

appears to be a valid strategy, although some small discrepancies remain. 

Indeed, modelling the length of read extension based on a real distribution of 

fragment lengths would yield more accurate corrections; however this can be 

highly variable between different samples and often this information is not 

available, so that modelling read size extension as a random variable is not 

practical. 
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Figure 40. Simulated read coverage distributions. Simulations were 

performed using m6A-seq data with average 100bp fragment size, 

sequenced using non-stranded library protocol with 100bp paired-end 

reads. Non-stranded single-end reads were simulated by filtering out the 

second mate. Stranded single-end reads were simulated by filtering out 

the mate mapped to the coding strand. Coverage data presented here is 

smoothed to aid clarity. A. 100bp unstranded reads, average 100bp 

fragment size B. Artificially trimmed (after alignment, to discount aligner 

effects) to 50bp, unstranded reads, average 100bp fragment size. C. 

Artificially trimmed to 50bp, stranded reads, average 100bp fragment 

size. D. Artificially trimmed (after alignment, to discount aligner effects) to 

50bp, unstranded reads, average 100bp fragment size. Single-end read 

fragment coverage illustrates the distribution obtained using the read 

shifting, rather than extension strategy. 
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An alternative to single-end read extension towards the 3’ end is fragment 

shifting, a strategy frequently used in ChIP-seq peak callers (Zhang et al. 2008), 

as well as the m6A peak caller exomePeak (Meng et al. 2013). Figure 40D 

illustrates the effects of this approach on single-end read coverage distribution. 

While the coverage distribution accurately captures the centre of the peak and 

corrects the bimodal distribution observed in unadjusted data, the resulting peak 

does not accurately capture the real fragment coverage, which can be inferred 

from paired-end reads. The peak is ‘slimmer’, but most importantly, coverage at 

the summit is lower, which has a direct impact on peak detection, potentially 

resulting in an increased false negative rate.  

Based on these considerations, a robust approach to obtaining an accurate 

representation of the true RNA fragment coverage distribution can be 

formulated, that is a compromise between stringency and computational 

complexity. This is summarised in Figure 41. Aligned sequence input data is 

assumed to have undergone desired quality control steps, however, m6aViewer 

implements optional, user-configurable (disabled by default) filtering of poor 

quality alignments, as well as reads flagged as PCR/optical duplicates. Only two 

quality checks are performed by m6aViewer by default – read secondary 

alignment and paired-end read proper pair checks, as these types of reads are 

not routinely filtered out from aligned data and can directly impact the 

m6aViewer algorithm. In order to correctly infer fragment boundaries from 

paired-end data, both mates must be mapped, and must be mapped in a correct 

orientation. m6aViewer performs this check and discards any pairs violating this 

requirement, as these likely arise due to alignment errors. Such alignments can 

also arise due to circular transcripts, genomic duplications or trans-

splicing/chimeric transcripts; however, the detection of m6A in these rare RNA 

species is beyond the scope of this work. 
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Figure 41. Outline of the strategy adopted for processing single- 

and paired-end sequencing reads to obtain an accurate 

representation of the true RNA fragment coverage distribution. 

The term ‘block’ is used to refer to a single continuous block of 

aligned sequence with respect to reference and will most 

commonly consists of a single read or the sequence between the 

boundaries of paired-end mates; however, in the case of split-

reads, a single read may consist of several alignment blocks. This 

is also the case where alignment blocks would be artificially 

extended past an exon boundary into intronic sequence, or 

(presumed) alternatively spliced exon. 

After filtering, for a given set of sequence reads, coverage is estimated 

iteratively by determining the boundaries of alignment blocks generated by each 

read (or pair of reads) and incrementing covered positions in a depth of 

coverage array. 

This approach requires additional considerations for management of 

computational resources. Processing the entire dataset at once is infeasible for 

all but the smallest genomes. The human genome, for example, consists of 

approximately 3 billion base pairs and as such, in order to process a single 

m6A-seq sample, one would need to keep track of some 6 billion integers (for 

both immunoprecipitated and control coverage). This would require a 

substantial amount of RAM (~4GB per billion 32 bit integers), which is not 

readily available in most desktop computers. Furthermore, in Java (and many 

other programming languages) integers are used to keep track of array indexes, 

thus providing an upper limit to the length of any single array (2,147,483,648). 

While no single human chromosome is that big, this is certainly not true for all 

other organisms (Pellicer et al. 2010). Memory requirements can be managed 

by processing the data in smaller chunks. As the alignment file is read 

sequentially, this will require the reads to be sorted; otherwise the SAM file 

would need to be read more than once.  

This sequential block design, however, does not easily allow taking 

advantage of modern multi-core processors. Here, BAM format files are used to 

facilitate parallel data processing, BAM files are more compact than their SAM 

counterparts and have been widely adopted by researchers as the definitive 
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sequence alignment file format. As BAM files are the compressed counterpart to 

SAM files, they use BGZF block compression format, such that each 

compressed block is no bigger than 64 kilobytes. Blocks can be indexed by 

storing file offsets in a BAI file format and thus can be used for random access. 

In a sorted and indexed BAM file, a binning strategy is employed to allow easy 

identification of data blocks which contain reads overlapping a specific region in 

the reference sequence. This approach, adopted from the database access 

optimisation used by the UCSC Genome Browser (Karolchik et al. 2004), 

utilises an interval tree type data structure. The reference is subdivided into 

smaller blocks in a hierarchical manner and each read alignment is placed in 

the block which can contain it in its entirety (Figure 42). In order to retrieve all 

alignments in the region of interest, one needs to retrieve overlapped blocks. 

While introduction of a ‘jagged’ data structure would improve read binning, 

typically almost all reads will still be assigned to the smallest bins, and therefore 

examining bins at the top of the hierarchy will not be a costly operation. This 

indexing structure allows for fast random access of reads for any given region in 

the reference, overcoming the inherent limitations of traditional file reading 

methods, which are limited to streaming data in a sequential manner. Utilising 

BAM file random access, the reference is subdivided into smaller blocks and 

each can be processed in parallel, thus limiting memory use by not processing 

the whole dataset at once and improving speed by taking advantage of parallel 

processing (Figure 43). A similar strategy is used for retrieval of local coverage 

for real-time data visualisation. 
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Figure 42. An illustrative example of the aligned read binning 

scheme used to sort and index BAM files. Given a genomic region 

of 200KB, a hierarchical binning scheme can be devised. Each 

aligned read is placed in the smallest bin which can wholly contain 

it – in the example here, read A can be contained in its entirety in 

the 33-66BK bin, read B must be placed in the top tier bin, while 

read C is placed in the 100-200KB bin. 
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Figure 43A. Computational resources are managed by 

subdividing the reference into smaller blocks in order to limit 

memory use. Peak calling for several blocks can be performed in 

parallel to take advantage of multi-core processing. 
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Figure 43B. Increasing both block size and parallelisation can 

increase peak-calling speed by an order of magnitude. Similar 

gains in speed can be achieved by initially doubling the available 

memory (block size) or the number of parallel processing threads 

(1 Thread, 1M Block: mean= 130772; 2 Threads, 1M Block: 

mean=65427; 1 Thread, 2M Block: mean= 69560.6). Both 

increasing memory use (block size) and the number of processing 

threads have diminishing returns.  
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5.2.3 m6A peak-calling  

    A common strategy for m6A peak calling uses binning, where, in general, the 

reference is subdivided into small blocks and each block is tested for 

statistically significant coverage enrichment over control. Here, an alternative to 

the binning method is proposed that relies directly on the distinct ‘peak’ shape 

of the distribution to identify m6A peaks. 

Initial candidate peak positions are identified by finding all the local maxima 

in the coverage distribution. This is done by scanning the coverage array and 

detecting a change in gradient (Figure 44A). In practice, however, the coverage 

data is noisy, with small irregularities blurring the bell-shaped distribution signal 

and introducing small local maxima (Figure 44B). Thus, coverage data is first 

smoothed in order to remove small confounding signals that can affect true 

peak detection. Data smoothing methods have been widely studied. The 

simplest and perhaps oldest method is the mean sliding window approach, 

where each point, Cx, is smoothed out using n data points preceding it: 

   𝐶𝑥 = 
1

𝑛
 ∑ 𝐶𝑥−𝑖

𝑛−1

𝑖=0

 

Or, alternatively, surrounding it: 

𝐶𝑥 = 
1

𝑛
 ∑ 𝐶𝑥−𝑖

(𝑛−1)/2

𝑖=−(𝑛−1)/2
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Figure 44. A. Peaks can be detected from the coverage distribution by 

determining local maxima as the point of change between increasing and 

decreasing gradient in the coverage array. B. A peak from chromosome 

1. Blue line indicates the raw coverage distribution; red shows the 

smoothed coverage distribution. Black arrows indicate where small local 

maxima are present in the unsmoothed data and would confound true 

peak detection. C. The effects of increasing smoothing window size (from 

left to right: 10nt window size, 50nt window size; 200nt window size) on 

the data. Small window sizes fail to eliminate small, confounding local 

maxima, while window sizes that are too large can result in genuine 

signal being lost.  
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This approach has several advantages - firstly, it is computationally simple, 

which is crucial in this case, as due to the size of typical datasets, even trivial 

computations, when applied to a whole transcriptome-wide dataset, can result 

in significantly increased running times. Secondly, while the decision is largely 

arbitrary, the level of smoothing required can be easily achieved by adjusting 

the bandwidth parameter n. It is important that a smoothing method is able to 

reduce the impact of noise in the data, without losing the signal. Figure 44C 

shows how varying the bandwidth can affect the smoothing of the coverage 

data. While a small n size may not be enough to smooth out the noise in the 

coverage data, the coverage data becomes increasingly flattened as the 

bandwidth grows. At the extremes, this can result in the loss of genuine peak 

signal (Figure 44C, right). 

Here, a mean smoothing window size of 20 nt is used – one empirically 

determined to be sufficient for smoothing out small local variation, while 

preserving the overall peak signal. In some cases, however, this is not sufficient 

to remove all confounding signal from the coverage distribution. Consequently, 

a look-behind mechanism is implemented to identify and merge local maxima 

which have been detected in very close proximity.  

Local maxima (peaks) and local minima (valleys between overlapping 

peaks) are subsequently identified from the smoothed coverage by searching 

the coverage array for gradient inversion events. A potential peak is thus initially 

defined as a position i in the smoothed coverage array C, where Ci – Ci-1, …,  i-n > 

0  and Ci – Ci+1, ..., i+m > 0, where n and m are either the last prior (or first 

subsequent) gradient change event position detected (if greater than 1/10th of 

the expected peak width, to account for overlapping peaks but also prevent 

detection of small irregularities in coverage distribution), half the expected peak 

width or last (or next) position with 0 read coverage, whichever occurs closest. 

For cases where peak summits are flat – i.e. local maxima spans multiple bases 

- the putative peak position is defined as the central point.  

Each local maximum identified is tested against the null hypothesis that the 

read distribution in the immunoprecipitated sample is not higher than that in the 

control using Fisher’s Exact test. The total number of fragments for the peak 
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region in IP (immunoprecipitated) and INPUT (control) samples are counted as 

the number of fragments aligning to (but not necessarily wholly contained 

within) the peak region. The peak region is defined as the region encompassing 

the number of bases equal to the sequenced fragment length to each side of 

the detected maximum; in cases of peak overlap, the region boundary to the 

overlapping side(s) of the peak is defined as a mid-point between the two 

peaks. Respective contingency tables are thus computed from the total IP and 

INPUT fragments at the putative peak position and the total IP and INPUT 

library size. The p-value is then computed as: 

𝑝 =  
(𝑅𝐼𝑃 + 𝐿𝐼𝑃)! (𝑅𝐼𝑁𝑃𝑈𝑇 + 𝐿𝐼𝑁𝑃𝑈𝑇)! (𝑅𝐼𝑃 + 𝑅𝐼𝑁𝑃𝑈𝑇)! (𝐿𝐼𝑃 + 𝐿𝐼𝑁𝑃𝑈𝑇)!

𝑅𝐼𝑃! 𝑅𝐼𝑁𝑃𝑈𝑇! 𝐿𝐼𝑃! 𝐿𝐼𝑁𝑃𝑈𝑇! (𝑅𝐼𝑃 + 𝑅𝐼𝑁𝑃𝑈𝑇 + 𝐿𝐼𝑃 + 𝐿𝐼𝑁𝑃𝑈𝑇)!
 

where R is the number of reads at a putative m6A site and L is all other 

aligned reads in the library. Alternatively, local background can be used in this 

calculation instead, using fragment counts at peak position and total reads 

aligning to the respective transcript. 

The data is then subjected to the Benjamini-Hochberg (Benjamini and 

Hochberg 1995) correction, to account for the multiple testing bias. Multiple 

testing corrections aim to recalculate the probabilities obtained from repeated, 

independent applications of statistical tests. One of the earliest - and still 

commonly used- multiple testing corrections is the Bonferroni (Armstrong 2014) 

correction. However, Bonferroni correction is particularly stringent, and while it 

does effectively control type I errors, it can result in an increase of false 

negative calls. Here, Benjamini-Hochberg is used as an alternative, less 

conservative multiple-testing correction, which aims to strike a balance between 

limiting type I and type II errors. In a list containing n sorted (smallest to largest) 

p-values, the adjusted probability P(x) is computed as: 

𝑃(𝑥) =  
𝑃(𝑥)∗𝑛

𝑖
,   𝑖 =  𝑛, 𝑛 − 1,…  1; 

Where i is the rank of the value in the list. Unlike in the Bonferroni correction, 

where all p-values are adjusted universally, here the most significant hits are 

corrected more conservatively than less significant hits. 
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Alternatively, FDR can be estimated and controlled by m6aViewer by 

treating the INPUT sample as IP and performing peak detection in order to 

obtain an empirical p-value distribution from the switched IP and INPUT 

samples. The FDR of peak p-values can then be estimated from the obtained 

distribution and represents the chance of seeing an equivalent read enrichment 

in the RNA-Seq control data. While this is not an ideal measure, in practice it 

provides a cut-off that is less stringent than Bonferroni correction, but more 

stringent than Benjamini-Hotchberg. 

The peak-calling strategy described here has several advantages. Firstly, 

detecting peaks based on the shape of the distribution results in increased peak 

calling resolution. Each peak can be identified as a single nucleotide position 

representing the peak summit, whereas binning-based approaches will result in 

significant regions which can span several kilobases in length. This poses 

problems for both downstream comparative data analysis and wet lab peak 

validation. 

As discussed by Cui et al (2015), the binning strategy models enrichment 

within individual segments as independent, an assumption which is not 

generally correct. Working with the entire coverage distribution avoids this 

problem posed by segmentation entirely. Indeed, this approach can be seen as 

the reverse to that adopted by ChIP-Seq peak caller MACS – MACS detects 

significantly enriched regions and then attempts to refine these by finding peak 

summits, whereas here peaks are detected in the immunoprecipitated sample 

first, and tested for statistically significant enrichment afterwards. This type of 

approach allows one to differentiate (to some degree) multiple peaks in close 

proximity - a phenomenon that has been shown to be fairly common (Linder et 

al. 2015). MACS attempts to refine peak summits to a single nucleotide 

resolution call by finding the highest coverage position within identified 

significantly enriched region. However, in the case of overlapping peaks, this in 

general will only identify the peak summit position with the highest coverage, 

disregarding any putative presence of multiple m6A residues in the region.  
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5.2.4 m6A peak deconvolution 

5.2.4.1 Probabilistic aligned read modelling using expectation maximisation 

Peaks in RNA fragment coverage distribution arising from multiple m6A sites 

in close proximity can often be visually indistinguishable from single sites. 

Indeed, Linder et al ( 2015) observed that multiple methylated adenosines are 

often present in close proximity. Conversely, the summit of detected single m6A 

peaks rarely corresponds precisely to the site of methylation (Linder et al. 

2015).  

Improving peak-calling resolution is important for downstream validation of 

m6A sites via PCR as well as additional experiments, such as identification of 

m6A reader proteins. Furthermore, it is important to separate individual m6A 

sites in experiments which aim to detect methylation changes across different 

conditions. A window-based approach, such as that employed by tools like 

exomePeak (Meng et al. 2013), could fail to identify methylation changes in 

windows which encompass multiple m6A residues if these changes are not 

uniform across all sites. Here, an approach is described that attempts to 

improve m6A peak-calling resolution, as well as deconvolute several m6A 

residues in close proximity that results in overlapping peaks. This method is 

implemented in m6aViewer software as an alternative peak-calling mode that 

increases peak-calling accuracy at the cost of increased software running time. 

When considering the aggregated RNA fragment coverage alone, positional 

information on individual RNA fragments is lost, which could be used to inform 

m6A residue positions. Consider a region enriched in immunoprecipitated RNA 

fragment coverage, such as shown in an illustrative example in Figure 45. 

Reads aligning to this region are a product of one of several possible cases – 

antibody binding to one or more m6A residues; antibody binding to RNA non-

specifically; free RNA or DNA fragment contamination that can arise from RNA 

“sticking” to beads or other surfaces; or erroneous read alignment (due to poor 

read quality, low complexity regions, etc.). The latter cases can be considered 

noise, and with the possible exception of non-specific antibody binding, should 

constitute a minor fraction of all the reads aligning to an enriched region. Thus, 

the observed coverage distribution can be seen as a mixture of noise and one 
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or more m6A components. If these components could be deconvoluted, multiple 

m6A sites in close proximity, as well as individual m6A sites, could be identified 

more accurately. 

 

Figure 45. Diagram representation of an enriched IP region as a 

mixture of several m6A components and noise reads. 

Given multiple m6A sites in close proximity, it is possible then to assign each 

aligned fragment a probability that represents how likely it is that we see it as a 

result of antibody binding to each possible m6A position or as a result of noise. 

Thus, if m6A positions were known, a probabilistic approach could be used to 

assign each data point (fragment) to each m6A site. The reverse is also true - 

given the probability distribution of all fragments, unknown m6A positions could 

be inferred. Thus, for a given region modelled in such a probabilistic way, m6A 

positions can be more accurately called by finding the combination of 

adenosines in the reference sequence which gives rise to the highest overall 

model likelihood. 

The problem can then be framed as one of maximum likelihood – what 

combination of components explains the observed RNA fragment distribution 

best? A naïve approach would be to consider all adenosines in a given region 

and compute the likelihood of all the possible combinations, choosing the 

highest. However, this would be prohibitively computationally expensive, 

resulting in factorial algorithmic complexity (O(n!)) and certainly would not be 

scalable to whole transcriptomes – a 1kb region containing 250 adenosines and 
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up to four putative m6A sites, for example, would require 161,487,125 possible 

models to be assessed. 

 

Figure 46. An example of immunoprecipitated RNA fragment 

(blue) alignment to a reference sequence (red) containing two 

m6A sites. Here, fragment 1 is likely to arise due to antibody 

binding to the leftmost m6A position; fragment 2 could be a result 

of antibody binding to either (or both) m6A position; while fragment 

3 is likely to be noise, as it does not overlap any of the m6A sites. 

Instead, Expectation Maximisation (EM) algorithm (Dempster et al. 1977; Do 

and Batzoglou 2008) can be used to find a solution in a reasonable time by 

iteratively computing the likeliest m6A sites and fitting the observed fragment 

distribution to the model, until the algorithm converges to a solution. EM is often 

used to find maximum likelihood-based approximations of parameters in 

probabilistic models, and here m6A positions can be seen as parameters to be 

estimated in a probabilistic RNA fragment distribution model. 

For a given enriched region, let X = (x0, ..., xk-1) be a k-sized vector of 

sequenced RNA fragments aligned to the region, drawn from an unknown 

mixture of size n of D distributions, each representing either an m6A site or a 

noise read cluster. We wish to find a set of parameters θ that maximise the log 

likelihood function: 

L(θ) = ln P(X|θ) 

Where θ consists of m6A positions and noise cluster C∈ {c0, …, cn-1} and a 

corresponding prior probability vector S∈{s0, …, sn-1} where ∑ 𝑆𝑖
𝑛
𝑖=0  = 1 and  0 ≤ 
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Si ≤ 1. Here, both the RNA region ‘sequencability’ and differing m6A 

stoichiometry (the proportion of methylated RNA molecules out of the total pool 

of RNAs) are accounted for by incorporation of prior probabilities, as both 

influence the observed peak height.  

Expectation maximisation approach can iteratively estimate θ while 

maximising L(θ) and consists of two steps. During the expectation step, 

posterior probabilities of each mapped RNA fragment arising from each putative 

m6A position in C are computed, given the estimated parameters θ at step t. 

P(xi∈ 𝐶𝑗 | θt) = 
𝑆𝑗 ∙𝑃(𝑥𝑖 |𝐷, 𝐶𝑗 )

∑ 𝑆𝑗 ∙𝑃(𝑥𝑖 |𝐷, 𝐶𝑗 )
𝑛
𝑗=0

 

The maximisation step then re-estimates parameters θt from the posterior 

probabilities obtained during the expectation step. Each prior probability at step 

t is estimated as: 

𝑆𝑗,𝑡 =∑𝑃(𝑥𝑖  |𝑆𝑗,𝑡−1, 𝐶𝑗,𝑡−1)

𝑘

𝑖=0

𝑘⁄  

and each m6A position as: 

𝐶𝑗,𝑡 = 
∑ 𝑃(𝑥𝑖  |𝑆𝑗,𝑡−1, 𝐶𝑗,𝑡−1)
𝑘
𝑖=0  ∙ 𝐶𝑗,𝑡−1

∑ 𝑃(𝑥𝑖  |𝑆𝑗,𝑡−1, 𝐶𝑗,𝑡−1)
𝑘
𝑖=0

 

The process repeats for a set number of iterations, or (in most cases) until 

the algorithm has converged when L(θt) - L(θ t-1) < 0.01, where the likelihood at 

step t is computed as:  

𝐿(𝜃𝑡) = ln(∏ max
𝑗=0;𝑗<𝑛

𝑃(𝑥𝑖|𝐶𝑗 , 𝑆𝑗)

𝑘

𝑖=0

) 
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Where each sequenced read fragment is effectively assigned to either the 

likeliest m6A position cluster or a noise cluster. This iterative procedure is 

visualised in a simulated example in Figure 47. 

 

 

Figure 47. Iterative fitting of multiple peaks using EM algorithm on 

simulated data. 1000 RNA fragments were simulated to result 

from m6A residues at positions 500, 600 and 750 with 20%, 35% 

and 40% corresponding probabilities to simulate differing 

stoichiometry and 5% randomly placed noise reads. Fragment 

lengths were drawn randomly from a normal distribution to 

introduce variability. EM was initialised at 3 random positions with 

equal priors. Total simulated fragment coverage is shown in red, 

while peaks fitted during each iteration are shown in black. Noise 

read cluster is omitted to aid clarity.  
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5.2.4.2 Estimating EM probabilities 

In order to approach the problem of m6A peak deconvolution in a 

probabilistic way, a robust way of estimating the probability that a fragment is 

seen as a result of antibody recognition of a specific site is required. We can 

assess this in terms of how well each fragment supports the expected coverage 

distribution around the m6A site. In the case of an aligned fragment that does 

not overlap a putative m6A site, this probability is effectively zero. For all other 

fragments, this is more complicated – consider example 2 in Figure 46: given 

only one aligned fragment as evidence, under the (inaccurate) assumption of a 

random fragmentation and antibody binding process, both the putative 

overlapped positions are equally likely to be methylated.  However, we know 

that the stochastic process that generates these observations is governed by a 

non-uniform latent variable –the actual m6A distribution. Thus, the posterior 

probability that the observed fragment was generated by antibody binding to a 

putative m6A position is non-uniform and can be modelled by including this 

prior.  

In order to take into account any antibody-binding biases, an empirical 

distribution is obtained from the data by considering a set of training RNA 

fragments and how they fall in relation to known m6A positions. As ground truth, 

a set of high confidence m6A positions was selected from the data reported by 

Linder et al’s (Linder et al. 2015) single nucleotide resolution m6A map in 

HEK293T cells. The residues selected are not in proximity to other m6A sites 

which could confound the results, and form clear, distinct single peaks in a 

HEK293T paired-end m6A-seq dataset (Schwartz et al. 2014). All fragments 

overlapping these sites in m6A-seq dataset are selected, resulting in 10058 

training fragments. An example training peak is shown in Figure 48. 
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Figure 48. An example training peak from HEK293T cell line m6A-

seq dataset also reported by Linder et al, 2015. 

Immunoprecipitated coverage is shown in red, while control RNA-

seq coverage is in blue. Vertical dotted line indicates nearest 

RRACH consensus, while horizontal dotted line indicates the 

minimum coverage threshold requirement for peak selection. 

Given the training fragments, probability density function estimation can be 

obtained from the frequency distribution and subsequently used to estimate 

probabilities for other RNA fragments.  

Under the assumption of a random fragmentation and antibody binding 

process and no enhanced degradation of isolated, fragmented RNA, the 

position of m6A within each sequenced fragment should be random and 

uniformly distributed. However, this is not the case. Figure 49 shows the 

distribution of m6A positions with respect to the sequenced fragments: m6A 

residues are depleted near fragment ends but there is a clear enrichment near 

the centre of the fragment, with a slight bias towards the 3’ end. This bias is 
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evident when considering transcript strandedness – sense and anti-sense 

strand transcripts show mirrored distributions with respect to genomic 

reference. Thus, to account for this bias, each fragment probability is computed 

with respect to the transcript directionality, rather than uniformly across the 

reference.  

There could be a number of reasons for this non-uniform distribution. A 

natural explanation for m6A depletion at sequenced fragment ends is simply due 

to some m6A residues being close to the end of the transcript. However, this 

does not appear to be the case - m6A positions near transcript ends show the 

same skewed distribution as m6A positions central to the transcript (Figure 50).  

 

 

Figure 49. The distribution of m6A positions within sequenced 

RNA fragments in reverse strand transcripts (left) and forward 

strand transcripts (right). 
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Figure 50. Comparison of distributions of m6A positions within 

sequenced RNA fragments. 3’UTR and 5’UTR encompasses m6A 

positions within 200 base pairs of transcription start and end sites, 

while CDS encompasses m6A positions central within the 

transcript. Fragment centre is indicated as a dashed line. 

The distribution could also arise due to technical bias, such as RNA 

fragmentation. While a number of approaches exist for DNA and RNA 

fragmentation, none fragment the molecule in a truly random fashion. 

Enzymatic fragmentation can result in sequence-specific cleavage biases - for 

example, RNase III specifically cleaves double stranded RNA. Chemical 

fragmentation – although requiring an additional end-repair step- is more 

homogenous across a transcript, and as m6A-Seq protocols described by 

Dominissini et al (2012) and Meyer et al (2012) (as well as the data used here) 

use zinc chloride fragmentation buffer, fragmentation bias should be minimal.  
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Alternatively, it is likely that the antibody shows some preference for m6A 

positions away from fragment ends. This leads to a concern that it is possible 

that different anti-m6A antibodies generate somewhat different fragment 

distribution profiles in relation to m6A position and this could lead to 

inaccuracies in the model. Furthermore, in the case of polyclonal antibodies, 

different batches may introduce significant variation that could be difficult to 

account for. The most commonly used antibody for m6A-seq is a rabbit 

polyclonal antibody provided by Synaptic Systems (Dominissini et al. 2012; 

Meyer et al. 2012; Batista et al. 2014; Luo et al. 2014) originally developed by 

Munns et al (1977), although alternatives exist. Zhou et al ( 2015) used the 

rabbit polyclonal antibody ABE572 from Millipore, while Meyer et al ( 2012) 

used a different rabbit polyclonal antibody developed at New England Biolabs 

(Kong et al. 2000). While commercial monoclonal m6A antibodies exist (for 

instance, ENZ-ABS301-0100 Enzo Life Sciences), to the best knowledge of the 

author, these have not yet been used in m6A-seq studies published at the time 

of the writing of this thesis. A comparison of fragment distributions generated by 

different antibodies would be particularly useful as it is a potential source of 

bias, however only Synaptic Systems antibody paired-end m6A-seq data was 

publicly available at the time of writing.  

5.2.4.3 Expectation Maximisation initialisation 

It is important to initialise EM calculations with good starting values – poor 

starting values in particular can result in the algorithm becoming ‘trapped’ at 

local maxima and therefore failing to converge to the global maximum (Wang 

and Zhang; Maitra 2009; Melnykov and Melnykov 2012). EM is frequently 

initialised randomly, while more robust approaches adopt multiple restart 

strategies (Melnykov and Melnykov 2012); however, this can be computationally 

expensive, which is a major concern when trying to apply this approach to 

whole transcriptome data. Consequently, a two-step data-guided approach is 

employed that does not require EM to be run multiple times, while ensuring 

good initialisation values, unlike the random start approach. 

As m6A positions are more likely to occur in regions which have high 

fragment coverage, initially n positions in a region are chosen based on the 
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RNA fragment coverage values, where n is the number of peaks to be fitted. 

This selection is done iteratively, such that each read encompassing the 

previously selected positions is not counted towards the next position; this 

strategy prevents initialisation of multiple positions per peak. The initial selection 

is then refined based on the reference sequence, as methylation is more likely 

to occur at a RRACH motif and must occur at an adenosine. All reference 

positions for ‘A’, ‘AC’ and ‘RRACH’ are extracted, with more weight being given 

to ‘RRACH’ and ‘AC’ motifs than just adenosines. Motif weights ensure that a 

‘RRACH’ motif, for example, 10 bases away will be prioritised over ‘AC’ 5 away, 

but if the motif is too far, the nearest ‘AC’ or ‘A’ is used instead. Optimal 

adjustment of initial coverage-based positions can then be formulated as the 

assignment problem, where each initial position needs to be matched to the 

closest motif position in a manner which minimises the total adjustment distance 

for all positions. Here, this is solved with the Hungarian algorithm (Munkres 

2006) using a distance matrix constructed to represent the bipartite graph 

between coverage-based positions and sequence motif positions.  

5.2.4.4 Expectation Maximisation – how many peaks? 

Lastly, the final parameter that needs to be estimated is the number of 

peaks to be fitted to any given region. For any given mixture model, model 

likelihood increases (non-linearly) with the number of mixture components and 

can result in over-fitting. This is illustrated in Figure 51, where the simulated 

data in Figure 47 is initialised with increasing number of peaks, using 100 

random starts at each increment. 

In this case, for any given region, the maximum model likelihood could be 

achieved by fitting an m6A position for each base in the region, as this would 

maximise the probabilities for each individual data point. This is clearly a 

nonsensical result. Thus, a method is needed to select an optimal number of 

components that takes into account model complexity in addition to likelihood.  

This problem has been widely studied, as it is applicable not only in the 

context of EM, but also any other unsupervised algorithms that could be used 

for a clustering task. Specifically, how many clusters are in the data is a 

fundamental problem and many different approaches have been described 
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(Pelleg and Moore 2000; Hamerly 2007; Fraley and Raftery; Gupta et al. 2010; 

Steele and Raftery 2010) 

 

Figure 51. Model likelihood increases non-linearly with the 

number of components introduced. Simulated data was used as in 

Figure 47, with 3 peaks being the ‘ground truth’. The boxplots 

show the distribution of log likelihood obtained by initialising each 

iteration with 100 random starts. 

 

Here, Bayesian information criteria (Schwarz 1978) (BIC) is used to adjust 

model likelihood scores, as it has been previously shown to perform well in the 
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context of EM (Hirose et al. 2011; Steele and Raftery 2010). Effectively, BIC 

introduces a penalty for increasing the number of parameters in the model and 

can be calculated as: 

𝐵𝐼𝐶 =  − ln(𝐿𝐿) + 𝑘 ∙ 2ln (𝑛) 

Where LL is the likelihood of the model, k is the number of parameters and n 

is the number of data points. Dagsupta and Raftery (Dasgupta and Raftery 

1998) suggested computing BIC for the multiple possible models with 

increasing cluster counts and choosing the one that corresponds to the first BIC 

maximum. This is illustrated in Figure 51, where the first maximum is found at 3 

peaks, as expected. Effectively, this identifies the point where the increase in 

model likelihood no longer compensates for the increase in model complexity 

penalty.  

While Dagsupta and Raftery (Dasgupta and Raftery 1998) suggest 

estimating a maximum of likely amount of true clusters for the data and 

computing BIC for all the resulting models, here models are computed 

iteratively only until a maximum is detected in order to save computation times. 

That is, in example in Figure 52, only 4 models would be computed instead of 

the 15 shown. 
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Figure 52. The first maximum BIC indicates the optimum trade-off 

between model complexity and model likelihood and can be used 

as a selection criteria for the number of peaks to be fitted to any 

given region. BIC was calculated from the maximum likelihood 

model out of 100 random starts at each number of peaks shown in 

Figure 51.  
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5.2.5 Technical False Positive m6A peak identification 

5.2.5.1 Motivation 

False positive peaks can constitute a large proportion of all detected peaks 

and are problematic in the analysis of m6A experiments. These can be expected 

to arise from technical variation, such as non-specific antibody binding; a major 

concern for any antibody-based technique. It has been postulated that for m6A-

seq experiments, the false positive rate may be particularly high (Schwartz et al. 

2014). Schwartz et al (2014) had noted that upon RNA methyltransferase 

knockdown, despite global depletion of m6A levels seen via TLC, m6A-seq data 

did not show the expected universal reduction in detected peaks. A subset of 

peaks which did not exhibit any reduction in immunoprecipitated read 

enrichment was identified, and was found to be enriched in degenerate, purine-

rich motifs instead of the RRACH motif expected at m6A sites, indicating that a 

high proportion of these sites were likely to comprise non-specific antibody 

binding sites. It is concerning that such a large proportion of all reported m6A 

residues in literature may actually be false positives; however, it may be 

possible to differentiate these sites from real methylated adenosines using 

computational approaches. 

5.2.5.2 Training Data 

In order to create a model that would allow identification of false positive 

peaks, a definite set of examples from both real m6A sites and false positive 

peaks is required. However, no such dataset is available – even m6A positions 

identified by Linder et al (2015) cannot be considered true positives, as these 

were also obtained using an antibody-based technique and therefore are likely 

to contain a subset of sites arising due to non-specific antibody binding. Thus, a 

set of training sites were obtained from the RNA methyltransferase complex 

knockout data by Schwartz et al (2014), as explained below, with the 

understanding that the training data is likely to contain some mislabelled 

instances.  

RNA methyltransferase knockdown and matched control m6A-seq data from 

HEK293T cells, A549 cells and mouse fibroblast cells were downloaded from 

ArrayExpress (Kolesnikov et al. 2015), aligned using the STAR aligner (Dobin et 
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al. 2013) to either human hg19 or mouse mm10 reference genomes, and sorted 

and indexed using Samtools (Li et al. 2009). Peak-calling was performed by 

m6aViewer running in default mode, as the model-based peak-calling involves a 

sequence-based initialisation step which may bias the results. Matched 

knockdown and control sample sites were intersected, and peaks labelled as 

true positive m6A sites if a comparable m6A peak was not detected in the 

knockdown sample and the gene expression level of the transcript has not 

decreased so as to prevent detection of the peak. Similarly, a peak was labelled 

as a technical false positive only if the change in peak enrichment levels 

between the knockdown and the control was less than 0.5 fold. For the 

purposes of intersecting the samples, peaks in different samples were 

considered to be the same site if located within 50 nt of each other. On the 

other hand, two sites were considered independent sites if they were detected 

further than 200 nt apart in the matched samples. Peaks between 50 and 200 nt 

apart in two samples were considered ambiguous and therefore excluded from 

the dataset in order to obtain the highest quality training set. Using this 

approach, a high confidence HEK293T cell line dataset was created, comprising 

2098 peaks; of which 1030 are false positive instances and 1068 true positive 

instances. The datasets obtained from A549 and mouse fibroblast cells was 

reserved solely for independent testing.  

5.2.5.3 Sequence-based model 

In order to ascertain whether true m6A sites could be differentiated from 

false positives using only unbiased features that are independent of external 

data/annotations, an RNA sequence-only model was initially considered. A 

sequence-only model is attractive in that it can be applied universally in an 

unbiased manner, requiring only the knowledge of the transcriptome sequence. 

As such, for each peak in the training dataset, the 400 base pair RNA sequence 

surrounding the peak was obtained with each training sequence represented as 

a combination of characters A, G, C, U and M, where M represents the putative 

methylated adenosine position in the sequence. Rare occurrences of 

sequences with ambiguous bases were excluded from the training data. If false 

positive peak and genuine m6A site sequences exhibit intrinsically different 
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sequence features, such nucleotide composition, periodicity or sequence motifs, 

these differences could be captured using a Markov model. 

Markov chains are sequences of a random variable X, where the probability 

distribution for X depends only on Xt-1, Xt-2,… Xt-n, and as such are ideally suited 

for representing RNA sequences. In this case, a 1st order Markov chain would 

model the probability of observing any given base with reference to only the 

preceding base, whereas a 5th order Markov chain would consider a preceding 

5 base sequence (5-mer) instead. Higher order dependencies are thus 

computationally difficult to model, as the number of required parameters grows 

exponentially with increasing order and even relatively low order chains can 

become impossible to compute. There is also the matter of training data 

requirements – in order to accurately estimate the transition probability matrix, 

all kmers must be observed in the training data set at a sufficient frequency. As 

the kmer length increases, however, the probability of observing it in any given 

sequence decreases dramatically, and in some genomes/transcriptomes many 

kmers occur only rarely. 

A number of algorithms have been described that can help alleviate these 

issues. An interpolation approach has often been applied to the gene finding 

problem (Salzberg et al. 1999, 1998), where rather than considering a fixed 

order Markov chain, the kmer length is variable and dependent on the training 

data. This largely overcomes the uncertainty of estimating the transition 

probability matrix values for most large kmers, while still capturing sequences 

which are genuinely overrepresented in the data. On the other hand, this 

approach does little to alleviate the computational requirements of the model, as 

the number of model parameters (i.e. the transition probability matrix) that 

require estimation is still very large. Mixture Transition Distribution (Berchtold 

and Raftery 2002) (MTD) models have been utilised in sequence modelling of 

DNA methylation sites (Seifert et al. 2012) and provide an alternative way of 

estimating the transition probabilities for high order Markov chains. Rather than 

computing the probability of observing a particular base after a specific kmer, 

which cannot be estimated accurately when the kmer is large, the probability is 

estimated as a combination of different ‘lag’ probabilities (Figure 53). This is a 
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computationally attractive model, as the transition probability matrix required 

grows linearly with increasing Markov chain order, rather than exponentially.  

 

Figure 53. Mixture transition distribution model lag dependency 

schematic diagram. Instead of the probability of each base (M in 

this example) depending only the preceding kmer, P(M | ACCGU) 

is instead estimated as a combination of P(M | U), P(M|  GN) P(M 

|, CNN), P(M |CNNN) , P( M | ANNNN).  

 

 

 

Formally, given all possible bases X = (X0 = A, X1 = C, X2 = G, X3 = U, X4 = 

M), an MTD model can be defined as: 

𝑃(𝑋𝑡 |𝑋𝑡−1, … , 𝑋𝑡−𝑛) =  ∑𝑤𝑙   𝑃 (𝑋𝑡 |𝑋𝑡−𝑙)

𝑛

𝑙=1
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Where Xt is the observed base at step t, n is the order of the model and w is 

a lag weight, where the lag weights are constrained as follows, to ensure the 

results follow a probability distribution: 

∑𝑤𝑙  = 1; 𝑤𝑙 ≥ 0

𝑛

𝑙=1

 

For a kth order model, k transition probability matrices are thus computed, 

storing the probability distribution of each lag separately and requiring only k |X| 

(|X| -1) values and increasing the order of the model requires only a single 

additional matrix.  

In this case, representing RNA sequences as a Markov process may not be 

strictly accurate, as this approach models sequence dependencies only in the 5’ 

-> 3’ direction. However, spatial sequence information may be more informative 

as we are not trying to model a transcription/translation process where this 

directionality is important. Consider a 2nd order Markov model for m6A 

sequences – given a sequence GG-M-CU, where methylation ‘M’ occurs within 

a known consensus RRACH, the probability of M would be estimated using only 

the preceding ‘GG’ – however, the following bases ‘CT’ are also important 

predictors. Similarly, given the putative roles of m6A as RBP ‘switches’, m6A 

may be surrounded by regions which have high degree of sequence 

complementarity and thus it is important to capture this. As such, a small 

extension is introduced where instead of defining the probability of observing a 

base X at t only as being dependent on the preceding bases𝑃(𝑋𝑡 |𝑋𝑡−1, … , 𝑋𝑡−𝑛), 

surrounding bases are 𝑃(𝑋𝑡 |𝑋𝑡−1, … , 𝑋𝑡−𝑛, 𝑋𝑡+1, … , 𝑋𝑡+𝑛 ) are considered 

instead.   

In order to obtain the model that best describes the training data, model 

parameters need to be optimised such that the log-likelihood of the model is 

maximised. The log likelihood can be defined as the sum of the log likelihood of 

all training sequences, where the log likelihood of a sequence of length m is:  
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𝐿𝐿 =  ∑log (∑ 𝑤𝑙  𝑃 (𝑋𝑡 |𝑋𝑡−𝑙)
𝑛

𝑙=1

𝑚

𝑡=1

 

While a number of parameter estimation methods for MTD models have 

been described, here the original approach described by Berchtold (2001) is 

used to optimise the lag weights and transition probability matrices. As the lag 

weights and transition probability matrix rows must sum to 1 to satisfy the 

probability constraints, the increase in one parameter must be balanced by the 

decrease in another. An iterative procedure is thus used that at each step 

modifies two elements of the lag weight vector and two elements of each row in 

the transition matrix (increasing one and decreasing the other). The procedure 

iterates until the increase in model log-likelihood between iterations becomes 

negligible.  

As m6A is more likely to occur in UTR regions, there is a danger that using 

only two classes (true m6A and false positive m6A) would result in a model 

which effectively classifies sequences into coding and non-coding, rather than 

real m6A and non-specific binding sites because of this bias. This can be 

illustrated in Figure 54, where a 3rd order MTD model was trained using the true 

positive dataset with peak sequences additionally separated into coding and 

non-coding subsets. Using 10-fold cross-validation, coding and non-coding 

peak sequences could be classified with better than random accuracy 

(AUC=0.667), which suggests that controlling for the type of peak sequence is 

important to avoid biases. As such, training sequences were further separated 

into coding, intronic, 5’UTR and 3’UTR groups in order to avoid building a model 

that merely captures the differences between coding and non-coding regions. 

However, while this helps avoid biases towards non-coding sequences, it also 

reduces the available training data which may have a negative impact on the 

accuracy of the final model. 

Using the approach outlined above, multiple increasing order models were 

trained to ascertain the highest-performing classifier. Each iteration was 

assessed using a 10-fold cross-validation approach and the results are shown 

in Figure 55. The highest performance was achieved by a 7th order sequence 

model, with the area under the ROC curve at 0.794, where the probability of 
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observing each base in sequence is dependent on the 7 preceding and 7 

following bases. It is interesting to note that the biggest gain is achieved by the 

jump from 0-order sequence model, where the probability of each base in the 

sequence is effectively the frequency at which is it observed in the training data, 

to the 1st order sequence model. The AUC of the 0-order model (0.496), 

indicating classification performance that is no better than random, suggests 

that there is no sequence composition bias at single base level in the training 

sequences.  

 

 

Figure 54. The ROC curve of MTD of coding vs non-coding m6A 

peak sequences. The dashed blue line is at AUC=0.5, indicating 

classifier performance that is no better than random. 
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Figure 55. The area under the ROC curve (AUC) achieved by 

sequence models of increasing order, assessed using a 10-fold 

cross validation.  
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Figure 56. The ROC curve of the 7th order MTD sequence model, 

AUC = 0.7936126. The dashed blue line is at AUC=0.5, indicating 

classifier performance that is no better than random. 

The ROC curve of the 7th order model is shown in Figure 56. AUC of 0.794 

indicates that the sequence model here can differentiate between technical 

false positive peak sequences and m6A peak sequences in a high proportion of 

all cases. However, the cost-benefit trade-off was found to be unacceptable for 

practical applications. Thus, to be applicable for real data m6A-seq data, the 

classifier requires further improvement.  

5.2.5.4 Supplementing RNA sequence model with secondary RNA-structure 

predictions 

It has been suggested that RNA secondary structure might be important for 

RNA methyltransferase binding or RNA recognition by m6A reader proteins, 

such as in the case of m6A ‘switches’. Thus, secondary structure might be an 

important predictor that could be used to differentiate true m6A sites from peaks 

which arise from non-specific antibody binding. On the other hand, the basis of 

non-specific antibody binding to non-methylated RNA is unknown and similar 
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RNA secondary structure to that of actual m6A sites could play a role in it, thus 

negating any predictive power.  

While it would be difficult to fully incorporate secondary RNA structure, the 

sequence-based MTD model can be easily extended to integrate the 

information on whether the individual bases are unpaired or paired (but not 

which bases they are paired with). This additional data could be important, as 

adenosines have been shown previously to be preferentially methylated in RNA 

regions of low secondary structure complexity and to be unlikely to occur in 

double-stranded RNA. In order to incorporate secondary sequence information 

into the sequence model, instead of using a dictionary which captures only the 

bases of RNA (A, C, G, U and M), the training sequences can instead be 

represented as additionally having a paired or unpaired status (Ass, Ads, Css, 

Cds, Gss, Gds, Uss, Uds, Mss, Mds, where ss= single stranded and ds = 

double stranded), thus requiring 10 different possible states to represent the 

sequence instead of 5.  

For each training sequence, RNA secondary structure was predicted using 

Vienna RNA software (Lorenz et al. 2011). As predictions can be greatly 

affected by sequence length, the entire transcript sequence, rather than just the 

RNA sequence surrounding the peaks was used to obtain the secondary 

structure predictions. Predictions made by Vienna RNA were parsed from the 

‘dot-bracket’ format and the new training sequences were used to retrain the 

sequence model.  

The 10-fold cross validation results (Figure 57) show that incorporating 

secondary RNA structure predictions into the sequence model does not 

enhance performance. In fact, the AUC value of the more complex model is 

marginally lower (0.794 vs 0.769) than the sequence-only model. This result is 

counter-intuitive, in particular with the expectation that m6A should favour 

single-stranded RNA regions. The poorer predictive power when using RNA 

secondary structure may arise from significant errors in the predicted structures 

used in the analysis. Additionally, only the paired or unpaired status of bases is 

captured here, although additional information that is excluded from the model 

could be important, for example the presence of loop structures or base-pairing 
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information. On the other hand, introducing additional states to the model 

increases the spread of the training data, so that each state probability is 

estimated from fewer data points, which can have an additional negative impact 

on the performance of the model.  

 

Figure 57.  The comparison of performance between a sequence-

only model and a model incorporating predicted RNA secondary 

structure information. Area under the ROC curve of 0.5 (x=y) 

indicates no better than random performance, whereas area under 

the ROC =1 indicates perfect classification. The performance of 

sequence-only model was marginally better than that of sequence 

+ predicted RNA secondary structure model. 

5.2.5.5 Feature-based ensemble model 

    As the sequence-based model could not be further improved by incorporating 

secondary structure based information, a feature-based model was considered 
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next. There are a number of features in additional to sequence information and 

RNA secondary structure which could be predictive of m6A status. The following 

features were obtained for all training sequences: 

Feature type Possible values 

MTD sequence 

model scores 

5’UTR, 3’UTR, CDS and Intronic sequences respectively 

Transcript 

information 

Coding, non-coding, length, 5’UTR length, 3’UTR length, 

CDS length, intron lengths, exon lengths 

Sequence 

composition 

2-mer, 3-mer and 4-mer frequencies 

Peak information Distance to nearest consensus, distance to nearest AC, 

peak enrichment score, peak height, peak width, total 

peaks in transcript. 

Conservation 

information 

phastCons and phyloP conservation scores for all 

surrounding bases from 100 vertebrate multiple 

alignments 

miRNA 

information 

mirBase data: distance to nearest miRNA site, site score, 

miRNA type(only for mouse and human data). Distance 

to miRNA seed sequence from custom miRNA list.  

Secondary 

structure 

information  

Nearest ViennaRNA-predicted hairpin, bulge and stem 

paired and unpaired base information. 

Table 11. List of transcript features that could be predictive of an m6A 

methylation site. 

 

    A multi-class random forest learner is chosen as the model, where each 

training sequence is again labelled as 5’UTR, 3’UTR, CDS, Intronic or Other 

Non-Coding in order to avoid biases discussed earlier, resulting in 10 total 

classes to be predicted (m6A 5’UTR, false positive 5’UTR…etc.). A random 

forest model is a suitable approach to the task, as it is robust to over-fitting and 

remains one of the highest performing supervised learning algorithms for a wide 

variety of tasks.  
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A lot of the features listed above are likely to be uninformative or redundant and 

therefore are likely to negatively affect the performance of the classifier. For 

example, more than 1000 kmer frequencies are encoded as features, while only 

a few of these are likely to be informative. Thus, in order to identify only useful 

data, feature selection was first performed. A greedy stepwise feature search 

was performed, where at each step a random forest classifier consisting of 100 

trees was trained using a subset of all features in Table 11 and evaluated using 

10-fold cross validation. At each step, another most informative feature was 

added, until the addition of extra features resulted in a decrease in the overall 

performance. 

Using the final selected features, a random forest model is trained using 1000 

random decision trees, each considering 7 random features.  

5.3 Results and Discussion 

5.3.1 m6aViewer implementation 

While the methods section of this chapter focused on the algorithmic details 

of m6A peak calling, the implementation can be equally important. In addition to 

the algorithms and models described, a number of utility functions for 

visualisation and data analysis are also implemented as part of m6aViewer 

software.  
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Figure 58. A: The main user interface window of m6aViewer. For 

basic usage, users are required to provide a minimum of two BAM files – 

one from immunoprecipitated sample (IP) and another one from a control 

(INPUT). Further options can be accessed from ‘File’ and ‘Settings’ 

menus. B: m6aViewer settings menu provides a large number of 

configurable options. A number of parameters can be configured here, 

including sensitivity/specificity of peak-calling and alternative peak-

calling. 
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Figure 58C. m6aViewer’s peak browser interface allows the user to quickly 

visualise m6A peaks across multiple samples and easily jump between peaks 

using ‘Next Peak’ and ‘Last Peak’ buttons. The main panels display normalised 

control and immunoprecipitated coverage; the nearest m6A consensus site 

(configurable) to each peak is drawn as a vertical dashed line. Peak mouse-

over tooltips are available for each peak and provide additional information. 

Genes are drawn above the track, provided a gene annotation file was provided 

or in-built annotation was selected. 

 

 



225 

 

m6aViewer is implemented via a graphical user interface in Java 1.7. The 

user interface is divided into three main views, consisting of the main control 

window (Figure 58A), an extensive options menu (Figure 58B) and a genome 

browser-style peak browser (Figure 58C). The main application window 

provides an interface for data input and peak calling functions. The minimal 

requirement for m6A peak-calling is two indexed BAM files, files one containing 

IP derived aligned data and the other the matched aligned RNA-seq control 

data. Transcript level information is supplied as GTF annotation files and is 

required for peak annotation and false positive filtering tasks.  

As with sequence data repositories, such as UCSC (Karolchik et al. 2004), 

Ensembl (Cunningham et al. 2014) or Genbank (Benson et al. 2005), the input 

fasta files are expected to contain the reference sequence(s) as a series of 

fixed length lines. As commonly studied organisms (e.g. human, mouse) have 

very large genomic sequences, it is computationally impractical to parse the 

entire reference sequence in order to annotate m6A peaks. Here, random 

access is instead used to retrieve only the sequences immediately surrounding 

each called m6A peak. For a given reference position, the corresponding file 

byte position is calculated by scanning the start of the fasta file to determine the 

length of the header line, the number of bases stored per line, the type of end of 

line character used and the type of character encoding used by the file. The 

availability of fasta files enables a number of other features. Individual peak 

sequences can be extracted and saved to a multi-fasta format file where they 

can be used for downstream analyses, such as for example, novel consensus 

motif detection via software such as the MEME suite (Bailey et al. 2009). Peaks 

may be filtered based on the peak distance to the nearest consensus site, as 

the presence of a consensus sequence may confer high confidence to the 

peaks. Nearest consensus sites are also annotated in text output and visualised 

in the peak browser (Figure 58C). Appropriate fasta files are also required in 

order to run EM-based peak calling, as sequence information is required for EM 

initiation step. 
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Figure 58D. Peak ideogram window in m6aViewer allows for a global overview 

of all m6A methylation sites called across all samples at chromosome level. 

Each peak position is marked as a single line, shaded by peak enrichment. 

Multiple samples are stacked side by side. The ideogram window is interactive 

and any part of the chromosome can be zoomed in on by dragging a window 

using the mouse. 
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Similarly to the peak sequence annotation, the peak browser utilises random 

access of BAM files to enable real time coverage data browsing without directly 

storing coverage data in memory or on disk. The peak browser window displays 

the immunoprecipitated and control read coverage across all samples, the 

position of the nearest m6A consensus sequence relative to the peak and gene 

annotation, and provides context-dependant peak information, such as 

enrichment scores and p-values, as a mouse-over tooltip. Peaks may also be 

visualised using the ideogram view (Figure 58D), while the summary of peak 

distribution within transcripts is also provided (Figure 58E). 

It can often be of interest to know whether transcripts harbouring m6A sites 

are enriched for any particular group of functions in a given experiment. 

m6aViewer can obtain Gene Ontology functional annotations (Ashburner et al. 

2000) and Reactome (Fabregat et al. 2016) pathway annotations directly from 

Ensembl (Cunningham et al. 2014) MySQL servers and perform an enrichment 

calculation, identifying categories of transcripts which are over- or under-

represented in the methylated transcripts. This is performed against the 

background of all expressed genes identified in the RNA-Seq control sample, in 

contrast to popular web gene enrichment analysis web services such as DAVID 

(Huang et al. 2008) or Panther (Mi et al. 2017), where category enrichment is 

tested against whole transcriptome background and can be unsuitable for 

epitranscriptomic data. Figure 58F shows m6aViewer’s the peak functional 

enrichment analysis menu. 
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Figure 58E. m6aViewer implements an additional visualisation 

window which provides a summary overview of all samples. This 

includes peak distribution charts, statistics and sample-to-sample 

peak overlap heatmaps. 
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Figure 58F. Peak functional annotation enrichment analysis 

window. The results panel at the bottom displays all Gene 

Ontology and Reactome pathway annotations for analysed 

methylated transcripts. Significant hits based on a user selected 

alternative hypothesis (Enriched in transcript set, under-

represented in transcript set or either) are coloured in green, while 

non-significant hits are shown in red. In order to make the 

significance values more transparent and understandable, the 

table also shows the number of methylated transcripts that are 

annotated with a particular term (‘Counts’ column); the number of 

transcripts annotated with the term that are expressed in the data 

set (‘Expressed’); and the number of methylated transcripts 

annotated with the term expected to occur by chance in the 

analysis set (‘Expected’). 
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5.3.2 Evaluation of m6aViewer’s peak calling performance 

While the work described in this thesis was in progress, Linder et al (2015) 

described a mutation-based technique to obtain a single-nucleotide resolution 

map of m6A methylation sites in HEK293T cells. Here, this data is used to 

benchmark m6A peak-calling resolution. No matched m6A-seq dataset is 

available, however in order to facilitate a comparison, a different HEK293T m6A-

seq dataset from Schwartz et al, 2014 (Schwartz et al. 2014) was used. The 

m6A-seq dataset was aligned to human hg19 reference genome using the 

STAR aligner (Dobin et al. 2013) and the alignments were sorted and indexed 

using Samtools (Li et al. 2009). Peak-calling was performed using both 

m6aViewer’s default running mode, and the peak deconvolution modes, where 

peaks with p-value < 0.05 and > 2-fold enrichment were retained. In order to 

facilitate a comparison to other available m6A peak-calling software, peaks were 

also called using MACS2 (Zhang et al. 2008), exomePeak (Meng et al. 2013) 

and MeTPeak (Cui et al. 2016) - an undated and renamed version of HEPeak 

(Cui et al. 2015) (Huang.Y, personal communication, 11/07/2016). Peak-calling 

parameters were set to mirror those used by m6aViewer where possible. 

MACS2 was used with an additional command line option (‘—call-summits’) and 

data was treated as single-end, rather than paired end, as when MACS2 peak-

calling was performed on paired-end data, very few and largely erroneous 

peaks were called due to vast overestimation of sequenced fragment sizes and 

expected peak widths when fragments spanned exon splice sites. For regions 

detected by exomePeak and MeTPeak, the centre of the region was computed 

in order to obtain a single peak position. 

The 1000 highest confidence residues were identified in the Linder et al 

(2015) single-nucleotide resolution mutation map that also corresponded to an 

enriched region in the m6A-seq dataset. Each peak identified in these enriched 

regions by m6aViewer, MACS2, exomePeak and MeTPeak was compared to 

the ‘ground truth’ peak positions from Linder et al (2015). For each called peak, 

the distance to the nearest peak in the Linder et al (2015) dataset was 

computed and the distances visualised as cumulative frequency distribution 

(Figure 59).  
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These results highlight that the called m6A-seq peak summits very rarely 

precisely correspond to the actual site of methylation, a pattern also noted by 

Linder et al (2015). This difficulty can be further compounded by the presence 

of multiple methylated sites in close proximity, which blurs the expected peak 

signal. Figure 59 shows that it is possible to improve the precision with which 

m6A residues are called by modelling each region as a mixture of fragment 

coverage distributions. The model-based peak deconvolution approach 

correctly identified the precise position of a methylated residue in 34% of cases, 

compared to 1-3% by methods (including the default m6aViewer summit calling 

approach) considering peak summits alone.  

 

 

Figure 59. Cumulative frequency distribution of peak distance to 

the nearest m6A residue identified by Linder et al, 2015 at single 

nucleotide resolution level. 
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It is worth noting that, as expected, methods which attempt to identify the 

peak summit, such as MACS2 or m6aViewer in standard running mode, 

perform much better in terms of peak-calling precision than ‘binning’ based 

methods if the centre of the called region is considered as the peak position. 

While this is a somewhat unfair comparison, it nonetheless serves to illustrate 

the vast discrepancy in peak-calling resolution achieved by different 

approaches. The general performance of MACS2 and m6aViewer in standard 

running mode seems to be largely on par, with the slightly inferior performance 

of MACS2 explained by MACS2 inability to process paired-end RNA sequence 

reads.  

5.3.3 Evaluation of m6aViewer’s False Positive Filter Performance 

In addition to developing methods for improved peak-calling performance, this 

work investigates the possibility of identifying and classifying m6A peaks that 

conform to features of false positive sites that could arise due to non-specific 

antibody binding.  

 

MTD RNA sequence and secondary structure models were investigated, before 

settling on an ensemble model encoding additional information due to increased 

performance. In keeping with the MTD sequence model, in the feature selection 

step of the ensemble model, the expanded RNA secondary structure features 

were not selected as informative for the final model, suggesting that either the 

error rate in RNA secondary structure prediction is too high, RNA secondary 

structure is not important for RNA adenosine methylation, or a similar RNA 

secondary structure is present at non-specific antibody binding sites to that of 

actual m6A sites, which could also be an antibody site recognition factor. miRNA 

binding information and conservation of nearest consensus motif and AC sites 

was found to be predictive. Out of peak information features considered, 

distance to nearest consensus and peak enrichment scores were found to be 

informative. When the latter was investigated, counter-intuitively slightly higher 

peak enrichment was found for false positive peaks than for real m6A sites 

(Figure 60). While this observation could arise due to some bias in training 

peak selection procedure, it could also be the case that the difference is due to 

antibody binding dynamics. That is, given all the RNA molecules of a particular 
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methylated transcript, only a proportion of them are expected to contain the m6A 

residue, thus the antibody can only bind to that proportion. On the other hand, if 

some other RNA property is causing non-specific antibody binding, it is likely 

that it is not subject to the same stoichiometry – thus, all/more of the molecules 

of that species are available for antibody binding, resulting in higher enrichment 

values upon sequencing.  
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Figure 61. Performance assessment of the random forest model, 

incorporating the MTD sequence model scores. RED = 10-fold 

cross validation using HEK293T cells, AUC= 0.923; BLUE = 

independent test set, A459 cells, AUC = 0.950; GREEN = 

independent test set, mouse fibroblasts, AUC =0.913. 

 

 

In order to assess the performance of the final classifier, 10-fold cross-validation 

was performed using HEK293T cell line data. In addition, to assess how well 

the model generalises to different tissue types or even different species, two 

independent testing data sets were also used: the A459 cell line and mouse 

fibroblast m6A-seq data. The results are shown in Figure 61. The area under 

the ROC curve achieved by the combined random forest and MTD sequence 

model classifier is substantially higher than MTD alone (0.923 vs 0. 794). These 

results suggest that this approach also generalises well to different cell/tissue 

types (AUC of 0.950), as well as different species (AUC of 0.913, mouse 

fibroblasts). While the results from mouse data are favourable, the model is far 

less likely to be accurate for more distantly related species. However, as 

publicly available RNA methyltransferase knockout m6A-seq datasets are 

limited to the cell types investigated here, the performance of this approach 

cannot yet be estimated for other species.  
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As random forests effectively use a voting system, where each decision tree 

decides whether a particular instance is likely to be a true m6A site or a false 

positive, the vote frequency can be used as an easily interpretable likelihood 

score. This allows implementing the classifier as a false positive filter, where the 

decision tree vote frequency can be used as a customisable cut-off. Figure 62 

shows the cost-benefit analysis of different cut-off values. At the default cut-off 

of greater than 0.5 (i.e. where more than half of all the random decision trees in 

the model have ‘voted’ for a true positive m6A site class), 86.02% of all false 

positive peaks in 10-fold cross validation test are identified correctly, at the cost 

of mislabelling 9.23% of genuine m6A sites as false positives. Increasing or 

decreasing this cut-off allows the filter to be easily skewed towards favouring 

precision or recall and can be easily customised towards different experiments 

and requirements.  

 

Figure 62. Cost-benefit analysis of false positive peak filter using 

10-fold cross validation of the training data set. 
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It would be useful to further ascertain whether the peaks are indeed 

classified into specific and non-specific binding antibody binding sites, or 

whether this categorisation could be due to some other factor. Technical false 

positive peaks should, in general, be unaffected by biological influences which 

affect m6A levels – unless gene expression levels are also affected. One such 

factor that could be considered is RNA demethylation. On RNA demethylase 

knockdown, there should be a general increase in RNA methylation levels 

across all transcripts which are the targets of the demethylase. On the other 

hand, for all peaks which are observed due to technical noise such as non-

specific antibody binding, the level of observed methylation should not change.   

The general trends made by these assumptions can be tested. Zhao et al, 

2014 (2014) performed a series of m6A-seq experiments on FTO-depleted 

mouse adipocytes and observed that overall, as expected, m6A levels increase 

upon FTO knockdown. The m6A-seq data of 2 matched control - FTO 

knockdown mouse adipocyte samples was downloaded from ArrayExpress, 

aligned to the mm10 mouse reference genome using the STAR aligner (Dobin 

et al. 2013) and m6A peaks were called using m6aViewer using default settings 

( > 2 fold enrichment, p-value <0.05) to form two experimental replicates. Each 

site was cross-referenced between matched FTO-knockout and control samples 

and log 2 fold-changes between two enrichment values were computed. As 

expected, in both replicates a larger proportion of individual peaks show 

increased enrichment in the FTO-depleted sample than in the control (Figure 

63), although this bias is much less pronounced in the second replicate.  

Next, all peaks across the two samples were pooled and annotated with the 

random forest model score and two subsets of peaks were selected – those that 

could be considered stable peaks (absolute log2 fold-changes between the 

peak enrichment of FTO-KO and control less than 0.25) and upregulated peaks, 

i.e. those that responded to FTO-knockdown (log2 fold change > 2).  
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Figure 63. Depletion of RNA demethylase FTO causes a global 

rise in m6A methylation levels. Two biological replicates of FTO-

depleted and control m6A-Seq datasets were considered 

separately. 

Figures 64A shows the distribution of the random forest model score 

distribution in these groups. In replicate 1, 51.21% of stable peaks and 65.64% 

of upregulated peaks were scored 0.5 or higher; in replicate two, the difference 

between score distributions was more pronounced, with 47.87% of stable and 

70.13% of upregulated peaks scoring 0.5 or higher. At a lower threshold of 0.4, 

in replicate 1, 71.26% of upregulated peaks and 58.78% of stable peaks are 

classified as true positives; in replicate 2, 54.28% of stable and 75.34% of 

upregulated peaks are classified as true positives (Figure 64B).  
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Figure 64A. Peaks which are classified as real m6A sites with greater 

likelihood are more likely to be hyper-methylated. Boxplots show the log fold 

change distributions when comparing m6A peak enrichment levels between 

control samples and FTO-depleted cells across a range of predicted ‘true 

positive’ m6A site scores. Peaks which are identified as more likely to be real 

m6A sites are more likely to respond to FTO depletion than sites which are 

scored lower. 
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Figure 64B. Comparison of peak score distribution in FTO-depleted m6A-

seq samples. m6aViewer’s false positive filter classifier score distribution in 

peaks from two FTO-depleted and matched control sample replicates. Two 

subsets of peaks are compared, a “STABLE” (peaks which show no change in 

enrichment between FTO-depleted and control samples) subset and an “UP” 

(peaks which show at least a two fold increase in peak enrichment in FTO-

depleted samples over control samples) subset. In replicate 1, 51.21% of stable 

peaks and 65.64% of upregulated peaks were scored 0.5 or higher; in replicate 

two, the difference between score distributions was more pronounced, with 

47.87% of stable and 70.13% of upregulated peaks scoring 0.5 or higher. At a 

lower threshold of 0.4, in replicate 1, 71.26% of upregulated peaks and 58.78% 

of stable peaks are classified as true positives; in replicate 2, 54.28% of stable 

and 75.34% of upregulated peaks are classified as true positives. Two 

biological replicates of FTO-depleted and control m6A-Seq datasets were 

considered separately. 
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5.3.4 Comparison with m6A prediction algorithm SRAMP 

    Recently, a number of machine learning models for computational 

identification of m6A sites from sequence features were proposed. Zhou et al. 

(2016) implemented SRAMP, a web server for m6A site prediction from 

transcript sequence in a number of mammalian cell types. SRAMP combines 

multiple random forest predictors trained on sequence features from known m6A 

sites. A similar web tool implementing a support vector machine predictor has 

been developed for yeast data (Chen et al. 2015d).  

 

    In contrast to the methods proposed by Zhou et al. (2016) and Chen et al. 

(2015), false positive peaks are used as negative training examples, rather than 

randomly selected transcriptomic positions. Despite the best efforts to obtain a 

high-confidence training dataset, it is likely that some inaccuracies remain. 

While the training examples were obtained from cell-type matched m6A-seq 

datasets to minimise the effects of biological variation, it is likely that a 

proportion of training instances are mislabelled. Additionally, while generally 

robust, siRNA knockdown of methyltransferases does not abolish the presence 

of m6A methylation completely; this is likely to also contribute to mislabelled 

training instances. High classification accuracy, however, suggests that the 

approach described here is resistant to noise in the training data, with the 

positive and negative instances overall forming sufficiently biologically distinct 

groups. 

 

    To assess how well m6aViewer’s false positive filter compares with 

sequence-based predictions of SRAMP, the SRAMP web-server was used to 

predict m6A positions within peak sequences (400nt surrounding the detected 

peak’s position) from the A459 cell line testing dataset. The interrogation of the 

SRAMP web server was automated via HTTP POST queries by custom code. 

SRAMP predicted m6A residues to be present in 72.14% of all instances 

labelled as true positive m6A peak sequences while m6aViewer classified 

91.14% of these sequences as such (Figure 65). In the false positive peak 

subset, SRAMP predicted m6A to be present in nearly half the sequences, while 

m6aViewer misclassified these in 12.5% of total instances. As discussed 
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previously, this discrepancy could be partially explained by inaccuracies in the 

dataset used for training m6aViewer’s classifier, where genuine m6A sites could 

be mislabelled as false positives.  

 

 

 

Figure 65. Comparison between m6A predictions made by web server SRAMP 

and m6aViewer. SRAMP predicted m6A within peak sequences from the true 

positive subset in 72.04% of cases, while m6aViewer classified these as true 

positives in 91.16% of cases. In the false positive peak subset, SRAMP 

predicted m6A residues in 49.5% of cases, while m6aViewer classified 12.5% of 

these as true positives. Sequences predicted to contain m6A by either algorithm 

are in green, while sequences predicted to not contain m6A are in orange. 

 

 

    Furthermore, SRAMP was run with default settings - a running mode which is 

faster, but does not consider predicted secondary RNA structure information, 

which reportedly enhances classification performance. These results, however, 

are not surprising, as SRAMP effectively detects the potential for m6A 



242 

 

methylation in a given sequence, whereas m6aViewer aims to frame these 

predictions in an experimental context by considering m6A-Seq data features. 

As such, some adenosine residues encompassed by the false positive peak 

sequences used here could be potentially methylated under certain conditions 

due to dynamic nature of m6A; thus, SRAMP’s predictions would be correct 

within the designed scope of the software. Indeed, this potential for methylation 

may be a major contributing factor for the much lower discriminatory power of 

the sequence-only model established earlier. 

5.3.5 Integration with m6aViewer software 

Finally, in order to integrate the model with m6aViewer software and apply it 

to new data, a consistent way of annotating peaks to features is required. While 

the majority of the features considered can be obtained directly from the GTF 

annotation files or fasta sequence files, which are already required by other 

m6aViewer features, sequence conservation scores and miRNA binding site 

information is also required.  

miRNA binding sites for hg19 human and mm10 mouse data were 

downloaded and stored in a small SQLite database, which can be packaged 

together with the main m6aViewer application executable. In order to apply the 

false positive filter to other organisms, or other human or mouse genome 

assemblies, a user may provide the data as a text file. Sequence conservation 

scores are obtained via direct connection to UCSC public MySQL database. 

Alternatively, if the data is not available, the random forest classifier is able 

to impute some missing values, though naturally at the cost to accuracy. In the 

case of missing values in a peak instance the classifier is trying to score, the 

data can be estimated from the most similar instances in the dataset that was 

used to train the classifier. 

5.3.6 Distribution of identified peaks to nearest m6A ‘RRACH’ sequence 

motif 

    It is difficult to objectively evaluate the performance of any m6A scoring 

algorithm, since there is no m6A-seq testing dataset for which the locations of all 

m6A residues are known. Therefore, in order to further establish the validity of 
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peak-calling methodology implemented in m6aViewer, distance to the nearest 

m6A consensus sequence was used as a metric of performance. The tight co-

localisation of the m6A  ‘RRACH’ consensus motif with detected peak positions 

can confer confidence to the peak-calling method, and distance to the nearest 

m6A consensus has been previously used as an m6A peak-calling performance 

metric (Meng et al. 2013). Furthermore, assuming that the consensus sequence 

motifs are likely to coincide with the actual sites of the methylated residues, the 

distance to the nearest consensus can illustrate peak-calling precision.  

 

    Figures 66 and 67 compare the peak to nearest m6A consensus distances 

between peaks detected by m6aViewer, exomePeak, MeTPeak, MACS2 and 

randomly selected transcriptomic or genomic control sites. m6aViewer was run 

in default peak-calling mode, as the deconvolution mode preferentially selects 

adenosine, ‘AC’ or ‘RRACH’ sequence positions during the EM initiation step, 

and thus the comparison would be extremely biased in favour of the EM 

algorithm and therefore largely meaningless. Peaks detected by m6aViewer 

show high levels of enrichment for previously reported consensus motifs, with 

known motifs appearing much more frequently near peak positions than near 

randomly selected transcriptomic positions. The significance of this observation 

was confirmed by performing a Kolmogorov–Smirnov test for the alternative 

hypothesis that the cumulative distribution function of m6A peak distance to 

nearest consensus lies above that obtained from randomly selected 

transcriptome positions (p < 2.2e-16, statistic D = 0.2474). Peaks detected by all 

algorithms tested are overall closer to a ‘RRACH’ consensus than the randomly 

selected control sites, with MACS2 and m6aViewer calling peaks closer to the 

m6A consensus than MeTPeak and exomePeak calls. As MeTPeak and 

exomePeak output significantly enriched regions, the centre of these intervals 

was used as the peak position; thus, while these points are not entirely 

comparable to MACS2 or m6aViewer peaks, it nonetheless serves to 

demonstrate the difference in peak-calling resolution achieved by these 

methods. 
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Figure 66. Cumulative frequency distribution of detected peak distance to 

nearest ‘RRACH’ consensus sequence motif in peaks called by different peak-

calling software. 
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5.3.7 Discussion 

The results presented here suggest that a model-based approach can result in 

a sizable improvement in m6A peak-calling precision over binning or summit 

identification techniques. Nevertheless, more than a half of all m6A residues 

considered in the testing scenarios are still not identified precisely on target. 

This highlights the difficulty in trying to apply a single probabilistic approach to 

the whole transcriptome. The size of the data is limiting, too – a more complex 

model may be able to capture the underlying stochastic process which 

generates the sequenced reads better, but due to an increased computational 

complexity would not be usable in practice on whole transcriptome datasets. 

Indeed, the current model makes a number of assumptions which cannot hold 

for all cases. For example, the probability of each aligned read being a ‘noise’ 

read is modelled uniformly – a substantial oversimplification. Due to alignment 

errors in lower complexity regions, PCR amplification biases such as those in 

GC-rich regions or fragment selection biases such as those near the ends of 

transcripts, the contribution of ‘noise’ reads to the total immunoprecipitated read 

coverage can hardly be expected to be uniform. While enriched regions 

selected for deconvolution are relatively small (on average about a kilobase) 

and thus the level of variation in noise read distribution is expected to be less 

than within (or between) whole transcripts, nonetheless some variation will 

exist. This could be modelled for each position individually by considering the 

read distribution in the control RNA-Seq fraction and estimating a positional 

read ‘mappability’ or ‘sequencability’ factor that could then be included in the 

model. Additionally, all aligned reads are assumed to be generated by a single 

process estimated from the training peaks. This, however, may vary between 

different samples, protocols or batches of the polyclonal anti-m6A antibody 

used. While noise distribution oversimplification could be accounted for by 

increasing model complexity, any additional sources of variation are much 

harder to asses and address due to lack of data.  

Due to these concerns, the probabilistic model-based peak calling approach is 

implemented as a supplementary, rather than the default peak-calling algorithm 

in m6aViewer software, despite showing substantial gains in performance in the 

testing data. 
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Another major feature implemented as part of m6aViewer software is the 

putative false positive peak detection via an ensemble model. The model was 

trained and assessed using RNA methyltransferase knockdown data and further 

independently assessed using RNA demethylase knockdown data to confirm 

that the opposite pattern can be observed.  

Despite the best efforts to obtain a high-confidence training dataset, it is 

likely that some inaccuracies remain and therefore the performance values 

reported here are not wholly accurate. While the training examples were 

obtained from cell-type matched m6A-seq datasets to minimise the effects of 

biological variation, it is likely that some training instances are in fact 

mislabelled. Additionally, while generally robust, methyltransferase knockdown 

does not abolish the presence of m6A methylation completely; this is likely to 

also contribute to mislabelled training instances. However, high classification 

accuracy suggests that this approach is resilient to noise in the data, with the 

positive and negative instances overall forming sufficiently biologically distinct 

groups. It is feasible that these two groups are not in fact, non-specific binding 

sites and real m6A sites, but arise as a result of some other biological 

dissimilarity. The peaks which are unaffected by RNA methyltransferase 

knockdown, for example, could be methylated instead by some other, yet 

undiscovered RNA methyltransferase. Nevertheless, using a biologically and 

technically independent dataset where m6A-Seq was performed in a RNA 

demethylase FTO depleted system, a correlation between hyper-methylated 

peaks and high classifier score was observed. Again, it is feasible that this is 

due to some other biological factor – FTO-unresponsive sites could harbour 

genuine m6A methylation and are simply not targeted by FTO. However, taken 

together with RNA methyltransferase knockdown data, there is strong evidence 

to suggest that the classifier presented here has discriminatory power for 

specific and non-specific antibody binding sites in m6A-seq data. Nonetheless, 

wet lab experiments would be required to confirm these predictions and as 

such, are beyond the scope of this work. 
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6. Characterisation of Kaposi’s sarcoma Herpesvirus-8 m6A 

methylome and identification of a putative novel m6A 

‘reader’ protein 

6.1 Motivation 

m6aViewer software described in Chapter 3 was developed alongside the 

investigation into the m6A methylome of Kaposi’s Sarcoma Herpesvirus to meet 

the NGS data analysis needs. The following chapter, therefore, presents the 

motivations and aims of the project, analyses of NGS data as well as potential 

future research avenues.  

NGS data analyses and outcomes are presented in two parts. The first part 

details the investigation into KSHV and host cell m6A methylomes. The second 

part focuses on the characterisation of a novel putative m6A modification 

‘reader’ protein, SND1, here identified through its interactions with a key 

methylated KSHV transcript.  

6.2 Kaposi’s Sarcoma Herpesvirus-8 

    Kaposi’s Sarcoma Herpes Virus-8 (KSHV) is a large, oncogenic double 

stranded DNA virus. Originally discovered in 1994 (Chang et al. 1994), the virus 

has since been identified as  the main cause of Kaposi’s sarcoma, Primary 

Effusion Lymphoma  and Multicentric Castleman’s Disease (Chang et al. 1994; 

Soulier et al. 1995; Cesarman et al. 1995; Schalling et al. 1995). Similar to other 

herpes viruses, KSHV is transmitted via saliva, blood or sexual contact, though 

transmission from pregnant women to the fetus is rare (Martin et al. 1998; 

Kedes et al. 1996). While the prevalence of KSHV infection in Western 

populations is less than 10%, in other areas, such as sub-Saharan Africa, it is 

estimated to be as high as 50% (Parkin et al. 2008). KSHV infection is typically 

well controlled by the host’s immune system via cytotoxic T-cell recognition of 

viral epitopes (Robey et al. 2010; Stebbing et al. 2003). Irrespective of 

geography, its prevalence is higher in patients also infected with HIV (Wabinga 
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et al. 1993), who along with other immune-comprised patients, show a greater 

incidence of KSHV-related cancers.  

Similarly to other herpesviruses, KSHV usually infects lymphoid cells; 

however it can also infect other cell types of endothelial lineage, as well as 

monocytes. B lymphocytes are the primary site for latent infection that allows 

the virus to establish a long-term latent viral reservoir (Blackbourn et al. 2000; 

Monini et al. 1999; Caselli et al. 2005). After entry, the virus generally 

establishes a latent infection phase, expressing a limited subset of key genes 

required to maintain infection. These include LANA (latency associated nuclear 

antigen), a phosphoprotein that acts as a transcriptional regulator and inhibits 

TGF-beta and p53 signalling pathways, which result in impaired apoptosis and 

increased cell proliferation (Nabel et al.; Si and Robertson 2006); vCyclin 

promotes cell cycle progression (Zhi et al. 2015; Godden-Kent et al. 1997); 

while vFLIP expression results in NF-kB activation by interfering with FAS 

associated death domain and caspase-8, thus promoting cell survival (Bagnéris 

et al. 2008; Liu et al. 2002). During the lytic phase, which KSHV rarely enters in 

vivo, the entire viral genome is expressed resulting in viral replication and 

assembly, and release of virions from the infected cell which is destroyed in the 

process.  

Transition from latent to lytic phase is largely controlled by the RTA 

(regulator of transcriptional activation) DNA-binding viral protein, a 

transcriptional activator that triggers the lytic cascade of viral replication. 

Consisting of 2 exons in the ORF50 region, it’s one of the few spliced KSHV 

mRNAs (Arias et al. 2014; Yu et al. 2007; Cohen et al. 2006).   

KSHV lytic replication is essential for the development and maintenance of 

KSHV-associated tumours. It has been shown that drugs targeting lytic 

replication can lead to regression of KSHV-associated tumours. Consequently, 

it is important to characterise the transcriptional and post-transcriptional control 

mechanisms that act as mediators of the latent-lytic switch in KSHV infection, 

which could ultimately lead to the development of anti-cancer therapies.  

It has been shown that the transcription of KSHV lytic genes is controlled via 

histone and DNA modifications; however, it possible that post-transcriptional 
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control of viral transcript expression also plays a key role in the KSHV viral life 

cycle. While KSHV virus does not itself encode m6A methylation machinery, 

nevertheless the manipulation of host m6A methylation pathways could be 

required for viral cycle progression. As the roles of m6A in the cell have been 

shown to be very diverse, KSHV could potentially utilise the host m6A 

machinery for several purposes, including control of host and viral splicing, RNA 

stability, translational efficiency and nuclear export. For instance, efficient 

splicing could be required to drive the lytic pathway, as RTA transcript typically 

undergoes splicing to produce the mature transcript. Furthermore, the 

organisation of the KSHV viral genome is compact, and latent and lytic genes 

are often transcribed as large open reading frames which are further spliced 

into individual transcript products; m6A could potentially modulate this process. 

m6A has also been shown to enhance transcript stability, nuclear export and 

translation; hijacking these key processes could be a key mechanism for rapid 

viral gene expression and modification of the host’s expression profile to 

promote virion assembly. Consequently, here the potential for the KSHV 

transcriptome to be methylated is investigated using m6A-Seq.  

6.3 Methods 

6.3.1 Sequence Data Generation 

6.3.1.1 m6A-Seq 

    Sample preparation, RNA extraction, NGS library preparation and 

sequencing described in this section were carried out by collaborators 

(Whitehouse group, FBS) in accordance with the protocol described by 

Dominissini et al (2012). Briefly, RNA was extracted from HHV-8 infected TREx 

BCBL-1-RTA cells, at 0, 8 and 20 hours post induction of the lytic pathway via 

doxycycline-induced expression of RTA. In each case, two separate biological 

replicates were obtained. RNA was fragmented and an aliquot of each sample 

was retained to produce the ‘INPUT’ RNA-Seq control libraries. Affinity purified 

anti-m6A rabbit polyclonal antibody (Synaptic Systems, cat. no. 202 003) was 

used to select for m6A-containing RNA by immunoprecipitation of the 

fragmented RNA. Immunoprecipitated and the input control RNA were used for 
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NGS library production using Illumina’s TruSeq Total RNA kit. The first set of 

libraries were sequenced on a HiSeq 2500 101 bp paired end lane, while later 

libraries were sequenced on a HiSeq 3000, 151 bp paired end lane. 

6.3.1.2 SND1 fRIP-Seq  

    SND1-fRIP-Seq was carried out by collaborators (Whitehouse group, FBS) in 

accordance to the protocol described by Hendrickson et al, (2016). Briefly, 

formaldehyde cross-linking was performed by incubating TREx BCBL-1-RTA 

cells with 0.1% fomaldehyde. Cells were sonicated to lyse and fragment the 

RNA; a fraction of lysate was set aside to create the control (INPUT) NGS 

libraries, while the remainder was subjected to immunoprecipitation with anti-

SND1 antibody. RNA was extracted and purified from both the 

immunoprecipitated and control fractions, and used to make the NGS libraries 

using the TruSeq Stranded Total RNA library production kit. As before, 3 time 

points (0H, 8H and 20H post-RTA induction) were sequenced on two151 bp 

paired end lanes on the HiSeq 3000 instrument.  

63.1.3 RNA lifetime profiling 

    RNA lifetime profiling was carried out by collaborators (Whitehouse group, 

FBS), in accordance to the protocol described by Wang et al (2014). Briefly, 

BCBL-1 cells were transfected with SND1 siRNA or control siRNA and after 48 

hours, actinomycin D was added to transfected cells at 5 µg/mL at 6 hours, 3 

hours, and 0 hours before tripsinisation collection. RNA was extracted and 

purified from two biological replicates of latent and lytic BCBL-1 cells, and used 

to make the NGS libraries using TruSeq Stranded Total RNA library preparation 

kit. ERCC spike-in mix 1 (Jiang et al. 2011) was added proportional to total RNA 

prior to NGS library preparation. As before, the libraries were sequenced on151 

bp paired-end lanes on the HiSeq 3000 instrument. 

6.3.2 Publicly available sequencing data 

    The following data was downloaded from the ENCODE project (ENCODE 

Project Consortium et al. 2012) as raw fastq files: 

• Hep2G cell line SND1 eCLIP data, two replicates 
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• Hep2G cell line SND1 knockdown and control RNA-Seq data, two 

replicates 

 

     The following data was obtained from GEO database (Barrett et al. 2013) as 

raw fastq files: 

• HeLa cell line m6A-Seq data, two replicates (Accessions: 

GSM1135030, GSM1135031, GSM1135032, GSM1135033)  

• HeLa cell line YTHDF2 knockdown and control RNA life time 

profiling data, two replicates (Accessions: GSM1197622, 

GSM1197623, GSM1197624, GSM1197625, GSM1197626, 

GSM1197627, GSM1197628, GSM1197629, GSM1197630, 

GSM1197631, GSM1197632, GSM1197633)   

• HeLa cell line YTHDF2 PAR-CLIP data, three replicates 

(Accessions: GSM1197605, GSM1197606, GSM1197607) 

    The following data was obtained from DNA Data Bank of Japan (Mashima et 

al. 2016): 

• HeLa cell line of RNA life time profiling of RNAs under normal 

conditions (Accessions: DRA000345, DRA000346, DRA000347, 

DRA000348 and DRA000350) 

6.3.3 Sequence data analysis 

6.3.3.1 Processing of raw sequence data 

    All m6A-Seq, fRIP-Seq and RNA lifetime profiling data were generated at 

Leeds NGS Facility and extracted and de-multiplexed using bcl2fastq software, 

which exports a matched pair (read 1 and read 2) of compressed fastq files per 

sample. All further analysis was performed by the author. 

    Quality control of all sequence data, including publicly available datasets, 

was carried out using FastQC software (Andrews 2010), which allowed the 

identification of sequence adapter contamination, overrepresented sequences, 

estimation of the PCR/Optical duplicate rate and overall sequencing quality.  

All raw sequence data were then processed using Cutadapt (Martin 2011) 

software, in order to remove poor quality bases (quality score less than 20) as 
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well as Illumina universal sequencing adapter sequence (AGATCGGAAGAG) 

from the 3’ end of reads.  

The KSHV reference genome sequence was downloaded in fasta format 

from the NCBI website (Benson et al. 2005), while a GTF file containing 

genomic feature coordinates (ORFs, genes, exons, UTRs) was assembled 

manually using data from the  KSHV 2.0 annotation dataset created by Arias et 

al  (2014). The human hg38 reference genome sequence was downloaded from 

the UCSC FTP site in fasta format. The human hg38 genome annotation was 

downloaded using the UCSC Table Browser Tool (Karolchik et al. 2004). KSHV 

data were manually added to the human reference fasta and GTF files as an 

additional chromosome. 

The genome sequences in the merged fasta file were indexed for alignment 

using STAR software (Dobin et al. 2013). Paired-end sequence data was 

subsequently aligned to this index using the splice-aware read aligner STAR, in 

paired-end, two-pass mode. Aligned reads in BAM format were sorted by 

coordinate and indexed using Samtools (Li et al. 2009) and PCR and optical 

duplicates flagged (but not removed) using Picard software. 

Data downloaded from public repositories were aligned as above, except 

without the addition of KSHV reference genome. 

6.3.3.2 m6A-Seq data analysis 

    m6aViewer was used to identify the m6A peaks in the m6A-Seq data, as 

described in Chapter 5 with the peaks exported to text files for subsequent 

analysis.  

    Peak motif analysis was performed by exporting the flanking 100 base of 

RNA sequence surrounding peaks in KSHV methylome to a fasta file. 

Sequences containing repetitive viral sequence were removed. The remaining 

data was then used for enriched sequence motif detection using the MEME 

(Bailey et al. 2009) software, with scrambled sequences used as a control. 

KSHV methylome maps were produced using custom Java code.  
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6.3.3.3 fRIP-Seq data analysis 

    SND1 binding sites were initially identified at transcript-level resolution by 

counting reads in the SND1 IP (immunoprecipitated) and INPUT (control) 

sample data that mapped to each RefSeq and KSHV transcripts. rSubread R 

package (Liao et al. 2013) was used to obtain raw read counts as follows. Each 

uniquely mapping read pair was counted towards the total transcript count for 

each sample, while multi-mapping reads were counted as partial reads, based 

on the number of mapped positions. Since the library preparation protocol 

preserved the strand of the original RNA molecule, only ‘correctly’ stranded 

read pairs were counted for each transcript. This allows to differentiate more 

accurately between the expression of sense and anti-sense transcripts. 

    Read counts were normalised using TMM (trimmed mean of MA values) 

normalisation (Robinson et al. 2010) and DESeq2 R package (Love et al. 2014) 

was then used to identify transcripts that showed a significant increase in the 

coverage of the normalised IP samples when compared to the INPUT controls. 

    In order to increase the resolution of the SND1-bound regions, custom Java 

code was used that identified transcriptome regions that were enriched in the IP 

data when compared to the control data. Initially, the application segmented 

regions into intronic or exonic sequences: a region was classified as exonic if 

the sequence was present in at least one mature transcript. The per base read 

coverage was determined for both intronic and exonic sequences and 

normalised using the parameters determined from the TMM normalisation step 

to account for library compositions and sizes. Using a sliding window approach, 

regions which showed enrichment in the IP data (at least 1.5 fold enrichment in 

the IP data compared to the INPUT data and at least 20 reads in the IP fraction) 

were identified. All data from the different samples in the analysis were then 

merged to generate a single dataset that contained read depth data for all 

consensus enriched and unenriched regions (both intronic and exonic). Each 

segmented region was subsequently treated as an individual gene for re-

analysis using DESeq2, in order to identify regions with a significant increase in 

IP over INPUT signal. 

6.3.3.4 RNA lifetime profiling data analysis 
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    As before, raw read count data was normalised between libraries using TMM 

normalisation. Normalised read counts were then scaled by linear fitting of the 

ERCC RNA spike-in transcripts, as described by Wang et al (2014). The RNA 

degradation rate for each transcript was computed by fitting a non-linear 

regression model to the data, with the formula: 

  Expression at 0 Hours + Decay Rate * Time 

The RNA half-life was then computed for each transcript as: 

 Half-life = ln(2)/-Decay Rate 

Transcripts with poor quality fits (97.5% and 2.5% confidence intervals > 0.2) 

were filtered out from subsequent analysis. 

6.3.3.5 Other Analyses 

    Differential expression analyses were performed in R using Deseq2 package 

(Love et al. 2014). YTHDF2 and SND1 binding sites in public PAR-CLIP and 

eCLIP data were detected using PARalyzer software (Corcoran et al. 2011). 

Functional enrichment analyses were performed using the clusterProfiler R 

package  (Yu et al. 2012). Alternative splicing events were detected using 

Spladder software (Kahles et al. 2016). Read coverage and splicing graphs 

were visualised using IGV data browser (Robinson et al. 2011). 

6.4 Results and Discussion 

6.4.1 KSHV Methylome 

m6A modification was found to be widespread across both viral latent and 

lytic transcripts in the KSHV transcriptome. Figures 68A, 68B and 68C show 

the KSHV methylome maps at 0, 8 and 24 hours post-RTA activation 

respectively. KSHV m6A methylation was found to be largely consistent 

between biological replicates in KSHV transcriptome (Figure 69). In total, using 

a high confidence cut-off of at least 2-fold IP change over control, 34 viral m6A 

peaks were identified in latent cell transcriptomes; 57 were found at 8 hours 

post-reactivation; and 101 were detected at 24 hours post-reactivation.  
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Figure 68A. m6A methylation of KSHV transcriptome at 0 Hour time point, 

prior to switch to lytic phase. Coverage derived from biological replicate 2. Note 

that each individual coverage data track is scaled to a different maximum, due 

to very variable viral gene expression levels.  
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Figure 68B. m6A methylation of KSHV transcriptome 8 hours post-

activation. Coverage data derived from biological replicate 2. Note that each 

individual coverage data track is scaled to a different maximum, due to very 

variable viral gene expression levels. 
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Figure 68C. m6A methylation of KSHV transcriptome 24 hours post-

activation. Coverage data derived from biological replicate 2. Note that each 

individual coverage data track is scaled to a different maximum, due to very 

variable viral gene expression levels.  
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Figure 69. Heatmap showing m6A peak enrichment distribution in KSHV 

transcriptome at latent (0H) and early lytic (8 H) and late lytic (20H) stages. 

Peak calls from multiple samples were aggregated by identifying overlapping 

sites. The resulting peak enrichment over control matrix rows(samples) and 

columns (peaks) were clustered (hierarchical clustering, complete linkage) and 

enrichment values visualised as a heatmap. Replicate samples cluster together, 

indicating high m6A site reproducibility in viral RNAs. The majority of m6A sites 

are gained throughout the course of infection, though this corresponds to viral 

transcription activation. 

 

 

For an m6A residue to be detected using m6A-Seq, the modified transcript 

has to be expressed above the detection cut off value. Consequently, only the 

genes used to maintain latent infection by KSHV can be reliably analysed at the 

0 hour time point. This largely limits the analysis to the locus that encodes 

LANA (ORF73), a key viral latency maintenance transcript and other early latent 

genes (including vCyclin/ORF72): this locus was found to be heavily methylated 

at all time points. However, following activation of RTA and the commensurate 

switch from latent to lytic, KSHV begins to heavily transcribe the rest of the viral 

transcriptome, enabling m6A detection across other viral transcripts. Thus, 
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analysis of later time points shows that most of the early and late lytic 

transcripts harbour one or more methylation sites. It is important to note that a 

small proportion of (experimentally) un-activated latent cells undergo 

spontaneous lytic reactivation; consequently, it is not surprising that in latent 

cells both transcript expression and methylation was also detected in a number 

of lytic KSHV genes, including RTA, vIL6 (K2), vIRF-2 (K11) and ORF75.  

RTA itself was found to contain multiple m6A sites that remain unchanged 

across all time points. Immunoprecipitated read coverage data distribution 

initially suggested that RTA may contain three distinct methylation sites; 

however, m6aViewer’s model-based peak deconvolution suggests that the 

presence of four m6A residues is more likely (Figure 70). 

In order to ascertain whether viral m6A methylation sites also utilise the 

human methyltransferase ‘RRACH’ (typically GGACH) consensus sequence, 

motif analysis was carried out on 200 nt of sequences surrounding all detected 

m6A peaks. This analysis recapitulated a strong ‘RRACH’ motif, suggesting that 

the virus uses the host cell methyltransferase machinery (Figure 71). More 

specifically, the enriched motif consisted of a strong m6A motif preceded by 

thymine, and was found in the majority (56 out of 81) of queried KSHV m6A 

peak sequences.  

Next, the location of detected viral m6As was compared against the 

distribution of m6A in cellular transcriptome. It was found that while in cellular 

transcripts m6A shows a preference for 3’UTR regions and coding regions; in 

the viral transcriptome non-coding m6A-modified bases constitute a much 

smaller proportion of the methylome (70-82% of all m6As detected in KSHV 

coding sequencing) (Figure 72A and 72B). This may be due to the much 

tighter organisation of the viral genome, with short UTR sequences and large 

open reading frames used to transcribe multiple genes at once. Furthermore, in 

KSHV, many open reading frames overlap and the same genomic coding strand 

sequence may act as both an ORF and a UTR for two different transcripts. 

Therefore, the prevalence of viral UTR methylation here may be difficult to 

estimate. Nonetheless, this highlights potential differences in m6A function 

between viral and host transcriptomes. 3’ UTR-m6A mediated post-
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transcriptional regulation has previously been shown to regulate transcript 

stability via miRNA or reader protein recruitment and subsequent targeting to P-

bodies for degradation. It is unlikely that hijacking these particular pathways 

would be beneficial to viral gene expression. Consequently, the different 

distribution of m6A residues in KSHV suggests that m6A methylation may serve 

a different set of functions in the virus when compared to the host cell.  

 

Figure 70. Comparison between the three (A) and four (B) m6A residue model 

for IP read coverage in enriched region in RTA transcript. Fitting three peaks to 

the region such that the three m6A positions account for the majority of reads 

aligning to the region results in a cluster of reads between the first peak and the 

second peak that overlap neither peak position. On the other hand, a four peak 

model of the region fits an additional peak that accounts for these reads. 
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Figure 71.  m6A consensus motif was recapitulated using KSHV peak 

sequences. 

 

 

 

Figure 72A. m6A peak distribution in viral transcripts.B. m6A peak distribution in 

cellular transcripts. 
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While there were no differentially methylated m6A sites in the viral 

transcriptome (that could not be accounted for by m6A not being detected in 

transcripts that are also unexpressed), 903 total host m6A sites were found to 

be differentially methylated. These transcripts were found to be enriched for 

functions relating to virus defence mechanisms, stress responses and interferon 

response pathways (Figure 73). These results confirm that m6A modification is 

not static and suggest that differential m6A methylation exerts post-

transcriptional control and modulates the host virus defence response. Whether 

this is a result of the host fighting the infection or the virus down regulating the 

anti-viral response is not yet known.  
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Figure 73. Top GO biological process functions enriched in differentially 

methylated transcripts across the experiment time course. 
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6.4.2 Characterisation of a new putative m6A ‘reader’ 

    In order to determine the precise function m6A modification has within the 

viral transcriptome, it is important to identify the reader proteins which recognise 

the modified sites. Here, comparative mass spectrometry analysis carried out 

by collaborators (Whitehouse group, FBS) identified a putative novel m6A 

reader protein, SND1 (Tudor staphylococcal nuclease), that preferentially binds 

a methylated oligo containing the flanking sequences of the RTA transcript’s 

first m6A peak position with greater affinity than other known m6A readers 

YTHDF1-3, YTHDC1 and hnRNPA2B1 (Table 12). 

 

Protein 

ORF37 RTA 1st peak RTA 4th peak 

A oligo m6A oligo A oligo m6A oligo A oligo m6A oligo 

YTHDF1 3 10 5 10 0 10 

YTHDF2 2 9 4 9 0 9 

YTHDF3 1 9 3 9 0 9 

YTHDC1 0 2 0 8 0 2 

SND1 0 1 2 27 0 0 

hnRNPA2B1 19 18 16 15 16 15 

Table 12. Mass spectrometry identified SND1 as a putative m6A reader protein. 

Known m6A readers are highlighted in blue. Putative novel reader SND1 is 

highlighted in red. The values are counts of unique identified peptides. 
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6.4.3 Identification of transcriptome-wide SND1 binding sites 

In order to further investigate the role of SND1 in the context of m6A and 

KSHV infection, transcriptome-wide SND1-fRIP-Seq was carried out. fRIP-Seq 

is in principle a very similar method to m6A-Seq. RNA-protein binding sites are 

identified by first formaldehyde cross-linking proteins to RNA in order to prevent 

post-lysis dissociation, and then isolation of protein-associated RNAs by 

immunoprecipitation. Similar to m6A-Seq, an RNA-Seq control is compared to 

the immunoprecipitated fraction in order to define high confidence protein 

binding sites. In contrast to m6A-Seq, fRIP-Seq is reportedly a much lower 

resolution technique, as cross-linked RNA cannot be easily sheared to a small 

fragment size. Nonetheless, while SND1 binding sites cannot be precisely 

narrowed down using this technique, it is possible to identify transcript-level 

enrichment. 

    In parallel to m6A-Seq, SND1-fRIP-Seq was carried out by our collaborators 

(Whitehouse Group, FBS) at three time points, capturing latent and lytic KSHV 

infection phases. Data was then processed as described in the Methods 

section. 5082 transcripts were identified as being significantly enriched in IP 

over INPUT across all time points.  

In confirmation of the mass spectrometry results, SND1 was found to be 

significantly enriched across the RTA/ORF50 transcript, but not ORF37 (Figure 

74). In order to identify SND1 target transcripts where SND1 binding may be 

mediated by m6A, fRIP-Seq data was overlapped with previously identified m6A 

sites. To limit any bias from reduced sensitivity to detect either SND1-binding or 

m6A methylation in transcripts with low expression, transcripts which showed at 

least high expression (> 200 FPKM) in both m6A-Seq and SND1-fRIP-Seq 

INPUT controls were selected for further analysis. A subset of all high 

confidence SND1 targets (> 2 fold change in IP over INPUT) was selected, as 

well as a subset of high confidence transcripts not targeted by SND1 (> 2 fold 

increase in INPUT over IP). In keeping with the hypothesis that SND1 is a 

putative m6A reader, SND1 target transcripts were found to be 1.69 times 

(43.66% vs 25.80% SND1-m6A overlap) more likely to be m6A methylated than 
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transcripts with similar expression levels that are not targeted by SND1 (Figure 

75).  
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Figure 74.  Normalised percentile read coverage (5’ to 3’) across 

RTA/ORF50 and ORF37 transcript in m6A-seq and SND1-fRIP-Seq data.  Both 

ORF50 and ORF37 show m6A enrichment, but only ORF50 is enriched in 

SND1-fRIP-Seq.  

 

Figure 75. Percentage of m6A overlap with highly expressed transcripts 

identified as targets of SND1 (> 2 fold change IP/INPUT) or not targets of SND1 

(> 2 fold change INPUT/IP) transcripts. 

 

Next, 294 transcripts were identified as significantly differentially IP-enriched 

across the 0H, 8H and 20H time course (Figure 76). These were, 

unsurprisingly, enriched for gene functions relating to virus-host interactions, 

suggesting that SND1 plays a crucial role in the regulating these transcripts. 

Additionally, this subset was highly enriched for genes participating in 

translation initiation, elongation and termination pathways, as well as co-

translational protein targeting to ER (Figure 77), reflecting the state of the cell 

during viral lytic replication, where KSHV genes are rapidly transcribed and 

translated for virion assembly and release. 

The analysis highlighted four separate clusters of transcripts (Figure 76): a 

small group of transcripts exhibiting mostly stable expression levels, but 

showing an increase in SND1 binding over the time course; a larger group of 

mostly stably expressed transcripts which show a loss of SND1 binding over 

time; a group of transcripts with somewhat variable expression, where SND1 

binding strongly increases over time at a greater rate than the increase in 
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expression levels; and finally, the largest group where transcript expression is 

largely stable and SND1 binding appears to increase over the time course – 

however, the transcript-level SND1-IP coverage in this group does not exceed 

that of the INPUTs. This could be due to a number of factors, such as 

inaccurate library size normalisation or, localised SND1 enrichment which would 

suggest that SND1-fRIP-Seq technique may have higher than transcript-level 

resolution. 
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Figure 76. Transcripts identified as significantly varying in IP/INPUT 

enrichment over the experiment time course. The heatmap shows a number of 

transcript clusters showing differential SND1 binding across KSHV infection 

time course. Genes can be grouped into increasing or decreasing binding 

clusters, as well as higher and lower IP vs INPUT groups. 
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Figure 78. Top GO biological process functions (top) and Reactome 

pathways (bottom) enriched in differentially SND1-bound transcripts across the 

experiment time course. 
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In order to investigate whether higher resolution identification of binding sites 

from SND1-fRIP-Seq data was possible, 5’ to 3’ percentile coverage was 

computed for each transcript identified as enriched across all time points. 

Transcripts were then clustered using hierarchical clustering. Figure 79A shows 

that a number of distinct transcript coverage distribution clusters exist, 

representing distinct read distribution patterns. While some of the identified 

transcripts show enrichment across the whole transcript, others show a strong 

preference for 5’ of the transcript.  

This prompted further investigation into the resolution of the SND1-fRIP-Seq 

data. In order to narrow down SND1 binding sites, the transcriptome was 

segmented using a sliding window approach into regions which could be 

considered IP-enriched and those that are not enriched. Introns and spliced 

transcripts were treated separately to preserve the distinction between nascent 

and mature RNA transcripts. This resulted in the segmentation of the 

transcriptome into 741,170 distinct regions, out of which 107,374 could be 

considered statistically significantly enriched in SND1 IP fraction.  

These were found to be mostly less than 2Kb in size, with just under half of all 

significantly enriched regions being under 1Kb in size (Figure 79B). Thus, while 

the resolution of fRIP-Seq is much poorer than that of m6A-Seq (200-300bp) 

and no distinct ‘peaks’ can be detected, SND1 binding sites can be narrowed 

down to approximately 1-2kb resolution.  

SND1-binding sites may therefore appear more defined in the introns of 

nascent transcripts, since intronic regions are generally much longer than 

exons. Thus, intronic regions were investigated in more detail. It could be 

observed, that as expected, in larger introns SND1 binding sites could be 

identified as distinct 1-2kb read clusters enriched in IP fraction. Remarkably, 

many of these clusters also directly overlapped m6A residues identified by m6A-

seq – for example, the third intron of DUSP22 transcript (Figure 80). 
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Figure 79A. Percentile-based coverage of identified SND1-target 

transcripts. Transcript cluster showing whole transcript enrichment is highlighted 

in red. B. SND1 IP-enriched fRIP-Seq region size cumulative distribution. Red 

marker = 1kb; blue marker = 2kb.  
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Figure 80. DUSP22 gene read coverage as visualised in IGV. Localised 

SND1 enrichment can be easily observed in longer introns, such as in the third 

intron of DUSP22 gene. m6A is often co-localised with SND1 intronic 

enrichment, as is the case here. 

 

    In order to investigate whether SND1 binding in these intronic regions is likely 

to be mediated by the presence of m6A, intronic SND1 regions (5406 total) were 

intersected with previously detected m6A peak positions. As a control, all 

intronic regions (spanning total of 17469 unique sites in the genome) which 

showed at least moderate expression (more than 50 reads per region) and were 

depleted for SND1 IP reads (< -1 log2 fold change) were selected. 21% of all 

intronic SND1-bound regions were identified to directly overlap an m6A site – 

compared with just 1% of all control regions (Figure 81). This suggests that 

m6A modification could be co-regulated together with SND1, or m6A is 

facilitating the binding of SND1.  

 In order to investigate whether SND1 may be an indirect m6A reader, not 

binding the modification directly, but rather upstream or downstream of it, 

SND1-bound and control regions were extended either side by 100 nt to 

investigate short range effects and by 1Kb to investigate putative longer-range 

effects. Reasoning that if SND1 acts downstream/upstream of m6A, there 

should be an increase in m6A overlap in these larger regions when compared to 

control regions. Figure 81 shows that, as expected, when the SND1 region is 

expanded by including some upstream and downstream regions, the amount of 
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overlap with previously identified m6A positions increases This increase is 

consistent between SND1-bound intronic regions and control regions, 

suggesting that m6A is not more likely to appear upstream/downstream of 

SND1-bound regions, but rather directly overlap it.  

While 21% overlap with m6A sites may seem somewhat small, SND1 is a 

multi-functional protein with diverse roles, and as such, not all of these functions 

are likely to be mediated via m6A recognition. It is also worth noting that this 

overlap is considerably higher than has been reported for other m6A readers, 

such as hnRNPA2B1. Alacorn et al (2015) found that out of 39,737 

hnRNPA2B1 binding sites identified by PAR-CLiP, only 2096 (5.2%) overlapped 

m6A residues.  
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Figure 81. Overlap between intronic SND1-enriched/unenriched regions and 

m6A.Intronic SND1-bound regions were overlapped with corresponding regions 

in m6A-seq dataset and 21% of all sites were found to directly overlap identified 

m6A residues; m6A was detected with 100bp of 27% of SND1-bound regions 

and within 1Kb in 40% of SND1-bound regions. As a control, unbound but 

expressed intronic regions were selected, in each case displaying lower levels 

of overlap with m6A residues. 

 

21%
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7%

18%
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Overlap between m6A sites and SND1 bound and SND1 
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SND1-bound No SND1 binding
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Figure 82. Intronic SND1 binding motifs discovered using MEME. U-tract 

motif was most enriched in both SND1 regions overlapping m6A (A) and those 

not overlapping m6A (B). Regions overlapping m6A also showed enrichment for 

a number of ‘RRACH’-like motifs (C), while also showing enrichment of a larger 

motif encompassing U-tract followed by a downstream m6A motif (D). 

 

In order to further investigate these regions, motif enrichment analysis was 

performed using SND1-enriched region sequences which overlapped an m6A 

residue and those which did not. In both set of sequences, U-tract motifs were 

the most prevalent (Figure 82A and 82B); in SND1-bound regions which also 

overlapped m6A, a number of motifs were discovered which recapitulated some 

form of the m6A ‘RRACH’ consensus motif (Figure 82C). Interestingly, 

increasing the maximum motif length search parameter resulted in the 

identification of an extended 30nt motif in SND1-m6A regions which encompass 

a strong m6A consensus following a U-tract (Figure 82D).  

As the U-track is key sequence feature for RNA recognition by many hnRNP 

proteins required for splicing, it is thus feasible that SND1 may participate in 

m6A-mediated splicing or alternative splicing events. It is also interesting to note 

that SND1 was identified via mass spectrometry as an interactor of m6A-RTA, 

which is a spliced KSHV transcript, but not m6A-ORF37, which is not spliced. 

Furthermore, in additional to canonical YTH domain m6A reader proteins, mass 

spectrometry identified a number of known splicing factors, including U5 

snRNP, hnRNPC and hnRNPA2B1, as interacting with both m6A- and A- RTA 



278 

 

oligo, suggesting that these proteins may be recruited by and/or interacting with 

SND1. 

In line with this hypothesis, some interesting cases have emerged. For 

example, GUK1 gene is not differentially expressed, but was found to gain an 

intronic SND1 binding site over the time course (Figure 83A). This gain of 

SND1 binding is also mirrored in a gain of an m6A peak overlapping the binding 

site. Interestingly, this also coincides with an increase of split-reads supporting 

the inclusion of the second cassette exon, but only in the SND1 IP fraction – 

splicing distribution remains largely unchanged in the INPUT fraction (Figure 

83B). This would suggest, that fRIP-Seq is capturing and enriching for SND1 

binding events on nascent transcripts during the RNA transcription/processing 

in the nucleus; and these events are ‘diluted’ when considering total cell RNA, 

which mostly consists of the cytoplasmic fraction.  
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Figure 83A. Gain of SND1 binding at 8/24H in the intronic region of GUK1 is 

mirrored by the gain in m6A methylation in the same region. B. Split-read 

distribution as percentage spliced in (PSI) of alternative GUK1 exons in IP and 

INPUT. 20H IP time point not shown for all junctions due to lack of coverage. 

Differential junctions highlighted in grey. IP samples are shown as dotted lines, 

control INPUTs as solid lines. 0 hour time point is shown in red, 8 hour in blue 

and 20 hour in green. 
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6.4.4 RNA gene expression, lifetime profiling and alternative splicing 

analysis in SND1-depleted BCBL-1 cells 

 

In order to further investigate the role SND1 may have in regulating its target 

transcripts, SND1 was knocked down in KSHV-infected latent and lytic BCBL-1 

cells and RNA lifetime profiling assay was carried out by collaborators 

(Whitehouse Group, FBS). The experimental set up is summarised in Table 13, 

and data was processed as described in Methods section.  

Initially, SND1 was confirmed to be depleted in knockdown samples in RNA 

sequencing data (Figure 84). SND1 depletion directly impacts the expression of 

1643 transcripts in latent cells (Figure 85), resulting in consistent up or down 

regulation across most samples sequenced. The majority of differentially 

expressed transcripts identified were not targeted by SND1 in the SND1-fRIP-

Seq data (Figure 86), suggesting that the immediate effects on gene 

expression of SND1 knockdown are likely due to the transcriptional, rather than 

post-transcriptional regulation by SND1. Interestingly, transcripts which were 

found to be upregulated on SND1 knockdown were more likely to be SND1 

target RNAs than down regulated or unaffected transcripts. As SND1 has been 

previously described as a transcriptional activator, these results highlight a 

putative dual role of this protein. Down regulated RNAs were found to be less 

likely to be directly targeted by SND1, thus SND1 may exert its regulatory role 

on these molecules via transcriptional control, whereas up regulated RNAs 

were more likely to be directly targeted by SND1, thus suggesting that at least 

some of these RNAs may be regulated post-transcriptionally.  

In order to further investigate the effects of SND1 knockdown on cellular 

transcripts beyond transcriptional expression changes, alternative splicing 

events were detected using Spladder software. In total, 3932 single exon 

skipping events, 808 multiple exon skipping events, 1671 intron retention 

events, 1587 alternative 3’UTR usage events and 2013 5’UTR usage events 

were detected across all samples in the data. No alternative splicing events 

were found to be statistically significantly different between SND1 knockdown 

and control samples. 
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Figure 84. SND1 mRNA was confirmed to be depleted to approximately 

25% of scramble control in the knockdown samples.  
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Figure 85.  Heatmap showing cellular transcripts in latent BCBL-1 cells that 

were identified as significantly differentially expressed upon SND1 knockdown. 

 Table 13. Experimental sample set up of SND1 knockdown and control RNA 

life time profiling in latent and lytic cells. The experiment was repeated across 

two biological replicates.  
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The analysis was repeated using publicly available SND1 knockdown data 

from the ENCODE project in Hep2G cells, to the same result (1335 alternative 

3’UTR, 1629 alternative 5’UTR, 3307 single exon skip, 600 multiple exon skip 

and 1196 intron retention events across all samples, with no significantly 

differential events detected). The CD44 gene was previously reported to be 

alternatively spliced on SND1 depletion in prostate cancer cells, however the 

gene is not expressed in BCBL-1 cells or in Hep2G cells, and thus this event 

could not be confirmed in available RNA sequencing data.  

Next, the effects of SND1 knockdown on stability of its target transcripts 

were investigated using RNA lifetime profiling. RNA half-lives for each transcript 

were computed as described in the Methods section using a time course 

experiment of actinomycin D treated cells, to allow the measurement of the rate 

of degradation of each individual transcript.  
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Figure 86. Summary of transcripts which are down regulated on SND1 

depletion, transcripts which show no change in expression on SND1 depletion 

and transcripts which are up regulated on SND1 depletion and the proportion of 

each group that was found to be a target RNA for SND1 protein.  

 

The rate of degradation of the majority of cellular transcripts in both lytic and 

latent cells were unaffected by SND1 depletion, although more variation was 

observed in lytic cells (Figure 87).  Interestingly, when examining the effects of 

SND1 depletion on SND1 target transcripts only, as opposed to all RNAs shown 

in Figure 87, different patterns emerged. In latent cells, SND1 target transcripts 

are more likely to be stabilised or destabilised by SND1 depletion than non-

target transcripts, suggesting a dual mode of SND1 action on RNA stability 

(Figure 88A). In lytic cells, SND1 target transcripts show a tendency towards 

decreased stability on SND1 depletion (Figure 88B); this effect was confirmed 

to be significant (Mann-Whitney test p-value: < 2.2e-16). Interestingly, this effect 
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appears to be precisely the reverse of that reported for the YTHDF2 m6A reader 

protein, where YTHDF2 depletion stabilises its target RNAs (Figure 88C).  

These observations are in line with reported roles of SND1 as a regulator of 

transcript stability by increasing RNA degradation when localised in P-bodies 

and promoting RNA stability when localised within stress granules. The 

dramatic shift of SND1 target stability in lytic cells that is not observed in latent 

cells in particular supports SND1 role as a component of stress granules, 

sequestering key RNAs and promoting their stability during periods of cellular 

stress. This is further evidenced by the observation that increased enrichment 

of SND1 target transcripts in SND1-fRIP-Seq data, which could be interpreted 

as stronger SND1-RNA associations, correlates with an increased effect on the 

stability of these transcripts (Figure 88D). 

Whether this effect on RNA stability is mediated by SND1 recognition of m6A 

methylation is less clear. No significant difference in stability was observed in 

SND1 target transcripts which were identified as methylated or not methylated 

in m6A-Seq experiment (Figure 88E). However, a substantial amount of 

technical noise and biological variability is expected to accumulate when 

comparing data across multiple sequencing experiments, carried out over the 

course of several years. It is interesting to note the difference between stability 

of methylated and unmethylated YTHDF2 target transcripts in the sequencing 

data produced by the He group (Wang et al, 2014) was overall very small, and 

not significant at p-value < 0.01 (Mann-Whitney test, p-value: 0.01356) (Figure 

88F), although the effects could be validated by qPCR in multiple key 

transcripts.  
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Figure 87. The distribution of log2 fold changes of SND1 knockdown versus 

scramble control RNA half-lives in latent and lytic cells. 
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Figure 88A. Cumulative frequency distribution of RNA half-life changes on 

SND1 knockdown in latent cells. SND1 target transcripts are in red, while non-

targets are in blue. Mann-Whitney p-value: 0.01016. B. Cumulative frequency 

distribution of RNA half-life changes on SND1 knockdown in lytic cells. SND1 

target transcripts are in red, while non-targets are in blue. Mann-Whitney p-

value: < 2.2e-16. C. Cumulative frequency distribution of RNA half-life changes 



288 

 

on YTHDF2 reader knockdown in HeLa cells. Figure obtained from reanalysis of 

raw data from Wang et al, (2014). YTHDF2 target transcripts are in red, while 

non-targets are in blue. Mann-Whitney p-value: < 2.2e^16. D. Cumulative 

frequency distribution of RNA half-life changes on SND1 knockdown in lytic 

cells. SND1 target transcripts are drawn in a solid line, separated by IP 

enrichment over control, while non-target distribution is shown as a dotted line. 

E. Cumulative frequency distribution of RNA half-life changes on SND1 

knockdown in lytic cells. SND1 target transcripts are in red, while non-targets 

are in blue. Distribution of unmethylated transcripts is shown as solid lines, 

while methylated transcripts are shown as dashed lines. Mann-Whitney p-value 

methylated vs unmethylated SND1 targets: 0.56; Mann-Whitney p-value 

methylated vs unmethylated SND1 non-targets: 0.18. F. Cumulative frequency 

distribution of RNA half-life changes on YTHDF2 reader knockdown in HeLa 

cells. Figure obtained from reanalysis of raw data from Wang et al, (2014). 

YTHDF2 target transcripts that are methylated are in blue, while unmethylated 

targets are in red. Mann-Whitney p-value: 0.01356. 
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Figure 89. Heatmap showing the expression of KSHV transcripts in lytic 

BCBL-1 cells in SND1 knockdown and scramble control samples, 3 time points, 

2 replicates.  
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In KSHV viral transcriptome, SND1 knockdown was found to severely 

impact the expression of the majority of KSHV viral transcripts, halting viral lytic 

replication in BCBL-1 cells (Figure 89). This effect may be a result of a direct 

global repression of all viral transcripts, or indirectly due to the inability to 

activate the RTA gene upon SND1 knockdown, which is required for the latent-

lytic KSHV switch. On further investigation, however, it was found that RTA 

showed neither any alteration in splicing patterns (Figure 90A), nor any 

differences in the rate of RNA degradation (Figure 90B). No significant 

differences could be found for other viral transcripts. This would then suggest 

that SND1 may be involved in transcriptional regulation of KSHV transcriptome; 

or, as SND1 was found to specifically bind methylated RTA transcript, it may act 

as a post-transcriptional regulator further downstream. However, this effect is 

unlikely to be related to RNA translation mechanisms, as the effects on KSHV 

lytic replication were identified at RNA level.  

 

 

Figure 90A. RTA transcript sashimi and read coverage plot showing splicing 

graph in lytic BCBL-1 cells in SND1 knockdown (top, red) and scramble control 

(bottom, blue) samples.  The numbers over arches joining exons show the 

number of split-read alignments supporting the junction. As RTA overlaps an 

anti-sense transcript, ORF49, only correctly stranded reads were used to 

produce the above plot. 
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Figure 90 B. RTA transcript half-life in latent and lytic BCBL-1 cells in SND1 

knockdown and scramble control samples. Half-lives from left to right: latent 

scramble, latent SND1 knockdown, lytic scramble, lytic SND1 knockdown. 

6.4.5 Discussion  

   While it was previously unknown whether KSHV viral transcriptome is subject 

to post-transcriptional m6A modification, very recently Ye et al (2017) described 

similar findings to those presented here. Ye et al (2017) found the KSHV 

transcriptome to be heavily methylated, including the methylation of latent-lytic 

switch master regulator RTA. The group reported the YTHDC1 reader protein 

binding of m6A-RTA, which was also identified here. Ye et al further postulate 

that the lytic-latent switch is first induced by m6A methylation of the RTA 

transcript, which facilitates its pre-mRNA splicing and processing.   

    These results are in line with the hypothesis presented here, with a key 

difference - m6A-mediated processing of RTA is likely to be at least partially 

facilitated via a putative novel m6A reader protein SND1, rather than YTHDC1.  
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SND1 is an evolutionary conserved protein consisting of tandem-repeated 

staphylococcal nuclease domains and a fusion of Tudor domain, which is 

known to recognise methylated lysine and arginine residues (Liu et al. 2010a; 

Tripsianes et al. 2011; Liu et al. 2010b), with a partial SN domain at the C-

terminus. SND1 is a multi-functional protein and has been shown to act in a 

number of different pathways as a regulator of gene expression (Figure 91).  

 

Figure 91.  Summary of SND1 domain organisation and main functions. 

Different SND1 domains have been attributed differing roles in gene expression 

pathways, with SN domains participating in RISC complex activity, transcription 

factor activity and targeting to stress granules (SG), whereas Tudor-SN domain 

has been suggested to participate in RNA splicing. 

 

To date, SND1 has been implicated as a regulator of many gene-expression 

pathways, including transcription, splicing and RNA silencing. Initially 

discovered as a transcriptional co-activator, SND1 has been shown to interact 

with a number of transcription factors, such as STAT5, PPARγ and NF-kB 

(Duan et al. 2014; Rawlings et al. 2004; Santhekadur et al. 2012). These 

interactions are mediated via concurrent binding of these transcription factors 

and DNA by the SN domains.  

SND1 has also been demonstrated to enhance the rate of splicing through 

interactions with multiple spliceosome components. SND1 reportedly binds U1, 

U2, U4, U5 and U6 snRNPs, as well as SmB and SmD1/D3 (Gao et al. 2012; 

Cappellari et al. 2014; Yang et al. 2007; Will and Lührmann 2001), enabling 
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spliceosome complex assembly, but also directing the transition from 

spliceosome complex A to complex B (Figure 92).  To date, however, there is 

limited evidence of SND1 role in alternative splicing, with only alternative 

splicing of CD44 transcript thus far reported in literature. 

Furthermore, SND1 was found to be associated with RISC, a complex which 

mediates RNA interference (RNAi) silencing. Staphylococcal nuclease inhibitors 

have been shown to also inhibit RISC activity, suggesting that SND1 SN 

domains may be contributing to nucleolytic RISC action. There is evidence that 

SND1 may degrade A-to-I edited double stranded RNA (I-dsRNA), as well as 

hyper-edited miRNA precursors, although the precise cellular function of hyper-

edited RNA remains unclear (Yang et al. 2006; Scadden 2005; Sontheimer 

2005; Caudy et al. 2003). 
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Figure 92. Dual role of SND1 in splicing.SND1 is proposed to interact with 

snRNPs U1, U2, U4, U5 and U6, facilitating assembly of spliceosome Complex 

A, but is also putatively involved in ‘bridging’ the transition to Complex B. 
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    Under stress conditions, cytoplasmic RNAs are either stored in stress 

granules, or degraded in P-bodies. SND1 has also been found to interact with 

proteins forming the core of stress granules, and it has been suggested that 

SND1 may act as a scaffold or a recruiting factor. Certain RNAs localised in 

stress granules may be stabilised by specific RBPs, which protects them from 

degradation. Indeed, SND1 has been shown to bind some RNAs during stress 

conditions and in doing so, increase their stability (Lokdarshi et al. 2016; Yan et 

al. 2014; Zhu et al. 2013; Weissbach and Scadden 2012).  

Accordingly, SND1 is involved in multiple gene expression regulation 

processes. Under normal conditions, it appears to act as a regulator of 

transcription, enhancing transcription via its roles as transcriptional co-activator, 

stimulating splicing and regulating RNA levels via RNAi pathways. When 

subjected to stress, SND1 localises to the cytoplasm, where it contributes to 

stabilisation or degradation of specific RNAs, conferring stress resistance to the 

cell and promoting survival (reviewed in (Gutierrez-Beltran et al. 2016)). In 

addition, localisation to the cytoplasm impacts nuclear SND1 functions, thus 

resulting in global repression of transcription of nuclear SND1 target genes. 

It is thus possible that m6A modified RNA plays a role in one or more of 

these pathways by directly associating with SND1. Indeed, it has been shown 

that the roles of m6A are diverse, and can promote splicing; increase in RNA 

stability; increase of degradation by targeting m6A-modified RNAs to P-bodies; 

or enhance translation. It is evident that there is considerable overlap between 

known m6A functions and those of SND1.  

Here, SND1 is shown to specifically bind m6A methylated RTA; and SND1 

knockdown halts KSHV viral gene expression, suggesting that m6A-mediated 

SND1 binding of RTA is required for KSHV lytic replication.  

    The mechanism of SND1 action is less clear. Upon SND1 depletion, no 

significant effects could be detected in the splicing of viral transcripts or in the 

rate of KSHV transcript degradation. Some of these effects may be difficult to 

detect, however, as KSHV transcriptome is tightly packaged in overlapping 

open reading frames, preventing accurate characterisation of individual 

transcripts using short read sequencing technologies. Thus, substantial 
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inaccuracies may be present in the data that are often impossible to address 

using the short-read sequencing technologies.  

    On the other hand, a clear effect on the stability of SND1 cellular target 

transcripts was observed in lytic cells on SND1 knockdown, suggesting that 

SND1 is involved cellular stress response. This effect may be mediated via 

m6A-specific recognition of RNA; however, this could not be conclusively 

demonstrated using sequencing data. 

    Many intronic SND1 binding sites were identified, often tightly co-localising 

with m6A methylation, suggesting that these processes are coupled in some 

way. Altered - or perhaps intermediate- splicing products can also be detected 

in these binding sites in immunoprecipitated fractions, further suggesting that 

SND1 plays role in splicing. However, no significant effects on splicing could be 

detected in SND1 knockdown samples, indicating some other role for SND1; or 

perhaps suggesting that there is redundancy in SND1 involvement in splicing 

processes and other proteins are able to compensate in the absence of SND1.  

    The work presented in this chapter remains on-going, thus many avenues 

remain unexplored. Further bioinformatics analysis of the SND1-fRIP-Seq, RNA 

lifetime profiling and m6A-Seq datasets may reveal insights into other potential 

mechanisms of SND1 action. For example, SND1 has been implicated in 

RISC/RNAi-mediated transcript degradation. It is thus feasible that the m6A 

modification in the 3’UTR of transcripts enables this function. Identification of A-

to-I hyper-edited regions could shed light on this potential interaction.  
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7. Conclusion 

    The decreasing cost and increasing through-put of ‘Next-generation’ 

sequencing has led to rapid development of novel transcriptome and genome-

wide sequencing applications. As a result, the bottle-neck in both research and 

clinical sequencing has shifted from data generation to analysis and 

interpretation. In these areas, the development of robust and scalable 

bioinformatics software and algorithms has lagged considerably behind data 

generation, and with few community gold standard tools available, researchers 

often use in-house scripts and ad hoc approaches. Thus, to bridge the gap 

between data generation and analysis and interpretation, more focus is needed 

on the development and new and improved bioinformatics tools. 

    This work presents three such applications: GeneTiER, OVA and m6aViewer. 

GeneTiER explores the use of data mining tissue-specific RNA-Seq and 

microarray expression data for candidate gene prioritisation. The resulting 

application is capable of unbiased candidate gene prioritisation and performs 

well in cases where disease phenotype is localised to few tissues or systems. 

The OVA application has been built to utilise a more diverse knowledge base, 

exploiting multiple ontologies to prioritise candidate disease genes and variants. 

While subject to ‘guilt-by-association’ bias towards the better studied genes, 

overall OVA achieves higher precision than GeneTiER, and therefore is more 

broadly applicable. However, in cases where knowledge-based approaches fail 

– for example, where the disease gene is poorly annotated – GeneTiER could 

identify disease genes in an unbiased way. 

    Shifting the focus from genomic sequencing to transcriptomics, the third 

application presented in this work is m6aViewer, a cross-platform GUI-driven 

desktop tool for the detection of visualisation of transcriptome-wide m6A 

methylation. m6aViewer was developed to meet the data analysis needs of an 

investigation into KSHV m6A methylome. The application of m6aViewer 

methodology and other related analyses have been presented in the last 

chapter, reporting previously uncharacterised RNA methylome of KSHV virus. 

Furthermore, this work introduced a putative novel N6-methyl-adenosine -RNA 
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binding protein, SND1, discussing its possible roles in the progression of viral 

infection and outlining future research avenues that remain unexplored. 
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