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Abstract 

The cost of chemical synthesis of pharmaceuticals contributes significantly 

to their final price and part of this cost is incurred due to use of extreme 

temperatures and pressures required by some traditional catalysts. The 

interest in catalysis using enzymes, or biocatalysis, from industry has been 

growing recently, due to enzymes’ ability to work at room temperature 

and pressure, and the reduction in toxic solvent waste produced from an 

enzyme reaction compared to a traditionally catalysed reaction. The 

specificity of enzymes, while useful in product formation, can make 

applying them to synthetic chemistry challenging due to the restriction this 

causes in substrates that each enzyme accepts. This can often be avoided 

by amino acid mutagenesis, but when this is performed genetically, only 20 

different amino acids can be used. Non-canonical amino acids (ncAAs) have 

the potential to enhance properties of enzymes, such as enzyme stability 

and substrate specificities, to hitherto unseen extremes, due to the 

massive diversity of amino acids outside the canonical 20. 

900 enzyme-aldehyde pairs were screened for activity, and 

Y252Lanthionine was found to catalyse the aldol reaction between 

pyruvate and glucuronolactone better than the wild type enzyme for the 

same reaction. Upon crystallisation, this enzyme was found to be a mixture 

of both L- and D-stereoisomers at the protein backbone where the ncAA 

was inserted. Computational experiments were performed to assess the 

substrate binding capability of the modified enzyme and the wild-type 

enzyme. The modified side chain holds the substrate more tightly than the 

wild-type side chain, contributing to increased residence time in the active 

site.  
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Chapter 1 - Introduction 

1.1  Enzymes in action 

1.1.1 History of enzymes 

Humans have been using enzymes to improve their lives for thousands of 

years, either using the enzymes in isolation or using the enzyme as part of 

a whole organism. A classic example of enzymes in action is during 

fermentation. There is evidence of humans actively attempting to ferment 

fruit into alcoholic beverages over 9000 years ago (McGovern et al., 2004), 

employing the enzymes contained within naturally occurring yeasts and 

other microbes to turn sugars into ethanol. Indeed, even the raising of 

livestock such as goats and cattle, which has been occurring for 10 000 

years (Zeder and Hesse, 2000), could be viewed as utilising organic 

bio-reactors to ferment indigestible long-chain carbohydrates into edible 

food. A more direct use of enzymes is in the production of cheese. The 

initial step in cheese making employs an extract of the enzymes from the 

stomach of a ruminant to curdle milk into curds and whey and this process 

has been occurring for at least 7000 years (Salque et al., 2013). 

As effective as these practices may have been at providing food and drink, 

serious study of enzymes only began to occur in the 19th century. Earlier 

discoveries by scientists such as Réaumur had determined that the process 

of digestion in birds is a chemical process and not a mechanical one, but 

they had not yet discovered the active components of digestion (de 

Réaumur, 1752). Years later, it was during study related to the millennia 

old process of brewing that the first enzyme was discovered. In 1833, 

Anselme Payen discovered the enzyme diesterase, recently more 

commonly known as amylase, after isolating it from malted barley (Payen 

and Persoz, 1833). The barley malt was ground and extracted with water, 

which upon addition of alcohol caused an amylase complex to precipitate 

out of solution. This precipitate could be dried and, when re-dissolved, 

was still capable of catalysis. In 1877 the term “enzyme” was first coined 

by Wilhelm Kühne to describe cell extracts capable of catalysis, 

distinguishing them from the catalytic or fermentation abilities of living 

cells (Kühne, 1877). 
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The actual identity of the molecules that perform catalysis was still 

uncertain, however. The impurity of the enzyme isolations to this point 

had meant that, while protein was the major constituent of catalytic 

preparations, the possibility existed that it was an inert partner that was 

in some way attached to or supported the catalytic species. This was 

mostly put to rest by experiments performed by John Northrop in 1930, in 

which he purified pepsin via seven sequential crystallisations in different 

solvents, showing that in all likelihood, the resulting catalytically active 

crystals were composed of a single species, and that species was a protein 

(Northrop, 1930). As such, the stage was set for the modern scientific 

study of enzymes as we know it. 

1.1.2 Uses of enzymes 

The current uses of enzymes still include the ancient, with the 

fermentation and dairy industries still relying heavily on enzyme 

preparations, but have expanded to include more modern industries as 

well. A table of examples can be seen in figure 1.1. Modern enzymes are 

often expressed in microbiological hosts, regardless of the enzyme’s 

original source, as this allows for optimisable expression that can be scaled 

up or down with minimal notice. 

Enzymes have been so widely adopted as they have a number of 

advantages over traditional catalysts. Firstly, if the reaction to be 

performed is already being performed by Nature, e.g. fermentation and 

the denaturing of milk proteins for cheese production are both performed 

in nature but have been co-opted by humans, then Nature will almost 

certainly have already developed an enzyme to perform that function. This 

enzyme will often be an efficient catalyst for this reaction, and it may 

prove easier to simply use the natural catalyst than to try to develop novel 

catalysts for that reaction. 

Secondly, even if the reaction is to take place in conditions that are very 

different to those that are present in Nature, but the reaction is the same 

as a natural reaction, e.g. biological laundry detergents using enzymes at 

high temperatures, enzymes can usually be modified to maintain 

functionality under a wide range of conditions. Directed evolution 

describes the intentional evolution of an enzyme, in this case, to adapt it 

for use under non-natural conditions. This has allowed enzymes to be 

adapted for high temperatures, high solvent concentrations and increased 

activity at extreme pH (Giver et al., 1998, Reetz et al., 2010, Cherry et 

al., 1999). 
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Industry 

Example 

enzyme - 

use 

Reaction catalysed 

Cooking 

Papain - 

tenderise 

meat 

 

R’= not Valine 

Brewing 

Amylase 

(diastase) - 

starches into 

fermentable 

sugars 

 

Dairy 
Chymosin - 

curdling milk 

 

Biofuels 

Cellulase - 

cellulose to 

fermentable 

sugars 
 

Detergents 

Lipase - 

removing 

fatty stains  

Molecular 

biology 

DNA 

polymerase - 

amplifying 

DNA in PCR 

reactions  

Chemical 

manufacture 

Halohydrin 

dehalogenase 

- synthesising 

intermediate 

in 

atorvastatin 

manufacture 

 

Figure 1.1 Examples of industrial sectors that use enzymes, an enzyme that is used in 

that sector, and the reaction that each enzyme performs.  
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For all reactions, enzymes have evolved to function in aqueous solution, 

whereas traditional catalysts have most often been used in organic 

solvents. Even some common organic solvents, such as dichloromethane, 

are toxic however, and as such reducing the use of these solvents is 

beneficial for the health and safety of the people who use them. Another 

factor to consider when using organic solvents is that even the non-toxic 

organic solvents need to be disposed of via a specialised waste stream, 

which incurs its own cost. Using water as the solvent in which a reaction is 

conducted circumvents both these concerns with organic solvents, and 

enzymes have the advantage of being ready-made catalysts for conducting 

reactions in aqueous solutions. 

Additionally, the majority of enzymes have evolved to act on chiral 

substrates such as amino acids and sugars, and as a consequence, enzymes 

are often able to easily distinguish between different chiral substrates and 

act selectively to process or produce one stereoisomer alone. Traditional 

catalysts are often less selective and have less control over the 

stereochemistries they produce. This can often mean an increase in waste 

if the wrong stereochemistry is discarded, or an increase in process 

complexity if it is resolved further down the production line.  

Also, traditional catalysts often require extreme temperatures or pressures 

to achieve the desired reaction outcomes, either in terms of yield or 

reaction rate. Most studied enzymes have evolved to perform reactions at 

room temperature and atmospheric pressure, and as such an enzyme 

catalysed reaction can often be conducted at a temperature and pressure 

much closer to ambient than the same reaction performed using traditional 

catalytic methods. 

Finally, enzymes can be made using very cheap starting materials with the 

expression organism performing the complicated chemical synthesis of the 

catalyst. Even with the addition of trace elements and recyclable 

co-factors, the cost of enzymes as catalysts can be quite low. When this is 

compared to some traditional catalysts which may include precious metals 

or complicated molecules that need to be synthesised, potentially costing 

hundreds of pounds per gram or more, the cost of enzymes becomes quite 

reasonable. 
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1.1.3 Power of enzymes: Catalysis on a protein scaffold. 

As we have seen, enzymes are used widely across industrial sectors and 

even in the home due to their ability to increase the rates of chemical 

reactions. Some enzymes display astonishing enhancements of the rate of 

reaction when compared to the uncatalysed reaction. One of the most 

extreme examples of this rate enhancement comes from the enzyme 

orotidine 5'-phosphate decarboxylase (OPD). This enzyme catalyses the 

decarboxylation of orotidine 5’-phosphate (OMP) to form uridine 5’-

phosphate (UMP) (figure 1.2), uridine being one of the four bases in RNA.  

  

Yeast OPD was examined performing the decarboxylation of a related 

substrate, 1-methyl orotic acid, and its rate was compared to the reaction 

occurring in buffer without a catalyst (Radzicka and Wolfenden, 1995). The 

uncatalysed reaction was calculated to take 113 million years per turnover 

when conducted in neutral buffer at room temperature. In comparison, 

when conducted in the same conditions with enzyme, the turnover rate 

was one molecule in 26 milliseconds, meaning the enzyme catalysed 

reaction has a turnover rate approximately 1017 fold higher than the 

uncatalysed reaction, giving this enzyme one of the greatest rate 

enhancements known. The enzyme accomplishes this prodigious rate 

increase without the use of any co-factors or metal ions, making this feat 

even more remarkable. 

Carbonic anhydrase is one of the fastest enzymes known. It catalyses the 

reversible conversion of carbon dioxide and water into bicarbonate and a 

proton, and with a turnover rate of 106 per second, the enzyme turns over 

 

Figure 1.2 The reaction performed by orotidine 5'-phosphate decarboxylase 

(OPD). Orotidine 5’-phosphate has one carbon dioxide molecule removed from 

it to form uridine 5’-phosphate, one of the bases in RNA. This reaction is very 

slow without catalysis, taking millions of years per turnover, but is much faster 

when catalysed with OPD, taking only miliseconds. 
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the substrate at the rate that substrate can diffuse into the active site. 

The overall direction in which the reaction occurs will depend on the 

region of the body that the enzyme is in at the time, e.g. in the lungs the 

enzyme will be mostly responsible for removing bicarbonate and creating 

carbon dioxide to be removed from the body; in the deeper tissues, the 

interconversion of carbon dioxide and bicarbonate can be used to control 

the local pH; and in highly respiring tissues carbon dioxide produced during 

respiration will be turned into bicarbonate for more efficient transport in 

the blood. The uncatalysed rate of this reaction is much faster than for 

OPD, taking only 7.7 seconds to turnover, making the rate enhancement of 

the enzyme lower than OPD despite the astonishingly fast catalysed rate. 

Most carbonic anhydrases utilise an inorganic cofactor, a zinc ion, in the 

active site, making this a metalloprotein. 

Serine proteases are some of the best-studied enzymes and as such their 

mechanism has been examined in detail. They catalyse a cleavage reaction 

that takes place at a specific place in the protein sequence, i.e. only on 

the C-terminal side of lysines and arginines for trypsin, and mostly function 

in digestion to break down proteins into smaller polypeptide chains. This 

reaction takes place approximately 1010 times faster when catalysed by the 

enzyme than when it is uncatalysed, and this with the aforementioned 

sequence specificity. 

This specificity of enzymes was notable from an early stage in enzyme 

research, eventually leading to the proposal of the lock and key model of 

enzyme selectivity (Fischer, 1894). This model suggested that both the 

enzyme and the substrate were rigid and the enzyme achieved its 

specificity by being a complementary shape to the substrate, allowing it to 

bind in the correct orientation for catalysis (figure 1.3 A). While this 

theory could describe a number of enzyme reactions quite well, a later 

theory was proposed called the induced fit theory (Koshland, 1958). This 

suggests that some parts of an enzyme are much more mobile and change 

conformation depending on whether a molecule is bound to them (figure 

1.3 B). As such, the binding of a substrate may change the structure of the 

enzyme in a way that induces catalysis. Similar molecules binding to the 

protein that are not substrates may bind as well, but they do not induce 

the correct changes in conformation required for a productive reaction. 

Again, the induced fit theory of enzyme catalysis could also explain most 

enzyme reactions well, and later research, especially X-ray crystallography 

structures of enzymes bound to substrate mimics, have shown it to be 



- 7 - 

accurate in that some proteins do significantly change structure when 

enzymes bind. However, it does not fully describe reality. More recent 

hypotheses suggest that during an enzymatic reaction, both the substrate 

changes the shape of the enzyme, and the enzyme changes the shape of 

the substrate. This is called substrate destabilisation. 

In essence, the enzyme will change the substrate, either by Van Der Waals 

or electrostatic interactions, into a conformation that is more 

energetically active, e.g. straining the bond that is to be broken, 

modulating the electrostatic charge on a functional group that is to be 

removed, or forcing two atoms that are to be bonded close together. This 

often causes the substrate to more closely resemble the transition state of 

the reaction. The enzyme will have a higher affinity for the transition state 

of the reaction than for the substrate in its native conformation, allowing 

it to hold onto the molecule firmly at this point. The transition state of the 

reaction is therefore stabilised. This is demonstrated in the activity of 

catalytic antibodies, antibodies which have been engineered to be able to 

perform a chemical reaction. Antibodies can be made that bind the 

transition state of a reaction and when the substrate of the particular 

 

Figure 1.3 Schematic representations of three different hypotheses of how 

enzymes achieve specific catalysis. A Shows the lock-and-key theory proposed 

by Fischer in which both enzyme and substrate are rigid. B Shows the induced 

fit theory proposed by Koshland in which the enzyme reacts upon binding of 

the correct substrate to give a complementary active site. C Shows induced fit 

theory combined with transition state binding, in which the enzyme and 

substrate both change shape, the enzyme changing shape upon substrate 

binding and having highest affinity for the transition state of the reaction, and 

the substrate moving into the transition state in response. 
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reaction is supplied to these antibodies, a low but observable rate of 

catalysis occurs (Belogurov et al., 2009). 

The low reaction rate of catalytic antibodies is partially due to the fact 

that substrate destabilisation can also happen in other ways, for example a 

charge on a reaction intermediate could be neutralised by corresponding 

opposing charges on side chains in the active site. Once the reaction 

occurs, the transition state is no longer present, and the enzyme loses 

affinity for the molecule, allowing it to leave the enzyme active site 

(figure 1.3 C). 

Another method by which enzymes enhance catalysis is through providing 

an alternate mechanism for the reaction to take. For example, while a 

reaction in solution may at some point have to abstract a proton directly 

from water, the enzyme may provide this proton via a side chain such as 

histidine at a pKa that much more readily donates the proton. 

Alternatively, a short-lived covalent intermediate may form between a 

substrate and the enzyme, changing the reaction mechanism required to 

produce the desired products to a mechanism that has a much lower 

activation energy. 

Orotate decarboxylase uses a combination of these methods to achieve its 

dramatic rate enhancement. It is thought that the primary rate 

enhancement strategy is via transition state stabilisation, but it also 

utilises destabilisation of the ground state of the substrate to initiate the 

reaction (Fujihashi et al., 2015). Upon binding to the enzyme, OMP causes 

a flexible loop to close over the active site, isolating it from the solution 

(Harris et al., 2002). An aspartate residue interacts with the carboxylate 

group to be removed and pushes the carboxylate group out of the plane of 

the ring, destabilising the substrate (Chan et al., 2009). The distorted 

carboxylate group then detaches from the ring, forming a carbanion on the 

pyrimidine ring. This carbanion transition state is stabilised partially by the 

distribution of the electrons through the conjugated ring system, but 

mostly by interaction with a lysine group on the enzyme providing a 

positive charge (Toth et al., 2007). 

Trypsin also uses transition state stabilisation to enable its catalytic 

function. Simply, the active site consists of a triad of residues, serine, 

histidine and aspartate, and also a region called an oxyanion hole, where a 

number of backbone nitrogen groups face into the active site. When the 

substrate binds, the histidine removes a proton from the serine group, 

which can then attack the carbonyl carbon of the amide bond. The newly 
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formed charge on the histidine is stabilised by the negative charge on the 

aspartate. The attack of the serine onto the carbonyl carbon forms a 

negatively charged oxyanion on a tetrahedral carbon intermediate, which 

is stabilised by the oxyanion hole in the active site. The oxyanion then 

attacks the tetrahedral carbon, reforming the planar carbonyl and 

breaking the amide bond, releasing one half of the substrate. Water is 

then used to reform a tetrahedral intermediate, which is again stabilised 

by the oxyanion hole. This second tetrahedral intermediate is removed 

from the enzyme using the same attack by the oxyanion as previously 

(Polgár, 2005). 

Carbonic anhydrase primarily enhances the rate of the reaction it catalyses 

by providing an alternate hydroxyl source for the carbon dioxide, or an 

alternate proton source for the bicarbonate (figure 1.4). When carbon 

dioxide is present it binds to the backbone amine of threonine in the 

active site. The carbon dioxide carbon is then attacked by a hydroxyl group 

that is bound to a zinc atom in the active site. This forms the bicarbonate, 

which then leaves the active site, meaning the substrate has been 

converted to product, but the active site is not yet in a catalysis ready 

state.  

 

 

Figure 1.4 Reaction mechanism of carbonic anhydrase, adapted from 

Lindskog, 1997, with arrows representing the CO2 to bicarbonate reaction. 
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Two water molecules then enter the active site, one binding to the zinc 

atom, and the other hydrogen bonding to the backbone amine of the 

threonine residue. One of the protons is abstracted from a water molecule 

associated with a histidine residue, protonating the histidine. The water 

molecule associated with the histidine concurrently abstracts a proton 

from the zinc-bound water, leaving a water molecule associated with the 

histidine, and a hydroxyl bound to the zinc atom. The proton is then lost 

from the histidine to a buffer in the solution, returning the active site to a 

catalytic state (Lindskog, 1997).  

Interestingly, carbonic anhydrase makes use of a prosthetic group, a tightly 

bound non-polypeptide species, in the form of a zinc atom in the active 

site to conduct catalysis. Many enzymes make use of prosthetic groups and 

covalently bound post-translational modifications (PTMs), to increase the 

diversity of chemical groups that proteins are able to access, making up for 

deficiencies in the 20 canonical amino acids, and as such can aid in all 

methods of activity enhancement mentioned above. PTMs can be 

considered natural non-canonical amino acids if they are covalently bound 

to the protein at an alpha carbon or on the side chain of a canonical amino 

acid.  
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1.2 Aldolases and NAL 

Aldolases perform a reversible synthetic reaction between an aldehyde 

group and another carbonyl group, forming a larger molecule, now with an 

alcohol group attached to the carbon in place of the aldehyde. This not 

only forms a molecule that has a longer carbon chain via formation of a 

carbon-carbon bond but also has the potential to form two new 

stereocenters in the product molecule. Carbon-carbon bond forming 

reactions can be quite difficult to conduct using traditional catalysts, 

making enzymes that are able to perform this reaction valuable. 

Additionally, non-enzymatic chemical reactions often suffer from poor 

stereoselectivity, while aldolase catalysed reactions can be exceptionally 

stereoselective. These properties make aldolase enzymes potentially very 

useful as catalysts in chemical synthesis reactions.  

1.2.1 Aldolases in industry 

While aldolases have great potential as biocatalytic enzymes due to their 

carbon-carbon bond forming ability, the narrow substrate scope and lack 

of stereochemically pure product of some aldolases have however held 

back the use of aldolases in industry more widely. Efforts have been made 

to improve aldolases, modifying their activity to make their industrial use 

more viable. 

For example, transaldolase has been modified to enhance production of 

bioethanol in Pichia stipitis (Chen et al., 2012). Transaldolase was found to 

be one of the limiting enzymes in the pathway that produces ethanol from 

xylose, a sugar abundant in the hemicellulose that makes up part of the 

cell walls of woody plants. This chain of reactions would allow by-products 

of the wood industry to be converted into liquid fuel. Transaldolase 

catalyses the conversion of sedoheptulose-7-phosphate and 

glyceraldehyde-3-phosphate into erythrose-4-phosphate and fructose-4-

phosphate. Error-prone PCR was performed on the transaldolase gene to 

produce mutant genes, which were then expressed and assessed for 

activity in a high throughput screen. Two mutants, Q263R and K190M, were 

discovered which displayed enhanced transaldolase activity. When these 

modified genes were inserted into the natural host, P. stipitis, the ethanol 

production per cell was significantly enhanced in the cultures with the 

modified genes. This example shows that not only are aldolases important 

enzymes in manufacture, but they are amenable to mutations that improve 

their abilities. 
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A widely studied aldolase for industrial applications is the enzyme 2-deoxy-

D-ribose 5-phosphate aldolase (DERA), used in the production of statin 

drugs. Statins are chemically varied drugs designed to inhibit the action of 

3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, the first enzyme in the 

pathway that produces cholesterol, therefore reducing the level of 

cholesterol in the blood. High levels of cholesterol in the blood have been 

connected to an increase in the risk of cardiovascular disease, giving 

statins the potential to reduce the chance of this disease occurring. 

DERA catalyses the reversible addition of acetaldehyde to D-glyceraldehyde 

3-phosphate to produce 2-deoxy-D-ribose 5-phosphate, but is also able to 

add acetaldehyde onto a relatively wide range of other aldehyde 

molecules. DERA is also interesting as the products of the reaction also 

contain an aldehyde group in a terminal position, allowing them to have a 

subsequent acetaldehyde molecule added onto the carbon backbone of the 

molecule. From these properties, DERA is able to produce long carbon 

chains from relatively short precursor molecules, these carbon chains have 

regularly placed, chiral features along the carbon chain, and one end of 

the molecules produced can display a variety of chemical groups (figure 

1.5A). The diverse array of molecules that DERA can produce can then be 

used as building blocks in the construction of the larger statin molecules 

(figure 1.5B).  

 

 

Figure 1.5 A The sequential addition reactions performed by DERA when run in 

the synthesis direction. The final lactonisation, turning a linear product into a 

cyclic one, occurs spontaneously in solution and does not require the enzyme. 

Adapted from Greenburg et al., 2004. B Structures of two examples of 

commercially available statin molecules, Atorvastatin and Pravastatin. The 

structure homologous to that produced by DERA can be seen on the right hand 

side of each molecule.  
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DERA has been subjected to directed evolution in an effort to optimise it 

to produce industrially useful building blocks, such as (3R, 5S)-6-chloro-

2,4,6-trideoxyhexapyranoside (Ošlaj et al., 2013).  Error prone PCR was 

used to generate a diverse library of DERA variants, which were screened 

for resistance to chloroacetaldehyde. These were then combined to give 

variants which had increased stability when subjected to concentrations of 

chloroacetaldehyde up to 500 mM and 1 M concentrations of acetaldehyde, 

industrially relevant concentrations of the reagents (Jennewein et al., 

2006). 

Even without directed evolution, very efficient variants of DERA can be 

discovered. In an effort to find versions of DERA with improved activity and 

improved tolerance to high substrate concentrations compared to the E. 

coli protein, DNA was isolated from diverse environmental samples and 

screened for activity. After process optimisation, an enzyme was found 

that, under the conditions tested, could produce 93 g/l of product over 

3 hours with 2% (w/w) of DERA added, compared to 76 g/l of product over 

3 hours with 4.8% (w/w) of E. coli DERA (Greenberg et al., 2004).  

There are a number of other aldolases that have been adapted to make 

potentially useful industrial catalysts. For example, threonine aldolases 

naturally produce β-hydroxy-α-amino acids, which are found in a number 

of compounds such as antibiotics and immunosuppressants (Gutierrez et 

al., 2008, Liu et al., 2000). Another example of an aldolase that has been 

adapted to make potentially useful compounds is neuraminic acid lyase. 

1.2.2 Neuraminic acid lyase as an aldolase 

Neuraminic acid lyase is an aldolase that catalyses the reversible addition 

of a three-carbon molecule, pyruvate, onto a six-carbon N-acylated amino 

sugar, N-acetyl-D-mannosamine (ManNAc), to form the nine-carbon 

molecule N-acetyl neuraminic acid (Neu5Ac) (figure 1.6). The enzyme’s 

likely function in vivo is to break down Neu5Ac into pyruvate and ManNAc 

for use as a carbon source and to regulate the intracellular concentration 

of Neu5Ac. However, when provided with pyruvate and ManNAc, the 

enzyme can synthesise Neu5Ac. As such, it provides a catalytic route to 

high complexity sugar-derived molecules. 
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Studies have been conducted on a number of bacterial and eukaryotic NAL 

variants and the catalytic rates of NAL from different organisms display a 

range of activities, a sample of which are summarised in figure 1.7.  

 

By far the most studied variant is that derived from E. coli. When the 

breakdown reaction, from Neu5Ac to ManNAc and pyruvate, is considered, 

the Km, or the substrate concentration at which the rate is half that of the 

 

Figure 1.6 Reaction performed by Neuraminic acid lyase (NAL). NAL performs 

an aldol reaction, attaching one molecule of pyruvate to one molecule of 

N-acetyl-D-mannosamine, creating one molecule of N-acetyl-D-neuraminic 

acid. 

Organism  kcat 

(min-1) 

Km (mM) kcat/Km 

(min-1 mM-1) 

Source 

Escherichia 

coli 

260 ± 6 4.4 ± 0.3 59 Williams et 

al., 2005 

600 ± 20 2.5 ± 0.3 240 Li et al., 2008 

0.81 2.6 0.311 Wada et al., 

2003 

11 ± 1.8 2.6 ± 0.2 4.0 Hsu et al., 

2005 

Pasturella 

multocida 

960 ± 60 4.9 ± 0.7 200 Li et al., 2008 

Staphylococcus 

aureus 

250 ± 5 2.2 ± 0.1 114 Timms et al., 

2013 

Clostridium 

perfringens 

 1.85  Schauer et al., 

1971 

Sus scrofa  3.7  Schauer and 

Wember, 1996 

Figure 1.7 Table summarising published kinetic data of wild-type NAL enzymes 

breaking Neu5Ac down into pyruvate and ManNAc from different species. Blank 

cells in the table represent data that were not in the specified publication. 
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maximum rate, of the E. coli NAL (ecNAL) is generally around 3 mM. The 

kcat, or the turnover rate of this particular enzyme-substrate complex, of 

this reaction has much more variable published measurements, from 

0.8 per minute to 600 per minute, a difference of approximately 3 orders 

of magnitude. This could be due to differences in measurement techniques 

or differences in the quality of the enzyme preparations. The low Km of 

NAL highlights its potential as a biocatalytic tool in synthesis reactions, as 

it will reach its highest rate at what would be relatively low concentrations 

of substrate for a chemical reaction in an industrial setting.  

Neu5Ac analogues are on the market as anti-influenza medication (Hayden 

et al., 1999, Yamashita et al., 2009, von Itzstein et al., 1993), as the flu 

virus uses Neu5Ac on the surface of cells as an anchor to attach itself to. 

The Neu5Ac analogues act to bind to these Neu5Ac recognition sites on the 

virus particles, preventing virus binding and entry. As such, NAL represents 

an industrially interesting enzyme, providing easy access to Neu5Ac 

homologues. However, the utility of NAL in this regard is dependent upon 

it accepting a wide range of substrates. NAL has been studied with a wide 

range of potential substrates, and a selection of studies are summarised in 

figure 1.8. 

In general, the more similar a molecule is to Neu5Ac, the better it will be 

catalysed by NAL. Small modifications to Neu5Ac, e.g. the replacement of 

a hydrogen atom with a chlorine atom, are generally tolerated well and 

the further a modification is from the aldehyde end of Neu5Ac, the better 

the change is tolerated. Even large changes, such as the addition of a 

sugar group via a glycosidic bond can lead to substrates with fairly high 

product yields if the sugar is attached in the 5 or 6 position (Huang et al., 

2007). The range of substrates that NAL can accept is therefore limited to 

those molecules mostly chemically similar to Neu5Ac. 
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1.2.3 Mutagenesis of NAL for non-natural substrate catalysis 

A number of studies have been performed on NAL in which residues around 

the active site were mutated, and the effects these had on catalysis were 

studied. Both randomised and targeted methods of mutation have been 

Organism Substrate (s) Rate (% 

Neu5Ac) 

Ref 

E. coli 7-Diproylamide-ketoseptose 

and pyruvate 

12 Williams et 

al., 2005 

N-Acetyl-L-neuraminic acid 1.0 Wada et al., 

2003 
3-Deoxy-D-manno-oct-2-

ulosonic acid 

2.3 

3-Deoxy-L-manno-oct-2-

ulosonic acid 

3.7 

N-Acetyl-L-neuraminic acid 0.0013 Hsu et al., 

2005 
3-Deoxy-D-manno-oct-2-

ulosonic acid 

2.2 

3-Deoxy-L-manno-oct-2-

ulosonic acid 

3.8 

C. perfringens N-Glycoloylneuraminic acid 93 Schauer et 

al., 1971 
N-Acetyl-4-O-

acetylneuraminic acid 

22 

N-Acetyl-5-O-

acetylneuraminic acid 

97 

N-Monochloro 

acetylneuraminic acid 

106 

S. scrofa N-Glycoloylneuraminic acid 55 Schauer and 

Wember, 

1996 
N-Acetyl-9-O-

acetylneuraminic acid 

32 

S. aureus Erythrose and pyruvate 65 Windle et 

al., 2017 

Figure 1.8 Table summarising published kinetic data of wild-type NAL 

enzymes’ activity for substrates other than Neu5Ac. Activity is given as a 

percentage of the wild-type substrate from each publication (not shown). 
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employed in mutational studies of NAL, and these have targeted a number 

of different amino acids around the active site (figure 1.9 and 1.10). 

 

In one study, error-prone PCR was used in an attempt to switch NAL from 

accepting N-acetyl-D-neuraminic acid to accepting N-acetyl-L-neuraminic 

acid. The activity of wild-type NAL for the L-isomer was too low to allow a 

screen to be performed, so the screening was performed using D- and L-

KDO, for which wild-type NAL displays a low level of activity, 2.3 and 3.7% 

respectively of the kcat/Km for Neu5Ac. Three mutations were identified 

during the rounds of mutagenesis, but only one mutation, V251I, was 

actually in the active site. This mutation was found in combination with 

two other mutations, Y98H and F115L. The resultant enzyme displayed a 

reduced activity for D-Neu5Ac, 61%, but also a small activity for L-Neu5Ac, 

Residue Mutated to Substrate(s) Source 

T48 A 7-diproylaminde-ketoseptose 

and pyruvate 

Williams et 

al., 2006 

L142 R L-aspartate-β-semialdehyde 

and pyruvate 

Joerger et 

al., 2003 

T167 G/V 7-diproylaminde-ketoseptose 

and pyruvate 

Williams et 

al., 2006 

D191 All 7-diproylaminde-ketoseptose 

and pyruvate 

Williams et 

al., 2005 

E192 All 7-diproylaminde-ketoseptose 

and pyruvate 

Williams et 

al., 2005 

S208 All 7-diproylaminde-ketoseptose 

and pyruvate 

Williams et 

al., 2005 

V251 I N-Acetyl-L-neuraminic acid, 

3-Deoxy-D-manno-oct-2-

ulosonic acid, 

3-Deoxy-L-manno-oct-2-

ulosonic acid 

Wada et al., 

2003 

Figure 1.9 Summary of publications in which residues have been mutated in 

the active site of E. coli NAL, resulting in a change in substrate specificity, and 

the substrates for which these mutations were made. Other mutations were 

made in some of these publications, but these are not included here as they 

were not in the active site. 
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0.2%, though this was mostly due to the approximately 100-fold higher Km. 

This shows that NAL can be altered to accept substrates with different 

stereoisomeric features, albeit with a low activity in the mutated enzyme 

(Wada et al., 2003). 

 

Mutations to NAL have also increased the activity of the enzyme for 

dihydrodipicolinate synthesis from pyruvate and L-aspartate-β-

semialdehyde. A leucine residue at 142 was identified as conserved in NAL 

sequences from two different organisms, while the homologous residue in 

the dihydrodipicolinate synthase sequence of two different organisms is an 

arginine. Therefore, this mutation was made in the NAL sequence and the 

activity of L142R NAL for dihydrodipicolinate synthesis was measured to be 

19 times higher than that of the wild-type NAL for the same substrate, as 

measured by comparing the kcat/Km for L-aspartate-β-semialdehyde. This 

 

Figure 1.10 View of the active site of E. coli NAL showing the mutated 

residues listed in figure 1.9. Mutations in these residues have all resulted in 

some change in substrate scope of NAL. The wild-type substrate, ManNAc, is 

labelled and shown in a binding conformation. The protein backbone is shown 

as a cartoon in beige, with the mutated residues shown as sticks in green. 

(PDB: 4BWL). 
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activity was high enough to rescue a dihydrodipicolinate synthase activity 

negative strain but was well below the wild-type activity of 

dihydrodipicolinate synthase, which was 14,000-fold higher than that of 

wild-type NAL (Joerger et al., 2003). 

In an effort to create a partially biocatalytic route to sialidase inhibitors, a 

number of residues were identified that could create a hydrophobic pocket 

capable of accommodating a dipropylamide group in an analogue of a 

sialidase inhibitor related to Zanamivir (Williams et al., 2005). Saturation 

mutagenesis was performed on each of the residues D191, E192 and S208, 

giving three separate libraries. Only mutations at E192 had a major effect 

on the activity of NAL on the dipropylamide analogue (DPA). Almost every 

E192 mutant displayed almost no activity for Neu5Ac, while some mutants 

showed an approximately 9-fold increase in activity for DPA. The protein 

variant that displayed the highest activity towards DPA was E192N. When 

the kcat/Km values of the wild-type and E192N variant were examined, 

E192N had a kcat/Km value approximately 13-fold lower than wild-type for 

the natural substrate, Neu5Ac, and a kcat/Km value approximately 50-fold 

higher for DPA. This enzyme variant was also more widely applicable to 

other substrates with different hydrophobic groups on the amide group. 

These data show that NAL is an adaptable biocatalyst with significant 

applied functionality to the industrial scale synthesis of molecules of 

interest. Modification of NAL using non-canonical amino acids may allow an 

even greater range of molecules to be synthesised with this enzyme. 
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1.3 Structural features of Staphylococcus aureus Neuraminic 

acid lyase 

1.3.1 Overall structure 

Staphylococcus aureus Neuraminic acid lyase (saNAL) is very similar in 

structure to that of the well-studied E. coli enzyme. The folded, active 

protein is composed of four identical monomers of 34 kDa forming a 

homotetramer of 136 kDa in roughly the shape of a torus, doughnut or 

diamond of monomers with a hole in the middle of the tetramer (figure 

1.11). 

 

The core of each monomer is an α/β triosephosphate isomerase-type 

barrel, consisting of 8 α-helices and 8 parallel β-strands. The α/β-barrels 

are roughly in line with the plane of the ring, with the lumen of each 

monomer directed at an angle of approximately 45° from the plane of the 

ring (figure 1.12). Outside of this core structure, towards the C-terminal 

end of the amino acid sequence, there is a bundle of three helices, 

providing residues to both the interaction interfaces of the monomers and 

also to the active site (figure 1.12). The active site opening of each 

monomer points towards the hole in the centre of the ring of tetramers. An 

active site lysine projects into the lumen of the α/β-barrel, towards the 

centre of the ring of monomers, presenting the lysine side chain amine 

 

Figure 1.11 View of the saNAL tetramer. Each monomer of the tetramer is 

differently coloured. This view highlights the hole in the ring of monomers 
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group at the inside edge of the barrel, aligned with the ends of the 

β-strands. 

 

 

The hole in the tetrameric ring between the monomers is approximately 

22 Å wide, but the width of the active site changes upon pyruvate binding. 

Before the pyruvate binds, residues 139 to 146 lack any conserved 

structure, giving the active site a relatively large opening. However, after 

the pyruvate binds, the active site becomes more narrow, as this 

unstructured loop in the protein from residues 139 to 146 becomes rigid 

and partially occludes the active site, making the opening approximately 

10 Å by 10 Å wide (figure 1.13).  

 

Figure 1.12 Two views of a single monomer of saNAL, rotated by 180° around 

a vertical axis. The light blue, magenta and red regions of the structure 

represent the α-helices, loops and β-sheets of the α/β-barrel respectively, 

while the dark blue region highlights the three helix bundle on the outside of 

this barrel structure. The dashed line across each structure represents the 

plane of the ring of monomers. 
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1.3.2 Mechanism of action of Neuraminic acid lyase 

The mechanism of action of NAL has been the subject of some previous 

study, most notably the Haemophilus influenza and E. coli variants. Two 

main hypotheses have been suggested for the mechanism by which NAL 

catalyses the reversible aldol reaction between N-acetyl-D-mannosamine 

and pyruvate. Due to the lack of a histidine residue in the active site to act 

as a general base, one of the hypotheses suggested that formation of the 

Schiff base with the full-length substrate allowed the carboxylate group of 

 

 

Figure 1.13 View of the active site of saNAL with and without pyruvate bound 

to K165. In blue is a cartoon representation of the protein backbone without 

pyruvate bound, in green is a cartoon representation of the protein backbone 

with pyruvate bound, and in red is the section of the protein backbone that 

becomes rigid upon pyruvate binding. The active site lysine, at the base of the 

active site, is shown as sticks and coloured green or blue corresponding to 

whether it does or does not, respectively, have pyruvate bound.  
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the substrate to attack the aldol proton on the fourth carbon (figure 

1.14 A) (Smith et al., 1999). An alternative was also proposed in which the 

highly conserved Y137 residue serves to aid in the abstraction of the 

proton during catalysis. This was mostly based on X-ray crystallography 

data with substrate analogues in the active site (figure 1.14 B) (Barbosa et 

al., 2000). 

 

More recently, quantum mechanics/molecular mechanics (QM/MM) studies 

in conjunction with a fortuitous crystallography experiment have shed 

more light on the mechanism of NAL (Daniels et al., 2014). The highly 

conserved tyrosine, Y137 in ecNAL was mutated to alanine, inactivating the 

enzyme as far as could be measured. When this mutant was crystallised 

and Neu5Ac soaked in, electron density was found connected to the active 

site lysine in all monomers. In three of the four monomers, the density fit 

the shape of Neu5Ac, but in one of the monomers, the density connected 

to the enzyme was the size and shape of pyruvate, with a region of density 

beyond the pyruvate matching the shape of ManNAc. Therefore, in one 

structure was represented the structure of both the substrates and product 

just before and just after the reaction, respectively.  

 

Figure 1.14 Competing hypotheses of the mechanism of NAL. A The substrate 

catalysed mechanism by which the pyruvate carboxylate group is able to 

catalyse the reaction after formation of the Schiff base. B The protein 

catalysed method by which Y137 is instrumental in the catalysis, either as a 

proton donor or acceptor. 
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The ManNAc structure was used in QM/MM simulations to determine proton 

movements during catalysis. QM/MM studies are in silico experiments using 

two different sets of equations to describe the atoms. Firstly, a small 

region around the bond-formation region is simulated using quantum 

mechanical equations, allowing atoms to move and for bonds to form and 

break if energetically favourable to do so. A larger region around this is 

simulated with molecular mechanical equations, which allow atoms to 

move and bonds to stretch, but not break. This is done as quantum 

mechanical simulations are much more costly in terms of processing power 

than molecular mechanical simulations, and so a balance is struck between 

the number of atoms simulated by the more accurate quantum mechanical 

equations and the number of atoms simulated by the less computationally 

expensive molecular mechanical equations. 

ManNAc, the pyruvate-Schiff base and the tyrosine side chain were 

simulated quantum mechanically, meaning that each of the previously 

suggested hypotheses could occur, either substrate-assisted catalysis or 

catalysis involving the conserved tyrosine. In all simulations, the proton 

from the tyrosine side chain transferred onto the aldehyde oxygen of the 

ManNAc, showing that this residue is the proton donor in the wild-type NAL 

reaction. The mechanism of the synthetic aldol reaction was thus found to 

start by attack of the enamine form of the pyruvate-Schiff base onto the 

aldehyde group of ManNAc. This forms a negatively charged oxyanion 

transition state which is stabilised by the hydroxyl group of T167. Y137 

then donates its hydroxyl proton to the oxyanion of the substrate. 

Deprotonated Y137 is subsequently stabilised by a hydrogen bonding 

network consisting of the hydroxyl groups from S47 and Y110. 

1.3.3 Chemical modification of saNAL 

Given the ample study of NAL that has taken place and been described 

here, previous work from our group has explored the potential of non-

canonical amino acids (ncAAs) in the active site of NAL. Side chains with 

different chemical groups than those found in the canonical 20 amino acids 

should allow a greater range of activities to be performed using NAL 

derivatives as an enzyme, with the ncAA acting as an artificial PTM. 

Insertion of ncAAs around the active site could allow for more exotic 

substrates to be catalysed or may allow for a greater rate enhancement for 

some molecules for which NAL already has some background activity. 

Alternatively, if the ncAA is inserted in place of the catalytic lysine residue 

at position 165 then the mechanism of the reaction the enzyme performs 
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could even be modified, changing the enzyme from an aldolase to another 

enzyme.  

A chemical modification method was chosen for insertion of the ncAAs into 

the protein, based on the method discovered in the Davis lab (Chalker et 

al., 2012), and has been further developed since. The method first 

requires insertion of a cysteine residue in the position to be modified. All 

cysteine residues will be modified in the final protein, so a cysteine-free 

version of the protein is required. Some work was performed previously in 

the lab in an attempt to remove the cysteine residues from the well-

studied E. coli NAL to enable its use in modification experiments, but the 

removal of all the cysteine residues rendered the protein insoluble when 

purified. A naturally cysteine-free variant of NAL was found in 

Staphylococcus aureus and due to this, all modification experiments have 

been performed on saNAL. This variant is structurally highly homologous to 

ecNAL (RMSD=1.43 Å), especially around the active site, so results from 

studies performed on the E. coli protein should still be relevant for the S. 

aureus protein. 

Once the cysteine has been inserted in the desired position, the protein 

can be expressed and purified. For most positions on the enzyme, 

especially in the active site, the protein will need to be unfolded prior to 

modification to allow the modification reagent adequate access to the 

amino acid. SaNAL has been shown to tolerate folding and unfolding very 

well (Timms et al., 2013), allowing this enzyme to be used in ncAA 

modification. The protein is then treated using 2,5-dibromohexandiamide, 

which performs a bis-alkylation-elimination reaction to produce a 

dehydroalanine residue in place of the cysteine. This dehydroalanine 

residue can then be selectively targeted by a thiol, performing a Michael 

addition onto the protein. This forms an ncAA that is a cysteine derivative 

with a side chain that has a carbon atom at the β position, a sulphur atom 

at the γ position, and whatever was attached to the thiol used to perform 

the Michael addition at positions further down the chain (figure 1.15). 

This chemical incorporation method for ncAAs was chosen over the genetic 

incorporation method for a number of reasons. Firstly, genetic 

incorporation of a ncAA requires an associated tRNA/tRNA synthetase pair 

to be evolved. For this evolution to take place the ncAA of interest must 

be homologous enough to a canonical amino acid for the tRNA synthetase 

pair to be evolvable. A recent review of the literature regarding genetic 

incorporation of ncAAs into enzymes can be found here: (Agostini et al., 
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2017). As such, most ncAAs inserted using this method are homologues of 

canonical amino acids (Wang et al., 2006). Evolving a tRNA/tRNA 

synthetase pair takes time, and requires knowledge of which ncAAs will 

produce the desired effects before studying them. This is ideal for 

investigations into what a specific side chain will do in many different 

positions, but it far from ideal if a number of side chains are to be tested 

and their potential function in the protein unknown. Each ncAA would 

need its own tRNA/tRNA synthetase pair to be evolved, and most or all of 

these ncAAs could be uninteresting, which would mean a lot of wasted 

effort. 

 

 

Figure 1.15 The mechanism by which the ncAAs are formed in situ on the 

protein backbone. The wild-type amino acid shown is lysine, but this same 

method can be used on any of the canonical amino acids. SDM in the figure 

stands for site-directed mutagenesis. The stereochemistry at the α-carbon of 

the resulting amino acid is uncertain as there is no reason to think that the 

Michael addition will be stereochemically selective in solution on unfolded 

protein. 
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Additionally, saNAL expresses quite well, giving yields of 60 mg per litre of 

culture medium, or higher, without complicated expression and 

purification methods. This allows large amounts of protein to be 

generated, which can then be modified into large amounts of ncAA-

containing enzyme. In contrast to this, due to the presence of both ncAA-

encoding tRNA and stop-encoding tRNA with the same codon sequence in 

some organisms used in genetic incorporation, a fraction of each initiated 

translation will have a stop tRNA inserted at the ncAA position, resulting in 

a truncated protein (Zhang et al., 2004). There has however been some 

effort recently to mitigate this by developing strains of E. coli in which 

every single amber stop codon, and the release factor for the amber stop-

codon, have been removed from the genome (Lajoie et al., 2013). 

Modifying the protein to contain the ncAA only after purification leads to 

another advantage of the chemical modification method. Some ncAAs will 

be toxic to living cells (Fowden et al., 1967), either due to their chemical 

activities or, if similar enough to canonical amino acids, their acting as 

inhibitors for cellular processes requiring the canonical amino acids 

(Coggin and Martin, 1965). When using genetic incorporation, ncAAs are 

most often fed to the cells, meaning these toxic ncAAs would effectively 

be inaccessible using this method. However, if chemical incorporation is 

used, live cells never encounter the ncAAs, so their toxicity is not 

important. This increases the chemical groups available for use on ncAA 

side chains. 

A drawback of using chemical incorporation, including the method used in 

this thesis, is that there will be some restrictions to the ncAAs 

incorporated due to the method of incorporation. The method used here 

requires the reinsertion of a sulphur in the γ-position of the side chain as a 

thiol is used to react with the dehydroalanine. Other methods of chemical 

incorporation do not include this sulphur but have other restrictions on the 

types of side chains possible. For example, a related method to the one 

used here also uses dehydroalanine as its reactive residue, but inserts the 

ncAA side chain using a zinc catalysed reaction between the alkene and an 

iodo-molecule (Wright et al., 2016). The iodine is lost in solution, meaning 

the ncAA produced consists of alanine directly attached to the group that 

was attached to the iodine. While being less restrictive in the ncAAs that 

could be made with this method, the requirement for a low oxygen 

environment necessary to prevent unwanted side reactions is onerous and 

less practical than the method used in this thesis.  
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Interestingly, a recent development combines the genetic and chemical 

ncAA incorporation methods (Yang et al., 2016). This method uses genetic 

incorporation to introduce a phosphoserine into the protein backbone. This 

can then be dephosphorylated to a dehydroalanine under relatively mild 

conditions, and the resulting dehydroalanine residue can be chemically 

converted into another ncAA using the methods described above. 

Initial work in the lab was to show that active enzyme could be recovered 

even after modification. As mentioned, work was done to show that the 

wild-type saNAL enzyme successfully refolded after unfolding with urea, 

which allowed residues deep in the active site to be targeted for 

modification. Subsequently, site-directed mutagenesis (SDM) was 

performed on saNAL to change the active site lysine at position 165 into a 

cysteine. This was then modified with aminoethanethiol to form a sulphur-

containing lysine mimic, γ-thialysine (Thl). The activity of this K165Thl 

enzyme was measured at the wild-type enzymes optimal pH, 7.4 and at 

other pH values to find a new optimal pH of 6.8 (figure 1.16). 

 

The modified enzyme had a lower activity than the wild-type enzyme, and 

a shifted pH optimum. Both these effects were hypothesised to be due to 

the sulphur in the γ-position of the side chain having an effect on the 

ionisation state of the terminal amino group. This effect is thus very 

site-specific, replacing any other amino acid in the active side with a 

γ-thia-analogue would not be expected to have the same effect on 

activity, as the effect of the sulphur on the electrostatics would have 

pH Enzyme kcat (min-1) Km (mM) kcat/Km 

(min-1mM-1) 

% wild-

type 

7.4 

Wild-type 250 ± 5 2.2 ± 0.1 114 100 

K165C 0.08 ± 0.004 0.8 ± 0.1 0.100 0.088 

K165Thl 26 ± 0.9 1.4 ± 0.2 18.6 16 

6.8 
Wild-type 260 ± 6 2.4 ± 0.2 108 95 

K165Thl 29 ± 0.8 0.9 ± 0.1 32.2 28 

Figure 1.16 Activity of wild-type saNAL compared to K165thialysine (Thl) in 

buffers at different pH. The optimum pH of the wild-type enzyme was 7.4, 

while the optimum of the modified enzyme was determined to be 6.8. The 

modified enzyme is approximately 2-fold more active at pH 6.8 than 7.4, while 

the wild-type enzyme’s activity is only slightly reduced by the same pH 

change. 
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different consequences for activity based on the side chain and its position 

in the active site.  

The modified enzyme was also crystallised, showing that is it able to fold 

and have a stable structure. The structure itself was similar to that of the 

wild-type enzyme, with the amino group of K165Thl in a very similar 

position to that of 165. The carbon-sulphur bonds in the side chain are 

longer than the carbon-carbon bonds in the canonical side chain, but the 

angle between the bonds is more acute making the overall carbon-sulphur-

carbon distance almost identical to that of the carbon-carbon-carbon 

distance in the wild-type (Timms et al., 2013). 

This showed that active enzyme could be produced using the chemical 

modification method, and the observed reduction in activity seen would 

not necessarily occur when the modifications were made at different 

positions around the enzyme. Indeed, if a different substrate and a 

different residue in the active site is selected, the same effect that 

sulphur had on the electrostatics of the side chain that caused a reduction 

in activity at K165 may cause an increase in the activity when compared to 

an amino acid without the sulphur.  

A number of different positions were identified around the active site of 

saNAL by first identifying residues in close proximity to the substrate in a 

structure of an inactive variant of ecNAL with N-acetylneuraminic acid 

bound (Windle et al., 2017). The residues homologous to these in the 

saNAL structure were changed to cysteine residues using SDM. These 

mutants were all modified with a range of different thiols to give a large 

number of different enzymes, each with a single ncAA in the active site. 

These were tested against a range of aldehyde substrates, in combination 

with pyruvate, to see if any had an effect on activity.  

Multiple active enzymes were found, and a number had activities for a 

substrate higher than the wild-type enzyme had for that substrate, with 

the best enzyme-aldehyde combination being F190 modified into a 2,3-

dihydroxypropyl cysteine (Dpc) (figure 1.17) performing the synthetic aldol 

reaction between pyruvate and erythrose to make 3-deoxy-2-heptulosonic 

acid. This ncAA is not similar to any of the canonical amino acids and is 

very different from phenylalanine, the wild-type amino acid at that 

position. Additionally, erythrose is a four carbon sugar compared to the 6 

carbon amino-acylated sugar that is the wild-type substrate.  
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This enzyme was also crystallised, again showing that ncAAs produced 

using this method can produce stable, foldable enzymes, and it was found 

that the modified side chain formed a hydrogen bonding network between 

E192 and D141, both on opposing sides of the side chain (figure 1.18). This 

kind of interaction would not be possible with any of the canonical amino 

acids, and as such, all of the canonical amino acids were inserted into the 

active site at 190 and none of them came close to the activity of the ncAA.  

 

Figure 1.17 A The modification from phenylalanine to 2,3-dihydroxypropyl 

cysteine (Dpc) performed on saNAL to produce the enhanced rate of the 

reaction shown in B, between pyruvate and erythrose making 3-deoxy-2-

heptulosonic acid. 
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Using in silico simulations of the modified and wild-type active site, it was 

found that the ncAA-induced hydrogen bonding network had a bracing 

effect on the erythrose molecule, holding it in the active site and closer to 

the pyruvate-Schiff-base at K165. The wild-type enzyme, unable to form 

the hydrogen bonding network, did not provide a brace or block for the 

erythrose, allowing it to move more freely and so spend less time in the 

active site next to the pyruvate (Windle et al., 2017). 

Due to these findings in the lab, it was decided that the modification 

method shown above would continue to be used to assess the effect of 

ncAAs on the substrate specificity of saNAL. The specific aims of the 

project were to use a number of thiols to modify multiple positions around 

the active site of saNAL and then to use all the enzymes produced to 

screen for synthetic activity between pyruvate and a diverse array of 

aldehydes. Any hits would then be taken forward, have their activity 

probed in further detail and be structurally examined to determine the 

causes behind the activity enhancement.  

 

Figure 1.18 Hydrogen bonding network cause by insertion of a 2,3-

dihydroxypropyl cysteine (Dpc) side-chain at position 190 of saNAL. The 

residues involved in the network have their side chains shown, as does K165, 

for orientation. The hydrogen bonds are shown as yellow dashed lines, and 

their distances in Ångstoms are given in the figure. 
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Chapter 2 – Materials and Methods 

2.1 Materials 

The bacterial strain used for expression was E. coli BL21(DE3) {B F- dcm 

ompT hsdS(rB
-mB) gal λ(DE3)}. The bacterial strain used for DNA storage 

was E. coli XL10-Gold {endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte 

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tetR F'[proAB lacIqZΔM15 Tn10(TetR) 

Amy CamR]}. 

2,5-Dibromohexanediamide was synthesised during the course of this 

project by the author, according to the method given in section 2.5. 

Protein molecular weight markers, TEMED, acrylamide, yeast extract, 

tryptone, aminoethanethiol, dibasic sodium phosphate, monobasic sodium 

phosphate, urea and N-acetylneuraminic acid were purchased from Sigma 

Chemicals Limited (Dorset, UK). Methanol, glacial acetic acid, ethanol, 

glycerol, Tris base, imidazole, β-mercaptoethanol, glycine, SYBRsafe DNA 

gel stain, ampicillin, ammonium acetate, sodium chloride, dialysis tubing 

and Zeba spin desalting columns were purchased from Thermo Fisher 

Scientific Limited (Loughborough, UK). Hydrochloric acid was purchased 

from Acros Organics (Geel, Belgium). IPTG was purchased from Melford 

Laboratories Limited (Suffolk, UK). Sodium dodecyl sulphate was purchased 

from BDH Chemicals Limited (Dorset, UK) Ammonium persulphate was 

purchased from Amersham Biosciences (Buckinghamshire, UK). Bradford 

reagent was purchased from Bio-Rad (California, USA). Bovine Serum 

Albumin (BSA) was purchased from Thermo scientific (Massachusetts, USA). 

Chelating sepharose resin was purchased from GE Healthcare (Illinois, 

USA). Instant Blue quickstain was purchased from Expedeon (California, 

USA). Amicon Ultra-15 concentrators were purchased from Merck Millipore 

(Massachusetts, USA). Miniprep kits were purchased from Promega 

(Wisconsin, USA). Quikchange II kits were purchased from Agilent 

(California, USA). Primers were ordered from Integrated DNA technologies 

(Iowa, USA) Sequencing was performed by Genewiz (New Jersey, USA). Cell 

disruption was performed using a Cell Disruptor from Constant Cell 

Disruption Systems (Northamptonshire, UK). 
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2.2 General methods 

2.2.1 2xTY media production  

2xTY media was made by the following method: 16 g of tryptone, 10 g of 

yeast extract and 5 g of sodium chloride was added to a container and 

made up to 1 l with RO water. Media was then autoclaved at 121 °C for a 

minimum of 20 minutes 

2.2.2 Agar plate production 

The agar plates used were 2xTY agar plates and made by addition of 16 g 

of tryptone, 10 g of yeast extract, 5 g of salt and 15 g agar to a container 

at least 2 l in volume, and made up to 1 l with RO water. Media was then 

autoclaved at 121 °C for a minimum of 20 minutes, and the solution left to 

cool to 55 °C. A number of plates were poured to provide a non-selective 

growth sample if needed. Ampicillin was then added to the remaining 

solution create a final concentration of 50 µg/ml. The resulting antibiotic 

containing agar solution was then poured into plates to form selective 

growth substrate. 

2.2.3 Glycerol stock generation 

Glycerol stocks were generated by picking a single colony from a plate and 

incubating it in 5 ml 2xTY media at 37 °C with shaking at 200 rpm for 

16 hours. From the resulting solution, 500 µl was taken and added to a 

sterile cryo-vial containing 500 µl of 50% glycerol. The cryo-vial was mixed 

thoroughly and stored at -20 °C. 

  



- 34 - 

2.3 DNA methods 

2.3.1 DNA extraction and purification 

DNA was extracted from cultures of E. coli cultures that were started 

either by picking from a single colony, or by taking 5 µl of glycerol stock 

and adding the cells to 5 ml 2xTY media. The media was incubated for 16 

hours at 37 °C with shaking at 200 rpm. Subsequently, a mini-prep was 

performed according to the manufacturer’s instructions (Wizard Plus SV 

minipreps). DNA stocks were stored at -20 °C. 

2.3.2 Site-Directed Mutagenesis 

DNA template used was produced using the method given in section 2.3.1. 

Primers were designed using a tool on the Agilent website 

(http://www.genomics.agilent.com/primerDesignProgram.jsp) as 

appropriate for the Quikchange II kit and to produce the desired mutation 

and ordered from Integrated DNA Technologies. Codons were chosen as the 

most used codon in E. coli for that amino acid. The primers and 

Quikchange II kit was used according to manufacturer’s instructions. 

Resulting colonies were grown up, stored as glycerol stocks (section 2.2.3) 

and sequenced (section 2.3.4) to confirm the expected mutation had been 

inserted.  

2.3.3 Agarose gel electrophoresis 

Agarose gels were made by addition of 1 g of agarose to 100 ml of 40 mM 

Tris base, 20 mM acetic acid and 1 mM ethylenediaminetetraacetic acid 

(EDTA). This was then microwaved to heat the solution until the agarose 

was fully dissolved. The solution was then allowed to cool to 60 °C and 

10 µl SYBR safe DNA gel stain was added and mixed in thoroughly. The gel 

was poured as needed and left to cool. The gel was loaded into an 

electrophoresis tank according to manufacturer’s procedures, samples 

loaded and run at 10 V/cm for a time appropriate for the size of sample 

being studied. 

2.3.4 Sequencing 

Samples of 15 µl of DNA solution at 100 ng/µl in DNAse free water were 

sent to Genewiz (NJ, USA) and sequencing was performed by Genewiz.  

  

http://www.genomics.agilent.com/primerDesignProgram.jsp
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2.4 Protein methods 

2.4.1 Protein expression  

Glycerol stocks or single colonies of E. coli BL21 (DE3) strains were used to 

inoculate 5 ml 2xTY starter cultures supplemented with 50 µg/ml 

ampicillin. Starter cultures were incubated for 16 hours at 37 °C and 

shaken at 200rpm in an orbital incubator. 100 µl of this culture was then 

used to inoculate 100 ml 2xTY media supplemented with 50 µg/ml 

ampicillin and left to incubate for 8 hours at 37 °C, 200 rpm in an orbital 

incubator. The 100 ml culture was used to inoculate 2xTY media 

supplemented with 50 µg/ml ampicillin, with 10 ml of culture used for 

each litre of media. When the culture had reached an optical density at 

600 nm (OD600nm) of 0.6, IPTG was added to a final concentration of 0.1 mM 

to induce protein expression, and the cells were grown for a further 14 

hours. 

2.4.2 Protein purification  

Hexahistidine tagged proteins were purified using a batch purification 

method with Chelating SepharoseTM fast flow resin. Cell pellet was 

obtained from 1 l of bacterial culture by centrifugation at 9 000 g for 20 

min. 40 ml of washing buffer (50 mM Tris.HCl, 20 mM imidazole, 0.5 M 

NaCl, pH 7.4) was used to re-suspend the cell pellet and the pellet was 

homogenised using a glass homogeniser. The re-suspended cell pellet was 

lysed as per manufacturers guidelines using a Cell Disruptor. The lysed 

cells were then centrifuged at 29 400 g for 45 minutes at 4 °C. The 

supernatant containing the soluble protein fraction was then loaded onto 5 

ml of Chelating SepharoseTM fast flow resin. The tagged protein was 

allowed to bind for 30 minutes with gentle agitation at 4 °C. Centrifugation 

at 3 000 g for 5 minutes at 4 °C produced supernatant containing non-

bound proteins, which was discarded. The resin was then washed with 40 

ml wash buffer four times, with thorough mixing and then centrifugation at 

3 000 g for 6 min at 4 °C after which the supernatant was removed. Elution 

of the 6xHis tagged protein was achieved by addition of 20 ml elution 

buffer (50 mM Tris.HCl, 0.5 M imidazole, 0.5 M NaCl, pH 7.4) and 

incubation for 20 minutes with agitation at 4 °C. The protein was then 

isolated from the resin by centrifugation at 3 000 g for 5 minutes at 4 °C 

followed by removal of the supernatant. A further 20 ml of elution buffer 

was added and the resin incubated at 4 °C for a further 20 minutes. The 

remaining protein was then isolated from the resin by centrifugation at 
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3 000 g for 5 minutes at 4 °C, and the supernatant was removed once 

again. Both elution steps were then dialysed (section 2.4.8) separately 

against 50 mM ammonium acetate pH 7.0 and freeze dried (section 

2.4.11). 

2.4.3 Saturation library protein expression 

Glycerol stocks of E. coli BL21 (DE3) strains were used to inoculate 5 ml 

2xTY starter cultures supplemented with 50 µg/ml ampicillin. Starter 

cultures were incubated for 16 hours at 37 °C and shaken at 200rpm in an 

orbital incubator. 500 µl of this culture was then used to inoculate 50 ml 

2xTY media supplemented with 50 µg/ml ampicillin and left to incubate at 

37 °C, 200 rpm in an orbital incubator until the culture reached an OD600 of 

0.6, approximately 2 hours. IPTG was added to a final concentration of 

0.1 mM to induce protein expression, and the cells were grown for a 

further 6 hours. The 50 ml cultures were then spun down in a falcon tube 

for 20 min at 3500 g, the supernatant poured off, and the pellets were 

frozen at -20°C. 

2.4.4 Saturation library protein purification 

4 ml lysis buffer (50 mM sodium phosphate, 100 mM sodium chloride, 2 mM 

magnesium chloride, 0.2 mg/ml lysozyme, 0.05 mg/ml DNAse, pH 8.0) was 

added to the frozen pellet from section 2.4.3, and was resuspended and 

incubated on ice for 1 hour. The solution was then sonicated for 40 s five 

times to complete lysis. Lysed cells were then spun for 60 min at 4900 g. 

The soluble fraction was loaded onto a disposable, gravity elution column 

packed with 1 ml nickel bound Chelating SepharoseTM fast flow resin and 

incubated for 15 min with agitation every 5 min. The resin was washed 

with 30 ml washing buffer (50 mM Tris.HCl, 20 mM imidazole, 0.5 M NaCl, 

pH 7.4). Once all wash buffer had run through, 1 ml elution buffer (50 mM 

Tris.HCl, 0.5 M imidazole, 0.5 M NaCl, pH 7.4) was added and left to 

incubate for 5 min. The elution was allowed to run out of the column and 

collected. Another 1 ml of elution buffer was added and the process 

repeated 3 times to give a total of 4 fractions. The protein concentration 

of each fraction was measured (see section 2.4.5) and the highest 

concentration fractions were dialysed (section 2.4.8) into 50 mM sodium 

phosphate, pH 7.4. 

2.4.5 Bradford assay 

Bradford assay standard curve was constructed using a Bovine Serum 

Albumin standard solution provided at 2 mg/ml. This was diluted to a 
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range of concentrations using 50 mM Tris.HCl buffer at pH 7.4. Three 

cuvettes were prepared containing 980 µl Bradford reagent and 18 µl 

50 mM Tris.HCl at pH 7.4 for each protein concentration of the standard 

and for blanks. Each cuvette then had 2µl of the appropriate sample 

added, was inverted 4 times and incubated for ten minutes. After which 

the OD595 was recorded for each sample. A standard curve was constructed 

to find the equation of the line of absorbance against protein 

concentration, and this equation was rearranged to allow future 

calculation of protein concentration without running a contemporaneous 

standard curve. The equation used is given below: 

𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑐. (𝑚𝑔/𝑚𝑙) =  
𝑆𝑎𝑚𝑝𝑙𝑒 (𝑂𝐷595) − 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑂𝐷595) 

0.16356
 

2.4.6 SDS-PAGE gel electrophoresis 

Gels were made up containing the components listed in Table 2.1. Protein 

samples were prepared for SDS PAGE by adding an equal volume of 2x 

loading buffer (100 mM Tris.HCl, 140 mM sodium dodecyl sulphate (SDS), 

3 mM bromophenol blue, 200 mM dithiotheitol, 2.75 M glycerol, pH 6.8) 

and incubating at 95oC for 5 minutes before being loaded onto the gel. The 

gel was surrounded by running buffer (190 mM glycine, 25 mM Tris base, 

3.5 mM SDS, 2 mM 2-mercaptoethanol) and initially subjected to a voltage 

of 90V until the protein sample had fully entered the separating gel, at 

which point the voltage was increased to 400V and remained as such until 

the dye front from the samples had reached the bottom of the gel. Gels 

were then stained for 1 hour using quickstain and subsequently the stain 

was removed by two consecutive 2 hour incubations with 20 ml RO water. 

2.4.7 Molecular mass measurement by Liquid chromatography-

mass spectrometry. 

Zeba spin desalting Columns were used for all sample preparation. Column 

was washed five times using 500 µl of 50 mM ammonium acetate each 

time, and the columns spun at 1000 g for one minute each time. After all 

five washes of 50 mM ammonium acetate, 75 µl of protein solution was 

added to the column, the column was spun as above, and the eluate was 

submitted to the University of Leeds Mass Spectrometry Facility. The 

method used is as follows: 

Protein desalting and mass analysis was performed by LC-MS using an M-

class ACQUITY UPLC (Waters UK, Manchester, UK) interfaced to a Synapt 

G2S Q-IMT-TOF mass spectrometer (Waters UK, Manchester, UK). 1 µL of 

5 µM sample was loaded onto a MassPREP protein desalting column (Waters 
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UK, Manchester, UK) washed with 10 % solvent B in A for 5 min at 

25 µL min-1. After valve switching, the bound protein was eluted by a 

gradient of 2-40 % solvent B in A over 1 min at 25 µL min-1. The column was 

subsequently washed with 95 % solvent B in A for 6 min before 

re-equilibration at 5 % solvent B in A ready for the next injection. Solvent 

A was 0.1 % formic acid in water, solvent B was 0.1 % formic acid in 

acetonitrile. The column eluant was directed in to the mass spectrometer 

via a Z-spray electrospray source.  The MS was operated in positive TOF 

mode using a capillary voltage of 3.0 kV, sample cone of 40 V and source 

offset of 80 V. Backing pressure was 7.9 mbar and trap bias 4.0 V. The 

source temperature was 80 °C and desolvation was 100 °C. Argon was used 

as the buffer gas at a pressure of 9.1x10-3 mbar in the trap and transfer 

regions of the TriWave device. Mass calibration was performed by a 

separate injection of [Glu]-fibrinopeptide b at a concentration of 

250 fmol µl-1 in MS/MS mode and a CID voltage (trap region) of 32 V.  Data 

processing was performed using the MassLynx v4.1 suite of software 

supplied with the mass spectrometer.  

2.4.8 Protein Dialysis 

Proteins were dialysed into the appropriate buffer for the use of the 

protein. Dialysis tubing was used with a molecular weight cut off of 

10 kDa. The volume of dialysis buffer used was at least 1 000 × the volume 

of the protein sample to be dialysed. Dialysis was performed over a 

minimum of 2 hours (room temperature) or 4 hours (4 °C) with constant 

stirring; the dialysis buffer was then replaced with fresh buffer and at 

least another 2 or 4 hours (as above) of dialysis carried out. 

2.4.9 Protein concentration 

Amicon Ultra-15 concentrators with a 10 kDa cut off were used to 

concentrate protein samples. The membrane was first washed with 

distilled water and centrifuged at 3 000 g for 10 minutes. The concentrator 

membrane was then equilibriated with the same buffer the protein was 

kept in. The protein sample was then applied to the concentrator and spun 

at 3 000 g at 4oC until the desired concentration was achieved. 

2.4.10 Size exclusion chromatography 

At 4°C, a HiLoad 26/600 Sephadex 200 column was equilibrated with 

degassed 50 mM sodium phosphate buffer at pH 7.4. 5 ml of the same 

buffer was applied to the injection loop 3 times while the AKTA was in 

“load” configuration. Less than 5 ml of protein at higher than 5 mg/ml was 
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applied to the injection loop, and the injection rate was set to 0.8 ml/min. 

The AKTA was changed to “inj” to apply the contents of the injection loop 

to the column, and the rate of buffer flow was changed to 2.0 ml/min. 

Fractions were loaded onto a fraction collector, and 2 ml fractions were 

collected starting from approximately 40 min after injection. Aggregated 

protein eluted after approximately 50 min and correctly folded protein 

eluted after 70 min. After approximately 90 minutes had elapsed, the 

fractions were collected and each peak was pooled separately. The column 

was first washed with 200 ml degassed RO water and then with 400 ml 20% 

ethanol solution.  

2.4.11 Freeze drying 

Protein samples were first dialysed (section 2.4.8) into 20 mM ammonium 

acetate pH 7.0. The protein concentration of the sample was determined 

and then appropriate aliquots were made in pre-weighed containers. The 

samples were then flash frozen in liquid nitrogen before being lyophilised 

using a Thermo Electron Corporation Heto PowerDry PL300 freeze dryer. 

After freeze drying, the weight of the containers with freeze dried protein 

was measured for an exact mass of protein in each container. 

2.4.12 Modification used during screening 

The protein modification method was modified from (Windle et al., 2017). 

Lyophilised protein was resuspended in 50 mM sodium phosphate at pH 8 

with 6 M urea, 2 mg of protein in 1 ml of buffer. 2,5-

dibromohexanediamide was made up at a concentration of 15.2 mg in 

115 µl of DMF, and 100 µl of this solution was added to each millilitre of 

resuspended protein. The mixture was then vortexed briefly and incubated 

for 1.5 h at 37°C, 200 rpm in an orbital shaker. 40 µl of 0.1 mg/µl of thiol 

in 1.5 M Tris.HCl pH 8.8 was then added for each ml of resuspended 

protein, the mixture vortexed briefly again, and incubated for 2 h at 37°C, 

200 rpm. The sample was inserted into dialysis tubing and left to dialyse in 

5 litres of 50 mM sodium phosphate at pH 8 with 6 M urea overnight 

(section 2.2.5). The samples were transferred to another 5 litres of 

solution and left to dialyse for 2 h. The samples were then put through two 

rounds of dialysis for 2 h each in 50 mM Tris HCl buffer pH 7.5. 

2.4.13 Modification as optimised for Y252Lni 

Lyophilised protein was resuspended in 50 mM sodium phosphate at pH 8 

with 6 M urea, 2 mg of protein in 1 ml of buffer. 2,5-

dibromohexanediamide was made up at a concentration of 0.06 mg/µl in 
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DMF, and 50 µl of this solution was added to each millilitre of resuspended 

protein. The mixture was then vortexed briefly and incubated for 90 min 

at 37°C, 200 rpm in an orbital shaker and then transferred to 50°C without 

shaking for 60 min. The protein was then buffer exchanged into fresh 

50 mM sodium phosphate at pH 8 with 6 M urea using PD10 columns (GE 

Healthcare, Illinois, USA) according to manufacturer’s instructions. 60 µl of 

0.1 mg/µl of thiol in 1.5 M Tris.HCl pH 8.8 was then added for each 

millilitre of buffer exchanged protein, the mixture vortexed briefly, and 

incubated for 2 h at 37°C, 200 rpm. The sample was inserted into dialysis 

tubing and left to dialyse in 5 litres of 50 mM sodium phosphate at pH 8 

with 6 M urea overnight (section 2.2.5). The samples were then put 

through two rounds of dialysis for 2 h each in 50 mM sodium phosphate at 

pH 7.4. 

2.4.14 Thiobarbituric acid assay – initial 

Samples were set up as given in the text, but in all cases, a 200 µl aqueous 

sample potentially containing a TBA active molecule was taken and applied 

to a 96-well deep well plate (containing 12 µl 12% (w/v) trichloroacetic 

acid if the assay is a kinetic assay, as opposed to an endpoint assay). Once 

all samples had been taken, 11 µl of 0.2 M sodium periodate, 9 M 

phosphoric acid solution was added to each well with sample. The plate 

was shaken, spun down for 5 minutes at 2 000g and incubation at room 

temperature for 20 minutes. After this incubation 45 µl of 10% (w/v) 

sodium arsenite, 0.5 M sodium sulphate, 50 mM sulphuric acid solution was 

added, and the plate was gently agitated until a brown colour appeared 

and also disappeared in every well being assayed. Subsequently, 135 µl of 

0.6% (w/v) thiobarbituric acid (TBA), 0.5 M sodium sulphate solution was 

added to each well. The plate was shaken, spun down for 5 minutes at 

2 000g and incubated at 65 °C for 30 minutes. This was spun down at 

3 000g for 5 minutes, and 85 µl of each well was transferred to a 96-well 

flat, clear-bottom reading plate. 

2.4.15 Thiobarbituric acid assay – enhanced signal 

Samples were set up as given in the text, but in all cases, a 100 µl aqueous 

sample potentially containing a TBA active molecule was taken and applied 

to a 96-well deep well plate (containing 12 µl 12% (w/v) trichloroacetic 

acid if the assay is a kinetic assay, as opposed to an endpoint assay). Once 

all samples had been taken, 22 µl of 0.2 M sodium periodate, 9 M 

phosphoric acid solution was added to each well with sample. The plate 

was shaken, spun down for 5 minutes at 2 000g and incubation at room 
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temperature for 20 minutes. After this incubation 90 µl of 10% (w/v) 

sodium arsenite, 0.5 M sodium sulphate, 50 mM sulphuric acid solution was 

added, and the plate was gently agitated until a brown colour appeared 

and also disappeared in every well being assayed. Subsequently, 270 µl of 

0.6% (w/v) thiobarbituric acid (TBA), 0.5 M sodium sulphate solution was 

added to each well. The plate was shaken, spun down for 5 minutes at 

2 000g and incubated at 65 °C for 30 minutes. This was spun down at 

3 000g for 5 minutes, and 85 µl of each well was transferred to a 96-well 

flat, clear-bottom reading plate. 

2.4.16 Protein crystallisation 

Size exclusion chromatography was performed (see section 2.4.10) on a 

sample of Y252Lni modified protein and fractions containing the peak 

corresponding to correctly folded monomer were collected and pooled. 

This was concentrated (section 2.4.9) to 9 mg/ml for crystallisation. 

Crysals were grown in a total of 24 conditions, each containing 200 mM 

sodium chloride, 100 mM Tris.HCl, either 18, 20, 22, 24, 26 or 28% PEG 

3350, and at either pH 7.0, 7.5, 8.0 or 8.5. The crystals were grown on a 

24-well plate using the hanging drop method, each well contained one 

mother liquor solution and 3 protein crystallisation drops hanging from the 

coverslip consisting of either 1 µl mother liquor and 2 µl protein solution, 

2 µl mother liquor and 2 µl protein solution, or 2 µl mother liquor and 1 µl 

protein solution, for a total volume of 3 or 4 µl in each drop. Three 

replicate plates were produced, and crystals had formed on all plates after 

14 days. 

2.4.17 X-Ray crystallography 

Crystals were prepared for exposure to X-ray radiation by soaking in a 

solution of mother liquor containing PEG 400 as a cryoprotectant. Each 

crystal was soaked in a solution containing 15% PEG 400 and 100 mM 

sodium pyruvate, followed by a solution containing 20% PEG 400 and 

100 mM sodium pyruvate, and finally a solution containing 25% PEG 400 and 

100 mM sodium pyruvate. After this final soak, the crystal was flash frozen 

in liquid nitrogen and stored at -196 °C. Crystals were shot on the i24 

beamline at the Diamond Light Source in Didcot, Oxfordshire, UK. The 

wavelength of the beamline was 0.9686 Å, the beam had a size of 

2 500 µm2 and the transmission was 75% of maximum. 1900 images were 

taken, each 0.1°rotation around a straight line distance drawn through the 

crystal, taking into account the individual features of the crystal, giving a 
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total rotation of 190° around the crystal. Data analysis was performed as 

described in the text (section 4.2.1) 

2.4.18 Circular Dichroism  

Proteins were prepared at 0.2 mg/ml in a 50 mM sodium phosphate 

solution at pH 7.4 from solutions that had undergone size exclusion 

chromatography (section 2.4.10). CD spectra were obtained using a 1 mm 

quartz cell on a Chirascan CD spectrophotometer over a range of 

180-260 nm at 1 nm intervals. 
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2.5 Computational methods 

2.5.1 Protein chain alignment 

Chain alignment was performed using Molecular Operating Environment 

(MOE) from Chemical Computing Group (Montreal, Canada). Both the 

wild-type structure (PDB ID: 4ah7) and the structure generated in this work 

were loaded into MOE. All chains were considered individually, and not 

grouped with any others. Chains were aligned based on all residues’ 

sequence and structural factors. For the superposition, all residues’ cα 

atoms were then considered, using the previous alignment. 

2.5.2 Structure preparation 

Structures were prepared using the Protonate 3D function in MOE, at a 

temperature of 300 K, pH 7 and an ion concentration of 100 mM. Protonate 

3D treats the backbones of pAAs and npAAs differently, it gives the 

nitrogen atoms in npAAs a charge of +1 while the charge of backbone 

nitrogens of pAAs have a charge of 0, and the backbone carbonyl adjacent 

to the npAA nitrogen is converted into a hydroxyl group. As such, the 

backbones of K165 and Y252Lni residues were corrected to be identical to 

the pAA backbones. Additionally, the Schiff base between K165 and 

pyruvate in the ecNAL wild-type structure and the saNAL Y252D-Lni 

structure were corrected from a single bond to a double bond between the 

nitrogen and the pyruvate. 

2.5.3 GRID surface construction 

GRID surfaces were calculated and visualised using MOE (Goodford, 1985). 

Initially, a decanoic acid was built in MOE to give a molecule that had 

regions that were both polar and apolar. A GRID surface was then 

calculated using aliphatic hydroxyl group as a probe. The interaction 

energy of the probe was modified, the resulting surfaces examined and an 

interaction energy of -3.6 kcal/mol was chosen as this produced small 

green surfaces around the carboxylate group while leaving the rest of the 

molecule uncovered. To ensure that pictures could be taken from an 

identical perspective for all structures, structures were aligned as follows. 

One wild-type structure and two Y252Lni structures, chains A-D, were 

loaded. For the wild-type structure chain B was considered and all others 

were ignored, for one of the Y252Lni structures, chain B, the Y252L-Lni 

structure, was also considered while the others were ignored. For the 

other Y252Lni structure, chain D was considered while the rest were 

ignored, giving us the Y252D-Lni structure. The sequences were aligned 
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according to sequence and structural factors. Sequences were then 

superposed using this alignment, and, due to the combination of 

considered/ignored chains, each active site that has been selected as 

representative of each structure was aligned. This allowed a view to be 

chosen that displayed all active sites in the exact same orientation. As 

such, the interaction potential surface of aliphatic hydroxyl groups for 

each enzyme was individually calculated and displayed. 

2.5.4 Dynamics Generalised protocol 

All molecular dynamics were performed using MOE. In general, molecular 

dynamics simulations were run as follows. A molecular structure was 

loaded into MOE, and a number of different regions were defined. Active 

regions were considered during calculations, while inactive regions had no 

effect on the simulation, and mobile regions were allowed to move, while 

immobile regions were held in place. Unless otherwise stated, an active, 

mobile region approximately 9 Å radius sphere from the substrate or active 

site centre; an active, immobile region from approximately 9 Å to 13.5 Å 

radius from the substrate or active site centre; and an inactive, immobile 

region consisting of the rest of the structure, were defined. Each structure 

was energy minimised before starting the simulation to reduce the forces 

on each atom and make sure they are in a natural position. The simulation 

usually had two phases, an equilibration phase and an unrestricted 

dynamics phase. In the equilibration phase, the heavy atoms have light 

restraints on them to prevent significant random deviation from their 

starting positions. During the unrestricted phase these restraints are 

removed and the atoms are allowed to move freely. The AMBER 10 

forcefield (Case et al., 2005, Case et al., 2008, Pearlman et al., 1995) was 

used to represent the protein structures while the Extended Hückel Theory 

forcefield (Hoffmann, 1963)was used for small molecule structures. The 

equation of motion used was the Nosé-Poincaré-Andersen formulation 

(Sturgeon and Laird, 1999, Bond et al., 2002). Structures were recorded 

every 0.5 ps for review after the simulation, other than for video 

production, where structures were recorded every 0.1 ps for increased 

frames per second and smoother video. 

2.5.5 ManNAc molecular dynamics 

As a control, the first simulations were run using the ecNAL structure with 

ManNAc bound as the substrate. These were taken from PDB ID: 4BWL 

(Daniels et al., 2014). This served as a test of the forcefields being used 

and how the input structures were interpreted by these forcefields. 
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Dynamics were performed as given in the generalised protocol in section 

2.5.4 but the sphere of motion was only 4.5 Å radius for this initial test, 

and the corresponding sphere of immobile activity was between 4.5 and 9 

Å. The equilibration phase lasted 100 ps and the unrestricted dynamics 

phase lasted a subsequent 500 ps.  

A second test was using saNAL, PDB ID: 4ah7 (Timms et al., 2013), with 

ManNAc as the substrate. ManNAc was floated into the active site in a 

similar position to that observed in the ecNAL structure. Dynamics were 

performed as given in the generalised protocol in section 2.5.4 but the 

sphere of motion was only 4.5 Å for this simulation and the corresponding 

sphere of immobile activity was between 4.5 and 9 Å. The equilibration 

phase lasted 100 ps and the unrestricted dynamics phase lasted a 

subsequent 500 ps.  

2.5.6 Glucuronolactone molecular dynamics 

In all the enzymes, wild-type, L-Lni and D-Lni, the glucuronolactone 

substrate was placed within hydrogen bonding distance of the terminus of 

the amino acid at the 252 position, with the terminal aldehyde group 

pointing towards the pyruvate bound to the active site lysine. It was then 

rotated into two different positions, one with the ring hydroxyl groups 

pointed towards the residue at 252 and one with the ring hydroxyls 

pointing away. A tether was made to restrict the aldehyde carbon to 

within 3.5 and 4.5 Å of the pyruvate methyl, both to ensure that the 

substrate stayed in the active site and to bias the simulations to show 

active site interactions. Dynamics were performed as given in the 

generalised protocol. The equilibration phase lasted 100 ps and the 

unrestricted dynamics phase lasted a subsequent 500 ps. To enable 

smoother video, the starting positions of these simulations were used to 

generate a second set of simulations, and dynamics were performed as 

given in the generalised protocol in section 2.5.4. The only phase was a 

100 ps unrestricted dynamics phase and structures were saved every 0.1 

ps. 

A second series of simulations were run in all enzymes where the 

glucuronolactone substrate was placed within hydrogen bonding distance 

of the amino acid at the 252 position with the terminal aldehyde group 

pointing towards the pyruvate bound to the active site lysine. It was then 

rotated into 6 different positions, each separated by approximately 60 

degrees. Dynamics were performed as given in the generalised protocol in 
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section 2.5.4. The equilibration phase lasted 100 ps and the unrestricted 

dynamics phase lasted a subsequent 500 ps. 

Once all of the simulations had been analysed, the movements were 

classified into 3 broad classes. A second set of simulations were run for all 

Y252Lni containing structures, moving the substrate further from the non-

proteinogenic side chain. These were rotated, energy minimised, 

simulated and analysed in the same way as the previous set. An extra class 

was found in these simulations, increasing the overall number to 4 classes.  

2.5.7 Binding pose steered dynamics 

To assess the strengths of each binding pose, a representative structure of 

each class was chosen (figure 4.21). A methane molecule was placed 

outside of the active site so that there were no atoms between the 

substrate and the methane molecule. A distance restraint was placed 

between the carbon atom on the methane and the closest heavy atom on 

the substrate that was not involved in any hydrogen bonds. The restraint 

had a lower bound of 2 Å and an upper bound of 4 Å. The methane atom 

was then moved down the vector of the restraint to a distance of 16 Å. The 

weighting of the restraint was varied from 0 to 0.3 in increments of 0.02. 

The restraint energy, which forms the pulling force on the tether, is 

determined by equation 2.1. 

Equation 2.1:  

𝐸𝑑 = 𝑤[𝑝(𝐿 − 𝑟) + 𝑝(𝑟 − 𝑈)] 

Where Ed is the distance restraint energy, w is the weight value, L is the 

lower bound of the restraint, r is the distance between the atoms 

involved, U is the upper bound of the restraint and p(x) is a function 

defined in equation 2.2. 

Equation 2.2: 

𝑝(𝑡) = {
0 if 𝑡 < 0
𝑡3(6 − 8𝑡 + 3𝑡2) if 𝑡 ∈ [0,1]
𝑡 if 𝑡 > 1

 

Where t is the result of the equation inside the brackets in equation X.1. 

This gives a force profile where the force increases with distance the 

further away from the restraint boundaries the atoms lie. All restraints 

were set to the same initial distance and identical upper and lower bounds 

to ensure that the actual forces are as similar as possible. As the specific 

force applied at any one point of the simulation varies by distance, and the 

distance changes all the time as the atoms oscillate during the simulation, 
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it would not be feasible to measure the actual force required to disrupt 

binding. 

Dynamics were performed as given in the generalised protocol in section 

2.5.4. Each simulation was run for 200 ps of unrestricted dynamics, and 

the time at which the substrate was out of position was recorded. The 

substrate was defined as out of position when the only hydrogen bonds 

remaining were those between the ring hydroxyls and the carboxylate 

group or when the substrate had moved to the extent that it was a 

different class. 

As a proxy measure of binding force, the highest weight applied that did 

not disrupt the binding pose was assessed.  

2.5.8 Full length product molecular dynamics 

Full length product was built in MOE. R and S stereoisomers at the aldol 

carbon were made, and the pentameric ring was rotated into two positions 

for each of the stereoisomers, giving a total of four full length products 

analysed. Pyruvate was removed from the structures used for simulations 

previously, and each product was floated in so that the atoms that 

previously formed the pyruvate were in a position as if the Schiff base had 

just broken. Dynamics were performed as given in the generalised protocol 

in section 2.5.4. The equilibration phase lasted 100 ps and the unrestricted 

dynamics phase lasted a subsequent 500 ps. 

2.5.9 Full length product steered dynamics 

Full length product pulling was performed on the structures set up in 

section 2.5.8 (full length) using the same method as given in section 2.5.7 

(binding pose strength). The range of weights used ranged from 0.1-0.7.  

2.5.10 Dendrogram generation 

Five key distances were chosen to describe the binding poses found in the 

rotation simulations: from the aldehyde carbon on the substrate to the 

methyl carbon of the pyruvate; from the aldehyde carbon on the substrate 

to the oxygen of the hydroxyl on Y137; from the oxygen of the C5 hydroxyl 

to the carbon of the carboxylate of D141; from the oxygen of the C5 

hydroxyl to the carbon of the carboxylate of E192; and from the oxygen of 

the C5 hydroxyl to either the carbon bonded to the hydroxyl in Y252, or 

the carbon of the carboxylate group in lanthionine. The distance 

measurements were made using database tools in MOE. The distance 

measurements were extracted into Excel and when the raw data was 
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analysed using a 10 point running average, a number of conformation shifts 

were observed. To assess these conformations individually, a heat map was 

applied to the most diagnostic distance or distances for each run 

individually to easily identify when the distance shifted significantly. Runs 

were classed as stable when the ten-point running average data was 

approximately stable in all distances for greater than 30 ps. Then, all the 

raw data points over the stable run were extracted into individual 

spreadsheets, which were then averaged and exported to a tab delimited 

.txt file.  

In R (version 3.1.1 with the fastcluster package installed), the .txt file was 

converted into a plot-able matrix using the code: 

matrix_name <- as.matrix(read.table("file.txt", 

header=TRUE, sep = "\t", 

row.names = 1, 

as.is=TRUE)) 

Where matrix_name is a variable name for the matrixed data and 

file.txt is the text file exported. The matrix was then plotted into a 

dendrogram using the code: 

matrix_clust = hclust(dist(matrix_name, method = 

"euclidean"), method = "complete", members = NULL) 

plot(matrix_clust, hang = -1) 

Where matrix_clust is the clustered matrix_name data. 

 During extraction, the number of picoseconds each pose was stable for 

was recorded, which allowed further data analysis. 
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2.6 Chemical synthesis of 2,5-dibromohexanediamide 

The 2,5-dibromohexanediamide synthesis was conducted similarly to the 

procedure given in (Chalker et al., 2012) with reduced masses. Adipic acid 

(5.00 g) was added to a 100 ml round bottom flask and suspended in 

thionylchloride (15 ml). The flask was equipped with a condenser and 

heated to reflux (bath temperature 80 °C) open to air. Reaction was 

heated for 30 minutes to allow adipic acid to dissolve and then for a 

further 60 minutes. The reaction was then cooled to room temperature 

and CCl4 (20 ml) was added to the reaction followed by N-

bromosuccinimide (14.62 g). The reaction was stirred vigorously and 2 

drops of HBr were added by pipette. The reaction was heated to reflux 

open to air, and the colour of the reaction changed from red to black. 

After the reaction mixture had turned completely black the reaction was 

cooled to RT and then to 0 oC, the mixture was stirred at 0 °C to ensure all 

succinimide had precipitated, and this precipitate was then removed by 

filtration. Et2O (10 ml) was used to rinse and complete the filtration. The 

filtrate was concentrated in vacuo to give a dark red liquid. In a 100 ml 

round bottom flask, 40 ml of NH4OH (25% aqueous) was cooled to 0 °C. The 

crude acid chloride was added dropwise over 20 minutes to the ammonia 

solution with rapid stirring. After the addition was complete, the reaction 

was stirred vigorously at 0 °C for 1 h. The 2,5-dibromohexanediamide 

precipitated from the reaction mixture as a dark solid. This was isolated by 

filtration and partially dried. The product was purified by trituration: the 

dark solid was suspended in 40 ml of 1:1 MeOH:H2O and heated to 60 °C. 

The mixture was stirred vigorously at 60 °C until the liquid in the vessel 

had changed colour from clear to orange, and for at least 30 minutes. The 

mixture was then cooled to RT and the white solid was isolated by 

filtration and washed with MeOH. The product was dried under high 

vacuum, with a yield of 25%. 1H NMR (500 MHz, D2O): δ = 1.76-2.25 (4H, m, 

CH2CH2), 4.35 (2H, m, 2 × CHBr), 7.31 (2H, s), 7.70 (2H, s) (2 × NH2). 
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Chapter 3 - Discovery of a chemically modified aldolase with 

a novel activity 

3.1 Introduction  

Developments in the past few years have allowed protein engineers to 

build enzyme catalysts de novo, predicting which amino acids are required 

in which position on a protein scaffold for the desired function, generally 

using one of the rosetta software packages (Siegel et al., 2010, Khersonsky 

et al., 2011, Jiang et al., 2008). However, these experiments can still give 

unpredictable results, such as complete abandonment of the designed 

active site in favour of another region on the enzyme (Giger et al., 2013). 

Non-canonical amino acids (ncAAs) are much less well studied than the 20 

canonical amino acids, and so in silico predictions involving ncAAs would 

give even less reliable results than the in silico predictions using canonical 

amino acids. With the chemical modification method of introducing ncAAs 

(described in section 1.3.3) a large number of different side chains can be 

inserted into a range of different positions across the active site of an 

enzyme, provided the enzyme to be studied contains no cysteine residues 

(either naturally or by mutagenesis). This allows a brute force solution, 

trying as many different combinations of side chain, position and substrate 

as possible to find useful or interesting activities. This type of 

combinatorial search is not possible using genetically encoded amino acids, 

or would at least be a lot more labour intensive, as each different ncAA 

would have to be expressed in a different genotype of E. coli, and each 

position that the ncAA was required in would need separate protein 

expression experiments.  

Since a large number of enzyme-aldehyde combinations were to be tested, 

a reliable assay was needed, not only to be used as a screen to sample the 

widest chemical space of both side chains and substrates, but also to be 

used to measure kinetic parameters.  
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3.2 Assay development 

It was proposed to use a long established assay that uses thiobarbituric 

acid (TBA) reacting with 1,3-dicarbonyls to form a chromophore, called the 

TBA assay. This assay was originally designed to detect neuraminic acids 

(Warren, 1959), but has been previously re-purposed to assay the 

concentration of a wider range of aldol reaction products in a high 

throughput format (Windle et al., 2017).  

The assay relies on the conversion of the aldehyde carbon to a hydroxyl 

group upon catalysis (figure 3.1A). Given the right substrate selection, this 

forms a 1,2 vicinal diol; or a 1-hydroxy-2-aminoalcohol derivative. Any of 

these structures can be attacked by a periodate anion which can cleave 

the carbon-carbon bond between the newly created hydroxyl carbon and 

the carbon attached to the hydroxyl/amine/amide. Since pyruvate is the 

other substrate, a 1,3-dicarbonyl is formed (figure 3.1B) which can then 

react with two TBA molecules to give a pink coloured molecule, and this 

can be detected by a spectrophotometer via absorbance at a wavelength 

of 550 nm. 

The tolerance of the assay towards different users, one of the factors 

determining the robustness of an assay (Vander Heyden et al., 2001), had 

not been assessed however, and as such the assay was examined for 

operator robustness, variability and signal-to-noise ratio 

3.2.1 Assay signal enhancement 

Initial tests with the assay resulted in a signal-to-noise ratio that was quite 

low, and was mostly because the signal was a lot weaker than had been 

shown previously in the lab. A low signal-to-noise ratio would hinder hit 

identification in the final screen and increase the number of false 

negatives. The low signal proved to be repeatable and a number of 

hypotheses were tested in an effort to increase the signal.  
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Figure 3.1 Reactions required for visible 

product using the TBA assay A Generalised 

reaction scheme for aldol reactions that 

N-acetylneuraminic acid lyase can perform 

that maybe assayed using the TBA assay. B 

The reaction by which the thiobarbituric acid 

assay forms a chromophore when aldol 

product is present, highlighting the 

requirement for a hydroxyl/amine/amide 

group adjacent to the aldehyde group in the 

substrate for this assay to function. In all 

diagrams X = OH, NH3, or NHCOCH3. 
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The positive control used was a pure, commercially-sourced sample of the 

product of the wild-type reaction between pyruvate and N-acetyl-D-

mannosamine (ManNAc): N-acetylneuraminic acid (Neu5Ac). A standard 

curve was analysed, decreasing from 250 nmole Neu5Ac. The amount of 

variability observed in the points meant that the points below 63 nmole all 

displayed ranges of absorbance that overlapped with other points below 

63 nmole. Only the points with the two highest concentrations showed 

absorbance values that were outside the range of absorbance values 

displayed by any other points. This means that any activity that resulted in 

less than 125 nmoles of product would be less accurately measured (figure 

3.2).  

 

One possible explanation for the relatively low signal could be incomplete 

cleavage of the product upon addition of periodate. To address this, a 

reaction between ManNAc (5 mM) and pyruvate (100 mM) catalysed by 

wild-type N-Acetylneuraminic acid lyase was set up and incubated 

overnight. Samples were taken in duplicate and periodate added to all. 

The periodate reaction was quenched with arsenite at the appropriate 

time, and after all samples had been quenched, the rest of the assay was 

conducted according to section 2.4.14. The resulting absorbance values are 

shown in figure 3.3.  

 

Figure 3.2 Standard curve of commercially purchased N-acetylneuraminic acid 

when analysed by the TBA assay. Samples were run in triplicate and blanked 

against the average absorbance of 8 blank wells. Error bars show standard 

error of the blank corrected samples. 
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The reaction between ManNAc and pyruvate gives a much lower 

absorbance than pure Neu5Ac. The absorbance increased with the time of 

periodate incubation until 60 minutes, but further incubation had no 

effect. Additionally, the data shows that after 20 minutes incubation, 

which is the incubation time used in the protocol to this point, the 

reaction produced 75% of the absorbance of the 60 minute incubation. 

Subsequently, it was decided that increasing the incubation time from 

20 min would not give an increase in absorbance worth the extra 

incubation time.  

Another alternative for increasing the assay signal was increasing the 

amount of periodate and TBA added to the reaction. This should increase 

the signal by moving the chemical reaction equilibrium further towards the 

chromophore product, or increase the rate at which the colour develops. 

Two reactions were set up using pyruvate, wild-type enzyme and either 

ManNAc or mannose, and left to incubate overnight. In this case mannose 

was included as the screen to be conducted subsequent to assay 

development would include aldehydes with both hydroxyl groups and 

amine/amide groups at the 2 position. Samples were taken of these 

reactions and either treated as normal (see section 2.4.14); had double the 

volume of periodate and arsenite added; had double the volume of TBA 

 

Figure 3.3 Graph showing the effect of periodate incubation time on the 

absorbance produced in the TBA assay from a reaction with pyruvate, ManNAc 

and wild-type enzyme after overnight incubation. Samples were run in 

duplicate and were not blanked. Error bars shown are the standard error. 
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added; or had double the volume of periodate, arsenite and TBA added. 

The results can be seen in figure 3.4. 

 

Firstly, we can see that the mannose gives much higher absorbance 

readings in all assay conditions, producing an absorbance reading up to 0.6 

absorbance units greater than that of ManNAc when both assay 

components are doubled. Additionally, the two reactions, ManNAc and 

mannose, reacted differently to the different conditions. The absorbance 

produced by the reaction between mannose and pyruvate increases 3.5-

fold when periodate is increased, 1.5-fold when TBA is increased and 

increases 5-fold when both components were increased. The absorbance 

produced by the reaction between ManNAc and pyruvate increases by 1.9-

fold when TBA alone is doubled, and 1.8-fold when both periodate and TBA 

are increased but decreases to only 0.3-fold the original absorbance when 

only additional periodate is added. The best conditions were therefore 

considered to be an increase of both periodate and arsenite, and TBA, as 

this should increase the absorbance of substrates hydroxylated at position 

2 and substrates with an amino/amide group at position 2. 

 

Figure 3.4 The difference in signal from overnight reactions incubated with 

wild-type enzyme, pyruvate and either ManNAc or mannose, between different 

assay protocols in which one or both reagents responsible for signal production 

have been doubled in amount. Arsenite acts to neutralise the unreacted 

periodate, so while the amount of arsenite added was increased, it was only 

increased in the presence of increased pyruvate, and so is not mentioned on 

the graph for brevity. Absorbance produced by ManNAc reaction shown by blue 

bars, absorbance produced by mannose reaction shown by red bars. Error bars 

are standard error. 
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When the new assay parameters (section 2.4.15) were used on another 

standard curve of Neu5Ac (figure 3.5), the concentration of Neu5Ac 

required to produce a signal distinguishable from background was lower, at 

31 nmoles of Neu5Ac compared to 125 nmoles using the previous method. 

This was due to a reduction in variability in the samples with lower 

concentration of Neu5Ac, along with an increase in signal at the higher 

concentrations. 

 

 

3.2.2 Assay variability 

It is important to minimise or at least characterise the variability of an 

assay so that the assay can be used in the most optimal way, i.e. if an 

assay has very little variability, then points may be run singly, if the 

variability is higher, then duplicates or triplicates may be required.  

Initially, to exclude any systematic variation due to the plate reader, an 

empty plate was read at 550 nm five times to ascertain both the read-to-

read variability, how much the absorbance readings change when the plate 

is read, and cross plate variability, how much the readings alter across the 

plate.  

 

Figure 3.5 Standard curve of commercially purchased N-acetylneuraminic acid 

when analysed by the TBA assay using both the original and newly optimised 

assay conditions. Red shows the original assay conditions, as seen in figure 3.2 

and blue shows the newly optimised assay conditions. Samples were blanked 

against the average absorbance of at least 4 blank wells. Error bars show 

standard error of the blank corrected samples. 
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Firstly, the average absorbance of each well over the five reads was taken, 

and then the average value of each column and row of the plate was 

examined (figure 3.6). There appears to be no systematic variability in 

absorbance across the columns or down the rows, each column and row is 

approximately as variable as another, and the variability is small compared 

to the expected absorbance differences.  

 

The standard deviation of each well over the five reads was also taken and 

a summary graph can be seen in figure 3.7. This shows that while the 

average absorbance across the plate does not vary systematically, the 

variance in the points does.  

 

Figure 3.6 The average absorbance of each row or column of an empty plate 

over 5 reads. Columns are shown in blue and rows in red. Error bars are the 

standard deviations of the averages for each well in that row or column.  
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As the wells get further from A1, i.e. as wells further to the right and 

bottom of the plate are considered, the variability of the wells increases. 

As the average values of the wells showed no systematic variation, this 

should not make much of a difference to the final results if it is taken into 

account. As such, following these results, all plates were read 3 times and 

the resulting absorbance values were averaged across all three reads to 

reduce the influence of this variability. 

Plate reader induced variability is not the only source, there is a 

significant source of variability in the assay procedure itself. A selection of 

aldehydes were mixed with pyruvate, equivalent to negative controls, and 

were assayed as usual to gauge the variability of the assay under normal 

use (figure 3.8). All the aldehydes produced an absorbance below 0.2 and 

the variability was small. This suggests that any activity should be easily 

distinguishable from the negative controls run on the same plate, and 

there does not necessarily need to be duplicate negative control wells per 

aldehyde. 

 

Figure 3.7 Average standard deviation of each well in each row or column of 

an empty plate over 5 reads. Columns are shown in blue and rows in red. Error 

bars are the standard deviations of the average for each row or column.  
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As can be seen in figure 3.4 and 3.5, the variability of known positive 

reactions with the new assay conditions are also quite low, and so this 

assay should be suitable for screening.  

  

 

Figure 3.8 Chart showing the absorbance produced by reactions between 

pyruvate and different aldehydes without enzyme when analysed by the TBA 

assay. Error bars shown are standard error.  
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3.3 Screening set-up and results 

3.3.1 Choice of mutation positions 

A number of positions around the active site of NAL have previously been 

identified as affecting the substrate specificity of the enzyme (Williams et 

al., 2005, Devenish and Gerrard, 2009, Krüger et al., 2001, Campeotto et 

al., 2010). These have mostly focused on the E. coli protein, but the S. 

aureus protein is highly structurally homologous to the E. coli (RMSD = 

1.43Å), especially around the active site, so these positions were expected 

to be important in the S. aureus enzyme as well. Some of these positions 

have previously been studied in the lab using the method of modification 

used here, yet in those modifications they had not shown any significant 

increases in activity (Windle et al., 2017). The positions targeted in the 

original study were selected by taking the highly homologous E. coli 

structure with N-acetylneuraminic acid bound (Daniels et al., 2014), and 

selecting all residues within 5 Å of the substrate. These residues were then 

recorded and their homologues in the S. aureus structure were selected for 

mutagenesis to cysteine residues. As previous work has already been done 

in this area, the residues used in this report were those that had not been 

extensively studied in that work. The residues selected for modification 

were I139, D191, S208, I243, I251 and Y252 (figure 3.9).  
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These residues were arranged around the active site, and at different 

distances from the pyruvate bound to the catalytic lysine, residue 165. 

Placing the same modifications around the active site in this manner 

should allow any interesting modifications to be identified no matter what 

position they need to be in to display enhanced activity. 

  

 

Figure 3.9 View of the active site of wild-type S. aureus N-acetylneuraminic 

acid lyase showing the positions to be targeted in the screen. This view looks 

down into the active site from the centre of the tetrameric ring of monomers 

that comprise active NAL, where substrate would enter to bind catalytically. 

Side chains of targeted residues and the catalytic lysine residue forming a 

Schiff-base with pyruvate are shown in cyan and the backbone of the protein is 

shown in blue.  
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The cysteine mutants for all these have previously been made in the lab 

(Windle, 2015) and were re-cloned into E. coli genotypes BL21 (DE3) for 

expression and XL10 Gold for storage of the DNA. The sequencing for each 

of these showed the expected sequence (figure 3.10). 

 

3.3.2 Choice of ncAAs to be incorporated 

While theoretically any thiol molecule could be incorporated using the 

protein modification method described, there were a number of 

restrictions and factors to be considered that limited the thiols to those 

 

Figure 3.10 Translated DNA sequencing of the residues to be targeted in the 

screen showing successful mutation in all cases of the desired residue to 

cysteine, the first step required for performing chemical modification. 
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that were actually useful and interesting. Firstly, previous experiments 

have shown that modifications using a thiol with a conjugated ring system 

directly adjacent to the thiol group, e.g. as in thiophenol, fail to produce 

the expected ncAA. This may be due to the conjugated ring system tending 

to draw the thiolate electrons into the delocalised ring, making the 

Michael addition unsuccessful under the conditions that were used here. As 

such, thiols of this type had to be discounted from the pool of screening 

side chains. Additionally, if the thiol is very large and considering the 

location of the active site in NAL, i.e. in the centre of an α/β barrel, the 

resulting ncAA may cause the protein to misfold which would most likely 

result in an inactive enzyme. A diverse set of side chains would also give 

the screening assay the greatest chance of finding any potential activity, 

so a range of functional groups was desired. Finally, cost had to be 

considered, as a not insignificant amount of thiol was required for each 

screen, and six screens were to be performed in total.  

After considering these factors in combination, a set of thiols were 

selected that would produce the amino acids shown in figure 3.11. 

 

 

The lowest molecular mass that a modified amino acid produced using this 

method in these experiments could have is high in comparison to all the 

canonical amino acids. If a position in the active site is chosen that has a 

 

Figure 3.11 Structural diagrams of the ncAAs produced when modified using 

the thiols selected for the screen. Top row, from left: (carboxyethyl)cysteine 

(Cec), (2-methoxy-2-oxoethyl)cysteine (Moc), lanthionine (Lni), thialysine 

(Thl), and (2-hydroxyethyl)cysteine (Hec). Bottom row, from left: (1-hydroxy-

3-hexanyl) cysteine (Hhc), (cyclohexanyl)cysteine (Chc), (2-

Fuylmethyl)cysteine (Fmc), (2,2,2-trifluoroethyl)cysteine (Fec), and (2-(3,5-

Dimethyl-4-isoxazolyl)ethyl)cysteine (Mic). 
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large volume for the side chain to inhabit, utilising chemical modification 

at this position allows for a range of different ncAAs to be inserted, 

potentially with a diverse set of functional groups in the side chains. 

However, if the position targeted has a limited amount of space for the 

side chain, the large size of chemically modified amino acid side chains 

may restrict the amount of modifications that could be performed at this 

position while still producing protein capable of folding correctly. 

The thiols chosen had a diversity of potential charge, from hydrophobic 

cyclohexanethiol to zwitterionic cysteine and varied in size from producing 

amino acids ranging from 164 Da in the case of thia-lysine to 244 Da in the 

case of 2-(3,5-dimethylisoxazol-4-yl) ethyl cysteine. This enabled a range 

of activities to potentially be detected, with a limited number of amino 

acids produced.  

3.3.3 Choice of substrates 

Substrate selection involved a balancing act between two opposing factors; 

increased activity for substrates similar to the wild-type substrate should 

be easier to discover, but the more different a substrate is from the wild-

type substrate the more interesting the hit is. Therefore a set of potential 

substrates were chosen that were both very similar to the natural 

substrate, e.g. N-acetyl-D-glucosamine, and quite different from the 

natural substrate e.g. L-arabinose and γ-lactone-D-gucuronic acid. The full 

set can be seen in figure 3.12. These substrates have both 5-carbon and 6-

carbon members, both L- and D-sugars, and one cyclic sugar acid. Amino-

and amino-acylated sugars are also included.  
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3.3.4 Screening results 

The screens were laid out as shown in figure 3.13. This set up required four 

plates per position mutated, because each plate could contain half the 

modified enzymes and half the aldehydes, giving a total of 24 plates for all 

the positions. Reactions involving ncAAs were set up in adjacent duplicates 

while control reactions, i.e. reactions which used wild-type enzyme or had 

no enzyme at all, were set up in singlet on at least two plates each. Every 

plate contained a row of D-mannose to act as a positive control when in 

combination with wild-type. As such the control reactions and especially 

the D-mannose reaction, enabled the variability across plates to be 

compared.  

 

Figure 3.12 Aldehyde substrates used in the screen. Aldehyde displayed in 

open chain conformation because NAL accepts substrates in this conformation. 

Top row, from left: D-mannose (D-Man), N-acetyl-D-mannosamine (D-ManNAc). 

Second row, from left: D-galactose (D-Gal), N-acetyl-D-galactosamine 

(D-GalNAc), L-fucose (L-Fuc). Third row, from left: D-glucose (D-Glc), N-acetyl-

D-glucosamine (D-GlcNAc), D-glucosamine (D-GlcN), D-glucuronic acid (D-Glc 

acid), glucuronolactone. Bottom row, from left: D-ribose (D-Rib), D-arabinose 

(D-Ara), L-arabinose (L-Ara), D-lyxose (D-Lyx), D-xylose (D-Xyl). 
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Each position was assayed separately, and the enzyme concentration used 

in each experiment was determined by the lowest protein concentration at 

the particular position that was being considered, e.g. all enzymes with 

modifications at position 139 were diluted to be the same concentration as 

the modified enzyme with the lowest concentration of the enzymes 

modified at 139. This ensured that the raw absorbance values could be 

compared across all four plates and minimised the space on the plate 

taken up by controls as only one wild-type control was needed per 

aldehyde; opposed to one wild-type control per enzyme concentration per 

aldehyde. This in turn increased throughput and reduced reagent usage 

and toxic waste production. While the concentration of the enzymes varied 

by position modified, the other assay components were as followed; 5 mM 

aldehyde substrate, 100 mM sodium pyruvate, 50 mM Tris.HCl pH7.4. 

In total, 900 different combinations of enzymes and aldehydes were tested 

for activity. Of those, 443 reactions displayed some activity that was 

higher than the no enzyme control meaning that 49% of the enzymes made 

had some activity. Additionally, 65 enzyme/aldehyde combinations 

displayed an absorbance higher than the wild-type for that aldehyde, or 7% 

of the reactions. However, 30 out of the 60 enzymes created, 50%, were 

more active than the wild-type for at least one aldehyde. 

Both the ratio of the activity of the modified enzyme over the activity of 

the wild-type enzyme and the absolute difference in absorbance between 

the activity of the modified enzyme and the activity of the wild-type 
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Figure 3.13 Example plate layout diagram of the arrangement for the activity 

screen. This represents only one quarter of each position screened as only half 

the enzymes for a position and half the aldehydes are included. Modified 

enzymes were placed in duplicate in two adjacent columns while aldehydes 

were placed in every well of a row. Wild-type enzyme and a no enzyme 

control were placed in single columns at the end of the plate. 
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enzyme were considered. These methods both isolated the same top ten 

enzyme/aldehyde combinations, and in roughly the same order. These 10 

hits are shown in figure 3.14. Most of the top ten involved glucosamine, 

either N-acetylated or not, and (2-hydroxyethyl) cysteine (Hec) is the most 

numerous side chain represented. However, when the plate photos are 

taken into account, the only hit in the top ten that produced any 

significant pink colour was the hit at position 252 with the ncAA Lni and 

the substrate glucuronolactone. 

These apparent top ten hits that did not have any observable pink colour 

also had high absorbance values at a wavelength of 600 nm, a wavelength 

commonly used to determine the amount of particulate matter in a sample 

that would contribute to light scattering. This scattering by larger particles 

would appear as absorbance at any visible wavelength tested, and is 

probably the cause of the high absorbance values shown here. What the 

cause of the large particles however is more difficult to say. It has been 

noted previously in the lab however that N-acetyl-D-glucosamine 

sometimes gave an absorbance in the TBA assay that did not correspond to 

the visual appearance of the wells (unpublished data). Therefore it was 

decided to focus on Y252Lni and the reaction between pyruvate and 

glucuronolactone for the remainder. 

 

 

 

 

 

(Next page) Figure 3.14 Summary table of the top ten hits found in the 

screen. Structures of the ncAAs and their three letter codes are shown. Lni, 

Lanthionine; Hec, (2-hydroxyethyl)cysteine; Fec, (2,2,2-

trifluoroethyl)cysteine; Mic, (2-(3,5-Dimethyl-4-isoxazolyl)ethyl)cysteine. The 

modified positions are listed in the order with which they appear along the 

protein chain. The modifications and substrate hits are listed primarily 

according to the hit positions and secondarily by their positions on the plate, 

from top left to bottom right. The Δ Absorbance values are the absorbance 

values from the hit with absorbance of the wild-type for that substrate in that 

experiment subtracted from it. The well photos are cut out from a photo of 

the whole plate, and the left well of each duplicate was chosen for display 

here. 
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Position Modification Aldehyde Δ Absorbance 

(rank) 

Plate 

photo 

I139 

Lni 

N-acetyl-D-

glucosamine 

0.041 (9) 

 

Hec 

0.108 (2) 

 

Fec 

0.042 (7) 

 

Mic 

0.100 (3) 

 

D191 

Hec 

N-acetyl-D-

glucosamine 

0.038 (10) 

 

Mic 0.109 (1) 

 

S208 Hec 
N-acetyl-D-

glucosamine 
0.089 (4) 

 

I243 No hits present in the top ten 

I251 Hec 

D-

glucosamine 
0.048 (6) 

 

N-acetyl-D-

glucosamine 
0.042 (7) 

 

Y252 Lni 
Glucurono-

lactone 
0.050 (5) 

 

 



- 69 - 

3.4 Hit confirmation 

3.4.1 Re-modification and control reaction 

The most promising hit discovered in the screen was Y252C modified using 

cysteine as the thiol, when catalysing the reaction between pyruvate and 

D-glucurono-3,6-lactone, or glucuronolactone to form the product (5S)-5-

[(2R,3R,4S)-3,4-dihydroxy-5-oxooxolan-2-yl]-4,5-dihydroxy-2-oxopentanoic 

acid (DHOPA) (figure 3.15 C). This hit is interesting as NAL has not 

previously been reported to have activity with a cyclic substrate. ManNAc 

in solution forms an equilibrium between cyclic and linear conformations, 

and the cyclic conformation does make up the majority of the molecules. 

However, X-Ray crystallography data shows that the substrate only enters 

the enzyme in a linear conformation (Daniels et al., 2014). The side chain 

formed when cysteine attacks dehydroalanine in this way resembles a 

lanthionine residue (Horn et al., 1941, Paul and Van der Donk, 2005) that 

has been included in the protein chain (figure 3.15 A and B). 

Firstly, the hit was confirmed across multiple experiments to ensure that 

the difference in activity was repeatable and consistent. The activity of 

the modified enzyme was fairly consistent at approximately 1.7 times the 

absorbance produced when blank corrected and compared to wild-type 

under the conditions used, i.e. 100 mM pyruvate, 5 mM aldehyde, 16 hour 

incubation. 

Initially, the modification procedure as used for the screen did not cause 

all reactions to occur with 100% success. As the screen would only be used 

to identify potentially interesting modifications and their reactions and 

would not be used to derive any numerical values, incomplete modification 

was deemed acceptable. However, an incompletely modified enzyme is 

unsuitable for any kinetic assessments or for crystallisation studies, so the 

modification procedure had to be examined. 
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Mass spectrometric analysis showed that after modification of Y252C using 

cysteine as the thiol, only approximately 40% of the protein was the mass 

expected for the correctly modified protein (Figure 3.16). Other than this, 

approximately 30% of the protein was of a mass that corresponds to 

Y252Dha, i.e. the thiol modification has been unsuccessful; and 30% of the 

protein was 174 Da larger than the correctly modified protein should be. 

The 174 Da mass increase corresponds to the presence of a bis-alkylation 

elimination intermediate remaining attached to the protein. Both of these 

undesired species are created by a different failure during the 

modification procedure. 

The modification procedure used during screening can be broken down into 

four distinct actions performed on the protein. Firstly, the protein is 

dissolved in pH 8.0 buffer to deprotonate the thiolate on the cysteine side 

chain. Second, the cysteine is converted into dehydroalanine using  

2,5-dibromohexandiamide (DiBr). The dehydroalanine is then converted 

into the side chain of choice by addition of thiol. Finally the protein is 

subjected to dialysis into fresh reaction buffer to stop the modification 

and then dialysis into storage buffer.  

 

Figure 3.15 Chemical structural diagrams for the discovered hit. A Diagram of 

the mechanism of the modification reaction between Y252-Dehydroalanine 

(Dha) and cysteine to create Y252-Lanthionine (Lni). B Structure of the free 

amino acid L-lanthionine (Paul and Van der Donk, 2005) for comparison to the 

modified side chain. C, Reaction between pyruvate and glucuronolactone to 

give the anticipated product. 



- 71 - 

 

The 174 Da mass increase is hypothesised to occur in two potential ways. 

Firstly, the DiBr reagent may not eliminate from the cysteine, remaining 

on the protein as a sulfonium ion. This sulfonium ion can then be attacked 

by the thiol (figure 3.17, route A) when added, to give a protein of a mass 

174 Da larger than the correctly modified protein. Alternatively, the 

introduced thiol could attack the released thiolanyl molecule in solution, 

forming a thiol consisting of the desired thiol and the remaining 

modification reagent (figure 3.17, route B).  The first mechanism could be 

solved by heating the protein to a higher temperature, causing the 

sulfonium ion to be eliminated at a greater rate, forming the 

dehydroalanine residue. The second mechanism can be discouraged by 

moving the protein into buffer that does not contain the reagent, once the 

reaction has taken place. As such, a 50°C incubation step was added to 

cause release of the cyclised modification reagent, and a buffer exchange 

step was introduced to get rid of any spent or active modification reagent 

in solution. Additionally, the amount of DiBr applied was decreased to 

reduce the likelihood of it remaining in solution after the buffer exchange 

step. 

 

 

 

Figure 3.16 Mass spectrum analysis of a modification of Y252C using L-cysteine 

as the thiol to confirm Y252Lni production. Expected mass of 

Y252Lni: 34022.6 Da, expected mass of Y252Dha: 33901.4 Da, error of 

measurement ±3.5 Da. 
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The other undesired species, remaining Y252Dha, is caused by incomplete 

modification of the protein by the thiol, and this was prevented by 

increasing the amount of thiol added to the protein solution. This 

procedure, together with the procedures mentioned above, caused the 

proportion of correctly modified protein to increase from 40 to 60% (figure 

3.18). This was deemed sufficient for further experiments. 

 

 

 

To confirm that the activity observed was due to an aldolase reaction 

occuring, a number of controls needed to be run. While the screening 

reaction had a no enzyme control, this would not account for a non-

specific reaction between the enzyme and either of the substrates. All 

possible controls were assembled on a plate using freshly modified enzyme 

and incubated for 24 hrs. Duplicate wells of all combinations of pyruvate, 

Y252C modified with cysteine, and aldehyde were created and then 

assayed using the enhanced TBA assay (section 2.4.15). The only pair of 

wells that gave significant signal were the wells in which the pyruvate, 

glucuronolactone and enzyme were all incubated together (figure 3.19). 

There was a slightly higher absorbance for control wells including 

glucuronolactone when the enzyme was not present when compared to 

control reaction with enzyme present. This suggests that a small 

background reaction took place, and this reaction is inhibited by presence 

 

Figure 3.18 Mass spectrum analysis of Y252Lni produced using the optimised 

chemical modification procedure. Expected mass of Y252Lni: 34022.6 Da, error 

of measurement ±3.5 Da. 
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of the enzyme. The enzyme may therefore interact with the aldehyde even 

in the absence of pyruvate. The blank corrected absorbance of the control 

samples was no more than 8.5% that of the samples with all assay 

components and so this activity’s contribution to the absorbance is likely 

not significant. 

 

3.4.2 Removal of unfolded protein and initial kinetic assessment 

When size exclusion chromatography is performed upon modified enzymes, 

we have previously noticed (Windle, 2015) that a significant proportion of 

the protein post-modification elutes at a volume that suggests that it is 

unfolded. As such, before any kinetic data was gathered, the protein was 

gel filtered.  

  Glucuronolactone  
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Figure 3.19 Summary of the control reactions performed for the reaction 

between pyruvate and glucuronolactone with Y252Lni as a catalyst as analysed 

by the TBA assay. For each entry in the table the picture shown is of one of 

the duplicate wells for each condition, and the number is the average 

absorbance value after the TBA assay of the duplicate wells. Ticks and crosses 

indicate the presence or absence respectively of the specified reaction 

component. If present, the components had a concentration of: pyruvate, 

100 mM; glucuronolactone, 10 mM; Y252Lni enzyme, 0.5 mg/ml. The buffer 

used in the assay and used as a replacement for any missing assay components 

was 50 mM sodium phosphate pH 7.4. 
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The protein was gel filtered according to section 2.4.10 and the resulting 

chromatogram is shown in figure 3.20. As previously noticed, there is a 

large amount of unfolded protein, as well as correctly folded tetramer. 

There also appears to be a peak corresponding to folded monomer, which 

has not previously been seen (Figure 3.20, peak 3, purple). Approximately 

2.0 mg (20%) came off in the first peak (red), 6.3 mg (64%) eluted in the 

second peak (green) and the third peak (purple) contained 1.5 mg (15%).  

 

To confirm the identities of each peak, mass spectrum analysis was 

performed on a sample from each peak, and the results are shown in figure 

3.21. The three peaks display approximately equal proportions of each 

species shown previously, so there can be little correlation between 

protein species and the stability of folding, i.e. the correctly modified 

protein is not more or less likely to fold correctly than the improperly 

modified protein species.  

 

Figure 3.20 Size exclusion chromatography gel filtration elution profile of 

Y252Lni. The elution fractions were pooled over the volumes highlighted with 

lines underneath the absorbance values, showing peak 1 in red, peak 2 in 

green and peak 3 in purple. 
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To ensure that the modified enzyme was folded in the same way as the 

wild-type, and not merely the same size as shown in figure 3.20, circular 

dichroism (CD) scans were performed on both the modified enzyme and 

the wild-type. CD scans used polarised ultraviolet light at different 

wavelengths to detect different secondary structures in proteins, i.e. 

β-sheets produce a peak at around 195 nm and a trough at around 217 nm, 

while α-helices produce a peak below 190 nm and two troughs at 208 and 

222 nm.  

Both modified and wild-type enzymes had CD scans performed according to 

section 2.4.18. The resulting spectra are shown in figure 3.22. The 

modified enzyme has a spectrum almost identical to that of the wild-type, 

so is most likely folded very similarly.  

     

Figure 3.21 Mass spectrometer data of each peak from the size exclusion 

chromatography gel filtration of Y252Lni. Left, Peak 1 (unfolded); Centre, 

peak 2 (folded tetramer); Right, peak 3 (folded monomer). Blue, A, peak is 

Y252Dha (expected mass 33901 Da; Turquoise, B, peak is Y252Lni (expected 

mass 34022 Da); Grey, C, peak is Y252Lni +172 Da. 
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Since the reaction is definitely catalytic and certainly requires each of the 

enzyme, pyruvate and the aldehyde to work, initial kinetic experiments 

were performed to find a time span in which the enzyme displays initial 

rate kinetics. As such 4 reactions were set up with 100 mM sodium 

pyruvate, 10 mM glucuronolactone, 50 mM sodium phosphate pH 7.4 and 

0.25 mg/ml of either no enzyme, wild-type enzyme, gel filtered Y252Lni or 

non-gel filtered Lni, and samples were taken for 5 hours. The no-enzyme 

reaction showed no significant change in absorbance over the lifetime of 

the experiment, and the non-gel filtered Y252Lni increased in absorbance 

at a faster rate than the wild-type (figure 3.23). Additionally, the reaction 

was linear throughout the time span examined, so this length of time 

should be sufficient for the study of initial rate kinetics. 

 

 

Figure 3.22 Circular dichroism (CD) scans of wild-type and Y252Lni enzymes. 

Wild-type is shown in blue and Y252Lni is shown in red. 
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All the reactions were blanked with a time specific blank reaction OD 

value, and were quantified as per µg of total protein and as observed 

previously, the wild-type enzyme did display some activity for the reaction 

above the blank. Most interestingly though, the gel filtered Y252Lni had a 

higher reaction rate than the other protein samples; the non-gel filtered 

modified enzyme has a rate here approximately 2 times that of the wild-

type, while the gel filtered enzyme displays a rate approximately 3.5 times 

that of wild type. The non-gel filtered protein displays approximately 60% 

the activity of the gel filtered protein. This is roughly in-line with the 

proportions observed during elution from the size exclusion 

chromatography, where 64% of the protein came off the column in a 

volume corresponding to correctly folded tetramer. These data taken 

together suggest that the active enzyme species is the fully folded 

tetramer, and the unfolded protein and folded monomer observed eluting 

from the column are not active. 

  

 

Figure 3.23 Increase of absorbance over time in the TBA assay of 3 reactions 

between pyruvate and glucuronolactone as catalysed by gel filtered Y252Lni 

(red) non-gel filtered Y252Lni (green) and wild-type enzyme (blue). 
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3.5 Product confirmation 

It was important to ascertain what the enzyme was producing to cause the 

positive TBA reaction, i.e. that the enzyme is performing the expected 

aldol reaction shown in figure 3.15 C, and that there is not a non-specific 

reaction occurring. 

3.5.1 13C-NMR 

Initially, pyruvate enriched with 13C at the methyl group was used as a 

substrate in the reaction. This should produce two large peaks that are 

easily visible on 13C NMR, corresponding to the ketone and hydrate form of 

pyruvate found in solution (Damitio et al., 1992). Two reactions were set 

up, both had 13C-pyruvate at 100 mM and glucuronolactone at 10 mM in 

50 mM sodium phosphate at pH 7.4 and with a D2O probe. Additionally, to 

one reaction was added Y252Lni in 50 mM sodium phosphate at pH 7.4 to 

start the reaction. Early spectra showed identical peaks in both samples at 

25 and 27 ppm. After five days, Distortionless enhancement by polarisation 

transfer-135 experiments (DEPT-135) showed a clear difference between 

the reactions with and without enzyme (figure 3.24).  

 

 

Figure 3.24 13C DEPT-135 NMR of a mixture of pyruvate, labelled with 13C at 

the methyl group, and glucuronolactone alone (blue) and when incubated with 

enzyme (dark yellow) for 5 days. Four downwards pointing CH2 peaks are 

present in the reaction with enzyme, corresponding the CH2 groups that belong 

to the product. 
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The two peaks associated with pyruvate are still present, as would be 

expected from the large excess of pyruvate in the sample, but an 

additional 4 peaks at 33.5, 43.5, 44.0 and 48.0 ppm appeared in the NMR 

sample including enzyme. Not only were these peaks shifted downfield of 

the pyruvate peaks, as would be expected from the pyruvate undergoing 

the anticipated aldol reaction due to the carbon atoms now being in the 

proximity of more oxygen atoms, but these peaks were also pointing 

downwards. In a DEPT-135 experiment, carbons in CH2 groups point 

downwards and carbons in CH1 and CH3 groups point upwards. This shows 

that the CH3 group in pyruvate has been turned into four different CH2 

groups. This could be the formation of a number of different isoforms of 

the expected product, e.g. different anomers, diastereomers and 

potentially lactone formations. 

3.5.2 1H-NMR 

To obtain more information about the products, another reaction was set 

up as above, using natural abundance pyruvate but without the addition of 

a D2O probe. After 14 days the TBA assay was used to confirm that the 

reaction had turned over almost all the glucuronolactone into product. 

Subsequently, the reaction was freeze dried to remove the H2O, and then 

re-dissolved in 10% the original volume using D2O, increasing all the 

concentrations by 10-fold to increase the intensity of the 1H signal. Two 

NMR experiments were run on the sample, a Heteronuclear multiple-

quantum correlation spectroscopy (HMQC) and a 1H1H-Correlation 

spectroscopy (COSY) experiment. The HMQC allowed correlation of the 1H 

and 13C spectra, and in this data acquisition one proton peak correlated 

with a carbon peak that had a chemical shift identical to that of one of the 

product peaks found in the 13C enriched NMR spectra, 33.5 ppm (figure 

3.25). With this the proton peak at 1.9 ppm could be assigned to the CH2 

group formed from the methyl group on pyruvate. This should have 

allowed the carbon chain to be traced from one end of the molecule to the 

other using the 1H1H-COSY experiment (figure 3.26), but the data from this 

experiment produced a complex spectrum that made it difficult to 

definitively trace a single molecule through.  
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Figure 3.25 1H-13C HMQC NMR of a mixture of natural abundance pyruvate, 

glucuronolactone and enzyme after 14 days. The peak circled in orange has 

the same ppm as the most prominent product peak from the DEPT 135, and so 

the proton peak at 1.9 ppm must correspond to the CH2 on the most abundant 

product. 

 

Figure 3.26 1H-1H COSY NMR of a mixture of natural abundance pyruvate, 

glucuronolactone and enzyme after 14 days.  
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All the product peaks on either the carbon or the proton spectra were in 

the anticipated regions for the respective atoms in the chemical 

environments they should be for the expected product. Whilst the exact 

forms of the product, e.g. bicyclic/monocyclic and what type of cycle 

etc., could not be identified, these results provide support to show the 

enzyme is performing the anticipated aldol reaction (figure 3.15 C). Some 

potential products are shown in figure 3.27. 

 

 

3.5.3 Mass spectrometry 

Mass spectrometric analysis was also conducted on the freeze dried 

reaction used in section 3.5.2, (experiments performed by Sam Liver). The 

analysis had a number of different masses present, most notably 352.98, 

462.98 and 572.98 Da (figure 3.28). The most intense of these peaks, 

352 Da, equates to the expected mass of product, 264 Da, plus that of 

pyruvate, 88 Da. As there is a large excess of pyruvate in the freeze dried 

 

Figure 3.27 Possible products of the reaction between pyruvate and 

glucuronolactone. A The full length product immediately after catalysis. B – E 

are all potential conformations of A that would be caused by different ring 

formation mechanisms at different positions. B and C display rings formed on 

the hydroxyl of carbon 7, while D and E display rings formed on the hydroxyl of 

carbon 5. B and D are both ring-chain tautomers, while C and E involve a 

second lactone ring formation. 
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sample, approximately 9:1 excess, it is not surprising that the product 

would be detected with pyruvate as an adduct. Additionally, the other, 

larger peaks equate to the sequential addition of one or more sodium 

pyruvate (110 Da) adducts onto the product-pyruvate complex. These data 

confirm the turnover of the product, and indicate that it is most likely the 

structure expected. 

 

  

 

Figure 3.28 Mass spectrum analysis of a mixture of natural abundance 

pyruvate, glucuronolactone and enzyme after 14 days. 352.98 Da corresponds 

to the expected product mass + pyruvate, most likely flying as a pyruvate 

adduct. 
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3.6 Kinetics 

The reaction performed by NAL is a sequential ordered bi-uni reaction. The 

pyruvate binds in the active site, forming a Schiff base with lysine at 

position 165. This is then followed by binding of the aldehyde substrate, 

allowing catalysis to occur (figure 3.29). Binding of pyruvate is necessary 

for catalysis to take place and the KM of pyruvate in the wild-type enzyme 

is below 10 mM in most literature sources (Ferrero et al., 1996), well 

below the concentrations that have been used previously in this thesis. 

Therefore, only the kinetics of glucuronolactone were assessed, as the 

position of the modification should make little difference to the binding of 

pyruvate. As such, varying the concentration of pyruvate around the 

concentrations that have been used up to this point would make very little 

difference to the rate, and to greatly change the concentration of 

pyruvate would inevitably change the equilibrium position of the reaction 

considerably. The concentration of pyruvate used in these kinetics will be 

approximately 10-fold greater than KM, meaning effectively all the enzyme 

molecules will have pyruvate bound.  

 

3.6.1 Plate layout 

The plate layout was designed to maximise the amount of data that could 

be extracted from each plate. For both wild-type and Y252Lni enzymes, 8 

different concentrations of glucuronolactone were used, from 0 to 15 mM, 

and these reactions were set up in a plate. Samples of 100 µl were taken in 

duplicate, to increase the reliability of the data, and added to 11 µl of 12% 

trichloroacetic acid (TCA) in a separate plate for each enzyme. Samples 

were taken at 5 points throughout the 6 hour incubation to allow an 

accurate rate to be determined.  The two final columns of the plate were 

 

Figure 3.29 Cleland diagram representing the sequence of events during NAL 

catalysis. Arrows downwards represent binding events, arrows upwards 

represent unbinding events. E, enzyme; Pyr, pyruvate; Ald, aldehyde. 
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used for duplicate standard curves to allow calculation of concentration 

from absorbance. The generalised plate layout can be seen in figure 3.30.  

 

3.6.2 Kinetic parameters 

As seen before, Y252Lni was better at catalysing the reaction between 

glucuronolactone and pyruvate than the wild-type enzyme (figure 3.31). 

However, all kinetic runs showed significant substrate inhibition above 

10 mM of glucuronolactone with both enzymes. This complicates the data 

fitting as the classic Michaelis-Menten equation is unsuitable for use with 

substrate inhibition. Fortunately, there is a derivation of the Michaelis-

Menten equation that accounts for substrate inhibition. Equation (3.1) 

shows the normal Michaelis-Menten equation while equation (3.2) shows 

the substrate inhibition equation. 

 

(3.1) 

𝑣 =
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀 + [𝑆]
 

(3.2) 

𝑣 =
𝑉max [𝑆]

𝐾𝑀 + [𝑆] (1 +
[𝑆]
𝐾𝑖

)
 

 

  

 

Figure 3.30 Table showing the generalised layout of the kinetic analysis plates. 

Times shown are the times that sample was taken, intensity of blue represents the 

concentration of glucuronolactone in each reaction, from 0 mM in white at the top 

to 15 mM in dark blue at the bottom. Concentration and position of the N-

acetylneuraminic acid standard samples are shown in columns 11 and 12. 

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H 0.5 hr 1 hr 2 hr 4 hr 6 hr 0 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 62.5 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 125 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 250 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 500 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 1000 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 2000 µM Std.

0.5 hr 1 hr 2 hr 4 hr 6 hr 4000 µM Std.
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Kinetics were performed five times in a single week in an attempt to 

increase the reproducibility of the data. The average data from the five 

repeats are shown in figure 3.31.  

 

As has been seen previously, Y252Lni displayed a consistently higher rate 

than the wild-type at all concentrations of substrate over all assays. There 

was however significant day-to-day variation in the activities observed, 

while the general theme was maintained in almost all non-blank samples 

i.e., that the modified enzyme displayed a greater rate than the wild-type, 

little else was consistent between days.  

When these data are fit using the substrate inhibition formula, the 

parameters given in figure 3.32 are produced.  

 

 

Figure 3.31 Average rate of reaction at different glucuronolactone 

concentrations for both wild-type and Y252Lni as calculated from the TBA 

assay. Rate with Y252Lni is shown in blue and wild-type is shown in red. Error 

bars are standard error, n=5. 
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Ki (mM) 1.6 (±8.0) 1.1 (±7.0) 

Figure 3.32 Summary table of the fit statistics of the average results of the 

kinetic characterisation. All values are apparent for glucuronolactone at a 

pyruvate concentration of 100 mM. Errors given in brackets are the standard 

errors of the fit statistics.  
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The results suggest that the modified enzyme has a higher maximum rate 

and reaches that maximum rate at a lower concentration of substrate than 

the wild-type enzyme, but the errors on the fit are very high, so firm 

conclusions are not possible. Ideally, these experiments would have been 

repeated in an attempt to obtain less variable data, but time constraints 

meant that this was not possible. 
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3.7 Summary 

Initially, a pre-existing assay was assessed for feasibility and optimised for 

use as a screening assay. This was successful, and resulted in a large 

increase in maximum possible absorbance from the assay. Subsequently, 

900 different enzyme/aldehyde combinations were screened for enhanced 

activity over wild-type for each particular aldehyde. A number of positive 

hits were found according to plate reader data, but when the plates were 

visually inspected, only one of the top ten hits in the plate reader data 

also appeared pink by eye, and as such, this hit was chosen for further 

characterisation. 

The hit, Y252C modified to produce a lanthionine residue, catalysing a 

reaction between pyruvate and glucuronolactone, was re-made and the 

modification procedure was optimised for production of pure Y252Lni. This 

allowed the enhanced activity of Y252Lni for glucuronolactone over the 

wild-type to be confirmed, and it gave a rate approximately 3.5x higher 

than that of the wild-type enzyme, when using 100 mM pyruvate and 

10 mM glucuronolactone.  

Reactions were set up, with both pyruvate enriched with 13C at the methyl 

and a large scale reaction with regular pyruvate. This allowed NMR 

experiments to be performed which confirmed turn over of the substrates 

into products, and also allowed initial NMR characterisation of one of the 

most abundant products.  

In an effort to more completely characterise the kinetic properties of the 

modified enzyme, apparent glucuronolactone kinetics were performed, but 

these gave variable results, with the only firm conclusion being what was 

found previously, that Y252Lni performs the reaction between pyruvate 

and glucuronolactone at a faster rate than the wild-type enzyme.  

Nevertheless, this position was deemed interesting, and the reaction 

between pyruvate and glucuronolactone was unique in that it uses a cyclic 

substrate, where NAL has been shown to only accept sugars in their linear 

forms. As such, further research was conducted into this position and 

modification in an attempt to elucidate the effect of the modification on 

the reaction. 
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Chapter 4 - Studying substrate interactions with position 252 

of S. aureus NAL 

While accurate kinetics could not be obtained, chapter 3 showed that the 

mutation of a tyrosine to a lanthionine at position 252 in saNAL increases 

the rate of catalysis of the aldol reaction between pyruvate and 

glucuronolactone. To find out if any of the natural side chains could mimic 

this effect on the rate, and to try to gain more molecular insights into the 

change in substrate preference, a saturation library was constructed. 

4.1 Saturation mutagenesis at position 252 

4.1.1 Saturation library construction 

The saturation library of primers was designed using a tool available on the 

Agilent website (www.genomics.agilent.com/primerDesignProgram.jsp) to 

predict the sequence of primers that will incorporate the mutation 

desired. The Quikchange II kit was used according to manufacturer’s 

instructions and E. coli strains expressing saNAL with all 20 possible 

canonical amino acids at position 252 were obtained (Figure 4.1) (for 

method see section 2.3.2). 

 

 

Figure 4.1 Translated DNA sequencing of all members of the saturation 

mutagenesis library at position 252, with wild-type, Y252, at the top, and all 

the other canonical amino acid mutants ordered alphabetically by their single-

letter codes. Only a part of the sequencing results are shown for brevity, but 

there were no other changes in sequence in the remainder of the protein. 
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4.1.2 Saturation library purification and activity 

With all members of the saturation library transformed into E. coli capable 

of high levels of expression (for genotype see section 2.1) the activity of 

each mutant was tested. The library was split into two groups for ease of 

handling during the expression and purification; A-L and M-Y. These two 

groups were expressed on different days and the spun-down pellet of cells 

were stored at -80 °C, after which each group of expressions, A-L and M-Y, 

was purified on consecutive days (see sections 2.4.3 and 2.4.4 for 

methods). This was done to reduce the amount of time that the first group 

of variants that were purified spent in the fridge, as their stability is 

unknown, while still allowing all 20 variants to be tested for activity at the 

same time. The purifications were analysed by SDS-PAGE and the resulting 

solutions were found to be pure (figure 4.2).  

 

The concentrations of each purified protein were measured and all 

enzymes were diluted to 0.5 mg/ml to allow comparison of the reactions 

directly. To reduce the day-to-day variability seen in previous experiments 

(section 3.6.2) all 20 enzymes were tested on the same day. As such, each 

 

Figure 4.2 Composite SDS-PAGE gel image of all 20 members of the canonical 

amino acid site-directed mutagenesis library at position 252. Letters above the 

pairs of lanes represent the amino acid at position 252, the left lane of each 

pair is the soluble fraction of lysed cells of each expressed protein variant, 

diluted 50-fold, while the right lane of each pair of lanes is the protein 

solution after all purification steps have been performed, diluted 40-fold. 
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enzyme was only assessed at a single concentration of pyruvate and 

glucuronolactone to save space on the assay plate. The final 

concentrations of the reactions were 0.25 mg/ml enzyme, 10 mM 

glucuronolactone, 100 mM sodium pyruvate, 50 mM sodium phosphate, 

pH 7.4. The reactions were run for 5 hours, duplicate samples were taken 

every 75 minutes and stopped with TCA. Full methods are given in section 

2.4.15. Samples were also taken from a blank reaction to account for any 

non-enzymatic rate of change in absorbance, and a standard curve of 

Neu5Ac was added to calculate the concentration of product in each well.  

This experiment allowed a rate of product formation to be calculated for 

each variant and compared to the rate of product formation by wild-type. 

This difference in rate compared to wild-type could then be used along 

with data from section 3.4.3, performed using an identical method, to 

compare the ncAA to the canonical amino acids.  

The most obvious result from the data gathered is that the wild-type 

enzyme, Y252, is amongst the least active canonical amino acids at this 

position for the reaction between glucuronolatone and pyruvate. The 

difference in activity between the proteins is large and can be seen from 

visual inspection of the plate (figure 4.3). When the plate reader data is 

examined, the rate observed in the wild-type enzyme of 13 mAU/hr is 

similar to that observed in previous experiments, and so the rest of the 

data is likely to be as accurate as the wild-type i.e. the wild-type activity 

in this experiment is comparable to previous experiments. The mutant 

proteins (figure 4.4, blue bars) can be split up into three groups based on 

their activity for glucuronolactone and pyruvate. Enzymes with a high 

activity, more than 3-fold more active than wild-type, were Ala, Cys, Glu, 

Gly, His, Ile, Met, Asn, Gln, Ser, Thr, Val and Lni. Enzymes with a 

moderate activity, between 3-fold and the same activity as wild-type, 

were Asp, Phe, Leu, Pro and Trp. Finally, enzymes with a low activity, 

equal to or below that of wild-type, were Lys, Arg and Tyr. 

This puts Y252Lni, with an activity 3.5-fold higher than wild-type, towards 

the top of the list when compared to the canonical amino acids. To further 

examine the structural implication of the changes at position 252, the 

activities of the canonical amino acid variants were compared to the 

molecular weight of the amino acid at position 252. A rough trend can be 

observed, showing that the larger amino acids tend to show lower 

activities (figure 4.5, blue dots). While this correlation is not very strong 

(r2=0.40), it could be explained via removal of bulk in the active site. 
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Lower mass amino acids will in general take up less space than higher mass 

amino acids. This removal of bulk from the active site would create more 

space, potentially allowing the cyclic substrate more room to enter and 

move into a catalytic conformation. However, when the activity of Lni is 

 

Figure 4.3 Photographs of the TBA assay plates showing the increase in colour 

over time of all the members of the saturation library at position 252 

performing the synthetic aldol reaction between pyruvate and 

glucuronolactone. Each column represents the samples from one reaction, 

each using a different enzyme. The enzyme used in each reaction is shown 

above each column. Samples were taken in duplicate at the times indicated to 

the left of the photographs, and as such each time label refers to the two rows 

to which it is adjacent. 



- 93 - 

compared on this graph, it does not fit the general trend (figure 4.5, red 

dot) having both a relatively high activity and a high mass side chain.  

The saturation library data shows that the Y252Lni enzyme is likely not a 

candidate for the industrial or large-scale catalysis of the synthesis 

reaction between pyruvate and glucuronolactone, as canonical amino acid 

 

Figure 4.4 Fold-difference in activity from wild-type while performing the 

aldol reaction between pyruvate and glucuronolactone for each of the 

canonical amino acid variants at position 252 (blue) and the ncAA lanthionine 

at position 252 (red) as found in the TBA assay. Error bars shown are the 

standard error of the rate. 
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Figure 4.5 Fold-difference from wild-type as in figure 4.4, compared to the 

molecular weight of the amino acid at position 252. Canonical amino acids at 

252 are shown as blue dots and the ncAA lanthionine is shown in red. Error 

bars are the standard error of the rate. 
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variants are easier to produce and in some cases have a higher activity. 

That the Y252Lni enzyme still displays enhanced activity compared to the 

wild-type, even with its larger side chain mass, suggests that the 

mechanism by which it achieves the rate enhancement is different to that 

of the canonical amino acids. Therefore, a structural investigation into the 

mechanism by which Y252Lni enhances the aldol reaction between could 

reveal useful mechanistic insights.  
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4.2 X-ray crystallographic studies of Y252Lni saNAL 

The structure of the Y252Lni variant was investigated to provide an 

explanation for its activity in the reaction between pyruvate and 

glucuronolactone. 

4.2.1 Crystal formation, data collection and refinement 

Crystals were formed using a published method for crystallisation of wild-

type and chemically modified saNAL (Timms et al., 2013, Windle et al., 

2017) (see section 2.4.16 and 2.4.17). Briefly, size exclusion 

chromatography was performed on a sample of Y252Lni modified protein 

and the peak corresponding to correctly folded tetramer was collected to 

ensure a folded, homogeneous population of protein. This was 

concentrated to 9 mg/ml for crystallisation. The crystallisation conditions 

used were 200 mM sodium chloride, 100 mM Tris.HCl, 18-28% PEG 3350, pH 

7-8.5. The crystals were grown on a 24-well plate using the hanging drop 

method, each well contained 3 protein crystallisation drops containing a 

total volume of 3 or 4 µl, the protein solution: mother liquor ratios used 

were 2:1, 2:2 and 1:2. Three replicate plates were produced, and crystals 

had formed on all plates after 14 days.  

The enzyme structure in complex with pyruvate would provide more 

relevant information with respect to aldehyde binding in a catalytically 

useful conformation compared to the structure without pyruvate, as the 

pyruvate binding must occur before the aldehyde binds. As such, the 

crystals selected (figure 4.6) were soaked in a cryoprotectant containing 

pyruvate. The crystals were first soaked in a cryoprotectant consisting of 

mother liquor with an additional 15% PEG 400 and 100 mM sodium 

pyruvate, then the crystals were transferred to a solution of mother liquor 

with 20% PEG 400 and 100 mM sodium pyruvate, then finally to a solution 

of mother liquor, 25% PEG 400 and 100 mM sodium pyruvate. Each soak 

lasted for approximately 30 s, and crystals were subsequently flash cooled 

using liquid nitrogen. 
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Data collection was performed at Diamond Light Source (Oxfordshire, UK) 

on beamline I24 at 100 K and the structure was derived from a single 

crystal (figure 4.6, circled in red) and the resulting diffraction was at a 

moderately good resolution, 1.95 Å. The dimensions of the unit cell were 

81.05 Å by 124.27 Å by 179.54 Å with angles of 90.00, 97.77, and 90.00 and 

the space group of the cell was group P21. The Matthews Coefficient 

(Matthews, 1968) estimates the solvent content of the unit cell using the 

unit cell dimensions and the molecular weight of the protein. When 

calculated for this structure, the Matthews coefficient indicated that the 

unit cell consisted of 12 monomers, and as such, 12 monomers were 

searched for during molecular replacement. Molecular replacement was 

performed with PHASER (McCoy et al., 2007) using a monomer of the wild-

type structure with pyruvate bound (PDB code: 4ah7) as the search model. 

Molecular replacement showed that the protein was a tetramer, the same 

as the wild-type and previously solved structures of modified saNAL 

(Timms et al., 2013, Windle et al., 2017). 

The CCP4 suite program REFMAC5 (Murshudov et al., 2011) was used to 

perform all rounds of refinement. The starting model used was the wild-

type structure with pyruvate bound and the residue at 252 modelled as 

alanine to prevent bias in the model. Rigid body refinement was carried 

out initially, followed by iterative rounds of restrained refinement and 

model building using COOT (Emsley et al., 2010). The 2Fobs-Fcal and Fobs-Fcal 

electron density difference maps show that the alanine modelled into 

 

Figure 4.6 Y252Lni crystals examined using X-Ray crystallography. Circled in 

red is the crystal from which the dataset used to produce the Y252Lni 

structure was derived. Crystal growth conditions were 200 mM sodium 

chloride, 100 mM Tris.HCl, 24% PEG 3350, pH 8.5. 
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position 252 does not accurately describe the electron density found in any 

of the 12 monomers in the unit cell. In 11 out of the 12 monomers, the 

electron density is clearly larger than the alanine model, but in 1 of the 

monomers there was no evidence of electron density beyond the alpha 

carbon of the modelled alanine. In those monomers which included density 

at 252, there was a large atom in the γ-position of the side chain, which is 

consistent with a sulphur atom present in the ncAA side chain (figure 4.7). 

 

4.2.2 Description of the modified protein structure 

The structure of Y252Lni saNAL is a homotetramer, each monomer 

displaying the same α/β TIM-barrel fold observed in the wild-type protein  

(Timms et al., 2013). The overall structures of the modified and wild-type 

proteins are almost identical (RMSD = 0.620 Å) (figure 4.8) showing that 

incorporation of the ncAA at this position has very little effect on the fold 

of the protein, and this similarity is even clearer in the active site, bar the 

amino acid at 252 (figure 4.9).  

Figure 4.7 The modelled Y252A structure and the 2Fobs-Fcal electron density 

map of the Y252Lni crystal overlaid. The modelled structure is shown as blue 

sticks and the electron density map is a red grid. Taken from WinCOOT 

(Emsley et al., 2010). 
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The positions of the main catalytic side chains are also very similar 

between the wild-type and the modified protein. The catalytic lysine in 

complex with pyruvate is present in all monomers, and in the same 

position as in the wild-type enzyme. Residues Y137 and T167, which are 

proton sinks and sources during catalysis (Daniels et al., 2014), are also 

positioned similarly in both the wild-type and the modified structures. 

Y137 and the pyruvate attached to K165 are in slightly different positions 

while the T167 in both structures overlays almost perfectly. In the 

modified structure, Y137 is shifted by about 1 Å from the wild-type 

position, in the direction away from the pyruvate. However, this change in 

position coincides with a change in position in the pyruvate in the modified 

 

Figure 4.8 Cartoon depiction of the wild-type (blue) and Y252Lni modified 

(red) enzymes, showing all four monomers in a complete homotetramer. The 

structures are very similar, but some differences can be seen around the edges 

of each structure where the amino acids are less tightly held in position. 

 

Figure 4.9 Cartoon depiction of one 

monomer of wild-type and Y252Lni 

overlaid (blue and red). The two 

monomers overlay almost perfectly 

(RMSD = 0.235 Å). 
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structure, in the same direction, by 0.7 Å (figure 4.10). As such, these two 

changes in position occur in the same direction and by roughly the same 

distance, and so probably compensate for each other. 

 

There is only one residue, F190, in a significantly different position in the 

active site when the wild-type enzyme is compared to Y252Lni. This amino 

acid occurs in two different rotamers in the two structures (figure 4.11). In 

the wild-type the phenylalanine side chain projects into the active site, 

occluding it slightly, whilst in the modified enzyme the phenylalanine side 

chain points into the bulk of the protein, leaving the active site more 

open. This rotamer difference means the wild-type active site is 5 Å 

narrower than the modified active site. The increased volume available in 

the active site could help the modified enzyme accommodate a more bulky 

substrate, like glucuronolactone. 

 

Figure 4.10 Overlaid monomers of wild-type and Y252Lni structures. Residue 

side chains of Y137, K165-pyruvate and T167 are shown as sticks while the rest 

of the monomers are shown as backbones represented by cartoons. The 

structure on the left was rotated 90° to the left to produce the picture on the 

right. Light blue shows wild-type monomer and residue carbon atoms, while 

dark red shows Y252Lni monomer and carbon atoms, other atoms are coloured 

according to their identity: Dark blue, nitrogen; light red, oxygen. 
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4.2.3 Side-chain structural features 

The lanthionine side chain displayed good density in all the monomers in 

which it was found, 11 out of the 12 monomers and was in a similar 

position in all 11 (figure 4.12). This suggests that is kept fairly rigidly in 

place by interactions with the other amino acids in the active site. The 

temperature factor of the side-chains at 252 was 45.45 on average, 

compared to an average temperature factor of 29.89 across the entire 

structure. The modified amino acid, lanthionine, has a number of features 

that should allow it to make a number of different polar interactions and 

hydrogen bonds using the carboxylate and amino groups, and also the 

thioether group. However, there are no clear polar groups in close 

proximity to the side chain (figure 4.13), so there is likely no electrostatic 

interaction between the side chain and the rest of the active site.  

The side chain is most likely held in place by repulsion from the 

hydrophobic residues surrounding it, which are well ordered. The presence 

of a hydrophobic pocket in the enzyme at this region could be anticipated 

due to the identity of the wild-type amino acid at this position being either 

tyrosine, in the S. aureus protein, or phenylalanine, in the E. coli protein, 

both of which have large hydrophobic regions and would need a 

hydrophobic pocket to hold them stable in the active site. 

 

Figure 4.11 Overlaid monomers of wild-type and Y252Lni structures. Residue 

side chains of F190 are shown as sticks while the rest of the monomers are 

shown as backbones represented by cartoons. Light blue shows wild-type 

monomer and residue carbon atoms, while dark red shows Y252Lni monomer 

and carbon atoms. 
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Figure 4.12 The lanthionine side chains at 252 overlaid. The side chains of 

every monomer overlay fairly well, showing the side chain is well structured. 

  

Figure 4.13 Y252Lni structure showing residues within 5 Å of the modified side 

chain Y252Lni. Atoms of Y252Lni and atoms within 5 Å of Y252Lni are shown as 

thick rods, atoms further than 5 Å from Y252Lni in a residue with has one or 

more atoms within 5 Å of the modified side chain are shown as thin sticks, 

atoms in residues that have no atoms within 5 Å of Y252Lni are not shown. The 

structure on the left was rotated 90° to the left to produce the picture on the 

right. Non carbon atoms are coloured according to their identity: Dark blue, 

nitrogen; light red, oxygen; yellow, sulphur. 
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The side chain could be held in shape by intra-molecular hydrogen bonds 

between the carboxylate group, the amino group and the sulphur atom. 

The distances between these groups are 2.6 Å from carboxylate oxygen to 

side chain amine nitrogen, 2.9 Å from side chain amine nitrogen to the 

sulphur atom and 2.9 Å from the sulphur atom to the backbone nitrogen of 

the same amino acid (figure 4.14). These distances are within hydrogen 

bonding distance and the charges along the side chain, from the 

carboxylate end, alternate from negative to positive to slightly negative; 

carboxylate to amine to sulphur atom. The potential for hydrogen bonding 

and the complementary charges could both work together to keep the 

amino acid side chain in place, explaining the similarity observed between 

all the side chains. 

The lanthionine side chain inserted into the active site had 

L-stereochemistry in the side chain, since L-cysteine was used in the 

modification. It was also built into the electron density with 

L-stereochemistry at the Cα position, partly as previous structures of 

chemically modified enzymes have shown modified amino acids to adopt 

L-stereochemistry at the protein backbone following the Michael addition, 

which in theory could generate either D- or L-stereochemistries (figure 

4.15).  

 

Figure 4.14 Y252Lni side chain, with the distances measured as being 

potential hydrogen bonds shown as dashed yellow lines. The structure on the 

left was rotated 90° to the left to produce the picture on the right. Non 

carbon atoms are coloured according to their identity: Dark blue, nitrogen; 

light red, oxygen; yellow, sulphur. 
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However, close examination of the modelled side chain compared to the 

density on some of the monomers showed that the modelled 

L-stereochemistry did not accurately describe the density, and that a 

D-stereochemistry at the protein backbone provided a more accurate 

description (figure 4.16). When all the monomers are examined in this 

way, in 6 of the 11 monomers in which the lanthionine is present, an 

L-stereochemistry at the protein backbone better described the density, 

while in 5 of the 11 monomers a D-stereochemistry at the protein backbone 

better described the density. The crystal densities are all averages of the 

atoms present in multiple copies of protein. If a mixture of different 

atomic structures are present in a single crystal, these will be averaged 

together. As such, some of the side-chains were more clearly one 

stereochemistry, showing that at this position in the crystal the side chains 

were predominantly of a single seteroisomer, while some were relatively 

ambiguous, showing that at this position the side chains were a more even 

mixture of stereoisomers. 

There is no reason to think that the modification reaction should be 

stereospecific, and as such it would be expected that the L- and D-isomers 

form at equal proportions (Timms et al., 2013). The reason why D-amino 

acids were never observed in previous crystal structures was hypothesised 

to be because the D-isomer may be unable to refold, and would therefore 

be removed when size-exclusion chromatography is performed (Windle et 

al., 2017). However, given an unfolded protein and a suitably permissive 

position on the protein backbone, there is not necessarily any reason that 

the protein would not fold with a D-amino acid in its backbone. 

 

Figure 4.15 Diagrams of the amino acids at 252. A Tyrosine, the wild-type 

residue at 252. B and C D- and L-stereoisomers, respectively, of lanthionine, 

the ncAA inserted at 252 in this structure. 
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A 

 

    

B  L-Lni D-Lni 

Bonds 1.228 0.979 

Angles 2.116 1.235 

Planes 0.691 0.243 

 Chirals 3.848 1.157 

 Non-bonded 0.026 0.047 

 

Figure 4.16 L-Lni is not a good fit in the electron density maps of some 

monomers. A The modelled Y252Lni structure and the 2Fobs-Fcal electron 

density map (RMSD = 1.09 Å) of two different amino acids at position 252. The 

electron density is shown as a blue mesh, L-Lni is shown as green sticks and D-

Lni is shown as red sticks. B Table showing the fit statistics of the amino acids 

shown in A, where larger numbers respresent a worse fit.  
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4.3 Computational studies of the active site of wild-type and 

Y252Lni saNAL 

A number of attempts were made to soak in both pyruvate and either 

glucuronolactone or a non-catalytic substrate analogue, with a hydroxyl 

group in place of the catalytic aldehyde group (figure 4.17). The same 

method was used as previously (section 2.4.16 and 2.4.17), but the final 

soak also included glucuronolactone or its non-catalytic analogue. 

However, a large number of crystals fragmented upon introduction to the 

final soak and those that remained to be frozen did not diffract coherently 

when inserted into the X-ray beam.  

 

As the crystal structure of the pyruvate bound enzyme was of a high 

enough resolution (1.95 Å) to position the side chains in the active site 

with high confidence, molecular dynamic simulations of the protein 

interacting with the substrate were considered. While these simulations 

would only present theoretical, in silico predictions of how the substrate 

may interact, there are a number of advantages from dynamics simulations 

over crystal structures. Firstly, crystal structures represent an average 

position over a large number of protein molecules, which might cause less 

popular binding positions to be missed. Also, X-ray structures display a 

single, fixed position in which the substrate is bound, and this will not be 

representative of the action of the enzyme in solution. When done 

appropriately, molecular dynamics allow a number of potential binding 

positions to be examined, and also allow movements of the substrate in 

the active site to be examined. As such, molecular dynamics was used as a 

tool to elucidate the actions of the substrate in the active site. 

4.3.1 Preliminary investigation 

As an initial test of the force fields and simulation settings a structure with 

substrate bound in a catalytic conformation was simulated. Fortunately, a 

structure of mutant E. coli NAL with both pyruvate and ManNAc bound in 

 

Figure 4.17 Chemical structure of glucuronolactone, the catalytic species (left), and 

the non-catalytic analogue used in crystal trials (right) 
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the active site has previously been published (PDB ID: 4bwl; Daniels et al., 

2014). Molecular dynamics were used on this structure first to ensure the 

molecular system was represented in a realistic way. The ManNAc and all 

residues with at least one atom within 4.5 Å of the ManNAc were simulated 

for 600 ps as described in section 2.5.5. The ManNAc remained stably 

bound in the active site for the duration of the simulation. This behaviour 

is expected as enzymes should have at least some affinity for their 

substrates, even if they have a higher affinity for the transition state. This 

suggests that the simulation parameters were appropriate for the 

molecular system over the timescale simulated. 

To ensure that these settings were also appropriate for saNAL, ManNAc was 

inserted in silico into the active site of saNAL with pyruvate bound (PDB ID: 

4ah7; Timms et al., 2013), in a position similar to that of the ecNAL crystal 

structure. Molecular dynamics were then performed on the saNAL structure 

with ManNAc in the active site using the same method as the ecNAL. Again, 

the ManNAc remained bound in the active site, showing that the dynamics 

parameters are appropriate for the wild-type saNAL protein as well.  

Running simulations on the active sites of all four chains in the tetrameric  

wild-type structure as well as all 12 chains of the 3 tetramers in the unit 

cell of the Y252Lni structure would greatly increase the amount of 

simulations to be run and the amount of data to be analysed, without 

necessarily increasing the quality of the data. Ideally, one subunit of each 

of wild-type, Y252D-Lni and Y252L-Lni would be selected to be used in all 

simulation experiments. Therefore, to assess the extent of similarity of 

each chain of the crystal structure, all subunits of the Y252Lni structure 

and all subunits of the saNAL wild-type structure were overlaid, and the 

orientation of the side chains at position 252 was examined (figure 4.18 A). 

The tyrosine side chains in the wild-type structure are well ordered (figure 

4.18 B), as are the L-Lni side chains (figure 4.18 C). The D-Lni side chains 

are less well ordered however (figure 4.18 D), which could be anticipated 

as a D-amino acid in the protein backbone is a more unnatural situation 

than a non-canonical L-amino acid in the backbone. As such, the tetramer 

composed of chains A-D of the Y252Lni structure was chosen for use in 

molecular dynamics, this contained one chain with D-Lni, two chains with 

L-Lni and one chain that did not display any side chain density at the 252 

position. In further simulations, chain B of the wild-type structure was 

chosen to represent the wild-type active site, chain B was chosen from the 

Y252Lni structure to represent Y252L-Lni-containing active sites, and chain 



- 107 - 

D was chosen to represent D-Lni-containing active sites (shown in blue, red 

and green respectively in figure 4.18).  

 

   

  

 

Figure 4.18 Overlaid subunits of wild-type and Y252Lni saNAL. A All wild-

type, Y252L-Lni and Y252D-Lni subunits; B all four wild-type subunits with 

subunit B shown in blue; C Y252L-Lni with subunit B shown in red and D Y252 

D-Lni with subunit D shown in green. A much greater amount of variability is 

seen in the chains containing D-Lni. In all images dotted blue lines connect 

atoms likely to form hydrogen bonds 

A B 
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Three potential causes for enhanced catalytic activity were assessed: 

 the lanthionine-containing enzyme is better at causing the substrate 

to bind than the wild-type enzyme (section 4.3.2). 

 the lanthionine-containing enzyme is better at holding onto the 

substrate in a catalytic orientation than the wild-type (section 4.3.3 

and 4.3.4). 

 the lanthionine-containing enzyme is better at removing the full 

length product than the wild-type (section 4.3.5) 

4.3.2 Substrate binding from bulk solvent 

A simple method to estimate binding is using the GRID method (Goodford, 

1985). This calculates a likely energy of binding of a functional group to all 

points on the surface of a molecule, in this case a protein. Where the 

binding energy is greater than a certain threshold value, a green layer is 

added to the surface of the protein. As such, the regions on a protein 

where certain functional groups are likely to bind can easily be visualised. 

A total of three hydroxyl groups occur on glucuronolactone making a 

hydroxyl group a good probe to assess binding potential in the active site. 

GRID was therefore performed on wild-type, Y252L-Lni and Y252D-Lni using 

an aliphatic hydroxyl group as the functional group probe to determine the 

binding surface. 

The green region represents where hydroxyl groups are likely to bind 

(figure 4.19). A large green region can be seen around the lanthionine side 

chain’s carboxylate, whilst this green region is absent in the wild-type 

structure. This suggests that there is more surface area available for 

binding in the Lni-containing active site than in the wild-type active site.  

One of the best ways to assess binding of substrate from bulk solvent is to 

place a substrate molecule outside of the active site and see which 

enzyme binds the molecule in a catalytic pose most often or for the 

longest period of time. However, simulating binding to an active site from 

bulk solvent is difficult over feasible simulation timescales as the substrate 

is more likely to move away from the enzyme than towards it when 

allowed to float free, and if it does bind to the enzyme it is unlikely to find 

its way to the active site, binding onto hydrophilic surface residues 

elsewhere. This was attempted but, even with a tether holding the 

substrate near the protein so it could not diffuse away, substrate attached 

non-specifically to the exterior of the protein (data not shown). 
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4.3.3 Substrate binding in the active site 

On glucuronolactone, all the hydroxyl groups point in the same direction 

after energy minimisation, giving the molecule significantly different 

hydrogen bonding potential depending on which side of the substrate is 

 

 

 

Figure 4.19 GRID calculations 

using a hydroxyl group as the 

probe on wild-type, Y252L-Lni 

and Y252D-Lni enzymes. GRID 

surface indicating likely 

binding location is shown as a 

green mesh Top wild-type, 

Middle Y252L-Lni, Bottom 

Y252D-Lni. Amino acids are 

shown as sticks with atoms 

coloured by identity, amino 

acid backbones are shown as a 

cartoon and coloured 

according to enzyme, wild-

type in blue, Y252L-Lni in red 

and Y252D-Lni in green. GRID 

surface shown at an 

interaction energy of -

3.6 kcal/mol. D141, K165, 

E192 and the residue at 252 

are shown and labelled. 
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considered (figure 4.20). Initially, two molecular dynamics simulations 

were run for each enzyme; wild-type , Y252L-Lni and Y252 D-Lni, one with 

the hydroxyl groups pointed towards the amino acid at position 252, and 

one with the hydroxyl groups pointing away. The substrate was inserted in 

the active site with the aldehyde group pointing towards the key catalytic 

residues, K165 and Y137, to encourage the simulation to produce 

potentially catalytic conformations, and a tether was made between the 

pyruvate methyl group and the aldehyde carbon to restrict the two groups 

to between 3.5 and 4.5 Å of each other to ensure that the substrate 

remained in the active site and in an area that was catalytically 

interesting. 

 

  

 

Figure 4.20 Glucuronolactone. Hydroxyl groups are all positioned on the same 

face of the lactone ring when energy minimised (Left) shown face on, and 

(Right) side on to highlight that the hydroxyl groups all point towards the same 

face of the molecule when energy minimised. Atoms are coloured by identity. 
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In the wild-type structure, the substrate moved so that the ring hydroxyls 

were taking part in a hydrogen bonding network with E192 within 100 ps in 

both simulations (figure V.1, V.2 and 4.21), suggesting that E192 likely 

plays a key role in glucuronolactone binding. The modified enzyme still has 

this residue, and so we could speculate that E192 probably plays some role 

in catalysis in the Y252Lni enzyme also. Additionally, Y252 can be seen to 

play very little role in the binding of glucuronolactone in the wild-type 

enzyme.  

 

When the results from the modified enzymes are examined, each 

orientation of substrate displays different behaviour. When the hydroxyl 

groups are pointed towards Y252Lni, they form a hydrogen bonding 

network with the ncAA and remain bound (figure 4.22), but when the ring 

hydroxyl groups are pointed away from the ncAA, the substrate forms no 

significant bonding with the active site at all (figure 4.22). This shows 

that, for the timescales being simulated, initial orientation of the 

   

Figure 4.21 Final orientations of simulations using the wild-type structure and 

glucuronolactone. Left the substrate ring hydroxyls starting pointing towards 

the bottom of the frame, and Right towards the top of the frame. Both 

simulations resulted in the substrate interacting with the carboxylate group on 

E192. Turquoise atoms show the substrate, Red atoms are part of the protein, 

Red ribbons, atoms and turquoise atoms were all active and mobile in the 

simulations, orange ribbons were active but not mobile, and grey ribbons were 

neither active nor mobile. Y137, D141, K165, E192 and Y252 are shown and 

labelled. See also Video figures V.1 and V.2. Figure V.1 shows a simulation 

that was started with the hydroxyl groups of the substrate pointed away from 

the tyrosine at residue 252, while figure V.2 shows a simulation that was 

started with the hydroxyl groups pointed towards Y252. Both simulations 

resulted in substrate binding to E192. 
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substrate in the active site is very important, and so the effects of 

substrate orientation will be examined in more depth.  

 

As such, the structures of each of the protein had the substrate inserted in 

the active site, next to the residue at position 252 with the hydroxyl 

groups facing away from the side chain of the residue at 252. A tether was 

not applied in these experiments so that the substrate could sample a 

wider set of binding poses if it was energetically favourable for it to do so. 

The substrate was then rotated around an axis from the aldehyde group to 

the lactone ring to maintain the proximity of the aldehyde to the pyruvate. 

This encourages catalytically interesting binding of the substrate, as the 

binding positions that have an effect on catalysis are those in which the 

aldehyde group is close to the pyruvate. The substrate was rotated by 60° 

6 times to give a full 360° set of substrate starting positions (figure 4.23 

Left). This allows a larger sampling of possible binding events than if one 

simulation was run for six times longer. Data shown in the figure is for 

   

   

Figure 4.22 Representative poses during the preliminary simulations of 

Y252Lni with glucuronolactone. Top Simulations using Y252L-Lni, Bottom using 

Y252D-Lni. Left simulations started with hydroxyls pointed away from Lni and 

Right with hydroxyls pointed towards Lni. Turquoise atoms show the substrate, 

Red atoms are part of the protein, Red ribbons, atoms and turquoise atoms 

were all active and mobile in the simulations, orange ribbons were active but 

not mobile, and grey ribbons were neither active nor mobile. Y137, K165 and 

Y252Lni are shown and labelled. 
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Y252D-Lni, but a similar outcome occurred with both wild-type and Y252L-

Lni.  

 

After energy minimisation, the substrates were still in three or four 

distinct positions (figure 4.23 Right), giving a good indication that there is 

not one lowest energy state for the substrate in the active site. If the 

active site was highly selective for a specific substrate, we could expect 

that there would only be one energy minimum in the active site, and so all 

six starting positions should converge on one position after energy 

minimisation. That there are many energy minima displayed by this 

substrate is unsurprising as this enzyme has not naturally evolved to accept 

it. Each of these simulations was then run for 600 ps according to the 

method given in section 2.5.6.  

It was observed that during the simulations with Y252Lni the substrate 

remained next to the ncAA, even if it made few major contacts. This was 

most likely because the active site is fairly open in the modified enzyme 

(figure 4.11) meaning there are no residues to interact with on the face 

away from 252. Consequently, there will be no attracting force, and the 

    

Figure 4.23 Positions of the substrate in the Y252D-Lni rotation simulations 

before (left) and after (right) energy minimisation. Only the C6 carbonyl group 

and C5 carbon are shown for five of the six substrates before minimisation to 

decrease the complexity of the figure. The C6 carbonyl, C5 and C5 hydroxyl 

are shown after minimisation to give an idea of which direction the ring is 

facing in each position. Turquoise, orange, green, blue, yellow and purple 

atoms show the substrate each from a simulation started with the substrate at 

a different angle. Red atoms are part of the protein, Red ribbons, atoms and 

all substrate atoms were all active and mobile in the simulations, orange 

ribbons were active but not mobile, and grey ribbons were neither active nor 

mobile. K165 and Y252D-Lni are shown and labelled. 
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timescale simulated was not long enough for significant stochastic 

movement away from the weak interacting forces that were made with the 

enzyme. As such, to sample the substrate’s binding potential across the 

whole of the active site, a second set of rotations were performed with the 

substrate on the side of the modified enzyme’s active site, away from the 

residue at 252, energy minimised, and simulated as previously. The wild-

type enzyme has an active site that is more narrow (figure 4.11), and so 

did not require a second set of simulations. 

From visual examination of the behaviour of the substrate during the 

resulting dynamics runs, a number of binding groups, where substrates in 

multiple different runs behaved similarly, could be identified and these 

are described in Figure 4.24.  

In an effort to categorise the simulations in a more systematic manner, a 

number of key distances were extracted from the simulations at 0.5 ps 

intervals for each simulation run. Two sets of distances were recorded. 

Firstly, from the aldehyde carbon to the methyl carbon of the pyruvate, 

and from the aldehyde carbon to the oxygen of the hydroxyl on Y137, to 

Binding 

group 

Defining feature 

Group I Ring hydroxyls bound to the opposite side of the active site 

from the residue at position 252 

I.1 Ring hydroxyls strongly bound to D141 

I.2 Ring hydroxyls strongly bound to E192 

I.3 Substrate bound to both D141 and E192 

Group II Ring hydroxyls bound to the modified residue 

II.1 Ring hydroxyls bound to Y252Lni with an aldehyde – pyruvate 

distance of less than 5 Å 

II.2 Ring hydroxyls bound to Y252Lni with an aldehyde – pyruvate 

distance of more than 5 Å 

Group III Substrate interacts with both the acidic residues from group I 

and the residue at position 252 

Group IV No significant or long lasting interaction 

Figure 4.24 The different groups (in bold) and subgroups of binding that were 

observed, and how these groups and subgroups were defined. 
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give a proxy of catalytic ability, i.e. the smaller both these measurements 

are the more likely it is that a substrate bound in that position would be 

able to react with the pyruvate to give a product (Figure 4.25 A). The 

second set of measurements were all from the oxygen of the C5 hydroxyl 

to; the carbon of the carboxylate of D141; the carbon of the carboxylate of 

E192; and to either the carbon bonded to the hydroxyl in Y252, or the 

carbon of the carboxylate group in lanthionine, depending on which 

enzyme was being measured. The second set of measurements enable 

triangulation of the substrate in the active site (Figure 4.25 B).  

 

When the 10 point running average data for each of these distance 

parameters is examined for each run, significant shifts in some of the 

measured distances can be seen over the lifetime of the simulation. Some 

of these are an apparently random oscillation of the substrate in the active 

site (figure 4.26 A), others are fast switches of binding conformation 

(figure 4.26 B).  The running average data for each distance over each 

molecular dynamics run was examined for any pose that was stable for 

30 ps or longer. As an example, the run shown in figure 4.26 A was not 

included as it never achieved a stable conformation, while the run shown 

in figure 4.26 B was split into 3 separate runs, as explained in the figure 

legend.  

 

Figure 4.25 Schematic diagram showing the purpose of the distance 

measurements taken from the substrate binding simulations. A Side schematic 

of the active site showing how measuring from Y137 and K165 to the substrate 

should give an approximate measure of how far into the active site the 

substrate is. B Schematic view down into the active site showing how 

measuring the sdistance of the substrate from D141, E192 and the amino acid 

at 252 allows triangulation of the substrate in the active site. Amino acids 

where known are shown as their terminal side chain structures, the enzyme is 

represented by black lines to show the pocket of the active site.  
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Each pose was examined using a representative time point and categorised 

according to the groups given in figure 4.24. The raw distance data for 

each of the conformations stable for >30 ps was averaged, and the average 

values were examined using a clustering algorithm (section 2.5.10) and a 

dendrogram was produced to visualise the similarities (figure 4.27). 

 

 

 

Figure 4.26 Ten point running average data for each of the five distances 

measured. A substrate that is not stably bound is shown, (A, L-Lni_2_180deg) 

and below it a substrate displaying significant shifts in conformation can be 

seen (B, D-Lni_2_300deg). Conformation shifts are seen as sharp changes in a 

number of measurements, e.g., at approximately 360 ps D-Lni_2_300deg 

switches from group IV to group II.1 and switches again around 530 ps to group 

III. Substrate aldehyde to pyruvate methyl distance in dark blue, aldehyde to 

Y137 hydroxyl oxygen in light blue, C5 hydroxyl oxygen to D141 carboxylate 

carbon in green, C5 hydroxyl oxygen to E192 carboxylate carbon in red and C5 

hydroxyl oxygen to Y252Lni carboxylate carbon in purple. 
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Figure 4.27 Dendrogram showing the relationship between different poses 

identified from examination of the running average distance data. The lower 

the Height where two groups split, the more closely related they are. Poses 

are labelled as “enzyme_(experiment number_)angle of rotation_start of pose 

(ps)_end of pose (ps)” The enzymes used are wild-type; “4ah7”, Y252L-Lni; 

“llni”, and Y252D-Lni; “dlni.” The experiment numbers in the modified enzyme 

data correspond to; 1, substrate placed next to 252; and 2, substrate placed 

away from 252. Poses are coloured according to group (shown in key). 

Group I.1 

Group I.2 

Group I.3 

Group II.1 

Group II.2 

Group III 

Group IV 
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Grouping in the dendrogram would show that a set of poses are similar, 

and the dendrogram shows the groups assigned using visual identification 

are mostly accurate, but also reveals greater granularity than found during 

visual inspection. It shows a significant separation between the group I 

forms with large enzyme-aldehyde distances at the top of the dendrogram, 

and the group I forms with small enzyme-aldehyde distances, which are 

more similar to group II binding forms and grouped with them towards the 

bottom of the dendrogram. 

This increased the confidence in the groups, but the distance data 

gathered allowed more quantitative analysis to be performed. The number 

of picoseconds each pose was sustained for during analysis was recorded. 

As such, the proportion of time that the substrate spent in each group 

could be calculated and analysed by enzyme (figure 4.28 and figure 4.29).  

In the wild-type enzyme the group that persisted for the longest amount of 

simulation time was group I.2 and it was present for 64% of the time of 

simulation. The wild-type enzyme only displayed one other pose, group I.1, 

which was present for 24% of the simulation time. In all rows of the table, 

percentages do not add up to 100% as there was some time in almost all 

simulations where the substrate was not stably bound. 

In the Lni-containing structures there were a much greater range of groups 

of binding observed. For L-Lni, the group that the substrate was in for the 

longest amount of time was II.2 with 22% of simulation time, and for D-Lni 

it was group IV, also with 22% of simulation time. Substrate was only 

observed binding stably to the residue at 252 when that residue was 

lanthionine, stable binding to the tyrosine residue at 252 in the wild-type 

enzyme was never observed. Subsequently, groups II and III are only 

observed in the modified enzymes. Additionally, group III and IV are only 

observed in Y252D-Lni enzymes. The reasons for this are unclear, as the 

starting position of the side chain is very similar in both D- and L-Lni 

containing enzymes. For group III binding, the presence of this group in 

D-Lni only may be due to the fact that the D-isomer at the backbone points 

the side chain towards the active site more, which allows it to come 

further into the active site and form hydrogen bonds with the substrate, 

even when the substrate is also hydrogen bonded to the other side of the 

active site. Overall, there was a much wider range of groups present in the 

D-Lni simulations than either the L-Lni or the wild-type enzyme, potentially 

due to lower stability of the D-Lni enzyme, which could be expected of an 

enzyme containing a single D-amino acid in the peptide backbone.  
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While this data suggests that Y252D-Lni may be slightly more active than 

the wild-type, for approximately 20% of simulation time for Y252D-Lni, the 

substrate was bound in Group IV, i.e. displaying no significant and stable 

bonds with the active site. This binding group would likely be transient in 

vitro, and the presence of substrate in this group classified as stably bound 

likely represents an artefact in the simulation process. This artefact most 

Group I.1 I.2 I.3 II.1 II.2 III IV Total 

 Wild-type (ps) 867 2318 0 0 0 0 0 3185 

 Wild-type (%) 24.1 64.4 0.0 0.0 0.0 0.0 0.0 88.5 

Y252L-Lni (ps) 0 539 1460 1456 1598 0 0 5053 

Y252L-Lni (%) 0.0 7.5 20.3 20.2 22.2 0.0 0.0 70.2 

Y252D-Lni (ps) 206 1117 1180 971 1000 1070 1555 7099 

Y252D-Lni (%) 2.9 15.5 16.4 13.5 13.9 14.9 21.6 98.60 

Figure 4.28 Table showing the amount of simulation time spent in each group 

by each enzyme, and what percentage of total possible simulation time for 

that enzyme that amount of time corresponds to. Note that percentages do not 

add up to 100 as there was some time during most simulations when the 

substrate was not stably bound. 

 

Figure 4.29 Graphed percentage data from figure 4.28. Percentage of time 

that each enzyme had substrate bound in each group is shown, along with total 

simulation time that each enzyme had substrate stably bound in any group. 

Wild-type enzyme is shown in blue, L-Lni in red and D-Lni in green. 
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likely exists because of the significant difference between the timescale 

being simulated and the timescale over which the reaction takes place. 

The time period of each simulation was 600 ps, and the time that the 

enzymes were observed for in total was 3.6 ns for the wild-type and 7.2 ns 

for each enzyme containing lanthionine. When this is compared to the 

turnover of the wild-type enzyme of 20 s, it is clear that the difference 

between these timescales is vast, approximately 1011-fold. Even if binding 

of substrate, which is what we are simulating, is 1,000-times faster than 

the reaction, there is still a vast difference between simulation time and 

binding time. Therefore, the simulations give us an idea of what poses may 

be favoured by the enzymes, but may not be an accurate measure of the 

proportion of time that the substrate in each enzyme stays in each pose.  

4.3.4 Substrate retention in the active site 

This distinction was investigated by measuring relative strength of each 

binding pose, as stronger poses should last for longer and be less 

susceptible to disrupting influences such as bulk solvent, buffer 

components and trace contaminants. A representative structure of each 

subgroup was taken, and the strength of each binding pose was assessed by 

performing steered dynamics, running a number of different simulations 

during which a force is applied to the substrate in a direction pulling it 

directly out of the active site.  

The force is applied by means of a tether between the substrate and a 

carbon atom that was inserted outside of the active site. The point to 

which the tether was attached on the substrate was the heavy atom in the 

substrate that was closest to the entrance to the active site and also not 

involved in any hydrogen bonding. The carbon atom was inserted in a 

position such that a straight-line force acting to pull the substrate towards 

the carbon atom would pull the substrate out of the active site and would 

not cause the substrate to be pulled into any other atoms. The algorithm 

used to determine the exact force that is applied by the tether varies the 

force by distance and as such all the simulations were started with tethers 

of identical length. However, due to random oscillations in the substrate 

during the simulation, the direct force applied to the molecule will change 

throughout the lifetime of the simulation. The algorithm can be modified 

to either increase or decrease the force that is applied by use of a weight 

constant.  

Each simulation used the force equations found in section 2.5.7 and had a 

weight constant applied of between 0 and 0.3. The weight constant 
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required to pull the substrate out of its binding pose was recorded for each 

group along with the amount of time this took. The substrate was defined 

as out of its binding pose when the only hydrogen bonds remaining were 

those between the ring hydroxyls and the carboxylate group, or when the 

substrate had moved so that it was binding as another group. 

Figure 4.30 shows the maximum weight constant applied to the tether that 

did not disrupt the binding of the substrate, which functions as an 

approximate measure of relative overall binding force. Surprisingly, the 

subgroup that required the least amount of force to disrupt was I.1, while 

group IV, with no significant interactions in the active site, came 

thoroughly in the middle of the poses. The subgroup that required the 

strongest pulling force to extract was III, which was only observed in the 

modified enzyme.  

 

The substrate displayed different behaviours when placed in each of the 

three enzymes. Each enzyme can be assigned two sets of binding groups; 

those in which the substrate was observed in any configuration; and those 

in which the substrate was observed with the aldehyde group in close 

proximity to the key catalytic residues. When the averages of these two 

classifications of binding groups are assessed for each enzyme, it can be 

seen that the both the L- and the D-stereoisomers of the modified amino 

acid display a slightly higher average force to disrupt (figure 4.31).  

 

Figure 4.30 Maximum weight constant applied that did not disrupt the binding 

of each group. Binding groups involving wild-type residues, group I generally 

required a lower force to disrupt than those involving the modified residue, 

groups II and III. 
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Taken together this data suggests that when the substrate binds in the 

groups seen in the wild-type enzyme it is held slightly less tightly and may 

be more easily disrupted than when it is bound in the groups seen in either 

of the modified enzymes. 

4.3.5 Removing the full length product 

Another explanation for increased activity could be due to an increased 

rate of product removal from the active site. If the product moves out of 

the active site faster in the modified enzyme than in the wild type, this 

would open the active site up for substrate binding more rapidly. To assess 

the ability of each enzyme to retain product, the pyruvate was removed 

from each structure to leave the unmodified lysine residue. Each structure 

was energy minimised and 4 products; (R) and (S) stereoisomers at the 

aldol hydroxyl carbon, each with the ring in two orientations; were 

inserted into the active site. Each of these situations was simulated for 

600 ps (see section 2.5.8), and the product remained bound for the 

lifetime of the simulation in every combination of enzyme and product. 

This is mostly due to the strong network of hydrogen bonds holding the 

terminal acid group in place (figure 4.32). 

Figure 4.31 The average maximum weight required to disrupt binding for; 

those groups in which the substrate was observed in any configuration for each 

enzyme (bold colours); and those in which the substrate was observed with 

the aldehyde group in close proximity to the key catalytic residues for each 

enzyme (faded colours). 
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The product was pulled out of the active site in the same way as during 

assessment of the strength of binding poses (section 2.5.9), but the results 

were less than conclusive. During the assessment of strength of binding 

poses, there was a clear time at which substrates were out of pose, i.e. 

when only the ring hydroxyls remained bound, or when the substrate 

changed group. However, when the full length product is pulled out of the 

active site, it is harder to find a clear point at which the product can be 

considered removed from the site. This is because the hydrogen bonds 

between the terminal carboxylate group and the enzyme tend to break 

individually and there no clear transition from in position to out of 

position. This would increase the subjectivity of the data gathered, 

reducing its value to an extent that renders it not informative. 

 

Figure 4.32 Example of the hydrogen bonding network attaching the full 

length product to the active site. This image depicts binding in the wild-type 

enzyme but the hydrogen bonding network was similar in all combinations of 

enzyme and product. Most important are the five hydrogen bonds (yellow 

dashed lines) connecting the carboxylate group on the product and S48, S49 

and K165. The substrate and residues S48, S49, Y137, K165 and Y252 are shown 

and the residues are labelled. 
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4.4 Summary 

The saturation mutagenesis shows that position 252 is important in 

determining the activity of saNAL for the reaction between 

glucuronolactone and pyruvate. A number of the canonical amino acid 

mutants displayed high activity, some even showing activity as high as the 

ncAA-containing enzyme. There was a rough trend in the data for the 

canonical amino acids, in that the variants containing larger amino acids at 

position 252 generally showed a lower activity for glucuronolactone than 

the variants with smaller amino acids at 252. Y252Lni seemed to defy this 

trend by having both a high activity and a high mass side chain at 252. This 

anomalous activity warranted further inspection by X-ray crystallography in 

an attempt to elucidate the method by which this activity enhancement 

was achieved. 

Crystallographic studies showed that the modified amino acid side chain is 

held in position by occupying the hydrophobic pocket that the tyrosine 

occupies in the wild-type enzyme, and is held in shape by interactions 

between atoms on the lanthionine residue itself. Additionally, these 

studies showed that the modified amino acid is present in both L- and 

D-stereoisomers at the protein backbone. This has not been seen previously 

in enzymes modified using the same method as was used here, and as such 

is the first example of a mixed backbone stereochemistry enzyme 

produced using this method. Attempts to soak in both the substrate and 

the substrate analogue were unsuccessful, and as such, observation of the 

binding of the glucuronolactone substrate to the enzyme active site was 

examined using in silico methods. 

From the GRID data examining potential substrate binding (figure 4.19) we 

can see that there is a larger surface area for the substrate to bind in the 

active site of the modified enzyme compared to the wild-type, suggesting 

that the modified enzyme is more likely to bind substrate from bulk 

solvent than the wild-type. When this data is combined with the binding 

strength data, i.e. that the binding poses involving the modified side chain 

are harder to disrupt than the binding poses involving the wild-type 

residues, this suggests that when the lanthionine residue binds substrate, 

the substrate is less likely to be removed from the active site than if it 

bound the wild-type residues. The lanthionine is observed most often 

engaging the ring hydroxyl groups via the carboxylate group on the ncAA. 

The position of the side chain of the ncAA in the active site is stabilised via 

a hydrogen bonding network between the carboxylate group, the amine 
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group on the side chain, the sulphur atom, and the amine group in the 

main chain. This hydrogen bonding network keeps the carboxylate pointing 

towards the centre of the active site and available for productive hydrogen 

bonding. 

While the proportion of time spent in proximity to the catalytic residues 

during simulation suggests that the wild-type enzyme would be more 

catalytic, this is at odds with the assay data, and could be due to the short 

time span of the simulations compared to the enzymatic rate. The full 

length removal data was inconclusive, suggesting either that the modified 

side chain has no effect on the rate of product removal, or it occurs over a 

much longer timespan than that simulated. Overall, it appears that the 

Lni-containing active site is more available for binding of the substrate and 

when the substrate is bound, substrate in poses involving the lanthionine 

residue are held more strongly than substrate interacting only with wild-

type residues. 
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Chapter 5 - Conclusion 

5.1 Summary 

This work described the screening for and discovery of an enzyme 

containing a non-canonical amino acid (ncAA) in the active site of an 

enzyme, Neuraminic acid lyase (NAL). The resulting enzyme catalysed the 

aldol reaction between pyruvate and an aldehyde, glucuronolactone, 

better than the wild-type enzyme for the same reaction. The structure of 

this enzyme was then studied by X-ray crystallography and in silico 

methods in an effort to elucidate the mechanism by which the enzyme 

achieves this rate enhancement. 

First, a long-established assay was assessed for its suitability for use in high 

throughput screen format. The variability of the assay was found to be 

acceptable, and the signal to noise ratio was increased to enable more 

reliable hit identification. For the screen, a diverse set of 15 aldehydes 

were chosen as potential substrates, with members of the selection 

representing different lengths of substrate, different stereochemical 

configurations, and even one cyclic molecule. Six positions in the active 

site were targeted, some of which have been shown in previous work to 

have an effect on the substrate specificity of NAL and some of which have 

not previously been shown to have any influence. The mutated residues 

were positioned around the active site and at different distances from the 

active site lysine so that any resulting ncAAs would be placed in varied 

positions across the active site. Ten thiols were used to create the ncAAs 

on the protein backbone and these were a diverse mixture that would 

produce both ncAAs that were very similar to canonical amino acids, e.g. 

thialysine, and also very dissimilar, e.g. (1-hydroxy-3-hexanyl) cysteine 

and (2-(3,5-dimethyl-4-isoxazolyl)ethyl)cysteine. The thiols also displayed 

a number of functional groups and ranged from hydrophobic 

cyclohexanethiol to zwitterionic and hydrophilic cysteine. These sets of 

variables produced 60 different enzymes to assess for activity, 10 thiols all 

in 6 different positions, and 15 aldehyde substrates to give a total of 900 

different enzyme-aldehyde pairs that were screened for enhanced activity 

over the wild-type enzyme for each aldehyde. 

The most significant hit that was discovered was Y252C mutant modified 

with cysteine as the thiol to produce Y252Lanthionine (Y252Lni), when 
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catalysing the aldol reaction between pyruvate and glucuronolactone. The 

use of this substrate is quite interesting, as NAL has previously been shown 

to accept sugars in their linear conformation, and glucuronolactone is 

cyclic. Y252Lni was found to have an activity approximately 3.5-fold higher 

than that of wild-type at 10 mM glucuronolactone and 100 mM pyruvate. 

Full apparent kinetics for glucuronolactone were performed, but a number 

of factors negatively impacted the data; there was a relatively large 

degree of variability between the repeats, and significant substrate 

inhibition occurred above 12 mM glucuronolactone in both enzymes, both 

of which made the data fitting more complex. Subsequently, the kinetic 

values for both Y252Lni and wild-type for this reaction had large errors. 

Time constraints unfortunately meant that these kinetics could not be 

repeated to gain higher quality data. However, even the low quality data 

still showed that Y252Lni was a better catalyst for the glucuronolactone 

and pyruvate reaction than the wild-type, and as such, the effect that this 

position and the ncAA in particular had on this reaction was examined 

more closely. 

Attempts were made to identify the exact product being made by the 

enzyme, and while these showed that the reaction occurring was most 

likely the reaction that was anticipated, there were a number of different 

molecules present. These could be epimers at the aldol carbon or a 

number of different structural isoforms. 

Saturation mutagenesis at position 252 was performed, and all of the 

variants were tested for activity in the reaction between glucuronolactone 

and pyruvate at a single concentration of each substrate, 10 mM 

glucuronolactone and 100 mM pyruvate. Of the 20 canonical amino acid 

variants, 8 were more active for the reaction than Y252Lni and 17 of the 

19 non-wild-type canonical amino acid variants were more active than the 

wild-type enzyme. When the molecular weights of each of the amino acids 

at 252 were compared to their activity as recorded by the assay it was 

observed that there was a rough negative correlation between amino acid 

side chain size at 252 and activity. This suggests that removal of bulk at 

position 252 allows glucuronolactone to enter the active site more easily. 

The activity of Y252Lni enzyme flouts this trend by having a higher mass 

than any canonical amino acid, while also having a high activity. This 

suggests that the mechanism of activity enhancement used by Y252Lni may 

not be the same as that displayed in the canonical amino acid variants. 
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When the structure of Y252Lni was studied by X-ray crystallography, the 

resulting structure had reasonable resolution, 1.95 Å, and the ncAA side 

chain was found to be well ordered in the active site. There were 12 

monomers in the unit cell, 11 of these had side chain density at position 

252, and the side chain was in a similar position in all 11 of these 

monomers. In addition, the resulting ncAA had both D- and 

L-stereochemistry at the protein backbone in different monomers, in 

approximately 1:1 ratio. Unfortunately, efforts to obtain a crystal with 

either glucuronolactone or a non-catalytic analogue were unsuccessful, so 

substrate binding was examined in silico. These determined that Y252Lni 

had a larger surface area in the active site that was likely to bind the 

substrate compared to the wild-type enzyme, and molecular dynamics 

simulations suggested that when the substrate binds so that interacts with 

the ncAA side chain, it is held in the active site more strongly than when it 

binds and interacts with residues present in the wild-type enzyme. These 

data suggest that increased residence time in the active site of Y252Lni 

leads to the increased rate of catalysis. 

This work therefore represents the creation of not only an ncAA-containing 

enzyme with enhanced activity for a reaction than wild-type, but the 

creation of a functional enzyme with a D-amino acid in the active site, the 

first such creation in the author’s knowledge. The discovery that NAL is 

able to catalyse the reaction between glucuronolactone and pyruvate is 

also novel, and given previous evidence that NAL binds sugars in the open 

chain form and not the ring form (Daniels et al., 2014), represents a new 

class of molecules that NAL may be able to synthesise, as molecules 

derived from glucuronolactone could theoretically form bicyclic structures 

in solution.  
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5.2 Future directions 

This work has opened up a number of avenues of further research which 

would be valuable to investigate further. The previously unrecognised 

potential of NAL as a biocatalyst for the synthesis of bicyclic lactones could 

be further explored. A directed evolution effort, for example error-prone 

PCR or CASTing (Reetz et al., 2006a, Reetz et al., 2006b) could be applied 

to NAL to optimise it for lactone molecules. These mutants could then be 

applied to the synthesis of a diverse library of glucuronolactone 

homologues.  

The potential of ncAAs to create novel biocatalysts has so far been 

underexplored. Applications of ncAAs to enzymes have focused on aspects 

such as improving thermal stability, expanding or changing substrate scope 

and optimising the catalytic properties. While these aims are 

commendable, and showcase the utility of ncAAs in enhancing the 

properties of enzymes, much more ambitious changes could be made to 

enzymes using ncAAs.  

Using an ncAA to insert a metal ion, either through insertion of a metal ion 

binding site or through insertion of a covalently bound metal, could allow 

metal ion-catalysed reactions to be performed on an enzyme scaffold. 

There exists the potential to insert not only iron or zinc ions, which are 

fairly common in enzymes, but also metals such as palladium, used in 

cross-coupling reactions (Seechurn et al., 2012), and titanium, used in α-

olefin polymerisation (Kashiwa, 2004), giving rise to completely novel 

enzymes with catalytic abilities previously unknown in biochemistry. 

Even without the use of metal ions, ncAAs can provide functional groups 

that do not appear in the canonical amino acids. For example, secondary 

amine groups can form a Schiff base in the same way as primary amines, 

such as that found in the active site of NAL. However, when a Schiff base 

forms on a secondary amine, a positively charged nitrogen species occurs, 

called an iminium ion. This iminium ion is an electrophilic species, which 

occurs only rarely in the canonical amino acids. The presence of an 

electrophile in the active site of an enzyme allows it to perform a range of 

reactions that are either rare or unknown in enzymes currently (Erkkilä et 

al., 2007). 
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This functionality is theoretically easy to introduce to NAL via the method 

used in this thesis. In chapter 3, one of the thiols used in the modification 

procedure was aminoethanethiol, creating a thialysine residue, a structural 

homologue of lysine with a sulphur atom at the γ-position on the side 

chain. If this thiol was replaced with N-methyl-aminoethanethiol, this 

would provide a secondary amine in the active site in the same position as 

the primary amine in the wild-type enzyme (figure 5.1). This should allow 

it to undergo the Schiff base reaction with pyruvate, forming an iminium 

ion in the active site. 

 

This thiol, N-methyl-aminoethanethiol, was synthesised during the course 

of the project, but successful protein modification could not be obtained 

when the synthesised thiol was used in the modification reaction. As such, 

the potential of this side chain to perform novel reactions in place of the 

catalytic lysine could not be tested. If the appropriate side chain could be 

inserted into the active site in this position, either using the method shown 

here or an alternative method, the resulting enzyme’s potential catalytic 

abilities would be very interesting.  

  

 

Figure 5.1 Chemical diagram of Lysine forming a Schiff base (above) and 

N-methyl-thialysine forming an iminium ion in the same reaction (below). 
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5.3 Concluding remarks 

The study of biocatalysis is growing fast in the literature, and biocatalysts 

are being much more widely used in industry for the synthesis of bulk and 

fine chemicals and pharmaceuticals. As such, there is an increasing need 

for novel catalysts to supply the demand for green catalysis. Techniques 

like directed evolution and site-directed mutagenesis are powerful tools to 

adapt biocatalytic enzymes for industrial use, but they are limited to using 

the canonical 20 amino acids. Non-canonical amino acids have the 

potential to make up for the lack of side chain diversity seen in the 

canonical amino acids, supplying functional groups or structural 

components that may be lacking.  

Even from a purely research perspective, that D-amino acids can be 

accommodated in some regions of enzyme backbones, and in positions that 

actively function during catalysis is exciting. This effectively doubles the 

amino acids available to experimenters performing ncAA mutagenesis, 

unlocking new avenues of research that have not been fully explored to 

date. Non-canonical amino acids offer an exciting and untapped resource 

in an enzyme engineers’ toolbox, potentially allowing researchers to 

surpass the abilities of enzymes using canonical amino acids, expanding the 

abilities of enzymes further than is possible in Nature. 
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