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Abstract

It is widely accepted that tool wear has a direct impact on a machining process,

playing a key part in surface integrity, part quality, and therefore, process efficiency.

By establishing the state of a tool during a machining process, it should be possible

to estimate both the surface properties and the optimal process parameters, while

allowing intelligent predictions about the future state of the process to be made; thus

ultimately reducing unexpected component damage. This thesis intends to address

the problem of tool wear prediction during machining where wear rates vary between

components; for instance, due to the relatively large size of the component forging

and, therefore, inherent material variations when compared to existing research. In

this case, the industrial partner, Safran Landing Systems, is interested in the ability

to predict tool wear during the finish milling of large, curved, titanium components,

despite differing material properties and, therefore, tool wear rates.

This thesis is split into four key parts, the first of which describes in detail the

formulation and implementation of an experimental procedure, intended to pro-

vide a working set of industrially representative monitoring data that can be used

throughout the remainder of the thesis. This part includes development of a relevant

machining strategy, material specimen extraction, sensor selection and placement,

and 3D tool geometry measurement, all of which have been completed at industrial

partners’ facilities. It finishes with a preliminary investigation into the data col-

lected during the machining process from the tools, material specimens, and sensors

placed in close proximity to the cutting zone.

The second, third, and fourth parts follow logically from one-another, beginning with

a state classification problem, and ending with a full dynamic model prediction of

wear during the machining of large landing gear components; this method, however,
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is applicable to many other machining scenarios using the new technique applied in

this thesis. The state classification chapter is a necessary first step in developing

a predictive model, as it aims to prove the data is indeed separable based upon

the generating wear state. Once confirmed, given the sequential nature of tool

wear, the order of observations can be included in the modelling, in an attempt to

improve classification accuracy. This forms the basis of the state-tracking chapter,

and leads naturally into the full dynamic model prediction in the final part. This

is a promising result for the machining community, as process monitoring often

relies on operator expertise to detect wear rate fluctuations and, in turn, results

in over-conservative tool usage limits, adding time and expense to many complex

machining processes. Wear prediction also presents the opportunity to predict part

quality through pre-existing relationships between the acquired signals and material

surface finish - correlations which are explored and presented as part of this thesis.

The solution to predicting a varying wear rate within a harsh machining environment

introduced in this thesis is based around the application of a Gaussian process (GP)

NARX (Nonlinear Auto-Regressive with eXogenous inputs) model borrowed from

the machine learning prediction and, more recently, structural health monitoring

(SHM) communities. The GP-NARX approach is found to be well suited to the

application of wear prediction during machining, and forms a promising contribution

to the development of autonomous manufacturing processes.
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Chapter 1

Introduction

This chapter begins by introducing condition monitoring and its application within

machining. This is then followed by presenting the specific industrial context of

tool condition monitoring used throughout this thesis, the motivation behind this

research, and finally a summary of the layout of the remaining chapters.

1.1 Condition monitoring

Condition monitoring is the process of observing the changes in parameters relating

to the state of a system or process, often in order to identify or quantify a deviation

from normal operating conditions. Such strategies are often implemented as an

alternative to corrective and preventative maintenance, in an aim to reduce cost

and give better process understanding, ultimately leading to predictive maintenance

strategies. A common application of condition monitoring is to monitor the status

of a piece of machinery through parameters such as vibration, temperature or power

usage to name a few [1, 2]. Monitoring of electrical motors is one of the most

common applications of condition monitoring [1], along with other items of rotating

machinery, for example wind turbines [3], which use carefully placed sensors to

measure parameters of interest.

Condition monitoring is especially useful in situations where access to machinery

may be restricted or impossible when in operation, as it provides sensor data which

can be accessed at a safe distance or from a remote location. A prime example of

1



2 1.2. INDUSTRIAL CONTEXT

such a scenario is the monitoring of a cutting process during machining of metallic

components, where an operator may find it beneficial to observe a number of phe-

nomena, measured within close proximity to the cutting zone, in order to ensure

safe working levels and avoid potential damage [4]. One of the most critical fac-

tors in machining is tool wear [5], a subject that has been covered extensively in

previous literature; however, a solution for accurate and reliable diagnosis across a

range of machining processes and conditions is still not available. This reality will

be discussed further in the following chapters, yet it provides an adequate starting

point to discuss the need for further research effort in the area of tool condition

monitoring.

1.2 Industrial context

1.2.1 Safran Landing Systems

Safran Landing Systems (SLS) is a subsidiary of Safran S.A., a French-born company

specialising in aerospace design, manufacture, maintenance and defence. While

Safran has a wide range of interests in the aerospace sector, SLS has a primary

focus on aircraft landing gear. More specifically, SLS manage the entire life-cycle

of a landing gear from design and development to manufacture, installation, and

after-care.

As suppliers to a number of major aircraft manufacturers such as Airbus and Boeing,

SLS have a large focus on research and development, ensuring that their products

and processes are constantly improving and developing to meet the demand of in-

creased efficiency both in service and during production. As such, they have been

realising a steady transition towards the use of titanium components in preference

to steels over the past fifty years, much in keeping with the rest of the aerospace

sector. Figure 1.1 shows how the percentage by weight of titanium has been steadily

increasing for common Airbus and Boeing aircraft over the last seventy years.

New civil aircraft platforms such as the Boeing 787 Dreamliner and Airbus A350

XWB, bring new manufacturing challenges, such as the ability to machine titanium

alloys at rates that meet the increasing demands of reduced cost targets, increased

volume and increased process capability. For the advanced manufacturing sector,
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Figure 1.1: Plot to show increasing use of titanium in common aircraft over seventy
years [6].

this global drive towards increased productivity equates not only to higher surface

speeds and machining rates, but the need for better process understanding and the

ability to avoid unnecessary machine downtime. Safran Landing Systems develop,

produce, and maintain both the nose and main landing gear for the 787 (Figure 1.2),

with approximately 50-60% of the total cost of production of these components re-

sulting from the machining stage [7]. It is therefore evident, that any time saving

during machining will have a significant impact on the overall part cost to manu-

facture.

One product in particular, the 787 truck beam, is machined from a solid forging of Ti-

5Al-5Mo-5V-3Cr, which brings with it new challenges due to the lower machinability

of this material when compared to the high-strength steels used previously [9]. Such

factors include the low modulus of elasticity, hardening characteristics, low thermal

conductivity, and chemical reactivity at elevated temperatures [9]. Another exam-

ple of one of the challenges faced when machining this alloy comes from the forging

process. The forgings used for the 787 truck beams are some of the largest tita-

nium forgings in the world, and as a result, can have a slight variation in material

properties from end-to-end and around the circumference. This presents an issue

when machining, as calculating tool life and cutting parameters is directly depen-

dant upon the material properties. Varying properties result in conservative cutting

conditions and an element of the unknown when predicting tool life, as the harder

the material, the faster the tools wear [9].

For Safran Landing Systems, removing this uncertainty and maximising tool use

is of the utmost importance as it brings with it direct cost-saving benefits and
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Figure 1.2: Image of a Boeing 787 landing gear [8].

improved process efficiency. Utilising tools to their full potential without operator

intervention makes for a more automated, streamlined process, which is the end

goal for any production environment. By making use of in-process monitoring and

observed relationships between process variables, SLS aim to be able to perform

online prediction of a tool’s state while gaining an understanding of the material

properties of each individual truck beam that leaves the production line - something

which has not yet been successfully implemented in the industry.

1.2.2 Titanium-5Al-5Mo-5V-3Cr

The ongoing trend towards increased titanium usage in the aerospace sector is down

to a number of key factors. Despite considering the costly and time-consuming

manufacturing processes required for titanium components, titanium does have the

advantage that it is currently the fourth most abundant metallic element in the

Earth’s crust [10]. Not only is titanium less dense than the steels it is replacing, it

also has a higher ultimate tensile strength (UTS) than most commonly-used steels.

Table 1.1 shows a comparison between common steel and titanium alloys [11].

It is both its beneficial strength-to-weight ratio and its fatigue resistance that are

really driving the push behind titanium components, particularly in landing gear

applications. For the majority of flight times, be it short or long haul, the landing
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Material
Yield strength

(MPa)
Ultimate tensile
strength (MPa)

Density
(kg/m3)

Titanium 5Al-5Mo-5V-3Cr 1310 1364 4500
Titanium 10V-2Fe-3Al 1135 1240 4816

Titanium 6Al-4V 895 975 4430
Steel AISI 4130 951 1110 7850

Steel ASTM A514 690 760 7800

Table 1.1: Comparison between mechanical properties of common steel and titanium
alloys [11].

gear is considered dead weight, serving no purpose other than a brief operation

at takeoff and landing. Weight saving is therefore highly significant, as it has a

considerable impact on overall efficiency. The landing gear, however, is also a safety-

critical component, supporting the entire airframe when grounded and experiencing

large impacts upon landing, and as such, fatigue performance is the dominant factor

in design.

More specifically, the 5Al-5Mo-5V-3Cr (Ti-5553) alloy is that chosen by SLS for a

number of structural landing gear components. Ti-5553 was developed jointly be-

tween VSMPO and Boeing in the mid 1990s, and was intended as a higher strength,

lower cost alternative to the existing 10V-2Fe-3Al alloy [12]. It has the structural

benefits of being less prone to segregation, having better hardenability in thick sec-

tions (lowering machining costs), being air cooled rather than water cooled (less

distortion) during forming and retains an approximately 15% higher strength [12].

On the other hand, when considering machining, Ti-5553 does have the major down-

fall that current cutters experience roughly 10-20% less tool life than when used to

machine the more common 6Al-4V alloy [12], leading to considerable effort being

put towards maximising tool use and hence the requirement of this project.

1.2.3 Ball nose finish milling

Within the machining stage of the aforementioned truck beam, there are both rough-

ing and finishing stages, each containing seven sub-categories of operations. The

seven categories of interest are defined as (which are also highlighted in Figure 1.4):

• Surfaces to centre / quads,

• Steady bands,
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Relative durations of finishing operations
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Figure 1.3: Plot showing relative cutting durations for finishing operations.

• Radii,

• Forks,

• Jacking domes,

• Lugs,

• Anti-rot lug.

Between these machining zones, 51.6% of the initial forging weight is removed,

made up of 33% from roughing and 18.6% finishing, or similarly 63.8% and 36.2%

respectively of the total material removed. While it appears at first that there is

much more to be gained from streamlining the roughing stage, in reality, the machine

time taken for roughing and finishing is very similar due to the larger depth of cut

in roughing compared to finishing. In practice, roughing takes approximately 57%

of the cutting time as opposed to 43% taken by finishing. Again, one would easily

make the conclusion here that there are greater savings to be made by focussing

research effort on roughing, however, this is still not the case. In roughing, each

process uses a different tool, resulting in a large number of individual operations

to optimise. On the other hand, finishing uses only two different tools and uses

these at a ratio of 95% to 5% - 20mm ball nose and radius end mills respectively. It

is therefore evident that the finishing operation using the same tool for 95% of its

duration, provides the greatest return in terms of potential savings per operation

optimisation. Figure 1.3 shows the relative cutting times per finishing operation,

with the surface to centre/quads procedure being of the most interest. The areas of

the truck beam machined during this operation are shown in Figure 1.4.
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Jacking dome

Steady bands

Lug Fork

Figure 1.4: Image showing, in dark blue, the areas of a 787 truck beam machined
during the surfaces operation. Other operations of interest are also indicated.

Figure 1.5: Image of 20mm ball nose tool with cutting regions indicated.

More specifically, this operation uses a 20mm solid carbide ball nose end mill with

six cutting flutes, an example of which can be seen in Figure 1.5. Specific details

of this tool will be discussed in Chapter 3; however, it is worth noting here that

the useful cutting radius of the tool is limited to that region where all six flutes

are used, excluding the tool tip where the flutes converge (shown in green and red

respectively).

1.3 Motivation

Over the past decade or so, Acoustic Emission (AE) has received, and continues to

receive, a significant level of interest in the field of condition monitoring and process
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control. In machining, AE is caused by phenomena such as sliding friction at a

flank-workpiece interface and the breaking of chips [13]; both of which are directly

related to a cutting process and corresponding tool condition. AE therefore, has been

used in a considerable amount of previous work for the monitoring of tool condition

[14–19], surface roughness [20,21], and event detection [13], to name but a few. AE-

based monitoring is also available from a number of commercial monitoring system

suppliers [22]; however, it is often used alongside a range of different sensors in a data

fusion approach [13], the benefits of which include increased reliability, more robust

decision making, and increased noise rejection. Such commercial systems are rarely

successfully implemented, however, as they tend to target a wide range of processes

with simple data processing methods and often fall short of the requirements set

by industry; they also follow a diagnostic approach rather than prognosis of events

before they happen [22]. This thesis aims to provide a solution to future tool wear

prediction, which has not before been possible with existing tool measurement and

predictive modelling techniques.

In finish milling, the focus is largely on the surface of the part. Required roughness

values are regularly given in product specifications, and maintenance of the surface

finish within certain limits is considered crucial. As tool condition plays a signifi-

cant role in surface generation, tools are therefore, often replaced conservatively and

rarely experience breakage. It is consequently desirable to determine surface proper-

ties and tool state in-process, made possible using measured AE and the correlation

between tool condition and workpiece surface integrity. By building relationships

between the tool geometry, AE, and the workpiece surface, it is believed to be possi-

ble to begin to predict the future state of the process and make intelligent decisions

about tool replacement, for instance. Recent developments in 3D scanning of tools,

allow a wide range of data to be collected relating to the tool’s condition, providing

a firm foundation for exploring correlations with gathered AE signals and in-process

prediction of wear rates.

Historically, tool wear has been measured by examining the wear scar on a given

tool through the use of either a microscope or stylus-based instrument [5,23,24]. In

the case of flank wear (the most commonly-used wear type for measurement), this

is generally adequate, however, these techniques have the distinct disadvantage that

they only provide two-dimensional data. Considering that flank wear is only one of

a number of different wear types [5] (which will be explored further in the following

chapter), these methods are limited in the insight they can provide when wear affects
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further regions of the tool. State of the art three-dimensional tool measuring has

enabled this thesis to gather a greater understanding of cutting edge wear than has

previously been possible, allowing quantification of wear features and averaging of

a large number of scans along the length of a single cutting edge.

1.4 The engineering doctorate

The engineering doctorate (EngD) is a four year long programme that aims to

provide PhD-level research projects to postgraduate engineers, with the added re-

quirement that projects are based around a real business case as identified by an

industrial partner. Each EngD project consists of a first year containing taught mod-

ules and background research, followed by three years that follow a similar structure

to a more typical PhD. In the case of the Industrial Doctorate Centre (IDC) in

machining science, the research engineer spends approximately 25% of their time at

university, with the remaining 75% spent working directly with the projects spon-

soring company and the Advanced Manufacturing Research Centre (AMRC) with

Boeing.

This research project has been co-funded by the EPSRC (EP/101800X/1) and

Safran Landing Systems - the project’s industrial sponsor. The first year of this

specific project has included three mini-projects focussing on exploring previous lit-

erature, design and implementation of an industrially relevant machining trial, and

preliminary analysis of acquired data, which have then formed the basis for the

remainder of the work presented in this thesis.

Given the applied and industrial nature of this project, the main aims and objectives

are:

1.4.1 Aims and objectives

• To produce direct production benefits including cost savings while maintaining

part quality.

• To gain an understanding of the correlations between monitoring signals, cut-

ting tool state, and material surface condition,
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• To provide a method of on-line prediction of tool state.

• To ensure that through intelligent process monitoring, cutting tools are fully

utilised whist maintaining surface integrity.

1.5 Brief outline of thesis

• Chapter 2 reviews a range of previous works conducted in the condition mon-

itoring, machining, and machine learning communities. The relevance to this

thesis is explored and the suitability for application to tool wear monitoring

is discussed.

• Chapter 3 presents an experimental trial design and implementation, used to

provide an appropriate dataset for use throughout the remainder of the thesis.

• Chapter 4 details the preliminary processing and analysis of the data collected

in Chapter 3. Useful features are identified and extracted from recorded AE

data, tool scans, and material analysis.

• Chapter 5 explores a static classification problem, separating observed data

points into a number of discrete clusters through the use of a Support Vector

Machine (SVM).

• Chapter 6 builds upon the findings of Chapter 5 to take advantage of the

sequential nature of tool wear. It explores the use of Markov models to prob-

abilistically predict wear states.

• Chapter 7 introduces the Gaussian process (GP) Nonlinear Auto-Regressive

with eXogenous inputs (NARX) model and applies it to the experimental

dataset in order to predict wear level with natural confidence bounds.

• Chapter 8 concludes the thesis. Industrial implementation is discussed, along

with future work.



Chapter 2

Literature review

Following the industrial motivation and context behind this work in Chapter 1, it

is paramount to explore and review previous and current work being conducted in

the field, to ensure a need for this research, while providing an insight into potential

methods of solving the wear prediction problem. This chapter aims to provide such

a review of existing work, focussing primarily on monitoring applications within and

outside of machining, sensor selection, signal processing techniques, and predictive

modelling methods from both the machine learning and structural health monitoring

(SHM) communities. It also aims to present a comparison between different works,

highlighting some key differences and contradictions in conclusions drawn in them,

as is often the case in tool wear prediction research [13].

A convenient starting point here is to highlight a number of existing reviews of

current monitoring technologies within the context of machining. Three of the most

appropriate are those in [13], [25], and [26]; each maintaining a slightly different

focus, yet all sharing many of the same ideas in relation to sensor selection and data

processing methodologies.

2.1 Industrial monitoring applications

In the context of machining, monitoring schemes have been primarily implemented to

infer, through some observed parameter, the state of wear of a cutting tool, as found

in references [15,19,22,24,27–31] to name a few. As an extension of this, monitoring

11
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schemes tend to aim to detect collisions and tool breakage also, alongside surface

roughness [20, 32], given the critical nature of these features to final part quality.

More often than not, due to the harsh environmental conditions machining processes

occur under, these features are inferred through indirect means, as opposed to being

measured directly, a detail that will be explored further in the following section.

It is worth drawing attention at this stage, to a number of different wear types

experienced by cutting tools during machining. In general, most previous work

in the area of tool wear monitoring focuses on flank wear [5], due to it being the

most common and preferred wear type (given its ease of measurement and ability to

regrind tools). There are, however, a range of wear types, which if not considered,

may be cause for monitoring strategies to be suited to only a handful of processes, or

worse, fail entirely. A typical example of this would be a blunt, used tool, chipping,

to form a sharper cutting edge. While the tool has not become less worn, only

measuring the edge radius could cause confusion in predictions. Similarly, built-up

edge is common during machining of titanium, which also appears to have the effect

of reducing the flank wear level through adding material to the tool. Figure 2.1

shows a selection of eleven different wear types, the most interesting in terms of

this thesis being flank wear, crater wear, built-up edge, and gross fracture. A full

explanation of each wear type is given in [5], although it is worth highlighting that

the most common tool life prediction model, Taylor’s tool life equation [33], predicts

only flank wear.

It is readily agreed in the machine monitoring community that there is still no

clear and recognised methodology to designing a successful monitoring system that

is universally suitable to a range of processes. There is a general methodology

of monitoring system development presented in [13], yet this provides very little

assistance given its inherent vagueness. At this stage, therefore, such development

requires investigation on a per-process basis; a costly and time-consuming operation.

An example of this reality can be seen by comparing the work of Haber [34] and

Lan [17]. Haber portrays the view that AE sensors attached to soft chuck jaws are

more sensitive to wear dependent AE than those connected to the spindle assembly,

however, this is in direct contrast to that which is reported by Lan, despite both

focusing on flank wear. This appears to be a common finding between individuals,

and is easily explainable by the vast differences in experimental processes and test

rigs, with sensor locations and test materials playing a key role in data quality.

Continuing the AE example above, the recorded values are heavily dependent upon
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Figure 2.1: Types of wear on cutting tools: (a) flank wear; (b) crater wear; (c)
notch wear; (d) nose radius wear; (e) comb (thermal) cracks; (f) parallel (mechan-
ical) cracks; (g) built-up edge; (h) gross plastic deforma- tion; (i) edge chipping or
frittering; (j) chip hammering; (k) gross fracture [5]

the transmission path between cutting zone and sensor, with material, machine-

workpiece interface, and spindle assembly providing a few key differences between

experimental works of the past.

While there are many features of a particular experimental set-up that can be unique,

probably the most important to draw attention to, is the distinction between ob-

serving a continuous [24] or an intermittent [28] process, in the case of machining,

turning or milling respectively. The majority of previous literature focusses solely

on one or the other, and despite their similarities in terms of metal cutting, they

are fundamentally different; the key distinction being that an intermittent process

creates a segmented signal as chips are formed, due to the tool’s contact with the

workpiece being interrupted. A continuous process, however, maintains constant

tool-workpiece contact during a cutting cycle and, therefore, produces a continuous

output signal. While this may sound like a simpler process to observe, it is not

without its challenges, primarily due to the fact that chip formation and tool pickup

can be inconsistent throughout the process. The main consequence for monitoring

an intermittent process is that further signal processing is needed to extract the

useful in-cut information, and to discard that from the period where the cutter is

not in contact with the workpiece [28].

Certain applications lend themselves to successful in-process monitoring system im-
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plementation, such as those commonly found in the automotive manufacturing sec-

tor. The biggest contrast between such automotive manufacturing processes and

those found in machining, is in the relative simplicity and repeatability of the op-

erations involved. Take, for example, two common procedures performed during

manufacture; spot welding and hole drilling. Spot welding is a process where two

metallic surfaces are joined at a point, by the heat obtained from resistance to a

brief electrical current. When compared to a lengthy finish milling process, each

individual weld or hole takes a mere fraction of the time to complete. In both cases,

detection of wear is much less important than detecting breakage or irregularities

between specimens, allowing implementation of a simple, comparative monitoring

system [22]. The comparative approach simply compares data or features obtained

during a reference operation to that obtained during each subsequent repetition.

This method, while perfectly adequate for such simple tasks, has a number of severe

limitations. Primarily, as the length of operation grows, so does the volume of data

needed for comparison. When considering processes completed over a number of

days, this method becomes impractical, not to mention that it relies on the process

remaining consistent between datasets used for comparison. This type of system

relies on pre-set limits of allowable diversity between measurements, which is funda-

mentally flawed when considering a process that naturally develops over time, often

at differing rates. For the example of tool wear monitoring, this flaw is easily high-

lighted when considering a process in which wear rate can vary. If a tool wears more

quickly than during the training set, an obeservation at time t may be well above

the acceptable deviation from the control set at the same time, despite still being

within the tool’s overall useful life. This presents a trade off between the accuracy

of such systems, and the number of potential false alarms. Jemielniak [22] covers in

more detail the commonly applied monitoring strategies in industry, including the

use of fixed limits and process signature comparison. The key point to note here is

that all of these strategies only provide an indication that the process has changed in

some way. If the change is due to tool or component damage, in many applications,

this is simply too late to be notified and a predictive technique is required.

2.2 Sensor selection

At this point, it is necessary to draw a distinction between direct and indirect sensing

methods. Direct methods can be considered as those which measure some variable
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directly, whereas indirect methods are those which infer the state of certain process

variables by monitoring a secondary phenomenon which is affected by the variable

of interest. As an example, using an optical sensor to measure surface roughness

of a machined surface would be considered a direct method, while the use of a

dynamometer to measure tool condition through cutting forces is a common appli-

cation of an indirect method. Direct methods often have the benefit of providing

more reliable data over a range of conditions, when compared to indirect methods;

however, they are often more expensive and complex in their design. The major

drawback of most direct methods is their susceptibility to damage and interference

due to the harsh environment in which nearly all manufacturing processes occur,

including extremes of temperature, humidity, and high-pressure coolant delivery to

the cutting zone. More specifically for this thesis, SLS use coolant delivery pressures

of upwards of 80 bar, which not only pose a risk to direct methods from coolant

ingress, but also restrict any view of the cutting zone that may be possible during

dry cutting. For this reason, the majority of previous work has taken advantage

of the accessibility of indirect sensing methods to monitor interesting aspects dur-

ing the machining process. It is worth noting here that the combination of both

methods provides possibly the most complete solution, using indirect methods dur-

ing machining and direct methods during idle time between operations to reinforce

the indirect data obtained. Tools in the tool carousel, for instance, can have their

wear state directly assessed to help confirm the understanding that may have been

inferred previously, minimising any error between processes. This method provides

decision robustness, but if used independently, provides no information of the tool

state during machining [25].

Based upon the choice of direct or indirect sensing methods, there is a wide range

of different sensing technologies available, depending upon each specific application.

There is a general consensus among review authors: Abellan-Nebot [13], Byrne et

al. [25], and Teti et al. [26], that cutting force is the most characteristic variable

for providing information about the cutting action, chip formation and therefore,

wear, and each make the point that the dynamometer often gives the most accurate

representation of this. It is unsurprising that the cutting force is considered highly

relevant when predicting tool wear and surface finish, as the mechanism results in

blunting of the cutting edges as more material is cut, increasing the friction between

cutting surfaces. The measured forces, therefore, increase throughout this stage of

wear when compared to a fresh tool earlier in the process. Similarly, tool breakage

results in a characteristic signature in the cutting force, in the form of a temporary
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increase followed by a dramatic drop [35]. The dynamometer has the added benefit

of providing data relating to both material surface roughness and vibration gener-

ated during the machining process, given that the measured vibrations are often of

a higher frequency range than that of the cutting force [13]. Dynamometers are not,

however, without their downsides. The main issues following dynamometer imple-

mentation in a production environment are their relatively high cost (approximately

40 times that of a typical AE sensor), limited frequency response, and probably most

importantly, their intrusive nature into the process [4, 36, 37]. Figure 2.2 highlights

the application of a typical dynamometer beneath the fixture used throughout the

experimental work in this thesis. As the component and fixture size start to increase

to similar scales as found within SLS, it becomes impractical to mount the assembly

to such a device, without making the dynamometer so large that it lacks sensitivity

to the effects of tool wear on the process.

To overcome this limiting fact, work has been conducted successfully into integrating

force measurement into the spindle assembly of a machine tool or between the tool

and its holder [38]. This is significantly less intrusive, has a much better frequency

response than conventional dynamometer plates, and presents the opportunity to

take measurements from a much wider range of operations. The issue of high cost

still remains, however, and the fact that the monitoring equipment is now an integral

part of the tool-spindle assembly can cause further issues relating to tool changing

systems and coolant delivery.

The dynamometer is only one of a number of sensor types nonetheless, some of

which prove more advantageous in certain circumstances. Other commonly-used

sensors in the context of machining are: power feedback, AE, and accelerometers;

depending upon what phenomenon is intended to be observed and quantified. All

of these sensors fall into the category of indirect sensing, and an overview of their

frequency of use in the previous research literature can be seen in Figure 2.3.

In applications where chatter detection and reduction is critical, accelerometers and

microphone-based systems are most common, measuring vibration levels in the au-

dible frequency range generally released when a cutting process becomes unstable.

This methodology has been proven successful extensively in both turning [40, 41]

and milling [28], where high material removal rates can cause a process to be close

to instability under normal conditions. Considerable work has been conducted pre-

viously into machining process dynamics and chatter reduction [42]; however, in the

case of this thesis, the modest depth of cut ensures that chatter is highly unlikely,
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Figure 2.2: Example of dynamometer use, indicating fixture and adapter plate.
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Figure 2.3: Plot to show relative use of sensors in monitoring systems adapted
from [13,39].
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with the focus being very much aimed towards wear prognosis. While accelerome-

ters have been used previously for wear detection [43], primarily for their relative

simplicity and low cost, it is believed that AE sensors provide a more promising

option [43], given their capacity for considerably higher frequency response, which

often spans the range of frequencies released during chip formation, and is less sen-

sitive than accelerometers to noise generated during machining [31]. In machining,

accelerometers are more commonly used for prediction of surface roughness, since

surface roughness is the superposition of the feed per tooth mark and the displace-

ments of the cutting tool due to vibrations [13]. Accelerometer use has been more

successful in turning when compared to milling, as vibrations in milling are less cor-

related to surface roughness due to the intermittent nature of the process and runout

effects [44]. Vibration measurements, however, can be used for tool wear diagnosis

based on the fact that during flank wear, the contact area between tool and work-

piece increases. Initially, the increased area leads to increasing frictional damping,

and, therefore, reduced vibrations [13]; yet past a certain point, the larger cutting

force becomes more dominant and results in stronger excitation. Correlations be-

tween vibration-related signal features and tool wear are discussed in more detail

in [45], despite the fact that AE is believed to be more accurate and reliable [46].

AE is simply the waves of vibrational energy released from a material when it under-

goes stress, commonly as a result of deformation in the shear zone, deformation and

sliding friction at the chip-tool interface, sliding friction at the flank-workpiece in-

terface, and the breaking of chips [13]. Due to the fundamental relationship between

these mechanisms and the tool state, AE receives a considerable amount of interest

from a number of research communities. In addition to the direct applicability to the

cutting process, AE frequencies are usually in the range of 10kHz to 10MHz, which

is generally above the range of normal machine vibrations and, therefore, reduces

interference when compared to accelerometer data [13]. Such high-frequency data,

however, does require very high data capture rates in order to accurately represent

those signals observed and, as such, can potentially pose an issue when considering

real-time processing. While the data capture is computationally expensive and the

volume of data is vast, careful feature selection can ensure redundant data is dis-

carded and AE-based monitoring strategies are feasible [25]. An important point

of consideration when assessing the feasibility of using AE sensors is the proximity

of the sensor to the source. In order to acheive a maximal signal to noise ratio,

the sensor must be located along a suitable AE transmission path; however, the ex-

act path is often unknown, which can result in attenuated signals and poor quality
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data; distance also has a large impact on the quality of the measured signal, and so

it follows that keeping the sensor close to the point of generation is beneficial [26].

In order for an AE sensor to detect signals with minimum attenuation, it must be

coupled to the surface on which it is mounted. A crucial aspect of AE is their ability

to travel through a variety of coupling materials, and as such, sensors can be located

and coupled to rotating parts using a highly transmissable fluid [16]. The ability of

AE to travel through different materials presents the opportunity to couple a sensor

to the spindle assembly, theoretically detecting AE from the cutting zone directly

through the cutting tool, at a fixed distance; although this is out of the scope of this

work, it is certainly an area of interest for future industrial implementation and will

be discussed further in Chapter 8. Previous works have also explored using a coolant

stream as an AE transmission path [47]; however, following process-specific testing

as prior work to this thesis, this appears better suited to tool breakage rather than

wear detection, due to the effect multiple high-pressure coolant streams have on the

ability to detect already weak signals. Jemielniak makes an important point that

one must be cautious when setting up AE sensors, as energy spikes from a number

of sources can cause overloading of the in-line amplifier, and therefore, poor signal

quality [48]. Care must be taken to set the gain of the buffer amplifier as low as

possible, while still allowing detection of the necessary signals [48].

Power monitoring systems are another widely-used technology in machine monitor-

ing due to their low cost and ease of retrofitting to existing machinery. The basic

premise of such a system is that by putting these sensors on spindle and/or axis

drives of a CNC machine, it is possible to infer the cutting forces throughout the

process as power draw is proportional to the torque of the drive; a property directly

related to the cutting forces in a given direction. In applications where spindle power

utilisation is a proportionately high percentage, this is much more feasible than a

scenario where usage is low, given that the sensing bandwith is hugely limited by the

inertia of the spindle acting as a low-pass filter [25]. Spindle inertia severely limits

the full potential of this technology, especially when taking shallow cuts [36]. When

power monitoring is attached to the axis drives, this is less of an issue, however, ma-

chine ball screws now present a source of interference as lubrication and wear levels

have a direct impact on the torque profile exerted by the drive [13]. Overcoming

this interference requires modelling the characteristics of the drive assemblies and

presents a new challenge in itself.

These technologies are the most commonly found in the previous literature, yet



20 2.3. INDUSTRIAL MONITORING EQUIPMENT

there are a number of other options not discussed yet in this work, due to their

unsuitability to the specific process of interest here. Attention should be drawn

to [13] and [25], where a number of these sensor types are touched upon in slightly

more detail, including ultrasonics, optical, and temperature sensors to name a few.

2.3 Industrial monitoring equipment

While laboratory-based experiments aim to reproduce the conditions found during

production as closely as possible, the industrial environment is still often very dif-

ferent to the small-scale test environments found in research. As a result, specific

hardware has been constructed for industrial implementation, intended to provide a

more robust and reliable solution to that used in development work. Such systems

are sold commercially as complete process monitoring solutions by companies such

as: Artis Marposs, Brankamp, Montronix, and Nordmann [22]; consisting of both

sensors and data aquisition/analysis packages in most cases. SLS currently use the

Artis system in particular; however, all of the aforementioned systems aim to alert

the operator of any deviation in the process from some predefined set-point or pre-

observed example process. Probably the most simple example of a process deviation

would be breakage of a tool, resulting in a drastic change in observed sensor signals.

In recent years, these systems have become increasingly more integrated with exist-

ing numerical controls present on many automated machining centres, providing the

ability to share two-way data from internal sources, and to pause machining in an

alarm situation. This data sharing allows validation of additional sensor outputs,

while providing a low-cost method of monitoring parameters not before available.

Taking the Artis system as a typical example, two main strategies for condition de-

tection are implemented. The first and most straightforward approach to detecting

process deviations is to simply compare observed signals to those recorded from an

ideal representation as a reference. This method relies primarily on the repeatability

of a certain operation, having minimal variation between realisations considered to

be within the normal operating limits. The Artis system implements this method-

ology by comparing both a signal’s amplitude and a definite integral to determine

the current state, using user-defined upper and lower percentage limits to indicate

abnormal conditions and raise an alarm. For short, repeatable, operations under

constant conditions - for example, hole drilling and drill breakage - this system is
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entirely applicable; however, as a process’s duration increases, so does the volume

of data which must be stored and loaded for comparison. While this may sound

like a trivial problem in many cases, when considering high sample rate or multiple

data channels collected over many hours, it becomes ineffective and impractical to

implement due to the naive approach to feature extraction. The other significant

flaw with using such a method to monitor a milling process is that the reference

recording is only valid for a single set of operating conditions; any variation would

require the timely procedure of re-recording a reference set, while the predefined

static limits can often struggle to distinguish wear from expected process deviations

due to material, for example.

To combat some of these issues raised with the classic industrial monitoring scheme,

Artis implement their second method, known as their “dxdt” real-time strategy.

This approach combines static and dynamic limits again, not only comparing signal

amplitude values to pre-set limits, but also the value of signal gradients across a 10ms

window. An example of such limits can be seen in Figure 2.4, adapted from the Artis

technical literature. Static limits are user-defined to detect tool wear and breakage,

whereas dynamic limits are used to detect any sharp, high amplitude changes in

signal value. The dynamic limits are adjusted on-the-fly by using the previous 10ms

of samples to calculate the limits for the current sample period, having the added

benefit of needing no reference and, therefore, being applicable across a variety of

machining parameters. For a tool with a gradual wear profile, this method may be

incapable of classifying a tool as worn until past a certain threshold, hence is only

appropriate for diagnosis as opposed to prediction of remaining useful life. This

further relies on expert knowledge of the wear profile in order to set accurate static

limits - a time consuming problem SLS have previously encountered.

As the above discussion highlights, there are some distinct limitations of the state-

of-the-art industrial monitoring systems; however, it should be noted that in many

situations, they are perfectly suitable. To be commercially viable, these systems are

designed as a modular one-size-fits-all type of system, where they can be adapted

to monitor a variety of different processes and operations, and as such, have a very

general capability as opposed to a more targeted and specific goal. The point here

is that, depending upon the process of interest and how safety critical detecting tool

breakage is, these type of systems may be the most straightforward approach, on

the assumption that the limitations are well understood.
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Figure 2.4: Example of Artis dynamical limits method.

2.4 Signal processing

In most cases, simply collecting sensor data is of little use without correlating mea-

surement features to phenomena of interest, as no sensor is available that can mea-

sure any type of damage directly. A raw, indirect measurement is unlikely to be

practically useful for wear measurement on its own, due to the shear volume of

information that an unprocessed data stream contains [49]. Many processing tech-

niques exist to analyse waveform and multidimensional data, with the aim to extract

only that information which is of use in a given situation and to discard the rest.

The procedure of extracting this useful information from raw signals is more com-

monly known as feature extraction [2], and often includes an element of dimensional

reduction, to ease computational requirements that follow. Before feature extrac-

tion, signals from the in-cut portion of an intermittent process need to be identified

and isolated, as previously mentioned, although this could arguably be included as

an element of the feature extraction process. This process ensures that any estab-

lished features relate solely to the portion of data collected when in contact with the

workpiece, and is well documented in [28]. The choice of useful features, or feature
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selection, follows extraction and intends to identify those features which carry the

majority of the useful information.

Worden et al. provide an in depth discussion of feature extraction and selection in

the time, frequency, and time-frequency domains in a general condition monitoring

context [50]; and this is a useful point of reference at this stage. Frequency domain

analysis is commonly used in the structural health monitoring (SHM) community

where analysis of vibration is predominant in detecting and preventing damage

of structures; however, in machining, and more specifically when using AE data,

time domain features are commonly used in preference. Preference of time-domain

features is essentially due to the fact that in both abrasive and adhesive wear,

the amplitude of AE signals is found to be directly influenced by wear mechanism

progression [51], a finding that is agreed between previous works over the course of

a decade [18]. Once a range of potential features have been extracted, methods exist

to automatically identify those which are particularly informative and again, help

to reduce redundant information [15].

Common time domain features used in previous monitoring schemes include descrip-

tive statistics such as: mean, peak, standard deviation, root mean square (RMS),

skewness and kurtosis, to name only a few [2]. One of the benefits in using such

statistics, taking the RMS as a typical example, is the ability to calculate them in

hardware circuitry before sampling occurs [52]. This method of dealing with ana-

logue signals directly for filtering and feature extraction saves computational effort,

while also minimising data loss, and is therefore practical for a real-time industrial

implementation.

2.5 Classification techniques

Following determination and selection of meaningful features from the observed sig-

nals, it is possible to begin using these features to make informed inferences about

the underlying process. Probably the most obvious starting point is to attempt

to establish the state of the underlying, generating process, by assigning the full

range of possible observations into distinct classes. Each class can then be given

a meaningful label, with new instances being sorted accordingly by some informed

mechanism. Machine learning classifiers can be applied to almost any data problem,

and example implementations are readily available in almost all communities where
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data-based decisions are made. An in-depth review of classification techniques can

be found in [53], including comparisons of common methods, and combining clas-

sifiers. A key point is raised here that selecting a particular classifier for a given

problem is not a case of whether that algorithm is superior or not, yet more a de-

cision based on which method is likely to outperform the others under the given

conditions in the problem.

Identifying groupings in the data is necessary before new points can be labelled, a

task which can be completed in a number of ways. In general, such methods fall into

two categories, either unsupervised clustering or supervised assignment for classifica-

tion. Clustering techniques are well covered in [54]; however, supervised techniques

remove a level of uncertainty when the required information is available. In many

cases, principal component analysis (PCA) has become a frequently-used tool, pre-

ceding class labelling, to help maximise the distance between possible clusters of

points [55]. An example of a typical strategy, making use of the aforementioned

tools can be found in [27].

More specifically to machining, classification techniques have been used to identify

tool, process, and material state in a number of previous works. In some instances,

such classification systems have been paired with existing empirical methods to help

improve classification accuracy and minimise incorrect predictions. For instance,

Silva [56] makes use of two types of neural network to classify statistical features

from AE and dynamometer signals, in an attempt to predict flank wear. Including

the Taylor model of tool wear is found to improve predictions in all cases, raising

the correlation coefficient between prediction and test sets from 0.691 to 0.872 in

the example given, indicating that there is still room for improvement, however.

Another example can be found in [57], where the author compares three machine

learning classifiers (support vector machines, multilayer perceptron neural network,

and radial-basis function neural network) in their ability to classify data features

acquired from multiple sensors during end milling, into one of five classes, each rep-

resenting an individual wear state. Cho concludes that the support vector machine

(SVM) consistently outperforms the other neural network-based algorithms tested,

although an ensemble approach can improve accuracy further. Although focussing

on a different machining process to that of interest in this work, an in-depth re-

view of classifiers and their use in the previous literature relevent to machining is

presented in [24].
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2.6 Sequential modelling

State tracking with a sequential model is a natural progression from the classification

techniques presented previously, taking into account that the current state of a

process often provides useful information on the likely next state to be observed.

The most common method of dealing with data in this way is to construct a Markov

chain of observations, developing into a hidden Markov model (HMM), when these

observations are used to correspond to hidden latent variables. Considering data in

its sequential form is not a new practice, and a review of general methods can be

found in [58].

Hidden Markov models have previously been commonplace in speech recognition

applications [59], and in more recent years, have found their way into a number

of different research areas including tool wear detection and diagnosis [2]. HMMs

have been proven a versatile tool for tool condition monitoring, given the wide range

of applied processes and sensor information that they have been used to model in

previous works. Examples include accelerometer-based [60] and acoustic-based [61]

monitoring of end milling operations, and both dynamometer-based [62] and strain-

based [63] monitoring of wear in drilling. In all of the aforementioned examples,

the model formulation follows the same procedure given in [61], albeit with varying

model topologies. Boutros [61] presents a 95% successful classification rate when

using an HMM to predict wear state; however, this is limited given that flank wear

is the only wear type used, and the inclusion of only three states (sharp, worn,

and broken respectively) does not give any indication of the level of wear, and

therefore, rate of progression. With the ultimate aim to predict remaining useful

life, this method requires extension to include a greater number of wear levels. This

is similar to the work by Miao [64], in which HMMs are used to distinguish between

normal and failure tool conditions, neglecting to explore wear development, and any

observations leading to failure.

2.7 Predictive modelling

When compared to diagnostics, the literature surrounding prognosis of tool condi-

tion is significantly more limited [2]; this is likely due to the fact that predicting

remaining useful life is no trivial task when subject to changing environmental and
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operational conditions, requiring either adequate mechanistic knowledge of the pro-

cess, or significant computational power and data resource. A number of previous

works in prognostics can be found in [2], however, recent advances in removing en-

vironmental effects [49] and non-linear dynamical system identification [65] present

a new opportunity for prediction of remaining useful life with natural confidence

intervals.

More specifically, prognostics of remaining useful tool life within machining is still

a relatively unexplored application of predictive modelling. A typical example of a

mechanical system is provided by Yan et al. [66], where a logistic regression model is

developed to calculate the probability of failure of an automated door at any given

point, and an ARMA model implemented to trend the condition variables for failure

prediction. The results, however, are not well quantified and are susceptible to error

given small variations in operating conditions. A common problem when searching

for literature regarding tool life prognostics is highlighted by Zhou et al. [67], where

the title of the paper indicates “...prognosis of tool wear...”, however, at no point

is a future prediction of wear state considered. Exploring the previous literature

indicates an issue with terminology, where the machining community appear to

class wear prognosis as the prediction of wear state given some observation, rather

than the prediction of a future state given past observations. Taking into account

the lack of application and success of remaining useful life models to the tool wear

problem, it is probably unsurprising that industry in general currently either adopts

a run-to-failure, or, as-frequent-as-possible maintainance policy [2]. Engel et al. [68]

provide a discussion on a number of issues involved with predicting remaining useful

life, primarily the management of uncertainty, and conclude by explaining that

the success of a prognostic method heavily relies on feature selection and process-

specifics. For tool wear, the variation between cutting processes and conditions is

likely the reason for the lack of progress in this area.

2.8 Overview of literature

This chapter has presented and reviewed a selection of previous works thought to be

relevant to the application explored in this thesis. While it is found that some of the

key areas have been investigated in great detail before, it is evident that there is still

significant room for improvement in the area of predictive tool condition monitoring,
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given new and emerging methods from more recent years. This chapter forms the

basis for those which follow, with individual methods being examined in more detail

at the appropriate stages.





Chapter 3

Experimental methods

After assessing previous work in the field and taking into account the particular

challenges faced with the task outlined in Chapter 1, it is apparent that example

data needs to be collected in order to determine trends developing throughout the

machining process, and moreover, useful features within the gathered data which

give an insight into the state of the process at any given time. Considering the

absence of suitable existing data, this chapter therefore focusses on detailing a ma-

chining trial design and implementation, intended to provide the required dataset

for in-depth analysis in the following chapters.

3.1 Machining trial concept

Obtaining a clear understanding of the time-dependant behaviour of cutting tools

for a particular machining process is vitally important for improving part quality,

production efficiency, and keeping costs to a minimum. Completing a tool-life trial

provides clear information relating to the condition of tools at various time intervals,

and provides data which can help to increase process efficiency by ensuring tools

are used to their maximum potential. Once tool usage limits are established, the

tool’s cutting edge features can be measured along with material surface properties

at various wear conditions, giving a clear indication of how tool wear affects the

surface, and therefore part quality. In addition to this, it is then possible to monitor

various process parameters and conditions during the cutting operation which can

29
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be used to infer tool condition and surface quality during manufacturing.

The common experimental approach taken in tool wear trials, is to define process

parameters, begin machining at these parameters, and pause at predefined intervals

to take measurements of the tool wear [67]. This is prevalent across the majority of

previous works in literature, primarily because this method ensures that the duration

of machining is limited to that of the entire life of a single tool, keeping time and

costs to a minimum. The main problem with this approach is that, especially

during milling, the tool is removed from its holder during the wear measurements.

The result is that the tool is unlikely to be in an identical position to that from

which it was removed from the holder, altering the cutting action through change

in run-out and tool length. Any such change in cutting action has the potential to

introduce error to the test, and would not be found in a typical industrial scenario.

The second issue with this method is that, once a wear measurement is taken, the

tool is then used for another extended duration, eliminating the opportunity for

future measurements of the tool at any past state.

To overcome these problems, the experimental machining trial used to explore the

desired correlations in this thesis was split into two parts. Firstly, a selection of tools

were used to machine a cylindrical billet of Titanium-5553 for predetermined time

intervals, consequently generating a selection of tools in different wear states. These

tools could then be measured using an Alicona 3D optical microscope system to

classify the various levels of wear and explore how the wear characteristics develop

with time, although, a rotating cylindrical billet makes sensor cable routing difficult.

In order to avoid cabling issues, once the state of the tools was confirmed, the second

half of the experimental trial was conducted - using these tools to cut a smaller, static

material specimen, while collecting monitoring signals from the process. This two-

stage methodology provides information on the tool state, how wear develops with

time, the effect tool state has on the signals generated during cutting, and the effect

tool state has on the material surface. The main benefit of this approach being

that, providing the second machining phase is of a short duration, the tools used

remain in the same state to which they were first measured. This enables future

measurements to be conducted, and the possibility to collect further data should it

be needed. It should, however, be noted that the cost of both time and tooling is

significantly greater taking this approach rather than the common one.

Table 3.1 shows the tool numbers and the duration of machining experienced by

each tool in the first stage of experimentation, prior to 3D geometry measurement.
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Tool Number Tool Duration (hours)

1 0.00
2 0.50
3 1.00
4 1.50
5 1.75
6 2.00
7 2.25
8 2.50
9 3.00

Total 14.50

Table 3.1: Table to show test tools and durations

These figures were chosen based on current usage data from the industrial process,

and extended beyond the current limits to provide an overview of tool wear above

and beyond that experienced during normal usage. The choice of nine tools was

based around providing enough data points that a wear curve could be estimated,

while keeping costs to a minimum by not using an excessive number of tools and

limiting machine time to two full days (14.5 hours). Moreover, the current industrial

process in SLS is based on operator experience and uses tools for approximately two

hours. The machining in this thesis was, therefore, extended 50% further (to three

hours), to ensure that these usage guidelines were reasonable, and to explore pushing

wear past the limits that are commonly experienced during machining of production

parts, meanwhile, collecting monitoring data under these conditions. Finally, the

distribution of tool usage durations over this three-hour period is more dense around

the two-hour tool, as previous operator experience would tell us that this is the

period towards the end of tool life, where accelerated wear occurs.

The second pseudo five-axis process machined a selection of test specimens taken

from a Ti-5553 landing gear component, using the previously worn tools and col-

lecting data from a number of different sources during the operation. An AE sensor

was attached to the back of the workpiece fixture and the workpiece assembly was

placed on a dynamometer, allowing both AE and force data to be collected simul-

taneously (a more detailed description and image can be found in Section 3.5). It

should be noted again, however, that in an industrial environment, a dynamometer

is not appropriate due to its intrusive nature and size limitations. Here, the dy-

namometer has been used to corroborate AE sensor data to provide confirmation

that AE features are sensitive to phenomena observed previously in the literature,
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(a) CAD model of the workpiece
fixture with cutting direction indi-
cated.

(b) Fixture and workpiece for sec-
ond element of experimental trial.

Figure 3.1: Test specimen workpiece and fixture for trial element two.

through dynamometer data. Figure 3.1 shows the fixture and workpiece which have

been designed and manufactured specifically for this process, with the cutting direc-

tion indicated. The cutting operation results in gathered data and material surfaces

relating to each of the nine tool conditions, allowing further analysis to explore

correlations between the tools, material, and monitoring data.

3.2 Specimen extraction

For any experimental work to be industrially relevant, the tools, material, and tool

paths must match those found in real manufacturing processes as closely as possible.

This is a trivial task when considering tool selection; however, obtaining exemplar

material specimens that have undergone the same pre-processing stages as a finish-

ready part is more challenging. For a part to be ready for finish machining, it must

have first undergone four fundamental procedures. Beginning with a bespoke forg-

ing, a part is then heat-treated, rough-machined, and semi-finish machined before

preparing for the finishing operation. From an industrial point of view, each pro-

cessing step adds value to the part in question and so processing a unique sample

of material is a costly option, even more so when considering the time taken fitting

such a specimen into a running production line and the required forging die. For the
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Figure 3.2: CAD model of a Boeing 787 truck beam - the end-cut shown circled in
red.

same reason, it is also not feasible to obtain a production part, as the value is too

great from a business perspective. The solution to obtaining representative material

samples is to use discarded waste material from a critical stage of the production

process to form test pieces, resulting in material samples that have undergone the

exact same processing route as a legitimate flight-worthy part.

To aid in the accurate positioning and clamping of a truck beam during its various

processing stages, each forging contains a keyway (see Figure 3.3b) which is aligned

with various chuck and fixturing solutions to provide a mechanical linkage and en-

sure correct orientation during manufacture is maintained. Post-manufacture, this

keyway is redundant, and is therefore removed in the form of an ‘end-cut’ in an effort

to maintain maximal weight savings (Figures 3.2 and 3.3a). This end-cut provides

an ideal source of material for test specimens to be extracted from and allows exper-

imental work to be designed around the available usable material; three individual

test specimens can be removed from each end-cut as indicated in Figure 3.3c, to

make optimal workpieces for the second-element of the trial process. Their curved

profile is beneficial, as it allows tool paths to be designed that simulate those found

on the production line, ensuring the following results are industrially relevant.

In order to remove the complex geometries of the specimens from the equally com-

plex end-cuts, a wire electrical discharge machine (EDM) must be used to extract

samples at a 135mm radius. The wire EDM has the benefit of easily removing

material samples with very little waste, although it can be a time-consuming pro-

cess. Similar machines are commonly used in research where material samples are

required; however, it is worth noting that the electrical discharge process generates

a re-cast layer on the surface of the sample, which must be removed by a pre-cut,

to ensure uniform material properties from the onset of the monitored machining.

A technical drawing of the coupons produced can be found in Appendix A.
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(a) ISO view. (b) Keyway identified in
red.

(c) Top view with test
specimen material indi-
cated.

Figure 3.3: Truck beam end cut as removed from 787 truck beam, used for trial
element two.

3.3 Machining process parameters

The test parameters used in this work are taken from the industrial finishing process

within SLS, and are intended to be representative of the operation finishing used

in manufacture. Using these parameters allows any gathered data and developed

models to be directly applied and validated in a typical industrial environment.

The parameters used are an axial depth of cut (ap) of 0.3mm, radial depth of cut

(ae) of 0.7mm, spindle speed (N) of 5082rpm, and feed rate (Vc) of 4.268m/min.

The experimental tool paths are also designed to be representative of the industrial

process.

The tools used here are solid carbide, 20mm diameter 6-flute Kennametal ball-

nose cutters which have their lead angle (α) varied between -70 and -50 degrees,

resulting in an effective cutting diameter of between 15.32 and 6.84 millimetres.

The changing lead angle ensures that the entire useful cutting radius of the tool is

used, maximising tool life; however, this has an impact on the gathered signals and

must be accounted for when analysing the data samples. The useful cutting radius

can be seen in Figure 3.4.

Throughout all cutting processes, Hocut 795B coolant must be used for both cooling

and lubrication, as dry machining of titanium can result in very high temperatures

at the cutting zone, and a potential fire risk. This was applied through both flood

and through-tool supply at 100 bar and 70 l/min.
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Figure 3.4: Useful cutting radius of Kennametal ball-nose cutters.

3.4 Tool path analysis and programming

As previously mentioned, the tool paths were designed to accurately represent those

found in manufacture, resulting in the full cutting radius of the tools being utilised

and maximising tool life. Both trial elements require dedicated tool paths based on

those found in industry and so are developed accordingly.

3.4.1 Trial element One - tool wear

To achieve an even wear profile, the tool’s lead angle is constantly changed while

machining rings around a circular billet. Figure 3.5 shows this path for the primary

stage of machining, intended to provide example tool wear states. Engage and

retract motions are needed to ensure both a smooth beginning to each cut and that

the tool is clear of the workpiece before any rapid moves are performed and potential

damage caused. These are indicated in red, while the general steady-state tool path

is shown in green. The tool interpolation axis is indicated in blue which correspond

to varying the tool’s lead angle between those values given in Section 3.3.

This tool path is adapted from the steady band machining operation as found in

Safran and mentioned in Chapter 1.2.3. More specifically, this process finish ma-

chines cylindrical bands around a truck beam section to aid in fixturing during

further operations. Figure 3.6 shows a CAD model with the tool path visible. By

comparing Figures 3.5 and 3.6, it can be seen that the experimental tool path follows

a very similar course to that experienced by a tool in industry, albeit for a smaller
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(a) Catia CAD model
showing the experimental
tool path.

(b) CAD model showing
repeated bands.

(c) Photograph of machin-
ing setup with tool path in-
dicated.

Figure 3.5: Images showing the process tool path for trial element one in green, and
the tool interpolation axis in blue. The engage and retract motions are shown in
red.

diameter, and in this case is considered a representative example of the industrial

machining process.

The cylindrical billet of Ti-5553 used to generate the nine different levels of wear

has a length of 270.2mm, allowing a total of 386 complete bands to be machined

along its length when stepping over by 0.7mm, an example of which can be seen in

Figure 3.5b. It becomes apparent when considering the 150mm starting diameter

that a number of passes over the billet’s length are necessary to complete the total

of 14.5 hours of machining time required from Table 3.1. For example, beginning at

150mm, a single ring equates to a distance cut of

D = π(ds − 2ap)

= π(0.15− 0.0006)

= 0.4694m

(3.1)

where D is the distance travelled and ds is the initial diameter. At a surface speed

(Vc) of 4.268m/min, this cut would last for,
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Figure 3.6: CAD model showing the industrial steady band machining tool path.

t =
D

Vc

=
0.4694

4.268

= 0.1100mins = 6.6seconds

(3.2)

For a required cutting time of 30 minutes, a total of 272 rings are needed, using the

majority of the 386 available per pass. Once 386 rings have been cut, it is required

that another step in ap be performed and the process continue, taking into account

the now smaller diameter. To aid in these calculations, a MATLAB script is used

to provide both the number of axial and radial steps required for a given cutting

duration, while also allowing for new starting positions along the workpiece due to

cumulative cutting durations. These values can later be used when programming

the Catia V5 Computer-Aided Manufacture (CAM) process, with the CAM software

also calculating the expected cutting duration, providing an effective verification of

the computed values used.
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Figure 3.7: CAD model showing the industrial surface to center / quads machining
tool path.

3.4.2 Trial element Two - data collection

The tool path used for machining the test specimens is pseudo five-axis, in that it

simulates a five-axis operation, but limits the working area and orientation of the

specimen to allow three-axis operation. The tool path itself strongly resembles that

of Trial element One (using four axes); however, the machined surface is not rotated

as the workpiece is now a sectional specimen, as opposed to a cylindrical billet. This

method has the added benefit of allowing sensor wires to be routed near the sample

without becoming twisted or tangled as the operation progresses.

As explained in Chapter 1, the surface to centre/quads operation is the most time-

consuming process, and therefore has the potential for the greatest benefit from any

performance improvements. The tool path used for this trial element consequently

focuses on that used for the surface to centre/quads operation, ensuring that any

subsequent results have the possibility of maximising their efficiency gains through-

out the entire manufacturing cycle. Figure 3.7 shows a CAD model of this process,

with tools paths indicated in the same manner as before; in this figure, it is clear

to see the engage and retract motions shown in yellow and blue respectively. It can

also be seen that this process follows a very similar path to the machining of the

steady band to the right; however, it is limited to a smaller arc on the truck beam’s

circumference.



3.4. TOOL PATH ANALYSIS AND PROGRAMMING 39

Figure 3.8: Workpiece and fixture with experimental tool path indicated.



40 3.5. SENSOR SELECTION AND DATA ACQUISITION

Figure 3.8 shows the same fixture as in Figure 3.1b, with the experimental tool

path indicated. Again, comparison between Figures 3.7 and 3.8 shows that the

experimental tool path follows the same procedure as the industrial process after

a 90-degree rotation. The process parameters from Chapter 3.3 are also indicated,

with the addition of the cusp height (hc) between passes. Given that the coupon

is 90mm wide (as shown in Appendix A) and allowing for 10mm clearance at each

edge, the working area is 70mm wide. With a radial depth of cut of 0.7mm, it is

possible to perform a total of 100 passes per coupon.

As mentioned previously, the coupons are extracted using wire EDM and therefore

must have their recast layer removed from the working area before being used for

any testing. For this reason, two CAM processes are used for removing the recast

layer and performing the test cuts respectively, using a single tool for preparation

and the nine worn tools for the test cuts. Removing the recast layer ensures that

the material surface of each specimen is consistent and that they are geometrically

homogeneous when the test cuts are performed, regardless of fixturing accuracy,

thus providing comparable data between cuts and tools.

3.5 Sensor selection and data acquisition

As touched upon in Chapter 1.3, sensor selection for in-process monitoring is a topic

that has been widely covered in a vast amount of previous work [14–19], with the

benefits and drawbacks of both individual and fusion approaches also well docu-

mented. Again, it is readily agreed that there is still no widely adopted methodol-

ogy to designing a successful monitoring system that is applicable to every potential

machining application, given the extensive scope of experimental methods used in

previous work.

Chapter 2.2 shows that the literature indicates the most commonly-used sensor is

a dynamometer, used to indirectly measure cutting forces, yet this is not always

the most practically appropriate solution. When specifying a sensing system, it is

critical to consider the environment that such a system is operating in alongside

the placement location of each sensor. An industrial production environment is

not always the ideal situation for sensor placement, primarily due to the potential

of water ingress into supposedly sealed connections when subject to high-pressure

coolant application. Additionally, industrial machinery tends to contain a number
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of noise sources which can interfere with the ability to extract desired information

from acquired data, such as spindle motors, servo drives, and swarf removal devices

to name but a few. For this reason, and to maximise the signal to noise ratio, it

is necessary to place sensors as close to the cutting action as possible with a clear

transmission path from source to sensor.

In this work, AE is explored as the monitored variable, with small piezoelectric-

ceramic sensors used to continuously ‘listen for’ the bursts of AE energy released

as waves of vibrational energy from the material when it undergoes stress. This

stress can be due to deformation in the shear zone, deformation and sliding friction

at the chip-tool interface, sliding friction at the flank-workpeice interface, and the

breaking of chips [13]; all of which provide a key insight into the behaviour of the un-

derlying process and its state at any given time. More specifically, a Kistler 8152B1

Piezotron sensor was used, as this is intended for use within machining structures

and is of a rugged design, rated at IP67 resistance to dust and water ingress. The

frequency response of an ideal 8152B1 sensor is shown in Figure 3.9, with the full

datasheet available in Appendix B. During all experimental machining trials, both

dynamometer and acceleration data were collected alongside the principal AE data

for completeness. These data were collected using a Kistler 9255B large plate dy-

namometer and PCB 355B02 single-axis accelerometer respectively, details of which

can be found in Appendices C and D. The dynamometer served a single purpose

- to validate and corroborate the AE sensor data, and to confirm that the data

collected was meaningful and not simply noise. A brief study was conducted as

part of the first trial to determine the former. The sensors were located as shown

in Figure 3.10; the key point to note being the proximity of the AE sensor to the

workpiece surface. A number of different locations could have been chosen; however,

this layout provides adequate safety from the cutting process while maintaining a

continuous transmission path for signals to reach the sensors. Further development

work relating to sensor placement and spindle attachment can be found in Chap-

ter 8.5. As briefly discussed in Chapter 2.2, use of a Coolant-based AE sensor was

explored, however, appears better suited to tool breakage rather than wear detec-

tion, due to the effect multiple high-pressure coolant streams have on the ability to

detect already weak signals.

All sensor data were collected using a National Instruments (NI) CompactDAQ

cDAQ-9174 chassis complete with NI 9201, NI 9223, and NI 9234 modules. More

specifically, a low sample-rate analog input module (10KHz), a high sample-rate
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Figure 3.9: Ideal frequency response of a typical Kistler 8152B1 sensor [69]

Figure 3.10: Photograph of experimental setup with sensors included. 1. Dy-
namometer, 2. AE sensor, 3. Coolant flow rate sensor, 4. Coolant-based AE sensor,
5. Single-axis accelerometer.
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Figure 3.11: Image showing National Instruments cDAQ-9174 with 9201, 9223, and
9234 modules.

analog input module (1MHz), and an IEPE capable accelerometer module (51.2KHz)

respectively. The main advantage to using such a system is the ability to synchronise

data streams between modules, regardless of individual sample rates (each 9174

chassis contains 3 on-board timers). Not only is the NI hardware extremely flexible

with regards to the variety of different data types and sensors it can support, but

it is also possible to program within a number of different environments. Primarily

LabView is used for this task, but it is also possible to control such systems from

within MATLAB directly. Figure 3.11 shows an example cDAQ chassis complete

with data acquisition modules.

3.6 Machine specifics and dynamical testing

For both previously-described trial elements, a specific machine tool was selected

from those available at the Advanced Manufacturing Research Centre (AMRC) with

Boeing in Rotherham, South Yorkshire. The crucial capabilities required for both

trial parts are high pressure (>80bar) coolant delivery through the tool holder, and a

stable region of operation around the defined process parameters. As both elements

use different tool paths and strategies, primarily a mill-turn followed by a milling

operation, two distinct machining centres were chosen.

For the initial tool wear trial, the DMG Mori NT 5400 was selected as the ideal

candidate; it is a five-axis horizontal mill-turn machine, consisting of twin lathe

chucks and a single milling turret providing the multi-axis positioning. The NT

5400 provides a maximum spindle speed of 2,400 rpm per lathe spindle and 6,000

rpm at the milling head, making it more than capable of meeting the requested
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Figure 3.12: Image showing DMG Mori NT 5400 mill-turn machining centre.

process parameters, while also providing high pressure through tool coolant delivery.

Figure 3.12 shows an image of an NT5400, supplied by DMG Mori.

Prior to cutting any material, the machine was fully set up and the tool tip subject

to experimental modal analysis following a tap test. This is simply to ensure the

stability of the cutting process at the chosen parameters, and to guarantee analogous

cutting conditions between machines during research and manufacture. For more

information regarding cutting tool dynamics and stability prediction, see the work

by Altintas [42,70] on the subject. The data from the experimental modal testing is

read and stability calculations performed within METAL-MAX TXF software [71],

resulting in a stability lobe plot, as can be seen in Figure 3.13 for the NT 5400.

Similarly, for the data collection portion of the experimental work, the Starrag STC

1250 was selected. The STC 1250 is the AMRC’s dedicated titanium milling centre

due to its high structural rigidity, and is also capable of providing high-pressure

through-tool coolant. An added benefit of the STC 1250 is the additional func-

tionality fitted within the control system, allowing for communication with internal

monitoring software and sensors. The same process of modal testing was performed

for the experimental setup in the Starrag, and the resulting stability lobe plot can

be seen in Figure 3.14.

It is clear from comparing both of these plots, that due to the shallow depth of cut

(DOC) used in this work, the process will remain well within the bounds of stability
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Figure 3.13: TXF results showing stability lobes for the experimental process on
the NT 5400

Figure 3.14: TXF results showing stability lobes for the experimental process on
the STC 1250
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at all times. The cutting process should, therefore, be unaffected by the change

in machining centre used when process parameters are maintained consistent. It is

worth noting, however, that the two scenarios do still have very different dynamic

behaviours when depth-of-cut (DOC) is increased, primarily due to the extended

tool length required with the NT 5400. Should there be a requirement for deeper

cuts, careful consideration of cutting parameters would be needed if maintaining the

same physical system.

3.7 3D tool geometry measurement

All experimental tools were scanned using a newly developed Alicona InfniteFo-

cusSL; an optical measurement device which provides 3D analysis of form and finish

(including surface roughness and cutting edge features) by varying its focus over the

cutting edge scan area. By comparing a scanned 3D tool profile to a previous ref-

erence profile, it is possible to gain an insight into how the tool state develops with

use when compared to a new tool. To achieve this, ten new tools were measured and

the average of these used as a reference which could be studied against each worn

tool. Table 3.2 shows a selection of tool features measured by the Alicona during

a standard cutting-edge scan operation and difference measurement. Each tool is

held in a bespoke fixture during scanning to ensure correct alignment to the same

location on each flute of each tool. This fixture was designed and manufactured

specifically for this thesis, details of it can be found in Appendix E.

Only a selection of these features are relevant when considering the cutting edge of

a ball-nosed milling cutter. The most commonly trusted feature as an indication

of tool wear is the cutting-edge radius, which is expected to increase with wear,

suggesting a blunting of the cutting edge as it experiences more use [5]. Blunting

of the cutting edge is certainly expected during cutting, where flank wear is the

dominant mechanism; however, crater wear could disrupt this trend by dramatically

changing the form of the cutting surface. The wedge angle, therefore, is also used

as another indicator of the state of the cutting edge. Figure 3.15 shows both a 2D

and 3D flute profile of a new tool scan.
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(a) Example Alicona scan showing 2D flute profile of a new tool.

(b) Example Alicona scan showing 3D flute profile of a new tool.

Figure 3.15: Example Alicona scans.
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Name Units Description

r µm Mean radius of mean edge
α o Clearance angle
β o Wedge angle
γ o Chip angle

Ecq µm Form deviation of circle (RMS)
Dpos µm Max. deviation above reference surface

Dmean µm Mean deviation
Vp µm3 Volume of peaks above reference surface
Vv µm3 Volume of valleys below reference surface

SIMcd µm Greatest depth of defects (ISO 8785)
SIMch µm Greatest height of defects (ISO 8785)
SIMt µm2 Whole Area of defects (ISO 8785)

Table 3.2: Table to show Alicona measured tool features [72].

3.8 Overview of data collected

This chapter has detailed an experimental procedure consisting of two indepen-

dent machining trials as required to collect data for further analysis in the coming

chapters. Following the testing procedure outlined above, two sample datasets are

gathered by repeating the experimental method twice throughout the duration of

the project, resulting in both training and testing/validation data under slightly

differing conditions. Each dataset contains nine tools of varying wear states, nine

machined material samples, and 450 AE recordings (50 per tool). Once compiled, the

collected data is ready for pre-processing, to ensure that it is in the correct format,

with the most relevant and descriptive features identified for model development.



Chapter 4

Preliminary data analysis

Now that the experimental procedure has been defined and accomplished, the data

collected throughout the operation can begin to be analysed and prepared ready for

characterisation and modelling. The experimental process has been repeated twice

and, as seen throughout Chapter 3, the data collected consists of AE data captured

during the machining of a number of material samples with a number of unique tools

in each case. Each tool and material specimen provides key information relating to

the state of the cutting process which can be correlated to that gained from the AE

released. This chapter concentrates on the preparation, pre-processing, and selection

of indicative features required to correlate the obtained data to one another. All

data processing is carried out using the MATLAB software environment.

4.1 Acoustic emission data preparation

Figure 4.1 shows a typical example of the raw AE signals collected during a 190-

second experimental machining program. There are a few key attributes to draw

attention to at this stage. Firstly, the signal is periodic and cuts can be seen evenly

spaced from one another (each peak represents a single curved tool path), and

secondly, the first cut has a large amplitude relative to the remaining cuts. In a

real-world situation, this would not always be the case, given that there is always

the potential for operator intervention and fluctuations in machine speed; however,

by extracting only the in-cut information, this potential lack of periodicity is no

49
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Figure 4.1: Plot showing example AE dataset.

longer a concern. The distinct first cut is simply due to the fact that the initial cut

in a fresh piece of material uses a greater area of the tool’s surface when compared

to the 0.7mm step experienced by the cuts that follow. In reality, any surface

undergoing a finishing operation has already had numerous roughing procedures

performed first, allowing the primary finishing cut to start with minimal workpiece

engagement, so as to minimise the risk of damage. In this experimental setup, the

first cut information is merely discarded as irrelevant and unrepresentative of the

common scenario experienced by such a tool.

The acquisition rate for all AE data presented here is 1 MHz or one million sam-

ples per second; this is adequate for representation of signals up to the top of the

consistent portion of the sensor’s frequency response at 400 kHz. While the high

sample rate is beneficial in allowing the full band of stable sensitivity to be used, it

also results in a huge amount of data capture. Again, this provides a further basis

for extracting only those in-cut data from the full continuous dataset. The most

straightforward method of extracting individual cuts is through detecting a rising

edge in the signal that exceeds a preset threshold, keeping only the data from this

point until a similar falling edge is detected. Setting a detection limit of 0.5V results

in clear identification of the in-cut region, as shown in the 15 second example in Fig-

ure 4.2. The noise present due to rapid machine moves and high-pressure coolant

is also more easily visible in this figure, which can be seen as the none-zero data

portion between cuts. An example plot of the in-cut region is shown in Figure 4.3,

with a more zoomed-in view of this shown in Figure 4.4.

By zooming further in to the data collected during the cutting operation, it is clear

to see the bursts of AE released as each of the six flutes cuts a chip during a single
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Figure 4.2: Plot showing example AE dataset with in-cut regions identified.
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Figure 4.3: Plot showing example in-cut AE data during a single cut.
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rotation of the tool, with tool runout also indicated by the change in amplitude

between flutes of a new tool. Identifying individual flute passes can be confirmed

by measuring the time between each AE burst recorded and comparing this to the

theoretical tooth-passing frequency (tpf). Measuring the average time between six

AE bursts results in a period of 0.0118 seconds, giving a rotational frequency of 85.1

Hz and tpi of 14.18 Hz. The theoretical tpi is given by,

tpf =
N

60 ∗ Tn
=

5082

60 ∗ 6

= 14.12Hz

(4.1)

where Tn is the number of flutes or teeth present on a given tool, and N is the spindle

speed in revolutions per minute. Comparing both the measured and theoretical tpf

indicates that the bursts visible in Figure 4.4 are indeed due to the individual flute’s

cutting action as the tool rotates, given the minimal 0.4% error. Each experimental

procedure dataset is split into separate files containing only in-cut data, as this

retains all relevant information while discarding that which is extraneous. While

performing analysis on a flute-by-flute basis is an interesting avenue for exploration,

it is not a focus here due to the likely difference in runout between each tool, the

curved coupon nature, and inability to determine which flute is first to engage

the workpiece all having further effects on the gathered data which would require

modelling.

The Kistler 8152B1 Piezotron sensor features both internal 50 kHz high-pass and

1MHz low-pass second-order Butterworth filters, ensuring only information from

within the sensor’s optimal frequency response region is collected. The result of this

internal filtering is that minimal signal processing is required to remove noise prior

to feature extraction.

4.2 Time domain feature extraction

Once the captured AE data has been split into its 49 individual cuts per tool, po-

tentially meaningful features can be explored to investigate trends between the nine
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tools used for each trial. As discussed in Chapter 2, it is common practice when

exploring signals, to focus on features in the time, frequency, and time-frequency

domains depending upon specific applications and the information required. In this

case, time domain features are considered the most logical starting point consider-

ing that they are independent of the frequency components caused due to process

parameters that may change. It is also expected that as a tool experiences wear,

the changes in chip formation will affect the energy released in the form of acoustic

emissions, thus having a direct impact on the amplitude of the signals obtained.

It has previously been shown that time-domain features (such as a signal’s root-

mean-square (RMS)), increase in proportion to the amount of flank wear present [18],

a phenomenon which is to be expected, as the RMS is a measure of power within a

signal, and a worn tool is likely to generate increased friction in the cutting zone. It

is also worth noting here, that due to crater wear posing a significant change to the

effective rake angle of a tool, any cratering can mask the effect progressive flank wear

has on the AE signal’s energy content [18]. 3D tool scans indicate that flank wear,

however, is the dominant wear mechanism in this process, ensuring that tools can

be readily reground and reused rather than discarded after each cycle. That being

said, it is entirely possible to observe and characterise a change in wear mechanism

if required, through careful observation of tool wear features.

As AE power content is proportional to the strain rate of the cutting operation [18],

any classification limits set based on one set of parameters, will need updating

as changes to these are made. Fortunately, there is ongoing work on strain-rate

calculation based on machining parameters [73] and software packages such as the

CutPro machining simulation application, which present a potential opportunity for

any proportional changes to be made as process parameters are altered, although

this is yet to be conducted to the authors knowledge.

The time domain features of interest are peak AE value (AEpk), mean AE value

(AEavg) or DC offset, AE RMS (AErms), skewness of the AE signal (AEskew), and

the kurtosis of the AE signal (AEkurt). Each feature is calculated over a single cut

period, as shown in Figure 4.2, to ensure effects due to runout are minimised and the

resulting value is a culmination of a number of chips, reducing uncertainty due to

chip variations and also computational effort. Taking an amplitude-based envelope

of the signal and calculating the aforementioned features of this provides a clear

way to visualise how the AEpk and AErms vary with differing energy levels released

during chip formation.
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Figure 4.5 shows example in-cut data from a single cut with a relatively unworn

tool, while Figure 4.6 shows the same example from a more worn tool. In both

plots, the AEpk and AErms are indicated for both the signal and a peak based enve-

lope, allowing a few key differences to be readily identified. While the envelope does

not contain any further information than is present in the raw signal, it serves two

purposes. Firstly, it acts as a low-pass filter, aiding in identification of signal peaks

by removing the effects of the dense, high-frequency, low-amplitude signal compo-

nents. A visual example can be seen by comparing both the AErms and ENVrms

in Figures 4.5 and 4.6. Secondly, the envelope provides a method of down-sampling

the data by discarding high-frequency information, in turn, reducing computational

load. Both the peak and RMS values can be seen to increase with a more worn

tool specimen, which is clearly visible by considering the RMS lines of the signal

envelope varying from approximately 0.6 to 1.0 V, and the peak lines from 1.7 to 3.1

V correspondingly. Correlations between these features, material surface, and tool

wear statistics will be explored further in Section 4.5, after specifying features of

interest relating to both tool wear and surface integrity. The overall shape of both

plots follow a similar form, such as the drop in amplitude at around 0.1 seconds

through the cut, which is due to the consistent profile of the surface being machined

and the tool diameter changing in the same manner as the process progresses.

4.3 Material specimen features

A requirement of all parts produced by SLS, is that they meet certain criteria de-

tailed in strict specifications to ensure part quality and uniformity. While specific

details of these documents are restricted, it is common knowledge that they define

a number of parameters relating to the surface finish of the component which is a

direct result of the machining process. While some of the parameters are a result of

part geometry and tool paths, others are influenced more by the tool state and level

of wear such as surface texture requirements. Surface texture is often quantified

in terms of deviation from an ideal form with larger values indicating rougher sur-

faces. Common roughness measures include the arithmetical mean deviation of the

roughness profile (Ra), the root mean square of the roughness profile over the evalu-

ation length (Rq), and the maximum height of the roughness profile (Rz) [74]. Such

measures are, however, two-dimensional and unfortunately do not fully describe the

complex geometries of the cutting effects created with a ball nosed profile milling op-
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Figure 4.7: Plot showing example 2D roughness profile with Ra indicated.

eration [75], and consequently, three-dimensional roughness statistics (denoted with

an S rather than an R) are considered more reliable in this scenario. The drawback

of such statistics is that they are not currently governed by an ISO standard in the

same way as two-dimensional statistics are, and coupled with the fact that more

complex scanning equipment is needed to acquire measurements, they are seldom

used in industry.

Both 2D and 3D surface measurements were taken with a stylus-based profiler and

optical measurement device respectively, allowing comparison of features from each.

Figure 4.7 provides an example profile measured with a 2D profiler across three

cusps, the Ra value indicated having been calculated from an average of five mea-

surements. Similarly, Figure 4.8 provides two example images of 3D surface profiles

over a single cusp each, where a 2D profile is simply a single slice in y through

either of these. Both Figure 4.8(a) and Figure 4.8(b) would provide a similar 2D

profile if measured across the centre of the image; however, the shape of the two

profiles are largely different over the remaining area, which can only be measured

with a 3D scan or careful positioning of the profiling stylus. This issue is overcome

in this thesis by taking multiple 2D profiles across a predetermined area and aver-

aging these, ensuring scans are taken over the full radial depth of cut. Relationships

between cutting parameters and surface roughness profiles are described in more

detail in [21], where it is also highlighted that tool wear has a profound impact on

surface roughness though deflections and thermal effects.
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Figure 4.8: Images showing example 3D roughness profiles from a surface machined
by a less worn (a) and more worn (b) tool respectively.

4.4 Tool scan features

As discussed in Chapter 3, the Alicona InfniteFocusSL is used for all tool edge mea-

surement, providing a 3D surface similar to that created from 3D material profiles,

where individual wear profiles can be extracted at numerous points along the cutting

edge. Each flute was scanned five times, and these scans were averaged, as with the

material specimens, to ensure minimum chance of anomalous measurements. Each

measurement is also an an average of one hundred slices through the cutting edge,

in an effort to minimise the effect of possible pick-up on results. Table 3.2 contains a

list of the calculated features reported by the Alicona for each tool inspection. These

features can then be correlated with both those extracted from the AE signals and

from material scans to identify the most closely-related parameters.

Figure 4.9 shows a 3D scan of a flute from a new tool, with the corresponding profile

shown in Figure 4.10. The cutting radius r of this flute is equal to 14.8 microns,

and the wedge angle β equal to 61 degrees. Looking at the 3D image, a uniform,

sharp cutting edge can be seen across the length of the flute, and the clearance and

rake faces are smooth. This is to be expected from an unused tool, given that no

wear should be present.

Comparing Figures 4.9 and 4.10 with Figures 4.11 and 4.12, the effect of short usage

duration on the cutting surfaces can be seen. Flank wear begins, and material is

abrasively removed from the flank face of the tool. As the tool is used further, flank

wear continues, resulting in the image shown in Figure 4.13. This progression of

flank wear indicates that this is the dominant wear type for this process in the early
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Figure 4.9: 3D scan of a single flute from a new cutting tool.

Figure 4.10: Average profile from 100 scans of a single flute from a new cutting tool.
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Figure 4.11: 3D scan of a single flute showing minor flank wear.

Figure 4.12: Average profile from 100 scans of a single flute with minor flank wear.

stages of use.

Historically, tool wear has been quantified by measuring the distance between the

tool’s edge and the bottom of the flank worn area [5, 23], however, the method of

obtaining 3D scans used in this thesis, provides a level of information that has not

been readily available before. Sick [24] states that approximately 69% of previous

work uses the width of flank wear area as the primary wear measure. The profiles

in Figures 4.10, 4.12, and 4.14 show that this flank wear can also be determined

through measurement of the cutting-edge radius. It is to be expected that the

cutting edge becomes blunted as wear progresses, and this can be seen through the

increase in cutting-edge radius from 15 microns, to 65 microns. The wedge angle,
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Figure 4.13: 3D scan of a single flute showing further flank wear.

Figure 4.14: Average profile from 100 scans of a single flute with further flank wear.
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Figure 4.15: 3D scan of a single flute showing the beginning of crater wear.

β, also emerges as a useful measure of tool wear in this thesis, and can be seen to

increase with tool wear in a similar fashion to the cutting-edge radius. Considering

Figures 4.15 and 4.16, crater wear can be seen to develop as the wear type changes

from extended use. This type of wear also has the effect of increasing the measured

wedge angle, although, if the cutting-edge radius measurement is taken across the

crater, it appears as if the value reduces, indicating a sharpening of the tool. This

phenomenon can be seen in the profile in Figure 4.17, which is taken across the crater

shown in Figure 4.16. Despite the tool being used for longer than that in Figure 4.14,

the cutting-edge radius value is lower. This highlights the importance of careful

measurement of each flute, and the necessity to take an average of measurements

across the flutes length.

Once crater wear has begun, the tool rapidly deteriorates, with crater wear leading

to fracturing of the tool’s cutting edge. Figures 4.18 and 4.19 show a tool which

has progressed to advanced crater wear; the corresponding profile measurement is

shown in Figure 4.20. Again, both the cutting-edge radius and wedge angle have

further increased as the tool is used further. Finally, Figure 4.21 shows a tool

which has worn past both flank and crater wear, and has now begun to fracture.

A tool in this state cannot be used any further, and would be discarded if found

during manufacture, due to the likely negative effect it would have on dimensional

accuracy of the finished part. This figure shows clearly the difference between flank

wear, crater wear, and final fracture from left to right, and on the different faces of

the tool on which they occur.

As shown in the preceding example figures, the tools used throughout the exper-

imental work in this thesis are dominated by flank wear for the most part, with

crater wear presenting as usage is continued, finally leading to failure. Both the

cutting-edge radius and wedge angle are found to describe wear level despite differ-

ing dominant wear types, and so throughout the remainder of this thesis, the ex-
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Figure 4.16: 3D scan of a single flute showing the beginning of crater wear, viewed
from the side.
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Figure 4.17: Profile from scan of a single flute with crater wear, taken across the
crater.

Figure 4.18: 3D scan of a single flute showing advanced crater wear.
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Figure 4.19: 3D scan of a single flute showing advanced crater wear, viewed from
the side.
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Figure 4.20: Average profile from 100 scans of a single flute with advanced crater
wear.

Figure 4.21: 3D scan of a single flute showing fracturing.
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Figure 4.22: Wear curve from first experimental trial. Each point represents an
average from 5 individual scans, the error bars represent the standard error between
the 5 scans.

perimental tools are treated in order of wear level accordingly, determined through

measurement of cutting-edge radius and wedge angle from 3D scans. A wear curve,

based upon cutting-edge radius from an average of 5 scans, and ordered by increas-

ing wear level, can be seen in Figure 4.22. Each point represents an average from

five individual scans, and the error bars represent the standard error between the

five scans.

4.5 Correlations between material, tool, and AE

data

Given that a number of potentially interesting time-series features have been identi-

fied, it is possible to normalise these and perform an exhaustive search for features

with the highest correlation coefficients between data types over the life cycle of a

tool. For the purpose of this work, correlations are considered strong if the correla-
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Tool AE Material

r AEpk Ra
α AErms Rq
β AEskew Rz
γ AEkurt Sa

Ecq Sq
Dpos Sz

Dmean
Vp
Vv

SIMcd
SIMch
SIMt

Table 4.1: Table to show features used to explore correlations. Tool measures as
defined in Chapter 3.7. Material surface measures as defined in Chapter 4.3

tion coefficient between datasets is greater than 0.67 with a corresponding p-value

of less than 0.05 when testing the hypothesis of no correlation - this is in agreement

with the critical values of the Pearson product-moment correlation coefficient [76].

The p-value is the probability of finding more extreme results than those observed

when the null hypothesis is true; in this case, providing an indication that the ob-

servations are truly correlated.

The correlation coefficient is a measure of linear dependence between two random

variables x and y, and returns a value between -1 and +1 relating to perfect negative

and perfect positive linear correlations respectively. When applied to a sample of n

observations, it is defined as:

rxy =
1

n− 1

n∑
i=1

(
xi − x
σx

)(
yi − y
σy

) (4.2)

where x is the mean and σx the standard deviation of x; similarly, y and σy are the

mean and standard deviation of y.

Performing this calculation between all AE, tool, and material features provides

a method of identifying those features which best relate to one another and are,

therefore, considered the most beneficial to explore further. Table 4.1 shows the

inputs into this comprehensive search.
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Figure 4.23: Plot of workpiece Rz against tool wedge angle (scan location 1).

By calculating both r and p values, it is a straightforward task to order these in

ascending order, indicating the features with greatest correlations between them.

Between tool and workpiece features, it is found that the 2D roughness features

provide greater correlation with obtained tool scan measurements when compared

to their 3D counterparts. This is most likely due to the greater scan area used for

2D measurements, when compared to 3D, and the greater generality this provides.

It is also found that the tool’s wedge angle bears the greatest relation to these same

roughness parameters, an unsurprising result considering the fundamental effect that

changing rake and clearance angles have on chip formation and, therefore, surface

generation. Figure 4.23 shows this relationship and linear fit with the R2 and p-value

of 0.81 and 0.0009 indicated as an example of this relationship. In addition, similar

correlations are observed with both Ra and Rq values as the material roughness

measures are closely related to one another for an individual specimen.

In a similar fashion, the features obtained from a dataset of nine tools can be com-

pared to a selection of those taken from in-cut recorded AE taken from machining

with each of the aforementioned tools. An example correlation matrix plot can

be seen in Figure 4.24, where the peak AE measurements are shown to bear the

strongest relationship to the observed wear features - more specifically, the wedge

angle and form deviation from a circle. As in Section 4.4, the tool’s wedge angle is a

useful feature for quantifying tool wear in this thesis, and the peak of the AE signal

during cutting is found to correlate well to this. Figure 4.25 indicates this linear re-

lationship with an R2 value of 0.744 and p-value of 0.0028 shown. Peak values taken

from each AE sample providing useful information is again, as expected, given that

AE signals are released in bursts during material deformation and will be recorded

as spikes in the signals accordingly, having negligible effect on the un-enveloped

signal RMS for a relatively long sample length.
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Confusion matrix showing correlations between AE features and tool features
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Figure 4.24: Correlation matrix showing relationships between a selection of tool
features and AE features.

Both Figures 4.23 and 4.25 indicate linear relationships between a select few features,

which is by no means the full extent of the relationships between tool, workpiece,

and recorded AE. The presented relationships do, however, provide essential evi-

dence that the belief that these features must be connected has substance, despite

the limited sample size. It is also worth noting that each data point presented in

these figures is from a unique tool, and subsequently, has inherent variations due to

manufacturing tolerances and tool-holding accuracy; a result of the test procedure

that would not be present in a production environment. The presence of such corre-

lations provides grounds to continue exploring connections between datasets, aiming

for the ability to predict tool state (and, therefore, material surface roughness) given

a sample of in-process recorded AE data.

4.6 Other acoustic emission-related features

For completeness, it is necessary to discuss a select few frequency domain features

while also exploring signal development during the relatively short machining period

experienced by each tool during data collection. Computing the discrete Fourier
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Figure 4.25: Plot of peak of AE signals against tool wedge angle (scan location 2).

transform (DFT) over each cut using the fast Fourier transform (FFT) algorithm

provides a clear method of visualising the frequency content of each recording. By

plotting these transformed data in order, the plot in Figure 4.26 can be obtained in a

similar way to a spectrogram. This figure shows that the magnitude of the frequency

content between 70 to 100kHz increases with wear, indicating more energy is released

at these frequencies as tools become more worn. While this thesis will continue to

focus on time-domain features, understanding how the frequency content of the

measured AE varies with wear, provides another avenue for exploration.

4.7 Principal component analysis

Principal component analysis (PCA) is a widely used tool in exploratory data anal-

ysis due to its wide range of possible uses. Primarily, PCA is a tool for identifying

patterns in data sets of high dimension, where simply displaying the data in a graph-

ical form is not possible. Once any significant patterns have been found in the data,

redundant data can be discarded, enabling PCA to be used as a tool for dimensional

reduction, data compression, variable selection, and data classification to name a few

uses [55]. In this work, where a number of feature variables have been calculated, it

is possible to perform a PCA to aid in identification and generation of fewer, more

meaningful features, and to then help cluster data into possible tool states. Once

potential clusters have been identified, a statistical learning methodology such as a

support vector machine (SVM) can be implemented to classify incoming data. This

work is well suited to such a supervised learning model given that the in-cut recorded

AE data correspond to a single tool from a set of nine, providing an intuitive method

of labelling nine categories for data separation.
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Figure 4.26: Plot to show frequency content of AE signals as wear progresses.

Figure 4.27 shows the first and second principal component scores, calculated from

the time-domain AE features previously described. Each of the 9 clusters corre-

sponds to AE data points generated using a single, individual tool, and can, there-

fore, be treated as being a grouping of points generated from a similar wear level.

Naturally, nine unique tools result in nine unique clusters, and given that a number

of the clusters can be clearly identified, with a reasonable degree of separation, this

problem becomes well suited to a classification problem and is explored further in

the following chapter. It should be noted, however, that if the colours were removed

from the plot, separating of the data in this space becomes a more difficult task.

This is also to be expected in a production environment, where tool wear is a pro-

gressive process, and clusters are, therefore, likely to be very close and potentially

hard to create decision boundaries from. Nonetheless, treating the acquired data

as a classification problem provides confirmation that repeatable relationships exist

between observed AE data and measured tool wear values.
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Figure 4.27: Plot showing first vs. second principal component of AE features.

4.8 Overview of preliminary analysis

This chapter has given an overview of the data collected during machining, detailing

that obtained from tool scans, material topography, and AE recordings. It is shown

that there is a large amount of information relating to the cutting process within

the in-cut AE data recordings, and it is entirely possible to correlate a number of

features based around this with both tool and material properties. Although this

chapter only touches on a small selection of potential linear relationships between

features, it provides grounds for further exploration into more complex interactions

between features, both linear and non-linear in nature, while suggesting a method

of wear diagnosis based on tool state clustering.





Chapter 5

Tool state classification

Given that a selection of relationships have been established between various key

process-generated properties, the first logical step in building a probabilistic model

is to begin with exploring whether a learning algorithm is capable of classifying the

incoming acoustic emission features into a discrete number of clusters based upon

the tool generating these data. If this state diagnosis is possible, it provides firm

evidence that the signals develop in a unique and distinct manner as the process con-

tinues, providing grounds to explore predictive or prognostic modelling further. This

chapter, therefore, explores a static classification problem and examines whether it is

possible to accurately separate a number of AE recordings based upon the associated

wear levels.

5.1 Classification methods

State classification is not a ‘one-size-fits-all’ approach, rather it is possible with a

number of different methods and techniques, each varying in suitability for a given

problem. Primarily, the classification problem can be split into two subcategories;

those requiring supervised and unsupervised learning approaches respectively, the

latter also being known as clustering or cluster analysis in some communities.

The supervised approach relies on training a classifier based upon a training set

containing a range of example data akin to that which the model is expected to

work upon when implemented. In this case, each vector of input features is paired

75
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with a correctly identified cluster to which it belongs, often identified manually

through pre-existing knowledge of the underlying data-generating process. Once

the classifier is trained and validated, it can be used to identify which pre-existing

group a new observation belongs to, assuming it is similar to that which the model

has experienced during training and is from a similar generating process.

Clustering, on the other hand, is an unsupervised approach that aims to identify

groupings of points in a dataset based on their similarity to their neighbours and

dissimilarity to more distant points, without any previous knowledge of potential

categories. Such algorithms tend to explore spacings between data points using some

chosen distance measure, sorting new members based upon the minimum distance

between them and other, existing members. Once a number of clusters are identified,

the problem becomes very similar to the classification problem described previously;

however, clustering tends to be an iterative process whereby cluster boundaries are

updated as new data are experienced.

Based upon the data described in Chapter 4, this work is well suited to a classification-

based approach to state diagnosis, given that each AE data point obtained can be

grouped with others generated using that same tool and, therefore, level of wear.

It follows that, in this case, incoming data vectors can be assigned to one of nine

possible states when considering two independent trial repeats, or one of eighteen

states when merging both datasets obtained for this thesis. Hence, clustering will

not be touched on further here; the focus will be on classification algorithms, given

their relevance to machining as discussed in Chapter 2.5.

A visual example of data groupings can be obtained by performing a principal com-

ponent analysis (PCA) on the selected AE features given in Chapter 4, reducing the

dimensionality to two dimensions (in this case) that contain over 95% of the variance

present (Figure 5.1), and can be easily represented graphically such as previously

in Figure 4.27. This figure clearly shows how data generated with uniquely worn

tools forms a number of groups which can be readily identified by the reader. While

there is some overlap present in this particular 2D example, it should be noted that

minimal overlap between clusters makes for a simpler solution and, therefore, input

features should be chosen that maximise the distance between groups.

A range of algorithms are available for performing such a classification given an

example training set, each with their own benefits and drawbacks. A few examples

of such algorithms are: decision trees, maximum margin classifiers, and nearest
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Figure 5.1: Plot showing percentage of variance per principal component.

neighbour classifiers, although this list is by no means exhaustive [54].

Decision trees are a relatively straightforward concept, beginning at the tree root

with a binary decision regarding the data one wishes to classify. This decision

then determines the branch to follow to the next node/decision and so on until the

resulting leaf node or category is reached. While this is a very logical and clear-

to-follow process, it does have its pitfalls. The benefits of such a method are the

speed of both training and prediction, while consuming a small amount of memory

to complete the operation in its most basic form. Decision trees are also trivial to

interpret on the most part, with each decision and branch easy to follow visually

by an observing party. The downside, however, is that they can suffer from low

predictive accuracy [77]. The more leaf nodes (categories) present, the greater the

risk of over-fitting to training data, resulting in simpler, more robust trees being

chosen on the most part with reduced accuracy.

Nearest neighbour (NN or kNN) algorithms are often considered the benchmark

for machine learning classifiers and are well defined in the literature such as [78].

They are non-parametric learning algorithms, indicating that no assumptions are

made about the underlying data distribution while the model itself does not perform
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any generalisation using the training set. The brief learning phase is, therefore,

very fast, as computation is performed at classification. The downside of this is

that the classification speed is comparatively slow, and memory usage high due to

the fact that the entirety of the training set must be maintained for locating the

nearest neighbours to a new member. In classification, the kNN algorithm returns a

predicted class membership based upon a majority vote of the classes of its k nearest

neighbours. One can select a value of k based upon the specific problem, along with

specifying a distance measure and weighting function to suit.

Maximum-margin classifiers are a group of classifiers whereby a margin is defined

as the perpendicular distance between a decision boundary and the closest of the

data points present in that group. Maximising this margin between groups provides

an optimal choice of hyperplane, and is determined by a small subset of the data

points known as support vectors [54]. This leads directly to the concept of the sup-

port vector machine (SVM) which will be explored in detail thanks to its potential

classification accuracy and ease of training with limited training sets.

The SVM has been used previously in machining, for the classification of wear into

one of a number of possible states. Sun et al [79] use an SVM to classify data from

a cutting operation into one of three states, corresponding to a sharp, usable, or

worn tool respectively. This is relatively limited in its application, as the work only

explores flank wear, and provides no information on wear level beyond the most

basic states mentioned previously. Cho et al [57] use a similar method, however,

extend the scope to include further classes for low, medium, and severe wear, as

well as identifying chipping and breakage. This method is a much more industrially

relevant method, and results in [57] indicate around a 90% accuracy using data from

force, vibration, AE, and spindle power sensors combined. While this thesis intends

to use features from single sensor data, the results from [57] provide evidence that

the SVM is an appropriate tool for tool wear classification.
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Figure 5.2: Illustration to show the margin, hyperplane, and support vectors. Hy-
perplane shown in red, support vectors as circled points.

5.2 Support vector machines

5.2.1 SVM overview

As briefly mentioned previously, an SVM makes use of a distance measure and

support vectors to identify an optimal hyperplane between data clusters. In its

simplest case, the SVM uses linear boundaries which can be illustrated as shown in

Figure 5.2.

While this is the simplest form of a SVM, in reality, classification problems often

have more than two classes and are inseparable by a simple straight line in the input

space. In many cases, class data in the input space can also overlap between classes

causing poor generalisation if training is implemented to achieve exact separation

of the provided data.

When dealing with datasets of more than two categories, the training process simply

becomes a combination of single, binary classifiers, isolating specific parts of the

training set to establish the first decision boundary and regrouping to find the rest.

The two most common methodologies of implementation are the one-against-all and
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one-against-one (or pairwise) approaches. The former breaks the problem down

by isolating a single category and finding the line that best separates this from

the rest, while the latter uses pairs of categories to establish a number of unique

decision boundaries. The one-against-all approach typically selects a class for a new

member based on a single class accepting it while all others reject it, whereas the

one-against-one method compares classifications of each pair and selects the class

with the maximum pairwise votes. It can be expected, therefore, that a pairwise

system is likely to require greater processing power and hence time to classify a new

member, although this does generally result in improved classification rates.

In the case where the data are not linearly separable in the input space, the data

can be mapped to a higher-dimensional space where linear separation is possible,

allowing the classifier to perform the same action as before. Consider the fixed

feature-space transformation:

x→ φ(x), where φ : Rd → RD (5.1)

where the data is now linearly separable in the mapped feature space.

5.2.2 SVM mathematical formulation

This discussion closely follows that by Bishop [54]. Starting with the two-class

classification problem, using linear models of the form,

y(x) = wTφ(x) + b (5.2)

where φ(x) denotes the transform described in (5.1) and the bias parameter, b, is

made explicit. Note that this formulation can eventually progress to a dual represen-

tation expressed in terms of kernel functions, avoiding the need to work explicitly in

the feature space. The training data set comprises N input vectors x1, ...,xN, with

corresponding target values t1, ..., tN where tn ∈ {−1, 1}, and new data points x are

classified according to the sign of y(x).

It can be assumed at this stage that the members of the training set are linearly

separable in feature space, so that by definition, there exists at least a single choice
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of parameters w and b such that a function of the form (5.2) satisfies y(xn) > 0 for

points where tn = +1 and y(xn) < 0 for points where tn = −1, so that tny(xn) > 0

for all training data points.

It is entirely possible that there are a number of solutions that accurately separate

the classes exactly; however, it is beneficial to select the solution with the smallest

generalisation error. This is briefly touched on in Section 5.1 where, in the case

of an SVM, the concept of maximising the margin is used to identify the optimal

decision boundary. For an insight into the origins of maximum margin theory, the

reader’s attention is drawn to [80].

Figure 5.2 shows that the perpendicular distance of a point x from a hyperplane

defined by y(x) = 0, where y(x) takes the form (5.2), is given by |y(x)|/‖w‖ (where

|y(x)| is the absolute value of y(x), and ‖w‖ is the norm of w). In addition, only

those solutions for which all data points are correctly classified so that tny(xn) > 0

for all n are of interest. The resulting distance of a point xn to the decision surface

is given by

tny(xn)

‖w‖
=
tn(wTφ(xn) + b)

‖w‖
. (5.3)

The margin is given by the perpendicular distance to the closest data point xn from

the set, and it is necessary to optimise the parameters w and b in order to maximise

this distance. It follows, therefore, that the maximum margin solution is found by

solving

arg max
w,b

{
1

‖w‖
min

n
[tn(wTφ(xn) + b)]

}
(5.4)

where the factor 1/‖w‖ is taken outside the optimisation over n because w does not

depend on n. Solving this optimisation problem directly would be very complex [54],

and so it is required that it is converted into a simpler-to-solve equivalent problem.

To do this relies on the fact that performing the rescaling w → kw and b → kb

leaves the distance from any point xn to the decision surface unchanged. That is,

tny(xn)/‖w‖ remains constant. This freedom can be used to set

tn(wTφ(xn) + b) = 1 (5.5)
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for the point that is closest to the surface. In this case, all data points will satisfy

the constraints

tn(wTφ(xn) + b) ≥ 1, n = 1, ..., N. (5.6)

This is known as the canonical representation of the decision hyperplane. In the case

where the equality holds true, the constraints are said to be active; it follows that

for other points, they are said to be inactive. By definition, there will always be a

closest point resulting in a single active constraint and at least two active constraints

once the margin has been maximised. The problem then simplifies to maximising

‖w‖−1 or similarly, minimising ‖w‖2, leaving the optimisation problem as

arg min
w,b

‖w‖2 (5.7)

subject to the constraints given by (5.6). As explained by Bishop [54], this is an

example of a quadratic programming problem where it is required to minimise a

quadratic function subject to a set of linear inequality constraints. While it may

appear initially that the bias parameter b has been removed from the optimisation,

it is in fact determined implicitly via the imposed constraints as changes to ‖w‖
must be compensated by changes to b. The classification of new data points once

the model is trained is done by evaluating the sign of y(x) defined in (5.2).

This provides an overview of the SVM, whereby the training data points are linearly

separable in the feature space φ(x); the resulting SVM providing an exact separation

of the training data in the input space x regardless of the decision boundary not

necessarily being linear. In reality, this is not always the case, and there often exists

an overlap between class distributions such that exact separation of the training

data can lead to poor generalisation. In order to compensate for this and allow a

selection of training points to be misclassified, the SVM is modified to include a

slack variable for each data point which acts as a measure of distance away from the

boundary. The problem then becomes a minimisation problem including minimising

the sum of slack variables as a trade-off against the margin. The readers attention

is drawn to Chapter 7 of [54] if they wish to follow the inclusion of slack variables,

as this is an established technique.
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5.3 Training and testing sets

When training a support vector machine, specifically with a relatively small dataset,

k-fold cross validation provides a method of evaluating model accuracy while ensur-

ing all data points are used for both training and validation.

To begin with, the original data set is split into k equal size sub-samples, in this

case containing equal distributions of class labels. Of these k sub-sets, a single

one is retained and used as validation data against a model trained on the other

k − 1 samples. Repeating this process k times, using each sub-set for validation

only once, provides k accuracy evaluations which can be averaged to give a single

measure. The major benefit of this method is that it provides a robust evaluation

given a relatively modest data set, ensuring that all data points are used for both

training and validation; each being used a single time for the latter.

In this work, a 5-fold cross validation has been used as a trade off between evaluation

accuracy and speed, while ensuring each sub-sample contains enough individual

points from each class to train a SVM which can generalise well with larger datasets.

5.4 Results

For its relative simplicity and fast prediction speed, a simple linear SVM is the

first candidate for training and validation of each trials dataset, with the aim of

classifying and separating each individual tool’s data from that generated by the

other eight. The input vectors represent the first three principal components of

the time-domain features generated from in-cut AE data (representing 95% of the

variance in the dataset), each containing 441 points generated from 9 tools.

Considering the first trial dataset independently, the trained model returns an ac-

curacy of 99.1% when using a one-against-one multiclass method and five-fold cross

validation. To achieve this, the training time was 1.78 seconds in MATLAB with the

classifier being capable of assessing approximately 4400 observations per second on

the chosen hardware; considering a new observation occurs every 1.1 seconds, this is

considered more than sufficient in terms of prediction speed. In comparison, using

a one-against-all method on the same hardware, results in an accuracy of 91.8%

taking a mere 1.24 seconds to train. This method is also capable of predicting at
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Figure 5.3: Confusion matrix of linear SVM classifications for trial one.

twice the rate of the one-against-one method; however, in this case the accuracy is

more important than the prediction speed due to the relatively modest observation

rate. For this reason, in all further models the one-against-one method will be used

exclusively.

The confusion matrix for this SVM can be seen in Figure 5.3 and provides a clear

indication of classification errors in much more detail than the prediction accuracy

alone. As expected, correct classifications are shown in green along the diagonal of

the matrix with misclassifications shown in red. As the model prediction accuracy

is so high, there are only four incorrect points, which are most likely caused by

built-up material on the tool’s cutting edge. Built-up material has been observed

in a select few 3D tool scans (see Figure 5.10), however, can’t be measured for

each data point, given that it is a temporary phenomenon during machining in this

process. Incorrectly classified points beside the diagonal such as (7,6) are the most

commonly expected misclassification type, indicating that there is likely to be some

overlap between states either side of one another. This type of error can be expected

when the generating process for two classes is very similar and therefore difficult to

distinguish when compared to other classes.

In a similar manner, considering the second trial dataset independently, results in
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Figure 5.4: Confusion matrix of linear SVM classifications for trial two.

a prediction accuracy of 92.7% through training and validation taking 3.26 seconds

on the same hardware. This is significantly lower than the 99.1% obtained using the

trial one data and, therefore, requires further attention. The confusion matrix for

this model can be seen in Figure 5.4 and follows the same specification as before.

Interestingly, the majority of the errors associated with this model arises from the

distinction between classes four and five and is shown by the misclassified observa-

tions in (4,5) and (5,4). As mentioned previously, this would indicate that classes

four and five in this case are generated from a similar process state and therefore

have resultant data that is difficult to distinguish from one another. As the classes

in these models represent unique tools, the possibility arises of using the tool wear

levels as class labels allowing observation of those classes which are expected to be

in close proximity.

Using the cutting-edge radius (in microns), correct to the nearest whole number

as class labels, has very little effect on the model results from the first trial, with

accuracy remaining at 99.1% and the confusion matrix as shown in Figure 5.5.

Conversely, the results from the trial two dataset tell a different story. Comparing

the new class labels reveals that both classes four and five, while generated with

unique tools, are a result of the same cutting edge radius, and as discussed in

Chapter 4, the same level of wear. The similar cutting edge radii would explain the
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Figure 5.5: Confusion matrix of linear SVM classifications for trial one using wear
measurements as class labels.

difficulty the linear SVM found in separating these classes previously, as in reality,

they form a single class of twice as many observations as the others. Retraining and

validating the SVM using the now eight classes, results in a much improved accuracy

of 98.2% and the confusion matrix shown in Figure 5.6. As this figure presents, the

class containing observations created with a 77 micron cutting edge radius contains

98 unique observations and improves accuracy by 5.5%. The concept of using wear

measurements as class labels also begins to demonstrate how, despite having a single

limited measurement per 49 observations, the problem can begin to be formulated

into a regression analysis.

Figures 5.7a and 5.7b show, for instance, the wear curves of the two independent

trials by focussing on the chosen wear measurement from Chapter 4 of cutting-edge

radius. Comparing these figures to the sequential classification of data points using

the previous models, shows a clear connection between the two. One point to note

here is that the curves are dissimilar in shape despite the same method being used to

obtain them, a clear illustration of the necessity of this project over merely following

typical cubic wear curves. The fundamental reasoning behind the variation in wear

rate observed here is the diversity in material properties through the cylindrical billet

used to experimentally wear the tools. In industry, the same experience is present
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Figure 5.6: Confusion matrix of linear SVM classifications for trial two using wear
measurements as class labels.

due to the large forgings and relative inaccuracy of the forging and heat treating

processes. The effects of this material variation to in-service performance are often

insignificant, providing the bulk of the material meets specification following shot-

peening - a cold working process used to strengthen and relieve tensile stress in

components, modifying mechanical properties through plastic deformation at the

material’s surface. Compressive stresses are beneficial in the surface of machined

parts, as cracks are held closed and struggle to propagate, increasing fatigue life

dramatically. Shot peening, however, occurs after finish machining, and so the lack

of uniform properties is still present to affect tool wear rates.

Figures 5.8a and 5.8b highlight this relationship by presenting the sequentially clas-

sified data points in blue alongside the mean wear measurement for each tool as

an orange line, misclassifications are circled in red. As expected, by using dis-

crete classes to track wear progression, the classifier acts as a sample-and-hold filter

when compared to the underlying nine measurements, switching class and remaining

there until data from the next class is experienced. Provided class transitions follow

a common sequence, this reality indicates that the problem could be well suited to

a sequential model form, which will be explored in Chapter 6. As can be seen in

Figure 5.8, the misclassified points are very few and should it be necessary, could be
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(a) Wear curve from trial one.
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(b) Wear curve from trial two.

Figure 5.7: Cutting edge radius wear curves from each trial. Error bars indicate
standard error across 5 tool scans.
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(b) Sequentially classified states from trial two.

Figure 5.8: Sequentially classified states plotted in order. Misclassifications are
circled in red.
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Figure 5.9: Confusion matrix of linear SVM classifications for all trial data combined.

removed by treating the problem as sequential in nature, and removing predictions

that do not move to the next class in increasing order. This is feasible in an indus-

trial context provided the process is continually monitored, ensuring that each tool

progresses through every wear state in order, albeit at potentially different rates.

As a more rigorous test of the SVM method, a single model can be trained and

validated with all available data from both trials together as opposed to each indi-

vidually. Given the greater number of potential classes, it is expected that prediction

accuracy will drop due to more potential overlap between them, however, this should

manifest as misclassifications along the diagonal of the confusion matrix for accept-

able errors between neighbouring states. Including data from two different tests is

also likely to have a negative effect on the prediction accuracy again, possibly due

to class overlap, but also different environmental conditions on each test day. This

is a typical problem experienced in industry and, therefore, is worth consideration

at this stage.

As can be seen in Figure 5.9, the prediction accuracy of this model drops down

to 91.7% as expected; however, there is no confusion between adjacent classes as

anticipated. This indicates possible confusion between datasets causing the increase

in error, and is most likely due to built-up edge forming occasionally on the tool’s
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Figure 5.10: 3D scan of a tool showing built-up edge.

flute(s), before detaching again. Figure 5.10 shows an example of a tool displaying

material built-up on the cutting edge. Considering a new tool, this addition of

material can result in an apparent blunting of the cutting edge, while a worn tool

may have material filling craters that have formed. It follows that, while briefly

attached, such material could alter AE recordings and cause occasional erroneous

classifications. This phenomenon is likely exaggerated by the increased number of

classes spanning the same range, as the margin between classes across the tool life

is decreased, and classes become closer. Environmental effects could also account

for some of the overlap between datasets, and one possible improvement to this

would be to take a reference observation each time a trial is started and normalise

across datasets. The key then is the progression of wear from a known reference,

such as which states a tool moves through and in what manner. Considering the

order of this data proves critical to understanding wear progression, it follows that

treating the data as a sequential problem would be beneficial. Given that a prior

observation provides greater insight into the likelihood of the current points state,

development of a probabilistic model which selects a class based on the previous

point appears a logical step in minimising outliers and constraining classifications

to a limited number of possibilities at each step.
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5.5 Overview of tool state classification

This chapter has discussed a selection of classification algorithms and presented the

benefits and drawbacks of a number of these before proceeding to explore the support

vector machine in more detail. After presenting the mathematical formulation of

the SVM, a linear example is trained for each dataset with prediction accuracies of

99.1% and 98.2% for trials one and two respectively. This result is advantageous,

as it indicates that, given in-process recorded AE data, tool state can be accurately

diagnosed and assigned to a specific class. In an industrial context, this represents

an effective method of indicating tool wear level to a machine operator, without

the need for interrupting the process. Currently, to ensure part safety, regular tool

observations are taken during machining, and can result in an 8% increase in machine

time if the process is paused for even 5 minutes per hour. Implementing an SVM

as discussed in this chapter, removes the need for regular stoppages for tool wear

observations as data is acquired during machining, and therefore offers direct time

and cost savings to the production process. The limiting factor of this method is

that it does not provide the operator with any insight into the wear rate of the

current tool, as it simply indicates a group in which the tool is believed to belong.

This method, however, is still a benefit when compared to the methods currently

applied in industry.

It is found that if one plots the state classifications in sequential order of obser-

vation and uses the class labels as wear measurements, the classified data points

indicate position on the wear curve. Following the progression between classes can

provide information relating to wear rate, indicating that a sequential model may

be an appropriate next-step. This is in agreement with the results from a single

model trained on all available data which shows a decrease in accuracy and greater

confusion between non-adjoining classes, highlighting the need to consider a given

points’ existing class when predicting its next most likely position.



Chapter 6

Tool state tracking

As discussed at the end of Chapter 5, wear classification has been proved possible

on a per-trial basis, using AE observations and a support vector machine to predict

a tool’s cutting-edge radius class. A problem arises when combining data from mul-

tiple trials, as environmental factors and material properties result in varying wear

curves. One solution to this problem is to treat the order in which a sequence of

observations arrive, as a fundamental insight into the most likely next observation,

rather than each point being independent. This chapter, therefore, focuses on se-

quential data in the form of Markov models, following a probabilistic approach to

predicting the most likely next state of a tool given its current level of wear.

6.1 Markov models

The most straightforward way to treat data follows that in Chapter 5, where the

sequential aspects of the data are ignored and observations are treated as indepen-

dent and identically distributed (i.i.d.). Figure 6.1 presents a graphical model of

independent observations {x1,x2,x3,x4...}, shown as independent due to the lack

of connecting lines between them. The issue with such an approach is that it fails

to take advantage of the sequential nature and patterns of the generating process.

Take the tool wear problem for instance, where the aim is to accurately predict the

level of wear present on a tools cutting edge; the assumption can be made that a tool

must become more worn during use as negative wear is irrational, and also that, in

93
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Figure 6.1: Observations as independent, corresponding to a graph with no links.

general, wear is a steady and progressive process rather than a set of rapid, instanta-

neous changes. It is worth noting that in a damage scenario, rapid wear progression

is entirely possible; however, this situation will be touched on more later. As dis-

cussed previously in Chapter 5, built-up edge can cause an indication that a tool is

wearing negatively, however, its effects can be ignored by selection of an appropriate

model topology, given that the usage duration and underlying wear is still known

to increase with machine time. If the data is treated as i.i.d., then the relative fre-

quency of classifications into each state is all that is gained. Taking the preceding

assumptions into account though, when based on a tool’s current classification, wear

is only likely to remain in its current class or move to a higher one, as moving back-

wards through classes is not possible without resharpening a tool. Knowledge of a

tool’s current class is therefore a significant piece of information when predicting

which class the next observation is likely to belong to. This method has been suc-

cessfully implemented previously to track the progress of tool wear in drilling [62];

however, this work only uses three states to indicate sharp, workable, and dull tools

respectively, and is based around measured cutting-force data. The main issue with

the work in [62], is that wear level per tool is not quantified, and is instead, treated

as a direct function of usage duration and inferred from the measured signals. Simi-

larly, previous work has been conducted with a focus on sequential tool wear during

milling, yet the success of this work is severely limited due to the sparse training

data and resultant binary classifier [81]. Probably the most promising work in this

area can be found in [61], where a 95% successful classification rate is obtained in

predicting sharp, worn, and broken tools during milling.

Following the procedure in [54], the i.i.d. assumption must be eased in order to

express this concept in a probabilistic model. One of the simplest ways to do this

is to consider the Markov model, in which the probability of being in a state at

any time, relies only on the state at the previous time interval. For machining, this

translates as the probability of the current wear state, relies only on that of the

wear state previously obtained - a logical assumption given that wear is cumulative

in nature. To begin with, the product rule is used to express the joint distribution

of a sequence of observations as,
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Figure 6.2: First order Markov chain of observations {xn} where the distribution
p(xn|xn−1) of a single observation xn is conditioned only on the previous observation
xn−1.

p(x1, ...,xN) =
N∏

n=1

p(xn|x1, ...,xn−1). (6.1)

Assuming then that each of the conditional distributions on the right-hand side is

only reliant upon the most recent previous observation and independent of all others,

the first-order Markov chain is obtained as shown in Figure 6.2. This then simplifies

Equation 6.1 to,

p(x1, ...,xN) = p(x1)
N∏

n=2

p(xn|xn−1). (6.2)

Through evaluation of (6.2) and application of the product rule, it follows that the

conditional distribution for a single observation xn, given all previous observations

up to time n, is given by

p(xn|x1, ...,xn−1) = p(xn|xn−1) (6.3)

and therefore, the distribution of predictions made about the next observation will

be solely dependent on the immediately preceding observation and independent of all

other earlier observations. This leads directly to the application to tool wear where,

due to its cumulative nature, it is anticipated that each measurement will encode

the previous information before it and, consequently, the conditional distribution

for each new observation only relies on that before it. Generally, the conditional

distributions p(xn|xn−1) are always equal and bear no dependence on n, following

the assumption of a stationary time series. In other words, at each new state predic-

tion the conditional probabilities are the same as for previous predictions and any

adjustable parameters are often fixed through some learning process. The Markov

chain can be extended to include the effects of more than one previous observa-
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Figure 6.3: Second order Markov chain of observations where the distribution of a
single observation xn is conditioned on the previous two observations xn−1 and xn−2.
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Figure 6.4: Markov chain of latent variables known as a state space model.

tion, creating an M th order chain in which the conditional distribution for a chosen

observation relies on the previous M observations. An example of this would be

the second -order Markov chain in Figure 6.3, where the predictions rely on both

the previous and previous-but-one variables. The downside of this approach is that

the number of parameters grows exponentially with the model order M and so be-

comes impractical very quickly. Assuming that the observations fall into K discrete

classes as previously, then each conditional distribution relies upon KM−1(K − 1)

parameters.

To build a model for sequential data that can be specified using a limited number

of parameters, while not being restricted to the Markov assumption of any order,

latent variables are introduced as the simple building blocks of more complex models.

Rather than using each observation to form a chain as in Figures 6.2 and 6.3, each

observation xn is assigned an underlying latent variable zn which is used to form

the Markov chain. These latent variables can, if necessary, be of different type or

dimensionality than the observed variable, yet the observations are conditioned on

the state of the corresponding latent variable. In a graphical form, this results in

the model shown in Figure 6.4, which satisfies the key conditional independence

property that zn−1 and zn+1 are independent given zn. Consider the case of an

indirect monitoring strategy implemented on a machine tool; the underlying process

forms the latent wear variables zn whereas the features calculated based on sensor

outputs correspond the the observations xn. The observed features are a direct

result of the underlying process, however, the actual wear state remains unseen.
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The joint distribution for this model is an extension of (6.2) and is given by

p(x1, ...,xN , z1, ..., zN) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn). (6.4)

This model describes the hidden Markov model (HMM) provided that the latent

variables are discrete, as is the case with single point wear measurements.

6.2 Hidden Markov models

As has been done previously, the model shown in Figure 6.4 is taken and the prob-

ability distribution of zn allowed to rely only on the state of the previous latent

variable zn−1 through a conditional distribution p(zn|zn−1). To form an HMM,

the latent variables must be discrete and it follows, therefore, that the conditional

distribution can be defined by a table of numbers known as the transition matrix

A, with each element defining a single transition probability. They are given by

Ajk ≡ p(znk = 1|zn−1,j = 1), and are probabilities and thus satisfy 0 6 Ajk 6 1

where
∑

k Ajk = 1 so that the matrix A has K(K − 1) independent parameters.

This allows the conditional distribution to be rewritten in the form,

p(zn|zn−1,A) =
K∏
k=1

K∏
j=1

A
zn−1,jznk

jk . (6.5)

It is worth noting here that the first latent node z1 is unique, as it has no preceding

node, and so has a marginal distribution of p(z1) given similarly by a vector of

probabilities π with elements πk ≡ p(z1k = 1) so that

p(z1|π) =
K∏
k=1

πz1k
k (6.6)

where
∑

k πk = 1.

The transition matrix for a single latent variable is shown graphically in Figure 6.5

where K = 3. Squares are used to distinguish between variables (like in Figure 6.3),

and the states of a single variable shown here. The arrows in this figure represent
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Figure 6.5: Transition diagram showing three possible states of a single variable.

the elements of the transition matrix Ajk. Similarly, if the latent states were consid-

ered in order, the representation in Figure 6.5 can be extended to form the lattice

representation of latent states shown in Figure 6.6, where each column represents

one of the latent variables zn.

The probabilistic model formulation is completed by defining the conditional dis-

tributions of the observed variables p(xn|zn, φ), where φ is a set of parameters gov-

erning the distribution. These parameters are defined as the emission probabilities

and for discrete values of x are specified in conditional probability tables much like

A. For observations x, of a continuous nature, these emission probabilities can be

represented by a Gaussian distribution for example. As xn is observed, the distribu-

tion p(xn|zn, φ) consists of a vector of K numbers corresponding to the K possible

states of the binary vector zn for a given φ. A simple example of Gaussian emission

probabilities is that of an observed binary signal, where the signal observed contains

Gaussian noise on the underlying steady signal. Given the underlying signal, the

probability distribution of observed points would also be Gaussian.

These emission probabilities can be expressed as

p(xn|zn, φ) =
K∏
k=1

p(xn|φk)znk . (6.7)



6.2. HIDDEN MARKOV MODELS 99

k = 2

k = 1

k = 3

A
11

A
11

A
11

A
33

A
33

A
33

...

...

...

n-2 n-1 n+1n

Figure 6.6: Lattice representation of the latent states including possible states and
transitions.

This allows the joint probability distribution over both latent and observed variables

to be written as

p(X,Z|θ) = p(z1|π)

[
N∏

n=2

p(zn|zn−1,A)

]
N∏

m=1

p(xm|zm, φ) (6.8)

where X = {x1, ...,xN}, Z = {z1, ..., zN}, and θ = {π,A, φ} denotes the set of

parameters governing the model.

Hidden Markov models can form a number of different structures by carefully se-

lecting the transition matrix values Ajk. A common example of this, relevant to

progressive tool wear, is the left-to-right HMM. This model constrains the move-

ment between states to only the forward direction, moving to states of a higher

value and restricting movement backwards. Many processes follow this assumption,

such as the case of tool wear mentioned earlier where tools can always be assumed

to increase in wear as they are used; the idea of a used tool becoming less worn

being nonsensical. This structure is easily obtained by setting the elements Ajk of

A to zero if k < j and results in the diagram shown in Figure 6.7. The HMM is

also capable of a degree of time-independence where stretching or compressing of

the time axis naturally results in a change in the number of transitions to the same

state before jumping to the next. This allows model predictions of wear to be largely

independent of the rate of wear, a result which is advantageous in the case where
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Figure 6.7: Lattice representation of the three-state left-to-right HMM in which the
state index k is restricted to an increase of 1 at each transition.

material properties and conditions can effect wear rate across a single part.

6.3 Training and state sequence prediction

Given a previously observed dataset X = {x1, ...,xN}, the parameters of the HMM

can be obtained using maximum likelihood. The likelihood function is obtained by

marginalising over the latent variables from the joint distribution

p(X|θ) =
∑
z

p(X,Z|θ). (6.9)

As the joint distribution p(X,Z|θ) doesn’t factorise over n, the summations over

zN cannot be treated independently and with N variables to be summed over, each

with K states, the total number of terms is KN . This is impractical as the number

of terms grow exponentially with chain length and so the expectation maximisation

(EM) algorithm is used as an efficient solution. For a full explanation and derivation

of this method, please continue to follow the procedure in Chapter 13 of [54]. As a

summary, however, the EM algorithm is split into its component parts and calcula-

tions are performed alternating between the E and M steps until some convergence

criterion is met, such as a minimal change in the likelihood function. In this case,



6.4. RESULTS 101

the algorithm runs until the log likelihood that the input sequence is generated by

the currently estimated transition and emission matrices, the change in norm of the

transition matrix (normalised by the size of the matrix), and the change in norm of

the emission matrix (normalised by the size of the matrix) are all below 10−6.

In the majority of cases, the latent variables have some meaningful interpretation

and so it is often beneficial to calculate the most probable sequence of states given

a sequence of observations. It is worth noting here that finding the most probable

sequence of states is not the same problem as finding the most probable set of states

individually and, in general, such a set of states will not correlate well to the most

probable sequence of states. The solution to the most probable sequence of states

is calculated efficiently using the Viterbi algorithm [54] which searches the space of

paths through a lattice structure to find the most probable path; its computational

cost growing linearly with chain length despite the number of possible paths growing

exponentially. Again, this follows the well documented procedure in Chapter 13

of [54] for those wishing to explore in more detail.

6.4 Results

Following a similar methodology to Chapter 5, a unique HMM has first been trained

and evaluated for each trial dataset, followed by a single model trained and evaluated

on data from a combination of both. Again, as applied in Section 5.3, a five-fold

cross validation is used given the modest dataset size, and ensures that the full

dataset can be used for both testing and training, while ensuring each data point is

never used for both training and testing a single model. In both cases, the model was

restricted to a left-to-right architecture as in Figure 6.7, although in this case there

are nine possible states corresponding to each unique tool measurement. As the

states of the training data are known, the parameter estimation becomes a simple

task of calculating the maximum likelihood estimate of the transition and emission

probabilities. Once these parameters have been defined, the Viterbi algorithm is

used to calculate the most probable path through the model given a set of testing

data.

Considering the first trial dataset independently, the trained model returns an overall

accuracy of 85.7% when comparing the resultant most probable sequence of states to

that actually measured. The training process in this instance takes 0.0005 seconds
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Figure 6.8: Confusion matrix of HMM sequence predictions for trial one.

on the same hardware as used in Chapter 5, making it a significantly faster algorithm

than that used for SVM training. The estimated transition matrix is, as expected,

a diagonal matrix containing probabilities greater than zero in (k, k) and (k, k+ 1),

and less than one for all but the last state whose probability of remaining in the

same state is unity.

The confusion matrix for this HMM can be seen in Figure 6.8 which provides a

straightforward comparison with the models trained in Chapter 5 and shown in

Figures 5.3 and 5.4. While it is clear to see that the resulting prediction accuracy

has dropped between model types (from 99.1% to 85.7%), it is worth noting that

not only does the HMM have the added benefit of being a probabilistic model, but

any misclassifications are between neighbouring states as opposed to being spread

through the state space. In general, the confusion matrix shows a greater number

of misclassifications below the ideal diagonal, followed by lower correct predictions

in the following state, indicating that the model is, in the case of states three, four,

seven, and eight, remaining in the current state beyond the instance at which a

transition should occur.

Now, considering the second trial dataset independently, a corresponding prediction

accuracy of 87.5% is obtained using a sequence prediction obtained in 0.0007 seconds.



6.4. RESULTS 103

Figure 6.9: Confusion matrix of HMM sequence predictions for trial two.

Again, when comparing this to the 92.7% given from a linear SVM it appears at

first as if this method is lacking in benefit; however, assessing the resultant confusion

matrix provides more of an insight into the advantage of this method. Comparing

that in Figure 6.9 with that from the SVM in Figure 5.4, the main difference is the

tightness of predictions to the diagonal in the HMM generated predictions. While

the overall error may be worse, in reality, a greater number of predictions to either

side of the correct state is preferential over misclassifications in distant states.

Another way to visualise how the predictions fit with progressive tool wear is to plot

the predictions alongside the measured state, using wear values as the state labels

in much the same way as in Chapter 5. As this method relies on the sequential

nature of the data, the correct predictions are shown in green, whereas incorrect

predictions are shown in red with their corresponding correct value in blue to enable

comparison with the measured sequence. These plots for both trials are shown in

Figures 6.10a and 6.10b for trials one and two respectively. The first thing to note

is that the general shape of the curves follow closely those in Figure 5.7; secondly

the lack of scattered points away from the central trend show a reduced number of

largely misclassified points.

In both cases, as indicated by the confusion matrices, the models tend to continue
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to return current state predictions for longer than necessary before the transition to

the next state. This could be corrected by a simple adjustment of the probabilities

in the transition matrices; however, it poses little issue, given that the general trends

remain the same and the more worn states are reached correctly. This is likely due

to the fact that distinguishing excessively worn tools in the input space is easier

than those in the middle of their life.

Due to the sequential nature of the input data and HMM algorithm, it doesn’t follow

to consider the data from both trials together, as in Chapter 5, considering this will

fundamentally alter the sequence of observations and cause the resulting model to

be inappropriate to any new dataset. An interesting test of this type of model is

to train the HMM on the data from one trial and test on the other. While it is

expected that the overall prediction accuracy will be poor due to the two different

wear curves of these datasets, it is interesting to see the resulting predicted state

sequence and how this compares to that which the model is trained with.

Figure 6.11 shows a plot similar to those in Figure 6.10, based on an HMM trained

and tested on independent datasets, in this case plotted as linear state labels rather

than wear measurements. As anticipated, due to the different wear curves, the

resulting model accuracy is only 23.6% - a poor result in any sense. The figure,

however, shows a curious phenomenon in that the predictions appear to simply be

a lagged realisation of the expected curve. Considering the inherent behaviour of

the HMM, this would suggest that progression through states in trial one is slower

than that in trial two due to the distance between state predictions in Figure 6.11

increasing. Towards the end of life, this gap begins to close again implying that the

rate of progression of trial one has increased or similarly, trial two has decreased with

respect to one another. Comparing the wear curves in Figure 6.12 with Figure 6.11

confirms this suspicion. Figure 6.12 shows firstly that the curve for trial one begins

in a lower wear state, reaching the same state as trial two at t+ 1. Paying attention

to the curve gradients, it also shows that the wear rate in trial 2 is much higher in the

initial stages that trial one, reaching a roughly similar rate during the mid-life, with

the wear in the latter accelerating at the end of life. These characteristics correspond

directly to Figure 6.11, where the initial state prediction of trial one unsurprisingly

remains in the initial state for twice as long when compared to the second dataset

used for training. As the wear rates and, therefore levels differ, the gap between

predictions grows, shrinking again as the wear levels begin to coincide in the final

state. This provides evidence that given a baseline dataset, the HMM can not only
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(a) Sequentially classified states from trial one.
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(b) Sequentially classified states from trial two.

Figure 6.10: Sequential predictions from HMM.
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Figure 6.11: Sequential predictions from HMM trained on dataset two and tested
on dataset one.
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Figure 6.12: Wear curves of both trial datasets.



6.5. OVERVIEW OF TOOL STATE TRACKING 107

1 2 3 4 5 6 7 8 9

Data point

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 d
iff

er
en

ce

Normalised difference between wear curves and sequential prediction curves

Wear measurement difference
State prediction offset

Figure 6.13: Normalised difference between wear curves and sequential prediction
curves.

be used to probabilistically classify tool wear, but to also give an indication of wear

rate in relation to the training set, should it vary.

A further way of visualising this concept is shown in Figure 6.13, where the difference

between wear curves in Figure 6.12 and predicted state curves in Figure 6.11 are

normalised and plotted beside each other. A reasonable correlation can be observed

between these plots, and further work into measuring correlations would aim to

confirm the idea that the time between HMM state predictions and a predefined

baseline can be used to estimate wear rate alongside wear level.

6.5 Overview of tool state tracking

This chapter has explored the use of the hidden Markov model as a tool to enable

tracking of tool wear state, exploiting the sequential, progressive nature of wear

and the HMM. After presenting the mathematical formulation of the HMM and its

graphical form, two independent models are trained and validated corresponding

to each separate trial. These models result in prediction accuracies of 85.7% and

87.5% respectively, which while indicating poorer performance than the previously

discussed SVM, have the benefit that errors are in neighbouring states and are,

therefore, favourable in comparison to scattered predictions.

The model trained on a single dataset is then tested with the data collected from an

independent trial, as would be the case in industry, and rather unsurprisingly does

not give the same results as testing with data taken from the same set. It does,
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however, provide predictions of wear that account for the varying wear rate between

trials, allowing both wear prediction and rate estimation from an observed input

sequence by calculating the lag in state progression from a base set.

The HMM, therefore, proves to be a useful tool in wear tracking given its ability

to withstand stretching or compressing of the time axis corresponding to decreasing

or increasing wear rates respectively. This resilience does, however, rely on the

observed data remaining in the same input space between tools. More specifically,

this method relies on machine process parameters remaining constant. A change

in parameters can, depending on scale, result in observed signals varying out of

the range experienced during training and would require retraining on this new

parameter set accordingly.

In order to further validate these findings and implement such a model industri-

ally within SLS, the requirement is mostly one of more data. By monitoring the

industrial process and taking regular tool wear measurements, similarly to the ex-

perimental method in this thesis, it is expected that the tools will wear at differing

rates and hence provide comparable data to that within this chapter, further con-

firming the previous findings. In its current form, the aforementioned model can

be implemented into production, given a training set is first provided under fixed

process parameters and conditions. As an extension, running complementary tri-

als in which process parameters are modified incrementally would increase the size

of the input space, and further exploratory work in this area would give a greater

understanding of parameter correlations with variations in observed features.



Chapter 7

Tool state prediction

Chapter 6 has shown that it is possible, based on a previous observation, to predict

a tool state corresponding to the following AE observation in a sequence. This

provides the machine operator with the ability to track the current tool’s wear level

during machining. Given the ability of the HMM to track wear state and, therefore,

infer wear rate, the final task is to develop a method of predicting future wear state,

given a sequence of past observations and a model trained on a wide range of data.

This chapter focusses on the implementation of Gaussian process (GP) based mod-

els, more specifically a Nonlinear Auto-Regressive with eXogenous inputs (NARX)

approach based on Gaussian processes to predict wear level with natural confidence

bounds for predictions.

7.1 NARX models

The problem of predicting future wear state based on process feedback has been

relatively unexplored in previous, machining-focussed work. Generally, detecting a

current state is adequate, given a repeatable process and operator expertise. Ar-

tificial neural networks are the most common methodology found in the previous

literature [24], and an in-depth review of previous implementations can be found

in [24], although these methods have still not been widely adopted, due to poor

performance and model over-fitting on limited datasets. The concept of future pre-

diction of tool wear, therefore, is considered a new area of exploration with severely
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limited previous work to build upon.

In addition to the neural networks used before, a number of regression tools exist

for estimating future values of time series data, the most common being simple

polynomial regression or calculation of the moving average. Polynomial regression

aims to model a relationship between input and output variable as a polynomial

of N degrees in the input, while the moving average method uses an average of

previous outputs to calculate a potential next value of the series. In both cases

alone, the tools would use a fraction of the data available in this work, considering

it is believed that past inputs (of multiple dimensions) and outputs provide insight

into the future state of the process. A model which can incorporate various inputs,

outputs, and lagged instances of both, therefore, is desirable.

Following its introduction in 1985 [82,83], the NARMAX (Nonlinear Auto-Regressive

Moving Average with eXogenous inputs) model has been one of the most versatile

and widely used time series models for nonlinear system identification [84,85]. The

NARMAX model form encompasses both nonlinear discrete-time process and noise

models, however, by assuming the noise process to be white Gaussian the simpler

NARX model can be used.

Previously, the NARMAX model has been used in areas such as modelling of gas

turbines [86], flexible robots [87], electron flux evolution [88], and financial trends [85]

to name a few. The common detail here is the ability to measure both inputs and

outputs, and makes the NARMAX model suitable for applications such as industrial

processes, control systems, economic data (and financial systems), biology, medicine,

and social systems [85]; however, this list is by no means exhaustive. Specifically to

the work in this thesis, the NARX model is useful as it enables a model built around

the full set of observations and features available, including past wear states, AE

features, and noise. The inclusion of past outputs reduces the number of past inputs

which need to be included in the model, in turn decreasing model complexity. The

importance of this fact is explained and presented in [85].

The NARX model, therefore, takes a form whereby the current system output value

is predicted based on a nonlinear function F of previous inputs (xn) and outputs

(yn)

yi = F (yi−1, . . . , yi−ny ;xi, . . . , xi−nx+1) + εi (7.1)
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where the residual sequence εi is white Gaussian. The number of output lags is

denoted ny, similarly, the number of input lags is denoted nx. This formulation of

a NARX model differs a little from the original [82, 83], in that it allows the use of

the present input xi [84].

It is usual to find NARX models based around a multivariate polynomial expansion

basis for the function F where the expansion coefficients are learned using linear

least-squares methods. In addition, nonparametric NARX model forms are possible

based around a number of machine learning techniques such as neural networks for

example [89,90].

Considering the multivariate polynomial case, the problem of model training can be

split into two stages. First, establishing the structure of the problem and selecting

which multinomial terms to include in the model, and secondly, establishing the

expansion parameters for those terms. Nonpolynomial variants of the NARX model,

however, often disregard the primary step and simply include all expansion terms

consistent with certain hyperparameters of the model form. In this case, the only

consideration is the number of terms included in the model, with too many leading

to overfitting through increased model complexity, and therefore, the model learning

the noise included with the signal of interest [84].

As previously mentioned, another recently established form of the NARX model is

that based upon Gaussian processes [91]. The GP-NARX model has the distinct

advantage in that it consists of a Bayesian framework which produces natural confi-

dence intervals for the resulting predictions. The GP will be discussed further in the

following section; however [92], provides an overview of the literature surrounding

the GP-NARX form.

7.2 The Gaussian process

A Gaussian process is simply a generalisation of the Gaussian probability distribu-

tion [93]. A probability distribution is a mathematical function that describes the

probability of outcomes of a given event, and can take the form of either a discrete

or continuous distribution given the format of the possible outcomes. A stochastic

process, on the other hand, governs the properties of functions, with a Gaussian

process consisting of elements of F (x) at x which form a Gaussian distribution. The
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basic premise here being to perform inference over functions directly, as opposed to

inference over parameters of functions [84].

For simplicity, the work here will assume a single output variable for any system of

interest [84]. As in the preceding chapters, and for the case of GPs in general, the

matrix of multivariate training inputs is denoted as X = [x1,x2 . . .xN ]T , while the

corresponding vector of training outputs is given as y. Similarly, the input vector

for a testing point is denoted by the column vector x∗ with the unknown resultant

output denoted by y∗.

The key regression relationship behind the Gaussian process is,

y = f(x) + ε (7.2)

where ε provides a noise term which is assumed to be a zero-mean random variable,

given as

ε ∼ N (0, σ2
n). (7.3)

The noise variance σ2
n is classed as a hyperparameter of the model which requires

estimation. It therefore follows that

y ∼ N (f , σ2
n) (7.4)

where f is a resulting unobserved or latent variable.

A Gaussian process prior is formed by assuming a Gaussian distribution over func-

tions for the latent f ,

f(x) ∼ GP (m(x), k(x,x)) (7.5)

where m(x) is the mean function and k(x,x′) is a positive-definite covariance func-

tion. As a visual example, drawing samples from a Gaussian process prior distribu-

tion with a linear covariance function and zero mean, results in the plot shown in

Figure 7.1. A second, less trivial example can be see in Figure 7.2 which similarly
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Figure 7.1: Samples from a Gaussian process with linear covariance function and
zero mean.

uses a zero mean prior, however, the covariance function in this case is a squared

exponential (SE). The SE example contains a characteristic length scale which high-

lights the importance of the specification of the prior, as it fixes the properties of the

functions considered for inference. A number of covariance functions are available

depending upon the particular application and prior beliefs, and manipulation of

parameters such as the length scale allow, for example, changing the rate of varia-

tion of the functions to suit the specific situation. The problem of learning in GPs

is simply that of finding suitable parameters for the covariance function, providing

a model of the data which one can interpret [93].

Given a dataset of training points, one can consider only those functions which pass

through these points exactly, reducing uncertainty close to the observations. The

combination of the prior and training data results in the posterior distribution over

functions. The addition of more training data points would see the mean function

adjust itself to pass through these new points also, and the posterior uncertainty

would continue to reduce close to the additional points.

This reduction is made possible given the defining property of the GP, that the

density of a finite number of outputs from the process is multivariate normal. Using

this property alongside the known marginalisation properties of the Gaussian density
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Figure 7.2: Samples from a Gaussian process with squared exponential covariance
function and zero mean.

allows one to simply consider just the values of the function in Equation 7.5 at the

points of interest, consisting of the training points and predictions. Allowing f to

denote the function values at the training points X, and f ∗ to denote the predicted

function value at a new point x∗, one obtains,

(
f

f ∗

)
∼ N

(
0,

[
K(X,X) K(X,x∗)

K(x∗,X) K(x∗,x∗)

])
(7.6)

where a zero-mean prior is chosen for simplicity, and K(X,X) is a matrix whose

(i, j)th element is equal to k(xi,xj). It follows that K(X,x∗) is a column vec-

tor whose ith element is equal to k(xi,x
∗), and K(x∗,X) is the transpose of the

same [84].

Considering that the unobserved variable f is of little interest, it can be integrated

out from Equation 7.4 [93], as the relevant integral,

p(y) =

∫
p(y|f)p(f)df (7.7)

is over a multivariate Gaussian and has a closed-form solution. The result of this is



7.2. THE GAUSSIAN PROCESS 115

the joint distribution for the training and testing target values for the observed y

(
y

y∗

)
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,x∗)

K(x∗,X) K(x∗,x∗) + σ2
n

])
. (7.8)

Once the joint distribution p(y, y∗) is converted into a conditional distribution

p(y∗|y), using standard results for the conditional properties of a Gaussian, the

final expression is obtained [84,93]

y∗ ∼ N (m∗(x∗), k∗(x∗,x∗)) (7.9)

where,

m∗(x∗) = k(x∗,X)[K(X,X) + σ2
nI]−1y (7.10)

is the posterior predictive mean, and

k∗(x∗,x∗) = k(x∗,x∗)−K(x∗,X)[K(X,X) + σ2
nI]−1K(X,x∗) + σ2

n (7.11)

is the posterior predictive variance, again expressed for the observed y.

The result of this definition is that the GP model provides a posterior distribution

for the unknown y∗. The mean from Equation 7.9 can be taken as the best estimate

of the value of y∗, while the variance can be used to define confidence intervals.

As previously mentioned, when using a covariance function such as the SE function

of the form

k(x,x
′
) = σ2

f exp

(
− 1

2l2
||x− x′||2

)
, (7.12)

it is necessary to select the optimal hyperparameters for a given problem. Such

parameters l and σ2
f , together with the noise variance σ2

n, form the set θ which can

be optimised through a number of methods. In this case, maximising the function
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f(θ) = −1

2
yT [K(X,X) + σ2

nI]y − 1

2
log |K(X,X) + σ2

nI| (7.13)

provides the hyperparameters and can be conducted using a simple gradient descent,

however, more powerful algorithms are available such as that in [94].

7.3 GP-NARX

The GP models discussed in Section 7.2, are essentially static maps having learnt the

relationship between point inputs and outputs through a training stage. Continuing

to follow the procedure in [84], it is relatively straightforward to adapt the model to

learn dynamical system behaviour by applying the NARX framework. The NARX

form in Equation 7.1 is used with the function F replaced with a GP.

In the previous chapters, model assessment has simply consisted of comparing model

predicted state classifications with a predefined validation set and determining the

number of correct classifications. As this work has moved towards a regression

problem, the model targets are developed from the discrete wear measurements

to vectors, and are formed using cubic-spline interpolation on class labels used in

Chapters 5 and 6. There are a number of options to determine the validity of the

dynamic model, the most basic method of validation is to compute one step ahead

(OSA) predictions, where the training data is used to predict outputs for a given

time using observed inputs and outputs prior to that instance. Once predicted

outputs are obtained, it is possible to compare the predicted and observed outputs

at each point in much the same way as in the previous chapters. This can be defined

as

y∗i = F (yi−1, . . . , yi−ny ;xi, . . . , xi−nx+1). (7.14)

As a value for comparison, the Normalised Mean-Square Error (NMSE) is used and

given by

NMSE(ŷ) =
100

Nσ2
y

N∑
i=1

(yi − ŷi)2. (7.15)
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As mentioned in [84], previous experience has shown that a NMSE of less that 5.0

indicates good agreement, while below 1.0 indicates an excellent fit.

A more stringent test of the model is to compute the Model Predicted Output

(MPO) which is given by,

y∗i = F (y∗i−1, . . . , y
∗
i−ny

;xi, . . . , xi−nx+1) (7.16)

where rather than previously-observed outputs being used, the previously-predicted

outputs are used for the following predictions. It is worth noting here that this test

can be conducted on both testing and training data.

The GP algorithm does have a couple of drawbacks which are worth bringing to

attention here. The first being that the algorithm relies on the inversion of the

covariance matrix, which is inherently computationally expensive, costing O(N3)

multiplications, where N is the number of training points. The prediction of a new

output requires O(N) multiplications for the predictive mean and O(N2) for the

corresponding variance. While this is not an issue considering the relatively modest

size of the training set used in this work, it should be noted that this fact can be

prohibitive when considering larger datasets. The second obstacle is due to noise on

the training set when making multi-step ahead predictions, as the predictive outputs

are fed back as inputs and carry their predictive uncertainty with them. This results

in any noise on the inputs being amplified by future predictions. For further detail

of potential solutions to these drawbacks, the reader is directed towards [84].

7.4 Results

Since tool wear itself is an intrinsically continuous quantity (despite wear measure-

ments forming discrete classes), the implementation of the GP-NARX methodology

here aims to solve a regression problem as opposed to the classification approach

of previous chapters. A requirement of the regression problem is paired inputs and

outputs which, given the limited number of wear measurements, presents a challenge

in obtaining sufficient data. One solution to this problem is to use ordinal regres-

sion [95], another is to simply repeat the experimental work, taking tool scans at

a higher frequency. This concept, however, owing to the time taken to obtain such
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Figure 7.3: Cubic wear curve of flank wear vs. length of the cutting path. The
break-in period (I), steady-state wear region (II), and the failure region (III) are
indicated.

measurements, becomes impractical in reality. A more feasible approach is to use

previous knowledge of tool wear curves to interpolate between the currently mea-

sured points to increase the size of the dataset to match that of the AE features. A

classically accepted tool wear curve consists of three distinct areas, together forming

a cubic curve [23]; the break-in period (I), steady-state wear region (II), and the

failure region (III) as shown in Figure 7.3. Given that wear is generally a progressive

mechanism, it follows that a spline interpolation between points is adequate for this

purpose and provides a smooth curve in keeping with previous works. The resulting

curves can be seen in Figure 7.4 and will be used as the output datasets from this

point. An example of one of the input feature vectors for each trial can be seen in

Figure 7.5, where the moving average is also plotted alongside.

The second challenge faced with such a regression problem, is the splitting of data

into both training and testing sets. Selection of a suitable training set is of fun-

damental importance to the success of such a model, as the Gaussian process is

incapable of extrapolation with any degree of certainty and, therefore, must expe-

rience training data of the full range to be expected as an input during prediction.

For this reason, both trial datasets are split in two by taking alternate input fea-



7.4. RESULTS 119

0 50 100 150 200 250 300 350 400 450

Data point

0

20

40

60

80

100

120

140

C
ut

tin
g 

ed
ge

 r
ad

iu
s 

/m
ic

ro
ns

Interpolated wear curve from trial one

(a) Interpolated wear curve from trial
one.
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(b) Interpolated wear curve from trial
two.

Figure 7.4: Interpolated wear curves.
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(a) Single input feature vector from trial 1.
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(b) Single input feature vector from trial 2.

Figure 7.5: Examples of single input feature vector for GP-NARX from each trial.
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ture vectors for each training set and assigning the missed vectors to testing sets.

The common method of splitting trial datasets in half, for example, is inappropriate

considering the nature of the curves. The selection of a training set in this case is

mainly limited by the fact that, due to experimental budget and timescale, only two

example datasets are present, each with profoundly different wear curves. Merging

these two datasets disturbs the time-dependent nature of the signals and, there-

fore, each dataset will initially be considered independently. Another option is to

concatenate datasets to simulate a tool change (with a sharp change in wear state)

which will be explored subsequently.

To begin with, the individual trial datasets are split into two subsets for training and

testing respectively. Considering the universal nature and limited number of param-

eters to optimise, the squared-exponential covariance function is chosen, however,

in contrast to that in Equation 7.12, automatic relevance determination (ARD) is

used to learn an individual length-scale for each dimension of data depending upon

its relevancy to the regression [96]. The SE ARD kernel function is defined as

K(x,x
′
) = σ2

f exp

[
−1

2

D∑
d=1

(
xd − x

′

d

ld

)2
]

(7.17)

where ld is an individual length-scale hyperparameter for each input dimension xd.

As previously discussed, the hyperparameters l, σ2
f , and σ2

n are to be optimised to

suit this particular problem and in this case, a population based optimiser using a

quantum-behaved particle swarm [97] is used to maximise the log marginal evidence

in Equation 7.13. This method is based upon that discussed, and code used, in [94].

The last requirement before training and validation can commence, is to select the

number of input and output lags required for the model, which are also hyperpa-

rameters of the GP-NARX model. A simple search based around minimising the

predictive error of the model resulted in input and output lags of nx = 8 and ny = 3

respectively.

Using nx = 8 and ny = 3 along with those optimal GP hyperparameters obtained,

the GP-NARX model can be trained and validated on separate and unique sets

taken from the total dataset of trial one. Focussing only on the MPO test data

predictions, due to their more stringent nature, the NMSE calculated is 1.21; a

satisfying result when also considering the confidence intervals (± 3 standard de-
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Figure 7.6: GP-NARX model predicted output based on training and validation sets
taken from trial one data.

viations) due to parameter uncertainty are very close to the data. The resulting

prediction comparison can be seen in Figure 7.6. Following the same procedure for

the second trial, the NMSE is 0.187 which results in the plot shown in Figure 7.7.

Both of these plots show that the model predicted outputs are close to the observed

data, featuring tight confidence intervals around predictions. In either case, the

target curves are relatively slow moving and are not difficult for such a dynamical

model to grasp, especially when using lagged outputs. Figure 7.6 clearly shows

the effect of feeding predictions back into the model when errors are present as

at approximately point 175 the predictions begin to slowly drift away from the

observed data, increasing in error as more predictions are made. The risk of using

automatic relevance determination in the NARX case (especially where training

and testing data are similar, and previous outputs are used in prediction) is that

the model can effectively focus entirely on the previous output points rather than

input data, learning only the curve shape and appearing valid under testing. In

this case, considering the previously proven relationships between input vectors and

output classes, it is assumed that this is not the case; however, the best way to prove

validity is through increased testing set size; something which is out of scope of this

work due to resource availability and budget.
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Figure 7.7: GP-NARX model predicted output based on training and validation sets
taken from trial two data.

The smooth nature of the wear curve is no difficult task for the GP-NARX model;

however, combining wear curves to simulate a tool change poses another challenge

for such a model. An example of such a scenario can be seen in Figure 7.8 where

the observed output curves are concatenated. The sharp drop at point 220 breaks

the smooth, slow moving function and requires modification of the length scale

hyperparameter to accommodate the sudden change in direction.

Training the GP-NARX using the previously adopted procedure, and testing on

the other half of the combined points results in the plot shown in Figure 7.9 with

associated MPO NMSE of 2.79. It is clear to see that the predicted function is

more of a coarse function, lacking the smoothness of Figures 7.6 and 7.7 due to

the decreased length scale required to capture the abrupt discontinuity. This figure

also shows that the resulting model manages to capture the transition between tools

well, albeit overshooting slightly. It is worth noting that while the NMSE is greater

and, therefore, indicates a poorer model predicted output, the benefit is that the

trained model is more general, having experienced a wider range of training inputs.

Another benefit of including multiple trial data in this way is that it enables further

validation of the model, and confirmation of previous assumptions, by switching

the order of concatenation between training and testing sets. This ensures that the
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Figure 7.8: Observed output curves concatenated into single training dataset.
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Figure 7.9: GP-NARX model predicted output based on training and validation sets
taken from concatenated trial data.
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Figure 7.10: GP-NARX model predicted output based on training and validation
sets taken from concatenated trial data.

training process isn’t simply learning the output curve shape, but rather learning

the desired relationships between model inputs and output in a way that it is flexible

between tools. Again, training using that data shown in Figure 7.8, however, this

time testing using a reversed order, results in the plot shown in Figure 7.10.

This is an encouraging result, as the MPO NMSE here is 2.81, representing a good

fit to the observed data despite the validation data being of a different shape to

that the model was trained upon. Not only does this provide further evidence to

support that the models trained on each trial dataset independently are valid, but

also implies that given enough training data, such a model would be robust to tool

changes and varying wear rates.

While this is a positive result, there is still certainly room for improvement. Taking

both Figures 7.9 and 7.10 into consideration, there are areas of both where the

predictions begin to deviate from the observed data, albeit being corrected at a

later point. This implies prediction error fed back as input noise, and indicates a

need for an improved training set, alongside an exploration into kernel selection. For

the purpose of this work, all trained models have used the previously described SE

ARD kernel function, given the relatively slow moving nature of the wear output

and tunable length-scale hyperparameter. There may, however, be a more suitable
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kernel function or combination of functions depending upon the specific process and

the expected behaviour of the output. This concept is touched upon in [98], given

that the issue of optimal kernel selection in general is beyond the scope of this thesis.

7.5 Overview of tool state prediction

This chapter has detailed the Gaussian process and its combination with the NARX

model to form a useful tool for wear prediction with associated confidence bounds;

it details selection of training and testing data, based upon interpolated wear curves

for both independent trials, followed by a combination of both.

The models trained on half of the data from trial one and trial two return NM-

SEs of 1.21 and 0.187 respectively, indicating a healthy agreement between model

predicted outputs and observed testing data. It is noted, however, that due to the

similar nature of the testing and training data in both of these cases, the results

could potentially be misleading if the model is heavily biased to learning the output

curve over inputs. Ideally, to confirm this isn’t the case, a greater volume of data

is required, albeit this is not practical at this stage of the work. As a substitute,

the training curves are concatenated and a model is trained on a combination of

data from both trials. This method has the benefit of a larger training set and,

therefore, more general model, resulting in a NMSE of 2.79. While this suggests

a lower quality fit than treating each trial independently, it does provide the op-

portunity to reorder the wear curves of the testing set to ensure that the model

isn’t simply duplicating the output seen during training. By doing this, a NMSE of

2.81 is obtained, confirming that the model is valid, and capable of performing wear

prediction throughout tool changes and under differing wear rates.

It is concluded that this method is a capable technique for industrial tool wear

prediction, where a greater quantity of data would be beneficial to allow further

testing and validation. As mentioned in the chapter, Gaussian processes are very

good at interpolation but are incapable of extrapolation in this application and as

such, training data is needed which contains a full range of likely signals throughout

whichever process is being observed.

In an industrial context, in-process data is readily available, and given access to

this, such a model could be trained on each specific process within a manufacturing
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plant such as SLS. Following the initial training phase, continuous observation of

a machining process can occur and the GP-NARX model can provide the operator

with tool life predictions for each individual part, and the corresponding confidence

intervals of each prediction. The ultimate goal of such a method, is to remove

the need for constant human observation of the machining process - a goal which

the work presented here takes a step towards achieving. Implemented across a

number of machining centres, a single operator could be responsible for a greater

number of machining instances, with each machine informing the operator of when

the next tool change is likely to be required. Pairing this method with a scheduling

system naturally leads to implementing scheduled tool maintenance, in an optimised

manner, based on the real measured conditions within the factory.



Chapter 8

Conclusions and future work

Now that the industrial motivation, experimental setup, data collection, and wear

modelling have been detailed, it follows to formally conclude this work, including ex-

plaining any limitations and future work that could be undertaken, along with how

industrial implementation of the predictive models developed could be achieved. The

work here has attempted to present the steps in developing a predictive tool wear

model in a logical manner, beginning with justification of the particular process cho-

sen and describing the methodology of acquiring representative data, following with

applying three increasingly-capable modelling techniques, and ending with testing

a working predictive model on the data obtained. This concluding chapter will act

as an overview of the conclusions drawn at the end of each preceding chapter, with

additional focus on industrial implementation and future work.

8.1 Experimental data collection

The experimental procedure used, has consisted of two independent machining trials,

intended to provide unique datasets for comparison and to provide adequate data for

modelling. The trials each consisted of machining a number of test coupons while

collecting AE data primarily, and resulted in nine tools at different wear states from

each trial. These tools were then measured and correlated with the AE features

generated by cutting with each tool.

This experimental methodology has the main benefit that for each trial completed,
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it provides a full selection of related and measurable components. Using individual

tools and material specimens ensures that once the developed machining process

is complete and accompanying AE data collected, the used tools and cut material

is available indefinitely for further analysis and repeated measurements if required.

Splitting the experimental trials into two stages also has the added benefit of re-

ducing cost and machining time, as machining a cylindrical billet is an industrial

representative process which provides a continuous supply of material for extended

cutting durations.

The main downside of this method is the associated cost of using multiple tools,

each being a costly purchase when considering their solid carbide construction. Not

only that, but the experimental procedure is incapable of providing a continuous

dataset from new to failed tool, as the tools are removed for measurement. Con-

tinuous measurement of a single tool would also result in such a large volume of

data that it may be infeasible to store (due to the high data sample rate needed

for AE recording), and would be impossible to take wear measurements in-process

due to the use of high pressure coolant obscuring any view of the cutting edge, and

the rotational speed not providing adequate scan time. Any chosen methodology,

therefore, requires an interrupted process and the associated limitations this brings.

That being said, when monitoring a continuous industrial process, the data vol-

ume limitation is lifted, as samples can be taken for feature calculations and then

discarded once a wear prediction is made.

In an ideal world, if budget and timescale were no issue, the trial procedure would

have been carried out more than twice, with each instance split into more than nine

tools. This would improve the limited number of points present on each wear curve

and reduce the interpolation needed in Chapter 7; however, nine tools is considered

throughout this work to provide an adequate number of class labels and, coupled

with previous knowledge of common wear curves, a reasonable insight into the shape

of the wear curve for each trial.

Looking at the wear curves gained from tool measurements following each trial,

reaffirms the motivation behind this work entirely. It is clear to see that despite

following the same testing procedure with identical tools, the material variations

result in vastly different wear curves in each instance. This variation is beneficial

in the sense that it clearly demonstrates the need for an intelligent monitoring

solution, while providing enough data to explore and validate correlations between

AE features and wear. It does, however, pose the questions of how much variation is
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likely to be experienced during industrial manufacture of these components, whether

due to material variations, environmental conditions, process parameters, or built-

up edge interference. For this reason, one of the main areas of future work is

to repeat the experimental procedure a number of times, to ensure that enough

data is gathered for training a predictive model before industrial implementation.

The more different wear curves and greater the range of input features experienced

during training, the more accurate a trained model is likely to be. It is worth

noting that implementation of any such model becomes a case of obtaining adequate

training data over the full range for that particular process. Should one wish to

implement the models described in this work for their own industrial application,

the experimental procedure (or similar) would need to be carried out to provide

training data applicable to that specific situation.

8.2 Wear modelling and prediction

Chapters 5, 6, and 7 follow a natural progression from wear classification to pre-

diction, moving from a time-independent diagnosis to a time-critical prognosis. It

is established that a linear SVM is a capable model for classifying tool wear state

given a selection of time-domain AE features as inputs. The classification method

is well suited to this problem due to the discrete wear measurements taken, each

of which corresponded to a number of AE data points; it also further confirms the

existence of solid relationships between AE features and wear. A novel method of

obtaining tool wear measurements is used, based upon 3D cutting-edge scans, which

provides a greater understanding of wear level and progression when compared to

existing wear measurement techniques [5, 23, 24]. The key result of Chapter 5 is

that diagnosing a tool’s state can be improved by including the order that observa-

tions are experienced in. A confusion matrix is presented containing a combination

of data from both trials, and it is clear to see that a number of misclassifications

occur scattered between classes; an undesirable situation due to the possibility of

classifying points far away from their intended class. In industry, this could have

the consequence of component damage if it results in over-use of a tool, or increased

cost, if a tool is removed before its useful life is reached. It is therefore suggested

that by taking into account the existing class label when suggesting the most likely

class for a newly-observed instance, the accuracy of the model can be improved

and errors minimised to within a class either side of the actual. The hidden Markov
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model is the ideal candidate for such a situation, providing a probabilistic prediction

of the most likely state of an observation based upon the currently occupied class.

The HMM is successful in providing accurate sequential state classifications, with

any error remaining alongside the diagonal of the confusion matrix. This is beneficial

over that given by the SVM as, while the misclassification rate may be higher, the

error of each misclassification is less and provides a less misleading diagnosis. It is

also established within Chapter 6, that wear rate can be inferred from HMM class

predictions by comparing the class curve to that of a baseline dataset, another novel

finding when compared to previous work in the research area. This finding is a

positive result as it indicates that although the wear curves (and, therefore, rates)

of the two independent trials differ, the relationships between wear and AE features

remain present, exclusive of wear rate. For industrial application, this is also a

productive result as it provides evidence that a single wear trial could be conducted

to gather model training data, with subsequent cutting operations simply being

compared to that control set. The downside of this method is that any change in

process parameters would require retraining of the model to obtain a new transition

and emission matrix, specific to those values. This is obviously a time consuming

and costly process that is less than ideal in a changing production environment.

The SVM suffers from a similar issue, since data unseen during training and distant

from existing points cannot be confidently classified, although it may still fit within

the class bounds defined in the SVM and result in successful classification. As an

extension of this approach, a predictive model is required that can predict future

wear states given a current and potentially changing wear rate; the GP-NARX

model proving an ideal candidate for this prediction problem that has not yet been

investigated before this work.

The GP-NARX model predicted output is shown to accurately predict continuous

wear with natural confidence intervals for each independent trial. The risk of using

ARD to weight input features is highlighted when considering the similarity between

training and testing sets, given that weighting the previous outputs highly could

cause the model to be biased towards output only, providing misleading results. As

a more stringent test, where possible without altering the dynamics of the process,

the data is concatenated for training, and reordered for testing. This presents the

possibility of switching the trial curves order between the training and testing sets to

prove independence of wear order and output curve shape. The model is successful

in predicting this new shape of output curve and confirms that the GP-NARX model
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is an ideal tool for predicting tool wear during machining. It does, however, require

training data of the full range likely to be experienced during operation, to maintain

prediction confidence. Given the success presented in Chapter 7 and the absence

of data-based future tool wear prediction in previous work, this forms a promising

contribution to the development of autonomous manufacturing processes.

8.3 Industrial implementation

While the industrial nature of this work has remained an important concern through-

out, it is worth drawing attention to the further requirements needed for a full in-

dustrial implementation of such a predictive model. The concern here relies on a

real-time, on-line system implementation rather than the off-line development work

focused on in this work to date. Considering the progressive nature of wear and the

relatively long usage duration, this should be a somewhat straightforward task, as

the time to process a sample and make a prediction is small in comparison to process

length. For instance, say a tool remains useful for approximately two hours; taking

a ten-second data sample and allowing five seconds for processing and prediction

results in 480 predictions throughout its life; an adequate number given the smooth

wear curves expected. Again, data storage can be kept to a minimum by discarding

data samples once useful features are taken from them and a prediction made.

The use of an embedded hardware solution is an attractive option given their inher-

ent robustness and speed of bespoke task execution. The compactRIO from National

Instruments, for example, contains a field-programmable gate array (FPGA) which

can be configured to perform an application specific hardware task at great speed

when compared to the everyday computer system. Such a system is also intended

to be fully compatible with the compactDAQ hardware used throughout this work,

sharing data acquisition modules and therefore providing a logical choice of hard-

ware. Such a device (when programmed to suit the task at hand) has the ability

to acquire data, perform feature extraction and wear prediction, and also to export

these predicted values in such a way that they can be interfaced with a computer

numerical control (CNC) system.

The biggest concern is that touched upon in Section 8.4, regarding sensor location.

To implement this strategy in a production environment would require fitment of

an appropriate AE sensor to the spindle assembly of whichever machining centre is
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being used. In some cases this may be easier than others depending upon workpiece

clearance and the ability to run wiring through slip-rings; however, it is unlikely to

be an impossible task, with some minor hardware modification. In performing such

modifications, the operator should be made aware that proximity of a sensor to the

cutting action is highly important for good quality data acquisition.

8.4 Limitations

When transferring such a methodology into an industrial setting, it is important

to understand where potential limitations of the research may need overcoming to

enable full functionality. In this case, there are two key limitations that should be

highlighted, despite their relative ease to resolve.

The main hurdle in implementing the described monitoring strategy industrially is

the selection of a suitable sensor location. In this work, the AE sensor has remained

attached to the workpiece fixture purely due to ease of affixing, proximity to the

cutting zone, and low cost of the solution as it requires no modification of shared

machinery. In reality, when machining large components, this would be impractical

due to the potential large distance between cutting action and sensor, and also the

fact that the distance is constantly varying and affecting signal attenuation. The

most elegant solution here is to simply locate the sensor within the spindle assembly,

ensuring a fixed and close proximity to the cutting zone. In some instances, this may

require a small modification to the spindle head, the running of wires, and potential

use of couplant depending on signal strength and sensor gain - a relatively trivial

task given the potential benefits. An example of such a sensor can be found in [99].

The other point of consideration focusses on the acquisition of training data for a

particular application. For any supervised learning algorithm, a change in process

not experienced before by the model will inevitably require some level of training.

For the general production environment where a process rarely changes, this is a

minor issue as the model can be retrained according to process parameter modifica-

tions, as required, by conducting a tool life trial in a similar manner to Chapter 3

of this thesis. More specifically, conducting the common machining process and

recording AE data throughout its duration, while also pausing the process at reg-

ular intervals to take tool wear measurements. For a process where parameters

are regularly changed, this becomes infeasible as the training stage can require a
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relatively large time period in comparison to its usage duration. As previously sug-

gested, the simplest solution to this limitation is to train the model on a wide range

of data to begin with, including examples of all of the likely conditions to be ex-

perienced during operation. This provides a flexible model, robust to parameter

changes; however, this is obviously a time-consuming option and likely parameters

may not always be known a priori. This option also lends itself to providing ma-

chine parameters to the predictive model, allowing a clear indication of any change

and likely reducing predictive error, although investigation into process parameter

effects on signals forms part of the potential future work.

8.5 Future work

Throughout this chapter, future work has been touched upon in a number of places,

falling into three distinct areas: industrial implementation, further model training,

and exploring the effects of process parameters and material on acquired signals.

The acquisition of further training and validation data is always beneficial for a su-

pervised learning method as it presents further opportunities for model testing and

ensuring of robustness. As with many machine learning algorithms, the training

set is crucial to the performance of the GP-NARX model and the more complete,

varied, and representative the better. While the data used in this work is adequate

for a proof of concept, given budget and timescale, further data would enable fur-

ther confirmation that the points made here are solid. The most straightforward

approach to increasing the size of the training set is to simply repeat the experi-

mental procedure detailed in this thesis a number of times. Each realisation would

provide a slightly different wear curve, and a culmination of these provides a more

general overview of the behaviour that is likely to be observed during machining.

Budget and time aside, it would be beneficial to increase the resolution of the tool

wear curves used as targets for the trained model. This will inherently require

more frequent process interruptions in order to obtain tool scans; however, it would

minimise the interpolation needed to form an estimated curve, resulting in a more

accurate understanding of wear behaviour. The experimental process could further

be improved by utilising a through-spindle type AE sensor, which would remove the

requirement for a two-stage experimental process, and remove the need to separate

the tool and holder between scans. Both of these facts would result in reduced error
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in measurements, and a more industrially representative procedure provided that

such an AE sensor is sensitive enough, and remains resistant to noise sources in the

vicinity.

As briefly mentioned in Chapter 4, a further extension of the work presented here

would be to investigate a wider range of potential features that could be used as

model inputs. Both the frequency domain and wavelet domain have been used in

previous work relating to tool wear, indicating that there is still valuable information

to be obtained more clearly following such transforms. While it has not been neces-

sary to explore any further at this stage, decomposing the input from an AE sensor

into various components would have the benefit of reducing computational burden

should a descriptive measure be found. Such methods are common in the SHM

community and should be directly applicable within machining. Previous examples

within machining can be found in [13,25,26].

Continuing with the GP-NARX model, the most beneficial next step would be to

investigate the effect of kernel selection on the predictive accuracy of the model in

the context of this specific tool wear problem. The kernel function defines the be-

haviour of the underlying process, and as such, should be matched to the mechanism

which the model is aiming to predict. As discussed in Chapter 7, the SE covariance

function is used in this work, with the length scale l is a hyperparameter that is

tuned for optimal results. Considering the concatenated datasets within this chap-

ter, there are both gradual, slow moving wear curve elements, and abrupt, rapid

changes between tools. In this case, it may be beneficial to explore a combination of

two different kernel functions, paired and weighted in an attempt to better capture

such targets. Selection of such functions is discussed further in [98]. Research also

continues in a number of communities, focussed around the development of new

predictive models, and often made possible given the current advances in compu-

tational processing power. There are likely a number of methods in development

which could be applicable to the tool wear problem, and future work should include

evaluation of these as they become available.

Another area of future work is to separate the recorded AE data further, focussing

on the data recorded per tool revolution or flute pass, rather than per tool pass on

a given workpiece. It is shown in Chapter 4 that zooming further into the time-

series data provides a clear indication of each chip as it forms, and can even be

used to detect tool runout. Correlating each flute with specific chip formations is

difficult, due to the fact that removing the tool from its holder alters the runout
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present, and the first flute to engage with the material during cutting is random.

Provided that the tool remains in the spindle, however, further work in this area

should provide another level of insight into the process that has yet to be explored,

ultimately increasing process understanding and model accuracy. Such a method

should also be able to indicate damage to a single flute and during milling of complex,

non-periodic profiles, although validation proves difficult without being able to also

measure wear directly during machining.

Finally, given adequate machine time, it would be useful to map process parameters

to AE features in a way that enables a single predictive model to function despite a

change in parameters. At this stage, each dramatic change in parameters requires a

sample of training data, however, such a map would enable a single training set to

be used and simply manipulated to suit any parameter change. This is obviously a

costly endeavour but the benefits it brings are considered crucial for the progression

of research in this area. A further extension would be to explore both different

materials and different processes, and assess the suitability of the chosen model

formulation in this work to other machining processes. Both grinding and turning

also suffer from tool wear, along with milling of parts of varying profiles, so further

work in this area would also help to create a more general system that is more widely

applicable.
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Piezotron Acoustic Emission Sensor with an integral impedance 
converter for measuring acoustic emission (AE) above 50 kHz in 
machine structures. With its small size it mounts easily near the 
source of emission to optimally capture the signal. The sensor 
has a very rugged welded housing (degree of protection IP 65 
PUR or IP 67 Viton). The small sensor is easily  mounted nearly 
everywhere; an M6 or 1/4-28 bolt is all that is needed.

Acceleration

Type 8152B…Piezotron® Sensor

Acoustic Emission Sensor

• High sensitivity and wide frequency range

• Inherent highpass-characteristic

• Insensitive to electric and magnetic noise fields

• Robust, for industrial use (IP65 (PUR), IP67 (Viton))

• Ground isolated: Prevents ground loops

• Conforming to CE

Description

The Piezotron AE Sensor consists of the sensor housing, the 
piezoelectric sensing element and the built-in impedance con-
verter. The sensing element, made of piezoelectric ceramic, is 
mounted on a thin steel diaphragm. Its construction determines 
the sensitivity and frequency response of the sensor. The cou-
pling surface of the diaphragm welded into the housing is slight-
ly protruding to measure the AE signals. Thus a precisely defined 
coupling force results when mounting. This assures a constant 
and reproducible coupling for the AE transmission. The sens-
ing element is acoustically isolated from the housing by design 
and therefore well protected against external noise. The Kistler 
AE sensors feature a very high sensitivity for surface (Rayleigh) 
and longitudinal waves over a broad frequency range. Type 
8152B1… covers 50 ... 400kHz and Type 8152B2… covers 100 
... 900 kHz. A miniature impedance converter is built into the 
Piezotron AE Sensor, giving an output low-impedance voltage 
signal. The AE Piezotron Coupler Type 5125B1, is used to sup-
ply power to the sensor and for signal processing. Special highly 
insulating and low noise connecting cables are not required.
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Optional Accessories Type

• Magnetic clamp 8443B

• Piezotron AE coupler 5125B

Application

The AE Sensor is especially well suited for measuring AE above 
50 kHz in the surface of metallic components or structures. Such 
AE results from plastic deformation of materials, crack forma-
tion and growth, fracturing or friction. Application examples are 
monitoring of processes, tools and machines in metal cutting as 
well as forming operations. Thanks to its rugged construction 
and the tightly welded housing this sensor can operate under 
severe environmental conditions.

Accessories Included Type

• Mounting screw, 1/4-28 x 1in 431-0500-001

• Mounting screw, M6 x 25mm 431-0497-001

Technical Data

Type			  Unit	 8152B111/121	 8152B11/12sp	 8152B211/221	 8152B21/22sp

Sensitivity		  dBref 1V/(m/s)	 57	 57	 48	 48

Frequency Range ±10dB		  kHz	 50 … 400	 50 … 400	 100 … 900	 100 … 900

Ground Isolation		  MW	 >1	 >1	 >1	 >1

Environmental:

Shock Limit (0.5ms pulse)	 gpk	 2000	 2000	 2000	 2000

	 Temperature Range Operating	 °F	 -40 … 140	 -40 … 140	 -40 … 140	 -40 … 140

Output:

Bias nom.		  VDC	 2.2	 2.2	 2.5	 2.5

Impedance		  W	 <10	 <10	 <10	 <10

Voltage full scale		  V	 ±2	 ±2	 ±2	 ±2

	 Current		  mA	 2	 2	 4	 4

Source:

Voltage (Coupler)		  VDC	 5 … 36	 5 … 36	 5 … 36	 5 … 36

	 Constant Current		  mA	 3 … 6	 3 … 6	 3 … 6	 3 … 6

Construction:

Sensing Element		  type	 ceramic	 ceramic	 ceramic	 ceramic

Housing/Base		  material	 stainless steel	 stainless steel	 stainless steel	 stainless steel

Sealing-housing/connector	 type	 hermetic	 hermetic	 hermetic	 hermetic

Viton Cable Bend Radius, max.	 in	 0.6	 0.6	 0.6	 0.6	

Weight (without cable)		  grams	 29	 29	 29	 29

Mounting Torque		  lbf-in	 80±10	 80±10	 80±10	 80±10

1 g = 9.80665 m/s2, 1 inch = 25.4 mm, 1 gram = 0.03527 oz, 1 lbf-in = 0.1129 Nm
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Mounting

The AE Sensor is simply mounted with an M6-1/4 screw or a 
magnetic clamp Type 8443B onto the surface of the structure. A 
minimum tightening torque is sufficient for a reproducible and 
constant coupling. The smoother the mounting surface, the bet-
ter the result. The use of a highly viscous grease (e.g. silicone 
grease) between the coupling surfaces is recommended.

Type 8443B Magnetic clamp

Mounting AE-Sensor

Measuring Chain Type

1 Acoustic emission sensor 8152B…

2 Piezotron AE Coupler 5125B…

3 Outout cable, made by customer

AMERICAN GERMAN

4 item system

5050 system

5050 system

Readout 
(not supplied)

Auswertung 
(nicht mitgeliefert)

1 2 3 4 5 6

1  2 3 1  2 3

Readout 
(not supplied)

Auswertung 
(nicht mitgeliefert)

1 2 3 4 5 6 1 2 3 4 5 6
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M6 X 25 internal hex-screw

coupling e.g.
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M6 0,2A

0,02

T

A N9
min. 10

Ordering Key

Variants 8152Bc
PUR, 5m (50 … 400kHz) 111

PUR, 0.3 … 10m (50 … 400kHz) 11sp

PUR, 5m (100 … 900kHz) 211

PUR, 0.3 … 10m (100 … 900kHz) 21sp

Viton, 2m (50 … 400kHz) 121

Viton, 0.3 … 3m (50 … 400kHz) 12sp

Viton, 2m (100 … 900kHz) 221

Viton, 0.3 … 3m (100 … 900kHz) 22sp
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Quartz 3-component dynamometer for measuring the three 
orthogonal components of a force. The dynamometer has a 
great rigidity and consequently a high natural frequency. Its 
high resolution enables the smallest dynamic changes in 
large forces to be measured.

Wide measuring range•	
Fot heavy duty application•	
Compact design•	

Description
The dynamometer consists of four 3-component force sen-
sors fitted under high preload between a baseplate and a top 
plate. Each sensor contains three pairs of quartz plates, one 
sensitive to pressure in the z direction and the other two 
responding to shear in the x and y directions respectively. 
The force components are measured practically without dis-
placement.
The outputs of the four built-in force sensors are connected 
inside the dynamometer in a way to allow multicomponent 
measurements of forces and moments to be performed. The 
eight output signals are available at the 9-conductor flange 
socket. The four sensors are mounted ground-insulated. 
Therefore ground loop problems are largely eliminated. 
The dynamometer is rustproof and protected against pene-
tration of splashwater and cooling agents. Together with the 
connecting cable Type 1687B5/1689B5 and Type 1677A5/ 
1679A5 it corresponds to the protection class IP67.

Application Examples
• 	Dynamic and quasistatic measurement of the three  
	 orthogonal components of a force.
• 	Cutting force measurements while milling and grinding on  
	 larger machines and in machining centers.
• 	Measurements on stamping machines.
• 	Measurements on wind tunnel models.
• 	Measurements of supporting forces at machinery founda- 
	 tions.
• 	Measurements on rocket propulsion units.

Type 9255B

Technical Data

Range		  Fx, Fy 	 kN 	 –20 ... 20 1)

						    Fz 	 kN 	 –10 ... 40 1)	

Calibrated partial range 	 Fx, Fy 	 kN 	 0 ... 2	

						    Fz 	 kN 	 0 ... 4

Overload	 Fx, Fy 	 kN 	 –24/24

						    Fz 	 kN 	 –12/48	

Threshold		  N 	 <0,01	

Sensitivity	 Fx, Fy 	 pC/N 	 ≈–8

						    Fz 	 pC/N 	 ≈–3,7

Linearity, all ranges		  %FSO 	 ≤±1

Hysteresis, all ranges		  %FSO 	 ≤0,5

Cross talk		  % 	 ≤±2

Rigidity		 cx, cy 	 kN/μm	  >2

						    cz 	 kN/μm 	 >3

Natural frequency	 fn (x, y, z) 	 kHz 	 ≈3

Natural frequency	 fn (x, y) 	 kHz 	 ≈1,7

(mounted on flanges) 	 fn (z) 	 kHz 	 ≈2	

Natural frequency (mounted on 	 fn (x, y) 	 kHz 	 ≈2

flanges and through top plate) 	 fn (z) 	 kHz 	 ≈3,3

Operating temperature range		  °C 	 0 ... 70

Temperature coefficient		  %/°C 	 –0,02

of sensitivity		

Capacitance (of channel) 		  pF 	 ≈500

Insulation resistance (20 °C)		  Ω 	 >1013	

Ground insulation		  Ω 	 >108

Protection class EN60529		  –	 IP67 2)	

Weight			   kg 	 52
1) 	 Application of force inside and max. 100 mm		

	 above top plate area.
2)  With connecting cable Types 1687B5, 1689B5, 1677A5, 1679A5

1 N (Newton) = 1 kg · m · s–2 = 0,1019... kp = 0,2248... lbf; 1 inch = 

25,4 mm; 1 kg = 2,2046... lb; 1 N·m = 0,73756... lbft

SUNSTAR传感与控制 http://www.sensor-ic.com/ TEL:0755-83376549 FAX:0755-83376182E-MAIL: szss20@163.com

SUNSTAR自动化 http://www.sensor-ic.com/ TEL: 0755-83376489 FAX:0755-83376182 E-MAIL: szss20@163.com
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Fig. 1: Dimensions of dynamometer Type 9255B

Mounting
The dynamometer may be mounted with screws or claws on 
any clean, face-ground supporting surface, such as the table of 
a machine tool for example.
In order to provide a still better coupling of the measuring in-
strument with the mounting surface, the dynamometer can, if 
necessary, additionally be screwed down through the four 
bores in the top plate. This measure allows to reach a higher 
resonant frequency of the measuring system. Uneven suppor-
ting surface may set up internal stresses, which will impose 
severe additional loads on the individual measuring elements 
and may also increase cross talk.
For mounting the force-introducing components, mainly 
workpieces, sixteen M12 mm blind tap holes in the cover plate 
are available.
The supporting surfaces for the force-introducing parts must 
be face-ground to obtain good mechanical coupling to the 
cover plate.

Signal Conditioning
A multichannel charge amplifier is also needed to build a com-
plete measuring system (i.e. Type 5070A...). The measurement 
signal is converted into an electrical voltage in the individual 
channels. The measured value is exactly proportional to the 
force acting.

Optional Accessories
For 3-Component Force Measurements
Fx, Fy, Fz	 Type
• 	 Connecting cable, length l = 5 m 	 	 1687B5
	 (3 leads) 				    1689B5
• 	 Extension cable, length l = 5 m	 	 1688B5
	 (3 leads)

For 6-Component Force
and Moment Measurements
Fx, Fy, Fz / Mx, My, Mz	 Type
• 	 Connecting cable, length l = 5 m	 	 1677A5
	 (8 leads) 				    1679A5
• 	 Extension cable, length l = 5 m	 	 1678A5
	 (8 leads) 				  

Ordering Code	 Type
• 	Multicomponent Dynamometer 	 	 9255B

SUNSTAR传感与控制 http://www.sensor-ic.com/ TEL:0755-83376549 FAX:0755-83376182E-MAIL: szss20@163.com

SUNSTAR自动化 http://www.sensor-ic.com/ TEL: 0755-83376489 FAX:0755-83376182 E-MAIL: szss20@163.com
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PCB 355B02 datasheet
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Appendix E

Tool inspection fixture
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