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Abstract 

The discovery of anti-cancer therapeutics remains at the forefront of modern medical 

science with the most recent forecast estimating that one in two people in the UK will 

be diagnosed with some form of cancer within their lifetime. The advancement of 

healthcare and overall better quality of life of the public over the past 50 years has 

seen a gradual increase in life expectancy. People are living longer, and with this 

comes new complications, outlining the need for novel anti-cancer therapeutics. 

FGFR kinases are a sub-family of receptor tyrosine kinases that are involved in many 

cellular processes and aberrant signalling within this class is implicated in many 

cancers. Currently, several anti-cancer therapeutics are in clinical use for 

FGFR-related cancers with some acting as selective FGFR inhibitors. There are 

currently no examples of molecules that exhibit sub-type selectivity for the FGFRs, an 

attribute that may be clinically relevant for FGFR-related cancers exhibiting toxic 

side-effects upon treatment. 

This thesis describes an attempt to identify a new series of sub-type selective FGFR 

kinase inhibitors. De novo design was carried out on the ATP binding site of an 

existing FGFR1 crystal structure and a small molecular scaffold based upon an 

indazole nucleus was identified. Subsequent enhancement using structure-based drug 

design led to two fragment-based lead series that exhibited single digit micromolar 

potency against FGFR1-3. Further rounds of de novo design, synthesis and biological 

evaluation led to one series showing preferential inhibition of FGFR2 over FGFR1/3, 

exhibiting potencies in the nanomolar range. This selectivity preference could not be 

rationalised through docking studies and therefore work was conducted in order to 

crystallise the inhibitors in both FGFR1/2. Analysis of the binding poses of the 

inhibitors bound within FGFR1/2 outlined key structural differences that may provide 

insight into the observed selectivity preference for FGFR2. These crystal structures 

have allowed the design of selective inhibitors of FGFR2 of which work is ongoing. 

Finally, inhibitors were evaluated for efficacy in a cellular environment. A general 

drop in potency of inhibitors was observed when compared to the potency of the 

compounds against the enzymes which may be attributed to the poor cellular uptake 

of the compounds. 
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1Chapter One – Introduction 

1.1 Cancer 

Cancer can be defined as a class of diseases which are characterised by uncontrolled 

cell proliferation, survival, or migration into nearby tissues. Genes involved in cellular 

replication, maintenance, and repair, become mutated resulting in the formation of a 

tumour which can be life threatening.1 In 2012, according to the world health 

organisation (WHO), there were 14.1 million new cases of cancer, 8.1 million deaths 

from cancer, and 32.6 million people living with cancer worldwide.2 The vast number 

of people who suffer from this debilitating disease makes cancer a crucial target for 

drug discovery and therapeutic intervention. 

In order for a cell to become cancerous it has to acquire certain properties known as 

the hallmarks of cancer (Figure 1.1). It is understood that at least one, if not all, of 

these hallmarks are required in order for a tumour to arise.1 

 

In addition to the six hallmarks, two emerging hallmarks and two enabling 

characteristics have been identified and defined respectively as: deregulation of 

Figure 1.1: The hallmarks of cancer. Adapted from reference 1. 
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cellular energetics, avoiding immune destruction, genome instability and mutation, 

and tumour-promoting inflammation.3 Continuous cell growth and proliferation 

requires major reprogramming of a cancerous cells metabolic energy pathways, and 

this is distinct from normal cellular energetics. Cancerous cells also proliferate through 

actively evading attack and elimination from immune cells. The antagonism of cancer 

cells by immune cells results in local inflammation of nearby tissue and has been 

shown to be characteristic of a cancerous phenotype.3 

 The Origin of Cancer 

1.1.1.1 The Cell Cycle 

Cell division is controlled by a series of events known as the cell cycle.4 The cell cycle 

involves various cellular transformations such as: deoxyribose nucleic acid (DNA) 

replication, cell growth, and cell division. The process of normal cellular division 

ensures the replacement of old cells with new ones, maintaining the cycle in a healthy 

manner. There are five key stages during the life cycle of a cell; G0, G1, S, G2 and M 

(Figure 1.2). 

At the beginning of the cell cycle, the cell is in the cell growth phase G1. In this phase 

extracellular signalling activates metabolic activity involving ribonucleic acid (RNA) 

and protein synthesis.5 The cycle then reaches a restriction point; a decision is made 

to either proceed to cell division or to return to the resting state G0, known as 

quiescence. Quiescence occurs due to a lack of response from external growth factors.5 

Figure 1.2: The cell cycle. Adapted from reference 4. 
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Progression into the S phase occurs when growth-dependant cyclin-dependant kinase 

(CDK) activity promotes DNA replication.6 Activation of CDKs induces a positive 

feedback loop which in turn further increases the activity of CDKs, promoting further 

DNA replication.6 The cell then enters the G2 phase in which it enlarges and prepares 

for division. Finally, mitosis occurs producing two daughter cells and the cycle then 

returns to the beginning.5 Along with the restriction point between the G1/S phases 

there are two other known checkpoints; the G2/M checkpoint and the metaphase 

checkpoint.7 All these checkpoints ensure that the cell cycle process is proceeding as 

normal. If a problem is detected then the cycle is temporarily interrupted until the 

problem is repaired, or if the problem is irreversible the cycle is abandoned leading to 

apoptosis.8 

1.1.1.2 Genetic Control of Cell Division 

Gene transcription is the driving force for all protein production within nature. Certain 

genes, known as proto-oncogenes, are responsible for causing cell proliferation, 

inhibition of cell differentiation, and inhibition of apoptosis.9 Such genes are 

precursors to what are known as oncogenes. Oncogenes are responsible for 

uncontrolled cell proliferation, excessive cell differentiation, and increased inhibition 

of apoptosis that is associated with cancers.9 In addition to oncogenes, cancer can arise 

by the inactivation of tumour suppressor genes (TSGs). TSGs code for proteins that 

have a damping or repressive effect on cell cycle regulation and promote apoptosis.10 

The mechanisms by which a proto-oncogene becomes an oncogene can be simplified 

into underlying genetic mutations and chromosomal translocations. Cancer 

phenotypes can be caused by the following genetic alterations:9  

 Point mutations, deletions, or insertions that lead to hyperactive proteins or 

inactivate tumour suppressor genes.  

 Point mutations, deletions, or insertions within the promoter region. This can 

lead to altered transcription factor binding and increased transcription. 

 Amplification of DNA that generates extra chromosomal copies of a 

proto-oncogene. 

 Relocation of a proto-oncogene downstream of a potent promoter through 

chromosomal translocation leading to higher expression of the protein. 

The mechanisms by which genetic alterations can occur are numerous, ranging from 

heredity aspects to lifestyle choices such as smoking, diet, and exercise. Recent data 
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suggests that only 5-10% of all cancer cases are caused by underlying genetic 

defects.11 The majority of cancer cases (90-95%) have been attributed to external 

factors such as the environment and lifestyle, meaning that to a certain extent cancer 

could be preventable if the right lifestyle changes were implemented.11 

1.2 Kinases 

The phosphorylation of proteins in regulating protein function has long been a study 

of interest and today remains a strong area of research within the scientific community. 

A multitude of genes code for proteins that are responsible for phosphorylating other 

proteins and are known as kinases. Protein kinases are crucial for numerous cellular 

processes within eukaryotic cells some of which include cell transcription, apoptosis, 

and differentiation.12 The completion of the human genome project in 2003 allowed 

scientists to identify almost all human protein kinases (518), accounting for about 

1.7% of all human genes.12 Kinases can be ordered into a phylogenetic hierarchy, 

based primarily on sequence comparison of their catalytic domains, known as the 

kinome, and is represented as a dendrogram (Figure 1.3).  

Figure 1.3: A simplified dendrogram of the human kinome. All eight major groups are outlined in 

bold. Atypical protein kinases are not outlined. Reproduced from reference 12, permission granted to 

use image. 
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The kinome consists of nine parent groups which contain a total of 134 families and 

196 subfamilies.12 It is apparent that both the structural differences and functional roles 

of protein kinases can vary vastly but all share the same basic mechanism of action.  

1.2.1 Mechanism of Action 

Protein kinases modify and regulate the activity of enzymes within eukaryotic cells by 

catalysing the transfer of a phosphate group from adenosine triphosphate (ATP) to 

hydroxy containing amino acids within the substrate protein, namely serine, threonine, 

and tyrosine. However, phosphorylation has also been found to occur on histidine.13 

The additional electrostatic functionality that the phosphate group provides allows 

interactions to occur with nearby residues which can be either attractive or repulsive.14 

These interactions induce 3D structural changes throughout the substrate protein 

leading to a catalytically active enzyme (Figure 1.4). This often results in a cascade of 

protein-protein interactions (PPIs) and eventually leads to signal transduction and gene 

expression.14  

 

Kinases help facilitate this process by localising both the substrate and ATP within the 

active site. Charged amino acid residues within the kinase coordinate to the negatively 

Figure 1.4: General mechanism of action of kinases. 
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charged phosphate group which help stabilise the transition state.15 Additionally, some 

kinases have bound metal co-factors that also help coordinate phosphate groups, for 

example adenylate kinase.16 The extra stabilisation received in both cases helps 

compensate for the high level of energy that is produced from cleavage of the 

phosphoanhydride bond present in ATP.17 Adenosine diphosphate (ADP) is converted 

back into ATP with the aid of ATP synthase via the proton-motive force.14 One such 

family that adopt this mechanism for phosphorylation are the fibroblast growth factor 

receptors (FGFRs). 

1.3 Fibroblast Growth Factor Receptors 

The FGFRs are transmembrane receptor tyrosine kinases (RTKs) and transmit cellular 

signalling by binding fibroblast growth factors (FGFs). There are four known FGFRs, 

FGFR1-4.18 A fifth FGFR exists, known as FGFR5 or FGFR like-1 (FGFRL1), but 

does not come under the category of an RTK. It has no tyrosine kinase (TK) domain 

and only shares a sequence homology of approximately 30% with its related 

receptors.19  

They are crucial enzymes involved in various processes such as: control of the nervous 

system, tissue repair, and wound healing and have been shown to play an important 

role in cancer.20,21,22 They also play an important role in angiogenesis, one of the 

hallmarks of cancer (Figure 1.1).  

1.3.1 Angiogenesis  

The development of a tumour, known as tumorigenesis, is a process that requires 

constant nutrition in order to facilitate tumour growth and development. As the tumour 

increases in size the existing blood supply is insufficient to maintain the current rate 

of growth. The lack of blood supply triggers the growth of new blood vessels from 

pre-existing ones, known as angiogenesis.21  

Angiogenesis is a multi-step process which begins with the release of pro-angiogenic 

growth factors such as vascular endothelial growth factors (VEGFs), FGFs and 

angiopoietins.21 These factors bind to receptors leading to the degradation of the 

basement membrane allowing endothelial cells to migrate, proliferate and differentiate 

forming solid endothelial cell sprouts within the surrounding matrix.21 Vascular loops 

form and capillary tubes develop creating tight junctions, leading to the deposition of 
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a new basement membrane.21 The new endothelial cells secrete growth factors such as 

platelet-derived growth factors (PDGFs) which recruit pericytes to help ensure the 

stability of the new blood vessel.22 Inhibition of this process would thereby halt the 

growth of a tumour and make treatment of the cancer more manageable. 

1.3.2 FGFR Structure 

The general structure of FGFRs is uniform amongst all of them and consists of an 

extracellular binding domain, a single transmembrane domain, and an intracellular 

domain (Figure 1.5).18  

  

The extracellular domain contains a signal peptide (SP) and three 

immunoglobulin-like domains (D1, D2 and D3) connected by short flexible linkers.23 

The linker between D1 and D2 contains the acidic box (AB); a short amino acid 

sequence containing eight consecutive acidic residues including glutamate and 

aspartate.24 The region in which ligands bind spans both D2 and D3. The N-terminal 

Figure 1.5: A simplified structure of FGFR1. Adapted from reference 18. 
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of D2 contains a heparin binding site (HBS), a stretch of 18 amino acids that plays an 

important role in the recruitment of heparan sulphate (HS) and HS proteoglycans 

(HSPGs), which are important co-factors for FGF binding.18 D3 is connected to the 

transmembrane domain (TMD) via the membrane-proximal domain. Downstream 

from the TMD is the intracellular domain. The intracellular domain contains two 

kinase domains (KD1 and KD2) which are the catalytic segments of the protein. The 

KDs are linked to the TMD via the juxtamembrane domain (JMD). The KDs are linked 

together via a fourteen amino acid long chain, known as the interkinase domain, with 

the C-terminal tail joined to KD2.18 

1.3.2.1 Domain Roles 

Each domain within the FGFR has specific roles within signal transduction. Several 

studies have shown an autoinhibitory role for D1 and the AB. Exclusion of exon one 

leads to the loss of D1 and AB resulting in isoforms that have a higher affinity to FGFs 

and HS, leading to upregulation of FGFR signalling.25,26,27 Nuclear magnetic 

resonance (NMR) and surface plasmon resonance (SPR) spectroscopy show that the 

negatively charged AB interacts with the HBS on D2, thus supressing the binding of 

HS. This interaction is also thought to place D1 in closer proximity to D2/D3 which 

blocks ligand binding leading to autoinhibition of the FGFRs.28  

The region spanning D2-D3 is known as the ligand binding region. FGFs bind to this 

region with the help of HSPGs. HSPGs are thought to help FGF binding in three ways: 

i) protect FGFs from proteolytic, thermal, and pH-dependant degradation, ii) act as a 

storage reservoir whereby FGF can readily be liberated, or iii) help FGF-FGFR 

interaction by limiting the movement and orientation of the FGF ligand.29  

The TMD is believed to stabilise and maintain the formation of dimers of FGFRs, a 

crucial event in signal transduction.30 The JMD, a segment of around 40-80 amino 

acids, is believed to play a diverse role in the activity of RTKs. Amino acids within 

this region can be phosphorylated and also act as binding sites for several downstream 

signalling molecules.30 Several studies have shown that mutations, deletions, and/or 

insertions within the JMD can lead to cancer, outlining the importance of the JMD in 

signal transduction.31,32  
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1.3.3 Kinase Domain 

The kinase domains are responsible for the phosphorylation of several downstream 

signalling proteins.33 Upon dimerisation of monomers, eight tyrosine residues are 

phosphorylated, six of which are phosphorylated in a specific order (Figure 1.6).34,35  

 

 

 

 

 

 

 

 

 

 

  

Figure 1.6: a) Intracellular region of FGFR1 showing both KD1 and KD2. Specific tyrosine residues 

that are phosphorylated are outlined with six tyrosines in order of specific phosphorylation (1P-6P). 

Specific signalling partners are also outlined. Adapted from reference 33. b) Apo crystal structure of 

the FGFR1 kinase domains (PDB:4UWY) with the ATP binding site outlined. The kinase insert, 

activation loop, and tyrosine residues that are phosphorylated are outlined in cyan, yellow and green 

respectively. Y766 not present in crystal structure due to flexible C-tail. 

a) 

b) 
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During the first phase of activation, Y653 is phosphorylated which leads to a 

50-100-fold increase in kinase activity. In the second phase of activation Y583, Y463, 

Y766 and Y585 are phosphorylated sequentially. The final phase sees the 

phosphorylation of Y654 leading to an overall increase in kinase activity of 

500-1000-fold.33 Phosphorylation of Y463 and Y677 leads to activation of Crk-like 

(CRKL) and signal transducer and activator of transcription proteins (STAT) 

respectively. Phosphorylation of Y766 can lead to the activation of either 

phospholipase C gamma (PLCγ), growth factor receptor bound protein (GRB) 14 or 

SH2 (Src Homology 2) domain-containing adapter protein B (SHB).33 GRB2 is also 

phosphorylated leading to its dissociation from the receptor. FGFR substrate 2α 

(FRS2α) is an adaptor protein that is bound to the JMD and also gets phosphorylated 

by Y463. This leads to the activation of numerous cytosolic pathways such as the 

mitogen-activated protein kinase (MAPK) pathway.33 

1.3.4 Cell Signalling Cascade 

Synergistic binding of HS and an FGF, with the help of HSPGs, causes dimerisation 

between receptors resulting in homodimers or heterodimers.33 This results in 

conformational changes within the intracellular domain causing each monomer to 

phosphorylate the adjacent one on specific tyrosine residues, termed 

autophosphorylation.33 The γ-phosphate of ATP acts as the phosphate source.36 Four 

principal signalling cascades are triggered when the FGFR is activated; 

phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB), RAS-MAPK, PLCγ and 

STAT pathways (Figure 1.7).  The PI3K-PKB and RAS-MAPK pathways are 

activated through the phosphorylation of FRS2α. Along with FRS2α, extracellular 

signal-regulated kinase (ERK) one/two are activated through phosphorylation of Y463 

which itself directly interacts with CRKL (Figure 1.6).37 FRS2α interacts with 

numerous downstream signalling partners. GRB2 is an adapter protein that is anchored 

to the membrane of the cell and activation of this protein leads to the activation of the 

RAS-MAPK and the PI3K-PKB pathways through son of sevenless guanine 

nucleotide exchange factor (SOS) and GRB2-associated binder (GAB) 1 

respectively.38,39 The RAS-MAPK pathway leads to activation of E26 transformation-

specific (ETS) transcription factors with this group of proteins regulating expression 

for a range of target genes such as ETS translocation variant (ETV) four/five.40 

Interaction of these proteins with MAPK leads to gene expression. 
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The PI3K-PKB pathway is different to the RAS-MAPK pathway in that it functions 

to suppress the activity of downstream signalling partners. Two such proteins that are 

activated through the PI3K-PKB pathway are the fork-head box class transcription 

factor (FOXO1) and the cytosolic tuberous sclerosis complex (TSC) 2.41 FOXO1 is a 

pro-apoptotic effector and becomes inactive when phosphorylated by PKB, causing it 

to leave the cell nucleus, promoting cell survival.41 PKB can also activate the 

mammalian target of rapamycin (mTOR) complex 1 via inhibition of TSC2, this 

eventually leads to cell proliferation.41 

The PLCγ pathway is activated through phosphorylation of Y766 within the 

C-terminal tail of FGFR (Figure 1.6). This leads to hydrolysis of phosphatidylinositol 

4,5-biphosphate (PIP2) to produce diacylglycerol (DAG) and inositol triphosphate 

(IP3).
33 DAG leads to activation of protein kinase C (PKC) and IP3 increases the levels 

of Ca2+ within the cell. PKC is translocated to the plasma membrane by receptor for 

activated C kinase (RACK) and along with the increase in Ca2+, this process has been 

Figure 1.7: The FGFR signalling cascade. Adapted from reference 33. 
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shown to be important in the healthy development of egg cells during fertilisation.42 

Y766-P can also bind GRB14, a process which inhibits the PLCγ pathway.43 SHB also 

interacts with Y766 which enhances FRS2α phosphorylation, regulating the 

RAS-MAPK pathway.44 STAT1, 3 and 5 are activated through the phosphorylation of 

Y677 and these have been shown to play important roles in diseases in which FGFR3 

is mutated or overexpressed.45,46  

Several proteins negatively regulate FGFR signalling; sprouty (SPRY), similar 

expression to FGF (SEF), dual-specificity phosphatase 6 (DUSP6), casitas B-lineage 

lymphoma (CBL) and src homology phosphatase (SHP) 2. SPRY is present within all 

TK signalling pathways and interacts with GRB2 to suppress the RAS-MAPK and 

regulate the PI3K-PKB pathways respectively. Mouse knockout studies suggest SPRY 

is essential for growth and development, and deregulation of this protein has 

implications in some human cancers and autoimmune disease.47,48 SEF is a 

membrane-bound protein and is an antagonist of FGF signalling. SEF binds to 

mitogen-activated protein kinase kinase (MEK) preventing MAPK dissociation from 

the MEK-MAPK complex, thus halting signal transduction.49 SEFs extracellular 

domain can also inhibit FGFR signalling by directly interacting with the extracellular 

domains of FGFR.50 DUSP6 is a specific ERK1/2 phosphatase that dephosphorylates 

tyrosine and threonine residues and acts as a negative feedback regulator of FGFR 

signalling.51 CBL is an E3 ubiquitin ligase and interacts with both FRS2α and GRB2. 

This forms a ternary complex which results in ubiquitination and degradation of 

FRS2α and the FGFR.52 SHP2 also binds to FRS2α and dephosphorylates GRB2 and 

FGFR2, leading to a halt in the cell signalling pathway.53 

Intracellular signalling is very complex and individual pathways are rarely exclusively 

activated, in fact, there is cross-talk in almost all intracellular signal transduction 

pathways leading to a vast array of gene expression possibilities.54  

1.3.4.1 FGFR Isoforms 

Each subfamily of FGFR can exist as a variety of isoforms due to alternate splicing 

during transcription of the genes. Several types of isoform exist and are listed below:55 

 Use of alternate exons – Exon eight/nine within D3 can both be expressed 

resulting in D3b or D3c isoforms. These isoforms are expressed differentially 

depending on tissue type and have differing affinities to FGF ligands.56 
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 Inclusions or exclusions of exons in the extracellular domain – Loss of exon 

one results in the truncation of D1 and the AB.   

 C-terminal truncations – Shortening of the C-terminal tail results in disordered 

phosphorylation of target proteins. 

 Soluble receptors – Lack of TMD results in a soluble form of the receptor. 

Several types exist and one of their functions is believed to act as a competitor 

for ligand binding.   

 Specific amino acids – Inclusion of a valine/threonine motif in exon ten can 

result in activation of the MAPK signalling pathway via an interaction with 

FRS2α. Exclusion of this motif does not initiate the MAPK signalling pathway. 

Each FGFR can exist as any of these isoforms all of which have different affinities to 

FGF ligands. 

1.3.5 FGFR Ligands 

FGFR signalling is initiated when an FGF molecule binds to the extracellular domain. 

FGF molecules are small polypeptides that contain a partially conserved core 

(120-130 amino acids) that have a high binding affinity to HS. There are 22 known 

FGFs within mammals and these are characterised into seven subfamilies using 

phylogenetic alignments (Table 1.1).57 

Table 1.1: Summary of all mammalian FGFs with their subfamilies and receptor preference.  

Adapted from reference 57. 

 

 

FGF 

Subfamily 
Ligands Receptor Preference 

FGF1 FGF1, FGF2 FGF1 activates all FGFRs; 

FGF2 prefers FGFR1c/FGFR2c 

FGF4 FGF4, FGF5, FGF6 FGFR1c, FGFR2c 

FGF7 FGF3, FGF7, FGF10, FGF22 FGFR1b, FGFR2b 

FGF8 FGF8, FGF17, FGF18 FGFR1c, FGFR3c, FGFR4 

FGF9 FGF9, FGF16, FGF20 FGFR2c, FGFR3c 

FGF11 FGF11, FGF12, FGF13, FGF14 No activation of FGFRs 

FGF19 FGF19, FGF21, FGF23 
Hormone class, weak activation 

of FGFR1c, FGFR2c 
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The first five subfamilies of FGF ligands, FGF1, FGF4, FGF7, FGF8 and FGF 9, are 

paracrine signalling molecules that bind with both HS and FGFRs to form a tripartite 

complex.57 Families FGF11 and FGF19 are different. FGF11-14, also known as FGF 

homologous factors, have high sequence homology to that of other FGFs but have 

been found not to activate FGFRs. They act intracellularly with other targets such as 

kinase scaffold protein, islet brain-2 (IB2), and voltage-gated sodium channels.58 

FGF19, 21, and 23 are weak activators of FGFRs and function as an endocrine 

hormone class impacting on adult metabolism and homeostasis.59 

1.3.6 Role in Bladder Cancer 

Aberrant signalling in FGFRs has been shown to play an important role in the 

development of several cancers, including bladder cancer.  

In 2012, bladder cancer was the 11th most common cancer worldwide accounting for 

3.1% of all cancer cases, with an estimated death toll of 165,000 people.2 Bladder 

cancer, like all cancers, is a progressive disease and has various grades and stages. 

Tumours are classified using the Tumour Node Metastasis (TNM) staging system.60 

This system classifies tumours based on their invasiveness (Ta: confined to the 

urothelium; T1: invasion to the lamina propria; T2: invasion into the muscular layer; 

T3: invasion into the submuscular layer; T4: spreading to other organs) and what state 

of differentiation they are in.61 The differentiation state can be determined using the 

2004 WHO grading system, for the non-invasive tumours this includes: papillary 

urothelial neoplasm of low-malignant potential (PUNLMP), non-invasive low-grade 

papillary urothelial carcinoma, and non-invasive high-grade papillary urothelial 

carcinoma.62 A low grade tumour has well differentiated cells and structure whereas a 

high grade tumour has poorly differentiated cells and structure.  

Around 70% of urothelial carcinomas (UCs) are considered as low-grade superficial 

papillary tumours with a relatively benign prognosis.61 Treatment includes surgery 

and/or local chemo/immunotherapy. A major problem concerning these tumours is 

their propensity to recur which requires frequent surveillance in order to monitor 

disease progression. A good prognosis coupled with constant disease monitoring 

makes this type of cancer one of the most expensive and time consuming cancers to 

treat.61 Around 15% of superficial tumours will become invasive. Treatment of these 

tumours is more challenging than for non-invasive tumours which results in a five-year 

survival rate of <40%. In recent years, studies have suggested that aberrant FGF 
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signalling is a common theme in UCs. Activating mutations and overexpression have 

been identified as causes of uncontrolled cell proliferation. In particular, numerous 

mutant forms of FGFR3 have been detected in a vast number of UCs (Figure 1.8).61 

Around 50% of both lower and upper urinary tract tumours contain mutations in 

FGFR3. A sample group containing 1898 bladder tumours showed mutations in three 

distinct exons; 7, 10 and 15 and are known as hot-spot regions.63 The most common 

mutations within exon seven are S249C (~61%) and R248C (~8%). Both mutations 

here express cysteine residues within the extracellular domain.  

The cysteine allows disulfide bonds to form between adjacent monomer receptors 

which favours ligand-independent dimerisation and therefore ligand-independent 

signal transduction.64 The most common mutations within exon ten are Y375C (~19%) 

and G372C (~6%). Again, both mutations express a cysteine. Other mutations within 

exons seven/ten express glutamic acid residues which form intricate hydrogen bonding 

networks between monomers, and again, induces ligand-independent dimerisation.64 

Roughly 2% of bladder tumours show mutations in exon 15 which is present in the 

TK region of the intracellular domain.65 All mutations here involve the change of the 

Lys-652 residue to either glutamic acid, glutamine, threonine, or methionine. All are 

thought to cause a conformational change within the TK domain resulting in 

ligand-independent receptor activation and signalling (Figure 1.9).65 Dimerisation of 

Figure 1.8: Structure of FGFR3 showing areas of common mutations using a sample group of 1898 

bladder tumours. Adapted from reference 61. 
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monomers is not observed and therefore the exact mechanism of signal transduction 

via intracellular TK mutations remains unclear.  

Along with mutation, FGFR3 has also been found to be overexpressed in a high 

proportion of low-grade and low-stage tumours. Correlation studies show that up to 

85% of mutated tumours also show higher expression of the protein.66 FGFR3 

overexpression was also detected in ~40% of wild-type (WT) tumours with the 

majority being invasive cancers. Overall, ~80% of non-invasive and ~54% of invasive 

UCs contain dysregulated FGFR3 signalling occurring through mutation and/or 

overexpression (Figure 1.9).66 Another way in which excessive cell proliferation 

occurs is through increased sensitivity to FGFs.67 Each isoform has different 

specificities in terms of what FGF binds (Table 1.1). In certain cancers it has been 

found that an isoform switch from FGFR3b to FGFR3c leads to increased cell 

proliferation (Figure 1.9).67 

In contrast to FGFR3, little is known about the relevance and roles of other FGFRs in 

bladder cancer. However, recently a study has shown that FGFR1 has been 

overexpressed in various cancer cell lines and stimulation of FGFR1 led to increased 

Figure 1.9: Mechanisms of activation of FGFR3. (a) Inactive monomer; (b) Ligand-dependant 

dimerization; (c) Ligand-independent dimerization due to extracellular mutations; 

(d) Ligand-independent activation due to mutations in the TK domain; (e) Overexpression of WT; (f) 

Isoform switching due to alternative splicing.  Adapted from reference 61. 
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proliferation and reduced apoptosis.68 There is some evidence that FGFR2 has an 

opposing role to FGFR1 and FGFR3. Expression within UC is downregulated and a 

low level of the receptor is associated with a worse prognosis.69 Additionally, FGFR2 

re-expression within a UC cell line led to lower proliferation in vitro and stunted 

tumour growth within nude mice, implying a tumour suppressor role for FGFR2.70 

The roles of FGFR4 and FGFR5 in bladder cancer remained undetermined.61 

1.3.7 FGFR2 Implicated Breast Cancer 

In contrast to the tumour suppressor role of FGFR2 in UC, FGFR2 has been shown to 

be amplified in 5-10% of breast cancer patients.71 A genome-wide association study 

of breast cancer looking at >500,000 single nucleotide polymorphisms (SNPs) in 

>1000 invasive breast cancer cases has identified a small set of four SNPs in intron 

two of FGFR2. Association testing and ancestral recombination graph analysis 

showed that haplotypes of FGFR2 were associated with risk of breast cancer.72 A 

specific example of this is outlined by Campbell et al. where FGFR2 risk-SNPs confer 

breast cancer risk by augmenting oestrogen responsiveness.73 It is well known that the 

risk of breast cancer increases with increased exposure to oestrogen through over 

stimulation of the oestrogen receptor (ESR)1. FGFR2 has been shown to reverse the 

activity of the ESR1. This is seen across multiple cell lines and has been found to be 

dependent on the presence of FGFR2. The presence of risk variant SNPs within 

FGFR2 results in lower expression and conversely an increased oestrogen response 

outlining a clinical need for FGFR2 inhibition in these cancer types.73 

  



Chapter One – Introduction 

18 

 

1.4 Current Treatments for Cancer 

1.4.1 Surgery 

Surgery involves the excision of a solid tumour by means of physical intervention. It 

is the earliest and most widely available form of treatment for cancers, however, 

complete removal of cancerous tissue is hard to achieve using this method, especially 

if the tumour has metastasised.74  

1.4.2 Radiotherapy 

Radiotherapy is the second most important curative treatment for cancer after surgery. 

It works by using high energy gamma rays, or X-rays, which interact with DNA. The 

absorption of gamma rays, or X-rays, leads to the formation of high energy ions which 

consequently form short-lived free radicals.75 These radicals interact with DNA which 

causes single-strand and double-strand DNA breaks. The damaged DNA is repaired 

to some extent which results in the termination of cell division and eventually 

apoptosis. Radiotherapy is most effective on localised tumours especially when used 

in conjunction with chemotherapy.75 

1.4.3 Chemotherapy 

Chemotherapy is used in conjunction with radiotherapy and as an alternative form of 

treatment for cancer. Drugs are used to kill or inhibit growth of cancerous cells. Most 

chemotherapeutic drugs work by causing damage to DNA or preventing chromosomal 

replication, leading to apoptosis.76 Chemotherapy offers advantages over surgery and 

radiotherapy. Drugs are administered either orally or intravenously, meaning that the 

drug can reach all disease sites through the circulatory system, an obvious benefit for 

metastasised cancers.76 A disadvantage to chemotherapy is the propensity of drugs to 

target healthy cells as well as cancerous cells. The undesired toxicity of these agents 

often results in unpleasant side-effects such as nausea and vomiting, although, not all 

chemotherapies have associated toxic side effects. A drug which only kills or inhibits 

cell growth of cancerous cells is known as a targeted therapy and is generally 

considered to be distinct from chemotherapy. These drugs normally target mutant 

proteins that are much more abundant within the cancerous cells, thereby not affecting 

the WT forms found in healthy cells.76 
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1.5 Inhibition of FGFRs 

The development of inhibitors for diseases harbouring FGFR aberrations is important 

in improving the quality of life for patients suffering from such abnormalities. 

Targeted treatment for the specific disease may reduce the need for more drastic 

methods of treatment such as surgery and/or chemotherapy. There are several aspects 

that need to be considered when inhibiting FGFRs. 

1.5.1 Development of Selective Inhibitors 

Kinases are well known for their high degree of similarity in terms of their amino acid 

sequences. In particular, families that are close together in the kinome show high 

sequence homology. To demonstrate this the full length amino acid sequences for 

FGFR1-4 were obtained from the UniProt knowledge base (UniprotKB) and then 

subjected to sequence alignment using the basic local alignment search tool (BLAST) 

(Table 1.2).77,78 

Table 1.2: Percentage similarities of FGFR1-4 using BLAST. 

 

 

 

 

 

The highest sequence similarity observed is between FGFR1/2 at 72% with the lowest 

between FGFR2/4 at 59%. The decreasing trend in percentage similarity through 

FGFR1-4 is to be expected due to the phylogenetic hierarchy that was established 

when developing the kinome (Figure 1.3).  

The amino acid sequence for the kinase domains of FGFR1-4 were obtained from 

UniprotKB and then subjected to sequence alignment using Clustal Omega 

(Table 1.3).79 

 

 

FGFR 1 2 3 4 

1 100    

2 72 100   

3 65 69 100  

4 60 59 64 100 
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Table 1.3: Percentage similarities of the kinase domains in FGFR1-4 using Clustal Omega. 

 

 

 

 

 

The sequence similarity within the kinase domains is higher than that of the overall 

sequence homology. FGFR1/2 and FGFR2/3 have the highest sequence similarity at 

88%. FGFR4 shows the lowest sequence similarities to that of it counterparts at 76, 

77 and 80% for FGFR1-3 respectively. 

1.5.1.1 ATP Binding Site 

The majority of current inhibitors for FGFRs are known to occupy the ATP-binding 

site. One such inhibitor, CH5183284 (1), is a potent, selective inhibitor of FGFR1-3 

exhibiting IC50 values of 9.3, 7.6 and 22 nM respectively and is currently under clinical 

investigation for the treatment of patients that harbour FGFR genetic alterations.80 The 

crystal structure of 1 bound within FGFR1 (Protein Data Bank (PDB) code: 3WJ6) 

was used as a template to display the different characteristics of the ATP-binding site 

(Figure 1.10).  

 

 

 

 

 

 

 

 

 

 

 

 

FGFR 1 2 3 4 

1 100    

2 88 100   

3 84 88 100  

4 76 77 80 100 
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           c) 

FGFR1|478-527    LVLGKPLGEGCFGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATEKDLSD 

FGFR2|481-530    LTLGKPLGEGCFGQVVMAEAVGIDKDKPKEAVTVAVKMLKDDATEKDLSD 

FGFR3|472-521    LTLGKPLGEGCFGQVVMAEAIGIDKDRAAKPVTVAVKMLKDDATDKDLSD 

FGFR4|467-516    LVLGKPLGEGCFGQVVRAEAFGMDPARPDQASTVAVKMLKDNASDKDLAD 

 

FGFR1|528-577    LISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLQARR 

FGFR2|531-580    LVSEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLRARR 

FGFR3|522-571    LVSEMEMMKMIGKHKNIINLLGACTQGGPLYVLVEYAAKGNLREFLRARR 

FGFR4|517-566    LVSEMEVMKLIGRHKNIINLLGVCTQEGPLYVIVECAAKGNLREFLRARR 

 

FGFR1|578-627    PPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASKKCIHRDLAAR 

FGFR2|581-630    PPGMEYSYDINRVPEEQMTFKDLVSCTYQLARGMEYLASQKCIHRDLAAR 

FGFR3|572-621    PPGLDYSFDTCKPPEEQLTFKDLVSCAYQVARGMEYLASQKCIHRDLAAR 

FGFR4|567-616    PPGPDLSPDGPRSSEGPLSFPVLVSCAYQVARGMQYLESRKCIHRDLAAR 

 

FGFR1|628-677    NVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIY 

FGFR2|631-680    NVLVTENNVMKIADFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVY 

FGFR3|622-671    NVLVTEDNVMKIADFGLARDVHNLDYYKKTTNGRLPVKWMAPEALFDRVY 

FGFR4|617-666    NVLVTEDNVMKIADFGLARGVHHIDYYKKTSNGRLPVKWMAPEALFDRVY 

 

FGFR1|678-727    THQSDVWSFGVLLWEIFTLGGSPYPGVPVEELFKLLKEGHRMDKPSNCTN 

FGFR2|681-730    THQSDVWSFGVLMWEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPANCTN 

FGFR3|672-721    THQSDVWSFGVLLWEIFTLGGSPYPGIPVEELFKLLKEGHRMDKPANCTH 

FGFR4|667-716    THQSDVWSFGILLWEIFTLGGSPYPGIPVEELFSLLREGHRMDRPPHCPP 

 

FGFR1|728-767    ELYMMMRDCWHAVPSQRPTFKQLVEDLDRIVALTSNQEYL 

FGFR2|731-770    ELYMMMRDCWHAVPSQRPTFKQLVEDLDRILTLTTNEEYL 

FGFR3|722-761    DLYMIMRECWHAAPSQRPTFKQLVEDLDRVLTVTSTDEYL 

FGFR4|717-755    ELYGLMRECWHAAPSQRPTFKQLVEALDKVLLAVS-EEYL 

The structure of the ATP-binding site is highly conserved amongst FGFR1-4 with only 

five discrepancies in the residues that form the surface of the active site. The 

‘gatekeeper’ residue, so called as this residue can modulate inhibitor binding, exists 

as a valine throughout FGFR1-4. Point mutations at this position to other amino acids 

Figure 1.10: a) Structure of CH5183284 (1). b) Crystal structure of 1 bound within FGFR1 

(PDB code: 3WJ6). 1 is outlined in orange. The gatekeeper residue Val 561, the hinge region and the 

DFG motif are outlined in yellow, purple and blue respectively. Residues that form the surface of the 

active site and the remainder of the kinase domain are outlined in pink and green respectively. 

c) Alignments of the kinase domains of FGFR1-4. The same colour coding applies as described in b; 

residues that show differences are outlined in red. 
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such as methionine have shown differential changes in the binding of several 

inhibitors.81 The hinge region of the FGFRs is also highly conserved showing only 

two discrepancies; two residues closer to the N-terminus from the gatekeeper lies a 

tyrosine in FGFR1-3 but exists as a cysteine in FGFR4 and two residues along from 

that show serine residues in FGFR1/2 but alanine residues in FGFR3/4. Three 

consecutive residues in FGFR1, Asp-641, Phe-642 and Gly-643, form what is known 

as the DFG motif. The DFG motif is present within the activation loop and is 

conserved throughout FGFR1-4. It plays an important role in the regulation of kinase 

activity and can exist as two states; DFG-in or DFG-out.82 This refers to the aspartate 

residue facing into or out of the binding pocket respectively. These states are 

interchangeable as it has the propensity to undergo rearrangements and this can be 

modulated by what type of inhibitor is bound.83 

1.5.1.2 Inhibitor Binding Modes 

Inhibitors of FGFRs can be broadly defined into three categories: types I, II, and III. 

(Figure 1.11).  

Type I are competitive inhibitors of the ATP-binding site and target the active DFG-in 

conformation. Type II are non-competitive inhibitors of the ATP-binding site targeting 

the inactive DFG-out conformation. The DFG-out conformation results in the 

appearance of a new hydrophobic binding pocket adjacent to the ATP-binding site and 

provides potential for further inhibitor binding.82 Type III inhibitors are irreversible 

covalent inhibitors. Site of the covalent bond is usually a reactive cysteine residue 

close to or within the ATP-binding site. This covalent modification means ATP can 

no longer bind and therefore results in irreversible inhibition.82 

Figure 1.11: a) DFG-in binding mode (Type I). b) DFG-out binding mode (Type II). c) Covalent 

inhibitor binding mode (Type III). 
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1.5.2 FGFR Inhibitors 

1.5.2.1 Type I 

Currently, several type I FGFR inhibitors are in clinical use, with some acting as 

selective FGFR inhibitors and some as pan-kinase inhibitors (Figure 1.12). 

Figure 1.12: Current FGFR inhibitors that exhibit DFG-in binding conformations. 

Compound 1 is a potent inhibitor of the FGFR kinases (Section 1.5.1.1) exhibiting 

IC50 values of 9.3, 7.6 and 22 nM respectively. Compound 1 was found to display 

anti-tumour activity against a panel of 327 cell lines that harbour FGFR genetic 

alterations with xenografts models also reflecting this. Compound 1 was discovered 
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using high-throughput screening (HTS) followed by structure-based drug design 

(SBDD) taking advantage of X-ray crystal data.80  

Nintedanib (2) is a triple angiokinase inhibitor targeting proangiogenic pathways that 

are mediated by TKs such as FGFR, VEGFR, and PDGFR. In vitro studies outline 

potent IC50 values ranging from 13-108 nM for the targeted TKs, however, 2 lacks 

selectivity amongst the different sub-types of each of these TKs. Compound 2 is 

currently in phase III clinical trials and has shown significant efficacy in the treatment 

of non-small-cell lung carcinomas (NSCLCs) and ovarian cancer.84 

Dovitinib (3) is a multi-targeted TK inhibitor that is currently being investigated in 

phase II clinical trials for a wide range of FGFR related cancers.85  It has been found 

to have activity against FGFR, VEGFR, PDGFR, Fms-like tyrosine kinase 3 (FLT3) 

and tyrosine-protein kinase Kit (KIT) with IC50 values in the range of 1-50 nM.86 

Recently this molecule has been shown to have anti-tumour activity in 

FGFR-amplified breast cancer cell lines but not in FGFR-normal cell lines indicating 

a selective preference for cancerous cells.87 

Lucitanib (4) is a dual inhibitor of VEGFR1-3 and FGFR1-2 exhibiting IC50 values in 

the range of 7-83 nM. In vitro studies looking at ligand-dependant signal transduction 

showed that compound 4 inhibited this process. In vivo studies using mice showed that 

compound 4 completely inhibited FGF-induced angiogenesis as well as a reduction in 

tumour vessel density and increased tumour necrosis. Compound 4 is currently in 

phase II clinical trials for the treatment of VEGFR and FGFR related diseases.88 

AZD4547 (5) is a potent and selective inhibitor of FGFR1-3 exhibiting in vitro IC50 

values of 0.2, 2.5 and 1.8 for FGFR1-3 respectively. A selectivity screen indicated that 

compound 5 is selective for FGFR1-3 against other kinases such as CDK2, PI3K and 

PKB.89 In vivo studies on mice treated with compound 5 show 99% tumour growth 

inhibition. AZD4547 is now in phase II clinical trials for the treatment of 

gastroesophageal cancer.90 

PD173074 (6) is a potent and selective inhibitor of FGFR1/3 with in vitro efficacies 

of 21.5 and 5 nM respectively.91,92 In vitro studies on related kinases such as VEGFR, 

PDGFR and insulin growth factor receptor (IGFR) show a 1000-fold decrease in 

potency.91 A study has shown that compound 6 suppresses cell proliferation in cell 

lines that harbour FGFR3 mutations when compared to WT FGFR3.92 

BGJ398 (7) is a potent pan-FGFR inhibitor that is currently in phase I clinical trials 

for FGFR1-2 amplified cancers and FGFR3 mutated cancers.85 In biochemical assays, 
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compound 7 was found to give IC50 values of 0.9, 1.4 and 1.0 nM for FGFR1-3 

respectively. Over fifteen other RTKs were tested but were found to be unaffected by 

compound 7 revealing this molecule to be a selective FGFR inhibitor.93 

SU4984 (8) was the first inhibitor to inhibit TKs that possessed an oxindole core. It 

inhibits FGFR1 with a moderate activity between 10-20 µM and was also shown to 

inhibit autophosphorylation of FGFR1. Compound 8 also inhibited related kinases 

such as PDGFR and IGFR with similar potencies to that observed agaist the FGFRs, 

which demonstrates the use of an oxindole core as a general TK pharmacophore.94 

Compound 9 is a potent FGFR1 inhibitor exhibiting an IC50 of 2.9 nM and comparable 

single concentration inhibition against FGFR2. Cellular assays also outline this 

compound to have an activity of 40.5 nM against SNU-16 cell lines. The construction 

of this compound was based on both compounds 5 and 7 using a scaffold hop and 

molecular hybridisation strategy respectively.95 

1.5.2.2 Type II  

There are two examples of type II inhibitors in the literature at present; ARQ069 (10) 

and ponatinib (11) (Figure 1.13). Compound 10 is a moderately potent inhibitor of 

FGFR1/2 with a potency of 0.84 and 1.23 µM activity against the inactive 

(unphosphorylated) form. In vitro assays looking at inhibition of the phosphorylated 

forms of both FGFR1/2 show a complete loss of activity and a drop to 24.8 µM 

respectively. This outlines that compound 10 prefers to target the DFG-out binding 

mode. These results have also been reflected in a cellular environment.96 

 

 

 

 

 

 

Figure 1.13: Current FGFR inhibitors that exhibit DFG-out binding conformations. 

Currently, compound 11 is the only food and drug administration (FDA) approved 

type II inhibitor and is used for the treatment of chronic myeloid leukaemia (CML) 

and Philadelphia chromosome positive (Ph*) acute lymphoblastic leukemia (ALL).97 

Compound 11 is a pan-kinase inhibitor that targets Abelson murine leukaemia viral 

oncogene homolog 1 (ABL), Lyn, VEGFR2 and FGFR1 with potencies of 0.37, 0.24, 
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1.5 and 2.2 nM respectively. Compound 11 is used as a first-line treatment for patients 

who suffer from cancers that have the breakpoint cluster region protein 

(BCR)-ABLT315I mutation as other drugs such as imatinib fail to be effective against 

this particular mutant.97 

1.5.2.3 Type III 

Irreversible inhibitors are often seen as a last resort due to their propensity for receptor 

promiscuity, however, a couple of examples do exist (Figure 1.14).  

 

 

 

 

 

 

 

Figure 1.14: Current FGFR inhibitors that exhibit covalent binding interactions. 

FIIN-2 (12) is an irreversible inhibitor of FGFR1-4 with EC50 activities of 1, 4, 93 and 

32 nM respectively.98 Compound 12 is a derivative of compound 6 where an 

acryl-amido-benzyl substituent has been substituted on the N of the cyclic urea. It was 

tested against a panel of 456 kinases and showed good overall selectivity. X-ray crystal 

data of compound 12 bound with FGFR4 (PDB-4QQC) shows that the covalent bond 

is formed between Cys-477, a residue conserved between FGFR1-4, deep within the 

ATP-binding pocket.98 

BLU9931 (13) is an irreversible, potent, and selective inhibitor of FGFR4 with an IC50 

value of 3 nM and IC50 values of 591, 493 and 150 nM for FGFR1-3 respectively. 

Compound 13 differs to that of compound 12 in that it reacts with Cys552.99 This 

explains the difference in selectivity as the residue at this position in FGFR1-3 exists 

as a tyrosine (Figure 1.10). Further validation into the importance of this covalent bond 

in selectivity targeting FGFR4 is demonstrated with a non-covalent analogue of 

compound 13 which shows a much lower potency of 938 nM against FGFR4.44 
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1.6 Structure-Based Drug Design 

There are numerous ways in which a drug discovery programme can be initiated. 

Conventional methods of drug discovery such as HTS have certain disadvantages and 

in particular, for a typical library containing ~1 million compounds the hit rate is 

usually <1%.100 The application of  SBDD first began in the mid-80s when genomic, 

proteomic and structural information became available within the drug discovery 

scene.101 X-ray crystallographic data allowed medicinal chemists to take a more 

rational approach to hit identification and lead optimisation. SBDD can be used 

iteratively (Figure 1.15).101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: The process of SBDD. Adapted from reference 101. 

The majority of drug discovery programmes start with target identification. Normally, 

this is a target that is known to play a significant role in a disease. The structure of the 

target is needed in order for rational SBDD to commence. Structures can be obtained 
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by X-ray crystallography, NMR, and homology modelling. Homology modelling 

involves taking the amino acid sequence of a closely related structure that has a known 

X-ray crystal structure. The sequences are aligned and modified to produce a crystal 

structure that can be used as a model. Usually, an acceptable sequence identity 

between the proteins needs to be >40% in order to create a reliable homology model.102 

The crystal structure is then analysed for binding sites/pockets in which a small 

molecule inhibitor could bind, often the binding site of endogenous ligands.100 A target 

compound or compound library is then virtually screened against the target and the 

binding pose(s) evaluated for the compounds predicted to bind most tightly. A 

molecule or series of molecules are then chosen for synthesis followed by subsequent 

biological evaluation. Any hits are then re-docked and the binding pose(s) analysed to 

help rationalise structure-activity relationships (SARs). The hit can then be optimised 

in an iterative cycle until a reasonable candidate is identified to progress into 

pre-clinical studies. If at any point a candidate can no longer be optimised or fails to 

inhibit the target then the process is repeated from the beginning.101 

1.6.1 Maestro 

Maestro is a piece of software developed by Schrödinger Inc103 that allows users to 

build and visualise 3D structures of ligands. X-ray crystal structures of proteins can 

also be visualised allowing the user to see the 3D interaction between the ligand and 

the receptor. An in-built tool known as Glide (grid-based ligand docking with 

energetics) can be used to dock ligands within the active site of receptors. A series of 

hierarchical filters help narrow down possible locations of where the ligand can bind 

within the active site.104 The filtration process is based on several ligand parameters 

such as; position and orientation to the receptor, core conformation and rotamer-group 

conformations. Generated ligand conformations are then energy minimised to produce 

a series of predicted binding poses which the user can inspect and evaluate 

accordingly.104 

1.6.2 eHiTS 

A computational docking program known as electronic high-throughput screen 

(eHiTS) takes ligands and divides them into small rigid fragments and flexible 

connecting chains.100 Each fragment is then docked into every site within a protein 
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cavity, so called ‘flood’ docking. A fast graph-matching algorithm connects all the 

fragments to reconstruct the original ligand which is followed by energy minimisation 

within the receptor. The binding poses are then scored and ranked.100 Scoring is based 

on the complementarities of ‘surface points’ between the ligand and receptor, and the 

geometries of the ligand. Favourable interactions receive a positive score and 

unfavourable interactions receive a negative score.100 

1.6.3 PyMOL 

PyMOL is a molecular visualisation software tool that was created by Schrödinger 

Inc.105 It can be used for various applications some of which include: predicting 

H-bonding interactions, analysis of 3D structure of proteins and most usefully, 

creating high quality images that can be used for publication. Most 3D structures found 

in this thesis use this software.   

1.6.4 De Novo Design 

Chemical space is extremely large and the estimated number of drug-like molecules 

is in the order of 1060-10100. Typical HTS libraries contain ~1-3 million molecules and 

therefore the majority of chemical space remains unexplored.106 De novo design of 

molecules was first developed in the early 90s and in theory allows access to all of 

chemical space, no longer being confined to known chemical space. It involves the 

design of bioactive molecules by step-wise construction of a ligand within a receptor. 

Various areas within the receptor are outlined as potential binding sites which could 

interact with certain chemical moieties. In this approach novel ligands can be 

constructed that are predicted to bind to the target.106  

1.6.5 SPROUT 

The design of novel drug-like molecules can be carried out using de novo design 

software such as SPROUT. This software uses a similar approach to that of eHiTS in 

that it uses fragment-linking techniques to produce ligands that fit the steric and 

electronic constraints of the receptor.100 Unlike eHiTS, atoms and fragments of 

molecules are matched with ‘target sites’ in such a way that a favourable interaction 

would occur. When fragments and target sites are satisfied the fragments are then 

linked together using ‘spacer templates’.100 The resulting solutions can then be 
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clustered using a range of parameters such as estimated binding affinity or molecular 

complexity. These parameters can be fine-tuned by the user discarding any unwanted 

solutions.100 SPROUT carries out this process using several modules:107 

1. CANGAROO – This module stands for Cleft ANalysis by Geometry-based 

Algorithm Regardless Of the Orientation. In this module the receptor site and 

cavity (ligand) are defined. 

2. HIPPO – This module stands for Hydrogen-bonding Interaction site Prediction 

as Positions with Orientations. In this module potential binding sites are outlined. 

Such sites are amino acids that can provide hydrogen bonding capability with 

complementary chemical functionality. Hydrophobic binding regions and metal 

interactions can also be defined. 

3. ELEFANT – This module stands for ELEction of Functional groups and 

Anchoring them to Target sites. In this module small fragments that contain 

H-bonding functionality are chosen and assigned to complementary target sites. 

4. SPIDER – This module stands for Structure Production with Interactive Design 

of Results. In this module spacer templates are chosen to link the fragments 

selected in ELEFANT. Structures are then generated following the constraints of 

the target site and boundary surface. 

5. ALLIGATOR – This module stands for Analyse Lots of LIGAnds, Test and 

Order Results. This module clusters groups of molecules based on parameters set 

by the user. Such parameters include: hydrogen bonding interactions, rotatable 

bonds, and hydrophobic interactions. 
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1.7 Project Aims 

1.7.1 Overall Aim 

 To identify new types of selective inhibitors of FGFR1-3 respectively which 

have potential to be used in the treatment of cancer. 

 To understand the specific structural requirements of small molecule tools that 

are needed to elicit sub-type selectivity between FGFR1-3.  

1.7.2 Specific Objectives 

 Use computational software including SPROUT, eHiTS and Glide to identify 

potential molecular scaffolds to act as starting points. 

 Develop efficient synthetic routes to compounds which incorporate these 

scaffolds and identify hits. 

 Construct targeted libraries based on these hits and use docking strategies to 

rationalise and develop SARs. 

 Elucidate the key structural differences between FGFR1-3 and utilise this 

knowledge to design novel, potent and selective inhibitors.  
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2Chapter Two – De Novo Fragment-Based Design 

2.1 Hit Identification 

To begin, a literature search on pre-existing crystal data for FGFRs was carried out. A 

recent crystal structure (PDB code: 3WJ6 – 2.15 Å) of human FGFR1 co-crystallised 

with CH5183284 (1) was identified.80 The PDB file was loaded into SPROUT 

(Figure 2.1). 

                                                 

 

 

 

 

 

 

 

 

 

 

Compound 1 is observed to occupy the ATP binding pocket within FGFR1 and several 

interactions between the inhibitor and the protein are apparent (Figure 2.2). Two 

H-bonds form with the benzimidazole moiety; one with the backbone nitrogen of 

Asp641 and the other with a side chain carboxy oxygen of Glu531. Another H-bond 

forms between the pyrazole NH2 and the backbone carbonyl of Glu562. An H-bond is 

a) 

 

Figure 2.1: a) SPROUT image of co-crystal structure of 1 within ATP binding site of FGFR1. 

b) Co-crystal structure of 1 within FGFR1 showing predicted H-bonding interactions. Acceptor and 

donor sites present within the FGFR1 active site are shown in blue and red respectively. c) 2D 

representation of binding pose of 1 within FGFR1 showing intermolecular interactions. Amino acids, 

H-bonds and hydrophobic pockets are shown in green, red, and blue respectively. 

 

c)                                                                              

 

b) 

 

c) 
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also present between the ketone moiety and the backbone NH of Ala564. The 

benzimidazole methyl group occupies a small hydrophobic pocket, known as H1.  

Occupation of this pocket by the methyl group has been shown to increase the 

selectivity of compound 1 for FGFR kinases over structurally similar kinases such as 

VEGFRs. This raises significant implications for designing selective inhibitors of 

FGFR kinases.80 

 

  

 

 

 

 

 

 

 

 

 

 

De novo design of novel FGFR inhibitor scaffolds applied to this crystal structure was 

carried out using SPROUT, with compound 1 acting as a template to guide the design 

process. Three of the four interaction sites (Glu531, Glu562 and Asp641) were 

selected in HIPPO (Section 1.6.5). Appropriate target and spacer templates were then 

chosen to generate 6-phenylindole (14) as a fragment predicted to bind to FGFR1. 

 

  

Figure 2.2: ‘End-on’ view of compound 1 occupying the ATP binding site within FGFR1. H-bonding 

interactions are indicated using cyan dashes and hydrophobic pockets are indicated by H1 and H2. 

 



Chapter Two 

 

34 

 

 Binding Pose of Compound 14 

Compound 14 is predicted to bind in a similar way to that of compound 1 with the 

indole NH forming an H-bond with the backbone carbonyl of Glu562 (Figure 2.3). In 

order to strengthen the predicted SPROUT pose, compound 14 was subjected to 

consensus docking whereby multiple docking programs (Glide and eHiTS) were used 

in conjunction with each other to validate the predicted binding pose. Both docking 

solutions were visualised using PyMOL and showed good overlap with each other and 

the binding pose of compound 1 (Figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

   

Consensus docking was carried out for all future compounds with Glide being the 

chosen docking software; with results visualised in PyMOL. Upon inspection of the 

docking pose of compound 14 (Figure 2.4), it was determined that several 

modifications could be made in order to increase the number of intermolecular 

bonding interactions between FGFR1 and compound 14. Substitution from an indole 

to an indazole would open up the opportunity for an H-bond to form between the 

indazole 2-position nitrogen and the backbone NH of Ala564. Substitution of the 6-

Figure 2.3: Overlay of compound 1 and docking poses of compound 14 using eHiTS and Glide. 

Compound 1 is shown in green and the eHiTS and Glide poses for compound 14 are shown in purple 

and yellow respectively. 
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phenyl ring to a 6-pyridyl derivative could also induce an H-bond with the pyridine 

nitrogen and the backbone NH of Asp641.  

  

 

 

 

 

 

 

 

 

 

 

 

Furthermore, placement of a small hydrophobic group in the 3-position of the 6-phenyl 

ring could also allow H2 to be occupied. Manual manipulation of the docked pose of 

compound 14 was carried out to test what substituents could be tolerated in the H2 

pocket. Halogenated compounds such as the iodo, bromo, and chloro derivatives were 

chosen due to their small size. The iodo and bromo derivatives were found to be too 

large and overlap with the boundary surface and therefore the chloro derivative was 

chosen, leading to target compound 15 (Figure 2.5).  

 

 

 

 

 

Figure 2.5: 2D representation of proposed binding mode of compound 15 bound within FGFR1. 

Figure 2.4: De novo designed ligand 14 docked within the ATP binding site of FGFR1 using Glide. 

An H-bond is predicted to form between the indole NH and the backbone carbonyl of Glu562. 

Modifications that could be made to increase potency of compound 14 against FGFR1 are outlined. 
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Compound 15 was then subjected to docking to see whether the proposed binding 

mode matched the docked binding mode; the docked solution is outlined (Figure 2.6). 

 

  

 

 

 

 

 

 

 

 

 

 

As predicted by the proposed binding mode of compound 15 (Figure 2.5), a new 

H-bond is predicted to be possible between the indazole 2-position nitrogen and the 

backbone NH of Ala564. In contrast to the proposed binding mode of compound 15, 

docking has resulted in the 6-position ring becoming ‘inverted’ relative to that 

proposed originally. This places the Cl atom orientated towards the H1 pocket instead 

of the H2 pocket. The Cl atom may be too large to occupy the H2 pocket and therefore 

is predicted to bind more favourably in the H1 pocket; this places the pyridine nitrogen 

away from the Asp641 residue and instead is orientated towards a hydrophobic wall, 

and is therefore unfavourable. To validate these hypotheses, a small library of 

compounds was targeted for synthesis and is outlined below. 

 

 

 

Figure 2.6: Glide docking model of compound 15 bound within FGFR1. H-bonds are indicated using 

cyan dashes. 
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As well as compounds 14 and 15, compounds 16-19 were also included to give a 

thorough SAR study for this small library.  

2.2 ‘First Generation’ Library Synthesis 

 Retrosynthetic Analysis 

Retrosynthetic analysis of structures 14-19 indicated that the desired compounds could 

be made very simply from Pd-catalysed Suzuki couplings (Scheme 2.1). 

Scheme 2.1: Retrosynthetic analysis of indole-based structures. 

 Suzuki Mechanism 

Suzuki chemistry has become a very useful approach for forming carbon-carbon bonds 

in the medicinal chemist’s toolbox. A general mechanism for the process is outlined 

below (Scheme 2.2).108  

 

 

 

 

 

 

 

Scheme 2.2: General mechanism for Pd-catalysed Suzuki chemistry. Adapted from reference 108. 
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In the initial step Pd(0) undergoes oxidative addition with a halogenated aryl species. 

The Pd inserts into the carbon-halogen bond which results in oxidation of the 

palladium to give a Pd(II) species. Substitution of the halogen with base gives an 

intermediate that can then undergo transmetallation with a base-activated boronic 

acid/ester species, forming the penultimate intermediate. This intermediate can then 

undergo reductive elimination giving the desired product and the Pd(0) species which 

can then take part in the catalytic cycle again. 

 Pd-Catalysed Suzuki Couplings 

Attempts at synthesising compounds 14 and 18 via Suzuki couplings using an 

adaptation of a method outlined by Liu et al are summarised below (Scheme 2.3).109 

 

Scheme 2.3: Attempted Suzuki coupling using thermal conditions. 

The syntheses of compounds 14 and 18 were unsuccessful; there are several possible 

reasons why this was the case. Some nitrogen-containing heterocycles have been 

known to interfere with Pd-catalysed Suzuki chemistry through their inherent ability 

to donate lone pairs to the metal centre, rendering the catalyst inefficient, which could 

be the case for compound 22.110 The unprotected free NH in compounds 21 and 22 

may have the capability to participate in unwanted Buchwald coupling, leading to the 

failure of the reaction. Another reason could be due to the electron rich nature of the 

halogenated heterocyclic ring; oxidative insertion will be hindered allowing other 

competing pathways to take place.  

To avoid the unwanted Buchwald side products, compound 22 was protected as the  

benzenesulfonyl derivative using an adaptation of a method outlined by Baldwin et al 

as summarised below (Scheme 2.4).111  
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Scheme 2.4: Indazole protection using a benzenesulfonyl protecting group. 

Deprotonation of the indazole 22 using NaH initiates nucleophilic displacement of the 

chlorine atom in 23 resulting in sulfonamide 24 in a yield of 43%. Prior to subjecting 

24 to Suzuki coupling, a literature search outlined the use of microwave energy to 

facilitate the reaction without the need of protecting groups. Therefore, compounds 

14-19 were synthesised using an adaptation of a method outlined by Baldwin et al as 

summarised below (Scheme 2.5).112  

Scheme 2.5: Pd-catalysed microwave Suzuki couplings. 

One common issue with this synthetic procedure is the appearance of an impurity that 

was assumed to be polymeric material. Removal of this material was difficult which 

may account for the low yields. Sonication of the purified solid in pentane was found 

to be the best way to significantly reduce the impurity to acceptable levels of <5% 

(1H NMR) for biological evaluation.  

 Biological Evaluation of ‘First Generation’ Fragments 

The biological evaluation of compounds 14-19 was carried out by Life Technologies, 

Paisley, Scotland. Compounds 14-19 were screened against FGFR1 at an initial 

concentration of 500 µM using a fluorescence resonance energy transfer 

(FRET)-based assay (Section 8.1). The results are outlined below (Table 2.1). 
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Table 2.1: Biological results for ‘first generation’ fragments when screened against FGFR1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a % Inhibition and IC50 values are given as the mean ± standard deviation (SD) of all data points, n = 2. 
b No difference in measured data points. c NT = not tested. 

The initial de novo designed fragment 14 was found to be inactive at 500 µM. The 

other two indole-based compounds 16 and 17 were marginally more active but still 

low considering the high screening concentration. An IC50 value of >500 µM for 

compound 17 confirmed that the indole compounds were indeed inactive against 

FGFR1. Interestingly, all the indazole derivatives showed >50% increase in activity 

than their corresponding indole counterparts. IC50 measurements confirmed that 

compounds 15, 18 and 19 have modest double-digit µM activity against FGFR1. This 

outlines that the 2-position nitrogen present in the indazole compounds is crucial for 

inhibition of FGFR1. The ligand efficiency (LE) is a measurement of the binding 

energy per atom of a ligand to its binding partner and can be calculated using the 

equation outlined below (Equation 2.1).113  

LE = 1.4(-logIC50)/N 

 

Compound 

No. 
Structure 

% Inhibitiona  

(500 µM) 

IC50
a

 

(µM) 
LE 

14 

 

1 ± 0.0b NTc N/A 

16 

 

16 ± 0.5 NT  N/A 

17 

 

21 ± 3.5 >500 N/A 

18 
 

53 ± 0.0b 77 ± 0.9 0.38 

19 

 

66 ± 1.5 90 ± 0.9 0.38 

15 

 

73 ± 1.0 36 ± 0.9 0.39 

Equation 2.1: Formula for ligand efficiency. IC50 is in mol/dm3, N=No. of non-hydrogen atoms. 
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The LE for compounds 15, 18 and 19 has been calculated. A reasonable LE starting 

point is considered to be >0.3114 and therefore compounds 15, 18 and 19 satisfy this. 

Compound 15 is the most active fragment against FGFR1 at 36 µM. This could be due 

to the Cl atom occupying the H1 pocket as predicted from the Glide docking of 

compound 15 (Figure 2.6). Compound 18 is more active than compound 19. This 

outlines the detrimental effect that the pyridine nitrogen has upon the binding of 

compound 19 to FGFR1, an aspect that can be rationalised from the docking of 

compound 15 (Figure 2.6). 

2.3 Library Expansion 

In order to expand the SARs for the active indazole pharmacophore 28, a small library 

of target compounds was developed based upon readily available boronic acids and is 

outlined below. 

Compounds 29-32 will further probe the tolerance of substituents in the 3-position of 

the 6-phenyl ring, compound 33 will test the effect of a di-substituted phenyl system. 

The docking of compound 14 (Figure 2.4) shows there may be some potential for an 

H-bonding interaction in the 4-position of the phenyl ring with Glu531; compound 34 

will probe this hypothesis. Compounds 35-38 will outline the importance of the nature 

of the 6-position ring, testing saturated and five-membered rings systems. 
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 ‘Second Generation’ Library Synthesis 

Compounds 29-38 were synthesised using Suzuki chemistry outlined previously 

(Scheme 2.5) and is summarised below (Scheme 2.6). 

Scheme 2.6: Pd-catalysed microwave Suzuki couplings. 

The syntheses of compounds 32 and 35 were unsuccessful under these conditions. The 

boronic acid species is seen as the nucleophilic component in Suzuki couplings and 

therefore the boronic acids used in the coupling for compounds 32 and 35 may be too 

electron deficient to undergo transmetallation.115 Analysis of the crude reaction 

mixture for compound 32 by liquid chromatography-mass spectrometry (LC-MS) 

outlined the presence of nitrobenzene. Literature precedent indicated that boronic acid 

species that have strong electron withdrawing groups (EWGs) present tend to 

protodeboronate.115 The poor yield for compound 34 cannot be attributed to the 

electronics of the boronic acid species as is it is electron rich in nature. A search in the 

literature has outlined that ortho and/or para phenol boronic acids have a fast rate of 

protodeboronation.116 

The synthesis of compound 36 was attempted using an adaptation of a method outlined 

by Duquenne et al as summarised below (Scheme 2.7).117  

Scheme 2.7: Unsuccessful Pd-catalysed microwave Buchwald coupling. 

Several reasons can explain the failure of the above reaction. Buchwald reactions are 

very sensitive towards the choice of solvent and base used and therefore, the 

conditions outlined above may have not be ideal for the starting materials used.118 Due 

to the nature of the preparation of microwave reactions, small traces of oxygen may 

have been introduced into the reaction vessel leading to the poisoning of the 
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catalyst.118 Synthesis of compounds 32 and 35 was not carried out and efforts focussed 

elsewhere. 

 Five-Membered Ring Systems 

Compound 38 was docked into the FGFR1 crystal structure using Glide (Figure 2.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 38 is predicted to bind to FGFR1 in a similar way to that predicted for 

compound 15 (Figure 2.6). Inspection of the docking model of compound 38 reveals 

interesting areas for potential modification. It is apparent that occupation of H1 or H2 

can be achieved with substitution at the 4/5-position of the furan ring respectively. The 

H1 pocket is larger than the H2 pocket and therefore occupation of this particular 

sub-pocket by small hydrophobic groups was prioritised. A variety of small 

compounds were docked to find suitable candidates for synthesis, some of which are 

outlined below (Figure 2.8). 

Figure 2.7: Glide docking model of compound 38 bound within FGFR1. Substitution at the 4/5-

position of the furan ring could allow for the H1 and H2 pockets to be occupied respectively. 
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Compound 40 is predicted to bind to FGFR1 in a similar way to that predicted for 

compound 38 (Figure 2.7). The furyl methyl group is predicted to occupy the H2 

pocket. In contrast to this, the docking of compound 41 has resulted in placing the 

larger methylene cyclopentane moiety in the H1 pocket. This gives strength to the 

hypothesis that the H1 pocket is larger and therefore more accommodating for larger 

hydrophobic groups. Due to the accessibility of starting materials, target compound 40 

a) 

Figure 2.8: a) Glide docking model of compound 40 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 40. The methyl moiety is predicted to occupy the H2 pocket; 

c) Glide docking model of compound 41 bound within FGFR1; d) 2D representation of predicted 

binding pose of compound 41. The cyclopentane ring is predicted to occupy the H1 pocket. 

c) d) 

b) 
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was changed to compound 43 and synthesised using Suzuki chemistry as summarised 

below (Scheme 2.8).  

Scheme 2.8: Synthetic route to compound 43. 

 Retrosynthetic Analysis of Structure 41 

Retrosynthetic analysis of structure 41 indicated that the chemistry required to connect 

the cyclopentane ring to the furan ring would not be trivial and therefore a structural 

replacement of cyclopentane to pyrrolidine was carried out. As the docking of 

compound 41 (Figure 2.8) suggests, only the substitution pattern of the aromatic 

five-membered ring matters and therefore furan was changed to thiophene to give 

compound 44 (Scheme 2.9). 

Scheme 2.9: Manipulation of compound 41 to the more synthetically accessible compound 44. 

Structural replacement and heteroatom substitution are shown in red and green respectively. 

Retrosynthetic analysis of structure 44 was carried out (Scheme 2.10). 

 

Scheme 2.10: Retrosynthetic analysis of structure 44. 

Structure 44 can first be disconnected at the 6-position of the indazole ring to give 

structures 45 and 46. Structure 45 can then be disconnected between the pyrrolidine 
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nitrogen and the bridging methylene group via two routes; route A gives pyrrolidine 

and structure 47 which can then undergo a functional group interconversion (FGI) to 

structure 42, route B gives pyrrolidine and compound 48.  

 Synthesis of Compound 44 

The synthesis of compound 44 was attempted using an adaptation of a method outlined 

by Ngwendson et al and is summarised below (Scheme 2.11).119 

Scheme 2.11: Attempted route to compound 44. 

Compound 42 was subjected to radical bromination with the hope of selectively 

brominating the methyl group. Unfortunately the reaction was unsuccessful. There are 

several possible reasons why this reaction failed. Thiophene is very electron rich and 

N-bromosuccinimide (NBS) is a good source of electrophilic bromine and therefore 

over-bromination is likely. A more likely reason for the failure of this reaction is due 

to the presence of the boronic acid moiety. Inspection of the literature indicated that 

boronic acids interact with radical species to form the ipso-carbon radical which can 

be used in carbon-carbon bond formation reactions.120 

It was apparent that route B was more plausible than route A. The synthesis of 

compound 49 was carried out using an adaptation of a method outlined by 

Bogenstaetter et al and is summarised below (Scheme 2.12).121 

 

 

 

 

 

Scheme 2.12: Synthesis of compound 49 from compound 48 using reductive amination. 

Compound 49 was synthesised from compound 48 and pyrrolidine in a yield of 83% 

using sodium triacetoxyborohydride (STAB) as the reducing agent in a simple 

acid-catalysed reductive amination reaction. Purification of this material using column 

chromatography would be difficult owing to the polar nature of the pyrrolidine moiety. 
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In order to bypass this issue, compound 49 was purified using Kugelrohr distillation 

which proved to be very successful. 

The synthesis of compound 44 was attempted using an adaptation of a method outlined 

by Zeng et al and is summarised below (Scheme 2.13).122 

Scheme 2.13: Synthetic route to compound 44 via an in situ borylation. 

Compound 49 was subjected to lithiation followed by borylation with compound 50 

to generate compound 45 as an intermediate. 2,2,6,6-Tetramethylpiperidine (TMP) 

reacts with nBuLi to form the sterically bulky base LiTMP. This choice of base was 

employed to increase the chance of selective lithiation at the 4-position of the 

thiophene ring as this position is less sterically hindered than that of the 2-position. 

Compound 45 was then cross coupled under Suzuki conditions with compound 46 to 

give compound 44. Attempts at isolation of the intermediate 45 were unsuccessful. 

Upon 1H NMR analysis of the isolated purified product, it was apparent that the 

undesired regioisomer had formed during the lithiation step, placing the boronate 

species in the 2-position of the thiophene ring. The most likely reason for this is due 

to the direct ortho metalation (DOM) effect of the pyrrolidine group. The pyrrolidine 

nitrogen lone pair can stabilise lithiation at the 2-position and therefore directs the 

borylation process. In order to overcome this problem, an attempt was made using 

bromination conditions, developed in-house, to synthesise compound 51 

(Scheme 2.14).  

 

 

 

 

Scheme 2.14: Attempted bromination of compound 49. 

Mono-bromination of compound 49 was unsuccessful using the above conditions. 

Analysis of the reaction mixture using LC-MS indicated that di/tri substituted 
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bromination was occurring and therefore the reaction was abandoned. Further attempts 

at synthesising compound 44 were abandoned and efforts focussed elsewhere. 

 Biological Evaluation of ‘Second Generation’ Fragments 

Compounds 29-31, 33, 34, 37, 38 and 43 were screened against FGFR1 at an initial 

concentration of 100 µM using the FRET-based assay. The results are outlined below 

(Table 2.2). 

Table 2.2: Biological results for ‘second generation’ fragments when screened against FGFR1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a % Inhibition and IC50 values are given as the mean ± SD of all data points, n = 2. b No difference in 

measured data points. c NT = not tested. 

Compounds 29-31 were synthesised to probe the potential to form favourable 

interactions in the 3-position of the phenyl ring. Compound 31 is active with an IC50 

value of 2 µM and a LE of 0.44 and is more active than both compounds 29 and 30. 

Compound 

No. 
Structure 

% Inhibitiona 

(100 µM) 

IC50
a

 

(µM) 
LE 

29 

 

19 ± 1.5 NT N/A 

30 

 

32 ± 0.5 NTc N/A 

31 

 

85 ± 0.0b 2.0 ± 0.4 0.44 

33 

 

-5 ± 0.5 NT N/A 

34 

 

83 ± 3.5 12 ± 1.6 0.43 

37 

 

20 ± 3.0 NT N/A 

38 
 

29 ± 0.5 NT N/A 

43 
 

19 ± 0.5 NT N/A 
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a) b) 

This suggests that the larger ethoxy group forms more favourable interactions within 

FGFR1 than the smaller halogen substituents. The increase in potency could be due to 

the ethoxy group lying deeper in the H1 pocket having a greater hydrophobic effect. 

In contrast, compound 33 is completely inactive. This suggests that there may be a 

limit to the size of the space that can be occupied by substituents around the 6-phenyl 

ring. Compound 34 is also active with an IC50 value of 12 µM and a LE of 0.43. This 

suggests that substitution in the 4-position of the phenyl ring may offer potential to 

form favourable interactions. Compounds 37, 38 and 43 all show diminished activity 

when compared to compounds containing six-membered ring systems in the 6-position 

of the indazole ring. This outlines the importance of the 6-position phenyl ring for 

effective inhibition of FGFR1. 

 Docking of Compounds 31 and 34 

Compound 31 was docked into the FGFR1 crystal structure in order to rationalise the 

observed activity and is outlined below (Figure 2.9).  

  

 

Compound 31 is predicted to bind to FGFR1 in a similar way to that predicted for 

compound 15 (Figure 2.6). The ethoxy moiety of compound 31 is predicted to occupy 

the H1 pocket with the oxygen atom forming an H-bond with the backbone NH of 

Asp641. Comparison with the docking of compound 15 (Figure 2.6) shows that the 

ethyl group is placed further into the H1 pocket than that of the Cl atom, and can 

Figure 2.9: a) Glide docking model of compound 31 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 31. The ethoxy group is predicted to occupy the H1 pocket and 

also form an H-bond with the backbone NH of Asp641. 
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b) 

therefore explain the increase in potency from compounds 31 to 15. Compound 34 

was also docked into the FGFR1 crystal structure and is outlined below (Figure 2.10). 

  

Compound 34 is predicted to bind to FGFR1 in a similar way to that predicted for 

compound 31 (Figure 2.9). The 4-position hydroxy group of the phenyl ring is 

predicted to be an H-bond donor forming an H-bond with a side chain carboxy oxygen 

of Glu531. In contrast to the docking model of compound 31, the dihedral angle 

between the phenyl and indazole ring has decreased, placing the 3/5-position vectors 

of the phenyl ring away from the H1/H2 sub-pockets. This suggests that occupation 

of either of these sub-pockets with small hydrophobic groups may not be possible 

when the phenol moiety is present. 

2.4 SAR Exploration 

 Amine Library 

In order to further expand the SARs for the indazole pharmacophore 28, a small library 

of compounds was targeted for synthesis, focusing primarily on optimisation of the 

3-position substituent on the phenyl ring and is outlined below. 

Figure 2.10: a) Glide docking model of compound 34 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 34. The hydroxy group is predicted to form an H-bond with a 

side chain carboxy oxygen of Glu531.  

a) 
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This library would allow rapid access to a large number of fragments via divergent 

reductive amination chemistry. Compound 52 will act as a comparison to compound 

31 as the 3-position substituent has the same chain length, varying only in the position 

of the heteroatom. Compounds 53-58 will help establish the effect of varying the size 

of the 3-position substituent, looking at aliphatic and saturated heterocycles 

substituents. 

2.4.1.1 Retrosynthetic Analysis of Structures 52-58 

Retrosynthetic analysis of structures 52-58 indicated that the desired compounds could 

be made in two simple steps; Pd-catalysed Suzuki couplings followed by reductive 

aminations and is summarised below (Scheme 2.15). 

Scheme 2.15: Retrosynthetic analysis of structures 52-58. 

2.4.1.2 Synthesis of Compounds 52-58 

Compounds 52-58 were synthesised using a combination of Suzuki chemistry and 

reductive amination chemistry (Scheme 2.16). Compound 59 was subjected to 

oxidative and reductive conditions using adaptations of methods outlined by Kelly et 

al and is summarised below (Scheme 2.16).123  
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Scheme 2.16: Divergent synthesis to compounds 52-58 utilising compound 59.1 

Compounds 61 and 62 were synthesised from compound 59 to provide additional 

SARs. Compound 61 was formed in a modest yield of 65%, however, compound 62 

proceeded in a poor yield of 10%. This was due to purification issues mainly attributed 

to the polar nature of the compound. The reductive aminations proceeded with modest 

yields apart from the case of compound 57 which was unsuccessful. Upon purification 

it was apparent that compound 57 was extremely insoluble and could not be isolated. 

To overcome this issue, compound 57 was synthesised using chemistry as summarised 

below (Scheme 2.17). 

 

 

 

 

Scheme 2.17: Alternative synthesis of compound 57. 

Compound 57 was synthesised via the protected intermediate 63. Purification was 

carried out on this intermediate followed by deprotection using trifluoroacetic acid 

(TFA) yielding compound 57 as the TFA salt. 

                                                 
1Compounds outlined in red were synthesised by Abbey Summers (MChem) under the supervision of the Author. 
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2.4.1.3 Biological Evaluation of Compounds 52-59 and 61-63 

Compounds 52-59 and 61-63 were screened against FGFR1 at an initial concentration 

of 100 µM using the FRET-based assay. The results are outlined below (Table 2.3).  

Table 2.3: Biological results for compounds 52-59 and 61-63 when screened against FGFR1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a % Inhibition values are given as the mean ± SD of all data points, n = 2. b No difference in measured 

data points. 

Compound 

No. 
Structure 

% Inhibitiona 

(100 µM) 

52 

 

54 ± 0.5 

53 

 

45 ± 0.5 

54 

 

55 ± 3.5 

55 

 

49 ± 0.5 

56 

 

24 ± 1.0 

57 

 

52 ± 4.5 

63 

 

19 ± 1.5 

58 

 

48 ± 2.5 

59 

 

77 ± 0.5 

61 

 

54 ± 0.0b 

62 

 

35 ± 0.5 
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Compounds 52-59 all show lower activity against FGFR1 at 100 µM than for the case 

compound 31 (Table 2.2). The size of the 3-position phenyl substituent for compound 

52 is the same as the substituent in compound 31, this suggests that the loss in potency 

is due to the change of the positioning and nature of the heteroatom present. 

Compounds 53 and 54 both show a loss in potency against FGFR1 when compared to 

compound 31, possibly due to the larger 3-position phenyl substituents. Compounds 

55-58 and 63 all contain saturated heterocycles and all show less activity against 

FGFR1 at 100 µM than compound 31. This could be due to the saturated ring systems 

being too large to fit into the H1 pocket. Additionally, the tertiary amine centres are 

protonated at physiological pH, potentially resulting in a repulsive interaction with 

hydrophobic residues within the H1 or H2 sub-pockets. Interestingly, compound 59 

shows comparable inhibition at 100 µM to that of compound 31. This could be due to 

an H-bond forming between the aldehyde oxygen and the backbone NH of Asp641, 

as was predicted for the ether oxygen in the docking of compound 31 (Figure 2.9). 

Care must be taken when drawing conclusions from compounds with aldehydes 

present. The reactive nature of this species poses complications that may result in false 

positives, such as covalent inhibition. In contrast, compound 61 shows less inhibition 

against FGFR1 than compound 59. This could be due to the weaker H-bonding 

acceptor potential of the oxygen lone pair in compound 61. Compound 62 also shows 

less inhibition against FGFR1 than compound 59. The carboxy group is negatively 

charged at physiological pH and therefore may experience repulsion with the nearby 

negatively charged residues, such as Glu531 or Asp641.  
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2.4.1.4 Docking of Compounds 52, 55 and 59 

Compound 52 was docked into the FGFR1 crystal structure in order to rationalise the 

observed activity and is outlined below (Figure 2.11). 

 

Compound 52 is predicted to bind in a similar way to that predicted by compound 31 

(Figure 2.9). The 3-position substituent is predicted to occupy the H1 pocket as well 

as form an H-bond between the NH and a side chain carboxy oxygen of Glu531. 

However, the potency of this compound is lower than that observed for compound 31 

which appears to be at-odds with the proposed favourable docking binding pose. 

 

Figure 2.11: a) Glide docking model of compound 52 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 52. 

 

a) b) 

a) b) 

Figure 2.12: a) Glide docking model of compound 55 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 55. 
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Compound 55 is predicted to bind in a different way to compound 52. The presence 

of the bulky piperidine ring in compound 55 has resulted in the compound being 

displaced out, towards solvent, of the active site. This disrupts the crucial H-bonding 

interaction between the indazole nitrogens and the amino acid residues Glu562 and 

Ala564. This interaction has been conserved throughout all docking models of 

compounds containing the indazole core and therefore offers an explanation for the 

drop in potency for compound 55. The protonated piperidine group is predicted to 

form an H-bond with a side chain carboxy oxygen of Asp641. Compounds 56-58 and 

63 were docked and were also predicted to bind in a similar fashion to compound 55.  

Compound 59 was also docked into the FGFR1 crystal structure in order to rationalise 

the observed activity and is outlined below (Figure 2.13). 

 

  

Compound 59 is predicted to bind in a similar way to that predicted for compound 52 

(Figure 2.11). The aldehyde group is predicted to form an H-bond with the backbone 

NH of the Asp641 residue. Interestingly, the formyl hydrogen points into the H1 

pocket, this suggests that small amide or ester linkages may be tolerated in this 

position. 

  Occupation of the H1 Sub-pocket 

The docking of compound 59 suggests substitution at the aldehyde may lead to 

occupation of the H1 sub-pocket. Several derivatives prepared utilising amide 

a) b) 

Figure 2.13: a) Glide docking model of compound 59 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 59. 
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chemistry were docked into the FGFR1 crystal structure, the one with the best 

predicted fit is outlined below (Figure 2.14). 

 

 

Compound 64 is predicted to bind in a similar way to that predicted for compound 52 

(Figure 2.11). The ethyl amide group is predicted to occupy the H1 pocket and make 

two H-bonding interactions. The amide carbonyl is predicted to form an H-bond with 

the backbone NH of Asp641, and the amide NH is predicted to form an H-bond with 

a side chain carboxy oxygen of Glu531. The methyl amide (65) was also targeted to 

act as a direct comparison to compound 64. Both were synthesised according to an 

adaptation of a procedure outlined by Brady et al as summarised below 

(Scheme 2.18).124  

Scheme 2.18: Amide coupling conditions using in situ acyl chloride formation. 

Compound 62 was chlorinated using SOCl2 and the chlorine atom displaced by in situ 

nucleophilic attack of a primary amine to form the amide. Both reaction yields were 

low at 14%. Analysis of the crude reaction mixture by LC-MS outlined the formation 

of various side products and can therefore explain the poor yield. 

  

a) b) 

Figure 2.14: a) Glide docking model of compound 64 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 64. 
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 Biological Evaluation of Compounds 64 and 65 

Compounds 31, 64 and 65 were screened against FGFR1-3 at an initial concentration 

of 100 µM using the FRET-based assay. The results are outlined below (Table 2.4). 

Table 2.4: Biological results for compounds 31, 71 and 72 when screened against FGFR1-3. 

 

 

 

 

 

 

 

 

 

 

a % IC50 values are given as the mean ± standard deviation (SD) of all data points, n = 2. 

Compound 31 was tested against FGFR2/3 to determine whether there was any 

selective inhibition for the individual FGFR sub-types. As these compounds are 

fragments the selectivity difference was expected to be small. Minor differences in 

selectivity were observed, most noticeably between FGFR2 and FGFR3 with 

compound 31 being ~5-fold more selective for FGFR2. The docking model of 

compound 64 (Figure 2.14) was promising, however, compounds 64 and 65 were 

inactive against FGFR1-3. The reasons for the complete loss of activity for compounds 

64 and 65 were unclear and further work regarding this motif was abandoned.  

2.5 Optimisation of Lead Fragments 

 SAR Expansion of Compound 31 

Compound 31 was subjected to further modification focusing on substitution around 

the indazole 6-position phenyl ring in addition to the 3-ethoxy group. Docking models 

outlined that occupation of both the H1/H2 sub-pockets may be achieved by 

substitution of small hydrophobic groups in the 5-position of the phenyl ring, as 

compound 66 shows (Figure 2.15). 

Compound 

No. 
Structure 

IC50
a

 (µM) 

1 2 3 

31 

 

2.0 ± 0.4 0.8 ± 0.4 4.5 ± 1.6 

64 
 

>100 >100 >100 

65 
 

>100 >100 >100 
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Compound 66 is predicted to bind in a similar fashion to that of compound 31 

(Figure 2.9). In addition the F atom is predicted to occupy the H2 sub-pocket.  

Using the docking model as a guide, a small focussed library looking at incorporating 

small hydrophobic groups, in addition to the 3-position ethoxy group, was developed 

and is outlined below. 

 

 

a) b) 

Figure 2.15: a) Glide docking model of compound 66 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 66. 
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2.5.1.1 Synthesis of Compounds 66-74 

Compounds 66-74 were synthesised using Suzuki chemistry as summarised below 

(Scheme 2.19).  

 

 

 

 

Scheme 2.19: Suzuki chemistry to 6-substituted indazoles.2 

The yields for each coupling step vary quite significantly. The low yield for 

compound 73 can be explained by the sterically bulky, and electron poor, boronic acid 

making the rate of transmetallation slower. 

2.5.1.2 Biological Evaluation of Compounds 66-74 

Compounds 66-74 were screened against FGFR1-3 at an initial concentration of 

100 µM using the FRET-based assay. The results are outlined below (Table 2.5). 

In general, further substitution on the phenyl ring results in a loss of activity. 

Compound 66-68 are significantly less active than compound 31 against all FGFRs. 

In addition to the 3-ethoxy group, compounds 66-68 show an increase in the size of 

the 5-position substituent which results in a decrease in potency when compared to 

compound 31. This suggests that the compounds are too large to bind favourably to 

the FGFR. Compound 66 completely loses activity against FGFR3 and is less active 

against FGFR1/2 when compared to compound 31. Interestingly, compound 66 is 

~7-fold more active against FGFR2 than FGFR1, an increase from what is observed 

for compound 31 (~2.5-fold). This suggests that it may be possible to develop a 

selective FGFR2 inhibitor with precise substitution around the 6-position phenyl ring. 

In addition to the ethoxy group, compounds 69-71 possess mono-substituted fluorines 

in various substitution patterns around the 6-position ring. Compound 69 is the most 

active of the mono-fluorinated compounds but still weaker than compound 31; it has 

also lost activity against FGFR3. This complete loss of activity against FGFR3 is 

reflected throughout compounds 66-74, suggesting that the requirements for inhibition 

of FGFR3 are more stringent than that of FGFR1/2. Compound 70 is completely 

                                                 
2Compounds outlined in red were synthesised by Abbey Summers (MChem) under the supervision of the Author. 
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inactive outlining that substitution in the 4-position of the phenyl ring is not tolerated. 

Compounds 71 and 72 are both inactive. This outlines that, in addition to the 3-ethoxy 

group, further substitution in the 6-position of the phenyl ring is not tolerated. 

Compounds 73 and 74 possess di-fluorinated systems and both show diminished 

activity against the FGFRs, reflecting the conclusions made for compounds 71 and 72. 

Table 2.5: Biological results for compounds 31 and 66-74 when screened against FGFR1-3. 

 

 

a % Inhibition and IC50 values are given as the mean ± SD of all data points, n = 2. b No difference in 

measured data points. c NT = not tested 

No. Structure 
% Inhibitiona  (100 µM)  IC50

 a
 (µM)  

1 2 3 1 2 3 

31 

 

85 ± 0.0b NTc NT 2.0 ± 0.4 0.8 ± 0.4 4.5 ± 1.6 

66 

 

63 ± 5.5 88 ± 1.0 52 ± 3.5 83 ± 0.9 12 ± 0.9 >100 

67 

 

24 ± 0.5 49 ± 4.0 24 ± 0.5 >100 >100 >100 

68 

 

14 ± 2.0 44 ± 1.0 11 ± 12 NT NT NT 

69 

 

71 ± 1.5 89 ± 1.0 56 ± 0.0 9.7 ± 1.1 6.4 ± 0.8 >100 

70 

 

8 ± 7.5 NT NT NT NT NT 

71 

 

43 ± 6.5 NT NT NT NT NT 

72 

 

38 ± 1.0 NT NT NT NT NT 

73 

 

57 ± 3.5 75 ± 1.5 46 ± 2.0 >100 52 ± 0.9 >100 

74 

 

31 ± 6.5 51 ± 3.0 13 ± 12 NT NT NT 
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In summary, additional substitution on the 6-position phenyl ring results in a less 

active compound but as compound 66 shows, it may be possible to utilise precise 

substitution patterns to obtain selectivity between the different FGFR sub-types. 

 SAR Validation and Expansion of Compound 34 

Compound 34 is predicted to form an H-bond between the 4-position OH and the 

Glu531 residue of FGFR1 (Figure 2.10). In order to validate this prediction 

compounds 75 and 76 were targeted for synthesis and are outlined below. The 

methoxy group in compound 75 lacks the ability to be an H-bond donor but is able to 

accept an H-bond. This will help establish what type of H-bond is occurring with 

Glu531. The Cl atom in compound 76 cannot be a H-bond donor and provides 

additional SAR in this position.   

 

 

 

Compound 34 was also subjected to further modification focusing on substitution 

around the 6-position phenyl ring in addition to the 4-hydroxy group. Docking models 

outlined that occupation of the H2 pocket may be achieved by substitution of a small 

hydrophobic group at the 3-position of the phenyl ring, as compound 77 shows 

(Figure 2.16).  

 a) b) 

Figure 2.16: a) Glide docking model of compound 77 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 77. 



Chapter Two 

 

63 

 

Compound 77 docks in a similar fashion to that of compound 34 (Figure 2.10) and is 

predicted to maintain the H-bond between the hydroxy group and the Glu531 residue. 

In addition to the predicted H-bonds, the fluorine atom is predicted to occupy the H2 

pocket. Using the docking model as a guide, a small focussed library based on 

incorporation of small hydrophobic groups in addition to the 4-position hydroxy group 

was developed and is outlined below. 

 

 

 

 

 

 

 

 

2.5.2.1 Synthesis of Compounds 75-80 

Due to the poor yielding Suzuki step observed when using 4-hydroxyphenylboronic 

acids (Scheme 2.6), an alternative synthesis of compounds 77-80 was carried out using 

a procedure developed in-house as summarised below (Scheme 2.20). Compounds 75 

and 76 were synthesised using Suzuki chemistry with the corresponding boronic acid. 

Scheme 2.20: Alternative synthesis to compounds 84-89.3 

The low yielding Suzuki step for compounds 82 and 83 can be attributed to their poor 

solubility and subsequent difficult purification and isolation. In general, the methoxy 

                                                 
3Compounds outlined in red were synthesised by Laura Johnson (MChem) under the supervision of the Author. 



Chapter Two 

 

64 

 

deprotection step proceeds in good yields. The low yield of compound 77 was 

attributed to a loss of material during extraction due its inherent aqueous solubility. 

2.5.2.2 Biological Evaluation of Compounds 75-80 

Compounds 34 and 75-80 were screened against FGFR1-3 at an initial concentration 

of 100 µM using the FRET-based assay. The results are outlined below (Table 2.6). 

Table 2.6: Biological results for compounds 34 and 75-80 when screened against FGFR1-3. 

a % Inhibition and IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

The 4-position phenyl substituents in compounds 75 and 76 lack the ability to be 

H-bond donors to Glu531; this change is reflected in their activity as both compounds 

are inactive against FGFR1. This strengthens the hypothesis that the OH moiety in 

compound 34 is indeed an H-bond donor (Figure 2.10). In general, addition of small 

hydrophobic groups onto the 6-position phenyl ring in compound 34 results in an 

increase in potency against FGFR1-3, with the exception of compound 77 that exhibits 

a drop in potency against FGFR1. When comparing to compound 34 an increase in 

Compound 

No. 
Structure 

% Inhibitiona 

(100 µM) 

IC50
a

 (µM) 

1 1 2 3 

34 

 

83 ± 3.5 12 ± 0.2 3.0 ± 0.1 51 ± 0.6 

75 

 

11 ± 2.0 NTb NT NT 

76 

 

12 ± 4.0 NT NT NT 

77 

 

81 ± 2.5 14 ± 0.1 7.3 ± 0.1 NT 

78 

 

78 ± 1.5 8.8 ± 0.1 NT NT 

79 

 

76 ± 0.5 9.9 ± 0.1 5.4 ± 0.1 >100 

80 

 

83 ± 2.5 6.4 ± 0.1 NT NT 
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potency is observed when increasing the size of the hydrophobic substituent from a 

fluorine (compounds 77 and 79) to a methyl group (compounds 78 and 80) in both 

substitution patterns. This suggests the decrease in potency from compound 34 to 77 

is unlikely to be due to an increased steric clash between the inhibitor and the enzyme 

(unless an alternative binding pose has been adopted). A likely explanation could be 

due to the 3-position fluorine; the fluorine is electron withdrawing and reduces the 

H-bond donor potential of the 4-hydroxy group. The 3-position fluorine also has the 

potential to be an H-bond acceptor and could partake in an intramolecular H-bond with 

the 4-hydroxy moiety, again, reducing the H-bond donor potential of the OH group to 

Glu531. Compounds 79 and 80 outline that substitution in the 2-position is more 

preferable than that of the 3-position which as compounds 77 and 78 show less 

inhibition against the FGFRs. All compounds are more active against FGFR2 than 

FGFR1/3. Interestingly, compound 79 shows an increase in potency against FGFR1/2 

but a loss of activity against FGFR3 when compared with compound 34. This 

highlights the stricter constraints for FGFR3 inhibition of which was previously 

outlined for the ethoxy-containing compound series (Section 2.5.1.2). 
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2.6 Chapter Two Summary 

De novo design identified compound 14 as a potential hit fragment against FGFR1. 

Using SBDD, two main inhibitor series were identified and the SARs for these systems 

are outlined below (Figure 2.17). 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: SARs for lead fragments 31 and 34. 

Both fragment series exhibit low micromolar activity against FGFR1-3 with some 

derivatives showing small signs of selectivity preference for FGFR2 over FGFR1/3. 

Both series can undergo fragment growth to improve the potency against FGFR1-3 

with the aim of elucidating the specific structural requirements of small molecules that 

are needed to achieve FGFR sub-type selectivity.
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3Chapter Three – De Novo Fragment Growth 

3.1 Application of SPROUT to Compound 31 

In order to increase the potency of the FGFR inhibitor fragments, SPROUT was used 

to extend the structures of the fragments giving rise to larger compounds predicted to 

inhibit FGFR1. Lead fragment 31 was chosen as the representative compound to 

extend. The modelled fragment/FGFR complex was loaded into SPROUT.  

 

 

 

Previous literature reports suggest that substitution at the 3-position of the indazole 

ring would lead to more favourable binding.84,95,125 Inspection of the residues 

extending out of the active site was carried out. The adjacent residue to Ala564, 

Ser565, was chosen as the next amino acid in which additional H-bonding contacts 

could be made via suitable extension of the indazole fragment structure. Appropriate 

target and spacer templates were chosen and several solutions found. These were 

analysed for ease of synthesis; the docking pose of the top-ranked solution (85) is 

outlined below (Figure 3.1). 

 

 

In order to independently check the validity of the SPROUT-designed 

inhibitor-protein complex, molecular scaffold 85 was docked using Glide. The 

a) b) 

Figure 3.1: a) Glide docking model of compound 85 bound within FGFR1; b) 2D representation of 

predicted binding pose of compound 85. 
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resulting pose of compound 85 corresponded very well to that generated using 

SPROUT. The indazole nitrogens of compound 85 are predicted to bind in the same 

way as compound 31 (Figure 2.9). The benzylamine moiety located at the indazole 

3-position is predicted to be located at the entrance of the active site. The protonated 

amine moiety is predicted to make an H-bond with the backbone carbonyl of Ser565. 

 Target Library 

Based on the new predicted H-bond between compound 85 and Ser565, an extended 

library looking to exploit this interaction was developed and is outlined below 

(Figure 3.2). 

  

 

 

 

 

 

 

 

 

 

Figure 3.2: Focus library showing all the chosen extended variants of the ethoxy series. 

In addition to inclusion of the benzylamine moiety within the extended inhibitor 

structure, the hydroxymethyl and ethyl analogues were also identified as targets for 

synthesis. It was reasoned that comparison of the binding of these derivatives to the 

FGFRs with that shown by the aminomethyl-based molecule 85; would prove the 

existence of the predicted H-bond between the benzylamine amino group and the 

Ser565 backbone carbonyl (Figure 3.1). The extended versions of compound 66 were 

also targeted for synthesis as this fragment showed promise in achieving selectivity 

for FGFR2 over FGFR1/3. It was also planned to prepare the extended versions of 

compound 67 in order for these systems to act as a control series; as fragment 67 was 

inactive it is hypothesised that the larger systems should also be inactive. The extended 

versions of compound 69 were also targeted for synthesis as this was the second most 

potent fragment. 
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 Retrosynthetic Analysis of Structure 85 

Structure 85 was subjected to retrosynthetic analysis (Scheme 3.1).  

Scheme 3.1: Retrosynthetic analysis of structure 85. 

It was reasoned that the extended versions of compounds 31, 66, 67 and 69 could be 

made very simply by two consecutive Suzuki coupling reactions starting from 

compound 87. 

 Synthesis of the Extended Ethoxy Series 

In order to gain access to the extended variants, iodide 87 was identified as a key 

intermediate. Compound 87 was synthesised using a procedure developed in-house 

and is summarised below (Scheme 3.2).  

 

 

 

 

Scheme 3.2: Selective bromination of compound 46 to make compound 87. 

Compound 46 can be brominated selectively at the 3-position of the indazole ring 

using NBS. The reaction is very high yielding and no over-bromination or undesired 

regiomers are observed. Compound 87 was then subjected to a selective Suzuki 

coupling using the conditions outlined previously (Scheme 2.4) as summarised below 

(Scheme 3.3). The presence of two different halogens in compound 87 allowed 

selective substitution of each halogen, yielding compounds 86 and 88-90 in the initial 

step. In all cases, formation of the bis-arylated compounds (91-94) was observed as 

the minor product with the exception of compound 93 which forms as the major 

product. Compounds 86 and 88-90 were then further reacted under Suzuki conditions 

using the desired boronic acids. The yields for the second Suzuki steps were found to 

be somewhat variable but in general, the yields of the methyl amino-based compounds 

(85, 97, 100 and 103) were low as purification of these proved troublesome. A total of 

sixteen final compounds were synthesised.
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Scheme 3.3: Synthesis of extended ethoxy series using selective Suzuki couplings.4 

 

                                                 
4Compounds outlined in red were synthesised by Abbey Summers (MChem) under the supervision of the Author. 
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 Biological Evaluation of the Extended Ethoxy Series 

Compounds 85 and 91-105 were screened against FGFR1-3 at a concentration of 

10 µM using the FRET-based assay. The results are outlined (Table 3.1a/b). 

Table 3.1a: Biological results for compounds 85 and 91-105 when screened against FGFR1-3. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a % Inhibition values are given as the mean ± SD of all data points, n = 2. b No difference in measured 

data points. 

Entry No. 
Structure % Inhibitiona  (10 µM) 

R R’ 1 2 3 

1 (91) 

 

 

4.0 ± 2.5 5.0 ± 11 6.0 ± 5.0 

2 (85) 

 
 

52 ± 2.0 71 ± 4.0 48 ± 0.5 

3 (95) 

 
 

30 ± 0.5 59 ± 1.5 13 ± 4.0 

4 (96) 

 
 

-9.0 ± 1.0 7.0 ± 5.5 -8.0 ± 4.5 

5 (92) 

 

 

-4.0 ± 2.0 8.0 ± 1.5 19 ± 3.0 

6 (97) 

 

 

59 ± 1.5 47 ± 4.0 56 ± 4.0 

7 (98) 

 

 

27 ± 1.0 31 ± 3.0 22 ± 2.5 

8 (99) 

 

 

1.0 ± 3.0 -10 ± 0.0b 2.0 ± 2.5 
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Table 3.1b: Biological results for compounds 85 and 91-105 when screened against FGFR1-3. 

 

 

a % Inhibition values are given as the mean ± SD of all data points, n = 2. b No difference in measured 

data points. 

Analysis of the above results show that addition of the substituted aromatic ring in the 

3-position of the indazole ring is generally unfavourable for binding to the FGFR 

enzymes, with compounds 91-94 (entries 1, 5, 9 and 13) being inactive, possibly 

because the R’ groups are too large. Compounds 96, 99, 102 and 105 (entries 4, 8, 12 

and 16) all contain the ethyl moiety and are also inactive. Interestingly, the 

hydroxymethyl and the aminomethyl derivatives for all compounds show better 

inhibition against FGFR1-3 than the corresponding ethyl derivatives. This is 

consistent with the predicted H-bond that forms between the amine in compound 85 

Entry No. 
Structure % Inhibitiona  (10 µM) 

R R’ 1 2 3 

9 (93) 

 

 

-4.0 ± 1.5 2.0 ± 1.0 -12 ± 6.5 

10 (100) 

 

 

23 ± 4.0 28 ± 1.5 -3.0 ± 1.5 

11 (101) 

 

 

7.0 ± 0.5 13 ± 1.0 4.0 ± 12 

12 (102) 

 

 

-15 ± 0.5 2.0 ± 1.5 -4.0 ± 1.5 

13 (94) 

 

 

-9.0 ± 0.5 2.0 ± 0.5 4.0 ± 4.5 

14 (103) 

 

 

73 ± 0.0 82 ± 2.0 70 ± 4.5 

15 (104) 

 

 

37 ± 0.0 61 ± 2.0 21 ± 6.5 

16 (105) 

 

 

-3.0 ± 0.0 4.0 ± 0.5 6.0 ± 5.0 



Chapter Three 

 

73 

 

and Ser565 (Figure 3.1). IC50 measurements were conducted and are outlined below 

(Table 3.2). 

Table 3.2: Biological results for compounds 31, 85, 91, 95, 96, 97 and 103 when screened against 

FGFR1-3. 

 

 

a IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

IC50 measurements confirmed that compounds 91, 95, and 96 are inactive against 

FGFR1 suggesting the other bis-arylated, ethyl, and hydroxymethyl derivatives are 

also inactive. Compounds 85, 97, and 103 are active against most of the FGFRs but 

do not show an improvement in potency when compared to lead fragment 31. 

Therefore, it is very unlikely that the benzylamine amino group in compounds 85, 97 

and 103 is forming an H-bond with Ser565, a predicted H-bond from the docking of 

compound 85 within FGFR1 (Figure 3.1). A potential reason for the retained activity 

of compounds 85, 97 and 103 could be due to better solvation within the active site of 

Compound 

No. 

Structure IC50
a  (10 µM) 

R R’ 1 2 3 

31 
 

H 2.0 ± 0.4 0.8 ± 0.4 4.5 ± 1.6 

91 
  

>10 NTb NT 

95 

 
 

>10 >10 >10 

96 

  

>10 NT NT 

85 

 
 

>10 2.1 ± 0.9 2.6 ± 1.1 

97 

  

8.4 ± 1.4 3.7 ± 1.0 5.8 ± 0.7 

103 

  

3.7 ± 0.6 2.4 ± 0.9 5.2 ± 0.9 
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the compound. The 3-position substituent, in particular the aminomethyl moiety, is 

predicted to protrude out of the active site towards solvent (Figure 3.1). The 

aminomethyl group (compounds 85, 97 and 103) will be charged at physiological pH 

and will therefore help solvate the compound in a water-filled environment, which 

won’t be reflected for the hydroxymethyl or ethyl variants (compounds 95 and 96). 

3.2 Investigation into the Potency Decrease of Compound 85 

 Solvation at the 3-Position of the Indazole Core 

In order to further explore whether solvation at the 3-position of the indazole-based 

inhibitors is important, compound 106 was targeted for synthesis. 

 

 

 

 

 

Compound 106 has a saturated ring substituted at the 3-position which will help 

solubilise the compound in an aqueous environment. Compounds 107 and 108 both 

contain single atom linkers connected to an aromatic ring; it was reasoned that these 

will allow comparisons to be made with the saturated system of compound 106. They 

will also establish the effect of what a single atom linker has upon the potency of these 

compounds against the FGFRs. 

 Synthesis of Compound 106 via the use of Cross Coupling 

Attempts at synthesising compound 106 were carried out using Buchwald chemistry 

using an adaptation of a method outlined by Akatsuka et al and is summarised below 

(Scheme 3.4).126 
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Scheme 3.4: Unsuccessful Buchwald chemistry. 

Unfortunately, the synthesis of compound 106 using the above conditions was 

unsuccessful. Analysis of the crude reaction mixture using LC-MS showed no 

conversion to the desired product. An interesting observation was the formation of the 

debrominated product of 86 (31), which suggests the catalytic cycle does not go to 

completion. Reaction conditions were varied, including changing the catalyst, ligand 

and base, none of which yielded the desired product. Attempts at synthesising 

compound 106 using Ullmann chemistry were carried out using a method developed 

in-house and are summarised below (Scheme 3.5). 

 

 

Scheme 3.5: Synthetic route to compound 106 using copper-catalysed Ullmann Chemistry. 

The above conditions also failed to yield compound 106. Analysis of the crude 

reaction mixture using LC-MS showed only the presence of starting material. It is 

possible that these reactions failed because of small traces of either oxygen and/or 

water present within the reaction vessel, rendering the catalyst ineffective. Another 

reason could be the presence of an indazole NH. Inspection of the literature revealed 

that in general, the indazole NH was protected when present as a component in such 

cross-couplings. Therefore alternative routes to compound 106 were considered. 

 Synthesis of Compound 106 via SNAr 

Literature precedent outlined the potential use of nucleophilic aromatic substitution 

(SNAr) chemistry in order to synthesise compound 106.127 A suitable halogen would 
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need to be installed in order to satisfy the requirements for SNAr and therefore 

compound 46 was subjected to in-house chlorination conditions as summarised below 

(Scheme 3.6).  

 

 

 

Scheme 3.6: Chlorination of compound 46. 

Chlorination of compound 46 using N-chlorosuccinimide (NCS) was slow compared 

to the analogous bromination of the indazole ring using NBS (Scheme 3.2). The yield 

of the reaction was also lower as other regioisomers were formed as well as bis-

chlorinated compounds, making purification troublesome. Compound 109 was then 

subjected to SNAr chemistry outlined by Allen et al and is summarised below 

(Scheme 3.7).127 

 

 

 

 

Scheme 3.7: Unsuccessful SNAr conditions. 

In order to obtain compound 110, compound 109 was refluxed in neat piperidine but 

unfortunately the desired product was not obtained. This may imply that the indazole 

is too electron rich for a successful SNAr reaction. This is consistent with literature 

reports which describe the need for EWGs to be present on the indazole ring in similar 

SNAr processes.128 A way to render the indazole ring electron deficient would be to 

protect the indazole NH with a suitable EWG. Protection using a sulfonyl group was 

carried out using similar conditions outlined previously (Scheme 2.3) and is 

summarised below (Scheme 3.8).  

 

 

 

 

 

 

 

Scheme 3.8: Protection of the indazole NH using compound 111. 



Chapter Three 

 

77 

 

Compound 109 was deprotonated using NaH to form an anion which, in turn, proceeds 

to attack the sulfonyl group of compound 111 displacing the Cl atom affording 

compound 112. The protecting group was found to be base-labile and therefore an 

optimisation study into the amount of NaH added was carried out. It was determined 

that 1.2 eq was the optimum amount of NaH. However, the reaction only proceeded 

to give the product in 26% yield. Compound 112 was subjected to SNAr conditions as 

seen in Scheme 3.7 but in this case, the reaction was unsuccessful. Analysis of the 

crude reaction mixture using LC-MS confirmed the presence of compound 109 

indicating the removal of the protecting group. Another compound was also detected 

that corresponded to the piperidine-sulfonyl conjugate, indicating that the protecting 

group was susceptible to nucleophilic attack. It was therefore decided that this 

protecting group was unsuitable. A base-resistant protecting group appeared attractive, 

and the N-tert-butyloxycarbonyl (BOC) derivative was synthesised according to an 

adaptation of a procedure outlined by Blunt et al as summarised below 

(Scheme 3.9).129 

 

 

 

  

Scheme 3.9: Protection of the indazole NH using a BOC group. 

The formation of compound 113 proceeded in a similar manner to that of compound 

112 in a yield of 88%. As seen in Scheme 3.7, compound 113 was subjected to reflux 

in neat piperidine but unfortunately, the reaction was unsuccessful. It was determined 

that piperidine was acting as a nucleophile for the BOC group in a similar manner as 

seen in the case of the sulphonyl variant (Scheme 3.8). It was concluded that an N-acyl 

protecting group was susceptible to nucleophilic attack and therefore was unsuitable 

for SNAr-based chemistry. Further work on this area was terminated and efforts 

focussed elsewhere. 

 Current Inhibitors Bearing an Indazole Scaffold 

During the course of the present research, a study carried out by Liu et al was 

published which outlined the discovery of very similar indazole-based compounds for 

the inhibition of FGFR kinases.95 A co-crystal structure (PDB code: 4ZSA) of 

compound 114 bound within FGFR1 was solved (Figure 3.3).  
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Compound 114 has an IC50 value of 15 nM against FGFR1. Interestingly, the core of 

the inhibitor described in this study is almost identical to that of compound 85 

(Section 3.1) with the only major difference being the indazole 3-position substituent. 

As discussed previously, the data in Tables 3.1a/b reveal that direct substitution of an 

aromatic ring in the 3-position of the indazole is unfavourable, and therefore, the 

presence of the amide moiety in compound 114 appears to be very important for 

inhibition of FGFR1. Two possibilities as to why the amide moiety may be important 

for binding of these inhibitors are: i) in the published co-crystal structure of compound 

114, an H-bond can be seen between the backbone carbonyl of Ala564 and the amide 

NH and, ii) the more variable positioning of the indazole 3-position decoration. 

Having an aromatic ring directly attached to the 3-position means the trajectory of that 

part of the molecule is linear. The indazole 3-position/amide C-N bond is free to rotate 

allowing the 3-position appendage to occupy more varied trajectories when compared 

to the linear trajectory that compound 85 would experience, and, it is hypothesised 

that this could be key for inhibition for the FGFRs.  

3.2.4.1 Amide Target Library 

Based on the literature outlined above, a focussed library of compounds incorporating 

the amide functionality into the 3-position was developed. This would help validate 

a) b) 

Figure 3.3: a) Co-crystal structure of compound 114 (PDB: 4ZSA) bound within the active site of 

FGFR1; b) 2D representation of binding pose of compound 114. 
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the hypothesis that compounds containing the amide functionality will regain activity 

against the FGFRs. 

 

 

 

 

 

 

 

 

 

It was reasoned that exploring the binding of compound 115 to the FGFRs will help 

establish the importance of the amide linker between the two aromatic systems. 

Compound 116 will establish how changing the phenyl ring to a cyclohexyl ring 

affects binding to the FGFRs. Compounds 117 and 118 will help establish the 

importance of the carbonyl functionality in the 3-position linker. 

3.2.4.2 Retrosynthetic Analysis of Structures 115-118 

Structures 115-118 were subjected to retrosynthetic analysis as summarised below 

(Scheme 3.10).  

 

 

 

 

 

 

 

 

 

 

Scheme 3.10: Retrosynthetic analysis of amides and amines. 
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The first disconnection can be made at the N-R bond giving structure 119. The second 

disconnection can be made at the indazole 6-position affording structure 120. Finally 

the five-membered ring can be disconnected to give structure 121. 

3.2.4.3 Synthesis of Compounds 115-118 

In order to gain access to compounds 115-118, compound 119 would need to be 

obtained and was synthesised using the procedure outlined below (Scheme 3.11). 

Scheme 3.11: Synthetic route to compound 119. 

Compound 120 was first synthesised using a procedure outlined by Bahmanyar et 

al.130 Compound 121 was subjected to SNAr with hydrazine followed by an 

intramolecular ring closing condensation to give compound 120 in a yield of 89%. 

Compound 120 was then subjected to Suzuki conditions with compound 122 to afford 

compound 119. Compound 119 was then subjected to reductive amination conditions 

as summarised below (Scheme 3.12). 

 

 

 

 

Scheme 3.12: Synthesis of compound 118 using reductive amination. 

Compound 119 was reacted with compound 123 under reductive amination conditions 

resulting in compound 118 in a yield of 22%. It was thought that the low yield was 

attributed to the 1-position indazole NH competing with the 3-position NH2 in the 

initial attack of the aldehyde moiety, and so, compound 119 was subjected to BOC 

protection (Scheme 3.13). The N-protected molecule 124 was reacted in both acyl 

chloride coupling and reductive amination conditions (Scheme 3.13). 
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Scheme 3.13: Divergent use of compound 124. 

Compound 124 was reacted with compound 125 under reductive amination conditions 

to afford compound 126 in a yield of 42%. Using conditions outlined by Gao et al131, 

compound 124 was reacted with acyl chlorides 129 and 130 to afford compounds 127 

and 128 respectively in moderate yields. Interestingly in both cases, over-reaction was 

observed, affording compounds 131 and 132. Classically, the formation of these 

compounds would not be expected due to the weaker nucleophilicity of an amide 

versus the amine precursor. However, it is possible that due to the extended delocalised 

system between the indazole and the amide, the pKa of the amide NH was now low 

enough to enable deprotonation by N,N-diisopropylethylamine (DIPEA). This would 

create a delocalised anion, reaction of which may explain the formation of the 

N-substituted products 131 and 132. Compounds 126-128, 131 and 132 were then 

deprotected using a method developed in-house as summarised below (Scheme 3.14). 
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Scheme 3.14: BOC deprotections using TFA. 

Yields for the deprotection of the BOC group for each case were lower than expected. 

This was due to the poor solubility of the compounds, resulting in troublesome 

purification. The deprotection of compound 132 was unsuccessful, the reasons as to 

why this was the case were unclear and as compound 132 was collected as a 

by-product, attempts to resynthesize compound 134 were not carried out. 

3.2.4.4 Biological Evaluation of Compounds 115-118 and 133 

Compounds 115-118 and 133 were screened against FGFR1-3 using the FRET-based 

assay. The results are outlined below (Table 3.3). 

Analysis of the data in Table 3.3 reveal that compound 115 is active against FGFR1 

with an IC50 value of 0.46 μM; a dramatic increase in potency when compared to 

compound 85. Compound 115 also shows an increase in potency against FGFR2 

exhibiting an IC50 of 0.14 μM whereas compound 85 only shows an IC50 value of 2.1 

μM against FGFR2. This >10-fold increase in potency is not observed for FGFR3. 

These results show that the amide present in compound 115 is crucial for binding to 

FGFR1/2. Compound 116 is completely inactive suggesting the sterically bulkier 

cyclohexane ring is not desirable for effective inhibition against the FGFRs. Both 

compounds 117 and 118 show a drop in activity against FGFR1. As both compounds 

are still able to form the predicted H-bond between the indazole 3-position amine and 

the backbone carbonyl of Ala564 (Figure 3.3), the activity drop is more likely to be 

down to the conformation of the 3-position appendage. An amide bond is 

conformationally restricted whereas the corresponding methylene amine has a much 

higher degree of flexibility. Compounds 117 and 118 have flexible linkers between 

the indazole and 3-position phenyl ring and therefore in order to adopt the most 

favourable conformation, of which the amide in compound 115 appears to adopt, there 

will be an entropic penalty upon binding compounds 117 and 118, resulting in a drop 
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in potency. Compound 133 is inactive as it is almost certainly too large to fit the steric 

constraints of the ATP binding pocket. 

Table 3.3: Biological results for compounds 85, 115-118 and 133 when screened against FGFR1-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

a IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

  

Compound 

No. 

Structure IC50
a
 (µM) 

R 

R’ 

1 2 3 

85 

 

>10 2.1 ± 0.9 2.6 ± 1.1 

115 

 

0.46 ± 0.01 0.14 ± 0.01 2.2 ± 0.02 

116 

 

>10 NTb NT 

117 

 

3.2 ± 0.1 NT NT 

118 

 

>10 NT NT 

133 

 

>10 NT NT 
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3.3 SAR Exploration of the Amide Series 

In order to expand the SARs for the amide series, the following target library was 

developed. 

 

 

 

 

It was reasoned that compounds 135 and 136 will help establish whether the minor 

differences observed in FGFR1-3 selectivity for fragments 66 and 69 (Section 2.5.1) 

will be reflected for the larger variants (compounds 135 and 136) upon an increase in 

potency. Compound 137 will look to probe the importance of solvation at the 

3-position, a hypothesis mentioned previously (Section 3.2.1), as pyridine can help 

solubilise the compound in an aqueous environment. 

 Synthesis of Compounds 135-137 

Compounds 135-137 were synthesised in a similar fashion to that described previously 

for compounds 115-118 (Section 3.2.4.3) and is outlined below (Scheme 3.15). 

 

 

 

 

 

 

 

 

 

 

Scheme 3.15: Synthetic route to compounds 135-137. 
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The 1-position NH in compound 120 was protected to give compound 138 in a yield 

of 76%. Compound 138 was coupled with the desired acyl chloride to give the 

corresponding amides 139 and 140. The formation of compound 140 was higher 

yielding than the corresponding benzene derivative 139. This was probably due to the 

pyridine nitrogen present in compound 140 increasing the reactivity of the acyl 

chloride towards nucleophilic substitution. Compounds 139 and 140 were then 

subjected to Suzuki coupling to afford compounds 135 and 136 in moderate yields. 

Synthesis of compound 137 was unsuccessful. Analysis of the crude reaction mixture 

using LC-MS confirmed the presence of compound 119 and 120 (Section 3.2.4.3). It 

was apparent that the Suzuki coupling was successful but unfortunately the amide 

bond was labile in the Suzuki conditions, a phenomenon probably caused by the 

electron withdrawing potential of the pyridine nitrogen. Compound 137 was 

synthesised by rearrangement of the synthetic steps as summarised below 

(Scheme 3.16). 

Scheme 3.16: Alternative synthesis of compound 137. 

Compound 124 was coupled with compound 141 to afford compound 142 in a poor 

yield. The reaction required heating which was unexpected; the previous acyl chloride 

coupling example (Scheme 3.15) using compound 141 proceeded in good yield at 

room temperature. In light of the observation that the BOC protecting group in these 

compounds was base labile, compound 137 was synthesised from compound 142 in a 

moderate yield using in-house conditions. The conditions were mild enough as to not 

affect the amide bond that had been shown to be base labile previously (Scheme 3.15). 
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 Biological Evaluation of Compounds 135-137 

Compounds 135-137 were screened against FGFR1-3 using the FRET-based assay. 

The results are outlined below (Table 3.4). 

Table 3.4: Biological results for compounds 115 and 135-137 when screened against FGFR1-3. 

 

 

a IC50 values are given as the mean ± SD of all data points, n = 2. 

Compounds 135 and 136 both show a slight increase in potency against FGFR1 when 

compared to compound 115. This is in contrast to the trend observed for the 

corresponding fragments (Section 2.5.1.2) as the unsubstituted ethoxy fragment (31) 

shows the best inhibition against FGFR1-3. However, the selectivity difference seen 

for fragment 66 (Section 2.5.1.2) has not been reflected in the larger compound 135, 

as the selectivity between FGFR1/2 is now negligible. Compound 137 shows a 

decrease in potency against FGFR1-3 when compared to compound 115. This suggests 

that the pyridine nitrogen is not aiding solvation at the entrance of the active site which 

was previously hypothesised (Section 3.3). 

 

Compound 

No. 

Structure IC50
a (µM) 

R R’ 1 2 3 

115 
 

 

0.46 ± 0.01 0.14 ± 0.01 2.2 ± 0.02 

135 

  

0.30 ± 0.01 0.20 ± 0.01 >10 

136 

 
 

0.30 ± 0.01 0.18 ± 0.01 >10 

137 

 

 

0.59 ± 0.01 0.26 ± 0.01 6.8 ± 0.04 
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 Inverse Amide Series 

The crystal structure of compound 114 bound within FGFR1 (Figure 3.3) shows the 

amide NH forming an H-bond to the backbone carbonyl of Ala564. In order to test the 

importance of this H-bond the following small library was targeted for synthesis.  

3.3.3.1 Retrosynthetic Analysis of Structures 143-145 

Structures 143-145 were subjected to retrosynthetic analysis as summarised below 

(Scheme 3.17). 

Scheme 3.17: Retrosynthetic analysis of compounds 143-145. 

The first two disconnections, Suzuki and amide couplings, led to compound 147. This 

compound is functionalised with a carboxylic acid at the 3-position of the indazole 

ring. An FGI was then carried out to give the isatin 148. 

3.3.3.2 Synthesis of Compounds 143-145 

In order to gain access to compounds 143-145, compound 147 was synthesised using 

a procedure outlined by Gauss et al and is summarised below (Scheme 3.18).132 
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Scheme 3.18: Synthesis of compound 147. 

Compound 148 was subjected to basic conditions leading to ring opening of the isatin. 

This unmasked the aniline moiety then underwent diazotisation followed by reduction 

with SnCl2 leading to the formation of the hydrazine intermediate. This then takes part 

in a ring-closing condensation reaction to give compound 147 in a yield of 76%. 

Purification of compound 147 was troublesome due to the highly insoluble nature of 

the compound. However, the reaction proceeded cleanly enough to use the product 

without purification. Compound 147 was subjected to in situ acyl chloride formation 

conditions outlined previously (Scheme 2.17), followed by Suzuki couplings to afford 

compounds 143-145 (Scheme 3.19). 

Scheme 3.19: Synthetic route to compounds 151-153.5 

Compound 147 was subjected to in situ acyl chloride formation followed by 

substitution with aniline to afford compound 146 in a yield of 13%. The low yield can 

be attributed to the poor solubility of the compound and therefore troublesome 

purification. Compound 146 was then Suzuki coupled to afford compounds 143 and 

144 in poor yields. Synthesis of compound 145 was unsuccessful. Analysis of the 

crude reaction mixture using LC-MS indicated that the corresponding boronic acid 

had degraded. Synthesis of compound 145 was not carried out due to time constraints 

of the project. 

                                                 
5Compounds outlined in red were synthesised by Laura Johnson (MChem) under the supervision of the Author. 
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3.3.3.3 Biological Evaluation of Compounds 143 and 144 

Compounds 143 and 144 were screened against FGFR1-3 using the FRET-based 

assay. The results are outlined below (Table 3.5). 

Table 3.5: Biological results for compounds 143 and 144 when screened against FGFR1-3. 

 

 

 

 

 

 

 

a % IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

Both compounds 143 and 144 are completely inactive against FGFR1. This indicates 

that SARs around the 3-position of the indazole are very subtle. The amide NH is 

positioned one atom away from that observed in compound 115 (Section 3.2.4.1). This 

could indicate that the amide NH in compounds 143 and 144 is not within range of 

forming an H-bond with the backbone carbonyl of Ala564, hence offering an 

explanation for the observed drop in potency. The drop in the activity could also be 

due to the change in electron delocalisation around the amide bond. The amide 

nitrogen lone pair is no longer conjugated with the indazole ring, instead, the amide 

carbonyl will have an electron withdrawing effect on the indazole ring. This will 

weaken the H-bonding acceptor potential of the 2-position indazole nitrogen, which 

has been shown to be a crucial aspect for FGFR inhibition. The reversal of the amide 

bond may also effect the stereoelectronics of the system resulting in an unfavourable 

conformation, this could affect the binding of the compound and explain the drop in 

potency. 

  

Compound 

No. 

Structure IC50
a

 (µM) 

R 

R’ 

1 2 3 

143 

 

>10 NTb NT 

144 

 

>10 NT NT 
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3.4 Revisit of the SPROUT Extended Scaffold 85 

The SPROUT compound 85 (Section 3.1) was originally designed using the 

ethoxy-based fragment 31 (Section 2.3) as a starting point. In order to verify this 

design approach, the extended derivatives of phenol-based fragment 34 (Section 2.3) 

were targeted for synthesis and are outlined below. 

 Synthesis of Compounds 149-151 

Compounds 149-151 were synthesised using Suzuki chemistry as summarised below 

(Scheme 3.20). 

Scheme 3.20: Synthetic route to compounds 149-151. 
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A selective Suzuki coupling was carried out by reacting compound 87 with boronic 

acid 152 to afford compound 153 as a major product, and compound 154 as a minor 

product. Compound 153 was subjected to further Suzuki chemistry to gain access to 

the protected phenol compounds 155-157. Methoxy deprotection using BBr3 was then 

carried out to afford compounds 149 and 150 proceeding in variable yields. Compound 

154 was also subjected to methoxy deprotection in order to obtain compound 158. The 

synthesis of compound 150 was unsuccessful. Analysis of the crude reaction mixture 

using LC-MS had determined that an ‘Appel-like’ reaction had occurred whereby a 

Lewis-acid-activated oxygen species is displaced in an SN2 like fashion by a 

halogen.133 The hydroxymethyl OH had interacted with the BBr3 forming a borate 

complex which was then displaced with a bromide anion affording compound 159, an 

intermediate not isolated. Compound 150 was synthesised from compound 159 using 

a procedure developed in-house as summarised below (Scheme 3.21). 

Scheme 3.21: Synthetic route to compound 150. 

The synthesis of compound 150 proceeded in a poor yield. This can be explained by 

the poor nucleophilicity of -OH, however, sufficient material was obtained for 

biological evaluation. 

 Biological Evaluation of Compounds 149-151 and 158 

Compounds 149-151 and 158 were screened against FGFR1-3 using the FRET-based 

assay. The results are outlined below (Table 3.6). 

Compounds 149-151 and 158 all showed an increase in potency against FGFR1-3 

when compared to lead fragment 34. However, the increase was only marginal and 

therefore the addition of the aromatic ring has resulted in a substantial decrease in LE. 

Interestingly compound 158, synthesised as a by-product, showed the best inhibition 

against FGFR1-3. It also showed preferential binding to FGFR2 with an IC50 value of 

0.25 μM, which is ~8-fold selective for FGFR2 over FGFR1/3. This compound 

demonstrates the first significant selectivity difference between the different FGFR 
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sub-types. As compound 149-151 were less active than compound 158, this may 

suggest substitution in the meta-position of the 3-position phenyl ring is unfavourable. 

Table 3.6: Biological results for compounds 34, 149-151 and 158 when screened against FGFR1-3. 

 

 

 

a IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

Compound 115 (Section 3.2.4.4) shows ~4-fold selectivity for FGFR2 over FGFR1 

whereas compound 158 shows ~8-fold selectivity for FGFR2 over FGFR1. There are 

two major differences between these compounds; the substituent on the 6-position 

phenyl ring and the nature of the 3-position substituent (Figure 3.4). It is apparent that 

the selectivity preference for FGFR2 observed for compound 158 is arising from either 

the phenol and/or the aryl-aryl bond. 

 

 

 

 

 

 

  

Figure 3.4: Compounds 115 and 158. Areas of difference resulting in FGFR1/2 selectivity are outlined 

in red. 

Compound 

No. 

Structure IC50
a  (µM) LE 

R 

R’ 

1 2 3 1 2 3 

34 H 12 ± 0.2 3.0 ± 0.03 51 ± 0.6 0.43 0.48 0.38 

149 

 

3.5 ± 0.03 0.8 ± 0.01 9.0 ± 0.1 0.32 0.36 0.29 

150 

 

3.0 ± 0.03 NTb NT 0.32 N/A N/A 

151 

 

5.9 ± 0.06 NT NT 0.31 N/A N/A 

158 

 

2.1 ± 0.03 0.25 ± 0.01 2.7 ± 0.02 0.35 0.40 0.34 
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 FGFR2 Selectivity Investigation 

In order to determine the precise aspects that govern the FGFR2 selectivity preference 

of compound 158, a compound (160) incorporating an amide bond into the 3-position 

indazole/phenyl bond of compound 158 was targeted for synthesis and is outlined 

below. 

 

 

 

 

 

Compound 161 was also targeted for synthesis to give a complete SAR study for the 

inverse amide series (Section 3.3.3). 

3.4.3.1 Synthesis of Compounds 160 and 161 

Compounds 160 and 161 were synthesised using conditions as summarised below 

(Scheme 3.22). 

Scheme 3.22: Synthetic routes to compounds 160 and 161.6 

Compounds 139 and 146 were subjected to Suzuki couplings with compound 152 to 

afford compound 162 and 163 respectively in variable yields. Synthesis of compound 

                                                 
6Compounds outlined in red were synthesised by Laura Johnson (MChem) under the supervision of the Author. 
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163 proceeded in a poor yield due to insolubility of the compound leading to 

troublesome purification. Compounds 162 and 163 were then subjected to 

deprotection using BBr3 to afford final compounds 160 and 161 respectively in poor 

yields.  

3.4.3.2 Biological Evaluation of Compounds 160 and 161 

Compounds 160 and 161 were screened against FGFR1-3 using the FRET-based 

assay. The results are outlined below (Table 3.7). 

Table 3.7: Biological results for compounds 158, 160 and 161 when screened against FGFR1-3. 

 

 

 

 

 

 

 

 

 

 

  

a IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

Compound 160 shows an increase in potency against FGFR1/2 but not against FGFR3 

when comparing to the results of compound 158. The potency has dramatically 

increased against FGFR1 but only marginally for FGFR2 resulting in a selectivity drop 

of ~8-fold to ~4-fold when comparing compounds 158 and 160 respectively. This 

demonstrates that the most influential aspect to FGFR2 selectivity for compound 158 

is the aryl-aryl bond at the indazole 3-position. It is important to note that this 

selectivity is only observed when the phenolic species is present and so it is a 

combination of both aspects that governs selectivity. Compound 161 is inactive which 

reflects the results for the other compounds (143 and 144) in the inverse amide series 

(Section 3.3.3.3). 

Compound 

No. 

Structure IC50
a
 (µM) 

R 

R’ 

1 2 3 

158 

 

2.1 ± 0.03 0.25 ± 0.01 2.2 ± 0.02 

160 

 

0.40 ± 0.01 0.11 ± 0.01 3.5 ± 0.03 

161 

 

>10 NTb NT 
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3.5 Chapter Three Summary 

Fragment leads 31 and 34 were expanded upon using de novo design to identify 

compound 85 as a larger compound predicted to inhibit FGFR1. Subsequent synthesis 

of several ethoxy-containing analogues outlined that this compound motif was 

unsuccessful in inhibiting FGFR1. However, one such phenol-containing analogue 

(158) showed preferential inhibition for FGFR2 over FGFR1 exhibiting ~8-fold 

selectivity. Literature precedent outlined the use of an amide functionality at the 

3-position of the indazole ring. Incorporation of the amide motif into the indazole core, 

outlined by compounds 115, 135, 136, 137 and 160, found that activity against the 

FGFRs was regained when compared to the results exhibited by compound 85. 

However, selectivity for FGFR2 over FGFR1 was diminished. Exploitation of the 

selectivity preference for FGFR2 was made a priority which involved further 

development of compound 158.
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4Chapter Four – Expansion of FGFR2 Selectivity  

4.1 Lead Design 

Section 3.2.4 outlines the use of compound 114, which bears an indazole scaffold, as 

a potent inhibitor of FGFR kinases.95 This compound also contains a phenyl piperazine 

moiety connected via an amide to the indazole 3-position. Literature reports have 

outlined the use of piperazine as a useful group to improve the pharmacokinetic profile 

of FGFR inhibitors.84,125 Therefore, the phenyl piperazine moiety was seen as an 

appropriate group to append to the indazole 3-position, leading to compound 164.   

 

 

 

 

 

 

 Retrosynthetic Analysis of Structure 164 

Structure 164 was subjected to retrosynthetic analysis (Scheme 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.1: Retrosynthetic analysis of compound 164 leading to compound 153. 
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FGI on structure 164 gives structure 165. The use of a methoxy protecting group has 

been shown to be necessary as explained previously (Section 2.5.2.1). Structure 165 

can then be disconnected at the piperazinyl N-C bonds to afford the aniline 166. This 

can undergo another disconnection at the indazole 3-position to give structure 153, a 

compound synthesised previously (Section 3.4.1).  

 Synthesis of Compound 164 

Compound 164 was synthesised according to conditions summarised below 

(Scheme 4.2). 

Scheme 4.2: Synthetic route to compound 164.7 

Compound 166 was synthesised from compounds 153 and 167 using Suzuki chemistry 

and proceeded in a low yield of 33%. A likely explanation for the low yield would be 

the significant loss of product during purification; isolation of pure product required 

both normal and reverse-phase chromatography. Compound 165 was synthesised from 

compound 166 according to a procedure outlined by Zhibo et al.134 Compound 166 

reacts with compound 168 displacing both chlorines in a double SN2 reaction affording 

compound 165 in a yield of 39%. The reaction conditions were very harsh, requiring 

temperatures higher than that of the solvent boiling point, and long periods of time to 

                                                 
7 Caution - Specific risk assessment incorporated for use of compound 168 (nitrogen mustard precursor). 
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go to completion. The poor reactivity of the aniline in compound 166 is a likely reason 

for the ineffective coupling with compound 168. The nucleophilicity of the aniline is 

reduced as a result of the electron withdrawing effect of the indazole. In addition to 

this, the long reaction times could be attributed to the insolubility of compound 166 in 

tBuOH. In order to overcome the poor nucleophilicity of the aniline, formation of the 

piperazine ring was attempted prior to Suzuki coupling as summarised below 

(Scheme 4.3). 

 

 

 

 

 

 

Scheme 4.3: Re-ordering of steps to give compound 169. 

The synthesis of compound 169 was unsuccessful. Analysis of the crude reaction 

mixture using LC-MS indicated the hydrolysis of the boronic ester to give the boronic 

acid. This was seen as inconsequential as Suzuki chemistry was still feasible, however, 

isolation of the purified compound 169 by chromatography was unsuccessful. 

Analysis of the eluent using LC-MS had confirmed degradation of the product. It was 

concluded that compound 169 was unstable in solution and therefore this synthetic 

route was abandoned.  

In order to overcome the poor solubility of compound 166 in tBuOH, attempts at using 

different solvents such as DMF were carried out. However, these resulted in the 

formation of many side-products and therefore it was decided to proceed with tBuOH 

as the solvent. Compound 165 was then deprotected with BBr3 to afford compound 

164 in a yield of 76%. For further SARs, compound 166 was also subjected to 

deprotection as summarised below (Scheme 4.4). 

 

 

 

 

 

 

Scheme 4.4: Demethylation of compound 166 to give compound 170. 
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The demethylation of compound 166 proceeded in a low yield of 23%. This can be 

attributed to the aqueous solubility of compound 170. Upon extraction, analysis of the 

aqueous layer using LC-MS outlined the presence of compound 170, leading to 

troublesome purification.  

 Biological Evaluation of Compounds 164 and 170 

Compounds 164 and 170 were screened against FGFR1-3 using the FRET-based 

assay. The results are outlined below (Table 4.1). 

Table 4.1: Biological results for compounds 158, 164 and 170 when screened against FGFR1-3. 

 

 

 

a IC50 values are given as the mean ± SD of all data points, n = 2. 

Compound 164 has increased in potency against FGFR1-3 when comparing to 

compound 158. It exhibits a more clinically relevant potency with an IC50 value of 

28.5 nM against FGFR2. This shows ~14-fold selectivity over FGFR1, an increase 

when comparing to the ~8-fold selectivity observed for compound 158 against FGFR2 

over FGFR1. Interestingly, when comparing to compound 158, compound 170 shows 

~21-fold selectivity for FGFR2 over FGFR1 which is a large increase in selectivity 

for such a small structural change between both compounds. Docking models of 

compounds 158 and 170 bound within FGFR1 show no difference in the binding 

modes of the compounds. It is unclear why both compounds show greater selectivity 

for FGFR2 over FGFR1. 

Compound 

No. 

Structure IC50
a  (nM) LE 

R 

R’ 

1 2 3 1 2 3 

158 

 

2100 ± 30 250 ± 3 2200 ± 20 0.35 0.40 0.34 

164 

 

389 ± 2 28.5 ± 0.2 758 ± 3 0.32 0.38 0.31 

170 

 

4200 ± 40 198 ± 2 >10000 0.31 0.41 N/A 
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4.2 SAR Expansion 

In order to expand the SAR studies for compound 164, the following library was 

developed. 

 

 

 

 

 

 

Compound 171 and 172 both expand upon the earlier fragment series (Section 2.5.2). 

Compound 173 was targeted as literature reports outline the use of this additional 

hydrophobic functionality to increase inhibitor binding to the FGFRs.95  

 Synthesis of Compounds 171 and 172 

Compounds 171 and 172 were synthesised in a similar fashion to that described 

previously (Scheme 4.2) as summarised below (Scheme 4.5). 

 

Scheme 4.5: Synthetic route to compounds 171 and 172.8 

                                                 
8Compounds outlined in red were synthesised by Laura Johnson (MChem) under the supervision of the Author.  
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Compound 87 was subjected to consecutive selective Suzuki couplings to afford 

compounds 176 and 177 in moderate yields. Cyclisation with compound 168 proved 

troublesome due to reasons outlined previously (Section 4.1.2). Compounds 178 and 

179 were then deprotected to afford compounds 171 and 172 in moderate yields. Due 

to limited amount of material, compound 178 was not fully characterised, however, 

full characterisation was carried out on final compound 171. 

 Synthesis of Compound 173 

Compound 173 was synthesised using reductive amination chemistry as summarised 

below (Scheme 4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4.6: Synthetic route to compound 173. Formation of unknown side product. 

Compound 166 was reacted under basic conditions with compound 168 to afford 

compound 165. Upon scale up of this reaction, milligram to gram, the reaction 

proceeded much slower. Analysis of the reaction mixture using LC-MS indicated the 

presence of compound 166 and therefore additional compound 168 was added. 

Unexpectedly, the extra addition of compound 168 resulted in the formation of a side 

product. Upon purification and full characterisation, the structure of this side product 

was elucidated and determined to be compound 181, obtained in a yield of 17%. 
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Attempts at obtaining a crystal structure were unsuccessful as compound 181 was 

found to be very insoluble in most solvents. A proposed mechanism for the formation 

of this compound is outlined below (Scheme 4.7).  

Scheme 4.7: Proposed mechanism for the formation of compound 181. 

Presumably, the excess amount of compound 168 and the somewhat harsh basic 

conditions resulted in overreaction to yield compound 181. It was desirable to obtain 

the additional SARs that compound 181 would provide and therefore it was subjected 

to deprotection as summarised below (Scheme 4.8). 

 

 

 

 

 

 

 

Scheme 4.8: Synthetic route to compound 182. 
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 Biological Evaluation of Compounds 171-173 and 182 

Compounds 171-173 and 182 were screened against FGFR1-3 using the FRET-based 

assay. The results are outlined below (Table 4.2). 

Table 4.2: Biological results for compounds 164, 171-173 and 182 when screened against FGFR1-3. 

 

 

a IC50 values are given as the mean ± SD of all data points, n = 2. b NT = not tested. 

Compound 171 and 172 show a marginal increase in potency against FGFR1 but quite 

a significant drop in potency against FGFR2 when compared to compound 164. This 

results in a drop of ~14-fold to ~2.5-fold FGFR2 selectivity for compound 171 when 

compared to compound 164. A complete loss of FGFR2 selectivity is observed for 

compound 172 when compared to compound 164. Again, this trend is reflected with 

the results of compound 173 which shows ~2-fold selectivity preference for FGFR2. 

Interestingly, compound 173 exhibits an IC50 value of 135 nM against FGFR1 and is 

the most potent compound against FGFR1. Compared to compound 164, compound 

182 shows a drop in potency against both FGFR1/2 but exhibits the second best 

Compound 

No. 

Structure IC50
a (nM) 

R R’ 1 2 3 

164 

 
 

389 ± 2 28.5 ± 0.2 758 ± 3 

171 

 
 

204 ± 3 77.4 ± 1 915 ± 6 

172 

 
 

268 ± 1 258 ± 2 753 ± 5 

173 

 
 

135 ± 7 77.0 ± 5 501 ± 2 

182 

 

 

449 ± 3 96.0 ± 1 NTb 
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selectivity preference for FGFR2 over FGFR1 at ~4.5-fold. To summarise, 

compounds 171 and 172 show very subtle structural changes in the substituents of the 

6-position phenyl ring (hydrogen for fluorine) when comparing to compound 172 and 

yet the selectivity profile dramatically changes. The precise reasons for this cannot be 

explained using docking models; crystallisation of these inhibitors within the proteins 

was therefore desirable in order to attempt to rationalise the observed selectivity 

(Section 4.4). 

4.3 SAR Expansion of the Amide Series 

In Section 3.2.4.4, it was determined that the amide series of compounds (115, 135, 

136, 137 and 160) was less selective for FGFR2 over the phenolic aryl-aryl series 

(158, 164 and 170). In order to expand the SARs for the amide series the following 

target library was developed (Figure 4.1) 

 

 

 

 

 

 

 

 

  

 

Figure 4.1: Target library for mono-fluorinated amide control compounds. 

Thus, ‘extended’ versions of both the ethoxy- and phenol fragment series were 

targeted for synthesis. It was envisioned that analysis of the inhibitory behaviour of 

these compounds could help fully establish the selectivity impact of the aryl-aryl bond 

in the phenolic lead series that has been previously described (Section 3.4.3.2). 

 Synthesis of the Extended Amide Series 

Previously, the amide bond present in compounds 115, 135, 136, 137 and 160 were 

synthesised via acyl chloride coupling conditions (Scheme 3.13), however, due to the 

inclusion of the piperazine ring within the target molecules, the required acyl chlorides 
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were not available in order to utilise this chemistry, and therefore an alternative 

synthetic approach was attempted (Scheme 4.9). 

Scheme 4.9: Alternative synthetic routes attempted in order to obtain the desired amides. 

Compound 185 was synthesised from compounds 183 and 184 using SNAr conditions 

outlined by Liu et al95 in a yield of 42%. Compound 185 was then subjected to basic 

hydrolysis in order to afford compound 186 in a moderate yield of 56%. Attempts at 

using milder conditions for hydrolysis, such as 2 M NaOH at room temp, were 

unsuccessful. Compounds 138 and 186 were then subjected to a range of amide 

coupling conditions. The initial conditions using 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC), 4-dimethylaminopyridine (DMAP) and DCM were 

unsuccessful. A likely reason for this is due to the poor nucleophilicity of the amine 

in compound 138. In order to overcome the inherently poor nucleophilicity of the 

amine in compound 138, a change in solvent from DCM to 1,2-dichloroethane (DCE) 

was carried out, allowing higher reaction temperatures to be achieved. However, the 

reaction was unsuccessful. A final attempt to prepare compound 187 was carried out 

using an alternative amide coupling reagent; hydroxybenzotriazole (HOBT) but 

unfortunately the reaction was unsuccessful. It was concluded that only acyl chlorides 

were reactive enough in order to form the desired amide bond with compound 138. 
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In order to gain access to the desired amide-containing target compounds (Figure 4.1) 

utilising acyl chloride chemistry, an attempt at synthesising acyl chlorides in situ was 

carried out using a method developed in-house and is summarised below 

(Scheme 4.10). 

 

 

 

 

 

 

 

 

 

Scheme 4.10: In situ acyl chloride formation conditions. 

Compound 188 was subjected to in situ acyl chloride formation conditions using DMF 

as an organocatalyst, forming a reactive Vilsmeier intermediate. Analysis of the 

reaction mixture using LC-MS indicated that formation of the acyl chloride was 

successful. This was elucidated by the formation of the methyl ester from MeOH, 

present as a solvent in LC-MS, reacting with the acyl chloride intermediate. Upon 

addition of compound 138, analysis of the reaction mixture by LC-MS indicated the 

formation of a product with a mass that did not correspond to the desired product. 

Characterisation of this compound proved difficult due to the limited amount of 

material available. However, further work on using in situ acyl chloride formation was 

abandoned as literature outlined by Liu et al95 indicated that the desired amide could 

be accessed via a Lewis acid catalysed coupling of an amine with a carboxylic ester. 

Attempts at synthesising compound 190 were carried out using an adaptation of a 

method by Liu et al as summarised below (Scheme 4.11).95 

 

 

 

 

 

 

 

Scheme 4.11: Formation of the amide bond using Lewis acid assistance. 
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Compound 185 becomes activated when Al(CH3)3 coordinates to the ester allowing 

acylation to occur with the amine in compound 138. However, the attempted synthesis 

of compound 190 using this route was unsuccessful. There are two main differences 

between this example and the literature example; the nature of the ester and the 

piperazinyl protecting group. The ester in the literature example exists as the methyl 

variant but is present as an ethyl ester in compound 185. This difference could 

influence the reaction in terms of steric interactions; the ethyl group may be too large 

for the nucleophilic substitution with compound 138 to take place. The literature 

example outlines the use of a 4-ethyl piperazinyl system whereas compound 185 

shows the use of a 4-BOC-protected piperazinyl system. Analysis of the crude reaction 

mixture by LC-MS indicated the removal of both BOC protecting groups in starting 

materials 138 and 185. This results in liberation of the 4-position piperazine amine in 

compound 185 allowing it to take part in the amide coupling reaction. The piperazinyl 

amine in compound 185 is more nucleophilic than the 3-position indazole amine in 

compound 138 and therefore formation of an undesired product would be expected. 

However, analysis of the reaction mixture by LC-MS identified only the deprotected 

starting materials of 138 and 185. Several attempts at synthesising compound 190 

using these conditions were carried out, varying both temperature and length of 

reaction time, none of which yielded the desired product. However, due to time 

constraints within the project further work on this area was abandoned. 

4.3.1.1 Alternative Syntheses of Amide Containing Compounds 

As previous work had outlined that amide containing compounds 115, 135, 136, 137 

and 160 were only amenable for synthesis via the use of acyl chlorides; it was decided 

to form this bond first from commercially available starting materials (Scheme 4.12). 

Scheme 4.12: Acyl chloride coupling conditions. 
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It was reasoned that synthesis of compound 192 should allow SNAr chemistry to be 

carried out on the fluoro-aromatic ring and give access to compound 190. Compound 

138 was reacted with compound 191 using the conditions previously outlined 

(Section 3.2.4.3). However, the reaction was unsuccessful. Analysis of the reaction 

mixture using LC-MS indicated the presence of the desired product 192 but also the 

presence of the starting material 138. Further addition of compound 191 resulted in 

the complete conversion of compound 192 into compound 193, a bis-acylated 

compound. This phenomenon when forming amides under these conditions has been 

seen previously (Section 3.2.4.3), however, the formation of the bis-arylated product 

was usually minor. Scheme 4.12 shows the full conversion of the desired product 192 

to the undesired product 193. It is believed that the acyl chloride 191 is more reactive 

than the acyl chloride 130 (Section 3.2.4.3) due to the fluorine present on the aromatic 

ring. In order to restrict over-substitution, compound 120 was subjected to a double 

BOC protection as summarised below (Scheme 4.13). 

Scheme 4.13: Use of compound 194 to improve acyl chloride coupling step. 

Compound 120 was reacted with 2 eq of BOC anhydride in order to obtain compound 

194 in a yield of 19%. The low yield is attributed to the formation of a tri-substituted 

compound in whereby all free NHs present in compound 120 become protected. 

Compound 194 was then subjected to the same conditions as described previously 

(Scheme 4.12). As the 3-position amine is now secondary it can only undergo 

acylation once, resulting in the formation of compound 195 in a yield of 68%. 

Compound 195 was then subjected to SNAr and Suzuki conditions as summarised 

below (Scheme 4.14). 

 

 

 



Chapter Four 

 

109 

 

Scheme 4.14: Compound 195 subjected to SNAr and Suzuki conditions. 

Unfortunately, the attempted synthesis of compound 197 from compound 195 was 

unsuccessful. Analysis of the reaction mixture using LC-MS analysis indicated 

compound 196 had displaced one of the BOC protecting groups and had not interacted 

in the intended SNAr fashion with the fluoro-aromatic ring. This phenomenon had been 

seen previously (Scheme 3.2.3). Compound 195 was also subjected to Suzuki 

conditions but this was also unsuccessful. Analysis of the reaction mixture using 

LC-MS indicated that several side-products had formed and no evidence of the desired 

product 198. It was concluded that the amide bond in 195 was susceptible to hydrolysis 

in the harsh basic Suzuki conditions, owing to the electron withdrawing effect of the 

fluorine within 195. This phenomenon was also observed earlier in the conversion of 

138 into 140 (Scheme 3.15) when a pyridyl ring system was present. It was apparent 

that the SNAr chemistry would need to take place prior to Suzuki coupling. Scheme 

4.14 shows the interference of the BOC protecting groups present in compound 195 

with compound 196 and therefore compound 195 was subjected to deprotection as 

summarised below (Scheme 4.15). 

 

 

 

 

 

 

 

 

Scheme 4.15: Deprotection of compound 195. 
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Compound 195 was deprotected using conditions outlined previously (Scheme 3.14) 

and proceeded in a yield of 97% to give compound 199. Compound 199 was then 

subjected to SNAr conditions as summarised below (Scheme 4.16). 

 

 

 

 

 

 

 

 

 

Scheme 4.16: Varied SNAr conditions. 

Compound 199 was subjected to the same SNAr conditions seen previously 

(Scheme 4.9). Analysis of the reaction mixture using LC-MS indicated no product 

mass. The reaction temperature was increased from 110 °C to 170 °C to aid the 

reaction, however this was unsuccessful in yielding the desired compound 200. The 

reaction was repeated but with the addition of 1,4-diazabicyclo[2.2.2]octane 

(DABCO) as this can act as a nucleophilic catalyst for the SNAr reaction. DABCO 

displaces the 4-fluorine atom in a standard SNAr reaction forming a quaternary 

ammonium charged species, an effective leaving group which facilitates the 

substitution with compound 196. However, analysis of the reaction mixture using 

LC-MS analysis indicated no product formation at 110 °C. The reaction temperature 

was increased to 170 °C but this was unsuccessful in yielding the desired compound 

200. It was concluded that the amide functionality was unsuitable for SNAr chemistry. 

Development of this series was postponed (Section 5.2.2) and efforts focussed 

elsewhere. 
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4.4 FGFR2 Selectivity Rationalisation 

To help rationalise the observed selectivity preference of compound 164 for FGFR2 

(Section 4.1.3) over FGFR1, it was decided to focus efforts on expressing and 

crystallising such compounds within both FGFR1 and FGFR2. All work presented 

throughout this Section was conducted by the Author excluding the crystallographic 

data processing, and structure solution and refinement which was carried out by Dr 

Chi Trinh. 

 Expression and Crystallisation of FGFR1 

An FGFR1 construct of the kinase domain containing residues 458-765 with mutations 

C488A, C584S was provided by Prof Alexander Breeze. This particular variant has 

been used extensively for the determination of ligand binding conformations, with the 

aim to elucidate the different binding modes of type I and type II FGFR1 kinase 

inhibitors.135,136,137 The protein consists of a His6-tag present at the C-terminus that 

can be removed by Tobacco Etch Virus (TEV) protease.  

The FGFR1 mutant protein was crystallised according to the conditions outlined in 

Section 6.2.7 with the following ligands. 

Crystallisation trials of the mutant protein with the His6-tag intact were unsuccessful. 

However, upon cleavage of the tag, crystals were obtained and the X-ray crystal 

structures solved. See Section 6.2.7 for specific crystallisation details. 
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 FGFR1/Ligand Co-crystal Structures 

4.4.2.1 FGFR1/Compound 115 Co-crystal Structure 

The X-ray crystal structure of compound 115 bound within FGFR1 was solved to the 

resolution of 1.82 Å. The binding mode of compound 115 was analysed (Figure 4.2).  

 

Compound 115 occupies the active site of FGFR1 forming several interactions with 

the enzyme. Both nitrogen atoms in the indazole ring form the crucial H-bonding 

donor/acceptor motif with Glu562 and Ala564 as was predicted for 

indazole-containing compounds outlined previously (Section 2.3.6). The amide NH 

also forms an H-bond with the backbone carbonyl of Ala564 as seen for compound 

114 (Figure 3.3). Interestingly the ethoxy group, previously predicted to occupy the 

H1 pocket (Figure 2.9), now occupies the H2 pocket with the ethoxy group lying close 

to the residue Val559 to give a hydrophobic effect. Ethylene glycol (present in the 

crystallisation medium) occupies the H1 pocket, forming numerous H-bonds with 

close-by residues and in particular the amino acid residues within the DFG motif. 

Finally, the 6-position phenyl ring interacts in an edge-to-face like fashion with the 

phenyl ring of Phe489 resulting in a ‘closed-loop’ conformation whereby a short chain 

of amino acids form a ‘lid’ above compound 115 (Figure 4.2). 

Figure 4.2: a) Co-crystal structure of compound 115 bound within the ATP active site of FGFR1. 

H-bonds are outlined in cyan. Ethylene glycol is outlined in green. b) 2D representation of binding 

pose of compound 115 within FGFR1. H-bonds and hydrophobic interactions are outlined in red and 

blue respectively. Green sphere represents ethylene glycol. 

a) b) 
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4.4.2.2 Alternative Loop Conformation 

The conditions used to crystallise FGFR1 result in crystals forming as two monomers, 

hereby termed ‘chain A and B’. Generally, there are minimal structural differences 

between these chains. However, for the FGFR1/compound 115 co-crystal structure, 

there are significant differences between the two chains in the morphology of the 

active site. Section 4.4.2.1 outlines the active site of chain A, whereby only a 

‘closed-loop’ binding conformation is observed. However, for chain B, both the 

‘closed-loop’ and ‘open-loop’ conformations are observed (Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

The variable loop region exists between residues 484-491. Electron density was 

observed for both the ‘open’ and ‘closed’ forms of the loop suggesting that ligand 

binding is a dynamic process. It is hypothesised that the ‘closed-loop’ form is adopted 

upon ligand binding and the ‘open-loop’ form is adopted in the absence of ligand 

binding, with both states being observed simultaneously in chain B. 

Figure 4.3: Active site of FGFR1, chain B, with compound 115 bound. ‘Closed-loop’ and ‘open-loop’ 

conformations are shown in orange and blue respectively. Loop start/end outlined in purple. 
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4.4.2.3 FGFR1/Compound 160 Co-crystal Structure 

The X-ray crystal structure of compound 160 bound within FGFR1 was solved to the 

resolution of 1.82 Å. The binding mode of compound 160 was analysed and is outlined 

below (Figure 4.4).  

 

Compound 160 occupies the active site of FGFR1 forming several interactions with 

the enzyme. The indazole nitrogens and the amide form the same H-bonds with 

residues Glu562 and Ala564 as was seen for compound 115 (Figure 4.2). As predicted 

from the docking studies of compound 34 (Figure 2.10), the phenol is involved in an 

H-bond donor interaction with the side chain carboxy group of Glu531. In addition to 

this H-bond donor interaction, an extensive H-bonding network exists between the 

phenol and residues Glu531, Lys514, and Asp641. As discussed previously, 

substitution of the hydroxy moiety to a methoxy functionality resulted in a complete 

loss in activity (Section 2.5.2.2) underlining the importance of this crucial H-bonding 

network. As outlined for compound 115 (Figure 4.2), ethylene glycol occupies the H1 

pocket forming numerous H-bonds with close-by residues, particularly the amino acid 

backbone of the DFG motif. In contrast to the observed binding pose of compound 

115, no evidence of a ‘closed-loop’ system is observed in the case of compound 160. 

Interestingly, the flexible loop region appears to be in a partial ‘open-loop’ 

a) b) 

Figure 4.4: a) Co-crystal structure of compound 160 bound within the ATP active site of FGFR1. 

H-bonds are outlined in cyan. Ethylene glycol is outlined in green. The flexible loop region is outlined 

in purple. b) 2D representation of binding pose of compound 160 within FGFR1. H-bonds are 

outlined in red. Green sphere represents ethylene glycol. 

 



Chapter Four 

 

115 

 

conformation. An overlay of the variable loop conformations is outlined below 

(Figure 4.5). 

 

 

 

 

 

 

 

 

 

The flexible loop region for the co-crystal structure of FGFR1/compound 160 appears 

to be in an intermediate state between the ‘open’ and ‘closed’ conformations. It is 

apparent that the conformation of this flexible loop region is dependent upon the ligand 

present within the binding site. The ethoxy group within compound 115 occupies the 

H2 pocket. It is thought that this has a stabilising effect on the whole system resulting 

in a ‘closed-loop’ conformation. Compound 160 lacks the ethoxy moiety and so, due 

to reduced steric crowding, the 6-position phenyl ring is relatively free to rotate. The 

ligand density maps for compounds 115 and 160 are shown below (Figure 4.6).  

As can be seen, the ligand density for compound 160 around the 6-phenyl ring appears 

to be ‘spherical-like’. This suggests multiple conformations are present due to the free 

rotation of the 6-position phenyl ring. The ligand density for compound 115 around 

the 6-phenyl ring shows just one, well defined conformation in the X-ray crystal 

structure. This is likely due to the occupation of the H2 pocket by the ethoxy group 

which restricts the rotational freedom of the 6-position phenyl ring. The variable 

binding conformations of compound 160 suggest the flexible loop is less likely to 

adopt a ‘closed-loop’ conformation and can therefore offer rationale for the partially 

open conformation observed for compound 160. 

 

 

Figure 4.5: Overlay of FGFR1/115 and FGFR1/160 co-crystal structures. Open, partially open and 

closed loop conformations are outlined in cyan, yellow and orange respectively. Compound 160 is 

shown in purple. 
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4.4.2.4 FGFR1/Compound 164 Co-crystal Structure 

Compound 164 was also crystallised within FGFR1 and the co-crystal structure solved 

to the resolution of 1.80 Å. The binding mode of compound 164 was analysed 

(Figure 4.7).  

 

 

a) b) 

Figure 4.7: a) Co-crystal structure of compound 164 bound within the ATP active site of FGFR1. 

H-bonds are outlined in cyan. Ethylene glycol is outlined in green. The flexible loop region is outlined 

in purple. b) 2D representation of binding pose of compound 164 within FGFR1. H-bonds are 

outlined in red. Green sphere represents ethylene glycol. 

Figure 4.6: a) Electron density map for compound 160 bound in FGFR1. b) Electron density map for 

compound 115 bound in FGFR1. 

a) b) 
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Compound 164 occupies the active site of FGFR1 forming several interactions with 

the enzyme. Both indazole nitrogen atoms form the same H-bonds with residues 

Glu562 and Ala564 as was seen for compound 160 (Figure 4.4). As observed for 

compound 160, the phenol is involved in the same H-bonding network with Glu531, 

Lys514 and Asp641. The phenyl piperazine moiety protrudes into the solvent-exposed 

region, forming no further interactions with the enzyme. Again, ethylene glycol 

occupies the H1 pocket forming numerous H-bonds with the amino acid backbone of 

the DFG motif. The flexible loop region now adopts an ‘open-loop’ conformation with 

no evidence of a partial ‘open-loop’ or ‘closed-loop’ system. The ‘spherical-like’ 

density for the 6-position phenyl ring was also observed for this compound 

(Section 4.4.5.1). 

 Expression and Crystallisation of FGFR2 Variants 

A WT FGFR2 construct of the kinase domain consisting of residues 461-763, and a 

mutant FGFR2 construct of the kinase domain consisting of residues 458-763 were 

provided by Prof John Ladbury and Dr Chi-Chuan Lin (Section 6.2). The mutant 

construct involves nine mutations of tyrosine residues to phenylalanine residues 

(Section 8.2.6), excluding Tyr656; the first tyrosine residue to be phosphorylated upon 

activation of the enzyme (Section 1.3.3). This mutant was created by Dr Chi-Chuan 

Lin in order to study the role of autoinhibition of FGFR2, a common downregulating 

effect in FGFR signalling.138 It was reasoned that obtaining an X-ray crystal structure 

on this construct would be valuable as the point-mutation Y566F is located within the 

hinge region of the active site (Section 1.5.1.1) and could potentially affect the binding 

of ligands. 

With the help of Dr Trinh, the FGFR2 variants were crystallised according to the 

conditions outlined in Section 6.2.7 with compounds 115, 160, and 164. 

Unfortunately, crystals were only obtained for the FGFR2 WT/compound 164 variant. 
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 FGFR2/Ligand Co-crystal Structures 

4.4.4.1 FGFR2/Compound 164 Co-crystal Structure 

In addition to FGFR1, compound 164 was also crystallised within FGFR2 and the 

co-crystal structure solved to the resolution of 2.40 Å. The binding mode of compound 

164 was analysed (Figure 4.8).  

 

Compound 164 occupies the active site of FGFR2 in a very similar manner to that of 

its binding mode in FGFR1 (Figure 4.7). Both indazole nitrogen atoms form the same 

H-bonds with residues Glu565 and Ala567 with the phenol involved in the same H-

bonding network with Glu534, Lys520 and Asp644. Again, the phenyl piperazine 

moiety protrudes into the solvent-exposed region forming no further interactions with 

the enzyme. In contrast to the FGFR1 structure, ethylene glycol is not observed within 

the H1 pocket. It is important to note that the lower resolution of this structure is the 

most likely reason for this. The flexible loop region adopts a partial ‘closed-loop’ 

conformation. Contrary to the situation found within the FGFR1/compound 164 

co-crystal structure, the electron density for the 6-position phenyl ring was now 

observed to be planar and in line with the indazole ring (Section 4.4.5.1). However, 

accurate conclusions cannot be drawn due to the significantly lower resolution of this 

structure when compared to the FGFR1 structure; the rotation of the 6-position phenyl 

ring may not be resolved.  

a) b) 

Figure 4.8: a) Co-crystal structure of compound 164 bound within the ATP active site of FGFR2. 

H-bonds are outlined in cyan. Flexible loop region outlined in purple. b) 2D representation of binding 

pose of compound 164 within FGFR2. H-bonds are outlined in red.  
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 Comparison of the FGFR1/FGFR2 Binding Sites 

The FGFR1/compound 164 and the FGFR2/compound 164 crystal structures were 

superimposed onto each other and the binding sites compared (Figure 4.9). 

 

 

 

 

 

 

 

 

 

 

 

There is a significant difference in the flexible loop regions for the FGFR1/compound 

164 and the FGFR2/compound 164 crystal structures. The flexible loop region for the 

FGFR1/compound 164 structure adopts a fully ‘open-loop’ conformation whilst the 

loop region in the FGFR2/compound 164 structure adopts a partial ‘closed-loop’ 

conformation. It is possible that this difference in loop conformations could explain 

the observed selectivity preference of compound 164 for FGFR2 in that it is more 

prone to adopt a ‘closed-loop’ system for FGFR2 over FGFR1. It is hypothesised that 

the ‘closed-loop’ system is more stable due to additional contacts forming between the 

enzyme and inhibitor, most notably that of Phe492, which forms an edge-to-face 

interaction with the 6-position phenyl ring of compound 164, as is observed for 

compound 115 when bound to FGFR1 (Figure 4.2). However, as outlined previously 

(Figures 4.2-4.8), this loop region has been shown to be highly flexible and so static 

conformations of this region of the protein may not reflect the dynamics of this region 

in the solution phase. 

Figure 4.9: Overlay of the FGFR1/164 and FGFR2/164 crystal structures. FGFR1/164 features and 

FGFR2/164 features are outlined in purple and orange respectively. 
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4.4.5.1 Factors Affecting Sub-Type Selectivity 

The ligand density maps for compound 164 bound within both FGFR1 and FGFR2 

were compared and are shown below (Figure 4.10). 

The ligand electron density map for compound 164 in FGFR1 shows a slight spherical 

perturbation around the 6-position phenyl ring. As was seen for compound 160 

(Figure 4.6), this suggests that compound 164 may adopt multiple conformations 

within the active site of FGFR1. In contrast, the ligand density map for compound 164 

in FGFR2 appears to fit perfectly around the ligand structure in a single defined 

conformation. It is possible this phenomenon is due to a tighter hydrophobic packing 

of the ligand within the active site, resulting in restriction of the rotation of the 

6-position phenyl ring. The hypothesis that compound 164 forms a tighter binding 

complex with FGFR2 over FGFR1 is strengthened by comparing the IC50 values of 

compound 164 (FGFR1: 389 nM and FGFR2: 29 nM) and compound 171 (FGFR1: 

204 nM and FGFR2: 77 nM). Compound 171 contains an ortho fluorine on the 6-

position phenyl ring, which will likely result in an increase in the dihedral angle 

between the indazole and 6-position phenyl ring. It is thought that this increase in the 

dihedral angle would better accommodated in FGFR1 than FGFR2. This may result 

in a potency increase for FGFR1, and a potency decrease for FGFR2 (due to the 

increased steric clash between the inhibitor and the enzyme), and can therefore offer 

rationale for the different selectivity profiles of compounds 164 and 171 against 

FGFR1/2. However, it is important to note that the resolution of the FGFR2/compound 

a) b) 

Figure 4.10: a) Electron density map for compound 164 bound in FGFR1. b) Electron density map 

for compound 164 bound in FGFR2. 
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164 structure was significantly lower than the FGFR1/compound 164 crystal structure, 

and therefore rotation of the 6-position phenyl ring may not be resolved within the 

FGFR2/compound 164 structure. 

 Crystal Structure Summary 

The binding poses for three ligands (115, 160 and 164) bound within FGFR1/2 were 

analysed which revealed interesting points. The crystallisation of the enzymes resulted 

in two monomers, ‘chain A and chain B’, which were mostly similar in structure. 

However, identification of a flexible loop at the entrance to the active site revealed 

variable morphologies between the different chains. The conformations of this flexible 

loop region varied from the ‘open-loop’ to the ‘closed-loop’ forms with several 

intermediate stages outlined. It was concluded that ligand identity primarily dictated 

what form the flexible loop was to adopt, but other parameters such as variable chain 

occupancy appear to also contribute. Analysis of the ligand density maps revealed 

potential reasons for the observed selectivity preference of compound 164 for FGFR2, 

however, accurate conclusions could not be made due to substantial resolution 

differences between the FGFR1 and FGFR2 crystal structures. 

4.5 Utilisation of FGFR1/2 Crystal Structures 

 Docking of Compound 170 

As outlined in Section 4.1.3, compound 170 is ~21-fold selective for FGFR2 over 

FGFR1 (Table 4.1). It proved difficult to rationalise this selectivity preference through 

docking studies. Determination of the X-ray crystal structure of compound 164 bound 

in both FGFR1 (Figure 4.7) and FGFR2 (Figure 4.8) has opened up the opportunity to 

use these structures to probe the observed selectivity preference of compound 170 for 

FGFR2. Compound 170 was docked using the FGFR1/compound 164 crystal structure 

using Glide (Figure 4.11). 
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Compound 170 was docked into the FGFR1 crystal structure. A docking grid 

(Section 1.6.1) covering the active site was generated using the binding position of 

compound 164 as a template. The docking of compound 170 was carried out using this 

grid. As expected, compound 170 is predicted to occupy the ATP binding pocket in a 

similar way to compound 164. The H-bonds formed between the indazole nitrogens 

and the hinge binding amino acids Glu562 and Ala564 are predicted to be maintained 

and the phenol H-bond with Glu531 is also predicted. It is important to note, the amino 

group for compound 170 present on the 3-position phenyl ring is not expected to 

H-bond with the backbone carbonyl of Ser565. At 4.2 Å, the distance between the 

amino group and the carbonyl of Ser565 is considered to be outside the range of an 

H-bond.139 Compound 170 was also docked using the FGFR2/compound 164 crystal 

structure using Glide (Figure 4.12). 

Figure 4.11: Compound 170 docked into the FGFR1/compound 164 crystal structure using Glide. 

Compounds 170 and 164 are shown in purple and orange respectively. H-bonds are outlined in black. 
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Compound 170 was docked into the FGFR2 crystal structure using the same grid 

generation method as was seen for the FGFR1/compound 164 co-crystal (Figure 4.12). 

Compound 170 is predicted to form the same H-bonding interactions with FGFR2 as 

was predicted in the FGFR1 crystal structure (Figure 4.11). One main difference 

however, is the distance between the amino group in compound 170 and the backbone 

carbonyl of Ser568. At 2.5 Å this is now considered a strong H-bond139 and offers 

rationale for the observed selectivity preference of compound 170 for FGFR2. 

Utilisation of this H-bond to design more selective FGFR2 inhibitors is outlined 

(Section 5.2.1). 

4.6 Cellular Efficacy 

As discussed in Section 4.2.3, compounds 164, 171 and 172 exhibit sub-micromolar 

potency against the different FGFR sub-types with compound 164 showing moderate 

selectivity for FGFR2. It was decided to evaluate the efficacy of these compounds 

against cancer cells in order to probe the role of the potency/selectivity exhibited 

against the enzymes within the cellular environment. Three cell lines were chosen for 

Figure 4.12: Compound 170 docked into the FGFR2/compound 164 crystal structure using Glide. 

Compound 170 and 164 are shown in purple and orange respectively. H-bonds are outlined in black. 
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these studies: JMSU1 (FGFR1-driven), SUM52 (FGFR2/FGFR1-driven) and 

VMCUB3 (None-FGFR driven).  

JMSU1 is a cancer cell line isolated in 1988 from the malignant ascitic fluid of a 

75-year-old Japanese man with bladder cancer.140 It has been shown to overexpress 

FGFR1 with no indication of FGFR2 overexpression. SUM52 is a cancer cell line that 

was isolated in 1996 from a malignant pleural effusion specimen from a patient 

suffering from a metastatic breast carcinoma.141 It has been shown to overexpress 

FGFR2 in addition to FGFR1.71 VMCUB3 is a cancer cell line that was isolated in 

1975 from a male patient suffering from a primary transition cell carcinoma present 

within the bladder.142 It has not been shown to be FGFR-driven. It was reasoned that 

use of these cell lines will help establish indicative selectivity profiles of compounds 

164, 171 and 172 against the different FGFR sub-types. 

 

  

 Cell Viability Assay 

A reliable way to assess the efficacy of compounds 164, 171, and 172 against the 

chosen cell lines was to conduct the CellTiter-Blue® cell viability (Promega). The 

assay utilises a homogenous, fluorometric method for estimating the number of viable 

cells present in a multiwell plate and uses the indicator dye resazurin to measure 

metabolic capacity of cells (Figure 4.13). 
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Figure 4.13: Basic principle of CellTiter-Blue® assay. 

Viable cells, cells that have not been compromised by an inhibitor, are able to reduce 

resazurin to resorufin. Resazurin’s colour is blue and has little intrinsic fluorescence. 

Once reduced to resorufin however, the colour of the solution of this substance 

changes to pink and the fluorescence is monitored at 590 nm. The intensity of 

fluorescence is proportional to the number of viable cells making it possible to obtain 

dose response curves. In addition to compounds 164, 171, and 172, PD173074 (6) 

(Section 1.5.2.1), was also evaluated against the cell lines to act as a positive control. 

See Section 6.4 for experimental details. 

 

 

 

 

 

 

 

4.6.1.1 Dose Response Curves-Compound 164 

Compound 164 was evaluated against each cell line. Dose response curves were 

plotted using non-linear curve analysis and IC50 values determined (Figure 4.14). 
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Figure 4.14: a) Dose response graph of three cell lines when incubated with compound 164 – 1st repeat. 

b) Dose response graph of three cell lines when incubated with compound 164 – 2nd repeat.  

Upon analysis of these data, it is apparent that there are minimal differences between 

both repeated experiments. IC50 values for compound 164 against SUM52 are 0.7 µM 

and fall within the error of each repeat. The results for compound 164 against both 

JMSU1 show roughly similar IC50 values but each repeat does not fall within the error 

of each other. The results for VMCUB3 show a similar trend.  In order to draw accurate 

conclusions from the above data a further repeat would need to be carried out. Further 

graphical data for compounds 171, 172, and 6 can be found in Section 8.3.

a) 

b) 

0.01 0.10 1.00 10.00

0

20

40

60

80

100

120
Compound 164 - 1st repeat

 SUM52 (IC
50

 = 0.7 ± 0.2 M)

 JMSU1 (IC
50

 = 2.3 ± 0.2 M)

 VMCUB3 (IC
50

 = 2.4 ± 0.4 M)

P
e
rc

e
n
t 
V

ia
b
ili

ty

Concentration (M)

Compound 164 - 1st repeat

0.01 0.10 1.00 10.00

0

20

40

60

80

100

120

Compound 164 - 2nd repeat

 SUM52 (IC
50

 = 0.7 ± 0.1 M)

 JMSU1 (IC
50

 = 1.9 ± 0.1 M)

 VMCUB3 (IC
50

 = 1.6 ± 0.1 M)

P
e

rc
e
n

t 
V

ia
b

ili
ty

Concentration (M)



Chapter Four 

 

127 

 

4.6.1.2 Cell Viability Results for Compounds 164, 171, 172 and 6 

Compounds 171, 172 and 6 were also evaluated against each cell line. The results are outlined below (Table 4.3). 

Table 4.3: Biological evaluation of compounds 164, 171, 172 and 6 against FGFR1-3 and various cancer cell lines. 

 

 

 

a IC50 values are given as the mean ± SD of all data points, n = 2. b IC50 values are given as the mean ± SD of all data points, n = 5. c Taken from reference 90. d NT = not 

tested. e Taken from reference 91 (no reported error). 

Compound 

No. 

Structure FGFR IC50
a (μM) SUM52 IC50

b (μM) JMSU1 IC50
b (μM) VMCUB3 IC50

b (μM) 

R 

R’ 

1 2 3 1st 2nd 1st 2nd 1st 2nd 

164 

 

0.39 ± 0.02 0.029 ± 0.02 0.76 ± 0.03 0.70 ± 0.20 0.70 ± 0.10 2.30 ± 0.20 1.90 ± 0.10 2.40 ± 0.40 1.60 ± 0.10 

171 

 

0.20 ± 0.03 0.078 ± 0.01 0.92 ± 0.06 0.50 ± 0.10 0.70 ± 0.20 2.00 ± 0.10 2.00 ± 0.20 1.20 ± 0.10 2.10 ± 0.10 

172 

 

0.27 ± 0.01 0.26 ± 0.02 0.75 ± 0.05 0.70 ± 0.10 1.50 ± 0.30 3.20 ± 0.10 3.30 ± 0.20 2.30 ± 0.10 2.90 ± 0.20 

6 PD173074 0.02 ± 0.01c NTd 0.09e 0.009 ± 0.001 0.007 ± 0.001 0.70 ± 0.10 1.40 ± 0.40 5.80 ± 0.50 3.90 ± 0.70 
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Compound 164 shows ~14-fold preference for inhibition of FGFR2 over FGFR1 with 

an IC50 value of 29 μM against FGFR2. Compound 164 has an IC50 value of ~0.7 μM 

against SUM52 (FGFR2-driven). There is a significant drop in potency (~24-fold) 

when compound 164 is evaluated in a cellular environment. Compound 171 has an 

IC50 value of ~0.5-0.7 μM against SUM52 and again shows a drop in potency (~9-fold) 

when compared to inhibition of FGFR2. Compound 172 exhibits IC50 values of 0.7 

and 1.5 μM for the first repeat and second repeat respectively. A further repeat is 

needed in order to obtain a more accurate IC50 value. However, compounds 164, 171 

and 172 all show a drop in potency when compared to the IC50 values of them against 

FGFR2. It is possible that the compounds have poor cellular penetration and do not 

permeate through the cell membrane. Inspection of the results for the positive control 

(compound 6) show that it is an extremely potent against SUM52 exhibiting IC50 

values of ~7-9 nM. Interestingly, this compound has an IC50 value of ~20 nM against 

FGFR1 and therefore compound 6 does not appear to suffer a drop in potency against 

SUM52. Perhaps this compound has better cell penetration. 

Compounds 164, 171, 172 and 6 all show a drop in potency against JMSU1 and 

VMCUB3 when compared to SUM52. Compound 6 exhibits an IC50 value of 

~0.7-1.4 μM against JMSU1. Compound 6 is a known FGFR1 inhibitor and therefore 

the poor activity measured against JMSU1 is surprising. Perhaps, JMSU1 may not be 

the best cell line to evaluate FGFR1 cellular efficacy. Compound 6 exhibits an IC50 

value of ~3.9-5.8 μM against VMCUB3 which is substantially larger than the IC50 

value against SUM52 (~7-9 nM). This suggests that compound 6 has minimal 

off-target effects. The IC50 values for 164, 171 and 172 against both JMSU1 and 

VMCUB3 are similar. There appears to be a selective preference for SUM52 and may 

suggest some selective inhibition of FGFR2, however, due to the complexity of 

cellular systems, further work would need to be carried out in order to verify this. 

In summary, as only two repeats were conducted care must be taken when drawing 

accurate conclusions. In some instances there is no overlap between the error values 

between repeats, this could be due to the nature of the assay e.g. cell passage – every 

passage increases the chance of mutations within the cell lines, equipment error – use 

of different pipettes etc. between different assays and human error – preparation of 

drug dilution series. There is a small drop in cellular potency when compared to the 

enzymatic IC50 values for compounds 164, 171, and 172 which may be attributed to 

the poor cell permeation of the compounds. 
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4.7 Chapter Four Summary 

Synthesis and biological evaluation of designed lead compound 164 has outlined 

~14-fold selectivity preference for FGFR2 over FGFR1. Several derivatives (171, 172, 

and 182) of compound 164 were synthesised and biologically evaluated. This revealed 

that very subtle single atom changes between compounds 164 and 171/172 resulted in 

dramatically different selectivity profiles for FGFR1/2. Several of these compounds 

(115, 160, and 164) were crystallised within FGFR1 and FGFR2 with the binding 

poses analysed and potential areas of selectivity rationale identified. Compounds 164, 

171, and 172 were then evaluated in a cellular environment for efficacy against cancer. 

It was found that these compounds show a slightly diminished activity in a cellular 

environment which may be attributed to the poor cell permeation of the compounds. 

In addition to the lead series, a ‘control’ amide series was also targeted for synthesis 

but unfortunately due to time constraints were not synthesised. Future work will focus 

on alternative syntheses to afford these compounds.
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5Chapter Five – Conclusions and Future Work 

5.1 Conclusion – Project Milestones 

The aim of this project was to use a structure-based molecular design approach to 

identify a new series of inhibitors of FGFR kinases. In addition to their obvious 

potential use as drug leads for the treatment of cancer, it was envisioned that such 

molecules may also throw light on the factors governing the possible selection by 

inhibitors between FGFR subtypes. A summary of the project milestones is outlined 

below (Figure 5.1).  

Hit identification using SPROUT yielded fragment 14 which was predicted to bind to 

the ATP binding site of FGFR1. Subsequent SBDD led to two fragment leads: 31 and 

34, known as the ethoxy and phenolic series respectively. Both these series inhibited 

FGFR1-3 in the single digit micromolar range. Further rounds of de novo design on 

these fragments led to the design of compound 85 but was found to be inactive upon 

biological evaluation. Further development of the phenolic series led to compound 158 

which exhibited a preference for inhibition against FGFR2.  

Further exploration into the inactivity of compound 85 revealed that potency could be 

regained by incorporating an amide moiety between the indazole and 3-position 

phenyl ring as shown by compounds 115 and 160. However, the selectivity preference 

for FGFR2 was diminished. It was deduced that the governing aspect of FGFR2 

selectivity observed for compound 158 was a combination of the phenolic species and 

the linear aryl-aryl linkage between the indazole and the 3-position phenyl ring. 

Further development of this core led to compound 164 which exhibited an IC50 value 

of 28.5 nM against FGFR2, ~14-fold selectivity preference for FGFR2 over FGFR1. 

This selectivity preference could not be rationalised through docking studies and 

therefore crystallisation studies of compound 164 in both FGFR1 and FGFR2 were 

initiated. In addition to compound 164, both compounds 115 and 160 were also 

crystallised in FGFR1. Analysis of the co-crystal structures of compounds 115, 160, 

and 164 bound within FGFR1/2 revealed key structural differences that may offer 

explanations for the observed selectivity preference of compound 164 for FGFR2. 

Docking of compound 170 within the FGFR1/2 crystal structures predicted that an H-

bond may be present between compound 170 and FGFR2 that was not predicted to 

exist when this compound is bound to FGFR1. 
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Figure 5.1: Project milestones from hit identification to lead compounds. 

Finally, it was decided to evaluate the activity of compound 164 within a cellular 

environment. Compounds 164, 171, and 172 were subjected to cell viability assays 

using three cancer cell lines: SUM52 (FGF2R2-driven), JMSU1 (FGFR1-driven) and 

VMCUB3 (none FGFR-driven). A reduction in potency of the compounds was 

observed compared to the measured FGFR enzyme inhibition. It was reasoned that 
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this drop in potency may be due to the poor cell membrane permeation of compounds 

164, 171 and 172. Further structural modifications would need to be carried out with 

further experiments in order to address this issue. 

The original project aim was to identify a new series of inhibitors for FGFR kinases, 

with particular focus on designing FGFR sub-type selective compounds. This 

conclusion outlines that the project aim has been achieved and exceeded, with future 

prospects of designing more selective inhibitors of FGFR2 promising. 

5.2  Future Work 

 Design of Selective FGFR2 Inhibitors 

Following on from the docking studies of compound 170 (Section 4.5.1), future work 

could involve the design of a small library of compounds containing an NH donor 

moiety on the 3-position phenyl ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rationale behind the design of these compounds is: the addition of the piperidine 

ring will increase the potency of the compound against the FGFRs, and the NH donor 

present on the phenyl ring would improve selectivity for FGFR2 by means of that 

described by the docking of compound 170 (Section 4.5.1). Compounds 201 and 202 

will establish any differences between the position of the secondary amine present in 
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the piperidine ring. Compounds 203 and 204 introduce a methylene linker between 

the amine and the piperidine ring system and will provide additional SARs. 

5.2.1.1 Proposed Synthesis of Compounds 201-204 

Compounds 201-204 could be synthesised using similar chemistry to that described 

previously (Sections 2.4.1.2 and 4.2.1). The proposed synthesis of compound 201 is 

outlined below (Scheme 5.1). 

Scheme 5.1: Proposed synthesis of compound 201. 

Firstly, compound 206 could be synthesised from compounds 167 and 205 using 

reductive amination chemistry. Compound 206 could then be coupled with compound 

153 using Suzuki chemistry to afford compound 207. Subsequent deprotection would 

give access to the final compound 201. This synthetic route is divergent and should 

allow rapid access to compounds 201-204. These compounds could then be evaluated 

in the FRET-based assay (Section 8.1) to establish their potency against the FGFRs. 

If inhibitory activity is established, crystallisation of these compounds in both 

FGFR1/2 could then be carried out and an iterative process of design, synthesis and 

crystallisation implemented in order to design more potent and selective FGFR2 

inhibitors. 
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 Synthesis of Amide Series 

Section 4.3.1 outlines the attempted synthesis of the ‘amide’ series. It was reasoned 

that studying the inhibitory behaviour of this series against the FGFRs could yield 

information as to the role of the presence of the aryl-aryl bond (in the phenolic lead 

series) upon selectivity (Section 4.3). Several different routes were attempted with one 

route showing promise. These conditions are outlined below (Scheme 5.2).  

 

 

 

 

 

 

 

 

Scheme 5.2: In situ acyl chloride formation conditions. 

This synthetic scheme was unsuccessful, however, analysis of the reaction mixture 

using LC-MS indicated successful formation of the acyl chloride. Future work could 

include modifications to this synthetic scheme such as: change of base, change of 

solvent, and/or reaction temperature, with the aim of successfully synthesising the 

amide bond. 
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 Optimisation of ‘Drug-Like’ Properties 

Evaluation of compounds 164, 171, and 172 in a cellular assay had revealed a drop in 

potency when compared to the biochemical assay. Structural modifications to the 

scaffold to improve the ‘drug-like’ properties, such as aqueous solubility and LogP/D 

could also be carried out while seeking to retain or increase potency/selectivity against 

FGFR2. A number of possibilities are outlined below (Figure 5.2). 

 

 

 

 

 

 

 

 

 

Figure 5.2: Potential modifications to improve ‘drug-like’ properties. 

Modifications of the 6-phenyl ring have been previously shown (Section 4.2.3) to have 

dramatic effects upon potency and selectivity against the FGFRs and therefore 

modifications here are not considered. Three main modifications are presented: 

introduction of heteroatoms into the indazole ring, introducing a small 

ortho-substituent on the 3-position phenyl ring and introducing chirality into the 

piperazine ring. These modifications may improve the aqueous solubility, and increase 

the degree of sp3 character of atoms within the compound, characteristics which have 

been shown to be important to successful drug discovery.143 If these modifications 

prove successful in improving the activity of the compounds in a cellular environment, 

the next step would be to evaluate these compounds in vivo whilst considering drug 

metabolism and pharmacokinetics (DMPK) parameters.
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6Chapter Six – Experimental 

6.1 Chemistry Experimental 

 General Procedures and Instrumentation 

All reagents were obtained from commercial sources and were used without further 

purification unless otherwise stated. All microwave reactions were carried out in a 

CEM Explorer 48 Autosampler using a power of 200 Watts and a pressure of 17 Bar 

unless otherwise stated. Thin layer chromatography (TLC) analysis was performed 

using aluminium pre-coated silica gel plates supplied by Merck chemicals and 

visualised using either ultraviolet light (254 nm), dipping in KMnO4 solution or 

ninhydrin solution and heated, or using an iodine tank. Rf values are recorded to two 

decimal places. Normal phase flash column chromatography was carried out using 

Geduran® silica gel 60 4063 µm. Automated column chromatography (ACC) was 

performed on an Isolera Biotage® using KP-C18-HS SNAP 12/30/60 g cartridges 

using MeCN/water (0-95%) containing 0.1% TFA, at a flow rate of 12-50 mL min-1 

for reverse phase or Thomson Single Step 12/40 g pre-packed silica cartridges for 

normal phase chromatography. LC-MS analysis was performed on a Bruker 

Daltronics instrument running a gradient of increasing MeCN/water (5-95%) 

containing 0.1% formic acid, at 1 mL min-1 on a 50 × 20 mm C18 reverse phase 

column. Preparative high performance liquid chromatography (HPLC) was performed 

on an Agilent 1100 Infinity Series equipped with a UV detector and Ascentis Express 

C18 reverse phase column using MeCN/water (5-95%) containing 0.1% TFA, at a flow 

rate of 0.5 mL min-1 over a period of 5-15 minutes. Analytical HPLC was performed 

on an Agilent 1290 Infinity Series equipped with a UV detector and a Hyperclone C18 

reverse phase column using MeCN/water (5-95%) containing 0.1% TFA, at either 

0.5 mL min-1 over a period of five minutes or 1.0 mL min-1 over a period of 30 minutes. 

Compounds are 100% pure unless otherwise stated. High resolution mass 

spectrometry (HRMS) was carried out using a Bruker MaXis Impact Time of Flight 

spectrometer using electro spray ionisation (ES+/-), giving masses correct to four 

decimal places.  

1H and 13C NMR spectra were recorded at 500 MHz and 125 MHz or 100 MHz 

respectively on either a Bruker Advance 500 or 400 Fourier transform spectrometer. 

Chemical shifts are reported in ppm and are reported with reference to the residual 
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solvent peak. Multiplicities are reported with coupling constants and are given to the 

nearest 0.1 Hz. Apparent multiplicities are denoted by app. Where needed, two-

dimensional correlation spectroscopy (2D-COSY), heteronuclear single quantum 

coherence spectroscopy (HSQC), and heteronuclear multiple bond correlation 

spectroscopy (HMBC) were used. Ar-q = aromatic quaternary carbon. 

Infrared spectra (IR) were recorded in the solid phase on a Bruker Alpha Platinum 

Attenuated Total Reflectance (ATR) Fourier Transform Infrared Spectroscopy (FTIR) 

spectrometer with vibrational frequencies given in cm-1. Melting points were 

measured on a Stuart SMP30. Elemental analysis was carried out using a Carlo Erba 

1108 Elemental Analyzer. 

 General Experimental Methods 

6.1.2.1 Method A: Suzuki Reactions 

A mixture of the chosen halogenated heterocycle (1.0 eq), the chosen boronic acid 

(1.0-2.0 eq), Pd(dppf)Cl2•DCM (0.1 eq) and Na2CO3 (3.0-5.0 eq) were charged with 

nitrogen in a microwave vial (10 mL or 35 mL). A mixture of dioxane and water ((1:1) 

5-20 mL) was degassed for ten minutes and added to the reactants under nitrogen. The 

reaction mixture was heated to 110 °C for 1-6 h and monitored using LC-MS. The 

reaction mixture was allowed to cool to 20 °C and EtOAc (5 mL or 15 mL) added and 

the reaction vessel sonicated, and the solution filtered through a celite pad washing 

thoroughly with EtOAc. Where needed a 1:1 ratio of DCM−MeOH was used to wash 

the celite pad. The filtrate was added to water (20 mL or 60 mL) and the organic layer 

separated. The aqueous layer was extracted with EtOAc (3 × 15 mL or 30 mL) and the 

combined organic layers washed with brine (10 mL or 30 mL), dried (MgSO4), and 

concentrated in vacuo to reveal the crude product. The crude product was purified 

using either ACC or column chromatography. The appropriate fractions were 

combined and reduced in vacuo to yield a solid. 

6.1.2.2 Method B: Reductive Aminations 

The chosen aldehyde (1.0-1.2 eq) was dissolved in DCM (3-15 mL) and cooled to 

0 °C. The chosen secondary amine (1.0-1.2 eq) and glacial AcOH (1 drop) were added 

and the reaction stirred until complete, monitoring with TLC. STAB (1.6 eq) was 

added to the reaction and allowed to warm to 20 °C, monitoring using LC-MS. See 

individual compounds for work up and purification methods. 
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6.1.2.3 Method C: BOC Deprotections 

The chosen BOC protected amine (1.0 eq) was dissolved in DCM (0.5-5.0 mL) and an 

equivalent amount of freshly distilled TFA (0.5-5.0 mL) added and the reaction stirred 

until complete, monitoring using LC-MS. Upon completion, the reaction mixture was 

reduced in vacuo to reveal the crude product. See individual compounds for 

purification methods. 

6.1.2.4 Method D: Methoxy Deprotections 

The chosen methoxy containing compound (1.0 eq) was dissolved/suspended in DCM 

(5-15 mL) at 0 °C. 1 M BBr3 in DCM (8.0 eq) was added slowly and the reaction 

stirred at room temperature for 1-24 h until complete, monitoring using LC-MS. See 

individual compounds for work up and purification methods. 

6.1.2.5 Method E: Acid Chloride Couplings 

The chosen amine (1.0 eq) was dissolved in DCM (5-20 mL) and DIPEA (2.0-3.5 eq) 

was added and the reaction stirred for 20 minutes. The chosen acid chloride 

(1.2-2.0 eq) was added and the reaction stirred, monitoring using LC-MS until 

complete. See individual compounds for work up and purification methods. 

6.1.2.6 Method F: Piperazine Cyclisations 

The chosen aniline (1.0 eq), bis(2-chloroethyl)amine hydrochloride (1.2 eq) and 

K2CO3 (2.4 eq) were suspended in tBuOH (5-15 mL) and the reaction was heated to 

100 °C and stirred, monitoring using LC-MS until complete. See individual 

compounds for work up and purification methods. 

 Compound Numbering 

The compounds synthesised in this thesis are numbered in the following way. 
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 Compounds 

6.1.4.1 Chapter Two Compounds 

Preparation of 6-phenylindole 

Synthesised using method A using 6-bromoindole (50 mg, 

0.26 mmol, 1.0 eq), phenylboronic acid (34 mg, 0.28 mmol, 

1.1 eq), Pd(dppf)Cl2•DCM (21 mg, 0.026 mmol, 0.1 eq), Na2CO3 

(82 mg, 0.77 mmol, 3.0 eq), dioxane 2.5 (mL) and water (2.5 mL) 

and the reaction heated for 1 h. The work up proceeded using the smaller volumes of 

solvents and the organic solvent removed in vacuo to reveal a brown solid. The crude 

product was purified using ACC (gradient 0-40% EtOAc−hexane) and a cream solid 

obtained (24 mg, 0.12 mmol, 48%). The solid was crystallised from EtOH:H2O (1:1). 

The title compound 14 (20 mg, 0.10 mmol, 40%) was collected as colourless flakes. 

1H NMR (500 MHz, CDCl3): 8.18 (1H, br.s, NH), 7.70 (1H, d, J 8.5, 4-H), 7.65 (2H, 

m, 2’’-H and 6’’-H), 7.60 (1H, s, 7-H), 7.44 (2H, app.t, J 7.5, 3’’-H and 5’’-H), 7.39 

(1H, dd, J 8.5 and 1.5, 5-H), 7.32 (1H, app.tt, J 7.5 and 1.0, 4’’-H), 7.23 (1H, app.t, 

J 2.5, 2-H), 6.59-6.57 (1H, m, 3-H); 13C NMR (125 MHz, CDCl3): 142.3 (6-C), 136.4 

(3’-C), 135.6 (1’’-C), 128.7 (3’’-C and 5’’-C), 127.4 (2’’-C and 6’’-C), 127.2 (7’-C), 

126.6 (4’’-C), 124.8 (2-C), 120.9 (4-C), 119.8 (5-C), 109.6 (7-C), 102.5 (3-C); 

LC-MS (ES): RT = 2.05-2.15 min, m/z = 194.2 (M+H+); Rf: 0.77 (EtOAc); HPLC: 

RT = 3.17 min; m/z (ES+): Found: 194.0965 (M+H+), C14H11N  requires MH 

194.0964; IR:νmax/cm-1 (solid): 3379 (N-H), 3053, 3032, 2983, 2920, 2850, 1442; 

M.pt: 158.4-160.7 °C (Lit 158-161 °C)144. 

Preparation of 6-(5-chloropyridin-3-yl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 5-chloro-3-pyridineboronic 

acid (177 mg, 1.12 mmol, 1.1 eq), Pd(dppf)Cl2•DCM 

(83 mg, 0.102 mmol, 0.1 eq), Na2CO3 (325 mg, 3.08 mmol, 

3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work 

up proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown solid. The crude product was purified using column 

chromatography (1:1 EtOAc−hexane). The title compound 15 (14 mg, 0.06 mmol, 

6%) was collected as off-brown needles. 
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1H NMR (500 MHz, CDCl3): 10.47 (1H, br.s, NH), 8.79 (1H, d, J 2.0, 2’’-H), 8.60 

(1H, d, J 2.0, 4’’-H), 8.16 (1H, s, 3-H), 7.94 (1H, app.t, J 2.0, 6’’-H), 7.89 (1H, d, 

J 8.0, 4-H), 7.69 (1H, d, J 1.5, 7-H ), 7.38 (1H, dd, J 8.0 and 1.5, 5-H); 13C NMR (125 

MHz, CDCl3): 147.5 (4’’-C), 146.4 (2’’-C), 140.5 (3’-C), 138.1 (6-C), 135.3 (1’’-C), 

135.1 (3-C), 134.6 (6’’-C), 132.3 (5’’-C), 123.3 (7’-C), 121.9 (4-C), 120.8 (5-C), 

108.3 (7-C); LC-MS (ES): RT = 1.70-1.83 min, m/z = 229.9 (M+H+); Rf: 0.39 

(EtOAc); HPLC: RT = 2.02 min; m/z (ES+): Found: 230.0473 (M+H+), 

C12H8ClN3  requires MH 230.0480; IR:νmax/cm-1 (solid): 3266 (N-H), 3091, 3053, 

2958, 2851, 1628; M.pt: 183.8-185.0 °C. 

Preparation of 6-pyridin-3-yl-indole 

Synthesised using method A using 6-bromoindole (200 mg, 

1.03 mmol, 1.0 eq), 3-pyridineboronic acid (139 mg, 1.13 mmol, 

1.1 eq), Pd(dppf)Cl2•DCM (84 mg, 0.103 mmol, 0.1 eq) and 

Na2CO3 (326 mg, 3.08 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 1 h. The work up proceeded using the larger 

volumes of solvents and the organic solvent removed in vacuo to reveal a purple oil. 

The crude product was purified using column chromatography (gradient 30-70% 

EtOAc−hexane) and a green semi-solid obtained. The solid was further purified using 

column chromatography (1:1 EtOAc−hexane). The title compound 16 

(71 mg, 0.37 mmol, 36%) was collected as a cream solid. 

1H NMR (500 MHz, CDCl3): 8.95 (1H, d, J 1.5, 2’’-H), 8.88 (1H, br.s, NH), 8.57 

(1H, dd, J 5.0 and 1.5, 4’’-H), 7.93 (1H, ddd, J 8.0, 2.5 and 1.5, 6’’-H), 

7.74 (1H, d, J 8.0, 4-H), 7.62 (1H, app.s, 7-H), 7.37-7.34 (2H, m, 5-H and 5’’-H), 

7.29 (1H, app.t, J 3.0, 2-H), 6.61-6.58 (1H, m, 3-H); 13C NMR (125 MHz, CDCl3): 

148.5 (2’’-C), 147.7 (4’’-C), 137.9 (6-C), 136.5 (3’-C), 134.6 (6’’-C), 131.8 (1’’-C), 

127.9 (7’-C), 125.5 (2-C), 123.6 (5’’-C), 121.4 (4-C), 119.4 (5-C), 109.7 (7-C), 

102.6 (3-C); LC-MS (ES): RT = 1.31-1.52 min, m/z = 195.0 (M+H+); Rf: 0.34 

(EtOAc); HPLC: RT = 1.40 min; m/z (ES+): Found: 195.0915 (M+H+), 

C13H10N2  requires MH 195.0917; IR:νmax/cm-1 (solid): 3162 (N-H), 3125, 3087, 

2918, 1575; M.pt: 145.4-146.4 °C (Lit 146-148 °C)145. 
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Preparation of 6-(5-chloropyridin-3-yl)-indole 

Synthesised using method A using 6-bromoindole (200 mg, 

1.03 mmol, 1.0 eq), 5-chloro-3-pyridineboronic acid 

(178 mg, 1.13 mmol, 1.1 eq), Pd(dppf)Cl2•DCM (84 mg, 

0.103 mmol, 0.1 eq), Na2CO3 (326 mg, 3.08 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown solid. The crude product was purified using ACC (gradient 

20-50% EtOAc−hexane). The title compound 17 (51 mg, 0.22 mmol, 22%) was 

collected as a pale yellow solid. 

1H NMR (500 MHz, CDCl3): 8.79 (1H, d, J 1.5, 2’’-H), 8.57 (1H, br.s, NH), 8.52 

(1H, d, J 2.0, 4’’-H), 7.91 (1H, app.t, J 2.0, 6’’-H), 7.74 (1H, d, J 8.0, 4-H), 7.58 (1H, 

d, J 1.5, 7-H), 7.32 (1H, dd, J 8.0 and 1.5, 5-H ), 7.29 (1H, app.t, J 2.5, 2-H), 6.61-6.59 

(1H, m, 3-H); 13C NMR (125 MHz, CDCl3): 146.4 (4’’-C), 146.2 (2’’-C), 139.1 

(6-C), 136.3 (3’-C), 134.2 (6’’-C), 132.2 (5’’-C), 130.2 (1’’-C), 128.3 (7’-C), 125.8 

(2-C), 121.6 (4-C), 119.3 (5-C), 109.8 (7-C), 102.8 (3-C); LC-MS (ES): 

RT = 1.89-2.14 min, m/z = 228.9 (M+H+); Rf: 0.62 (EtOAc); HPLC: RT = 2.35 min 

(96%); m/z (ES+): Found: 229.0529 (M+H+), C13H8ClN2  requires MH 229.0527; 

IR:νmax/cm-1 (solid): 3381 (N-H), 3174, 3093, 2957, 2851, 1569; M.pt: 

137.2-138.3 °C. 

Preparation of 6-phenyl-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole (50 mg, 

0.26 mmol, 1.0 eq), phenylboronic acid (34 mg, 0.28 mmol, 

1.1 eq), Pd(dppf)Cl2•DCM (21 mg, 0.026 mmol, 0.1 eq) Na2CO3 

(81 mg, 0.77 mmol, 3.0 eq), dioxane (2.5 mL) and water (2.5 mL) 

and the reaction heated for 1 h. The work up proceeded using the smaller volumes of 

solvents and the organic solvent removed in vacuo to reveal a brown oil. The crude 

product was purified using ACC (gradient 0-50% EtOAc−hexane). The title 

compound 18 (26 mg, 0.13 mmol, 52%) was collected as off-white needles.  

1H NMR (500 MHz, CDCl3): 10.49 (1H, br.s, NH), 8.12 (1H, s, 3-H), 7.81 (1H, d, 

J 8.5, 4-H), 7.66-7.64 (3H, m, 7-H, 2’’-H and 6’’-H), 7.48-7.45 (2H, m, 3’’-H and 

5’’-H), 7.43 (1H, dd, J 8.5 and 1.5, 5-H), 7.40-7.36 (1H, m, 4’’H); 13C NMR 

(125 MHz, CDCl3): 141.3 (1’’-C), 140.8 (3’-C), 140.5 (6-C), 134.9 (3-C), 128.9 
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(3’’-C and 5’’-C), 127.6 (4’’-C), 127.6 (2’’-C and 6’’-C), 122.5 (7’-C), 121.5 (5-C), 

121.1 (4-C), 107.8 (7-C); LC-MS (ES): RT = 1.82-1.99 min, m/z = 195.0 (M+H+); 

Rf: 0.32 (1:1 EtOAc−petrol); HPLC: RT = 2.63 min; m/z (ES+): Found: 195.0918 

(M+H+), C13H10N2  requires MH 195.0917; IR:νmax/cm-1 (solid): 3295 (N-H), 2956, 

2920, 2850, 1623; M.pt: 152.4-154.1 °C. 

Preparation of 6-pyridin-3-yl-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 3-pyridineboronic acid (138 mg, 

1.12 mmol, 1.1 eq), Pd(dppf)Cl2•DCM (82 mg, 0.102 mmol, 

0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), dioxane (10 mL) 

and water (10 mL) and the reaction heated for 1 h. The work up proceeded using the 

larger volumes of solvents and the organic solvent removed in vacuo to reveal a brown 

solid. The crude product was purified using column chromatography (gradient 

20-100% EtOAc−hexane) and a yellow solid obtained. The solid was crystallised from 

EtOAc. The title compound 19 (77 mg, 0.39 mmol, 39%) was collected as light brown 

plates. 

1H NMR (500 MHz, CDCl3): 11.54 (1H, br.s, NH), 8.96 (1H, d, J 2.0, 2’’-H), 8.65 

(1H, dd, J 4.5 and 1.5, 4’’-H), 8.16 (1H, s, 3-H), 7.95 (1H, app.dt, J 7.5 and 2.0, 

6’’-H), 7.87 (1H, d, J 8.0, 4-H), 7.70 (1H, s, 7-H), 7.42-7.38 (2H, m, 5-H and 5’’-H); 

13C NMR (125 MHz, CDCl3): 148.5 (4’’-C), 148.5 (2’’-C), 140.8 (3’-C), 137.1 

(1’’-C), 136.6 (6-C), 135.0 (6’’-C), 134.8 (3-C), 123.7 (5’’-C), 123.0 (7’-C), 121.7 

(4-C), 120.8 (5-C), 108.3 (7-C); LC-MS (ES): RT = 1.12-1.25 min, m/z = 196.0 

(M+H+); Rf: 0.20 (EtOAc); HPLC: RT = 1.01 min; m/z (ES+): Found: 196.0874 

(M+H+), C12H9N3  requires MH 196.0869; IR:νmax/cm-1 (solid): 3149 (N-H), 3037, 

2909; M.pt: 163.5-164.3 °C. 

Preparation of 1-(benzenesulfonyl)-6-bromo-1H-indazole 

NaH (146 mg, 3.66 mmol, 1.5 eq; 60% dispersion in oil) was 

dissolved in DMF (2 mL) and stirred for ten minutes at 0 °C. A 

solution of 6-bromo-1H-indazole (300 mg, 2.44 mmol, 1.0 eq) in 

DMF (3 mL) was added dropwise and left to stir for five minutes. 

Benzenesulfonyl chloride (0.34 mL, 2.68 mmol, 1.1 eq) was 

degassed and added slowly to the reaction mixture. The reaction was allowed to warm 
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to 20 °C and stirred for 24 h, monitoring using LC-MS. The mixture was diluted with 

EtOAc (15 mL) and added to water (30 mL) and the organic layer was separated. The 

aqueous layer was extracted with EtOAc (2 × 15 mL) and the combined organic layers 

washed with brine (20 mL), dried (MgSO4), and concentrated in vacuo to reveal a 

cream solid. The crude product was crystallised from EtOH. The title compound 24 

(332 mg, 0.98 mmol, 40%) as bright yellow needles.  

1H NMR (500 MHz, CDCl3): 8.43 (1H, app.dt, J 1.0 and 0.5, 7-H), 8.14 (1H, d, J 0.5, 

3-H), 8.02-7.99 (2H, m, 2’’-H and 6’’-H), 7.60 (1H, app.tt, J 7.5 and 2.0, 4’’-H), 

7.55 (1H, dd, J 8.5 and 0.5, 4-H), 7.51-7.44 (2H, m, 3’’-H and 5’’-H), 7.45 (1H, dd, 

J 8.5 and 1.5, 5-H); 13C NMR (125 MHz, CDCl3): 141.1 (3-C), 140.1 (7’-C), 137.4 

(1’’-C), 134.5 (4’’-C), 129.4 (3’’-C and 5’’-C), 128.0 (2’’-C and 6’’-C), 127.7 (5-C), 

124.6 (3’-C), 124.1 (6-C), 122.3 (4-C), 116.2 (7-C); LC-MS (ES): RT = 2.09-2.27 

min, m/z = 339.0 (MBr81+); Rf: 0.48 (1:1 EtOAc−petrol); HPLC: RT = 2.42 min 

m/z (ES+): Found: 336.9652 (M+H+), C13H9BrN2O2S requires MH 336.9641; 

IR:νmax/cm-1(solid): 3107, 1602, 1569; M.pt: 161.3-163.1 °C. 

Preparation of 6-(3-fluorophenyl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 3-fluorophenylboronic acid 

(214 mg, 1.53 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (83 mg, 

0.102 mmol, 0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (gradient 5-10% EtOAc−hexane). The title compound 29 (76 mg, 

0.36 mmol, 35%) was collected as a colourless powder. 

1H NMR (500 MHz, CD3OD): 7.95 (1H, d, J 1.0, 3-H), 7.72 (1H, dd, J 8.5 and 1.0, 

4-H), 7.63-7.62 (1H, m, 7-H), 7.40-7.28 (4H, m, 5’’-H, 6’’-H, 2’’-H and 5-H), 

7.14-7.10 (1H, m, 4’’-H), NH not observed; 13C NMR (125 MHz, CD3OD): 164.6 (d, 

J 244.3, 3’’-C), 145.1 (d, J 7.6, 1’’-C), 142.1 (3’-C), 140.0 (d, J 2.3, 6-C), 134.9 (3 C), 

131.5 (d, J 8.4, 5’’-C), 124.2 (d, J 2.8, 6’’-C), 123.8 (7’-C), 122.2 (4-C), 121.7 (5-C), 

115.0 (d, J 22.4, 4’’-C), 115.0 (d, J 21.4, 2’’-C), 109.2 (7-C); LC-MS (ES): 

RT = 1.86-1.98 min, m/z = 213.0 (M+H+); Rf: 0.48 (7:3 EtOAc−petrol); HPLC: 

RT = 2.72 min; m/z (ES+): Found: 213.0826 (M+H+), C13H9FN2  requires MH 
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213.0823; IR:νmax/cm-1 (solid): 3190 (N-H), 3071, 2963, 2925, 2462, 1627, 1616; 

M.pt: 114.4-116.3 °C. 

Preparation of 6-(3-chlorophenyl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 3-chlorophenylboronic acid 

(175 mg, 1.12 mmol, 1.1 eq), Pd(dppf)Cl2•DCM (83 mg, 

0.102 mmol, 0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown semi-solid. The crude product was purified using column 

chromatography (5:95 EtOAc−hexane). The title compound 30 (42 mg, 0.18 mmol, 

18%) was collected as colourless platelets. 

1H NMR (500 MHz, CD3OD): 7.96 (1H, d, J 1.0, 3-H), 7.73 (1H, dd, J 8.5 and 1.0, 

4-H), 7.62-7.61 (1H, m, 7-H), 7.57 (1H, app.t, J 2.0, 2’’-H), 7.50 (1H, ddd, J 8.0, 2.0 

and 1.0, 6’’-H), 7.33 (1H, app.t, J 8.0, 5’’-H), 7.29 (1H, dd, J 8.5 and 1.5, 5-H), 7.26 

(1H, ddd, J 8.0, 2.0 and 1.0, 4’’-H), NH not observed; 13C NMR (125 MHz, CD3OD): 

144.7 (6-C), 142.1 (3’-C), 139.8 (1’’-C), 135.7 (3’’-C), 134.7 (3-C), 131. 3 (5’’-C), 

128.3 (2’’-C), 126.8 (4’’-C), 126.8 (6’’-C), 123.9 (7’-C), 122.3 (4-C), 121.7 (5-C), 

109.2 (7-C); LC-MS (ES): RT = 1.85-1.96 min, m/z = 228.9 (M+H+); Rf: 0.51 (7:3 

EtOAc−petrol); HPLC: RT = 2.98 min;  m/z (ES+): Found: 229.0528 (M+H+), 

C13H9ClN2  requires MH 229.0527; IR:νmax/cm-1 (solid): 3438 (N-H), 3228, 3138, 

3056, 2920, 2410, 1625, 1594, 1564; M.pt: 99.8-101.9 °C. 

Preparation of 6-(3-ethoxyphenyl)-1H-indazole 

Synthesised using method B using 6-bromo-1H-indazole 

(112 mg, 0.57 mmol, 1.0 eq), 3-ethoxyphenylboronic acid 

(190 mg, 1.14 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (46 mg, 

0.057 mmol, 0.1 eq), Na2CO3 (182 mg, 1.72 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. LC-MS indicated 

the presence of starting material however 3-ethoxyphenylboronic acid was no longer 

available so 3-carboxyboronic acid (94 mg, 1.02 mmol, 1.0 eq) was added and the 

reaction put on for 30 minutes to consume the starting material. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown solid. The crude product was purified using column 
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chromatography (2:3 EtOAc−hexane) and an off-white solid obtained. The solid was 

crystallised from toluene. The title compound 31 (52 mg, 0.218 mmol, 39%) was 

collected as colourless needles. 

1H NMR (500 MHz, CDCl3): 10.54 (1H, br.s, NH), 8.16 (1H, d, J 1.0, 3-H), 7.84 

(1H, dd, J 8.5 and 1.0, 4-H), 7.70-7.69 (1H, m, 7-H), 7.47 (1H, dd, J 8.5 and 1.5, 5-H), 

7.42 (1H, app.t, J 8.0, 5’’-H), 7.26 (1H, ddd, J 8.0, 1.5 and 1.0, 6’’-H), 7.22 (1H, app.t, 

J 2.5, 2’’-H), 6.96 (1H, ddd, J 8.0, 1.5 and 1.0, 4’’-H), 4.15 (2H, q, J 7.0, CH2), 1.50 

(3H, t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 159.4 (3’’-C), 142.8 (1’’-C), 140.7 

(3’-C), 140.4 (6-C), 134.9, (3-C) 129.8 (5’’-C), 122.6 (7’-C), 121.4 (5-C), 121.0 (4-C), 

120.0 (6’’-C), 114.1 (2’’-C), 113.5 (4’’-C), 107.8 (7-C), 63.6 (CH2), 14.91 (CH3); 

LC-MS (ES): RT = 1.90-2.11 min, m/z = 239.2 (M+H+); Rf: 0.47 (7:3 EtOAc−petrol); 

HPLC: RT = 2.34 min; m/z (ES+): Found: 239.1191 (M+H+), C15H14N2O requires 

MH 239.1179; IR:νmax/cm-1 (solid): 3162 (N-H), 3131, 3089, 2977, 2919, 1626, 1570, 

1299; M.pt: 104.3-105.5 °C; Found: C,75.2; H, 5.90; N, 11.6; C15H14N2O requires 

C, 75.6; H, 5.92; N, 11.8%.  

Preparation of 6-(3,5-bis(trifluoromethyl)phenyl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 3,5-

bis(trifluoromethyl)phenylboronic acid (527 mg, 

2.04 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (83 mg, 

0.102 mmol, 0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (2:3 EtOAc−hexane) and an off-white solid obtained. The solid was 

crystallised from toluene. The title compound 33 (144 mg, 0.436 mmol, 43%) was 

collected as shiny colourless plates.  

1H NMR (500 MHz, CDCl3): 10.54 (1H, br.s, NH), 8.18 (1H, s, 3-H), 8.09 

(2H, s, 2’’-H and 6’’-H), 7.91 (1H, dd, J 8.5 and 1.0, 4-H), 7.90 (1H, app.s, 4’’-H), 

7.74 (1H, s, 7-H), 7.43 (1H, dd , J 8.5 and 1.5, 5-H); 13C NMR (125 MHz, CDCl3): 

143.5 (1’’-C), 140.5 (3’-C), 137.3 (6-C), 135.1 (3-C), 132.2 (q, J 33.3, 3’’-C), 127.7 

(q, J 7.0, 2’’-C and 6’’-C), 123.4 (7’-C), 123.3 (q, J 270.9, CF3), 122.0 (4-C), 121.2 

(sept, J 3.8, 4’’-C), 120.9 (5-C), 108.4 (7-C); LC-MS (ES): RT = 2.08-2.31 min, 
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m/z = 331.0 (M+H+); Rf: 0.5 (1:1 EtOAc−petrol); HPLC: RT = 3.48 min; m/z (ES-): 

Found: 329.0529 (M-H), C15H8F6N2 requires M-H 329.0519; IR:νmax/cm-1 (solid): 

3171 (N-H), 3135, 3023, 2930, 2871, 1623, 1520, 1383, 1276; M.pt: 169.3-170.1 °C.  

Preparation of 4-(1H-indazol-6-yl)phenol 

Synthesised using method A using 6-iodo-1H-indazole 

(300 mg, 1.23 mmol, 1.0 eq), 4-hydroxyphenylboronic acid 

(339 mg, 2.46 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (100 mg, 

0.123 mmol, 0.1 eq), Na2CO3 (391 mg, 3.69 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown solid. The crude product was purified using column 

chromatography (3:7 EtOAc−hexane). The title compound 34 (13 mg, 0.062 mmol, 

5%) was collected as a yellow powder. 

1H NMR (500 MHz, DMSO-d6): 13.00 (1H, s, NH), 9.53 (1H, s, OH), 8.03 (1H, s, 

3-H), 7.76 (1H, d, J 8.5, 4-H), 7.60 (1H, s, 7-H), 7.53 (2H, d, J 8.5, 2’’-H and 6’’-H), 

7.33 (1H, dd, J 8.5 and 1.5, 5-H), 6.86 (2H, d, J 8.5, 3’’-H and 5’’-H); 

13C NMR (125 MHz, DMSO-d6): 157.1 (4’’-C), 140.7 (3’-C), 138.4 (6-C), 133.3 

(3-C), 131.4 (1’’-C), 128.2 (2’’-C and 6’’-C), 121.6 (7’-C), 120.7 (4-C), 119.8 (5-C), 

115.7 (3’’-C and 5’’-C), 106.5 (7-C); LC-MS (ES): RT = 1.59-1.81 min, m/z = 211.0 

(M+H+); Rf: 0.34 (7:3 EtOAc−petrol); HPLC: RT = 1.88 min; m/z (ES+): Found: 

211.0866 (M+H+), C13H10N2O requires MH 211.0866; IR:νmax/cm-1 (solid): 3264 

(N-H), 2954, 2921, 2654, 1729, 1606; M.pt: 309.8-310.9 °C. 

Preparation of 6-(thiophen-3-yl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 3-thienylboronic acid (224 mg, 

1.75 mmol, 1.7 eq), Pd(dppf)Cl2•DCM (83 mg, 0.102 mmol, 

0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), dioxane (10 mL) 

and water (10 mL) and the reaction heated for 1 h. The work up proceeded using the 

larger volumes of solvents and the organic solvent removed in vacuo to reveal a brown 

solid. The crude product was purified using column chromatography 

(1:1 EtOAc−hexane) and an off-white solid obtained. The solid was crystallised from 
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toluene via hot filtration. The title compound 37 (100 mg, 0.50 mmol, 49%) was 

collected as off-white fluffy crystals.  

1H NMR (500 MHz, DMSO-d6): 13.07 (1H, s, NH), 8.04 (1H, s, 3-H), 7.92 (1H, dd, 

J 3.0 and 1.5, 2’’-H), 7.78-7.76 (2H, m, 7H and 4-H), 7.65 (1H, dd, J 5.0 and 3.0, 

4’’-H), 7.62 (1H, dd, J 5.0 and 1.5, 5’’-H), 7.48 (1H, dd, J 8.5 and 1.5, 5-H); 

13C NMR (125 MHz, DMSO-d6): 141.8 (1’’-C), 140.5 (3’-C), 133.4 (3-C), 133.1 

(6-C), 127.1 (4’’-C), 126.5 (5’’-C), 122.0 (7’-C), 121.3 (2’’-C), 120.9 (4-C), 119.7 

(5-C), 106.7 (7-C); LC-MS (ES): RT = 1.78-2.00 min, m/z = 200.9 (M+H+); Rf: 0.44 

(7:3 EtOAc−petrol); HPLC: RT = 2.46 min; m/z (ES+): Found: 201.0482 (M+H+), 

C11H8N2S requires MH 201.0481; IR:νmax/cm-1 (solid): 3270 (N-H), 3187, 3101, 

3052, 2930, 1621, 1470, 1360; M.pt: 207.9-209.5 °C; Found: C,65.7; H, 3.90; 

N, 13.7; C11H8N2S requires C, 66.0; H, 4.03; N, 14.0%. 

Preparation of 6-(furan-2-yl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 3-furylboronic acid (229 mg, 

2.04 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (83 mg, 0.102 mmol, 

0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), dioxane (10 mL) 

and water (10 mL) and the reaction heated for 1 h. The work up proceeded using the 

larger volumes of solvents and the organic solvent removed in vacuo to reveal a brown 

solid. The crude product was purified using column chromatography 

(2:3 EtOAc−hexane) and an off-white solid obtained. The solid was crystallised from 

toluene via hot filtration. The title compound 38 (107 mg, 0.58 mmol, 57%) was 

collected as a pale yellow powder. 

1H NMR (500 MHz, DMSO-d6): 13.09 (1H, s, NH), 8.05 (1H, s, 3-H), 7.79-7.76 (3H, 

m, 3’’-H, 4-H and 7-H), 7.48 (1H, dd, J 8.5 and 1.5, 5-H), 7.01 (1H, d, J 3.5, 5’’-H), 

6.61 (1H, dd, J 3.5 and 1.5, 4’’-H); 13C NMR (125 MHz, DMSO-d6): 153.3 (1’’-C), 

143.0 (3’’-C), 140.2 (3’-C), 133.6 (3-C), 128.1 (6-C), 122.1 (7’-C), 121.1 (4-C), 117.0 

(5-C), 112.1 (4’’-C), 106.3 (5’’-C), 104.0 (7-C); LC-MS (ES): RT = 1.74-1.98 min, 

m/z = 185.0 (M+H+); Rf: 0.47 (7:3 EtOAc−petrol); HPLC: RT = 2.31 min; 

m/z (ES+): Found: 185.0708 (M+H+), C11H8N2O requires MH 185.0709; IR:νmax/cm-

1 (solid): 3173 (N-H), 3142, 3098, 2997, 2920, 2831, 1681, 1592, 1437; M.pt: 143.4-

145.1 °C.  
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Preparation of 6-(4-methylthiophen-2-yl)-1H-indazole 

Synthesised using method A using 6-bromo-1H-indazole 

(200 mg, 1.02 mmol, 1.0 eq), 4-methylthiophene-2-boronic 

acid (288 mg, 2.04 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (83 mg, 

0.102 mmol, 0.1 eq), Na2CO3 (325 mg, 3.06 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (1:1 EtOAc−hexane) and a yellow solid obtained. The solid was 

crystallised from toluene. The title compound 43 (136 mg, 0.625 mmol, 63%) was 

collected as off-white granules.   

1H NMR (500 MHz, CDCl3): 8.02 (1H, d, J 1.0, 3-H), 7.69 (1H, dd, J 8.5 and 1.0, 

4-H), 7.64-7.63 (1H, m, 7-H), 7.39 (1H, dd, J 8.5 and 1.5, 5-H), 7.15 (1H, d, J 1.5, 

5’’-H), 6.85 (1H, app.p, J 1.5, 3’’-H), 2.26 (3H, app.d, J 1.0, CH3), NH not observed; 

13C NMR (125 MHz, CDCl3): 144.1 (1’’-C), 140.7 (3’-C), 138.8 (4’’-C), 134.9 

(3-C), 133.5 (6-C), 126.2 (5’’-C), 122.6 (7’-C), 121.2 (4-C), 120.6 (3’’-C), 120.1 

(5-C), 106.1 (7-C), 15.9 (CH3); LC-MS (ES): RT = 1.88-2.08 min, m/z = 215.1 

(M+H+); Rf: 0.51 (7:3 EtOAc−petrol); HPLC: RT = 2.27 min (95%); m/z (ES+): 

Found: 215.0633 (M+H+), C12H10N2S requires MH 215.0637; IR:νmax/cm-1 (solid): 

3289 (N-H), 3162, 2919, 1626, 1570, 1473; M.pt: 151.8-153.1 °C; Found: C,67.1; H, 

4.70; N, 12.9; C12H10N2S requires C, 67.3; H, 4.70; N, 13.1%. 

Preparation of 1-(thiophene-3-ylmethyl)pyrrolidine 

Synthesised using method B using 3-thiophene-carboxaldehyde 

(2.0 mL, 22.8 mmol, 1.0 eq), pyrrolidine (2.29 mL, 27.4 mmol, 

1.2 eq), glacial AcOH (1 drop), STAB (7.74 g, 36.5 mmol, 1.6 eq) and 

DCM (5 mL). The reaction was stirred for 2 h. Upon completion, 2 M 

NaOH(aq) (100 mL) was added to the reaction mixture and the organic layer separated. 

The aqueous layer was extracted with DCM (3 × 40 mL) and the combined organic 

layers washed with 2M NaOH(aq) (50 mL), brine (50 mL), dried (MgSO4) and reduced 

in vacuo to reveal a brown oil. The crude product was purified using Kugelrohr 

distillation (temp: 52 °C, pressure: 1 × 10-2 Torr). The title compound 49 

(3.17 g, 19.0 mmol, 83%) was collected as a colourless oil. 
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1H NMR (500 MHz, CDCl3): 7.20 (1H, dd, J 5.0 and 3.0, 5-H), 7.07 (1H, m, 2-H), 

7.02 (1H, dd, J 5.0 and 1.0, 4-H), 3.56 (2H, s, CH2Ar), 2.49-2.44 (4H, m, 2-H and 5-H 

pyrrole), 1.76-1.71 (4H, m, 3-H and 4-H pyrrole); 13C NMR (125 MHz, CDCl3): 

140.3 (3-C), 128.4 (4-C), 125.2 (5-C), 122.3 (2-C), 55.2 (CH2Ar), 54.2 (2-C and 5-C 

pyrrole), 23.5 (3-C and 4-C pyrrole); LC-MS (ES): RT = 0.33-0.55 min, m/z = 168.1 

(M+H+); Rf: 0.40 (99:1 EtOAc−7.0 M NH3 in MeOH); HPLC: RT = 0.73 min 

(86% - degrades overtime); m/z (ES+): Found: 168.0841 (M+H+), C9H13NS requires 

MH 168.0845; IR:νmax/cm-1 (solid): 2992, 2977, 2919, 2776, 1626, 1477. 

Preparation of {[3-(1H-indazol-6-yl)phenyl]methyl}(methyl)amine 

Synthesised using method B using 3-(1H-indazol-6-

yl)benzaldehyde (59) (100 mg, 0.45 mmol, 1.0 eq), 

40% methylamine in water (47 μL, 0.54 mmol, 1.2 eq), 

AcOH (1 drop), STAB (153 mg, 0.72 mmol, 1.6 eq) 

and DCM (3 mL). The reaction was stirred for 24 h. 2 M NaOH(aq) (10 mL) was added 

to the reaction mixture and the organic layer separated. The aqueous layer was 

extracted with DCM (3 × 20 mL) and the combined organic layers dried (MgSO4) and 

reduced in vacuo. No further purification carried out. The title compound 52 (47 mg, 

0.19 mmol, 44%) was collected as an off-white foamy solid. 

1H NMR (500 MHz, CD3OD): 7.95 (1H, d, J 1.0, 3-H), 7.73 (1H, dd, J 8.5 and 0.8, 

4-H), 7.64 (1H, s, 7-H), 7.57 (1H, s, 2’’-H), 7.50 (1H, app.dt, J 7.7 and 1.2, 5-H), 

7.36-7.32 (2H, m, 5’’-H and 6’’-H), 7.24 (1H, d, J 7.5, 4’’-H), 3.69 (2H, s, CH2), 2.32 

(3H, s, CH3), NHs not observed; 13C NMR (125 MHz, CD3OD): 142.9 (1’’-C), 142.3 

(7’-C), 141.4 (6 -C), 140.9 (3’’-C), 134.6 (3-C), 130.0 (5’’-C), 128.7 (2’’-C), 128.7 

(4’’-C), 127.4 (5-C), 123.6 (3’-C), 122.0 (4-C), 122.0 (6’’-C), 109.0 (7-C), 56.3 (CH2), 

35.5 (CH3); LC-MS (ES): RT = 1.33-1.63 min, m/z = 238.2 (M+H+); Rf: 0.24 (1:2:7 

7.0 M NH3 in MeOH−petrol–EtOAc); HPLC: RT = 1.51 min; m/z (ES+): Found: 

238.1339 (M+H+), C15H16N3 requires MH 238.1344; IR:νmax/cm-1 (solid): 3169 (NH), 

2919, 2844, 2791, 1625. 
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Preparation of ethyl({[3-(1H-indazol-6-yl)phenyl]methyl})amine 

Synthesised using method B using 3-(1H-indazol-6-

yl)benzaldehyde (59) (100 mg, 0.45 mmol, 1.0 eq), 

70% ethylamine in water (51 μL, 0.54 mmol, 1.2 eq), 

AcOH (1 drop), STAB (153 mg, 0.72 mmol, 1.6 eq) and 

DCM (3 mL). The reaction was stirred for 48 h. 2 M NaOH(aq) (10 mL) was added to 

the reaction mixture and the organic layer separated. The aqueous layer was extracted 

with DCM (3 × 20 mL) and the combined organic layers dried (MgSO4) and reduced 

in vacuo. No further purification carried out. The title compound 53 (66 mg, 0.26 

mmol, 58%) was collected as an off-white foamy solid. 

1H NMR (500 MHz, CD3OD): 8.03 (1H, d, J 1.0, 3-H), 7.77 (1H, dd, J 8.5 and 0.8, 

4-H), 7.71 (1H, s, 7-H), 7.63 (1H, app.t, J 1.6, 2’’-H), 7.52 (1H, app.dt, J 7.7 and 1.4, 

5-H), 7.38-7.33 (2H, m, 5’’-H and 6’’-H), 7.29 (1H, d, J 7.6, 4’’-H), 3.76 (2H, s, CH2), 

2.63 (2H, q, J 7.1, CH2CH3), 1.12 (3H, t, J 7.1, CH3), NHs not observed; 

13C NMR (125 MHz, CD3OD): 142.8 (1’’-C), 142.3 (7’-C), 141.3 (6-C), 141.2 

(3’’-C), 134.7 (3-C), 130.0 (5’’-C), 128.6 (2’’-C), 128.6 (4’’-C), 127.3 (5-C), 123.6 

(3’-C), 122.0 (4-C), 122.0 (6’’-C), 109.0 (7-C), 54.3 (CH2), 44.1 (CH2CH3), 14.6 

(CH3); LC-MS (ES): RT = 1.34-1.53 min, m/z = 252.2 (M+H+); Rf: 0.36 (1:2:7 7.0 M 

NH3 in MeOH −petrol–EtOAc); HPLC: RT = 1.56 min; m/z (ES+): Found: 252.1495 

(M+H+), C16H18N3 requires MH 252.1501; IR:νmax/cm-1 (solid): 3168 (N-H), 2962, 

2832, 1625. 

Preparation of {[3-(1H-indazol-6-yl)phenyl]methyl}dimethylamine 

Synthesised using method B using 3-(1H-indazol-6-

yl)benzaldehyde (59) (100 mg, 0.45 mmol, 1.0 eq), 

dimethylamine hydrochloride (44 mg, 0.54 mmol, 

1.2 eq), AcOH (1 drop), STAB (153 mg, 0.72 mmol, 

1.6 eq) and DCM (3 mL). The reaction was stirred for 48 h. 2 M NaOH(aq) (10 mL) 

was added to the reaction mixture and the organic layer separated. The aqueous layer 

was extracted with DCM (3 × 20 mL) and the combined organic layers washed with 

brine (20 mL), dried (MgSO4) and reduced in vacuo. No further purification carried 

out. The title compound 54 (70 mg, 0.28 mmol, 62%) was collected as an off-white 

foamy solid. 
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1H NMR (500 MHz, CD3OD): 7.95 (1H, d, J 0.9, 3-H), 7.72 (1H, dd, J 8.5 and 0.8, 

4-H), 7.64 (1H, s, 7-H), 7.55 (1H, s, 2’’-H), 7.52-7.50 (1H, m, 5-H), 7.36-7.33 (2H, 

m, 5’’-H and 6’’-H), 7.21 (1H, d, J 7.6, 4’’-H), 3.45 (2H, s, CH2), 2.18 (6H, s, CH3), 

NH not observed; 13C NMR (125 MHz, CD3OD): 142.8 (1’’-C), 142.2 (7’-C), 141.3 

(6-C), 139.4 (3’’-C), 134.4 (3-C), 129.9 (4’’-C), 129.7 (5’’-C), 129.7 (2’’-C), 127.6 

(5-C), 123.6 (3’-C), 122.0 (4-C), 121.9 (6’’-C), 108.9 (7-C), 64.9 (CH2), 45.2 (CH3); 

LC-MS (ES): RT = 1.35-1.53 min, m/z = 252.2 (M+H+); Rf: 0.48 (1:2:7 7.0 M NH3 

in MeOH−petrol–EtOAc); HPLC: RT = 1.51 min; m/z (ES+): Found: 252.1495 

(M+H+), C16H18N3 requires MH 252.1501; IR:νmax/cm-1 (solid): 2942 (N-H), 2772, 

2712, 1625; M.pt: 37.2-39.7 °C. 

Preparation of 6-[3-(piperidin-1-ylmethyl)phenyl]-1H-indazole 

Synthesised using method B using 3-(1H-indazol-6-

yl)benzaldehyde (100 mg, 0.45 mmol, 1.0 eq), 

piperidine (53 µL, 0.54 mmol, 1.2 eq), glacial AcOH 

(1 drop), STAB (153 mg, 0.72 mmol, 1.6 eq) and 

DCM (5 mL). The reaction was stirred for 2 h. Upon completion, the reaction mixture 

was reduced in vacuo and resuspended in EtOAc (10 mL) and water (10 mL) added. 

The aqueous layer was extracted with EtOAc (3 × 20 mL) and the combined organic 

layers washed with brine (40 mL), dried (MgSO4) and reduced in vacuo to give a 

yellow semi-solid. The crude product was purified using column chromatography 

(gradient 0.5-2% NH3(aq)(35%)−EtOAc) and a colourless semi-solid obtained. The 

solid was dissolved in Et2O and petrol added until precipitation was observed and then 

reduced in vacuo.  The title compound 55 (106 mg, 0.36 mmol, 81%) was collected as 

a pale yellow foamy solid.  

1H NMR (500 MHz, CDCl3): 10.30 (1H, br.s, NH), 8.10 (1H, s, 3-H), 7.79 (1H, dd, 

J 8.5 and 0.5, 4-H), 7.68 (1H, app.t, J 1.5, 2’’-H), 7.64 (1H, s, 7-H), 7.55 (1H, app.dt, 

J 8.0 and 1.5, 6’’-H), 7.42-7.39 (2H, m, 5-H and 5’’-H), 7.32 (1H, app.dt, J 8.0 and 

1.5, 4’’-H), 3.78 (2H, s, CH2Ar), 2.65 (4H, app.s, 2-H and 6-H piperidine), 1.73-1.67 

(4H, m, 3-H and 5-H piperidine), 1.52-1.46 (2H, m, 4-H piperidine); 

13C NMR (125 MHz, CDCl3): 141.6 (6-C), 140.8 (3’-C), 139.8 (1’’-C), 136.0 

(3’’-C), 134.5 (3-C), 129.2 (5’’-C), 129.0 (4’’-C), 128.8 (2’’-C), 127.0 (6’’-C), 122.5 

(7’-C), 121.1 (4-C), 121.0 (5-C), 108.1 (7-C), 62.6 (CH2Ar), 53.7 (2-C and 6-C 

piperidine), 24.7 (3-C and 5-C piperidine), 23.7 (4-C piperidine); LC-MS (ES): 
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RT = 1.44-1.66 min, m/z = 292.2 (M+H+); Rf: 0.47 (98:2 EtOAc−NH3(aq) (35%)); 

HPLC: RT = 1.75 min; m/z (ES+): Found: 292.1817 (M+H+), C19H21N3 requires MH 

292.1808; IR:νmax/cm-1 (solid): 3175 (N-H), 2997, 2859, 1599, 1487; M.pt: 

100.4-101.9 °C. 

Preparation of 6-[3-(morpholin-4-ylmethyl)phenyl]-1H-indazole 

Synthesised using method B using 3-(1H-indazol-6-

yl)benzaldehyde (100 mg, 0.45 mmol, 1.0 eq), 

morpholine (47 µL, 0.54 mmol, 1.2 eq), glacial AcOH 

(1 drop), STAB (153 mg, 0.72 mmol, 1.6 eq) and 

DCM (5 mL). The reaction was stirred for 2 h. Upon completion, the reaction mixture 

was reduced in vacuo and resuspended in EtOAc (10 mL) and water (10 mL) added. 

The aqueous layer was extracted with EtOAc (3 × 20 mL) and the combined organic 

layers washed with brine (40 mL), dried (MgSO4) and reduced in vacuo to give a 

yellow semi-solid. The crude product was purified using column chromatography 

(1% NH3(aq)(35%)−EtOAc) and a colourless semi-solid obtained. The solid was 

dissolved in Et2O and petrol added until precipitation was observed and then reduced 

in vacuo. The title compound 56 (107 mg, 0.36 mmol, 81%) was collected as an 

off-white foamy solid. 

1H NMR (500 MHz, CDCl3): 8.12 (1H, d, J 1.0, 3-H), 7.81 (1H, d, J 8.5, 4-H), 7.64 

(1H, s, 7-H), 7.63 (1H, app.t, J 2.0, 2’’-H), 7.54 (1H, app.dt, J 7.5 and 1.5, 6’’-H), 

7.44-7.40 (2H, m, 5-H and 5’’-H), 7.35 (1H, app.dt, J 7.5 and 1.5, 4’’-H), 3.75 (4H, 

app.t, J 5.0, 3-H and 5-H morpholine), 3.60 (2H, s, CH2Ar), 2.52 (4H, app.t, J 5.0, 2-H 

and 6-H morpholine), NH not observed; 13C NMR (125 MHz, CDCl3): 141.4 (6-C), 

140.8 (3’-C), 140.3 (1’’-C), 138.4 (3’’-C), 134.9 (3-C), 128.8 (5’’-C), 128.4 (2’’-C), 

128.4 (4’’-C), 126.5 (6’’-C), 122.5 (7’-C), 121.4 (5-C), 121.1 (4-C), 107.8 (7-C), 67.0 

(3-C and 5-C morpholine), 63.5 (CH2Ar), 53.7 (2-C and 6-C morpholine); LC-MS 

(ES): RT = 1.37-1.52 min, m/z = 294.2 (M+H+); Rf: 0.45 (98:2 EtOAc−NH3(aq) 

(35%)); HPLC: RT = 1.67 min; m/z (ES+): Found: 294.1607 (M+H+), C18H19N3O 

requires MH 294.1601; IR:νmax/cm-1 (solid): 3162 (N-H), 3125, 3016, 2962, 2934, 

1624, 1469; M.pt: 136.7-138.4 °C. 
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Preparation of 1-{[3-(1H-indazol-6-yl)phenyl]methyl}piperazin-1-ium 

trifluoroacetate 

Synthesised using method C using tert-butyl-4-{[3-

(1H-indazole-6-yl)phenyl]methyl} piperazine-1-

carboxylate (100 mg, 2.55 mmol, 1.0 eq), DCM 

(5 mL) and freshly distilled TFA (5 mL). The 

reaction mixture was stirred for 1 h. The semi solid was suspended in Et2O and 

sonicated for 30 minutes and the resulting white precipitate filtered. The title 

compound 57 (43 mg, 0.16 mmol, 42%) was collected as an off-white powder. 

1H NMR (500 MHz, CD3OD): 7.98 (1H, s, 3-H), 7.75 (1H, dd, J 8.5 and 1.0, 4-H), 

7.70 (1H, app.t J 1.5, 2’’-H), 7.67-7.64 (2H, m, 7-H and 6’’-H), 7.44 (1H, app.t, J 8.0, 

5’’-H), 7.38-7.34 (2H, m, 4’’-H and 5-H), 4.07 (2H, s, CH2Ar), 3.33 (4H, app.t, J 4.5, 

3-H and 5-H piperazine), 3.12 (4H, app.t, J 4.5, 2-H and 6-H piperazine), NHs not 

observed; 13C NMR (125 MHz, CD3OD): 143.5 (6-C), 142.2 (3’-C), 140.6 (1’’-C), 

134.7 (3-C), 134.1 (3’’-C), 130.5 (5’’-C), 130.4 (2’’-C), 130.4 (4’’-C), 129.2 (6’’-C), 

123.8 (7’-C), 122.2 (4-C), 121.9 (5-C), 109.1 (7-C), 62.4 (CH2Ar), 49.9 (2-C and 6-C 

piperazine), 43.3 (3-C and 5-C piperazine); LC-MS (ES): RT = 1.30-1.60 min, 

m/z = 293.4 (M+H+); Rf: 0.69 (4:1 EtOAc−7.0 M NH3 in MeOH); HPLC: 

RT = 0.81 min; m/z (ES+): Found: 293.1759 (M+H+), C18H20N4 requires MH 

293.1760; IR:νmax/cm-1 (solid): 3224 (N-H), 3032, 2865, 1667 (C=O), 1626; M.pt: 

193.5-195.9 °C. 

Preparation of 6-[3-(pyrrolidin-1-ylmethyl)phenyl]-1H-indazole 

Synthesised using method B using 3-(1H-indazol-6-

yl)benzaldehyde (200 mg, 0.90 mmol, 1.0 eq), 

pyrrolidine (90 µL, 1.08 mmol, 1.2 eq), AcOH 

(1 drop), STAB (306 mg, 1.44 mmol, 1.6 eq) and DCM 

(10 mL). The reaction was stirred for 2 h. The reaction mixture was reduced to ~ 3 mL 

and the crude product purified using column chromatography (gradient 1-6% 7.0 M 

NH3 in MeOH−EtOAc). The title compound 58 (213 mg, 0.77 mmol, 85%) was 

collected as an off-white powder. 

1H NMR (500 MHz, CDCl3): 7.95 (1H, d, J 1.0, 3-H), 7.72 (1H, dd, J 8.5 and 1.0, 

4-H), 7.64-7.63 (1H, m, 7-H), 7.58 (1H, app.t, J 1.5, 2’’-H), 7.50 (1H, ddd, J 7.5, 2.0 

and 1.0, 6’’-H), 7.34 (1H, dd, J 8.5 and 1.5, 5-H), 7.32 (1H, app.t, J 7.5, 5’’-H), 7.24 
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(1H, app.dt, J 7.5 and 2.0, 4’’-H), 3.63 (2H, s, CH2Ar), 2.54-2.49 (4H, m, 2-H and 5-H 

pyrrole), 1.75-1.70 (4H, m, 3-H and 4-H pyrrole); 13C NMR (125 MHz, CDCl3): 

142.8 (6-C), 142.3 (3’-C), 141.3 (1’’-C), 139.7 (3’’-C), 134.7 (3-C), 129.9 (5’’-C), 

129.5 (2’’-C), 129.5 (4’’-C), 127.5 (6’’-C), 123.6 (7’-C), 122.0 (5-C), 122.0 (4-C), 

109.0 (7-C), 61.4 (CH2Ar), 54.9 (2-C and 5-C pyrrole), 24.1 (3-C and 4-C pyrrole); 

LC-MS (ES): RT = 1.39-1.58 min, m/z = 278.2 (M+H+); Rf: 0.25 (98:2 EtOAc−7.0 M 

NH3 in MeOH); HPLC: RT = 1.71 min; m/z (ES+): Found: 555.3232 (2M+H+), 

C18H19N3 requires 2MH 555.3231; IR:νmax/cm-1 (solid): 3067, 3014, 2951, 2914, 

2768, 1624, 1604, 1399; M.pt: 139.7-141.2 °C. 

Preparation of 3-(1H-indazol-6-yl)benzaldehyde 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 3-formylphenylboronic acid 

(246 mg, 1.64 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (67 mg, 

0.082 mmol, 0.1 eq), Na2CO3 (261 mg, 2.46 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 3 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (2:3 EtOAc−hexane) and a colourless semi-solid obtained. The 

semi-solid was dissolved in Et2O and petrol added until precipitation was observed 

and then reduced in vacuo. The title compound 59 (115 mg, 0.52 mmol, 63%) was 

collected as an off-white powder.  

1H NMR (500 MHz, CDCl3): 10.12 (1H, s, formyl-H), 8.17 (1H, app.t, J 1.5, 2’’-H), 

8.16 (1H, s, 3-H), 7.92 (1H, ddd, J 7.5, 2.0 and 1.0, 6’’-H), 7.90 (1H, app.dt, J 8.0 and 

1.5, 4’’-H), 7.86 (1H, dd, J 8.5 and 0.5, 4-H), 7.73 (1H, s, 7-H), 7.65 (1H, app.t, J 8.0, 

5’’-H), 7.46 (1H, dd, J 8.5 and 1.5, 5-H), NH not observed; 13C NMR (125 MHz, 

CDCl3): 191.9 (C=O), 142.4 (6-C), 140.8 (3’-C), 138.9 (1’’-C), 137.2 (3’’-C), 135.0 

(3-C), 133.3 (6’’-C), 129.5 (5’’-C), 128.8 (4’’-C), 128.4 (2’’-C), 123.0 (7’-C), 121.4 

(5-C), 121.1 (4-C), 108.0 (7-C); LC-MS (ES): RT = 1.65-1.88 min, m/z = 223.0 

(M+H+); Rf: 0.49 (7:3 EtOAc−petrol); HPLC: RT = 2.07 min; m/z (ES+): Found: 

223.0863 (M+H+), C14H10N2O requires MH 223.0866; IR:νmax/cm-1 (solid): 

3175 (N-H), 3133, 2953, 2923, 1687 (C=O), 1624, 1487; M.pt: 61.2-63.4 °C. 
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Preparation of [3-(1H-indazol-6-yl)phenyl]methanol 

3-(1H-indazol-6-yl)benzaldehyde (100 mg, 0.45 mmol, 

1.0 eq) was dissolved in MeOH (5 mL) and cooled to 0 °C. 

DIBAL (0.90 mL, 0.90 mmol, 2.0 eq) was added and the 

reaction left to stir at 20 °C for 16 h. The reaction mixture was concentrated in vacuo 

and water (30 mL) added. The aqueous layer was extracted with EtOAc (4 × 20 mL) 

and the combined organic layers washed with brine (30 mL), dried (MgSO4) and 

concentrated in vacuo to yield a white solid. The crude product was purified using 

column chromatography (7:3 EtOAc−hexane). The title compound 61 (66 mg, 

0.29 mmol, 65%) was collected as a colourless powder. 

1H NMR (500 MHz, CD3OD): 7.95 (1H, d, J 0.5, 3-H), 7.72 (1H, dd, J 8.5 and 1.0, 

4-H), 7.63 (1H, s, 7-H), 7.58 (1H, app.s, 2’’-H), 7.48 (1H, app.d, J 7.5, 6’’-H), 7.33 

(1H, app.t, J 7.5, 5’’-H), 7.33 (1H, dd, J 8.5 and 1.5, 5-H), 7.25 (1H, app.d, J 7.5, 

4’’-H), 4.59 (2H, s, CH2), OH and NH not observed; 13C NMR (125 MHz, CD3OD): 

143.3 (3’’-C), 142.8 (6-C), 142.2 (3’-C), 141. 5 (1’’-C), 134.7 (3-C), 129.8 (5’’-C), 

127.3 (6’’-C), 127.0 (4’’-C), 127.0 (2’’-C), 123.5 (7’-C), 122.0 (5-C), 122.0 (4-C), 

108.9 (7-C), 65.1 (CH2); LC-MS (ES): RT = 1.42-1.50 min, m/z = 278.3 (M+H+); 

Rf: 0.57 (EtOAc); HPLC: RT = 1.89 min (92%); m/z (ES+): Found: 225.1018 

(M+H+), C14H12N2O requires MH 225.1022; IR:νmax/cm-1 (solid): 3172 (br. O-H), 

3125, 3082, 2924, 2752, 1624; M.pt: 144.4-146.3 °C 

Preparation of 3-(1H-indazol-6-yl)benzoic acid 

3-(1H-indazol-6-yl)benzaldehyde (150 mg. 0.68 mmol, 

1.0 eq) was dissolved in acetone (10 mL) and a solution 

of KMnO4 (213 mg, 1.35 mmol, 2.0 eq) in water (7 mL) 

was added and the reaction stirred for 30 minutes at 25 °C. The reaction was 

concentrated in vacuo and re-dissolved in MeOH, filtering the resulting suspension. 

The filtrate was concentrated in vacuo to yield an orange solid. The crude product was 

purified by column chromatography (80:19:1 hexane−EtOAc−AcOH). 

The title compound 62 (17 mg, 0.07 mmol, 10%) was collected as a pale purple 

powder. 

1H NMR (500 MHz, DMSO-d6): 8.23 (1H, s, 2’’-H), 8.10 (1H, s, 3-H), 7.96-7.93 

(2H, m, 4’’-H and 6’’-H), 7.86 (1H, d, J 8.0, 4-H), 7.77 (1H, s, 7-H), 7.59 (1H, app.t, 

J 7.5, 5’’-H), 7.43 (1H, dd, J 8.0 and 1.0, 5-H), OH and NH not observed; 
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13C NMR (125 MHz, DMSO-d6): 167.5 (C=O), 140.8 (3’-C), 140.6 (3’’-C), 137.5 

(1’’-C), 133.3 (3-C), 131.1 (6’’-C), 129.2 (5’’-C), 128.2 (4’’-C), 127.8 (2’’-C), 122.4 

(7’-C), 121.1 (4-C), 119.9 (5-C), 107.9 (7-C), 6-C not observed; LC-MS (ES): 

RT = 1.63-1.82 min, m/z = 239.2 (M+H+); Rf: 0.45 (50:49:1 EtOAc−petrol−AcOH); 

HPLC: RT = 1.93 min (95%); m/z (ES+): Found: 239.0810 (M+H+), C14H10N2O2 

requires MH 239.0815; IR:νmax/cm-1 (solid): 3342 (br. O-H), 2954, 2803, 1693, 1628; 

M.pt: 270.3-271.4 °C. 

Preparation of tert-butyl-4-{[3-(1H-indazole-6-yl)phenyl]methyl}piperazine-1-

carboxylate 

Synthesised using method B using 3-(1H-indazol-

6-yl)benzaldehyde (132 mg, 0.59 mmol, 1.0 eq), 

1-BOC-piperazine (133 mg, 0.71 mmol, 1.2 eq), 

glacial AcOH (1 drop), STAB (201 mg, 

0.95 mmol, 1.6 eq) and DCM (10 mL). The reaction was stirred for 2 h. The reaction 

mixture was reduced in vacuo to give a yellow semi-solid. The crude product was 

purified using column chromatography (1:1 EtOAc−hexane, followed by 100% 

EtOAc) and a colourless semi-solid obtained. The solid was dissolved in Et2O and 

petrol added until precipitation was observed and then reduced in vacuo. 

The title compound 63 (177 mg, 0.45 mmol, 76%) was collected as off-white 

granules. 

1H NMR (500 MHz, CDCl3): 8.11 (1H, d, J 1.0, 3-H), 7.81 (1H, dd, J 8.5 and 1.0, 

4-H), 7.65 (1H, s, 7-H), 7.61 (1H, s, 2’’-H), 7.55 (1H, app.dt, J 8.0 and 1.0, 6’’-H), 

7.44-7.40 (2H, m, 5-H and 5’’-H), 7.33 (1H, app.dt, J 7.5 and 1.5, 4’’-H), 3.61 (2H, s, 

CH2Ar), 3.45 (4H, app.t, J 4.5, 3-H and 5-H piperazine), 2.46 (4H, app.t, J 4.5, 2-H 

and 6-H piperazine), 1.46 (9H, s, tBu-CH3); 13C NMR (125 MHz, CDCl3): 154.8 

(C=O), 141.4 (6-C), 140.7 (3’-C), 140.3 (1’’-C), 138.4 (3’’-C), 134.7 (3-C), 128.8 

(5’’-C), 128.4 (4’’-C), 128.4 (2’’-C), 126.5 (6’’-C), 122.5 (7’-C), 121.4 (5-C), 121.1 

(4-C), 107.9 (7-C), 79.7 (tBu-C), 63.0 (CH2Ar), 52.9 (2-C and 6-C piperazine), 43.5 

(3-C and 5-C piperazine), 28.5 (tBu-CH3); LC-MS (ES): RT = 1.60-1.81 min, 

m/z = 393.8 (M+H+); Rf: 0.44 (EtOAc); HPLC: RT = 2.02 min; 

m/z (ES+): Found: 393.2294 (M+H+), C23H28N4O2 requires MH 393.2286; 

IR:νmax/cm-1 (solid): 3245 (N-H), 3186, 2972, 2926, 2865, 1666; M.pt: 57.9-60.4 °C. 
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Preparation of N-ethyl-3-(1H-indazol-6-yl)benzamide 

3-(1H-indazol-6-yl)benzoic acid (400 mg, 1.68 mmol, 

1.0 eq) was suspended in freshly distilled SOCl2 

(3.67 mL, 50.4 mmol, 30 eq) and refluxed for 2 h. The 

reaction mixture was reduced in vacuo and residual 

SOCl2 removed via azeotrope with toluene (3 × 10 mL). 

The resulting solid was dissolved in DCM (30 mL) at 0 °C and Et3N (470 μL, 3.36 

mmol, 2.0 eq) was added slowly. EtNH2 ((70% in H2O) 220 μL, 3.36 mmol, 2.0 eq) 

was added and the reaction stirred at 20 °C for 16 h. 2 M HCl (10 mL) was added to 

the reaction mixture and the organic layer separated washing the organic layer with 2 

M HCl (10 mL). The combined aqueous layers were extracted with DCM (2 × 15 mL) 

and the combined organic layers washed with saturated NaHCO3(aq) (20 mL), brine 

(30 mL) and dried (MgSO4). The filtrate was reduced in vacuo and a pale orange semi-

solid obtained. The crude product was purified using column chromatography (1:1 

EtOAc−hexane, followed by 4:1 EtOAc−hexane) and a colourless semi-solid 

obtained. The solid was dissolved in Et2O and petrol added until precipitation was 

observed and then reduced in vacuo. The title compound 64 (56 mg, 0.21 mmol, 14%) 

was collected as a fluffy beige powder. 

1H NMR (500 MHz, CDCl3): 8.05-8.01 (2H, m, 3-H and 2’’-H), 7.71-7.66 (2H, m, 

4-H and 4’’-H), 7.58 (1H, d, J 7.5, 6’’-H), 7.48 (1H, s, 7-H), 7.34 (1H, app.t, J 7.5, 

5’’-H), 7.26 (1H, d, J 8.5, 5-H), 6.88 (1H, app.s, amide NH), 3.52-3.45 (2H, m, CH2), 

1.21 (3H, t, J 7.5, CH3), indazole NH not observed; 13C NMR (125 MHz, CDCl3): 

167.9 (C=O), 141.7 (1’’-C), 140.8 (3’-C), 139.0 (6-C), 135.2 (3-C), 134.3 (3’’-C), 

130.6 (6’’-C), 128.9 (5’’-C), 126.3 (2’’-C), 125.7 (4’’-C), 122.6 (7’-C), 121.1 (4-C), 

120.9 (5-C), 108.3 (7-C), 35.2 (CH2), 14.8 (CH3); LC-MS (ES): RT = 1.62-1.80 min, 

m/z = 266.5 (M+H+); Rf: 0.39 (EtOAc); HPLC: RT = 12.79 min; m/z (ES+): Found: 

266.1288 (M+H+), C16H15N3O requires MH 266.1288; IR:νmax/cm-1 (solid): 

3284 (N-H), 3227 (N-H), 3097, 3057, 2970, 1726, 1625 (C=O); 

M.pt: 127.8-130.5 °C. 
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Preparation of 3-(1H-indazol-6-yl)-N-methylbenzamide 

3-(1H-indazol-6-yl)benzoic acid (500 mg, 2.10 mmol, 

1.0 eq) was suspended in freshly distilled SOCl2 

(4.60 mL, 63.0 mmol, 30.0 eq) and refluxed for 4 h. 

The reaction mixture was reduced in vacuo and 

residual SOCl2 removed via azeotrope with toluene (3 × 10 mL). The resulting solid 

was dissolved in DCM (30 mL) at 0 °C and Et3N (0.59 mL, 4.20 mmol, 2.0 eq) was 

added slowly. MeNH2 ((33% in EtOH) 0.56 mL, 4.20 mmol, 2.0 eq) was added and 

the reaction stirred at 20 °C for 16 h. 2 M HCl (10 mL) was added to the reaction 

mixture and the organic layer separated washing the organic layer with 2 M HCl 

(10 mL). The combined aqueous layers were extracted with DCM (2 × 15 mL) and the 

combined organic layers washed with saturated NaHCO3(aq) (20 mL), brine (30 mL) 

and dried (MgSO4). The filtrate was reduced in vacuo and a pale yellow semi-solid 

obtained. The crude product was purified using column chromatography 

(7:3 EtOAc−hexane followed by 9:1 EtOAc−hexane). The title compound 65 (55 mg, 

0.22 mmol, 14%) was collected as a fluffy cream powder. 

1H NMR (500 MHz, CD3OD): 8.58 (1H, br.s, amide NH), 8.16 (1H, app.t, J 2.0, 

2’’-H), 8.09 (1H, app.s, 3-H), 7.88-7.81 (3H, m, 4-H, 4’’-H and 6’’-H), 7.78 (1H, 

app.s, 7-H), 7.56 (1H, app.t, J 7.5, 5’’-H), 7.48 (1H, dd, J 7.5 and 1.5, 5-H), 2.99 (3H, 

d, J 4.5, CH3), indazole NH not observed; 13C NMR (125 MHz, CD3OD): 169.3 

(C=O), 141.8 (1’’-C), 141.0 (3’-C), 139.2 (6-C), 134.9 (3’’-C), 133.5 (3-C), 130.2 

(6’’-C), 128.2 (5’’-C), 126.0 (2’’-C), 125.8 (4’’-C), 122.5 (7’-C), 121.0 (4-C), 120.6 

(5-C), 108.0 (7-C), 25.7 (CH3); LC-MS (ES): RT = 1.55-1.66 min, m/z = 252.5 

(M+H+); Rf: 0.27 (EtOAc); HPLC: RT = 12.34 min (97%); m/z (ES+): Found: 

252.1129 (M+H+), C15H13N3O requires MH 252.1131; IR:νmax/cm-1 (solid): 

3270 (N-H), 3088, 2926, 2870, 1721, 1625 (C=O); M.pt: 86.5-90.5 °C. 

Preparation of 6-(3-ethoxy-5-fluorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 3-ethoxy-5-

fluorophenylboronic acid (226 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 1.5 h. The work up proceeded using the larger 
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volumes of solvents and the organic solvent removed in vacuo to reveal a brown solid. 

The crude product was purified using column chromatography (1:4 EtOAc−hexane) 

and a glassy solid obtained. The solid was dissolved in Et2O and petrol added until 

precipitation was observed and then reduced in vacuo. The title compound 66 (89 mg, 

0.35 mmol, 42%) was collected as a cream solid.  

1H NMR (500 MHz, DMSO-d6): 13.15 (1H, br.s, NH), 8.09 (1H, s, 3-H), 7.82 (1H, 

d, J 8.0, 4-H), 7.76 (1H, s, 7-H), 7.41 (1H, dd, J 8.5 and 1.5, 5-H), 7.11 (1H, app.dt, 

J 10.0 and 1.5, 2’’-H), 7.08 (1H, app.t, J 1.5, 6’’-H), 6.81 (1H, app.dt, J 11.0 and 2.0, 

4’’-H), 4.13 (2H, q, J 7.0, CH2), 1.35 (3H, t, J 7.0, CH3); 13C NMR (125 MHz, 

DMSO-d6): 163.3 (d, J 242.3, 3’’-C), 160.2 (d, J 12.0, 5’’-C), 143.6 (d, J 10.1, 1’’-C), 

140.3 (3’-C), 137.0 (d, J 2.7, 6-C), 133.4 (3-C), 122.6 (7’-C), 120.9 (4-C), 120.0 (5-C), 

109.5 (d, J 2.4, 6’’-C), 108.1 (7-C), 106.0 (d, J 22.7, 2’’-C), 100.9 (d, J 25.2, 4’’-C), 

63.7 (CH2), 14.5 (CH3); LC-MS (ES): RT = 1.97-2.16 min, m/z = 257.4 (M+H+); 

Rf: 0.33 (1:1 EtOAc−petrol); HPLC: RT = 15.82 min; m/z (ES+): Found: 257.1092 

(M+H+), C15H13FN2O requires MH 257.1085; IR:νmax/cm-1 (solid): 3161 (N-H), 

3124, 2978, 2919, 1602, 1450; M.pt: 90.4-91.1 °C; Found: C,69.9; H, 5.30; N, 10.6; 

C15H13FN2O requires C, 70.3; H, 5.11; N, 10.9%. 

Preparation of 6-(3-ethoxy-5-methylphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 3-ethoxy-5-

methylphenylboronic acid (221 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 1 h. LC-MS analysis showed the reaction to be 

incomplete and therefore 3-ethoxy-5-methylphenylboronic acid (111 mg, 0.62 mmol, 

0.75 eq) and Pd(dppf)Cl2•DCM (34 mg, 0.041 mmol, 0.05 eq) were added and the 

reaction heated for a further 30 minutes. The work up proceeded using the larger 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown oil. 

The crude product was purified using column chromatography (2:3 EtOAc−hexane) 

and a glassy solid obtained. The glassy solid was dissolved in Et2O and reduced in 

vacuo. The title compound 67 (76 mg, 0.30 mmol, 37%) as an off-white foamy solid. 

1H NMR (500 MHz, CDCl3): 8.14 (1H, s, 3-H), 7.80 (1H, d, J 8.5, 4-H), 7.66 (1H, s, 

7-H), 7.43 (1H, dd, J 8.5 and 1.4, 5-H), 7.06 (1H, s, 6’’-H), 7.01 (1H, s, 2’’-H), 6.77 
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(1H, s, 4’’-H), 4.11 (2H, q, J 7.0, CH2), 2.42 (3H, s, CH3), 1.46 (3H, t, J 7.0, CH2CH3), 

NH not observed; 13C NMR (125 MHz, CDCl3): 159.4 (3’’-C), 142.6 (6-C), 140.8 

(3’-C), 140.5 (1’’-C), 139.9 (5’’-C), 134.8 (3-C), 122.6 (7’-C), 121.5 (5-C), 121.0 

(6’’-C), 114.4 (4’’-C), 111.1 (2’’-C), 107.9 (7-C), 63.5 (CH2), 21.7 (CH3), 14.9 

(CH2CH3), 4-C not observed; LC-MS (ES): RT = 1.97-2.17 min, m/z = 253.5 

(M+H+); Rf: 0.47 (1:1 EtOAc–petrol); HPLC: RT = 3.64 min; m/z (ES+): Found: 

253.1335 (M+H+), C16H17N2O requires MH 253.1341; IR:νmax/cm-1 (solid): 3130 

(N-H), 3086, 2872, 1579; M.pt: 95.6-98.7 °C. 

Preparation of 6-(3-bromo-5-ethoxyphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(168 mg, 0.69 mmol, 1.0 eq), 3-ethoxy-5-

bromophenylboronic acid (254 mg, 1.04 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (56 mg, 0.069 mmol, 0.1 eq), Na2CO3 

(219 mg, 2.07 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 1 h. LC-MS analysis showed the reaction to be 

incomplete but the reaction was stopped due to no more boronic acid being available. 

The work up proceeded using the larger volumes of solvents and the organic solvent 

removed in vacuo to reveal a green semi-solid.  The crude product was purified using 

column chromatography (1:4 EtOAc−hexane) and a colourless glassy solid obtained. 

The solid was dissolved in Et2O and reduced in vacuo. The title compound 68 (40 mg, 

0.126 mmol, 18%) as an off-white solid.  

1H NMR (500 MHz, CDCl3): 8.12 (1H, s, 3-H), 7.81 (1H, d, J 8.5, 4-H), 7.64 (1H, s, 

7-H), 7.39-7.36 (2H, m, 5-H and 2’’-H), 7.10 (1H, app.t, J 1.5, 4’’-H), 7.06 (1H, app.t, 

J 2.0, 6’’-H), 4.09 (2H, q, J 7.0, CH2), 1.45 (3H, t, J 7.0, CH3), NH not observed; 

13C NMR (125 MHz, CDCl3): 160.0 (5’’-C), 144.2 (1’’-C), 140.6 (3’-C), 138.9 

(6-C), 135.0 (3-C), 123.2 (3’’-C), 123.0 (2’’-C), 122.9 (7’-C), 121.3 (5-C), 121.2 

(4-C), 116.5 (6’’-C), 113.3 (4’’-C), 107.9 (7-C), 64.0 (CH2), 14.8 (CH3); LC-MS 

(ES): RT = 2.08-2.21 min, m/z = 319.5 (MBr81); Rf: 0.51 (1:1 EtOAc−petrol); HPLC: 

RT = 3.49 min (94%); m/z (ES+): Found: 317.0284 (M+H+), C15H13BrN2O requires 

MH 317.0284; IR:νmax/cm-1 (solid): 3172 (N-H), 3131, 2962, 2922, 2867, 1591; 

M.pt: 90.4-96.1 °C. 
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Preparation of 6-(3-ethoxy-2-fluorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 3-ethoxy-2-

fluorophenylboronic acid (226 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 1 h. LC-MS indicated the reaction to be incomplete and therefore 

6-iodo-1H-indazole (120 mg, 0.49 mmol, 0.6 eq) and Pd(dppf)Cl2·DCM (34 mg, 

0.04 mmol, 0.05 eq) were added and the reaction heated for a further 30 minutes. The 

work up proceeded using the larger volumes of solvents and the organic solvent 

removed in vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (3:7 EtOAc−hexane) and an off-white solid obtained. The resulting 

solid was crystallised from EtOH. The title compound 69 (57 mg, 0.22 mmol, 18%) 

was collected as off-white crystals. 

1H NMR (500 MHz, CDCl3): 10.42 (1H, br.s, NH), 8.13 (1H, d, J 0.5, 3-H), 7.82 

(1H, dd, J 8.5 and 1.0, 4-H), 7.69 (1H, s, 7-H), 7.37 (1H, app.dt, J 8.5 and 1.5, 5-H), 

7.13 (1H, app.td, J 8.0 and 1.5, 5’’-H), 7.07-7.04 (1H, m, 6’’-H), 6.99 (1H, app.td, 

J 8.0 and 1.5, 4’’-H), 4.18 (2H, q, J 7.0, CH2), 1.50 (3H, t, J 7.0, CH3); 

13C NMR (125 MHz, CDCl3): 150.0 (d, J 247.4, 2’’-C), 147.6 (d, J 11.3, 3’’-C), 

140.3 (3’-C), 134.9 (3-C), 134.6 (6-C), 130.0 (d, J 11.3, 1’’ C), 123.9 (d, J 4.9, 5’’-C), 

122.8 (d, J 2.4, 5-C), 122.7 (7’-C), 122.4 (d, J 2.3, 6’’-C), 120.7 (4-C), 113.9 (d, J 2.0, 

4’’-C), 110.1 (d, J 3.6, 7-C), 65.2 (CH2), 14.9 (CH3); LC-MS (ES): RT = 1.90-2.05 

min, m/z = 257.8 (M+H+); Rf: 0.43 (1:1 EtOAc–petrol); HPLC: RT = 3.44 min; 

m/z (ES+): Found: 257.1093 (M+H+), C15H13FN2O requires MH 257.1090; 

IR:νmax/cm-1 (solid): 3163 (N-H), 3129, 2914, 2866, 1625; M.pt: 132.2-132.7 °C; 

Found: C, 70.0; Η, 5.10; Ν, 10.7; C15Η13FΝ2Ο requires C, 70.3; Η, 5.11; Ν, 10.9. 

Preparation of 6-(3-ethoxy-4-fluorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 3-ethoxy-4-

fluorophenylboronic acid (226 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 1 h. The work up proceeded using the larger volumes of solvents and the 
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organic solvent removed in vacuo to reveal a brown oil. The crude product was 

purified using column chromatography (3:7 EtOAc−hexane) and a colourless solid 

obtained. The solid was crystallised from cyclohexane. The title compound 70 

(67 mg, 0.26 mmol, 32%) was collected as off-white needles. 

1H NMR (500 MHz, CDCl3): 10.32 (1H, br.s, NH), 8.12 (1H, s, 3-H), 7.81 (1H, d, 

J 8.5, 4-H), 7.61 (1H, s, 7-H), 7.38 (1H, dd, J 8.5 and 1.5, 5-H), 7.24-7.21 (1H, m, 

2’’-H), 7.19-7.14 (2H, m, 5’’-H and 6’’-H), 4.21 (2H, q, J 7.0, CH2), 1.50 (3H, t, J 7.0, 

CH3); 13C NMR (125 MHz, CDCl3): 152.6 (d, J 246.6, 4’’-C), 147.1 (d, J 10.8, 

3’’-C), 140.7 (3’-C), 139.8 (6-C), 137.9 (d, J 3.7, 1’’-C), 135.0 (3-C), 122.5 (7’-C), 

121.3 (5-C), 121.2 (4-C), 120.1 (d, J 6.9, 6’’-C), 116.4 (d, J 18.7, 5’’-C), 114.5 (d, 

J 2.3, 2’’-C), 107.7 (7-C), 65.2 (CH2), 14.9 (CH3); LC-MS (ES): RT = 1.90-2.05 min, 

m/z = 257.1 (M+H+); Rf: 0.27 (1:1 EtOAc–petrol); HPLC: RT = 2.70 min; 

m/z (ES+): Found: 257.1083 (M+H+), C15H14FN2O requires MH 257.1090; 

IR:νmax/cm-1 (solid): 3299 (N-H), 2984, 1624; M.pt: 116.5-116.8 °C. 

Preparation of 6-(5-ethoxy-2-fluorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 5-ethoxy-2-

fluorophenylboronic acid (226 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 1 h. The work up proceeded using the larger volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown oil. The crude product was 

purified using column chromatography (2:3 EtOAc−hexane) and an orange semi-solid 

obtained. The resulting semi-solid was dissolved in CDCl3 and concentrated in vacuo 

to reveal a pale orange solid. The orange solid was crystallised from cyclohexane. 

The title compound 71 (90 mg, 0.35 mmol, 43%) was collected as pale orange 

microcrystals. 

1H NMR (500 MHz, CDCl3): 10.50 (1H, br.s, NH), 8.13 (1H, s, 3-H), 7.82 (1H, dd, 

J 8.4 and 0.6, 4-H), 7.68 (1H, s, 7-H), 7.37 (1H, app.dt, J 8.5 and 1.4, 5-H), 7.10 (1H, 

dd, J 10.0 and 9.0, 3’’-H), 7.02 (1H, dd, J 6.3 and 3.1, 6’’-H), 6.86 (1H, app.dt, J 8.9 

and 3.5, 4’’-H), 4.06 (2H, q, J 7.1, CH2), 1.44 (3H, t, J 7.1, CH3); 

13C NMR (125 MHz, CDCl3): 155.2 (d, J 2.1, 5’’-C), 154.2 (d, J 240.3, 2’’-C), 140.3 

(3’-C), 134.9 (3-C), 134.7 (d, J 1.0, 6-C), 129.7 (d, J 15.1, 1’’-C), 122.6 (d, J 2.5, 5-C), 
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120.8 (4-C), 116.7 (d, J 22.8, 3’’-C), 116.6 (d, J 2.2, 6’’-C), 116.6 (7’-C), 114.7 (d, 

J 8.0, 4’’-C), 110.1 (d, J 3.6, 7-C), 64.2 (CH2), 14.9 (CH3); LC-MS (ES): 

RT = 1.75-2.05 min, m/z = 257.0 (M+H+); Rf: 0.51 (1:1 EtOAc–petrol); HPLC: 

RT = 2.99 min; m/z (ES+): Found: 257.1085 (M+H+), C15H14FN2O requires MH 

257.1090; IR:νmax/cm-1 (solid): 3284 (N-H), 2981, 2934; M.pt: 114.9-115.3 °C. 

Preparation of 6-(2-chloro-5-ethoxyphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 5-ethoxy-2-

chlorophenylboronic acid (247 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 1 h. The work up proceeded using the larger volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown oil. The crude product was 

purified using column chromatography (2:3 EtOAc−hexane) and an orange glassy 

solid obtained. The glassy solid was dissolved in Et2O and reduced in vacuo. 

The title compound 72 (178 mg, 0.65 mmol, 80%) as a pale orange foamy solid. 

1H NMR (500 MHz, CDCl3): 10.27 (1H, br.s, NH), 8.31 (1H, s, 3-H), 7.81 (1H, dd, 

J 8.4 and 0.8, 4-H), 7.56 (1H, d, J 1.4, 7-H), 7.38 (1H, d, J 8.7, 3’’-H), 7.26 (1H, dd, 

J 8.4 and 1.4, 5-H), 6.94 (1H, d, J 3.1, 6’’-H), 6.87 (1H, dd, J 8.7 and 3.1, 4’’-H), 4.05 

(2H, q, J 7.0, CH2), 1.43 (3H, t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 157.6 

(3’’-C), 141.2 (6-C), 140.0 (3’-C), 138.4 (1’’-C), 135.0 (3-C), 130.7 (5’’-C), 123.9 

(6’’-C), 123.2 (5-C), 122.6 (7’-C), 120.4 (4-C), 117.5 (2’’-C), 115.1 (4’’-C), 110.3 

(7-C), 63.9 (CH2), 14.8 (CH3); LC-MS (ES): RT =  1.98-2.16 min, m/z = 273.5 

(M+H+); Rf: 0.50 (1:1 EtOAc–petrol); HPLC: RT = 2.93 min; m/z (ES+): Found: 

273.0793 (M+H+), C15H14ClN2O requires MH 273.0795; IR:νmax/cm-1 (solid): 3175 

(N-H), 3134, 2978; M.pt: 73.7-76.5 °C. 

Preparation of 6-(3-ethoxy-2,6-difluorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 2,6-difluoro-3-

ethoxyphenylboronic acid (231 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 



Chapter Six – Experimental  

 

164 

 

heated for 1 h. LC-MS analysis showed the reaction to be incomplete and therefore 

2,6-difluoro-3-ethoxyphenylboronic acid (231 mg, 1.23 mmol, 1.5 eq) was added and 

the reaction heated for 1 h. LC-MS showed small conversion to the product but still 

starting material and therefore 2,6-difluoro-3-ethoxyphenylboronic acid (231 mg, 

1.23 mmol, 1.5 eq) was added and the reaction heated for 1 h. LC-MS showed no 

change and therefore the reaction was stopped. The work up proceeded using the larger 

volumes of solvents and the organic solvent removed in vacuo to reveal a black 

semi-solid. The crude product was purified using column chromatography 

(1:4 EtOAc−hexane). The title compound 73 (4 mg, 0.014 mmol, 2%) was collected 

as an off-white solid.  

1H NMR (500 MHz, CDCl3): 8.14 (1H, s, 3-H), 7.84 (1H, d, J 8.5, 4-H), 7.61 (1H, s, 

7-H), 7.29-7.26 (1H, m, 5-H), 6.98-6.90 (2H, m, 4’’-H and 5’’-H), 4.14 (2H, q, J 7.0, 

CH2), 1.47 (3H, t, J 7.0, CH3), NH not observed; 13C NMR (125 MHz, CDCl3): 153.8 

(dd, J 241.5 and 5.2, 6’’-C), 150.0 (dd, J 248.6 and 6.7, 2’’-C), 143.9 (dd, J 11.8 and 

3.1, 3’’-C), 140.0 (3’-C), 135.0 (3-C), 128.0 (7’-C), 123.6 (5-C), 123.0 (app.t, J 7.9, 

6-C), 120.6 (4-C), 119.4 (app.t, J 16.0, 1’’-C), 114.3 (dd, J 9.7 and 3.1, 4’’-C), 111.6 

(7-C), 110.3 (dd, J 24.1 and 4.2, 5’’-C), 65.9 (CH2), 14.9 (CH3); LC-MS (ES): 

RT = 1.85-2.07 min, m/z = 275.6 (M+H+); Rf: 0.49 (1:1 EtOAc−petrol); HPLC: 

RT = 3.08 min; m/z (ES+): Found: 275.0990 (M+H+), C15H12F2N2O requires MH 

275.0990; IR:νmax/cm-1 (solid): 3172 (N-H), 3132, 2921, 2878, 1630, 1579, 1490; 

M.pt: 131.0-132.7 °C. 

Preparation of 6-(3-ethoxy-2,4-difluorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(200 mg, 0.82 mmol, 1.0 eq), 3-ethoxy-2,4-

difluorophenylboronic acid (248 mg, 1.23 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 

(261 mg, 2.46 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 1 h. LC-MS analysis showed the reaction to be incomplete and therefore 

3-ethoxy-2,4-difluorophenylboronic acid (124 mg, 0.61 mmol, 0.75 eq) and 

Pd(dppf)Cl2•DCM (34 mg, 0.041 mmol, 0.05 eq) were added and the reaction heated 

for a further 30 minutes. The work up proceeded using the larger volumes of solvents 

and the organic solvent removed in vacuo to reveal a brown oil. The crude product 
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was purified using column chromatography (2:3 EtOAc−hexane). 

The title compound 74 (72 mg, 0.26 mmol, 32%) was collected as an off-white solid. 

1H NMR (500 MHz, CDCl3): 10.52 (1H, br.s, NH), 8.14 (1H, s, 3-H), 7.82 (1H, d, 

J 8.5, 4-H), 7.63 (1H, s, 7-H), 7.31 (1H, app.dt, J 8.5 and 1.2, 5-H), 7.15-7.10 (1H, m, 

6’’-H), 7.01-6.97 (1H, m, 5’’-H), 4.27 (2H, q, J 7.0, CH2), 1.44 (3H, t, J 7.0, CH3); 

13C NMR (125 MHz, CDCl3): 155.7 (dd, J 247.9 and 4.9, 4’’-C), 153.6 (dd, J 250.0 

and 5.5, 2’’-C), 140.3 (3’-C), 135.8 (app.t, J 14.8, 3’’-C), 134.9 (3-C), 133.8 (6-C), 

126.2 (dd, J 12.7 and 3.6, 1’’-C), 123.9 (dd, J 8.7 and 4.1, 6’’-C), 122.7 (7’-C), 122.6 

(d, J 2.4, 5-C), 120.9 (4-C), 111.9 (dd, J 19.5 and 3.9, 5’’-C), 110.0 (d, J 3.4, 7-C), 

70.5 (app.t, J 3.1, CH2), 15.5 (CH3); LC-MS (ES): RT = 1.95-2.06 min, m/z = 275.8 

(M+H+); Rf: 0.49 (1:1 EtOAc–petrol); HPLC: RT = 3.60 min; m/z (ES+): Found: 

275.0990 (M+H+), C15H13F2N2O requires MH  275.0996; IR:νmax/cm-1 (solid): 3132 

(N-H), 3089, 2924, 1495; M.pt: 65.7-68.2°C. 

Preparation of 6-(4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(300 mg, 1.23 mmol, 1.0 eq), 4-methoxyphenylboronic acid 

(280 mg, 1.84 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (100 mg, 

0.123 mmol, 0.1 eq), Na2CO3 (391 mg, 3.69 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 3 h. It was observed 

that the product and boronic acid had similar Rf values and therefore 

6-iodo--1H-indazole (300 mg, 1.23 mmol, 1.0 eq) was added and the reaction heated 

for 1 h to consume all the boronic acid. The work up proceeded using the larger 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown solid. 

The crude product was purified using column chromatography (3:7 EtOAc−hexane) 

and an off-white solid obtained. The solid was crystallised from toluene. 

The title compound 75 (179 mg, 0.80 mmol, 43%) was collected as colourless fluffy 

microneedles.  

1H NMR (500 MHz, CDCl3): 10.32 (1H, br.s, NH), 8.11 (1H, d, J 1.0, 3-H), 7.80 

(1H, dd, J 8.0 and 1.0, 4-H), 7.62-7.57 (3H, m, 7-H, 2’’-H and 6’’-H), 7.41 (1H, dd, 

J 8.0 and 1.5, 5-H), 7.02 (2H, m, 3’’-H and 5’’-H), 3.88 (3H, s, CH3); 

13C NMR (125 MHz, CDCl3): 159.4 (4’’-C), 140.9 (3’-C), 140.1 (6-C), 134.9 (3-C), 

133.8 (1’’-C), 128.6 (2’’-C and 6’’-C), 122.2 (7’-C), 121.2 (5-C), 121.0 (4-C), 114.3 

(3’’-C and 5’’-C), 107.1 (7-C), 55.4 (CH3); LC-MS (ES): RT = 1.81-2.12 min, 
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m/z = 225.4 (M+H+); Rf: 0.61 (EtOAc); HPLC: RT = 2.74 min; m/z (ES+): Found: 

225.1022 (M+H+), C14H12N2O requires MH 225.1022; IR:νmax/cm-1 (solid): 

3264 (N-H), 2991, 2962, 2835, 1624, 1522; M.pt: 183.2-183.5 °C; Found: C,75.1; H, 

5.40; N, 12.6; C14H12N2O requires C, 75.0; H, 5.39; N, 12.5%. 

Preparation of 6-(4-chlorophenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(162 mg, 0.67 mmol, 1.0 eq), 4-chlorophenylboronic acid 

(208 mg, 1.33 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (54 mg, 

0.067 mmol, 0.1 eq), Na2CO3 (211 mg, 2.00 mmol, 3.0 eq), 

dioxane (10 mL) and water (10 mL) and the reaction heated for 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (3:7 EtOAc−hexane) and a colourless solid obtained. The solid was 

crystallised from toluene. The title compound 76 (77 mg, 0.338 mmol, 51%) was 

collected as shiny colourless plates. 

1H NMR (500 MHz, CDCl3): 10.42 (1H, br.s, NH), 8.13 (1H, d, J 0.5, 3-H), 7.83 

(1H, dd, J 8.5 and 0.5, 4-H), 7.65-7.63 (1H, m, 7-H), 7.58 (2H, app.d, J 8.5, 3’’-H and 

5’’-H), 7.45 (2H, app.d, J 8.5, 2’-H and 6’’-H), 7.39 (1H, dd, J 8.5 and 1.5, 5-H); 

13C NMR (125 MHz, CDCl3): 140.8 (3’-C), 139.8 (6-C), 139.2 (1’-C), 135.0 (3-C), 

133.8 (4’-C), 129.0 (3’’-C and 5’’-C), 128.8 (2’’-C and 6’’-C), 122.8 (7’-C), 121.2 

(4-C), 121.1 (5-C), 107.6 (7-C); LC-MS (ES): RT = 1.84-2.01 min, m/z = 229.3 

(M+H+); Rf: 0.69 (7:3 EtOAc−petrol); HPLC: RT = 2.32 min; m/z (ES+): Found: 

229.0524 (M+H+), C13H9ClN2 requires MH 229.0527; IR:νmax/cm-1 (solid): 3169 

(N-H), 3049, 2953, 2859, 1910, 1622, 1487; M.pt: 179.6-180.7 °C. 

Preparation of 6-(3-fluoro-4-hydroxyphenyl)-1H-indazole 

Synthesised using method D using 6-(3-fluoro-4-

methoxyphenyl)-1H-indazole (50 mg, 0.21 mmol, 1.0 eq), 

1M BBr3 in DCM (1.65 mL, 1.65 mmol, 8.0 eq) and DCM 

(5 mL). Water (10 mL) was added but minimal precipitate 

was observed, therefore MeOH (10 mL) was added to aid dissolution and the organic 

layer separated. The aqueous layer was extracted with DCM (3 × 15 mL) and the 

combined organic layers dried (MgSO4) and concentrated in vacuo to reveal the crude 

product as a yellow solid. The crude product was purified using reverse-phase ACC 
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(0-40% MeCN−H2O−0.1% formic acid). The title compound 77 (18 mg, 0.08 mmol, 

39%) was collected as a pale brown powder. 

1H NMR (500 MHz, DMSO-d6): 13.06 (1H, br.s, NH), 9.99 (1H, br.s OH), 8.05 (1H, 

s, 3-H), 7.78 (1H, d, J 8.4, 4-H), 7.65 (1H, s, 7-H), 7.51 (1H, dd, J 12.8 and 2.2, 2’’-H), 

7.38-7.33 (2H, m, 5-H and 5’’-H), 7.04 (1H, app.t, J 8.9, 6’’-H); 13C NMR (125 MHz, 

DMSO-d6): 151.3 (d, J 240.6, 3’’-C), 144.5 (d, J 12.2, 4’’-C), 140.5 (7’-C), 137.1 (d, 

J 1.2, 6-C), 133.3 (3-C), 132.2 (d, J 6.1, 1’’-C), 123.1 (d, J 2.8, 5’’-C), 121.9 (3’-C), 

120.8 (4-C), 119.7 (5-C), 118.1 (d, J 3.3, 6’’-C), 114.6 (d, J 19.0, 2’’-C), 106.9 (7-C); 

LC-MS (ES+): RT = 0.5-0.6 min, m/z = 229.33 (M+H+); Rf: 0.30 

(1:1 Petrol−EtOAc); HPLC: RT = 2.26 min; m/z (ES+): Found: 229.0769 (M+H+), 

C13H9FN2O requires MH 229.0772; IR:νmax/cm-1 (solid): 3277 (br.O-H), 2444, 1614, 

1591; M.pt: >250 °C. 

Preparation of 6-(3-methyl-4-hydroxyphenyl)-1H-indazole 

Synthesised using method D using 6-(3-methyl-4-

methoxyphenyl)-1H-indazole (50 mg, 0.21 mmol, 1.0 eq), 

1M BBr3 in DCM (1.68 mL, 1.68 mmol, 8.0 eq) and DCM 

(5 mL). Water (10 mL) was added and the resulting 

precipitate filtered and washed with water. The title 

compound 78 (32 mg, 0.14 mmol, 70%) was collected as a colourless powder. 

1H NMR (500 MHz, DMSO-d6): 8.03 (1H, d, J 0.7, 3-H), 7.75 (1H, d, J 8.4, 4-H), 

7.59 (1H, br.s, 7-H), 7.43 (1H, d, J 1.8, 2’’-H), 7.36-7.31 (2H, m, 5-H and 5’’-H), 6.86 

(1H, d, J 8.3, 6’’-H), 2.19 (3H, s, CH3), NH and OH not observed; 13C NMR (125 

MHz, DMSO-d6): 155.2 (4’’-C), 140.7 (7’-C), 138.6 (Ar-q), 133.2 (3-C), 131.2 

(Ar-q), 129.4 (2’’-C), 125.4 (5’’-C), 124.3 (3’’-C), 121.5 (3’-C), 120.6 (4-C), 119.8 

(5-C), 115.0 (6’’-C), 106.5 (7-C), 16.1 (CH3); LC-MS (ES+): RT = 0.5-0.6 min, m/z 

= 225.37 (M+H+); Rf: 0.32 (1:1 Petrol−EtOAc); HPLC: RT = 2.43 min; m/z (ES+): 

Found: 225.1018 (M+H+), C14H12N2O requires MH 225.1022; IR:νmax/cm-1 (solid): 

3246 (br.O-H), 3203 (N-H), 2694, 2260, 1629, 1605; M.pt: >250 °C. 
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Preparation of 6-(2-fluoro-4-hydroxyphenyl)-1H-indazole 

Synthesised using method D using 6-(2-fluoro-4-

methoxyphenyl)-1H-indazole (50 mg, 0.21 mmol, 1.0 eq), 

1M BBr3 in DCM (1.65 mL, 1.65 mmol, 8.0 eq) and DCM 

(5 mL). Water (10 mL) was added and the resulting 

precipitate filtered and washed with water. The title compound 79 (37 mg, 0.16 mmol, 

81%) was collected as colourless microcrystals. 

1H NMR (500 MHz, DMSO-d6): 8.07 (1H, d, J 0.8, 3-H), 7.78 (1H, dd, J 8.4 and 0.8, 

4-H), 7.56 (1H, s, 7-H), 7.39 (1H, app.t, J 8.5, 6’’-H), 7.21 (1H, app.dt, J 8.4 and 1.5, 

5-H), 6.73 (1H, dd, J 8.5 and 2.4, 5’’-H), 6.68 (1H, dd, J 12.8 and 2.4, 3’’-H), NH and 

OH not observed; 13C NMR (125 MHz, DMSO-d6): 159.7 (d, J 245.1, 2’’-C), 158.4 

(d, J 11.8, 4’’-C), 140.2 (7’-C), 133.2 (d, J 5.0, 6-C), 133.2 (3-C), 131.5 (d, J 5.4, 6’’-

C), 121.7 (7’-C), 121.6 (d, J 2.3, 5-C), 120.4 (4-C), 119.1 (d, J 13.2, 1’’-C), 112.2 (d, 

J 2.7, 5’’-C), 109.5 (d, J 3.1, 7-C), 103.1 (d, J 25.2, 3’’-C); LC-MS (ES+): RT = 0.5-

0.6 min, m/z = 229.33 (M+H+); Rf: 0.32 (1:1 Petrol−EtOAc); HPLC: RT = 2.31 min; 

m/z (ES+): Found: 229.0770 (M+H+), C13H9FN2O requires MH 229.0772; 

IR:νmax/cm-1 (solid): 3270 (br.O-H), 3002, 2804, 1624, 1596; M.pt: >250 °C. 

Preparation of 6-(2-methyl-4-hydroxyphenyl)-1H-indazole 

Synthesised using method D using 6-(2-methyl-4-

methoxyphenyl)-1H-indazole (75 mg, 0.31 mmol, 1.0 eq), 

1M BBr3 in DCM (2.52 mL, 2.52 mmol, 8.0 eq) and DCM 

(5 mL). Water (10 mL) was added and the resulting 

precipitate filtered and washed with water. The title 

compound 80 (50 mg, 0.22 mmol, 72%) was collected as a colourless powder.  

1H NMR (500 MHz, DMSO-d6): 8.05 (1H, d, J 0.9, 3-H), 7.73 (1H, dd, J 8.3 and 0.9, 

4-H), 7.33 (1H, s, 7-H), 7.05 (1H, d, J 8.2, 6’’-H), 7.02 (1H, dd, J 8.3 and 1.3, 5-H), 

6.70 (1H, d, J 2.4, 3’’-H), 6.66 (1H, dd, J 8.2 and 2.4, 5’’-H), 2.16 (3H, s, CH3), NH 

and OH not observed; 13C NMR (125 MHz, DMSO-d6): 156.5 (4’’-C), 140.0 (7’-C), 

139.4 (Ar-q), 136.0 (Ar-q), 133.2 (3-C), 132.5 (Ar-q), 130.8 (6’’-C), 122.6 (5-C), 

121.4 (3’-C), 119.8 (4-C), 116.8 (3’’-C), 112.8 (5’’-C), 109.8 (7-C), 20.4 (CH3); LC-

MS (ES+): RT = 0.5-0.6 min, m/z = 225.38 (M+H+); Rf: 0.35 (1:1 Petrol−EtOAc); 

HPLC: RT = 2.30 min; m/z (ES+): Found: 225.1020 (M+H+), C14H12N2O requires 
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MH 225.1022; IR:νmax/cm-1 (solid): 3184 (br.O-H), 2255, 1438; M.pt: 222.8-223.2 

°C. 

Preparation of 6-(3-fluoro-4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(250 mg, 1.02 mmol, 1.0 eq), 3-fluoro-4-methoxyphenyl 

boronic acid (261 mg, 1.54 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (84 mg, 0.102 mmol, 0.1 eq), Na2CO3 

(325 mg, 3.07 mmol, 3.0 eq), dioxane (2.5 mL) and water (2.5 mL) and the reaction 

heated for 3 h. The work up proceeded using the smaller volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown solid. The crude product was 

purified using column chromatography (gradient 20-30% EtOAc−hexane) and an 

off-white solid obtained. The solid was crystallised from toluene. The title 

compound 81 (174 mg, 0.72 mmol, 72%) was collected as off-white needles. 

1H NMR (500 MHz, CDCl3): 10.15 (1H, br.s, NH), 8.10 (1H, br.s, J 1.1, 3-H), 7.80 

(1H, d, J 8.4, 4-H), 7.60 (1H, s, 7-H), 7.41 (1H, d, J 2.2, 2’’-H), 7.39-7.35 (2H, m, 5-H 

and 5’’-H), 7.06 (1H, app.t, J 8.8, 6’’-H), 3.95 (3H, s, CH3); 13C NMR (125 MHz, 

CDCl3): 152.6 (d, J 245.8, 3’’-C), 147.3 (d, J 10.7, 4’’-C), 140.8 (7’-C), 138.9 (d, 

J 1.2, 6-C), 135.1 (3-C), 134.5 (d, J 6.5, 1’’-C), 123.1 (d, J 3.3, 5’’-C), 122.5 (3’-C), 

121.2 (5-C), 121.0 (4-C), 115.3 (d, J 19.0, 2’’-C), 113.8 (d, J 2.3, 6’’-C), 107.3 (7-C), 

56.4 (CH3); LC-MS (ES+): RT = 0.6-0.6 min, m/z = 243.34 (M+H+); Rf: 0.17 

(3:7 EtOAc−petrol); HPLC: RT = 3.00 min; m/z (ES+): Found: 243.0926 (M+H+), 

C14H11FN2O requires MH 243.0928; IR:νmax/cm-1 (solid): 3257 (N-H), 2965, 2937, 

2840, 1618, 1517; M.pt: 141.1-141.8 °C. 

Preparation of 6-(3-methyl-4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(250 mg, 1.02 mmol, 1.0 eq), 4-methoxy-3-methylphenyl 

boronic acid (255 mg, 1.54 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (84 mg, 0.102 mmol, 0.1 eq), Na2CO3 

(325 mg, 3.07 mmol, 3.0 eq), dioxane (2.5 mL) and water (2.5 mL) and the reaction 

heated for 3 h. LC-MS analysis indicated the reaction to be incomplete and therefore 

6-iodo-1H-indazole (125 mg, 0.51 mmol, 0.5 eq), Pd(dppf)Cl2•DCM (42 mg, 

0.051 mmol, 0.05 eq) and Na2CO3 (163 mg, 1.53 mmol, 1.5 eq) were added and the 
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reaction heated for a further 1 h. The work up proceeded using the smaller volumes of 

solvents and the organic solvent removed in vacuo to reveal a brown solid. The crude 

product was purified using column chromatography (7:3 Petrol−EtOAc) and an 

off-white solid obtained. The solid was crystallised using a mixed solvent 

crystallisation using EtOH and cyclohexane as the antisolvent. The title compound 82 

(66 mg, 0.28 mmol, 21%) was collected as colourless needles. 

1H NMR (500 MHz, CDCl3): 10.17 (1H, br.s, NH), 8.09 (1H, d, J 1.1, 3-H), 7.78 

(1H, dd, J 8.4 and 1.1, 4-H), 7.61 (1H, s, 7-H), 7.47-7.44 (2H, m, 2’’-H and 5’’-H), 

7.41 (1H, dd, J 8.4 and 1.4, 5-H), 6.94-6.90 (1H, m, 6’’-H), 3.89 (3H, s, OCH3), 2.31 

(3H, s, CH3); 13C NMR (125 MHz, CDCl3): 157.6 (4’’-C), 140.9 (7’-C), 140.3 (6-C), 

135.0 (3-C), 133.3 (1’’-C), 129.9 (2’’-C), 127.1 (3’’-C), 125.9 (5’’-C), 122.1 (3’-C), 

121.3 (5-C), 120.9 (4-C), 110.3 (6’’-C), 107.0 (7-C), 55.5 (OCH3), 16.4 (CH3); 

LC-MS (ES+): RT = 0.6-0.7 min, m/z = 239.36 (M+H+); Rf: 0.16 

(7:3 Petrol−EtOAc); HPLC: RT = 3.31 min; m/z (ES+): Found: 239.1177 (M+H+), 

C15H14N2O requires MH 239.1179; IR:νmax/cm-1 (solid): 3229 (N-H), 2921, 2837, 

1625, 1518; M.pt: 152.8-153.7 °C. 

Preparation of 6-(2-fluoro-4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 6-iodo-1H-indazole 

(250 mg, 1.02 mmol, 1.0 eq), 2-fluoro-4-

methoxyphenylboronic acid (261 mg, 1.54 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (84 mg, 0.102 mmol, 0.1 eq), Na2CO3 

(325 mg, 3.07 mmol, 3.0 eq), dioxane (2.5 mL) and water (2.5 mL) and the reaction 

heated for 3 h. The work up proceeded using the smaller volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown solid. The crude product was 

purified using column chromatography (1:4 EtOAc−petrol) and an off-white solid 

obtained. The solid was crystallised from EtOH. The title compound 83 (55 mg, 

0.23 mmol, 23%) was collected as colourless needles. 

1H NMR (500 MHz, CDCl3): 10.20 (1H, br.s, NH), 8.10 (1H, s, 3-H), 7.79 (1H, d, 

J 8.4, 4-H), 7.63 (1H, s, 7-H), 7.41 (1H, app.t, J 8.5, 6’’-H), 7.33 (1H, app.dt, J 8.5 

and 2.5, 5-H), 6.82-6.79 (1H, m, 5’’-H), 6.75 (1H, app. dd, J 12.5 and 2.5, 3’’-H), 3.86 

(3H, s, CH3); 13C NMR (125 MHz, CDCl3): 160.7 (d, J 11.0, 4’’-C), 160.6 (d, J 246.2, 

2’’-C), 140.6 (7’-C), 135.2 (6-C), 134.8 (3-C), 131.6 (d, J 5.2, 6’’-C), 122.9 (d, J 2.3, 

5-C) 122.5 (3’-C), 121.6 (d, J 13.7, 1’’-C), 120.9 (4-C), 110.6 (d, J 3.1, 5’’-C), 109.8 
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(d, J 3.3, 7-C), 102.4 (d, J 26.6, 3’’-C) 55.9 (CH3); LC-MS (ES+): RT = 0.6-0.6 min, 

m/z = 243.33 (M+H+); Rf: 0.05 (4:1 Petrol−EtOAc); HPLC: RT = 3.10 min; m/z 

(ES+): Found: 243.0925 (M+H+), C14H11FN2O requires MH 243.0928; 

IR:νmax/cm-1 (solid): 3220 (N-H), 3052, 2987, 1620, 1580; M.pt: 148.8-149.9 °C. 

Preparation of 6-(2-methyl-4-methoxyphenyl)-1H-indazole  

Synthesised using method A using 6-iodo-1H-indazole 

(250 mg, 1.02 mmol, 1.0 eq), 4-methoxy-2-

methylphenylboronic acid (255 mg, 1.54 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (84 mg, 0.102 mmol, 0.1 eq), Na2CO3 

(325 mg, 3.07 mmol, 3.0 eq), dioxane (2.5 mL) and water 

(2.5 mL) and the reaction heated for 3 h. The work up proceeded using the smaller 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown solid. 

The crude product was purified using column chromatography (7:3 hexane−EtOAc) 

and an off-white solid obtained. The solid was crystallised from cyclohexane. The title 

compound 84 (99 mg, 0.42 mmol, 41%) was collected as colourless fluffy 

microcrystals. 

1H NMR (500 MHz, CDCl3): 10.26 (1H, br.s, NH), 8.11 (1H, s, 3-H), 7.75 (1H, d, 

J 8.3, 4-H), 7.38 (1H, s, 7-H), 7.20 (1H, d, J 8.3, 6’’-H), 7.12 (1H, dd, J 8.3 and 1.2, 

5-H), 6.84 (1H, d, J 2.6, 3’’-H), 6.81 (1H, dd, J 8.3 and 2.6, 5’’-H), 3.85 (3H, s, OCH3), 

2.27 (3H, s, CH3); 13C NMR (125 MHz, CDCl3): 159.0 (4’’-C), 140.8 (7’-C), 137.5 

(Ar-q), 136.9 (Ar-q), 135.0, (Ar-q), 134.6 (3-C), 131.0 (6’’-C), 123.6 (5-C), 120.2 

(4-C), 115.8 (3’’-C), 111.2 (5’’-C), 109.9 (7-C), 55.3 (OCH3), 20.8 (CH3), one 

quaternary carbon not observed; LC-MS (ES+): RT = 0.6-0.7 min, m/z = 239.38 

(M+H+); Rf: 0.20 (7:3 Petrol−EtOAc); HPLC: RT = 3.18 min; m/z (ES+): Found: 

239.1178 (M+H+), C15H14N2O requires MH 239.1179; IR:νmax/cm-1 (solid): 3250 

(N-H), 2997, 2830, 1624, 1606, 1566; M.pt: 115.1-115.9 °C. 
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6.1.4.2 Chapter Three Compounds 

Preparation of {3-[6-(3-ethoxyphenyl)-1H-indazol-3-yl]phenyl}methanamine 

Synthesised using method A using 3-bromo-6-

(3-ethoxyphenyl)-1H-indazole (150 mg, 

0.47 mmol, 1.0 eq), 3-

(aminomethyl)phenylboronic acid•HCl (133 mg, 

0.71 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (39 mg, 

0.047 mmol, 0.1 eq), Na2CO3 (250 mg, 

2.36 mmol, 5.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 2 h. 

LC-MS analysis showed the reaction to be incomplete therefore Pd(dppf)Cl2•DCM 

(39 mg, 0.047 mmol, 0.1 eq) and Na2CO3 (75 mg, 0.71 mmol, 1.5 eq) were added and 

the reaction heated for 2 h. LC-MS analysis showed no change and therefore the 

reaction was stopped. The work up proceeded using the larger volumes of solvents 

and the organic solvent removed in vacuo to reveal a brown solid. The crude product 

was purified using column chromatography (3:10:87 7.0 M NH3 in 

MeOH−MeOH−EtOAc) and a brown semi-solid obtained. The semi-solid was 

triturated with DCM. The title compound 85 (10 mg, 0.029 mmol, 6%) was collected 

as colourless granules. 

1H NMR (500 MHz, DMSO-d6): 8.15 (1H, d, J 8.5, 4-H), 7.98 (1H, s, 2’’’-H), 7.83 

(1H, d, J 8.0, 6’’’-H), 7.76 (1H, s, 7-H), 7.49 (1H, dd, J 8.5 and 1.5, 5-H), 7.45 (1H, 

app.t, J 7.5, 5’’’-H), 7.39 (1H, app.t, J 8.0, 5’’-H), 7.35 (1H, d, J 7.5, 4’’’-H), 7.29 

(1H, d, J 7.5, 6’’-H), 7.25 (1H, app.t J 2.0, 2’’-H), 6.95 (1H, ddd, J 8.0, 2.5 and 1.0, 

4’’-H), 4.12 (2H, q, J 7.0, CH2CH3), 3.83 (2H, s, CH2), 1.97 (2H, br.s, CH2NH2), 1.36 

(3H, t, J 7.0, CH3), indazole NH not observed; 13C NMR (125 MHz, DMSO-d6): 

159.0 (3’’-C), 144.9 (3’’’-C), 143.3 (1’’’-C), 142.3 (3’-C), 141.9 (1’’-C), 138.3 (6-C), 

133.5 (3-C), 130.0 (5’’-C), 128.6 (5’’’-C), 126.5 (4’’’-C), 125.4 (2’’’-C), 124.6 

(6’’’-C), 121.2 (4-C), 120.8 (5-C), 119.5 (7’-C), 119.4 (6’’-C), 113.6 (4’’-C), 113.1 

(2’’-C), 108.2 (7-C), 63.1 (CH2), 45.7 (CH2NH2), 14.7 (CH3); LC-MS (ES): 

RT = 1.73-2.07 min, m/z = 344.2 (M+H+); Rf: 0.17 (1:1:8  7.0 M NH3 in 

MeOH−MeOH−EtOAc); HPLC: RT = 2.27 min; m/z (ES+): Found: 366.1581 

(M+Na+), C22H21N3NaO requires MH 366.1577; IR:νmax/cm-1 (solid): 3328 (N-H), 

3263 (N-H), 3173, 2983, 2915, 2839, 1594; M.pt: 151.4-151.7 °C. 
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Preparation of 3-bromo-6-(3-ethoxyphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-1H-

indazole (500 mg, 1.55 mmol, 1.0 eq), 

3-ethoxyphenylboronic acid (385 mg, 2.32 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (126 mg, 0.155 mmol, 0.1 eq), Na2CO3 

(492 mg, 4.64 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 3 h. The work up proceeded using the larger 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown oil. 

The crude product was purified using column chromatography (1:4 EtOAc−hexane) 

and a colourless solid obtained. The resulting solid was crystallised from cyclohexane. 

The title compound 86 (207 mg, 0.65 mmol, 42%) was collected as colourless flakes.  

1H NMR (500 MHz, CDCl3): 10.58 (1H, br.s, NH), 7.69 (1H, d, J 8.5, 4-H), 7.67 

(1H, s, 7-H), 7.49 (1H, dd, J 8.5 and 1.5, 5-H), 7.39 (1H, app.t, J 8.0, 5’’-H), 7.23-7.21 

(1H, m, 6’’-H), 7.18 (1H, app.t, J 2.0, 2’’-H), 6.94 (1H, ddd, J 8.0, 2.5 and 1.0, 4’’-H), 

4.12 (2H, q, J 7.0, CH2), 1.47 (3H, t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 159.4 

(3’’-C), 142.3 (1’’-C), 141.8 (6-C), 141.7 (3’-C), 129.9 (5’’-C), 123.0 (7’-C), 122.5 

(3-C), 122.3 (5-C), 120.4 (4-C), 120.0 (6’’-C), 114.1 (2’’-C), 113.7 (4’’-C), 108.2 

(7-C), 63.6 (CH2), 14.9 (CH3); LC-MS (ES): RT = 1.95-2.01 min, m/z = 317.1 

(M+H+); Rf: 0.46 (2:3 EtOAc−petrol); HPLC: RT = 3.02 min; m/z (ES+): Found: 

317.0287 (M+H+), C15H13BrN2O requires MH 317.0284; IR:νmax/cm-1 (solid): 

3172 (N-H), 3135, 2975, 2869, 1631; M.pt: 132.9-133.4 °C; Found: C,56.7; H, 4.10; 

N, 8.8; C15H13BrN2O requires C, 56.8; H, 4.13; N, 8.8%. 

Preparation of 3-bromo-6-iodo-1H-indazole 

6-Iodo-1H-indazole (3.00 g, 12.3 mmol, 1.0 eq) was dissolved in 

DMF (30 mL) and NBS (2.01 g, 13.5 mmol, 1.1 eq) was added to the 

reaction mixture and stirred for 3 h. LC-MS analysis confirmed the 

reaction to be complete. Water (60 mL) was added and the resulting 

precipitate filtered. The crude product was crystallised from EtOH. The title 

compound 87 (3.72 g, 11.5 mmol, 94%) was collected as yellow microcrystals. 

1H NMR (500 MHz, DMSO-d6): 7.99 (1H, dd, J 1.5 and 0.5, 7-H), 7.49 (1H, dd, J 8.0 

and 1.5, 5-H), 7.38 (1H, d, J 8.0, 4-H), NH not observed; 13C NMR (125 MHz, 

DMSO-d6): 142.2 (3’-C), 130.0 (5-C), 121.4 (7’-C), 121.0 (4-C), 120.8 (3-C), 119.4 

(7-C), 93.9 (6-C); LC-MS (ES): RT = 1.95-2.10 min, m/z = 323.0 (M+H+); Rf: 0.61 
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(1:1 EtOAc−petrol); HPLC: RT = 15.27 min; m/z (ES-): Found: 320.8522 (M-H), 

C7H4BrIN2 requires M-H 320.8530; IR:νmax/cm-1 (solid): 3188 (N-H), 3100, 2965, 

2910, 1612; M.pt: 230.4-231.7 °C; Found: C,26.3; H, 1.20; N, 8.7; C7H4BrIN2 

requires C, 26.4; H, 1.20; N, 8.7%. 

Preparation of 3-bromo-6-(3-ethoxy-5-fluorophenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-1H-

indazole (500 mg, 1.55 mmol, 1.0 eq), 3-ethoxy-5-

fluorophenylboronic acid (427 mg, 2.32 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (126 mg, 0.155 mmol, 0.1 eq), Na2CO3 

(492 mg, 4.64 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 3 h. LC-MS showed the reaction to be incomplete 

but was stopped to minimise formation of the bis-substituted product. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (1:9 EtOAc−hexane) and a colourless solid obtained. The resulting 

solid was crystallised from cyclohexane. The title compound 88 (166 mg, 0.50 mmol, 

32%) was collected as a colourless flakes. 

1H NMR (500 MHz, CDCl3): 10.65 (1H, br.s, NH), 7.70 (1H, d, J 8.5, 4-H), 7.66 

(1H, s, 7-H), 7.45 (1H, dd, J 8.5 and 1.5, 5-H), 6.96 (1H, app.t, J 1.5, 6’’-H), 6.93 (1H, 

app.dt, J 9.5 and 1.5, 2’’-H), 6.65 (1H, app.dt, J 10.5 and 2.0, 4’’-H), 4.10 (2H, q, 

J 7.0, CH2), 1.45 (3H, t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 163.9 (d, J 244.9, 

3’’-C), 160.6 (d, J 11.5, 5’’-C), 143.4 (d, J 9.9, 1’’-C), 141.7 (3’-C), 140.7 (d, J 2.7, 

6-C), 123.1 (7’-C), 122.8 (3-C), 122.0 (5-C), 120.6 (4-C), 110.1 (d, J 2.6, 6’’-C), 108.3 

(7-C), 106.8 (d, J 22.7, 2’’-H), 101.2 (d, J 25.2, 4’’-C), 64.0 (CH2), 14.7 (CH3); 

LC-MS (ES): RT = 2.11-2.25 min, m/z = 335.0 (M+H+); Rf: 0.44 (3:7 

EtOAc−hexane); HPLC: RT = 3.65 min; m/z (ES+): Found: 335.0196 

(M+H+), C15H12BrFN2O requires MH 335.0190; IR:νmax/cm-1 (solid): 3175 (N-H), 

3137, 2984, 2875, 1601; M.pt: 166.4-167.6 °C; Found: C,53.8; H, 3.60; N, 8.4; 

C15H12BrFN2O requires C, 53.8; H, 3.61; N, 8.4%. 
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Preparation of 3-bromo-6-(3-ethoxy-5-methylphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-

1H-indazole (500 mg, 1.55 mmol, 1.0 eq), 3-ethoxy-5-

methylphenylboronic acid (279 mg, 1.55 mmol, 1.0 eq), 

Pd(dppf)Cl2•DCM (126 mg, 0.155 mmol, 0.1 eq), Na2CO3 

(492 mg, 4.64 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 2 h. LC-MS analysis showed the reaction to be 

incomplete and therefore 3-ethoxy-5-methylphenylboronic acid (84 mg, 0.47 mmol, 

0.30 eq), Pd(dppf)Cl2•DCM (126 mg, 0.155 mmol, 0.1 eq) and Na2CO3 (246 mg, 

2.32 mmol, 1.5 eq) were added and the reaction heated for a further 1 h. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (gradient 10-30% EtOAc−hexane) and a colourless solid obtained. 

The solid was crystallised from cyclohexane. The title compound 89 (100 mg, 

0.30 mmol, 19%) was collected as a colourless solid. 

1H NMR (500 MHz, CDCl3): 10.41 (1H, br.s, NH), 7.68 (1H, d, J 8.3, 4-H), 7.64 

(1H, s, 7-H), 7.48 (1H, dd, J 8.4 and 1.4, 5-H), 7.04 (1H, s, 6’’-H), 6.98 (1H, s, 2’’-H), 

6.77 (1H, s, 4’’-H), 4.11 (2H, q, J 7.0, CH2), 2.42 (3H, s, CH3), 1.45 (3H, t, J 7.0, 

CH2CH3);13C NMR (125 MHz, CDCl3): 159.4 (3’’-C), 142.0 (1’’-C), 141.9 (3’-C), 

141.8 (6-C), 140.0 (5’’-C), 123.1 (3-C), 122.5 (7’-C), 122.3 (5-C), 120.9 (6’’-C), 

120.3 (4-C), 114.7 (4’’-C), 111.2 (2’’-C), 108.1 (7-C), 63.6 (CH2), 21.7 (CH3), 14.9 

(CH2CH3); LC-MS (ES): RT = 2.18-2.38 min, m/z = 331.8 (M+H+); Rf: 0.64 

(1:1 EtOAc–petrol); HPLC: RT = 2.13 min; m/z (ES+): Found: 331.0442 (M+H+), 

C16H16BrN2O requires MH 331.0446; IR:νmax/cm-1 (solid): 3174 (N-H), 3132, 2963, 

2871, 1726; M.pt: 144.8-145.4 °C. 

Preparation of 3-bromo-6-(3-ethoxy-2-fluorophenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-1H-

indazole (500 mg, 1.55 mmol, 1.0 eq), 3-ethoxy-2-

fluorophenylboronic acid (429 mg, 2.33 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (126 mg, 0.155 mmol, 0.1 eq), Na2CO3 

(492 mg, 4.65 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 2 h. LC-MS showed the reaction to be incomplete and therefore 3-ethoxy-

2-fluorophenylboronic acid (143 mg, 0.78 mmol, 0.5 eq), Pd(dppf)Cl2•DCM (126 mg, 
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0.155 mmol, 0.1 eq) and Na2CO3 (246 mg, 2.32 mmol, 1.5 eq) were added and the 

reaction heated for 1 h. The work up proceeded using the larger volumes of solvents 

and the organic solvent removed in vacuo to reveal a brown solid. The crude product 

was purified using column chromatography (3:7 EtOAc−hexane) and a colourless 

solid obtained. The solid was crystallised from cyclohexane. The title compound 90 

(239 mg, 0.72 mmol, 46%) was collected as colourless plates.  

1H NMR (500 MHz, CDCl3): 10.39 (1H, br.s, NH), 7.70 (1H, d, J 8.5, 4-H), 7.66 

(1H, s, 7-H), 7.43 (1H, app.dt, J 8.5 and 1.2, 5-H), 7.15 (1H, app.td, J 8.0 and 1.2, 

5’’-H), 7.04 (1H, app.td, J 7.6 and 1.5, 6’’-H), 7.00 (1H, app.td, J 7.8 and 1.5, 4’’-H), 

4.18 (2H, q, J 7.0, CH2), 1.50 (3H, t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 149.9 

(d, J 246.5, 2’’-C), 147.6 (d, J 11.0, 3’’-C), 141.4 (3’C), 135.9 (3-C), 129.5 (d, J 11.0, 

1’’-C), 124.1 (d, J 4.5, 5’’-C), 123.6 (d, J 3.5, 5-C), 123.1 (7’-C), 122.6 (6-C), 122.2 

(d, J 1.9, 6’’-C), 120.1 (4-C), 114.2 (d, J 2.0, 4’’-C), 110.4 (d, J 3.7, 7-C), 65.2 (CH2), 

14.8 (CH3); LC-MS (ES): RT = 1.88-2.16 min, m/z = 337.5 (M+H+); Rf: 0.61 

(1:1 EtOAc-petrol); HPLC: RT = 2.58 min; m/z (ES+): Found: 335.0206 (M+H+), 

C15H13BrFN2O requires MH 335.0195 IR:νmax/cm-1 (solid): 3131 (N-H), 3029, 2877; 

M.pt: 148.6-150.3 °C; Found: C, 53.6; H, 3.50; N, 8.3; C15H12BrFN2O requires 

C, 53.8; H, 3.61; N, 8.4. 

Preparation of 3,6-bis(3-ethoxyphenyl)-1H-indazole 

Synthesised as a side product using the same 

conditions as seen in the preparation of 3-bromo-6-

(3-ethoxyphenyl)-1H-indazole (86). A second 

compound was isolated from the column and a 

glassy solid obtained. The solid was dissolved in 

Et2O and reduced in vacuo. The title compound 91 (107 mg, 0.30 mmol, 19%) was 

collected as a fluffy beige powder. 

1H NMR (500 MHz, CDCl3): 8.06 (1H, d, J 8.5, 4-H), 7.66 (1H, d, J 8.0, 4’’-H), 7.63 

(1H, s, 7-H), 7.47-7.44 (2H, m, 5-H and 5’’-H), 7.39-7.34 (2H, m, 4’’’-H and 5’’’-H), 

7.16-7.14 (2H, m, 2’’-H and 2’’’-H), 7.00-6.97 (1H, m, 6’’-H), 6.95-6.92 (1H, m, 

6’’’-H), 4.13 (2H, q, J 7.0, CH2’’’), 4.07-4.01 (2H, m, CH2), 1.49 (3H, td, J 7.0 and 

1.1, CH3’’’), 1.39 (3H, td, J 7.0 and 1.1, CH3), NH not observed; 13C NMR (125 MHz, 

CDCl3): 159.5 (3’’-C), 159.3 (3’’’-C), 145.5 (6-C), 142.6 (1’’-C), 142.4 (1’’’-C), 

140.2 (3’-C), 134.8 (3-C), 130.1 (5’’-C), 129.7 (5’’’-C), 121.6 (5-C), 121.2 (4-C), 
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120.3 (7’-C), 120.1 (4’’-C), 120.0 (2’’’-C), 114.8 (6’’-C), 114.1 (2’’-C), 113.6 (7-C), 

113.4 (6’’’-C), 108.6 (4’’’-C), 63.6 (CH2’’’), 63.5 (CH2), 15.0 (CH3’’’), 14.8 (CH3); 

LC-MS (ES): RT = 2.25-2.42 min, m/z = 359.4 (M+H+); Rf: 0.35 (2:3 EtOAc−petrol); 

HPLC: RT = 3.14 min; m/z (ES+): Found: 359.1764 (M+H+), C23H22N2O2 requires 

MH 359.1754; IR:νmax/cm-1 (solid): 3165 (N-H), 2976, 2927, 1599; 

M.pt: 53.4-55.6°C. 

Preparation of 3,6-bis(3-ethoxy-5-fluorophenyl)-1H-indazole  

Synthesised as a side product using the same 

conditions as seen in the preparation of 3-bromo-6-

(3-ethoxy-5-fluorophenyl)-1H-indazole (88). A 

second compound was isolated from the column. The 

title compound 92 (87 mg, 0.22 mmol, 14%) was 

collected as a fluffy colourless solid. 

1H NMR (500 MHz, CDCl3): 11.16 (1H, br.s, NH), 8.05 (1H, d, J 8.5, 4-H), 7.51 

(1H, s, 7-H), 7.45 (1H, dd, J 8.5 and 1.5, 5-H), 7.36 (1H, app.s, 6’’’-H), 7.32 (1H, ddd, 

J 9.3, 2.4 and 1.3, 2’’’-H), 6.95 (1H, app.s, 6’’-H), 6.91 (1H, app.dt, J 9.5 and 1.5, 

2’’-H), 6.69 (1H, app.dt, J 10.5 and 2.0, 4’’’-H), 6.65 (1H, app.dt, J 11.0 and 2.0, 

4’’-H), 4.09 (4H, app.sextet, J 7.0, CH2 and CH2’’’), 1.47 (3H, t, J 7.0, CH3’’’), 1.43 

(3H, t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 163.9 (d, J 244.5, 3’’’-C), 163.9 

(d, J 244.6, 3’’-C), 160.7 (d, J 11.6, 5’’’-C), 160.5 (d, J 11.6, 5’’-C), 144.7 (d, J 3.3, 

3-C), 143.6 (d, J 9.9, 1’’-C), 142.2 (3’-C), 139.4 (d, J 2.6, 6-C), 135.6 (d, J 10.7, 

1’’’-C), 121.7 (5-C), 121.3 (4-C), 120.4 (7’-C), 110.0 (d, J 2.6, 6’’-C), 109.5 (d, J 2.6, 

6’’’-C), 108.4 (7-C), 106.8 (2’’’-C), 106.6 (2’’-C), 102.1 (d, J 24.9, 4’’’-C), 101.0 (d, 

J 24.9, 4’’-C), 64.0 (CH2 and CH2’’’), 14.7 (CH3), 14.7 (CH3’’’); LC-MS (ES): 

RT = 2.37-2.50 min, m/z = 395.2 (M+H+); Rf: 0.36 (3:7 EtOAc−hexane); HPLC: 

RT = 3.87 min; m/z (ES+): Found: 395.1577 (M+H+), C23H20F2N2O2 requires MH 

395.1566; IR:νmax/cm-1 (solid): 3170 (N-H), 2978, 1608, 1587; M.pt: 68.4-74.0 °C. 
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Preparation of 3,6-bis(3-ethoxy-5-methylphenyl)-1H-indazole 

Synthesised as a side product using the same 

conditions as seen in the preparation of 3-bromo-6-

(3-ethoxy-5-methylphenyl)-1H-indazole (89). A 

second compound was isolated from the column 

and a glassy solid obtained. The glassy solid was 

dissolved in Et2O and reduced in vacuo. 

The title compound 93 (192 mg, 0.50 mmol, 32%) was collected as an off-white solid. 

1H NMR (500 MHz, CDCl3): 11.45 (1H, br.s, NH), 8.06 (1H, d, J 8.5, 4-H), 7.47 

(1H, s, 7-H), 7.47-7.44 (2H, m, 5-H and 6’’’-H), 7.39 (1H, s, 2’’’-H), 7.02 (1H, s, 

6’’--H), 6.97 (1H, s, 2’’-H), 6.80 (1H, s, 4’’’-H), 6.77 (1H, s, 4’’-H), 4.11 (2H, q, J 7.0, 

CH2’’’), 4.07 (2H, q, J 7.0, CH2), 2.43 (3H, s, CH3’’’), 2.40 (3H, s, CH3), 1.46 (3H, t, 

J 7.0, CH2CH3’’’), 1.41 (3H, t, J 7.0, CH2CH3’’’); 13C NMR (125 MHz, CDCl3): 

159.5 (3’’’-C), 159.4 (3’’-C), 145.8 (3-C), 142.5 (1’’-C), 142.4 (1’’’-C), 140.4 (5’’-C), 

140.0 (5’’’-C), 139.8 (3’-C), 134.5 (6-C), 121.7 (5-C), 121.3 (4-C), 120.9 (6’’’-C), 

120.9 (6’’-C), 120.3 (7’-C), 115.7 (4’’’-C), 114.3 (4’’-C), 111.1 (2’’-C), 110.6 

(2’’’-C), 108.3 (7-C), 63.5 (CH2’’’), 63.5 (CH2), 21.7 (CH3’’’), 21.7 (CH3), 15.0 

(CH2CH3’’’), 14.9 (CH2CH3); LC-MS (ES): RT = 2.39-2.58 min, m/z = 287.6 

(M+H+); Rf: 0.28 (1:1 EtOAc–petrol); HPLC: RT = 2.81 min; m/z (ES+): Found: 

387.2078 (M+H+), C25H27N2O2 requires MH 387.2073; IR:νmax/cm-1 (solid): 3198 

(N-H), 3123, 2975, 1589. 

Preparation of 3,6-bis(3-ethoxy-2-fluorophenyl)-1H-indazole 

Synthesised as a side product using the same 

conditions as seen in the preparation of 3-bromo-6-

(3-ethoxy-2-fluorophenyl)-1H-indazole (90). A 

second compound was isolated from the column 

and a glassy solid obtained. The glassy solid was 

dissolved in Et2O and reduced in vacuo. 

The title compound 94 (9 mg, 0.02 mmol, 2%) was collected as a pale purple powder. 

1H NMR (500 MHz, CDCl3): 10.52 (1H, br.s, NH), 7.94 (1H, dd, J 8.5 and 3.5, 4-H), 

7.66 (1H, s, 7-H), 7.40 (2H, m, 5-H and 5’’-H), 7.19 (1H, app.td, J 8.0 and 1.2, 6’’-H), 

7.14 (1H, app.td, J 8.0 and 1.2, 4’’-H), 7.09-7.04 (2H, m, 5’’’-H and 6’’’-H), 7.00 (1H, 

app.td, J 8.0 and 1.6, 4’’’-H), 4.22-4.17 (4H, m, 2 × CH2CH3), 1.52-1.48 (6H, m, 



Chapter Six – Experimental  

 

179 

 

2 × CH2CH3); 13C NMR (125 MHz, CDCl3): 150.5 (d, J 250.2, 2’’’-C), 150.0 (d, 

J 248.3, 2’’-C), 147.8-147.6 (m, 3’’-C and 3’’’-C), 141.5 (3-C), 134.7 (3’-C), 129.9 

(d, J 10.3, 1’’-C), 124.2 (d, J 4.9, 6’’-C), 123.9 (d, J 4.9, 4’’-C), 123.0 (5-C), 122.4 (d, 

J 2.0, 6’’’-C), 122.2 (d, J 3.0, 5’’-C), 121.9 (1’’’-C), 121.8 (7’-C), 121.7 (4-C), 121.4 

(6-C), 114.9 (d, J 1.5, 5’’’-C), 113.9 (d, J 1.8, 4’’’-C), 110.2 (d, J 3.4, 7-C), 65.2 

(CH2CH3), 65.1 (CH2CH3), 14.9 (2 × CH2CH3); LC-MS (ES): RT = 2.19-2.29 min, 

m/z = 395.6 (M+H+); Rf: 0.46 (1:1 EtOAc–petrol); HPLC: RT = 2.99 min; m/z (ES+): 

Found: 395.1575 (M+H+), C23H21F2N2O2 requires MH 395.1571; IR:νmax/cm-1 

(solid): 3169 (N-H), 2979, 2929, 1618; M.pt: 59.0–60.1 °C. 

Preparation of {3-[6-(3-ethoxyphenyl)-1H-indazol-3-yl]phenyl}methanol 

Synthesised using method A using 3-bromo-6-(3-

ethoxyphenyl)-1H-indazole (150 mg, 0.47 mmol, 

1.0 eq), 3-(hydroxymethyl)phenylboronic acid 

(108 mg, 0.71 mmol, 1.5 eq), Pd(dppf)Cl2•DCM 

(39 mg, 0.047 mmol, 0.1 eq), Na2CO3 (150 mg, 

1.42 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction heated for 

1 h. LC-MS analysis showed the reaction to be incomplete and therefore the reaction 

was heated for a further 2 h. The work up proceeded using the larger volumes of 

solvents and the organic solvent removed in vacuo to reveal a brown solid. The crude 

product was purified using column chromatography (1:4 EtOAc−hexane) and a yellow 

solid obtained. The solid was triturated with DCM. The title compound 95 (71 mg, 

0.21 mmol, 44%) collected as a colourless solid. 

1H NMR (500 MHz, DMSO-d6): 8.13 (1H, d, J 8.5, 4-H), 7.99 (1H, s, 2’’’-H), 7.88 

(1H, d, J 7.5, 6’’’-H), 7.77 (1H, s, 7-H), 7.51 (1H, dd, J 8.5 and 1.5, 5-H), 7.47 (1H, 

app.t, J 7.5, 5’’’-H), 7.39 (1H, app.t J 7.5, 5’’-H), 7.34 (1H, d, J 7.5, 4’’’-H) 7.30 (1H, 

d, J 8.0, 6’’-H), 7.25 (1H, app.t, J 1.5, 2’’-H), 6.95 (1H, dd, J 8.0 and 2.0, 4’’-H), 5.28 

(1H, t, J 6.0, OH), 4.62 (2H, d, J 6.0, CH2OH), 4.12 (2H, q, J 7.0, CH2), 1.36 (3H, t, 

J 7.0, CH3), NH not observed; 13C NMR (125 MHz, DMSO-d6): 159.0 (3’’-C), 143.2 

(3’’’-C), 143.2 (1’’’-C), 142.2 (3’-C), 141.9 (1’’-C), 138.3 (6-C), 133.5 (3-C), 130.0 

(5’’-C), 128.6 (5’’’-C), 125.8 (4’’’-C), 125.0 (6’’’-C), 124.7 (2’’’-C), 121.1 (4-C), 

120.8 (5-C), 119.5 (7’-C), 119.4 (6’’-C), 113.6 (4’’-C), 113.2 (2’’-C), 108.2 (7-C), 

63.1 (CH2), 62.9 (CH2OH), 14.9 (CH3); LC-MS (ES): RT = 1.82-2.02 min, 

m/z = 345.5 (M+H+); Rf: 0.30 (4:1 EtOAc−petrol); HPLC: RT = 2.88 min; 
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m/z (ES+): Found: 345.1610 (M+H+), C22H20N2O2 requires MH 345.1598; 

IR:νmax/cm-1 (solid): 3196 (N-H), 3173, 2983, 2940, 1594; M.pt: 156.4-157.4 °C. 

Preparation of 6-(3-ethoxyphenyl)-3-(3-ethylphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-(3-

ethoxyphenyl)-1H-indazole (150 mg, 0.47 mmol, 

1.0 eq), 3-ethylphenylboronic acid (106 mg, 

0.71 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (39 mg, 

0.047 mmol, 0.1 eq), Na2CO3 (150 mg, 1.42 mmol, 

3.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 1 h. LC-MS 

analysis showed the reaction to be incomplete therefore Pd(dppf)Cl2•DCM (39 mg, 

0.047 mmol, 0.1 eq) and Na2CO3 (75 mg, 0.71 mmol, 1.5 eq) were added and the 

reaction heated for 1.5 h. The work up proceeded using the larger volumes of solvents 

and the organic solvent removed in vacuo to reveal a brown oil. The crude product 

was purified using column chromatography (1:4 EtOAc−hexane) and a colourless 

glassy solid obtained. The solid was dissolved in Et2O and reduced in vacuo. 

The title compound 96 (73 mg, 0.21 mmol, 45%) as a foamy off-white solid. 

1H NMR (500 MHz, CDCl3): 8.06 (1H, d, J 8.5, 4-H), 7.92 (1H, app.s, 2’’’-H), 7.89 

(1H, d, J 7.5, 6’’’-H), 7.51-7.46 (2H, m, 5-H and 5’’’-H), 7.40-7.35 (2H, m, 7-H and 

5’’-H), 7.29 (1H, d, J 7.5, 4’’’-H), 7.17-7.14 (2H, m, 2’’-H and 6’’-H), 6.96-6.93 (1H, 

m, 4’’-H), 4.14 (2H, q, J 7.0, OCH2), 2.73 (2H, q, J 7.5, CH2), 1.50 (3H, t, J 7.0, 

OCH2CH3), 1.27 (3H, t, J 7.5, CH3), NH not observed; 13C NMR (125 MHz, CDCl3): 

159.3 (3’’-C), 145.9 (1’’’-C), 145.1 (3’’’-C), 142.6 (6-C), 142.4 (3’-C), 140.1 (1’’-C), 

133.5 (3-C), 129.7 (5’’-C) 129.0 (5’’’-C), 128.0 (4’’’-C), 127.3 (2’’’-C), 125.2 

(6’’’-C), 121.5 (5-C), 121.3 (4-C), 120.4 (7’-C), 120.0 (6’’-C), 114.2 (2’’-C), 113.3 

(4’’-C), 108.5 (7-C), 63.6 (OCH2), 29.0 (CH2), 15.5 (CH3), 15.0 (OCH2CH3); LC-MS 

(ES): RT = 2.30-2.47 min, m/z = 343.3 (M+H+); Rf: 0.23 (3:7 EtOAc−petrol); HPLC: 

RT = 3.95 min; m/z (ES+): Found: 365.1628 (M+Na+), C23H22N2NaO requires MH 

365.1624; IR:νmax/cm-1 (solid): 3165 (N-H), 2963, 2927, 1603, 1581; 

M.pt: 61.0-64.0 °C.  
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Preparation of {3-[6-(3-ethoxy-5-methylphenyl)-1H-indazol-3-

yl]phenyl}methanaminium formate 

Synthesised using method A using 3-bromo-6-

(3-ethoxy-5-fluorophenyl)-1H-indazole (100 

mg, 0.30 mmol, 1.0 eq), 3-

(aminomethyl)phenylboronic acid•HCl (112 mg, 

0.60 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (24 mg, 

0.03 mmol, 0.1 eq), Na2CO3 (158 mg, 

1.50 mmol, 5.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 3 h. 

LC-MS analysis showed the reaction to be incomplete and therefore 

Pd(dppf)Cl2•DCM (24 mg, 0.03 mmol, 0.1 eq) was added and the reaction heated for 

a further 3 h. The work up proceeded using the larger volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown oil. The crude product was 

purified using column chromatography (1:10:89 7.0 M NH3 in 

MeOH−MeOH−EtOAc) and a brown solid obtained. The solid was impure and 

attempts using DCM, toluene and EtOH to crystallise the solid were unsuccessful. The 

solid was purified using preparative HPLC (50-80% MeOH−H2O with 0.1% formic 

acid). Appropriate fractions were reduced in vacuo to ~3 mL and the compound left 

to precipitate overnight. The title compound 97 (4 mg, 0.011 mmol, 4%) was collected 

as a colourless solid. 

1H NMR (500 MHz, DMSO-d6): 8.35 (1H, s, formate-H), 8.21 (1H, d, J 8.5, 4-H), 

8.06 (1H, s, 2’’’-H), 7.94 (1H, d, J 8.0, 6’’’-H), 7.82 (1H, s, 7-H), 7.53-7.49 (2H, m, 

5-H and 5’’’-H), 7.42 (1H, d, J 8.0, 4’’’-H), 7.16 (1H, app.d, J 10.0, 2’’-H), 7.12 (1H, 

app.s, 6’’-H), 6.84 (1H, app.dt, J 10.5 and 2.5, 4’’-H), 4.14 (2H, q, J 7.0, OCH2), 4.00 

(2H, s, CH2), 1.36 (3H, t, J 7.0, CH2NH2), NHs not observed; 13C NMR (125 MHz, 

DMSO-d6): 164.7 (formate C=O), 163.4 (d, J 242.1, 3’’-C), 160.3 (d, J 12.3, 5’’-C), 

143.3 (d, J 10.1, 1’’-C), 143.0 (1’’’-C), 142.2 (3’-C), 139.6 (3’’’-C), 137.1 (d, J 2.6, 

6-C), 133.7 (3-C), 128.9 (5’’’-C), 127.5 (4’’’-C), 126.3 (2’’’-C), 125.6 (6’’’-C), 121.3 

(4-C), 120.7 (5-C), 119.8 (7’-C), 109.6 (d, J 2.1, 6’’-C), 108.6 (7-C), 106.0 (d, J 22.8, 

2’’-C), 100.9 (d, J 25.8, 4’’-C), 63.7 (OCH2), 43.8 (CH2), 14.5 (CH3); LC-MS (ES): 

RT = 1.85-2.02 min, m/z = 362.8 (M-formate+); Rf: 0.12 (5:10:85 7.0 M NH3 in 

MeOH−MeOH−EtOAc); HPLC: RT = 0.60 min; m/z (ES+): Found: 384.1486 

(M-fomate+), C22H20FN3NaO requires MH 384.1483; IR:νmax/cm-1 (solid): 

3166 (N-H), 2982, 2633, 1659, 1566; M.pt: 175.0-176.3 °C. 
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Preparation of {3-[6-(3-ethoxy-5-fluorophenyl)-1H-indazol-3-yl]phenyl}methanol  

Synthesised using method A using 3-bromo-6-(3-

ethoxy-5-fluorophenyl)-1H-indazole (100 mg, 

0.30 mmol, 1.0 eq), 3-

(hydroxymethyl)phenylboronic acid (68 mg, 

0.45 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (24 mg, 

0.03 mmol, 0.1 eq), Na2CO3 (95 mg, 0.90 mmol, 

3.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 2 h. LC-MS 

analysis showed the reaction to be incomplete and therefore Pd(dppf)Cl2•DCM 

(24 mg, 0.03 mmol, 0.1 eq) and Na2CO3 (95 mg, 0.90 mmol, 3.0 eq) were added and 

the reaction heated for a further 4 h. The work up proceeded using the larger volumes 

of solvents and the organic solvent removed in vacuo to reveal a brown oil. The crude 

product was purified using column chromatography (3:2 EtOAc−hexane) and a yellow 

solid obtained. The solid was crystallised from toluene. The title compound 98 

(34 mg, 0.094 mmol, 31%) collected as colourless fluffy microneedles. 

1H NMR (500 MHz, DMSO-d6): 8.13 (1H, d, J 8.5, 4-H), 7.98 (1H, s, 2’’’-H), 7,87 

(1H, app.d, J 8.0, 6’’’-H), 7.81 (1H, s, 7-H), 7.52 (1H, dd, J 8.5 and 1.5, 5-H), 7.47 

(1H, app.t, J 8.0, 5’’’-H), 7.34 (1H, app.d, J 7.5, 4’’’-H), 7.16 (1H, app.dt, J 10.0 and 

1.5, 2’’-H), 7.12 (1H, app.t, J 1.5, 6’’-H), 6.84 (1H, app.dt, J 11.0 and 2.0, 4’’-H), 5.28 

(1H, br.t, J 4.0, OH), 4.61 (2H, d, J 4.0, CH2OH), 4.14 (2H, q, J 7.0, CH2), 1.36 (3H, 

t, J 7.0, CH3), indazole NH not observed; 13C NMR (125 MHz, DMSO-d6): 163.4 (d, 

J 241.9, 3’’-C), 160.3 (d, J 12.0, 5’’-C), 143.3 (d, J 10.1, 1’’-C), 143.3 (Ar-q), 143.2 

(Ar-q), 142.1 (3’-C), 137.1 (d, J 2.4, 6-C), 133.4 (3-C), 128.6 (5’’’-C), 125.8 (4’’’-C), 

125.0 (6’’’-C), 124.7 (2’’’-C), 121.2 (4-C), 120.7 (5-C), 119.8 (7’-C), 109.6 (d, J 1.9, 

6’’-C), 108.5 (7-C), 106.0 (d, J 22.6, 2’’-C), 100.9 (d, J 25.2, 4’’-C), 63.7 (CH2), 62.9 

(CH2OH), 14.5 (CH3); LC-MS (ES): RT = 1.98-2.15 min, m/z = 362.8 (M+H+); 

Rf: 0.29 (7:3 EtOAc−hexane); HPLC: RT = 1.77 min; m/z (ES+): Found: 363.1515 

(M+H+), C22H19FN2O2 requires MH 363.1503; IR:νmax/cm-1 (solid): 3166 (N-H), 

2985, 2873, 1588; M.pt: 171.2-171.8 °C; Found: C,73.1; H, 5.30; N, 7.8; 

C22H19FN2O2 requires C, 72.9; H, 5.28; N, 7.7%. 
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Preparation of 6-(3-ethoxy-5-fluorophenyl)-3-(3-ethylphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-(3-

ethoxy-5-fluorophenyl)-1H-indazole (100 mg, 

0.30 mmol, 1.0 eq), 3-ethylphenylboronic acid 

(67 mg, 0.45 mmol, 1.5 eq), Pd(dppf)Cl2•DCM 

(24 mg, 0.03 mmol, 0.1 eq), Na2CO3 (95 mg, 

0.90 mmol, 3.0 eq), dioxane (5 mL) and water 

(5 mL) and the reaction heated for 2 h. LC-MS analysis showed the reaction to be 

incomplete and therefore Pd(dppf)Cl2•DCM (24 mg, 0.03 mmol, 0.1 eq) and Na2CO3 

(95 mg, 0.90 mmol, 3.0 eq) were added and the reaction heated for a further 2 h. 

LC-MS analysis showed the reaction to be incomplete and therefore 

Pd(dppf)Cl2•DCM (24 mg, 0.03 mmol, 0.1 eq) was added and the reaction heated for 

a further 1.5 h. The work up proceeded using the larger volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown oil. The crude product was 

purified using column chromatography (1:9 EtOAc−hexane) and a colourless glassy 

solid obtained. The glassy solid was dissolved in Et2O and reduced in vacuo. 

The title compound 99 (28 mg, 0.078 mmol, 25%) as an off-white hygroscopic foamy 

solid. 

1H NMR (500 MHz, CDCl3): 8.06 (1H, d, J 8.5, 4-H), 7.89 (1H, s, 2’’’-H), 7.87 (1H, 

d, J 8.0, 6’’’-H), 7.49 (1H, app.t, J 7.5, 5’’’-H), 7.42 (1H, dd, J 8.5 and 1.5, 5-H), 

7.33-7.29 (2H, m, 7-H and 4’’’-H), 6.93 (1H, app.t, J 1.5, 6’’-H), 6.85 (1H, app.dt, 

J 9.5 and 1.5, 4’’-H), 6.64 (1H, app.dt, J 10.5 and 2.0, 2’’-H), 4.10 (2H, q, J 7.0, 

OCH2), 2.73 (2H, q, J 7.5, CH2), 1.48 (3H, t, J 7.0, OCH2CH3), 1.26 (3H, t, J 7.5, 

CH3), NH not observed; 13C NMR (125 MHz, CDCl3): 163.8 (d, J 244.4, 3’’-C), 

160.5 (d, J 11.5, 5’’-C), 146.0 (1’’’-C), 145.1 (3’’’-C), 143.7 (d, J 9.9, 1’’-C), 142.2 

(3’-C), 139.1 (d, J 2.6, 6-C), 133.3 (3-C), 129.0 (5’’’-C), 128.2 (4’’’-C), 127.3 

(2’’’-C), 125.2 (6’’’-C), 121.5 (5-C), 121.3 (4-C), 120.7 (7’-C), 110.0 (d, J 2.5, 6’’-C), 

108.5 (7-C), 106.7 (d, J 22.6, 4’’-C), 100.8 (d, J 25.1, 2’’-C), 64.0 (OCH2), 28.9 (CH2), 

15.5 (CH3), 14.8 (OCH2CH3); LC-MS (ES): RT = 2.40-2.56 min, m/z = 360.6 

(M+H+); Rf: 0.53 (1:1 EtOAc−hexane); HPLC: RT = 3.35 min (97%); 

m/z (ES+): Found: 383.1529 (M+Na+), C23H21FN2NaO requires MH 383.1530; 

IR:νmax/cm-1 (solid): 3166 (N-H), 2965, 2928, 1585. 
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Preparation of {3-[6-(3-ethoxy-5-methylphenyl)-1H-indazol-3-

yl]phenyl}methanamine 

Synthesised using method A using 3-bromo-6-

(3-ethoxy-5-methylphenyl)-1H-indazole (86 mg, 

0.26 mmol, 1.0 eq), 3-

(aminomethyl)phenylboronic acid•HCl (97 mg, 

0.52 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (64 mg, 

0.078 mmol, 0.3 eq), Na2CO3 (124 mg, 1.17 

mmol, 4.5 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 6 h. The 

work up proceeded using the larger volumes of solvents and the organic solvent 

removed in vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (3:10:87 7.0 M NH3 in MeOH−MeOH−EtOAc) and a brown solid 

obtained. The solid was further purified using preparative HPLC (50-95% 

MeOH−H2O−0.1% formic acid) and a brown solid obtained. The solid was triturated 

in Et2O and the solid then filtered washing with DCM. The title compound 100 

(22 mg, 0.06 mmol, 24%) was collected as an off-white solid. 

1H NMR (500 MHz, CD3OD): 8.53 (1H, br.s, formate-H), 8.13 (1H, d, J 8.8, 4-H), 

8.08 (1H, s, 2’’’-H), 8.06 (1H, d, J 7.7, 6’’’-H), 7.74 (1H, s, 7-H), 7.63 (1H, t, J 7.7, 

5’’’-H), 7.51 (2H, m,  4’’’-H and 5-H), 7.10 (1H, s, 6’’-H), 7.02 (1H, s, 2’’-H), 6.78 

(1H, s, 4’’-H), 4.24 (2H, s, CH2NH2)*, 4.11 (2H, q, J 7.0, CH2CH3), 2.41 (3H, s, CH3), 

1.42 (3H, t, J 7.0, CH2CH3), indazole NH not observed; 13C NMR (125 MHz, 

DMSO-d6): 159.0 (3’’-C), 142.9 (3-C), 142.3 (3’’’-C), 141.7 (7’-C), 139.5 (5’’-C), 

138.5 (1’’-C), 133.8 (1’’’-C), 128.9 (5’’’-C), 127.6 (4’’’-C), 126.4 (2’’’-C), 125.8 

(6’’’-C), 121.2 (4-C), 120.8 (5-C), 120.2 (6’’-C), 119.5 (3’-C), 114.2 (4’’-C), 110.4 

(2’’-C), 108.2 (7-C), 63.0 (CH2CH3), 21.3 (CH3), 14.7 (CH2CH3), three Ar-qs not 

observed; LC-MS (ES): RT =  1.81-2.20 min, m/z = 358.7 (M+H+); Rf: 0.14 (5:10:85 

7.0 M NH3 in MeOH−MeOH−EtOAc); HPLC: RT = 3.28 min; m/z (ES+): Found: 

358.1915 (M+H+), C23H24N3O requires MH 358.1919; IR:νmax/cm-1 (solid): 2974, 

2872, 1591; M.pt: 176.4-177.9 °C.  

* CH2NH2 peak not observed in the 1H NMR when ran in DMSO-d6 but present when 

ran in CD3OD. Compound had poor solubility in CD3OD and therefore 13C NMR was 

ran in DMSO-d6. 
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Preparation of {3-[6-(3-ethoxy-5-methylphenyl)-1H-indazol-3-yl]phenyl}methanol 

Synthesised using method A using 3-bromo-6-(3-

ethoxy-5-methylphenyl)-1H-indazole (97 mg, 

0.29 mmol, 1.0 eq), 3-

hydroxymethylphenylboronic acid (67 mg, 

0.44 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (48 mg, 

0.058 mmol, 0.2 eq), Na2CO3 (93 mg, 0.88 mmol, 

3.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 3 h. LC-MS 

analysis showed the reaction to be incomplete and therefore Pd(dppf)Cl2•DCM 

(24 mg, 0.029 mmol, 0.1 eq) and Na2CO3 (47 mg, 0.44 mmol, 1.5 eq) were added and 

the reaction heated for a further 1 h. The work up proceeded using the larger volumes 

of solvents and the organic solvent removed in vacuo to reveal a brown oil. The crude 

product was purified using column chromatography (3:1 EtOAc−hexane) and a pale 

yellow solid obtained. The solid was triturated with DCM and the solid filtered. The 

solid was crystallised from toluene. The title compound 101 (18 mg, 0.06 mmol, 18%) 

was collected as colourless crystals. 

1H NMR (500 MHz, DMSO-d6): 8.12 (1H, d, J 8.6, 4-H), 7.99 (1H, s, 2’’’-H), 7.88 

(1H, d, J 7.5, 6’’’-H), 7.76 (1H, s, 7-H), 7.50-7.45 (2H, m, 5-H and 5’’’-H), 7.35 (1H, 

d, J 7.8, 4’’’-H), 7.13 (1H, s, 6’’-H), 7.05 (1H, s, 2’’-H), 6.79 (1H, s, 4’’-H), 5.30 (1H, 

t, J 5.8, OH), 4.62 (2H, d, J 5.8, CH2OH), 4.11 (2H, q, J 7.0, CH2CH3), 2.37 (3H, s, 

CH3), 1.36 (3H, t, J 7.0, CH2CH3), NH peak not observed; 13C NMR (125 MHz, 

DMSO-d6): 159.0 (3’’-C), 143.3 (3-C), 143.2 (3’’’-C), 142.2 (1’’’-C), 141.7 (7’-C), 

139.5 (5’’-C), 138.5 (1’’-C), 133.5 (6-C), 128.6 (5’’’-C), 125.8 (4’’’-C), 125.0 

(6’’’-C), 124.7 (2’’’-C), 121.0 (4-C), 120.9 (5-C), 120.2 (6’’-C), 119.5 (3’-C), 114.3 

(4’’-C), 110.4 (2’’-C), 108.1 (7-C), 63.0 (CH2CH3), 62.9 (CH2OH), 21.3 (CH3), 14.7 

(CH2CH3); LC-MS (ES): RT =  2.01-2.11 min, m/z = 359.6 (M+H+); Rf: 0.36 (4:1 

EtOAc–petrol); HPLC: RT = 1.64 min; m/z (ES+): Found: 359.1772 (M+H+), 

C23H23N2O2 requires MH 359.1760; IR:νmax/cm-1 (solid): 3122 (br.OH), 2978, 2918, 

1589; M.pt: 157.8-158.1 °C. 
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Preparation of 6-(3-ethoxy-5-methylphenyl)-3-(3-ethylphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-(3-

ethoxy-5-methylphenyl)-1H-indazole (100 mg, 

0.03 mmol, 1.0 eq), 3-ethylphenylboronic acid 

(68 mg, 0.45 mmol, 1.5 eq), Pd(dppf)Cl2•DCM 

(50 mg, 0.06 mmol, 0.2 eq), Na2CO3 (96 mg, 

0.91 mmol, 3.0 eq), dioxane (5 mL) and water 

(5 mL) and the reaction heated for 3 h. The work up proceeded using the larger 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown oil. 

The crude product was purified using column chromatography (1:4 EtOAc−hexane). 

The title compound 102 (37 mg, 0.10 mmol, 23%) was collected as an off-white 

foamy solid. 

1H NMR (500 MHz, CDCl3): 10.97 (1H, br.s, NH), 8.06 (1H, d, J 8.6, 4-H), 7.88 

(1H, s, 2’’’-H), 7.86 (1H, d, J 7.8, 6’’’-H), 7.53 (1H, s, 7-H), 7.49-7.46 (2H, m, 5-H 

and 5’’’-H), 7.29 (1H, d, J 7.6, 4’’’-H), 7.04 (1H, s, 6’’-H), 6.99 (1H, s, 2’’-H), 6.77 

(1H, s, 4’’-H), 4.12 (2H, q, J 7.0, OCH2), 2.76 (2H, q, J 7.7, CH2), 2.43 (3H, s, CH3), 

1.47 (3H, t, J 7.0, OCH2CH3), 1.30 (3H, t, J 7.7, CH2CH3); 13C NMR (125 MHz, 

CDCl3): 159.4 (3’’-C), 146.0 (3-C), 145.0 (3’’’-C), 142. 4 (1’’’-C), 142.4 (7’-C), 

140.4 (1’’-C), 139.8 (5’’-C), 133.5 (6-C), 128.9 (5-C), 127.9 (4’’’-C), 127.2 (2’’’-C), 

125.0 (6’’’-C), 121.7 (5’’’-C), 121.3 (4-C), 120.9 (6’’-C), 120.4 (3’-C), 114.4 (4’’-C), 

111.2 (2’’-C), 108.2 (7-C), 63.5 (OCH2), 29.0 (CH2CH3), 21.7 (CH3), 15.6 (CH2CH3), 

15.0 (OCH2CH3); LC-MS (ES): RT =  2.40-2.63 min, m/z = 358.1 (M+H+); Rf: 0.58 

(1:1 EtOAc–petrol); HPLC: RT = 3.21 min; m/z (ES+): Found: 357.1970 

(M+H+), C24H25N2O requires MH 357.1967; IR:νmax/cm-1 (solid): 3164 (N-H), 3083, 

2964, 2923, 1590; M.pt: 47.0-49.5 °C. 

Preparation of {3-[6-(3-ethoxy-2-fluorophenyl)-1H-indazol-3-

yl]phenyl}methanamine 

Synthesised using method A using 3-bromo-6-

(3-ethoxy-2-fluorophenyl)-1H-indazole (150 

mg, 0.45 mmol, 1.0 eq), 3-

(aminomethyl)phenylboronic acid•HCl (126 mg, 

0.67 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (37 mg, 

0.045 mmol, 0.1 eq), Na2CO3 (237 mg, 2.24 



Chapter Six – Experimental  

 

187 

 

mmol, 5.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 2 h. 

LC-MS analysis showed the reaction to be incomplete and therefore 

3-(aminomethyl)phenylboronic acid•HCl (42 mg, 0.22 mmol, 0.5 eq), 

Pd(dppf)Cl2•DCM (37 mg, 0.045 mmol, 0.1 eq) and Na2CO3 (71 mg, 0.67 mmol, 

1.5 eq) were added and the reaction heated for a further 2 h. The work up proceeded 

using the larger volumes of solvents and the organic solvent removed in vacuo to 

reveal a brown oil. The crude product was purified using column chromatography 

(3:10:87 7.0 M NH3 in MeOH−MeOH−EtOAc) and a brown solid obtained. The solid 

was crystallised from propan-2-ol and these crystals further recrystallised from 

toluene. The title compound 103 (37 mg, 0.10 mmol, 23%) was collected as pale 

brown crystals. 

1H NMR (500 MHz, DMSO-d6): 8.17 (1H, d, J 8.5, 4-H), 8.00 (1H, s, 2’’’-H), 7.85 

(1H, d, J 7.8, 6’’’-H), 7.69 (1H, s, 7-H), 7.46 (1H, app.t, J 7.6, 5’’’-H), 7.37-7.33 (2H, 

m, 4’’’-H and 5-H), 7.24-7.16 (2H, m, 5’’-H and 6’’-H), 7.13 (1H, app.td, J 7.1 and 

1.7, 4’’-H), 4.17 (2H, q, J 7.0, CH2CH3), 3.84 (2H, s, CH2NH2), 3.31 (2H, br.s, NH2), 

1.39 (3H, t, J 7.0, CH2CH3) ; 13C NMR (125 MHz, DMSO-d6): 149.0 (d, J 245.4, 

2’’-C), 147.0 (d, J 11.1, 3’’-C), 145.0 (3-C), 143.4 (3’’’-C), 141.8 (3’-C), 133.4 

(1’’’-C), 132.9 (6-C), 129.2 (d, J 10.6, 1’’-C), 128.6 (5’’’-C), 126.5 (4’’’-C), 125.4 

(2’’’-C), 124.6 (6’’’-C), 124.5 (d, J 4.8, 5’’-C), 122.3 (d, J 2.3, 5-C), 121.9 (d, J 2.1, 

4’’-C), 120.9 (4-C), 119.5 (7’-C), 114.0 (6’’-C), 110.6 (d, J 3.3, 7-C), 64.4 (CH2CH3), 

45.7 (CH2NH2), 14.6 (CH2CH3); LC-MS (ES): RT = 1.95-2.05 min, m/z = 362.1 

(M+H+); Rf: 0.34 (1:1:8 7.0 M NH3 in MeOH−MeOH−EtOAc); HPLC: RT = 3.39 

min; m/z (ES+): Found: 362.1675 (M+H+),  C22H21FN3O requires MH 362.1669; 

IR:νmax/cm-1 (solid): 3327 (N-H), 3260 (N-H), 3075, 2980, 1607; 

M.pt: 164.9-165.3 °C. 

Preparation of {3-[6-(3-ethoxy-2-fluorophenyl)-1H-indazol-3-yl]phenyl}methanol 

Synthesised using method A using 3-bromo-6-(3-

ethoxy-2-fluorophenyl)-1H-indazole (150 mg, 

0.45 mmol, 1.0 eq), 3-

hydroxymethylphenylboronic acid (102 mg, 

0.68 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (37 mg, 

0.045 mmol, 0.1 eq), Na2CO3 (142 mg, 

1.34 mmol, 3.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 1 h. 
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The work up proceeded using the larger volumes of solvents and the organic solvent 

removed in vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (gradient 50-60% EtOAc−hexane) and an off-white solid obtained. 

The solid was triturated with DCM and the solid filtered. The solid was crystallised 

from propan-2-ol. The title compound 104 (26 mg, 0.07 mmol, 16%) was collected as 

colourless crystals. 

1H NMR (500 MHz, DMSO-d6): 8.16 (1H, d, J 8.4, 4-H), 8.00 (1H, s, 2’’’-H), 7.89 

(1H, d, J 7.8, 6’’’-H), 7.69 (1H, s, 7-H), 7.48 (1H, app.t, J 7.8, 5’’’-H), 7.37-7.34 (2H, 

m, 4’’’-H and 5-H), 7.24-7.16 (2H, m, 5’’-H and 6’’-H), 7.14 (1H, app.td, J 7.0 and 

2.0, 4’’-H), 5.29 (1H, t, J 5.8, OH), 4.62 (2H, d, J 5.8, CH2OH), 4.17 (2H, q, J 7.0, 

CH2CH3), 1.39 (3H, t, J 7.0, CH2CH3), NH peak not observed; 13C NMR (125 MHz, 

DMSO-d6): 149.0 (d, J 246.4, 2’’-C), 147.0 (d, J 12.2, 3’’-C), 143.3 (3-C), 143.2 

(3’’’-C), 141.7 (3’-C), 133.4 (1’’’-C), 133.0 (6-C), 129.3 (1’’-C), 128.6 (5’’’-C), 125.8 

(4’’’-C), 125.1 (6’’’-C), 124.7 (2’’’-C), 124.5 (d, J 4.8, 5’’-C), 122.3 (d, J 2.3, 5-C), 

121.9 (d, J 1.7, 4’’-C), 120.8 (4-C), 119.5 (7’-C), 114.0 (6’’-C), 110.6 (d, J 3.2, 7-C), 

64.4 (CH2CH3), 62.9 (CH2OH), 14.6 (CH2CH3); LC-MS (ES): RT =  1.91-2.12 min, 

m/z = 362.8 (M+H+); Rf: 0.41 (4:1 EtOAc–petrol); HPLC: RT = 3.81 min; 

m/z (ES+): Found: 363.1513 (M+H+), C22H20FN2O2 requires MH 363.1509; 

IR:νmax/cm-1 (solid): 3120 (br.OH), 3032, 2924, 2881, 1610; M.pt: 190.3-192.5 °C. 

Preparation of 6-(3-ethoxy-2-fluorophenyl)-3-(3-ethylphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-(3-

ethoxy-2-fluorophenyl)-1H-indazole (110 mg, 

0.33 mmol, 1.0 eq), 3-ethylphenylboronic acid 

(74 mg, 0.49 mmol, 1.5 eq), Pd(dppf)Cl2•DCM 

(27 mg, 0.033 mmol, 0.1 eq), Na2CO3 (104 mg, 

0.98 mmol, 3.0 eq), dioxane (5 mL) and water (5 mL) and the reaction heated for 2 h. 

LC-MS analysis showed the reaction to be incomplete and therefore 

Pd(dppf)Cl2•DCM (27 mg, 0.033 mmol, 0.1 eq) and Na2CO3 (52 mg, 0.49 mmol, 

1.5 eq) were added and the reaction heated for a further 2 h. The work up proceeded 

using the larger volumes of solvents and the organic solvent removed in vacuo to 

reveal a brown oil. The crude product was purified using column chromatography 

(1:4 EtOAc−hexane) and a glassy solid obtained. The glassy solid was dissolved in 
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Et2O and reduced in vacuo. The title compound 105 (37 mg, 0.10 mmol, 31%) was 

collected as a colourless foamy solid. 

1H NMR (500 MHz, CDCl3): 10.60 (1H, br.s, NH), 8.08 (1H, d, J 8.5, 4-H), 7.86 

(1H, s, 2’’’-H), 7.83 (1H, d, J 7.8, 6’’’-H), 7.61 (1H, s, 7-H), 7.45 (1H, app.t, J 7.6, 

5’’’-H), 7.42 (1H, app.dt, J 8.5 and 1.5, 5-H), 7.27 (1H, d, J 7.4, 4’’’-H), 7.14 (1H, 

app.td, 8.0 and 1.3, 5’’-H), 7.07-7.04 (1H, m, 6’’-H), 7.00 (1H, app.td, J 8.0 and 1.5, 

4’’-H), 4.19 (2H, q, J 7.0, OCH2CH3), 2.77 (2H, q, J 7.5, CH2CH3), 1.51 (3H, t, J 7.0, 

OCH2CH3), 1.32 (3H, t, J 7.5, CH2CH3); 13C NMR (125 MHz, CDCl3): 150.0 (d, 

J 248.9, 2’’-C), 147.6 (d, J 11.8, 3’’-C), 146.1 (3-C), 144.9 (3’’’-C), 141.9 (3’-C), 

134.5 (6-C), 133.4 (1’’’-C), 129.9 (d, J 11.8, 1’’-C), 128.9 (5’’’-C), 127.9 (4’’’-C), 

127.1 (2’’’-C), 125.0 (6’’’-C), 123.9 (d, J 5.2, 5’’-C), 123.0 (d, J 2.1, 5-C), 122.3 (d, 

J 2.0, 6’’-C), 121.1 (4-C), 120.5 (6’’’-C), 113.9 (d, J 1.6, 4’’-C), 110.4 (d, J 3.2, 7-C), 

65.2 (OCH2CH3), 29.0 (CH2CH3), 15.6 (CH2CH3), 14.9 (OCH2CH3); LC-MS (ES): 

RT =  2.32-2.42 min, m/z = 361.1 (M+H+); Rf: 0.47 (1:1 EtOAc–petrol); HPLC: 

RT = 1.49 min; m/z (ES+): Found: 361.1710 (M+H+), C23H22FN2O requires MH 

361.1716; IR:νmax/cm-1 (solid): 3168 (N-H), 2965, 2930, 1609; M.pt: 43.6-49.6 °C. 

Preparation of 3-chloro-6-iodo-1H-indazole 

6-Iodo-1H-indazole (1.0 g, 4.10 mmol, 1.0 eq) was dissolved in DMF 

(10 mL) and cooled to 0 °C. NCS (657 mg, 4.92 mmol, 1.2 eq) was 

added and the reaction mixture warmed to 20 °C and stirred for 24 h. 

LC-MS analysis showed the reaction to be incomplete and therefore 

NCS (164 mg, 1.23 mmol, 0.3 eq) was added and the reaction stirred for 68 h. Water 

(10 mL) was added and the resulting solid was filtered and washed with water. The 

crude solid was purified by column chromatography (5:95 EtOAc−hexane). 

The title compound 109 (285 mg, 1.02 mmol, 25%) was collected as off-white 

microneedles. 

1H NMR (500 MHz, DMSO-d6): 7.98 (1H, dd, J 1.2 and 0.8, 7-H), 7.49 (1H, dd, J 8.5 

and 1.2, 5-H), 7.46 (1H, dd, J 8.5 and 0.8, 4-H), NH not observed; 

13C NMR (125 MHz, DMSO-d6): 142.3 (3’-C), 132.6 (3-C), 130.0 (4-C), 120.4 

(5-C), 119.6 (7-C), 118.7 (7’-C), 93.9 (6-C); LC-MS (ES): RT = 1.93-2.05 min, 

m/z = 279.0 (M+H+); Rf: 0.30 (1:4 EtOAc−hexane); HPLC: RT = 3.21 min; 

m/z (ES-): Found: 276.9036 (M-H), C7H3ClIN2 requires M-H 276.9035; 
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IR:νmax/cm-1 (solid): 3195 (N-H), 3134, 3077, 2971, 2916, 1615; M.pt: 211.7-215.3 

°C; Found: C,30.4; H, 1.40; N, 10.1; C7H4ClIN2 requires C, 30.2; H, 1.45; N, 10.1%.  

Preparation of 3-chloro-1-(2,5-dichlorobenzenesulfonyl)-6-iodo-1H-indazole 

NaH 60% dispersion in oil (16 mg, 0.40 mmol, 1.1 eq) was 

charged with nitrogen in a RB flask at 0 °C. 3-Chloro-6-iodo-

1H-indazole (100 mg, 0.36 mmol, 1.0 eq) was dissolved in DMF 

(1 mL) and added dropwise to the NaH and left to stir for two 

minutes. The reaction was allowed to warm to room temperature 

and stirred for a further 20 minutes. 

2,5-Dichlorobenzenesulfonyl chloride (132 mg, 0.54 mmol, 

1.5 eq) was dissolved in DMF (1 mL) and added in one portion to the reaction mixture 

and stirred for 1 h. Once complete, water (10 mL) was added and the resulting 

precipitate filtered and washed with water. The crude product was purified using 

column chromatography (1:9 EtOAc−hexane). The title compound 112 (46 mg, 

0.094 mmol, 26%) was collected as colourless flakes. 

1H NMR (500 MHz, DMSO-d6): 8.47 (1H, dd, J 1.3 and 0.6, 7-H), 8.31 (1H, d, J 2.5, 

6’’-H), 7.93 (1H, dd, J 8.6 and 2.5, 4’’-H), 7.89 (1H, dd, J 8.4 and 1.3, 5-H), 7.77 (1H, 

d, J 8.6, 3’’-H), 7.66 (1H, dd, J 8.4 and 0.6, 4-H); 13C NMR (125 MHz, DMSO-d6): 

142.4 (3’-C), 142.2 (Ar-q), 136.8 (4’’-C), 135.0 (7’-C), 134.5 (3’’-C), 134.3 (5-C), 

133.0 (Ar-q), 131.5 (6’’-C), 130.8 (Ar-q), 122.1 (4-C), 121.9 (7-C), 121.5 (Ar-q), 99.2 

(Ar-q); LC-MS (ES): RT = 2.46-2.54 min, m/z = 510.7 (MCl37+Na+); Rf: 0.46 

(1:4 EtOAc−hexane); HPLC: RT = 3.28 min; m/z (ES+): Found: 508.8156 

(M+Na), C13H6Cl3IN2NaO2S requires MNa 508.8153; IR:νmax/cm-1 (solid): 3112, 

3092, 2922, 2853, 1595; M.pt: 204.8-206.6 °C; Found: C,32.5; H, 1.30; N, 5.6; 

C13H6Cl3IN2O2S requires C, 32.0; H, 1.20; N, 5.8%. 

Preparation of tert-butyl 3-chloro-6-iodo-1H-indazole-1-carboxylate 

3-Chloro-6-iodo-1H-indazole (100 mg, 0.36 mmol, 1.0 eq) was 

suspended in DCM (2 mL) at 0 °C. Di-tert-butyl dicarbonate (137 μL, 

0.60 mmol, 1.7 eq) and Et3N (55 μL, 0.395 mmol, 1.1 eq) were added 

and the reaction stirred at room temperature for 66 h. Once complete, 

water (5 mL) was added and the organic layer separated. The aqueous layer was 

extracted with DCM (2 × 10 mL) and the combined organic layers washed with brine 
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(20 mL), dried (MgSO4) and the filtrate concentrated in vacuo to reveal an orange 

solid. The crude product was dissolved in DCM (10 mL) and purified by silica plug 

(DCM). The title compound 113 (120 mg, 0.32 mmol, 88%) was collected as a 

colourless oil which solidified upon standing to a yield pearlescent white solid. 

1H NMR (500 MHz, CDCl3): 8.65 (1H, s, 7-H), 7.69 (1H, dd, J 8.5 and 1.5, 5-H), 

7.43 (1H, d, J 8.5, 4-H), 1.72 (9H, s, tBu CH3); 13C NMR (125 MHz, CDCl3): 148.2 

(C=O), 141.5 (3-C), 140.9 (3’-C), 133.4 (5-C), 124.2 (7-C), 122.9 (6-C), 121.0 (4-C), 

96.7 (7’-C), 86.1 (C(CH3)3), 28.1 (tBu CH3); LC-MS (ES): RT = 2.34-2.61 min, 

m/z = 401.1 (M+Na+); Rf: 0.55 (1:4 EtOAc−hexane); HPLC: RT = 2.94 min; 

m/z (ES+): Found: 400.9524 (M+Na), C12H12ClIN2NaO2 requires MNa 400.9524; 

IR:νmax/cm-1 (solid): 3103, 2996, 2930, 1769, 1744 (C=O); M.pt: 113.8-115.8 °C; 

Found: C,38.3; H, 3.20; N, 7.2; C12H12ClIN2O2 requires C, 38.1; H, 3.19; N, 7.4%. 

Preparation of 3-benzamido-6-(3-ethoxyphenyl)-1H-indazol-2-ium trifluoroacetate 

Synthesised using method C using tert-

butyl 3-benzamido-6-(3-ethoxyphenyl)-1H-

indazole-1-carboxylate (176 mg, 0.38 mmol, 

1.0 eq), TFA (1 mL) and DCM (1 mL) and the 

reaction stirred for 1.5 h. The crude brown solid 

was triturated with MeOH and the solid filtered. 

The title compound 115 was collected as an off-white solid (45 mg, 0.10 mmol, 25%). 

1H NMR (500 MHz, DMSO-d6): 10.82 (1H, br.s, amide NH), 8.10 (2H, m, 2’’’-H 

and 6’’’-H), 7.79 (1H, dd, J 8.5 and 1.0, 4-H), 7.67 (1H, dd, J 1.5 and 1.0, 7-H), 7.61 

(1H, app.tt, J 7.5 and 1.5, 4’’’-H), 7.56-7.52 (2H, m, 3’’’-H and 5’’’-H), 7.40-7.36 

(2H, m, 5-H and 5’’-H), 7.28 (1H, ddd, J 7.5, 1.5 and 1.0, 6’’-H), 7.23 (1H, app.t, 

J 1.5, 2’’-H), 6.94 (1H, ddd, J 8.0, 2.5 and 0.5, 4’’-H), 4.12 (2H, q, J 7.0, CH2CH3), 

1.36 (3H, t, J 7.0, CH3), indazole NH not observed; 13C NMR (125 MHz, DMSO-d6): 

165.5 (amide C=O), 159.0 (3’’-C), 142.0 (1’’-C), 141.7 (Ar-q), 140.1 (Ar-q), 138.6 

(6-C), 133.8 (1’’’-C), 131.8 (4’’’-C), 130.0 (5’’-C), 128.4 (3’’’-C and 5’’’-C), 127.9 

(2’’’-C and 6’’’-C), 122.4 (4-C), 119.5 (5-C), 119.4 (6’’-C), 116.3 (3-C), 113.5 (4’’-

C), 113.1 (2’’-C), 107.8 (7-C), 63.1 (CH3CH2), 14.7 (CH3); LC-MS (ES): RT = 0.6-

0.7 min, m/z = 358.23 (M+H+); Rf: 0.29 (1:1 EtOAc−petrol); HPLC: RT = 3.21 min; 

m/z (ES+): Found: 380.1365 (M+Na+), C22H19N3NaO2 requires MNa 380.1369; 
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IR:νmax/cm-1 (solid): 3343 (N-H), 3250 (N-H), 3054, 2969, 2876, 1637 (C=O), 1574; 

M.pt: 189.8-191.1 °C. 

Preparation of 3-cyclohexaneamido-6-(3-ethoxyphenyl)-1H-indazol-2-ium 

trifluoroacetate 

Synthesised using method C using tert-butyl 3-

cyclohexaneamido-6-(3-ethoxyphenyl)-1H-

indazole-1-carboxylate (110 mg, 0.24 mmol, 

1.0 eq), TFA (1 mL) and DCM (1 mL) and the 

reaction stirred for 1.5 h. The crude brown solid 

was triturated with MeOH and the solid filtered. 

The title compound 116 was collected as a pink solid (43 mg, 0.09 mmol, 38%). 

1H NMR (500 MHz, DMSO-d6): 12.64 (1H, br.s, indazole NH), 10.20 (1H, br.s, 

amide NH), 7.78 (1H, d, J 8.5, 4-H), 7.60 (1H, s, 7-H), 7.37 (1H, app.t, J 7.5, 5’’-H), 

7.33 (1H, br.d, J 8.5, 5-H), 7.25 (1H, br.d, J 7.5, 6’’-H), 7.20 (1H, app.t, J 2.0, 2’’-H), 

6.93 (1H, ddd, J 8.0, 2.5 and 0.5, 4’’-H), 4.11 (2H, q, J 7.0, CH2CH3), 2.51-2.47 (1H, 

m, cyclohexyl-CH2) 1.90-1.84 (2H, m, cyclohexyl-CH2), 1.80-1.74 (2H, m, 

cyclohexyl-CH2), 1.68-1.63 (1H, m, cyclohexyl-CH), 1.52-1.43 (2H, m, 

cyclohexyl-CH2), 1.35 (3H, t, J 7.0, CH3), 1.31-1.15 (3H, m, cyclohexyl-CH2); 

13C NMR (125 MHz, DMSO-d6): 174.4 (amide C=O), 159.0 (3’’-C), 142.1 (1’’-C), 

141.6 (Ar-q), 140.4 (Ar-q), 138.5 (6-C), 130.0 (5’’-C), 122.7 (4-C), 119.4 (6’’-C), 

119.1 (5’’-C), 115.7 (3-C), 113.5 (4’’-C), 113.1 (2’’-C), 107.6 (7-C), 63.0 (CH2CH3), 

43.8 (cyclohexyl-C), 29.2 (cyclohexyl-C), 25.4 (cyclohexyl-C), 25.2 (cyclohexyl-C), 

14.7 (CH3); LC-MS (ES): RT = 0.6-0.7 min, m/z = 364.30 (M+H+); Rf: 0.25 

(1:1 EtOAc−petrol); HPLC: RT = 3.39 min; m/z (ES+): Found: 386.1835 

(M+Na+), C22H25N3NaO2 requires MNa 386.1839; IR:νmax/cm-1 (solid): 3264 (N-H), 

3233 (N-H), 2928, 2853, 1668 (C=O); M.pt: 232.8-234.6 °C. 
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Preparation of 3-(benzylamino)-6-(3-ethoxyphenyl)-1H-indazol-2-ium 

trifluoroacetate 

Synthesised using method C using tert-

butyl 3-(benzylamino)-6-(3-ethoxyphenyl)-1H-

indazole-1-carboxylate (80 mg, 0.18 mmol, 1.0 eq), 

TFA (0.5 mL) and DCM (0.5 mL) and stirred for 

2.5 h. The crude product was purified by column 

chromatography (gradient 10-20% 

EtOAc−hexane). The title compound 117 was collected as a red glassy solid (18 mg, 

0.04 mmol, 22%). 

1H NMR (500 MHz, CDCl3): 7.58 (1H, d, J 8.5, 4-H), 7.49-7.46 (3H, m, 7-H, 2’’’-H 

and 6’’’-H), 7.40-7.34 (3H, m, 5’’-H, 3’’’-H and 5’’’-H), 7.33-7.27 (2H, m, 5-H and 

4’’’-H), 7.21 (1H, dd, J 7.5 and 1.0, 6’’-H), 7.17 (1H, app.t, J 2.0, 2’’-H), 6.91 (1H, 

ddd, J 8.5, 2.5 and 1.0, 4’’-H), 4.67 (2H, s, NHCH2), 4.11 (2H, q, J 7.0, CH2CH3), 

1.46 (3H, t, J 7.0, CH3), NHs not observed; 13C NMR (125 MHz, CDCl3): 159.3 

(3’’-C), 150.6 (3-C), 143.2 (Ar-q), 142.8 (Ar-q), 141.0 (6-C), 139.6 (1’’’-C), 129.8 

(5’’-C), 128.6 (3’’’-C and 5’’’-C), 127.9 (2’’’-C and 6’’’-C), 127.4 (4’’’-C), 119.9 

(6’’-C), 119.4 (4-C), 119.3 (5-C), 113.9 (2’’-C), 113.5 (4’’-C), 108.0 (7-C), 105.0 

(Ar-q), 63.5 (CH2CH3), 48.3 (NHCH2), 14.9 (CH3); LC-MS (ES): RT = 0.6-0.7 min, 

m/z = 344.28 (M+H+); Rf: 0.60 (7:3 EtOAc−petrol); HPLC: RT = 2.92 min 

(71% - degrades overtime); m/z (ES+): Found: 344.1757 (M+H+), C22H22N3O 

requires MH 344.1757; IR:νmax/cm-1 (solid): 3350 (N-H), 3061, 2976, 2926, 1599. 

Preparation of N-(cyclohexylmethyl)-6-(3-ethoxyphenyl)-1H-indazol-3-amine 

Synthesised using method B using 3-amino-6-(3-

ethoxyphenyl)-1H-indazole (100 mg, 0.39 mmol, 

1.0 eq), cyclohexane carboxaldehyde (57 μL, 0.47 

mmol, 1.2 eq), glacial AcOH (1 drop), STAB (134 

mg, 0.63 mmol, 1.6 eq) and DCM (3 mL). Imine 

formation took ten minutes monitoring by TLC. The 

reaction was left to stir for 18 h. Water (5 mL) was added and the organic layer 

separated. The aqueous layer was extracted with DCM (3 × 10 mL) and the combined 

organics washed with brine (20 mL), dried (MgSO4) and reduced in vacuo to reveal a 

colourless oil (140 mg). The crude product was purified using column chromatography 
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(0.25% 7.0 M NH3 in MeOH−DCM) and a colourless oil obtained which solidified 

upon standing. The title compound 118 (30 mg, 0.086 mmol, 22%) was collected as a 

colourless solid. 

1H NMR (500 MHz, DMSO-d6): 11.34 (1H, br.s, indazole NH), 7.78 (1H, d, J 8.5, 

4-H), 7.40 (1H, s, 7-H), 7.35 (1H, app.t, J 8.0, 5’’-H), 7.21 (1H, ddd, J 7.5, 1.5 and 

1.0, 6’’-H), 7.18-7.15 (2H, m, 5-H and 2’’-H), 6.90 (1H, ddd, J 8.5, 3.0 and 1.0, 4’’-H), 

5.92 (1H, t, J 5.5, NH), 4.10 (2H, q, J 7.0, CH2CH3), 3.10 (2H, app.t, J 6.5, CH2NH), 

1.84-1.79 (2H, m, cyclohexyl- CH2), 1.79-1.60 (4H, m, cyclohexyl-CH2), 1.35 (3H, t, 

J 7.0, CH3), 1.25-1.11 (3H, m, cyclohexyl- CH2 + CH), 0.99-0.90 (2H, m, cyclohexyl- 

CH2); 13C NMR (125 MHz, DMSO-d6): 158.9 (3’’-C), 150.2 (3-C), 142.5 (3’-C), 

142.3 (1’’-C), 138.5 (6-C), 129.9 (5’’-C), 120.6 (4-C), 119.3 (6’’-C), 117.0 (5-C), 

113.3 (2’’-C), 113.2 (7’-C), 112.9 (4’’-C), 107.0 (7-C), 63.0 (CH2CH3), 49.8 

(CH2NH), 37.0 (1’’’-C), 30.9 (2’’’-C and 6’’’-C), 26.3 (cyclohexyl-CH2), 25.6 

(cyclohexyl-CH2), 14.7 (CH3); LC-MS (ES): RT = 39.7-42.3 sec, m/z = 350.32 

(M+H+); Rf: 0.30 (69:30:1 petrol−EtOAc−7.0 M NH3 in MeOH); HPLC: RT = 3.08 

min; m/z (ES+): Found: 350.2240 (M+H+), C22H27N3O requires MH 350.2232; 

IR:νmax/cm-1 (solid): 3402 (N-H), 3182, 2978, 2919, 2847, 1600. 

Preparation of 3-amino-6-(3-ethoxyphenyl)-1H-indazole 

Synthesised using method A using 3-amino-6-bromo-1H-

indazole (500 mg, 2.36 mmol, 1.0 eq), 3-ethoxyphenyl 

boronic acid (587 mg, 3.54 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (193 mg, 0.236 mmol, 0.1 eq), 

Na2CO3 (750 mg, 7.07 mmol, 3.0 eq), dioxane (10 mL) 

and water (10 mL) and the reaction heated for 4 h. LC-MS showed the reaction to be 

incomplete and therefore 3-ethoxyphenyl boronic acid (117 mg, 0.70 mmol, 0.3 eq), 

Pd(dppf)Cl2•DCM (39 mg, 0.048 mmol, 0.02 eq), Na2CO3 (150 mg, 1.42 mmol, 

0.6 eq) were added and the reaction heated for 1 h. LC-MS showed no change and 

therefore the reaction was stopped. The work up proceeded using the larger volumes 

of solvents and the organic solvent removed in vacuo to reveal a brown solid. The 

crude product was purified using column chromatography (50:49:1 

EtOAc−hexane−7.0 M NH3 in MeOH) and an off-white solid obtained. The resulting 

solid was crystallised from EtOAc. The title compound 119 (519 mg, 2.05 mmol, 

43%) was collected as shiny off-white crystals. 
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1H NMR (500 MHz, DMSO-d6): 11.41 (1H, br.s, NH), 7.73 (1H, d, J 8.0, 4-H), 7.41 

(1H, s, 7-H), 7.35 (1H, app.t, J 8.0, 5’-H), 7.22 (1H, ddd, J 7.5, 1.5 and 1.0, 6’-H), 

7.19 (1H, dd, J 8.5 and 1.5, 5-H), 7.17 (1H, app.t, J 1.5, 2’-H), 6.90 (1H, ddd, J 8.0, 

2.5 and 0.5, 4’-H), 5.34 (2H, br.s, NH2), 4.10 (2H, q, J 7.0, CH2), 1.35 (3H, t, J 7.0, 

CH3); 13C NMR (125 MHz, DMSO-d6): 158.9 (3’’-C), 149.1 (3’-C), 142.5 (1’’-C), 

142.0 (7’-C), 138.3 (6-C), 129.9 (5’’-C), 120.6 (4-C), 119.3 (6’’-C), 117.2 (5-C), 

113.5 (3-C), 113.3 (4’’-C), 113.0 (2’’-C), 107.1 (7-C), 63.0 (CH2), 14.7 (CH3); 

LC-MS (ES): RT = 31.3-34.2 sec, m/z = 254.15 (M+H+); Rf: 0.13 (50:49:1 

EtOAc−petrol−7.0 M NH3 in MeOH); HPLC: RT = 2.20 min; m/z (ES+): Found: 

254.1287 (M+H+), C15H15N3O requires MH 254.1289; IR:νmax/cm-1 (solid): 3381 

(N-H), 3127, 3077, 2973, 2929, 2830, 1625; M.pt: 185.4-186.0 °C. 

Preparation of 3-amino-6-bromo-1H-indazole 

4-Bromo-2-fluorobenzonitrile (5.0 g, 25.0 mmol, 1.0 eq) was 

dissolved in nBuOH (25 mL) and 50-60% N2H2 in water (5.20 mL, 

100.0 mmol, 4.0 eq) was added and the reaction heated to 100 °C 

for 2 h. The reaction mixture was allowed to cool slowly and the resulting precipitate 

was filtered and washed with MeOH. The title compound 120 (4.17 g, 19.7 mmol, 

79%) was collected as colourless microneedles. A second batch crystallised in the 

filtrate overnight and was collected as off-white microneedles (505 mg, 2.38 mmol, 

10%). 

1H NMR (500 MHz, DMSO-d6): 11.48 (1H, br.s, NH), 7.62 (1H, d, J 8.5, 4-H), 7.41 

(1H, dd, J 1.5 and 0.5, 7-H), 7.01 (1H, dd, J 8.5 and 1.5, 5-H), 5.43 (2H, br.s, NH2); 

13C NMR (125 MHz, DMSO-d6): 149.3 (3’-C), 142.0 (7’-C), 122.1 (4-C), 120.3 

(5-C), 119.8 (6-C), 113.1 (3-C), 111.8 (7-C); LC-MS (ES): RT = 27.7-30.2 sec, 

m/z = 213.96 (M+H+); Rf: 0.17 (50:49:1 EtOAc−petrol−7.0 M NH3 in MeOH); 

HPLC: RT = 1.45 min; m/z (ES+): Found: 211.9809 (M+H+), C7H6BrN3 requires MH 

211.9823; IR:νmax/cm-1 (solid): 3401 (N-H), 3290, 3213, 3153, 2930, 1604; M.pt: 

235.5-236.7 °C. 
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Preparation of tert-butyl 3-amino-6-(3-ethoxyphenyl)-1H-indazole-1-carboxylate 

3-Amino-6-(3-ethoxyphenyl)-1H-indazole (700 mg, 

2.76 mmol, 1.0 eq) was dissolved in THF (20 mL) and 

DMAP (101 mg, 0.83 mmol, 0.3 eq) was added and the 

reaction stirred for two minutes. Di-tert-butyl dicarbonate 

(698 μL, 3.04 mmol, 1.1 eq) was added and the reaction stirred for 2 h. LC-MS showed 

the reaction to be incomplete and therefore di-tert-butyl dicarbonate (127 μL, 

0.55 mmol, 0.2 eq) was added and the reaction stirred for 15 h. LC-MS showed a small 

amount of starting material remaining but the reaction was stopped here to prevent 

over protection. The reaction mixture was reduced in vacuo to reveal the crude product 

as a brown foamy solid. The crude product was purified using column chromatography 

(gradient 25-40% EtOAc−hexane). The title compound 124 (667 mg, 1.89 mmol, 

57%) was collected as a yellow foamy solid. 

1H NMR (500 MHz, CDCl3): 8.31 (1H, br.s, 7-H), 7.57 (1H, dd, J 8.0 and 0.5, 4-H), 

7.47 (1H, dd, J 8.5 and 1.5, 5-H), 7.36 (1H, app.t, J 8.0, 5’’-H), 7.23 (1H, ddd, J 8.0, 

1.5 and 1.0, 4’’-H), 7.20 (1H, app.t, J 2.0, 2’’-H), 6.92 (1H, ddd, J 8.5, 2.5 and 1.0, 

6’’-H), 4.82 (2H, br.s, NH2), 4.10 (2H, q, J 7.0, CH2), 1.71 (9H, s, tBu CH3), 1.44 (3H, 

t, J 7.0, CH3); 13C NMR (125 MHz, CDCl3): 159.4 (3’’-C), 151.5 (7’-C), 149.6 

(C=O), 142.8 (1’’-C), 142.4 (3’-C), 141.2 (6-C), 129.9 (5’’-C), 122.5 (5-C), 120.0 

(6’’-C), 119.4 (4-C), 117.9 (3-C), 114.0 (4’’-C), 113.8 (2’’-C), 113.5 (7-C), 83.8 

(C(CH3)3), 64.0 (CH2), 28.3 (tBu CH3), 14.9 (CH3); LC-MS (ES): RT = 39.3-43.3 sec, 

m/z = 296.20 (M-tBu); Rf: 0.13 (69:30:1 EtOAc−petrol−7.0 M NH3 in MeOH); 

HPLC: RT = 3.51 min; m/z (ES+): Found: 354.1808 (M+H+), C20H23N3O3 requires 

MH 354.1812; IR:νmax/cm-1 (solid): 3362 (N-H), 2976, 2925, 1719, 1620. 

Preparation of tert-butyl 3-(benzylamino)-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate 

Synthesised using method B using tert-butyl 3-

amino-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate (150 mg, 0.42 mmol, 1.0 eq), freshly 

distilled benzaldehyde (52 μL, 0.51 mmol, 1.2 eq), 

STAB (144 mg, 0.68 mmol, 1.6 eq), AcOH (2 μL, 

0.036 mmol, 0.09 eq) and DCM (3 mL) and the 

reaction stirred for 40 minutes. TLC indicated no formation of the imine and therefore 
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the reaction was heated to 40 °C for 30 minutes. TLC showed no change and therefore 

the reaction was cooled to 0 °C and STAB (144 mg, 0.68 mmol, 1.6 eq) added. LC-MS 

showed small conversion to the product but majority starting material. 4 Å Molecular 

sieves (MS) (1 g) and benzaldehyde (22 μL, 0.21 mmol, 0.5 eq) were added and heated 

to 40 °C for 20 minutes. LC-MS indicated more conversion and therefore 

benzaldehyde (22 μL, 0.21 mmol, 0.5 eq), STAB (77 mg, 0.34 mmol, 0.8 eq) and 4 Å 

MS (1 g) were added and the reaction heated to 40 °C for 16 h. LC-MS indicated 

mainly product and therefore the reaction mixture was reduced in vacuo to reveal a 

yellow solid. The yellow solid was triturated with EtOAc and the solids removed. The 

filtrate was reduced in vacuo to give a yellow oil. The crude product was purified by 

column chromatography (9:1 hexane−EtOAc). The title compound 126 was collected 

as a colourless glassy solid (80 mg, 0.18 mmol, 42%).  

1H NMR (500 MHz, CDCl3): 8.36 (1H, br.s, 7-H), 7.53 (1H, d, J 8.5, 4-H), 7.48-7.45 

(3H, m, 5-H, 2’’’-H and 6’’’-H), 7.39-7.35 (3H, m, 5’’-H, 3’’’-H and 5’’’-H), 

7.33-7.30 (1H, m, 4’’’-H), 7.24 (1H, d, J 7.5, 6’’-H), 7.20 (1H, app.t, J 2.5, 2’’-H), 

6.93 (1H, dd, J 8.5 and 2.0, 4’’-H), 4.74 (2H, s, NHCH2), 4.11 (2H, q, J 7.0, CH2CH3), 

1.73 (9H, s, tBu CH3), 1.46 (3H, t, J 7.0, CH3), NH not observed; 

13C NMR (125 MHz, CDCl3): 159.4 (3’’-C), 152.2 (3-C), 142.7 (Ar-q), 142.4 (Ar-q), 

138.9 (1’’’-C), 129.9 (5’’-C), 128.7 (3’’’-C and 5’’’-C), 128.3 (2’’’-C and 6’’’-C), 

127.6 (4’’’-C), 122.3 (5-C), 119.9 (6’’-C), 119.1 (4-C), 117.8 (7’-C), 113.9 (4’’-C), 

113.9 (2’’-C), 113.6 (7-C), 83.7 (C(CH3)3), 63.6 (CH2CH3), 47.8 (NHCH2), 28.3 (tBu 

CH3), 14.9 (CH3), two Ar-qs not observed; LC-MS (ES): RT = 0.8-0.9 min, 

m/z = 444.31 (M+H+); Rf: 0.65 (1:1 EtOAc−petrol); HPLC: RT = 2.68 min (91%); 

m/z (ES+): Found: 466.2100 (M+Na+), C27H29N3NaO3 requires MNa 466.2101; 

IR:νmax/cm-1 (solid): 3361 (N-H), 2978, 1716 (C=O), 1598. 

Preparation of tert-butyl 3-cyclohexaneamido-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate  

Synthesised using method E using tert-butyl 3-

amino-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate (152 mg, 0.43 mmol, 1.0 eq), freshly 

distilled cyclohexanecarbonyl chloride (69 μL, 

0.52 mmol, 1.2 eq), DIPEA (150 μL, 0.86 mmol, 

2.0 eq) and DCM (5 mL) and the reaction stirred for 
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15 h. LC-MS analysis showed the reaction to be incomplete and therefore 

cyclohexanecarbonyl chloride (15 μL, 0.11 mmol, 0.26 eq) was added and the reaction 

stirred for 2.5 h. A total further amount of cyclohexanecarbonyl chloride (45 μL, 

0.34 mmol, 0.8 eq) was needed over a combined time of 6 h for completion. The 

reaction mixture was reduced in vacuo to reveal the crude product as a yellow oil. The 

crude product was purified using column chromatography (gradient 10-20% 

EtOAc−hexane). The title compound 127 (150 mg, 0.33 mmol, 75%) was collected as 

shiny off-white crystals. 

1H NMR (500 MHz, CDCl3): 8.34 (1H, br.s, 7-H), 8.27-8.17 (2H, m, NH and 4-H), 

7.54 (1H, dd, J 8.5 and 1.5, 5-H), 7.38 (1H, app.t, J 7.5, 5’’-H), 7.25 (1H, ddd, J 7.5, 

1.5 and 1.0, 6’’-H), 7.21 (1H, app.t, J 2.0, 2’’-H), 6.93 (1H, ddd, J 8.0, 1.5 and 1.0, 

4’’-H), 4.12 (2H, q, J 7.0, CH2CH3), 2.40 (1H, br.s, 1’’’-H), 2.08-2.02 (2H, m, 

cyclohexyl-H), 1.90-1.84 (2H, m, cyclohexyl-H), 1.76-1.70 (10H, m, tBu CH3 and 

cyclohexyl-H), 1.64-1.55 (2H, m, cyclohexyl-H), 1.46 (3H, t, J 7.0, CH3), 1.40-1.25 

(3H, m, cyclohexyl-H); 13C NMR (125 MHz, CDCl3): 174.5 (amide C=O), 159.4 

(3’’-C), 149.0 (BOC C=O), 145.3 (Ar-q), 142.9 (1’’-C), 142.3 (6-C), 141.8 (Ar-q), 

129.9 (5’’-C), 124.7 (4-C), 123.2 (5-C), 120.0 (6’’-C), 118.5 (3-C), 114.0 (2’’-C), 

113.9 (4’’-C), 112.7 (7-C), 84.9 (C(CH3)3), 63.6 (CH2CH3), 45.7 (1’’’-C), 29.6 

(cyclohexyl-CH2), 28.2 (tBu CH3), 25.7 (cyclohexyl-CH2), 25.6 (cyclohexyl-CH2), 

14.9 (CH3); LC-MS (ES): RT = 47.3-50.9 sec, m/z = 464.35 (M+H+); Rf: 0.61 (1:1 

EtOAc−petrol); HPLC: RT = 2.72 min (90%); m/z (ES+): Found: 464.2540 

(M+H+), C27H33N3O4 requires MH 464.2544; IR:νmax/cm-1 (solid): 3251 (N-H), 2979, 

2926, 2853, 1731 (C=O), 1701 (C=O), 1579. 

Preparation of tert-butyl 3-benzamido-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate 

Synthesised using method E using tert-butyl 3-

amino-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate (152 mg, 0.43 mmol, 1.0 eq), freshly 

distilled benzoyl chloride (60 μL, 0.52 mmol, 1.2 eq), 

DIPEA (150 μL, 0.86 mmol, 2.0 eq) and DCM 

(5 mL) the reaction stirred for 16 h. LC-MS analysis 

showed the reaction to be incomplete and therefore benzoyl chloride (10 μL, 

0.09 mmol, 0.1 eq) was added and the reaction stirred for 2 h. A total further amount 
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of benzoyl chloride (30 μL, 0.26 mmol, 0.6 eq) was needed over a combined time of 

4 h. LC-MS showed no change in conversion of starting material to product and 

therefore DMAP (16 mg, 0.13 mmol, 0.3 eq) was added and the reaction heated to 

35 °C and stirred for 1 h. LC-MS indicated formation of the undesired bis-product and 

therefore the reaction was stopped. The reaction mixture was reduced in vacuo to 

reveal the crude product as a yellow oil. The crude product was purified using column 

chromatography (gradient 10-20% EtOAc−hexane). The title compound 128 (37 mg, 

0.081 mmol, 19%) was collected as a colourless oil. 

1H NMR (500 MHz, CDCl3): 9.28 (1H, br.s, NH), 8.40 (1H, br.s, 7-H), 8.30 (1H, d, 

J 8.5, 4-H), 8.04-8.01 (2H, m, 2’’’-H and 6’’’-H), 7.62-7.58 (2H, m, 5-H and 4’’’-H), 

7.54-7.50 (2H, m, 3’’’-H and 5’’’-H), 7.39 (1H, app.t, J 8.0, 5’’-H), 7.28 (1H, app.d, 

J 7.5, 6’’-H), 7.24 (1H, app.t, J 2.0, 2’’-H), 6.95 (1H, ddd, J 8.0, 2.5 and 0.5, 4’’-H), 

4.13 (2H, q, J 7.0, CH2CH3), 1.69 (9H, s, tBu CH3), 1.47 (3H, t, J 7.0, CH2CH3); 

13C NMR (125 MHz, CDCl3): 165.6 (amide C=O), 159.4 (3’’-C), 149.0 (BOC C=O), 

145.4 (3’-C), 143.0 (1’’-C), 142.2 (6-C), 141.9 (3-C), 133.2 (1’’’-C), 132.6 (5-C), 

129.9 (5’’-C), 128.9 (3’’’-C and 5’’’-C), 127.7 (2’’’-C and 6’’’-C), 124.6 (4-C), 123.4 

(4’’’-C), 120.0 (6’’-C), 118.7 (7’-C), 114.0 (2’’-C), 113.9 (4’’-C), 112.8 (7-C), 85.1 

(C(CH3)3), 63.6 (CH2), 28.2 (tBu CH3), 14.9 (CH3); LC-MS (ES): RT = 45.3-50.1 sec, 

m/z = 458.27 (M+H+); Rf: 0.55 (1:1 EtOAc−petrol); HPLC: RT = 2.27 min (95%); 

m/z (ES+): Found: 480.1896 (M+Na+), C27H27N3NaO4 requires MNa 480.1894; 

IR:νmax/cm-1 (solid): 3252 (N-H), 3064, 2978, 1731 (C=O), 1680 (C=O). 

Preparation of tert-butyl 3-(N-cyclohexanecarbonylcyclohexaneamido)-6-(3-

ethoxyphenyl)-1H-indazole-1-carboxylate 

Synthesised as a side product using the same 

conditions as seen in the preparation of tert-butyl 3-

cyclohexaneamido-6-(3-ethoxyphenyl)-1H-

indazole-1-carboxylate (127). A second compound 

was isolated from the column. 

The title compound 131 (26 mg, 0.05 mmol, 10%) 

was collected as a colourless oil. 

1H NMR (500 MHz, CDCl3): 8.43 (1H, s, 7-H), 7.57 (1H, dd, J 8.5 and 1.5, 5-H), 

7.43 (1H, dd, J 8.5 and 0.5, 4-H), 7.39 (1H, app.t J 8.0, 5’’-H), 7.24 (1H, ddd, J 7.5, 

1.5 and 1.0, 6’’-H), 7.20 (1H, app.t, J 2.0, 2’’-H), 6.95 (1H, ddd, J 8.0, 2.0 and 1.0, 
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4’’-H), 4.12 (2H, q, J 7.0, CH2CH3), 2.80 (2H, tt, J 11.5 and 3.0, 1’’’-H), 2.04-1.98 

(4H, m, cyclohexyl-H), 1.79-1.74 (2H, m, cyclohexyl-H), 1.72 (3H, s, tBu CH3), 

1.67-1.63 (2H, m, cyclohexyl-H), 1.58-1.51 (4H, m, cyclohexyl-H), 1.46 (3H, t, J 7.0, 

CH2CH3), 1.28-1.14 (8H, m, cyclohexyl-H); 13C NMR (125 MHz, CDCl3): 179.1 

(amide C=O), 159.4 (3’’-C), 148.8 (BOC C=O), 145.5 (3-C), 143.1 (1’’-C), 142.1 

(6-C), 141.7 (3’-C), 130.0 (5’’-C), 124.4 (5-C), 121.1 (7’-C), 120.0 (6’’-C), 119.6 

(4-C), 114.1 (2’’-C), 114.0 (4’’-C), 113.7 (7-C), 85.3 (C(CH3)3), 63.6 (CH2CH3), 45.4 

(1’’’-C), 29.7 (cyclohexyl-CH2), 28.2 (tBu CH3), 25.7 (cyclohexyl-CH2), 25.5 

(cyclohexyl-CH2), 14.9 (CH3); LC-MS (ES): RT = 60.5-64.6 sec, m/z = 596.48 

(M+Na+); Rf: 0.73 (1:1 EtOAc−petrol); HPLC: RT = 4.07 min (78%); 

m/z (ES+): Found: 596.3095 (M+Na+), C34H43N3NaO5 requires MNa 596.3095; 

IR:νmax/cm-1 (solid): 2977, 2928, 2853, 1737 (C=O), 1719 (C=O), 1605. 

Preparation of tert-butyl 3-(N-benzoylbenzamido)-6-(3-ethoxyphenyl)-1H-indazole-

1-carboxylate 

Synthesised as a side product using the same 

conditions as seen in the preparation of tert-butyl 3-

benzamido-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate (128). A second compound was isolated 

from the column. The colourless oil was dissolved in 

MeOH and reduced in vacuo. 

The title compound 132 (45 mg, 0.08 mmol, 19%) was collected as a white solid. 

1H NMR (500 MHz, CDCl3): 8.35 (1H, br.s, 7-H), 7.88-7.85 (4H, m, 2’’’-H and 

6’’’-H) 7.58 (1H, dd, J 8.5 and 1.0, 4-H), 7.55 (1H, dd, J 8.5 and 1.5, 5-H), 7.51-7.47 

(2H, m, 4’’’-H), 7.40-7.36 (5H, m, 5’’-H, 3’’’-H and 5’’’-H), 7.21 (1H, ddd, J 7.5, 1.5 

and 1.0, 6’’-H), 7.17 (1H, app.t, J 2.5, 2’’-H), 6.94 (1H, ddd, J 8.5, 2.5 and 1.0, 4’’-H), 

4.11 (2H, q, J 7.0, CH2CH3), 1.65 (9H, s, tBu CH3), 1.46 (3H, t, J 7.0, CH3); 

13C NMR (125 MHz, CDCl3): 172.1 (amide C=O), 159.4 (3’’-C), 148.7 (BOC C=O), 

146.0 (3’-C), 143.0 (1’’-C), 142.1 (6-C), 141.7 (3-C), 134.0 (1’’’-C), 132.8 (4’’’-C), 

130.0 (5’’-C), 129.3 (2’’’-C and 6’’’-C), 128.7 (3’’’-C and 5’’’-C), 124.3 (4-C), 120.3 

(7’-C), 120.0 (6’’-C), 119.7 (5-C), 114.0 (4’’-C), 114.0 (2’’-C), 113.7 (7-C), 85.2 

(C(CH3)3), 63.6 (CH2CH3), 28.1 (tBu CH3), 14.9 (CH3); LC-MS (ES): RT = 48.3-54.3 

sec, m/z = 562.32 (M+H+); Rf: 0.61 (1:1 EtOAc−petrol); HPLC: RT = 3.10 min 

(95%); m/z (ES+): Found: 584.2156 (M+Na+), C34H31N3NaO5 requires MNa 
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584.2156; IR:νmax/cm-1 (solid): 2972, 2928, 1767 (C=O), 1743 (C=O), 1699 (C=O); 

M.pt: 162.9-163.5 °C. 

Preparation of 3-(N-benzoylbenzamido)-6-(3-ethoxyphenyl)-1H-indazol-2-ium 

trifluoroacetate 

Synthesised using method C using tert-butyl 3-(N-

benzoylbenzamido)-6-(3-ethoxyphenyl)-1H-

indazole-1-carboxylate (95 mg, 0.17 mmol, 

1.0 eq), TFA (1 mL) and DCM (1 mL) and stirred 

for 45 minutes. The crude product was purified by 

column chromatography (1:1 EtOAc−hexane). 

The title compound 133 was collected as a colourless gummy solid (45 mg, 0.08 mmol, 

46%). 

1H NMR (500 MHz, CDCl3): 10.23 (1H, br.s, NH), 7.87-7.84 (4H, m, 2’’’-H and 

6’’’-H), 7.58 (1H, dd, J 8.5 and 0.5, 4-H), 7.46 (2H, app.tt, J 7.5 and 1.5, 4’’’-H), 7.40 

(1H, app.t, J 1.0, 7-H), 7.37-7.31 (6H, m, 5-H, 5’’-H, 3’’’-H and 5’’’-H), 7.10-7.08 

(1H, m, 6’’-H), 7.05 (1H, app.t, J 2.5, 2’’-H), 6.90 (1H, ddd, J 8.5, 2.5 and 1.0, 4’’-H), 

4.07 (2H, q, J 7.0, CH2CH3), 1.44 (3H, t, J 7.0, CH3); 13C NMR (100 MHz, CDCl3): 

172.5 (amide C=O), 159.3 (3’’-C), 142.3 (Ar-q), 142.1 (Ar-q), 141.0 (1’’-C), 134.1 

(1’’’-C), 132.6 (4’’’-C), 129.2 (2’’’-C and 6’’’-C), 129.0 (Ar-q), 128.6 (3’’’-C and 

5’’’-C), 122.5 (5-H), 119.9 (6’’-H), 119.1 (4-H), 117.3 (3-C), 114.0 (2’’-C), 113.6 

(4’’-C), 108.6 (7-C), 63.5 (CH3), 14.9 (CH3), one Ar-q not observed; LC-MS (ES): 

RT = 0.7-0.8 min, m/z = 462.23 (M+H+); Rf: 0.66 (7:3 EtOAc−petrol); HPLC: 

RT = 3.89 min (84%-degrades overtime); m/z (ES+): Found: 484.1630 

(M+Na+), C29H23N3NaO3 requires MNa 484.1632; IR:νmax/cm-1 (solid): 3313 (N-H), 

3063, 2980, 1692 (C=O). 
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Preparation of N-[6-(3-ethoxy-5-fluorophenyl)-1H-indazol-3-yl]benzamide 

Synthesised using method A using tert-butyl 3-

benzamido-6-bromo-1H-indazole-1-carboxylate (150 mg, 

0.36 mmol, 1.0 eq), 3-ethoxy-5-fluorophenylboronic acid 

(99 mg, 0.54 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (29 mg, 

0.036 mmol, 0.1 eq), Na2CO3 (115 mg, 1.08 mmol, 

3.0 eq), dioxane (2 mL) and water (2 mL) and the reaction 

heated 3 h. The work up proceeded using the smaller 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown oil. 

The crude product was purified by column chromatography (gradient 40-50% 

EtOAc−hexane) and an off-white solid obtained. The solid was crystallised from 

EtOH. The title compound 135 (73 mg, 0.19 mmol, 54%) was collected as colourless 

microneedles.  

1H NMR (500 MHz, DMSO-d6): 12.89 (1H, br.s, indazole NH), 10.83 (1H, br.s, 

amide NH), 8.09 (2H, d, J 7.0, 2’’’-H and 6’’’-H), 7.81 (1H, d, J 8.5, 4-H), 7.72 (1H, 

s, 7-H), 7.63-7.59 (1H, m, 4’’’-H), 7.54 (2H, app.t, J 7.5, 3’’’-H and 5’’’-H), 7.40 (1H, 

dd, J 8.5 and 1.5, 5-H), 7.14 (1H, app.dt, J 10.0 and 1.5, 6’’-H), 7.10 (1H, app.t, J 1.5, 

2’’-H), 6.83 (1H, app.dt, J 11.0 and 2.5, 4’’-H), 4.14 (2H, q, J 7.0, CH2CH3), 1.36 (3H, 

t, J 7.0, CH3); 13C NMR (125 MHz, DMSO-d6): 165.5 (amide C=O), 163.4 (d, 

J 241.9, 5’’-C), 160.3 (d, J 12.0, 3’’-C), 143.4 (d, J 10.1, 1’’-C), 141.5 (Ar-q), 140.2 

(Ar-q), 137.3 (6-C), 133.7 (1’’’-C), 131.8 (4’’’-C), 128.4 (3’’’-C and 5’’’-C), 127.9 

(2’’’-C and 6’’’-C), 122.5 (4-C), 119.4 (5-C), 116.6 (3’-C), 109.6 (d, J 2.0, 2’’-C), 

108.2 (7-C), 106.0 (d, J 22.9, 6’’-C), 100.9 (d, J 25.4, 4’’-C), 63.7 (CH2CH3), 14.5 

(CH3); LC-MS (ES): RT = 0.6-0.7 min, m/z = 376.24 (M+H+); Rf: 0.19 

(1:1 EtOAc−petrol); HPLC: RT = 3.37 min; m/z (ES+): Found: 398.1274 

(M+Na+), C22H18FN3NaO2 requires MNa 398.1275; IR:νmax/cm-1 (solid): 3322 (N-H), 

3253 (N-H), 3049, 2969, 2879, 1639 (C=O); M.pt: 213.3-213.8 °C. 
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Preparation of N-[6-(3-ethoxy-2-fluorophenyl)-1H-indazol-3-yl]benzamide 

Synthesised using method A using tert-butyl 3-

benzamido-6-bromo-1H-indazole-1-carboxylate (150 mg, 

0.36 mmol, 1.0 eq), 2-fluoro-3-ethoxyphenylboronic acid 

(99 mg, 0.54 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (29 mg, 

0.036 mmol, 0.1 eq), Na2CO3 (115 mg, 1.08 mmol, 

3.0 eq), dioxane (2 mL) and water (2 mL) and the reaction 

heated 3 h. The work up proceeded using the smaller 

volumes of solvents and the organic solvent removed in vacuo to reveal a brown solid. 

The crude product was purified by column chromatography (3:2 EtOAc−hexane) and 

a yellow solid obtained. The solid was crystallised from EtOH. The title 

compound 136 (73 mg, 0.19 mmol, 54%) was collected as fluffy colourless platelets. 

1H NMR (500 MHz, DMSO-d6): 12.89 (1H, br.s, indazole NH), 10.84 (1H, br.s, 

amide NH), 8.10-8.07 (2H, m, 2’’’-H and 6’’’-H), 7.80 (1H, d, J 8.5, 4-H), 7.61 (1H, 

app.tt, J 7.5 and 1.5, 4’’’-H), 7.58 (1H, s, 7-H), 7.56-7.52 (2H, m, 3’’’-H and 5’’’-H), 

7.24-7.16 (3H, m, 5-H, 5’’-H and 4’’-H), 7.13-7.09 (1H, m, 6’’-H), 4.15 (2H, q, J 7.0, 

CH2CH3), 1.38 (3H, t, J 7.0, CH3); 13C NMR (125 MHz, DMSO-d6): 165.6 (amide 

C=O), 148.9 (d, J 245.3, 2’’-C), 147.0 (d, J 11.0, 3’’-C), 141.2 (Ar-q), 140.2 (Ar-q), 

133.7 (1’’’-C), 133.2 (6-C), 131.8 (4’’’-C), 129.3 (d, J 10.7, 1’’-C), 128.4 (3’’’-C and 

5’’’-C), 127.9 (2’’’-C and 6’’’-C), 124.5 (d, J 4.6, 5’’-C), 122.0 (d, J 23.6, 6’’-C), 

121.9 (4-C), 121.0 (4’’-C), 116.3 (3’-C), 114.0 (5-C), 110.2 (7-C), 64.4 (CH2CH3), 

14.6 (CH3); LC-MS (ES): RT = 0.6-0.7 min, m/z = 376.26 (M+H+); Rf: 0.17 

(1:1 EtOAc−petrol); HPLC: RT = 3.18 min; m/z (ES+): Found: 398.1272 

(M+Na+), C22H18FN3NaO2 requires MNa 398.1275; IR:νmax/cm-1 (solid): 3263 (N-H), 

3066, 2984, 1649 (C=O); M.pt: 235.1-236.7 °C. 

Preparation of N-[6-(3-ethoxyphenyl)-1H-indazol-3-yl]pyridine-4-carboxamide 

Tert-butyl 6-(3-ethoxyphenyl)-3-(pyridine-4-amido)-1H-

indazole-1-carboxylate (88 mg, 0.19 mmol, 1.0 eq) was 

suspended in 2 M NaOH and stirred at 70 °C for 

30 minutes. LC-MS analysis showed the reaction to be 

incomplete and therefore MeOH (10 mL) was added, to 

aid dissolution, and the reaction heated at 60 °C for 1 h. 

The MeOH was removed in vacuo and the remaining 
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aqueous layer acidified to pH 7 using 2 M HCl. The aqueous layer was extracted with 

DCM (3× 20 mL) and the organic layers separated. The combined organic layers were 

washed with brine (30 mL), dried (MgSO4) and reduced in vacuo to reveal the crude 

product as a purple glassy solid. The crude product was purified using reverse-phase 

ACC (gradient 0-30% MeCN−H2O in 0.1% formic acid). Appropriate fractions were 

collected and reduced in vacuo to a volume of ~3 mL until precipitation was observed. 

The precipitate was filtered and crystallised from EtOH. The title compound 137 

(35 mg, 0.09 mmol, 48 %) was collected as light brown microneedles. 

1H NMR (500 MHz, DMSO-d6): 12.96 (1H, br.s, indazole NH), 11.19 (1H, br.s, 

amide NH), 8.83 (2H, d, J 5.5, 3’’’-H and 5’’’-H), 8.00 (2H, d, J 5.5, 2’’’-H and 

6’’’-H), 7.85 (1H, d, J 8.5, 4-H), 7.71 (1H, s, 7-H), 7.44-7.39 (2H, m, 5-H and 5’’-H), 

7.31 (1H, d, J 8.0, 4’’-H), 7.26-7.25 (1H, m, 2’’-H), 6.97 (1H, dd, J 8.0 and 2.5, 6’’-H), 

4.14 (2H, q, J 7.0, CH2), 1.38 (3H, t, J 7.0 CH3); 13C NMR (125 MHz, DMSO-d6): 

164.0 (amide C=O), 159.0 (3’’-C), 150.3 (3’’’-C and 5’’’-C), 142.0 (Ar-q), 141.7 

(Ar-q), 140.8 (1’’’-C), 139.5 (Ar-q), 138.7 (Ar-q), 130.0 (5’’-C), 122.3 (4-C), 121.7 

(2’’’-C and 6’’’-C), 119.7 (5-C), 119.4 (4’’-C), 116.1 (7’-C), 113.6 (6’’-C), 113.2 

(2’’-C), 107.9 (7-C), 63.1 (CH2), 14.7 (CH3); LC-MS (ES): RT = 0.5-0.6 min, 

m/z = 359.21 (M+H+); Rf: 0.15 (95:5 DCM−7.0 M NH3 in MeOH); HPLC: 

RT = 2.32 min (97%); m/z (ES+): Found: 359.1502 (M+H+), C21H18N4O2 requires 

MH 359.1503; IR:νmax/cm-1 (solid): 3219 (N-H), 2977, 2930, 2799, 1647 (C=O); 

M.pt: 225.5-225.9 °C. 

Preparation of tert-butyl 3-amino-6-bromo-1H-indazole-1-carboxylate 

3-Amino-6-bromo-1H-indazole (2.28 g, 10.8 mmol, 1.0 eq) was 

suspended in THF (40 mL) and DMAP (395 mg, 3.23 mmol, 

0.3 eq) was added and the reaction stirred for five minutes. BOC 

anhydride (2.97 mL, 12.9 mmol, 1.2 eq) was added dropwise over 

15 minutes and the reaction stirred for 1 h monitoring for completion by LC-MS. 

Dissolution and a yellow hue were observed. The reaction mixture was reduced in 

vacuo to reveal the crude product as a pale brown oil. The crude solid was re-dissolved 

in MeOH and reduced in vacuo to reveal a yellow solid. The crude product was 

purified by column chromatography (gradient 20-50% EtOAc−hexane). The title 

compound 138 was collected as an off-white solid (2.66 g, 8.52 mmol, 79%). The solid 

was further purified by crystallisation from iso-propanol. The title compound 138 
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(1.36 g, 4.36 mmol, 40%) was collected as colourless granules. The filtrate was 

reduced in vacuo to reveal a beige solid (1.20 g, 3.84 mmol, 36%) which was used 

without further purification. 

1H NMR (500 MHz, DMSO-d6): 8.11 (1H, br.s, 7-H), 7.79 1H, dd, J 8.0 and 0.5, 

4-H), 7.45 (1H, dd, J 8.0 and 1.5, 5-H), 6.40 (2H, br.s NH2), 1.57 (9H, s, tBu CH3); 

13C NMR (125 MHz, DMSO-d6): 152.1 (7’-C), 140.6 (3’-C), 125.5 (5-C), 122.6 

(6-C), 122.5 (4-C), 118.4 (3-C), 116.7 (7-C), 82.9 (C(CH3)3), 27.8 (tBu CH3), BOC 

C=O not observed; LC-MS (ES): RT = 0.6-0.7 min, m/z = 257.97 (M-tBu+H+); 

Rf: 0.42 (7:3 EtOAc−petrol); HPLC: RT = 3.05 min; m/z (ES+): Found: 334.0156 

(M+Na+), C12H14BrN3NaO2 requires MNa 334.0162; IR:νmax/cm-1 (solid): 3433 

(N-H), 3372 (N-H), 3182, 2976, 1731 (C=O), 1702; M.pt: 167.5-168.3 °C. 

Preparation of tert-butyl 3-benzamido-6-bromo-1H-indazole-1-carboxylate 

Synthesised using method E using tert-butyl 3-amino-6-bromo-1H-

indazole-1-carboxylate (1.0 g, 3.20 mmol, 1.0 eq), freshly distilled 

benzoyl chloride (446 μL, 3.84 mmol, 1.2 eq), DIPEA (1.12 mL, 

6.41 mmol, 2.0 eq) and DCM (20 mL) and the reaction stirred for 

20 h. LC-MS showed the reaction to be incomplete and therefore 

benzoyl chloride (74 μL, 0.64 mmol, 0.2 eq) was added to the 

reaction and stirred for 3 h. LC-MS showed no change and therefore the reaction was 

stopped. The crude product was purified by column chromatography (gradient 5-10% 

EtOAc−hexane then flush with 1:1 EtOAc−hexane). The title compound 139 (592 mg, 

1.42 mmol, 44%) was collected as an off-white glassy solid. 

1H NMR (500 MHz, CDCl3): 8.90 (1H, br.s, NH), 8.38 (1H, br.s, 7-H), 8.18 (1H, d, 

J 9.0, 4-H), 7.98-7.95 (2H, m, 2’’’-H and 6’’’-H), 7.61 (1H, app.tt, J 7.5 and 1.0, 

4’’’-H), 7.54-7.50 (2H, m, 3’’’-H and 5’’’-H), 7.46 (1H, dd, J 9.0 and 2.0, 5-H), 1.71 

(9H, s, tBu CH3); 13C NMR (125 MHz, CDCl3): 165.4 (amide C=O), 148.6 

(BOC C=O), 145.3 (Ar-q), 141.8 (Ar-q), 132.9 (Ar-q), 132.8 (4’’’-C), 129.0 (3’’’-C 

and 5’’’-C), 127.5 (2’’’-C and 6’’’-C), 127.0 (5-C), 125.7 (4-C), 124.5 (Ar-q), 118.2 

(6-C), 117.5 (7-C), 85.7 (C(CH3)3), 28.1 (tBu CH3); LC-MS (ES): RT = 0.7-0.8 min, 

m/z = 362.07 (M-tBu+Br81+); Rf: 0.62 (1:1 EtOAc−petrol); HPLC: RT = 3.88 min 

(93%); m/z (ES+): Found: 438.0423 (M+Na+), C19H18BrN3NaO3 requires MNa 

438.0424; IR:νmax/cm-1 (solid): 3250 (N-H), 3065, 2979, 2871, 1735 (C=O), 1662; 

M.pt: 97.5-99.3 °C. 
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Preparation of tert-butyl 6-bromo-3-(pyridine-4-amido)-1H-indazole-1-carboxylate 

Synthesised using method E using tert-butyl 3-amino-6-bromo-1H-

indazole-1-carboxylate (100 mg, 0.32 mmol, 1.0 eq), isonicotinoyl 

chloride hydrochloride (86 mg, 0.48 mmol, 1.5 eq), DIPEA 

(195 µL, 1.12 mmol, 3.5 eq) and DCM (7 mL) and the reaction 

stirred for 18 h. LC-MS showed no conversion and therefore the 

reaction was refluxed for 30 minutes. LC-MS still showed no 

conversion and therefore isonicotinoyl chloride hydrochloride (86 mg, 0.48 mmol, 

1.5 eq) was added and the reaction refluxed for 2 h. TLC showed the reaction to be 

incomplete and therefore isonicotinoyl chloride hydrochloride (43 mg, 0.24 mmol, 

0.75 eq) was added and the reaction heated for 30 minutes. TLC confirmed the reaction 

to be complete. The crude product was purified by column chromatography (gradient 

50-70% EtOAc−hexane). The title compound 140 (101 mg, 0.24 mmol, 76%) was 

collected as a colourless solid. 

1H NMR (500 MHz, DMSO-d6): 11.76 (1H, br.s, amide NH), 8.83 (2H, d, J 5.5, 

3’’-H and 5’’-H), 8.33 (1H, s, 7-H), 7.99 (2H, d, J 5.5, 2’’-H and 6’’-H), 7.90 (1H, d, 

J 8.5, 4-H), 7.58 (1H, d, J 8.5, 5-H), 1.66 (9H, s, tBu CH3); 13C NMR (100 MHz, 

DMSO-d6): 165.2 (amide C=O), 150.9 (3’’-C and 5’’-C), 148.6 (BOC C=O), 145.3 

(3-C), 141.3 (7’-C), 140.5 (1’’-C), 127.0 (5-C), 125.7 (4-C), 123.7 (3’-C), 122.3 (2’’-C 

and 6’’-C), 119.6 (6-C), 117.3 (7-C), 85.7 (C(CH3)3), 28.1 (tBu CH3); LC-MS (ES): 

RT = 0.6-0.7 min, m/z = 419.09 (MBr81+); Rf: 0.30 (7:3 EtOAc−petrol); HPLC: 

RT = 2.79 min; m/z (ES+): Found: 417.0554 (M+H+), C18H17BrN4O3 requires MH 

417.0557; IR:νmax/cm-1 (solid): 3528 (N-H), 3054, 2978, 1744 (C=O), 1722 (C=O); 

M.pt: 172.4-176.8 °C. 

Preparation of tert-butyl 6-(3-ethoxyphenyl)-3-(pyridine-4-amido)-1H-indazole-1-

carboxylate 

Synthesised using method E without DIPEA using tert-

butyl 3-amino-6-(3-ethoxyphenyl)-1H-indazole-1-

carboxylate (438 mg, 1.24 mmol, 1.0 eq), isonicotinoyl 

chloride hydrochloride (331 mg, 1.86 mmol, 1.5 eq) and 

DCM (5 mL) and the reaction stirred for 19 h. LC-MS 

showed the reaction to be incomplete and therefore 

isonicotinoyl chloride hydrochloride (66 mg, 0.37 mmol, 
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0.3 eq) was added and the reaction refluxed for 2.5 h. LC-MS showed no change and 

therefore the reaction was stopped. The crude product was purified by column 

chromatography (7:3 EtOAc−hexane). Due to the high polarity of the compound the 

majority of the product stayed on the baseline. The column was flushed with MeOH 

and the crude product reduced in vacuo. The crude product was purified by column 

chromatography (50:48:2 hexane−EtOAc−7.0 M NH3 in MeOH). The title 

compound 142 (76 mg, 0.17 mmol, 13 %) was collected as a colourless glassy solid. 

1H NMR (500 MHz, CDCl3):10.07 (1H, br.s, amide NH), 8.82 (2H, dd, J 4.5 and 1.5, 

3’’’-H and 5’’’-H), 8.38 (1H, br.s, 7-H), 8.23 (1H, d, J 8.5, 4-H), 7.90 (2H, dd, J 4.5 

and 1.5, 2’’’-H and 6’’’-H), 7.61 (1H, dd, J 8.5 and 1.5, 5-H), 7.40 (1H, app.t, J 8.0, 

5’’-H), 7.29-7.26 (1H, m, 4’’-H), 7.24-7.22 (1H, m, 2’’-H), 6.95 (1H, dd, J 8.0 and 

2.0, 6’’-H), 4.13 (2H, q, J 7.0, CH2), 1.66 (9H, s, tBu CH3), 1.47 (3H, t, J 7.0, CH3); 

13C NMR (100 MHz, CDCl3): 164.1 (amide C=O), 159.4 (3’’-C), 150.8 (3’’’-C and 

5’’’-C), 148.8 (BOC C=O), 145.0 (3-C), 143.3 (6-C), 142.1 (1’’-C), 141.7 (3’-C), 

140.3 (1’’’-C), 130.0 (5’’-C), 124.3 (4-C), 123.6 (5-C), 121.4 (2’’’-C and 6’’’-C), 

120.0 (4’’-C), 118.7 (7’-C), 114.0 (6’’-C), 114.0 (2’’-C), 112.9 (7-C), 85.5 (C(CH3)3), 

63.6 (CH2), 28.1 (tBu CH3), 14.9 (CH2CH3); LC-MS (ES): RT = 0.7-0.7 min, 

m/z = 459.27 (M+H+); Rf: 0.26 (95:5 DCM−7.0 M NH3 in MeOH); HPLC: RT = 3.18 

min; m/z (ES+): Found: 459.2025 (M+H+), C26H26N4O4 requires MH 459.2027; 

IR:νmax/cm-1 (solid): 3225 (N-H), 2977, 2930, 1732 (C=O), 1687 (C=O). 

Preparation of 6-(3-ethoxyphenyl)-1H-indazole-3-phenylcarboxamide 

Synthesised using method A using 6-bromo-1H-

indazole-3-phenylcarboxamide (120 mg, 0.38 mmol, 

1.0 eq), 3-ethoxyphenylboronic acid (95 mg, 

0.57 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (31 mg, 

0.038 mmol, 0.1 eq), Na2CO3 (121 mg, 1.14 mmol, 

3.0 eq), dioxane (2 mL) and water (2 mL) and the 

reaction heated for 45 minutes. LC-MS analysis showed the reaction to be incomplete 

and therefore 3-ethoxyphenylboronic acid (95 mg, 0.57 mmol, 1.5 eq) was added and 

the reaction heated for 30 minutes. LC-MS analysis showed the reaction to be 

complete. The work up proceeded using the smaller volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown oil. The crude product was 

purified using column chromatography (4:1 petrol−EtOAc) and a brown solid 
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obtained. The solid was crystallised from EtOH and brown needles obtained. The 

needles were further recrystallised from CHCl3. The title compound 143 (11 mg, 

0.03 mmol, 9%) was collected as pearlescent white platelets. 

1H NMR (500 MHz, DMSO-d6): 10.31 (1H, br.s, amide NH), 8.26 (1H, d, J 8.6, 4-H), 

7.92-7.89 (2H, m, 2’’’-H and 6’’’-H), 7.83 (1H, s, 7-H), 7.60 (1H, dd, J 8.6 and 1.5, 

5-H), 7.40 (1H, app.t, J 8.2, 5’’-H), 7.35 (2H, app.td, J 7.5 and 1.8, 3’’’-H and 5’’’-

H), 7.31-7.29 (1H, m, 4’’-H), 7.26-7.25 (1H, m, 2’’-H), 7.09 (1H, app.t, J 7.5, 4’’’-

H), 6.96 (1H, dd, J 8.2 and 2.5, 6’’-H), 4.13 (2H, q, J 7.0, CH2), 1.36 (3H, t, J 7.0, 

CH3), indazole NH not observed; 13C NMR (125 MHz, DMSO-d6): 160.8 (C=O), 

159.0 (3’’-C), 142.0 (3-C), 141.7 (6-C), 139.0 (1’’-C), 138.8 (Ar-q), 138.3 (Ar-q), 

130.1 (5’’-C), 128.6 (3’’’-C and 5’’’-C), 123.4 (4’’’-C), 122.3 (5-C), 121.9 (4-C), 

121.2 (3’-C), 120.2 (2’’’-C and 6’’’-C), 119.5 (4’’-C), 113.8 (6’’-C), 113.2 (2’’-C), 

108.4 (7-C), 63.1 (CH2), 14.7 (CH3); LC−MS (ES): RT = 0.7-0.8 min, m/z = 356.22 

(M+H+); Rf: 0.73 (2% MeOH−DCM); HPLC: RT = 3.77 min; m/z (ES+): Found: 

356.1395 (M+H+), C22H19N3O2 requires MH 356.1404; IR:νmax/cm-1 (solid): 3385 

(N-H), 3210, 2976, 1651 (C=O); M.pt: >250 °C. 

Preparation of 6-(3-ethoxy-2-fluorophenyl)-1H-indazole-3-phenylcarboxamide 

Synthesised using method A using 6-bromo-1H-

indazole-3-phenylcarboxamide (200 mg, 0.63 mmol, 

1.0 eq), 2-fluoro-3-ethoxyphenylboronic acid 

(175 mg, 0.95 mmol, 1.5 eq), Pd(dppf)Cl2•DCM 

(51 mg, 0.063 mmol, 0.1 eq), Na2CO3 (200 mg, 

1.89 mmol, 3.0 eq), dioxane (2 mL) and water (2 mL) 

and the reaction heated for 2 h. LC-MS analysis showed the reaction to be incomplete 

and therefore 2-fluoro-3-ethoxyphenylboronic acid (58 mg, 0.32 mmol, 0.5 eq), 

Pd(dppf)Cl2•DCM (51 mg, 0.063 mmol, 0.1 eq) and Na2CO3 (67 mg, 0.63 mmol, 

1.0 eq) were added and the reaction heated for 1 h. LC-MS showed the reaction to be 

incomplete however the reaction was stopped. The work up proceeded using the 

smaller volumes of solvents and the organic solvent removed in vacuo to reveal a 

brown oil. The crude product was purified using column chromatography (0.5% 7.0 M 

NH3 in MeOH−DCM) and an off-white solid obtained. The solid was triturated with 

EtOAc. The title compound 144 (23 mg, 0.07 mmol, 10%) was collected as off-white 

microcrystals. 
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1H NMR (500 MHz, DMSO-d6): 8.05 (1H, d, J 8.3, 4-H), 7.87 (2H, dd, J 8.5 and 0.9, 

2’’’-H and 6’’’-H), 7.72 (1H, s, 7-H), 7.34-7.38 (2H, m, 3’’’-H and 5’’’-H), 7.17 (1H, 

app.t, J 7.5,4’’ -H), 7.12-7.06 (3H, m, 5-H, 5’’-H and 6’’-H), 7.00 (1H, app.t, J 7.5, 

4’’’-H), 4.14 (2H, q, J 7.0, CH2), 1.38 (3H, t, J 7.5, CH3), NHs not observed; 13C NMR 

(125 MHz, DMSO-d6): 162.4 (C=O), 151.1 (3-C), 149.0, (d, J 244.4, 2’’-C), 146.9 

(d, J 11.3, 3’’-C), 139.9 (1’’’-C), 136.2 (Ar-q), 130.9 (d, J 11.0, 1’’-C), 128.5 (3’’’-C 

and 5’’’-C), 127.6 (Ar-q), 124.1 (d, J 4.6, 4’’-C), 123.0 (Ar-q), 122.0 (d, J 2.4, 5-C), 

121.9 (4’’’-C), 120.5 (d, J 2.5, 6’’-C), 119.8 (4-C), 118.8 (2’’’-C and 6’’’-C), 115.8 

(d, J 2.5, 7-C), 112.8 (5’’-C), 64.3 (CH2) 14.6 (CH3); LC-MS (ES): RT = 0.6-0.6 min, 

m/z = 376.24 (M+H+); Rf: 0.28 (0.5% 7.0 M NH3 in MeOH−DCM); HPLC: RT = 

3.77 min (96%); m/z (ES+): Found: 376.1456 (M+H+), C22H18FN3O2 requires MH 

376.1455; IR:νmax/cm-1 (solid): 3368 (N-H), 3181, 2979, 1659 (C=O); M.pt: >250 

°C. 

Preparation of 6-bromo-1H-indazole-3-phenylcarboxamide 

6-Bromo-1H-indazole-3-carboxylic acid (750 mg, 3.0 mmol, 

1.0 eq) was dissolved in freshly distilled SOCl2 (3.0 mL, 

41.4 mmol, 13.8 eq) and refluxed for 1.5 h. LC-MS analysis 

indicated the reaction to be complete. The reaction mixture 

was reduced in vacuo and the resulting solid dissolved in 

DCM (9 mL) and Et3N (360 µL, 3.6 mmol, 1.2 eq) added and 

the reaction stirred for five minutes. Aniline (720 µL, 7.5 mmol, 2.5 eq) was added 

and the reaction heated to 45 °C for 4 h. The reaction mixture was allowed to cool to 

20 °C and added to DCM (15 mL). Water (15 mL) and 2M HCl (5 mL) were added 

and the organic layer separated. The aqueous layers were extracted with DCM 

(3 × 15 mL) and the combined organic layers washed with 2M NaOH (15 mL), brine 

(20 mL) and dried (MgSO4) and concentrated in vacuo to reveal a red solid. The crude 

product was purified by column chromatography (0.5% MeOH–DCM) and a brown 

solid obtained. The solid was crystallised from EtOAc. The title compound 146 

(94 mg, 0.30 mmol, 13%) was collected as brown needles. 

1H NMR (500 MHz, DMSO-d6): 10.35 (1H, br.s, amide NH), 8.15 (1H, d, J 8.6, 4-H), 

7.90 (1H, br.s, 7-H), 7.88 (2H, d, J 7.6, 2’’-H and 6’’-H), 7.43 (1H, dd, J 8.6 and 1.6, 

5-H), 7.36 (2H, app.t, J 7.9, 3’’-H and 5’’-H), 7.12-7.08 (1H, m, 4’’-H), indazole NH 

not observed; 13C NMR (125 MHz, DMSO-d6): 160.5 (C=O), 142.1 (3-C), 138.6 (Ar-
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q), 138.7 (Ar-q), 128.5 (3’’-C and 5’’-C), 125.6 (5-C), 123.5 (4-C), 123.3 (4’’-C), 

120.7 (Ar-q), 120.3 (2’’-C and 6’’-C), 120.2 (Ar-q), 113.5 (7-C); LC–MS (ES): 

RT = 0.6-0.6 min, m/z = 316.05 (M+H+); Rf: 0.68 (2% MeOH−DCM); HPLC: 

RT = 3.33 min; m/z (ES+): Found: 316.0078 (M+H+), C14H10BrN3O requires MH 

316.0077; IR:νmax/cm-1 (solid): 3363 (N-H), 3159, 1653, 1613, 1595; M.pt: >250 °C. 

Preparation of 6-bromo-1H-indazole-3-carboxylic acid 

6-Bromoisatin (100 mg, 0.44 mmol, 1.0 eq) was suspended in 

water (0.5 mL) and 2 M NaOH (0.5 mL) was added and the 

suspension heated at 55 °C for 30 minutes. The reaction mixture 

was cooled to 20 °C and stirred for 30 minutes. A solution of 

NaNO2 (31 mg, 0.44 mmol, 1.0 eq) in water (0.5 mL) was cooled to 0 °C and added 

to the reaction mixture and stirred for five minutes. This solution was then added 

slowly over five minutes to a solution of H2SO4 (0.1 mL) in water (0.9 mL) via a 

pipette submerged beneath the liquid surface and maintained at 0 °C for 20 minutes. 

SnCl2•2H2O (240 mg, 1.06 mmol, 2.4 eq) was dissolved in HCl (1 mL) and added in 

one portion to the reaction and the mixture warmed to 20 °C and stirred for 1 h. The 

resulting orange precipitate was filtered and washed with water. The crude solid was 

triturated with hot AcOH and the insoluble impurities removed via filtration and the 

filtrate reduced in vacuo. The title compound 147 (81 mg, 0.34 mmol, 76%) was 

collected as an orange powder. 

1H NMR (500 MHz, DMSO-d6): 8.03 (1H, d, J 10.5, 4-H), 7.89 (1H, s, 7-H), 7.40 

(1H, d, J 10.5, 5-H), NH or OH not observed; 13C NMR (100 MHz, DMSO-d6): 164.0 

(carboxyl C=O), 143.2 (Ar-q), 141.7 (Ar-q), 126.0 (5-C), 123.7 (4-C), 121.7 (6-C), 

120.2 (3’-C), 114.3 (7-C), ; LC-MS (ES): RT = 0.5-0.5 min, m/z = 483.11 (2M+H+); 

Rf: 0.44 (97:2:1 DCM−MeOH−AcOH); HPLC: RT = 2.02 min; m/z (ES-): Found: 

238.9450 (M-H+), C8H5BrN2O2 requires M-H 238.9462; IR:νmax/cm-1 (solid): 3116 

(br.O-H), 2919, 2850, 1701 (C=O); M.pt: >250 °C. 
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Preparation of {3-[6-(4-hydroxyphenyl)-1H-indazol-3-yl]phenyl}methanaminium 

bromide 

                                                              Synthesised 

using method D using {3-[6-(4-methoxyphenyl)-1H-

indazol-3-yl]phenyl}methanaminium formate (50 mg, 

0.15 mmol, 1.0 eq), 1 M BBr3 in DCM (1.21 mL, 

1.21 mmol, 8.0 eq) and DCM (5 mL) and the reaction 

stirred for 2 h. Upon completion a precipitate had 

formed. Water (10 mL) was added resulting in the 

dissolution of the precipitate and the biphasic mixture was left for 16 h. It was 

observed that colourless needles had precipitated in the aqueous layer. The needles 

were filtered and dissolved in MeOH and reduced in vacuo to reveal to crude solid as 

an off-white solid. The crude solid was purified by a mixed solvent crystallisation 

from water using iso-propanol as an antisolvent. The title compound 149 (8 mg, 

0.03 mmol, 17%) was collected as a colourless powder. 

1H NMR (500 MHz, DMSO-d6): 13.29 (1H, br.s, indazole NH), 9.58 (1H, br.s, OH), 

8.24 (3H, br.s, CH2NH3), 8.20 (1H, d, J 8.5, 4-H), 8.14 (1H, s, 2’’’-H), 8.04 (1H, 

app.dt, J 8.0 and 1.5, 6’’’-H), 7.68 (1H, s, 7-H), 7.60-7.55 (3H, m, 2’’-H, 6’’-H and 

5’’’-H), 7.48 (1H, d, J 8.0, 4’’’-H), 7.46 (1H, dd, J 8.5, 5-H), 6.91-6.87 (2H, m, 3’’-H 

and 5’’-H), 4.13 (2H, q, J 5.5, CH2); 13C NMR (125 MHz, DMSO-d6): 157.3 (4’’-C), 

142.5 (Ar-q), 142.5 (Ar-q), 138.6 (6-C), 134.6 (3’’’-C), 134.2 (1’’’-C), 130.9 (1’’-C), 

129.2 (4’’’-C), 128.2 (2’’-C and 6’’-C), 127.0 (2’’’-C), 126.6 (6’’’-C), 121.1 (4-C), 

120.5 (5-C), 118.8 (7’-C), 115.8 (3’’-C and 5’’-C), 107.0 (7-C), 42.3 (CH2), one Ar-q 

not observed; LC-MS (ES): RT = 0.4-0.5 min, m/z = 316.18 (M+H+); Rf: 0.40 (15% 

7.0 M NH3 in DCM); HPLC: RT = 1.95 min; m/z (ES+): Found: 316.1444 

(M+H+), C20H17N3O requires MH 316.1444; IR:νmax/cm-1 (solid): 3342 (br.O-H), 

1605; M.pt: 191.2-195.8 °C. 
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Preparation of 4-{3-[3-(hydroxymethyl)phenyl]-1H-indazol-6-yl}phenol 

4-{3-[3-(bromomethyl)phenyl]-1H-indazol-6-

yl}phenol* (83 mg, 0.22 mmol, 1.0 eq) was 

suspended in saturated NaHCO3 (3 mL) and the 

reaction refluxed for 18 h. A colour change of 

yellow to orange was observed. TLC analysis 

showed the reaction to be incomplete, however the reaction was stopped. The reaction 

mixture was reduced in vacuo and resuspended in water (5 mL) and sonicated for 

15 minutes. The orange precipitate was filtered and washed with water. Attempts at 

purifying the crude solid using reverse phase ACC under acidic conditions failed due 

to precipitation of the compound on the column. The column was flushed with MeOH 

and all fractions reduced in vacuo. The crude solid was suspended in DCM (10 mL) 

and 2 M NaOH (20 mL) added and the organic layer separated. The aqueous layer was 

acidified to pH 1.0 (2 M HCl) and the solution extracted with DCM (20 mL) and the 

organic layer separated. The aqueous layer was neutralised to pH 7.0 and the solution 

extracted with DCM (20 mL) and the organic layer separated. The combined organic 

layers were reduced in vacuo and the crude product purified by reverse phase ACC 

(gradient 0-30% MeCN−H2O). The title compound 150 (2 mg, 6 × 10-3 mmol, 3%) 

was collected as an off-white solid. 

*Compound isolated as an undesired product (section 3.4.1) from reacting 3-[6-(4-

methoxyphenyl)-1H-indazol-3-yl]phenyl}methanol (156) under the conditions 

outlined in method D. 

1H NMR (500 MHz, DMSO-d6): 13.19 (1H, br.s, indazole NH), 9.59 (1H, br.s, OH), 

8.08 (1H, d, J 8.5, 4-H), 7.97 (1H, s, 2’’’-H), 7.86 (1H, d, J 7.5, 6’’’-H), 7.65 (1H, s, 

7-H), 7.59-7.56 (2H, m, 2’’-H and 6’’-H), 7.48-7.43 (2H, m, 5-H and 5’’’-H), 7.33 

(1H, d, J 8.0, 4’’’-H), 6.90-6.87 (2H, m, 3’’-H and 5’’-H), 5.27 (1H, t, J 6.0, OH), 4.61 

(2H, d, J 6.0, CH2); 13C NMR (125 MHz, DMSO-d6): 157.3 (4’’-C), 143.2 (3’’’-C), 

142.5 (Ar-q), 131.0 (1’’-C), 128.6 (5’’’-C), 128.2 (2’’-C and 6’’-C), 125.7 (4’’’-C), 

125.0 (6’’’-C), 124.6 (2’’’-C), 121.0 (4-C), 120.4 (5-C), 118.9 (7’-C), 115.8 (3’’-C 

and 5’’-C), 106.9 (7-C), 62.9 (CH2), three Ar-qs not observed; LC-MS (ES): 

RT = 0.5-0.6 min, m/z = 317.15 (M+H+); Rf: 0.59 (EtOAc); HPLC: RT = 2.41 min; 

m/z (ES+): Found: 317.1283 (M+H+), C20H16N2O2 requires MH 317.1285; 

IR:νmax/cm-1 (solid): 3205 (br.O-H), 2922, 1670. 
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Preparation of 4-[3-(3-ethylphenyl)-1H-indazol-6-yl]phenol 

Synthesised using method D using 3-(3-

ethylphenyl)-6-(4-methoxyphenyl)-1H-indazole 

(100 mg, 0.30 mmol, 1.0 eq), 1 M BBr3 in DCM 

(2.44 mL, 2.44 mmol, 8.0 eq) and DCM (5 mL) and 

the reaction stirred for 2 h. Water (10 mL) was added 

and the resulting precipitate filtered and washed with water. The solid was dissolved 

in MeOH and reduced in vacuo to reveal the crude solid as an off-white solid. The 

crude solid was triturated in hot EtOAc. The title compound 151 (13 mg, 0.04 mmol, 

14%) was collected as a colourless powder. 

1H NMR (500 MHz, DMSO-d6): 8.06 (1H, d, J 8.5, 4-H), 7.82 (1H, s, 2’’’-H), 7.80 

(1H, d, J 7.5, 6’’’-H), 7.65 (1H, s, 7-H), 7.57 (2H, d, J 8.5, 2’’-H and 6’’-H), 7.44-7.41 

(2H, m, 5-H and 5’’’-H), 7.24 (1H, d, J 7.5, 4’’’-H), 6.88 (2H, d, J 8.5, 3’’-H and 

5’’-H), 2.71 (2H, q, J 7.5, CH2), 1.25 (3H, t, J 7.5, CH3), heteroatoms not observed; 

13C NMR (125 MHz, DMSO-d6): 157.2 (4’’-C), 144.3 (3’’’-C), 143.2 (Ar-q), 142.5 

(Ar-q), 138.5 (6-C), 133.7 (1’’’-C), 131.0 (Ar-q), 128.8 (5’’’-C), 128.2 (2’’-C and 

6’’-C), 127.2 (4’’’-C), 126.0 (2’’’-C), 124.1 (6’’’-C), 121.0 (4-C), 120.5 (5-C), 118.9 

(7’-C), 115.8 (3’’-C and 5’’-C), 106.9 (7-C), 28.2 (CH2), 15.7 (CH3); LC-MS (ES): 

RT = 0.6-0.7 min, m/z = 315.77 (M+H+); Rf: 0.64 (4:1 EtOAc−hexane); HPLC: 

RT = 3.00 min (97%); m/z (ES+): Found: 315.1490 (M+H+), C21H18N2O requires MH 

315.1492; IR:νmax/cm-1 (solid): 3251 (br.O-H), 2916, 1607. 

Preparation of 3-bromo-6-(4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-1H-

indazole (500 mg, 1.55 mmol, 1.0 eq), 

4-methoxyphenylboronic acid (353 mg, 2.32 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (126 mg, 0.155 mmol, 0.1 eq), Na2CO3 

(492 mg, 4.64 mmol, 3.0 eq), dioxane (10 mL) and water 

(10 mL) and the reaction heated for 5 h. The boronic acid was found to have the same 

Rf as the product, therefore 3-bromo-6-iodo-1H-indazole (250 mg, 0.77 mmol, 0.5 eq) 

and Pd(dppf)Cl2•DCM (63 mg, 0.077 mmol, 0.05 eq) were added and the reaction 

heated for 1 h. The work up proceeded using the larger volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown solid. The crude product was 

purified using column chromatography (20-50% EtOAc−hexane) and an off-white 
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solid obtained. The resulting solid was crystallised from toluene. 

The title compound 153 (135 mg, 0.48 mmol, 31%) was collected as off-white shiny 

flakes. 

1H NMR (500 MHz, DMSO-d6): 7.69-7.66 (3H, m, 7-H, 2’’-H and 6’’-H), 7.60 (1H, 

dd, J 8.5 and 1.0, 4-H), 7.48 (1H, dd, J 8.5 and 1.5, 5-H), 7.06-7.03 (2H, m, 3’’-H and 

5’’-H), 3.80 (3H, s, CH3), NH not observed; 13C NMR (125 MHz, DMSO-d6): 159.2 

(4’’-C), 141.8 (3’-C), 139.5 (6-C), 132.3 (1’’-C), 128.4 (2’’-C and 6’’-C), 121.1 (5-C), 

121.0 (3’-C), 120.2 (3-C), 119.5 (4-C), 114.5 (3’’-C and 5’’-C), 107.5 (7-C), 55.2 

(CH3); LC-MS (ES): RT = 2.01-2.09 min, m/z = 303.1 (M+H+); Rf: 0.46 

(1:1 EtOAc−hexane); HPLC: RT = 0.88 min; m/z (ES+): Found: 303.0132 

(M+H+), C14H11BrN2O requires MH 303.0128; IR:νmax/cm-1 (solid): 3287 (N-H), 

2991, 2932, 2833, 1618; M.pt: 213.2-214.1°C; Found: C,55.7; H, 3.70; N, 9.2; 

C14H11BrN2O requires C, 55.5; H, 3.66; N, 9.2%. 

Preparation of 3,6-bis(4-methoxyphenyl)-1H-indazole 

Synthesised as a side product using the same conditions 

as seen in the preparation of 6-(4-methoxyphenyl)-1H-

indazole (153). A second compound was isolated from 

the column and a yellow solid obtained. The solid was 

triturated in hot EtOH decanting off the yellow solution 

and the remaining solid crystallised from EtOH. 

The title compound 154 (32 mg, 0.10 mmol, 3%) was 

collected as off-white microneedles. 

1H NMR (500 MHz, DMSO-d6): 13.09 (1H, br.s NH), 8.05 (1H, d, J 8.5, 4-H), 

7.95-7.91 (2H, m, 2’’’ and 6’’’-H), 7.70-7.67 (3H, m, 7-H, 2’’-H and 6’’-H), 7.44 (1H, 

dd, J 8.5 and 1.5, 5-H), 7.10-7.03 (4H, m, 3’’-H, 5’’-H, 3’’’-H and 5’’’-H), 3.82 (3H, 

s, CH3), 3.81 (3H, s, CH3); 13C NMR (125 MHz, DMSO-d6): 159.0 (4’’-C), 158.9 

(4’’’-C), 143.0 (3-C), 142.4 (3’-C), 138.0 (6-C), 132.7 (1’’-C), 128.2 (2’’-C and 

6’’-C), 127.9 (2’’’-C and 6’’’-C), 126.3 (1’’’-C), 121.0 (4-C), 120.3 (5-C), 118.9 

(7’-C), 114.4 (3’’-C and 5’’-C), 114.3 (3’’’-C and 5’’’-C), 107.2 (7-C), 55.2 (CH3), 

55.2 (CH3); LC-MS (ES): RT = 2.05-2.19 min, m/z = 331.2 (M+H+); Rf: 0.50 

(7:3 EtOAc−hexane); HPLC: RT = 0.84 min; m/z (ES+): Found: 331.1454 

(M+H+), C21H19N2O2 requires MH 331.1441; IR:νmax/cm-1 (solid): 3352 (N-H), 3070, 

2954, 2831, 1607; M.pt: 197.0-198.0 °C. 
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Preparation of {3-[6-(4-methoxyphenyl)-1H-indazol-3-yl]phenyl}methanaminium 

formate 

Synthesised using method A using 3-bromo-6-

(4-methoxyphenyl)-1H-indazole (250 mg, 

0.82 mmol, 1.0 eq), 3-

(aminomethyl)phenylboronic acid•HCl 

(232 mg, 1.24 mmol, 1.5 eq), 

Pd(dppf)Cl2•DCM (67 mg, 0.082 mmol, 0.1 eq), Na2CO3 (437 mg, 4.12 mmol, 5.0 eq), 

dioxane (2.5 mL) and water (2.5 mL) and the reaction heated for 3 h. LC-MS showed 

the reaction to be incomplete and therefore 3-(aminomethyl)phenylboronic acid•HCl 

(116 mg, 0.62 mmol, 0.75 eq), Pd(dppf)Cl2•DCM (34 mg, 0.041 mmol, 0.05 eq) and 

Na2CO3 (218 mg, 2.56 mmol, 2.5 eq) were added and the reaction heated for 2 h. The 

celite pad was washed with DCM:MeOH (1:1) and the work up carried out using DCM 

instead of EtOAc. The work up proceeded using the smaller volumes of solvents and 

the organic solvent removed in vacuo to reveal a brown semi-solid. The crude product 

was purified using column chromatography (12% 7.0 M NH3 in MeOH−EtOAc) and 

a brown semi-solid obtained. The semi-solid was further purified using reverse phase 

ACC (gradient 0-40% MeCN−H2O in 0.1% formic acid). Appropriate fractions were 

collected and reduced in vacuo to a volume of ~20 mL until precipitation was 

observed. The precipitate was filtered and triturated in hot MeOH removing the 

insoluble impurities via filtration. The filtrate was reduced in vacuo and the resulting 

solid triturated in hot EtOAc. The title compound 155 (67 mg, 0.20 mmol, 25%) was 

collected as a colourless powder. 

1H NMR (500 MHz, DMSO-d6): 8.43 (1H, s, formate-H), 8.22 (1H, d, J 8.5, 4-H), 

8.10 (1H, s, 2’’’-H), 7.97 (1H, d, J 7.5, 6’’’-H), 7.74 (1H, s, 7-H), 7.74-7.71 (2H, m, 

2’’-H and 6’’-H), 7.53 (1H, app.t, J 7.5, 5’’’-H), 7.49 (1H, dd, J 8.5 and 1.5, 5-H), 

7.46 (1H, d, J 8.0, 4’’’-H), 7.10-7.07 (2H, m, 3’’-H and 5’’-H), 4.05 (2H, s, CH2), 3.84 

(3H, s, CH3), heteroatoms not observed; 13C NMR (125 MHz, DMSO-d6): 165.2 

(formate C=O), 159.0 (4’’-C), 142.8 (1’’’-C), 142.5 (Ar-q), 138.9 (3’’’-C), 138.1 

(6-C), 133.9 (Ar-q), 132.7 (3-C), 128.9 (5’’’-C), 128.2 (2’’-C and 6’’-C), 127.5 

(4’’’-C), 126.4 (2’’’-C), 125.7 (6’’’-C), 121.2 (4-C), 120.5 (5-C), 119.0 (7’-C), 114.4 

(3’’-C and 5’’-C), 107.3 (7-C), 55.2 (CH3), 43.5 (CH2); LC-MS (ES): RT = 0.5-0.5 

min, m/z = 330.23 (M+H+); Rf: 0.57 (15% 7.0 M NH3 in DCM); HPLC: RT = 3.00 
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min (94%); m/z (ES+): Found: 330.1598 (M+H+), C21H19N3O requires MH 330.1601; 

IR:νmax/cm-1 (solid): 3291 (N-H), 2955, 2799, 1648; M.pt: 188.0-189.5 °C. 

Preparation of {3-[6-(4-methoxyphenyl)-1H-indazol-3-yl]phenyl}methanol 

Synthesised using method A using 3-bromo-6-(4-

methoxyphenyl)-1H-indazole (250 mg, 

0.82 mmol, 1.0 eq), 3-

(hydroxymethyl)phenylboronic acid (188 mg, 

1.24 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (67 mg, 

0.082 mmol, 0.1 eq), Na2CO3 (262 mg, 2.47 mmol, 3.0 eq), dioxane (2.5 mL) and 

water (2.5 mL) and the reaction heated for 3.5 h. LC-MS showed the reaction to be 

incomplete and therefore 3-(hydroxymethyl)phenylboronic acid (94 mg, 0.62 mmol, 

0.75 eq), Pd(dppf)Cl2•DCM (34 mg, 0.041 mmol, 0.05 eq) and Na2CO3 (131 mg, 

1.24 mmol, 1.5 eq) were added and the reaction heated for 1 h. The work up proceeded 

using the smaller volumes of solvents and the organic solvent removed in vacuo to 

reveal a brown solid. The crude product was purified using column chromatography 

(gradient 60-70% EtOAc−hexane) and a yellow solid obtained. The solid was 

crystallised from EtOH. The title compound 156 (118 mg, 0.36 mmol, 43%) was 

collected as yellow micro-granules. 

1H NMR (500 MHz, DMSO-d6): 13.22 (1H, br.s, NH), 8.11 (1H, d, J 8.5, 4-H), 7.98 

(1H, s, 2’’’-H), 7.87 (1H, d, J 7.5, 6’’’-H), 7.71-7.67 (3H, m, 7-H, 2’’-H and 6’’-H), 

7.49-7.45 (2H, m, 5-H and 5’’’-H), 7.34 (1H, d, J 8.0, 4’’’-H), 7.07-7.04 (2H, m, 3’’-H 

and 5’’-H), 5.28 (1H, t, J 6.0, OH), 4.61 (2H, d, J 6.0, CH2), 3.81 (3H, s, CH3); 

13C NMR (125 MHz, DMSO-d6): 159.0 (4’’-C), 143.2 (Ar-q), 143.2 (Ar-q), 142.4 

(Ar-q), 138.1 (6-C), 133.5 (Ar-q), 132.7 (Ar-q), 128.6 (5’’’-C), 128.2 (2’’-C and 

6’’-C), 125.7 (4’’’-C), 125.0 (6’’’-C), 124.7 (2’’’-C), 121.1 (4-C), 120.5 (5-C), 119.0 

(7’-C), 114.4 (3’’-C and 5’’-C), 107.3 (7-C), 62.9 (CH2), 55.2 (CH3); LC-MS (ES): 

RT = 0.6-0.6 min, m/z = 331.20 (M+H+); Rf: 0.59 (EtOAc); HPLC: RT = 3.00 min; 

m/z (ES+): Found: 331.1441 (M+H+), C21H18N2O2 requires MH 331.1441; 

IR:νmax/cm-1 (solid): 3172 (br.O-H), 2972, 1604; M.pt: 191.7-193.1 °C. 
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Preparation of 3-(3-ethylphenyl)-6-(4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-(4-

methoxyphenyl)-1H-indazole (250 mg, 0.82 mmol, 

1.0 eq), 3-ethylphenylboronic acid (186 mg, 

1.24 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (67 mg, 

0.082 mmol, 0.1 eq), Na2CO3 (262 mg, 2.47 mmol, 

3.0 eq), dioxane (2.5 mL) and water (2.5 mL) and 

the reaction heated for 3.5 h. The work up proceeded using the smaller volumes of 

solvents and the organic solvent removed in vacuo to reveal a brown semi-solid. The 

crude product was purified using column chromatography (7:3 hexane−EtOAc). 

The title compound 157 (26 mg, 0.07 mmol, 16%) was collected as colourless waxy 

platelets. 

1H NMR (500 MHz, DMSO-d6): 13.20 (1H, br.s, NH), 8.08 (1H, d, J 8.5, 4-H), 7.83 

(1H, s, 2’’’-H), 7.81 (1H, d, J 8.0, 6’’’-H), 7.71-7.76 (3H, m, 7-H, 3’’H and 5’’-H), 

7.46 (1H, dd, J 8.5 and 1.5, 5-H), 7.43 (1H, app.t, J 7.5, 5’’’-H), 7.25 (1H, d, J 8.0, 

4’’’-H), 7.07-7.04 (2H, m, 2’’-H and 6’’-H), 3.81 (3H, s, OCH3),  2.71 (2H, q, J 7.5, 

CH2), 1.26 (3H, t, J 7.5, CH2CH3); 13C NMR (125 MHz, DMSO-d6): 159.0 (4’’-C), 

144.3 (3’’’-C), 143.3 (Ar-q), 142.4 (Ar-q), 138.1 (6-C), 133.7 (1’’’-C), 132.7 (3-C), 

128.8 (5’’’-C), 128.2 (3’’-C and 5’’-C), 127.2 (4’’’-C), 126.1 (2’’’-C), 124.1 (6’’’-C), 

121.1 (4-C), 120.5 (5-C), 119.1 (7’-C), 114.4 (2’’-C and 6’’-C), 107.3 (7-C), 55.2 

(OCH3), 28.2 (CH2), 15.7 (CH2CH3); LC-MS (ES): RT = 0.7-0.8 min, m/z = 329.23 

(M+H+); Rf: 0.72 (4:1 EtOAc−hexane); HPLC: RT = 4.14 min; m/z (ES+): Found: 

329.1650 (M+H+), C22H20N2O requires MH 329.1648; IR:νmax/cm-1 (solid): 3235 

(N-H), 2962, 2926, 1626; M.pt: 139.0-140.1 °C. 

Preparation of 3,6-bis(4-hydroxyphenyl)-1H-indazole 

Synthesised using method D using 3,6-bis(4-

methoxyphenyl)-1H-indazole (194 mg, 0.59 mmol, 

1.0 eq), 1 M BBr3 in DCM (4.70 mL, 4.70 mmol, 8.0 eq) 

and DCM (15 mL) and the reaction stirred for 23 h. TLC 

analysis showed the reaction to be incomplete and 

therefore 1 M BBr3 in DCM (588 μL, 0.588 mmol, 

1.0 eq) was added and the reaction stirred for 1 h. Water (20 mL) was added and the 

resulting precipitate filtered and washed with DCM. The solid was dissolved in MeOH 
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and reduced in vacuo to yield the crude product as a brown solid. Purification attempts 

using trituration with DCM and MeOH failed as well as attempts at normal phase 

chromatography, possibly due to the compounds solubility issues. The crude product 

was triturated with small amounts of cold MeOH and filtered. The title compound 158 

(73 mg, 0.24 mmol, 41%) collected as an off-white solid. 

1H NMR (500 MHz, DMSO-d6): 12.97 (1H, br.s, NH), 9.57 (1H, br.s, OH), 9.55 (1H, 

br.s, OH), 8.00 (1H, d, J 8.5, 4-H), 7.82-7.79 (2H, m, 2’’’-H and 6’’’-H), 7.61 (1H, s, 

7-H), 7.58-7.54 (2H, m, 2’’-H and 6’’-H), 7.39 (1H, dd, J 8.5 and 1.5, 5-H), 6.92-6.86 

(4H, m, 3’’-H, 5’’-H, 3’’’-H and 5’’’-H); 13C NMR (125 MHz, DMSO-d6): 157.2 

(4’’-C), 157.2 (4’’’-C), 143.3 (3-C), 142.4 (3’-C), 138.3 (6-C), 131.1 (1’’-C), 128.1 

(2’’-C and 6’’-C), 128.0 (2’’’-C and 6’’’-C), 124.8 (1’’’-C), 121.0 (4-C), 120.0 (5-C), 

118.7 (7’-C), 115.8 (3’’-C and 5’’-C), 115.6 (3’’’-C and 5’’’-C), 106.7 (7-C); LC-MS 

(ES): RT = 1.67-1.81 min, m/z = 303.1 (M+H+); Rf: 0.52 (EtOAc); HPLC: RT = 2.41 

min; m/z (ES+): Found: 303.1138 (M+H+), C19H15N2O2 requires MH 303.1128; 

IR:νmax/cm-1 (solid): 3583 (O-H), 3333 (O-H), 3142, 1609, 1522; M.pt: 260.4-265.1 

°C. 

Preparation of N-[6-(4-hydroxyphenyl)-1H-indazol-3-yl]benzamide 

Synthesised using method D using N-[6-(4-

methoxyphenyl)-1H-indazol-3-yl]benzamide (100 mg, 

0.29 mmol, 1.0 eq), 1 M BBr3 in DCM (2.33 mL, 

2.33 mmol, 8.0 eq) and DCM (7 mL) and the reaction 

stirred for 20 h. Water (10 mL) was added and the resulting 

yellow precipitate collected by filtration and washed with 

water. The crude solid was dissolved in MeOH and 

reduced in vacuo to reveal an off-white solid. The solid was crystallised from EtOH. 

The title compound 160 (36 mg, 0.11 mmol, 38%) was collected as a fluffy 

colourless solid. 

1H NMR (500 MHz, DMSO-d6): 12.78 (1H, br.s, indazole NH), 10.81 (1H, br.s, 

amide NH), 9.58 (1H, s, OH), 8.12-8.09 (2H, m, 2’’’-H and 6’’’-H), 7.77 (1H, d, J 8.5, 

4-H), 7.65-7.61 (1H, m, 4’’’-H), 7.60-7.54 (5H, m, 7-H, 2’’-H, 6’’-H, 3’’’-H and 

5’’’-H), 7.34 (1H, dd, J 8.5 and 1.5, 5-H), 6.91-6.88 (2H, m, 3’’-H and 5’’-H); 

13C NMR (100 MHz, DMSO-d6): 166.0 (amide C=O), 157.7 (4’’-C), 142.4 (7’-C), 

140.6 (6-C), 139.3 (3-C), 134.3 (1’’’-C), 132.3 (4’’’-C), 131.7 (1’’-C), 128.9 (Ar-q), 
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128.7 (Ar-q), 128.4 (2’’’-C and 6’’’-C), 122.7 (4-C), 119.7 (5-C), 116.2 (3’-C), 116.2 

(3’’-C and 5’’-C), 107.0 (7-C); LC-MS (ES): RT = 0.5-0.6 min, m/z = 330.18 

(M+H+); Rf: 0.18 (7:3 EtOAc−petrol); HPLC: RT = 2.46 min; m/z (ES+): Found: 

330.1236 (M+H+), C20H15N3O2 requires MH 330.1237; IR:νmax/cm-1 (solid): 3246 

(N-H), 3100 (br.O-H), 3000, 1649 (C=O); M.pt: >250 °C. 

Preparation of 6-(4-hydroxyphenyl)-1H-indazole-3-phenylcarboxamide 

Synthesised using method D using 6-(4-

methoxyphenyl)-1H-indazole-3-phenylcarboxamide 

(28 mg, 0.08 mmol, 1.0 eq), 1M BBr3 in DCM 

(0.65 mL, 0.65 mmol, 8.0 eq) and DCM (2 mL). The 

crude product was purified using reverse−phase ACC 

(50-72% MeCN−H2O in 0.1% formic acid). The title 

compound 161 (7 mg, 0.03 mmol, 27%) was collected as an off-white 

pearlescent powder. 

1H NMR (400 MHz, CD3OD): 8.28 (1H, d, J 8.5, 4-H), 7.79-7.76 (2H, m, 2’’’-H and 

6’’’-H), 7.71 (1H, s, 7-H), 7.58-7.51 (3H, m, 5-H, 3’’-H and 5’’-H), 7.41-7.35 (2H, m, 

3’’’-H and 5’’’-H), 7.15 (1H, app.t, J 7.4, 4’’’-H), 6.93-6.87 (2H, m, 2’’-H and 6’’-H), 

OH and NHs not observed; 13C NMR (100 MHz, CD3OD): 163.0 (C=O),158.3 

(4’’-C), 143.7 (Ar-q), 141.6 (Ar-q), 139.3 (Ar-q), 133.2 (Ar-q), 131.1 (Ar-q), 129.6 

(3’’’-C and 5’’’-C), 129.3 (5-C), 123.4 (4’’’-C), 122.6 (3’’-C and 5’’-C), 121.5 (4-C), 

120.3 (2’’’-C and 6’’’-C), 116.5 (2’’-C and 6’’-C), 108.1 (7-C), one quaternary carbon 

not observed; LC−MS (ES): RT = 0.6-0.6 min, m/z = 330.22 (M+H+); Rf: 0.31 (5% 

MeOH−DCM); HPLC: RT = 3.04 min (97%); m/z (ES+): Found: 330.1233 (M+H+), 

C20H15N3O2 requires MH 330.1237; IR:νmax/cm-1 (solid): 3366 (N-H), 3180, 1651 

(C=O); M.pt: >250 °C. 

Preparation of N-[6-(4-methoxyphenyl)-1H-indazol-3-yl]benzamide 

Synthesised using method A using tert-butyl 3-

benzamido-6-bromo-1H-indazole-1-carboxylate (229 mg, 

0.55 mmol, 1.0 eq), 4-methoxyphenylboronic acid 

(125 mg, 0.82 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (45 mg, 

0.055 mmol, 0.1 eq), Na2CO3 (175 mg, 1.65 mmol, 

3.0 eq), dioxane (2 mL) and water (2 mL) and the reaction 

heated for 3 h. The work up proceeded using the smaller 
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volumes of solvents and the organic solvent removed in vacuo to reveal a brown oil. 

The crude product was purified by column chromatography (gradient 50-60% 

EtOAc−hexane) and a cream solid obtained. The solid was crystallised from propan-2-

ol. The title compound 162 (94 mg, 0.27 mmol, 50%) was collected as colourless 

microneedles. The filtrate was reduced in vacuo to reveal an off-white solid (55 mg, 

0.16 mmol, 29%) which was used without further purification. 

1H NMR (500 MHz, DMSO-d612.78 (1H, br.s, indazole NH), 10.80 (1H, br.s amide 

NH), 8.10-8.07 (2H, m, 2’’’-H and 6’’’-H), 7.78 (1H, d, J 8.5, 4-H), 7.69-7.66 (2H, 

m, 2’’-H and 6’’-H), 7.63-7.59 (2H, m, 7-H and 4’’’-H), 7.56-7.52 (2H, m,3’’’ H and 

5’’’-H), 7.35 (1H, dd, J 8.5 and 1.5, 5-H), 7.06-7.03 (2H, m, 3’’-H and 5’’-H), 3.81 

(3H, s, CH3); 13C NMR (100 MHz, DMSO-d6): 165.5 (amide C=O), 159.0 (4’’ C), 

141.9 (7’-C), 140.1 (6-C), 138.2 (3-C), 133.8 (1’’’-C), 132.8 (1’’-C), 131.8 (4’’’-C), 

128.4 (3’’’-C and 5’’’-C), 128.2 (2’’-C and 6’’-C), 127.9 (2’’’-C and 6’’’-C), 122.4 

(4-C), 119.9 (5-C), 115.9 (3’-C), 114.4 (3’’-C and 5’’-C), 106.9 (7-C), 55.2 (CH3); 

LC-MS (ES): RT = 0.6-0.6 min, m/z = 344.20 (M+H+); Rf: 0.30 (7:3 EtOAc−petrol); 

HPLC: RT = 3.01 min; m/z (ES+): Found: 344.1392 (M+H+), C21H17N3O2 requires 

MH 344.1394; IR:νmax/cm-1 (solid): 3298 (N-H), 3250 (N-H), 3056, 3000, 2834, 1637 

(C=O); M.pt: 213.5-215.0 °C. 

Preparation of 6-(4-methoxyphenyl)-1H-indazole-3-phenylcarboxamide 

Synthesised using method A using 6-bromo-1H-

indazole-3-phenylcarboxamide (250 mg, 0.79 mmol, 

1.0 eq), 4-methoxyphenylboronic acid (178 mg, 

1.18 mmol, 1.5 eq), Pd(dppf)Cl2•DCM (64 mg, 0.079 

mmol, 0.1 eq), Na2CO3 (250 mg, 2.36 mmol, 3.0 eq), 

dioxane (7 mL) and water (7 mL) and the reaction 

heated for 3 h. The work up proceeded using the 

smaller volumes of solvents and the organic solvent removed in vacuo to reveal a 

brown oil. The crude product was purified using column chromatography (0.5% 7.0 M 

NH3 in MeOH−DCM) and an orange solid obtained. The solid was triturated with 

EtOAc and filtered. The title compound 163 (28 mg, 0.08 mmol, 10%) was collected 

as an off-white powder. 

1H NMR (500 MHz, DMSO-d6): 13.79 (1H, br.s, indazole NH), 10.33 (1H, br.s, 

amide NH), 8.26 (1H, d, J 8.5, 4-H), 7.92 (2H, d, J 7.9, 2’’’-H and 6’’’-H), 7.80 (1H, 
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s, 7-H), 7.74 (2H, d, 3’’-H and 5’’-H), 7.59 (1H, dd, J 8.5 and 1.5, 5-H); 7.37 (2H, 

app.t, J 7.9, 3’’’-H and 5’’’-H), 7.13-7.07 (3H, m, 2’’-H, 6’’-H and 4’’’-H), 3.84 (3H, 

s, CH3); 13C NMR (100 MHz, DMSO-d6): 161.4 (C=O), 159.6 (4’’-C), 142.6 (3-C), 

139.3 (Ar-q), 139.2 (Ar-q), 138.8 (Ar-q), 133.0 (Ar-q), 129.0 (3’’’-C and 5’’’-C), 

128.8 (3’’-C and 5’’-C), 123.9 (4’’’-C), 122.5 (5-C), 122.3 (4-C), 121.2 (3’-C), 120.7 

(2’’’-C and 6’’’-C), 114.9 (2’’-C and 6’’-C), 108.0 (7-C), 55.7 (CH3); LC-MS (ES): 

RT= 0.7-0.8 min, m/z = 344.23 (M+H+); Rf: 0.43 (0.5% 7.0 M NH3 in MeOH−DCM); 

HPLC: RT = 3.52 min; m/z (ES+): Found: 344.1388 (M+H+), C21H17N3O2 requires 

MH 344.1394; IR:νmax/cm-1 (solid): 3374 (N-H), 3192, 2955, 2836, 1666 (C=O); 

M.pt: >250 °C. 

6.1.4.3 Chapter Four Compounds 

Preparation of 4-{4-[6-(4-hydroxyphenyl)-1H-indazol-3-yl]phenyl}piperazin-1-ium 

formate 

Synthesised using method D using 6-(4-

methoxyphenyl)-3-[4-(piperazin-1-

yl)phenyl]-1H-indazole (49 mg, 0.13 mmol, 

1.0 eq), 1 M BBr3 in DCM (1.02 mL, 

1.02 mmol, 8.0 eq) and DCM (5 mL) and the 

reaction stirred for 1 h. Water (10 mL) was 

added and the resulting suspension added to 

MeOH (10 mL) to aid dissolution. The 

reaction mixture was extracted with DCM (3 × 10 mL) and the combined organic 

layers extracted with water (3 × 10 mL) adding MeOH (5 mL) each extraction to aid 

dissolution. The aqueous layer was reduced in vacuo to reveal a brown solid (150 mg). 

The crude product was purified by reverse phase ACC (gradient 0-40% MeCN−H2O 

in 0.1% formic acid). The title compound 164 (36 mg, 0.1 mmol, 76%) was collected 

as a colourless solid. 

1H NMR (500 MHz, DMSO-d6): 13.01 (1H, br.s, formate OH), 8.19 (1H, br.s, 

formate H), 8.02 (1H, d, J 8.5, 4-H), 7.90-7.86 (2H, m, 2’’’-H and 6’’’-H), 7.62 (1H, 

s, 7-C), 7.58-7.54 (2H, m, 2’’-H and 6’’-H), 7.40 (1H, dd, J 8.5 and 1.5, 5-H), 

7.12-7.08 (2H, m, 3’’’-H and 5’’’-H), 6.90-6.86 (2H, m, 3’’-H and 5’’-H), 3.36-3.33 

(4H, m, piperazine CH2), 3.17-3.13 (4H, m, piperazine CH2), heteroatoms not 
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observed; 13C NMR (125 MHz, DMSO-d6): 163.6 (formate C=O), 157.2 (4’’-C), 

149.8 (1’’’-C), 143.0 (3-C), 142.5 (3’-C), 138.3 (6-C), 131.1 (1’’-C), 128.1 (2’’-C and 

6’’-C), 127.4 (2’’’-C and 6’’’-C), 125.1 (4’’’-C), 121.0 (4-C), 120.1 (5-C), 118.7 

(7’-C), 115.9 (3’’’-C and 5’’’-C), 115.8 (2’’’-C and 6’’’-C), 106.8 (7-C), 46.4 

(piperazine CH2), 43.5 (piperazine CH2); LC-MS (ES): RT = 0.5-0.5 min, 

m/z = 371.47 (M+H+); Rf: 0.31 (10% 7.0 M NH3 in MeOH−DCM); HPLC: RT = 1.82 

min; m/z (ES+): Found: 371.1869 (M+H+), C23H22N4O requires MH 371.1866; 

IR:νmax/cm-1 (solid): 3243 (N-H), 3232 (br.O-H), 2949, 2834, 1609; M.pt: >250 °C. 

Preparation of 6-(4-methoxyphenyl)-3-[4-(piperazin-1-yl)phenyl]-1H-indazole 

Synthesised using method F using 4-[6-(4-

methoxyphenyl)-1H-indazol-3-yl]aniline (715 mg, 

2.27 mmol, 1.0 eq), bis(2-chloroethyl)amine 

hydrochloride (486 mg, 2.72 mmol, 1.2 eq), K2CO3 

(752 mg, 5.44 mmol, 2.4 eq) and tBuOH (15 mL) and 

the reaction heated for 111 h. TLC analysis indicated 

the reaction to be incomplete and therefore 

bis(2-chloroethyl)amine hydrochloride (81 mg, 

0.45 mmol, 0.2 eq) was added and stirred at 100 °C for 3 h. LC-MS analysis indicated 

formation of several other products and therefore the reaction was stopped. The 

reaction mixture was concentrated in vacuo to reveal a green/yellow solid. The solid 

was dissolved in DMSO and the solution decanted from the insoluble impurities. The 

crude product was purified by reverse-phase ACC (gradient 0-30% MeCN−H2O in 

0.1% formic acid) and a brown/orange solid (432 mg) obtained. The product was 

further purified by suspending the solid in 2M NaOH (20 mL) and DCM (40 mL) 

added with small additions of MeOH until dissolution was observed. The aqueous 

layer was extracted with DCM (2 × 15 mL) and the combined organic layers washed 

with brine (50 mL), dried (MgSO4) and reduced in vacuo to reveal a yellow solid. The 

crude solid was purified by column chromatography (7% 7.0 M NH3 in 

MeOH−DCM). The title compound 165 (120 mg, 0.27 mmol, 12%) was collected as 

an off-white powder. 

1H NMR (500 MHz, DMSO-d6): 13.01 (1H, br.s, indazole NH), 8.04 (1H, d, J 8.5, 

4-H), 7.86-7.83 (2H, m, 2’’’-H and 6’’’-H), 7.70-7.67 (2H, m, 2’’-H and 6’’-H), 7.66 

(1H, s, 7-H), 7.42 (1H, dd, J 8.5 and 1.0, 5-H), 7.07-7.03 (4H, m, 3’’-H, 5’’-H, 3’’’-H 
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and 5’’’-H), 3.81 (3H, s, CH3), 3.14-3.11 (4H, m, piperazine CH2), 2.87-2.85 (4H, m, 

piperazine CH2), piperazine NH not observed; 13C NMR (125 MHz, DMSO-d6): 

158.9 (4’’-C), 151.1 (1’’’-C), 146.3 (Ar-q), 142.4 (Ar-q), 137.9 (6-C), 132.8 (1’’-C), 

128.2 (2’’-C and 6’’-C), 127.3 (3’’’-C and 5’’’-C), 124.0 (Ar-q), 121.1 (4-C), 120.1 

(5-C), 118.9 (7’-C), 115.2 (Ar-C), 114.4 (Ar-C), 107.2 (7-C), 55.2 (CH3), 49.1 

(piperazine CH2), 45.6 (piperazine CH2); LC-MS (ES): RT = 0.5-0.5 min, 

m/z = 385.48 (M+H+); Rf: 0.49 (5% 7.0 M NH3 in MeOH−DCM); HPLC: 

RT = 2.47 min; m/z (ES+): Found: 385.2030 (M+H+), C24H24N4O requires MH 

385.2023; IR:νmax/cm-1 (solid): 3288 (N-H), 2920, 2830, 1607; M.pt: 226.3-227.8 °C. 

Preparation of 4-[6-(4-methoxyphenyl)-1H-indazol-3-yl]aniline 

Synthesised using method A using 3-bromo-6-(4-

methoxyphenyl)-1H-indazole (500 mg, 1.65 mmol, 

1.0 eq), 4-aminophenylboronic acid•HCl (723 mg, 

3.30 mmol, 2.0 eq), Pd(dppf)Cl2•DCM (135 mg, 

0.165 mmol, 0.1 eq), Na2CO3 (524 mg, 4.95 mmol, 

3.0 eq), dioxane (10 mL) and water (10 mL) and the 

reaction heated for 6 h. LC-MS showed the reaction to be incomplete and therefore 

4 aminophenylboronic acid•HCl (141 mg, 0.83 mmol, 0.5 eq), Pd(dppf)Cl2•DCM 

(68 mg, 0.083 mmol, 0.05 eq), Na2CO3 (175 mg, 1.65 mmol, 1.0 eq) were added and 

the reaction heated for 1 h. The work up proceeded using the larger volumes of 

solvents and the organic solvent removed in vacuo to reveal a brown semi-solid. The 

crude product was purified using column chromatography (2 % 7.0 M NH3 in 

MeOH−DCM) and an orange solid obtained. The product was further purified using 

reverse phase ACC (gradient 0-50% MeCN−H2O) and an off-white solid obtained. 

The solid was crystallised from EtOH and the pure compound (33 mg, 0.10 mmol, 

4%) collected as shiny brown needles. The co-eluted fractions from the column were 

reduced in vacuo and the resulting solid dissolved in MeOH−DCM (1:1) and washed 

with 2 M NaOH (10 mL). The organic layer was reduced in vacuo and the resulting 

black solid triturated in hot EtOH and the solid filtered. The title compound 166 

(277 mg, 0.87 mmol, 33%) was collected as a brown solid and used without further 

purification. 
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1H NMR (500 MHz, DMSO-d6): 12.87 (1H, br.s, indazole NH), 8.01 (1H, d, J 8.5, 

4-H), 7.69-7.66 (4H, m, 2’’-H, 6’’-H, 2’’’-H and 6’’’-H), 7.63 (1H, s, 7-H), 7.39 (1H, 

dd, J 8.5 and 1.5, 5-H),7.06-7.03 (2H, m, 3’’-H and 5’’-H), 6.71-6.68 (2H, m, 3’’’-H 

and 5’’’-H), 5.25 (2H, br.s, NH2), 3.80 (3H, s, CH3); 13C NMR (125 MHz, 

DMSO-d6): 158.9 (4’’-C), 148.5 (1’’’-C), 144.0 (3-C), 142.3 (3’-C), 137.8 (6-C), 

132.8 (1’’-C), 128.1 (2’’’-C and 6’’’-C), 127.6 (2’’-C and 6’’-C), 121.4 (4’’’-C), 121.3 

(4-C), 119.8 (5-C), 118.9 (7’-C), 114.4 (3’’-C and 6’’-C), 114.0 (3’’’-C and 5’’’-C), 

107.0 (7-C), 55.2 (CH3); LC-MS (ES): RT = 0.5-0.6 min, m/z = 316.39 (M+H+); 

Rf: 0.35 (5% 7.0 M NH3 in MeOH−DCM); HPLC: RT = 2.38 min; m/z (ES+): Found: 

316.1447 (M+H+), C20H18N3O requires MH 316.1444; IR:νmax/cm-1 (solid): 3390 

(N-H), 3088, 2920, 2830, 1607; M.pt: 224.7-225.2 °C. 

Preparation of 4-[3-(4-aminophenyl)-1H-indazol-6-yl]phenol 

Synthesised using method D using 4-[6-(4-

methoxyphenyl)-1H-indazol-3-yl]aniline (50 mg, 

0.16 mmol, 1.0 eq), 1 M BBr3 in DCM (1.27 mL, 

1.27 mmol, 8.0 eq) and DCM (5 mL) and the reaction 

stirred for 1 h. Water (10 mL) was added and the 

resulting suspension added to MeOH (10 mL) to aid 

dissolution. The reaction mixture was extracted with DCM (3 × 10 mL) and the 

combined organic layers extracted with water (3 × 10 mL) adding MeOH (5 mL) each 

extraction to aid dissolution. The aqueous layer was reduced in vacuo to reveal a 

brown solid (149 mg). The combined organic layers were dried (MgSO4) and reduced 

in vacuo to reveal an off-white solid (6 mg). LC-MS analysis confirmed product mass 

in both aqueous and organic layers, therefore, both were combined and purified by 

reverse phase ACC (gradient 0-40% MeCN−H2O in 0.1% formic acid). Appropriate 

fractions were combined and reduced in vacuo to a volume of ~5 mL until precipitation 

was observed. The resulting solid was filtered under vacuum. The title compound 170 

(11 mg, 0.04 mmol, 23%) was collected as a fluffy colourless solid. 

1H NMR (500 MHz, DMSO-d6): 12.83 (1H, br.s, indazole NH), 9.53 (1H, br.s, OH), 

7.98 (1H, d, J 8.5, 4-H), 7.68-7.65 (2H, m, 2’’’-H and 6’’’-H), 7.58 (1H, s, 7-H), 

7.57-7.53 (2H, m, 2’’-H and 6’’-H), 7.36 (1H, dd, J 8.5 and 1.0, 5-H), 6.89-6.85 (2H, 

m, 3’’-H and 5’’-H), 6.71-6.67 (2H, m, 3’’’-H and 5’’’-H), 5.24 (2H, s, NH2); 

13C NMR (125 MHz, DMSO-d6): 157.1 (4’’-C), 148.5 (1’’’-C), 144.0 (3’-C), 142.4 
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(3-C), 138.2 (6-C), 131.2 (1’’-C), 128.1 (2’’-C and 6’’-C), 127.5 (2’’’-C and 6’’’-C), 

121.5 (4’’’-C), 121.2 (4-C), 119.7 (5-C), 118.7 (7’-C), 115.8 (3’’-C and 5’’-C), 114.0 

(3’’’-C and 5’’’-C), 106.6 (7-C); LC-MS (ES): RT = 0.5-0.5 min, m/z = 302.37 

(M+H+); Rf: 0.42 (10% 7.0 M NH3 in MeOH−DCM); HPLC: RT = 1.66 min; 

m/z (ES+): Found: 302.1283 (M+H+), C19H15N3O requires MH 302.1288; 

IR:νmax/cm-1 (solid): 3448 (N-H), 3362 (N-H), 3252 (br.O-H), 2996, 1618; M.pt: 

>250 °C. 

Preparation of 4-{4-[6-(2-fluoro-4-hydroxyphenyl)-1H-indazol-3-

yl]phenyl}piperazin-1-ium formate 

Synthesised using method D using 6-(2-

fluoro-4-methoxyphenyl)-3-[4-(piperazin-1-

yl)phenyl]-1H-indazole (16 mg, 0.04 mmol, 

1.0 eq), 1M BBr3 in DCM (0.32 mL, 

0.32 mmol, 8.0 eq) and DCM (1 mL) and the 

reaction stirred for 1 h. LC-MS analysis 

showed no conversion and therefore 1M BBr3 

in DCM (0.32 mL, 0.32 mmol, 8.0 eq) was 

added and the reaction stirred for 17 h. LC-MS analysis showed the reaction to be 

complete. The reaction mixture was concentrated in vacuo and the resulting solid 

purified by reverse-phase ACC (20-28% MeCN−H2O−0.1% formic acid). 

Appropriate fractions were combined and concentrated in vacuo to a volume of ~3 mL 

until a white precipitate had formed which was then filtered. The title compound 171 

(15 mg, 0.04 mmol, 96%) was collected as a white powder.  

1H NMR (500 MHz, DMSO-d6): 8.29 (1H, s, formate H), 8.04 (1H, d, J 8.5, 4-H), 

7.87 (2H, d, J 8.8, 3’’’-H and 5’’’-H), 7.58 (1H, br.s, 7-H), 7.44-7.39 (1H, m, 5’’-H), 

7.27 (1H, d, J 8.5, 5-H), 7.08 (2H, d, J 8.8, 2’’’-H and 6’’’-H) 6.74 (1H, dd, J 8.4 and 

2.3, 6’’-H), 6.70 (1H, dd, J 12.8 and 2.3, 3’’-H), 3.28-3.21 (4H, m, piperazine CH2), 

3.04-2.97 (4H, m, piperazine CH2),OH and NHs not observed; 13C NMR (125 MHz, 

DMSO-d6): 164.3 (formate C=O), 159.6 (d, J 245.1, 2’’-C), 158.5 (d, J 11.8, 4’’-C), 

150.3 (4’’’-C), 143.1 (Ar-q), 141.9 (Ar-q), 133.1 (6-C), 131.3 (d, J 5.3, 5’’-C), 127.3 

(3’’’-C and 5’’’-C), 124.4 (Ar-q), 121.8 (d, J 2.3, 5-C), 120.6 (4-C), 118.7 (Ar-q), 

118.7 (d, J 12.5, 1’’-C), 115.5 (2’’’-C and 6’’’-C), 112.1 (d, J 2.7, 6’’-C), 109.7 (d, 

J 3.1, 7-C), 103.0 (d, J 25.0, 3’’-C), 47.5 (piperazine CH2), 44.1 (piperazine CH2); 
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LC−MS (ES): RT = 0.5-0.6 min, m/z = 389.44 (M+H+); Rf: 0.06 (1% 7.0 M NH3 in 

MeOH−DCM); HPLC: RT = 1.95 min; m/z (ES+): Found: 389.1775 (M+H+), 

C23H21FN4O requires MH 389.1772; IR:νmax/cm-1 (solid): 3267 (N-H), 2808, 2737, 

2670, 2490, 1582; M.pt: >250 °C. 

Preparation of 4-{4-[6-(3-fluoro-4-hydroxyphenyl)-1H-indazol-3-

yl]phenyl}piperazin-1-ium formate 

Synthesised using method D using 4-{4-[6-

(3-fluoro-4-methoxyphenyl)-1H-indazol-3-

yl]phenyl}piperazin-1-ium formate (33 mg, 

0.082 mmol, 1.0 eq), 1M BBr3 in DCM 

(0.65 mL, 0.65 mmol, 8.0 eq) and DCM 

(5 mL) and the reaction stirred for 16 h. The 

reaction mixture was reduced in vacuo and 

the crude product purified by reverse-phase 

ACC (gradient 0-40% MeCN−H2O in 0.1% formic acid). The title compound 172 

(9 mg, 0.022 mmol, 25%) was collected as an off-white solid. 

1H NMR (500 MHz, DMSO-d6): 8.28 (1H, br.s, formate H), 8.02 (1H, d, J 8.5, 4-H), 

7.88-7.84 (2H, m, 2’’-H and 6’’’-H), 7.67 (1H, s, 7-H), 7.54 (1H, dd, J 12.5 and 2.0, 

2’’-H), 7.42 (1H, dd, J 8.5 and 1.5, 5-H), 7.39 (1H, dd, J 8.5 and 1.5, 6’’-H), 7.09-7.04 

(3H, m, 3’’’-H, 5’’’-H and 5’’-H), 3.24 (4H, app.t, J 4.5, piperazine CH2), 3.00 (4H, 

br.s, piperazine CH2), heteroatoms not observed; 13C NMR (100 MHz, DMSO-d6): 

164.2 (formate C=O), 151.8 (d, J 240.6, 3’’-C), 150.1 (1’’’-C), 145.1 (d, J 12.1, 4’’-C), 

143.5 (3-C), 142.8 (3’-C), 137.6 (6-C), 132.3 (d, J 6.3, 1’’-C), 128.0 (2’’’-C and 

6’’’-C), 125.7 (4’’’-C), 123.6 (d, J 2.7, 6’’-C), 121.6 (4-C), 120.6 (5-C), 119.5 (7’-C), 

118.7 (d, J 3.2, 5’’-C), 116.5 (3’’’-C and 5’’’-C), 115.1 (d, J 19.0, 2’’-C), 107.8 (7-C), 

46.1 (piperazine CH2), 43.4 (piperazine CH2); LC-MS (ES): RT = 0.5-0.6 min, 

m/z = 389.40 (M+H+); Rf: 0.44 (20% 7.0 M NH3 in MeOH−DCM); HPLC: 

RT = 1.94 min (99%); m/z (ES+): Found: 389.1789 (M+H+), C23H21FN4O requires 

MH 389.1772; IR:νmax/cm-1 (solid): 3288 (br.O-H), 2925, 1610; 

M.pt: 219.2-223.4 °C. 
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Preparation of 1-ethyl-4-{4-[6-(4-hydroxyphenyl)-1H-indazol-3-

yl]phenyl}piperazin-1-ium formate 

Synthesised using method D using 3-[4-(4-

ethylpiperazin-1-yl)phenyl]-6-(4-

methoxyphenyl)-1H-indazole (68 mg, 

0.16 mmol, 1.0 eq), 1M BBr3 in DCM 

(1.32 mL, 1.32 mmol, 8.0 eq) and DCM 

(3 mL) and the reaction stirred for 1 h. 

LC-MS analysis showed the reaction to be 

incomplete and therefore 1M BBr3 in DCM 

(0.16 mL, 0.16 mmol, 1.0 eq) and the reaction stirred for five minutes. LC-MS analysis 

showed the reaction to be complete. Water (15 mL) was added and the reaction 

mixture transferred to a separating funnel. MeOH−DCM (1:1, 20 mL) was added to 

aid dissolution and the organic layer separated. The aqueous layer was extracted with 

DCM (2 × 15 mL) with addition of MeOH to aid dissolution of precipitate in aqueous 

layer. The combined organic layers were dried (MgSO4) and reduced in vacuo to 

reveal the crude product as a yellow solid. LC-MS analysis of the aqueous layer 

showed product and therefore the aqueous layer was reduced in vacuo and combined 

with the yellow solid. The crude product was purified by reverse-phase ACC (gradient 

0-40% MeCN−H2O in 0.1% formic acid). The title compound 173 (41 mg, 0.10 mmol, 

62%) was collected as an off-white solid. 

1H NMR (500 MHz, DMSO-d6): 8.14 (1H, br.s, formate H), 8.01 (1H, d, J 8.5, 4-H), 

7.85 (2H, d, J 8.5, 2’’’-H and 6’’’-H), 7.62 (1H, s, 7-H), 7.56 (2H, d, J 8.5, 2’’-H and 

6’’-H), 7.39 (1H, d, J 8.5, 5-H), 7.07 (2H, d, J 8.5, 3’’’-H and 5’’’-H), 6.87 (2H, d, 

J 8.5, 3’’-H and 5’’-H), 3.23 (4H, app.t, J 4.5, piperazine CH2), 2.58 (4H, app.t, J 4.5, 

piperazine CH2), 2.44 (2H, q, J 7.0, CH2CH3), 1.06 (3H, t, J 7.0, CH2CH3), 

heteroatoms not observed; 13C NMR (100 MHz, DMSO-d6): 163.7 (formate C=O), 

157.7 (4’’-C), 150.8 (1’’’-C), 143.7 (3-C), 142.9 (3’-C), 138.8 (6-C), 131.6 (1’’-C), 

128.6 (2’’-C and 6’’-C), 127.9 (2’’’-C and 6’’’-C), 124.8 (4’’’-C), 121.5 (4-C), 120.5 

(5-C), 119.2 (7’-C), 116.3 (3’’-C and 5’’-C), 115.8 (3’’’-C and 5’’’-C), 107.3 (7-C), 

52.6 (piperazine CH2), 52.0 (CH2CH3), 48.2 (piperazine CH2), 12.2 (CH2CH3); 

LC-MS (ES): RT = 0.5-0.5 min, m/z = 399.51 (M+H+); Rf: 0.42 (12% MeOH−DCM); 

HPLC: RT = 1.92 min; m/z (ES+): Found: 399.2174 (M+H+), C25H26N4O requires 
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MH 399.2179; IR:νmax/cm-1 (solid): 3173 (br.O-H), 2840, 2773, 2694, 1604; 

M.pt: >250 °C. 

Preparation of 3-bromo-6-(2-fluoro-4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-1H-

indazole (750 mg, 2.3 mmol, 1.0 eq), 2-fluoro-4-

methoxyphenylboronic acid (395 mg, 2.32 mmol, 1.0 eq), 

Pd(dppf)Cl2•DCM (190 mg, 0.23 mmol, 0.1 eq), Na2CO3 

(738 mg, 7.0 mmol, 6.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 6 h. LC-MS analysis showed the reaction to be incomplete and therefore 

2-fluoro-4-methoxyphenylboronic acid (79 mg, 0.47 mmol, 0.2 eq) and 

Pd(dppf)Cl2•DCM (190 mg, 0.23 mmol, 0.1 eq) were added and the reaction heated 

for a further 3 h. LC-MS analysis showed the reaction to be complete. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (gradient 20-30% EtOAc−petrol). The title compound 174 (182 mg, 

0.57 mmol, 25%) was collected as colourless microcrystals. 

1H NMR (500 MHz, DMSO-d6): 13.46 (1H, br.s, NH), 7.66-7.62 (2H, m, 4-H and 7-

H), 7.54 (1H, app.t, J 9.0, 6’’-H), 7.36 (1H, dd, J 8.6 and 1.3, 5-H), 6.98 (1H, dd, 

J 13.0 and 2.5, 3’’-H), 6.92 (1H, dd, J 8.6 and 2.5, 5’’-H), 3.83 (3H, s, CH3), 13C NMR 

(125 MHz, DMSO-d6): 160.3 (d, J 11.1, 4’’-C), 159.7 (d, J 245.0, 2’’-C), 141.2 

(7’-C), 134.4 (d, J 1.1, 6-C), 131.5 (d, J 5.0, 6’’-C), 122.8 (d, J 2.6, 5-C), 121.1 (Ar-q), 

120.2 (Ar-q), 120.1 (d, J 13.3, 1’’-C), 119.2 (4-C), 111.0 (d, J 2.9, 5’’-C), 110.2 (d, 

J 3.4, 7-C), 102.1 (d, J 26.6, 3’’-C), 55.7 (CH3); LC−MS (ES): RT = 0.6-0.7 min, 

m/z = 321.27 (M+H+); Rf: 0.38 (4:1 petrol−EtOAc); HPLC: RT = 3.66 min; m/z (ES-

): Found: 318.9887 (M−H+), C14H9BrFN2O requires M-H 318.9887; IR:νmax/cm-1 

(solid): 3172 (N-H), 2938, 2883, 1624; M.pt: 194.1-196.0°C. 

Preparation of 3-bromo-6-(3-fluoro-4-methoxyphenyl)-1H-indazole 

Synthesised using method A using 3-bromo-6-iodo-1H-

indazole (750 mg, 2.32 mmol, 1.0 eq), 3-fluoro-4-

methoxyphenylboronic acid (395 mg, 2.32 mmol, 1.0 eq), 

Pd(dppf)Cl2•DCM (190 mg, 0.23 mmol, 0.1 eq), Na2CO3 

(738 mg, 6.96 mmol, 3.0 eq), dioxane (10 mL) and water (10 mL) and the reaction 

heated for 6 h. LC-MS analysis showed the reaction to be incomplete and therefore 
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3-fluoro-4-methoxyphenylboronic acid (79 mg, 0.47 mmol, 0.2 eq) and 

Pd(dppf)Cl2•DCM (95 mg, 0.12 mmol, 0.05 eq) were added and the reaction heated 

for a further 9 h. LC-MS analysis showed the reaction to be complete. The work up 

proceeded using the larger volumes of solvents and the organic solvent removed in 

vacuo to reveal a brown oil. The crude product was purified using column 

chromatography (gradient 20-30% EtOAc−petrol). The title compound 175 (237 mg, 

0.74 mmol, 32%) was collected as an off-white powder. 

1H NMR (500 MHz, DMSO-d6): 13.47 (1H, br.s, NH), 7.75 (1H, s, 7-H), 7.65 (1H, 

dd, J 13.0 and 2.2, 2’’-H), 7.62 (1H, d, J 8.5, 4-H), 7.57-7.54 (1H, m, 5’’-H), 7.52 (1H, 

dd, J 8.5 and 1.4, 5-H), 7.28 (1H, app.t, J 8.9, 6’’-H), 3.90 (3H, s, CH3), 13C NMR 

(125 MHz, DMSO-d6): 151.7 (d, J 243.8, 3’’-C), 146.9 (d, J 10.8, 4’’-C), 141.6 

(7’-C), 138.3 (d, J 1.8, 6-C), 132.9 (d, J 6.4, 1’’-C), 123.4 (d, J 3.1, 5’’-C), 121.3 

(Ar-q), 121.0 (5-C), 120.2 (Ar-q), 119.6 (4-C), 114.6 (d, J 18.8, 2’’-C), 114.2 (d, J 2.0, 

6’’-C), 107.9 (7-C), 56.1 (CH3); LC−MS (ES): RT = 0.6-0.7 min, m/z = 321.24 

(M+H+); Rf: 0.24 (7:3 petrol−EtOAc); HPLC: RT = 3.58 min; m/z (ES+): Found: 

321.0042 (M+H+), C14H10BrFN2O requires MH 321.0033; IR:νmax/cm-1 (solid): 3176, 

3134, 2955, 2904, 1622; M.pt: 211.9-212.9 °C. 

Preparation of 4-[6-(2-fluoro-4-methoxyphenyl)-1H-indazol-3-yl]aniline 

Synthesised using method A using 3-bromo-6-(2-

fluoro-4-methoxyphenyl)-1H-indazole (170 mg, 

0.53 mmol, 1.0 eq), 4-aminophenylboronic acid 

pinacol ester (232 mg, 1.06 mmol, 2.0 eq), 

Pd(dppf)Cl2•DCM (43 mg, 0.053 mmol, 0.1 eq), 

Na2CO3 (168 mg, 1.59 mmol, 3.0 eq), dioxane (2.5 mL) 

and water (2.5 mL) and the reaction heated for 3 h. The work up proceeded using the 

smaller volumes of solvents and the organic solvent removed in vacuo to reveal a 

yellow solid. The solid was purified using column chromatography (2% 7.0 M NH3 in 

MeOH−DCM). The title compound 176 (115 mg, 0.36 mmol, 69%) was collected as 

a yellow powder. 

1H NMR (500 MHz, DMSO-d6): 12.92 (1H, br.s, NH), 8.04 (1H, d, J 8.5, 4-H), 7.68 

(2H, d, J 8.5, 3’’’-H and 5’’’-H), 7.59 (1H, s, 7-H), 7.54 (1H, app.t, J 9.0, 6’’-H), 7.27 

(1H, d, J 8.5, 5-H), 6.97 (1H, dd, J 12.9 and 2.5, 3’’-H), 6.92 (1H, dd, J 8.5 and 2.5, 

5’’-H), 6.71 (2H, d, J 8.5, 2’’’ and 6’’’-H), 5.27 (2H, br.s, NH2), 3.83 (3H, s, CH3); 
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13C NMR (125 MHz, DMSO-d6): 160.1 (d, J 11.3, 4’’-C), 159.8 (d, J 243.8, 2’’-C), 

148.6 (Ar-q), 144.1 (3-C), 141.8 (7’-C), 132.6 (d, J 1.3, 6-C), 131.4 (d, J 5.3, 6’’-C), 

127.6 (3’’’-C and 5’’’-C), 121.5 (d, J 1.9, 5-C), 121.3 (Ar-q), 121.0 (4-C), 120.6 (d, 

J 13.5, 1’’-C), 119.0 (3’-C), 114.0 (2’’’-C and 6’’’-C), 111.0 (d, J 2.9, 5’’-C), 109.8 

(d, J 3.3, 7-C), 102.1 (d, J 26.5, 3’’-C), 55.7 (CH3); LC−MS (ES): RT = 0.5-0.6 min, 

m/z = 334.36 (M+H+); Rf: 0.21 (2% 7.0 M NH3 in MeOH−DCM); HPLC: 

RT = 2.31 min; m/z (ES+): Found: 356.1167 (M+Na+), C20H16BrN3NaO requires 

MNa 356.1170; IR:νmax/cm-1 (solid): 3449 (N-H), 3386 (N-H), 2974, 1616; 

M.pt: 182.8-185.1 °C. 

Preparation of 4-[6-(3-fluoro-4-methoxyphenyl)-1H-indazol-3-yl]aniline 

Synthesised using method A using 3-bromo-6-(3-

fluoro-4-methoxyphenyl)-1H-indazole (214 mg, 

0.67 mmol, 1.0 eq), 4-aminophenylboronic acid 

pinacol ester (292 mg, 1.33 mmol, 2.0 eq), 

Pd(dppf)Cl2•DCM (54 mg, 0.067 mmol, 0.1 eq), 

Na2CO3 (212 mg, 2.00 mmol, 3.0 eq), dioxane (2.5 mL) 

and water (2.5 mL) and the reaction heated for 3 h. LC-MS analysis showed the 

reaction to be incomplete and therefore 4-aminophenylboronic acid pinacol ester 

(73 mg, 0.33 mmol, 0.5 eq) and Pd(dppf)Cl2•DCM (27 mg, 0.033 mmol, 0.05 eq) were 

added and the reaction heated for 2 h. LC-MS analysis showed the reaction to be 

complete. The work up proceeded using the smaller volumes of solvents and the 

organic solvent removed in vacuo to reveal a brown oil. The crude oil was purified 

using column chromatography (2% MeOH–DCM) and a brown solid obtained. The 

brown solid was further purified by reverse-phase ACC (20−49% MeCN−H2O−0.1% 

formic acid). Appropriate fractions were combined and concentrated in vacuo to a 

volume of ~3 mL until a white precipitate had formed which was then filtered. The 

title compound 177 (108 mg, 0.32 mmol, 49%) was collected as an off-white powder. 

1H NMR (500 MHz, DMSO-d6): 12.93 (1H, br.s, indazole NH), 8.03 (1H, d, J 8.5, 

4-H), 7.69-7.65 (3H, m, 7-H, 3’’’-H and 5’’’-H), 7.64 (1H, dd, J 12.9 and 2.2, 2’’-H), 

7.55 (1H, dd, J 8.6 and 1.4, 5’’-H), 7.42 (1H, dd, J 8.5 and 1.4, 5-H), 7.28 (1H, app.t, 

J 8.9, 6’’-H) 6.71 (2H, d, J 8.5, 2’’’ and 6’’’-H), 5.27 (2H, br.s, NH2), 3.90 (3H, s, 

CH3), 13C NMR (125 MHz, DMSO-d6): 151.8 (d, J 243.7, 3’’-C), 148.5 (Ar-q), 146.6 

(d, J 10.6, 4’’-C), 144.0 (Ar-q), 142.2 (Ar-q), 136.5 (d, J 1.2, 6-C), 133.5 (d, J 6.4, 
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1’’-C), 127.6 (3’’’-C and 5’’’-C), 123.1 (d, J 3.2, 5’’-C), 121.4 (4-C), 121.3 (Ar-q), 

119.7 (5-C), 119.1 (Ar-q), 114.4 (d, J 18.7, 2’’-C), 114.2 (d, J 2.1, 6’’-C), 114.0 

(2’’’-C and 6’’’-C), 107.4 (7-C), 56.1 (CH3); LC−MS (ES): RT = 0.6-0.6 min, 

m/z = 334.38 (M+H+); Rf: 0.14 (2% 7.0 M NH3 in MeOH−DCM); HPLC: 

RT = 2.25 min; m/z (ES+): Found: 334.1416 (M+H+), C20H16FN3O requires MH 

334.1356; IR:νmax/cm-1 (solid): 3380 (N-H), 3144, 3100, 2894, 1613; 

M.pt: 239.4-239.9 °C. 

Preparation of 6-(2-fluoro-4-methoxyphenyl)-3-[4-(piperazin-1-yl)phenyl]-1H-

indazole 

Synthesised using method F using 4-[6-(2-fluoro-4-

methoxyphenyl)-1H-indazol-3-yl]aniline (106 mg, 

0.34 mmol, 1.0 eq), bis-(2-chloroethyl)-amine 

hydrochloride (73 mg, 0.40 mmol, 1.2 eq) and K2CO3 

(112 mg, 0.81 mmol, 2.4 eq) and tBuOH (5 mL) and 

the reaction heated for 159 h, monitoring using 

LC-MS. The reaction mixture was concentrated in 

vacuo and the solid was purified by column 

chromatography (4% 7.0 M NH3 in MeOH−DCM). The title compound 178 (16 mg, 

0.04 mmol, 12%) was collected as a brown solid. Due to the insufficient amount of 

material obtained only partial characterisation was carried out.  

LC−MS (ES): RT = 1.4-1.5 min, m/z = 334.18 (M+H+). 

Preparation of 4-{4-[6-(3-fluoro-4-methoxyphenyl)-1H-indazol-3-

yl]phenyl}piperazin-1-ium formate 

Synthesised using method F using 4-[6-(3-

fluoro-4-methoxyphenyl)-1H-indazol-3-

yl]aniline (98 mg, 0.29 mmol, 1.0 eq), bis(2-

chloroethyl)amine hydrochloride (63 mg, 

0.35 mmol, 1.2 eq), K2CO3 (98 mg, 

0.71 mmol, 2.4 eq) and tBuOH (5 mL) and 

the reaction heated for 152 h. TLC analysis 

indicated the reaction to be incomplete and 

therefore bis(2-chloroethyl)amine hydrochloride (10 mg, 0.056 mmol, 0.2 eq) was 

added and stirred at 100 °C for 3 h. LC-MS analysis indicated formation of several 
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other products and therefore the reaction was stopped. The reaction mixture was 

concentrated in vacuo to reveal a yellow solid. The solid was suspended in 

DCM−MeOH (1:1) and 2 M NaOH (30 mL) added and the organic layer separated. 

The aqueous layer was extracted with DCM−MeOH (1:1, 3 × 20 mL) and the 

combined organic layers washed with 2 M HCl (50 mL) and the organic layer 

separated. The aqueous layer was re-basified using 2 M NaOH and then extracted with 

DCM−MeOH (1:1, 3 × 20 mL) and the organic layers separated. LC-MS indicated the 

product in both organic layers and therefore were combined and reduced in vacuo to 

reveal an orange solid. The crude solid was dissolved in DMSO and the solution 

decanted from the insoluble impurities. The crude product was purified by 

reverse-phase ACC (gradient 5-50% MeCN−H2O in 0.1% formic acid) and an orange 

solid obtained. The orange solid was triturated with MeOH. The title compound 179 

(17 mg, 0.042 mmol, 14%) was collected as a pink solid. The filtrate from the 

trituration was reduced in vacuo and collected as an orange solid (59 mg) and used 

without further purification. 

1H NMR (500 MHz, DMSO-d6): 8.30 (1H, br.s, formate H), 8.07 (1H, d, J 8.5, 4-H), 

7.89 (2H, d, J 8.5, 2’’’-H and 6’’’-H), 7.74 (1H, s, 7-H), 7.66 (1H, dd, J 7.5 and 1.5, 

5’’-H), 7.57 (1H, d, J 8.5, 6’’-H), 7.48 (1H, d, J 8.5, 5-H), 7.29 (1H, app.t, J 8.5, 

2’’-H), 7.10 (2H, d, J 8.5, 3’’’-H and 5’’’-H), 3.91 (3H, s, CH3), 3.26 (4H, s, piperazine 

CH2), 3.02 (4H, s, piperazine CH2), NHs not observed; 13C NMR (100 MHz, 

DMSO-d6): 152.3 (d, J 243.6, 3’’-C), 151.0 (1’’’-C), 147.2 (d, J 10.6, 4’’-C), 143.7 

(3’-C), 142.8 (3-C), 137.2 (6-C), 133.9 (d, J 6.5, 1’’-C), 127.9 (2’’’-C and 6’’’-C), 

124.9 (4’’’-C), 123.7 (d, J 3.1, 6’’-C), 121.7 (4-C), 120.6 (5-C), 119.7 (7’-C), 116.0 

(3’’’-C and 5’’’-C), 115.0 (d, J 18.9, 2’’-C), 114.8 (d, J 1.8, 5’’-C), 108.1 (7-C), 56.6 

(CH3), 48.2 (piperazine CH2), 44.8 (piperazine CH2), formate C=O not observed; 

LC-MS (ES): RT = 0.5-0.6 min, m/z = 403.47 (M+H+); Rf: 0.13 (4:1, EtOAC−7.0 M 

NH3 in MeOH); HPLC: RT = 2.39 min; m/z (ES+): Found: 403.1927 

(M+H+), C24H23FN4O requires MH 403.1929; IR:νmax/cm-1 (solid): 3168 (N-H), 2822, 

1611; M.pt: 191.3-193.4 °C. 
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Preparation of 3-[4-(4-ethylpiperazin-1-yl)phenyl]-6-(4-methoxyphenyl)-1H-

indazole  

Synthesised using method B using 6-(4-

methoxyphenyl)-3-[4-(piperazin-1-yl)phenyl]-1H-

indazole (100 mg, 0.26 mmol, 1.0 eq), ethanal (18 μL, 

0.31 mmol, 1.2 eq), AcOH (1 drop), STAB (88 mg, 

0.42 mmol, 1.6 eq) and DCM (3 mL) and the reaction 

stirred for 1 h. LC-MS analysis showed the reaction to 

be incomplete and therefore ethanal (9 μL, 0.15 mmol, 

0.6 eq) was added and the reaction stirred for 

30 minutes. STAB (88 mg, 0.42 mmol, 1.6 eq) was added and the reaction stirred for 

1.5 h. LC-MS analysis showed the reaction to be complete. Water (10 mL) was added 

and the resulting precipitate filtered. The filtrate was extracted with DCM (2 × 15 mL) 

and the combined organic layers washed with brine (20 mL), dried (MgSO4) and 

reduced in vacuo to reveal a colourless semi-solid. The filtered solid was dissolved in 

MeOH−DCM (1:1) and combined with the semi-solid and purified by column 

chromatography (3% 7.0 M NH3 in MeOH−DCM). The title compound 180 (90 mg, 

0.22 mmol, 84%) was collected as a colourless semi-solid. 

1H NMR (500 MHz, CDCl3): 11.89 (1H, br.s, indazole NH), 8.01 (1H, d, J 9.0, 4-H), 

7.96 (2H, d, J 8.5, 2’’’-H and 6’’’-H), 7.51 (2H, d, J 9.0, 2’’-H and 6’’-H), 7.40-7.37 

(2H, m, 5-H and 7-H), 7.06 (2H, d, J 8.5, 3’’’-H and 5’’’-H), 6.98 (2H, d, J 8.5, 3’’-H 

and 5’’-H), 3.85 (3H, s, OCH3), 3.27 (4H, app.t, J 5.0, piperazine CH2), 2.63 (4H, 

app.t, J 5.0, piperazine CH2), 2.50 (2H, q, J 7.0, CH2CH3), 1.16 (3H, t, J 7.0, CH2CH3); 

13C NMR (100 MHz, CDCl3): 159.2 (4’’-C), 151.1 (1’’’-C), 145.5 (3-C), 142.6 

(3’-C), 139.6 (6-C), 133.7 (1’’-C), 128.6 (2’’-C and 6’’-C), 128.4 (2’’’-C and 6’’’-C), 

124.7 (4’’’-C), 121.4 (4-C), 121.0 (5-C), 119.8 (7’-C), 116.0 (3’’’-C and 5’’’-C), 114.3 

(3’’-C and 5’’-C), 107.7 (7-C), 55.4 (OCH3), 52.8 (piperazine CH2), 52.4 (CH2CH3), 

48.7 (piperazine CH2), 12.0 (CH2CH3); LC-MS (ES): RT = 0.6-0.7 min, m/z = 413.49 

(M+H+); Rf: 0.43 (5% 7.0 M NH3 in MeOH−DCM); HPLC: RT = 2.43 min; 

m/z (ES+): Found: 413.2332 (M+H+), C26H28N4O requires MH 413.2336; 

IR:νmax/cm-1 (solid): 3168, 3012, 2819, 1608. 
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Preparation of 3-[2-(4-{4-[6-(4-methoxyphenyl)-1H-indazol-3-yl]phenyl}piperazin-

1-yl)ethyl]-1,3-oxazolidin-2-one 

Synthesised as a side product using the same 

conditions as seen in the preparation of 6-(4-

methoxyphenyl)-3-[4-(piperazin-1-yl)phenyl]-

1H-indazole (166). A second compound was 

isolated from the column. 

The title compound 181 (193 mg, 0.39 mmol, 

17%) was collected as an off-white solid. 

1H NMR (500 MHz, DMSO-d6): 13.01 (1H, 

br.s, indazole NH), 8.06 (1H, d, J 8.5, 4-H), 7.85 

(2H, d, J 8.5, 2’’’-H and 6’’’-H), 7.68 (2H, d, 

J 8.5, 2’’-H and 6’’-H), 7.66 (1H, s, 7-H), 7.42 (1H, d, J 8.5, 5-H), 7.09-7.04 (4H, m, 

3’’-H, 5’’-H, 3’’’-H and 5’’’-H), 4.24 (2H, app.t, J 7.0, oxazolidinone OCH2), 3.81 

(3H, s, CH3), 3.61 (2H, app.t, J 7.0, oxazolidinone NCH2), 3.32 (2H, t, J 6.5, 

piperazine-CH2CH2-oxazolidinone), 3.20 (4H, app.t, J 4.0, piperazine CH2), 2.59 (4H, 

app.t, J 4.0, piperazine CH2), 2.53 (2H, t, J 6.5, piperazine-CH2CH2-oxazolidinone); 

13C NMR (100 MHz, DMSO-d6): 159.4 (4’’-C), 158.4 (oxazolidinone C=O), 150.9 

(1’’’-C), 143.8 (3-C), 142.8 (3’-C), 138.8 (6-C), 133.2 (1’’-C), 128.7 (2’’-C and 

6’’-C), 127.9 (3’’’-C and 5’’’-C), 124.7 (4’’’-C), 121.6 (4-C), 120.6 (5-C), 119.4 

(7’-C), 115.8 (2’’’-C and 6’’’-C), 114.9 (3’’-C and 5’’-C), 107.6 (7-C), 62.1 

(oxazolidinone OCH2), 55.7 (OCH3), 55.4 (piperazine-CH2CH2-oxazolidinone), 53.0 

(piperazine CH2), 48.5 (piperazine CH2), 44.8 (oxazolidinone NCH2), 41.1 

(piperazine-CH2CH2-oxazolidinone); LC-MS (ES): RT = 0.6-0.6 min, m/z = 498.61 

(M+H+); Rf: 0.37 (5% 7.0 M NH3 in MeOH−DCM); HPLC: RT = 1.94 min; 

m/z (ES+): Found: 498.2498 (M+H+), C29H33N5O4 requires MH 498.2498; 

IR:νmax/cm-1 (solid): 3234 (N-H), 2939, 2833, 1723 (C=O), 1608; M.pt: >250 °C. 
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Preparation of 4-{4-[6-(4-hydroxyphenyl)-1H-indazol-3-yl]phenyl}-1-[2-(2-oxo-1,3-

oxazolidin-3-yl)ethyl]piperazin-1-ium formate 

Synthesised using method D using 3-[2-(4-

{4-[6-(4-methoxyphenyl)-1H-indazol-3-

yl]phenyl}piperazin-1-yl)ethyl]-1,3-

oxazolidin-2-one (70 mg, 0.14 mmol, 1.0 eq), 

1 M BBr3 in DCM (1.13 mL, 1.13 mmol, 

8.0 eq) and DCM (3 mL) and the reaction 

stirred for 45 minutes. MeOH (10 mL) was 

added and the reaction mixture reduced in 

vacuo to reveal the crude product as an orange 

solid. The crude product was purified by 

reverse phase ACC (gradient 0-40% MeCN−H2O in 0.1% formic acid) and an orange 

glassy solid obtained. The product was further purified by column chromatography 

(gradient 2-5% MeOH−DCM). The title compound 182 (14 mg, 0.029 mmol, 21%) 

was collected as a colourless solid.  

1H NMR (500 MHz, DMSO-d6): 12.98 (1H, br.s, indazole NH), 8.17 (1H, br.s, 

formate H), 8.01 (1H, d, J 8.5, 4-H), 7.84 (2H, d, J 8.5, 2’’’-H and 6’’’-H), 7.61 (1H, 

s, 7-H), 7.58-7.54 (2H, m, 2’’-H and 6’’-H), 7.39 (1H, dd, J 8.5 and 1.5, 5-H), 7.07 

(2H, d, J 8.5, 3’’’-H and 5’’’-H), 6.89-6.86 (2H, m, 3’’-H and 5’’-H), 4.26-4.22 (2H, 

m, oxazolidinone OCH2), 3.62-3.59 (2H, m, oxazolidinone NCH2), 3.32 (2H, app.t, 

J 6.0, piperazine-CH2CH2-oxazolidinone), 3.20 (4H, app.t, J 5.0, piperazine CH2), 

2.58 (4H, app.t, J 5.0, piperazine CH2), 2.54-2.50 (2H, m, piperazine-CH2CH2-

oxazolidinone); 13C NMR (125 MHz, DMSO-d6): 163.8 (formate C=O), 158.4 

(oxazolidinone C=O), 157.7 (4’’-C), 150.9 (1’’’-C), 143.7 (3-C), 142.9 (3’-C), 138.8 

(6-C), 131.6 (1’’-C), 128.6 (2’’-C and 6’’-C), 127.8 (2’’’-C and 6’’’-C), 124.7 

(4’’’-C), 121.5 (4-C), 120.5 (5-C), 119.2 (7’-C), 116.3 (3’’-C and 5’’-C), 115.8 (3’’’-C 

and 5’’’-C), 107.3 (7-C), 62.1 (oxazolidinone OCH2), 55.4 (piperazine-

CH2CH2-oxazolidinone), 53.0 (piperazine CH2), 48.5 (piperazine CH2), 44.8 

(oxazolidinone NCH2), 41.1 (piperazine-CH2CH2-oxazolidinone); LC-MS (ES): 

RT = 0.5-0.6 min, m/z = 484.56 (M+H+); Rf: 0.38 (12% MeOH−DCM); HPLC: 

RT = 1.94 min (96%); m/z (ES+): Found: 484.2345 (M+H+), C28H29N5O3 requires 

MH 484.2343; IR:νmax/cm-1 (solid): 3270 (br. O-H), 2824, 1705 (C=O); 

M.pt: >250 °C. 
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Preparation of tert-butyl 4-[4-(ethoxycarbonyl)phenyl]piperazine-1-carboxylate 

Ethyl-4-fluorobenzoate (4.36 mL, 29.7 mmol, 1.0 eq) was 

dissolved in DMSO (40 mL) and K2CO3 (12.3 g, 

89.2 mmol, 3.0 eq) and 1-BOC-piperazine (6.92 g, 

37.1 mmol, 1.25 eq) were added and the reaction stirred at 

120 °C for 21 h. TLC analysis showed the reaction to be 

incomplete and therefore 1-BOC-piperazine (1.11 g, 5.94 mmol, 0.2 eq) was added 

and the reaction stirred for 2 h. TLC showed no change and therefore the reaction was 

stopped. The reaction mixture was cooled to 20 °C and water (100 mL) added. The 

solution was extracted with EtOAc (3 × 100 mL) and the combined organic layers 

washed with brine (100 mL), dried (MgSO4) and reduced in vacuo to reveal an 

off-white semi-solid. The crude product was purified using column chromatography 

(4:1 hexane−EtOAc). The title compound 185 (4.21 g, 12.6 mmol, 42%) was collected 

as a fluffy colourless solid. 

1H NMR (500 MHz, CDCl3): 7.95-7.92 (2H, m, 3-H and 5-H), 6.88-6.85 (2H, m, 2-H 

and 6-H), 4.33 (2H, q, J 7.0, CH2CH3), 3.58 (4H, app.t, J 5.5, piperazine 2-H and 6-H), 

3.30 (4H, app.t, J 5.5, piperazine 3-H and 5-H), 1.49 (9H, s, tBu CH3) 1.37 (3H, t, 

J 7.0, CH2CH3); 13C NMR (100 MHz, CDCl3): 166.6 (ester C=O), 154.7 (carbamate 

C=O), 154.0 (1-C), 131.2 (3-C and 5-C), 120.7 (4-C), 114.0 (2-C and 6-C), 80.1 

(C(CH3)3), 60.4 (CH2CH3), 47.7 (piperazine 3-C and 5-C), 43.2 (piperazine 2-H and 

6-H), 28.4 (tBu CH3), 14.4 (CH2CH3); LC-MS (ES): RT = 0.7-1.0 min, m/z = 279.36 

(M-tBu+H+); Rf: 0.34 (4:1 petrol−EtOAc); HPLC: RT = 3.08 min; m/z (ES+): Found: 

357.1785 (M+Na+), C18H26N2NaO4 requires MH 257.1785; IR:νmax/cm-1 (solid): 

2977, 2931, 1689 (C=O), 1609 (C=O); M.pt: 123.6-124.9 °C. 

Preparation of 4-{4-[(tert-butoxy)carbonyl]piperazin-1-yl}benzoic acid 

Tert-butyl 4-[4-(ethoxycarbonyl)phenyl]piperazine-1-

carboxylate (2.09g, 6.26 mmol, 1.0 eq) was suspended in 

2M NaOH (30 mL) and LiOH•H2O (1.57g, 37.5 mmol, 

6.0 eq) was added. THF (10 mL) was added to aid 

dissolution and the reaction stirred at 130 °C for 16 h. LC-MS analysis indicated the 

reaction to be complete. The reaction mixture was cooled to 20 °C and acidified to pH 

4.0 (2 M HCl). EtOAc (60 mL) was added and the organic layer separated and the 

aqueous layer extracted with EtOAc (3 × 40 mL). The combined organic layers were 
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dried (MgSO4) and reduced in vacuo to reveal an off-white solid. The crude solid was 

triturated with EtOAc and filtered. The title compound 186 (1.08 g, 3.53 mmol, 56%) 

was collected as shiny colourless flakes. 

1H NMR (500 MHz, DMSO-d6): 12.27 (1H, br.s, OH), 7.78-7.75 (2H, m, 3-H and 5-

H), 6.96-6.93 (2H, m, 2-H and 6-H), 3.46-3.43 (4H, m, 2’-H and 6’-H), 3.30-3.27 (4H, 

m, 3’-H and 5’-H), 1.41 (9H, s, tBu CH3); 13C NMR (125 MHz, DMSO-d6): 167.2 

(Ar C=O), 153.8 (1-C), 153.5 (BOC C=O), 130.8 (3-C and 5-C), 119.6 (4-C), 113.6 

(2-C and 6-C), 79.0 (C(CH3)3), 46.6 (2’-C and 6’-C), 43.5 (3’-C and 5’-C)*, 28.0 (tBu 

CH3); LC-MS (ES): RT = 0.5-0.6 min, m/z = 305.42 (M-H+); Rf: 0.32 (1:1 

EtOAc−hexane in 2% AcOH); HPLC: RT = 2.83 min; m/z (ES+): Found: 305.1516 

(M-H+), C16H22N2O4 requires MH 305.1507; IR:νmax/cm-1 (solid): 2973, 2872, 1670 

(C=O); M.pt: >250 °C. 

*Carbon peak not visible on 13C NMR but present on HSQC – peak broadening due 

to the deshielding effect of the BOC group carbonyl. 

Preparation of tert-butyl 6-bromo-3-{[(tert-butoxy)carbonyl]amino}-1H-indazole-1-

carboxylate 

3-Amino-6-bromo-1H-indazole (1.59 g, 7.47 mmol, 1.0 eq) and 

DMAP (320 mg, 2.61 mmol, 0.35 eq) were suspended in dry 

THF (20 mL) at 0°C and stirred for five minutes. BOC anhydride 

(1.80 mL, 7.85 mmol, 1.05 eq) was added dropwise over ten 

minutes and the reaction allowed to warm to 20 °C and stirred for 2.5 h. LC-MS 

analysis showed majority product to be mono-protected with small amounts of the 

starting material, the bis-protected and the tri-protected compounds. The reaction was 

cooled to 0 °C and BOC anhydride (1.80 mL, 7.85 mmol, 1.05 eq) added dropwise 

over ten minutes and the reaction allowed to warm to 20 °C and stirred for 15 h. LC-

MS analysis showed no starting material or mono-protected compound however, 

showed a 1:1 ratio of the bis-protected and tri-protected compound. The reaction 

mixture was reduced in vacuo and suspended in EtOAc (200 mL) and the organic layer 

washed with 1 M HCl (2 × 20 mL), saturated NaHCO3 (40 mL) and brine (40 mL). 

The solution was dried (MgSO4) and reduced in vacuo to reveal a yellow oil. The 

crude product was purified by column chromatography (95:5 Hexane−EtOAc) and a 

colourless oil obtained. The oil was dissolved in DCM and reduced in vacuo. The title 



Chapter Six – Experimental  

 

238 

 

compound 194 (589 mg, 1.43 mmol, 19%) was collected as a glassy fluffy colourless 

solid. 

1H NMR (500 MHz, CDCl3): 8.36 (1H, br.s, 7-H), 8.02 (1H, d, J 9.0, 4-H), 7.41 (1H, 

dd, J 9.0 and 1.5, 5-H), 7.20 (1H, br.s, NH), 1.71 (9H, s, tBu CH3), 1.54 (9H, s, tBu 

CH3); 13C NMR (125 MHz, CDCl3): 152.5 (C=O), 148.8 (C=O), 145.0 (Ar-q), 141.8 

(Ar-q), 126.8 (5-C), 124.8 (4-C), 124.3 (Ar-q), 118.0 (Ar-q), 117.6 (7-C), 85.3 

(C(CH3)3), 82.0 (C(CH3)3), 28.2 (tBu CH3), 28.2 (tBu CH3); LC-MS (ES): 

RT = 0.8-0.8 min, m/z = 412.32 (M+H+); Rf: 0.28 (4:1 EtOAc−hexane); HPLC: 

RT = 2.61 min; m/z (ES+): Found: 434.0699 (M+Na+), C17H22BrN3O4 requires MH 

434.0686; IR:νmax/cm-1 (solid): 3236 (N-H), 2978, 2933, 1731 (C=O); 

M.pt: 95.0-102.7 °C. 

Preparation of tert-butyl 6-bromo-3-{N-[(tert-butoxy)carbonyl]4-fluorobenzamido}-

1H-indazole-1-carboxylate 

Synthesised using method E using tert-butyl 6-bromo-3-{[(tert-

butoxy)carbonyl]amino}-1H-indazole-1-carboxylate (560 mg, 

1.36 mmol, 1.0 eq), freshly distilled 4-fluorobenzoyl chloride 

(193 µL, 1.63 mmol, 1.2 eq), DIPEA (473 µL, 2.72 mmol, 2.0 eq) 

and DCM (30 mL) and the reaction heated at 60 °C for 70 h. 

LC-MS analysis showed the reaction to be complete. The reaction 

mixture was cooled to 20 °C and 1.0 M HCl (20 mL) was added 

and the organic layer separated. The aqueous layer was extracted with DCM 

(2 × 20 mL) and the combined organic layers combined and washed with 1.0 M NaOH 

(20 mL), brine (40 mL) and dried (MgSO4). The filtrate was reduced in vacuo to reveal 

the crude product as a fluffy off-white solid (705 mg). The crude product was purified 

by column chromatography (95:5 hexane−EtOAc) and a colourless glassy solid 

obtained. The solid was dissolved in DCM and reduced in vacuo. The title 

compound 195 (496 mg, 0.93 mmol, 68%) was collected as a colourless fluffy solid. 

1H NMR (500 MHz, CDCl3): 8.41 (1H, br.s, 7-H), 7.87-7.84 (2H, m, 2’’-H and 

6’’-H), 7.47 (1H, dd, J 8.5 and 1.5, 5-H), 7.40 (1H, d, J 8.5, 4-H), 7.16-7.12 (2H, m, 

3’’-H and 5’’-H), 1.70 (9H, s, tBu CH3), 1.33 (9H, s, tBu CH3); 13C NMR (125 MHz, 

CDCl3): 170.2 (amide C=O), 165.3 (d, J 254.4, 4’’-C), 151.5 (BOC C=O), 148.5 

(BOC C=O), 145.1 (3-C), 141.5 (3’-C), 131.3 (d, J 9.3, 2’’-C and 6’’-C), 131.3 (Ar-

q), 127.7 (5-C), 124.0 (Ar-q), 120.7 (Ar-q), 120.6 (4-C), 118.4 (7-C), 115.6 (d, J 22.3, 



Chapter Six – Experimental  

 

239 

 

3’’-C and 5’’-C), 85.9 (C(CH3)3), 84.8 (C(CH3)3), 28.1 (tBu CH3), 27.6 (tBu CH3); 

LC-MS (ES): RT = 0.8-0.9 min, m/z = 536.40 (MBr81+); Rf: 0.47 (4:1 petrol−EtOAc); 

HPLC: RT = 2.79 min (88%-degrades overtime); m/z (ES+): Found: 534.1014 

(M+H+), C24H25BrFN3O5 requires MH 534.1034; IR:νmax/cm-1 (solid): 2979, 1738 

(C=O), 1699 (C=O); M.pt: 103.3-109.6 °C. 

Preparation of N-(6-bromo-1H-indazol-3-yl)-4-fluorobenzamide 

Synthesised using method C using tert-butyl 6-bromo-3-{N-[(tert-

butoxy)carbonyl]4-fluorobenzamido}-1H-indazole-1-carboxylate 

(300 mg, 0.56 mmol, 1.0 eq), TFA (5 mL) and DCM (5 mL) and 

the reaction stirred for 30 minutes. The crude product was used 

without purification. The title compound 199 was collected as a 

colourless solid (181 mg, 0.54 mmol, 97%). 

1H NMR (500 MHz, DMSO-d6): 12.92 (1H, br.s, indazole NH), 10.89 (1H, br.s, 

amide NH), 8.16-8.12 (2H, m, 2’’-H and 6’’-H), 7.72-7.69 (2H, m, 4-H and 7-H), 

7.39-7.34 (2H, m, 3’’-H and 5’’-H), 7.21 (1H, dd, J 9.0 and 1.5, 5-H); 

13C NMR (125 MHz, DMSO-d6): 164.5 (amide C=O), 164.3 (d, J 249.5, 4’’-C), 

141.7 (3’-C), 140.5 (3-C), 130.7 (d, J 9.2, 2’’-C and 6’’-C), 130.1 (d, J 2.8, 1’’-C), 

123.9 (4-C), 122.8 (5-C), 119.9 (7’-C), 115.8 (6-C), 115.4 (d, J 21.8, 3’’-C and 5’’-C), 

112.7 (7-C); LC-MS (ES): RT = 0.5-0.6 min, m/z = 335.48 (M+H+); Rf: 0.13 (4:1 

petrol−EtOAc); HPLC: RT = 2.94 min; m/z (ES+): Found: 333.9987 

(M+H+), C14H9BrFN3O requires MH 333.9958; IR:νmax/cm-1 (solid): 3337 (N-H), 

3230 (N-H), 2053, 1673 (C=O); M.pt: >250 °C 
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6.2 Biochemical Experimental 

 General Methods and Equipment 

Media and appropriate equipment were sterilised using either a Classic Prestige 

Medical bench-top autoclave or an LTE Touchclave Ecotech autoclave. Sterile 

conditions were maintained using a bench-top Bunsen burner. Bacterial cultures were 

incubated in a MaxQ 6000 or MaxQ 8000 Thermo Scientific incubator or an Infors 

HT orbital shaker. Lysogeny Broth (LB)-agar plates were incubated in a Gallenkamp 

economy size 1 incubator. 

Centrifugation was performed using either: an Eppendorf 5424R bench-top centrifuge, 

an Eppendorf 5810R bench-top centrifuge, or a Sorvall Lynx 6000 centrifuge. 

Sonication of cell mixtures was carried out using a FischerbrandTM Model 120 Sonic 

Dismembrator. Purification of protein was performed on either an Äkta Pure protein 

purification system or an Äkta Prime. Resin/protein mixtures were rotated and mixed 

using a roller mixer SRT6 apparatus. Spectrophotometric readings were measured 

using either a Jenway 6320D spectrophotometer, a Nanodrop 2000, or Genesys 6 

spectrophotometer. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) was carried out using a Bio-Rad mini protean tetra system and 

polyacrylamide gels imaged using a Syngene G:Box apparatus. Concentration of 

protein was carried out using a 10K Daltons (Da) molecular weight cut-off (MWCO) 

Amicon® Ultra-4 Centrifugal Filter device. Mass spectrometry (MS) analysis of 

proteins was carried out using a Synapt G2S Q-IMT-Time of flight (TOF) mass 

spectrometer coupled to a nano ACQUITY ultra performance liquid chromatography 

(UPLC) LC-MS apparatus. Analytical grade reagents were supplied from commercial 

sources and used without further purification. Solutions were made using 18.2 MΩ 

H2O and pH of buffers adjusted using 2 M NaOH, concentrated NaOH, 2 M HCl and 

concentrated HCl. 

 Media and Buffers 

Media and buffers were made in-house unless otherwise stated. Buffers used in 

purification of protein were filtered through a 0.22 μm membrane using Stericup and 

Steritop vacuum-driven filtration systems. Media was sterilised by autoclave at 121 °C 

for 45 minutes, buffers were used without sterilisation. 
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6.2.2.1 Growth Media 

 Terrific broth (TB) media: 12 g/L Tryptone, 24 g/L Yeast extract, 9.4 g/L K2HPO4, 

2.2 g/L KH2PO4, Glycerol 4 mL/L in H2O. 

 LB media: 25 g/L LB freeze-dried powder (Fisher) in H2O. 

 LB-agar media: 35 g/L LB with agar (Sigma Aldrich) in H2O. 

6.2.2.2 General Buffers for Protein Purification and Analysis 

FGFR1: 

 Ni-Nitrilotriacetic acid (NTA) Buffer A: 20 mM tris-(hydroxymethyl)-

aminomethane (Tris) (pH 7.8), 300 mM NaCl, 10 mM imidazole, 2 mM tris(2-

carboxyethyl)phosphone (TCEP). 

 Ni-NTA Buffer B: 20 mM Tris (pH 8.0), 300 mM NaCl, 300 mM imidazole, 2 

mM TCEP. 

 Ion exchange (IEX) Q Buffer A: 20 mM Tris (pH 8.0), 1 mM TCEP. 

 IEX Q Buffer B: 20 mM Tris (pH 8.0), 1 mM TCEP, 1 M NaCl. 

 Size exclusion chromatography (SEC) Buffer A: 40 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) (pH 7.5), 200 mM NaCl, 1 mM TCEP, 

10% glycerol. 

 SEC Buffer B: 20 mM Tris (pH 7.8), 20 mM NaCl, 2 mM TCEP (storage buffer). 

FGFR2: 

 Cobalt Resin Buffer A: 20 mM Tris (pH 8.0), 300 mM NaCl, 10 mM Imidazole, 1 

mM 2-mercaptoethanol (BME). 

 Cobalt Resin Buffer B: 20 mM Tris (pH 8.0), 300 mM NaCl, 250 mM Imidazole, 

1 mM BME. 

 SEC Buffer C: 20 mM HEPES (pH 7.5), 100 mM NaCl, 1 mM TCEP (storage 

buffer). 

SDS-PAGE 

 SDS-PAGE 10 × running buffer: 0.19 M Tris, 1.92 M glycine, 1% (w/v) SDS  

 SDS-PAGE 2 × loading buffer: 100 mM Tris (pH 6.8), 200 mM dithiothreitol 

(DTT), 4% (w/v) SDS, 0.2% bromophenol blue, 20% glycerol. 

 Coomassie Stain: Coomassie G250, 30% (v/v) methanol and 10% (v/v) acetic acid. 

 Coomassie Destain: 40% (v/v) methanol and 10% (v/v) acetic acid. 
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 Standard Protocol 

6.2.3.1 Transformation of Competent E.coli Cells 

20 µL of stock BL21 (DE3) competent cells were mixed with 1.0 µL of purified 

plasmid(s)* (FGFR2 1Y alone, FGFR2 1Y and protein tyrosine phosphatase 1B 

(PTP-1B, FGFR2 WT and PTP-1B) in an Eppendorf tube on ice for ten minutes. The 

cells were then subjected to heat shock for 90 seconds at 42 °C and incubation on ice 

for a further five minutes to allow uptake of the plasmid. 750 µL of LB media was 

added and the cells incubated at 37 °C, 200 revolutions per minute (rpm) for 1 h. The 

cells were then spun at 6000 rpm for two minutes and the supernatant removed. The 

concentrated cells containing the FGFR2 1Y plasmid alone were then used to inoculate 

kanamycin (50 µg/mL) treated LB agar plates. The concentrated cells containing 

FGFR2/PTP-1B plasmids were then used to inoculate kanamycin (50 µg/mL) and 

ampicillin (50 µg/mL) treated LB agar plates. Inoculated plates were then incubated 

at 37 °C overnight and kept at 4 °C to stop growth. 

* Plasmid constructs for FGFR2 1Y and FGFR2 WT were provided in-house by Dr. 

Chi-Chuan Lin and plasmid construct PTP-1B was obtained as a glycerol stock from 

Addgene. 

6.2.3.2 Inoculation of LB Agar Plates 

A BL21 star glycerol stock containing the FGFR1 mutant construct* was streaked 

onto a tetracycline (12.5 µg/mL) and ampicillin (100 µg/mL) treated LB agar plate 

and incubated at 37 °C overnight and kept at 4 °C to stop growth. 

*FGFR1 construct provided in-house by Dr. Simon Skinner. 

6.2.3.3 Mini Culture 

Single colonies of the transformed E.coli cells grown on the appropriate LB agar plate 

were picked and used to inoculate 100 mL of TB media containing tetracycline 

(12.5 µg/mL) and ampicillin (100 µg/mL) for the FGFR1 construct, or 100 mL of LB 

media containing kanamycin (50 µg/mL) alone for the FGFR2 1Y construct, or 

kanamycin (50 µg/mL) and ampicillin (50 µg/mL) for the FGFR2/PTP-1B construct. 

Flasks were then incubated at 37 °C, 200 rpm overnight. Glycerol stocks were made 

by taking cells and mixing with 50% glycerol (H2O) in a 1:1 ratio and then stored 

at -80 °C for future use. 
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6.2.3.4 Overexpression of FGFR1 

6 × 600 mL of sterilised TB media in 1L flasks containing tetracycline (12.5 µg/mL) 

and ampicillin (100 µg/mL) were inoculated with 2.5 mL of cells from the overnight 

mini culture and then incubated at 37 °C, 250 rpm until the optical density at 600 nm 

(OD600) = 0.8-1.0. Bacterial cultures were allowed to cool to 20 °C and then induced 

using isopropyl β-D-1-thiogalactopyranoside (IPTG) (0.1 mM) and grown overnight. 

Cell cultures were then centrifuged at 4 °C, 5000 rpm for 1 h, discarding the 

supernatant. The cell pellet was suspended in Ni-NTA Buffer A at a ratio of 2:1 

respectively and stored at -20 °C for future use. 

6.2.3.5 Overexpression of FGFR2 Variants 

4 × 1L of sterilised LB media containing kanamycin (50 µg/mL) alone for the FGFR2 

1Y construct or kanamycin (50 µg/mL) and ampicillin (50 µg/mL) for the 

FGFR2/PTP-1B construct in 2L flasks were inoculated with 1 mL of cells from the 

corresponding overnight mini culture and then incubated at 37 °C, 200 rpm until the 

OD60 = ~0.7. Bacterial cultures were allowed to cool to 20 °C and then induced using 

IPTG (0.5 mM) and grown overnight. Cell cultures were then centrifuged at 4 °C, 

5000 rpm for 1 h, discarding the supernatant and the cell pellet stored at -20 °C for 

future use. 

 Purification of FGFR1 

6.2.4.1 Ni-NTA His6-tag Chromatography 

Cell pellet was defrosted and one protease tablet (cOmplete TM, 

ethylenediaminetetraacetic acid (EDTA)-free Protease Inhibitor Cocktail-Sigma) and 

5 µL of benzonase® (≥ 250 units (U)/µL-Sigma) added and the cell mixture lysed 

using sonication (10 seconds on/10 seconds off at 70% amplitude for 20 cycles). The 

cell mixture was then centrifuged at 20000 rpm for 1 h, passing the supernatant 

through a 0.45 µm membrane. The supernatant was loaded onto a 5 mL 

pre-equilibrated His-TrapTM High Performance column (GE Healthcare) connected to 

an Äkta Prime. The column was then flushed with Ni-NTA Buffer A (~30 column 

volumes (CVs)) until A280 returned to baseline. The column was then washed with 9% 

Ni-NTA Buffer B (10 CVs) followed by elution of the desired protein with 100% 
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Ni-NTA Buffer B (10 CVs). Column fractions were analysed by UV trace on the Äkta 

Prime and pooled accordingly. 

6.2.4.2 Cleavage of His6-tag and IEX Chromatography 

Protein sample from the nickel column was transferred to standard grade regenerated 

cellulose tubing (MWCO:6-8KDa) and 5 µL TEV protease (≥ 3000 U/mg-Sigma) 

added and the tubing dialysed in IEX Q Buffer A (× 100 dilution factor) for 4 h and 

then overnight with fresh IEX Q Buffer A (× 100 dilution factor). Protein sample was 

then loaded onto a pre-equilibrated 5 mL Q Sepharose column (GE Healthcare) and 

washed with IEX Q Buffer A (~45 CVs). Protein was then eluted by gradient (0-35%) 

of IEX Q Buffer B over ~25 CVs. The desired protein was observed to elute over the 

initial 10 CVs and the purity analysed by SDS-PAGE (Section 8.2.1) and pooled 

accordingly.  

6.2.4.3 SEC 

Protein sample from the ion exchange chromatography column was concentrated to 

~10 mL and two 5 mL aliquots prepared. The first aliquot was loaded directly onto a 

pre-equilibrated superdex 75 size exclusion column and the protein eluted with SEC 

Buffer A (~150 mL) at 1 mL/min. Fractions were analysed by SDS-PAGE 

(Section 8.2.1), pooled accordingly and concentrated to ~11.7 mg/mL (2.5 mL). 5 × 

500 µL aliquots were snap frozen in liquid nitrogen and stored at -80 °C for future use.  

The second aliquot was loaded directly onto a pre-equilibrated superdex 75 size 

exclusion column and the protein eluted with SEC Buffer B (~150 mL). Fractions were 

analysed by SDS-PAGE, pooled accordingly and concentrated to ~10.1 mg/mL (2 mL) 

and used directly in crystallisation trials (Section 6.2.7). 

 Purification of FGFR2 Variants 

6.2.5.1 Cobalt Resin His6-tag Chromatography 

Cell pellet was defrosted and one protease tablet (cOmplete TM, EDTA-free Protease 

Inhibitor Cocktail-Sigma) and cobalt resin buffer A added to the pellet at a ratio of 2:1 

pellet to buffer and the cell mixture lysed using sonication (5 seconds on/25 seconds 

off at 70% amplitude for 60 cycles). The cell mixture was then centrifuged at 4 °C, 

20000 rpm for 1 h. The supernatant was decanted and added to cobalt resin (TALON® 

Metal Affinity Resin, Clontech) at a ratio of 4:1 respectively and the resin rotated and 
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mixed at 4 °C for 30 minutes. The resin was then centrifuged at 4 °C, 3000 rpm for 

five minutes followed by careful removal of the liquid without disturbing the resin. 

The resin was then washed with cobalt resin buffer A (2 × 5 mL) to ensure all unbound 

protein was removed. 20 µL of calf-intestinal alkaline phosphatase (CIP) (10,000 

U/mL) was added to the resin containing the construct expressing FGFR 1Y alone and 

left to rotate and mix overnight at 4 °C to ensure full dephosphorylation. The resin was 

then suspended in 5 mL of cobalt resin buffer A, washed under gravity with cobalt 

resin buffer A (4 × 5 mL) until all unbound protein was eluted, monitoring by Bradford 

blue assay. The desired protein was then eluted using cobalt resin buffer B (~15 mL) 

until no more protein was detected by Bradford blue assay.   

6.2.5.2 SEC 

Protein sample from the cobalt resin chromatography was concentrated to ~3-5 mL at 

4 °C, 3000 rpm and then loaded directly onto a pre-equilibrated superdex 100 size 

exclusion column and the protein eluted with SEC Buffer C (~120 mL) at 1 mL/min. 

Fractions were analysed by SDS-PAGE (Section 8.2.3), pooled accordingly and 

concentrated to: ~9.8 mg/mL (400 µL) for the FGFR 1Y alone construct, ~10.0 mg/mL 

(1 mL) for the FGFR 1Y/PTP-1B construct and ~9.0 mg/mL (1.4 mL) for the FGFR2 

WT/PTP-1B construct. The desired amounts of protein were used directly in crystal 

trials (Section 6.2.7) with the remainder stored at -80 °C for future use. 

6.2.5.3 Cleavage of His6-tag 

700 µL of FGFR2 WT (9 mg/mL) was defrosted and 7 µL of thrombin (1U/µL) added 

and the mixture rotated and mixed at 4 °C overnight. The protein mixture was then 

added to a 1 mL mixture of cobalt resin/benzamidine beads (1:1) and rotated and 

mixed at 4 °C for 15 minutes to remove uncleaved protein and thrombin. The mixture 

was then centrifuged at 4 °C, 10000 rpm for five minutes and the supernatant carefully 

removed and added directly onto a pre-equilibrated superdex 100 size exclusion 

column and the protein eluted with SEC Buffer C (~120 mL) at 1 mL/min. Fractions 

were analysed by SDS-PAGE (Section 8.2.3), pooled accordingly and concentrated to 

~10 mg/mL (280 µL). The protein was used directly in crystal trials (Section 6.2.7).  
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 SDS-PAGE 

6.2.6.1 Preparation of Gels 

Acrylamide gels were prepared using the components listed in Table 6.1. 

Table 6.1: SDS-PAGE gel components. 

 

 

 

 

 

 

 

All components were mixed together with the exception of APS and TEMED, these 

were added immediately prior to pouring the mixture into the mould. It is important 

to note fresh APS is needed in order to have efficient setting. 

6.2.6.2 Running Procedure 

15 µL of protein in buffer was mixed with 7 µL of loading buffer and the solutions 

heated at 95 °C for 5 minutes. Protein solutions were then loaded into 10 or 15 well 

gels made in-house or pre-cast (Bio Rad Mini Protean TGX Gels) and the gels ran at 

a constant current of 80 mA until the protein bands reached the bottom of the gel. 

6.2.6.3 Visualisation and Imaging 

The gels were stained using either coomassie stain or instant blue. Gels were stained 

with coomassie stain for ~1 h with gentle rocking or until protein bands became 

visible. The stain was then removed and coomassie destain added for 15 minutes with 

rocking. Two further rounds of fresh destain were added to ensure full destaining. Gels 

were stained with instant blue until protein bands became visible (~20 minutes). Gels 

were then imaged using a Syngene G:Box apparatus (Section 8.2). 

 Stacking Separating 

2 × 1 mm gel 5% 10% 

1.5 M Tris (Lower) - 2.0 mL 

0.5 M Tris (Upper) 1.25 mL - 

40 % (w/v) acrylamide 0.75 mL 2.65 mL 

 H2O 3.0 mL 3.35 mL 

10% Ammonium persulfate (APS) (w/v) 100 µL 100 µL 

Tetramethylethylenediamine (TEMED) 45 µL 45 µL 
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6.2.6.4 Protein Concentration Determination 

The UV absorbance of protein samples was measured using either a Nanodrop 2000 

or Genesys 6 spectrophotometer. For measurements using the nanodrop 2000 

apparatus, 2 μL of sample was loaded onto the aperture after the apparatus had been 

calibrated with a blank buffer reference measurement. For measurements using the 

Genesys 6 spectrophotometer protein samples were diluted in buffer and the 

absorption measured, with a blank buffer measurement as a reference. The absorbance 

was measured at 280 nm and protein concentration determined using the 

Beer-Lambert law. 

𝐴 = 𝜀𝑐𝑙 

Extinction coefficients were calculated using ProtParam (Table 6.2):146  

Table 6.2: Extinction Coefficients for FGFR kinases. 

 

 

 

 

  

Protein Extinction Coefficient, ε280 

FGFR1 46870 M-1 cm-1 

FGFR2 1Y 33460 M-1 cm-1 

FGFR2 WT 46870 M-1 cm-1 

Equation 6.1: The Beer-Lambert law. A = absorbance, ɛ = molar extinction coefficient (M-1 cm-1), 

c = concentration (M), l = path length (cm) 
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  Crystallisation Trials 

6.2.7.1 Equipment and Protocol 

Crystal trials were performed using an automated robotic system (Formulatrix) 

available for use in the Astbury centre, University of Leeds. Crystallisation reagents 

were dispensed into 96-well blocks using a formulator liquid handler. Protein samples 

and reagents were mixed and dispensed into 3-drop 96-well crystallisation sitting-drop 

plates using an NT8 crystallisation system, stored in a Rockimager 1000 at either 4 °C 

or 20 °C, and imaged at varyious times to monitor crystal growth. Crystals were then 

picked and flash frozen in liquid nitrogen with the desired anti-freeze present and then 

the crystals exposed to X-ray diffraction at either the Diamond Light Source Facility 

(DLSF) or the European Synchrotron Radiation Facility (ESRF). Data processing was 

carried out by CCP4 and then the structures manipulated in WinCoot to provide the 

final PDB file. 

6.2.7.2 Preparation of Ligands 

Compounds 115, 160 and 164 were dissolved in dimethyl sulphoxide (DMSO) at a 

concentration of 50 mM. Compounds 115 and 160 were then diluted with the same 

buffer as what the protein was stored in (Section 6.2.2.2) to ×10 concentration of the 

corresponding protein. Final DMSO concentrations for compounds 115 and 160 were 

5%. Final DMSO concentration for compound 164 was 0.5% for all crystal trials 

excluding the FGFR2 WT cleaved trials where the final DMSO concentration was 5%. 
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6.2.7.3 Crystallisation of FGFR1 

Purified FGFR1 protein at a concentration of 0.28 mM (10 mg/mL) in 20 mM Tris 

(pH 7.81), 20 mM NaCl, 2 mM TCEP was mixed with the diluted ligand samples at a 

ratio of 9:1 respectively. This gave final concentrations of protein and ligand at 

0.28 mM (1:1 ratio). Protein/ligand samples (0.5 μL) were then mixed with screening 

solutions (0.5 μL) to form a final drop volume of 1 μL. Crystals were then grown using 

the vapour diffusion method (Figure 6.1). 

 

 

 

 

 

 

6.2.7.3.1 Tray Setup and Screening Conditions 

Protein/ligand samples containing compounds 115, 160 and 164 were in drop 1, 2 and 

3 respectively with R being the reservoir for that specific screening condition 

(Figure 6.2). The screening conditions for this trial were: 0.185 M ammonium 

sulphate, 20% ethylene glycol and then varying levels of polyethylene glycol (PEG) 

8000 (16-22%) and pH (6.2-6.8). The pH was adjusted with 1 M PCTP buffers (pH 

4.0 and pH 9.5-Molecular Dimensions) with a final concentration of 95 mM PCTP. 

 

 

 

 

 

 

Figure 6.2: Well setup and screening conditions for FGFR1 crystallisation trials. 

Figure 6.1: Crystallisation drop showing representative FGFR1/ligand co-crystals. 
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Precise conditions for crystal structures are as follows:  

 Ligand 115 –  0.185 M ammonium sulphate, 20% ethylene glycol, 17.636% 

PEG 8000 and 0.095 M PCPT pH 6.71. 

 Ligand 160 – 0.185 M ammonium sulphate, 20% ethylene glycol, 16.545% 

PEG 8000 and 0.095 M PCPT pH 6.71. 

 Ligand 164 – 0.185 M ammonium sulphate, 20% ethylene glycol, 17.091% 

PEG 8000 and 0.095 M PCPT pH 6.71. 

6.2.7.4 Crystallisation of FGFR2 1Y 

Purified FGFR2 1Y (monophosphorylated) and FGFR2 1Y (unphosphorylated) 

protein at a concentration of 0.27 mM (10 mg/mL) in 20 mM HEPES (pH 7.5), 

100 mM NaCl, 1 mM TCEP were mixed with the diluted ligand samples at a ratio of 

9:1 respectively. This gave final concentrations of protein and ligand at 0.27 mM 

(1:1 ratio). Protein/ligand samples (1.0 μL) were then mixed with screening solutions 

(1.0 μL) to form a final drop volume of 2 μL. Crystals were then grown using the 

vapour diffusion method. 

6.2.7.5 Crystallisation of FGFR2 WT 

Purified FGFR2 WT (uncleaved) at a concentration of 0.24 mM (9 mg/mL) and 

FGFR2 WT (cleaved) at a concentration of 0.29 mM (10 mg/mL) in 20 mM HEPES 

(pH 7.5), 100 mM NaCl, 1 mM TCEP were mixed with the diluted ligand samples at 

a ratio of 9:1 respectively. This gave final concentrations of protein and ligand at 

0.24 mM and 0.29 mM (1:1 ratio) for FGFR2 WT uncleaved/cleaved respectively with 

a final concentration of 5% DMSO. Protein/ligand samples (1.0 μL for uncleaved, 

0.2 μL for cleaved) were then mixed with screening solutions (1.0 μL for uncleaved, 

0.2 μL for cleaved) to form a final drop volume of 2 μL for uncleaved and 0.4 μL for 

cleaved. Crystals were then grown using the vapour diffusion method. 

6.2.7.5.1 Tray Setup and Screening Conditions 

Protein/ligand samples containing compounds 115, 160 and 164 were in drop 1, 2 and 

3 respectively with R being the reservoir for that specific screening condition. Three 

screening conditions for FGFR2 crystallisation were used and are outlined below 

(Figure 6.3). 
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Condition one: Varying concentrations (11-19%) of  PEG 3350 in water and varying 

concentrations (0.075-0.125 M) of Mg-formate and stored at 20 °C. 

Condition two: Constant concentration of 0.1 M ammonium sulphate, varying levels 

(22-27%) of PEG 3350 in water and varying pH (7.0-8.0). The pH was adjusted with 

1 M HEPES buffers (pH 6.0 and pH 9.0) with a final concentration of 0.1 M HEPES 

and stored at 20 °C. 

Condition three: Constant concentration of 0.25 M ammonium acetate, varying levels 

(8-16%) of PEG 3350 in water and varying pH (8.0-9.0). The pH was adjusted with 1 

M Tris buffers (pH 7.0 and pH 9.0) with a final concentration of 0.1 M Tris and stored 

at 20 °C. 

Figure 6.3: Well setup and screening conditions for FGFR2 crystallisation trials. 
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6.3 Biological Experimental 

 Equipment and Materials 

All reagents were obtained from commercial suppliers. Cell culture was carried out 

under aseptic conditions using a Biomat Class II Laminar Flow Hood. Cells were 

incubated using a Sanyo incubator. Cell counts were carried out using a Beckman 

Coulter Z2 cell and particle counter. Fluorescence measurements were carried out 

using a Berthold Mithras LB 940 Multimode microplate reader. 

 Tissue Culture 

6.3.2.1 Cell Lines 

The following cell lines were used in this study: JMSU-1 – FGFR1-driven bladder 

cancer cell, SUM52 – FGFR2-driven breast cancer cell and VMCUB-3 – non 

FGFR-driven bladder cancer cell. 

6.3.2.2 Inhibitors 

The inhibitors used in this study were: PD173074 (10 mM in DMSO-Sigma) and 

compounds 115, 160 and 164. Stock solutions of 10 mM in DMSO were made of each 

compound, stored at -20 °C and thawed when needed. 

6.3.2.3 Cell Culture 

Stocks of each cell line were provided by Dr Julie Burns. Cells were cultured in either 

25 cm2 or 75 cm2 vented canted-neck cell culture flasks (Corning) in a humidified 

incubator at 37 °C under an atmosphere of 5% CO2 in air. SUM52 and JMSU-1 cells 

were cultured in Roswell Park Memorial Institute (RPMI)-1640 growth medium 

(Sigma) containing 10% foetal calf serum (FCS; Biosera) and 2 mM GlutaMAX (Life 

Technologies). VMCUB-3 cells were cultured in Dulbecco’s modified eagle medium 

(MEM) growth medium (Sigma) containing 10% FCS and 2 mM GlutaMAX. 

6.3.2.4 Cell Passage 

Stock cells were passaged at, or near to confluence. Existing medium was aspirated 

and the cells rinsed with calcium/magnesium-free phosphate-buffered saline (PBS) 

solution followed with incubation in PBS containing 0.1% (w/v) EDTA for 

2-5 minutes at 37 °C. JMSU-1 cells were briefly rinsed with PBS/EDTA buffer and 
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not incubated due to their propensity to detach easily. The PBS/EDTA buffer was 

aspirated and the cells contained in 25 cm2 flasks and 75 cm2 flasks incubated with 

either 0.5 or 1 mL 0.05% trypsin-0.02% EDTA (Sigma) respectively at 37 °C for 

approximately five minutes or until the cells detached. Growth medium (4.5 or 9 mL) 

was added to the cells to make a total volume of 5/10 mL and then an appropriate 

amount of cells (1 in 10 for confluent SUM52, 1 in 20 for confluent JMSU-1 and 

VMCUB-3) taken and added to a fresh 75 cm2 flask and then medium added to make 

a final volume of 15 mL. 

6.3.2.5 Cell Counting 

Detached cell suspensions (pre-passage) were used to seed plates with a desired 

number of cells/well for cell viability assays. 100 μL of cells were added to 9.9 mL 

Isoton II Diluent (Beckman Coulter) and then the number of cells counted twice and 

a mean value calculated. The cell counter was flushed and the background measured 

with fresh Isoton between every reading to ensure accurate measurements. 

6.3.2.6 CellTiter-Blue® Viability Assay 

For each cell line a 70-80% confluent 75 cm2 flask was selected and cell suspensions 

produced and counted as described above. Cells were then diluted with the appropriate 

medium to ~5 × 104 cells/mL. 100 μL of cells were then dispensed into a flat bottom 

96-well plate (Corning) as shown in Figure 6.4. This would ensure a final density of 

5 × 103 cells/well. 

 Figure 6.4: Plate setup for cell viability assays. 
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Cells were incubated for 24 h to ensure the cells had adhered and recovered from 

trypsinisation. The medium from the wells containing cells was aspirated and then 

100 μL of medium containing the appropriate inhibitor concentrations was added. The 

plate was then incubated at 37 °C, 5% CO2 for 72 h. CellTiter-Blue reagent was 

pre-warmed to 37 °C and then 20 μL added to each well, excluding the wells indicated 

as blanks. The plates were kept dark to ensure minimal photolysis of the reagent and 

incubated at 37 °C, 5 % CO2 for 2 h. After incubation, 50 μL of 3% SDS was added 

to each well containing the CellTiter-Blue reagent to stop the reaction. The wells were 

then subjected to excitation at 540 nm and emission 590 nm respectively and the 

fluorescence measured. Results were blanked with a medium no cell control and then 

normalised to the DMSO control. Each experiment was carried out in duplicate. Data 

were plotted using Origin® 2016 and IC50 values calculated (Section 8.3) using a dose 

response non-linear curve fit with the following equation:   

𝑌 = 𝐴1 +
𝐴2 − 𝐴1

1 + 10(𝐿𝑂𝐺𝑥0−𝑥)𝑝

Equation 6.2: Formula for dose response non-linear curve fit. A1 = bottom asymptote, A2 = top 

asymptote, p = hill slope. 
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8Appendices 

8.1 Appendix 1.0 – FRET-Based Z’-Lyte Assay® 

The Z’-Lyte assay is a competitive inhibition FRET-based assay that uses a 

fluorescence-based, coupled-enzyme format and is based on the differential sensitivity 

of non-phosphorylated and phosphorylated peptides to proteolytic cleavage. The assay 

involves two reactions. The first reaction involves the phosphorylation of a specific 

tyrosine residue on a specific protein. This protein is labelled with two fluorophores; 

Coumarin (donor) and Fluorescein (acceptor) and these make up a FRET pair 

(Figure 8.1).147  

 

The second reaction is a development reaction in which a site-specific protease cleaves 

non-phosphorylated protein, leaving phosphorylated protein unaffected. The cleavage 

disrupts the FRET between the donor and the acceptor which is measurable 

(Figure 8.2).  

Figure 8.1: Kinase reaction for FRET-based Z’-lyte assay. Adapted from reference 147.  

 

Figure 8.2: Development reaction for FRET-based Z’-lyte assay. Adapted from reference 147. 
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The ratio of donor emission to acceptor emission quantifies reaction progress and is 

calculated (Equation 8.1).147  

Emission Ratio= 
Courmarin Emission (445 nm)

Fluorescein (520 nm)
 

 

For each assay a Z-prime value is calculated and is a measure of assay robustness. 

This calculation incorporates the standard deviation observed in each control 

experiment and is a common measure of assay performance. 

 FGFR1 Assay Conditions 

The 2X FGFR1/Tyr 04 mixture is prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 

10 mM MgCl2, 4 mM MnCl2, 1 mM ethylene glycol-bis(β-aminoehtyl ether)-

N,N,N’,N’-tetraacetic acid (EGTA), 2 mM DTT. The final 10 µL Kinase Reaction 

consists of 0.44-2.45 ng FGFR1 and 2 µM Tyr 04 in 50 mM HEPES pH 7.5, 0.01% 

BRIJ-35, 10 mM MgCl2, 2 mM MnCl2, 1 mM EGTA, 1 mM DTT. After 1 hour Kinase 

Reaction incubation, 5 µL of a 1:64 dilution of Development Reagent B is added. 

Km app = 25 µM. 

 FGFR2 Assay Conditions 

The 2X FGFR2/Tyr 04 mixture is prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 

10 mM MgCl2, 4 mM MnCl2, 1 mM EGTA, 2 mM DTT. The final 10 µL Kinase 

Reaction consists of 0.19-1.99 ng FGFR2 and 2 µM Tyr 04 in 50 mM HEPES pH 7.5, 

0.01% BRIJ-35, 10 mM MgCl2, 2 mM MnCl2, 1 mM EGTA, 1 mM DTT.  After the 

1 hour Kinase Reaction incubation, 5 µL of a 1:64 dilution of Development Reagent 

B is added. Km app = 5 µM. 

 FGFR3 Assay Conditions 

The 2X FGFR3/Tyr 04 mixture is prepared in 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 

10 mM MgCl2, 4 mM MnCl2, 1 mM EGTA, 2 mM DTT.  The final 10 µL Kinase 

Reaction consists of 0.56-3.5 ng FGFR3 and 2 µM Tyr 04 in 50 mM HEPES pH 7.5, 

0.01% BRIJ-35, 10 mM MgCl2, 2 mM MnCl2, 1 mM EGTA, 1 mM DTT.  After the 

1 hour Kinase Reaction incubation, 5 µL of a 1:64 dilution of Development Reagent 

B is added. Km app = 75 µM. 

Equation 8.1: Adapted from reference 147.  
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 IC50 Curves  

IC50 values were determined using a 10-point titration experiment with 3-fold serial 

dilutions starting from a concentration of 500, 100 or 10 µM.  
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8.2 Appendix 2.0 – Protein Expression and Crystallisation 

 FGFR1-SDS-PAGE 

 

 

 

 

 

 

 

 

 

 

 

SDS-PAGE gel after IEX column. 

 

 

 

 

 

 

 

 

SDS-PAGE gel after SEC column. 

Ladder = Color Prestained Protein Standard, Broad Range (11–245 kDa)-BioLabs 
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 FGFR1-MS 

 

 

 

 

 

 

 

 

 

 

 

Pre His-Tag Cleavage/Post Ni-NTA Column 

 

 

 

 

 

 

 

 

 

 

 

 

Post His-Tag Cleavage/Post SEC Column  
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 FGFR2-SDS-PAGE 

8.2.3.1 FGFR2 1Y 

 

SDS-PAGE gel after SEC column with FGFR2 1Y alone construct that was treated 

with CIP. 

 

SDS-PAGE gel after SEC column with FGFR2 1Y/PTP-1B construct. Cleaner 

expression when using the FGFR2 1Y/PTP-1B construct. 
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8.2.3.2 FGFR2 WT 

 

SDS-PAGE gel after SEC column with FGFR2 WT/PTP-1B construct. 

 

SDS-PAGE gel after HisTag cleavage and SEC column with FGFR2 WT/PTP-1B 

construct. 

Ladder = Precision Plus ProteinTM All Blue Prestained Protein Standards 

(10-250 kDa)-BioRad 
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 FGFR2-Mass Spectrometry 

 

 

 

 

 

 

 

 

 

 

FGFR2 1Y alone construct when treated with CIP after SEC column. Observed mass 

is construct minus N-terminal Met amino acid. 

 

 

 

 

 

 

 

 

 

 

FGFR2 1Y/PTP1-B construct after SEC column. Again observed mass is loss of initial 

Met residue. Co-expression with a phosphatase is more efficient at dephosphorylation 

than treating with a phosphatase 
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. 

 

 

 

 

 

 

 

 

 

 

FGFR2 WT after SEC column. Again observed mass is loss of initial Met residue. 

FGFR2 WT with the HisTag cleaved. Two impurities are present, these can also be 

seen on the SDS-PAGE gel. 
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 FGFR1 Sequence 

FGFR1 (C488A, C584S) MHHHHHHGSTSLYKKAGSSENLYFQ\ (TAG) 

 

  46         47        48        49         50        51 

789012345678901234567890123456789012345678901234567890123456 

GAGVSEYELPEDPRWELPRDRLVLGKPLGEGAFGQVVLAEAIGLDKDKPNRVTKVAVKML 

 

  52         53        54         55        56        57           

789012345678901234567890123456789012345678901234567890123456 

KSDATEKDLSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLQAR 

 
   58         59        60         61        62        63         

789012345678901234567890123456789012345678901234567890123456 

RPPGLEYSYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASKKCIHRDLAARNVLVTEDNV 

 
   64         65        66        67        68         69         

789012345678901234567890123456789012345678901234567890123456 

MKIADFGLARDIHHIDYYKKTTNGRLPVKWMAPEALFDRIYTHQSDVWSFGVLLWEIFTL 

 

  70        71         72        73        74         75                      

789012345678901234567890123456789012345678901234567890123456 

GGSPYPGVPVEELFKLLKEGHRMDKPSNCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDR 

 
   76                

789012345 

IVALTSNQE 

Mutations are outlined in red (C488A and C584S).  

 FGFR2 1Y Sequence 

FGFR2 1Y   MGSSHHHHHHSSGLVPR\ (TAG) 

 
  46         47        48        49         50        51         

890123456789012345678901234567890123456789012345678901234567 

GSHMGVSEFELPEDPKWEFPRDKLTLGKPLGEGCFGQVVMAEAVGIDKDKPKEAVTVAVK 

 52         53        54         55        56        57        

890123456789012345678901234567890123456789012345678901234567 

MLKDDATEKDLSDLVSEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEFASKGNLREFLR 

   58        59        60         61        62          63         

890123456789012345678901234567890123456789012345678901234567 

ARRPGMEFSFDINRVPEEQMTFKDLVSCTFQLARGMEFLASQKCIHRDLAARNVLVTENN 

   64        65         66        67        68         69         

890123456789012345678901234567890123456789012345678901234567 

PVMKIADFGLARDINNIDYFKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLMWEIF 

  70        71         72        73        74         75                      

890123456789012345678901234567890123456789012345678901234567 

TLGGSPYPGIPVEELFKLLKEGHRMDKPANCTNELFMMMRDCWHAVPSQRPTFKQLVEDL 

 
  76            

890123 

DRILTL 
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 FGFR2 WT Sequence 

FGFR2 WT       MGSSHHHHHHSSGLVPR\ (TAG) 

         47        48        49         50        51        52 

123456789012345678901234567890123456789012345678901234567890 

GSHMEYELPEDPKWEFPRDKLTLGKPLGEGCFGQVVMAEAVGIDKDKPKEAVTVAVKMLK 

        53         54        55        56         57        58 

123456789012345678901234567890123456789012345678901234567890 

DDATEKDLSDLVSEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLREYLRARR 

         59        60         61        62          63         64 

123456789012345678901234567890123456789012345678901234567890 

PPGMEYSYDINRVPEEQMTFKDLVSCTYQLARGMEYLASQKCIHRDLAARNVLVTENNVM 

         65         66        67        68         69        70 

123456789012345678901234567890123456789012345678901234567890 

KIADFGLARDINNIDYYKKTTNGRLPVKWMAPEALFDRVYTHQSDVWSFGVLMWEIFTLG 

        71         72        73        74         75        76             

123456789012345678901234567890123456789012345678901234567890 

GSPYPGIPVEELFKLLKEGHRMDKPANCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDRI 

            

123 

LTL 
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 Crystallographic Statistics 

 

Values given in parentheses correspond to those in the outermost shell of the resolution range. 

† Rfree was calculated with 5% of the reflections set aside randomly. 

‡ Ramachandran analysis using the program MolProbity.148  

Data Statistics  

Dataset FGFR1/115 FGFR1/160 FGFR1/164 FGFR2/164 

Source DLSF DLSF DLSF ESRF 

Beamline I04-1 I04-1 I04-1 ID30A-1 

Wavelength (Å) 0.9159 0.9159 0.9159 0.9660 

Resolution range (Å) 
63.00 – 1.82 

(1.87 – 1.82) 

22.01 – 1.82 

(1.87 – 1.82) 

98.51 – 1.71 

(1.75 – 1.71) 

80.54 – 2.28 

(2.34 – 2.28) 

Space Group C 1 2 1 C 1 2 1 C 1 2 1 P 41212 

Unit–Cell parameters (Å) 

a = 208.78 

b = 57.77 

c = 65.94 

α = 90.00 

β = 107.17 

γ = 90.00 

a = 207.30 

b = 57.51 

c = 65.97 

α = 90.00 

β = 107.44 

γ = 90.00 

a = 206.26 

b = 57.56 

c = 65.79 

α = 90.00 

β = 107.22 

γ = 90.00 

a = 113.84 

b = 113.84 

c = 117.41 

α = 90.00 

β = 90.00 

γ = 90.00 

Completeness (%) 98.7 (99.8) 99.2 (99.6) 97.4 (96.8) 99.9 (100.0) 

Total reflections 225749 225056 279019 255783 

Unique reflections 66492 66115 77609 35802 

Redundancy 3.4 (2.9) 3.4 (2.9) 3.6 (3.7) 7.1 (7.4) 

I/σ(I) 11.3 (1.1) 16.7 (1.3) 14.1 (1.3) 6.6 (0.9) 

Rmerge (%) 3.8 (78.9) 2.6 (84.0) 3.1 (83.7) 13.6 (253.7) 

Rpim (%) 3.5 (72.7) 2.4 (76.3) 2.9 (73.7) 7.7 (138.9) 

CC1/2 0.99 (0.63) 0.99 (0.69) 0.99 (0.71) 0.99 (0.68) 

Refinement Statistics  

Resolution range (Å) 63.00 – 1.82 22.01 – 1.82 98.51 – 1.80 80.50 – 2.40 

R factor (%) 19.9 19.5 20.0 22.5 

Rfree (%) † 24.4 24.2 24.6 29.1 

No. of protein non-H atoms 4534 4544 4521 4533 

No. of ligand non-H atoms 54 25 56 56 

No. of water molecules 197 231 188 98 

No. of sulphate ions 6 8 5 2 

No. of ethylene glycol molecules 4 5 8 1 

R.m.s.d bond lengths (Å) 0.013 0.013 0.018 0.013 

R.m.s.d bond angles (°) 1.594 1.601 1.870 1.621 

Ramachandran Plot ‡   

Favoured region (%) 98.2 97.7 98.2 95.0 

Outliers (%) 0 0.2 0.2 0.7 
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8.3 Appendix 3.0 – Cell Viability Graphs 

 Duplicate Measurement Graphs 

8.3.1.1 SUM52 
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8.3.1.3 VMCUB3 

 

 

 

 

 

 

 

 

 

 

 

 

 Dose Response Inhibitor Curves 

8.3.2.1 Compound 171 
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8.3.2.2 Compound 172 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3.2.3 Compound 6 (PD173074) 
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8.4 Appendix 4.0 – Amino Acid Abbreviations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.5 Appendices References 

147. Z'-Lyte® Screening Protocol and Assay Conditions. Life Technologies, 

Paisley, Scotland, 2015. 

148. Chen, V. B.; Arendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; 

Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C., MolProbity: 

all-atom structure validation for macromolecular crystallography. Acta. 

Crystallogr. D 2010, 66, 12-21. 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 


