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Abstract

Several natural phenomena manifest themselves as spatiotemporal evolution processes.

The study of these processes, which aims to increase our understanding of the spatiotem-

poral phenomena for their prediction and control, requires analysis tools to infer models

and their parameters from collected data. Whilst several studies exist on how to model

from highly complex patterns characteristic of spatiotemporal processes, an approach

which may be readily employed in a wide range of scenarios, such as with systems with

different forms of observation processes or time-varying systems, is lacking. This work

fills this void by providing a systems approach to spatiotemporal modelling which can

be used with continuous observations, point process observations, systems exhibiting

spatially varying dynamics and time-varying systems.

The developed methodology builds on the stochastic partial differential equation as a

suitable class of models for dynamic spatiotemporal modelling which can easily cater for

spatially varying dynamics. A dimensionality reduction mechanism employing frequency

methods is proposed; this is used to bring the spatiotemporal system, coupled with the

observation process, into conventional state-space form. The work also provides a series

of joint field-parameter inference methods which can cater for the vast range of problems

under study. Variational techniques are found to be particularly amenable to these kinds

of problem and hence a novel dual variational filter is developed to cater for time-varying

spatiotemporal systems. The filter is seen to compare favourably with other conventional

approaches and to work well on real temporal data sets.

The potential of adopting a systems approach to spatiotemporal modelling is shown

on the large-scale Wikileaks data set, the Afghan War Diary, where it is found that

reliable predictions are possible even in complex scenarios. The encouraging results are a

strong indication that the adopted approach may be used for large-scale spatiotemporal

systems across several disciplines and thus provide a mechanism by which stochastic

models are made available for spatiotemporal control purposes.
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Chapter 1

Introduction

Countless studies serving to improve our quality of life and well-being are concerned with

phenomena evolving over both space and time. Some of these spatiotemporal studies are

essential in overcoming great challenges and crises faced by humanity today, such as

sustainable energy and food security. Application areas of current interest include the

following:

i) Wind energy: Wind energy is considered as one of the most sustainable renewable

energies. Wind farms are however costly and it is of paramount importance to place

them in regions where their potential (load factor) is maximised (see [1] for a critical

note on wind farms in the United Kingdom). Strategic placing is possible only if the

spatiotemporal behaviour of the wind in a particular region is accurately predicted

[2].

ii) Neuroscience: The brain is probably one of the most complex spatiotemporal sys-

tems under study today. In addition to the spatiotemporal firing patterns in response

to different cues [3], considerable interest is now given to the human brain’s tran-

scriptome, i.e. where and when certain genes are expressed in neurodevelopment.

Understanding the spatiotemporal dynamics of gene expression in the human brain

may further our understanding of certain neurological and psychiatric disorders [4].

iii) Epidemiology: Spatiotemporal tools may be used to study in detail and visualise the

dispersion of an epidemic. In doing so underlying factors may reveal why a localised

outbreak progressed into an epidemic of international scale, thus assisting in fighting

the spread of certain diseases [5]. However epidemiology is not only restricted to

the retrospective study of outbreaks: The ability to detect the onset of an epidemic

(both in space and in time) may save thousands of lives [6].

iv) Social dynamics: The spatiotemporal behaviour of social phenomena is increasingly

1
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becoming a topic of interest [7]. One such recent social phenomenon is the Arab

spring, a revolutionary ‘wave’ of protests fuelled by social media networks and ex-

hibiting spatial interactions on a global scale. Another example is armed conflict

[8]: In this thesis it is shown how the study of spatiotemporal interactions may be

used not only to describe but also predict with confidence measures activity in the

near future.

Advances in technology have also led to initiatives to control these space-time phe-

nomena in some intelligent way. Control is evident, for example, in the slowing down of

a rapidly spreading oil field by using skimmers. In the case of an epidemic, as described

above, initiatives may be taken to cease the spread of the disease or at least dampen it

enough in a strategic way so as to bring it under control. Another application area where

control may prove vital today is in greenhouse gas emissions. The effect of contingency

schemes to control the spatiotemporal distribution of carbon dioxide on a global scale,

possibly with the use of carbon sinks (through, for example, afforestation) [9], can have

enormous implications on the formulation of government policies and economic strategy.

The study of all these phenomena is a highly complex task and usually the analyst is

faced with compounding problems. First, the advent of remote sensing technology and

advances in telecommunications and data collection methods have resulted in what is

commonly termed the data deluge [10], an avalanche of information hard to handle due

to its sheer size. Second, there is no simple way of learning from the data which, without

any interpretation, is essentially a collection of thousands of incomprehensible numbers.

To get round these two problems there has to be a means with which to summarise

the data and with which to provide a level of understanding through description to the

end-user.

There exist several ways to tackle these problems, however the literature on appro-

priate methodology is somewhat fragmented and lacks a method which can easily be

extended to cater for different scenarios. This thesis aims to provide a remedy by pre-

senting a novel approach to the study of data which evolves both over space and over

time. The proposed methodology is applicable in a variety of scenarios and delivers an

approach to learn models which are tailored for prediction and control purposes both

from pre-collected data sets and from continuous data streams.

A detailed problem definition and clear research objectives are given in Section 1.3.

However, in order to put the motivation in context, this chapter first elaborates on the

concept of a model and its estimation in Section 1.1, the fundamental building blocks

for any data analysis procedure. Section 1.2 then briefly mentions some model classes

commonly associated with spatiotemporal systems and the different types of observations
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which may be represented by the data. The chapter concludes with a thesis outline.

1.1 Introduction to modelling and estimation

1.1.1 Deterministic and stochastic models

One of the fundamental building blocks for data analysis is the model. A model is a math-

ematical description which both summarises and describes the behaviour of an observable

phenomenon with respect to some independent variables, for example space or/and time.

In a few cases the model is deterministic, free of unexplained events and perfectly pre-

dictable. An example is a model which describes the trajectory of a projectile. In this

case g, the acceleration due to gravity, is a parameter of the model and if it is known,

the trajectory of the projectile can be predicted exactly (in the absence of secondary

effects). If hypothetically g is unknown, it can be found by studying the trajectory of

the projectile in space and time (this is known as the inverse problem). Usually, exact

measurements in practice are impossible, and what one would typically do in this case

is carry out several experiments and find a likely value for g by, for instance, taking the

mean from the estimates as obtained from each experiment.

Employing statistics to estimate a parameter in this case does not mean that the

system itself is random in any sense, but rather that the measurements are noisy, and that

any (non-systematic) error introduced needs to be filtered out. A separate class of models

exists, referred to as stochastic models, which intrinsically describe elements which are

seemingly random. Stochasticity aims to introduce the concept of uncertainty in the

model without obscuring the salient trends, or regularities, of the underlying process.

Take for instance the pattern of falling raindrops on a surface; to predict exactly where

and when each drop will fall would require an inconceivable amount of deterministic

meteorological models, incorporating air pressure, wind speed, water droplet formation

and so on. Modelling on these lines is not only infeasible (and virtually impossible) but

also unnecessary for many purposes. By studying the pattern of raindrops on a surface

one may realise, for instance, that the drops are entirely randomly distributed in space

and time (in what we call a Poisson process) and are incident with a very reproducible

intensity (e.g. 1 raindrop per cm2 per second). The intensity in itself is highly revealing

and may be used for prediction purposes, even though the exact position and time of

each incident raindrop will remain uncertain.

As a result of their versatility and their remarkable ability to summarise unexplained

effects, stochastic models have seen considerable use in a number of different areas sub-

ject to high uncertainty. One of these is financial mathematics, a field pioneered by
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Louis Bachelier in his PhD thesis aptly titled The Theory of Speculation, first published

in 1900 [11]. Stochastic models have also been used for description in fields as diverse as

pollution spread [12] and groundwater flow in aquifiers [13]. In these cases the apparent

randomness arises from a variety of factors such as climate factors (wind, rainfall) and

social factors (market volatility, urbanisation) which are impossible to model determin-

istically. Nonetheless, by catering for the unexplained effects, it is still possible to use

stochastic models for the ultimate purposes of modelling, prediction and control.

Whilst models, being deterministic or stochastic, seek to further our understanding

on the behaviour of a physical phenomenon, their power lies in their predictive abilities,

in allowing the possibility to say what is going to happen in the next few seconds,

days or years, depending on the application. Knowing what will happen will allow

one to anticipate certain effects and even take necessary action to counter them. For

deterministic models, prediction is perfect; given an initial condition, the future can be

determined with certainty. With stochastic models, the future can only be predicted

with probability. In the raindrops example one cannot say when and where the next

drop will fall, but can predict accurately, and with confidence, how many drops will fall

in a certain area in a given time interval. Similarly, in meteorology the average wind

speed at a pre-specified location cannot be predicted exactly in advance but, given a good

stochastic model, can be predicted with confidence intervals (the average wind speed will

be 30kph ±5kph). In essence, stochasticity is a measure of uncertainty; and the more

the unexplained effects in the model, the more uncertain the predictions. As a result

of their flexibility in systems of high uncertainty, stochastic models will be extensively

studied in this work.

1.1.2 Parameter estimation

Exploiting the descriptive or predictive powers of both deterministic and stochastic mod-

els requires knowledge of the parameters with which they are constructed. In some cases

the parameters may be found analytically; for instance one may find the diffusion con-

stant in the heat equation from a material’s specific heat capacity, mass density and

thermal conductivity. However, this is rarely the case and frequently the model param-

eters θ need to be inferred from some set of observations, Y = {y1,y2, . . . ,yK}. The

procedure is known as parameter estimation.

There are two widely adopted approaches for parameter estimation. The first at-

tempts to find the most likely parameter value from the observations. Formally, it finds
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the parameter which maximises the likelihood p(Y|θ):

θ∗ = arg max p(Y|θ). (1.1)

The procedure is also referred to as the maximum likelihood (ML) approach. The sec-

ond approach is known as the Bayesian approach and, in contrast, assumes that the

parameter is also a random quantity which a priori (i.e. without any observations) is

distributed according to some prior distribution p(θ).1 The natural question to ask then

is, what is the posterior distribution of the parameter given the data set, i.e., what is

p(θ|Y)? The answer to this question lies in the use of Bayes’ formula which states that

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
∝ p(Y|θ)p(θ). (1.2)

The Bayesian approach thus combines information from the data (likelihood function)

and prior information (prior distribution) to provide a distribution over the parameters

instead of a point estimate. The distribution of the parameters may be used to provide

a confidence of the estimate, which may be useful in many ways.

In practice, the parameters which need to be estimated may require a set of variables

X which are not directly observed (this will be made clear in Section 2.3). In this case

the likelihood is computed by marginalisation (or the integrating out) of X i.e.

p(Y|θ) =

∫
p(X ,Y|θ)dX =

∫
p(Y|X ,θ)p(X|θ)dX . (1.3)

In a ML approach, maximisation of (1.3) is typically a much harder problem than that

of (1.1). However this problem may be dealt with by using specialised algorithms such as

the expectation-maximisation (EM) algorithm [15]. In the Bayesian setting, the posterior

over the unknown parameters is given as

p(θ|Y) =

∫
p(Y|X ,θ)p(X|θ)dXp(θ)

p(Y)
. (1.4)

Likewise, this quantity is rarely available in closed form and requires the use of ap-

proximations for its evaluation, such as Markov chain Monte Carlo (MCMC) methods

[16].

1In this thesis the notation p(x) is used to refer to the probability distribution of the random variable

X, irrespective of whether X is continuous (where p(·) then represents a probability density) or discrete

(where p(·) then represents probability mass) [14, Section 2.2].
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1.2 Spatiotemporal models

A model, with some set of parameters θ describing a phenomenon occurring in both

space and in time is known as a spatiotemporal model. Although several spatiotemporal

models are apparent in the literature, they may be largely grouped into two classes,

geostatistical models and dynamic models. The differences and commonalities between

these two classes are given in Section 1.2.1. A factor which heavily influences both the

choice of model and the way in which it is estimated is the nature of the data; whether

it is in the form of continuous readings or isolated events. This distinction is elaborated

on in Section 1.2.2.

1.2.1 Geostatistical and dynamic spatiotemporal models

Geostatistical approaches to modelling data in space and time typically assume the ex-

istence of an underlying spatiotemporal Gaussian random function. In such cases the

spatiotemporal field is fully specified by its mean and covariance function φ(·) which

quantifies how, and to what extent, different points in space and time vary together. For

a field z(s, t) with space-time coordinates (s, t), the covariance function is given by

φ(r ′, t′) = cov(z(s, t), z(s + r ′, t+ t′)), (1.5)

where r ′ and t′ are spatial and temporal lags respectively. In most practical approaches

the function φ(r ′, t′) is expected to decrease as the distance between two points in space

and time increases. Usually a space-time covariance function is hard to construct and

frequently a separable covariance function is instead employed [e.g. 17, 18] so that:

φ(r ′, t′) = φ1(r ′)φ2(t′). (1.6)

Dynamic models, on the other hand, consist of difference or differential equations

providing an explicit description of the evolution of a spatial field in time. For instance,

in discrete time this may be given by

zk = Azk−1 + wk, (1.7)

where k is a discrete temporal index, A is some possibly non-linear operator and wk

is some additive spatial random field. Dynamic modelling in this way is particularly

applicable to practical problems such as prediction and control where the system response

at time k may be expressed directly in terms of its state at time k−1. Dynamic models are
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frequently mechanistic, in the sense that parameters inferred may have a direct physical

meaning, or, at the least bear direct relation to the spatiotemporal behaviour of the

system [19].

In a few cases the two models are interchangeable descriptions of the same process

[20]. In [21] Storvik shows how, for instance, a separable covariance function with φ2(t′) =

θ|t
′|, |θ| < 1, always corresponds to a field evolving as in (1.7) with Azk = θzk. In his

study he also finds several advantages of dynamic models over geostatistical models:

• Employing signal processing tools with dynamic models renders the parameter

estimation process more computationally efficient,

• Inference mechanisms associated with dynamic models can readily handle miss-

ing/incomplete data,

• Employed covariance functions may correspond to models of type (1.7) which ex-

hibit unnatural features such as noise fields with negative spatial correlations [21,

Example 3].

Despite the advantages of dynamic models, geostatistical models still dominate the

literature on spatiotemporal systems. On the other hand, whilst dynamic models have

been employed for continuous observations [22, 23], little to no work has yet been done

in the context of observations which are available in the form of isolated events.

1.2.2 Continuous and point process observations

Continuous observations

In the majority of cases, the parameters governing both geostatistical or dynamic models

need to be found from a set of continuous readings collected from a finite number of lo-

cations, which are either fixed or mobile within the spatial domain.2 Characteristic data

sets include the concentration of airborne particulate matter in the atmosphere obtained

from weather stations [12], or temperature and salinity readings from autonomous under-

water vehicles [24]. Formally, each observation reading at time k, yk, may be considered

as a noisy linear mapping L(·) of the spatiotemporal field zk

yk = L(zk) + vk, (1.8)

2Throughout this thesis, the term continuous readings/observations will be used to characterise ob-

servations taking values on a continuous space, irrespective of whether they are temporally continuous

or temporally discrete. When a distinction needs to be made, the temporal nature of the data will be

stated explicitly.
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where vk is additive noise, usually assumed to be Gaussian in nature. Other forms for

L(·) are mentioned in Section 3.1.2.

Having continuous readings which are linearly related to the field is advantageous in

many ways. First, if the spatiotemporal model is also linear in form, standard techniques

may be used to estimate the entire field zk [e.g. 23]. Second, parameter estimation is

also facilitated, and in some cases closed-form expressions may be found for all unknown

quantities [25]. Third, since yk ∈ R, in low noise conditions the readings are highly

representative of the spatiotemporal field at that point in space. This contrasts heavily

with point process observations.

Point process observations

The observation process in practice is not restricted to be observed with Gaussian noise;

indeed, it is not even restricted to be continuous. A different class of problems exists

where only discrete events, emissions or points, are observed; for instance the arrival

of customers in a queue [26, Section 1.1] or animal sightings when studying population

spread [27]. In this case the observations are denoted as point process observations.

Signal processing with temporal point process observations is common in biomedi-

cal applications; for instance neural spikes and heart beats are both discrete events in

time, separated by seemingly random intervals [28, 29, 30]. The firing intensity of these

processes is usually assumed to be representative of some influence which is not directly

observable; for example CA1 neurons in the rat hippocampus fire only when the rat is in

a certain area, known as the receptive field [31]. The way the receptive field evolves is un-

known and thus is usually modelled as a stochastic process. Such a modelling approach

has led several authors to call these systems doubly stochastic point processes [29, 32];

stochasticity being exhibited both by the precise where and when of an event, and by

the varying intensity.

An example of a spatiotemporal point process is the example given in the first section,

rain falling on a surface. It is likely that the spatiotemporal behaviour of the rain intensity

may not be modelled deterministically so that even in this case the process is doubly

stochastic. Other examples occurring in practice include earthquake origin time and

epicentre [33, 34], crop growth [35] and disease incidence [36, 37]. Occasionally these

processes are also referred to as spatiotemporal Cox processes in tribute to a pioneer of

the theory of point processes, D. R. Cox [26].

It is good to note that spatiotemporal point processes, today, play a major role in

disciplines beyond that of spatiotemporal modelling and estimation. One such area is

that of multi-target detection, where the points are the targets and the intensity function,
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also referred to as the probability hypothesis density (PHD), is used to compute the

expected number of targets within a given area. The PHD is typically modelled to evolve

according to the targets’ dynamics and to account for the possibility of spontaneous

target dis/appearances. Target detection is carried out with the use of a PHD filter

which allows for false positives and false negatives. For further details the interested

reader is referred to [38, 39, 40].

1.3 Motivation and thesis outline

Data in the form of continuous readings or isolated events may be used to estimate

parameters in both types of spatiotemporal models (geostatistical and dynamic) using

several methods and approaches. Nonetheless there are limitations with the current

state of the art; this section describes these limitations and then proceeds to discuss

the research objectives before concluding with a thesis outline and a summary of the

contributions of this work.

1.3.1 Problem definition

Research on spatiotemporal modelling enjoys a long history and has resulted in several

works which tackle problems specific to the nature of the application. However a frame-

work which may be adapted to different problems is lacking in the literature. Specifically,

i) a view of how the model fits into a control system is frequently ignored, ii) modelling

strategies are highly tailored to the nature of the observation process and considera-

tions to iii) online estimation and iv) spatially varying dynamics are also frequently not

touched upon. These issues and their implications will now be discussed in greater detail.

i) From a control perspective, the problem lies with the use of geostatistical models.

A large array of works tackle geostatistical models, the parameters of which are

learnt from continuous data [17, 18, 2, 41] and from point process data [35, 42, 43],

however these types of models have not been used in a control framework to date,

presumably because they lack the causality readily apparent in dynamic models.

The availability of a dynamic model is of paramount importance if one wishes to

employ standard techniques from the control literature, which is almost entirely

based on dynamic models. This in itself motivates more research into the inference

of dynamic spatiotemporal models.

ii) Spatiotemporal dynamic models have been frequently employed for both determin-

istic systems observed in noise [44, 45, 46] and for stochastic systems [47, 13, 48].
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However point process observations have to date not been treated in the context of

dynamic spatiotemporal systems.3 It is required to fill this void if control methods

are eventually to be employed in a point process context. The challenge here is to

provide suitable inference mechanisms for this type of observation process.

iii) It is very common to study spatiotemporal problems offline [22, 49] and the con-

cept of parameter estimation in a spatiotemporal system online is still relatively

unexplored. Parameters are likely to change in time and these quantities need to

be updated ‘on-the-go’. Ignoring parameter change or drift may have negative im-

plications in prediction (and hence control) over large horizons, as clearly seen in

[43]. It would be highly desirable to employ methods which allow for time-varying

parameters in the learning process.

iv) Although spatially varying dynamics are part and parcel of most spatiotemporal

systems (as will be evident in Chapter 6), few works tackle the problem of spatially

heterogeneous dynamics ([19, 50] are exceptions) which, however, could be catered

for if some of the underlying mechanisms are understood. As will be seen in Chapter

2 some dynamic models are better than others in retaining mechanistic descriptions.

An additional challenge here is to provide an inference mechanism which can cater

for spatially varying parameters in the process model.

1.3.2 Research objectives

In the light of the above it is deemed necessary to devise an approach which

• uses a dynamic model class flexible enough to describe spatially heterogeneous

systems and also to maintain a continuous-space representation. The latter is a

requirement for it being able to also handle observations in the form of events

which frequently appear in the form of spatial coordinates (from a GPS or other

tracking device), but is also necessary in anticipating the inclusion of mobile agents’

behaviour within the models.

• allows inference from both continuous and point process observations. This is

desirable not only from a practical point of view, but also from the vision that the

framework may be used to learn concurrently from continuous observations and

point process observations (see Chapter 7).

• is practical, allows for fast and efficient estimation methods to be employed and

3Notable exceptions are [35], which finds an equivalent geostatistical model for the dynamic system

and [19], which assumes a deterministic spatiotemporal evolution process.
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provides uncertainty measures over all estimated quantities. Since spatiotemporal

processes are usually large-scale, the ability of the methods to handle large quanti-

ties of data with ease is of paramount importance. Most of the work in this thesis

concentrates on developing these techniques.

• allows for online inference and change detection. In some cases it is desirable to

have the ability to detect abrupt, or gradual, changes in the dynamic behaviour

of the spatiotemporal system. It is as yet unclear how this would be carried out,

particularly in the context of point process observations.

The ultimate aim of this work is to obtain stochastic models from data sets which are

amenable for control purposes (control in itself is only briefly touched on in Chapter 7).

Control in spatiotemporal domains has been explored [51, 52, 53, 54], however not in the

context of stochastic fields. It is not hard to see that many of the proposed approaches

for deterministic systems would fail in the event of random disturbances. Control of

stochastic spatiotemporal systems is a relatively unstudied topic but bears enormous

implications in many application areas of high uncertainty, such as those described in

the preface to this chapter. The availability of stochastic spatiotemporal models (and

associated inference methodology) tailored for control purposes is a first step in this new

area of study.

1.3.3 Methodology and thesis outline

In order to facilitate the exposition of the proposed framework the thesis is organised

into 7 chapters. Pivotal to satisfying the research objectives is identifying a model class

which is amenable to control scenarios (and hence must be dynamic) and easily caters for

spatially heterogeneous dynamics. To this end the first part of Chapter 2 compares the

properties of the most popular dynamic models and finds that a relatively unstudied class,

known as the stochastic partial differential equation (SPDE) (the stochastic counterpart

of the more commonly used partial differential equation (PDE)), exhibits the required

characteristics. Choosing the SPDE as the class of models under investigation, Chapter

2 proceeds to derive some theoretical properties of this mathematical construct from

the literature which allow for its use in practical setups. In particular it proves that the

random field may be adequately represented by a finite dimensional object which, in turn,

allows the SPDE to be respresented in state-space form. The chapter concludes with an

investigation of estimation methodologies associated with the state-space formulation

which will feature recurrently throughout the work.

Since SPDEs have not been thoroughly studied in an identification context before,
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an estimation strategy for this class of models with continuous observations is given

in Chapter 3. By adopting the state-space framework, here it is found that estima-

tion methodologies (both Bayesian and non-Bayesian) may be readily applied. Errors

introduced by employing a state-space framework are contained through the use of an

appropriate basis function selection method. The chapter concludes by studying the

effect of poor data quality on the behaviour of some of the estimators.

In Chapter 4 it is seen that, in line with the research objectives, the framework estab-

lished in Chapter 3 readily extends to point process observations. The same estimation

methods implemented in Chapter 3 are tried and tested on a relatively simple spatiotem-

poral system on a discrete domain. Variational methods emerge as being marginally

advantageous over other methods in this scenario. The chapter proceeds to establish a

continuous-domain setup which is noted to exhibit considerable advantages over a dis-

crete topology in terms of computational requirements. It concludes with a case study

showing, for the first time, the inference of an SPDE from point process observations.

The work in Chapter 3 and Chapter 4 lays the foundation for Chapter 5 which

extends the methodology to online scenarios. In light of previous results only variational

techniques are implemented. Since online methods in variational methods are scarce,

this chapter takes the opportunity to implement a novel variational filter which is well-

suited for the task at hand. It is seen that it outperforms conventional methods and

provides good results in spatiotemporal systems from both continuous and point process

observations. A case study on the latter case is particularly interesting as it clearly shows

the advantages of estimating the dynamics of the underlying process, rather than solely

the field intensity.

Chapter 6 demonstrates the performance of the developed methods on a real data

set. The popular Wikileaks data set contains thousands of data points, is event-based

and is clearly dynamic in nature. It is found that the event activity follows a particular

stochastic model which, akin to a SPDE, can be modelled as an infinite dimensional

equation. As a result the finite dimensional methodology and inference methods all

readily apply to this scenario. It is found that the dynamic modelling approach with point

process observations is capable of providing excellent predictions, even in the presence

of large uncertainties.

Chapter 7 concludes with a resumé of the thesis. It places this work in the big picture

and discusses future work. Importantly, it discusses the application of this work to a

scenario where mobile agents are required to both sense and control a spatiotemporal

system governed by SPDEs from continuous observations. It is seen that the developed

framework paves the way for further studies on the combined estimation and control of
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stochastic spatiotemporal systems.

1.4 Summary of contributions

The main contribution of this thesis is a new approach to spatiotemporal modelling and

estimation fusing together concepts from the literature on SPDEs, signal processing and

machine learning. The developed approach is versatile as it can be used with different

observation processes (Chapters 3 and 4), heterogeneous systems (Chapters 3, 5 and 6),

time-varying systems (Chapter 5) and in the context of spatiotemporal control (Chapter

7). In addition, the research required for the development of this approach has resulted

in the following contributions:

i) The problem of SPDE estimation is solved through the development of several es-

timation methods (Section 3.2) which are applied for the first time in this setting

(Section 3.3).

ii) A dimensionality reduction tool for spatiotemporal modelling and estimation is pro-

posed (Section 3.1.3). An empirical study (Section 3.3.4) shows that the parameter

bias arising from this approach is contained.

iii) A thorough simulation study (Section 3.4) is used to show and explain why in poorly

observed systems the use of variational methods in providing uncertainty measures

is somewhat limited.

iv) A novel variational-Laplace algorithm (Section 4.1.2) is especially constructed for

the nonlinear smoothing problem in point process systems. The algorithm may find

application in other nonlinear dynamic settings.

v) A new signal processing method is developed which is capable of estimating a field’s

frequency response from point process observations (Section 4.4.1). The availability

of frequency information regarding the point process may prove highly beneficial in

the context of system identification and control.

vi) A new dual variational filter which allows parameter uncertainty to be propagated

in dynamical systems in a deterministic setting is developed (Section 5.2). The filter

is shown to outperform other state-of-the-art deterministic filters.

vii) Studies on a real-world data set describing neural responses to taste stimuli show

that the developed dual filter is highly suitable for online filtering of biomedical

signals and may find considerable application in this regard (Section 5.4.4).
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viii) A study on a real-world data set consisting of logged events in a current conflict

scenario (Chapter 6) reveals a radically new approach to the study of conflict dy-

namics. The study also shows that the proposed approach in this thesis is suitable

for large-scale systems exhibiting considerable uncertainties.

As a direct consequence of this work, three papers have been published to date

[55, 56, 57]. Two further papers are currently under review.



Chapter 2

Spatiotemporal and state-space

system modelling

This chapter is divided into three parts which together provide the basis for the devel-

opment of the identification strategies for spatiotemporal systems discussed in the later

chapters. The first part of this chapter reviews different types of dynamic spatiotempo-

ral models. Several have been proposed, but here only the most relevant, the coupled

map lattice (CML), the integro-difference equation (IDE) and the SPDE are discussed.

Their potentials and limitations are highlighted in comparison to each other. Of note

in this section is the SPDE, identified as the class of models which describes fields on

a continuous spatial domain, is easily set up for spatially heterogeneous dynamics and

enjoys good mechanistic descriptions of the underlying process.

The second part, Section 2.2, provides the preliminaries required to bring the SPDE

into state-space form, a construct which allows for easy predictions and control imple-

mentation. It reviews some theoretical properties of the SPDE which are essential to this

thesis, including linear stochastic evolution equations and spatial random fields. These

developments will be used in Chapter 3 in conjunction with dimensionality reduction

methods commonly employed for the analysis of PDEs, a brief review of which is also

given in this section.

Since in this thesis spatiotemporal systems will be represented in the popular state-

space model framework prior to analysis, the third part, Section 2.3, is devoted to a

review of common methods associated with state-space models such as algorithms for

state inference and joint state-parameter inference. Emphasis is given to the algorithms

which are employed and investigated throughout the thesis. This section highlights the

main differences between the algorithms and provides a simple example which may be

used to help interpret the conclusions obtained from results in later chapters.

15
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2.1 Spatiotemporal dynamic models

This section briefly reviews three of the most common dynamic spatiotemporal models

apparent in the literature, the CML, the IDE and the SPDE.

2.1.1 Coupled map lattices

CMLs constitute what are probably the most intuitive family of model structures. They

are closely related to cellular automata, with the reduced constraint that the state-space

is not necessarily discrete [58]. CMLs are defined to be in discrete-time, discrete-space

and may be viewed as a subset of the more general class of lattice dynamic systems [59].

Let j = 1 . . . J denote a set of lattice points, with each element identifying a discrete

location in space. If the field at lattice point j and discrete-time point k is given by

zj,k, then the temporal evolution at site j may be described through a simple nonlinear

mapping Mj : RJ → R, so that zj,k+1 = (Mjzk) with z k = [z1,k . . . zJ,k]. In some

cases spatial heterogeneity is modelled [60] but usually a spatially homogeneous process

is assumed, so that the mapping dependence on j can be omitted to give a standard

nonlinear evolution equation zj,k+1 = (Mz k).

The mapping M is what defines the behaviour of the CML. By far the most widely

applied mapping is the nearest neighbour coupling map [61, 62, 63, 64], comprising of a

local interaction term fl and a spatial coupling function fc:

zj,k+1 = fl(zj,k) + fc(zj−1,k, zj+1,k)

= (1− ε)f(zj,k) +
ε

2

(
f(zj−1,k) + f(zj+1,k)

)
, (2.1)

where f(·) is a pre-defined nonlinear function, such as the logistic map f : zj,k → 1−az2
j,k,

and ε ∈ [0, 1]. Other mappings consider a neighbourhood which extends beyond the near-

est neighbours, resulting in what is referred to as ‘intermediate range coupling’ or ‘global

coupling’ [65]. The neighbourhood adopted significantly affects the output patterns ob-

tained.

Despite the elegant, concise description, CMLs in this form are able to characterise

a number of remarkably complex spatiotemporal patterns and have been used to model

complicated phenomena such as the sequence of phases and transitions in boiling [66],

cloud dynamics [67] and electroencephalography (EEG) signals [68]. The classical way

of deriving a CML is through the natural laws governing the spatiotemporal phenomena

[62] and thus the resulting model contains parameters which may be directly related to

the physical properties of the system. For the case when the mapping M is unknown,
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or cannot be obtained from first principles, parameter inference and model structure

detection may be used [69, 58].

Most CMLs considered in the literature are deterministic. However a stochastic CML

in which the lattice points are randomly perturbed has been proposed [48]. The stochastic

CML is thus a plausible candidate for the framework considered in this thesis since it

is dynamic, is highly representative of the system’s underlying processes and may be

used to represent systems exhibiting large uncertainties. However, in the light of the

objectives in Section 1.3.2 it is unsuitable for our purposes for the following reasons:

• Since CMLs are built bottom-up on a discrete grid, observations are restricted to

be taken on a regular lattice. Whilst this restriction is impractical in itself, such

a construction will not be amenable to control scenarios where mobile agents are

employed, or where observations are in the form of isolated events which may, by

definition, occur at any point in space.

• Whilst it is possible to define a heterogeneous CML through a spatially varying

mapping, it is unclear how this heterogeneity can be parameterised in a conve-

nient way and moreover what inference mechanism may be used to cater for the

heterogeneity in parameter estimation.

These limitations warrant the investigation into two other popular dynamic models

apparent in the literature, stochastic IDEs, and the somewhat less popular SPDEs.

2.1.2 Integro-difference equation models

The main disadvantage of the CML is that it is constructed on a discrete spatial lattice.

This may be remedied by employing a continuous-space representation which has received

a renewed interest in recent years: the IDE and its stochastic extension, the stochastic

integro-difference equation (SIDE).

The deterministic IDE was first introduced as a tool for modelling in ecology by

Kot to describe the spread of invading organisms [70, 71]. Kot formulated the IDE by

dividing the standard problem of population modelling into two separable stages. The

first is known as the sedentary stage and is described through a nonlinear map f(·) which

typically represents local growth. The second stage is referred to as the dispersion stage,

described through an integral operator A and which physically describes diffusion or

advection (migration) effects in population.

Let s ∈ O ⊂ Rn, t ∈ T ⊂ R+, z(s, t) : O × T → R be a spatiotemporal field and

k(s, r) : O×O → R a connectivity kernel. In the simplest case, the IDE defines the field
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at a point (t+ 1) through the application of an integral operator

z(s, t+ 1) = Az(s, t) =

∫
O
k(s, r)f(z(r , t))dr . (2.2)

The IDE was subsequently put into a stochastic framework by Wikle [50] by incorporating

additive spatial noise through the use of spatial Gaussian processes (GP).

Definition 2.1 (Gaussian process [72, Section 2.2]) A Gaussian process is a col-

lection of random variables, any finite number of which have a joint Gaussian dis-

tribution. It is fully defined by its mean function µ(s) and its covariance function

Σ(s, r) which for a real function f(s) are given as µ(s) = E[f(s)] and Σ(s, r) =

E[(f(s)− µ(s))(f(r)− µ(r))]. A draw ε(s) from the GP is then given as

ε(s) ∼ GP(µ(s),Σ(s, r)). (2.3)

In the SIDE, at each time step the propagated field is superimposed by draws at

every time t from a zero-mean spatial GP, ε(s, t) ∼ GP(0,Σ(s, r)). In compact form the

evolution equation of the SIDE is then given as

z(s, t+ 1) = Az(s, t) + ε(s, t). (2.4)

The randomness, introduced through ε(s, t), models uncertainties and caters for any

model mismatch or random forcing functions. Since the set generated over time {ε(s, t)}
is generally assumed to be independently and identically distributed (i.i.d.), the be-

haviour of the model is largely determined by the form of f(·) and the mixing kernel.

For instance fz = γz, γ ∈ R+ has been used to control and also to allow for exponential

growth [50]. Some works have assumed this linear case with γ = 1 [23, 73]. In EEG

studies f(·) is taken to be a sigmoid function [74]. In ecology the standard logistic or

Ricker growth models are frequently used [71], however f(·) may easily be set to be of

Beverton-Holt, Gompertz or Malthusian form [75].

Under the assumptions that f(·) is a linear function, the mixing kernel wholly defines

the dynamic characteristics of the spatiotemporal field. If k(s, r) is solely a function of

s − r , it is invariant under translation and implies that the dynamics of the field are

the same throughout space, describing what is termed a homogeneous field. If k(s, r) =

k(||s − r ||), then the kernel is also invariant under rotation and is termed isotropic. The

shape of k(s, r) highly reflects the physical behaviour of the system. Local inhibitions

and oscillatory behaviour may be represented through negative lobes and, for instance,

if the centre of mass is not placed on the origin (anisotropic kernel), field advection
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or flow may be described. The appeal of modelling systems with the IDE is that the

kernel gives substantial intuitive insight into the system dynamics and indeed, several

identification approaches to date have focused on estimating basis functions which shape

k(s, r) [23, 56, 74, 76]. In the application domain the SIDE has been successfully used

for cloud intensity modelling [50], rainfall forecasting [47] and, more recently, for EEG

signal modelling [74]. Theoretical extensions and new estimation tools for the SIDE have

also been explored fairly recently by Scerri [76].

The favourable properties of the SIDE render it a plausible candidate for consider-

ation in this thesis; it is dynamic, it is defined over a continuous spatial domain and

it allows for uncertainty through the additive GP at each time step. However, a key

limitation of the SIDE is its inability to provide an underlying physical description of

the evolution process. This is best exemplified by noting that the IDE may be simply

the integral solution to a PDE. Take for instance the one-dimensional homogeneous heat

equation with D ∈ R+

∂z(s, t)

∂t
=
D∂2z(s, t)

∂s2
, z(s, 0) = z0(s). (2.5)

The Fourier transform with respect to s, Z(ν, t), is given as dZ/dt = (iν)2DZ(ν, t)

which is an ordinary differential equation (ODE) with solution Z(ν, t) = Z0(ν)e−ν
2Dt.

The integral solution is obtained by computing the inverse Fourier transform [77]. Noting

that F−1(e−ν
2Dt) = e

−s2
4Dt /
√

2Dt

z(s, t) =
1√
2π

(
z0(s) ∗ 1√

2Dt
e
−s2
4Dt

)
=

1√
4πDt

∫
O
e
−(s−s′)2

4Dt z0(s′)ds′, (2.6)

where ∗ is the convolution operator. Thus, at t = 1, the IDE with a squared exponen-

tial function as the connectivity kernel and f(·) = 1, constitutes (up to a constant of

proportionality) a solution to the heat equation with initial condition z0(s).

In (2.6) it can be seen that the constant D is embedded in the IDE kernel and thus the

physical interpretation of conduction, or heat transfer, is lost in the process. To recover

this term it would be required to compare the IDE with the original PDE. This also

bears implications on how convenient it is to allow for spatially heterogeneous dynamics.

Whilst when employing a PDE spatially varying dynamics may be quantified in some

terms (for example through spatially varying conductivity of the medium), heterogeneity

in the IDE is hard to represent as this would necessitate allowing for spatially varying
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redistribution kernels in an arbitrary fashion [50]. The desire for a more mechanistic

description and the need for a principled way of representing spatially varying systems

leads to the consideration of the PDE, described in the next section.

2.1.3 Partial differential equation models

PDEs are continuous-time continuous-space models which have been used extensively in

the literature to describe a wide range of natural phenomena. The most popular PDE is

undoubtedly the heat equation used to describe heat transfer in (2.5). This is obtained

directly from Fourier’s law which states that heat energy transfer across a surface of

a material is proportional to the temperature gradient across the surface, the constant

being a function of specific material properties such as its thermal conductivity and

density [78, Chapter 1]. In the same way, the diffusion equation is a natural extension of

the heat equation, and the Navier-Stokes and Burger’s equation are obtained from the

laws of fluid dynamics, just to mention a few. The number of times PDEs have been

used for modelling is impressive, finding application in fields as diverse as wildfire control

[79], ecology [80], oceanography [81] and flexible structures [45, Section 1.3].

A PDE is formally defined as any equation which involves an unknown function of

two or more independent variables and one or more of its partial derivatives [82, Section

1.1]. In spatiotemporal systems the independent variables are restricted to be space and

time respectively. Let s ∈ O ⊂ R, t ∈ T ⊂ R+ and z(s, t) : O × T → R be a single-

dimension spatiotemporal field for simplicity. Then the general form of the PDE is given

by

F

(
s, t, z,

∂

∂s
z,
∂

∂t
z,
∂2

∂s2
z,
∂2

∂t2
z,

∂2

∂s∂t
z, . . .

)
= 0. (2.7)

If F (·) is a linear function then the PDE is said to be linear, otherwise it is quasilinear

or nonlinear. Moreover if F (·) is independent of s and t the system is said to be space and

time invariant. Popular examples of linear equations describing an evolution over space

and time are the linear transport equation, the heat equation and the wave equation.

PDEs are commonly defined on some bounded domain. In this case the PDE formu-

lation needs to include some prescribed conditions for z which must be satisfied on the

domain boundary ∂O. These conditions may be either Dirichlet (first-type) requiring z

to take on fixed values on ∂O or Neumann (second-type) which requires z to have fixed

derivatives on ∂O. If together with boundary conditions an initial condition is specified,

the problem of finding the field z which satisfies the PDE is termed the initial/boundary-

value problem.

SPDEs, rather than PDEs, are required as a form of representation when either
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the forcing term is stochastic in nature [e.g. 83], the initial or boundary conditions

are random [84, Section 1.1] or when there is an incomplete knowledge of the physical

system. The ensuing flexibility obtained by coupling stochasticity with the deterministic

PDE renders the SPDE the most intricate of the three models considered in this section.

Prévôt and Röckner [85, Chapter 1] in their opening motivational paragraph state that

“All kinds of dynamics with stochastic influence in nature or man-made com-

plex systems can be modelled by such equations.”

SPDEs have been used for modelling purposes in several application areas. One ex-

ample of a system governed by an SPDE can be found in the field of hydrology where

the groundwater flow in a phreatic aquifer fed by rainfall is described by a linear time-

dependent PDE with a random forcing function [13]. Another system is thin-film flow

induced by thermal noise [86] in which the authors add thermal noise to the incompress-

ible Navier-Stokes equations to formulate the free surface problem under the influence

of fluctuations. Other application areas include the study of neurophysiology [87], tur-

bulence, through the use of the stochastic Burger’s equation [88], signal denoising [89]

and geophysics [90]. The scope of applications is by no means limited to these and, in

principle, every distributed parameter system can be modelled as an SPDE to cater for

loss in predictability [84, Section 1.1].

A typical example of a (linear) SPDE is the one-dimensional diffusion equation with

a random forcing signal given by

∂z(s, t)

∂t
=

∂

∂s

(
D(s)

(
∂

∂s
z(s, t)

))
+ σẆ (s, t), (2.8)

where D(s) > 0, σ ∈ R+ and Ẇ (s, t) is space-time noise (to be made precise in Section

2.2). Note that the spatially heterogeneous dynamics are immediately apparent in the

spatially varying parameter D(s) which moreover retains physical meaning (e.g. variable

conductivity in a metal bar). This contrasts with the IDE where the heterogeneity

is implemented in the redistribution kernel based on observed spatiotemporal behaviour

[50]. In Chapter 3, and throughout the thesis, it is seen how spatially varying parameters

are easily dealt with with minimal effort on the inference procedure.

The reason why SPDEs accomplish the objectives listed in Section 1.3.2 now be-

come apparent. In summary, the formulation of the CML on discrete-space makes it

less suitable for point process observations and for situations with mobile agents in the

context of spatiotemporal control. On the other hand the SIDE obscures the physical

mechanism and presents considerable challenges in describing heterogeneity. The SPDE
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overcomes all these problems by maintaining a continuous spatial representation, by re-

taining a physical description of the underlying phenomena and by describing spatially

heterogeneous dynamics as a natural part of its formulation.

Choosing the SPDE as the model class for analysis brings with it also other exciting

challenges particularly in the context of parameter estimation. Specifically, the literature

in this context is mostly set out for dealing with deterministic PDEs observed in noise

[91, 92, 45, Chapter 3] and describe methods which do not readily extend to implemen-

tation with stochastic fields. Furthermore, to date there has been little effort in the

stochastic case with continuous observations [93] and more noticeably none whatsoever

with point process observations. This thesis thus turns its focus to the implementation

of a systematic framework for the modelling and identification of SPDEs from both con-

tinuous observations in Chapter 3 and point process observations in Chapter 4. The

methods are extended to the online scenario in Chapter 5.

In order to keep the exposition simple, in this thesis only SPDEs restricted to be linear

in form will be considered; the presented approach can also be extended to nonlinear

SPDEs with some modifications (see Section 7.2). To meet the objectives set out in

Section 1.3.2, some properties of the mathematical construct, in particular the stochastic

term, will be discussed in detail in the next section. The discussion is preceded by

a brief mention of some popular finite dimensional reduction methods which may be

employed to reduce the SPDE, which is inherently infinite dimensional, into a finite

dimensional system. The finite dimensional reduction is essential for placing the SPDE

into a conventional state-space form which, in turn, will be used as the foundation

framework for analysis throughout the thesis.

2.2 Basic theory of linear SPDEs

The previous section established the role of the SPDEs in the analysis of spatiotemporal

systems and why they are of particular interest in this study. The aim of the present

section is to review some preliminaries required for the theoretical framework established

in Chapter 3.

2.2.1 Model reduction and temporal discretisation of SPDEs

In order to study SPDEs, which are by nature infinite dimensional, it is highly benefi-

cial (and practical) to reduce them into a form amenable to standard signal processing

techniques, which are usually tailored for finite dimensional systems. All dimensional-

ity reduction and temporal discretisation methods prevalent in the SPDE literature are
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extensions of those used for standard PDEs.

The most popular way to discretise PDEs is by using finite differences which approx-

imates the temporal and the spatial derivatives of the PDE by difference quotients. For

illustration consider the deterministic heat equation of (2.5). Define the discrete operator

ANzj,k =
1

∆2
s

(zj−1,k − 2zj,k + zj+1,k), (2.9)

where ∆s is a fixed-width interval within the spatial domain. Then a six-point finite-

difference scheme [94, Section 2.6] may be defined through a user-defined parameter γ

so that (2.5) is approximated to

zj,k+1 − zj,k
∆t

= AN (γzj,k+1 + (1− γ)zj,k), j ∈ Z, k ∈ Z+, (2.10)

with initial condition zj,0 = z0(j∆s) and where ∆t is a fixed-width interval within the

temporal domain. Setting γ = 1 results in what is termed the Euler implicit scheme,

γ = 1/2 the Crank-Nicholson scheme and γ = 0 the Euler explicit scheme which, written

explicitly, yields

zj,k+1 = zj,k

(
1− 2∆t

∆2
s

)
+

∆t

∆2
s

(zj−1,k + zj+1,k). (2.11)

Letting 2∆t/∆
2
s = ε results in the CML (2.1) with f(·) as the identity map. Finite

differences approximations have naturally found considerable interest in the SPDE com-

munity [95, 96, 97], however, as with CMLs, this representation leads to field description

on a discrete domain which is not satisfactory for our purposes.

A different approach, usually associated with spatial dimensionality reduction, is

known as the method of moments [98, 99, Section 1.3]. Consider the simple linear equa-

tion Az = f for which it is required to find a solution for z. By approximately expanding

z as a series of n basis functions {φi}ni=1 with weights w1 . . . wn, one obtains an approxi-

mation z ≈∑n
i=1wiφi. Consequently

n∑
i=1

wiAφi = f. (2.12)

The method of moments proceeds by taking the inner product of (2.12) with respect to

a set of m testing functions {χi}mi=1 to obtain the set of equations

n∑
i=1

wi〈χj ,Aφi〉 = 〈χj , f〉, j = 1 . . .m. (2.13)
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The set of equations may be written in matrix form to give

Aw = f , (2.14)

where

A =


〈χ1,Aφ1〉 〈χ1,Aφ2〉 . . . 〈χ1,Aφn〉
〈χ2,Aφ1〉 〈χ2,Aφ2〉

. . . 〈χ2,Aφn〉
...

...
. . .

...

〈χm,Aφ1〉 〈χm,Aφ2〉 . . . 〈χm,Aφn〉

 = [〈χi,Aφj〉]m,ni,j=1, (2.15)

and the vectors w = [w1, w2, . . . , wn]T , f = [〈χ1, f〉, 〈χ2, f〉, . . . , 〈χm, f〉]T . If A is square

and its inverse exists then the required solution is given by solving for w using standard

methods.

In the spatiotemporal case, the method of moments results in a linear set of differential

equations which may then be represented as a discrete-time state-space model using

standard Euler techniques (see Section 3.1). The approximating functions, or basis

functions, have to be chosen to exactly satisfy the boundary conditions and suitably

approximate the solution [99, Section 1.3]. The choice of functions is not unique and

a poor choice effectively results in a bad approximation of the solution. The popular

Galerkin method is a special case of the method of moments and is obtained by letting the

set of test functions be identical to the set of basis functions, {χi}mi=1 = {φi}ni=1,m = n.

The Galerkin method has been extensively used for both PDE [100, 45, Section 2.2] and

SPDE [98, 101, 102, Section 2.2] approximation, although its use has yet to be exploited

in the context of data-driven estimation of SPDEs.

The Galerkin approach (and method of moments approaches in general) has some ad-

vantages compared to finite difference approaches. In particular it can be used in spaces

with complex geometries more easily and can handle Dirichlet boundary conditions sys-

tematically by appropriate choice of basis functions. In light of the objectives laid out for

this thesis, the Galerkin method is particularly attractive as it allows for continuous-space

representations through the use of smooth functions {φi}. It may hence be employed in

the presence of both continuous and point process observations.

The difficulty with employing dimensionality-reduction methods with SPDEs is that

of approximating the noise term in an appropriate way [103]. Hence, the following section

provides a brief discussion on the stochastic elements of the SPDE and relevant properties

which are needed for the Galerkin approximation.
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2.2.2 Brownian motion and white noise

An integral part to the discussion of SPDEs is the most fundamental stochastic process,

Brownian motion. Brownian motion, also known as the Wiener process in recognition of

Robert Wiener, is defined as follows:

Definition 2.2 (Brownian motion [104, Section 3.5]) A real-valued stochastic pro-

cess β(t)t ≥ 0 is called a Brownian motion if it satisfies the following ∀0 ≤ t′ < t <∞

(i) β(0) = 0 (almost surely),

(ii) β(t)− β(t′) ∼ N (0, t− t′),
(iii) β(t)− β(t′) is independent of β(u), 0 ≤ u ≤ t′.

Consequently E[β(t)] = 0 and E[β(t)2] = t. Now, consider the trajectory of a Brownian

motion over a small interval δt with δβ = β(t + δt) − β(t). Then, from Definition 2.2,

E[δβ] = 0 and var[δβ] = δt. The quantity δβ/δt is thus randomly distributed with mean

0 and variance 1 and is temporally independent. These are the statistical properties of

white noise ζ(t) which can therefore be expressed in the limit δt→ 0 as

ζ(t)dt = dβ(t). (2.16)

Note that it would be incorrect to state ζ(t) = dβ(t)/dt as Brownian motion is not

differentiable [104, Section 3.5] although the notation ζ(t) ∼ dβ(t)/dt is sometimes used

[104, Section 4.1].

The relationship of Brownian motion with white noise is essential for finding solutions

to several stochastic differential equations (SDE). Consider the following simplest of cases

expressed in classical form
dx(t)

dt
= ζ(t). (2.17)

One may exploit the relationship in (2.16) to re-write (2.17) in terms of process incre-

ments as

dx(t) = dβ(t), (2.18)

which obviously means that x(t) follows the trajectory of a (possibly shifted) Brownian

motion β(t). The importance of this is that by simply changing the representation of

(2.17) a solution to the SDE could be found in terms of a well known stochastic process

with established statistical properties. The construct (2.18) is well known as a SDE in Itô

form. It is the most widely used representation and that which will be used throughout

this work. This construct extends to multi-dimensions [105] and to infinite dimensions

[106], as discussed in the next section.
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2.2.3 Linear stochastic evolution equations in infinite dimensions

As explained in Section 2.1.3, an SPDE is any PDE which contains an implicit or explicit

form of uncertainty. In this work, for simplicity, only additive random disturbances will

be considered. One example is the one-dimensional stochastic heat equation

∂z(s, t)

∂t
=

∂2

∂s2
z(s, t) + σwẆ (s, t) s ∈ O, t ∈ (0, T ],

z(s, 0) = z0(s) s ∈ O,
z|∂O = 0,

(2.19)

where the noise term is expressed as the formal time derivative of a real-valued space-time

GP Ẇ = ∂W/∂t (see [107] for treatment of SPDEs under the classic representation).

Here the abstract representation of (2.19) will be considered, also known as the

abstract Itô representation, introduced for scalar processes in Section 2.2.2. Essentially

this entails considering the temporal evolution of (2.19) as an SDE and noting that at

each time point, the field takes values on a (infinite dimensional) function space rather

than on the real line. These infinite dimensional evolution equations are in the most

general form expressed on some complex Banach space. However, for most applications

it is sufficient to consider them on some separable Hilbert space H equipped with inner

product 〈·, ·〉 and norm || · || = 〈·, ·〉1/2. Let z(t) = z(·, t) ∈ H and W (t) = W (·, t) ∈ H
and introduce a linear differential operator A : H → H. Then (2.19) can be re-written

as the infinite dimensional system

dz(t) = Az(t)dt+ σwdW (t),

z(0) = z0,
(2.20)

where throughout, the domain of the operator is the set of functions in H which satisfy

the boundary conditions exactly, written as D(A) = {z ∈ H : z|∂O = 0} ⊂ H.

The deterministic equivalent of (2.20) with σw = 0, dz(t) = Az(t)dt, can be recog-

nised as the standard Cauchy problem, or initial value problem (IVP) [106, Appendix

A]. For a finite dimensional linear system1 the solution to the IVP is well known to be

z (t, z 0) = T (t)z 0 where T (t) = etA. The solution to the IVP in infinite dimensions is

thus also of the form of z(t, z0) = T (t)z0, t > 0. Likewise, for a linear system (i.e. with

A linear) it can be shown that T (0) = I, T (t + s) = T (t)T (s), and that the mapping

T (·)z, z ∈ D(A) is continuous in R+ [108, Chapter 1]. In this case {T (·)} is known as a

strongly continuous (C0) semigroup of linear operators. The operator A is then said to

1Functions and operators represented by vectors and matrices respectively.
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be a generator of a C0 semigroup of linear operators.

This work will consider the treatment of operators which can be represented as the

sum of known (possibly simpler) linear operators {Ai} weighted by elements in a param-

eter vector ϑ ∈ Rd so that

A =

d∑
i=1

Aiϑi. (2.21)

To denote the dependence on ϑ, the operator A shall sometimes be written as A(ϑ).

The use of a parameter vector ϑ is seen to be very useful in describing spatially varying

parameters, or spatial heterogeneity, and its estimation would contribute to the identifi-

cation of the SPDE operator. As a result of linearity the decomposition does not change

the properties of the generator. In particular if each Ai is linear then A is also linear.

The stochastic element in (2.20) is a generalised form of Brownian motion of Def-

inition 2.2. Before its formal definition, the notion of the trace of an operator is first

introduced. Let {el} be a set of orthonormal basis in H. Then the trace of a self-adjoint

operator Q with eigenvalues {λl} is defined as

Tr(Q) =
∞∑
l=1

〈Qel, el〉 =
∞∑
l=1

λl, (2.22)

where the first equality is a result of Lidskii’s theorem [109, pg. 32]. If this quantity

exists, then the operator is said to be of trace class.

Definition 2.3 W (t) is termed a Q-Wiener process W (t), t ≥ 0, if

(i) W (0) = 0 almost surely,

(ii) W (t) has continuous trajectories,

(iii) W (t) has independent increments,

(iv) W (t) is equipped with some self-adjoint covariance operator Q of trace class where

Q ∈ L(H), where L(H) is the set of linear mappings on H.

Lemma 2.1 (Expansion of a Q-Wiener process [106, Chapter 4] ) For the Q-

Wiener process in Definition 2.3, E[(W (t)−W (t′))2] = N (0, (t− t′)Q), t ≥ t′ ≥ 0 where

N denotes the normal distribution. Moreover, for strictly positive Q, Qek = λkek, λk > 0

and it can be shown that for arbitrary t, W has the expansion

W (t) =

∞∑
j=1

√
λjβj(t)ej , (2.23)

where βj = 1√
λj
〈W (t), ej〉 constitutes a set of mutually independent real-valued Brownian
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motions.

Lemma 2.1 shows that a Q-Wiener process can be represented as an infinite sum on H.

One can already note how an approximate version of the Wiener process can be obtained

by truncating the sum in (2.23) from, say, the (n + 1)th term on. It is now desirable

to analyse the properties of the stochastic process in terms of the expansion; these are

given in the following theorem.

Theorem 2.1 (Properties of 〈W (t), h〉) Consider the stochastic process 〈W (t), h〉. It

can be shown that

〈W (t), h〉 =

∞∑
j=1

√
λjβj(t)〈ej , h〉, h ∈ H, (2.24)

is a real-valued Wiener process convergent on H. Moreover

E[〈W (t), h〉〈W (t), g〉] = t〈Qh, g〉, g, h ∈ H. (2.25)

Proof. From Lemma 2.1 let W (t) be a Q-Wiener represented by (2.23). Then (2.24) is

in R and

E[| 〈W (t), h〉 |2] = E

[ ∞∑
l=1

∞∑
m=1

√
λlλm〈βl(t)el, h〉〈βm(t)em, h〉

]
, (2.26)

where βl(t) and βm(t) are independent Brownian motions and hence E[βl(t)βm(t)] =

tδl,m, where δl,m = 1 if l = m and is 0 otherwise. Therefore, by (2.22) and the Cauchy-

Schwarz inequality (see for instance [110, pg. 7]) which implies that |〈el, h〉| ≤ ||el|| · ||h||,

E | 〈W (t), h〉 |2 = t
∞∑
l=1

λl〈el, h〉2

≤ t||h||2
∞∑
l=1

λl <∞. (2.27)

The proof for the second part of the theorem proceeds on the same lines as above to give

E[〈W (t), h〉〈W (t), g〉] = t
∞∑
l=1

λl〈el, h〉〈el, g〉

= t

∞∑
l=1

〈Qel, h〉〈el, g〉

= t
∞∑
l=1

〈Qh, el〉〈g, el〉, (2.28)
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since Qel = λlel and Q is self-adjoint. Now, since for any function f ∈ H, f =∑∞
l=1〈f, el〉el,

t〈Qh, g〉 = t
〈 ∞∑
l=1

〈Qh, el〉el,
∞∑
m=1

〈g, em〉em
〉
, (2.29)

which on expanding gives (2.28),2 thus completing the proof.

Q-Wiener processes of Definition 2.3 can be used to represent conventional spatially

coloured noise (which unlike white noise is realisable), and are hence those of most

interest in this work. In practice, a natural choice for Q is an integral operator with a

smooth symmetric kernel as in [111, Section 3.3.2] such that

Qu(s) =

∫
O
kQ(s − r)u(r)dr . (2.30)

Another type of process, of less practical importance but which has been extensively

studied in this area, is known as the cylindrical Wiener process denoted here as Wc(t).

In cylindrical Wiener processes the restriction of Q being of trace class in Definition 2.3

is lifted [106, Chapter 4]. Take, for instance kQ(s−r) = δ(s−r) then Q = I (space-time

white noise) with λk = 1, k = 1, 2, . . . . From (2.22) Tr(Q) = ∞ and from (2.23) Wc(t)

is not H-valued.

Such processes are in fact unrealisable and hence of little engineering value. However

it is interesting to note that a real-valued representation of Wc(t) can always be derived

under projection. This representation in turn also lends itself easily to numerical ap-

proximation methods. Again, taking Q = I and using the same reasoning as in the proof

of Theorem 2.1, the process

〈Wc(t), h〉 =

∞∑
l=1

βl(t)〈el, h〉, h ∈ H, (2.31)

is a real-valued Wiener process since E | 〈W (t), h〉 |2= t
∑∞

l=1〈el, h〉2 = t||h||2 < ∞.

Moreover E[〈Wc(t), h〉〈Wc(t), g〉] = t〈h, g〉 g, h ∈ H. The corresponding existence proof

for any arbitrary cylindrical process is much more involved and the interested reader is

referred to [106, Section 4.3].

Theorem 2.1 will be used for the Galerkin reduction of SPDEs in Chapter 3 and,

together with equations defining the observation process, will be used to put the SPDE

into state-space form, a representation which lends itself easily to estimation and control.

Hence, the next section is devoted to a description of state-space models, and a review

2If this is not evident, carry out the expansion with l,m = 2 and recall that 〈el, em〉 = δl,m.
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x 0 x 1 x 2 x k−1 x k

y1 y2 yk−1 yk

Figure 2.1: Graphical representation of a state-space model showing the evolution of the
latent states x k and the observations yk.

of estimation methods commonly associated with this class of models which will be

employed in later chapters.

2.3 State-space models

A system is a physical entity whose behaviour can be described by a set of (dynamic)

equations which evolve in time. At each instant, a system is said to be in a given state and

the temporal evolution of the states describe the dynamics of the system. A spatiotempo-

ral system is a system where the state describes spatial characteristics. The coupling of a

spatiotemporal system with a stochastic observation process yields the popular stochas-

tic state-space model framework which, to facilitate algorithm development, is typically

considered in the discrete-time finite dimensional form [23, 50, 93, 112, 113, 114].

A discrete-time finite dimensional state-space model consists of a real-valued state

vector x k ∈ Rn following a first-order Markov process. The sequence of states is

not observed directly, but rather, through observations yk ∈ Rm, as depicted in

Figure 2.3. From the figure several conditional dependencies which facilitate algo-

rithm derivation may be highlighted, for instance that yk|x k is conditionally inde-

pendent of x 0 . . .x k−1,y1 . . .yk−1 or that x k|x k−1 is conditionally independent of

x 0 . . .x k−2,y1 . . .yk−1. There is no restraint on the Markovian dynamics and the ob-

servation process which may be linear or nonlinear, Gaussian or non-Gaussian. The

simplest (and most widely used) system is, however, the linear Gaussian system (or

linear dynamical system (LDS)) given as

x k = Ax k−1 + wk, wk ∼ Nwk
(0,Σw ), (2.32)

yk = Cx k + vk, vk ∼ Nvk(0,Σv ), (2.33)

where A ∈ Rn×n is the state transition matrix, C ∈ Rm×n is the observation matrix and

Nx (µ,Σ) with x ∈ Rn denotes the normal distribution of x with mean vector µ ∈ Rn
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and covariance matrix Σ ∈ Rn×n.

One key problem in spatiotemporal systems is the reconstruction of the field in some

spatial domain O at any given time point from some observation process. Obviously

if the data is very informative (for instance data obtained with the use of an infrared

camera [51]), then the field may be assumed to be known in its entirety without any

need for further signal processing. If on the other hand the field is measured at isolated

points, as is the case with ocean [24] or neural field [74] sampling, the estimation of the

states X = x 0:K = {x 0 . . .xK} (for K subsequent regularly spaced time intervals) from

Y = y1:K = {y1 . . .yK} for its reconstruction is required. The optimal estimation of X
from some data set is referred to as the smoothing problem, explored in Section 2.3.1. If,

in addition to X , parameters composing A,C ,Σw,Σ v need to be estimated the problem

is referred to as a joint field-parameter estimation problem. Several methods for solving

this problem exist, including EM, variational Bayes expectation maximisation (VBEM)

and MCMC methods, discussed in Sections 2.3.2-2.3.4.

2.3.1 Filtering and smoothing

In all problems discussed in this thesis it will be assumed that the spatiotemporal field

at the kth time point is reconstructed from x k, which in turn needs to be estimated from

a noisy observation process. There are two widely accepted approaches for obtaining

the posterior distribution of x k, i.e. the distribution of x k conditioned on the whole

data set p(x k|Y) [115]. The first is the forward-backward algorithm in which a forward

pass (filtering) is followed by a backward pass (smoothing). The second is the two-filter

smoother which combines forward messages (identical to those obtained by filtering) with

backward messages computed in reverse time to obtain smoothed estimates. Here, and

throughout the rest of the thesis, the subscript k|j will be used to denote the estimate

at time k from data up to time j. Using standard terminology, estimates with subscript

k|k − 1 are termed one-step ahead predictions, k|k filtered estimates and k|K smoothed

estimates.

Forward-backward smoother

Forward pass: Consider the filtered quantity

p(x k|y1:k) =
p(yk|x k)p(x k|y1:k−1)

p(yk|y1:k−1)
∝ p(yk|x k)p(x k|y1:k−1). (2.34)
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The term p(yk|x k) is the likelihood of x k and the quantity p(x k|y1:k−1) is the predictive

distribution given by

p(x k|y1:k−1) =

∫
p(x k|x k−1)p(x k−1|y1:k−1)dx k−1. (2.35)

If, as in the linear case (2.32) and (2.33), p(yk|x k) and p(x k|y1:k−1) are Gaussian den-

sities, then since the product of two Gaussian functions is another Gaussian function

[116], the filter estimate can be conveniently written as

p(x k|y1:k) ∝ p(yk|x k)p(x k|y1:k−1) = Nxk(x̂ k|k,Σk|k). (2.36)

Recursive equations for x̂ k|k and Σk|k may be found in several engineering textbooks

[e.g. 117]. The set of recursions are the governing equations of the popular Kalman filter

[118].

If the state evolution equation or the observation equation (Equations (2.32) and

(2.33) for the LDS) is non-Gaussian or nonlinear, as is the case with point processes,

methods for approximation are required. Several approximate filters exist including

those based on linearisation [119], the unscented transform [120], and sequential Monte

Carlo (SMC) methods [see 121, 122, for comprehensive reviews]. In SMC methods the

filtered distribution is treated as a sum of N particles

p(x k|y1:k) ≈
N∑
i=1

w
(i)
k δx

(i)
k

(x k), (2.37)

where w
(i)
k is the weight of the ith particle x

(i)
k and δx (·) denotes the delta Dirac mass

centred at x . Using sequential importance sampling (SIS) the weights w
(i)
k are computed

iteratively as

w
(i)
k ∝ w

(i)
k−1

p(yk|x (i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

, (2.38)

where π(·) is known as an importance sampling distribution, or a proposal distribution.

If further the proposal distribution π(x
(i)
k |x

(i)
0:k−1,y1:k) = p(x

(i)
k |x

(i)
k−1) is chosen, the

weights are updated using solely the likelihood:

w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k ). (2.39)

In SMC methods the weights w
(i)
k quickly become degenerate, requiring what is known

as resampling [121]. The resampling procedure, together with the propagation/sampling
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of the particles using the proposal distribution, renders SMC methods inefficient when

compared to deterministic methods, especially in high dimensional spaces.3

Backward pass: Exploiting the fact that x k|x k+1 is conditionally independent of

yk+1:K , the backward recursion (or smoothing pass) is given by

p(x k|Y) =

∫
p(x k,x k+1|Y)dx k+1

=

∫
p(x k|x k+1,Y)p(x k+1|Y)dx k+1

=

∫
p(x k|x k+1,y1:k)p(x k+1|Y)dx k+1

=

∫
p(x k|y1:k)p(x k+1|x k)p(x k+1|Y)

p(x k+1|y1:k)
dx k+1. (2.40)

Again, in the linear Gaussian case one can write

p(x k|Y) = Nxk(x̂ k|K ,Σk|K). (2.41)

Recursive equations for x̂ k|K and Σk|K may be found in several texts [e.g. 25]. The set

of recursions are the governing equations of the popular Rauch, Tung and Striebel (RTS)

smoother [125].

If the state evolution equation or the observation process is non-Gaussian or nonlinear

then the RTS smoother ceases to be optimal and the approximative filters listed in the

forward pass may be extended into approximative smoothers [e.g. 126, 127, 128].

Two-filter smoother

The two-filter smoother combines messages obtained from forward recursions and back-

ward recursions to obtain smoothed quantities. This smoother is a result of the factori-

sation

p(x k|Y) = p(x k|y1:k,yk+1:K)

=
p(x k|y1:k)p(yk+1:K |x k,y1:k)

p(yk+1:K |y1:k)

∝ p(x k|y1:k)p(yk+1:K |x k)
= α(x k)β(x k), (2.42)

3The popular belief that particle filters beat the curse of dimensionality is not evidenced in the

literature [123, 124].
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where α(·) is the forward message and β(·) is the backward message.4 The forward

message is identical to the filtered estimate and thus may be computed in the same way

as (2.34), re-written for completeness as

α(x k) ∝ p(yk|x k)
∫
p(x k|x k−1)p(x k−1|y1:k−1)dx k−1

= p(yk|x k)
∫
p(x k|x k−1)α(x k−1)dx k−1. (2.43)

The backward message, in turn, is found from

p(yk+1:K |x k) =

∫
p(yk+1:K ,x k+1|x k)dx k+1

=

∫
p(yk+1:K |x k+1)p(x k+1|x k)dx k+1

=

∫
p(yk+1|x k+1)p(yk+2:K |x k+1)p(x k+1|x k)dx k+1

=

∫
p(yk+1|x k+1)β(x k+1)p(x k+1|x k)dx k+1. (2.44)

Once again, for linear Gaussian systems both α(x k) and β(x k) are Gaussian so that

the product p(x k|Y) is also Gaussian. For general systems, SMC approaches may be

extended to the two-filter case [126]. The two-filter approach allows for parallel im-

plementation but, more importantly, is required for deriving tractable computational

updates when computing recursions in a VBEM framework; see [129, Section 5.4.2] for

further details.

This sub-section has covered the basics of state estimation in the context of state-

space models. If in addition to X a number of unknown parameters θ are also required

to be estimated, a joint field-parameter estimation algorithm is required. These methods

are the focus of the following sub-sections.

2.3.2 The EM algorithm

The EM algorithm is a ML estimation algorithm introduced by Dempster, Laird and

Rubin [15] for latent (hidden)-data or incomplete-data problems.5 It was first applied to

linear discrete stochastic state-space systems by Shumway and Stoffer [130] and recently

in a more general setting by Gibson and Ninness [25]. A comprehensive review on the

algorithm and its extensions is given by McLachlan and Krishnan [131] whilst intuitive

4For notational convenience β(·) will be used to denote both Brownian motion and the backward

message; the object it represents will be obvious from the context.
5In state-space terminology the latent data are the states X , the incomplete-data the data set Y and

the complete-data the joint (X ,Y).
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summaries of the algorithm can be found in several sources [132, 133, Chapter 9]. Briefly,

EM serves a dual purpose; that of estimating the hidden states X and that of estimating

the unknown parameters θ using an iterative algorithm. Recall that in the context of

spatiotemporal systems represented as state-space models, the hidden states X represent

the field. The ML estimation concerns some parameters θ governing the dynamics and

statistics of the evolution and observation processes.

Let the observed data be denoted as Y. For a given unknown parameter vector θ,

the joint (or complete-data) likelihood p(X ,Y | θ) is given by

p(X ,Y | θ) = p(X | Y,θ)p(Y | θ), (2.45)

where p(Y | θ) is the observation (or incomplete-data) likelihood. Applying natural

logarithms to both sides

ln p(Y | θ) = ln p(X ,Y | θ)− ln p(X | Y,θ). (2.46)

From (2.46) it is clear that the latent variables X need to be marginalised out using

expectations in order to obtain an expression in terms of the available data Y and θ

which can be maximised thereafter. It is not immediately apparent what is the optimal

distribution p̃(X ) under which to take expectations.

Adding the right hand side (RHS) of (2.46) with ln p̃(X ) − ln p̃(X ), where p̃(X ) is

some free-form distribution, and considering the equality under expectations with respect

to p̃(X )

ln p(Y | θ) = Ep̃(X )

[
ln
p(X ,Y | θ)

p̃(X )

]
+ Ep̃(X )

[
ln

p̃(X )

p(X | Y,θ)

]
(2.47)

= L(p̃(X ),θ) +KL(p̃(X )||p(X | Y,θ)). (2.48)

where L(·, ·) and KL(·||·) are the first and second terms on the RHS of (2.47) respectively.

The form of (2.48) is very indicative. In particular, the second term on the RHS is the

Kullback-Leibler (KL) divergence [133, Section 1.6.1] between p̃(X ) and p(X | Y,θ). It

can be shown that the KL divergence KL(·||·) ≥ 0 rendering the first term L(p̃(X ),θ) a

lower bound on the incomplete-data likelihood so that

ln p(Y|θ) ≥ L(p̃(X ),θ). (2.49)

The negative of the lower bound L(p̃(X ),θ) is known as the variational free energy in

statistical physics [134]. Both the EM algorithm and the VBEM algorithm of Section
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2.3.3 attempt to maximise this lower bound in an iterative manner.

The EM algorithm operates by considering an estimate θ(i) (where i is the iteration

number), fixing θ to this value, and then finding p̃(X )(i+1) such that the lower bound

L(·) is maximised. One way of carrying out the maximisation is by taking functional

derivatives of L(p̃(X ),θ) with respect to p̃(X ). The optimal form of the free distribution

is then found to be

p̃(X )(i+1) = p(X | Y,θ(i)). (2.50)

This step is known as the E-step and renders (2.48)

ln p(Y | θ(i)) = L(p̃(X )(i+1),θ(i)) +KL(p̃(X )(i+1)||p(X | Y,θ(i)))

= L(p̃(X )(i+1),θ(i)), (2.51)

since the KL divergence between two identical densities is zero. After the E-step the

lower bound is therefore equal to the log likelihood. It can also be shown that even

the derivatives of the lower bound and the log likelihood are the same at θ = θ(i) [131,

Section 3.7].

In the next step, known as the M-step, p̃(X )(i+1) is then fixed so that

ln p(Y | θ) = L(p̃(X )(i+1),θ)

= Ep(X|Y,θ(i)) [ln p(X ,Y | θ)]− Ep(X|Y,θ(i))

[
ln p(X | Y,θ(i))

]
, (2.52)

where the second term is the entropy of p(X | Y,θ(i)), is independent of θ and can hence

be treated as a constant. The maximisation problem is therefore reduced to maximising

the first term in the RHS of (2.52) so that

θ(i+1) = arg max
θ

Ep(X|Y,θ(i)) [ln p(X ,Y | θ)] . (2.53)

The new parameter estimate θ(i+1) makes the KL divergence in (2.48) non-zero so that

the E-step and M-step have to be repeated until a stopping condition is met, say ||θ(i+1)−
θ(i)|| < ε, where || · || denotes the usual Euclidean norm and ε is a pre-defined threshold.

When this condition is satisfied, the EM algorithm is said to have converged.

Theorem 2.2 The EM algorithm is guaranteed to converge to a fixed point θ = θ∗ for

which ln p(Y | θ∗) is a stationary value [133, Section 9.4].

Proof. Since the distribution p(Y|θ) is positive, then under the mild assumption of
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boundedness, i.e. sup{p(Y|θ(i))} <∞, it is sufficient to show that

p(Y|θ(i)) ≥ p(Y|θ(i−1)), i > 0, (2.54)

as this implies that limi→∞ p(Y|θ(i)) = p(Y|θ∗). For i > 0, as a result of the M-step,

L(p̃(X )(i),θ(i)) ≥ L(p̃(X )(i),θ(i−1)). (2.55)

Moreover, from (2.52) and (2.48)

ln p(Y|θ(i−1)) = L(p̃(X )(i),θ(i−1)) (2.56)

ln p(Y|θ(i)) = L(p̃(X )(i),θ(i)) +KL(p̃(X )(i)||p(X | Y,θ(i)))

≥ L(p̃(X )(i),θ(i−1)) +KL(p̃(X )(i)||p(X | Y,θ(i))). (2.57)

Equation (2.54) thus follows from the positiveness of KL divergence.

It should be noted that although {p(Y|θ(i))} converges monotonically to a station-

ary point, this point may well be a saddle point. To circumvent this problem certain

regularity conditions were imposed by Wu [135, 131, Section 3.4.1] to ensure that θ∗ is

a maximiser of p(Y|θ). Since no such problems were encountered in this work, this issue

is not discussed further. A summary of this algorithm is given in Algorithm 2.1.

Algorithm 2.1 The EM algorithm

Input: Data set Y, initial parameter estimate θ(0).
i = 0
while (not converged)

p̃(X )(i+1) = p(X | Y,θ(i)) E-step

θ(i+1) = arg maxθ Ep̃(X )(i+1) [ln p(X ,Y | θ)] M-step

i = i+ 1

Output: p̃(X )(i), θ(i).

MAP-EM Maximum-a-posteriori (MAP)-EM is a semi-Bayesian approach to param-

eter estimation through the consideration of a parameter prior distribution p(θ). Since

p(θ|Y) ∝ p(Y|θ)p(θ), (2.58)

the only modification in the algorithm is the inclusion of the prior in the M-step so that
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θ(i+1) = arg max
θ

[
ln p(θ) + Ep(X|Y,θ(i)) [ln p(X ,Y | θ)]

]
. (2.59)

The MAP-EM algorithm is considered only semi-Bayesian since at each step the

probability mass of the posterior distribution is focused at its mode, and can hence

still be treated as a point estimate. This, in many cases, is unrepresentative of the

true distribution. The VBEM algorithm, described next, overcomes this problem by

maintaining the distributional properties of the parameter estimates throughout the E-

step.

2.3.3 The VBEM algorithm

VBEM is an elegant framework for analytic computations of approximate posterior dis-

tributions over latent variables and parameters [136, 137]. The posterior distributions

are computed using iterations (coined Iterative VB in [14, Section 1.2]), in a similar way

as the EM algorithm, and its convergence is guaranteed. Whilst inheriting the advan-

tages of being a Bayesian approach, the method is deterministic, i.e. no sampling is

required, and for a given set of data, likelihood, and prior distribution, the approximate

posterior distribution is unique. Hence the VB method is very fast when compared to

MCMC methods such as that described in Section 2.3.4. It has consequently seen wide

applicability in a wide range of problems such as the modelling of the cell’s regulatory

network [138, 139], vision tracking [140], blind source separation [141] and neuroimaging

[142].

The VB method hinges on finding a convenient functional form for approximating

the joint posterior distribution p(X ,θ|Y). Usually the approximation is carried out using

conditionally independent distributions p̃(X ) and p̃(θ) so that p(X ,θ|Y) ≈ p̃(X )p̃(θ).

Throughout this work p̃(X ) and p̃(θ) will be referred to as the variational posterior

distributions. The forms of these distributions are obtained by maximising the free

energy using functional derivatives, much in the same way as in the E-step of the EM

algorithm.

Rather than being based on the log incomplete-data likelihood (2.46), the VB method

is set up using the log evidence6

ln p(Y) = ln p(X ,Y,θ)− ln p(X ,θ|Y). (2.60)

6The term evidence arises from the use of the marginal likelihood p(Y) as evidence for a particular

model in model selection procedures. In such cases p(Y) is usually explicitly written as p(Y|Mi) where

Mi is a candidate model.
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This can be represented much in a similar way as (2.48)

ln p(Y) = Ep̃(X )p̃(θ)

[
ln
p(X ,Y,θ)

p̃(X )p̃(θ)

]
+ Ep̃(X )p̃(θ)

[
ln

p̃(X )p̃(θ)

p(X ,θ | Y)

]
= L(p̃(X ), p̃(θ)) +KL(p̃(X )p̃(θ)||p(X ,θ|Y)). (2.61)

As in EM, the first term of (2.61) L(p̃(X ), p̃(θ)) (the negative of the variational free

energy), is a lower bound on the log evidence so that

ln p(Y) ≥ L(p̃(X ), p̃(θ)). (2.62)

The forms of the variational posterior distributions which maximise the lower bound

are given in the following theorem.

Theorem 2.3 (VB variational posteriors) Given a data set Y and its log evidence

of the form (2.60), the maximum of the lower bound L(p̃(X ), p̃(θ)) is reached for

p̃(X ) ∝ exp
(
Ep̃(θ)[ln p(X ,θ,Y)]

)
, (2.63)

p̃(θ) ∝ exp
(
Ep̃(X )[ln p(X ,θ,Y)]

)
. (2.64)

Proof. Taking the functional derivative of

L(p̃(X ), p̃(θ)) = Ep̃(X )p̃(θ)

[
ln
p(X ,Y,θ)

p̃(X )p̃(θ)

]
, (2.65)

with respect to p̃(X ) yields

δL(p̃(X ), p̃(θ))

δp̃(X )
=

∫
p̃(θ) ln

[
p(X ,θ,Y)

p̃(X )p̃(θ)

]
dθ − 1

=

∫
p̃(θ) ln p(X ,θ,Y)dθ − ln p̃(X )− C0

= 0, (2.66)

for a maximum. Here C0 = 1 − entropy(p̃(θ)). Rearranging gives (2.63). The proof for

(2.64) follows by symmetry.

The VBEM algorithm operates by considering a parameter distribution p̃(θ)(i) and

then finding p̃(X )(i+1) such that the lower bound is maximised. Next, p̃(X )(i+1) is fixed

and p̃(θ)(i+1) is found such that the lower bound is maximised. The VBEM algorithm

converges to a local maximum in L(p̃(X ), p̃(θ)), since, i) as a result of subsequent max-
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imisations,

L(p̃(X )(i+1), p̃(θ)(i+1)) ≥ L(p̃(X )(i+1), p̃(θ)(i))

≥ L(p̃(X )(i), p̃(θ)(i)), (2.67)

and ii) L(p̃(X )(i+1), p̃(θ)(i+1)) is bounded from above by ln p(Y) in (2.61). As in the EM

algorithm, convergence may be assessed by monitoring, for instance, the change in the

mean of the parameter posterior distribution across consecutive iterations. A summary

of the VBEM algorithm is given in Algorithm 2.2.

Algorithm 2.2 The VBEM algorithm

Input: Data set Y, initial parameter variational posterior distribution p̃(θ)(0).
i = 0
while (not converged)

p̃(X )(i+1) ∝ exp
(
Ep̃(θ)(i) [ln p(X ,θ,Y)]

)
VBE-step

p̃(θ)(i+1) ∝ exp
(
Ep̃(X )(i+1) [ln p(X ,θ,Y)]

)
VBM-step

i = i+ 1

Output: p̃(X )(i), p̃(θ)(i).

The VBEM exhibits a lot of similarity with the conventional EM algorithm. A

significant difference, however, is that p̃(X )(i+1) is found using the expectations of θ

rather than solely its ML point estimate. The two methods will thus differ considerably

when, for instance, the posterior mode differs from the posterior mean. This is an

advantage of VBEM which through averaging does not give too much importance to the

mode of the parameter posterior distribution. This feature makes it ideal for skewed

unimodal distributions such as those generated by point process systems, as discussed in

Chapter 4. From a different perspective one may view the EM algorithm as a special case

of VBEM known as functionally constrained VB [143], where the parameter variational

posterior is constrained to a point mass function p̃(θ)(i) = δ(θ − θ(i)) with θ(i) at the

mode of the posterior distribution [144]. Using terminology from classical control, the

EM algorithm capitalises on a certainty equivalence property whilst the VBEM algorithm

is more ‘cautious’ by incorporating knowledge of second order and higher moments in

state estimation [145, 146, Section 6.4].

2.3.4 Gibbs sampling

MCMC methods are by far the most widely used class of distributional approximation

methods. The success of MCMC methods is attributed to the following facts: i) con-
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vergence to the target posterior distribution is guaranteed [147, Chapter 6], ii) they are

generally simple to implement, iii) they can be applied to most models with ease and

iv) recent advances in technology and parallel computing have made them applicable to

large-scale inference problems.7 Briefly, MCMC methods attempt to generate a Markov

chain, the stationary distribution of which is the desired posterior distribution (see [16,

Section 7.1] for a detailed overview). The two arguably most prevalent sampling ap-

proaches are the Metropolis-Hastings algorithm [150] and the Gibbs sampler [151]. The

latter is particularly useful when the functional form of the joint posterior distribution

p(X ,θ|Y) is not known, or hard to sample from, but where the conditional densities

p(X|θ,Y) and p(θ|X ,Y) are known, or easy to sample from. Since this is generally the

case with state-space models, the Gibbs sampler has found wide applicability in this

scenario [152, 153].

Consider a parameter sample θ(i). A basic two-stage sampler (see Algorithm 2.3)

generates a state sample X (i+1) from Xi+1 ∼ p(X|θ(i),Y), and then θ(i+1) from θi+1 ∼
p(θ|X (i+1),Y). The procedure is then repeated for N times or until some criterion is

met. All statistical moments of the individual and joint posterior distributions may be

evaluated from the stationary distributions of the resulting Markov chains. In particular

one has that for N samples

Ep(X|Y)[f(X )] ≈ 1

N

N∑
i=1

f(X (i)), (2.68)

Ep(θ|Y)[f(θ)] ≈ 1

N

N∑
i=1

f(θ(i)), (2.69)

Ep(X ,θ|Y)[f(X ,θ)] ≈ 1

N

N∑
i=1

f(X (i),θ(i)). (2.70)

In practice the first samples need to be excluded from the approximations (2.68)-(2.70)

to avoid bias introduced by possibly inappropriate initial conditions. This process is

referred to as burn-in.

Despite the theoretical and practical advantages of MCMC techniques, they are

stochastic approximation methods; the final distributional approximation is determined

by the paths of the Markov chains, which by definition are random. Associated meth-

ods are usually computationally inefficient and it is hard to assess when the chain has

7This is particularly so with the increased availability and performance of extremely powerful graphical

processing units, such as those employing the NVIDIA R© CUDATM parallel computing architecture

[148, 149].
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converged with acceptable error to the distribution of interest. These limitations, which

are somewhat exacerbated in high dimensional systems [154] such as spatiotemporal sys-

tems, are what drives research into approximate deterministic inference methods such as

EM and VBEM.

Algorithm 2.3 The two-stage Gibbs sampler

Input: Data set Y, initial parameter sample θ(0).
i = 0
while (not converged)

Sample X (i+1) from p(X|θ(i),Y)

Sample θ(i+1) from p(θ|X (i+1),Y)
i = i+ 1

Output: {X (t)}it=1, {θ(t)}it=1

2.3.5 Comparative study: the normal distribution with unknown mean

and precision

The operational differences between the above joint field-parameter estimators are easily

studied when implementing them on a static model. In this study, N i.i.d. data points

Y were generated from a standard normal distribution N (µ, 1/τ) with unknown mean µ

and unknown precision τ . The prior distributions are given as

p(µ) = Nµ(µ′, σ2
µ), p(τ) = Gaτ (ατ , βτ ), (2.71)

where Gaτ (ατ , βτ ) denotes the Gamma distribution in τ with shape parameter ατ and

inverse scale (rate) parameter βτ . The full joint posterior for this problem is

p(µ, τ |ατ , βτ , µ′, σ2
µ,Y) ∝ Gaτ (ατ , βτ )Nµ(µ′, σ2

µ)
N∏
j=1

√
τ exp

(
−τ

2
(yj − µ)2

)
. (2.72)

Since the normalisation constant in (2.72) cannot be found analytically, the posterior

needs to be approximated using, for instance, a Gibbs sampler, the VBEM algorithm

or the EM algorithm. These three methods will now be applied to this problem and

benchmarked against the posterior evaluated on a very fine grid (this computation is

only plausible in simple cases such as that presented here), which will be referred to as

the ‘true posterior’. For consistency with the rest of this section, here µ is treated as the

unknown state X , and τ as the unknown parameter θ.
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Gibbs sampler implementation: The conditional distribution of µ is given by

p(µ | µ′, σ2
µ, τ,Y) ∝ p(Y|µ, τ)p(µ | µ′, σ2

µ)

= Nµ(µ′0, σ
2
µ0

), (2.73)

where

µ′0 = σ2
µ0

[
ȳNτ +

µ′

σ2
µ

]
σ2
µ0

=
1

Nτ + 1
σ2
µ

, (2.74)

and ȳ is the sample mean. Similarly, the conditional distribution of τ is given by

p(τ | ατ , βτ , µ,Y) ∝ p(Y|µ, τ)p(τ | ατ , βτ )

= Gaτ (ατ,0, βτ,0),
(2.75)

where

ατ,0 = ατ +
N

2
, βτ,0 = βτ +

N∑
j=1

(yj − µ)2

2
. (2.76)

The Gibbs sampler is hence easily implemented by sampling µ(i+1) from p(µ |
µ′, σ2

µ, τ
(i),Y) and τ (i+1) from p(τ | ατ , βτ , µ(i+1),Y). The set of samples {µ(1..N)}

{τ (1..N)} may then be used to approximate the true posterior distributions.

VBEM implementation: The VBEM approximation for this problem is given as

p̃(µ, τ |Y) ≈ p̃(µ)p̃(τ). (2.77)

From Theorem 2.3, the variational posterior at the (i+ 1)th iteration, p̃(µ)(i+1), is given

by

p̃(µ)(i+1) ∝ p(µ|µ′, σ2
u) exp(Ep̃(τ)(i) [ln p(Y|µ, τ)])

= Nµ(µ′0, σ
2
µ0

), (2.78)

where

µ′0 = σ2
µ0

[
ȳNEp̃(τ)(i) [τ ] +

µ′

σ2
µ

]
, σ2

µ0
=

1

NEp̃(τ)(i) [τ ] + 1
σ2
µ

. (2.79)

Similarly, the variational posterior p̃(τ)(i+1) is given by

p̃(τ)(i+1) ∝ p(τ |ατ , βτ ) exp(Ep̃(µ)(i+1) [ln p(Y|µ, τ)])

= Gaτ (ατ,0, βτ,0), (2.80)
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where

ατ,0 = ατ +
N

2
, βτ,0 = βτ +

N∑
j=1

Ep̃(µ)(i+1) [(yj − µ)2]

2
. (2.81)

Since the prior distributions (2.71) are in the same parametric family as the posterior

distributions (2.78) and (2.80), they are termed conjugate priors. The selection of an

appropriate form for the prior distributions is an important step in VB, so that the

distributional updates across iterations may be carried out analytically.

MAP-EM implementation: From (2.50), the E-step at the (i+1)th iteration is given

by

p̃(µ)(i+1) ∝ p(Y|µ, τ (i))p(µ|µ′, σ2
µ)

= Nµ(µ′0, σ
2
µ0

), (2.82)

where

µ′0 = σ2
µ0

[
ȳNτ (i) +

µ′

σ2
µ

]
, σ2

µ0
=

1

Nτ (i) + 1
σ2
µ

. (2.83)

From (2.59), the M-step is given by

τ (i+1) = arg max
τ

[
Ep̃(µ)(i+1) [ln p(Y|µ, τ)] + ln p(τ)

]
=

ατ − 1 + N
2

βτ + 1
2

∑N
j=1 Ep̃(µ)(i+1) [(yj − µ)2]

. (2.84)

Although the similarity between all the update equations across the three methods

is very apparent, it is the small differences which distinguish their respective behaviours.

In particular, when comparing VBEM and EM it is seen that the EM algorithm in (2.84)

assigns the mode of the posterior Gamma distribution ((ατ,0 − 1)/βτ,0) to τ (i+1). The

VBEM algorithm instead uses the mean (ατ,0/βτ,0) throughout its update of p̃(µ) in

(2.79). Comparing the VBEM updates (2.79) and (2.81) with the distributions sampled

from by the Gibbs sampler (2.74) and (2.76), it is seen that the variational posteriors

are in fact the conditionals averaged over the unknown variables. This averaging is why

VB is commonly associated with mean field approximation methods8 originating from

the statistical physics literature [156].

A simulation was set up with the true parameters µ = 2 and τ = 1 and with N = 4.

8Mean field methods fully factorise the posterior distribution [155, 129, Chapter 2] and can thus be

considered as a special case of VB.
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(a) (b) (c)

Figure 2.2: (a) True joint posterior p(µ, τ |Y) and estimated joint posterior distributions
p̃(µ, τ |Y) using (b) a Gibbs sampler and (c) the VBEM algorithm. In the latter case the
VB approximation is p̃(µ, τ |Y) ≈ p̃(µ)p̃(τ).

The hyperparameters (assumed to be known) were set to µ′ = 6, σ2
µ = 10, ατ = 0.2 and

βτ = 0.1 The true posterior (2.72) is clearly non-separable in τ and µ, indicating that

in this case the product distribution (normal × gamma) of the VBEM yields a different

functional form for the joint posterior distribution. This is evident in Figure 2.2 where it

is also seen that the Gibbs sampler with 100,000 samples (with 10,000 removed to account

for burn-in) accurately estimates the required distribution. However the joint variational

posterior is the best possible fit of a normal × gamma distribution to the true posterior

and for most practical purposes its approximation may be considered good enough.

The individual variational posteriors are also different from the true posteriors (which

for this problem may not be found analytically) and those given by the Gibbs sampler.

Yet, from Figure 2.3 it is seen that they are very representative. Of interest is the position

of the mode of the variational posterior p̃(τ), which is seen to lie in the direction of the

skewness of the true distribution, i.e. closer to the mean of the true posterior. This is

again a result of the averaging and is a common observation with unimodal distributions

(see Section 4.1.2). The mean and variance of the posterior distributions as given by the

Gibbs sampler and VB algorithm are given in Table 2.1. For both unknown parameters,

the VB algorithm is seen to under-estimate the variance. This is a common problem

with VB methods [157] (see Section 3.4 for the implications in spatiotemporal systems).

Table 2.1: Comparison between the Gibbs and VBEM posterior distributions.

mean(µ) var(µ) mean(τ) var(τ)

Gibbs 2.56 0.65 0.83 0.4
VBEM 2.45 0.29 0.82 0.3



46 Chapter 2. Spatiotemporal and state-space system modelling

(a) (b)

Figure 2.3: The true and estimated posteriors for (a) µ and (b) τ using the Gibbs sampler,
VB algorithm and EM algorithm.

In Figure 2.3 it is seen that the MAP-EM algorithm accurately sets the maximiser

τ∗ to the mode of the true posterior as expected. However, the estimation of p̃(µ) =

p(µ|Y, τ∗) is clearly very different from the true posterior. Therefore if the EM algorithm

is used as a joint estimator (as is commonly the case in spatiotemporal systems [e.g. 113])

the price of ML estimation of θ may indeed be the distributional inaccuracy of the latent

data. Since this thesis is particularly interested with the hidden states, VB is seen to

be a plausible alternative to EM for the application at hand, particularly because the

added computational cost when compared to EM is minimal.9 For this problem the EM

and VBEM algorithms both only required 100µs on a standard PC for 10 iterations.

The Gibbs sampler on the other hand required 45s for 100,000 samples, the bottleneck

being obviously the sampling process (despite the fact that the sampling distributions

are conventional), a step omitted in the other two methods.

2.4 Conclusion

This chapter has presented a brief review on:

• Spatiotemporal models which have found considerable use in the application do-

main, namely the CML, the IDE, the PDE and their stochastic extensions. Here

the SPDE was highlighted as the model class which satisfies all the objectives set

out in Section 1.3.2.

• Essential properties and methods associated with SPDEs. This includes the formal

9Although EM and VBEM are both deterministic approximation approaches with the same compu-

tational complexity, VBEM algorithms tend to require more instruction evaluations than corresponding

EM algorithms.
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definition of Brownian motion and the Wiener process, properties of the abstract Q-

Wiener process and a brief review on discretisation methods employed in practice.

• State-space models in the context of spatiotemporal modelling and associated in-

ference methodologies, namely the EM algorithm, the VBEM algorithm and Gibbs

sampling.

In doing so this chapter has introduced the concepts which will be recurring throughout

the thesis. These notions will be used to obtain a state-space model from an underlying

SPDE through the use of theoretical properties of the mathematical construct. Joint

field-parameter estimation methods will then be used to estimate unknown quantities in

the model. Chapter 3 will put this overview in context and establish the basic framework

for linear SPDEs by expanding on the methods highlighted in Sections 2.3.2-2.3.4 for their

inference from continuous data; Chapter 4 will then consider the even more interesting

case when the methodology is adapted to cater for observations which come in the form

of events rather than continuous readings.





Chapter 3

Field-parameter estimation from

continuous observations

In Section 2.1 it was seen why the SPDE, when compared to other dynamic model

classes, is ideally suited for spatiotemporal system representation for the purposes of

this work. However, (S)PDEs describe infinite dimensional fields evolving on a contin-

uous spatiotemporal domain. Measurements, on the other hand, are frequently taken

at isolated locations, at discrete-time intervals and in noisy conditions. Estimation of

the field and governing parameters from such potentially uninformative data is highly

challenging.

Although the estimation problem has been studied extensively for the deterministic

case [e.g. 46, 158], little has been done in the stochastic case [93]. Moreover, the solutions

proposed to date for the stochastic case are mostly not in line with the objectives of

Section 1.3.2. For instance, in [159] Sallberg used an infinite dimensional Kalman filter

in conjunction with multiple model adaptive estimation to find the thermal conductivity

of the stochastic heat equation. This approach requires the expansion of the semigroup

of linear operators associated with the generator A, something only possible with simple

problems such as the stochastic heat equation with spatially invariant parameters. Wikle

in [49] introduced a fully Bayesian approach which however requires the SPDE to be

discretised on a regular mesh. In addition, the class of models considered in his work are

in principle deterministic; the noise was added ad-hoc to cater for discretisation error

and lacks physical meaning.

A notable exception is the work of Solo [93] were the Galerkin method was employed

to bring the SPDE into finite dimensional form before application of the EM algorithm.

The approach is an excellent starting point for the considerations in this thesis since it is

seen to allow for spatially heterogeneous systems whilst maintaining a continuous-space

49
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representation. However, the estimation method proposed in [93] does not provide a

means for obtaining uncertainty measures over the parameters, which could be vital for

control purposes. Neither does the work provide a means for basis function selection

which is a required task when employing Galerkin methods. Finally, it does not provide

any simulation studies which, as will be seen, are pivotal in demonstrating advantages

and limitations of the proposed methodology. It is in this light that this chapter proposes

a solution to the SPDE estimation problem by consolidating ideas presented in [93].

The first step in the considered approach is a rigorous application of the Galerkin

method to obtain a reduced model representation for SPDEs in Section 3.1. This is

facilitated by the treatment of the additive space-time noise term using theory outlined

in Section 2.2, coupled with basis function selection methods using frequency analysis.

The resulting state-space model maintains a continuous-space representation of the spa-

tiotemporal field. This representation will prove necessary for using continuous-space

data in the point process treatment of Chapters 4-6.

The state-space model lends itself easily to the second step, estimation. A vast range

of methods, from ML estimation augmented with parameter uncertainty measures, to

approximate Bayesian techniques, to fully Bayesian methods are made possible. The

potential use of algorithms lying in these three categories are shown through the imple-

mentation of the augmented EM algorithm, VBEM algorithm and a Gibbs sampler, with

complete details given in Section 3.2. The section thus presents a set of new, practical

identification algorithms for the SPDE state-space representation, all of which are able

to provide parameter uncertainty measures. The developed methods are benchmarked

against each other in Section 3.3 on a spatiotemporal case study. The VBEM method is

seen to be orders of magnitude faster than the Gibbs sampler and to give results in line

with the latter method.

A key result (which reaches beyond the systems considered here) made possible by

studying the behaviour of the different mechanisms is that the VBEM algorithm may

provide highly overconfident estimates in these systems. The effect, discussed in Section

3.4, is studied in relation to the quality of the available data and a remedy for it is given

using the augmented EM class of inference mechanisms.

3.1 State-space representation of SPDEs

In this section the Galerkin method, described in Section 2.2.1, will be used to reduce the

SPDE into a finite dimensional representation. In order to conform with the observation

process, which is frequently, by nature, discrete in time, the reduced model will then be
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discretised using standard Euler methods; an explicit scheme is intentionally employed

to maintain a ‘linear in the parameters’ representation. The resulting systems of equa-

tions are then coupled with the discrete-time observation process to obtain a state-space

representation of the SPDE.

3.1.1 The Galerkin-Euler approximation

As discussed in Section 2.2.1, the first step of the Galerkin method considers the ex-

pansion of the stochastic field into a sum of basis functions weighted by some unknown

random variables (or weights); subsequently the inner product of the resulting evolution

equation is taken with respect to a set of test functions, which for the Galerkin method

is chosen to be the same as the set of basis functions. An Euler step is then applied

to obtain a discrete-time representation of the finite dimensional system. The follow-

ing theorem formalises the procedure for obtaining the discrete-time finite dimensional

representation of the SPDE.

Theorem 3.1 (Discrete-time finite dimensional representation of SPDEs)

Let A : H → H describe a linear operator and W (t) = W (·, t) ∈ H. Using the Galerkin

approximation method in conjunction with the explicit Euler scheme, the infinite

dimensional equation

dz(t) = Az(t)dt+ σwdW (t),

z(0) = z0,
(3.1)

may be represented as an evolution equation of the form

xk+1 = A(ϑ)xk + wk, (3.2)

where xk ∈ Rn,A(ϑ) ∈ Rn×n and wk ∈ Rn with E[wk] = 0 and cov[wk] = Σw ∈ Rn×n.

Proof. The function z(t) ∈ H may be written as a (possibly) infinite sum in φi, where

B = {φi} forms a set of basis functions in H

z(t) =

∞∑
i=1

xi(t)φi. (3.3)

Denote the n-dimensional subspace Hn = span{φi; 1 ≤ i ≤ n}. It is then possible to

truncate the sum in (3.3) to obtain an approximation of z(t) given by

z(t) ≈
n∑
i=1

xi(t)φi. (3.4)
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Choose χj , 1 ≤ j ≤ n as suitable sufficiently regular test functions which vanish on ∂O
and take the inner product of the resulting SPDE with respect to each χj so that

〈dz(t), χj〉 ≈
n∑
i=1

dxi(t)〈φi, χj〉, (3.5)

and

〈A(ϑ)z(t)dt, χj〉 ≈
n∑
i=1

xi(t)〈A(ϑ)φi, χj〉dt, (3.6)

for 1 ≤ j ≤ n. In the Galerkin method χj = φj . The additive noise increments

have a projection 〈dW (t), φj〉 which by Theorem 2.1 are the increments of a real-valued

stochastic process. The approximated covariance Qdt : Rn → Rn of the increments of

the projected dW (t) is then given by

Qdt =
[
E[〈dW (t), φi〉〈dW (t), φj〉]

]n
i,j=1

. (3.7)

Again, by Theorem 2.1, the matrix Q is given by

Q = [qi,j ]
n
i,j=1, qi,j = 〈Qφi, φj〉. (3.8)

Setting Ψx = [〈φi, φj〉]ni,j=1 and ΨA(ϑ) = [〈A(ϑ)φi, φj〉]ni,j=1

Ψxdx (t) = ΨA(ϑ)x (t)dt+ σwdβ(t), (3.9)

where x (t) = [x1(t) . . . xn(t)]T and dβ(t) = [dβ1(t) . . . dβn(t)]T is the n-dimensional

projected noise with mean 0 and covariance matrix Qdt. Equation (3.9) is a linear set

of coupled SDEs. Now, for a discretisation interval ∆t, denoting x k := x (k∆t) and

βk := β(k∆t), an explicit Euler scheme yields a discrete-time approximate system of

equations given by

Ψx(x k+1 − x k) = ΨA(ϑ)x k∆t + σw∆βk , (3.10)

where ∆βk = βk+1 − βk has covariance ∆tQ . Therefore

x k+1 = (I + ∆tΨ
−1
x ΨA(ϑ))x k + σwΨ−1

x ∆βk , (3.11)

or

x k+1 = A(ϑ)x k + wk, (3.12)

where I is the identity matrix, A(ϑ) = (I + ∆tΨ
−1
x ΨA(ϑ)) and wk = σwΨ−1

x ∆βk is

a Gaussian random variable distributed according to wk ∼ Nwk
(0,Σw). Since Ψx is
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symmetric, the covariance matrix of wk is given by

Σw = σ2
wΨ−1

x E[∆βk∆T
βk

]Ψ−1
x = σ2

w∆tΨ
−1
x QΨ−1

x . (3.13)

From Section 2.2.3, setting Q = I gives the covariance of the increments of the projected

standard cylindrical Wiener process. In the case of space-time white noise Q = Ψx and

the covariance of the state-space evolution equation becomes Σw = σ2
w∆tΨ

−1
x .

To put Theorem 3.1 into perspective, consider the simulation of the one-dimension

stochastic diffusion equation using the Galerkin decomposition. In this case (3.1) on

O ⊂ R has operator

A(·) =
∂

∂s

(
D(s)

∂

∂s

)
(·). (3.14)

The spatially varying diffusion coefficient D(s) is assumed to be of polynomial class so

that D(s) = ϑ1 + ϑ1s+ · · ·+ ϑds
d where ϑ1 . . . ϑd are parameters assumed to be known

for simulation purposes. The spatial differential operator may then be re-written as

A(·) = (ϑ2 + 2ϑ3s+ . . . (d− 1)ϑds
d−2)

∂

∂s
(·)

+(ϑ1 + ϑ2s+ . . . ϑds
d−1)

∂2

∂s2
(·).

(3.15)

Applying Theorem 3.1 and relating the operator expansion (3.15) to (2.21), the matrix

ΨA(ϑ) is represented as ΨA(ϑ) =

d∑
i=1

ϑiV i where in this case

V 1 =

∫
O
φ(s)

∂2φ(s)T

∂s2
dO,

V i |i>1 =

∫
O
φ(s)

∂2φ(s)T

∂s2
si−1 + (i− 1)φ(s)

∂φ(s)T

∂s
si−2dO,

(3.16)

and φ(s) = [φ1(s) . . . φn(s)]T is the vector of basis functions.

It follows that for a given set of basis functions, the matrices ΨA and Ψx and hence

A(ϑ) are known. To find the noise covariance, Σw, the quantity Q is required. This

may, in turn, be found from (3.8) if Q is known. Once these quantities are determined

(3.12) may be forward simulated in time. The spatial field reconstruction at any time

point is then given through (3.4).

A simulation using this discrete-time finite dimensional representation of the stochas-

tic diffusion equation was set up with ∆t = 0.02, O = [0, 60], D(s) = s−0.01s+ 0.001s2,
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(a)

(b)

Figure 3.1: (a, left) A single instantiation of the stochastic diffusion equation with spa-
tially varying diffusion coefficient, zero initial and zero boundary conditions and (a,
right) the field (black) together with its comprising basis functions (red) at t = 1 for
kQ(s) = exp(−s2/20). (b) Same as (a) with kQ(s) = exp(−s2).

σw = 0.5 and Qu =
∫
O kQ(s− r)u(r)dr. For this example n = 31 local basis functions of

the form (3.20, Section 3.1.3) were chosen with τ = 4π/7 and equally spaced throughout

the spatial domain. To also show the effect of the covariance operator kQ, two forms

were chosen: (i) kQ(s) = exp(−s2/20) and (ii) kQ(s) = exp(−s2). Snapshots of the

simulated fields, together with the individual components at k = 50 are shown in Figure

3.1 from where it is seen that case (i) produces a smoother field than (ii). In turn, the

basis functions are able to reproduce the frequency content in the field; the problem

of how to ensure this is possible from continuous data is tackled in Section 3.1.3 using

Fourier methods. Finally, both fields are seen to satisfy the boundary conditions exactly

as required.

3.1.2 The observation process

In this chapter data is assumed to be collected by m sensors at distinct locations through-

out the spatial domain. Each of the sensor characteristics is described through linear

functions c(·) which define the area over which the aggregated reading is taken. These

linear functions are usually assumed to be known. When the space is large in compari-

son to the sensor range c(·) = δ(·); this is usually the case with spatiotemporal systems
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studied on a geographical scale, such as oceanography studies with underwater vehicles

[24], weather monitoring with unmanned aerial vehicles (UAV) [160, Chapter 1] and pol-

lution monitoring with weather stations [12]. In other cases, such as neuroimaging [74],

the spatial scope of the sensors cannot be ignored. Typical shape functions include the

Gaussian radial basis functions (GRBF) [76], the box function [54] or the smoothed box

function to maintain certain regularity assumptions and avoid the Gibbs phenomenon

during numerical reconstruction [161]. In general the precise shape of c(·) has little effect

on the performance of the algorithm when its frequency response greatly exceeds that of

the underlying field, which is also in some sense a requirement in order to ensure system

identifiability.

The observation process commonly associated with these types of problem may be

integrated with finite dimensional reduction mechanisms to construct a linear state-space

model amenable for joint state-parameter inference using methods described in Section

2.3. Consider a spatiotemporal field z(t) and let Ci(t) : H → R, i = 1 . . .m denote the

output operator of the ith sensor which takes an average of the underlying field at regular

time intervals ∆t. Define z(k∆t) := zk, Ck,i := Ci(k∆t), vk,i ∼ Nvk,i(0, σ2
v) and the output

reading of the ith sensor as yi(k∆t) := yk,i. Then the sensor output readings corrupted

by white noise at the kth time interval is related to the field as yk,i = Ck,izk + vk,i. The

ensemble reading is given as

yk =

[∫
O
c(s; sci,k)zk(s)ds

]m
i=1

+ vk, (3.17)

where sci,k ∈ Rm denotes the position of the ith sensor at time t = k∆t, and vk ∈ Rm is

additive white Gaussian noise with zero mean and covariance Σ v = σ2
vI .

Considering the expansion of zk on Hn as in (3.3) the output equation is expressed

in matrix form as

yk = C kx k + vk, (3.18)

where

C k =


∫
O c(s; sc1,k)φ

T (s)ds∫
O c(s; sc2,k)φ

T (s)ds
...∫

O c(s; scm,k)φ
T (s)ds

 . (3.19)

If the sensors are point sensors, it follows that C T
k = [φ(sc1,k) . . .φ(scm,k)], where φ(scj,k) is

the vector of contributions of the basis functions for the jth sensor located at the position

scj at sample number k. If further the sensors are static, C T
k = C T = [φ(sc1) . . .φ(scm)].

As illustrated above, the observation process (3.18) has been extensively employed in
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various application settings. It should be noted, however, that in practice it may need

to be altered to account for small-scale or microscale variations which arise due to the

truncation (3.4) or unmodelled effects (for instance by appropriate structuring of Σ v).

See [162, 163] for relevant discussions.

3.1.3 Basis function placement from continuous observations

In the simulation example in Section 3.1.1, basis functions were used to represent an

SPDE for simulation purposes. However, when modelling the SPDE for estimation pur-

poses, a suitable set of basis functions is not available a priori. Moreover, what set to

elicit when employing the observation process (3.17) has not been extensively studied

in the context of SPDEs. For these reasons, this section discusses basis function selec-

tion and proposes a principled engineering approach adopted from the neural network

literature as a way forward.

In the Galerkin method (and the method of moments in general), the only require-

ments are that the basis set B is a linearly independent set which can satisfy the ap-

proximation of (3.4) with reasonable accuracy [99, Section 1.3]. In practice the choice of

B may be affected by the ease of evaluation of the matrix elements Q ,Ψx and ΨA and

the maximum feasible size n for matrix storage and operation (such as inversion). The

chosen set need not be orthogonal nor orthonormal.

A vast range of continuous-space functions satisfy these criteria and may be used to

form B. A common choice in function approximation, the Fourier series, is not wholly

appropriate for spatiotemporal systems which, in general, may exhibit considerable het-

erogeneity in spatial behaviour (in practice this would result in an unreasonably large n

for accurate reconstruction). The same argument applies to sets with functions exhibit-

ing a wide scope, such as Jacobi polynomials or, similarly, Zernike polynomials on the

unit disk [30]. The hereogeneity may be better catered for by the widely used empirical

orthogonal functions [162, 163] which are proven to minimise the variance of the trunca-

tion error cause by (3.4). However their construction is cumbersome when observations

are not taken at regular spatial intervals and moreover are known to not adequately

model the dynamics of the process under study [164, Section 7.1.3].

In this thesis, the construction of a set comprising functions of local scope, such

as Epanechnikov kernels or B-splines [165] is hence suggested. This allows for direct

manipulation to cater for heterogeneity (see, for example, [22] and Figure 6.5 on pg. 177)

and are generally easy to construct. In the context of spatiotemporal field reconstruction

GRBFs have gained particular interest recently [22, 23, 73, 166, Section 5.4] as they allow

analytic solutions to some otherwise intensive computations and are proven to have
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universal approximation properties [167]. Yet, they may not be used in the presence of

Dirichlet boundary conditions since they are not of compact support and hence do not

vanish on ∂O.

As a result, the use of the following radial basis function (RBF), termed the local

GRBF, is proposed for use throughout this work [168]:

φ(s) =


(2π−||τs||)(1+(cos ||τs||)/2)+ 3

2
sin(||τs||)

3π , ||τs|| < 2π,

0, otherwise,
(3.20)

for τ > 0 and where || · || denotes the usual Euclidean distance on O. The local GRBF

closely resembles the usual isotropic GRBF with φ(s) = exp (−τ2||s||2/2π), but is of

compact support. This function was first introduced in [169] as a truncated covariance

function in order to force independence between points in space which are sufficiently far

away from each other.

When compared to the use of GRBFs, this basis function enhances numerical condi-

tioning when computing the Gram matrix1 Ψx , and also improves computational speed-

up when computing inverses as a result of increased matrix sparseness. A key advantage

is that as a result of the close resemblance, with only a slight loss in accuracy, one

may use standard analytic solutions associated with the usual GRBF when carrying out

the Galerkin decomposition. More importantly, results for function reconstruction using

standard GRBFs may be readily applied for placing them within the spatial domain.

The principal idea proposed here for basis function placement is to use the results

of Sanner and Slotine in [170]. First, the local GRBF functions are arranged regularly

in the spatial domain such that any subset of O may be adequately represented in the

reconstruction. The resolution of the grid has to be small enough to avoid aliasing

by satisfying Shannon’s sampling criterion. In particular, if the centres of the basis

functions, denoted {ζi}ni=1, are set equal to the sequence of vectors describing a regular

lattice of edge length ∆s in O, then it is required that

∆s <
1

2νc
=

1

2α0νc
, (3.21)

where νc denotes the support of the signal’s frequency content, assumed to be the same

in each of the components of s, and α0 is an oversampling parameter.

Second, it is required to find the range, or extent, of the local functions which in turn

determines the range of frequencies they can represent. Consider the case when the basis

1a Hermitian matrix of inner products
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functions are GRBFs with functional form

φ(s) = exp

(
− s2

2σ2
b

)
. (3.22)

The Fourier transform of the GRBF is yet another GRBF (in the frequency domain)

given as

φ(ν) = F{φ(s)} =
√

2πσ2
b exp(−2π2σ2

bν
2), (3.23)

so that the variances in the spatial and frequency domain are related through the map-

pings [170]

σ2
ν ←

1

4π2σ2
b

σ2
b ←

1

4π2σ2
ν

. (3.24)

This relationship is very convenient as it may be used to select the width of the GRBFs

in the spatial domain based on its width in the frequency domain.

The range of frequencies which can be represented by the basis functions has to exceed

that of the field for adequate reconstruction. To this end Sanner and Slotine suggest the

following relationship

σν =
1√
2
νc. (3.25)

Given σν , relationship (3.24) can then be used to find the width of the desired GRBF in

O. By simple substitution of (3.25) in (3.24)

σb =

√
1

2ν2
cπ

2
. (3.26)

To find the required parameter τ for local GRBFs one may apply the relation

τ =
√
π/σb =

√
2ν2
cπ

3. (3.27)

The resulting basis is hence a set of local GRBFs with parameter τ placed in the spatial

domain centred on the coordinates {ζi}ni=1.

The only quantity required for basis function placement is simply νc (the support

of the signal frequency content) and an oversampling parameter α0. In the case of

continuous data observations, νc can be estimated using spatial Fourier analysis, as

shown in the case study at the end of this chapter. A similar approach employing

frequency analysis is also possible for basis function placement when dealing with point

process observations; a detailed approach for this special case will be discussed in detail

in Chapter 4.

Irrespective of the observation process, throughout this thesis it will be assumed that
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the spatial frequency response of the field is temporally invariant (so that a temporally

averaged Fourier transform may be used to compute νc). While this assumption may be a

restriction in some cases, for example in time-varying systems (see Chapter 5), it greatly

facilitates algorithm development and improves computational efficiency. In particular

the system dimensionality is ensured to be temporally invariant and the matrices Ψx ,V

and Q may be computed before inference is carried out.

3.2 SPDE field and parameter estimation

The previous section outlined a strategy for converting SPDEs with operators of the

form (2.21) observed with noisy sensors into a conventional state-space form. As a result

of such a representation, well-established and also more recent statistical estimation

techniques ranging from ML to approximate and full Bayesian techniques may be used for

joint field-parameter inference. To demonstrate this, corresponding estimation methods,

discussed in Section 2.3, are developed here in the context of SPDEs. First, the EM

algorithm of [93] is derived but further augmented to provide parameter uncertainty

measures. Then the VBEM algorithm is outlined and finally a full MCMC method is

applied; the prime use of the latter will be to verify the other two methods. These

methods are also applied to similar systems with point process observations in Chapter

4.

Note that the set of equations (3.2) and (3.18) describe a LDS with the unknown

states X = {x i}Ki=0, x 0 ∼ Nx0(µ0,Σ0), observed data Y = {y i}Ki=1, unknown param-

eters2 θg = (ϑ, σ−2
w , σ−2

v ) and, following the convention in [129, Chapter 5], unknown

hyperparameters describing the distribution of the initial state θh = (µ0,Σ
−1
0 ). The dis-

tinction between hyperparameters and parameters is only relevant in the Bayesian con-

text and the unknown quantities may be collected together as θ = (θg,θh). Throughout

it is assumed that the operator Q is known a priori. The problem of SPDE identification

may be solved by estimating the states governing the field statistics X and the unknown

quantities θ given the observed data. A graphical representation of the model is given

in Figure 3.2.

3.2.1 Augmented EM methods for SPDEs

E-Step: Unlike the simple static system considered in the case study of Section 2.3.5,

the data collected from dynamic systems may not be considered to be i.i.d. as the

underlying state sequence forms a Markov chain (see Figure 3.2). The Markov structure

2Precisions instead of variances are included in θ to facilitate derivations later on.
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µ0

Σ0

x 0 x 1 x 2 xK

y1 y2 yK

ϑ σ−2
w

σ−2
v

Figure 3.2: Graphical representation of the reduced state-space model for SPDEs with
unknown parameters. The box encloses the model of Figure 2.3.

yields a joint likelihood for the reduced SPDE model given by

p(X ,Y | θ) = p(x 0)

K∏
k=1

p(x k | x k−1,ϑ, σ
−2
w )

K∏
k=1

p(yk | x k, σ−2
v ). (3.28)

In Section 2.3.2 it was shown that for the E-step at the ith iteration, the distribution

p̃(X )(i+1) = p(X|Y,θ(i)) needs to be evaluated for carrying out the expectation of (3.28).

As stated in Section 2.3.1, for the LDS it is well known that relevant quantities from

this distribution are given by the smoother developed by RTS, given in the context of

SPDEs in Algorithm A.1 in the appendix.

The smoother provides posterior distributions of the states at each k, which are

normally distributed of the form Nxk(x̂ k|K ,Σk|K). For the linear Gaussian model con-

sidered, the quantities required for the M-step are the first order moment E[x k] = x̂ k|K ,

the second order moment E[x kx
T
k ] and the cross second-order moment E[x kx

T
k−1]. The

former second moment may be found through the state smoothed covariance matrix Σk|K

as obtained directly from the smoother. Computation of the latter quantity requires the

computation of the cross covariance matrix M k|K [25] as shown in the last for loop of

Algorithm A.1.

M-Step: Having computed the required statistics on X under the parameter vector

θ(i), it is now possible to compute the required expectation of (3.28) which in turn is

required to find θ(i+1) in the M-step (2.53). From (3.28) the expected log likelihood is
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given by

Ep̃(X )[ln p(X ,Y|θ)] = Ep̃(X )

[
ln p(x 0|µ0,Σ0) +

K∑
k=1

ln p(x k | x k−1,ϑ, σ
2
w)

+
K∑
k=1

ln p(yk | x k, σ2
v)

]
.

(3.29)

Consider the identity

|σ2Σ | = σ2n|Σ |, Σ ∈ Rn×n. (3.30)

Then, under the Gaussianity assumptions (ignoring constants relative to θ) (3.29) is

given as3

Ep̃(X )[ln p(X ,Y|θ)] = Ep̃(X )

[
− 1

2
ln |Σ0| −

1

2
(x 0 − µ0)TΣ−1

0 (x 0 − µ0)

+
Kn

2
lnσ−2

w −
1

2

K∑
k=1

σ−2
w (x k −A(ϑ)x k−1)T Q̃

−1
(x k −A(ϑ)x k−1)

+
Km

2
lnσ−2

v −
1

2

K∑
k=1

σ−2
v (yk −C kx k)

T (yk −C kx k)

]
,

(3.31)

where from Theorem 3.1,

Q̃ = ∆tΨ
−1
x QΨ−1

x , (3.32)

and A(ϑ) =
(

I + ∆tΨ
−1
x

∑d
i=1 V iϑi

)
. The required updates for the parameters are

given in the following theorem.

Theorem 3.2 Maximisation of (3.31) at the (i+ 1)th iteration yields the ML estimates

θ(i+1) = [ϑ(i+1)T , σ−2(i+1)

w , σ−2(i+1)

v ,µ
(i+1)
0 ,Σ−1(i+1)

0 ]T given by

µ
(i+1)
0 = x̂0|K , (3.33)

Σ−1(i+1)

0 = Σ−1
0|K , (3.34)

ϑ(i+1) = Υ−1υ, (3.35)

σ−2(i+1)

w =
Kn

Π w
, (3.36)

σ−2(i+1)

v =
Km

Π v
, (3.37)

3If x is normally distributed with mean µ ∈ Rn and covariance Σ ∈ Rn×n, then its probability density

function is given by p(x ) = (2π)−
n
2 |Σ |−

1
2 exp(− 1

2
(x − µ)TΣ−1(x − µ)).
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where

υ = ∆t[tr(VT
i Ψ−1

x Q̃
−1

(Γ 1:K −Λ0:K−1))]di=1, (3.38)

Υ = ∆2
t [tr(VT

i Ψ−1
x Q̃

−1
Ψ−1

x VjΛ0:K−1)]di,j=1, (3.39)

Π w = tr(Q̃
−1

Λ1:K − 2A(ϑ(i+1))T Q̃
−1

Γ 1:K + A(ϑ(i+1))T Q̃
−1

A(ϑ(i+1))Λ0:K−1),

(3.40)

Π v =
K∑
k=1

(
yTk yk − 2yTk Ckx̂k|K + tr(CT

k CkΛk)
)
, (3.41)

tr(·) denotes the matrix trace operator and where

Γ k1:k2 =

k2∑
k=k1

Γ k =

k2∑
k=k1

Ep̃(X )(i+1) [xkx
T
k−1] =

k2∑
k=k1

[x̂k|K x̂Tk−1|K + Mk|K ], (3.42)

Λk1:k2 =

k2∑
k=k1

Λk =

k2∑
k=k1

Ep̃(X )(i+1) [xkx
T
k ] =

k2∑
k=k1

[x̂k|K x̂Tk|K + Σk|K ]. (3.43)

Proof. See Appendix B.1.

Joint field-parameter estimation for the SPDE is thus obtained by iteratively smoothing

the state sequence and maximising to obtain parameter estimates. The EM algorithm

for SPDEs is summarised in Algorithm 3.1.

Algorithm 3.1 The EM algorithm for SPDEs

Input: Data set Y, parameters {C k}Kk=1, Q̃ , {V i}di=1,Ψx and initial parameter estimates

θ(0) = (θ
(0)
g ,θ

(0)
h ) = (ϑ(0), σ−2(0)

w , σ−2(0)

v ,µ
(0)
0 ,Σ−1(0)

0 ).

i = 0
do

Run Algorithm A.1 with θ = θ(i) E-step

Evaluate θ(i+1) from (3.33)-(3.37) M-step
i = i+ 1

until ||θ(i) − θ(i−1)|| < ε1

Output: {x̂ k|K ,Σk|K}Kk=0,θ
(i).

In spatiotemporal systems the parameter ϑ is of key interest as it describes the

dynamics of the system. A measure of parameter uncertainty on ϑ may prove to be vital

in decision making or in strategic sensor planning when studying SPDEs. However, the

conventional EM algorithm, as described above and in [93], does not provide confidence
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intervals for the ML estimates. Nonetheless there exist ways of evaluating or estimating

the information matrices associated with the estimated dynamics.

Parameter uncertainty measures with EM

The first method employed for covariance matrix evaluation with EM was developed by

Louis [171] and exploits the use of the missing information principle. Soon after, Meng

and Rubin [172] developed the supplemented EM (SEM) algorithm which uses the trajec-

tory of the EM algorithm and the complete-data Hessian to estimate the incomplete-data

Hessian. The advantage of SEM is that it obviates the requirement for computing score

statistics. More recently, Duan and Fulop [173] developed a numerical approach to com-

pute the expected incomplete-data Hessian using expected complete-data scores which

are directly available from the EM algorithm.

Louis’ method: Let the observed-data likelihood (denoted by an o superscript) of the

unknown parameter dynamics ϑ be given as p(Y|ϑ) and the complete-data likelihood

(denoted by a c superscript) be given as p(X ,Y|ϑ). Then the score statistics and the

Hessians are given by

so(Y,ϑ) =
∂ ln p(Y|ϑ)

∂ϑ
, H o(Y,ϑ) =

∂2 ln p(Y|ϑ)

∂ϑ∂ϑT
, (3.44)

sc(X ,Y,ϑ) =
∂ ln p(X ,Y|ϑ)

∂ϑ
, H c(X ,Y,ϑ) =

∂2 ln p(X ,Y|ϑ)

∂ϑ∂ϑT
. (3.45)

Given a parameter estimate ϑ = ϑ∗, it is common practice to define I o(Y,ϑ)ϑ=ϑ∗ =

−H o(Y,ϑ)ϑ=ϑ∗ (rather than the Fisher information matrix) as the observed information

of the ML estimate [171, 174] such that I o
−1

(Y,ϑ)ϑ=ϑ∗ is the covariance of the estimate.

This quantity may be found using the following theorem.

Theorem 3.3 (Missing information principle [171]) The observed data informa-

tion matrix Io(Y,ϑ) = −Ho(Y,ϑ) is given by

Io(Y,ϑ) = Ic(Y,ϑ)− Im(Y,ϑ), (3.46)

where Ic is the expected complete-data information matrix and Im is the expected

missing-data information matrix given by

Ic(Y,ϑ) = −Ep(X|Y,ϑ)[H
c(X ,Y,ϑ)], (3.47)

Im(Y,ϑ) = Ep(X|Y,ϑ)[s
c(X ,Y,ϑ)sc

T
(X ,Y,ϑ)]− so(Y,ϑ)so

T
(Y,ϑ). (3.48)

Moreover, on convergence of the EM algorithm to a stationary point ϑ = ϑ∗,
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so(Y,ϑ)|ϑ=ϑ∗ = 0 so that

Io(Y,ϑ)ϑ=ϑ∗ = −Ep(X|Y,ϑ∗)[Hc(X ,Y,ϑ)]ϑ=ϑ∗

− Ep(X|Y,ϑ∗)[sc(X ,Y,ϑ)sc
T

(X ,Y,ϑ)]ϑ=ϑ∗ .
(3.49)

Since both the matrices in (3.49) are given in terms of the complete-data statistics, in

the case of i.i.d. data they can easily be found using the EM algorithm. However, when

correlations in (X ,Y) exist, as in the case of dynamic systems, the second term in (3.49)

becomes very complicated as quantities such as Ep̃(X )[x ix
T
j ] for all i, j = 1 . . .K need to

be evaluated. The methods described next avoid this problem and are hence preferable

for information estimation in dynamic systems.

SEM: The aim of the SEM is to provide a stable estimate of the asymptotic covariance

matrix without the use of the score statistics so that the problem observed with the

missing information principle in Theorem 3.3 when associated with dynamic systems is

avoided. The method is based on [15] which, when considering a single-parameter system

(ϑ = ϑ), relates the asymptotic variance based on the observed data σ2o

ϑ with that based

on the complete-data σ2c

ϑ as follows

σ2o

ϑ = σ2c

ϑ /(1− r), (3.50)

or

σ2o

ϑ = σ2c

ϑ + ∆σ2c

ϑ , (3.51)

where ∆σ2c

ϑ = [r/(1− r)]σ2c

ϑ and r is the rate of convergence of the EM algorithm. From

(3.50) it is immediately apparent that the higher the rate of convergence,4 the higher the

discrepancy between the observed-data information and the complete-data information.

The SEM algorithm for when ϑ is a vector is given by

Σ o
ϑ = Σ c

ϑ + ∆Σ c
ϑ

= Σ c
ϑ + (I −R(ϑ∗))−1R(ϑ∗)Σ c

ϑ,
(3.52)

where R(ϑ∗) is the rate of convergence matrix in the limit of the optimal estimate ϑ∗.

The diagonal elements of ∆Σ c
ϑ effectively give the increase in the asymptotic variance

of ϑ∗ as a result of missing information. Thus to obtain the asymptotic variance, in

what is referred to as the S-step, one simply needs to compute Σ c
ϑ and R(ϑ∗). The first

4Note that here the rate of convergence corresponds to the gradient of the trajectory of the EM

parameter estimates ‘close’ to the ML estimate. It is hence large when the EM algorithm requires several

iterations to converge to the ML estimate.
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term is the inverse of the expected complete-data information matrix (3.47). The matrix

associated with the information relating to dynamics is then given by

Ic(ϑ) = σ−2(i)

w Υ (i) |i→∞ . (3.53)

Therefore

Σ c
ϑ = I−1

c (ϑ) = [σ−2(i)

w Υ (i)]−1 |i→∞ . (3.54)

Details of obtaining R(ϑ∗) through numerical differentiation are given in [131, Section

4.5.2]. Care must be taken when using estimates for ϑ
(i)
j which have converged for the

required computation as a result of numerical conditioning. In practice it proved hard to

obtain consistent results from SEM in the case studies considered, thus warranting inves-

tigation into the third, rather less known method for parameter uncertainty estimation

used with EM.

Duan’s method: The possibility of non-negative definiteness in the empirical compu-

tation of H c(X ,Y,ϑ) was the prime motivation of Duan and Fulop to develop a stable

estimator of the expected (Fisher) incomplete-data matrix given by

Io(Y,ϑ∗) = −Ep(Y|θ)[H
o(Y,θ)]. (3.55)

The expected incomplete-data matrix defines the variance of the ML estimate in relation

to the true parameter ϑ0 since

(ϑ∗ − ϑ0) ∼ Nϑ∗(0, Io
−1

), (3.56)

and thus constitutes an uncertainty measure of the ML estimate. The estimator makes

use of the numerical scheme by Newey and West [175] and a result by Louis [171] which

relates the observed-data score to smoothed individual scores so that

Io(Y,ϑ∗) ≈ I 0(Y,ϑ∗) +
l∑

j=1

wj [I j(Y,ϑ∗) + I Tj (Y,ϑ∗)], l ≥ 1, (3.57)

where

wj = 1− j

l + 1
, (3.58)

and

I j(Y,ϑ∗) =

K−j∑
i=1

Ep̃(X )∗ [s
c
k(X ,Y,ϑ∗)]Ep̃(X )∗ [s

c
k+j(X ,Y,ϑ∗)T ]. (3.59)
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Here sck(X ,Y,ϑ∗) denotes the individual score at the kth time point, i.e.

sck(X ,Y,ϑ∗) =
∂ ln p(x k+1|x k,ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ∗

, (3.60)

where the observation process has been omitted since it is independent of ϑ. For the

SPDE the expectation of these individual scores are easily computed to give

Ep̃(X )∗ [s
c
k(X ,Y,ϑ∗)] = σ−2∗

w υk − σ−2∗
w Υkϑ

∗, (3.61)

where

υk = ∆t[tr(V
T
i Ψ−1

x Q̃
−1

(Γ k −Λk−1))]di=1, (3.62)

Υk = ∆2
t [tr(V

T
i Ψ−1

x Q̃
−1

Ψ−1
x V jΛk−1)]di,j=1. (3.63)

As in SEM the observed information may be evaluated at the final EM iteration. Since

Duan’s method does not require any further EM iterations for generating the rate matrix

it is generally quicker than SEM. Moreover it is more well-behaved since the requirement

for numerical differentiation to obtain the rate matrix is obviated.

3.2.2 VBEM estimation

As outlined in Section 2.3.3, the first step when employing VBEM methods is to choose

an appropriate family of distributions with which to approximate the true posterior.

It is first noted that since µ0 and Σ−1
0 are treated as hyperparameters governing the

prior distribution on x 0 they may be maximised in a way similar to EM [129, Section

5.3.6] (although distributions over the hyperparameters are possible). Recalling that

the parameters and hyperparameters are denoted as θg and θh respectively, the natural

choice of the variational posteriors for the SPDE under investigation is then given as

p(X ,θg|Y,θh) = p(X ,ϑ, σ−2
w , σ−2

v |Y,µ0,Σ
−1
0 )

≈ p̃(X )p̃(ϑ)p̃(σ−2
w )p̃(σ−2

v )

= p̃(X )p̃(θg), (3.64)
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and by symmetry in Theorem 2.3 the maximisers are given by

p̃(X ) ∝ exp
(
Ep̃(θg)[ln p(X ,θ,Y)]

)
, (3.65)

p̃(ϑ) ∝ exp
(
Ep̃(X )p̃(θg)/ϑ [ln p(X ,θ,Y)]

)
, (3.66)

p̃(σ−2
w ) ∝ exp

(
E
p̃(X )p̃(θg)/σ

−2
w

[ln p(X ,θ,Y)]
)
, (3.67)

p̃(σ−2
v ) ∝ exp

(
E
p̃(X )p̃(θg)/σ

−2
v

[ln p(X ,θ,Y)]
)
, (3.68)

where p̃(θg)
/θ̄ refers to the joint p̃(θg) without the θ̄ component. Hence, for instance,

p̃(θg)
/ϑ = p̃(σ−2

w )p̃(σ−2
v ).

VBE-step: As a result of the observation process the set of equations (3.2) and (3.18)

describe a LDS, and hence a smoother similar to that by RTS may be derived to obtain

the variational posterior at the ith iteration p̃(X )(i). However, since the parameters are

also governed by distributions (and are not point estimates as assumed by RTS) the

parameter moments need to be dealt with appropriately. This has two consequences:

1. The matrix inversion lemma cannot be used to obtain the neat closed form ex-

pressions generally associated with the Kalman filter and its smoothing equivalent

[129, Section 5.3.3].

2. A two-filter approach is required since the usual forward-backward smooth-

ing method leads to expressions not amenable under expectation. As shown

in Section 2.3.1 the smoothed estimate is then constructed as p̃(x k|y1:K) ∝
p̃(x k|y1:k)p̃(yk+1:K |x k) = α(x k)β(x k) where α(x k) the forward message and β(x k)

the backward message.

The variational Kalman smoother was derived from a Bayesian perspective by Beal in

[176]. In his derivation Beal opted to fix the state noise covariance matrix Σw = I in

order to ensure identifiability of the state-space model. In spatiotemporal systems this is

not a plausible argument since Σw has a pre-determined structure and there is generally

a known parameterisation of A(ϑ) so that the model has a unique representation.

In the SPDE case the inclusion of Σw is trivial and the expectations are easy to

handle as Ep̃(σ−2
w )[Σ

−1
w ] = Ep̃(σ−2

w )[σ
−2
w ]Q̃

−1
. However, despite being linear in ϑ, the

parameterisation of A(ϑ) introduces some complications as regards to the expectations.
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In particular the computation of the following quantity is required:

Ep̃(ϑ)[A(ϑ)T Q̃
−1

A(ϑ)]

= Ep̃(ϑ)[(I + ∆tΨ
−1
x Ψϑ)T Q̃

−1
(I + ∆tΨ

−1
x Ψϑ)]

=

(
Q̃
−1

+ ∆tEp̃(ϑ)[Ψ
T
ϑ ]Ψ−1

x Q̃
−1

+ ∆tQ̃
−1

Ψ−1
x Ep̃(ϑ)[Ψϑ]

+ ∆2
tEp̃(ϑ)[Ψ

T
ϑΨ−1

x Q̃
−1

Ψ−1
x Ψϑ]

)
. (3.69)

In (3.69) the second and third terms of the last equality can be computed using the

expected values of ϑ. The fourth on the other hand, is computed as follows

Ep̃(ϑ)[Ψ
T
ϑΨ−1

x Q̃
−1

Ψ−1
x Ψϑ] = Ep̃(ϑ)

( d∑
i=1

ϑiV
T
i

)
Ψ−1

x Q̃
−1

Ψ−1
x

 d∑
j=1

ϑjV j


=

d∑
i=1

Ep̃(ϑ)[ϑ
2
i ]V

T
i Ψ−1

x Q̃
−1

Ψ−1
x V i

+ 2
d∑

i,j=1;i 6=j
Ep̃(ϑ)[ϑiϑj ]V

T
i Ψ−1

x Q̃
−1

Ψ−1
x V j , (3.70)

where the appropriate second moments are found from the parameter covariance matrix

as calculated in the VBM-step. In the interest of brevity the derivation of the variational

Kalman smoother applied to SPDEs is omitted and the algorithm is given in Algorithm

A.2 in the appendix.

VBM-step: Before carrying out the VBM-step, prior distributions which are conju-

gate with the likelihood need to be allocated to the parameters. Since the form of the

likelihood is Gaussian it follows that appropriate priors are given as

p(ϑ) = Nϑ(ϑ̂p,Σϑ,p), (3.71)

p(σ−2
w ) = Gaσ−2

w
(αw,p, βw,p), (3.72)

p(σ−2
v ) = Gaσ−2

v
(αv,p, βv,p). (3.73)

The variational posteriors at the (i+ 1)th iteration are given by the following theorem.
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Theorem 3.4 The maximisers (3.66)-(3.68) are given by

p̃(ϑ)(i+1) = Nϑ(ϑ̂,Σϑ), (3.74)

p̃(σ−2
w )(i+1) = Gaσ−2

w
(αw, βw), (3.75)

p̃(σ−2
v )(i+1) = Gaσ−2

v
(αv, βv), (3.76)

where

Σϑ =
(
Ep̃(σ−2

w )(i) [σ
−2
w ]Υ + Σ−1

ϑ,p

)−1
, (3.77)

ϑ̂ = Σϑ

(
Ep̃(σ−2

w )(i) [σ
−2
w ]υ + Σ−1

ϑ,pϑ̂p
)
, (3.78)

αw = αw,p +
Kn

2
, (3.79)

βw = βw,p +
Π ′

w

2
, (3.80)

αv = αv,p +
Km

2
, (3.81)

βv = βv,p +
Π v

2
, (3.82)

and where Υ ,υ,Π v are given in (3.38), (3.39) and (3.41) respectively whilst Π ′
w is Π w

in (3.40) under the variational transform to give

Π ′
w = tr(Q̃

−1
Λ1:K − 2Ep̃(ϑ)(i+1) [A(ϑ)T ]Q̃

−1
Γ 1:K + Ep̃(ϑ)(i+1) [A(ϑ)T Q̃

−1
A(ϑ)]Λ0:K−1).

(3.83)

Finally, the hyperparameter updates are given as

µ
(i+1)
0 = x̂0|K , (3.84)

Σ−1(i+1)

0 = Σ−1
0|K . (3.85)

Proof. See Appendix B.2.

The VBEM algorithm for SPDEs is summarised in Algorithm 3.2. The algorithm is

terminated when the expected values of the unknown parameters stabilise. Other ter-

mination conditions are possible, such as monitoring the change in the free energy [129,

Section 5.3.7].

Whilst the VBE-step differs from the E-step in the EM algorithm as it includes

additional parameter moments, the VBM-step is remarkably similar to the M-step. In

particular if one were to carry out MAP-EM (see Section 2.3.2), the resulting equations

would be identical to (3.77)-(3.82) with expectations carried out under a delta Dirac

distribution centred at the ML estimate. Another point of interest is that the parameter
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dynamics covariance matrix Σϑ in (3.77) is essentially simply the inverse of the complete-

data information matrix (3.54). By the missing information principle in Theorem 3.3

this quantity is larger in some sense than the observed-data information, indicating that

the VB algorithm will be overconfident in its estimation. As noted in Section 3.4 this

bears considerable implications when using Σϑ as a measure of parameter uncertainty.

Algorithm 3.2 The VBEM algorithm for SPDEs

Input: Data set Y, parameters {C k}Kk=1, Q̃ , {V i}di=1,Ψx , initial parameter distributions

p̃(θg)
(0) = p̃(ϑ)(0)p̃(σ2

w)(0)p̃(σ2
v)

(0) and initial hyperparameters µ
(0)
0 ,Σ

(0)
0 .

i = 0
do

Run Algorithm A.2 with p̃(θg) = p̃(θg)
(i) and θh = θ

(i)
h VBE-step

Evaluate p̃(θg)
(i+1) from (3.74)-(3.76) VBM-step

Evaluate θ
(i+1)
h from (3.84)-(3.85) Hyperparameter update

i = i+ 1
until ||Ep̃(θg)(i) [θg]− Ep̃(θg)(i−1) [θg]|| < ε1

Output: {x̂ k|K ,Σk|K}Kk=0, p̃(θg)
(i),θ

(i)
h .

3.2.3 Gibbs sampling

As shown in Algorithm 2.3, the Gibbs sampler may be used to estimate the poste-

rior distributions p(X|Y) and p(θg|Y) by iteratively sampling from the conditionals

p(X|θ(i)
g ,θh,Y) and p(θg|X (i+1),Y). For the SPDE case under study the Gibbs sam-

pler would make use of the following distributions:

X (i+1) ∼ p(X|ϑ(i), σ−2(i)

w , σ−2(i)

v ,µ0,Σ
−1
0 ,Y), (3.86)

ϑ(i+1) ∼ p(ϑ|X (i+1), σ−2(i)

w ,Y), (3.87)

σ−2(i+1)

w ∼ p(σ−2
w |X (i+1),ϑ(i+1),Y), (3.88)

σ−2(i+1)

v ∼ p(σ−2
v |X (i+1),Y). (3.89)

Since conditional dependencies exist within the parameter vector (in particular between

ϑ and σ−2
w ), the Gibbs sampler described by (3.86)-(3.89) is a multi-stage Gibbs sampler

which is the natural extension of the basic two-stage Gibbs sampler described in Section

2.3.4.

In [152] Carter and Kohn proposed a forward-filtering backward-sampling algo-
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rithm to generate samples from p(X|θ,Y) in LDSs. Their approach is seen to

dominate Gibbs samplers which generate states one at a time from the conditional

p(x k|x k−1,x k+1,θ,yk). The algorithm makes use of the following factorisation (refer

to Figures 2.3 and 3.2)

p(x 1:K |θ,y1:K) = p(xK |θ,y1:K)
K−1∏
k=0

p(x k|x k+1,θ,y1:k). (3.90)

It hence first applies a standard Kalman filter to obtain the state filter distribution

p(xK |θ,y1:K) from which xK is sampled and then generates x k from p(x k|x k+1,θ,y1:k).

The key idea to obtain the backward sampling densities is to transform the standard

forward equation

x k+1 = Ax k + wk, (3.91)

into

x̃ k+1 = Ãx k + w̃k, (3.92)

where w̃k has a diagonal covariance matrix. Then the transformed samples at k+1 act as

noisy observations for Ãx k so that the observation update step of the Kalman filter may

be applied to obtain the required distribution over x k. In practice this transformation

may carried out by employing an LDL decomposition [177, Chapter 1] of the state

evolution covariance Σw. This yields x̃ k+1 = L−1x k+1, Ã = L−1A and w̃k = L−1wk

with a diagonal covariance matrix D . The output of the algorithm is a sequence of

sampling distributions p(x k|x k+1,θ,y1:k), k = 0 . . .K − 1 which are normal and hence

can be easily sampled from. Details of its implementation can be found in [152, Appendix

1].

The parameter sampling distributions are obtained from (3.87)-(3.89), the closed

form of which are found in the same way as that for the VBEM algorithm. These are

given as

ϑ(i+1) ∼ Nϑ(ϑ̂,Σϑ), (3.93)

σ−2(i+1)

w ∼ Gaσ−2
w

(αw, βw), (3.94)

σ−2(i+1)

v ∼ Gaσ−2
v

(αv, βv), (3.95)
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where ϑ(i+1) denotes the (i+ 1)th sample of ϑ and

Σϑ =
(
[σ−2(i)

w ]Υ s + Σ−1
ϑ,p

)−1
, (3.96)

ϑ̂ = Σϑ

(
[σ−2(i)

w ]υs + Σ−1
ϑ,pϑ̂p

)
, (3.97)

αw = αw,p +
Kn

2
, (3.98)

βw = βw,p +
Π s

w

2
, (3.99)

αv = αv,p +
Km

2
(3.100)

βv = βv,p +
Π s

v

2
, (3.101)

where υs,Υs,Π s
w and Π s

v are the same quantities given in (3.38)-(3.41) but with the

state variables replaced by the samples (with the expectation dropping out).

It is also possible to obtain sampling distributions for µ0 and Σ0, however to mimic

the behaviour of the EM algorithm and VBEM algorithm these hyperparameters will be

assigned the mean and covariance of the Markov chain corresponding to x 0 on conver-

gence (as in (3.84) and (3.85)). The resulting Gibbs sampler for the SPDE is given in

Algorithm 3.3.

Algorithm 3.3 The Gibbs sampler for SPDEs

Input: Data set Y, fixed parameters {C k}Kk=1, Q̃ , {V i}di=1,Ψx , initial parameter samples

ϑ(0), σ2(0)

w , σ2(0)

v and hyperparameters µ0,Σ0.

for i = 1 to N
for k = 1 to K

Find p(x k|θ(i)
g ,θh,y1:k) Forward filtering (Kalman filter)

end

Sample x
(i)
K ∼ p(xK |θ

(i)
g ,θh,Y)

for k = K − 1 to 0

Sample x
(i)
k ∼ p(x k|x k+1,θ

(i)
g ,θh,y1:k) Backward sampling [152]

end

X (i) ← {x (i)
k }Ki=0

Sample ϑ(i+1), σ2(i+1)

w , σ2(i+1)

v from (3.93)-(3.95) Parameter sampling

θ
(i+1)
g ← (ϑ(i+1), σ−2(i+1)

w , σ−2(i+1)

v )
end for

Output: {X (i)}Ni=0, {θ
(i)
g }Ni=0.
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Figure 3.3: Schematic depicting experimental setup for the case study. The metal bar
has a temperature field which is fixed at both ends (Dirichlet boundary conditions) and
sensors regularly spaced along its length.

3.3 Case study: the stochastic diffusion equation

Consider the stochastic diffusion equation with the operator (3.14). In some cases, an

analytic solution for D(s) may be obtained for the deterministic PDE under steady-state

conditions [178]. However, in the presence of unknown parameters, random disturbances

and noisy observations the estimation problem is significantly harder and warrants the

use of the methods proposed in this chapter. This stochastic equation has been used

to model, for instance, the spatiotemporal behaviour of the temperature of a metal

bar in the presence of quickly changing environmental conditions [179] and with fixed

temperature at both ends.

3.3.1 Simulation setup

For this study, synthetic data was generated by considering a one-dimensional spatial

domain O = [0, 60] with a fine mesh of nsim = 61 basis functions of the form (3.20) with

τ sim = 4.2.5 The functions were equally spaced on O such that the Dirichlet boundary

conditions were satisfied. Simulation parameters were set as ∆sim
t = 0.02, σw = 0.5,

σv = 0.1, µ0 = 0, Σ0 = I and Qu =
∫
O kQ(s− r)u(r)dr with kQ(s) = exp(−s2/4). The

spatially varying parameter chosen was D(s) = 1 + 0.002s2 so that ϑ = [1, 0, 0.002]T .

A synthetic field was generated through forward simulation of the SPDE as described

in the example of Section 3.1.1 with K = 500. Data was then assumed to be collected

with the same sampling interval of ∆t = 0.02 from 51 point sensors equally spaced in the

domain. A schematic of the simulation setup with equally spaced sensors measuring the

field is shown in Figure 3.3. Two sensor readings are shown for a single instantiation in

5The parameters n, τ and ∆t used in simulation need not be identical to those used in modelling. The

superscript sim is used to differentiate between the two sets of parameters.
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(a) (b)

Figure 3.4: (a) Single instantiation of the stochastic diffusion equation with varying diffu-
sion parameter and (b) selected output readings. Note how regions of poor conductivity
(s ∈ [0, 20]) experience larger fields than regions of high conductivity (s ∈ [40, 60]).

Figure 3.4.

The only assumptions taken before modelling the system were that the additive

disturbance is Gaussian with some known covariance operator Q and that the varying

parameter in space may be adequately represented as a polynomial of degree 2. The

latter assumption may be further relaxed with the use of model selection methods, not

considered in this work. The following sections apply the proposed methodology to

estimate the field and unknown parameter vector θ and discuss in detail the results and

algorithm behaviour.

3.3.2 Basis function placement and estimation

Basis functions able to reconstruct the spatiotemporal field were elicited according to the

guidelines of Section 3.1.3. To obtain the spatial frequency support νc, the average spatial

frequency response over the entire time horizon was found and an approximate value was

then determined graphically. For the data shown in Figure 3.4, νc was estimated to be

0.2 cycles per unit. Recall that, given νc, the local GRBF width is given by

τ =
√

2ν2
cπ

3. (3.102)

which in this case results in a width of τ = 1.58. With this value of τ , 32 local GRBFs

were placed regularly interspaced in O corresponding to an oversampling parameter of

α0 = 1.5. The average frequency response of a single instantiation of the signal, its

support and the Fourier representation of the GRBF and the local GRBF equivalent

are shown in Figure 3.5. As expected the discrepancy between the GRBF and the local



3.3. Case study: the stochastic diffusion equation 75

0 0.2 0.4
0

0.5

1
|F

(·)
|

ν

(a)

−4 −2 0 2 4
0

0.5

1

φ
(s
)

s
(b)

Figure 3.5: (a) Average frequency response of field (marked line), estimated support of
field frequency content (vertical line) and frequency response of the GRBF (solid line)
and the local GRBF (dashed line). (b) Spatial representation of the GRBF (solid line)
and local GRBF (dashed line).

GRBF are seen to be minimal, both in the frequency domain and in the spatial domain.

After basis function placement, the appropriate matrices Ψx and {V i}di=1 were

found. This allowed application of the augmented EM algorithm, VB algorithm and

Gibbs sampler to successfully estimate the unknown field and parameters and relevant

uncertainties. In the Bayesian methods uninformative priors6 were associated with all

parameters under study: ϑ̂p = 0,Σϑ,p = 1× 105I , ᾱw,p = ᾱv,p = 0.1, β̄w,p = β̄v,p = 0.01.

The initial variational posteriors were set equal to the respective priors. In this case 40

iterations were employed for both the EM and the VBEM algorithm and N = 10, 000

samples were drawn using the Gibbs sampler; for EM and VBEM convergence was as-

sessed graphically. Convergence of the Gibbs sampler was confirmed using trace plots.

3.3.3 Results and discussion

In Figure 3.6 the parameter estimation trajectories given by the EM algorithm (ML

estimate) and VBEM algorithm (mean estimate) are given. Note the initial fluctuations

in the trajectory with the VBEM algorithm; these are most likely due to the large initial

parameter uncertainty attributed to the parameter dynamics. On the first iteration,

as a result of this uncertainty the states are estimated with high precision (a direct

characteristic of the system’s bilinear form), thus contributing to an over-estimation of

the state precision gain σ−2
w . The algorithm subsequently requires a few iterations to

6Where by uninformative it is implied that the characteristics of the posterior distribution are largely

dominated by the data.
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Figure 3.6: Convergence of estimates of ϑ, σ−2
w and σ−2

v to the true mean as given by the
Gibbs sampler (blue). The magenta curve denotes the ML estimate of the EM algorithm
whilst the red curve denotes the mean as given by the VBEM algorithm. The true value
is denoted by the black line. Confidence intervals are omitted for sake of clarity.

stabilise and follow trajectories which are more similar to those given by conventional

EM. These fluctuations may be limited or controlled by introducing informative priors

or by initialising with a contained parameter uncertainty measure.

To check the quality of the estimated field, in Figure 3.7 the error between the true

field and reconstructed field using the VBEM posterior mean is shown, together with

the error autocorrelation signals in space and time. The spatial autocorrelation tests

yield a response which decays quickly to zero (in relation to the width of the modelling

basis functions) whilst the residuals are seen to be correlated in time, a direct conse-

quence of the model mismatch between the simulation and modelling dimensionality.

This mismatch is also seen to play a role in parameter estimation (see Section 3.3.4).

The posterior distributions of the parameter vector ϑ are shown in Figure 3.8a-3.8c.

Since D(s) is a polynomial function, the spread of the parameters does not come as a

surprise and indeed it is much more indicative to show the mean and uncertainty of D(s)

as constructed from the statistics of ϑ (Figure 3.8d). However the distributions over the

individual parameters are still shown as they further evidence the algorithms comparing



3.3. Case study: the stochastic diffusion equation 77

(a) (b)

Figure 3.7: Error analysis in a simulation using a higher-order representation than that
used in modelling. (a) Field error z − ẑ where ẑ is the reconstructed field using the
smoothed states from the VBEM algorithm (EM algorithm gives similar results). (b)
Average spatial autocorrelation across all time points (top) and average temporal auto-
correlation across all spatial points (bottom).

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Posterior distributions and ML estimates as obtained from the EM algorithm
(magenta), VBEM algorithm (red) and Gibbs sampler (blue). The magenta curves denote
normal distributions centred around the ML estimates with variances as given by the
empirical estimator of Duan. The true values are denoted by the black lines. (a)-(c)
Estimation of the spatial polynomial coefficients ϑ. (d) Estimation of the spatially
varying parameter with confidence intervals as provided by VBEM (thin dashed lines).
(e) State noise precision. (f) Observation noise precision.
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favourably with one another.

For this problem, the running time for the EM algorithm was 30s while that for the

VBEM algorithm was 70s. The running time for the Gibbs sampler was approximately

12 hours with a total of 10,000 samples (the minimum deemed necessary for reasonable

distribution estimation).7 The computational time required by the Gibbs sampler thus

exceeded that of EM and VBEM by two orders of magnitude. Since the VBEM method

corroborates the results obtained by Gibbs sampling (see Figure 3.8) with such a lower

requirement in terms of computational speed, the use of VBEM for a quick and accu-

rate Bayesian identification of SPDEs is noted. The empirical estimation of parameter

uncertainty using EM methods was also very quick, with Duan’s method (with l = 20)

requiring 2s.

Interestingly, as shown in Table 3.1, despite being of the same order of magnitude,

the variance empirical estimators of the EM algorithm and the Gibbs sampler are seen

to give wider uncertainty measures than the VBEM algorithm. The VB overconfidence

was somewhat expected from the comparative study in 2.3.5; a brief discussion of how

this effect emerges in this case and its implication in parameter estimation of SPDEs is

provided in Section 3.4.

Table 3.1: Parameter variance estimation using the EM score functions (Duan) compared
with that given by VBEM and Gibbs sampling.

EM (Duan) VBEM Gibbs

var(ϑ1) 0.26 0.15 0.2
var(ϑ2) 0.0023 0.0011 0.0016
var(ϑ3) 7.0×10−7 3.6×10−7 5.4×10−7

In addition to the parameter dynamics, the other two key quantities of interest which

are estimated are the field and observation noise precisions in the bottom centre and

bottom right panel of Figure 3.8. Here it is seen that although the mean estimates are

close to the true parameter estimates, the confidence intervals are very tight around the

mean estimates so that the true parameter value is treated as an outlier. These estimates

are in fact biased as discussed in the next section.

7Simulations were carried out on an Intel R©CoreTM2Duo T5500 @ 1.66GHz personal computer with

2GB of RAM.
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(a) (b)

Figure 3.9: Results of 200 MC runs with simulation model basis representation equiv-
alent to the system model basis representation. (a) True spatially varying parameter
(black), mean EM estimate (magenta) and three-sigma confidence intervals as provided
by VBEM (red). The profiles from the individual MC runs by EM are shown in yellow.
(b) True noise precisions (black), average VB posterior (red) and histograms showing
the distribution of the ML estimates.

3.3.4 Model mismatch analysis

Inevitably, there is a model mismatch between the reduced-order (finite dimensional)

state-space model and the true (infinite dimensional) system. It is well known that model

mismatch results in biased parameter estimates [180] and therefore bias will always be

present when carrying out joint field-parameter estimation of SPDEs in this way. The

aim of this section is to empirically show that this really is the case (and that the bias is

not due to the inference methodology) and that the errors arising due to approximation

are confined in some sense.

To see how the bias varies under different conditions, 200 Monte Carlo (MC) simu-

lations were carried out using the same basis representation (n = nsim = 31, τ = τ sim =

1.8) and sampling interval (∆t = ∆sim
t = 0.02) for simulation and modelling. Each MC

run consisted of simulating a realisation of the SPDE using parameters (except n, τ and

∆t) fixed to those of Section 3.3.1 and applying EM and VBEM on each separate data

set. A histogram of the ML estimates and the mean variational posteriors are shown

in Figure 3.9 where it is graphically seen that no bias is present in both the estimated

parameter dynamics and the estimated noise precisions. Of note is that the parameter
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(a) (b)

Figure 3.10: Error analysis when simulating using exact model representation. (a) Field
error z− ẑ where ẑ is the reconstructed field using the smoothed states from the VBEM
algorithm (EM algorithm gives similar results). (b) Average spatial autocorrelation
across all time points (top) and average temporal autocorrelation across all spatial points
(bottom).

confidence as given by the VBEM algorithm corresponds very well to that corresponding

to several MC runs. Since the variance of the ML estimate is known to converge to the

inverse of the Fisher information matrix (3.55), this result seems to indicate that, in this

specific case, VB may be used for inferring confidence intervals with respect to the true

parameter. Agreement of the Bayesian credibility intervals with frequentist confidence

intervals is formalised in the Bernstein-von Mises theorem which holds for K → ∞ or,

informally, when the observation data set is highly informative of the parameters un-

der study [181, 182, Chapter 4]. In the SPDE this may be violated by, for instance,

increasing σv as shown in Section 3.4. Field error and autocorrelation results for this

problem are shown in Figure 3.10 where the desirable whiteness properties are exhibited

both in space and in time. Any parameter bias and correlations in the reconstruction

error introduced may thus be safely attributed to the reduction method rather than the

estimation methodology.

To further study the effect of model reduction and discretisation, 100 MC runs were

carried out with data generated using spatiotemporal resolutions of varying accuracy.

The biases for the different parameters were then calculated. Each bias was then com-

pared to the spread of the results of the MC runs; if the bias is more than two standard

deviations of the MC trials it is considered to be significant. To find the bias on the

spatially varying parameter D(s), the quantity |D̂(s)−D(s)| was first found over a fine

grid in the spatial domain and then an average evaluated. Here, D̂(s) denotes the mean

estimated parameter over all trials.
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Percentage biases together with the ratio of the biases to the standard deviations

of the MC samples are given in Table 3.2.8 It is seen that when the simulation model

is exactly the same as the estimation model (with nsim = 31, τ sim = 1.8,∆sim
t = 0.02)

the error is well within two standard deviations of the actual value for all parameters.

With increasing resolution in simulation the percentage bias increases somewhat but

for all cases does not exceed 10%, which may or may not be acceptable depending on

the purpose of the identification exercise. The noise terms become significantly biased

but, more importantly, the parameters describing the dynamics are relatively in good

agreement with an error on the order of one standard deviation in all cases. In this

example spatial roughness is seen to contribute significantly more to the bias than the

temporal discretisation interval used in modelling. However, successive refinements of

the simulation conditions do not result in an increasing bias; this is an important result

required for the validity of this approach as it implies that the bias arising from the

adopted dimensionality reduction method is contained in some sense.

In some cases, such as when the spatiotemporal field is decomposed with linear basis

functions which construct a triangulation on O (a usual finite element approach), error

bounds may be found for the state-space representation of Theorem 3.1, from which

convergence rates may be obtained [103, 111, Section 2.5.3]. However even if bounds

were found for the basis in use in this study, it is unlikely that they would be of any use

in quantifying the amount of parameter bias which emerges in the inference process.

3.4 Parameter uncertainty measures

Like the EM algorithm, VBEM is deterministic and thus fast and memory efficient. More-

over, it readily provides a parameter uncertainty measure on the parameter dynamics ϑ.

This, together with the advantage that prior information can be conveniently introduced

into the estimation process, renders the use of VBEM both elegant and, arguably, a more

attractive tool for joint inference. However, as can be seen from Table 3.1, the estimates

given by VBEM tend to be mostly overconfident.

The reason for this lies in the missing information principle (Theorem 3.3). From

(3.77) it is seen that the VB algorithm essentially attributes the posterior precision of

the parameters to the expected complete-data information matrix Ic (3.53), which by

definition from (3.46) is less than or equal to the observed-data information matrix.

Hence it is Im which creates the discrepancy between the two estimates, and therefore

8Unavailable entries in this table correspond to simulation parameters which yield instability under

the explicit Euler scheme. This is a result of the stability issues concerned with the explicit Euler scheme,

which are conditional on the resolution of the basis [183, Section 8.2.2].
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Table 3.2: Parameter bias (in percentage) corresponding to refinement of the simulation
conditions as obtained using EM. This is given together with the ratio of the bias to the
standard deviation as obtained from the MC runs (> 2 corresponds to significant bias).

D(s):

XXXXXXXXXXX∆sim
t

(nsim, τ sim)
(31,1.8) (71,3.7) (101,6.3) (121,7.9)

0.02 2.2% / 0.2 6.5% / 0.8 na na
0.01 1.4% / 0.1 6.4% / 0.9 na na
0.005 1.0% / 0.1 6.2% / 0.8 3.3% / 0.4 4.6% / 0.4
0.002 1.2% / 0.1 6.8% / 0.8 3.7% / 0.5 3.6% / 0.3

σ−2
w :

XXXXXXXXXXX∆sim
t

(nsim, τ sim)
(31,1.8) (71,3.7) (101,6.3) (121,7.9)

0.02 -0.2% / 0.1 4.3% / 1.8 na na
0.01 1.6% / 0.7 5.9% / 2.6 na na
0.005 2.4% / 1.0 6.5% / 2.5 6.3% / 2.9 6.8% / 2.8
0.002 2.6% / 1.2 7.0% / 3.0 7.0% / 3.1 7.6% / 3.2

σ−2
v :

XXXXXXXXXXX∆sim
t

(nsim, τ sim)
(31,1.8) (71,3.7) (101,6.3) (121,7.9)

0.02 0.0% / 0.1 -5.0% / 5.7 na na
0.01 0.2% / 0.3 -4.7% / 6.4 na na
0.005 -0.0% / 0.0 -4.6% / 6.0 -4.5% / 6.6 -4.2% / 5.2
0.002 0.2% / 0.3 -4.6% / -6.3 -4.5% / 5.3 -4.2% / 5.4

VBEM may be considered adequate when Im << Ic. Interestingly, this condition is

highly dependent on the quality of the observed data set Y. To show this consider a

simple LDS with state evolution equation xk = ϑxk−1 + wk with observation equation

yk = cxk + vk, where each term takes on its usual meaning and wk ∼ Nwk(0, σ2
w). In this

case, for known initial conditions and noise parameters, Ic is given by

Ic(Y, ϑ) =
1

σ2
w

K−1∑
k=0

Ep̃(X )[x
2
k], (3.103)

which immediately leads to an anomaly: The increased field uncertainty may even cor-

respond to an increase in the complete-data information (consider the case when noise

levels generate a posterior mean which is negligible compared to the variance).

This problem (or paradox) obviously lies in missing information Im which for this

system is given by

Im(Y, ϑ) =
1

σ4
w

Ep̃(X )

( K∑
k=1

ϑx2
k−1 + xkxk−1

)2
 . (3.104)
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This quantity largely tends to increase with state uncertainty in the E-step due to the

fourth moments involved; however this information is effectively ignored in the VBEM

update (3.77). Therefore one has the result that in poorly observed systems (with states

exhibiting a large variance under Ep̃(X )[·] in relation to σ2
w), the parameter uncertainty

measures as provided by VBEM may be considered highly unrelated to the confidence

of the estimate to the true parameter value.

To lay evidence to this claim tests were run on a one-dimensional spatial domain

O = [0, 60] with nsim = 31 basis functions, ∆sim
t = 0.02, σw = 0.5, µ0 = 0, Σ0 = I ,

Qu =
∫
O kQ(s − r)u(r)dr with kQ(s) = exp(−s2/4). Only a single parameter for the

unknown dynamics was considered so that D(s) = ϑ = 1. It was assumed that 500 data

points (in time) were gathered through the use of 101 point sensors with a sample time of

∆t = 0.02. To avoid the effects of model mismatch in this test the same model was used

for both simulation and estimation. The true observation noise standard deviation σv

was varied from 0.01 to 1 and 200 MC runs were run for each different value of σv. Each

of the 200 MC runs (for some σv) consisted of simulating a realisation of the SPDE using

fixed parameters and applying EM and VBEM on each separate data set. Obviously

a lower σv corresponds to good-quality measurements whilst a high σv corresponds to

noisy measurements. Noisy sensors, in general, result in a higher estimated state variance

which from (3.104) tends to increase the missing information and slow down convergence

times (as a result of SEM) whilst increasing parameter uncertainty.

These effects are very evident in Figure 3.11. Indeed, VBEM (using the same priors

of Section 3.3.2) is seen to maintain a fairly constant parameter uncertainty measure and

does not produce the expected trend of increased parameter uncertainty with increased

observation noise levels. Duan’s method, on the other hand, reports a variance of nearly

5 times that given by VB for high noise levels. From Figure 3.11a it can be seen that

the mean estimate drifts upwards with increased observation noise;9 however credibility

intervals given by Duan’s method still enclose the true value whilst those given by VB

do not. The reason for this is that in noisy conditions the complete-data information

matrix is no longer a suitable approximation for the observed-data information matrix.

This observation is very similar to that by Wang in [157] where it was shown that the

covariance matrices obtained from VB are ‘too small’ when compared to those of the ML

estimator on data from mixture models. The overconfidence was also noted in [184] and

[133, Section 10.1.2]. Indeed, in such a scenario it is evident that the credibility intervals

9 This is an artefact of the distribution of the ML estimate (or mode of variational posterior) which

ceases to be Gaussian and becomes positively skewed, i.e., in the direction favouring a higher diffusivity.

Such a phenomenon was observed also in MC runs carried out for a one-dimensional state-space model

(results omitted).
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(a) (b)

(c) (d)

Figure 3.11: (a) Average effect of increased sensor noise σv over 200 MC runs on mean
parameter estimate, (b) parameter uncertainty, (c) number of iterations required for con-
vergence and (d) field uncertainty, in this case shown through the trace of the covariance
matrix at the 50th data sample. Crosses denote results obtained with VBEM. The solid
lines denote results obtained with EM augmented with the variance estimator of Duan.
Convergence was assumed to be reached when the change in the estimated ML (EM) or
mean (VBEM) parameter was less than 1%.

given by VBEM may not be physically useful.

3.5 Conclusion

This chapter has applied, for the first time, several methods for the identification of

linear SPDEs from continuous data. The key contributions in algorithms are:

• the rigorous formalisation of SPDEs to give finite dimensional state-space models

amenable to a large array of signal processing inference tools.

• the use of frequency analysis methods for basis function placement to obtain accu-

rate finite dimensional representations of SPDEs.

• the extension of the basic EM algorithm for SPDEs for the estimation of unknown

noise parameters and provision of uncertainty measures on (if needed) all unknown

parameters.

• the development of a VBEM algorithm and Gibbs sampler for SPDEs.
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This chapter also provides a detailed analysis of the performance of the individual al-

gorithms. In particular it is shown that all algorithms corroborate each other and may

be of use in this scenario. It is also shown that in using any approach involving SPDE

approximation and discretisation, bias will always be present in the learned parameters.

Empirical studies show however that this bias is contained for a given model representa-

tion.

The use of the VB parameter posterior as an uncertainty measure is discussed. It

is shown that when confidence intervals relating to the true parameter value is desired,

the empirical estimator of Duan is particularly effective. It is good to note the effect of

the quality of the data set on the algorithms. Sensor quality (represented by σv) plays

a strong role in both the field and resulting parameter uncertainty and the number of

iterations required for convergence by the EM based algorithms. In general a similar

argument can be made for the quantity of sensors used, which affects the observability

(in terms of the observability matrix) of the system. A detailed treatment of the effect

of sensor quantity and quality on the proposed algorithms is noted as future work.

It is evident from the results that, based solely on computational speed and memory

requirements, the EM and VBEM algorithm are the preferred methods of choice for joint

field-parameter inference. Moreover, both the EM and the VBEM algorithm are seen to

behave very similarly; they require the same number of iterations for convergence, give

good estimates for the mean parameter value and give similar values for estimated field

uncertainty (Figure 3.11). However the augmented EM algorithm is probably marginally

better for simple problems such as that considered here where the true posterior distri-

butions are not skewed; it is both slightly faster and via Duan’s method is able to give

uncertainty estimates which are of more practical use.

In light of the objectives set out for in Section 1.3.2, this chapter plays an important

role in the framework of spatiotemporal modelling from continuous observations as it

delivers a practical approach to learn a dynamic model over a continuous spatial domain

from data which, as it is readily available in state-space form, can be subsequently used

for control purposes. The concepts introduced in this chapter will now be extended to

the rather more challenging case of when observations are events (spatiotemporal point

processes).





Chapter 4

Field-parameter estimation from

point process observations

A spatiotemporal point process is a stochastic process with samples given by countable

collections of points in space and time. The random locations and times of these events

are generally assumed to be generated by a (possibly) non-homogeneous1 Poisson process

governed by an intensity function λ(s, t) which is typically a function of a continuous

secondary stochastic process z(s, t) [29]. Spatiotemporal point process models have been

used to explain patterns in a wide variety of disciplines, including crop growth [35],

seismology [34] and the study of disease spread in animals and humans [36].

The random intensity function of a spatiotemporal point process is commonly rep-

resented as a log-Gaussian Cox process (LGCP), i.e. lnλ(s, t) ∼ GP(·, ·) [185]. An

advantage of this approach is the considerable ease of parameter inference through the

method of contrast [36, 43]. Recently, the sigmoidal-Gaussian Cox process (SGCP) has

also been introduced, which conveniently upper bounds the random intensity function

and allows for MCMC techniques to be used to sample from a thinned homogeneous

Poisson process [32]. However, the use of LGCPs or SGCPs to represent the intensity

function over both space and time results in a model which obscures the system dynamics

and which is hence not amenable to control purposes.

A different approach to point process modelling which remedies this is the dynamic

systems approach, which describes the temporal evolution of the intensity as a realisation

of an underlying stochastic process typically given through a state-space model [29,

31]. This approach has gained recent popularity for two reasons. First, these types

1In point process systems it is customary to attribute heterogeneity to temporally/spatially varying

intensity. This should not be confused with the hetereogeneity as used in the previous chapters which

attributed it to the spatially-varying dynamics of the spatiotemporal system.
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of models can be parameterised such that appropriate inference can reveal a physical

and telling interpretation to the underlying mechanism [29]; and second, the form of

the state and parameter densities generally associated with this likelihood are unimodal

[186], allowing a large array of approximative techniques to be realistically applied to the

problem without too much compromise in accuracy. Dynamic models are particularly

attractive with respect to the objectives laid out in Section 1.3.2 as they allow the

approach developed in Chapter 3 to extend to the point process observations case with

minor modifications.

The first development in extending the framework of Chapter 3 to point process obser-

vations is a variational Bayesian inference mechanism which can cater for the nonlinear

likelihood characteristic of these systems. The inference mechanism is developed and

first implemented on the simple case where a shared underlying latent state is assumed

in Section 4.1. It is further shown to compare favourably against other well-established

methods in Section 4.2. The second development in this chapter is the extension of the

developed methodology to the general spatiotemporal case with heterogeneous intensity,

described in Section 4.4. As in Chapter 3, this objective is met with the use of dimen-

sionality reduction methods on a governing SPDE; the basis functions are now selected

through frequency methods tailored to the point process case. The successful applica-

tion of the proposed methodology is shown on a system governed by the stochastic heat

equation in Section 4.5.

4.1 VBEM for homogeneous multiple channel output sys-

tems

This section is concerned with problems where the outputs from a series of independent

channels are determined by an underlying intensity conditioned on a single (shared)

state. Such systems are representative of spatially homogeneous processes with tempo-

rally varying intensity (Figure 4.1a and 4.1b). From the events it is required to estimate

the underlying (spatially constant) intensity and infer the parameters governing the

temporal evolution of this intensity. The reasons why this scenario is considered before

the general heterogeneous case on a continuous-space (Figure 4.1c) is twofold: i) The

variational methods developed here may find potential use in many biomedical signal

processing problems, such as those concerned with neural spikes and heart beats and are

hence novel in their own right. ii) The extension of the developed methodology to the

usual spatially coupled spatiotemporal case follows naturally from the univariate case.

Note that the simple homogeneous problem considered here may be put into a general
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spatiotemporal framework described later by considering a single basis function constant

over the domain of interest O.

(a) (b) (c)

Figure 4.1: Observed events (top) and underlying intensity field (bottom) over a tem-
poral interval ∆t. Low intensity regions are marked in blue, high intensity regions in
red. (a, b) Discrete-channel output systems with homogeneous intensity. (c) General
spatiotemporal, heterogeneous (spatially varying state) system with observations carried
out in continuous-space.

The state-space model with point process observations exhibiting a single underlying

state was first proposed by Smith and Brown in [29]. This model assumes a first order

autoregressive process driven by an exogenous stimulus as state dynamics and has a

parameterised intensity function of an approximate Bernoulli process as its observation

model. For simultaneous estimation of state and parameters of such a model, Smith

and Brown derived an EM algorithm. In a recent study [186], it was shown that the

expectation of the log complete-data likelihood (Ep̃(X )[ln p(X ,Y|θ)]) of the state-space

point process model is unimodal and highly non-Gaussian with respect to each of its

parameters. The high skewness is indicative of parameter posteriors where simple ML

estimates of the parameters may be quite far from the actual posterior means, motivating

a Bayesian treatment of the point process model as presented later on in this section.
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4.1.1 The observation process

Consider a set of events which are recorded on an interval (0, T ] from C independent

output channels, where each output channel corresponds to a grid location in Figure 4.1a

and 4.1b. The observation length is discretised with a sampling interval ∆t > 0 so that

the incoming events are represented as a sequence of binary vectors yk := y(k∆t) ∈ RC

where yc(k∆t) = 1, c = 1 . . . C indicates that an event has occurred at the cth output

channel in the interval ((k − 1)∆t, k∆t] and is zero otherwise. The sampling interval

∆t is thus chosen small enough so that at most one event per sample for each output

channel is present, i.e.

∆t ∈ {r; yc(kr) ∈ {0, 1}, k ∈ [1, . . . , T/r], c ∈ [1, . . . , C]} . (4.1)

Given a dynamic latent state xk := x(k∆t), the conditional intensity function (CIF)

of the point process is defined to be of the form

λck = λ(k∆t|xk, µ, β̄c) = exp(µ+ β̄cxk), (4.2)

where µ, β̄c ∈ R. Through the conditioning on xk, the CIF renders the process a non-

homogeneous Poisson process [29]. The parameter µ represents a background firing rate,

which for simplicity is assumed to be the same for all channels. It can be shown that the

observation model (or likelihood) at the kth time interval in the cth channel is given by

the approximate probability mass function defined as

p(yck | xk, µ, β̄c) = [∆tλ
c
k]
yck exp(−∆tλ

c
k). (4.3)

Equation (4.3) can be obtained from first principles by treating the binned event sequence

as a series of uncorrelated Bernoulli trials [187], and is thus a realistic approximation only

if (4.1) is ensured and, hence, ∆t is sufficiently small. In practice, constraint (4.1) cannot

be guaranteed before data collection, but ∆t may be chosen such that the probability of

expected arrival time within an interval ∆t at the maximum expected intensity a priori

is less than some pre-defined threshold.

Since only linear systems are considered in this thesis, the underlying state may be

assumed to follow the evolution equation

xk = ρxk−1 + αIk + wk, (4.4)

where Ik := I(k∆t) is exogeneous and is equal to 1 if an input is present at k∆t and zero
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otherwise. wk := w(k∆t) ∈ R is additive white Gaussian noise with mean 0 and variance

σ2
w ∈ R+. The initial state x0 is assumed to be normally distributed with known mean

x̂0|0 and variance σ2
0|0. The parameters ρ ∈ R and α ∈ R are the propagation constant

and input gain respectively. Note that the input term is considered here since this work

may be seen as a development of [29] which also considers an input term; this will be

dropped when analysing the general spatiotemporal case.

Despite the simplicity (linearity) of the latent process, this model has been applied

several times to represent the dynamics of a system variable, the behaviour of which is

not fully understood. For instance, (4.4) has been used to successfully model the spatial

receptive field of a pyramidal neuron in a rat hippocampus [30], and, more recently, to

model the arousal state in subjects receiving thalamic stimulation [188].

Throughout this work it will be assumed that σ2
w may be fixed to a realistic value a

priori but that the remaining parameters governing the firing rate µ and β̄ = {β̄c}Cc=1

and the state equation parameters α and ρ are unknown. The inference problem is

therefore to estimate the set of unknown parameters θ ∈ Rd, d = C + 3 with θ =

{α, ρ, µ, β̄1, β̄2, . . . , β̄C} in addition to an underlying hidden state xk at each time point.

4.1.2 The VB-Laplace approach in dynamic point process systems

The variational framework for the inference in the state-space point process model is

developed in a similar vein to that of Chapter 3. Let X ,Y be the set of states and

observed data points up to the final time point K = T/∆t respectively, X = {xi}Ki=0 and

Y = {y i}Ki=1. As discussed in Section 2.3.3 the inference problem pivots on finding an

approximation to the true posterior p(X ,θ|Y) ≈ p̃(X ,θ) such that the variational free

energy is maximised. In this work, the approximate (joint) posterior is assumed to be a

product of distributions

p̃(X ,θ) = p̃(X )p̃(θ) = p̃(X )p̃(ρ, α)p̃(µ)
C∏
i=1

p̃(β̄i). (4.5)

The dependency between the ρ and α parameters may be retained since the interaction

terms between them which appear when deriving the log posterior distribution are rela-

tively easy to compute. As a result, α and ρ are dealt with jointly and without loss of

generality let θ = {(α, ρ), µ, β̄1, β̄2, . . . , β̄C}. The variational posteriors p̃(X ) and p̃(θ)

are then once again given by
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p̃(X ) ∝ exp(Ep̃(θ)[ln p(X ,Y,θ)]), (4.6)

p̃(θi) ∝ exp(Ep̃(X )p̃(θ/i)[ln p(X ,Y,θ)]), (4.7)

where θi is the ith component in θ and θ/i is the set of all θ excluding θi.

Since the VB posteriors are coupled, it is required to iterate (4.6) and (4.7) until

convergence. However, because of the form of (4.3), the class of models under study in

this chapter does not form part of the conjugate-exponential class of models considered

in Chapter 3. As a result, the variational posteriors are, in general, not of standard form

so that the required iterations are not possible analytically. The analytical computations

may however be re-employed by forcing the variational posteriors to be Gaussian in form

through the use of Gaussian approximation methods.

In the VB framework, the natural Gaussian approximation method is to find a Gaus-

sian distribution such that the KL divergence between it and p̃(·) is a minimum. However,

since the free-form variational posteriors are in generally negatively skewed, the result-

ing Gaussian approximation is likely to underestimate the variatonal mode which in turn

may cause instability in the numerical scheme (this was found to be the case in practice).

In addition, this method leads to an optimisation of n2 variables in the forward and back-

ward steps required for inferring the states. Complexity reduction mechanisms to solve

this are generally only available for a special class of models [189], to which the model

discussed does not belong. Since in spatiotemporal systems the state dimensionality can

range into the hundreds, the dimensionality of the optimisation space may become an

issue.

A somewhat simpler, but more reliable approximation method in this scenario, is the

the Laplace method [133, Section 4.4] which only requires optimisation in n-dimensional

space. Since the variational posteriors are unimodal (a proof for this proceeds on the

lines of [186]) the variational-Laplace (or VB-Laplace) combination is a potential tool for

approximate Bayesian inference which is both fast and computationally efficient. The

VB-Laplace method may also be seen as a fixed-form VB approximation method [155]

where the VB posterior densities are restricted to be Gaussian in form. A schematic

overview of the VB-Laplace method adopted here is shown in Figure 4.2.

One should bear in mind that the VB-Laplace method of Figure 4.2 does not reduce

to a simple Laplace approximation of the true posteriors p(X|Y) and p(θ|Y), given here

as p̄(X|Y) and p̄(θ|Y):

p(X ,θ|Y) ≈ p̃(X )p̃(θ) 6= p̄(X|Y)p̄(θ|Y). (4.8)
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Y

p̃(X ) Laplace{}

p̃(θ) Laplace{}

Figure 4.2: Conceptual diagram of the VB-Laplace method, where Laplace approxima-
tions are carried out on the computed VB posteriors in order to maintain recursions.

This is because the Laplace approximation is being employed on the variational posteri-

ors which results in a joint posterior p̃(X )p̃(θ) with a mode which is frequently different

from the mode of the true posterior [155]. This is definitely the case with distributions

associated with point processes which are inherently skewed as a result of the exponenti-

ations in the observation equation. Thus, while direct application of the Laplace method

on the posteriors results in a joint Gaussian distribution centred at the mode of the true

posterior distribution, the VB-Laplace scheme yields a Gaussian distribution optimally

centred in relation to the majority of the probability mass.

To exemplify the distinction, assume a single event was observed at time t = 0 and

that all the parameters are known except for x0 and µ. Allocate the following prior

distributions

p(x0) ∝ exp

(
− x2

0

2σ2
x0,p

)
p(µ) ∝ exp

(
− µ2

2σ2
µ,p

)
. (4.9)

Then from (4.3) the true posterior distribution is given by

p(x0, µ|y0) ∝ ∆t exp(µ+ β̄x0) exp(−∆t exp(µ+ β̄x0))p(x0)p(µ). (4.10)

The VB-Laplace method for this simple problem is then given by

p̃(x0)(i+1) ∝ exp(Ep̃(µ)(i) [β̄x0 −∆t exp(µ+ β̄x0)]) exp

(
− x2

0

2σ2
x0,p

)
Laplace−−−−−→ Nx0(x̂

(i+1)
0 ,Σ(i+1)

x0
), (4.11)

p̃(µ)(i+1) ∝ exp(Ep̃(x0)(i+1) [µ−∆t exp(µ+ β̄x0)]) exp

(
− µ2

2σ2
µ,p

)
Laplace−−−−−→ Nµ(µ̂

(i+1)
0 ,Σ(i+1)

µ ). (4.12)
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(a) (b) (c)

Figure 4.3: (a) True posterior distribution (4.10). (b) VB-Laplace approximation to the
true posterior distribution. (c) Minimum-risk-Laplace approximation (see Remark 4.1)
to the true posterior distribution. The cross denotes the mode of the true posterior
distribution. Note how the mode of the variational posterior is shifted downwards where
a larger proportion of the probability mass of the true joint posterior lies.

It can then be easily shown that x̂
(i+1)
0 is the solution of the nonlinear equation

β̄ − β̄∆t exp(µ̂(i) + Σ(i)
µ /2 + β̄x̂0

(i+1))− x̂0
(i+1)/σ2

x0,p = 0, (4.13)

and

Σ(i+1)
x0

= 1/(β̄2∆t exp(µ̂(i) + Σ(i)
µ /2 + β̄x̂0

(i+1)) + 1/σ2
x0,p). (4.14)

Similarly one has that

1−∆t exp(µ̂(i+1) + β̄(x̂0
(i+1) + Σ(i+1)

x0
/2))− µ̂(i+1)/σ2

µ,p = 0, (4.15)

and

Σ(i+1)
µ = 1/(∆t exp(µ̂(i+1) + β̄(x̂0

(i+1) + Σ(i+1)
x0

/2)) + 1/σ2
µ,p). (4.16)

The quantities (4.13)-(4.16) are then iterated until convergence is reached.

Carrying out the estimation with VB-Laplace under parameters β̄ = 1, ∆t = 0.1

and prior variances σ2
x0,p = 5 and σ2

µ,p = 1, one obtains the joint distribution p̃(x0)p̃(µ)

shown in Figure 4.3b. This is shown together with the true posterior (Figure 4.3a)

and p̄(x0)p̄(µ) (Figure 4.3c), where the true posterior was computed numerically. Note

that the VB-Laplace method does not degenerate to the Laplace method on individual

posterior distributions, as made clear by the difference in the positions of the modes of

the approximated distributions.

Remark 4.1 When the true joint posterior is approximated as the product of the in-

dividual posteriors, the method is referred to as a minimum-risk approach [14, Sec-



4.1. VBEM for homogeneous multiple channel output systems 95

tion 3.4.1]. The fundamental difference between the VB method and the minimum risk

approach is the KL divergence being minimised. Whilst the VB method can be seen

as a minimisation of KL(p̃(X )p̃(θ)||p(X ,θ|Y)), the minimum-risk approach minimises

KL(p(X ,θ|Y)||p̃(X )p̃(θ)). Indeed, when attempting to evaluate KL divergence to deter-

mine which is the better approximation to the true distribution shown in Figure 4.3, the

computed values favoured the method corresponding to the direction of the KL divergence

employed.

4.1.3 VB-Laplace for state inference

Adopting the strategy described in Section 4.1.2, state inference at the (i+1)th iteration,

p̃(X )(i+1), may be carried out using a Laplace augmentation of the usual VB forward-

backward algorithm. This filtering philosophy is similar in principle to the Laplace

Gaussian filter where a Laplace approximation is taken around the mode of the true

posterior distribution when the parameters are known [190]. Note that both these ap-

proaches are different from the extended Kalman filter (EKF) approach which enforces

system linearity a priori.

Consider the variational forward message α̃(xk) = p̃(xk|y1:k) as given in [129, Chapter

5] for a standard LDS. The idea is to approximate this quantity (at the (i + 1)th VB

iteration) as

α̃(xk) ∝
∫
α̃(xk−1) exp(Ep̃(θ)(i) [ln p(xk|xk−1,θ)p(yk|xk,θ)])dxk−1

Laplace−−−−−→ Nxk(x̂k|k, σ
2
k|k), (4.17)

where p(xk|xk−1,θ) = Nxk(ρxk−1 + αIk, σ
2
w) and p̃(xk−1|y1:k−1) =

Nxk−1
(x̂k−1|k−1, σ

2
k−1|k−1). The product p̃(xk−1|y1:k−1) exp(Ep̃(θ)(i) [ln p(xk|xk−1,θ)]) is

normal in xk−1 with precision σ∗−2
k−1 = σ−2

k−1|k−1 + Ep̃(ρ)(i) [ρ2]σ−2
w and mean

x∗k−1 = σ∗2k−1(x̂k−1|k−1σ
−2
k−1|k−1 + Ep̃(ρ)(i) [ρ]xkσ

−2
w − Ep̃(ρ,α)(i) [ρα]Ikσ

−2
w ). (4.18)

Marginalising out xk−1

p̃(xk|y1:k) ∝ Nxk(x̃k, σ̃
2
k) exp(Ep̃(θ)(i) [ln p(yk|xk,θ)]), (4.19)

where σ̃−2
k = σ−2

w − Ep̃(ρ)(i) [ρ]2σ∗2k−1σ
−4
w and

x̃k = σ̃2
k

(
σ∗2k−1Ep̃(ρ)(i) [ρ]σ−2

w [x̂k−1|k−1σ
−2
k−1|k−1 − Ep̃(ρ,α)(i) [ρα]Ikσ

−2
w ] + Ep̃(α)(i) [α]Ikσ

−2
w

)
.

(4.20)
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Hence (4.17) reduces to

α̃(xk) ∝ Nxk(x̃k, σ̃
2
k) exp(Ep̃(θ)(i) [ln p(yk|xk,θ)])

Laplace−−−−−→ Nxk(x̂k|k, σ
2
k|k), (4.21)

where, from (4.3)

p(yk|xk,θ) =

C∏
c=1

∆t exp(µ+ β̄cxk)
yck exp(− exp(µ+ β̄cxk)∆t). (4.22)

Carrying out the Laplace approximation in (4.21), the final equations governing the

forward pass are obtained

x̂k|k = x̃k + σ̃2
k

C∑
c=1

{
Ep̃(β̄c)(i) [β̄c]yck −∆tEp̃(µ)(i) [expµ]

d

dxk

[
Ep̃(β̄c)(i) [expxkβ̄

c]
]∣∣∣
xk=x̂k|k

}
,

(4.23)

σ2
k|k =

(
σ̃−2
k +

C∑
c=1

{
∆tEp̃(µ)(i) [expµ]

d2

dx2
k

[
Ep̃(β̄c)(i) [expxkβ̄

c]
]∣∣∣
xk=x̂k|k

})−1

.

(4.24)

Note that the normal assumption for the variational distributions allow analytical com-

putation of all the expectations involved in (4.18)-(4.24).

Equation (4.23) is not available in closed form and needs to be solved through a

deterministic optimisation method. The prior x̂k|k−1 (obtained from the predictive dis-

tribution) can be used as a good initialisation for x̂k|k to solve the optimisation in an

efficient manner. One may even replace the state variable on the RHS by the prior

to obtain a closed form solution; this rough approximation (corresponding to a single

fixed-point iteration) gives adequate results with a marked decrease in computational

requirements [55].

In a similar fashion, the variational backward message β̃(xk) = p̃(yk+1:K |xk) is com-

puted as

β̃(xk) =

∫
Nxk+1

(x′k+1, σ
′2
k+1) exp(Ep̃(θ)(i) [p(xk+1|xk,θ)])dxk+1, (4.25)

where

p̃(yk+2:K |xk+1) exp(Ep̃(θ)(i) [ln p(yk+1|xk+1,θ)]) ≈ Nxk+1
(x′k+1, σ

′2
k+1), (4.26)

and where p̃(yk+2:K |xk+1) = Nxk+1
(x̂k+1|k+2:K , σ

2
k+1|k+2:K). For reasons outlined later

on this section, instead of the standard Laplace method as the approximation method
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of choice, (4.26) is approximated around the mode of the forward message (x̂k+1|k+1)

rather than the mode of the true distribution to give

x′k+1 = x̂k+1|k+1 + σ′2k+1

[
x̂k+1|k+2:K − x̂k+1|k+1

σ2
k+1|k+2:K

+
C∑
c=1

{
Ep̃(β̄c)(i) [β̄c]yck+1−

∆tEp̃(µ)(i) [expµ]
d

dxk+1

[
Ep̃(β̄c)(i) [expxk+1β̄

c]
]∣∣∣
xk+1=x̂k+1|k+1

}]
, (4.27)

σ′2k+1 =

(
σ−2
k+1|k+2:K +

C∑
c=1

{
∆tEp̃(µ)(i) [expµ]

d2

dx2
k+1

[
Ep̃(β̄c)(i) [expxk+1β̄

c]
]∣∣∣
xk+1=x̂k+1|k+1

})−1

,

(4.28)

so that the mean and variance of the backward message are given by

x̂k|k+1:K

σ2
k|k+1:K

=

(
Ep̃(ρ)(i) [ρ]x′k+1(σ−2

w + σ
′−2

k+1)−1σ−2
w σ′−2

k+1 (4.29)

+ (σ−2
w + σ

′−2

k+1)−1Ep̃(ρ)(i) [ρ]Ep̃(α)(i) [α]Ik+1σ
−4
w − Ep̃(ρ,α)(i) [ρα]Ik+1σ

−2
w

)
,

σ2
k|k+1:K =(Ep̃(ρ)(i) [ρ2]σ−2

w − (σ−2
w + σ

′−2

k+1)−1Ep̃(ρ)(i) [ρ]2σ−4
w )−1. (4.30)

The smoothed state estimate p̃(xk|Y) ∝ α̃(xk)β̃(xk) is then Gaussian with

x̂k|K = σ2
k|K(x̂k|kσ

−2
k|k + x̂k|k+1:Kσ

−2
k|k+1:K), σ2

k|K = (σ−2
k|k + σ−2

k|k+1:K)−1. (4.31)

The last requirement is the computation of the cross-covariancemk = Ep̃(X )(i+1) [xkxk−1]−
x̂k|K x̂k−1|K . This is obtained from the joint [129, Section 5.3.5]

p̃(xk, xk−1|Y) = α̃(xk−1)β̃(xk) exp(Ep̃(θ)(i) [p(xk|xk−1,θ)p(yk|xk,θ)]), (4.32)

the natural logarithm of which (ignoring unnecessary terms) is given by

−
(xk−1 − x̂k−1|k−1)2

2σ2
k−1|k−1

−
(xk − x̂k|k+1:K)2

2σ2
k|k+1:K

−
Ep̃(θ)(i) [(xk − ρxk−1 − αIk)2]

2σ2
w

+ Ep̃(θ)(i)

[
C∑
c=1

yck(µ+ β̄xk)−∆t exp(µ+ β̄xk)

]
+ . . . (4.33)

≈− 1

2

(
xk−1 xk

)(a b

b d

)(
xk−1

xk

)
+ . . . ,
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where the approximation is carried out around the smoothed estimate. The required

covariance is then given by

mk = − b

ad− b2 , (4.34)

where the constants a, b and d are found after taking second order derivatives ∂2/∂x2
k,

∂2/∂x2
k−1 and ∂2/∂xk∂xk−1 of (4.33). These quantities are given as

a = σ−2
k−1|k−1 + Ep̃(ρ)(i) [ρ2]σ−2

w , (4.35)

b = −Ep̃(ρ)(i) [ρ]σ−2
w , (4.36)

d = σ−2
w + σ−2

k|k+1:K +
C∑
c=1

{
∆tEp̃(µ)(i) [expµ]

d2

dx2
k

[
Ep̃(β̄c)(i) [expxkβ̄

c]
]∣∣∣
xk=x̂k|K

}
. (4.37)

Ill-conditioning of β̃(xk): A distinctive feature of the point process model with λck as

defined in (4.2) is that the mode of β̃(xk) is unstable in the absence of output events and

inputs. For simplicity assume the parameters are known a priori and that β̄c = 1, c =

1 . . . C, then the Laplace approximation for (4.26) would yield a mode of the form

x′k+1 = x̂k+1|k+2:K − γ exp(x′k+1), γ > 0, (4.38)

which always has a solution x′k+1 < x̂k+1|k+2:K (since −γ exp(x′k+1) < 0). Further, it can

be easily shown that under these conditions

x̂k|k+1:K =
1

ρ
x′k+1, (4.39)

so that the mode of the reverse message essentially grows exponentially negative in the

absence of events and inputs when ρ ∈ [0, 1). While xk|k+1:K → −∞ is a perfectly valid

solution for λck as in (4.2) (corresponding to zero intensity), this estimate obviously creates

issues when computing the smoothed estimates as a result of numerical conditioning.

This anomaly, which is specific to point process systems, is particularly interesting as

the unstable evolution of the backward message corresponds to that of a simple LDS

when the output matrix C = 0; this implies that in the absence of events in the output

channels, the system is essentially unobservable, a concept well known in systems theory

for where the states cannot be estimated from the outputs [117, Chapter 1].

Extending further the analysis to α̃(xk), it immediately becomes apparent why the

forward message does not follow this unstable trend. Indeed simulations showed that

whilst its mode tends to go negative in the absence of inputs and events, much in the

same way as in the backward pass, the mode eventually levels out. Comparing (4.23)

to (4.38) one has that x̂k|k < x̃k. However it can be easily shown from (4.20) that
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x̃k = ρx̂k−1|k−1 and is stable, so that the forward message admits a limiting distribution

with posterior mode reaching a steady state of the form

x̂k|k = ρx̂k|k − γ exp(x̂k|k), γ > 0, (4.40)

giving

x̂k|k = −γ
exp(x̂k|k)

1− ρ , (4.41)

which has a unique solution for ρ ∈ [0, 1). Compare this to a LDS with C = 0 where

the filtered state x̂k|k simply drifts to zero but likewise is stable.2

One simple remedy for this problem is to ignore the backward message altogether,

however this would lead to a loss in information, particularly in regions of substantial

data. A better solution for the variational method in conjunction with recursions to

remain viable is to approximate the probability distribution about a reasonable point.

Since the forward message is guaranteed to be stable (for ρ ∈ [0 1)), its mode is con-

sidered an adequate place for effecting the approximation in (4.27) and (4.28). This has

several advantages:

• If the backward message is similar to a Gaussian distribution (in the event of several

events in the output channels), the approximation is guaranteed to be valid around

any point, including obviously the mode of the forward message.

• In the presence of no data, biasing closer to x̂k|k has the effect of overestimating

the mode of the backward message, preventing it from going exponentially negative

and thus stabilising the smoothed estimate (even though the system is effectively

unobservable in these regions).

• Equations (4.27) and (4.28) yield a closed form solution. No nonlinear optimisation

is required and the computational time required for the algorithm is essentially

halved.

In Figure 4.4 the trajectory of the mode of β̃(xk) is shown when i) the Laplace ap-

proximation and ii) the Gaussian approximation about the filtered estimate is employed

(for the known parameter case). The simulation was set up as per the details in Section

4.2. Note how whilst the mode tends to drift to −∞ in the former approach in the

absence of data, it stabilises at some negative value in the proposed approach.

Remark 4.2 In spatiotemporal systems the ill-conditioning may be tackled by basis func-

2Corresponding analogies with the LDS can be found by working through the equations in [129,

Chapter 5]
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Figure 4.4: Mode of β̃(xk) using the Laplace approach (dashed line) and linearisations
around the forward estimate (solid line). The presence or otherwise of at least one event
in any output channel is indicated by the pulse train on the bottom axis. Note how
the two approximation methods mostly differ in the absence of data when the system is
effectively unobservable.

tion omission in regions witnessing scarce events. These isolated events may then be

captured by the background intensity constant µ which in principle may also be heteroge-

neous. This strategy will be adopted in Chapter 6.

4.1.4 VB-Laplace for parameter inference

Finding p̃(α)(i+1) and p̃(ρ)(i+1): Equation (4.7) gives the updates for the parame-

ter distributions. Let the prior distributions over ρ and α be given as Nρ(0, σ2
ρ,p) and

Nα(0, σ2
α,p) respectively (zero mean assumed for simplicity). As a direct consequence of

the underlying linear state evolution model, the optimal variational posteriors over α

and ρ (without any need for approximation) become identical to those in a LDS, which

from [129, Chapter 5] (after re-evaluation for the inclusion of σ−2
w ) are given by

p̃(α)(i+1) = Nα(α̂, σ2
α), p̃(ρ)(i+1) = Nρ(ρ̂, σ2

ρ), (4.42)

where

α̂ = σ2
α

(
r1:K

σ2
w

−
γ1:K σ̄

2
ρg1:K

σ4
w

)
, (4.43)

σ−2
α = σ−2

α,p + u1:Kσ
−2
w − g2

1:K σ̄
2
ρσ
−4
w , (4.44)
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and

ρ̂ = σ̄2
ρ

(
γ1:K

σ2
w

− g1:K α̂

σ2
w

)
, (4.45)

σ2
ρ = σ̄2

ρ +
σ̄4
ρg

2
1:Kσ

2
α

σ4
w

, (4.46)

where the quantities containing the sufficient statistics are

γk1:k2 =

k2∑
k=k1

γk =

k2∑
k=k1

Ep̃(X )(i+1) [xkxk−1] =

k2∑
k=k1

[x̂k|K x̂k−1|K +mk|K ], (4.47)

λ̃k1:k2 =

k2∑
k=k1

λ̃k =

k2∑
k=k1

Ep̃(X )(i+1) [x2
k] =

k2∑
k=k1

[x̂2
k|K + σ2

k|K ], (4.48)

rk1:k2 =

k2∑
k=k1

rk =

k2∑
k=k1

Ep̃(X )(i+1) [xk]Ik =

k2∑
k=k1

[x̂k|KIk], (4.49)

gk1:k2 =

k2∑
k=k1

gk =

k2∑
k=k1

Ep̃(X )(i+1) [xk−1]Ik =

k2∑
k=k1

[x̂k−1|KIk], (4.50)

the sum of squared inputs is

uk1:k2 =

k2∑
k=k1

uk =

k2∑
k=k1

I2
k , (4.51)

and

σ̄−2
ρ = σ−2

ρ,p + λ̃0:K−1σ
−2
w . (4.52)

The quantity Ep̃(ρ,α)(i+1) [ρα] which is required for the VB filter is given by

Ep̃(ρ,α)(i+1) [ρα] = σ̄2
ρ(γ1:K α̂σ

−2
w − g1:K(α̂2σ−2

w + σ2
ασ
−2
w )). (4.53)

The mathematical details for obtaining (4.43)-(4.53) are omitted but will be shown in

detail for a similar derivation in Section 5.4.1 with σ̄−2
ρ replaced with σ−2

ρk|αk .

Finding p̃(µ)(i+1): The computation of the variational distribution over µ requires

application of the VB-Laplace method. Ignoring terms independent of µ, this posterior

is given by
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p̃(µ)(i+1) ∝ p(µ) exp

(
C∑
c=1

K∑
k=1

Ep̃(X )(i+1)p̃(β̄c)(i) [yck[µ+ β̄cxk]− exp(µ) exp(β̄cxk)∆t]

)
Laplace−−−−−→ Nµ(µ̂, σ2

µ), (4.54)

where p(µ) is the prior over µ with mean µp and variance σ2
µ,p. The variational posterior

is restricted to be Gaussian with mean µ̂ and variance σ2
µ by application of the standard

Laplace method to obtain the expressions

µ̂ = µp + σ2
µ,p

K∑
k=1

C∑
c=1

(
yci −∆t exp(µ̂)Ep̃(X )(i+1)p̃(β̄c)(i) [exp(β̄cxk)]

)
, (4.55)

σ2
µ =

(
1/σ2

µp + ∆t exp(µ̂)
K∑
k=1

C∑
c=1

Ep̃(X )(i+1)p̃(β̄c)(i) [exp(β̄cxk)]

)−1

. (4.56)

In these expressions it is required to evaluate the non-standard quantity

Ep̃(X )(i+1)p̃(β̄c)(i) [exp(xkβ̄
c)] which can be obtained as

Ep̃(X )(i+1)p̃(β̄c)(i) [exp(xkβ̄
c)] =

∫ [∫
exp(xkβ̄

c)Nβ̄c( ˆ̄βc, σ2
β̄c)dβ̄

c

]
Nxk(x̂k|K , σ

2
k|K)dxk

=

∫
exp( ˆ̄βcxk + σ2

β̄cx
2
k/2)Nxk(x̂k|K , σ

2
k|K)dxk

=
1√

2πσ2
k|K

∫
exp( ˆ̄βcxk + σ2

β̄cx
2
k/2− (xk − x̂k|K)2/2σ2

k|K)dxk.

(4.57)

After marginalising out xk and some algebraic manipulation the final result is obtained

as

Ep̃(X )(i+1)p̃(β̄c)(i) [exp(xkβ̄
c)] =

√
1

1− σ2
β̄c
σ2
k|K

exp

 x̂2
k|Kσ

2
β̄c

+ ˆ̄βc
2
σ2
k|K + 2 ˆ̄βcx̂k|K

2(1− σ2
β̄c
σ2
k|K)

 .

(4.58)

Finding p̃(β̄c)(i+1): Finally, the variational posterior over β̄c, ignoring terms indepen-

dent of β̄c, is given by
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p̃(β̄c)(i+1) ∝ p(β̄c) exp

(
Ep̃(X )(i+1)p̃(µ)(i+1)

[
K∑
i=1

yci [µ+ β̄cxi]− exp(µ) exp(β̄cxi)∆t

])
Laplace−−−−−→ Nβ̄c( ˆ̄βc, σ2

β̄c), (4.59)

where p(β̄c) denotes the prior over β̄c with mean β̄cp and variance σ2
β̄c,p

. Carrying out

the required Laplace approximation gives

ˆ̄βc = β̄cp + σ2
β̄cp

K∑
k=1

(
yckEp̃(X )(i+1) [xk]

−∆tEp̃(µ)(i+1) [expµ]
d

dβ̄c

[
Ep̃(XK)(i+1) [expxkβ̄

c]
]∣∣∣
β̄c=ˆ̄βc

)
, (4.60)

σ2
β̄c =

(
1/σ2

β̄cp
+ ∆tEp̃(µ)(i+1) [expµ]

K∑
k=1

[
d2

dβ̄c2
Ep̃(X )(i+1) [expxkβ̄

c]
∣∣∣
β̄c=ˆ̄βc

])−1

. (4.61)

The expectations required in this case are those of log normal distributions which are

easy to compute. In particular one has

Ep̃(X )(i+1) [exp(β̄cxk)] = exp(β̄cxk|K + β̄c
2
σ2
k|K/2), (4.62)

and Ep̃(µ)(i+1) [exp(µ)] = exp(µ̂+ σ2
µ/2).

4.2 Case study: multiple neurons driven by a shared latent

process

This section discusses the performance of the above VB-Laplace algorithm when tested

on synthetic data consisting of outputs of multiple neurons sharing a common hidden

state. The number of neurons chosen for simulation was C = 20 and the response

generated by a known spike input applied every 1s over a time interval of T = 10s with

a sampling rate of 100Hz was considered (the input at time t = 0 was omitted). The

model parameters were set to ρ = 0.8, α = 4, µ = 0, σ2
w = 0.05 and β̄c as a (uniformly)

randomly generated number in the interval [0.9 1.1].

All priors on the parameters and states, except for that over β̄c, were set to normal

distributions with relatively uninformative variances: σ2
0|0 = 1, σ2

ρp = 5, σ2
αp = 50, σ2

µp =

1. The prior over β̄c, on the other hand, was set to a normal distribution centred at 1 with

a three-sigma confidence between 0.7 and 1.3; this was done to remedy the identifiability

issues stemming from the fact that the likelihood (4.22) involves only the product β̄cxk (a
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Figure 4.5: (a) True state (thin solid line) and mean estimated state (thick solid line) as
given by the batch VB algorithm in the final iteration. The true state lies consistently
within the three-sigma confidence intervals (dashed lines). (b) Total spike count from
the C neurons at each sampling instant.

problem related to the parameter offsetting observed in [29]). Throughout this example

the nonlinear problem of finding x̂k|k, µ̂ and ˆ̄βc was carried out using the MATLAB3

function fzero.

The estimation of the state variational posterior describing the latent process using

the VB-Laplace algorithm can be seen in Figure 4.5 where at each time step the vari-

ational posterior’s mean and three-sigma confidence limits are given. Graphical results

for the corresponding estimation of the 23 unknown parameters are shown in Figure 4.6,

showing rapid convergence to good estimates.

The results were further compared to those obtained using EM [29] and those given

by a Gibbs sampler on the same data set.4 To avoid identifiability issues, particularly

with the EM algorithm of Smith and Brown [29] where priors are not used to prevent

instability,5 experiments were mostly carried out with β̄ fixed to its true value. Table 4.1

shows that all methods are effective in estimating parameters for this data, with the Gibbs

sampler and VBEM also providing confidence intervals which are in good agreement

with the true values. Note how VBEM is once again overconfident when compared to

MCMC methods. It took about 6 minutes for the EM algorithm (100 iterations) and the

VBEM algorithm (100 iterations), and 2 hours for the Gibbs sampler (30,000 samples)

to run.6 For the Gibbs sampler 5,000 samples were used for burn-in. Note that the

discrepancy with regards to computational time between the deterministic methods and

3 c©2011 MATLAB is a registered trademark of The MathWorks, Inc.
4A Gibbs sampler using the Carter and Kohn method was implemented by K. Yuan. Refer to the

appendix in [55].
5Note that, in practice, constraining the parameter search space using MAP inference is likely to

alleviate the identifiability problem associated with EM (see Section 2.3.2).
6Simulations carried out on an Intel R© Celeron R© U3600 @ 1.20GHZ with 4GB of RAM.
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Figure 4.6: Mean estimates (thick solid line) and three-sigma confidence intervals (dashed
lines) after 100 VBEM iterations for the parameters (a) ρ, α, µ and (b) β̄c, c = 1 . . . 20
using the batch VB algorithm. The parameters converge in distribution to reasonable
estimates irrespective of the initial conditions and the true (thin black line) values are
seen to lie well within the three-sigma confidence intervals at steady-state.

the Gibbs sampler is less than in the continuous case as a result of the required nonlinear

optimisation. For this case study convergence was assessed graphically.

A more informative test of the model’s performance is its ability to capture the

spike train distribution. A quantitative measure of this can be achieved using the time-

rescaling theorem of [191] in conjunction with a Kolmogorov-Smirnov (KS) test [28, 29].

As a goodness of fit measure, the mean squared maximum distance between the model

rate and the true rate over all output channels was found. The results for this KS measure

are given in Table 4.2; for completeness the results from a sliding window (SW) empirical

rate-estimator of 100ms width which is often used in these applications [192] is included.

The Bayesian methods (VBEM and Gibbs sampler) obtain the same goodness of fit as
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Table 4.1: Parameter estimation by the EM algorithm, Gibbs sampler and VBEM al-
gorithm. Unless stated, βc, c = 1 . . . C were fixed to the true values during simulation.
Confidence intervals are shown at the three-sigma level. The confidence interval for
avr(βc) is constructed on the mean variance.

θ True EM Gibbs VBEM VBEM (free β̄)

ρ 0.80 0.81 0.79 ± 0.06 0.80 ± 0.03 0.79 ± 0.03
α 4.00 3.91 3.81 ± 0.48 4.00 ± 0.22 4.01 ± 0.22
µ 0.00 -0.01 0.06 ± 0.24 -0.02 ± 0.14 0.00± 0.14

avr(βc) 1.01 - - - 1.00 ± 0.19

Table 4.2: Mean squared maximum KS distances for the 20 neurons with different event-
rate models (lower is better) for one data set. Unless stated, βc, c = 1 . . . C were fixed to
the true values during simulation.

Gibbs VBEM EM VBEM (free β̄) EM (free β̄) SW

MSE 0.0049 0.0049 0.0048 0.0076 na 0.0336

the EM algorithm and all three perform much better than the simple SW heuristic. It

should be noted that in this case the EM algorithm did not converge when attempting

to estimate β together with the other quantities.

To study whether retaining distributional information over the parameters does in-

deed lead to an improvement in the modelling of the spike train distribution, the VBEM

and EM algorithm were run on 200 different data sets generated under the same con-

ditions (with fixed β). In this case the EM and VBEM algorithms were assumed to be

converged when |ρ̂(i+1) − ρ̂(i)| < 0.002, |α̂(i+1) − α̂(i)| < 0.005 and |µ̂(i+1) − µ̂(i)| < 0.004.

Since C = 20, a total of 4,000 output channels were analysed. For each channel the

maximum distance between the model rate and the true rate using the KS tests was

found both for EM and VBEM. The errors were then log-transformed so that the result-

ing error distributions are normal (Shapiro-Wilks test [193, Chapter 6], p > 0.05) with

roughly equal variances (Levene’s test [193, Chapter 6], p > 0.05). The mean log-error

was -2.62 for the EM algorithm and -2.64 for the VBEM algorithm. These mean errors

are remarkably close, however a 2-sample t-test showed that the reduction in error by

VBEM is significant at the 10% level.

Unfortunately the t-statistic obtained has a small effect size given the large number

of samples considered (r = 0.02) indicating that, in practice, the increased accuracy

obtained by using VB-Laplace over EM for point processes may not be as advantageous
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as previously hoped. However, i) unlike in the continuous observation case there are no

computational gains by choosing EM over VBEM as both algorithms require nonlinear

optimisation (which constitutes the algorithm bottleneck). Moreover, ii) VBEM readily

provides uncertainty measures over the parameters when EM does not. Finally, iii)

VBEM was seen to be more stable than EM in practice, particularly when the estimation

of β was also required, possibly as a result of the ability to constrain the parameter space

through appropriate use of priors. These three advantages, together with the marginal

increase in estimation accuracy, render VBEM a more suitable tool for point process

systems than the conventional EM algorithm.

4.3 Framework for heterogeneous spatiotemporal point

processes

In order to facilitate the extension of the methodology from homogeneous discrete-space

output systems to heterogeneous continuous-space output systems it is worth giving an

overview of a framework for heterogeneous discrete output systems. See Figure 4.7 for a

qualitative comparison between the latter two representations.

(a) (b) (c)

Figure 4.7: (a) Underlying heterogeneous intensity field over a temporal interval ∆t with
observed events under (b) a discrete-space representation and (c) a continuous-space
representation.

4.3.1 Discrete-space representations

Unlike Section 4.1, where the ordering (i.e. the actual physical position) of each yck was

irrelevant as a result of system homogeneity, in heterogeneous discrete output systems

each yck denotes an actual, fixed, physical location (usually taken to be a grid area) in

space, say Oc. Let z(t) ∈ H denote the underlying evolving field and z(t) = z(k∆t) := zk.
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Then the intensity λck generating the observations at yck is conditional on the average of

zk in Oc; specifically

λck = exp(µ+ β̄zck), (4.63)

where

zck =

∫
Oc
zkds, (4.64)

and where it is assumed that β̄c = β̄, c = 1 . . . C (spatially constant). Now, if zck is

decomposed using a set of basis functions as in (3.3) one has

zck =

∫
Oc

n∑
i=1

xi,kφids = xTk φ̄c, (4.65)

where

φ̄c =

[∫
Oc
φ1(s)ds

∫
Oc
φ2(s)ds . . .

∫
Oc
φn(s)ds

]T
. (4.66)

The likelihood given in (4.22) is then represented as

p(yk|xk,θ) =

C∏
c=1

∆t exp(µ+ β̄xTk φ̄c)
yck exp(− exp(µ+ β̄xTk φ̄c)∆t). (4.67)

Note that since the discretisation is usually carried out a priori, {Oc}Cc=1 is known and

hence {φ̄c}Cc=1 is also known a priori. Equation (4.67) is a very powerful representation; it

implies that if z(s, t) is a dynamic spatiotemporal field (obeying for instance an SPDE or

an SIDE) which can be projected into Hn and discretised in time using a finite difference

scheme with interval ∆t with reasonable accuracy, then both the field and the underlying

spatiotemporal parameters may be estimated by simply extending the methodology of

Section 4.1 to the multivariate case.

However this representation has limited applicability as it is highly restricted by the

fact that a mesh needs to be defined a priori and by constraint (4.1) recall that only

one event is allowed per output channel at any given instant. Attempts to implement

this methodology are likely to result in a fine mesh which is too computationally and

memory intensive for the developed methods, so that discretisations which sometimes

violate (4.1) are used, thus contributing to a loss in information (compare Figure 4.7b

with Figure 4.7c for an example of this effect). The ignoring or ‘glossing over’ of hot

spots in intensity estimation obviously also has its consequences in parameter estimation.

These problems are remedied by treating the observations in continuous-space. Today,

with the advent of remote-sensing technologies and the global positioning system (GPS),

where the precise coordinates of the output event may be known, a framework handling
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the exact spatial locations is bound to be of more considerable use in the application

domain.

4.3.2 Continuous-space representation

To extend the framework to continuous-space scenarios, it is required to derive the likeli-

hood of a temporally sampled spatiotemporal point process. This is given in the following

theorem.

Theorem 4.1 Let P denote a collection of points in space and time over a domain O×T
with O ⊂ R,T ⊂ R+ and let Pk denote a spatial process consisting of points in the time

interval ((k − 1)∆t, k∆t]. The likelihood of Pk is then given as

p(Pk|λk(s)) =
∏
sj∈Pk

∆tλk(sj) exp

(
−∆t

∫
O
λk(s)ds

)
. (4.68)

Proof. Consider a discrete approximation of the spatiotemporal domain O × T with

K frames and J grid locations in each frame, such that there is no more than one event

in every space-time compartment. Let each compartment be of area ∆ = ∆t∆s and

let cj,k denote the compartment at the kth time point and jth spatial location.7 Then,

following the definition of a Poisson distribution, for any cj,k [194, Chapter 2]

Pr(event in cj,k) = λ̄(sj , tk) exp(−λ̄(sj , tk)), (4.69)

Pr(no event in cj,k) = exp(−λ̄(sj , tk)), (4.70)

where tk = k∆t, sj = j∆s and

λ̄(sj , tk) =

∫ ∫
cj,k

λ(s, t)dtds. (4.71)

The probability of obtaining points in compartments with space-time indices in the set

W and no points elsewhere is then given by

∏
j,k∈W

λ̄(sj , tk) exp(−λ̄(sj , tk))
∏

j,k∈Wc

exp(−λ̄(sj , tk)) (4.72)

=
∏

j,k∈W
λ̄(sj , tk) exp

(
−
∫
O×T

λ(s, t)dsdt

)
. (4.73)

Since P is a Poisson process, it follows that any subset of P defined on a finite interval

in O× T is also a Poisson process. In particular let Pk ⊂ P be defined on (tk−1, tk]×O
7One spatial dimension is treated without any loss of generality.
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and assume that λ(s, t) is constant over a small interval ∆t. Then

Pr(Pk|λk(s)) =
∏
j∈Wk

∆tλ̄k(sj) exp

(
−∆t

∫
O
λk(s)ds

)
, (4.74)

whereWk is set of indices of compartments in (tk−1, tk] containing an event and λ̄k(sj) =∫ sj
sj−1

λk(s)ds. Now λ̄k(sj) ≈ ∆sλk(sj) so that

Pr(Pk|λk(s)) = ∆|Wk|
s

∏
j∈Wk

∆tλk(sj) exp

(
−∆t

∫
O
λk(s)ds

)
, (4.75)

where in this case | · | denotes set cardinality. Equation (4.75) gives the probability of

observing the events Pk on finite subsets of spatial size ∆s. To obtain the probability

density of the observed events, as in the temporal case [194, Chapter 2] divide by ∆
|Wk|
s

to give (4.68).

It is intuitive to compare (4.68) with the discrete-space likelihood

C∏
c=1

[∆tλ
c
k]
yck exp(−∆tλ

c
k). (4.76)

The first part of the likelihoods is given by
∏C
c=1[∆tλ

c
k]
yck in discrete-space and∏

sj∈Pk ∆tλk(sj) in continuous-space. Whilst the former allows at most one event per

compartment, the latter permits numerous events at a close proximity to each other.

The problem of mesh selection a priori is therefore omitted.

Of even more importance is the difference in the second part of the likelihoods,∏C
c=1 exp(−∆tλ

c
k) as compared with exp(−∆t

∫
O λk(s)). Although numerical methods

are still required to compute the integral, the spatial discretisation employed only needs to

be sufficiently fine so that numerical integration of fields represented by φ are adequately

computed, i.e. given a field’s frequency content (to be made precise in Section 4.5.2) and

an appropriate set of basis functions, a numerical integration scheme must be defined

which approximates
∫
O λk(s)ds accurately. The numerical scheme is thus independent

of the number of points, or even the proximity of the points to each other (the desire of

such a property is very evident in the discussion of Illian and Simpson in [20]).

This feature of the continuous-space representation is of vital importance in highly

heterogeneous data sets. For instance, the case considered in Chapter 6 contains both

regions where events are separated by hundreds of kilometers at every time point, and

regions where events are only separated by a few kilometers. With the discrete-space

representation a very fine mesh would have had to be used in order to safeguard (4.1) over

the entire spatial domain and would have required a grid several orders of magnitude
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finer than that necessary for accurate integration in (4.68). The modelling approach

would have not been viable for inference in this case.

4.4 VB-Laplace for SPDEs from point process observations

Following the strategy described for SPDEs with continuous observations in Chapter 3,

this section now proceeds to discuss basis function placement and inference in the context

of point process observations by building on the work carried out in Section 4.1.

4.4.1 Basis function placement from point processes

Consider a CIF of the form

λk = exp(µ+ zk), (4.77)

which implies, without loss of generality, that β̄ = 1. As shown in Section 3.3.2, the

basis functions should be able to reconstruct the field with sufficient accuracy, and this

is assured by choosing basis functions with a bandwidth greater than that of the field as

in (3.25). When considering linear time series observations, the frequency content of the

field is easily found by taking the Fourier transform of the sensor readings. But how can

one determine the frequency content of a field when only events in space are observed?

To answer this consider the following two scenarios; if throughout a time interval ∆t

points are placed randomly in space (homogeneously distributed), they are said to be

spatially uncorrelated and the intensity field may be assumed to be constant (as is seen

in Figure 4.1a and 4.1b). If on the other hand the points tend to cluster together (as

in Figure 4.1c), then the points are correlated, and the type of clusters (very dense hot

spots, or clusters in which the events are quite sparse) determine the range of spatial

interactions. The type of correlation is then, in turn, representative of the underlying

field’s frequency content by the autocorrelation theorem which states the following:

Theorem 4.2 (Autocorrelation theorem [195, Chapter 6]) If Z(ν) is the Fourier

transform of z(s) then its autocorrelation function ψ(s) has a Fourier transform |Z(ν)|2,

the power spectral density (PSD) of the signal.

In a more precise sense, the correlation between points in space is studied using a

quantity commonly referred to in point processes as the pair autocorrelation function

(PACF) which is defined through the first and second moment measures of the random

intensity.
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Definition 4.1 Let λ
(1)
k (s) = E[λk(s)] and λ

(2)
k,k(s, r) = E[λk(s)λk(r)], then

gk,k(s, r) =
λ

(2)
k,k(s, r)

λ
(1)
k (s)λ

(1)
k (r)

, (4.78)

is known as the PACF.

The quantity gk,k(s, r) is particularly useful because of its relationship to the statis-

tics of log Gaussian random fields.

Definition 4.2 Let zk(s) ∼ GP(ẑk(s), σ2
kψk(s, r)), where ψ is a correlation function with

ψ(s, s) = 1, then λk(s) = exp(µ+ zk(s)) is termed a log Gaussian Cox process.

LGCPs [185] are typically spatial-only fields used to describe the log normal proper-

ties of the random intensity function. It follows that since zk(s) is reconstructed from a

linear Gaussian evolution equation in this thesis (Theorem 3.1), each zk(s) is a GP and

each λk(s) is a LGCP.

Lemma 4.1 The PACF of a LGCP is related to the covariance function of the GP

through

gk,k(s, r) = exp(σ2
kψk(s, r)) (4.79)

Proof. Consider the form of λk in (4.77). Since λk(s) is log normal8 one has that

λ
(1)
k (s) = E[λk(s)] = exp(µ+ ẑk(s) + σ2

k/2). (4.80)

Further

λ
(2)
k,k(s, r) = E[exp(µ+ zk(s) + µ+ zk(r))]

= exp(2µ)E[exp(zk(s) + zk(r))]. (4.81)

Now the first and second moments of the exponent are given as

E[zk(s) + zk(r)] = ẑk(s) + ẑ(r), (4.82)

E[(zk(s) + zk(r))2] = E[zk(s)2 + zk(r)2 + 2zk(s)zk(r)]

= ẑk(s)2 + ẑk(r)2 + 2ẑ(s)ẑ(r) + 2σ2
k + 2σ2

kψk(s, r), (4.83)

8Recall that if x is normally distributed with mean µ and variance σ2, then E[exp(x)] = exp(µ+σ2/2).
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so that var[zk(s) + zk(r)] = 2σ2
k + 2σ2

kψk(s, r). Therefore

λ
(2)
k,k(s, r) = exp(2µ+ ẑk(s) + ẑ(r) + σ2

k + σ2
kψk(s, r)), (4.84)

λ
(1)
k (s)λ

(1)
k (r) = exp(2µ+ ẑk(s) + ẑ(r) + σ2

k). (4.85)

Substituting (4.84) and (4.85) in (4.78) gives the required result.

For simplicity in this work it will be assumed that the correlation function is trans-

lation invariant, i.e. that ψ(s, r) = ψ(s − r), and moreover that it is isotropic, i.e. that

ψ(s, r) = ψ(||s−r ||) = ψ(υ). It thus follows that the PACF is also translation invariant

and istropic and that, from Lemma 4.1,

ln gk,k(υ) ∝ ψk(υ). (4.86)

Recall that since ψ(υ) is an autocorrelation function, it bears information on the

frequency content of the spatial field. The problem is therefore to find gk,k(υ), or rather

the average over all time points ḡk,k(υ), from the data with the use of non-parametric

analysis (use of the average is possible under the assumption of temporal stationarity).

Fortunately this is today standard in the point process literature and the reader is referred

to Appendix C for details. Once ḡk,k(υ) is found, Fourier analysis may then be used to

find νc, after which the approach for basis function placement of Section 3.1.3 may be

readily implemented.

Remark 4.3 A suitable form for λ
(1)
k (s) needs to be constructed for the method to work.

In the ensuing example and in Chapter 6 first-order spatial stationarity will be assumed

so that

λ
(1)
k =

Nk

|O| ∈ R+, (4.87)

where Nk is the number of points at the kth time frame and |O| is the area of the space

under consideration. In some cases, linear or polynomial functions for λ
(1)
k (s) may be a

more suitable choice [35, 42, Section 5.6].

4.4.2 Inference

If z(t) follows an SPDE of the form in (2.20) it can be approximated using the discrete-

time finite dimensional representation of SPDEs in Theorem 3.1 and may hence be rep-

resented as a linear equation of the form

x k+1 = A(ϑ)x k + wk. (4.88)
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Now assume the observations are isolated events governed by an underlying CIF of the

form

λk = exp(µ+ β̄zk). (4.89)

Under the Galerkin approximation, the likelihood of (4.68) is given as

p({yk}|x k, µ, β̄) =
∏

sj∈Wk

∆t exp(µ+ β̄xTkφ(sj)) exp

(
−∆t

∫
O

exp(µ+ β̄xTkφ(s))ds

)
,

(4.90)

where {yk} = Pk denotes the (time-varying size) set of coordinates in the spatial point

process and φ(sj) is the vector of basis functions at event location sj . The set of

equations (4.88) and (4.90) describe a linear system with point process observations

having unknown states X = {x i}Ki=0, x 0 ∼ Nx0(µ0,Σ0), observed data Y = {{y i}Ki=1}
and unknown parameters θ = (ϑ, µ, σ−2

w ,µ0,Σ
−1
0 ). In order to simplify the exposition,

no inputs are considered in the model. Further the parameters µ, β̄,µ0,Σ
−1
0 and σ−2

w

are assumed to be known a priori; however similar arguments as shown in Chapter 3 may

be employed to estimate these quantities too. The problem of SPDE identification from

point processes may thus be solved by estimating the states governing the field statistics

X and the unknown quantities ϑ given the observed data.

Approximate the (joint) posterior in the usual way

p̃(X ,θ) = p̃(X )p̃(θ) = p̃(X )p̃(ϑ). (4.91)

The optimal choice for the variational posteriors p̃(X ) and p̃(ϑ) is then given by

p̃(X ) ∝ exp(Ep̃(ϑ)[ln p(X ,Y,ϑ)]), (4.92)

p̃(ϑ) ∝ exp(Ep̃(X )[ln p(X ,Y,ϑ)]). (4.93)

Finding p̃(X )(i+1): In a similar vein as (4.17) one has

α̃(x k) ∝
∫
α̃(x k−1) exp(Ep̃(ϑ)(i) [ln p(x k|x k−1,ϑ)p({yk}|x k)])dx k−1

Laplace−−−−−→ Nxk(x̂ k|k,Σk|k), (4.94)

which, following the derivation for the univariate case,9 results in

α̃(x k) ∝ Nxk(x̃ k, Σ̃k) exp(Ep̃(ϑ)(i) [ln p({yk}|x k,ϑ)])
Laplace−−−−−→ Nx̂k(x̂ k|k,Σk|k). (4.95)

9Without redefining, uppercase and bold symbols are used to represent the same quantities which are

now matrices and vectors respectively.
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The approximation requires evaluation of the gradient (recall µ and β̄ are assumed to be

known) of the logarithm of (4.90) for optimisation. This is given by

∂

∂x k
ln p({yk}|x k) =

∑
sj∈Pk

β̄φ(sj)−∆t exp(µ)β̄

∫
O
φ(s) exp(β̄φ(s)Tx k)ds. (4.96)

Scaled conjugate gradient (SCG) can be effectively employed to find the local maxima in

n-dimensional space. To accelerate the search, the SCG is initialised using the predictive

distribution from the Kalman filter assuming point estimate parameters, x̂ k|k−1, which

in practice is a good estimate. Further, the Hessian used to obtain the variance is given

by

∂2

∂x k∂xTk
ln p({yk}|x k) = −∆t exp(µ)β̄2

∫
O
φ(s)φ(s)T exp(β̄φ(s)Tx k)ds. (4.97)

Numerical integration methods are required to compute the integrals in (4.96) and (4.97)

but the order of the integral is limited to the dimensionality of the physical space under

consideration which is never more than 3 and, as alluded to earlier, the computational

time required to evaluate the integral is determined by the choice of basis functions and

not by the locations of the individual points.

The gradient and the Hessian are also required in the computation of the backward

message β̃(x k), which in turn is combined with α̃(x k) to produce the smoothed estimate

as in (4.31). A small note is required on the computation of the cross covariance matrix

M k; since a, b and d in (4.33) become block matrices in the multivariate cases Schur

complements [196] are required for its evaluation [129, Chapter 5]. The full mathematical

details for the variational Kalman smoother for the SPDE with point process observations

are given in Algorithm A.3.

Finding p̃(ϑ)(i+1): Since ϑ appears in the underlying linear evolution system, the

maximiser (4.93) becomes identical to that given in the SPDE in the linear observations

case. Specifically, if the prior over ϑ is given by ϑ ∼ Nϑ(ϑp,Σϑ,p),

p̃(ϑ)(i+1) = Nϑ(ϑ̂,Σϑ), (4.98)

where

Σϑ =
(
σ−2
w Υ + Σ−1

ϑ,p

)−1
, (4.99)

ϑ̂ = Σϑ

(
σ−2
w υ + Σ−1

ϑ,pϑ̂p
)
, (4.100)
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where υ and Υ are given in (3.38) and (3.39) respectively. The VBEM algorithm for

SPDEs observed through a point process is given in Algorithm 4.1

Algorithm 4.1 The VBEM algorithm for SPDEs with point process observations

Input: Data set Y, parameters Q̃ , {V i}di=1,Ψx , µ, β̄, σ
−2
w ,µ0,Σ0 and initial

parameter distribution p̃(ϑ)(0).

i = 0
do

Run Algorithm A.3 with p̃(ϑ) = p̃(ϑ)(i) VBE-step

Evaluate p̃(ϑ)(i+1) from (4.99) and (4.100) VBM-step
i = i+ 1

until ||Ep̃(ϑ)(i) [ϑ]− Ep̃(ϑ)(i−1) [ϑ]|| < ε1

Output: {x̂ k|K ,Σk|K}Kk=0, p̃(ϑ)(i).

4.5 Case study: the stochastic heat equation

Consider the stochastic heat equation with operator A(·) = D∆(·), D ∈ R+ being the

thermal diffusivity and ∆ denoting the Laplacian. Assume that a set of events are a

realisation of a Poisson process fully defined through its CIF λ(s, t) which in turn is

conditional on the underlying heat equation through z(s, t). The problem is to find the

diffusivity constant D from the discrete events which appear in space and time. Such

a case study lends itself to several applications such as i) epidemiology, where typically,

instead of the actual raw physical locations of reports, a summarised infective population

concentration is used in a reaction-diffusion like model [197] and ii) ecology, where the

spread of an animal or plant species (again using reaction-diffusion type models) is typ-

ically studied by binning the number of reports at discrete location points and carrying

out the inference over a relatively coarse grid [27]. In what follows a rigorous method

which maintains the precise locations of the individual reports and which adheres to a

continuous-space representation is demonstrated to be a suitable tool for the analysis of

such systems.

4.5.1 Simulation setup

Let O = [0, 30] × [0, 30] ⊂ R2. A mesh of nsim = 49 basis function of the form (3.20)

with τ sim = 1.05 were equally spaced on O satisfying the Dirichlet boundary conditions.

In a geographical context, these boundary conditions have a meaningful relevance, such
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(a)

(b)

Figure 4.8: Number of events Nk at each time point k for the two case studies under
consideration: the stochastic heat equation observed through point processes (a) with a
dominating initial condition where the diffusion action is clearly observed and (b) with an
initial condition as the process limiting distribution. The insets show the spatial points
(black points) and the underlying field zk (coloured map) at different time instances.

as a coastline over which an epidemic cannot spread, or a country’s boundaries beyond

which any reported events are irrelevant (see Chapter 6 and the discussion of Illian and

Simpson in [20]). Simulation parameters were set as ∆sim
t = 0.01, µ = −4, β̄ = 1,

Qu =
∫
O kQ(s − r)u(r)dr and with kQ(s) = exp(−sT s/4). The diffusion constant

chosen was D = 10 so that ϑ = 10. The example in Section 3.1.1 shows how spatially

varying parameters can be dealt with in the analysis if desired.

Simulation of the point process was carried out by the method of thinning [198].

Essentially this involves generating a homogeneous Poisson process at each time frame

with the maximum intensity λ∗k = supλk(s) and then randomly removing points in
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accordance with λk(s). See [32] for an elegant description of the procedure. Two case

studies are considered here:

1. A strong initial condition dominates the underlying field so that the process is

first-order non-stationary with, however, a substantial amount of events observed

bearing considerable information on ϑ (with K = 30, σw = 0.5). The true initial

states for this case study were initialised as x 0 ∼ Nx0(µ0,Σ0) with µ0 ∼ U(0, 7),

U(·, ·) being the uniform distribution in a given interval, and Σ0 = 50I .

2. A stationary spatiotemporal process where the diffusion constant has to be esti-

mated from just an average of about 6 events per frame. More data is needed for

reliable estimation in these scenarios (in this case K = 600, σw = 3). The initial

estimated state for this case study was set to x 0 ∼ Nx0(µ0,Σ0) with µ0 = 0 and

Σ0 = 50I .

Figure 4.8 shows two realisations from these two case studies. Inference in the former

case is obviously easier from an information perspective, although it will be seen that

the algorithm performs well in both cases.

4.5.2 Basis function placement

Consider the first data set of Figure 4.8a. The corresponding nonparametric estimators of

the PACF (Figure 4.9b) clearly show that the cluster sizes correspond to a field frequency

response of approximately νc = 0.14 cycles per unit (Figure 4.9a). The methodology in

Section 4.4.1 can then easily be used to propose local GRBFs with parameter τ = 1.1.

The resulting basis turns out to be quite close to the basis used to generate the data.

Moreover note how the selected basis function is naturally found to be narrower than

the log auto-correlation function in order to adequately represent cluster hot spots.

In Section 3.3 it was seen that a different form of basis from the simulation always

results in some form of bias. Since the proposed basis functions turned out to be so close

to those used in the simulation model, and since a discussion of the bias introduced by

finite dimensional reduction was already presented in Chapter 3, here the exact simu-

lation representation will be used for modelling (which corresponds to an oversampling

parameter of α0 = 1.2). A demonstration of basis function selection from point processes

will be employed with the real application data in Chapter 6.

4.5.3 Results

A zero-centred Gaussian distribution with variance σ2
ϑ = 1, 000 was used for a non-

informative parameter prior. The VB algorithm was terminated with the stopping con-
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Figure 4.9: Frequency and spatial analysis of spatiotemporal point process systems using
the PACF. (a) Normalised absolute frequency response of the underlying field computed
from the log PACF (cross), chosen support of field frequency content (vertical line) and
proposed basis function frequency response (circle). (b) Nonparametric estimation of
ln gk,k at all time points (grey solid lines), a GRBF fitted to the mean over all time
points (cross) and the proposed basis function (circle). The curves pertaining to the
basis functions used to generate the data are also given for comparison (dashed line).

dition |Ep̃(ϑ)(i) [ϑ] − Ep̃(ϑ)(i−1) [ϑ]| < 0.1 where i denotes the VB iteration number. SCG

was carried out using the MATLAB package NETLAB [199].

Figure 4.10 shows the successful convergence of the VB algorithm for the data sets

shown in Figure 4.8a and Figure 4.8b after 20 and 14 iterations respectively. Fifty MC

runs were carried out under the same simulation conditions of Figure 4.8a but with

D = 50. The large parameter uncertainty, as seen in Figure 4.11, comes as no surprise

given the small K. Interestingly the distribution of the mean is not normal around the

true value in this case (Figure 4.11a), and is slightly positively skewed in a way similar

to linear systems with high observation noise (see Footnote 9 on pg. 83). In this case

the true parameter lay consistently within the three-sigma uncertainty intervals (Figure

4.11b) however, recall from Section 3.4, that this need not be true in general.

The number of iterations required for convergence highly depends on the value of

the true parameter ϑ and a lower diffusion constant tends to speed up convergence (see

Figure 4.12). As alluded to in Figure 3.11 in Section 3.4, there are also other factors

affecting the number of iterations required for convergence, such as the initial parame-

ter estimates, noise levels and the length of the data set (longer data sets require less

iterations for convergence). As a result of the required nonlinear optimisation through
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(a) (b)

Figure 4.10: Estimated parameter posterior mean and three-sigma confidence intervals
with increasing VB iteration number for (a) the data set of Figure 4.8a and (b) the data
set of Figure 4.8b. The true value to which the means converge to are given by the
horizontal dotted lines.

gradient descent, the computational time required by the VB algorithm with point pro-

cess observations is considerably more than that required with continuous observations.

In all cases shown in Figure 4.12, for n = 49, inference took on the order of two hours

to complete on a standard PC;10 a similar problem with linear observations would take

a few minutes at most.

High quality estimation of the underlying spatiotemporal field is shown in Figure

4.13. Note how the smoothing effect of the two-filter smoother has the effect of correctly

estimating the field even when only a few events are observed at any point in time. The

right panel in each subplot depicts the uncertainty of the field estimate; as a result of the

chosen exponential form of λk(s) uncertainty is highest in the regions of low intensity;

an intensity of e−4 and e−8 correspond equally well to regions of negligible intensity so

that the precise value of z(s) in low activity regions is largely uncertain. This does not

create any difficulty from an engineering perspective where it is likely that regions of

high activity (hot spots) are of the most interest.

4.6 Conclusion

This chapter has applied, for the first time, a VB-Laplace approximation for the identi-

fication of SPDEs from point process observations. This has resulted in several contri-

butions from an algorithms perspective, namely

• the extension of the basic EM algorithm for point process systems [29] to VBEM

for single state multi-channel output systems, showing an increase in estimation

10Simulations were carried out on an Intel R©CoreTM2Duo T5500 @ 1.66GHz personal computer with

2GB of RAM.
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Figure 4.11: (a) Distribution of the mean parameter estimate ϑ̂ over 50 MC runs. (b)
Variational posterior over ϑ at each MC run. The vertical line in each case indicates the
value of the true parameter.

accuracy and significant computational savings when compared to MCMC methods

such as Gibbs sampling,

• the establishing of a continuous-space output framework which decouples the dis-

cretisation needed for numerical integration from the resolution at which points are

being observed,

• the joint field-parameter inference scheme for the identification of SPDEs from

point process observations and

• the proposal of the use of frequency analysis methods in spatiotemporal systems

for modelling via the use of the PACF.

The proposed method for spatiotemporal identification from point processes is rela-

tively straightforward and is only limited by the size of the set of basis functions, which

can range into a few hundreds if required. Its applicability to SPDEs is a major step

forward from the treatment of spatially decoupled processes such as that considered in

[19], which required a highly computationally intensive Metropolis-Hastings algorithm

for parameter inference. The deterministic approach is also highly efficient when com-

pared to the popular Metropolis-adjusted Langevin algorithm (MALA) currently exten-

sively employed in this field [35, 185]. Moreover the VB approach reaps the advantages

of Bayesian inference when compared to other deterministic approaches. First, it re-

duces the errors introduced when considering solely ML estimates (as also noted in [185,

Section 8]). Second, it obviates the requirement for bootstrap methods for parameter
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Figure 4.12: Estimated parameter posterior mean Ep̃(ϑ)[ϑ] = ϑ̂ with increasing VB it-
eration number on data sets of fixed length K = 31 with data generated under the
simulation conditions used for the data set shown in Figure 4.8a. For clarity confidence
intervals are not shown. The true value to which the means converge to are given by the
horizontal lines.

uncertainty evaluation as carried out, for instance, in the partial-likelihood approach to

point processes [200].

There are several paths for future work, including a more rigorous framework for

basis function placement. Throughout the studies it was noted that with spatiotemporal

systems with point process observations it is very hard to model any dynamics where

there are scarce events (as noted in the case study of Figure 4.8b which required an order

of magnitude more in data points for reliable estimation). One method to counter this

would be to have a heterogeneous set of local basis functions which have a larger width

in less active regions over the whole temporal region, so that the observability of the

respective states is guaranteed.

It is noted that the developed state-space Cox process in a spatiotemporal context

is also easily adapted to marked/multivariate point processes, where each point has a

defining characteristic (such as type of disease incidence in an epidemic or the type of

plant which is spreading in ecology [35]). Each mark can have its own state vector

and be governed by its own dynamics, and cross-dynamics can be incorporated into the

model by the use of an augmented state vector together with an augmented state matrix.

The noise statistics also need not be common across the processes through the use of a

structured covariance matrix Q̃ .

In light of the objectives set out for in Section 1.3.2, this chapter delivers a practical

approach to learn from point process data and provides a discrete-time continuous-space

state-space representation of the spatiotemporal system which can readily be used for
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(a)

(b)

(c)

Figure 4.13: Field estimation at (a) k = 100, (b) k = 300 and (c) k = 500 depict-
ing the true field zk overlayed by the observed points (black marks), the estimated
field zk(s) = φT (s)x̂ k|K (centre panels) and the variance map φT (s)diag(Σk|K), where
diag(Σ) arranges the diagonal of a matrix Σ into a column vector. The colour axis for
the left and centre panels corresponds to the colour bar on the left. That of the right
panel corresponds to the colour bar on the right.

control purposes. It also adopts fast distributional approximation methods to make the

approach amenable to large data sets. Both Chapters 3 and 4 have considered data which

is made available a priori to the analyst; the next chapter will extend the work carried

out so far to deal with situations where estimation needs to be carried out online.





Chapter 5

Online variational inference from

spatiotemporal data

Chapters 3 and 4 presented a framework for the offline, or batch, state-parameter esti-

mation of SPDEs from spatiotemporal data available either as continuous readings or as

events. The algorithms alternately computed i) the parameters using the smoothed states

and ii) the smoothed states using the evaluated parameters. They are optimal in some

sense and shown to perform well in a variety of settings. However, whilst being elegant

from a statistical viewpoint, as a result of requiring the entire data set for computation,

offline methods may be exhausting in terms of memory requirements and computational

speed [201]. Moreover, algorithms in this class are less adapted to online scenarios where

data is arriving in real-time and where model behaviour is not guaranteed to be time

invariant.

Sequential estimators, on the other hand, consider individual measurements as they

become available. The information gathered from past data is implicitly stored in the

current parameter and state estimates which are updated sequentially with the new data.

As a result sequential estimators are seen to require less computational resources [202]

than batch estimators. Moreover, while also applicable to offline analysis, they are ideal

for online scenarios where data is arriving in real-time and may be adapted to situations

where the field dynamics are slowly changing [203]. The conceptual distinction between

the two classes of estimators is given in Figure 5.1.

Combined state-parameter sequential estimation in spatiotemporal systems is useful

for both types of observation processes considered so far. For instance:

• Epilepsy monitoring [74]: Certain parameter alterations detected in a patient-

specific neural field model may be used to anticipate imminent seizures. In this

case the observations are electrophysiological data (continuous readings).

125
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Figure 5.1: Combined state-parameter estimation. (a) Batch approach: The entire data
set is used and state estimation over the entire time horizon is alternated with parameter
estimation. (b) Sequential approach: The current data point yk is used to give the
current state estimate x k and the current parameter estimate θk. Iterations for state
and parameter estimation at the current time point k may still be required.

• Disease surveillance [43]: By studying the progression of the logged disease cases,

outbreak detection may be anticipated and the ability to counteract the disease

spread increased. The outbreak may, for instance, correspond to a shift from

stable dynamics to unstable ones. Here the observations are logged disease cases

(event-based data).

Other application areas where online estimation might prove profitable in a spatiotem-

poral context is structural health monitoring [204] and urban development [19].

The main aim of this chapter is to extend the framework considered so far by providing

sequential combined estimation of spatiotemporal systems with the use of both sensor

data and event-based data in a variational framework. Towards such an aim a brief review

of established joint/dual filtering methods together with some preliminaries for this work

is given in Section 5.1. A variational dual filter is then derived in Section 5.2. As the

variational filter is a key novelty in this chapter its potential is first evaluated on simple

temporal systems and then on spatiotemporal systems with continuous observations in

Section 5.3. The same approach is then taken for point process observations in Sections

5.4 and 5.5. The chapter concludes in Section 5.6.

5.1 Preliminaries

5.1.1 Introduction to dual filtering

Combined sequential state-parameter estimation algorithms appear in two flavours, joint

estimation and dual estimation. Both methods require the postulation of an artificial

dynamic equation for parameter progression (to be discussed later). In joint estimation,
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the state vector is augmented with the unknown parameters to form a n+d-dimensional

state vector which is then updated using the Kalman filter and its nonlinear extensions

[205]. However the augmentation does not always yield tractable models and, in addition,

has been reported to generate instability [206] particularly in nonlinear dynamic models

[207].

Instead of employing a single augmented state vector, a dual filter attempts to esti-

mate the states and parameters sequentially by alternating between two filters running

in parallel. The most popular dual filtering technique is the dual Kalman filtering (DKF)

technique which considers two standard [208], extended [119], ensemble [207] or unscented

[205, 120] Kalman filters running alternately. For nonlinear systems the unscented and

ensemble filters appear to be the most promising [209] as they accurately estimate the

mean and variance of the state and parameter posterior distributions at each time point.

However, the DKF methods only employ a point estimate of the state for computation

of the parameter distribution, and likewise, employ only a point estimate of the param-

eter for computation of the state distribution. The DKF algorithms effectively ignore

the computed variances, giving rise to the question as to whether more accurate dis-

tributional approximations may be obtained by sequential propagation of higher order

moments.

At the other end of the spectrum sequential Monte Carlo (SMC) filters [210, 211],

unlike DKF methods, are able to use all the parameter and state moments in the alter-

nating updates. They estimate the full posterior distribution over both the parameters

and the states and provide reliable estimates. However, while these methods can often

accurately approximate the posterior distribution, their computational cost may easily

prove prohibitive in the study of spatiotemporal systems which usually involve a high

combined state-space and parameter-space dimensionality [212].

More recently, in what may be seen as an attempt to find a compromise between

DKF and SMC methods, online EM filters [201, 213, 214] were developed. Unlike DKF

algorithms, these take into account distributions over the states computed in an (online)

E-step for the evaluation of a ML point estimate of the parameters computed in the

following (online) M-step. The ML estimate is then used for estimation of the states at

the next step. The online EM method, to the best of the author’s knowledge, has not

yet been benchmarked against other methods.

Recent years have seen an emerging interest in VB filters as a further compromise

between parameter point estimate filters and online SMC filters [143, 215, 216]. A natural

choice when employing VB is to assume temporal independence of the filtered random
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variables [216] so that, for instance,

p(X ) = p(x 0,x 1, . . . ,xK)

≈ p̃(X )

= p̃(x 0)p̃(x 1) . . . p̃(xK). (5.1)

This is obviously a strong assumption in dynamic models and particularly in diffusion

systems where states are highly correlated in time. This assumption also leads to anoma-

lies such as data/time invariance of covariance matrices [14, Section 7.4].

VB in conjunction with particle filtering has been explored for use with state-space

models [143]. The requirement of MC methods for estimation is however still a detriment

in high dimensional spatiotemporal settings. The first ‘pure’ dual VB filter (DVBF) for

state-space models appeared in [217] where the states and observation noise precisions

were estimated online. The presented filter is nonetheless very tailored for the problem

and, in addition, implicitly assumes that parameter estimates at time point k − 1 are

unaffected by the new data point yk which, as shown in Section 5.2, is not necessarily

the case.

The derivation of a novel DVBF is discussed in the next section. It is rigorous,

placed in a general setting and elegant in the context of the framework constructed so

far which has put a lot of emphasis on variational analysis. The generality contributes to

it being easily applied to a variety of systems, including spatiotemporal systems observed

using both sensors and events. The DVBF also serves to fill in the gap in the literature

of dual filtering, which is currently dominated by Kalman variants and SMC methods.

The DVBF may yet prove to be the best compromise between parameter point estimate

filters and SMC filters. Since unlike other deterministic approximation methods the

DVBF also provides distributions over the unknown parameters, it may be particularly

useful in decision making or in adaptive control scenarios.

5.1.2 Restricted variational Bayes

In its elementary form, VB is not a suitable tool for sequential estimation since, as

explained at the end of this section, all distributions estimated at previous time instants

need to be re-estimated under the new, updated distributions given the new data points.

To remedy this problem, this section exploits a new class of VB techniques, coined

restricted VB (RVB) in [218]. For ease of exposition the following theorem is given for

two partitions of the set of unknowns, X and θ.
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Theorem 5.1 (Restricted variational Bayes [14, Section 3.4]) Let p(X ,θ|Y) be

the true posterior, p̄(θ) a fixed (restricted) distribution over θ and p̃(X ,θ) the approxi-

mation to the true posterior decomposed in the usual way

p̃(X ,θ) ≈ p̃(X )p̄(θ). (5.2)

Then the maximum of a lower bound of the log evidence is reached for

p̃(X ) ∝ exp
(
Ep̄(θ)[ln p(X ,θ,Y)]

)
. (5.3)

Proof. Consider the log-evidence

ln p(Y) = ln p(X ,Y,θ)− ln p(X ,θ | Y)

= Ep̃(X )p̄(θ)

[
ln
p(X ,Y,θ)

p̃(X )p̄(θ)

]
+ Ep̃(X )p̄(θ)

[
ln

p̃(X )p̄(θ)

p(X ,θ | Y)

]
= L(p̃(X ), p̄(θ)) +KL(p̃(X )p̄(θ)||p(X ,θ|Y)). (5.4)

As in conventional VB it follows that ln p(Y) ≥ L(p̃(X ), p̄(θ)) so that L(·, ·) is a lower

bound. The lower bound may be maximised using functional derivatives as in Theorem

2.3, however using solely p̃(X ) since p̄(θ) is restricted, to give (5.3).

VB is a general function approximation method where, for instance, the optimal

variational posteriors over individual variables are found such that their product approx-

imates the true posterior in an optimal fashion. RVB is similar, except that one or more

of the posterior distributions are restricted, assumed to be known (or approximately

known) a priori. An advantage is that iterations involving these restricted variables are

omitted, resulting in computational savings.1 Since RVB does not allow modification of

p̄(θ) it is sub-optimal, becoming optimal in the variational sense only if p̄(θ) = p̃(θ).

Remark 5.1 RVB should not be confused with functionally constrained VB where the

distribution over the parameters θ is allowed to change but is of fixed functional form.

An example of functionally constrained VB is the VB-Laplace (Section 4.1.2) or the EM

algorithm, where the parameter distribution is constrained to be a Gaussian or a delta

Dirac respectively.

In dual filtering it is common to introduce heuristic dynamics for static parameters

to aid in the inference procedure. As a result there is a shift from the treatment of θ to

that of Θk = {θ1, . . . ,θk}. Denote the ith variational parameter distribution estimated

1For the bi-partitioning in Theorem 5.1 no iterations would be required.
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at the ith time instant as p̃(θi|Yi), where Yi = y1:i, and that estimated at the kth time

instant as p̃(θi|Yk). Since p̃(θi|Yk), i < k is in general not equal to p̃(θi|Yi), with the use

of standard estimation sequential estimation (without backtracking), re-estimating the

parameters at the previous time points is not possible. Hence RVB is an integral part of

the DVBF derived in the next section; by additionally constraining the full (temporal)

variational parameter posterior, one can obtain a recursive algorithm in which only the

last two variational posteriors of the states and parameters, respectively, are coupled. It

is also seen that in state-space models, constraining is only required on the parameters;

the temporal trajectory of the states remains unchanged.

5.2 The dual VB filter

5.2.1 Factorisation of the joint posterior distribution

Consider the following general nonlinear, non-Gaussian dynamic state-space model,

x k = F (θk,x k−1,wk), (5.5)

yk = G(θk,x k, vk), (5.6)

where x k ∈ Rn and yk ∈ Rm are the state and observation vectors at k respectively,

with n,m ∈ Z+. F (·) and G(·) are smooth functions and wk ∈ Rn and vk ∈ Rm are

noise terms distributed as wk ∼ Nwk
(0,Σw) and vk ∼ Nvk(0,Σ v), where Σw ∈ Rn×n

and Σ v ∈ Rm×m. The unknown parameter vector θk ∈ Rd, d ∈ Z+ is assumed to evolve

as

θk = θk−1 + ek−1, (5.7)

where ek−1 ∈ Rd is additive white Gaussian noise with time-varying covariance Σ e
k−1 ∈

Rd×d.

Let Xk,Yk be the set of states and observed data set up to time k respectively i.e.

Xk = {x i}ki=0 = x 0:k and Yk = {y i}ki=1 = y1:k. Similarly, let Θk = {θi}ki=1. For

this problem, at time k the true posterior distribution is given by p(Xk,Θk|Yk). It is

desired, as a result of the Markovian dynamics of x k, to find a suitable approximate fac-

torised approximation which preserves the conditional dependency between the states.

Preservation of the temporal dependencies of the parameters in time is deemed less im-

portant as the dynamics introduced are not physically representative. Hence, a suitable
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approximation is given as

p̃(Xk,Θk) ≈ p̃(Xk)
k∏
j=1

p̃(θj) = p̃(Xk)p̃(Θk), (5.8)

where p̃(Θk) is the product of the variational posterior distributions estimated using the

data up to the current time instant k.

Assume further that θk = {θ1
k, θ

2
k, . . . , θ

l
k}, which constitutes a set of conditionally

independent parameters under the variational approximation. Then, expressions for the

variational state posterior distribution p̃(Xk) and each variational parameter posterior

distribution at the final time instant p̃(θik) which maximise the lower bound are given by

(Theorem 2.3)

p̃(Xk) ∝ exp(Ep̃(Θk)[ln p(Xk,Yk,Θk)]), (5.9)

p̃(θik) ∝ exp(E
p̃(Xk)p̃(Θ

/θi
k

k )
[ln p(Xk,Yk,Θk)]), i = 1 . . . l. (5.10)

Since p̃(Xk) needs to be re-estimated under the updated sequence of parameter distribu-

tions {p̃(θij)}l,ki,j=1, without any further restrictions (as a result of the required backtrack-

ing for parameter estimation) it is very difficult to find a recursive solution to (5.9) and

(5.10) for each new data. RVB is therefore now employed to further restrict variational

posteriors so that they are conditional only up to the time instant in which they were

estimated. Rendering explicit the subset of the data with which the variational posterior

was computed, p̃(Θk) is now given as

p̃(Θk) = p̃(θk|Yk)
k−1∏
j=1

p̄(θj |Yj)

= p̃(θk|Yk)p̄(Θk−1). (5.11)

At each time step, the distributions p̃(Xk) and p̃(θk) = p̃(θ1
k)p̃(θ

2
k) . . . p̃(θ

l
k) are the usual

variational posteriors, whilst

p̄(Θk−1) =

k−1∏
j=1

l∏
i=1

p̄(θij). (5.12)

are the restricted variational posteriors.
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5.2.2 Sequential estimation

The key insight of the DVBF is that, through the use of RVB, an appropriate recursive

estimation of the approximate full joint posterior is made possible. This is shown in the

following theorem.

Theorem 5.2 For the state-space equations (5.5) and (5.6), given the factorisation

(5.8), the restriction (5.12) and the maximisers (5.9) and (5.10), the recursive updates

for the state distribution p̃(Xk) and each p̃(θik), i = 1 . . . l, are given by

p̃(xk) ∝
∫
p̃(xk−1) exp(Ep̃(θk)[ln p(xk|xk−1,θk)p(yk|xk,θk)])dxk−1, (5.13)

p̃(θik) ∝ exp(E
p̃(Xk)p̃(θ

/i
k )

[ln p(yk|xk,θk)p(xk|xk−1,θk)])

× exp(Ep̄(θik−1)[ln p(θ
i
k|θik−1)]), i = 1 . . . l.

(5.14)

Proof. Consider the variational approximation of the state marginal given by

p̃(x k) ∝
∫

exp(Ep̃(Θk)[ln p(Xk,Θk,Yk)])dXk−1

= exp(Ep̃(θk)[ln p(yk|x k,θk)])
∫

exp(Ep̃(Θk)[ln{p(x k|x k−1,θk)

× p(Xk−1,Θk,Yk−1)}])dXk−1.

(5.15)

The second quantity in the integrand can also be expanded, and by treating the condi-

tional parameter distributions as constants relative to the distribution of interest, it can

be shown that

p̃(x k) ∝ exp(Ep̃(θk)[ln p(yk|x k,θk)])
∫ (

exp(Ep̃(θk)[ln p(x k|x k−1,θk)])

×
[

exp(Ep̄(θk−1)[ln p(yk−1|x k−1,θk−1)])

∫
exp(Ep̄(θk−1)[ln p(x k−1|x k−2,θk−1)])

× exp(Ep̄(Θk−1)[ln p(Xk−2,Θk−1,Yk−2)])dXk−2

])
dx k−1. (5.16)

Since by RVB the approximate parameter posteriors have been restricted to be con-

ditional on the data up to the instant in which they were estimated, the distributions of

the parameters do not need to be recomputed using the latest data which is available.
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In particular for any function ψ(·)

Ep̃(Θk)[ψ(θk−1)] = Ep̄(θk−1)[ψ(θk−1)], (5.17)

which was computed at the previous time step. Hence, in comparison to (5.15), it is

clear that the terms in the square brackets of (5.16) constitute the exact variational

posterior of the state at the previous time instant to give (5.13.) Equation (5.14) follows

by application of the chain rule on (5.10), where the joint p(Xk−1,Θ
/θik
k ,Yk−1) is constant

relative to the distribution of interest.

The above does not constitute an online algorithm in the strictest sense since (5.13)

and (5.14) are evidently coupled, and, as in the offline case, some form of iterations

between the solutions is required for convergence. However, iterations are required only

between the posteriors at the last time instant, making the algorithm fast and efficient,

and in practice few iterations often suffice.

5.3 Dual filtering from continuous observations

In the author’s work [56] it is shown that with continuous observations the DVBF per-

forms similarly to Rao-Blackwellised particle filters (PF) [121], while exhibiting consider-

able computational savings. The scope of this section is to first extend the analysis and

show that the DVBF is more accurate, in some sense, than the DKF and then apply the

DVBF to estimate online a spatiotemporally varying parameter in a system governed by

a SPDE.

5.3.1 Comparison with DKF methods

Consider the usual linear state-space model

x k = A(θ)x k−1 + wk, (5.18)

yk = Cx k + vk, (5.19)

where the matrices

A =

[
0.1 0.5

0.5 0.1

]
, C =

[
10 5

1 10

]
, (5.20)
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and the disturbances Σ v = σ2
vI , Σw = 0.1I . The transition matrix A = [ai,j ]

2
i,j=1

is assumed to be fully parameterised by the parameter vector θ with θ1 = a1,1, θ2 =

a2,1, θ3 = a1,2 and θ4 = a2,2. The aim in dual filtering here is to find recursive estimates

of x k and θk at each new data point yk.

DKF implementation: For estimation purposes in the DKF the parameter vector

θ = [θ1, θ2, θ3, θ4]T is assumed to follow the dynamic model

θk = θk−1 + ek−1, (5.21)

where ek−1 ∼ Nek−1
(0, (λ−1 − 1)Σθ

k−1|k−1), λ is a user-defined forgetting factor (to be

set later) and Σθ
k−1|k−1 is the posterior variance of the parameters at k − 1 [119]. The

forgetting factor λ ∈ (0, 1] serves to widen the variance of the predictive distribution of

θk with respect to the posterior variance of θk−1, thus aiding convergence and allowing

for parameter tracking.2 In turn the state transition equation may be re-written as

x k = A(θk)x k−1 + wk, (5.22)

where x k and θk need to be found at the arrival of every new data point.

For this simple problem, the optimal DKF method consists of two standard Kalman

filters running in parallel,3 where the dynamic equations for the state and parameter

filter are given respectively by

x k = A(θ̂k|k−1)x k−1 + wk

yk = Cx k + vk

 State-space

model,

θk = θk−1 + ek−1

x̂ k|k = C θ
k(x̂ k−1|k−1)θk + wk

 Parameter-

space model.

The parameters are observed through the state estimates in [119]

C θ
k(x̂ k−1|k−1) =

[
x̂1,k−1|k−1 0 x̂2,k−1|k−1 0

0 x̂1,k−1|k−1 0 x̂2,k−1|k−1

]
. (5.23)

The DKF first performs a Kalman filtering step to find an optimal estimate of x k,

x̂ k|k, using a predictor value of θk which by (5.21) is equal to the mean parameter value

at k − 1, θ̂k−1|k−1. The parameter correction is subsequently found using the posterior

state estimates in the parameter observation equation. Complete implementation details

may be found in [119].

2In fact p(θk|Yk−1) = Nθk (0, λ−1Σθ
k−1|k−1) [119].

3Note that this does not imply that the DKF gives the optimal solution to the dual estimation problem.
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DVBF implementation: Since in (5.14) the parameter dynamics appear directly

(instead of the predictive distribution), θ is assumed to follow the same model (5.21) but

with ek−1 ∼ Nek−1
(0, λ−1Σθ

k−1|k−1). This approach ensures that the learning rates of

the DKF and the DVBF are the same. Although this representation of the parameter

dynamics will also be used throughout this chapter, this need not be the case in general.

Applying Theorem 5.2 to this problem yields the state distribution

p̃(x k) ∝ Nxk(x̂ k|k,Σk|k), (5.24)

where

Σ−1
k|k = Σ−1

w + C TΣ−1
v Ep̃(θk)[Ak]Σ

∗
k−1Ep̃(θk)[A

T
k ]Σ−1

w , (5.25)

x̂ k|k = Σ−1
k|k[C

TΣ−1
v yk + Σ−1

w Ep̃(θk)[Ak]Σ
∗
k−1Σ−1

k−1|k−1x̂ k−1|k−1], (5.26)

and where

Σ∗k−1 = (Σ−1
k−1|k−1 + Ep̃(θk)[A

T
k Σ−1

w Ak])
−1. (5.27)

Note that these are identical to the equations obtained in the forward pass of the of-

fline VB algorithm (see Algorithm A.2), but with expectations taken with respect to

p̃(θk) instead of p̃(θ). This will always be the case with the DVBF. The state update

requires the evaluation of the quantity Ep̃(θk)[A
T
k Σ−1

w Ak]. This is quite involved for the

parameterisation under consideration and technical details are given in Appendix D.1.

The corresponding parameter update is given by

p̃(θk) = Nθk(θ̂k|k,Σ
θ
k|k), (5.28)

where

Σθ−1

k|k = (Λk−1 ⊗Σ−1
w ) + λΣθ−1

k−1|k−1, (5.29)

θ̂k|k = Σθ
k[λΣθ−1

k−1|k−1θ̂k−1|k−1 + (ΓT
k ⊗Σ−1

w )vec(I )], (5.30)

where⊗ is the Kronecker product, vec(·) is the vectorisation operator and I is the identity

matrix. Recall that in (5.29), Λk−1 ∈ Rn×n and Σ−1
w ∈ Rn×n so that Σθ−1

k|k ∈ Rn2×n2
.

The derivation for (5.24)-(5.27) follows on the same lines as that for offline VBEM

[176] and is therefore omitted. The derivation for (5.28)-(5.30) is non-standard and given

in Appendix D.2. The quantities Λk−1 and Γ k are the same as those in (3.42) applied
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(a)

(b)

(c)

Figure 5.2: Dual state-parameter sequential estimation of the system (5.18), (5.19) using
the DKF method (blue) and the DVBF (red) under different simulation conditions. (a)
σ2
v = 0.1, λ = 0.95,K = 400. (b) σ2

v = 10, λ = 0.95,K = 5000. (c) σ2
v = 10, λ =

0.95,K = 5000 (same as (b) but zoomed out).

to the filtering case

Γ k = Ep̃(Xk)[x kx
T
k−1], (5.31)

Λk−1 = Ep̃(Xk)[x k−1xTk−1]. (5.32)

Unlike DFK algorithms, since expectations of x k−1 are taken under the variational state

distribution p̃(Xk) conditioned on data up to time point k, one-step smoothing is required

at each iteration. Once again this proceeds on the same lines as the offline VB case for

only a single time point. Another difference to DKF algorithms is that (5.24) and (5.28)

are evidently coupled so that iterations are required for convergence; one or two iterations

usually suffice.

Results: For this problem the initial state was assumed to be known and both the DKF

and the DVBF were initialised with x̂ 0|0 = x ∗0 and Σ0|0 = 0.0001I where x ∗0 denotes the
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true state at k = 0. The parameter vector was initialised to θ̂0|0 = vec(I ) and for the

DVBF Ep̃(θ0)[A
T
0 Σ−1

w A0] = 20I . Both filters were run on data sets generated using the

above model with varying observation noise σv and forgetting factor λ.

The algorithms showed very similar behaviour at low observation noise levels (Figure

5.2a) and when employing the same forgetting factor. This, however, was to be expected

since the crucial difference between the two filters is the utilisation of state and parameter

uncertainties in the alternating updates with the DVBF. At these low noise levels it will

be seen that the DVBF, on average, still performs marginally better and even with the

use of only 1 VB iteration. However, as a result of the one-step smoothing and the

increase in matrix computations required, it was noted that the computational time

required for the DKF was up to an order of magnitude less than that for the DVBF

algorithm. Where noise levels are low, the DKF approach remains the method of choice.

The respective behaviours of the two filters began to diversify in situations of large

observation noise, where the state and parameter uncertainties have their effect on esti-

mation. From Figure 5.2b it is seen how the DVBF exhibits an extra degree of caution.

This results in a slower convergence time, but a much better overall approximation as

seen from Figure 5.2c. It has to be emphasised that the behaviour shown is for the DKF

and DVBF methods using the same forgetting factor, the added caution in approximation

was employed by the DVBF solely as a result of the increased state uncertainty. In this

context the DVBF is seen to automatically adjust its learning rate with the observation

noise, a feature which is startlingly apparent and which may prove convenient in several

online applications.

To validate the improvement in performance, 50 MC runs with varying observation

noise, forgetting factor and number of VB iterations were carried out. As a performance

index the mean square error (MSE)

MSE =
1

K − k1 + 1

K∑
k=k1

[
||x̂ k|k − x ∗k||2 + ||θ̂k|k − θ∗||2

]
, (5.33)

was used where x ∗k and θ∗ are the true state vector at time k and the true parameter

vector respectively. The data length K = 5000 and the start point was set to k1 = 2000 to

omit the effects of initial conditions. As seen from Figure 5.3 the MC runs confirmed the

increase in accuracy of the DVBF filter in noisy conditions (corresponding tabular values

are given in Table 5.1). From the figure it is also evident how the behaviour of the DVBF

is much less sensitive to forgetting factors than DKF methods under these conditions.

In all cases, except for the case σ2
v = 0.1, λ = 0.99, a 2-sample t-test confirmed that the

decrease in MSE with the DVBF did not happen by chance (p < 0.01). In all cases there
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Table 5.1: MSE over 50 MC runs for the DKF and DVBF under different simulation
conditions. The confidence intervals shown are at the two-sigma level.

σ2
v = 0.1

λ DKF DVBF

0.95 0.077 ± 0.011 0.076 ± 0.011
0.97 0.047 ± 0.008 0.046 ± 0.008
0.99 0.017 ± 0.004 0.017 ± 0.004

σ2
v = 1

λ DKF DVBF

0.95 0.105 ± 0.014 0.094 ± 0.013
0.97 0.071 ± 0.010 0.065 ± 0.009
0.99 0.038 ± 0.005 0.036 ± 0.005

σ2
v = 10

λ DKF DVBF

0.95 0.270 ± 0.036 0.168 ± 0.018
0.97 0.205 ± 0.027 0.144 ± 0.014
0.99 0.142 ± 0.016 0.122 ± 0.008

was insignificant difference between the results computed with 1, 3 or 5 VB iterations;

all results quoted are for a single VB iteration.

It should be emphasised that alternating standard Kalman filters consitute the opti-

mal DKF method to this problem; employing extended, unscented or ensemble methods

would not contribute to any increased accuracy in estimation. In this context this ex-

ample has served as a comparison test between the DVBF and the whole set of possible

DKF implementations.

5.3.2 Case study: the stochastic diffusion equation

This section demonstrates the potential of the DVBF as an online estimator for varying

spatiotemporal dynamics, represented by parameters which are varying both in space

and in time. It considers once again the diffusion equation of Section 3.3,

∂z(s, t)

∂t
=

∂

∂s

(
D(s)

(
∂

∂s
z(s, t)

))
+ σẆ (s, t). (5.34)

In Section 3.3 the spatially varying parameter D(s) was estimated using batch methods.

These methods implicitly assume that the parameters are constant throughout the learn-

ing data; parameter changes are not catered for and are, moreover, likely to upset the

estimation process. Sequential estimators are excellently suited when there is a suspicion

that the dynamic-governing parameters may change.
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(a) (b) (c)

Figure 5.3: Box-and-whisker plots of the MSE over 50 MC runs for the DKF (grey) and
DVBF (black) under different simulation conditions (a) σ2

v = 0.1, (b) σ2
v = 1 and (c)

σ2
v = 10. On each box, the central mark is the median and the edges of the box mark

the first and third quartiles. The whiskers extend to the furthest data points that are
within 1.5 times the interquartile range. The outliers are plotted individually as circles.
In all cases the mean MSE of the DKF is higher than that of the DVBF.

In Theorem 3.1 it was shown that (5.34) may be reduced to the linear model

x k+1 = A(ϑ)x k + wk. With sensors taking continuous readings the observation pro-

cess is also linear and of the form yk = C kx k + vk (see Section 3.1.2) so that the

stochastic diffusion equation is essentially a linear state-space model with a state tran-

sition matrix parameterised to cater for spatially-varying effects. Since the DVBF was

shown to outperform the DKF in linear state-space models, it will be employed in this

study.

For the sake of the exposition, in addition to the states only the parameters composing

A(ϑ) are deemed to be unknown so that θ = ϑ and the parameter evolution model is

given by ϑk = ϑk−1 + ek−1. Noise parameters are therefore assumed to have been found

a priori through offline analysis. The filtered state distribution is identical to that given

in the previous case study (5.24). The parameter posterior however differs from that

of (5.28) as a result of the tailored parameterisation; by application of Theorem 5.2 the

required variational parameter posterior may be shown to be equal to

p̃(ϑk) = Nϑ(ϑ̂k|k,Σ
ϑ
k|k), (5.35)

where

Σϑ
k|k =

(
σ−2
w Υk + λΣϑ−1

k−1|k−1

)−1
, (5.36)

ϑ̂k|k = Σϑ
k|k
(
σ−2
w υk + λΣϑ−1

k−1,k−1ϑ̂k−1|k−1

)
, (5.37)

and where υk and Υk are similar to those in the offline case (3.39) and (3.41) and given
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by

υk = ∆t[tr(V
T
i Ψ−1

x Q̃
−1

(Γ k −Λk−1))]di=1, (5.38)

Υk = ∆2
t [tr(V

T
i Ψ−1

x Q̃
−1

Ψ−1
x V jΛk−1)]di,j=1. (5.39)

Note how similar the equations (5.36), (5.37) are to the offline case (3.77), (3.78), with

the restricted variational posterior p̄(ϑk−1) taking the role of a prior distribution. The

algorithm for online estimation of the dynamics governing the linear SPDEs is given in

Algorithm A.4.

Synthetic data for this study was generated on O = [0, 60] with nsim = 61 basis

functions, τ sim = 4.2, ∆sim
t = 0.02, σw = 0.5, σv = 0.01 and with Qu =

∫
O kQ(s −

r)u(r)dr with kQ(s) = exp(−s2/4). Unlike in the offline methods, D(s) was not held

constant and changed suddenly from D1(s) = 7−0.1s to D2(s) = 1+0.1s at t = 10. The

sequential estimator was run on data gathered using 51 point sensors with a sample time

of ∆t = 0.02 until t = 20, with the role of tracking the spatial variation of the parameters

in real-time. The algorithm was initialised with θ̂0|0 = x̂ 0|0 = 0,Σθ
0|0 = Σ0|0 = I . It

was assumed that a suitable set of basis functions for this system were found a priori.

Results: To avoid adverse effects of model mismatch, which were already discussed in

Section 3.3.4, at first the same set of basis functions for simulation and estimation was

used. As seen from Figure 5.4a and 5.4b in this case the DVBF gave accurate results for

forgetting factors between λ = 0.5 and λ = 0.9. Whilst higher values for λ tended to give

too slow a learning rate, smaller values resulted in very noisy estimates. The parameter

trajectories initially approximately converge to the true parameters composing D1(s). As

soon as the spatially varying parameter is changed to D2(s) the parameter trajectories

approximately converge to the new true parameter values as desired.

A temporal trajectory of the parameters when using a set of basis functions obtained

through frequency analysis, as discussed in Section 3.3.2, is shown in Figure 5.5. As

a result of model mismatch the performance is clearly less favourable than when the

exact set of basis functions is used, exhibiting considerable fluctuations even with a

relatively high forgetting factor of λ = 0.95. Nonetheless, clear changes in the dynamics

are highlighted in the trajectory. The ability to estimate online varying heterogeneous

dynamic behaviour of a spatiotemporal system using a model of lower dimensionality

than the true model is an encouraging result of this work.

It should be noted that in the absence of any input and dominating initial conditions

from which field dynamics become very evident, the online estimation of the spatially

varying parameter in noisy conditions is a very challenging task. Unlike in the offline case,
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(a)

(b)

Figure 5.4: Sequential estimation of ϑ1 (blue) and ϑ2 (green), where D(s) = ϑ1 + ϑ2s,
using the DVBF with the ideal model and (a) λ = 0.9 and (b) λ = 0.5. The horizontal
dotted lines indicate the true parameter value.

in this scenario the DVBF failed to produce promising results with high observation noise

levels, such as σv > 0.05. The limitations will be seen to cause even greater problems

with point process observations where a modification to Theorem 5.2 is sought.

5.4 Dual VB filtering from temporal point process obser-

vations

This work presents for the first time, to the best of the author’s knowledge, the applica-

tion of dual filtering to point process systems. To shed insight on the behaviour on these

algorithms with event-based data, the DVBF is therefore first studied with temporal

processes. The methods are extended to the spatiotemporal setting in Section 5.5.

5.4.1 Homogeneous multi-channel output systems

As in Section 4.1, in this section the events are assumed to be generated by a temporally

varying spatially homogeneous intensity which may be represented by a one-dimensional
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Figure 5.5: Sequential estimation of ϑ1 (blue) and ϑ2 (green) using the DVBF with λ =
0.95 and model constructed using basis functions obtained through frequency analysis
as described in Section 3.3.2. The horizontal dotted lines indicate the true parameter
value.

state xk ∈ R. The state-space dynamic equations are

p(xk | xk−1, Ik, σ
2
w) = Nxk(ρxk−1 + αIk, σ

2
w), (5.40)

p(yck | xk, µ, β̄c) ≈ [∆tλ
c
k]
yck exp(−∆tλ

c
k), (5.41)

where

λck = exp(µ+ β̄cxk), (5.42)

for c = 1 . . . C. For this model the set of unknown parameters is given by θ =

{(α, ρ), µ, β̄1, β̄2, . . . , β̄C} the joint of which is assumed to be fully factorised under VB.

Since the parameters may be treated separately, the corresponding dynamics are given

by

θik+1 = θik + eik, (5.43)

where each

eik ∼ Neik

(
0, (λi)−1σ2

θi
k−1|k−1

)
, (5.44)

and i ∈ {α, ρ, µ, β̄1, β̄2, . . . , β̄C}. This formulation allows for a different learning rate for

each parameter.

The variational posteriors under RVB are given by

p̃(Xk) ∝ exp(Ep̃(Θk)[ln p(Xk,Yk,Θk)]), (5.45)

p̃(αk, ρk) ∝ exp(Ep̃(Xk)p̃(Θk)/(αk,ρk) [ln p(Xk,Yk,Θk)]), (5.46)

p̃(µk) ∝ exp(Ep̃(Xk)p̃(Θk)/µk [ln p(Xk,Yk,Θk)]), (5.47)

p̃(β̄ck) ∝ exp(E
p̃(Xk)p̃(Θk)

/β̄c
k
[ln p(Xk,Yk,Θk)]), c = 1 . . . C, (5.48)
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which may be computed sequentially using Theorem 5.2. However, for the same reasons

discussed in the offline point process case, iterations yield distributions at k which are

not of the same form as those at k − 1 so that further approximations are required to

ensure tractability. In the same vein as Section 4.1.2 here it is proposed that Laplace

approximations are carried out online (where required) to maintain closed form recursive

updates.

Finding p̃(x k): As in the linear case p̃(x k) is updated in the same way as the forward

pass in the offline case with VB-Laplace and with expectations taken with respect to

p̃(θk). For technical details refer to Section 4.1.3.

Online update of p̃(αk): To find the marginal distribution p̃(αk), first the joint dis-

tribution p̃(ρk, αk) from (5.46) is written explicitly as

p̃(αk, ρk) ∝ exp(Ep̃(Xk)p̃(αk−1,ρk−1)[ln p(xk|xk−1, ρk, αk)p(αk|αk−1)p(ρk|ρk−1)])

∝ exp

(
− Ep̃(αk−1)

[
(αk − αk−1)2

2λα−1σ2
α,k−1|k−1

]
− Ep̃(ρk−1)

[
(ρk − ρk−1)2

2λρ−1σ2
ρ,k−1|k−1

]
(5.49)

− Ep̃(Xk)

[
(xk − ρkxk−1 − αkIk)2

2σ2
w

])
.

Equation (5.49) may be further re-written as

p̃(αk, ρk) ∝ exp

(
−ρ

2
k

2

[
1

λρ−1σ2
ρ,k−1|k−1

+
λ̃k−1

σ2
w

]
+ ρk

[
γk
σ2
w

+
ρ̂k−1|k−1

λρ−1σ2
ρ,k−1|k−1

− αkgk
σ2
w

]

−Ep̃(αk−1)

[
(αk − αk−1)2

2λα−1σ2
α,k−1|k−1

]
− α2

kuk
2σ2

w

+
αkrk
σ2
w

)
. (5.50)

It helps in the derivation to set

σ2
ρk|αk =

[
1

λρ−1σ2
ρ,k−1|k−1

+
λ̃k−1

σ2
w

]−1

, (5.51)

Ep̃(ρk|αk)[ρk] = σ2
ρk|αk

[
γk
σ2
w

+
ρ̂k−1|k−1

λρ−1σ2
ρ,k−1|k−1

− αkgk
σ2
w

]
. (5.52)

The posterior p̃(αk) is then found by marginalising ρk from the joint to give
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p̃(αk) ∝ exp

(
− Ep̃(αk−1)

[
(αk − αk−1)2

2λα−1σ2
α,k−1|k−1

]
− α2

kuk
2σ2

w

+
αkrk
σ2
w

+
σ2
ρk|αk
2

[
γk
σ2
w

+
ρ̂k−1|k−1

λρ−1σ2
ρ,k−1|k−1

− αkgk
σ2
w

]2)
, (5.53)

which is normal in αk with variance and mean

σ2
α,k|k =

(
1

λα−1σ2
α,k−1|k−1

+
uk
σ2
w

−
σ2
ρk|αkg

2
k

σ4
w

)−1

, (5.54)

α̂k|k = σ2
α,k|k

(
α̂k−1|k−1

λα−1σ2
α,k−1|k−1

+
rk
σ2
w

− gk
σ2
w

[
γkσ

2
ρk|αk
σ2
w

+
σ2
ρk|αk ρ̂k−1|k−1

λρ−1σ2
ρ,k−1|k−1

])
. (5.55)

Finding p̃(ρk): The statistics over ρk are obtained by essentially repeating the proce-

dure described for αk, i.e. first the joint is expressed as

p̃(αk, ρk) ∝ exp

(
−α

2
k

2

[
1

λα−1σ2
α,k−1|k−1

+
uk
σ2
w

]
+ αk

[
rk
σ2
w

+
α̂k−1|k−1

λα−1σ2
α,k−1|k−1

− ρkgk
σ2
w

]

−Ep̃(ρk−1)

[
(ρk − ρk−1)2

2λρ−1σ2
ρ,k−1|k−1

]
− ρ2

kλ̃k−1

2σ2
w

+
ρkγk
σ2
w

)
, (5.56)

and then αk is integrated out to give

p̃(ρk) ∝ exp

(
−Ep̃(ρk−1)

[
(ρk − ρk−1)2

2λρ−1σ2
ρ,k−1|k−1

]
− ρ2

kλ̃k−1

2σ2
w

+
ρkγk
σ2
w

(5.57)

+

[
1

λα−1σ2
α,k−1|k−1

+
uk
σ2
w

]−1 [
rk
σ2
w

+
α̂k−1|k−1

λα−1σ2
α,k−1|k−1

− ρkgk
σ2
w

]2
 .

After some lengthy algebraic manipulations the variance and mean of the required

marginal may be found in terms of (5.51), (5.54) and (5.55) as

σ2
ρ,k|k = σ2

ρk|αk +
σ2
α,k|kσ

4
ρk|αkg

2
k

σ4
w

, (5.58)

ρ̂k|k = σ2
ρk|αk

[
γk
σ2
w

+
ρ̂k−1|k−1

λρ−1σ2
ρ,k−1|k−1

−
gkα̂k|k

σ2
w

]
. (5.59)

Note that Laplace approximations were not required to find p̃(αk) and p̃(ρk).
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Finally, it is required to find Ep̃(αk,ρk)[ρkαk] for use with the VB filter. Using (5.50)

as a starting point, the joint may be re-written (ignoring unnecessary terms) as

p̃(αk, ρk) ∝ −
1

2

(
ρk αk

)σ−2
ρk|αk gkσ

−2
w

gkσ
−2
w λασ−2

α,k−1|k−1 + ukσ
−2
w

(ρk
αk

)
+ . . . . (5.60)

By letting λασ−2
α,k−1|k−1+ukσ

−2
w = σ−2

α,k|k+g2
kσ

2
ρk|αkσ

−4
w from (5.54) and taking the inverse

of the precision matrix in (5.60), it may be found that cov(ρk, αk) = −gkσ−2
w σ2

α,k|kσ
2
ρk|αk .

The required quantity is then readily given (after simplification) as

Ep̃(αk,ρk)[ρkαk] = cov(ρk, αk) + ρ̂k|kα̂k|k

= σ2
ρk|αk [γkα̂k|kσ

−2
w − gkσ−2

w (α̂2
k|k + σ2

α,k|k)]. (5.61)

Finding p̃(µk): Following (5.47) and ignoring terms independent of µk

ln p̃(µk) = Ep̃(µk−1)[ln p(µk|µk−1)] + Ep̃(Xk)p̃(β̄k)[ln p(yk|xk, µk, β̄k)], (5.62)

= −
Ep̃(µk−1)[(µk − µk−1)2]

2λµ−1σ2
µ,k−1|k−1

+ Ep̃(Xk)p̃(β̄k)

[
C∑
c=1

yck[µk + β̄ckxk]− exp(µk) exp(β̄ckxk)∆t

]
,

where the state evolution distribution is omitted since it is independent of µk. On

expanding and approximating around µ̂k|k, the following update equations are obtained

µ̂k|k = µ̂k−1|k−1 + λµ
−1
σ2
µ,k−1,k−1

C∑
c=1

(
yck −∆tEp̃(Xk)p̃(β̄k)[exp(µ̂k|k + β̄ckxk)]

)
, (5.63)

σ2
µ,k|k =

(
λµσ−2

µ,k−1|k−1 + ∆t exp(µ̂k)
C∑
c=1

Ep̃(Xk)p̃(β̄k)[exp(β̄ckxk)]

)−1

. (5.64)

Finding p̃(β̄ck): Following the same reasoning as that for updating p̃(µk), the resulting

equations are obtained from (5.48) as

ˆ̄βck|k = ˆ̄βck−1|k−1 + λβ̄
−1
σ2
β̄c,k−1|k−1

(
yckEp̃(Xk)[xk]

−∆tEp̃(µk)[expµk]
d

dβ̄ck

[
Ep̃(Xk)[expxkβ̄

c
k]
]∣∣
β̄ck=ˆ̄βck

)
, (5.65)

σ2
β̄c,k|k =

(
λβ̄

c
σ−2
β̄c,k−1|k−1

+ ∆tEp̃(µk)[expµk]

[
d2

dβ̄c
2

k

Ep̃(Xk)[expxkβ̄
c
k]
∣∣
β̄ck=ˆ̄βck

])−1

.

(5.66)
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Figure 5.6: Selective updating of parameter estimates in an online framework may be
carried out in accordance to the areas where the state bears most information about the
relevant parameters of interest. In this case, the narrow stretch close to an input bears
a lot of information on the state decay factor ρ and the input gain α. The background
noise µ on the other hand, is more evident in regions of no input.

5.4.2 Selective estimation

In typical point process systems direct implementation of the above algorithms are likely

to be highly inefficient. Take for instance the decay rate of the state ρ; in regions of

sparse data its estimation is highly uncertain as a direct consequence of the state being

unobservable in regions of low event count (see Section 4.1.3, pg. 98). The converse is

true for µ; in the presence of a dominant state generating the events (for instance directly

after an input), there is little or no information on the background intensity. The result

of direct implementation of the DVBF is highly noisy parameter estimations which may

be overcome by either i) using very low learning rates (high λ) or ii) by only selectively

updating the parameters in appropriate regions as illustrated in Figure 5.6. The latter

procedure has been used previously in online filtering, e.g. speech enhancement by

spectral subtraction, in which noise levels are estimated in regions of the signal where

speech is not present [219]. Specifying regions for estimation is seen to allow for high

learning rates and increase significantly the speed-up for sequential estimation with little

or no loss in accuracy.

To demonstrate the effect of the modification consider the point process formulation

of (5.40)-(5.43) with ∆t = 0.01, K = 20, 000, C = 20, ρ = 0.8, α = 4, µ = 0, with each β̄c

a randomly generated number in the interval [0.9 1.1] and an applied spike input every 100

samples. Assume further that β̄ and µ were determined from previous analysis and that

the algorithm is initialised with x̂0|0 = 0, σ2
0|0 = 1, ρ̂0|0 = 0.6, σ2

ρ,0|0 = 0.001, α̂0|0 = 4 and
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Figure 5.7: Sequential estimation of ρ using a direct implementation of the DVBF (blue)
and a modified version which takes into account different regions of operation in the
point process system

σ2
α,0|0 = 0.01. The filter results for ρ with λρ = 0.99 and λα = 0.995 without specifying

regions of estimation are shown in Figure 5.7 (blue curve). On the same figure (in black)

estimation using only 3 sample time points after the input to estimate ρ and α with

λρ = 0.8 and λα = 0.9 is shown. The mean trajectories and the computed uncertainties

between the two DVBFs are virtually indistinguishable. Let the ∗ superscript be used to

denote the true values. The computation times4 on a standard PC and the MSE error

given by

MSE =
1

K − k1 + 1

K∑
k=k1

[
|x̂k|k − x∗k|2 + |ρ̂k|k − ρ∗|2 + |α̂k|k − α∗|2

]
, (5.67)

for the two approaches with k1 = 10, 000 (t = 100) are given in Table 5.2, showing

drastic savings in computation time for similar estimation quality. The slight difference

in MSE should be attributed to different learning rates and not to intrinsic performance

difference.

Table 5.2: Estimation time required and quality of estimation using the two versions of
the DVBF.

Computational time MSE

No modification ∼20mins 0.1322
Selective estimation ∼1mins 0.1319

4The MATLAB function fzero was once again used to find x̂k|k.
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5.4.3 Comparison with SMC methods

In this section the DVBF is compared to a standard PF which makes use of an aug-

mented state vector z k = [xk, ρk, αk]
T and implements what is effectively a standard SIS

algorithm with resampling (SISR) [see 121, 210, and Section 2.3.1]. The prior distribu-

tion is chosen as the importance distribution so that the weights are updated in time

according to the likelihood. That is, if w
(i)
k denotes the weight of the ith particle at time

k, and z
(i)
k the ith particle at time k, the weight update is given as

w
(i)
k ∝ w

(i)
k−1p(yk|z

(i)
k ). (5.68)

Resampling is then carried out at each time point resulting in what is known as the

bootstrap filter [220].

The selective estimation process described above may be adapted to the PF by using

selective SISR, much in the same vein as employed with the DVBF. In regions where ρk

and αk do not affect the likelihood (or importance factor), propagation and subsequent

resampling is set to only take place in the state space. The respective parameter pos-

terior distribution is retained and propagated through time unchanged. Formally, after

resampling, in this region one has that the full joint distribution is given by

p(αk, ρk, xk|Yk) ≈
1

N

N∑
i=1

δ


xk − x(i)

k

αk − α(i)
k−1

ρk − ρ(i)
k−1

 , (5.69)

and the subsequent posterior distributions by

p(ρk|Yk) =

∫
p(αk, ρk, xk|Yk)dxkdαk ≈

1

N

N∑
i=1

δ(ρk − ρ(i)
k−1) ≈ p(ρk−1|Yk−1), (5.70)

p(αk|Yk) =

∫
p(αk, ρk, xk|Yk)dxkdρk ≈

1

N

N∑
i=1

δ(αk − α(i)
k−1) ≈ p(αk−1|Yk−1), (5.71)

where N denotes the number of particles and δ(·) the delta Dirac mass. The selective

estimation process is shown in Figure 5.8 where, for illustration, only the input gain

αk and the state xk are shown. In regions where αk does not affect the likelihood,

propagation and subsequent resampling only takes place in the state-space. The selective

resampling procedure results in considerable computational savings for the PF.

Consider a simulation under the same conditions laid out in Section 5.4.2, however

with K = 100, 000 and with ρ changing suddenly from 0.8 to 0.6 at k = 50, 000. The
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Figure 5.8: (a) The likelihood function is used to appropriately weight the particles
(P#) representing the posterior distribution which are then resampled into N particles
of equal weight. (b) In this case the likelihood is practically independent of αk and thus
the weighing and resampling steps solely depend on the xk component of the particles. In
order to maintain the posterior distribution with fewer particles than would be necessary
otherwise, after resampling, the prior particle parameter set is redistributed with equal
weight among the resampled particles. The figures (a) and (b) correspond to the two
areas marked in Figure 5.6 respectively (likelihood surfaces shown are for illustration
only and do not represent actual surfaces).

forgetting factors of the DVBF were set to λρ = 0.8 and λα = 0.9. To obtain a similar

performance with the PF the factors were set to 0.975 and 0.984 respectively. The PF was

configured with N = 5, 000 particles; the number of particles chosen was the minimum

required for consistent posterior distribution approximations across several trials.

The result for the successful tracking of α and the sudden change in the true value of

ρ from 0.8 to 0.6 by both the DVBF and the PF is shown in Figure 5.9. The estimation

results are given in Table 5.3 showing similar behaviour for both filters; corresponding

computational times and MSEs are given in Table 5.4. In practice, through the use of

intermittent resampling (by monitoring the effective sample size) and efficient proposals

densities, PFs with better performance may be implemented [121]. However it is consid-

ered significant that, despite the parameter distributions estimated being very similar,

the PF took an order of magnitude longer than the VB filter to execute.

5.4.4 Case study: tastant discrimination from neural responses

As an example application of the novel online algorithm on real data, the spiking patterns

of taste-response cells in the nucleus tractus solitarii (NTS) of Sprague-Dawley rats
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Table 5.3: Comparison between the VB filter and a PF for SSPP with 5,000 particles.

ρ α mean(ρ̂k|k) mean(σρ,k|k) mean(α̂k|k) mean(σα,k|k)

VB (t ≤ 500) 0.8 3.5 0.799 0.037 3.52 0.13
PF (t ≤ 500) 0.797 0.031 3.49 0.12
VB (t > 500) 0.6 3.5 0.607 0.041 3.51 0.12
PF (t > 500) 0.602 0.049 3.49 0.10

(a) (b)

Figure 5.9: Online tracking of (a) ρ and (b) α with the true values denoted by the level
black lines. In this example µ and βc, c = 1 . . . C were assumed constant and known
from previous offline analysis of the system. The three-sigma confidence intervals (outer
traces) are seen to enclose the true value upon the filter reaching a steady behaviour
both for the DVBF with selective estimation (black) and a PF with 5,000 particles (red).

following the application of different taste stimuli [221] are modelled. The attraction of

the online approach is that it provides a method for stimulus chemical discrimination

by tracking changes in underlying parameters upon the presentation of different stimuli.

The experimental data was obtained from trials where different compounds dissolved

in distilled water were delivered to the oropharyngeal area. Taste-evoked spike train

data used in this study was delivered via neurodatabase.org, a neuroinformatics resource

funded by the Human Brain Project.

Although the state-space point process model was primarily developed for implicit

stimuli, it provides a neat way of parameterising a dynamic CIF to model variable rate

neural responses to explicit stimuli. Such is the case considered here, where ample

evidence suggests that for some of the cells in the NTS, rate coding is used for inter-
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Table 5.4: Estimation time required and quality of estimation using a DVBF and a PF
with selective estimation.

Computational time MSE

DVBF ∼5mins 0.1220
PF ∼90mins 0.1221

stimulus discrimination [222].5 Some of these are so fine-tuned to different stimuli that

one can use spike count alone to discriminate between different tastes (e.g. cell 9 in the

study). Others, on the other hand, are not so fine-tuned and spike count cannot be used

to discriminate between the tastants (e.g. cell 11). Nonetheless, spike count gives no

information on the time-varying event rate (or rate envelope) itself. Moreover, many

alternatives (such as the conventional sliding window) do not provide a plausible model

for the underlying neural dynamics. The model applied to these cells not only gives

the descriptive powers required for taste discrimination, but also additional information

which may be of physiological use. Here it is shown how the DVBF can infer the varying

model parameters governing the dynamics, which for the same neuron appear to vary in

a structured manner with the application of different stimuli.

Each experimental trial consisted of three phases: i) a 10s baseline period in the

absence of any stimulus, ii) 5s of stimulus presentation, and iii) a 5s wait. Each trial was

separated by rinsing and a 1.5min wait. The data used in the analysis was that recorded

in the second and third phases (10s segments), in which the neural response to the four

tastants used, NaCl, HCl, quinine and sucrose, (each of which represents a different taste

quality; salty, sour, bitter and sweet respectively), is present. The learning data set was

formed by first grouping the 10s segments according to stimulus, and then concatenating

them into four sets (1 per stimulus). Combinations of these spike trains were then joined

together to form the data sets on which learning was carried out.

Data was gathered at a resolution of 1ms and hence, initially, the spikes were organ-

ised into bins of ∆t = 1ms such that condition (4.1) is satisfied. However the bin size

was increased to ∆t = 10ms to speed up the algorithm. This resulted in some bins (<

5%) containing more than one output spike6 which were subsequently repositioned to the

closest empty bin in forward time. Pre-analysis of the data was carried out by studying

the post-stimulus histograms (PSTH) of the responses to the four stimuli. These his-

tograms suggested an approximate linear increase in firing rate for the first 250ms, and

5As opposed to temporal coding where the exact time of event incidence is of particular relevance to

discrimination.
6E.g. for cell 9 - max. HCl with 3.4% and min. sucrose with 1.5%.
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Figure 5.10: Tracking the mean (solid) and corresponding three-sigma intervals (dashed)
of µ indicating a change in stimulus from HCl to sucrose and back to HCl in cell 9.
The parameter change is indicative of a change in the spike train pattern (inset) when
the stimulus is changed. The solid vertical lines indicate where the change in applied
chemical stimulus took place. For this trial α was fixed to 0.1.

also a response latency which was not considered in the simulation study. To cater for

these effects, the input signal was treated as a pulse of width 250ms.

It was evident, from preliminary studies, that the dominant rate coding characteris-

tics which differed across tastants were attributed to the input gain α and the background

firing rate µ. It was thus deemed appropriate to monitor these two parameters online

(in addition to the underlying state) in order to study the response behaviour whilst

discriminating between the tastants in real-time. With the use of offline methods the

unknown parameters were fixed to β̄ = 0.5, σ2
ε = 0.05 and ρ = 0.97, which was repre-

sentative of all tastants. The DVBF was however found to be robust and resistant to

changes in state noise and fixed parameter estimates. The relevant forgetting factors

were set to λµ = 0.999 and λα = 0.9 respectively. The initial parameters were set to

x̂0|0 = 0, σ2
0|0 = 1, α̂0|0 = 0.1, σ2

α,0|0 = 0.01, µ̂0|0 = 2.5 and σ2
µ,0|0 = 0.2. As discussed in

the previous study, the online parameter updates were carried out only in the regions

where ample information is present, so that α was only updated in regions of input

application and µ in regions between the application of the respective inputs.

Results from the DVBF show that both the change in α and that in µ are very evident

across the different experiments. In some cases, monitoring µ is sufficient to characterise

the difference in response to different tastants (see Figure 5.10 for a comparison of sucrose

with HCl in cell 9). However, this is not the general case, as shown by the trajectories of

the mean parameter estimates of α and µ in Figure 5.11 and 5.12. For instance, whilst

µ seems to vary across tastants in cell 9 (Figure 5.11), the background firing rate in

response to NaCl and HCl for cell 11 are fairly similar (Figure 5.12). It is the input gain

α which is different between these two responses. By monitoring the parameters µ and
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Figure 5.11: Cell 9; temporal progression of the estimated mean of α and µ indicating a
change of stimulus from HCl (H, blue) to sucrose (S, black) to quinine (Q, red) to NaCl
(N, cyan). Although the cell is, overall, less responsive (µ) to quinine, the immediate
effect of its application (α) is relatively more substantial than in the case of both HCl
and NaCl. The ellipses define arbitrarily chosen classification boundaries.

α, the responses are seen to cluster in distinct and separate regions characteristic to the

stimulus being applied.

It is also interesting to note that, except for sucrose, neither response can be consid-

ered to be passive (i.e. has both a low α and a low µ). The responses exhibit prominent

activity either in the initial stage or the steady-state stage (the phasic and tonic stages

respectively), or both. The considerable activity in the initial stage even when the over-

all response µ is low (particularly with quinine), is also somewhat of a testimony to the

hypothesis that the initial neural response to every tastant may contain some additional

information, encoding for instance a measure of taste acceptance (known as the hedonic

value, see [221]).

5.4.5 Final remarks

In Sections 5.3 and 5.4 the DVBF was shown to outperform conventional Kalman filtering

methods, and perform similarly to SMC methods in highly nonlinear processes whilst

providing the user with considerable computational savings. It has been applied on real-

world data sets where its potential as a tool to learn online parameters in point process

systems was noted. The next section will now seek to extend the use of the DVBF to

the spatiotemporal point process setting by adding robustness through batch filtering.
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Figure 5.12: Cell 11; temporal progression of the estimated mean of α and µ indicating a
change of stimulus from HCl (H, blue) to NaCl (N, cyan) to quinine (Q, red) to sucrose
(S, black). From this chart it is evident that α or µ on their own cannot capture the
difference in response to the different tastants. The ellipses define arbitrarily chosen
classification boundaries.

5.5 Dual VB filtering from spatiotemporal point process

observations

In Section 4.4 it was seen that in the offline case, extracting parameters pertaining

to system dynamics from point process observations is a relatively challenging task,

typically requiring large data sets for even a few parameters and several iterations for

VB convergence. Moreover, in Section 5.4.2 it was implied that in the absence of known

inputs (as is commonplace in spatiotemporal systems) the estimation of the dynamics is

even harder as the selective estimation as depicted in Figure 5.6 is no longer an option. As

a result, direct application of Theorem 5.2 did not work for the spatiotemporal systems

studied in Section 4.4, giving parameter estimates highly unrepresentative of the true

values even with the wide range of learning rates considered.

The underlying problem lies in the state filtering component of the algorithm. Un-

like when continuous observations are available, instantaneous information in the form

of events contains negligible information on the state at a specific point in time. Conse-

quently the parameters determine a large part of the a posteriori estimated state (through

the predictive distribution), resulting in relatively slow convergence times observed in

the offline case. In an online scenario the lack of state information causes irreparable

problems: parameters are inferred from highly inaccurate state estimates which in turn,

especially in low activity regions, are highly dominated by the previous (inaccurate)
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parameter estimates.

The problem may be remedied in part by the inclusion of highly informative priors in

the online estimation framework. However, a better alternative would be to incorporate

more information regarding the state when computing parameters online in spatiotem-

poral point process systems by considering data in blocks of size L. In the EM literature

this is possible using a split-data likelihood approach [213]. It is highly desirable, in the

context of this work, to derive a filter based on the same concept by establishing a block

estimator using variational theory. In the following section it is seen how this entails a

simple alteration of Theorem 5.2; the resulting algorithm is the same DVBF which may

be easily extended to scenarios where block estimation is required.

5.5.1 Block estimation with the DVBF

To maintain the dual estimation framework considered in this chapter, it is required

to assume a different, slower, time scale for parameter evolution. This assumption is

mild under the premises that the underlying dynamics in spatiotemporal systems vary

gradually. Indeed, it is common with spatiotemporal point processes to assume that

the parameters do not change at all when inferring the hidden field [35, 37]; the adverse

implications of this in outbreak detection are shown in [43]. The consideration of different

state/parameter time-scales (slowly time-varying systems) is not new, and has been

considered in other application areas such as audio signal enhancement [223].

Consider a temporal index for which k = rL where L is the data block size under

consideration. Then for each r ∈ Z+, the index k ∈ Z+ takes values in {(r − 1)L∆t +

1, . . . , rL∆t} of length L. Now, let θr := θ(r∆t) and x k := x (k∆t). Then the state-space

dynamic equations are given by

x k = F (θr,x k−1,wk), r = int[(k − 1)/L] + 1, (5.72)

yk = G(θr,x k, vk), (5.73)

where int[·] returns the integer part of the argument. The resulting graphical represen-

tation of the model is given in Figure 5.13 where the observations are omitted for sake

of clarity. The parameter evolution model remains unchanged:

θr = θr−1 + er−1. (5.74)

Let the parameter set Θr = {θi}ri=1; then the resulting variational approximation to
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Figure 5.13: Graphical representation of the parameter and state-space latent process
under consideration for the block DVBF. Each column behaves as a separate entity to
be processed using conventional batch estimation techniques, with prior distributions
following from the statistics computed from the previous block. Inference on each block
is carried out only when all the relevant data becomes available, i.e. when k is an exact
multiple of L.

the true posterior distribution p(Xk,Θr|Yk) is given by

p̃(Xk,Θr) ≈ p̃(Xk)
r∏
j=1

p̃(θj) = p̃(Xk)p̃(Θr). (5.75)

Assume further that the parameter θr = {θ1
r , θ

2
r , . . . , θ

l
r}. The optimal variational poste-
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riors are given by

p̃(Xk) ∝ exp(Ep̃(Θr)[ln p(Xk,Yk,Θr)]), (5.76)

p̃(θir) ∝ exp(E
p̃(Xk)p̃(Θ

/θir
r )

[ln p(Xk,Yk,Θr)]), i = 1 . . . l. (5.77)

A recursive solution for (5.76) and (5.77) is not possible without further modification.

In the same way as Section 5.2.1, one may apply RVB to the parameter variational dis-

tributions. Rendering explicit the subset of the data with which the variational posterior

was computed p̃(Θr) is now given as

p̃(Θr) = p̃(θr|Yk)
r−1∏
j=1

p̄(θj |YjL)

= p̃(θr|Yk)p̄(Θr−1). (5.78)

Once again, as a result of the parameter factorisation, the restricted variational posteriors

are given by

p̄(Θr−1) =
r−1∏
j=1

l∏
i=1

p̄(θij |YjL). (5.79)

The key alteration to Theorem 5.2 lies in the compound estimation of a block of states,

rather than a single state at time k. Whilst in the simple sequential implementation a

recursion is found between p̃(x k) and the components of p̃(θk), in the block case a

recursion between p̃(x (k−L+1):kL) and the components of p̃(θr) is envisaged. The theorem

is as follows:

Theorem 5.3 For the state-space equations (5.72) and (5.73), given the factorisation

(5.75), the restriction (5.79) and the maximisers (5.76) and (5.77), the recursive updates

for the state and parameter variational distributions p̃(Xk) and p̃(θik), i = 1 . . . l, in blocks

of length L are given by

p̃(xk−L+1:k) ∝ p∗(xk−L+1) exp

(
Ep̃(θr)

[
ln

k∏
i=k−L+1

p(yi|xi,θr)
k∏

i=k−L+2

p(xi|xi−1,θr)

])
,

(5.80)

p̃(θjr) ∝ exp

(
E
p̃(Xk)p̃(θ

/j
r )

[
ln

k∏
i=k−L+1

p(yi|xi,θr)p(xi|xi−1,θr)

])
× exp

(
E
p̄(θjr−1)

[ln p(θjr|θjr−1)]
)
, j = 1 . . . l.

(5.81)
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where

p∗(xk−L+1) =

∫
p̃(xk−L) exp

(
Ep̃(θr)[ln p(xk−L+1|xk−L,θr)]

)
dxk−L, (5.82)

is the predictive distribution of xk−L+1 under θr.

Proof. By marginalisation of the states associated with previous data blocks, one obtains

p̃(x k−L+1:k) ∝
∫

exp(Ep̃(Θr)[ln p(Xk,Θr,Yk)])dXk−L

= exp

(
Ep̃(θr)

[
ln

k∏
i=k−L+1

p(y i|x i,θr)
k∏

i=k−L+2

p(x i|x i−1,θr)

])

×
∫

exp(Ep̃(Θr)[ln p(x k−L+1|x k−L,θr)p(Xk−L,Θr,Yk−L)])dXk−L.

(5.83)

By comparing to (5.80) it is required to show that the underlined quantity in (5.83)

is equal (up to a normalisation constant) to p∗(x k−L+1). To this end the quantity is

re-expressed as

∫
exp(Ep̃(Θr)[ln p(x k−L+1|x k−L,θr)p(Xk−L,Θr,Yk−L)])dXk−L

∝
∫ [

exp(Ep̃(θr)[ln p(x k−L+1|x k−L,θr)])

×
∫

exp(Ep̃(Θr−1)[ln p(Xk−L,Θr−1,Yk−L)])dXk−L−1

]
dx k−L

=

∫ [
exp

(
Ep̃(θr)[ln p(x k−L+1|x k−L,θr)]

)
×
∫ (∫

exp
(
Ep̃(Θr−1)[ln p(Xk−L,Θr−1,Yk−L)]

)
dXk−2L

)
dx k−2L+1:k−L−1

]
dx k−L.

(5.84)

where, as a result of RVB, Θr−1 does not need to be re-estimated under the new data.

The recursion is now obtained by realising that the underlined quantity in (5.84) is equal

to the first line of (5.83) with r and k replaced by r−1 and k−L respectively. One then
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obtains the quantity∫ [
exp

(
Ep̃(θr)[ln p(x k−L+1|x k−L,θr)]

) ∫
p̃(x k−2L+1:k−L)dx k−2L+1:k−L−1

]
dx k−L

=

∫ [
p̃(x k−L) exp

(
Ep̃(θr)[ln p(x k−L+1|x k−L,θr)]

) ]
dx k−L

= p∗(x k−L+1), (5.85)

as required.

An expression for the optimal variational parameter posterior is obtained as

p̃(θjr) ∝ exp

(
E
p̃(Xk)p̃(Θ

/θ
j
r

r )
[ln p(Xk,Yk,Θr)]

)
= exp

(
E
p̃(Xk)p̃(Θ

/θ
j
r

r )

[
ln

k∏
i=k−L+1

p(y i|x i,θr)p(x i|x i−1,θr)

])

× exp

(
E
p̃(Xk)p̃(Θ

/θ
j
r

r )
[ln p(θr|θr−1)p(Xk−L,Θr−1,Yk−L)]

)
, (5.86)

from which (5.81) follows since the distribution of interest is independent of

p(Xk−L,Θr−1,Yk−L) and since θ is composed of conditionally independent parameter

elements.

Remark 5.2 It is easily seen that the online block DVBF reduces to the DVBF of The-

orem 5.2 by setting L = 1 and, correspondingly, r = k in (5.80) and (5.81).

The significance of the online block estimator lies in the structure of the derived

variational posteriors. In particular, the optimal variational posteriors of (5.80) and

(5.81) may be recognised as those obtained using the usual batch or offline VB algorithm

(see (4.92) and (4.93)) with priors over the states and the parameters propagated from

posterior distributions computed in the previous block. Thus the block algorithm reduces

to a sequence of offline estimations with the state prior being the predictive distribution

of the final state of the previous time block and the parameter prior being the predictive

distribution of the evolving parameters. The algorithm allows for user-defined L, which

would typically be set large in the presence of uninformative data (sparse events).

5.5.2 Case study: the stochastic heat equation

This section studies the performance of the block DVBF in the context of spatiotem-

poral point process surveillance. Consider once again the stochastic heat equation with

operator A(·) = D∆(·), D ∈ R+ studied using offline analysis in Section 4.5. In general,
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the diffusion constant D is an indication of how quickly spurious hot spots in the latent

field disperse and a high D corresponds to lower event intensities under stationarity. In

a number of scenarios, such as epidemiology, it may be important to detect when this

latent ‘energy’ is not being dispersed quick enough; an effect which would manifest itself

in D becoming smaller and in extreme cases close to zero.

Most other conventional methods attempt to anticipate outbreaks by studying event

count or by checking the probability of exceedances (with respect to some threshold) of

the inferred latent process [43]. However these approaches do not consider the dynamic

nature of the process. More importantly, they do not take into consideration the fact that

the dynamics may change before the event count or inferred field experiences a noticeable

change in magnitude. Because of this, monitoring the parameters which govern the

dynamics of spatiotemporal point processes may prove considerably advantageous over

conventional approaches.

Let O = [0, 30] × [0, 30] ⊂ R2. A mesh of nsim = 49 basis function of the form

(3.20) with τ sim = 1.05 were equally spaced on O satisfying the Dirichlet boundary

conditions. Simulation parameters were set as ∆t = 0.01, σw = 4, µ = −4, β̄ = 1,

Qu =
∫
O kQ(s − r)u(r)dr and with kQ(s) = exp(−sT s/4). A data set consisting of

K = 5, 000 times frames was generated with D = 20 initially and D = 10 from k = 2, 500

onwards. Once again, simulation of the point process was carried out by the method of

thinning and space-time stationarity was assumed. It was also assumed that the set of

basis functions and all disturbance parameters were found by employing previous offline

analysis (see Chapter 4). The sole aim of the DVBF, in this case, was to monitor the

parameter ϑ = D and to detect when it lowers, preferably before a noticeable change in

event count. The DVBF was initialised with ϑ̂0|0 = 15 and σ2
ϑ,0|0 = 1000.

The event rate for the first 2,000 time points was, on average, two events per time

frame. Such a low event count necessitated the consideration of large blocks in order to

ensure robustness; L = 500 was found to be a suitable choice. Note that this number can

be drastically reduced in regions of high event count per frame, say 200 counts per frame

as in [37]. The forgetting factor λ was, in turn, set to 0.1. The low value was chosen in

order to offset the slow adaptation which would otherwise be imposed by the large L.

Combined field-parameter estimation of each block of 500 time points took on the order

of 1 day with the DVBF assuming convergence when |ϑ(i+1) − ϑ(i)| < 0.01. Due to time

constraints a direct comparison of this performance with that of the widely used MALA

algorithm [185, 35, 37] was not carried out; however the latter has been reported to take

‘overnight’ [43] for smoothing (with no parameter estimation) of data collected over 5

days (equivalent to a block size of L = 5 if ∆t = 1 day).
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Figure 5.14: (a) Online estimation of the parameter D = ϑ in blocks of size L = 500
using the DVBF. The bars show the three-sigma confidence intervals, the cross the VB
posterior mean and the thin line the true parameter trajectory. (b) Number of events
at each time point k. In both subfigures, the dashed vertical line corresponds to the
change-point of the true parameter D from 20 to 10.

Results: The trajectory of the true parameter Dr = ϑr and its estimate for this case

study are given in Figure 5.14a. As expected there is some variation in the estimation

trajectory, especially in regions when D is high and correspondingly the intensity is very

low. In particular, the estimation of the 4th block is seen to be unrepresentative; the

intensity was so low here that virtually nothing could be inferred about the dynamics.

In such regions, the parameter will be overestimated (see Footnote 9 on pg. 83) and

therefore does not present a problem in this particular scenario. Of more concern is

that the credibility intervals do not consistently enclose the true value. This, however,

was expected to be the case in regions of low intensity where VB begins to be highly

overconfident (see Section 3.4). Of importance to this discussion is that the change in

parameter to a lower D (corresponding to less energy dissipation) is detected in a timely

fashion before the escalation in event count (see Figure 5.14b).

The change in dynamics would not have been detected using solely event count.

Consider Figure 5.15 which focuses on the time interval where the transition took place.

The number of events between k = 2, 000 and k = 2, 500 (5th block) was 9,325, nearly

double the count between k = 2, 500 and k = 3, 000 (6th block) which totalled only 4,746.

Based solely on event count, natural conclusions are that a change point occurred at the

beginning of the 5th block and that in the 6th block the system was slowly restoring

itself to normality. These conclusions are evidently erroneous since D decreased at the

beginning of the 6th block.

Methods using probabilities of exceedance would also not have worked in this par-

ticular scenario since the maximum posterior mean of the latent field in the 5th block

was larger than that in the 6th block for 65% of the time points. Thus any threshold
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Figure 5.15: Number of events Nk at each time point k close to the transition period from
D = 20 to D = 10 at k = 2, 500. Insets: The line plots show the variational posteriors
p̃(ϑ) for the 5th and 6th estimation blocks (corresponding to k = 2, 000 to k = 2, 500 and
k = 2, 500 to k = 3, 000 respectively) together with the true parameter value (red line).
The surface plots show the a posteriori underlying field zk at the peaks of the two blocks.

employed would likely have been exceeded (in probability) in the 5th block more often

than in the 6th block; again resulting in conclusions converse to what is required.

The advantage of employing a dynamic model and estimating D online in such sys-

tems is thus apparent; it may not be the number of events observed which is of concern,

but the spatiotemporal evolution of their behaviour. In this case the DVBF successfully

detected the shift in dynamics at the 6th block. As seen from the event count progression

in Figure 5.14b this detection was a real forewarning of things to come.

5.6 Conclusion

This chapter has introduced the concept of dual filtering in the context of spatiotemporal

systems. This has resulted in several contributions, namely

• the novel concept of online field-parameter estimation in both temporal and spa-

tiotemporal point process systems,

• the development of a new dual variational filter which compares favourably to

conventional methods such as DKF methods and SMC methods and

• the extension of the dual variational filter to a block filter, which is theoretically

shown to constitute a concatenation of sequential batch estimators.

The developed DVBF was seen to perform particularly well in SPDEs with continuous

observations, less so in point process systems when the number of events is relatively low.
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In the latter case variability in parameter estimates was quite large and necessitated the

use of block filtering. Fortunately, by showing that the DVBF is a special case of the

block filter, its implementation does not require the need for significant theoretical and

algorithmic extensions.

The viability of the proposed filter for spatiotemporal systems was made possible

through the continuous-space framework stablished in Chapter 4 which decouples the

discretisation needed for numerical integration from the resolution at which points are

being observed. It should be pointed out that adopting a discrete-space representation

(with the restriction of a maximum of one event per grid location) for online inference

is even less desirable than with offline systems where computational speed is more of an

issue and where the data is not available before estimation.

The work carried out in this chapter is a natural extension to the concepts introduced

in Chapter 4, where the estimation of the dynamics of spatiotemporal point processes

was carried out offline. Since this is the first work of its kind, only simple systems were

analysed in these two chapters; these nonetheless serve as a proof of principle for more

large-scale systems such as that treated in the next chapter.

There are several paths for future work. First, a strategy for choosing the block

size L may be designed, which favours a large L in regions of low event count. For

this several studies will be required to quantify the effect of L on the inference quality.

Second, given the difficulty encountered in parameter estimation, it might be worthwhile

considering an interacting multiple model (IMM) approach [224] in order to select the

most likely model from a finite number of candidates. Lastly, through the representation

of spatiotemporal systems as a dynamic model, it is now possible to investigate their

control, obviously in an online context, using the variational filter or even the DVBF.

This would be particularly interesting in the context of point process systems, where the

idea of control, to the best of the author’s knowledge, has not yet been introduced.

Chapters 3, 4 and 5 have developed and implemented an approach for spatiotemporal

system analysis based on concepts emerging from systems theory. The framework delivers

a dynamic model in state-space form learnt offline or online from data which may be

continuous or in the form of events. The developed theory will be applied next to a

real data set; here the dividends of adopting this systems approach to spatiotemporal

analysis will become readily apparent.





Chapter 6

Modelling and prediction in

conflict: Afghanistan

Chapter 4 introduced a novel framework for the study of spatio-temporal point process

systems through the use of finite dimensional reduction methods and advanced signal

processing techniques. The methodology was seen to perform well on event-based sim-

ulated data with high levels of unpredictability and able to extract patterns which are

not immediately apparent. It was also fast and memory efficient and handled large data

sets with ease.

This chapter shows the efficacy of the developed method in a real-world application,

conflict analysis. In essence, a conflict zone can be viewed as a highly unpredictable

system with several random (unknown) external influences. All reported incidents in

the scene of conflict are usually presented to analysts in the form of war logs so that

the data sets under consideration are effectively point processes. Moreover the number

of reported incidents usually reaches into the several thousand so that a flexible and

computationally efficient method for highlighting emerging trends is highly desirable. In

the light of this, the method developed in Chapter 4 is ideal for the study of such data

sets.

The proposed methodology applied to conflict analysis is demonstrated on the Afghan

War Diary (AWD), a compendium of military war logs released by the whistleblower

site Wikileaks in 2010 pertaining to the war in Afghanistan which commenced in 2001.

Studies carried out to date of the AWD fail to provide insights into the dynamics of the

logged events (e.g. [225]) which may play a vital role in explaining the conflict progression

and also in predicting future events. The adopted approach in this chapter remedies this

by studying the dynamics of the events, thus allowing for optimal interpolation and

statistically sound predictions. The methodology is new to conflict analysis and the

165
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promising results are indicative of its potential in treating large event-based data sets

with similar properties.

To familiarise the reader with the context of the study and the light in which the

results should be interpreted, a brief history of the war to date in Afghanistan is given in

Section 6.1.1. Section 6.1.2 describes the role of data analysis in a modern-day conflict

scenario, the challenges faced by academics in carrying out their own analysis and the

role played by the AWD in this regard. Section 6.1.3 describes the work which has

been carried out on the AWD and explains why further work is appropriate. Section 6.2

contains a rigorous statistical analysis to support the hypothesis that the logged events

in the AWD may be treated as the realisation of a special kind of stochastic process. The

learning of the dynamic model using point process statistics and VB inference is carried

out in Section 6.3 which also includes some minor modifications from the treatment in

Chapter 4 for this special case. A discussion of the results and a demonstration of the

model’s predictive capabilities is given in Section 6.4; Section 6.5 concludes the chapter.

6.1 War in Afghanistan and the Afghan War Diary

6.1.1 Brief history of the conflict in Afghanistan

October 7, 2001, saw the beginning of Operation Enduring Freedom in Afghanistan, an

initiative of the United States of America (USA) and the United Kingdom to dismantle

the Al-Qaeda terrorist organisation and remove the Taliban from power. By December

2001 all major Al-Qaeda and Taliban leaders had either been killed or forced to retreat

into remote areas and neighbouring country Pakistan. In a little more than two months

the USA had achieved their primary goals in Afghanistan and together with the United

Nations helped introduce the Afghan Interim Authority and the International Security

Assistance Force (ISAF) with the role to maintain national security.

The two-month successful foray was however only the beginning of a long drawn-out

war which has plunged Afghanistan into violence and chaos [226]. The year 2002 saw

the Taliban and Al-Qaeda regroup their forces deep in the mountains and across the

border in Pakistan. They recruited militants to fight what they called the new jihad

or holy-war against the USA, ISAF and the Afghan government and trained them in

guerrilla warfare. By the summer of 2003 the rejuvenated insurgency was carrying out

regular ambushes, attacks and raids, resulting in hundreds of fatalities and thousands

of wounded. In 2006 the situation took a drastic turn to the worse, with the violence

in the south reaching unprecedented levels. According to http://www.icasualties.org 331

coalition military personnel perished between 2001 and 2005, and a staggering 1950
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between 2006 and 2010. Civilian fatality figures fare even worse, with an estimate of

around 4,000 fatalities between 2004 and 2009 [227].

The situation to date remains dire. In January 2011 the Afghanistan NGO (non-

governmental organisation) Safety Office (ANSO)1 reported that there is ‘indisputable

evidence that conditions are deteriorating’ [228] after registering a record average of 33

armed attacks per day by armed opposition groups (AOG) in 2010. The attacks aimed

at killing government personnel and disrupting supply lines but were reportedly also re-

sponsible for 83% of the c. 2,000 civilian fatalities in 2010. ANSO also stated that ‘going

in to 2011, the AOG position looks strong’. Indeed, according to www.icasualties.org the

number of coalition fatalities between January and May 2011 was practically the same for

the same period in 2010 (220 in 2010 and 216 in 2011). These impressive figures compel

the public and taxpayers to query the ultimate motifs of the war and also beckon the

need for an unprejudiced quantitative assessment of future prospects. Unbiased assess-

ments are however only possible with unaltered data, which unfortunately is not usually

publicly released.

6.1.2 Conflict and the data revolution

There is ample evidence today (see section 6.1.3) that the USA military is in possession

of a virtually interminable stream of data to aid the key players and policy makers in

decision making. The amount of data available is immense; everything is recorded and

logged, from suspicious activity to gunfights lasting several hours. Hidden in these logs

are patterns and trends explaining the current state of affairs and containing invaluable

information about what may possibly take place in the near future [229, Slide 18, ‘Time

is Running Out’]. The military tries to anticipate the actions of the aggressors in order

to counter them in the most efficient way possible with minimal loss of life and resources.

The Pentagon, for instance, today enjoys a yearly budget of approximately US$28 million

for the modelling and prediction of insurgency and other aspects of warfare [230].

The reason why the same sort of investment, or interest, is lacking in the academic

research community may be pinned down to the nature of the data which is accessible.

The overwhelming majority of data logged by the military is labelled secret or classified

and is not available to the public, and academics have to rely on unclassified documents

or the media to make their own conclusions on a conflict’s state of affairs [231]. These

secondary sources are largely idiosyncratic in nature and may be considered unreliable

at best:

1ANSO is a non-profit organisation whose sole role is to provide security advice for NGOs operating

in Afghanistan by issuing bi-weekly and quarterly reports on aggression incidents in the country.
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“As a result of the uncertain reliability of these sources, policy suggestions

and academic analysis are always subject to the criticism that the data from

which conclusions are drawn have been falsified or are biased, uneven in

coverage, amnesiac about certain subjects, or exculpatory of government de-

cisions.” [225].

Consider the present situation in Afghanistan. In 2011 ANSO noted that the current

security situation in Afghanistan is alarming and in sharp contrast with the reassuring

military coalition’s claims which are ‘solely intended to influence American and European

public opinion’ [228]. The media is also not a reliable source of information; for instance,

the news network Al Jazeera reported that the media was asked not to report any

violent incidents in the Afghanistan 2009 elections despite several occurrences [232].

Academic researchers thus do not have the budget nor the ‘reams of information’ [230]

the Department of Defence has at its disposal to make effective qualitative assessments.

The AWD released by Wikileaks on 25 July 2010 is hence a treasure trove for conflict

analysts. It contains over 75,000 classified military war logs by the USA relating to

the war in Afghanistan; it is unaltered, unbiased and even in coverage. Its disclosure is

unprecedented in the history of modern warfare and for the first time a detailed insider’s

description of the day to day working of the world’s largest military power is openly

available to public and academic scrutiny.

6.1.3 The Afghan War Diary

The c. 77,000 logs in the AWD are heavily detailed with each log indexed with its own

spatial location as well as the day and time of occurrence. Additional fields describe

the nature of the logged event such as enemy action, friendly action (subject to who

initiated the action) or explosive hazard, give details of the events, and list the number

of associated friendly, enemy and civilian casualties. To date, the data has been studied

using

• data visualisation: chiefly carried out by journalists and researchers with a keen

interest in the conflict. These approaches consist of simple visual inspections of the

data such as plots of the number of logged events per month in different regions of

Afghanistan for each event type (see the github page of Conway [233] for examples

of such plots). Dewar, for instance, used non-parametric methods [234] to show

the underlying report intensity in an animation [235]. The use of the same non-

parametric methods for estimating the intensity can be seen also in [225]. Reporters

typically concentrate on violent activity such as improvised explosive devices (IED)
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attacks which resulted in casualties and usually focus on showing the spatial dis-

tribution of such events [e.g. 236]. This high-level analysis of the data is good for

providing quick overviews to the casual reader.

• descriptive statistics: carried out by academics with a professional interest in the

subject. Approaches employed to date include i) fitting an anisotropic Gaussian

distribution to the spatial distribution of logged events. Shifts in the mean and

covariance of the resulting distribution across consecutive years is then used to

effect conclusions on the evolution of the focal centre and spread of the zone of

conflict. ii) space-time scan statistic clustering to extract space-time hot spots of

logged events in each year. The locations of the clusters together with their change

in distribution and sizes across consecutive areas are used to outline existing trends

which are not immediately apparent from simple data inspection. Both methods

i) and ii) are employed in [225, 231].

Data visualisation and descriptive statistics lack a means of analysing the spatiotem-

poral dynamic behaviour of the logged events in a rigorous manner. Additionally, without

providing a model elucidating the development of the conflict state of affairs, they are

unable to provide optimal statistical spatiotemporal inference of past behaviour (Was a

highlighted spatiotemporal cluster a one off or was it representative of some underlying

persisting ‘conflict intensity’?) and, more importantly, are unable to provide statistically

founded predictions.

These limitations are obviated in the study proposed below. In what follows, pre-

liminary analysis is first used to find a plausible descriptive model for the data in the

Wikileaks data set (recall that an underlying infinite dimensional model is required in

this framework). The modelling and inference mechanism of Chapter 4 is then used to

carry out learning and prediction of the aforementioned model.

6.2 Preliminary analysis

Of the roughly 77,000 activity logs constituting the AWD, some are located outside

Afghanistan’s borders. These external events were omitted from the analysis bringing

the actual number of logs considered down to 75,676. The following sections analyse the

temporal and spatial content of this subset of the AWD.
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Figure 6.1: Weekly number of military activity reports in Afghanistan between January
2004 and December 2009 (bin size = 1 week).

6.2.1 Temporal analysis

The first analysis stage of the AWD considers the temporal evolution, or sample path,

of the overall report count per week as shown in Figure 6.1. This graph immediately

shows strong evidence for an increase in activity over time and a strong peak in 2009

corresponding to the Afghan presidential election campaign (which, we recall, is not

representative of what was reported in the media).

The behaviour of the data suggests a stochastic model with a positive exponential

trend attributed to the steady increase of USA troops countered by the Afghan insurgency

which can ‘sustain itself indefinitely’ [229]. Denote the number of logged events at week

k as Nk. As seen from Figure 6.2a and Figure 6.2b the quantity (Nk+1−Nk)/Nk appears

to be normally distributed. A two-tailed Shapiro-Wilks test for normality failed to refute

the null hypothesis that these quantities were indeed generated by a normal distribution

at the 10% level thus showing strong support for this observation. One may hence

represent
Nk+1 −Nk

Nk
∼ N (r̃∆t, σ

2
w), (6.1)

where ∆t = 1 week.

Another necessary test is that for homoskedasticity, which tests whether (6.1) ex-

periences constant σ2
w across time. For this, the AWD was split into yearly intervals

between 2004 and 2009. A Levene’s test for heteroskedasticity was then used to check

the null hypothesis that the variance across the different years was the same. The test
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(a) (b)

Figure 6.2: (a) Histogram and fitted normal distribution to the fractional increments in
log count per week in the AWD. (b) Normal probability plot of the fractional increments.
The adherence of the data points (blue) to the straight line (red) is a strong indication
of normality.

failed to reject it for the years 2006 to 2009 at the 10% level but not when including 2004

and 2005. The reason for rejection when including the earlier two years can be safely

attributed to relatively low report count arising in noisy quantities when computing the

fractional increments.

Preliminary analysis hence shows the data from the AWD exhibiting independent

fractional changes with constant variance. Making the assumption that the report count

is representative of an underlying spatiotemporal logging intensity λ(t) which is gener-

ating the data, an intensity dynamic model can hence be given as

dλ(t) = r̃λ(t)dt+ σwλ(t)dβ(t), (6.2)

which is a geometric Brownian motion, a model widely applied in finance and in many

other application areas [237]. The quantity r̃ is commonly known as the percentage drift

and σw as the volatility. It is required to put the intensity dynamic equation (6.2) into

the exponential form

λ(t) = exp(µ+ x(t)), lnλ(t) = µ+ x(t), (6.3)

for application of the theory developed in Chapters 3 and 4. This entails the use of the
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following lemma.

Lemma 6.1 (Ito’s lemma [104, Section 4.5]) Let λ(t) be the unique solution of the

SDE

dλ(t) = f(λ(t), t)dt+ g(λ(t), t)dβ(t). (6.4)

Let ψ(λ(t), t) be i) continuously differentiable in t and ii) have continuous second order

partial derivatives with respect to λ(t). Then ψ is governed by the SDE

dψ =
∂ψ

∂t
dt+

∂ψ

∂λ
dλ+

1

2
g(λ(t), t)2∂ψ

2

∂λ2
dt. (6.5)

Applying Lemma 6.1 to (6.2) with ψ(λ(t), t) = lnλ(t), f(λ(t), t) = r̃λ(t) and g(λ(t), t) =

σwλ(t) one obtains

d(lnλ(t)) =
1

λ
dλ− 1

2
σ2
wdt

=

(
r̃ − 1

2
σ2
w

)
dt+ σwdβ(t). (6.6)

Without loss of generality, letting r = r̃ − σ2
w/2,

d(lnλ(t)) = rdt+ σwdβ(t). (6.7)

Comparing (6.7) to (6.3), since µ is a constant (dµ = 0), the underlying evolution

equation of x(t) is hence given by

dx(t) = rdt+ σwdβ(t). (6.8)

The arguments presented above readily extend to the general spatiotemporal case.

Taking z(t) ∈ H as the hidden spatiotemporal state and λ(t) ∈ H as the spatiotemporal

intensity one obtains the system of equations

dz(t) = rdt+ σwdW (t), (6.9)

λ(t) = exp(µ+ z(t)), (6.10)

from where it is implicitly assumed that

dλ(t) =

[
r +

1

2
σ2
w

]
λ(t)dt+ σwλ(t)dW (t). (6.11)

Here r ∈ H is a heterogeneous temporally independent spatial growth rate, µ is a back-

ground event rate (with the same role as in the neural firing model) and W (t) is an
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H-valued Wiener process with smooth covariance operator Q : H → H. The intensity

function λ(t) is then said to follow a spatiotemporal geometric Brownian motion with

percentage drift r + σ2
w/2 and spatially constant percentage volatility σw. The model

allows for different provinces in Afghanistan to experience different growth rates (for

instance the growth in Helmand and Kandahar was overall much more than in other

provinces such as Herat) but assumes that the volatility or risk is constant nationwide.

For simplicity the background event rate is also assumed to be constant nationwide.

6.2.2 Spatial analysis and basis function placement

An implicit assumption made in (6.9) is that the spatial interactions are negligible and

that the system is spatially uncoupled. This assumption needs to be verified using tools

emerging from point process statistics.

The key components required for this analysis are the PACF of Definition 4.1

gk,k(s, r) =
λ

(2)
k,k(s, r)

λ
(1)
k (s)λ

(1)
k (r)

, (6.12)

and the pair cross-correlation function (PCCF)

gk,k+1(s, r) =
λ

(2)
k,k+1(s, r)

λ
(1)
k (s)λ

(1)
k+1(r)

, (6.13)

where recall that λ
(1)
k (s) = E[λk(s)], λ

(2)
k,k(s, r) = E[λk(s)λk(r)] and where λ

(2)
k,k+1(s, r) =

E[λk(s)λk+1(r)]. Now, let ∆Wk(s) ∼ GP (0, kQ) be a Gaussian process with mean func-

tion 0 and covariance function kQ; then the emerging form of z(t) in (6.9), and in

particular its discretised version (using an explicit Euler scheme)

zk+1(s) = zk(s) + r∆t + ∆Wk(s)∆t, (6.14)

implies that at each week k, zk(s) is a realisation from a GP, say zk(s) ∼
GP(ẑk(s), σ2

kψk(s, r)), where ψk is a correlation function with ψk(s, s) = 1. There-

fore it follows that λk(s) as defined in (6.10) in this case is a LGCP of Definition 4.2.

Recall that from Lemma 4.1

gk,k(s, r) = exp(σ2
kψk(s, r)), (6.15)

leading to the following theorem:
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Theorem 6.1 For evolving GPs following the spatially uncoupled dynamics of (6.14)

gk,k(s, r) = gk,k+1(s, r). (6.16)

Proof. Consider the quantity

E[λk(s)]E[λk+1(r)] = E[exp(µ+ zk(s))]E[exp(µ+ zk(r) + r∆t + ∆Wk(s)∆t)]

= exp(2µ+ r∆t)E[exp(zk(s))]E[exp(zk(r))]E[exp(∆Wk(s)∆t)],

(6.17)

where the expectations could be factorised as a result of the additive disturbance at k

being independent of zk. The second moment is given by

E[λk(s)λk+1(r)] = E[exp(µ+ zk(s) + µ+ zk(r) + r∆t + ∆Wk(s)∆t)]

= exp(2µ+ r∆t)E[exp(zk(s) + zk(r))]E[exp(∆Wk(s)∆t)], (6.18)

so that

gk,k+1(s, r) =
E[exp(zk(s) + zk(r))]

E[exp(zk(s))]E[exp(zk(r))]

=
exp(ẑk(s) + ẑk(r) + σ2

k + σ2
kψ(s, r))

exp(ẑk(s) + ẑk(r) + σ2
k)

= exp(σ2
kψ(s, r)) = gk,k(s, r), (6.19)

where the last equality follows from Lemma 4.1.

The key insight of Theorem 6.1 is that the relationship between the log PCCF and

the log PACF can be used to detect spatial dynamic interactions across different time

steps. The approach presented is also directly applicable to SIDE type models where the

relationship would also be indicative of the transition kernel shape. Since this is beyond

the scope of the present argument it shall not be discussed further.

If the hypothesis of spatially uncoupled dynamics is correct, then the PACF and the

PCCF as obtained from the data should be equal, or, letting υ = ||s − r ||

γ(υ) = F−1

(F(ln gk,k+1(υ))

F(ln gk,k(υ))

)
= δ(υ). (6.20)

For nonparametric estimation of the quantities gk,k+1(υ) and gk,k(υ) the reader is referred

once again to Appendix C. The results of carrying out correlation tests on the raw data
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(a) (b)

Figure 6.3: (a) Average log PACF ln ḡk,k(υ) and average log PCCF ln ḡk,k+1(υ). (b) γ(υ)
as computed from (6.20).

were very revealing and are summarised in Figure 6.3.2 Figure 6.3a shows that on average

the log PACF is equal to the log PCCF and that γ(υ), as computed from (6.20), is very

narrow in relation to the extent of the spatial correlations in the field (recall that the log

PACF is proportional to the correlation function). This implies that γ(υ) may be safely

approximated to a delta function, corresponding to negligible spatial interactions across

adjacent time frames.

The temporal analysis together with the spatial analysis thus shows strong support

for the set of equations (6.9) and (6.10) describing a reasonable model for the dynamic

behaviour of the AWD. Note that (6.9) is not an SPDE since r is not a differential

operator. Nonetheless the approach considered in this thesis readily extends to this

case, and this example shows that the developed methodology may be applied to a

broader class of infinite-dimensional stochastic equations, and not only to linear equations

incorporating differential operators.

The next step before carrying out joint field-parameter inference is the decomposition

of the growth function r and the underlying spatiotemporal field using basis functions.

Basis function selection: The frequency content of the field is found from the auto-

correlation function by Theorem 4.2 which in turn is determined from the PACF through

Lemma 4.1. Interestingly, as shown in Figure 6.4a, the PACF over the 6 year period of

the AWD does not change significantly, an indication of clusters which do not change

2For convenience the original spatial domain of the AWD denoted in latitude/longitude coordinates

was mapped on to a symmetric space with the bottom left-hand corner on the origin using a linear map

Lu = [ρ1(u1 − τ1), ρ2(u2 − τ2)], where u1 and u2 denote the longitude and latitude coordinates in real

space. The scale/shift parameters were chosen to be τ = [57.5, 28.5] and ρ = [2, 3.3].
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(a) (b)

Figure 6.4: (a) Average log PACF with respect to relative distance υ = ||s − r || for
different time intervals (blue, magenta, green), the 95% spread of the log PACF across
all the years (yellow band) and the selected isotropic basis function (black) which is
clearly narrow enough (of sufficient high frequency) to represent the spatial correlations
in the field. (b) Spatial Fourier transform of underlying field (blue) and of φ(υ) (red).
The vertical black line denotes the selected cutoff frequency of νc =0.2 cycles/unit.

in size in time. This somewhat corroborates a graphical inspection of Figure 12 in [225]

depicting clusters obtained using the Getis-Ord clustering statistic.

From the frequency response in Figure 6.4b a cutoff frequency of νc = 0.2 cycles/unit

was selected (see Footnote 2 on pg. 175) for computation of the basis functions width.

From (3.26) this is given by

σ2
b =

1

2ν2
cπ

2
= 1.27, (6.21)

rounded down to σ2
b = 1 so that the corresponding local GRBF τ is given by τ =

√
π.

The isotropic basis function used in the analysis is depicted in Figure 6.4a.

Initially basis functions were placed on a 16×16 grid with an inter-centre spacing

of ∆s = 1.9 corresponding to an oversampling parameter in (3.21) of α0 = 1.32 and

covering the whole of Afghanistan. Many of these basis functions were however considered

redundant, representing areas exhibiting no logged events, or a very small number of

events. To avoid problems of identifiability in these regions (see Section 4.1.3, pg. 98),

the constant background intensity baseline µ was used to represent activity in these

areas. Each basis function was analysed separately; if a basis function had its centre more

than 0.4 spatial units outside Afghanistan or had on average less than 8 logged events

per year within 1.3 standard deviations from its centre (corresponding to µ = −3.5)

it was omitted. The final arrangement of the basis functions together with the spatial

distribution of all the logged events of the AWD in Afghanistan is shown in Figure 6.5a
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(a) (b)

Figure 6.5: (a) Basis functions in spatial domain where the ‘x’ denotes the function
centre and the circle the 1.3 × standard deviation interval. (b) Spatial distribution of
activity logs in the AWD between 2004 and 2009.

and Figure 6.5b respectively. Note that basis functions are omitted in ‘quiet’ areas. As

can be seen from (6.10), the intensity where there are no basis functions simply reduces

to exp(µ).

6.3 Model decomposition and VB inference

Applying the Galerkin reduction method of Theorem 3.1 to (6.9) one obtains the finite

dimensional representation

dx(t) =r̃dt+ σwΨ−1
x dβ(t), (6.22)

where r̃ = Ψ−1
x ψr, ψr = 〈r,φ〉, φ = [φ1, φ2, . . . , φn]T and β(t) is a vector of correlated

time series’ whose increments are normally distributed with 0 mean and covariance matrix

Q. Subsequent application of the Euler scheme gives

xk+1 = xk + ∆tr̃ + wk, (6.23)

where xk := x(k∆t) and where wk ∈ Rn is additive temporally white Gaussian noise

with zero mean and covariance Σw = σ2
w∆tΨ

−1
x QnΨ

−1
x . To cater for heterogeneity in

the form of a spatially varying growth rate, it is required to also project the growth

function r onto Hn so that r =
∑n

i=1 φiθi; it then follows that r̃ = θ. This gives a fully
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decoupled model

xk+1 = xk + ∆tθ + wk, (6.24)

λk = exp(µ+ φTx k). (6.25)

The unknown quantities in this model are the underlying states X = {x k}Kk=0 composing

the spatiotemporal field which gives optimal smoothed logging intensity quantities, and

the unknown parameters θ which compose the growth function. The model (6.24) and

(6.25) is slightly different from that considered in Chapter 4 however the construction

of a smoother proceeds on the same lines. In particular the required algorithm for the

forward message is identical to that of SPDEs as shown in Algorithm A.3 with A = I

and with the following changes

• In the forward pass the quantity x̃ k is computed as

x̃ k = Σ̃k

[
σ−2
w Q̃

−1
Σ∗k−1(Σ−1

k−1|k−1x̂ k−1|k−1

− σ−2
w Q̃

−1
E[θ]∆t) + σ−2

w Q̃
−1

E[θ]∆t

]
.

(6.26)

• As a result of removing basis functions in regions of low observed logs, the ill-

conditioning of β̃(x k) as discussed in Section 4.1.3 is no longer an issue and (un-

modified) Laplace approximations of the backward message may be computed. The

algorithm for the backward message is given in Algorithm A.5.

Note that computation of the smoothed estimates remains unchanged and the evaluation

of the cross-covariance is not required for this model. The variational parameter posterior

at the (i+ 1)th iteration p̃(θ)(i+1) is given as

p̃(θ)(i+1) ∝ p(θ) exp

(
− 1

2
Ep̃(X )(i+1)

[
K−1∑
k=0

(x k+1 − x k − θ∆t)
Tσ−2

w Q̃
−1

× (x k+1 − x k − θ∆t)

])
,

(6.27)

to give θ(i+1) ∼ Nθ(θ̂,Σθ) where

θ̂ = Σθ

[
Σθ,pθ̂p + ∆tσ

−2
w Q̃

−1
K−1∑
k=0

(Ep̃(X )(i+1) [x k+1 − x k])

]
, (6.28)

Σθ = (Σ−1
θ,p + ∆2

tKσ
−2
w Q̃

−1
)−1. (6.29)
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Figure 6.6: Estimated mean intensity E[λk(s)] on the first week of the month and re-
spective year.

The algorithm was run with µ = −3.5 corresponding to the activity baseline used for

basis function retention, and σw = 0.2. The latter was chosen to be equal to the standard

deviation of the increments (6.1) in 2006, the largest of the four years 2006-2009 for which

homoskedasticity was met. The approximate inference methodology allowed a consider-

ably fast and efficient joint estimation of the intensity of logged events and underlying

parameters composing the growth function; despite the large number of unknown states

and parameters, inference was complete in only about six hours on a standard personal

computer.3 This performance is very encouraging when considering the size of the data

set under investigation.

6.4 Results and discussion

Figure 6.6 shows the temporal progression of the mean posterior intensity function un-

derlying the AWD events at all places in Afghanistan on the first week of a given month

and year. Note how the intensity is naturally smoothed by the algorithm, which op-

timally interpolates future and past observations (within the training period for which

data is available); this contrasts sharply with visualisations which ignore the dynamics

and which would yield abrupt changes in intensity if applied at the fine time-scale of 1

3With Intel R©CoreTM2Duo E8400 @ 3.00GHz, 2GB RAM.
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Figure 6.7: Provincial map of Afghanistan accurate as of 2010.

week.

The figure provides an intuitive visualisation which captures important geographical

features of the war scenario. Regions of high intensity in the most recent months in-

clude Sangin in northern Helmand (see Figure 6.7), one of the most dangerous places in

Afghanistan, notorious for the thousands of IEDs and frequent suicide bombings [238].

Other regions, such as Kabul, Nangarhar and Paktya (the latter two close to the Pak-

istan border) on the other hand have witnessed relatively high activity all throughout

the six-year interval. Also very apparent is the emergence of a high intensity ring start-

ing from Kabul extending downwards towards Kandahar, up through Herat, through

Mazar-E Sharif in the Balkh province and back to Kabul. This roughly elliptical shape

corresponds to the country’s ‘ring road’, commonly targeted by insurgent activity and

IED placement [225].

A major advantage of the model-based approach is the ability to establish quantitative

conclusions on activity growth rates between 2004 and 2009 at a glance from the mean

growth rate estimate (Figure 6.8A). One may distinguish between event hot spots (i.e.

regions with clustered events), and growth hot spots (events with rapid growth in activity).

While some of the high growth areas, such as Helmand, also had an overall high count of

events, this is not the general case; for example, Sar-e Pul and Balkh in the North and

the Badghis province in the West both have witnessed a modest number of total events
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but have shown significant growth in activity in recent years. Note that such patterns are

a result of viewing the conflict dynamics from a systems perspective; no further analysis

is needed to obtain this spatiotemporal behaviour on a provincial level (Figure 6.8B-F).

In the insets it is seen how solely conditioned on the a posteriori estimated intensity

in January 2004, the model predicted output (red) in most cases accurately models the

observed trend. One exception is Kabul which sees a sharp rise in activity in 2007. The

smoothed intensity (green) provides a good tracking of the observed log count in every

case.
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Figure 6.8: (A) Posterior mean fractional increase in activity logs per week in
Afghanistan between 2004 and 2009. Only regions with positive overall growth are
shown. (B - F left) Spatial map of all events occurring in a square of side 100km centred
on the city under study. (B - F right) Number of weekly events NS at week k in these
regions (black) together with the a posteriori estimated count (green) and the model
predicted count conditioned only the estimated intensity in January 2004 (red).

Prediction: AOG initiated attacks (as reported by ANSO) in 2009 continued to in-

crease from 2008, with 8 provinces reporting an escalation of more than 100% (corre-

sponding to a growth factor of 2). A fundamental question to ask is whether the reported

figures could have been of any use in predicting the provincial growth in AOG initiated

attacks in 2010 as a forewarning to the local population and stationed military. However

a simple correlation analysis indicated that the growth in 2009 was not a good indication

of what happened in 2010; even with 4 clear province outliers omitted from the analysis
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(Sari-Pul, Bamyan, Paktya and Ghazni), the correlation coefficient was found to be only

0.34 at a two-tailed p-value of 0.08 (not significant at the 5% level). Further, the simple

use of the activity growth in 2009 as a predictor for 2010 (denoted as ANSO prediction)

is unable to provide credibility intervals which would undoubtedly be of considerable use

in decision making and strategy planning. Could the growth model reproduced above be

used to predict the AOG initiated activity in 2010 (denoted here as model prediction)?

This proposal may not be too farfetched, given that there exists a positive correlation

between violent activity and the number of logged events in the AWD [225] and the in-

ferred model is statistically optimal in some sense. It is important to bear in mind that

the AWD only contains data until 2009; any data in 2010 may be treated as validation

data.

The procedure adopted was as follows:

1. A linear relationship was established between the 2008/2009 provincial growth

of AOG initiated attacks as reported by ANSO and the corresponding provincial

growth in the Wikileaks data number of logged events.

2. 2,000 MC forward simulations runs were carried out using the growth model (6.9)

and (6.10) in order to obtain the mean and credibility intervals for the number of

logged events in 2010.

3. The linear relationship established in (1) was used to map the predicted growth in

the Wikileaks number of logged of events to the predicted growth of AOG initiated

attacks in 2010.

The results are very encouraging. Even when treating the mean value of the model

predicted growth in AOG attacks as the predicted growth, the generative model is seen

to produce better estimates than what analysts would typically obtain just from events

in the previous year (growth in 2009). The difference between the ANSO prediction error

and the model prediction error is seen in Figure 6.9a where it is clear that the growth

model on average performs better than the näıve prediction method. This observation is

further confirmed in Figure 6.9b where it is seen that for a given tolerance of error, the

proposed approach consistently predicts correctly the growth activity in more provinces

than the ANSO prediction does. The model predictor allows for up to 20% less tolerance

error for the same number of provinces with correctly predicted growth factor.

The model predictions exhibited relatively large errors in only 4 out of the 32

provinces; growth in Badghis, which had been alarming in recent years [239, 240], was

dramatically overestimated, while the growth in 3 neighbouring provinces close to the
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(a) (b)

Figure 6.9: (a) Difference in ANSO prediction with model prediction when considering
the mean value from the forward MC runs. Positive quantities indicate provinces where
the model predictor performed better than the ANSO predictor. (b) Cumulative graph
of correct predictions within a growth tolerance error.

Pakistani border (Ghazni, Pakitka and Paktya) was underestimated. This unusual pat-

tern in these three neighbouring provinces was highlighted in the ANSO report, which

described it as a highly unusual ‘surprise’ deterioration [228]. After the removal of the

four outliers, a correlation analysis indicated a correlation coefficient of 0.72 between the

mean prediction and the reported growth, at a p-value of 0.0001. This compares very

favourably with the correlation coefficient of 0.34 obtained when comparing the 2009

growth with that in 2010 (also after removal of four outliers).

The mean of the predicted growth, however, exhibits large errors so that its use

is limited in decision making. The most important feature of the proposed approach

for conflict analysis is in fact a provision of associated credibility intervals with the

predictions. As seen in Figure 6.10 in 75% of the provinces (24 out of 32) the recorded

growth by the ANSO lay within the three-sigma confidence intervals of the predictions (as

generated by MC runs). The model managed to, for instance, predict the high increase in

growth in Sar-e-Pul but also outlined that one cannot really be sure whether the growth

will be anywhere between 100% and 500% (it turned out to be 250%). On the other hand

for most provinces the confidence intervals were more useful; it said that the growth in

Helmand will be somewhere in between 100% and 170% and the true growth was 124%.

Of the eight incorrect estimates, six were underestimates and two were overestimates.
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Figure 6.10: Comparing the reported growth by ANSO with that predicted from the
generative model using Wikileaks data where the blue marks denote the mean predicted
growth and the bars correspond to three-sigma confidence intervals. The red line corre-
sponds to exact prediction. 75% of the predictions give credibility intervals which enclose
the true reported growth rate.

Interestingly all of the six provinces neighbour each other close to the Pakistani border

(see Figure 6.11). Such a spatial correlation in the error is indicative of an external

influence in this region of Afghanistan causing a violation of the model, such as increased

military presence or significant opposition (as supported by ANSO). Four of the eight

provinces were considered outliers when studying the prediction means (Badghis, Ghazni,

Paktika and Paktya).

Predictions of this quality are surprising in a simple model applied to an enormously

complex system (with heavy external influences). It is important to remark that these

predictions are accurate based solely on the historical sequence of events. If these type of

predictions can be made using solely one data set, without all the other inside knowledge

available to security organisations, one may only presume that much more accurate

predictions with more resources at hand are indeed possible. It is thus highly likely

that the proposed method, combined with other knowledge, such as election dates and

pre-planned strategic military activity, will yield predictions of an even higher quality

than those demonstrated here. Another advantage of the proposed method is of course

that incorporation of further prior knowledge is somewhat straightforward through the

use of priors in the Bayesian framework employed.
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Figure 6.11: Provincial map in which AOG activity was within predicted three-sigma
confidence intervals (blue), significantly more than expected (magenta) and significantly
less than expected (green).

6.5 Conclusion

Whilst today many social scientists advocate the use of computational methods in their

field [7], surprisingly, the use of such tools in conflict analysis is still in its early stages.

“I would say the weather guys are far ahead of where we are” V. Subrah-

manian, co-director of the Laboratory for Computational Cultural Dynamics,

2011 [230].

Nonetheless, the potential of sophisticated computational methods in this field is evi-

denced by the treatment in this chapter. The methodology adopted is inherited from the

developments of Chapter 3 and 4, which, as expected from previous simulation studies

was fast and efficient.

The intensity of the AWD was shown to follow a geometric Brownian motion with

little or no spatial dynamic interactions. In essence the work presented here opposes the

claim that ‘the current generation of models is [not] telling people anything an expert

in the relevant subject wouldn’t already know’ [230]; it has provided further evidence of

an emerging simple behaviour previously gone unnoticed in a conflict scenario [8]. It is

envisaged that this approach may be easily extended to more complicated conflict scenes;

such as those containing diffusions (for instance across provincial boundaries) or drifts.
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In this work the data in the AWD was treated as a univariate point process. However

the data is excellently suited for multivariate point process models where the different

marks would be corresponding data labels, such as friendly action or explosive hazard.

It would be interesting to study the dynamics of the individual variates and the dynamic

interactions between the variates. Another interesting study would consider the IED

incidence along the country’s ring-road (on a one-dimensional spatial domain) where

spatial interactions are likely to be observed. A final point is that the data was con-

sidered on a nationwide scale; it is likely that high frequency dynamics are observed

when studying a single province (for instance Kabul or Helmand, which contain many

events). The provinces may then be modelled using the same approach as above; the

process of superimposing the micro-scale model on the macro-scale would then result in

a multi-resolution modelling approach.

In the interest of brevity, the online version of the algorithm was not implemented,

however from Chapter 5 it is easy to see that this would not require substantial extra

effort from an algorithmic perspective and for the batch DVBF a plausible value of L

would be L = 1 year. Other than this, this chapter demonstrates that the proposed

approach satisfies all the objectives laid out in Section 1.3.2 since it i) infers a spatiotem-

poral field from point process observations, ii) extracts heterogeneous characteristics of

the field, iii) maintains a continuous-space representation and iv) employs estimation

methods which are approximate, but fast and efficient. The next chapter will put this

contribution into perspective and discuss paths for future work.
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Conclusion

This thesis has presented the development of an integrated systems theoretic framework

for the study of spatiotemporal systems. Pivotal to this framework is a methodology de-

veloped for linear systems following infinite-dimensional SDEs and in particular SPDEs; a

continuous-space continuous-time class of models which easily describes spatially hetero-

geneous dynamics. The approach maintains a continuous-space representation through-

out and employs fast and efficient inference mechanisms, offline or online, from both

continuous and point process observations. Summarily, the adopted methodology con-

sists of:

• placing the infinite dimensional SDE into a finite dimensional discrete-time state-

space model, with the ensuing dimensionality decoupled from the dimensionality

of the observation process,

• employing frequency analysis to obtain a set of local basis functions from both

continuous observations and point process observations, and

• estimating both the field and the parameters of the spatiotemporal system from

the set of observations.

The developed methods were shown to perform well using both synthetic data and real

data sets and thus all objectives set out for in Section 1.3.2 have been achieved.

7.1 Summary

Chapter 2 discusses different spatiotemporal model classes which are in common use and

justifies why the study of SPDEs is warranted in this work. Some theoretic properties

pertaining to SPDEs are also highlighted; these properties, inherited from the math-

ematical literature on SDEs, provide a foundation for the model reduction approach

187
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employed in later chapters. The chapter proceeds to study prevalent inference mecha-

nisms for state-space identification and shows clear potential advantages of VBEM over

EM and MCMC methods. In particular, it is seen that VBEM is deterministic (fast), it

retains uncertainty measures and approximates distributions around the mean of the true

posterior rather than the mode. The latter property was envisioned to be highly useful

when dealing with skewed distributions such as in the case of point process systems.

The framework described in Chapters 3 and 4 is a key novelty of this work. It

describes an approach for taking a complex, large-scale problem and breaking it down

into smaller, more manageable tasks, as described in the preface to this chapter. These

chapters also provide solutions and methods for each of these tasks.

In Chapter 3 the EM, VBEM and Gibbs sampler were implemented for the estima-

tion of SPDEs which can be expressed linearly in the parameters. All methods were

compared to one another; it was noted that in real-data applications Gibbs sampling

and other MCMC techniques are likely to be unsatisfactory due to computational issues.

An advantage of VBEM over EM is that it provides confidence bounds on the parame-

ters; however, as remarked by comparing to the robust parameter uncertainty estimator

of Duan, these bounds may not be physically significant. The VBEM algorithm is seen

to provide inadequate uncertainty measures through its use of the complete-data infor-

mation matrix for variance estimation, a quantity which varies significantly from the

observed-data information matrix in noisy conditions.

Chapter 4 presents an entirely new approach to dealing with spatiotemporal point

processes which, traditionally, are studied using only geostatistical models. The frame-

work is the same in principle as that of Chapter 3; it consists of finding a state-space

representation of the underlying SPDE, finding a set of basis functions, and estimating

the parameters. The latter two steps are more involved in the context of point processes.

Basis function placement is carried out using nonparameteric estimation methods in or-

der to obtain the average frequency content of the signal. Parameter estimation is carried

out using a VB-Laplace scheme, an approach which still favours the mean of the posterior

distributions over the mode; the Laplace step solely introduced to maintain recursions.

The resulting method allows for fast and computationally efficient predictions; improve-

ments can be made to make it even faster (see Section 7.2). Pivotal to the proposed

approach is the formulation of the likelihood function on a continuous spatial domain.

Sequential estimation for parameters describing the dynamics of the spatiotemporal

system is shown in Chapter 5. A new dual filter is developed, coined the DVBF, which

allows for the incorporation of parameter uncertainty in state estimation and vice versa

in an online fashion. Built on the theory of RVB, the method is seen to accrue an im-
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provement over current state of the art methods by outperforming the DKF and being

much quicker than joint state-parameter PFs. The DVBF is investigated thoroughly in

the somewhat simpler temporal case, before showing to give good results in the spa-

tiotemporal case with continuous observations. To allow for sequential estimation with

point process observations, the DVBF is extended to a block estimator in an attempt to

reduce the online variability in the estimates. It is seen that sequential estimation in a

point process context is possible even at extremely low event counts. Naturally, with high

event counts the procedure is seen to be more efficient, necessitating the consideration

of a lower block size L.

In Chapter 6 the developed framework is applied to the Wikileaks data set, which

contains tens of thousands of logs over a span of seven years. The model reduction

method proposed, basis function placement and parameter estimation procedure are all

seen to be easily carried out, even in this complex scenario. The efficacy of the proposed

approach is evidenced by the joint field-parameter estimation procedure requiring only a

few hours on a standard PC. The resulting model is then used to predict the AOG activity

in 2010 based solely on data until 2009 with confidence levels; the results are encouraging

and are a clear sign of the predictive capabilities gained by adopting a dynamic modelling

approach to spatiotemporal point process systems. Note that an online approach could

also be applied to this data set. A sequential estimator in this case may be used to

identify temporal trends in the spatial growth rate which, in this case, was assumed to

be constant throughout the six-year period.

7.2 Possible extensions

This thesis has focused on presenting an approach which may be readily applied in a

variety of settings. However, one may always further relax modelling assumptions and

attempt to render the procedure more computationally efficient. As a result there are

several avenues for future research, two of which are discussed below.

Application to nonlinear SPDEs

In order to render the approach developed in this thesis applicable to a more general

setting, it may be extended to cater for nonlinear spatiotemporal systems and in par-

ticular nonlinear SPDEs. An example of a nonlinear SPDE is the stochastic Kuramoto-

Sivashinsky equation, used in modelling surface evolution in material preparation pro-

cesses [241]. In this case the Galerkin method may be readily applied, however the model

reduction mechanism results in a nonlinear state-space evolution equation. In such a case
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alternatives to the Kalman smoother and variational Kalman smoother need to be inves-

tigated. In particular it is envisioned that the VB-Laplace approach of Chapter 4 may

see considerable use in this regard; in the case of strong nonlinearities, however, it would

need to be altered to cater for multimodalities [e.g. 124].

An interesting extension to the current framework is to employ a model selection

approach for nonlinear systems. There has been considerable effort recently in devel-

oping methods for the selection of nonlinear terms in nonlinear autoregressive exoge-

neous (NARX) processes observed in noise. In principle one may use these methods

[e.g. 242] for selection of nonlinear terms in the SPDE. If a VB approach (through the

VB-Laplace smoother) is employed, selection between a set of candidate models may be

directly employed through the computation of the lower bound L(·) for different models

[129, Section 5.3.7].

SPDEs and GMRFs

This thesis has focused on using the SPDE explicitly for modelling spatiotemporal sys-

tems and computations were carried out using model reduced versions of the stochastic

equation. A compelling way to reduce the computational burden is to proceed according

to a very recent work by Lindgren et al. [20], which exploits a relationship between

SPDEs and Gaussian Markov random fields (GMRFs).

A GMRF is a Gaussian random variable x = [x1, . . . , xn] with Markov properties,

so that for i 6= j, xi and xj are independent conditional on x /(i,j). These Markov as-

sumptions allow for a very sparse precision matrix Σ−1, where Σ−1
i,j = 0 whenever xi

and xj are independent conditional on x /(i,j). Such sparsity allows for considerable com-

putational gains through the use of fast numerical algorithms for factorisations of the

precision matrix [243]. GMRFs also lend themselves easily to inference using the inte-

grated nested Laplace approximation (INLA) approach for approximate inference of the

posterior marginals, a computationally efficient method employing alternating Laplace

approximations of the Gaussian field and underlying parameter distributions [243]. The

computational advantages gained by using GMRFs are offset by the dependence on the

precision matrix; it is difficult to parameterise the matrix in order to achieve some pre-

defined behaviour whilst ensuring positive definiteness. Nonetheless, GMRFs have been

used to closely approximate covariance functions commonly used in geostatistical models

[244] and have thus been used for computational gains in this regard.

The key insight in [20] is that GMRFs may be very accurately constructed explicitly

from a restricted class of SPDEs which have as their solution a Gaussian random field

with a Matérn covariance function, a flexible function which has the usual squared expo-
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nential function just as a special case. The authors also use a basis function expansion

and employ the Galerkin method for obtaining a matrix-vector notation similar to the

approach presented here. They restrict themselves to a triangulation of the spatial do-

main and an ensuing use of pyramidal basis functions; however the piecewise linearity of

the basis functions is pivotal to obtain matrix sparsity [20, Appendix C] and the compu-

tational gains allow for an impressive amount of basis functions. On the other hand the

triangulation they employ is highly inefficient when compared to the approach in this

thesis, as it requires vertices at each observation location which, although a ‘safe’ ap-

proach, in many cases is highly inefficient. Frequency methods for basis function selection

outlined in this thesis may be employed to further reduce computational cost.

Whilst the approach considered in this thesis extends to nonlinear systems with the

use of adequate approximations, the approach in [20] ceases to be beneficial outside the

restricted class of SPDEs considered therein. Nonetheless there is a lot to be gained

by sharing insights between this work and theirs, particularly because their motivation

was to use the SPDE as a tool for finding equivalent GMRFs for a geostatistical model;

modelling using SPDEs in itself was not of prime interest. In the context of this work,

it is thus worth considering equivalent GMRF models for the SPDEs (where these can

be found), and attempt to obtain computational gains using this approach. Note that

this would not lead to any loss in interpretability since the parameters appearing in the

GMRF are directly related to the parameters appearing in the SPDE. Once inference is

completed, prediction and control may then be carried out using the reduced dynamic

model. It would also be interesting to apply GMRFs to spatiotemporal point process

observations; as noted by Diggle in the reviewer’s comments of [20], such an investigation

is decidedly warranted.

7.3 Spatiotemporal control

It is beneficial at this stage to place this work in context, as depicted in Figure 7.1. Here

three core themes are highlighted in the context of spatiotemporal systems; inference

from continuous observations, inference from point process observations and control of

spatiotemporal systems using static or mobile agents. Note that simultaneous considera-

tion of all three aspects in a single framework leads to the consideration of, for instance,

aggregation of continuous and point process observations in spatiotemporal inference, or

the trajectory planning of mobile agents in order to simultaneously estimate and control

spatiotemporal systems. This thesis has tackled two aspects shown in this figure and

will now briefly propose a way forward for the third.
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Figure 7.1: Integrated systems theoretic framework for the estimation and control of
spatiotemporal systems.

Control of spatiotemporal systems from continuous observations

Consider a spatiotemporal system deemed to be governed by a SPDE of the form (2.20)

for which parameters have been estimated using any of the methods in Chapter 3 or

Chapter 4. Assume now that mobile agents have been put into place to autonomously

control the spatiotemporal field, that is, bring it to a desired reference spatial function

zr. The SPDE may be re-expressed as

dz(t) =

[
Az(t) +

m∑
i=1

Bi(t)ui(t)
]

dt+ σwdW (t),

z(0) = z0 ∈ D(A),

(7.1)

where the Bi(t) : R → H, i = 1 . . .m denotes the input operator of the ith agent. Each

operator distributes the control action ui(t) over a finite spatial domain of compact

support according to a function b(s; sci (t)), usually taken to be a box function centred

at the agent’s location sci (t).

The agents also take readings in real-time according to the usual observation equation

yi(t) =

∫
O
c(s; sci (t))z(t, s)ds, (7.2)

where c(s; sci (t)) is an averaging function, which may be taken to be the same as b(s; sci (t))
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(a) (b)

Figure 7.2: Trajectory optimisation (red) and control of a spatiotemporal field by (a) as-
suming a deterministic field and ignoring field uncertainty and (b) assuming a stochastic
field with spatiotemporal varying uncertainty. In both cases the aim is to drive a strong
spatiotemporal field (black areas) to zero (white).

for implementation convenience; this assumption is referred to as collocated sensing and

actuation [54]. Assume the input is given according to the simple proportional control

law

ui(t) = −γ(yi(t)− zri (t)), (7.3)

where zri (t) is the reference field at the ith agent’s location. The question to ask is then,

how should the agents move in order to control the spatiotemporal system in an optimal

fashion? Whilst there has been considerable effort in trajectory planning for the optimal

estimation of stochastic spatiotemporal systems using mobile agents [161, 245] little has

been done in the context of control, and algorithms laid out for the deterministic case

[54] clearly fail in the presence of random perturbations.

In [57] the author proposed a way of obtaining a very encouraging spatiotemporal

control performance by incorporating uncertainty into the control performance index,

in the spirit of cautious control [145] in the classical literature. The algorithm by far

outperformed agents which assumed deterministic fields and which are thus discouraged

to explore the space in a timely fashion. The performance benefit is clearly seen in

Figure 7.2 where a single agent seamlessly switches between moving to control a field,

and moving to explore a field; the reader is referred to [57] for further details.

Pivotal to the discussion here, the optimisation problem in [57] was tackled using

the basis function modelling approach discussed extensively in this thesis (in fact it

considered the same system analysed in the case study in Section 3.3). It thus could

be integrated directly with modelling approaches provided in this work, giving a clear

direction for future work for the third element of Figure 7.1.
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Spatiotemporal control from point process observations

Through the state-space approach considered in this thesis there is an avenue for future

research in the context of spatiotemporal point process control. In this case agents

would control the underlying latent process which, in turn, alters the intensity of event

generation. The notion may even be entertained on a global scale; one such example is

crop disease spread. Data collected from crop monitoring processes of viral diseases in

staple crops [246] may be used to obtain a spatiotemporal point process model describing

the dynamic spread of the disease. This model can be subsequently placed into a control

framework. With appropriate input models, the spread of the disease under different

control strategies may be investigated.

Another large-scale example is armed conflict. As seen in Chapter 6, it is plausible

to obtain dyamic models describing the spatiotemporal spread of insurgency and other

related social phenomena. Could the model, together with its predictive abilities, be used

to aid decision making when deliberating peace-keeping initiatives? Could ideas from

control be excercised in an attempt to stabilise an ‘unstable’ social phenomenon? It is

still early to say; however it is believed this thesis has presented a first step in attempting

to find the answers to these and other such compelling questions.
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Supplementary Algorithms

This appendix contains the implementation details of the filters and smoothers developed

for the study of the linear SPDEs. In particular Algorithm A.1 and Algorithm A.2

are the standard RTS smoother and variational Kalman smoother tailored for these

systems. Algorithm A.3 is the novel VB-Laplace smoother required for the study of

SPDEs from point process observations. Algorithm A.4 is the DVBF tailored for online

estimation of SPDEs from continuous observations. Finally, Algorithm A.5 gives the

modified backward pass for the linear growth model used for describing data in the

AWD.

195
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Algorithm A.1 The Rauch Tung Striebel smoother (with cross-covariance evaluation)

Input: Data set Y, {C k}Kk=1, Q̃ , {V i}di=1,Ψx ,θg = (ϑ, σ2
w, σ

2
v) and θh = (µ0,Σ

−1
0 ).

Set A := A(ϑ),Σw := σ2
wQ̃ ,Σ v = σ2

vI .

Forward pass (Kalman filter [118])
Set x̂ 0|0 = µ0 and Σ0|0 = Σ0.

for k = 1 to K
x̂ k|k−1 = Ax̂ k−1|k−1

Σk|k−1 = AΣk−1|k−1AT + Σw

K k = Σk|k−1C T
k [C kΣk|k−1C T

k + Σ v]
−1

x̂ k|k = x̂ k|k−1 + K k[yk −C kx̂ k|k−1]

Σk|k = Σk|k−1 −K kC kΣk|k−1

end for

Backward pass
for k = (K − 1) down to 0

Gk = Σk|kA
TΣ−1

k+1|k
x̂ k|K = x̂ k|k + Gk(x̂ k+1|K −Ax̂ k|k)

Σk|K = Σk|k + Gk(Σk+1|K −Σk+1|k)G
T
k

end for

Computation of cross-covariance {Mk}Kk=1

MK|K = (I n −KKCK)AΣK−1|K−1

for k = (K − 1) down to 1

M k|K = Σk|kG
T
k−1 + Gk(M k+1|K −AΣk|k)G

T
k−1

end for

Output: {x̂ k|K ,Σk|K}Kk=0, {M k|K}Kk=1
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Algorithm A.2 The variational Kalman smoother (with cross-covariance evaluation)

Input: Data set Y, parameters C , Q̃ , {V i}di=1,Ψx , parameter distributions

p̃(θg) = p̃(ϑ)p̃(σ2
w)p̃(σ2

v) and hyperparameters θh = (µ0,Σ
−1
0 ).

Compute E[AT Q̃
−1

A] from (3.69)

Forward message
Set x̂ 0|0 = µ0 and Σ0|0 = Σ0.
for k = 1 to K

Σ∗k−1 = (Σ−1k−1|k−1 + E[σ−2w ]E[AT Q̃
−1

A])−1

Σk|k = (E[σ−2w ]Q̃
−1

+ E[σ−2v ]C TC − E[σ−2w ]2Q̃
−1

E[A]Σ∗k−1E[AT ]Q̃
−1

)−1

x̂k|k = Σk|k(E[σ−2v ]C Tyk + E[σ−2w ]Q̃
−1

E[A]Σ∗kΣ
−1
k−1|k−1x̂k−1|k−1)

end for

Backward message

Set Σ−1K|K+1:K = 0 (ignore estimate of end condition)

for k = (K − 1) down to 0

Σ ′k+1 = (Σ−1k+1|k+2:K + E[σ−2v ]C TC + E[σ−2w ]Q̃
−1

)−1

Σk|k+1:K = (E[σ−2w ]E[AT Q̃
−1

A]− E[σ−2w ]2E[AT ]Q̃
−1

Σ ′k+1Q̃
−1

E[A])−1

xk|k+1:K = E[σ−2w ]Σk|k+1:KE[AT ]Q̃
−1

Σ ′k+1(E[σ−2v ]C Tyk+1 + Σ−1k+1|k+2:K x̂k+1|k+2:K)

end for

Smoothed estimate
for k = 0 to K

Σk|K = (Σ−1k|k + Σ−1k|k+1:K)−1

x̂k|K = Σk|K [Σ−1k|kx̂k|k + Σ−1k|k+1:K x̂k|k+1:K ]

end for

Computation of cross-covariance {Mk}Kk=1

for k = K down to 1

M k|K = E[σ−2w ]Σ∗k−1E[A]Q̃
−1[

Σ−1k|k+1:K + E[σ−2w ]Q̃
−1

+

E[σ−2v ]C TC − E[σ−2w ]2Q̃
−1

E[A]TΣ∗k−1E[AT ]Q̃
−1]−1

end for

Output: {x̂k|K ,Σk|K}Kk=0, {M k|K}Kk=1
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Algorithm A.3 The VB-Laplace Kalman smoother for SPDE point process systems
(with cross-covariance evaluation)

Input: Data set Y, parameters Q̃ , σ2
w, µ, β̄,µ0,Σ0 and parameter distribution p̃(ϑ).

Forward message
Set x̂ 0|0 = µ0 and Σ0|0 = Σ0.
for k = 1 to K

Σ∗k−1 = (Σ−1k−1|k−1 + σ−2w E[AT Q̃
−1

A])−1

Σ̃k = (σ−2w Q̃
−1 − σ−4w Q̃

−1
E[A]Σ∗k−1E[AT ]Q̃

−1
)−1

x̃k = σ−2w Σ̃kQ̃
−1

E[A]Σ∗k−1Σ
−1
k−1|k−1x̂k−1|k−1

x̂k|k = arg max
xk

∑
sj∈{yk}

(µ+ β̄φ(sj)
Txk)−∆t exp(µ)

∫
O

exp(β̄φT (s)xk)ds − 1

2
(xk − x̃k)T Σ̃

−1
(xk − x̃k)

Σk|k =

(
Σ̃
−1
k + ∆t exp(µ)β̄2

∫
O
φ(s)φ(s)T exp(β̄φ(s)Txk|k)ds

)−1
end for

Backward message

Set Σ−1K|K+1:K = 0 (ignore estimate of end condition)

for k = (K − 1) down to 0

Σ ′k+1 =

(
Σ−1k+1|k+2:K + ∆t exp(µ)β̄2

∫
O
φ(s)φ(s)T exp(β̄φ(s)T x̂k+1|k+1)ds

)−1
x ′k+1 = xk+1|k+1 + Σ ′k+1

(
Σ−1k+1|k+2:K(x̂k+1|k+2:K − x̂k+1|k+1)

+
∑

sj∈{yk}
β̄φ(sj)−∆t exp(µ)β̄

∫
O
φ(s) exp(β̄φ(s)T x̂k+1|k+1)ds


Σk|k+1:K = (σ−2w E[AT Q̃

−1
A]− σ−4w E[AT ]Q̃

−1
(Σ ′−1k+1 + σ−2w Q̃

−1
)−1Q̃

−1
E[A])−1

xk|k+1:K = σ−2w Σk|k+1:KE[AT ]Q̃
−1

(Σ ′−1k+1 + σ−2w Q̃
−1

)−1Σ ′−1k+1x
′
k+1

end for

Smoothed estimate
for k = 0 to K

Σk|K = (Σ−1k|k + Σ−1k|k+1:K)−1

x̂k|K = Σk|K [Σ−1k|kx̂k|k + Σ−1k|k+1:K x̂k|k+1:K ]

end for

Computation of cross-covariance {Mk}Kk=1

for k = K down to 1

M k|K = σ−2w Σ∗k−1E[A]T Q̃
−1[

Σ−1k|k+1:K + σ−2w Q̃
−1

+∆t exp(µ)β̄2

∫
O
φ(s)φ(s)T exp(β̄φ(s)T x̂k|K)ds − σ−4w Q̃

−1
E[A]Σ∗k−1E[AT ]Q̃

−1]−1
end for

Output: {x̂k|K ,Σk|K}Kk=0, {M k|K}Kk=1.
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Algorithm A.4 The DVBF for online linear SPDE dynamics estimation

Input: Data set Y, parameters C , Q̃ , σ2
w, σ

2
v and initial parameter and state distribu-

tions p̃(ϑ0) ∼ Nϑ0(0, κ−1
ϑ I ) and p̃(x 0) ∼ Nx0(0, κ−1

x I ) where the precisions κϑ and κx

are small.

for k = 1 to K
set Ep̃(ϑk)[Ak] = Ep̄(ϑk−1)[Ak−1].

set Ep̃(ϑk)[A
T
k Q̃
−1

Ak]

= Ep̄(ϑk−1)[A
T
k−1Q̃

−1
Ak−1].

while (not converged)∗

Filter state

Σ∗k−1 = (Σ−1
k−1|k−1 + σ−2

w Ep̃(ϑk)[A
T
k Q̃
−1

Ak])
−1

Σk|k = (σ−2
w Q̃

−1
+ σ−2

v C TC − σ−4
w Q̃

−1
Ep̃(ϑk)[Ak]Σ

∗
k−1Ep̃(ϑk)[A

T
k ]Q̃

−1
)−1

x̂ k|k = Σk|k(σ
−2
v C Tyk + σ−2

w Q̃
−1

Ep̃(ϑk)[Ak]Σ
∗
kΣ
−1
k−1|k−1x̂ k−1|k−1)

Compute smoothed statistics

Σ ′ = (σ−2
v C TC + σ−2

w Q̃
−1

)−1

Σk−1|k = (Σk−1|k−1 + σ−2
w Ep̃(ϑk)[A

T
k Q̃
−1

Ak]

−σ−4
w Ep̃(ϑk)[A

T
k ]Q̃

−1
Σ ′Q̃

−1
Ep̃(ϑk)[Ak])

−1.

x̂ k−1|k = Σk−1|k(σ
−2
w σ−2

v Ep̃(ϑk)[A
T
k ]Q̃

−1
Σ ′C Tyk+1 + Σ−1

k−1|k−1x̂ k−1|k−1)

Λk−1 = Σk−1|k−1 + x k−1|kx
T
k−1|k

Γ k = σ−2
w Σ∗k−1Ep̃(ϑk)[Ak]Q̃

−1
[
σ−2
w Q̃

−1
+ σ−2

v C TC

−σ−4
w Q̃

−1
Ep̃(ϑk)[Ak]

TΣ∗k−1Ep̃(ϑk)[A
T
k ]Q̃

−1
]−1

+ x k|kx
T
k−1|k.

Filter parameter

υk = ∆t[tr(V
T
i Ψ−1

x Q̃
−1

(Γ k −Λk−1))]di=1.

Υk = ∆2
t [tr(V

T
i Ψ−1

x Q̃
−1

Ψ−1
x V jΛk−1)]di,j=1

Σϑ
k|k =

(
σ−2
w Υk + λΣϑ−1

k−1|k−1

)−1

ϑ̂k|k = Σϑ
k|k
(
σ−2
w υk + λΣϑ−1

k−1,k−1ϑ̂k−1|k−1

)
Update Ep̃(ϑk)[Ak] = Ψ−1

x

∑d
i=1 θ̂k,iV i and Ep̃(ϑk)[A

T
k Q̃
−1

Ak] from (3.69).

Output: {x̂ k|k,Σk|k, ϑ̂k|k,Σ
ϑ
k|k}Kk=1.

∗ Convergence is quick in the presence of relatively low observation noise. To the detri-
ment of distributional accuracy, the loop may be run once through only, should compu-
tational time become an issue.
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Algorithm A.5 Modified backward message for the variational-Laplace Kalman
smoother for point process systems with linear growth model

Backward message

Set Σ−1K|K+1:K = 0 (ignore estimate of end condition)

for k = (K − 1) down to 0

x ′k+1 = arg max
xk+1

∑
sj∈{yk+1}

(µ+ φ(sj)
Txk+1)

−∆t exp(µ)

∫
O

exp(φT (s)xk+1)ds

− 1
2 (xk+1 − x̂k+1|k+2:K)TΣ−1k+1|k+2:K(xk+1 − x̂k+1|k+2:K)

Σ ′k+1 =

(
Σ−1k+1|k+2:K + ∆t exp(µ)β̄2

∫
O
φ(s)φ(s)T exp(β̄φ(s)Tx ′k+1)ds

)−1
Σk|k+1:K = (σ−2w Q̃

−1 − σ−4w Q̃
−1

(Σ ′−1k+1 + σ−2w Q̃
−1

)−1Q̃
−1

)−1

xk|k+1:K = Σk|k+1:K(−∆tσ
−2
w Q̃

−1
E[θ] + σ−2w Q̃

−1
(Σ ′−1k+1 + σ−2w Q̃

−1
)−1(Σ ′−1k+1x

′
k+1

+∆tσ
−2
w Q̃

−1
E[θ]))

end for
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Update rules for EM and VBEM

B.1 M-step for EM - Linear observation process

Throughout this section p̃(X ) denotes the distribution of the states at the (i + 1)th

iteration, i.e., that obtained by the RTS smoother of Algorithm A.1 using θ = θ(i). Terms

which are independent from the parameter being maximised are omitted for clarity’s sake.

Finding µ
(i+1)
0 :

µ
(i+1)
0 = arg max

µ0

−1

2
Ep̃(X )

[
(x 0 − µ0)TΣ−1

0 (x 0 − µ0)
]

= arg max
µ0

x̂T0|KΣ−1
0 µ0 −

1

2
µT0 Σ−1

0 µ0

= x̂ 0|K . (B.1)

Finding Σ−1(i+1)

0 :

Σ−1(i+1)

0 = arg max
Σ−1

0

1

2
ln |Σ−1

0 | −
1

2
Ep̃(X )

[
(x 0 − µ0)TΣ−1

0 (x 0 − µ0)
]

= arg max
Σ−1

0

1

2
ln |Σ−1

0 | −
1

2

[
tr(Σ−1

0 Ep̃(X )[x 0xT0 ])− tr(Σ−1
0 x̂ 0|K x̂T0|K)

]
= arg max

Σ−1
0

1

2
ln |Σ−1

0 | −
1

2
tr(Σ−1

0 Σ0|K)

= Σ−1
0|K , (B.2)

where linearity has been used to interchange the trace and expectation operators and

where the maximisation has been carried out using the identity

∂|Σ−1|
∂Σ−1 = |Σ−1|Σ . (B.3)
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Finding ϑ(i+1):

ϑ(i+1) = arg max
ϑ

−1

2

K∑
k=1

σ−2(i+1)

w Ep̃(X )

[
(x k −A(ϑ)x k−1)T Q̃

−1
(x k −A(ϑ)x k−1)

]
.

(B.4)

Expanding the contents within the square brackets, ignoring σ−2(i+1)

w as it is simply a

scaling factor, and applying the trace operator one obtains

ϑ(i+1) = arg max
ϑ

tr

(
A(ϑ)T Q̃

−1
K∑
k=1

Ep̃(X )[x kx
T
k−1]

− 1

2
A(ϑ)T Q̃

−1
A(ϑ)

K∑
k=1

Ep̃(X )[x k−1xTk−1]

)

= arg max
ϑ

tr

(
A(ϑ)T Q̃

−1
Γ 1:K −

1

2
A(ϑ)T Q̃

−1
A(ϑ)Λ0:K−1

)
. (B.5)

Substituting for A(ϑ) in (B.5) yields

ϑ(i+1) = arg max
ϑ

tr

(
[I + ∆tΨ

T
ϑΨ−1

x ]Q̃
−1

Γ 1:K

− 1

2
[I + ∆tΨ

T
ϑΨ−1

x ]T Q̃
−1

[I + ∆tΨ
−1
x Ψϑ]Λ0:K−1

)
= arg max

ϑ
tr

(
∆tΨ

T
ϑΨ−1

x Q̃
−1

[Γ 1:K −Λ0:K−1]− 1

2
∆2
tΨ

T
ϑΨ−1

x Q̃
−1

Ψ−1
x ΨϑΛ0:K−1

)
.

(B.6)

Recall that Ψϑ =
∑d

i=1 ϑiV i so that

ϑ(i+1) = arg max
ϑ

tr

(
∆t

[
d∑
i=1

ϑiV i
T

]
Ψ−1

x Q̃
−1

[Γ 1:K −Λ0:K−1]

− 1

2
∆2
t

[
d∑
i=1

ϑiV i
T

]
Ψ−1

x Q̃
−1

Ψ−1
x

[
d∑
i=1

ϑiV i

]
Λ0:K−1

)

= arg max
ϑ

∆ttr

(
d∑
i=1

ϑi[V
T
i Ψ−1

x Q̃
−1

(Γ 1:K −Λ0:K−1)]

)

− 1

2
∆2
t tr

 d∑
i=1

d∑
j=1

ϑiV
T
i [Ψ−1

x Q̃
−1

Ψ−1
x ]ϑjV jΛ0:K−1

 , (B.7)
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to give

ϑ(i+1) = arg max
ϑ

ϑTυ − 1

2
ϑTΥϑ

= Υ−1υ. (B.8)

Finding σ−2(i+1)

w :

σ−2
(i+1)

w = arg max
σ−2
w

Kn

2
lnσ−2w −

σ−2w
2

K∑
k=1

Ep̃(X )

[
(xk −A(ϑ(i+1))xk−1)T Q̃

−1
(xk −A(ϑ(i+1))xk−1)

]
= arg max

σ−2
w

Kn

2
lnσ−2w −

σ−2w
2

tr

(
Q̃
−1

Λ1:K − 2A(ϑ(i+1))T Q̃
−1

Γ 1:K

+ A(ϑ(i+1))T Q̃
−1

A(ϑ(i+1))Λ0:K−1

)
= arg max

σ−2
w

Kn

2
lnσ−2w −

σ−2w
2

Πw

=
Kn

Πw
. (B.9)

Finding σ−2(i+1)

v :

σ−2
(i+1)

v = arg max
σ−2
v

Km

2
lnσ−2v −

σ−2v
2

K∑
k=1

Ep̃(X )

[
(yk −C kxk)T (yk −C kxk)

]
= arg max

σ−2
v

Km

2
lnσ−2v −

σ−2v
2

K∑
k=1

(
yTk yk − 2yTkC kx̂k|K + tr(C T

kC kΛk)
)

= arg max
σ−2
v

Km

2
lnσ−2v −

σ−2v
2

Π v

=
Km

Π v
. (B.10)

Remark B.1 In the interest of brevity, proof that the quantities are maximisers is omit-

ted. However even by simple inspection it is easily seen that the second order partial

derivatives of the functions to be maximised are all negative. For the variance terms

Σ−1(i+1)

0 , σ−2(i+1)

v and σ−2(i+1)

w these are unconditionally negative whilst for µ
(i+1)
0 and

ϑ(i+1) they are negative conditioned on Σ−1
0 and Υ being positive definite, which follows

from the definition of precision matrices and by construction from (3.39).

B.2 M-step for VBEM - Linear observation process

Throughout this section terms which are independent from the parameter distribution

being found are omitted for clarity’s sake.
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Finding ln p̃(ϑ)(i+1):

ln p̃(ϑ)(i+1) = ln p(ϑ) + Ep̃(X )p̃(θg)/ϑ [ln p(X ,Y,θ)]

= −1

2
(ϑ− ϑ̂p)TΣϑ,p(ϑ− ϑ̂p) (B.11)

− 1

2

K∑
k=1

Ep̃(σ−2
w )(i) [σ

−2
w ]Ep̃(X )(i+1)

[
(x k −A(ϑ)x k−1)T Q̃

−1
(x k −A(ϑ)x k−1)

]
.

The subsequent steps follow on the lines of (B.5) - (B.8),

ln p̃(ϑ)(i+1) = −1

2
ϑT [Ep̃(σ−2

w )(i) [σ
−2
w ]Υ +Σ−1

ϑ,p]ϑ+ϑT [Ep̃(σ−2
w )(i) [σ

−2
w ]υ+Σ−1

ϑ,pϑ̂p], (B.12)

so that p̃(ϑ)(i+1) = Nϑ(ϑ̂,Σϑ) with Σϑ and ϑ̂ as given in (3.77) and (3.78).

Finding ln p̃(σ−2
w )(i+1):

ln p̃(σ−2
w )(i+1) = ln p(σ−2

w ) + E
p̃(X )p̃(θg)/σ

−2
w

[ln p(X ,Y,θ)]

= (αw,p − 1) lnσ−2
w − βw,pσ−2

w +
Kn

2
lnσ−2

w

− σ−2
w

2

K∑
k=1

Ep̃(X )(i+1)p̃(ϑ)(i+1)

[
(x k −A(ϑ)x k−1)T Q̃

−1
(x k −A(ϑ)x k−1)

]
=

(
αw,p − 1 +

Kn

2

)
lnσ−2

w −
(
βw,p +

Π ′
w

2

)
σ−2
w , (B.13)

so that p̃(σ−2
w )(i+1) = Gaσ−2

w
(αw, βw) with αw and βw as given in (3.79) and (3.80).

Finding ln p̃(σ−2
v )(i+1):

ln p̃(σ−2
v )(i+1) = ln p(σ−2

w ) + E
p̃(X )p̃(θg)/σ

−2
v

[ln p(X ,Y,θ)]

= (αv,p − 1) lnσ−2
v − βv,pσ−2

v +
Km

2
lnσ−2

v

− σ−2
v

2

K∑
k=1

Ep̃(X )(i+1)

[
(yk −C kx k)

T (yk −C kx k)
]

=

(
αv,p − 1 +

Km

2

)
lnσ−2

v −
(
βv,p +

Π v

2

)
σ−2
v , (B.14)

so that p̃(σ−2
v )(i+1) = Gaσ−2

v
(αv, βv) with αv and βv as given in (3.81) and (3.82).

The hyperparameters µ0 and Σ−1
0 are updated as with conventional EM, by fitting

the initial state distribution to the smoothed state at the initial time point, to give (3.84)

and (3.85).



Appendix C

Nonparametric estimation of

first-order and second-order point

process statistics

If Pk is first-order stationary, then an estimator for λ
(1)
k is given as [247, Chapter 15]

λ
(1)
k =

Nk

|O| . (C.1)

In some cases, this assumption does not hold and one may instead either employ standard

linear regression methods to mark out clear intensity trends [35] or employ a standard

nonparametric kernel estimator [42, Section 4.3]

λ
(1)
k (s) =

∑
si∈Pk

kb(||s − s i||)
cO,b(s i)

. (C.2)

Here, cO,b(s i) is an edge-correction factor given as cO,b(s i) =
∫
O kb(||s − s i||))ds and

kb(s) is the Epanečnikov kernel which in one dimension is given as

kb(s) =
3

4b

(
1− s2

b2

)
1(|s| ≤ 1). (C.3)

A nonparametric estimator for the PACF is given by [35]

ĝk,k(υ) =
1

2πυ|O|

6=∑
si,sj∈Pk

kb(||s i − sj || − υ)

λ
(1)
k (s i)λ

(1)
k (sj)w(s i, sj)

, (C.4)

where w(s i, sj) is the fraction of the circle (in 2 dimensions) with centre s i and radius

||s i − sj || lying in O. Similarly, an estimate of the PCCF is given by
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ĝk,k+1(υ) =
1

2πυ|O|

6=∑
si∈Pk,sj∈Pk+1

kb(||s i − sj || − υ)

λ̂
(1)
k (s i)λ̂

(1)
k+1(sj)w(s i, sj)

. (C.5)

If the processes are taken to be second-order stationary also in time, to smooth out

the nonparametric estimates an average over all time steps may be taken so that

ḡk,k(υ) =
1

K

K∑
k=1

ĝk,k(υ), ḡk,k+1(υ) =
1

K − 1

K−1∑
k=1

ĝk,k+1(υ). (C.6)



Appendix D

Online VB filter: selected

derivations

D.1 Computation of Ep̃(θk)[A
T
kΣ−1

w Ak] for linear state-space

models

Let Σ−1
w = [q̄i,j ]

n
i,j=1 and consider the following standard result [248, Chapter 2]

Theorem D.1 For all A,B,C ∈ Rn×n, vec(ABC) = (CT ⊗A)vec(B)

To manage this quantity, start off by considering the case with n = 2. By application of

Theorem D.1, the vectorization of the product of AT
k Σ−1

w Ak becomes

vec(AT
k Σ−1

w Ak) = (AT
k ⊗AT

k )vec(Σ−1
w )

= (Ak ⊗Ak)
T vec(Σ−1

w )

=


a2

1,1 a1,1a1,2 a1,2a1,1 a2
1,2

a1,1a2,1 a1,1a2,2 a1,2a2,1 a1,2a2,2

a2,1a1,1 a2,1a1,2 a2,2a1,1 a2,2a1,2

a2
2,1 a2,1a2,2 a2,2a2,1 a2

2,2


T 

q̄1,1

q̄2,1

q̄1,2

q̄2,2


= A∗

T

k vec(Σ−1
w ), (D.1)

where A∗k = (Ak⊗Ak). The solid lines indicate partitions which can be useful in finding

a closed form for A∗k. First define a shaping operator which reshapes a matrix or a

vector into any desired (eligible) shape. In particular define packs1s2 (·) as an operator
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which arranges matrix partitions of size s1 into a square matrix of partition size s2. For

instance for a matrix B ∈ Rn2×1, if s1 = 1 × 1 and s2 = n × n, the packing operator

simply reverses the vectorization process. However, for B ∈ Rn3×n, s1 = n × n and s2

= n × n, the packing operator takes matrix partitions of size n × n and reshapes them

into a square matrix of final size n2 × n2. One can rewrite (D.1)

A∗k =


pack1×1

2×2([vec(Ak)vec(Ak)
T ]:,1) pack1×1

2×2([vec(Ak)vec(Ak)
T ]:,3)

pack1×1
2×2([vec(Ak)vec(Ak)

T ]:,2) pack1×1
2×2([vec(Ak)vec(Ak)

T ]:,4)

 . (D.2)

where the subscript :, i is used to denote the ith column of the matrix. For arbitrary n

one can hence concisely express the expectation of A∗k as

Ep̃(θk)[A
∗
k] = packn×nn×n

(
{pack1×1

n×n([Ep̃(θk)[vec(Ak)vec(Ak)
T ]:,i)}ni=1

)
. (D.3)

This formulation, albeit tedious, can be programmed in two lines of code. Moreover,

the expectations are readily computed since, for θk = vec(Ak)

Ep̃(θk)[θkθ
T
k ] = Σθ

k|k + θ̂k|kθ̂
T

k|k. (D.4)

One hence has that

vec(Ep̃(θk)[A
T
k Σ−1

w Ak]) = (Ep̃(θk)[A
∗
k])

T vec(Σ−1
w ), (D.5)

and one final repacking with the operator pack1×1
n×n(·) is required to change the vector

back into a matrix of appropriate size.

D.2 Online variational posterior p̃(θk|θk−1) for linear state-

space models

The parameter variational posterior is given by

p̃(θk) ∝ p̃(θk|θk−1) exp

(
− Ep̃(Xk)

[
1

2
(x k −Akx k−1)TΣ−1

w (x k −Akx k−1)

])
, (D.6)

where p̃(θk|θk−1) = exp(Ep̄(θk−1)[ln p(θk|θk−1)]). Proceed by noting that the exponent
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is a scalar and that the trace operator can be hence applied. Excluding terms which are

not a function of θk and by the rotational property of the trace operator

p̃(θk) ∝ p̃(θk|θk−1) exp(tr(Γ kA
T
k Σ−1

w −Λk−1AT
k Σ−1

w Ak)). (D.7)

Consider now the following standard result [248, Chapter 2]:

Theorem D.2 For all A,B,C,D ∈ Rn×n, tr(ATBCDT ) = vec(A)T (D⊗B)vec(C).

Applying Theorem D.2 to (D.7)

tr(AT
k Σ−1

w AkΛk−1) = vec(Ak)
T [Λk−1 ⊗Σ−1

w ]vec(Ak), (D.8)

tr(AT
k Σ−1

w I Γ k) = vec(Ak)
T [ΓT

k ⊗Σ−1
w ]vec(I ), (D.9)

Since

p̃(θk|θk−1) = Nθk(θ̂k−1|k−1, λ
−1Σθ

k−1|k−1),

one has that

p̃(θk) ∝ exp

(
− 1

2
θTk (λΣθ−1

k−1|k−1 + Λk−1 ⊗Σ−1
w )θk

+ θTk [λΣθ−1

k−1|k−1θ̂k−1|k−1 + [ΓT
k ⊗Σ−1

w ]vec(I )]

)
, (D.10)

which is normally distributed with mean θ̂k|k and covariance Σθ
k|k as given in the main

text.
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[214] O. Cappé, “Online EM algorithm for hidden Markov models,” http://arxiv.org/

abs/0908.2359, 2009, [Online; accessed 14-November-2011].

[215] M. Sato, “On-line model selection based on the variational Bayes,” Neural Com-

putation, vol. 13, no. 7, pp. 1649–1681, Jul. 2001.
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