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ABSTRACT 

 

Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia and 

Stenotrophomonas maltophilia frequently establish chronic lung infections in Cystic 

Fibrosis (CF) patients and engender significant morbidity and, in some cases, death. 

Partially owing to adaptive mechanisms, including the production of biofilms and 

virulence factors, these pathogens have developed resistance to conventional 

antimicrobials. To combat these pathogens, novel interventions are required. This  

pre-clinical study explores three such approaches. 

The first approach investigated a novel carbon monoxide releasing molecule (CORM) 

that had been designed to target the pseudomonal virulence factor, pyocyanin. In vitro 

testing of this drug, termed pyo-CORM, showed non-specific pyocyanin activation and 

reduced bacterial growth and biofilm formation in P. aeruginosa, S. aureus and  

S. maltophilia.  

The second strategy explored the disruptive capacity of sugar fragments (alginate) 

against pseudomonal biofilms. We generated and tested alginate fragments, with 

average degrees of polymerisation within the range of 1-28, against P. aeruginosa PA01 

in vitro. Our study found that the fragments were able to perturb growth and disrupt 

biofilms in PA01 at concentrations exceeding 5 wt% and that smaller fragments were 

more effective at biofilm disruption than larger fragments.  

Lastly, this project explored novel purification strategies for the synthesis of sugar-based 

vaccines using the polysaccharide, and virulence factor, poly-N-acetylglucosamine 

(PNAG) as a reference. With the aim of improving purity and efficiency in sugar synthesis, 

this study investigated a photochemical solid phase cleavage method and a selective 

bead-mediated recovery strategy. These methods, and the design of a continuous UV 

flow reactor, achieved successful photocleavage and selective recovery of a tagged  

N-acetylglucosamine (NAG) building block.  

The results presented in this project highlight the need for ongoing work in these areas. 

With new treatments will come new adaptations and therefore it is likely that a 

combination of novel approaches will be key in combatting CF pathogens in the future.  

 

 



3 

 

LIST OF CONTENTS 

 

Abstract ......................................................................................................... 2 

List of Contents .............................................................................................. 3 

List of Tables .................................................................................................. 8 

List of Figures ................................................................................................ 9 

Acknowledgements ......................................................................................14 

Author’s Declaration .....................................................................................15 

Section 1: Background and Literature Review ................................................16 

1.1. Cystic Fibrosis .......................................................................................... 16 

1.2. Pulmonary Infections and Lung Microbiota .............................................. 17 

1.3. Importance and Pathogenesis of P. aeruginosa in CF ................................ 18 

1.3.1. Biofilms .................................................................................................... 19 

1.4. Treatment of P. aeruginosa in CF ............................................................. 20 

1.4.1. Antibiotic Therapy ................................................................................... 20 

1.4.2. Anti-inflammatory Treatment ................................................................. 21 

1.5. Novel Treatment Strategies ..................................................................... 21 

1.5.1. Ion Channel Modulators ......................................................................... 21 

1.5.2. Novel Antibacterial Compounds ............................................................. 22 

1.5.3. Anti-virulence Strategies ......................................................................... 23 

1.5.4. Vaccination .............................................................................................. 23 

1.6. Project Context and Scope ....................................................................... 24 

Section 2: Targeting P. aeruginosa in CF Pulmonary Infections ......................25 

2.1. Background ............................................................................................. 25 

2.1.1. Carbon Monoxide Therapy ..................................................................... 25 

2.1.2. CO Releasing Molecules .......................................................................... 26 



4 

 

2.1.3. Activation Requirements ........................................................................ 26 

2.1.4. CORMs with Antibacterial Action............................................................ 27 

2.1.5. Towards a Virulence Factor activated CORM ......................................... 28 

2.1.6. Targeting a Bacterial Virulence Factor .................................................... 29 

2.1.7. CORM Activation by Synthetic Pyocyanin ............................................... 29 

2.2. Aims ....................................................................................................... 32 

2.3. Hypothesis .............................................................................................. 32 

2.4. Materials and Methods ........................................................................... 32 

2.3.1. CORM ...................................................................................................... 32 

2.3.2. Strains ..................................................................................................... 32 

2.3.3. pyo-CORM Toxicity Assays ...................................................................... 33 

2.3.4. pyo-CORM Biofilm Assays ....................................................................... 33 

2.3.5. Data Analysis ........................................................................................... 33 

2.5. Results and Discussion ............................................................................. 33 

2.5.1. pyo-CORM and PA01 Assays ................................................................... 33 

2.5.2. pyo-CORM Assays for PA01 and Phenazine Mutant ............................... 35 

2.5.3. pyo-CORM Assays for Ralstonia, Staphylococcus and Stenotrophomonas 

Species 36 

2.6. Conclusions and Future Work .................................................................. 37 

Section 3: Targeting Biofilms in Model CF Infections ......................................39 

3.1. Background ............................................................................................. 39 

3.1.1. Biofilms .................................................................................................... 39 

3.1.2. The Mucoid Form of P. aeruginosa ......................................................... 39 

3.1.3. The Importance of Alginate in P. aeruginosa Pathogenesis ................... 40 

3.1.4. Alginate as a Biofilm Disruptor ............................................................... 40 

3.2. Aims ....................................................................................................... 41 

3.3. Hypothesis .............................................................................................. 41 



5 

 

3.4. Materials and Methods ........................................................................... 41 

3.3.1. Alginate Hydrolysis .................................................................................. 41 

3.3.2. Alginate Viscosity .................................................................................... 41 

3.3.3. Separation of Hydrolysed Alginate ......................................................... 42 

3.3.4. Growth of PA01 in Hydrolysed Alginate ................................................. 42 

3.3.5. Biofilm Assays of PA01 in Hydrolysed Alginate ....................................... 42 

3.3.6. Dosing of PA01 in Hydrolysed Alginate ................................................... 42 

3.3.7. Hydrolysed Alginate and Separated Hydrolysed Alginate PA01 Assays . 42 

3.3.8. Synergistic CORM and Alginate Assays ................................................... 43 

3.3.9. Long Term Exposure to Hydrolysed Alginate .......................................... 43 

3.3.10. Assessing Pyocyanin Levels in Alginate Treated PA01 Cultures.............. 43 

3.5. Results and Discussion ............................................................................. 43 

3.4.1. Hydrolysed Alginate Analysis .................................................................. 43 

3.3.11. Separated and Non-separated Hydrolysed Alginate .............................. 45 

3.3.12. Hydrolysed Alginate Affects Growth and Biofilm Formation .................. 47 

3.3.13. Dosing with Hydrolysed Alginate ............................................................ 49 

3.3.14. Long-term Exposure of PA01 to Hydrolysed Alginate ............................. 49 

3.3.15. Synergistic pyo-CORM and Hydrolysed Alginate Assays ......................... 50 

3.3.16. Hydrolysed Alginate Influences Pyocyanin Production .......................... 52 

3.6. Conclusions and Future Work .................................................................. 53 

Section 4: Optimising Sugar Purification Methods .........................................55 

4.1. Background ............................................................................................. 55 

4.1.1. Towards Bacterial Vaccines ..................................................................... 55 

4.1.2. Making Sugars for Vaccines .................................................................... 56 

4.1.3. Solid Phase Oligosaccharide Synthesis.................................................... 56 

4.1.4. Automated Solid Phase Oligosaccharide Synthesis ................................ 58 

4.1.5. Towards Automated Synthesis of Poly-N-acetylglucosamine ................ 59 



6 

 

4.1.6. Building Block and Protection Strategies ................................................ 59 

4.1.7. Post Synthesis Cleavage and Purification Strategies .............................. 60 

4.1.8. Choice of Linker ....................................................................................... 61 

4.1.9. Photocleavage in a continuous flow UV reactor ..................................... 62 

4.1.10. Purification by Tagging and Capture ....................................................... 62 

4.2. Aims ....................................................................................................... 64 

4.3. Hypothesis .............................................................................................. 65 

4.4. Materials and Methods ........................................................................... 65 

4.4.1. Synthesis of Fmoc Protected 6-aminocaproic acid ................................. 65 

4.4.2. Removal of Fmoc Protecting Group from NAG Building Block ............... 65 

4.4.3. Tagging the NAG Building Block .............................................................. 66 

4.4.4. Functionalised Bead Recovery of the NAG Tagged Building Block ......... 66 

4.4.5. Construction of a UV Flow Reactor for Photocleavage ........................... 69 

4.4.6. Calibration of Pump Flow Rates .............................................................. 72 

4.4.7. Resin Only Photocleavage Test in Established Reactor Set-up ............... 73 

4.5. Results and Discussion ............................................................................. 73 

4.5.1. Building Blocks ........................................................................................ 73 

4.5.2. Bead Recovery of the Tagged Building Block .......................................... 74 

4.5.3. UV Flow Reactor ...................................................................................... 75 

4.5.4. Resin Photocleavage ............................................................................... 79 

4.6. Conclusions and Future Work .................................................................. 81 

Section 5: Project Summary and Future Work ...............................................82 

Appendix ......................................................................................................84 

A1. Details of Referenced Compounds ........................................................... 84 

A2. Details of Referenced Compounds ........................................................... 84 

A3. Sample Calculations................................................................................. 86 

A3.1 Sample calculation for UV flow reactor flow rate at speed 10.0 .................... 86 



7 

 

A4. Enlarged Mass Spectrometry Results ........................................................ 88 

Figure A. 6- Photocleavage of Resin ........................................................................ 94 

Bibliography .................................................................................................95 

 

  



8 

 

LIST OF TABLES 

Section 1 

Table 1. 1 – Mutations in CFTR gene and associated effects. Adapted from Wilschanski  

et al. (1995) and  De Boeck et al. (2014) ................................................................. 16 

Section 2 

N/A 

Section 3 

Table 3. 1 – Viscosity of alginate at different hydrolysis times ...................................... 45 

Section 4 

Table 4. 1 - UV Flow Reactor Specifications obtained for final set-up............................ 77 

 

  



9 

 

LIST OF FIGURES 

Section 1 

N/A 

Section 2 

Figure 2. 1- Chemical structure of pyocyanin (right) and green wound discoloration 

characteristic of  P. aeruginosa infection (left). Adapted from Mutluoglu and Uzun 

(2011). ..................................................................................................................... 29 

Figure 2. 2- Structure of pyo-CORM comprises a manganese central transition metal and 

4 carbonyl groups in a tetraethylammonium salt................................................... 30 

Figure 2. 3- IR spectra of the reaction of 5 mM of pyo-CORM and 2.5 mM of pyocyanin 

over 35 mins. ........................................................................................................... 30 

Figure 2. 4- FTIR spectra of the reaction of 5 mM of pyo-CORM and 2.5 mM of pyocyanin 

over 35 mins. ........................................................................................................... 31 

Figure 2. 4- Growth of PA01 for 24 hours at 37°C in either 10 or 100vol% LB. Bacteria 

were grown in increasing concentrations of pyo-CORM. ....................................... 34 

Figure 2. 5- Biofilm assay for PA01 for 24 hours at 37°C in either 10 or 100 vol% LB. Assays 

shown for bacteria grown in increasing concentrations of pyo-CORM. ................. 34 

Figure 2. 6- Growth of PA01 and the P. aeruginosa phezanine mutant (∆phz) for 24 hours 

at 37°C. Bacteria were grown in 10 vol% LB in concentrations of pyo-CORM ranging 

from 0 to 800 μM. ................................................................................................... 35 

Figure 2. 7- Biofilm assay of PA01 and the P. aeruginosa phezanine mutant (∆phz) grown 

for 24 hours at 37°C. Bacteria were grown in 10 vol% LB in concentrations of pyo-

CORM ranging from 0 to 800 μM. ........................................................................... 35 

Figure 2. 8 - Growth of microbial species for 24 hours at 37°C in 10 vol% LB. Microbial 

species were grown in concentrations of pyo-CORM ranging from 0 to 800 μM. . 36 

Figure 2. 9- Biofilm assay for of microbial species for 24 hours at 37°C in 10 vol% LB. 

Microbial species were grown in concentrations of pyo-CORM ranging from 0 to 800 

μM. .......................................................................................................................... 37 

 

  



10 

 

Section 3 

Figure 3. 1 – CORMs that have shown to exert bactericidal activity against Esherichia coli 

and Staphylococcus aureus. Adapted from Nobre et al. (2007). ............................ 27 

Figure 3. 2 – Image showing non-mucoid (left) and mucoid (right) variants of P. 

aeruginosa grown on a Petri dish. Mucoid variant shows characteristic production 

of the viscous substance alginate.  (Damron and Goldberg, 2012). ....................... 39 

Figure 3. 3 – Chemical structure of an alginate oligomer comprising mannuronate (M) 

and guluronate (G) residues joined by β-1-4 glycosidic linkages. Image shows an 

alginate pentamer with residue sequence MGGMM. ............................................ 40 

Figure 3. 4- Mass spectrometry analysis of the non-separated hydrolysed alginate 

mixture. Results obtained in ESI negative mode. ................................................... 44 

Figure 3. 5- Mass spectrometry analysis of the separated hydrolysed alginate. Results 

obtained in ESI negative mode. .............................................................................. 44 

Figure 3. 6- Growth of PA01 for 24 hours at 37°C in 10 and  50 vol% LB. PA01 was exposed 

to either separated hydrolysed alginate or non-separated hydrolysed alginate. .. 46 

Figure 3. 7- Biofilm assay  of PA01 grown for 24 hours at 37°C in 10 and 50 vol% LB. PA01 

was exposed to either separated hydrolysed alginate or non-separated hydrolysed 

alginate.................................................................................................................... 46 

Figure 3. 8- Growth of PA01 in 10 and 100 vol% LB containing varying concentrations of 

alginate for 24 hours at 28°C. (top left) and for 24 hours at 37°C (top right). Biofilm 

Assays for PA01 in 10 and 100 vol% LB containing varying concentrations of alginate 

for 24 hours at 28°C (bottom left) and for 24 hours at 37°C (bottom right). ......... 48 

Figure 3. 9 – Biofilm Assay for PA01 cultures at 37°C after 1 hour treatment with either 

water or hydrolysed alginate. ................................................................................. 49 

Figure 3. 10 - PA01 growth at 37°C in 50 vol% LB containing either 0, 5 or 10 wt% 

hydrolysed alginate. Measurements taken at 48 and 288 hours. .......................... 50 

Figure 3. 11 - PA01 biofilm assay after growth at 37°C in 50 vol% LB containing either 0, 

5 or 10 wt% hydrolysed alginate. Assays performed at 48 and 288 hours............. 50 

Figure 3. 12 - Growth of PA01 cultures in 10 vol% LB exposed to CORM, hydrolysed 

alginate (with 500 or 1000 μM water treatment), or both.  Assays incubated at 28°C 

for 24 hours. ............................................................................................................ 51 



11 

 

Figure 3. 13 - Biofilm assays for PA01 cultures grown in 10 vol% LB exposed to CORM, 

hydrolysed alginate (with 500 or 1000 μM water treatment), or both.  Assays 

incubated at 28°C for 24 hours. .............................................................................. 51 

Figure 3. 14 - Image of PA01 growth in 100 vol% LB (top row) and PA01 growing in 

100%LB with alginate treatment (bottom row). ..................................................... 52 

Figure 3. 15 - PA01 pyocyanin production and bacterial growth after growth at 37°C in 

either 10 or 100 vol% LB and containing either 0, 2.5, 5 or 10 wt% hydrolysed 

alginate. Pyocyanin levels (assumed proportional to absorbance at 691 nm) 

generated per total bacterial growth. .................................................................... 53 

Section 4 

Figure 4. 1 - Upon activation of X, A β-1-4 Glycosidic linkage is formed between the 

anomeric centre of the glycosyl donor and the hydroxyl group of the glycosyl 

acceptor anchored to the resin. ‘X’ refers to a good leaving group (e.g. I, NHCTA). 

Adapted from (Davis and Fairbanks, 2002)............................................................. 57 

Figure 4. 2 - an α-form and β-form of a glucose Monosaccharide. Adapted from (Davis 

and Fairbanks, 2002). .............................................................................................. 58 

Figure 4. 3 - Monomer of N-acetylglucosamine (NAG). .................................................. 59 

Figure 4. 4 - The N-acetylglucosamine (NAG) building block; NAG with protecting groups.

 ................................................................................................................................ 59 

Figure 4. 5 - Selective Deprotection of Glycosyl acceptor with piperidine. .................... 60 

Figure 4. 6 - Activation of Sulphur ether group on glycosyl donor using NIS/TMSOTf. 

Reactive acycloxonium ion only susceptible to β attack. ....................................... 60 

Figure 4. 7 - Photocleavable O-benzyl Linker attached to Merrifield Resin (Grey Circle). 

Adapted from (Calin et al., 2013a). ......................................................................... 61 

Figure 4. 8 - Photocleavage of the Linker liberates the resin and leaves a functional CBz 

protected amine group attached to the sugar. ...................................................... 62 

Figure 4. 9 - In the synthesis of oligosaccharide chains, the addition of the building block 

to Glycosyl accepto will result in a) desired glycosylation and sugar extension or b) 

unreacted 'deletion sequences'. ............................................................................. 63 



12 

 

Figure 4. 10 - Acetylation of free hydroxyl groups in NAG by acetic anhydride (AcO2) and 

a base yields an acetate group at the C6 position, thereby preventing subsequent 

glycosylation. .......................................................................................................... 63 

Figure 4. 11 - Aminocaproic acid used as a Tag in catch-and-release strategy. ............. 64 

Figure 4. 12 - The tag (Fmoc protected aminocaproic acid) is generated from  6-

aminocaproic acid (adapted from Kröck et al. (2012)). .......................................... 64 

Figure 4. 13 - Polymer bound benzoyl chloride beads used for capturing tag. .............. 66 

Figure 4. 14 – The functionalised benzoyl chloride beads will react with the amine group 

present on the full-length sugars. This reaction generates hydrochloric acid and 

anchors the full-length sugar to the beads. ............................................................ 68 

Figure 4. 15 – Recovery of NAG Building Block from functionalised beads by sodium 

methoxide/methanol mediated cleavage of 6-aminocaproic acid tag. .................. 68 

Figure 4. 16 – Set-up for Continuous Flow UV reactor. .................................................. 69 

Figure 4. 17 – Autodesk Inventor Sketches for 3D Printed Peristaltic Pump  (Diameter 

Arrow 4.7 cm).......................................................................................................... 70 

Figure 4. 18 – Peristaltic Pump and manual control system. Tygon Tubing is Fed into the 

pump from a water reservoir and held in place with two red clips........................ 70 

Figure 4. 19 – Preliminary Set-up with three way PVDF Connection integrated in to FEP 

tubing with Needles. ............................................................................................... 71 

Figure 4. 20 – Re-purposed Äkta mixing chamber used as FEP tubing and Syringe 

connector point. Threaded screw fittings allow for tighter, more secure seal. Note 

small needle insertion at solvent entry point. ........................................................ 72 

Figure 4. 21- Mass Spectra for Fmoc Protected 6-aminocaproic acid tag containing a 

sodium ion adduct  (See Appendix for more detail). .............................................. 73 

Figure 4. 22- MS results after silica column purification of Fmoc removed NAG building 

block containing a sodium ion adduct (See Appendix for more detail). ................. 74 

Figure 4. 23- Fmoc protected 6-aminocaproic acid Tagged NAG building block containing 

a sodium ion adduct (See Appendix for more detail). ............................................ 74 

Figure 4. 24- Mass spectrometry results from Sugar recovered from Carboxylated 

polystyrene beads in Cartridge A (See Appendix for more detail). ........................ 74 



13 

 

Figure 4. 25- Mass spectrometry results from Sugar recovered from Carboxylated 

polystyrene beads in Cartridge B (See Appendix more detail). .............................. 75 

Figure 4. 26- Final UV Flow Reactor set-up. Pump Draws water from reservoir and pumps 

into Intermediate Solvent container. DCM is then withdrawn and pushed through 

into FEP Tubing. Resin is injected as the Injection point and pushed through Reactor 

by Pump Pressure. FEP tubing at Reactor exit is directed into a frit-containing 

cartridge for immediate filtration and separation of cleaved product. ................. 75 

Figure 4. 27- Schematic of Intermediate Reservoir container showing biphasic conditions 

that allow for solvent uptake into FEP tubing. ....................................................... 76 

Figure 4. 28- Intermediate Container Lid showing Syringe Fitting connected to filter-

containing cartridge (Left) or Syringe at the solvent uptake point. ........................ 77 

Figure 4. 29- Flow Rates for Peristaltic Pump settings obtained with DCM. .................. 78 

Figure 4. 30- Graphical representation of the Single-pass Irradiation time ranges that can 

be achieved in a single pass within the achievable pump flow rates. .................... 79 

Figure 4. 31- Mass spectra of Product obtained from Resin-only photocleavage showing 

product present with a sodium ion adduct (See Appendix for more detail) .......... 80 

 

  



14 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my amazing supervisors, Alison Parkin, Ville Friman and Martin 

Fascione, everyone in the Parkin/Fascione lab, Leo Caves and Julie Knox, my fellow 

CIDCATS and my partner Liam for being a fantastic source of support and laughter 

throughout my time in York. I absolutely couldn’t have done this work without you. 

 

  



15 

 

AUTHOR’S DECLARATION 

 

I, Karinna Saxby, declare that this thesis is a presentation of original work and I am the 

sole author. This work has not previously been presented for an award at this, or any 

other, University. All sources are acknowledged as References. 

 

 

 

 

  



16 

 

SECTION 1: BACKGROUND AND LITERATURE REVIEW 

1.1. Cystic Fibrosis 

Cystic Fibrosis (CF) is the most prevalent genetic disease in the Caucasian population with 

a carrier rate of 1 in 25 (Troxler et al., 2012). CF is caused by mutations in the cystic 

fibrosis transmembrane transmembrane-conductance regulator (CTFR) gene which in 

turn leads to functional irregularities in the CFTR protein (Shah et al., 2016). The CFTR 

protein is an ion channel (a transmembrane protein) and is important for solute 

transport and fluid balance across epithelial cells (Hurt and Bilton, 2012, Wood and 

Ramsey, 1996). In particular, this is important for salt and water balance on the surface 

of epithelial cells. CFTR protein dysfunction leads to aberrant fluid transport and 

elevated secretions and levels of mucous in the lungs and other organs (Wood and 

Ramsey, 1996, Shah et al., 1996). This altered epithelial transport causes reduced 

mucociliary clearance that predisposes CF sufferers to chronic respiratory infections 

(Shah et al., 2016, Drevinek and Mahenthiralingam, 2010, Kreindler, 2010).   

In developed countries, the median survival rate has improved from 14 years, in 1969, 

to 40 years in 2010 (Döring et al., 2012). However, despite this increase in life 

expectancy, as CF patients age, their quality of life decreases (De Boeck et al., 2014).   

To date, over 1900 mutations of the CFTR gene have been reported (De Boeck et al., 

2014). Mutations can be grouped into classes based on the structural change to the CFTR 

protein and are outlined in Table 1. 1.  

Table 1. 1 – Mutations in CFTR gene and associated effects. Adapted from Wilschanski et al. (1995) and  

De Boeck et al. (2014)  

Class Description Type Effect on CFTR Mutation Example 

1 Mutations that cause a 

truncated protein  

CFTR protein is non-

functional 

G621T 

2 Aberrantly folded protein is 

targeted for degradation by 

cellular machinery. 

Absence of CFTR 

protein at the apical 

cell membrane 

ΔF508 

3 Full length CFTR protein is 

incorporated into membrane 

but unable to be regulated by 

cyclic adenosine 

monophosphate (cAMP) 

No chloride ions flow 

through CFTR protein 

G551D 
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Class Description Type Effect on CFTR Mutation Example 

4 CFTR protein has reduced 

conductance 

Movement of chloride 

ions through the CFTR 

channel are restricted 

R117H 

5 Reduced levels of CFTR protein 

or only partially matured 

protein  

Less functional 

protein is present at 

the epithelial cell 

membrane. 

3849 + 10KbC>T, 

A455E 

 

The most common mutation is ΔF508 and approximately 50% of all CF patients carry this 

(Mayer, 2016). The ΔF508 causes misfolding of the CFTR protein and, often degradation 

of the misfolded protein (Eckford et al., 2012). The mutation G551D, which leads to  a 

full length CFTR protein but no ion transport, accounts for approximately 4% of all CF 

cases (Heidi, 2012).  

In other mutations, such as R117H, the CFTR protein cannot open as well but still 

maintains some ion transport activity. In this case, full CF disease does not occur. Some 

mutations will cause mucous secretion issues in the pancreas but only mildly impact the 

lungs. This is referred to as atypical CF and can often go undiagnosed for many years 

(Schram, 2012).  

Patients carrying at least one mutation in classes 4 and 5 generally lead to the less severe 

form of the disease compared to patients who are homozygous for classes 1 – 3 

mutations (Castellani et al., 2008).  

1.2. Pulmonary Infections and Lung Microbiota 

Chronic respiratory infection and inflammation in CF patients is the most common cause 

of morbidity and mortality (Zhao et al., 2012). Pulmonary infections in CF patients are 

frequently polymicrobial (Goss and Muhlebach, 2011) with common opportunistic 

pathogens including Pseudomonas aeruginosa, Staphylococcus aureus, 

Stenotrophomonas maltophilia, Haemophilus influenzae and Burkholderia species 

(Drevinek and Mahenthiralingam, 2010, Turner et al., 2015, Heijerman et al., 2009a, Goss 

et al., 2002).  

S. aureus is often the first bacterium to cause infections in CF patients at a younger age 

(Marks, 1990). S. aureus causes progressive lung damage and has been shown to 

facilitate coinfection with P. aeruginosa (Moigne et al., 2016). The lung microbiota 
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changes over the lifespan of CF patients, where approximately 27% of CF patients carry 

P. aeruginosa between 2-5 years and over 80% of patients between 25-34 years 

(Heijerman et al., 2009a). This is partially explained by conventional therapy whereby, 

with repeated exposure, antibiotic use has been shown to reduce bacterial diversity in 

the lungs (Zhao et al., 2012). Older CF patients subsequently have predominantly P. 

aeruginosa in their lung microbiota (Zhao et al., 2012). Currently P. aeruginosa is the 

cause of reduced lung function and death in approximately 95% of patients (Stanton, 

2017).   

As CF patients age, other opportunistic pathogens, such as Burkholderia cepacia and  

S. maltophilia, can also become more prevalent (Horsley et al., 2016, Davies and Rubin, 

2007).  B. cepacia infections are associated with poorer health outcomes and earlier 

mortality rates than non-infected CF patients and S. maltophilia has been broadly 

associated with poor lung function (Chaparro et al., 2001, Davies and Rubin, 2007). 

Unfortunately, in CF patients, pulmonary infections are inevitable, and between 80 to 

95% of CF patients will die from cardiopulmonary failure caused by an infection 

(Schneider et al., 2016).  

1.3. Importance and Pathogenesis of P. aeruginosa in CF 

Over 80% of CF patients are chronically infected with P. aeruginosa (Ratjen et al., 2001). 

P. aeruginosa is a Gram-negative rod-shaped bacterium that is ubiquitous in the 

environment (Hraiech et al., 2015). Typically, if P. aeruginosa is inhaled, innate immune 

responses, such as phagocytosis, can help clear the invader without initiation of the 

inflammatory response (Bhagirath et al., 2016, Davies, 2002). In CF patients however, 

epithelial cells are unable to capture as many P. aeruginosa cells and mucociliary 

clearance is not as effective (Bhagirath et al., 2016, Davies, 2002). Moreover, the airway 

surface liquid and mucous present in CF airways enables bacteria to adhere to airway 

cells and establish chronic infections (Davies, 2002).  

P. aeruginosa has developed resistance to many conventional antibiotics. It is able to this 

by undergoing genetic mutations and, within a bacterial population, the occurrence of 

hypermutable strains that lack effective DNA mismatch repair systems (Heijerman et al., 

2009a). Moreover, P. aeruginosa possesses multiple efflux pumps in its membrane which 

enables efflux of antibiotics from within the bacterial cell (Smith et al., 2006).  
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A broad range of other factors contribute to the persistence of P. aeruginosa in CF 

infections. For example, over the course of a chronic infection, spontaneous mutations 

occur within the P. aeruginosa genome that help it adapt to its environment and persist. 

In a study analysing genetic changes in P. aeruginosa in a CF patient over 8 years, it was 

found that several genes underwent mutations (Smith et al., 2006). Mutations in the 

mutS gene were shown to result in hypermutable strains that can rapidly adapt to 

antibiotic pressure (Smith et al., 2006).  The study also found that some virulence factors 

required for colonisation in acute infections, such as quorum sensing regulators, are not 

expressed in chronic infections (Smith et al., 2006). This is thought to be associated with 

immune evasion, whereby the immune system can recognise the virulence factors used 

in acute infections and kill the bacteria secreting them (Smith et al., 2006). Therefore, 

through continuous genetic changes, P. aeruginosa is able to respond to its changing 

environment and evade the immune response of the host to establish chronic, ongoing 

infections in CF patients.  

1.3.1. Biofilms 

One of the most key mechanisms of pathogenesis for P. aeruginosa is the pathogen’s 

ability to grow in biofilms.  Biofilms are a structured matrix of bacteria, exopolymeric 

substances, protein and DNA (Hoiby et al., 2010). Following initial infection, oxygen in 

the lung mucus is rapidly consumed by bacteria, CF airway cells and immune cells, such 

as neutrophils  (Yoon et al., 2002). This leads to an anaerobic environment, in which P. 

aeruginosa thrives (Yoon et al., 2002). The anaerobic environment supports the 

secretion of biofilm related molecules, such as polysaccharides, from P. aeruginosa and 

this leads to the development of the dense biofilm structure (Yoon et al., 2002). 

The correlation between Pseduomonal biofilm development and persistent infections 

was first noted in CF patients in 1980 (Lam et al., 1980). Biofilm growth of  

P. aeruginosa in CF lungs causes a slower rate of bacterial growth and is associated with 

an increased rate of mutations (Hoiby et al., 2010). In addition, the dense polymeric 

matrix of the biofilm can retard penetration of some antibiotics and thereby prevent the 

antimicrobial agent ‘access’ to the bacterial cells (Zhang and Mah, 2008). This reduces 

antibiotic efficacy as the majority of conventional antibiotics are only effective against 

readily growing, metabolically active, and accessible, bacteria (Lebeaux et al., 2014). For 

instance, the minimum inhibitory concentration of tobramycin against P. aeruginosa is 

50 times higher for biofilms than planktonic cells (Sriramulu, 2013). Moreover, the 
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polymeric matrix reduces influx and movement of antimicrobial peptides produced by 

the innate immune response and correspondingly, P. aeruginosa in biofilms are more 

tolerant to host immune responses than their planktonic counterparts (Lebeaux et al., 

2014, Sriramulu, 2013).  

Together, the increased rate of mutations, impermeable matrix and slower growth rate 

allow for bacterial adaptation, antibiotic tolerance, immune evasion and the 

establishment of chronic infections (Hoiby et al., 2010).  

1.4. Treatment of P. aeruginosa in CF 

1.4.1. Antibiotic Therapy 

To preserve lung function in CF patients with chronic lung infections, antibiotic therapy 

is commonly used (Döring et al., 2012). Antibiotic eradication therapy (AET) is 

predominantly used to target P. aeruginosa and it has been shown that antibiotic 

treatment at early stages of P. aeruginosa colonisation have positive clinical outcomes 

for CF patients (Döring et al., 2012). Strategies for AET of P. aeruginosa include inhalation 

of tobramycin, oral ciprofloxacin and inhalation of colistin (Döring et al., 2012).  

The efficacy of antibiotic treatment depends on a wide range of factors including method 

of administration, duration of treatment, different therapeutic combinations, and, of 

course, bacterial resistance. Subsequently, the success of clearance in CF patients is 

variable, with the mean efficacy rate ranging between 63 to 100% (Döring et al., 2012). 

No standard protocol for AET exists however it has been shown that AET is most effective 

at clearing P. aeruginosa within 12 weeks of initial detection (Döring et al., 2012). This is, 

in part, explained by the pathogenesis of P. aeruginosa as, in the early stages of infection, 

the bacterial population comprises predominantly non-mucoid strains which are more 

susceptible to antibiotics than the alginate producing, mucoid variants (Ratjen et al., 

2001).  

In terms of administration, inhaled tobramycin has been shown to be effective at 

clearing P. aeruginosa but does not reduce lung inflammation (Noah et al., 2010). In 

addition, a trial comparing intravenous administration of antibiotics to inhaled/oral 

antibiotic treatment showed that the inhaled and oral antibiotic treatments were more 

effective at eradication of P. aeruginosa in CF patients (Noah et al., 2010). However, this 

work also demonstrated that the systemic (intravenous) antibiotics were able to reduce 

inflammation more than the inhaled antibiotic treatments (Noah et al., 2010).  
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The efficacy of AET is also dependent on the presence of resistant strains in CF patients. 

To date, P. aeruginosa has developed resistance to most modern day antibiotics 

including carbapenems, fluoroquinolones and aminoglycosides (Fuse et al., 2013). 

Moreover, the process of AET itself will select for more resistant organisms over time 

and subsequently, AET is more effective for younger CF patients than older patients. 

Membrane disruptors, polymyxin B and colistin are often used against multi-drug 

resistant Gram-negative pathogens however reports of Pseduomonal resistance to these 

“last in line” antibiotics are becoming more frequent (Schneider et al., 2016).  

There are side effects from long-term AET for instance, although azithromycin, a 

macrolide antibiotic with anti-inflammatory properties, is useful for eradicating bacteria 

and reducing inflammation, its ability to block autophagy can predispose CF patients to 

other mycobacterial infections (Renna et al., 2011). 

1.4.2. Anti-inflammatory Treatment 

In order to prevent inflammatory-associated lung damage, CF patients are commonly 

treated with anti-inflammatory medication. Anti-inflammatory treatment can include 

steroids such as corticosteroids (Smith et al., 2006). High doses of ibuprofen have also 

shown to slow the progression of lung disease in CF patients (Chmiel and Konstan, 2005).  

In addition, therapeutics that target and neutralise pro-inflammatory cytokines are being 

explored as these can cause significant damage in the airways (Chmiel and Konstan, 

2005). Antibodies that target TNF-alpha and IL-8 are examples of these. Other therapies 

that attempt to limit the damage caused by elevated immune response include 

neutrophil products such as DNase and antioxidants (Chmiel and Konstan, 2005).  

1.5. Novel Treatment Strategies 

1.5.1. Ion Channel Modulators 

Recently, the combination therapy ivacaftor/lumacaftor (brand name Orkambi) has been 

approved for treatment of CF patients. In 2012, ivacaftor was approved for use in CF 

patients with specified mutations – including G551D (Kuk and Taylor-Cousar, 2015). 

Ivacaftor works by restoring CFTR ion channel activity for channels present at the 

epithelial cell surface and thereby enabling chloride transport (Eckford et al., 2012). A 

study on the microbiota changes associated with administration of the drug showed that 

patients treated with ivacaftor had reduced levels of P. aeruginosa and its mucoid 

variants  after one year (Heltshe et al., 2014).  
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Lumacaftor is used to transport defective CFTR protein to the surface and enhances lung 

function by increasing the number and function of CFTR channels at the epithelial cell 

surface (Kuk and Taylor-Cousar, 2015). Clinical studies have found that, when used in 

combination with ivacaftor, there is significant improvement in patients homozygous for 

the ∆F508 mutation (Kuk and Taylor-Cousar, 2015).  

Investigation into other modular therapies for patients with heterozygous mutations for 

F580del and other mutations are currently underway. The possibility of DNA and RNA 

editing is also an option for future therapies (Kuk and Taylor-Cousar, 2015).   

Despite innovative treatments, such as ivacaftor/lumacaftor, the development and 

persistence of lung infections is still a major threat for CF patients. For instance, the  

P. aeruginosa virulence factor Cif has been found to cause degradation of CFTR rescued 

by ivacaftor/lumacaftor (Stanton, 2017). In addition, as these drugs are not currently 

reimbursed in many countries, including Australia and the U.K., treatment cost is a 

significant issue. For instance, in 2016, the annual cost for Orkambi was approximately 

£104,000 per patient (Gulland, 2016). Such prices are therefore limiting the use of ion 

channel modulators in the wider CF population. 

1.5.2. Novel Antibacterial Compounds 

The majority of conventional antibiotics are ineffective at eradicating P. aeruginosa in 

persistent infections, particularly when the organism is found within a mature biofilm. In 

response to this problem, the development of novel antibacterial compounds, that are 

able to disrupt biofilms or target metabolically inactive bacteria (or persisters), has 

become a priority. To this end, there are a number of studies that have evaluated 

compounds that can disrupt pseudomonal biofilms (Alexander et al., 2015, Klare et al., 

2016, Diaz De Rienzo et al., 2016) and recently researchers have developed novel 

peptides that were shown to be toxic against both P. aeruginosa biofilms and persister 

cells in vitro (Bahar, 2015).  

In addition, novel compounds that can specifically target P. aeruginosa are being 

explored. For instance, recently, antimicrobial peptide prodrugs have been developed 

that are specifically activated by proteases that co-localise with P. aeruginosa in the lung 

(Forde et al., 2014). These prodrugs were shown to be toxic against P. aeruginosa in an 

in vitro model and were considered to be, in some ways, more effective than 

conventional antibiotics in that they could more specifically target the bacterium and 
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thereby be less toxic to human cells or protective, non-damaging microflora (Forde et 

al., 2014).  

1.5.3. Anti-virulence Strategies 

There have been several alternative novel methods proposed to combat multi-drug 

resistant P. aeruginosa in CF patients. One strategy is to target and reduce the effects of 

virulence factors in order to make the bacteria more innocuous in chronic infections. For 

instance, targeting a virulence factor that facilitates biofilm production, such as 

molecules involved in quorum sensing (a method of bacterial communication), could 

reduce biofilm formation and thereby potentiate antimicrobial therapy or the patient’s 

immune response (Høiby, 2002, Smith and Iglewski, 2003). 

1.5.4. Vaccination 

Bacterial vaccines have been effective for other important human pathogens including 

Streptoccocus pneumoniae and H. influenzae type B. Moreover, for CF patients 

specifically, these vaccines are currently prescribed and have proven effective in 

preventing invasive infections (Moigne et al., 2016). Given that there are already 

existing, and clinically effective, bacterial vaccines for CF patients, it is unsurprising that 

there is a significant drive to develop a vaccine for P. aeruginosa.  

Efforts to develop an effective vaccine for P. aeruginosa have been ongoing since the 

early seventies when Alexander and Fisher (1970) published results of a trial using a 

vaccine derived from pseudomonal sugars (lipopolysaccharides expressed on the 

bacterium’s surface). Many pseudomonal vaccines developed since have been based on 

other P. aeruginosa virulence factors including outer membrane proteins and other 

secreted sugars (Priebe and Goldberg, 2014). 

Despite numerous distinct pseudomonal vaccines and clinical trials, a recent Cochrane 

Review found that the pseudomonal vaccines were not effective at reducing the risk of 

chronic P. aeruginosa infection (Johansen and Gøtzsche, 2015). In part, this is attributed 

to the diverse virulence factors of the pathogen whereby broad protection against 

different P. aeruginosa strains and subtypes is not consistent (Priebe and Goldberg, 

2014). Further research into developing effective vaccination strategies is therefore 

required and may involve a number of different pathways including specifically tailoring 

vaccines to specific strains in different CF populations, using multiple immunogenic 
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factors or focusing on other important CF pathogens where vaccines may be more 

effective. 

1.6. Project Context and Scope 

As outlined above, there is an urgent requirement for the development of innovative 

strategies to combat chronic pseudomonal infections suffered by CF patients. The 

development of novel antibacterial and/or anti-virulence compounds would augment 

the current arsenal of classical antibiotics at a clinician’s disposal and increase treatment 

options. Conversely, the development of an effective and safe pseudomonal vaccine has 

the potential to prevent the organism from establishing chronic infections altogether. 

This project aims to make contributions on all three of these fronts through: 

i. Performing a pre-clinical evaluation of a novel antibacterial compound that may 

hijack a P. aeruginosa virulence factor; 

ii. Investigating whether sugar molecules can disrupt pseudomonal biofilms and; 

iii. Establishing methods to facilitate the purification of sugars that have the 

potential to act as bacterial vaccines. 
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SECTION 2: TARGETING P. AERUGINOSA IN CF PULMONARY 

INFECTIONS 

2.1. Background 

2.1.1. Carbon Monoxide Therapy 

Lungs of CF patients are chronically inflamed which leads to physiological effects, 

including decline in lung function, tissue destruction and aberrant metabolism 

(Heijerman et al., 2009b). Therefore, in order to preserve lung function, anti-

inflammatory treatment is often concomitantly used with antibiotic therapy (Heijerman 

et al., 2009b). Antibiotics that exert anti-inflammatory effects, such as macrolides, have 

shown to improve lung function in CF patients chronically infected with P. aeruginosa 

(Heijerman et al., 2009b).  

Another molecule shown to exert anti-inflammatory effects is the gas carbon monoxide 

(CO) (Otterbein et al., 2000, Otterbein, 2002). Additionally, CO has been shown to exert 

antimicrobial activity against a wide range of human pathogens including Escherichia coli 

and P. aeruginosa (Desmard et al., 2012, Nobre et al., 2007, Nobre et al., 2009). It is 

thought to mediate this effect by interfering with the bacterial respiratory chain and 

subsequently causing cell death (Desmard et al., 2012).  

Studies performed in vitro have shown that CO can reduce expression of inflammatory 

cytokines, modulate apoptosis and act as an anti-oxidant (Bathoorn et al., 2007, 

Otterbein, 2002). CO immunomodulatory effects can protect rodent lungs from exotoxin 

and asthma and human trials have shown that inhalation of CO gas at low concentrations 

(100-125ppm) can reduce lung inflammation and eosinophils in chronic obstructive 

pulmonary disease (Bathoorn et al., 2007, Otterbein, 2002). Inhalation of low 

concentrations of CO has also been shown to protect against both cellular and tissue 

damage (Mizuguchi et al., 2010)  

Despite these successes, the use of CO gas as a therapeutic agent has been hindered by 

concerns over toxicity, whereby CO can cause death by hypoxemia by binding with great 

affinity to the oxygen-carrying protein hemoglobin (240 times higher affinity than 

oxygen) (Wu and Juurlink, 2014, Ryter and Choi, 2006). Although this asphyxiation can 

occur at high concentrations, CO itself is endogenously expressed in the human body and 

remains an important signaling molecule (Bathoorn et al., 2007, Otterbein, 2002).   
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2.1.2. CO Releasing Molecules 

A recent advance in CO therapeutic delivery has been developed by embedding CO into 

transition metal carbonyls. Binding CO into these ‘carrier metals’, CO can be released in 

a controlled manner in biological systems (Desmard et al., 2009). These compounds are 

referred to as CO releasing molecules (CORMs) and allow for the beneficial effects of CO 

while minimising toxicity (Desmard et al., 2009).   

CORMs may be synthesised with different metal centres whereby the choice of transition 

metal can influence its solubility in water and the CO release kinetics (Desmard et al., 

2012). Due to backbonding, the CO-transition metal bond is highly stable 

(Schatzschneider, 2015).  

2.1.3. Activation Requirements 

The therapeutic potential of CORMs is largely dependent on the controlled release of CO 

and therefore various chemical structures of CORMs have been developed with the aim 

to improve CO release and activity.  CO can be released from the metal carrier in CORMs 

by enzymatic activation, photoactivation or ligand exchange (Schatzschneider, 2015). 

Alternative methods are also being explored such as the magnetic-field activation of 

CORMs that are bound to magnetic nanoparticles (Schatzschneider, 2015).  

The light activated release of CO from the metal carrier occurs when light is absorbed at 

particular wavelengths and causes electronic excitations that, in turn, reduces the metal 

charge density and weakens the CO-metal bond (Schatzschneider, 2015). The CORM 

Mn2(CO10) is one such molecule (Motterlini and Otterbein, 2010). Visible light activated 

CORMs are limited by light penetration through tissues (Schatzschneider, 2015) and 

therefore, are not suitable for intravenous or internal clinical administration.  

Enzymatically activated CORMs release CO in the presence of a specific enzyme. This 

method is beneficial as it is specific and can enable intracellular delivery (Stamellou et 

al., 2014). For instance, enzymes such as esterase and phosphatase can cleave a ester or 

phosphate group, generate an unstable metal centre and ultimately trigger CO release 

(Zobi, 2013). This mechanism of activation is currently limited to a finite group of 

enzymes (Zobi, 2013).  

Other CORMs are able to start releasing CO based on ligand exchange. This can occur in 

particular solvents and therefore, for some CORMs, upon dissolution, they can begin to 

release CO immediately.  This can be a disadvantage for clinical development of CORMs 
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as they do not always express desirable pharmokinetics. Some water soluble CORMS for 

instance, have release rates that range from 1 minute (Ru(CO)3Cl2) to 21 minutes 

([H3BCO2]Na2) (Motterlini and Otterbein, 2010). Moreover, some ruthenium-based 

CORMs (e.g. [RuCl(glycinato)(CO)3) have different kinetics based on their solvent system 

and pH (Schatzschneider, 2015). 

There are a wide range of different activation mechanisms being explored, however the 

need for targeted therapeutic applications is driving demand for CORMs that can be 

activated by specific stimuli (Schatzschneider, 2015).  

2.1.4. CORMs with Antibacterial Action 

Various CORMs, with different metal centres, have shown to exert bactericidal activity 

against both Gram-negative and Gram-positive organisms (Figure 3. 1) (Nobre et al., 

2007).  

 

CORM-1 

 

CORM-2 

 

CORM-3 

 

CORM-4 

Figure 3. 1 – CORMs that have shown to exert bactericidal activity against Esherichia coli and 

Staphylococcus aureus. Adapted from Nobre et al. (2007). 

Specifically, a manganese based CORM (Figure 3. 1, CORM-3) was shown to exert 

antimicrobial activity against a multi-drug resistant strain of Escherichia coli when 

activated by light (Tinajero-Trejo et al., 2016). Addition of the CORM also potentiated 

the antibiotic  doxycycline (Tinajero-Trejo et al., 2016). CORM activation required 30 

minutes of exposure to UV light and its efficacy was shown to be strain specific, whereby 

concentrations of 500 μM were sufficient to inhibit the growth of a pathogenic strain but 
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only slightly inhibited a non-pathogenic strain (Tinajero-Trejo et al., 2016). The study also 

showed that the photo activated CORM was more toxic against E. coli than dissolved CO 

gas and it is suggested that direct CORM delivery into the bacterial cells and 

subsequently higher local CO concentrations could explain this phenomenon (Tinajero-

Trejo et al., 2016). In addition, no accumulation of manganese was found within bacterial 

cells. This infers that it was in fact the intracellular activity of the CO that inhibited the 

growth of the strain and not the metal centre itself. Moreover, in this case, the CORM 

activity was shown to be similar to that of dissolved CO in that the CORM could inhibit 

respiration through binding to intracellular respiratory oxidases (Tinajero-Trejo et al., 

2016).  

A ruthenium-based CORM ([Ru(CO)3Cl2], CORM-1 Figure 3.1) has also been shown to 

inhibit bacterial growth and prevent biofilm maturation in P. aeruginosa (Murray et al., 

2012). However, as noted in the previous section, with a half-life of 1 minute (Motterlini 

and Otterbein, 2010), the pharmokinetics of this ruthenium-based CORM may not be 

viable in a clinical setting. 

2.1.5. Towards a Virulence Factor activated CORM 

Specific CORM activation requirements has limited the use of CORMs in several 

therapeutic settings.  For instance, a CORM that is activated by light may be useful for 

skin treatment, but would be impractical in the lungs. To address this issue, recently the 

Lynam Group at the University of York have been developing a CORM that is activated 

by synthetic pyocyanin.  

Pyocyanin is an important pseudomonal virulence factor in both acute and chronic lung 

infections and is involved in many aspects of pathogenesis including elimination of 

competing microbiota, mucus hypersecretion, reducing mucociliary clearance from the 

lungs and maintaining redox balance in the low oxygen environments present in chronic 

infections (Muller and Merrett, 2014, Miller et al., 2015, Bhargava et al., 2014, Hao et 

al., 2013, Winstanley and Fothergill, 2009). Pyocyanin can also react with 

topoisomerases in eukaryotic cells, facilitates bacterial nutrition (Hassani et al., 2012, 

Muller and Merrett, 2014) and can cause apoptosis of neutrophils which in-turn reduces 

clearance by the immune system (Usher et al., 2002). 

In addition, pyocyanin is a phenazine derived compound with a characteristic blue-green 

colour (Figure 2. 1)  (Cox, 1986).  This colour is commonly seen in skin infections (Figure 
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2. 1)  (Muller and Merrett, 2014, Mutluoglu and Uzun, 2011) and in the sputum of CF 

patients where pyocyanin levels can accumulate to ~100 μM (Lundgren et al., 2013). 

 

 

 

Figure 2. 1- Chemical structure of pyocyanin (right) and green wound discoloration characteristic of  

P. aeruginosa infection (left). Adapted from Mutluoglu and Uzun (2011). 

2.1.6. Targeting a Bacterial Virulence Factor 

Due to the inevitable development of resistance to classical antibacterial agents, an 

alternative strategy of specifically targeting bacterial virulence factors is increasingly 

being investigated. This strategy aims to apply selective pressure to the bacteria in order 

to cause reduced expression of the virulence factor, thereby making the bacteria less 

pathogenic and easier to clear by the immune system (Miller et al., 2015). The activation 

of CORMs by pyocyanin represents a possible application of this idea. As a reduction of 

bacterial toxicity has been observed in P. aeruginosa strains that have reduced 

expression of pyocyanin (Fuse et al., 2013), it is plausible that development of resistance 

to ‘pyocyanin activated CORM’ may effectively attenuate P. aeruginosa virulence. 

2.1.7. CORM Activation by Synthetic Pyocyanin 

As pyocyanin is redox active and structurally similar to other typically strong metal 

binding chelate ligands, there is a strong likelihood that it can effectively displace CO 

from a CORM. To this end, the Lynam Group at the University of York have been working 

on the development of a CORM that can be activated by synthetic pyocyanin. This CORM, 

termed ‘pyo-CORM’, comprises a manganese centre with four carbonyl groups (Figure 2. 

2). This structure ([Mn(CO)4Br]NEt4) is water soluble, and exists in a 

tetraethylammonium salt. 
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Figure 2. 2- Structure of pyo-CORM comprises a manganese central transition metal and 4 carbonyl 

groups in a tetraethylammonium salt. 

The four carbonyl ligands in the pyo-CORM (Figure 2.1) have been verified by infrared 

(IR) analysis (Figure 2.3).  

 

Figure 2. 3- IR spectra of the reaction of 5 mM of pyo-CORM and 2.5 mM of pyocyanin over 35 mins. 

Figure 2.3 shows the four distinct carbonyl bands observed, at 2092, 2015, 1987 and 

1943 cm-1, when pyo-CORM is dissolved in chloroform (A), and two distinct bands, at 

2050 and 1943 cm-1, when the compound is dissolved in water (B). In order to confirm 

there was no rapid CO release in the water solution, the pyo-CORM was dissolved in 

water, immediately dried and redissolved in chloroform. The resulting IR spectrum was 

identical to pyo-CORM dissolved in chloroform (A), indicating that the change in 

absorbance frequencies simply reflects a symmetry rearrangement when the compound 

is dissolved in a different solvent. The water-based spectrum remained stable over short 

periods of time (<30 min), indicating that dissolution in water did not activate immediate 

CO release.  
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The changes in carbonyl bands that result after adding synthetic pyocyanin to an 

aqueous solution of pyo-CORM were then monitored by infrared spectroscopy (Figure 2. 

4).  

 

Figure 2. 4- FTIR spectra of the reaction of 5 mM of pyo-CORM and 2.5 mM of pyocyanin over 35 mins. 

These spectra (Figure 2.4) show that after just 35 min, addition of pyocyanin to the pyo-

CORM has resulted in comprehensive changes in the range 2200-1800 cm-1, the 

characteristic region at which CO stretching frequencies are interrogated (J., 1980). Such 

changes indicate a ligand rearrangement in the complex, and we interpret this as 

suggestive of carbon monoxide release, since earlier work by others has shown that pyo-

CORM degrades via this mechanism (Zhang et al., 2009). This was shown to be a 
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pyocyanin-specific activation mechanism because the Lynam group showed pyocyanin 

analogues do not stimulate changes in the IR bands of pyo-CORM. Further experiments, 

to conclusively link these solution IR spectral changes to the gaseous release of CO, were 

also conducted by Rachel Steen and are reported in her Thesis (Steen, 2017).  

The specific addition of synthetic pyocyanin to the pyo-CORM is therefore predicted to 

engender CO release however, to date, the potential inhibitory effects of this pyo-CORM 

on P. aeruginosa growth in vitro have not been characterised. 

2.2. Aims 

The aim of this piece of work was to assess the efficacy of pyo-CORM against  

P. aeruginosa cultures in vitro and in terms of growth inhibition and biofilm formation. 

In addition, in order to investigate the specificity of the pyo-CORM, non-pyocyanin 

producing P. aeruginosa strains and other microbial species will be tested. 

2.3. Hypothesis 

It is hypothesised that, through CO release, the pyo-CORM will exert effects on bacterial 

growth and biofilm formation. As pyo-CORM has been shown to be specifically activated 

in the presence of synthetic pyocyanin, it is also anticipated that pyo-CORM will only be 

effective against bacteria that express pyocyanin.   

2.4. Materials and Methods 

2.3.1. CORM 

The CORM, pyo-CORM, used throughout experimentation was synthesised by the Lynam 

Group at the University of York Chemistry Department.  

2.3.2. Strains 

The P. aeruginosa laboratory strain PA01 was used as well as a clinical isolate strain 

obtained from Liverpool Hospital. The clinical strain was isolated by Siobhan O’Brien 

from the Brockhurst Group at the University of York Biology Department. The phenazine 

mutant strain was denoted ∆ phz. Other strains used were Staphylococcus aureus 

subspecies aureus, DSM-20231, Stenotrophomonas maltophilia, DSM-50170 and 

Ralstonia solanacearum G1000. 
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2.3.3. pyo-CORM Toxicity Assays 

A final concentration of either 1500 or 800 μM pyo-CORM was made up in both 10 and 

100 vol% LB. Two-fold serial dilutions were then performed in a 96 well plate, down to 

188 μM and 200 μM pyo-CORM respectively. CORM-free control wells containing only 

10 and 100 vol% LB growth media were also used. Each well condition (dilution) was 

replicated five times. The 1500 μM pyo-CORM dilution series were used to evaluate the 

efficacy for PA01 stains while the 800 μM pyo-CORM dilutions were used for testing the 

phenazine mutant strain and other microbial species. To each well, 5 vol% of a 1:10 

diluted bacterial strain was added and the starting point absorbance measured at 600 

nm (i.e. time = 0 hours) using plate reader, and associated software, Tecan Infinity 200 

plate reader. The plates were incubated for 24 hours at 37°C and the absorbance was 

again measured at 600 nm. Where OD is reported, this is the difference between the 

OD600nm at 24 hours and 0 hours.   

2.3.4. pyo-CORM Biofilm Assays 

All biofilm assays were performed by adding crystal violet to wells containing PA01 

cultures to give a final concentration of 10 vol%. After 15 minutes, the plates were rinsed 

in water three times and 210 μL of ethanol was added to each well. The absorbance was 

then measured at 600 nm. 

2.3.5. Data Analysis 

For each data point, there were 5 replicates of any tested condition. For plotting, each 

group of replicates were averaged and the standard deviation calculated for each group. 

The p values were then obtained by performing 2 tailed t tests and assuming equal 

variance.   

2.5. Results and Discussion 

2.5.1. pyo-CORM and PA01 Assays 

pyo-CORM was shown to reduce total bacterial growth in a concentration dependent 

manner (Figure 2. 5). In addition, the growth assays indicate that the effects of  

pyo-CORM were dependent on the bacterial growth conditions, whereby the tested  

pyo-CORM concentrations were much more potent in 10 vol% LB than 100 vol% LB 

(Figure 2. 5).  
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The corresponding biofilm assays show that pyo-CORM is able to exert a significant 

reduction in biofilm formation (Figure 2.5). These results are similar to a previous study 

that trialled a ruthenium based CORM against PA01 in different growth media (Murray 

et al., 2012). Their work showed that in media containing high concentrations of LB, PA01 

growth and biofilm formation were unaffected by the ruthenium based CORM. Our 

results are therefore promising, in particular as the pyo-CORM exerted a notable effect 

on the biofilm formation in both nutrient conditions (Figure 2.5). 

 

Figure 2. 5- Growth of PA01 for 24 hours at 37°C in either 10 or 100vol% LB. Bacteria were grown in 

increasing concentrations of pyo-CORM. 

 

Figure 2. 6- Biofilm assay for PA01 for 24 hours at 37°C in either 10 or 100 vol% LB. Assays shown for 

bacteria grown in increasing concentrations of pyo-CORM. 
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2.5.2. pyo-CORM Assays for PA01 and Phenazine Mutant 

The growth and biofilm density of PA01 and the phenazine mutant ( ∆ phz) in the 

presence of pyo-CORM under varying concentrations is shown in Figure 2.6 and Figure 

2. 8. The total bacterial growth results indicate that pyo-CORM was inhibitory against 

both PA01 and the phenazine mutant strain. This suggests that pyo-CORM is potent 

against P. aeruginosa regardless of the amount of pyocyanin produced and that pyo-

CORM is being activated to release CO by a mechanism other than pyocyanin.  

 

Figure 2. 7- Growth of PA01 and the P. aeruginosa phezanine mutant (∆phz) for 24 hours at 37°C. 

Bacteria were grown in 10 vol% LB in concentrations of pyo-CORM ranging from 0 to 800 𝛍M. 

 

Figure 2. 8- Biofilm assay of PA01 and the P. aeruginosa phezanine mutant (∆phz) grown for 24 hours at 

37°C. Bacteria were grown in 10 vol% LB in concentrations of pyo-CORM ranging from 0 to 800 𝛍M. 
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2.5.3. pyo-CORM Assays for Ralstonia, Staphylococcus and Stenotrophomonas 

Species 

The bacterial growth and biofilm assays for R. solanacearum, S. aureus and S. maltophilia 

exposed to pyo-CORM (Figure 2. 9 and Figure 2. 10) show that pyo-CORM was able to 

reduce total growth and biofilm formation for all tested microbial species. A similar trend 

is observed across all species and shows that as the pyo-CORM concentration increases, 

the total bacterial growth decreases. This trend is similar across the biofilm assays 

however there is more variability in samples tested. At pyo-CORM concentration of 800 

μM, there is a clear disruption in biofilm formation compared to the control (with all p 

values < 0.0001). This supports the finding from the phenazine mutant results and 

indicates that pyocyanin is not required to release CO from the CORM. This further 

supports a body of evidence that CO is an effective, broad-spectrum antimicrobial, 

exerting toxic effects across Gram negative and Gram positive organisms.  

 

Figure 2. 9 - Growth of microbial species for 24 hours at 37°C in 10 vol% LB. Microbial species were 

grown in concentrations of pyo-CORM ranging from 0 to 800 𝛍M. 
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Figure 2. 10- Biofilm assay for of microbial species for 24 hours at 37°C in 10 vol% LB. Microbial species 

were grown in concentrations of pyo-CORM ranging from 0 to 800 𝛍M. 

2.6. Conclusions and Future Work 

It was found that the pyo-CORM was not specifically active against pyocyanin producing 

bacteria and was, in fact, toxic against a wide range of bacteria, including the plant 

pathogen R. solanacearum and important CF pathogens S. aureus and S. maltophilia. At 

concentrations greater than 400 μM, pyo-CORM was found to decrease both bacterial 

growth and biofilm formation for all tested bacteria. However, it was noted that the 

efficacy in growth reduction was dependent on nutrient conditions. In the future, it 

would be beneficial to test the efficacy of the pyo-CORM on multi-drug resistant 

bacteria. 

Further work needs to be done on evaluating the effects of the transition metals used in 

CORMs. To date, most studies have analysed the biological properties of metals through 

metal chlorides (Desmard et al., 2009). For instance, to ensure that the efficacy of the 

CORM was due to the presence of CO only, in the future, bacterial growth experiments 

will need to be performed in tandem with a CO scavenger. If the bactericidal activity is 

reversed in the presence of a CO scavenger we could thus conclude that it is the presence 

of the CO, and not the metal ligands eliciting activity. Moreover, to ensure pyo-CORM 

activity is not related to its decomposition products, we will need to test the effects of 

tetraethyl ammonium bromide on bacterial growth. It will also be important to measure 
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the presence, if any, of manganese within bacterial cells as this will confirm whether or 

not the pyo-CORM is able to be shuttled across the bacterial cell membrane.  

To ensure the safety of pyo-CORM in future work, toxicity in mammalian cells will need 

to be established. For instance, the effects of pyo-CORM in a hemolysis assay will be 

undertaken to ensure safety in pre-clinical evaluation.  

Ultimately, the precise activation mechanism of pyo-CORM remains unknown. More 

chemistry based studies will be required to understand what other ligands or activators 

are facilitating CO release before biological assays are repeated in the future.  
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SECTION 3: TARGETING BIOFILMS IN MODEL CF INFECTIONS 

3.1. Background  

3.1.1. Biofilms 

As discussed in Section 1.3.1, biofilm formation is an essential factor in  P. aeruginosa 

pathogenesis and drastically reduces the efficacy of the immune system in clearing the 

pathogen as well as the majority of conventional antibiotics. Therefore, novel treatment 

options, particularly those that can combat or penetrate biofilms, are required. The 

mucoid phenotype of P. aeruginosa, in particular, is associated with biofilm formation. 

3.1.2. The Mucoid Form of P. aeruginosa 

When P. aeruginosa initially infects the lungs, the bacteria express a non-mucoid 

phenotype (Berry et al., 1989), however, over the course of infection the organism 

undergoes genetic and phenotypic changes that allow chronic infections to be 

established (Troxler et al., 2012). In particular, the change of P. aeruginosa to the mucoid 

phenotype is associated with progression of lung disease in CF patients (Bayer et al., 

1991). The mucoid phenotype is associated with over production of the polysaccharide 

alginate which is visually identifiable in culture (Figure 3. 2).  

 

Figure 3. 2 – Image showing non-mucoid (left) and mucoid (right) variants of P. aeruginosa grown on a 

Petri dish. Mucoid variant shows characteristic production of the viscous substance alginate.  

(Damron and Goldberg, 2012). 

This viscous substance contributes to the high mucous environment already established 

in the lungs of CF patients (Berry et al., 1989). In addition, mucoid variants of P. 

aeruginosa are associated with reduced efficacy in antimicrobial therapy. An experiment 

monitoring mucoid bacteria showed that when the bacteria reverted back to non-
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mucoid forms (e.g. by growing them under aerobic conditions) they became susceptible 

to both immune cells (phagocytes) and antibiotics (Yoon et al., 2002).  

3.1.3. The Importance of Alginate in P. aeruginosa Pathogenesis 

A key characteristic of the mucoid form of P. aeruginosa is the secretion of the 

polysaccharide alginate. Alginate is a naturally occurring linear polysaccharide and 

consists of mannuronate (M) and guluronate (G) residues (Figure 3. 3). 

 

Figure 3. 3 – Chemical structure of an alginate oligomer comprising mannuronate (M) and guluronate (G) 

residues joined by β-1-4 glycosidic linkages. Image shows an alginate pentamer with residue sequence 

MGGMM. 

Alginate has shown to help P. aeruginosa avoid phagocytosis by the immune system 

(Troxler et al., 2012). Further studies on mucoid strains in vitro have suggested that 

antibiotic resistance is proportional to the production of alginate (Schülin, 2002, Shawar 

et al., 1999). This hypothesis is further supported by Alkawash et al. (2006) who showed 

that an alginate lyase could enhance antibiotic efficacy against mucoid P. aeruginosa 

strains.  

The secretion of alginate polysaccharide also helps the bacteria grow in a dense, highly 

organised biofilm structure (Troxler et al., 2012). By forming a thick biofilm structure, the 

mucoid form of P. aeruginosa can reduce penetration and efficacy of antibiotics whereby 

for instance, the antibiotic can interact with and adsorb onto the polymer matrix 

(Lebeaux et al., 2014). Moreover, slow diffusion can expose the bacteria to sub-lethal 

concentrations of the drug and thereby allow for the bacteria to undergo transcriptional 

changes and adaptation (Lebeaux et al., 2014). Recently, a study found that alginate 

production promoted coinfection with S. aureus and resulted in poorer health outcomes 

for CF patients (Limoli et al., 2017). 

3.1.4. Alginate as a Biofilm Disruptor 

Several studies have found that alginate fragments are able to reduce both growth and 

biofilm integrity in P. aeruginosa and bacteria (Edvar Onsoyen, 2008, Roberts et al., 2013, 

Yan et al., 2011, Powell et al., 2014). The exact mode of action is currently unknown, 

however, mechanistic studies have shown that alginates can reduce interactions within 
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the extracellular polymer matrix substances and reduce cross-linking, thereby 

weakening the overall biofilm structure (Roberts et al., 2013).  

3.2. Aims 

The aims of this work were to generate and purify alginate fragments and then assess 

their biofilm disruptive capacity against P. aeruginosa in vitro. In addition, in an attempt 

to increase toxicity against P. aeruginosa, this work has investigated the potential of 

alginate fragments to inhibit growth and ultimately potentiate pyo-CORM efficacy.  

3.3. Hypothesis 

It is hypothesised that alginate fragments will be effective in reducing the bacterial 

growth and biofilm integrity in P. aeruginosa and that this will potentiate the activity of 

pyo-CORM. 

3.4. Materials and Methods 

3.3.1. Alginate Hydrolysis 

Alginate isolated from Laminaria hyperborea was obtained from Sigma Aldrich (product 

18097) with mannuronate:guluronate ratio of 1:1.56 and an average molecular weight 

of 155 kDa. To generate fragments, alginate was dissolved in dH2O to a final 

concentration of 1 wt%. The solution was adjusted to a pH of 5 using 1M HCl and then 

stirred under nitrogen at 95°C for 3 hours. Subsequently, the sample was adjusted to a 

pH of 3 with 1M HCl and stirred under nitrogen at 95°C for 4 hours. Finally, the sample 

was neutralised with 1M NaOH, lyophilised and analysed via liquid chromatography mass 

spectrometry using negative mode ESI.  

3.3.2. Alginate Viscosity 

To assess the change in viscosity with hydrolysis, 10 wt% of alginate (18097) was 

dissolved into dH2O. The solution was adjusted to a pH of 3 using 1M HCl and stirred 

under nitrogen at 95°C. At 2.5, 4.5, 6.5 and 24 hours the samples were tested using a 

Brookfield low-range viscometer.  
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3.3.3. Separation of Hydrolysed Alginate  

To generate smaller alginate fragments, 340 mg of a lyophilised sample was passed 

through a Sephadex LH-20 column§with size exclusion limit 4000-5000 g/mol. Fractions 

were analysed using mass spectrometry in negative mode ESI and those containing the 

desired fragments were pooled and lyophilised.  

3.3.4. Growth of PA01 in Hydrolysed Alginate  

To assess the effects of hydrolysed alginate on growth and biofilm formation in PA01, 

wells were prepared containing 10 wt% alginate in either 10 or 50 vol% LB. Two-fold 

serial dilutions were performed to observe the effects under different alginate 

concentrations. To each well, 5 vol% of 1:10 diluted PA01 was added and the plates were 

incubated for 24 hours. To assess the effects of temperature, this was performed at both 

28 and 37°C. The absorbance was measured at 600 nm before and after incubation. 

Biofilm assays were performed post incubation.  

3.3.5. Biofilm Assays of PA01 in Hydrolysed Alginate  

All biofilm assays were performed by adding crystal violet to wells containing PA01 

cultures to give a final concentration of 10 vol%. After 15 minutes, plates were rinsed in 

water three times and 210 μL of ethanol was added to each well. The absorbance was 

then measured at 600 nm. To compensate for alginate binding of crystal violet, the 

absorbance of media containing 0, 5 or 10 wt% alginate at 600 nm was used to normalise 

data. 

3.3.6. Dosing of PA01 in Hydrolysed Alginate  

To assess the immediate effects of hydrolysed alginate on biofilms, wells containing 5 

vol% of 1:10 diluted PA01 in either 10 or 50 vol% LB were incubated for 24 hours at 37°C. 

After incubation, all supernatant was collected and 200 μL of either 50 vol% LB or water 

was pipetted into each well. The plate was then incubated for 1 hour and a biofilm assay 

performed. 

3.3.7. Hydrolysed Alginate and Separated Hydrolysed Alginate PA01 Assays 

To assess the functionality of different sized fragments, 10 wt% of either hydrolysed or 

separated and hydrolysed alginate was dissolved into 50 vol% LB. To each well, 5 vol% of 

                                                           

§ Sephadex LH-20 obtained from GE Healthcare Life Sciences. 
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1:10 diluted PA01 was added and the starting point absorbance measured at 600 nm. 

The plates were then incubated for 24 hours at 37°C and the absorbance measured at 

600 nm. A biofilm assay was then performed (described in 3.3.5). 

3.3.8. Synergistic CORM and Alginate Assays 

CORM concentrations of 500 and 1000 μM were tested in 50 vol% LB in the presence or 

absence of 5 wt% hydrolysed alginate. Controls containing 5 wt% alginate or water-only 

treatments were used. The starting point absorbance was measured at 600 nm and then 

each well had 5 vol% of 1:10 diluted PA01 added. The plates were incubated for 24 hours 

at 28°C and the absorbance measured at 600 nm. A biofilm assay was then performed 

(described in 3.3.5). 

3.3.9. Long Term Exposure to Hydrolysed Alginate 

To ascertain the effects of long term exposure of hydrolysed alginate on PA01, 5 vol% of 

a 1:10 dilution of PA01 was added into wells containing 0, 5 and 10 wt% alginate in  

50 vol% LB. The absorbance of the plate was then measured at 600 nm before the plate 

was incubated aerobically at 37°C. Transfers and cryopreservation were then performed 

every 48 hours. The absorbance was measured at 600 nm and then 20 μL of each well 

was transferred into a plate containing fresh 0, 5 and 10 wt% alginate in 50 vol% LB 

media. 50 μL from each well was cryopreserved and the remainder was used for biofilm 

assay (described in 3.3.5). 

3.3.10. Assessing Pyocyanin Levels in Alginate Treated PA01 Cultures 

To assess whether there was a correlation between pigment production and alginate 

treatment, PA01 cultures were exposed to 0, 2.5, 5 or 10 wt% of hydrolysed alginate. To 

each well, 5 vol% of 1:10 diluted PA01 was added and the starting point absorbance 

measured at 600 and 691 nm. The plates were then incubated for 24 hours at 37°C and 

the absorbance of the plates measured at 600 and 691 nm. 

3.5. Results and Discussion 

3.4.1. Hydrolysed Alginate Analysis 

The mass spectrometry analysis of the hydrolysed alginate indicates that polymer 

fragmentation was successful (Figure 3. 4)  
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Figure 3. 4- Mass spectrometry analysis of the non-separated hydrolysed alginate mixture. Results 

obtained in ESI negative mode. 

The spectrum shows that the hydrolysed alginate mixture contains fragments ranging 

from degree of polymerisation (DP) 2-18. This is similar to previous characterisation of 

alginate fragments by negative ion ESI mass spectrometry (Lang et al., 2014). However, 

as the mass spectrometry detection limit is 3000 g/mol, it is uncertain whether larger, 

undetectable fragments exist in mixture. The column separation of hydrolysed alginate 

liberated 47.7% of the applied sample. Based on the separation limit of the Sephadex 

LH-20, this implies that at least 47.7% of the hydrolysed alginate contains fragments with 

an average molecular weight (M_w) less than 5000 g/mol. The average degrees of 

polymerisation (DP) for the separated fragments must therefore range between 1-28 

and the mass spectrometry results show us that the dominant fragments range from 

DP4-9, with the dominant peak corresponding to DP4 (721 g/mol) (Figure 3. 5). 

 

Figure 3. 5- Mass spectrometry analysis of the separated hydrolysed alginate. Results obtained in ESI 

negative mode. 

The fragmentation of the alginate polymer mixture was also confirmed by measuring the 

viscosity of the mixture at different hydrolysis times (Table 3. 1). 
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Table 3. 1 – Viscosity of alginate at different hydrolysis times 

Hydrolysis time  

(hours) 

Viscosity 10 wt% alginate 

in dH2O (cP) 

0 42 

2.5 24 

4.5 20 

6.5 17 

24 10 

As shown in Table 3. 1, the viscosity of the alginate-dH2O mixture reduces over time, 

indicating that the average alginate polymer length has decreased with hydrolysis time. 

This is consistent with similar analyses performed on alginate (Masuelli and Illanes, 

2014). 

3.3.11. Separated and Non-separated Hydrolysed Alginate  

Based on the column exclusion limit and the mass spectra analysis (section 3.4.1), we 

can definitively state that the separated alginate fragments contained smaller fragments 

than the hydrolysed mixture. Extending from these findings, the PA01 assays suggest 

that the separated, smaller alginate fragments exerted greater reduction in PA01 growth 

than the non-separated hydrolysed alginate (Figure 3. 6). 
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Figure 3. 6- Growth of PA01 for 24 hours at 37°C in 10 and  50 vol% LB. PA01 was exposed to either 

separated hydrolysed alginate or non-separated hydrolysed alginate. 

The corresponding biofilm assay (Figure 3. 7) however, indicates that the non-separated 

alginate fragments were slightly more effective at reducing biofilm formation than the 

separated fragments. However, the variability in the biofilm assay replicates suggests 

that the smaller fragments and hydrolysed mixture exhibited similar reductive effects in 

this instance. 

 

Figure 3. 7- Biofilm assay  of PA01 grown for 24 hours at 37°C in 10 and 50 vol% LB. PA01 was exposed to 

either separated hydrolysed alginate or non-separated hydrolysed alginate. 
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3.3.12. Hydrolysed Alginate Affects Growth and Biofilm Formation  

Exposure of PA01 to varying levels of hydrolysed alginate showed that, generally, at 

concentrations <5 wt% the bacterial density and biofilm formation exceeds the PA01 

control (Figure 3. 8). However, at hydrolysed alginate concentrations ≥5 wt%, the 

bacterial density and biofilm formation markedly decrease. This trend was consistent 

regardless of whether high or low LB levels were provided for incubation, and 

independent of whether incubation temperatures of 28 or 37°C were used. A similar 

phenomenon has been reported when Porphyromonas gingivalis was treated with 

alginate fragments (containing predominantly guluronic acid) (Roberts et al., 2013). We 

therefore suggest that alginate fragments exert similar effects regardless of the M:G 

ratio. Moreover, the treatment of P. gingivalis with these G rich fragments showed that 

2wt% enhanced growth and biofilm formation while concentrations ≥6wt%, reduced 

growth and biofilm formation, also in-line with our findings (Roberts et al., 2013).  

In addition, from antibiotic studies, it is known that sub-inhibitory concentrations of 

antibiotics can induce expression of stress-activated transcription factors, alter gene 

expression and influence bacterial virulence. (Linares et al., 2006, Mirani and Jamil, 

2011). We propose that such a phenomenon may explains why, in this study and similar 

studies, low concentrations of alginate cause increased growth and biofilm formation 

(Linares et al., 2006, Mirani and Jamil, 2011). Together, these results suggest that, at sub-

lethal concentrations, hydrolysed alginate can facilitate growth and biofilm formation 

and that efficacy of treatment is highly dependent on alginate concentration.  

Another factor which could contribute to the efficacy of alginate at 10 wt% could be its 

viscosity; whereby for instance the viscosity of the alginate treatment could influence 

the overall density in the bacterial culture. Subsequently, if for instance, viscosity was a 

contributing factor to bacterial growth, this could explain why the 5 wt% alginate is less 

efficacious than alginate at 10 wt%. 
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Figure 3. 8- Growth of PA01 in 10 and 100 vol% LB containing varying concentrations of alginate for 24 hours at 28°C. (top left) and for 24 hours at 37°C (top right). Biofilm Assays for PA01 in 10 

and 100 vol% LB containing varying concentrations of alginate for 24 hours at 28°C (bottom left) and for 24 hours at 37°C (bottom right).
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3.3.13. Dosing with Hydrolysed Alginate 

The dosing assays indicate that exposure of PA01 biofilms to hydrolysed alginate has an 

immediate effect on biofilm integrity in 50 vol% LB (Figure 3. 9). The effect for cells 

growing in 10 vol% LB is consistent with previous experiments that showed exposure of 

PA01 to 10 wt% alginate in 10 vol% LB had a relatively minor impact on reducing biofilm 

formation (Figure 3.8). These results lend to the hypothesis that, at higher 

concentrations of hydrolysed alginate, the effects on biofilm disruption can be attributed 

to the nature of the alginate rather than the viscosity itself. Together, these results 

suggest that alginate fragments are able to disrupt established biofilms and reduce the 

formation of biofilms in culture, but their efficacy depends on dosage and media 

conditions.  

 

Figure 3. 9 – Biofilm Assay for PA01 cultures at 37°C after 1 hour treatment with either water or 

hydrolysed alginate. 

3.3.14. Long-term Exposure of PA01 to Hydrolysed Alginate 

The long-term exposure of PA01 to hydrolysed alginate showed that again 5 wt% alginate 

can slightly increase total bacterial growth and this will continue even after 288 hours of 

exposure (Figure 3. 10 and Figure 3. 11). Despite having minimal effects on growth, after 

24 hours, 5 wt% hydrolysed alginate was still effective at reducing biofilm formation 

(Figure 3. 11). In addition, 10 wt% alginate was shown to be increasingly effective after 

288 hours and significantly reduced both bacterial growth and biofilm formation. This 

suggests that appropriate concentrations of hydrolysed alginate have potential to be an 

effective long-term treatment for PA01.  
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Figure 3. 10 - PA01 growth at 37°C in 50 vol% LB containing either 0, 5 or 10 wt% hydrolysed alginate. 

Measurements taken at 48 and 288 hours. 

 

Figure 3. 11 - PA01 biofilm assay after growth at 37°C in 50 vol% LB containing either 0, 5 or 10 wt% 

hydrolysed alginate. Assays performed at 48 and 288 hours. 

3.3.15. Synergistic pyo-CORM and Hydrolysed Alginate Assays 

Having established the impact of just alginate and CORM on PA01 growth, combination 

experiments were conducted to see if alginate enhanced the antimicrobial activity of the 

pyo-CORM. The results from this assay (Figure 3. 12) indicate that the addition of alginate 

renders CORM less effective in reducing bacterial growth. However, the biofilm 
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reduction capacity in the tested combinations appears to have a more pronounced effect 

than CORM alone (Figure 3. 13). The combination of 1000 μ M CORM and 5 wt% 

hydrolysed alginate appears to be the most effective combination, achieving both 

reduced bacterial growth and biofilm formation. Moreover, as the biofilm density is less 

in the combined treatment than for either, CORM or alginate alone, this suggests that 

the treatments may be working synergistically to reduce biofilm integrity. Ultimately, 

however, as the mode of action and CO release mechanism from pyo-CORM is yet to be 

determined, it is difficult to predict how the alginate and the pyo-CORM might interact. 

 

Figure 3. 12 - Growth of PA01 cultures in 10 vol% LB exposed to CORM, hydrolysed alginate (with 500 or 

1000 μM water treatment), or both.  Assays incubated at 28°C for 24 hours. 

 

 

Figure 3. 13 - Biofilm assays for PA01 cultures grown in 10 vol% LB exposed to CORM, hydrolysed 

alginate (with 500 or 1000 μM water treatment), or both.  Assays incubated at 28°C for 24 hours. 
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This is similar to findings proposed by previous studies whereby, in general, low 

molecular weight fragments (average Mw 2600 g/mol and DP13) derived from alginate 

were able to enhance the action of antibiotics against P. aeruginosa through biofilm 

disruption (Powell et al., 2014). However the M:G ratio was shown to have an effect on 

potentiation of antibiotics and the fragments did not always work synergistically with 

antibiotics for all tested combinations (Khan et al., 2012). Moreover, as indicated in this 

study, smaller fragments were shown to be more effective at reducing PA01 growth. Our 

varied results could therefore be explained by a variety of factors including the high 

average molecular weight and fragment sizes within our hydrolysed alginate, the M:G 

ratio or simply, the synergistic combinations tested.  

Another possibility is that the viscosity of alginate itself limited the pyo-CORM 

penetration through to the bacterial cell surface and subsequently reduced the toxicity 

of pyo-CORM against P. aeruginosa.  

3.3.16. Hydrolysed Alginate Influences Pyocyanin Production 

An additional finding of note, was that cultures treated with hydrolysed alginate did not 

exhibit the characteristic blue-green colour generated in non-treated PA01 cultures 

(Figure 3. 14). 

 

Figure 3. 14 - Image of PA01 growth in 100 vol% LB (top row) and PA01 growing in 100%LB with alginate 

treatment (bottom row). 

As aforementioned, this blue-green colour seen in P. aeruginosa cultures is often 

associated with the presence of the virulence factor pyocyanin (Miller et al., 2015). This 

phenomenon was also assessed by measuring pyocyanin through spectroscopy 

recording the absorbance at pyocyanin’s maximum absorbance wavelength, 691 nm 

(Das and Manefield, 2012) (Figure 3. 15). 
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Figure 3. 15 - PA01 pyocyanin production and bacterial growth after growth at 37°C in either 10 or 100 

vol% LB and containing either 0, 2.5, 5 or 10 wt% hydrolysed alginate. Pyocyanin levels (assumed 

proportional to absorbance at 691 nm) generated per total bacterial growth. 

This shows that the pyocyanin levels, or state of oxidation, may be impacted by the 

presence of hydrolysed alginate. This could contribute to the reduced efficacy of pyo-

CORM killing bacteria in the presence of alginate however, as it was shown that the 

action of pyo-CORM was not explicitly activated by pyocyanin (see Section 2), this is 

unlikely to be the case.  

3.6. Conclusions and Future Work 

At sufficient concentrations (10 wt%), hydrolysed alginate was shown to inhibit both 

bacterial growth and biofilm formation. Moreover, through dosing experiments, alginate 

was shown to reduce biofilm integrity in established biofilms. At lower concentrations 

however, alginate was shown to stimulate biofilm formation and growth. This represents 

a potential challenge for working towards clinical use of alginate. However, as 

highlighted in the discussion, this phenomenon has been seen with other antibiotics and 

thus alginate fragments still have potential to be a therapeutic agent. Moreover, the 

scope of this project did not perform testing on alternate antibiotic-alginate 

combinations and therefore this is something that can be explored in the future.   

Combination assays showed that alginate and pyo-CORM worked synergistically in 

reducing bacterial biofilms, yet the combined effect was less clear for total bacterial 
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growth. In an attempt to further explore synergistic effects between pyo-CORM and 

alginate, different alginate and pyo-CORM combinations will be trialed. In particular, it 

is noted that higher levels of alginate for combination experiments need to be tested. 

The putative reduction in pyocyanin production could play an important role in reducing 

part of the morbidity associated with lung infections. To confirm that alginate is able to 

reduce the levels of pyocyanin product, in the future pyocyanin will need to be purified 

from cultures grown in the presence and absence of alginate. The mass spectrometry 

analysis and amounts liberated will serve as a definitive method to establish whether 

alginate is in fact influencing pyocyanin production. Moreover, to explore other specific 

effects on virulence factors, P. aeruginosa, gene expression studies could also be 

performed. 

Future characterisation and purification of the hydrolysed alginate is essential. Although 

we were able to show that smaller fragments were more effective at reducing bacterial 

growth than larger fragments, a direct understanding of the exact fraction composition 

and M:G content will help to inform which fragments are the most successful at reducing 

bacterial growth and biofilm formation. Another important experiment to inform these 

studies will be testing the effects of viscosity on bacterial growth. This could be achieved 

for instance through the use of polyethylene glycol (PEG) and would enable us to confirm 

the efficacy of hydrolysed alginate at higher concentrations.  

Overall these preliminary studies have found that hydrolysed alginate was efficacious in 

disrupting biofilms against P. aeruginosa. There is significant work to be done in this 

space to ensure appropriate concentrations, drug combinations and application method. 
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SECTION 4: OPTIMISING SUGAR PURIFICATION METHODS  

4.1. Background 

4.1.1. Towards Bacterial Vaccines 

Many bacterial pathogens that cause chronic lung infections in CF patients have 

developed resistance to multiple conventional therapies. Multi-drug resistant pathogens 

such as P. aeruginosa, S. aureus and B. cepacia can cause fatal infections (Moigne et al., 

2016, Heijerman et al., 2009a). As mentioned in the introduction, there is an ongoing 

discussion on the use of vaccines to prevent these bacterial infections in CF patients. This 

approach is additionally viable, as it would minimise the impact on protective microflora 

in the lungs.  

A common approach to vaccine development is through targeting a specific pathogen 

characteristic or a virulence factor. Moreover, carbohydrate based vaccines have proven 

effective preventative strategies for preventing bacterial infections. For instance, the 

S. pneumoniae vaccine is comprised of a polysaccharide that mimics the capsule 

expressed on the bacterium’s surface (Jennings, 1990). There are currently no vaccines 

available for P. aeruginosa, S.aureus or B. cepacia however several studies are underway 

and seeking to exploit specific characteristics of these pathogens.  

Prominent vaccine targets for P. aeruginosa include lipopolysaccharide (LPS), flagella and 

secreted substances. A recent pre-clinical study has evaluated the use of a vaccine 

comprising Pseduomonal alginate conjugated to carrier protein. The vaccine (Farjah et 

al., 2015) vaccine was shown to offer protective immunity and eliminate P. aeruginosa 

in subsequently infected mice. 

Another promising vaccine target is the polysaccharide Poly-N-Acetylglucosamine 

(PNAG). PNAG is expressed by many important CF pathogens, including S. aureus and  

B. cepacia, and plays key roles in colonisation, biofilm formation, antibiotic resistance 

and immune evasion (Lin et al., 2015, Izano et al., 2008, Chen et al., 2014, Yakandawala 

et al., 2011, Gening et al., 2010).  

Recently, it was demonstrated that  when mice were exposed to PNAG fragments 

conjugated to carrier proteins, the mice produced PNAG-specific antibodies that 

mediated protection to S. aureus (Gening et al., 2010). The authors did however note 
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that, in order to maximise antibody production in the future, the specific number of  

N-acetylglucosamine (NAG) monomers would need to be standardised and optimised. 

4.1.2. Making Sugars for Vaccines 

The manufacturing of well-defined sugars in sufficient quantities is essential for the 

successful design of sugar-based vaccines. Despite their abundance in the environment, 

the purification of carbohydrates from natural sources is often difficult as they exist in 

low concentrations or are structurally variable (Plante et al., 2001). Moreover, the 

complex nature of long chains of oligosaccharides makes synthesis and isolation of such 

compounds extremely difficult (Calin et al., 2013a, Gad, 2007, Seeberger and Haase, 

2000). In addition, the purification of specific sugars from bacterial cultures requires 

huge amounts of culture and many purification steps. For instance, in the alginate 

vaccine study, alginate purification from P. aeruginosa required 4 litres of bacterial 

culture, more than 120 hours of growth and significant purification and obtained less 

than 20 g of product (Theilacker et al., 2003). 

Therefore, in order to obtain sufficient and well-defined quantities, access to 

oligosaccharides typically relies heavily on chemical or enzymatic synthesis (Gad, 2007, 

Nilsson, 1988). However, as biological synthesis requires specific enzyme isolation and 

characterisation and often necessitates specific co-factors (Seeberger et al., 2009) 

chemical synthesis of sugars are generally favoured.  

4.1.3. Solid Phase Oligosaccharide Synthesis 

Chemical synthesis of oligosaccharides is currently achieved by linking a sugar monomer 

to a solid support, or resin (Seeberger and Haase, 2000). Two types of support can be 

used to facilitate glycosylation. These are classified as solid phase, if the support is 

insoluble, or soluble phase, if the support is soluble (Fraser-Reid et al., 2012).  

Due to solubility and molecular motion, in soluble phase support, the diffusivity of the 

resin throughout a mixture exceeds that of solid phase (Fraser-Reid et al., 2012). 

Although this diffusion enhances reactivity, the soluble phase method requires 

precipitation of the resin after each glycosylation step and this can result in a significant 

loss of yield (Fraser-Reid et al., 2012, Seeberger and Haase, 2000). Conversely, solid 

phase synthesis allows for the use of excess reagents that can be efficiently removed by 

filtration after each glycosylation step (Collot et al., 2013, Plante et al., 2001). Upon 

completion of the synthesis, the full-length oligosaccharide chain is recovered by 
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cleavage from the support. The other, distinct advantage of solid support synthesis is 

that the entire process can be automated (Fraser-Reid et al., 2012).  

To achieve a glycosidic linkage, or perform a glycosylation, an excess of a reactive 

glycosyl donor is added to a resin-bound monomer, the glycosyl acceptor (Figure 4. 1). 

 

 

Figure 4. 1 - Upon activation of X, A 𝛃-1-4 Glycosidic linkage is formed between the anomeric centre of 

the glycosyl donor and the hydroxyl group of the glycosyl acceptor anchored to the resin. ‘X’ refers to a 

good leaving group (e.g. I, NHCTA). Adapted from (Davis and Fairbanks, 2002). 

Contrary to the simplification depicted in Figure 4. 1, a monosaccharide contains many 

reactive functional groups that are capable of forming glycosidic linkages or other 

undesired side products. Monosaccharides can also exist in different orientations 

whereby the C1 functional group can point in an equatorial orientation, a beta 

conformation, or axially, an alpha conformation (Figure 4. 2) (Davis and Fairbanks, 2002). 

The conformer that is formed in a glycosylation is controlled invariably by a combination 

of steric and electronegative effects, including the often dominant anomeric effect 

(Davis and Fairbanks, 2002). 
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Figure 4. 2 - an 𝛂-form and 𝛃-form of a glucose Monosaccharide. Adapted from (Davis and Fairbanks, 

2002). 

Therefore, in order to form the desired linkage (regioselectivity) and orientation 

(stereoselectivity), appropriate protecting groups must be used and removed 

orthogonally throughout synthesis and purification (Guo and Ye, 2010). This complexity 

therefore commends the use of solid phase synthesis and highlights the significance of 

automation.  

4.1.4. Automated Solid Phase Oligosaccharide Synthesis 

Despite the advancement in solid phase synthesis, obtaining the desired regioselectivity 

and stereochemistry of functional groups in glycosylations requires many complex and 

time-consuming manipulations (Seeberger and Haase, 2000, Plante et al., 2001). The 

synthesis of long polysaccharides is further complicated by their changing solubility and 

the uncontrolled generation of unreacted short-chain sugars (Weaver et al., 2013). These 

factors dramatically complicate purification and subsequently it can take many months 

to generate small amounts of oligosaccharides. For instance, a recently synthesised 

pentasaccharide obtained in 25% yield over 7 steps was commended in the field (Weaver 

et al., 2013). The complexity of synthesis is compounded by the fact that, until recently, 

synthesis of sugars exceeding 20mers was extremely rare (Seeberger, 2004).  

To facilitate access to such long sugars, Seeberger and colleagues enhanced the process 

of solid phase synthesis by developing a fully automated oligosaccharide synthesiser—

the GlyconeerTM (Plante et al., 2001). The GlyconeerTM has already revolutionised the 

field of glycobiology by facilitating the synthesis of complex sugars with difficult 

glycosidic linkages and, most notably, by synthesising a 30mer polysaccharide chain— 

the longest chemically synthesised oligosaccharide to date (Calin et al., 2013b, Eller et 

al., 2013).   

Moreover, the automated synthesis process has drastically reduced the time required to 

perform standard glycosylations and purify products, for instance, synthesis of a 
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hexasaccharide is now achievable within 16 hours (Kandasamy et al., 2013). The 

GlyconeerTM therefore provides the platform for synthesis of a vast array of biologically 

relevant polysaccharides.  

4.1.5. Towards Automated Synthesis of Poly-N-acetylglucosamine 

The ability to quickly synthesise pure and well-defined structures of PNAG will be an 

important tool for vaccine development against S. aureus and B. cepacia. As there are 

few methods currently available for efficient synthesis of PNAG (Weaver et al., 2013), 

the GlyconeerTM is expected to be an effective tool for PNAG production. The 

GlyconeerTM will therefore initially be programmed and optimised with NAG as a 

reference point.   

4.1.6. Building Block and Protection Strategies 

In order to synthesise PNAG using the GlyconeerTM, a NAG building block will be created 

from an NAG monosaccharide  (Figure 4. 3). 

 

Figure 4. 3 - Monomer of N-acetylglucosamine (NAG). 

PNAG formed in S. aureus bacterial biofilms contain β-1-6-NAG glycosidic linkages (Kröck 

et al., 2012). Therefore, in order to generate the correct glycosidic linkages during 

synthesis, the functional groups will need to be protected by 'permanent' and 

‘temporary’ protecting groups (Figure 4. 4). 

 

 

Figure 4. 4 - The N-acetylglucosamine (NAG) building block; NAG with protecting groups. 

The C3 and C4 groups are protected with permanent benzyl (Bn) protecting groups that 

are only removed after completion of the full synthesis. The Bn groups are resistant to 

the acidic and basic conditions used throughout synthesis and are removed using 
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hydrogenolysis (Plante et al., 2000). In order to incorporate building blocks correctly, a 

'temporary' protecting group is used at the C6 position. The temporary group, fluorenyl-

methyloxycarbonyl chloride (Fmoc) group is readily cleaved under basic conditions and 

thus allows for selective deprotection of the glycosyl acceptor prior to glycosylation 

(Figure 4. 5).  

 

Figure 4. 5 - Selective Deprotection of Glycosyl acceptor with piperidine. 

To facilitate glycosylation at the C1 position, a sulphur ethyl group (SEt) is incorporated. 

The SEt thioglycoside can be selectively activated by  

N-iodosuccinimide/ trimethylsilyl trifluoromethanesulfonate (NIS/TMSOTf), with 

assistance from the trichloroacetimidate (NHTCA), to generate a reactive acycloxonium 

ion (Figure 4. 6). Through steric interaction, NHCTA additionally promotes the formation 

of β-linkage in the growing oligosaccharide chain (Zhu and Schmidt, 2009, Guo and Ye, 

2010). 

 

Figure 4. 6 - Activation of Sulphur ether group on glycosyl donor using NIS/TMSOTf. Reactive 

acycloxonium ion only susceptible to 𝛃 attack. 

Upon completion of synthesis, the NHTCA can be removed by hydrogenolysis. This 

strategy of acceptor deprotection and donor activation thereby allows for selective 

addition of the building block to the growing oligosaccharide chain (Kröck et al., 2012).  

4.1.7. Post Synthesis Cleavage and Purification Strategies 

Upon completion of the synthesis, the full-length oligosaccharide chain is recovered 

from non-desired side products and cleaved from the resin. The protecting groups are 

then removed to liberate the complete sugar.  In an attempt to maximise yield and purity 

of the products generated in solid phase synthesis, various strategies for sequestration 

and purification have been used. The design of optimised cleavage and purification 

strategies will be essential in establishing the GlyconeerTM as a functional tool in 

glycobiology. Placing an emphasis on yield, ease of purification and efficiency, we have 
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opted for a continuous flow UV reactor for photocleavage of the resin and a capture-

and-release strategy to separate the desired full-length product from deletion 

sequences.  These strategies will be discussed in detail in the following sections.  

4.1.8. Choice of Linker 

Upon completion The choice of linker joining the first building block to the resin is highly 

important in synthesis (Seeberger and Haase, 2000). As the linker serves as a protecting 

group and facilitates correct coupling, it needs to be stable enough to withstand all of 

the reaction conditions throughout synthesis (Seeberger and Haase, 2000). In previous 

synthetic strategies, an ester linkage has been used to join the linker to the solid phase 

resin.  Following synthesis, the linker must be cleaved to liberate the sugar. This can be 

achieved with NaOH or NaOMe/MeOH. However, the stability of the ester linkage during 

glycosylation reactions is problematic, often leading to reduced yields and over-long 

reaction times. Therefore, to overcome this issue, in this project, a photocleavable linker 

will be explored. This will allow for linker cleavage without the need for any reagents or 

catalysts and prevent inadvertent cleavage during synthesis (Hook et al., 2005). The 

photocleavable linker (Figure 4. 7) we will use is an O-nitrobenzyl type linker modified 

from Merrifield resin.* 

 

Figure 4. 7 - Photocleavable O-benzyl Linker attached to Merrifield Resin (Grey Circle). Adapted from 

(Calin et al., 2013a). 

The benzyl amine bond in this linker is very susceptible to photocleavage and therefore 

cleavage will generate a CBz protected amine which can be directly used for further 

glycan array studies, or similar (Eller et al., 2013) (Figure 4. 8). 

                                                           

* Synthesised at the Fascione Group within the University of York Chemistry Department with 

adaption from Callin et al. (2013) 
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Figure 4. 8 - Photocleavage of the Linker liberates the resin and leaves a functional CBz protected amine 

group attached to the sugar. 

Therefore, by simply exposing the product to UV light, the final product can be liberated 

from the resin. The development of an efficient photocleavage process is therefore 

essential in purifying the GlyconeerTM product. 

4.1.9. Photocleavage in a continuous flow UV reactor 

In photochemical processes, the majority of the photocleavage tends to occur within a 

short distance from the UV lamp. Therefore, in the past, batch scale photochemical 

reactions have been limited by lamp size (Hook et al., 2005). Moreover, batch scale 

reactions can give less sufficient photocleavage due to light scattering and reduced 

sample penetration; i.e. the light may not efficiently penetrate the resin in the centre of 

the container (Eller et al., 2013).  Therefore, in order to obtain an effective single-pass 

treatment, permit controlled irradiation times and obtain a high surface area per unit 

volume of UV light exposure, a continuous UV flow reactor set-up will be developed 

(Hook et al., 2005). This will allow for irradiation time to be controlled by flow rate and 

enable efficient treatment of the variable volumes generated in the GlyconeerTM 

product.   

4.1.10. Purification by Tagging and Capture  

After resin cleavage, the purification of the desired polysaccharide product can be a 

challenging process. This additionally needs to be a selective process, as, upon addition 

of our building block to the resin-conjugated sugar (Figure 4. 9), there are two outcomes: 

the building block can completely react with the hydroxyl group to form a glycosidic 

linkage (Figure 4. 9a) or the glycosyl acceptor does not completely react affording a 

mixture of monosaccharide and disaccharide (Figure 4. 9b). 
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a) Disaccharide, growing chain  

 

Or 

b) Monosaccharide, unreacted starting material 

 

Figure 4. 9 - In the synthesis of oligosaccharide chains, the addition of the building block to Glycosyl 

accepto will result in a) desired glycosylation and sugar extension or b) unreacted 'deletion sequences'. 

Therefore to ensure that only the full-length sugar is collected at the end of the synthesis, 

following each coupling step, unreacted hydroxyl groups are ‘capped’ through 

acetylation to form stable esters (Davis and Fairbanks, 2002). Acetylation of the free 

hydroxyl groups occurs through addition of acetic anhyride and a base, such as pyridine 

(Davis and Fairbanks, 2002) (Figure 4. 10).  

 

Figure 4. 10 - Acetylation of free hydroxyl groups in NAG by acetic anhydride (AcO2) and a base yields an 

acetate group at the C6 position, thereby preventing subsequent glycosylation. 

As a result of the multiple glycosylation and acetylation steps involved in long chain 

oligosaccharide synthesis, at the end of the run, several non-reacted and acetylated by-

products may remain.  
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Previous purification and selection of the 30mer over undesired by-products, has been 

achieved via a ‘catch-and-release’ strategy (Calin et al., 2013b). This strategy involved 

tagging their final monomer building block with 6-aminocaproic acid (Figure 4. 11) so 

that it could be selectively immobilised (Calin et al., 2013a). 

 

Figure 4. 11 - Aminocaproic acid used as a Tag in catch-and-release strategy. 

The tagged building block was used for the final glycosylation step; ensuring that only 

wholly reacted full-length sugars were tagged. The amine group on the  

6-aminocaproic acid tag was then captured on carboxylated magnetic beads by forming 

an amide linkage. As the deletion sequences have all been capped, this ensures that only 

the full-length tagged oligosaccharide were recovered, or ‘caught’ on the beads (Kröck 

et al., 2012). After removing the deletion-sequences by magnet-assisted decanting, the 

full-length sugar was ‘released’ from the beads (Calin et al., 2013b).  

In order to employ a similar catch-and-release strategy in our purification, the final 

glycosyl donor (a NAG building block) will be tagged with Fmoc protected  

6-aminocaproic acid (Figure 4. 12).  

 

Figure 4. 12 - The tag (Fmoc protected aminocaproic acid) is generated from  

6-aminocaproic acid (adapted from Kröck et al. (2012)). 

This tag will then be selectively recovered through the use of beads that are capable of 

selectively binding to 6-aminocaproic acid. However, given the expense and volumes of 

magnetic beads required for sufficient capture, a functionalised and filterable resin will 

be trialled instead (Kaldor et al., 1996).  

4.2. Aims 

This work will aim to optimise the post synthetic operations involved in the automated 

synthesis of sugars, utilising PNAG as an example. Within this context, the objectives are: 

to construct and validate the use of a continuous UV flow reactor for resin 

photocleavage; to generate an Fmoc tagged building block and; to utilise a functionalised 

and filterable resin to capture this tagged sugar. 
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4.3. Hypothesis 

It is hypothesised that, if successfully constructed, the UV flow reactor will allow for 

successful, and continuous, cleavage of sugars from the support resin. It is also 

hypothesised that, post cleavage, the full length sugar will be able to be recovered using 

the benzoyl chloride beads. 

4.4. Materials and Methods 

4.4.1. Synthesis of Fmoc Protected 6-aminocaproic acid 

To synthesise the Fmoc protected aminocaproic acid, 7.7 mmol of 6-aminocaproic acid, 

7.7 mmol of FmocOsuc and 10.7mmol of NaHCO3 were added to a round-bottomed flask. 

50 mL of a 1:1 v/v water: acetone mixture was then added and the solution was mixed 

with a stirrer bead for 6 hours at room temperature. The extent of reaction was 

monitored by using TLC in 1:1 hexane: ethyl acetate. The mixture was then left to stir 

overnight. The mixture was then cooled to 0°C using dry ice before being quenched with 

1 M HCl. The Fmoc protected aminocaproic acid was then extracted using three washes 

of ethyl acetate. The organic layer was collected, dried over NaSO4, filtered and 

concentrated in vacuo to give the final product.   

4.4.2. Removal of Fmoc Protecting Group from NAG Building Block  

In a 50 mL round-bottomed flask, 3.3 mmol of the NAG building block was dissolved in 

10 mL of 20% (v/v) piperidine in DMF. Approximately 2 mL of DCM was then added to 

facilitate solubilisation. This reaction was monitored with TLC (1:1 hexane: ethyl acetate) 

until deemed completed. The reaction was quenched at 0°C with 1 M HCl. The mixture 

was then transferred to a separating funnel and was extracted with ethyl acetate. The 

organic layer was collected, dried over NaSO4 and then concentrated in vacuo. The 

residue was then dissolved in ethanol and refrigerated overnight to facilitate 

crystallisation.  

The crystallised product and ethanol mixture was then filtered and deemed to be still 

impure. The dissolved product was therefore purified by flash silica column 

chromatography using gradient eluates of 5:1 to 3:2 hexane: ethyl acetate.  Fraction 

pooling and concentration in vacuo then afforded the white solid product. 
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4.4.3. Tagging the NAG Building Block  

To couple the 6-aminocaproic acid tag on to our NAG building block, the Steglich reaction 

was used (Neises and Steglich, 1978). In this reaction, the carboxylic acid on the tag will 

react with the C6 hydroxyl group of the Fmoc deprotected NAG building block to form 

an ester. In a round-bottomed flask, 2.4 mmol of deprotected NAG was dissolved in 15 

mL of DCM. To the dissolved sugar, 7.1 mmol of the tag, 10mL of pyridine and 0.71 mmol 

of 4-dimethylaminopyridine were then added and mixed. The round-bottomed flask was 

then sealed and purged with nitrogen. The mixture was then cooled to 0°C and 7.1 mmol 

of DCC, diluted in anhydrous DCM, was syringed into the mixture. The mixture was then 

brought to room temperature and allowed to react overnight. The reaction was then 

diluted with DCM and quenched with 1 M HCl. The mixture was then extracted using 

DCM and sodium carbonate dissolved in water. The organic layer was then dried over 

magnesium sulphate and concentrated in vacuo. The product was then tested by ESI 

mass spectrometry.  

4.4.4. Functionalised Bead Recovery of the NAG Tagged Building Block  

To capture the tagged, full-length sugar, polymer bound benzoyl chloride beads were 

used† (Figure 4. 13).  

 

Figure 4. 13 - Polymer bound benzoyl chloride beads used for capturing tag. 

These beads were chosen as they exhibit a high chemical functionality (1.5 mmol/g) and 

have previously been successful in amine scavenging (Kaldor et al., 1996). In addition, as 

the chlorocarbonyl beads have a diameter range of 44- 149 μm, they can be retained in 

20 μm polyethylene frits.‡ This therefore enables separation of non-full length sugars by 

simple filtration. The chlorocarbonyl resin are also significantly cheaper than magnetic 

beads and require no further activation steps.  

                                                           

† Beads supplied by Sigma Aldrich, United Kingdom. 

‡ Extract CleanTM Columns and frits supplied by Grace, Carnforth, United Kingdom 
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To prepare the resin, two 100mg aliquots of the chlorocarbonyl polystyrene resin were 

weighed into two frit-containing cartridges (cartridge A and cartridge B). To swell the 

resin,  

3 mL of DCM was pipetted into each cartridge (valve closed). The resin was then mixed 

with the DCM on the rotator for 1 hour. After swelling, the DCM was drained from the 

cartridge. The 6-aminocaproic acid tagged sugar to be captured was then dissolved in 

DMF.  

After reaction completion, 53 μL of DIPEA (2 mmol equivalents to resin) and 18.4 mg of 

DMAP (1 mmol equivalent to resin) were added and mixed into the dissolved sugar 

mixture. Once all mixed and dissolved, the DMF mixture containing sugar, DMAP and 

DIPEA, was pipetted into cartridge A. Cartridge A was then placed onto the rotator to 

mix. After 2 hours of mixing, the mixture from cartridge A was drained in to the cartridge 

B (containing another 100 mg swelled resin).  Cartridge B was then placed onto the 

rotator to mix for 2 hours. 

After both incubation steps, the resin in each cartridge was washed to remove DMF 

traces. The resins were washed 3 times with DCM, 3 times with methanol and 3 times 

with hexane successively. Each wash step involved addition of solvent, mixing on the 

rotator for 2 minutes and draining to the manifold. The cartridges were then capped and 

dried under vacuum overnight.  

This process of capturing the sugar is shown in  Figure 4. 14 whereby the amine group, 

present only on full-length tagged sugars, reacts with the acyl chloride on the 

functionalised beads. This results in the production of hydrochloric acid (HCl) and 

anchors the full-length sugar to the beads.  
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Figure 4. 14 – The functionalised benzoyl chloride beads will react with the amine group present on the 

full-length sugars. This reaction generates hydrochloric acid and anchors the full-length sugar to the 

beads. 

After the cartridges were and dried overnight, the resin in each cartridge was swollen in 

0.9mL DCM and 3.2 mL of sodium methoxide in methanol (0.50 M stock CH3ONa in 

MeOH) was added. This step allows for the cleavage of the tagged full-length sugar from 

the functionalised beads. The mechanism of cleavage of the product from the beads is 

depicted in Figure 4. 15. 

 

Figure 4. 15 – Recovery of NAG Building Block from functionalised beads by sodium 

methoxide/methanol mediated cleavage of 6-aminocaproic acid tag. 

The cartridges were then placed on the rotator and allowed to incubate for a minimum 

of 6 hours. Amberlite IR H resin was then added to neutralise the mixtures before the 



69 

 

mixtures were filtered into separate round-bottomed flasks. The filtrates were then 

dried in vacuo and the recovered precipitates were tested using mass spectrometry. 

4.4.5. Construction of a UV Flow Reactor for Photocleavage 

The continuous UV flow reactor was initially designed to comprise five parts; a 400 W 

mercury UV lamp surrounded by a cooling jacket, tubing wound around the cooling 

jacket, a pump to push the GlyconeerTM product through the tubing, a resin injection 

point and a cartridge fitted with a frit to filter the cleaved resin. A diagram of this set-up 

is depicted in Figure 4.16 below. 

 

Figure 4. 16 – Set-up for Continuous Flow UV reactor. 

In order to ensure safe operation of the flow reactor, solvent and UV resistant 

fluorinated ethylene propylene (FEP) tubing was obtained (0.75 mm ID, 1.59 mm OD). 

The FEP tubing was wrapped around the cooling jacket 118 times giving a total surface 

area per unit volume of 11,289 m2/m3 for UV exposure. To prevent UV exposure to 

operators, a metal box with safety lock inter-switches was constructed to encase the UV 

lamp.  

Initially, a syringe pump design was proposed, however, due to cost benefits and the 

desire to have controlled and steady flow, a continuous peristaltic pump design was 

favoured. The pump was designed using Autodesk Inventor software (Figure 4. 17) and 

printed with acrylonitrile butadiene styrene (ABS) using a 3D printer. The ability to 3D 

print the pump in this way was of great economic benefit.  
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Figure 4. 17 – Autodesk Inventor Sketches for 3D Printed Peristaltic Pump  

(Diameter Arrow 4.7 cm). 

Upon printing the components, they were stacked onto each other and screwed in place. 

The pump was then incorporated into a closed system with an in-built stepper motor, 

cooling fans and outer speed and flow-direction controls. To connect the pump to the 

water reservoir, 70 cm of flexible Tygon§ tubing was fed through the pump and clipped 

at either side to prevent tube displacement. The final peristaltic pump system is depicted 

in Figure 4. 18 below. 

 

Figure 4. 18 – Peristaltic Pump and manual control system. Tygon Tubing is Fed into the pump from a 

water reservoir and held in place with two red clips. 

As Tygon tubing is not resistant to solvent, the peristaltic pump was set up to draw fluid 

from a water reservoir through to an intermediate container containing solvent. As the 

pressure builds up within the intermediate container, the solvent is drawn up through a 

needle and pushed into a three-way connection. Initially, this connection selected was a 

                                                           

§ Tygon tubing was acquired from Saint-Gobain Performance Plastics, Site du Charny, France. 
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DCM resistant polyvinylidene fluoride (PVDF) tee connector with a 1.6 mm OD. The 

preliminary design showing the original connector is depicted below in Figure 4. 19. 

This connection provided an injection point for the resin, which could then be pushed 

through by the pump flow into the FEP tubing. Upon injection of the resin, it was found 

that a significant proportion of resin was pushed back through to the intermediate 

solvent container. Therefore, to prevent loss of resin during injection, a filter was fitted 

into the end of the solvent dispenser. This ensures that if any resin does back-flow into 

the reservoir, it will ultimately be forced through into the FEP upon pressure re-

equilibration.   

 

Figure 4. 19 – Preliminary Set-up with three way PVDF Connection integrated in to FEP tubing with 

Needles. 

To improve the three-way connector fitting, an unused Äkta mixing chamber was  

re-purposed (Figure 4. 20). This fitting allowed for threaded connection of the FEP 

tubing, a superior seal and a more suitable and safe syringe fitted injection point.   
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Figure 4. 20 – Re-purposed Äkta mixing chamber used as FEP tubing and Syringe connector point. 

Threaded screw fittings allow for tighter, more secure seal. Note small needle insertion at solvent entry 

point. 

This new fitting additionally allowed for the insertion of a small needle within the FEP 

tubing at the solvent entry point. Previous work with the resin and fittings had shown 

that resin was unable to pass through orifices much less than the inner diameter of the 

FEP tubing (0.75 mm). Therefore, by inserting a smaller diameter needle within the FEP 

tubing at the entry point, the back-flow of resin into the intermediate container has been 

minimised.  

Upon resin exposure to UV, the desired oligosaccharide should be cleaved from the resin 

and free in the solvent. Therefore, at the reactor exit point, the FEP tubing is directed 

into a frit-containing cartridge sitting in a round-bottomed flask. This enables immediate 

filtration and collection of the cleaved GlyconeerTM product in to the flask. The round-

bottomed flask can then be easily attached to a vacuum concentrator for precipitation.  

4.4.6. Calibration of Pump Flow Rates 

To establish the pump flow rates, the time taken for flowing DCM to fill 1mL of volume 

was recorded at pump settings 7, 8, 9 and 10. Time measurements were repeated ten 

times and the average flow rate established for each speed setting. Operability at lower 

speeds was deemed inappropriate due to bubble formation. 
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4.4.7. Resin Only Photocleavage Test in Established Reactor Set-up 

After turning on the UV lamp and equilibrating the tubing with DCM, 8 mg of 

functionalised Merrifield resin was injected into the flow reactor and pushed through 

with DCM at a speed of 850 μL/min. Approximately 10 mL of DCM was pushed through 

at this flow rate, affording a minimum irradiation time of 11.30 minutes per pass. To 

ensure all of the resin was pushed through, another 10 mL of DCM was passed through, 

followed by 15 mL of methanol that was syringe-pumped through the reactor. The 

reactor outlet was directed into a filter and the product collected in a round-bottomed 

flask. The product was then evaporated in vacuo and tested for ESI mass spectrometry. 

4.5. Results and Discussion 

4.5.1. Building Blocks 

The mass spectra for Fmoc protection of the 6-aminocaproic acid (Figure 4. 21), the Fmoc 

removal of the NAG building block (Figure 4. 22) and the tag coupling to the NAG building 

block (Figure 4. 23) indicate that our desired products were formed.  

 

Figure 4. 21- Mass Spectra for Fmoc Protected 6-aminocaproic acid tag containing a sodium ion adduct  

(See Appendix for more detail). 
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Figure 4. 22- MS results after silica column purification of Fmoc removed NAG building block containing 

a sodium ion adduct (See Appendix for more detail). 

 

Figure 4. 23- Fmoc protected 6-aminocaproic acid Tagged NAG building block containing a sodium ion 

adduct (See Appendix for more detail). 

4.5.2. Bead Recovery of the Tagged Building Block 

The mass spectrometry results of the product recovered from the chlorocarbonyl beads 

in cartridge A and cartridge B are shown in Figure 4. 24 and Figure 4. 25 respectively.  

 

 

Figure 4. 24- Mass spectrometry results from Sugar recovered from Carboxylated polystyrene beads in 

Cartridge A (See Appendix for more detail). 
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Figure 4. 25- Mass spectrometry results from Sugar recovered from Carboxylated polystyrene beads in 

Cartridge B (See Appendix more detail). 

In the mass spectra obtained from cartridge A, the measured M/Z ratio was found to be 

570.06 with the corresponding chemical formula C24H28Cl3NNaO5S. This confirms that our 

desired product, C24H28Cl3NO5S, is present and contains a sodium ion adduct. In the mass 

spectra obtained from cartridge B (Figure 4. 25), the measured M/Z ratio was found to 

be 548.08 with the corresponding chemical formula C24H28Cl3NO5S. This, again, confirms 

recovery of our desired product. This suggests that the tagged sugar was indeed 

recovered by the chlorocarbonyl beads.  In total, 13.3 and 7 mg of product was recovered 

from the cartridge A and cartridge B filtrates respectively. This gives a total yield of 51% 

and suggests that some of the sugar was lost throughout the process. Moreover, as some 

of the sugar was recovered in cartridge B, it suggests that further optimisation of the 

capturing process is required. This can be achieved by increasing the amount of 

functionalised resin or DMAP in future experiments. 

4.5.3. UV Flow Reactor 

The final set-up of the continuous UV flow reactor is depicted in Figure 4. 26 below. 

 

Figure 4. 26- Final UV Flow Reactor set-up. Pump Draws water from reservoir and pumps into 

Intermediate Solvent container. DCM is then withdrawn and pushed through into FEP Tubing. Resin is 

injected as the Injection point and pushed through Reactor by Pump Pressure. FEP tubing at Reactor exit 

is directed into a frit-containing cartridge for immediate filtration and separation of cleaved product. 
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The intermediate reservoir system relies on the density differences between water and 

DCM, whereby the heavier DCM sinks below the aqueous water layer (Figure 4. 27).  

 

Figure 4. 27- Schematic of Intermediate Reservoir container showing biphasic conditions that allow for 

solvent uptake into FEP tubing. 

This set-up is therefore only applicable to solvents with densities higher than water. To 

use solvents with densities lower than water, the intermediate reservoir could be easily 

modified by re-positioning the water inlet to the bottom and the solvent outlet to the 

top layer.  

However, given that the solvent uptake point is a syringe connector fitting (Figure 4. 26) 

this system allows for the efficient injection of any desired solvent via syringe. Although 

this does not permit user flow control, this modification is particularly useful for post-

irradiation clean-up and ensures that all of the resin has been pushed through the tubing. 
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Figure 4. 28- Intermediate Container Lid showing Syringe Fitting connected to filter-containing cartridge 

(Left) or Syringe at the solvent uptake point. 

The final specifications for the UV flow reactor set-up are outlined in Table 4. 1. 

Table 4. 1 - UV Flow Reactor Specifications obtained for final set-up. 

UV Flow Reactor Component Length 

Tygon Tubing ID (mm) 0.80 

Tygon Tubing OD (mm) 1.00 

FEP tubing ID (mm) 0.75 

FEP tubing OD (mm) 1.59 

Surface Area UV exposure (m2) 0.11 

Surface Area/Volume UV Exposure (m2/m3) 11,289 

Number coils FEP exposed to UV 118 

Total length coils exposed to UV (m) 21.78 

Total flow length (m) 22.53 

Volume UV exposed coils (mL) 9.62 

Volume flow total (mL) 9.95 
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The irradiation time as a function of flow rate for the reactor can be described by the 

expression: 

𝑡𝑖 =
𝑉𝑐,ℎ𝑣

𝑉̇
 Eq. 4.1 

 

where: 

𝑡𝑖 is the irradiation time in minutes, 

𝑉𝑐,ℎ𝑣 is the volume of the FEP coils exposed to UV in mL, 

𝑉̇ is the flow rate in mL/min. 

Given the established set-up for the UV reactor (Table 4.1), this Equation 4.1 can be 

simplified to: 

𝑡𝑖 =
9.62

𝑉̇
 Eq. 4.2 

 

The calibrated flow rate results from the peristaltic pump are shown in Figure 4. 29. 

 

Figure 4. 29- Flow Rates for Peristaltic Pump settings obtained with DCM. 
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This specifies that the usable** pump speed settings will provide flow rates between 0.30 

to 0.90 mL/min. A graphical representation of the possible single-pass irradiation times 

for the given flow rates is shown below in Figure 4. 30. 

 

Figure 4. 30- Graphical representation of the Single-pass Irradiation time ranges that can be achieved in 

a single pass within the achievable pump flow rates. 

This system therefore allows for the user to control single-pass irradiation time between 

10 to 20 minutes. In addition, the system is safe, user-friendly and provides a high surface 

area of exposure per sample volume (>11,000 m2/m3).  

4.5.4. Resin Photocleavage  

The mass spectrometry results from the resin-only photocleavage are shown in Figure 4. 

31.  

                                                           

**   At pump speeds less than 7, significant bubbling occurred. Settings at 7 and above are 
therefore recommended to ensure steady, continuous flow. 
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Figure 4. 31- Mass spectra of Product obtained from Resin-only photocleavage showing product present 

with a sodium ion adduct (See Appendix for more detail) 

The measured M/Z ratio was found to be 260.13 with the corresponding chemical 

formula C13H19NNaO3. This confirms that our desired product, C13H19NO3, is present and 

contains a sodium ion adduct in the spectra. This suggests that the photocleavage of the 

resin was successful and validates the current set-up of the UV flow reactor.  

However, as the loading of the resin is yet to be determined, the efficiency of 

photocleavage was not yet quantifiable. In an optimised system, the moles of sugar 

liberated from the resin should be equivalent to the moles initially anchored to the resin. 

Therefore the efficiency of photocleavage can be determined from the following 

expression: 

𝜂 =
𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑛𝑟𝑒𝑠𝑖𝑛
× 100 

 

where: 

𝜂 is the % efficiency of photocleavage, 

𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡 is the moles of sugar recovered in mmol, 

𝑛𝑟𝑒𝑠𝑖𝑛 is the moles of sugar on resin pushed through the UV reactor in mmol. 

As, the moles of sugar initially anchored to the resin is dependent on the resin loading, 

the efficiency of photocleavage can be expressed as:  

𝜂 =
𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑙𝑟𝑒𝑠𝑖𝑛  × 𝑚𝑟,ℎ𝑣
× 100 

where: 

𝑙𝑟𝑒𝑠𝑖𝑛 is the loading of the resin in mmol/mg, 

𝑚𝑟,ℎ𝑣 is the mass of resin pushed through the UV reactor in mg. 
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As the efficiency is representative of the amount of resin cleaved in a single-pass, in the 

future, the optimisation of single-pass irradiation time can be readily achieved. The 

number of passes required for optimum photocleavage will also need to be determined 

to ensure efficient purification of the GlyconeerTM product. 

4.6. Conclusions and Future Work 

Using PNAG as a reference point, a NAG building block was successfully tagged with 6-

aminocaproic acid. The tagged sugar was then shown to be recoverable using 

chlorocarbonyl functionalised polystyrene beads, giving a total yield of 51%. This 

suggests that capture of a full-length polysaccharide should be a viable purification 

strategy. Furthermore, through several iterations and adjustments, a practical 

continuous UV flow reactor has been established. The reactor allows for user controlled 

irradiation times between 10 to 20 minutes for a single-pass and an integrated filter to 

allow immediate separation of resin from product. Moreover, based upon the successful 

resin-only cleavage performed in final set-up, the UV flow reactor can be commended as 

an effective cleavage process. Future optimisation studies will be required in each of 

these strategies. For instance, to improve yield in tagged sugar recovery, an excess of 

functionalised beads and reagents can be trialled. The UV flow reactor system will also 

need adjustments to determine the optimum irradiation time and number of passes 

required for a given GlyconeerTM product. Although these purification strategies require 

further optimisation, these preliminary findings have validated the use of both a UV flow 

reactor for resin photocleavage and functionalised polystyrene beads for full-length 

sugar recovery. The purification strategies are subsequently recommended for 

integration with the GlyconeerTM process and are expected to improve the yield and 

quality of synthesised sugars hereafter.  

 

 

 

  

 

 

 



82 

 

SECTION 5: PROJECT SUMMARY AND FUTURE WORK 

This project has investigated aspects within three novel approaches to combatting 

pathogens in CF patients; CORMs, alginate fragments and optimising sugar purification 

methods. 

CORMs represent a novel approach to antibiotic drug design and shows great promise 

for treating CF as they are both anti-inflammatory and toxic against P. aeruginosa. The  

pyo-CORM’s ability to disrupt Pseudomonal biofilms in particular supports its efficacy as 

a potential therapeutic agent. However, for CF patients, the ongoing challenge will be to 

develop CORMs that are specifically activated in the presence of P. aeruginosa. 

Moreover, the specific mode of action for CORMs will be vital, particularly for bacterial-

specific targeting. Thorough characterisation of the material will help to inform the mode 

of action, and, for instance, future studies could include microanalysis of CORMs to 

establish specific content, purity and stability of the material to be used in biological 

assays.  

In general, at high concentrations, alginate fragments were able to perturb the growth 

and biofilm formation of P. aeruginosa, and smaller fragments were more effective at 

biofilm disruption than larger fragments. The variation within the mixture of alginate 

fragments highlights the importance of utilising well established mechanisms to achieve 

consistently defined fragments – i.e. fragments with defined chain lengths, 

stereochemistry and M:G content. The ability to combat biofilms, in an optimised way, 

will continue to be an important therapeutic strategy to pursue in terms of potentiating 

antibiotics and preventing chronic infections. Future work will therefore investigate the 

use of automated sugar synthesisers to define the most optimal compositions and 

lengths for alginate fragments in combatting biofilms.  

New post synthetic purification methods were designed and built for automated 

synthesis of sugar fragments. This was established through building block design, UV 

flow reactor construction and selective bead recovery. Future work will involve applying 

these methods to larger polysaccharides within heterogeneous mixtures. The 

optimisation of these post-synthetic purification strategies will enable provide access to 

well-defined sugars and support the development of sugar-based vaccines as well as 

other sugar-based therapeutics, such as alginate fragments.          



83 

 

As antibiotic resistance increases, so does the need for novel therapeutic approaches. 

Ultimately, it is likely that a combination of these approaches, and treatment methods 

will be key in combatting CF pathogens and delivering the best possible outcomes for CF 

patients in the future.  
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APPENDIX 

A1. Details of Referenced Compounds 

Table A.1 below shows the hypothesis tests used to determine statistical significance of 

the results obtained throughout the research project.  

Table A. 1- Symbols used throughout project and associated p values  

Symbol P value Meaning 

ns P > 0.05 No evidence against the null hypothesis. 

* P ≤ 0.05 Weak evidence against the null hypothesis. 

** P ≤ 0.01 Moderate evidence against the null hypothesis. 

*** P ≤ 0.001 Strong evidence against the null hypothesis. 

**** P ≤ 0.0001 Very strong evidence against the null hypothesis. 

A2. Details of Referenced Compounds 

Table A.2 lists the structures, molecular weights and chemical formulas for the 

compounds used and synthesised throughout the project. 

Table A. 2- The molecular weights and Chemical Formulas for Compounds used and synthesised 

throughout the project. 

Description and Structure 
Chemical 

Formula 

Molecular 

Weight 

Fmoc protected NAG BB 

 

 

 

C39H38Cl3NO7S 771.15 
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Description and Structure 
Chemical 

Formula 

Molecular 

Weight 

Fmoc deprotected NAG BB 

 

 

 

C24H28Cl3NO5S 548.91 

6-aminocaproic acid (tag) 

 

 

 

C6H13NO2 131.17 

 

Fmoc protected 6-aminocaproic acid 

 

 

 

C21H23NO4 353.41 

Fmoc tagged NAG BB 

 

 

C45H49Cl3N2O8S 884.30 
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Description and Structure 
Chemical 

Formula 

Molecular 

Weight 

Fmoc deprotected tagged NAG BB 

 

 

C30H39Cl3N2O6S 662.06 

Photocleaved functional OBz protected amine 

group 

 

 

C13H19NO3 237.29 

A3. Sample Calculations 

A3.1 Sample calculation for UV flow reactor flow rate at speed 10.0 

The time to fill defined volumes at speed 10.0 is shown in Table A.3. 
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Table A. 3- Time required for DCM to Fill defined Volumes in a measuring cylinder. Measured at FEP 

Tubing Outlet of UV Flow Reactor. 

V (mL) t (s) 

1 71.91 

1 67.94 

1 65.38 

1 67.96 

3 184.65 

1 73.93 

1 70.76 

1 80.76 

1 79.13 

 

Based upon the values obtained in Table A.1, the average flow rate was calculated by: 

𝑉̇𝑎𝑣 =
1

𝑛
∑

𝑉

𝑡

𝑛

𝑖=1

 

where: 

𝑉̇𝑎𝑣 is the average flow rate in mL/min, 

𝑉 is a specified volume in mL, 

𝑡 is the time taken to fill a specified volume, in minutes 

𝑛 is the number of measurements taken 

The average flow rate obtained at speed 10.0 is therefore: 

𝑉̇𝑎𝑣 =
1

9
× (

1mL

71.91s
+

1mL

67.94s
+

1mL

65.38
+

1mL

67.96s
+

3mL

184.65s
+

1mL

73.93s
+

1mL

70.76s

+
1mL

80.76s
+

1mL

79.13s
) ×

60s

1min
 

 

       = 0.84𝑚𝐿/𝑚𝑖𝑛 
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A4. Enlarged Mass Spectrometry Results 

The following pages display enlarged mass spectra of compounds discussed in Results 

section. 
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Figure A. 1- Fmoc Protected 6-aminocaproic Acid 
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Figure A. 2- Fmoc Deprotected NAG Building Block 
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Figure A. 3- Fmoc 6-Aminocaproic Acid Tagged NAG Building Block 
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Figure A. 4- Recovery of NAG Building Block by Chlorocarbonyl Polystyrene Beads- Cartridge A 
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Figure A. 5- Recovery of NAG Building Block by Chlorocarbonyl Polystyrene Beads- Cartridge B 
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Figure A. 6- Photocleavage of Resin
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