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ABSTRACT

In civil engineering, techniques for the design and construction of tall buildings have expanded

rapidly in recent decades. However, developments in layout / topology optimization techniques

which can be applied to such structures have not kept pace. Consequently, currently the layout

of structural members in buildings usually relies primarily on the engineer’s experience. On the

other hand, numerical layout optimization techniques appear potentially to be very suitable for

building layout design, and yet have not been used in practical building design. Therefore, this

thesis investigates the application of layout optimization in building layout / topology design, and

especially focusses on the design of bracing layout.

The bracing structure (or lateral stability structure) is an essential component of any building that

is used to provide stability against wind loads. Usually, the acting positions of the lateral loads

are dependent on the building shape. However, this point has not been the subject of investigation

in previous studies of bracing layout optimization. Therefore, two current numerical means of

treating design dependent loads (i.e. transmissible loads) are investigated and compared in this

thesis. The difference between these two means are identified and proved through the use of

mathematical and numerical approaches. Additionally, during the investigation it has been found

that taking advantage of pre-existing rigid bars in the optimization may lead to more efficient and

simple structures. Therefore, in the following bracing design case studies, various assumptions

about pre-existing bars are made.

The case studies involving bracing design comprise three main elements, covering a range of

assumptions as follows: (1) Optimal bracing for pre-existing beam-column frames which are

required to resist lateral loads are identified. (2): Optimal frames which are required to resist

both vertical and lateral load cases are identified. (3): Optimal frames which are required to resist

lateral load cases are identified with the assumption of pre-existing beams. This allows the bracing

structure and external building envelope to be simultaneously identified.

It has been found in this study that cases with different assumptions lead to very different solutions,

which may be selected for use based on the real situation. Additionally, some supplementary

findings related to analytical optimal solutions and the use of the superposition approach in

multiple load cases are outlined; details can be found in the main chapters.
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Chapter 1

Introduction

At present, the arrangement of key structural elements within a tall building is generally

determined by hand, either to meet architectural objectives, or according to engineering intuition.

Consequently, the resulting arrangements of components are often far from optimal in aspect

of material consuming, leading to needless material consumption. In this thesis, computational

layout optimization techniques will be applied to the design of tall buildings. The project

involves computer programming, application of mathematical optimization techniques, and the

development of improved guidance and software tools for engineers wishing to apply layout

optimization in building design.

1.1 Motivation

The concept of optimal structure was established in the early 20th century, and nearly half

a century later, a numerical optimization approach appeared in 1960. Currently, structural

optimization has been widely used in the field of mechanical engineering. However, it is rarely

used in the field of building design. One of the reasons for this may be that building structures

often need to meet a large variety of different requirements. Hence, the optimization problem for

building structures not only involves a high computational cost, but also, the final result is usually

not satisfactory (e.g. many of the results from problems with multiple load cases are very complex

and difficult to build). Consequently, the layout design of building structures is heavily reliant

on the intuition and/or experience of engineers, or is just concerned with architectural objectives.

1
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Moreover, because of the lack of knowledge about optimal structures, structures may cost even

many times more with respect to material when compared with an optimized structure. Therefore,

the study in layout optimization is very necessary and valuable.

Considering the working principles of buildings, braced frame or exoskeleton structures are very

similar to a truss structure (e.g. Fig. 1.1). Therefore, among the numerous topology optimization

approaches, truss layout optimization is the most suitable approach for this kind of problem

(discussed in detail in Sections 2.6 and 2.7). In addition, because of the rapid development of

layout optimization technology over the past two decades, the computational cost of large-scale

problems has been significantly reduced, so now is a very good time for application of layout

optimization techniques to be investigated.

(a) (b)

Figure 1.1: Examples of tall buildings with exoskeleton structure: (a) Hearst Tower, New York (Alsandro
2006); (b) John Hancock Building, Chicago (Jovianeye 2011).

1.2 Objectives

Previously layout truss optimization is not used by people to design buildings. This is

mainly because transforming a real design problem into a layout optimization problem requires

knowledge of building design, optimization theory and numerical algorithm. Consequently, this

transformation process is difficult to be carried out for design engineers only or optimization
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researchers only. Therefore, this thesis aims at bridging the gap between engineers and researchers

through using layout optimization in building bracing design problems. Efforts will be made in

four main aspects as following:

• Identify the important influencing factors of real design problems and find ways to involving

them into a layout optimization problem.

• Adjust the layout optimization formulation to make it more suitable for the bracing design

cases.

• Use the optimization tool in conceptual design stage of bracing design cases to identify

simple and efficient design solutions.

• Carry out investigations on the optimized structures to obtain simple principles that lead to

optimized structures.

1.3 Structure of the thesis

This thesis contains nine core chapters as follows.

• Chapter 2: Previous studies that are related to this thesis are reviewed in this chapter. This

chapter contains five main parts: (1) mathematical programming, (2) the rigid plastic design

approach, (3) analytical and numerical structural optimization approaches, (4) transmissible

loads and their implementations in numerical optimization, and (5) optimization of tall

building bracing structures. The former two cover fundamental knowledge of layout

optimization, and the latter three contain information about previous studies that are related

to this thesis.

• Chapter 3: For building bracing design, the numerical techniques that are used in this

thesis are layout optimization, geometry optimization, and transmissible loads. The former

two are well-developed techniques. However, currently there are two means of applying

transmissible loads (i.e. the migrating load approach and the rigid bar approach), and it has

been identified in a previous study that these two approaches may produce different solutions

in the same cases. Therefore, before undertaking a case study on bracing optimization, the
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difference in the formulations of these two approaches is investigated in this chapter through

mathematical and numerical methods.

• Chapter 4: In this chapter, the column-beam frame is treated as a pre-existing column-

beam frame in the design of bracing structures, and three different cases are studied: (1)

Tension-only bracing, (2) Connection only at corner bracing, and (3) Optimal bracing with

no additional constraints.

• Chapter 5: The assumptions for Chapter 4 are suitable for bracing structure design cases

with a pre-defined column-beam frame. However, there are situations where column-beam

frames are designed simultaneously with bracing elements. Therefore, the assumptions

used in Chapter 4 are removed in this chapter, and a holistic design with multiple load

cases is carried out. The efficiency of optimized results is compared with standard bracing

structures.

• Chapter 6: Chapters 4 and 5 cover bracing optimization in different scenarios. However,

although it was mentioned previously that wind load is naturally a kind of transmissible load,

in these chapters, the external building shapes are potentially fixed and the transmissible

loads are not significantly involved. Therefore, in this chapter, the rigid bar transmissible

load approach is used with assumptions of pre-existing beams, and the aim is to

simultaneously identify the bracing structure and the external building shape during the

optimization. Under this setting, both 2D and 3D optimization cases are studied. Efficient

and simple optimization results are identified for different scenarios.

• Chapter 8 discusses various issues relevant to the current research and a new approach for the

optimization of members which can carry both axial forces and bending actions. Numerical

examples are considered to illustrate the concepts involved.

• Chapter 9 presents the conclusions of the thesis.

• Chapter 10 presents several recommendations for future work.



Chapter 2

Literature review

The main problem of structural optimization is to find structures that satisfies certain conditions

(e.g. boundary condition, equilibrium condition et al.) and are optimized in certain pre-defined

proprieties (e.g. minimized in volume or maximized in stiffness et al.). To solve this problem,

many different optimization methods have been developed in previous studies, such as discrete

layout optimization approach (Dorn et al. 1964), continuum topology optimization approach

(Bendsøe & Kikuchi 1988), evolutionary approach (Xie & Steven 1993) and genetic algorithm

(Kane & Schoenauer 1996). The latter two are both none-gradient based approach and their

disadvantage in solving large-scale problem have been pointed out in Sigmund (2011). Hence they

are not used in this thesis. For the former two gradient based approach, despite the formulations

themselves are entirely different, they are classified into a same kind of mathematical problem,

which is mathematical programming. As stated in Chapter 1.2, in this thesis the problem

formulations will be adjusted to be suitable for solving building optimization problem. Therefore,

the relevant knowledge about mathematical programming is firstly reviewed in Sections 2.1 to 2.3.

Before all the numerical approaches, the underpinning theory of structural optimization area

was identified in the early 19th century by Michell (1904). In this paper, Michell obtained an

optimality criteria which can be used to judge the optimality of an existing structure. This criteria

is important but the difficulty in solving a structural optimization problem with the proposed

analytical approach is extremely high. Consequently, the numerical approaches mentioned in

last paragraph were developed to identify the optimized structures. Since the aim of analytical

and numerical approach is the same, optimality theory can be used to improve the efficiency

5
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of numerical algorithm (Gilbert & Tyas 2003) or to prove the optimality of identified structure

(Darwich et al. 2010). Therefore, this part of studies are reviewed secondly in Sections 2.4 to 2.8.

Although structure optimization research have been existed for over a century, current building

conceptual design is still mainly based on the intuition of engineers or architects. For example, in

the early design stage of the 122 Leadenhall Street building, the proposed layouts had simply

started from aesthetic considerations, and included no structural evaluation (Baldock 2007).

Consequently, this approach may lead to design difficulty in subsequent stages, or eventually an

inefficient design. Therefore, optimization techniques can be used to search for a design that

considers both beauty and economy. Some principles, identified from structural optimization

research, can provide guidance for efficient design, and are very useful for the early design stage.

Hence, many studies have focussed on these topics. These studies are reviewed in the final part of

this chapter, which is Section 2.9.

2.1 Mathematical programming

Mathematical programming is a process of finding the optimal solution for a given set of variables

and constraints. Usually, a mathematical programming problem is formulated as:

maximize f(x) (2.1a)

subject to hi(x) = 0, i = 1, 2, . . . , l (2.1b)

gj(x) ≤ 0, j = 1, 2, . . . ,m, (2.1c)

x ∈ X (2.1d)

where x is a vector of unknown variables; f(x) is the objective function, and in this problem, the

objective is to find values for x so that f(x) can be maximum; (2.1b), (2.1c) and (2.1d) are the

so-called constraints of this problem which means that for the values of x, these conditions must

not be violated. Additionally, (2.1b), (2.1c) and (2.1d) are usually called, respectively, equality

constraints, inequality constraints, and bounds on the variables.

For different types of mathematical programming problems, there exists different kinds of optimal
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solutions. As shown in Fig. 2.1, if the identified solution is an optimal within its neighbouring

region, then it is a local optimal. Furthermore, if the solution is the optimal result in the

whole search region, then the solution is a global optimal. From the definition, it is clear that

a global optimal solution must also be a local optimal solution, but a local optimal solution is not

necessarily a global optimal solution.

The global and the local optimal are very important concepts in mathematical optimization. If

the final solution is not a global optimum, but only a local optimal solution, this solution may be

misleading because some better solutions must exist somewhere in the search region, but are not

identified.

Figure 2.1: Local and Global optimal

2.1.1 Convex and concave optimization

Regarding the global and local optimal property, the convexity of a mathematical program is

crucial, since in a convex optimization problem, identified optimal solutions are guaranteed to be

global optimal (Bertsekas et al. 2003). To demonstrate the convexity of an optimization problem,

the definition of a convex set must first be introduced:

For any two arbitrary points A and B within a set S, if all the points on line segment AB are also

within S, then set S is a convex set (e.g. Fig. 2.2a). Otherwise, S is a concave set (e.g. Fig. 2.2b).

Based on this definition, convex and concave constraints can be further defined as the constraints

that represent, respectively, convex and concave sets. Figures 2.2c and 2.2d show examples of

convex and concave constraints. Finally, with the definition of convex and concave constraint,
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a convex programming problem is defined as a mathematical program where every constraints

within it are convex and the set represented by the objective function is also convex (i.e. f(x) ≥ 0

is convex for minimization problem or f(x) ≤ 0 is convex for maximization problem). It is

worth noting that the a equal constraint is convex only if it is a linear constraint. This is because

hi(x) = 0 can be transformed to hi(x) ≤ 0 and −hi(x) ≤ 0. If hi(x) is a non-linear convex

constraint, then −hi(x) must be a non-linear concave constraint. Hence, convex equal constraints

hi(x) must be linear.

(a) (b)

(c) (d)

Figure 2.2: Examples of convex and concave sets and functions: (a) Convex set S1; (b) Concave set S2; (c)
Convex constraint f(x) ≥ 0; (d) Concave function g(x) ≥ 0

Convexity is significantly important since it determines the reliability of a solution of a

mathematical program. For this reason, convex formulations are usually preferred, when possible.

Moreover, if an optimization problem can be formulated as a linear programming problem, then

not only can a global optimal solution be guaranteed, but also the computational cost required to

solve this problem is relatively small. Details about linear programming are presented in the next

section.



CHAPTER 2. LITERATURE REVIEW 9

2.2 Linear programming

The optimization problem shown in (2.1) is a linear programming problem when all the functions

applied to the variable vector x are linear. Compared with a non-linear programming problem,

a linear programming problem can be solved much more quickly. In addition, since linear

programming problems are a special subset of convex programming problems, the solutions from

linear programming problems are also guaranteed to be global optimal solutions.

2.2.1 Approaches to solve linear programming problems

Currently, three widely used approaches are available that can be used to solve a linear

programming problem. The first one is the graphical approach, which could be applied to a linear

programming problem with two variables. This approach is typically used in introductions to

linear programming principles rather than real research investigations. Fig. 2.3 shows an example

of applying the graphical approach to a linear programming problem (2.2). The second approach is

the simplex method (Dantzig 1949), which is a mathematical extension of the graphical approach;

it is suitable for problems with any number of variables. The simplex method solves a linear

program through a number of steps of linear matrix transformation, which gradually moves the

solution along the boundary of the search region towards the final optimal value. The last method

is the interior point method (Karmarkar 1984, Gill et al. 1986, Wright 2004). In contrast to the

simplex method, this method moves the objective function value across an interior line of the

search region. In current state-of-the-art linear programming solvers, interior point solvers are

more efficient than simplex solvers, especially for large-scale problems (Wright 2004). Therefore,

in this study, interior point solvers are used to solve the optimization problems which arise.

maximize x1 + 2x2 (2.2a)

subject to x1 + x2 ≤ 5 (2.2b)

x1 − 3x2 ≤ 0 (2.2c)

x1 ≥ 0, x2 ≥ 0 (2.2d)
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Figure 2.3: Example of using the graphical approach to solve a linear program (2.2), where grey area is
the search region, solid lines represent the constraints and dashed lines represent the contour lines of the
objective function.

2.2.2 Duality theory

Duality theory (Vanderbei 2001, Nocedal et al. 2006) is an important part of convex programming

theory, especially for linear programming. Every linear programming problem has its dual-form

formulation. For this pair of formulations, one feasible solution (e.g. those solutions that satisfy

the constraints but are not necessarily optimal) of one of the problems could lead to a bound on

the other problem. Therefore, more information about the original problem (the so-called primal

problem) can be obtained from the investigation of its dual problem.

maximize
n∑
j=1

cjxj (2.3a)

subject to
n∑
j=1

aijxj ≤ bi i = 1, 2, ...,m (2.3b)

xj ≥ 0 j = 1, 2, ..., n (2.3c)

The dual problem of a general linear program as shown in Formulation (2.3) could be obtained

through the following steps. First, take Constraint (2.3b) and multiply each side of the inequality
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expression with a variable yi ≥ 0:
n∑
j=1

aijxjyi ≤ biyi (2.4)

Secondly, assume that any yi satisfies Condition (2.5); thus the relation shown in (2.6) could be

obtained based on Condition (2.5).
m∑
i=1

aijyi ≥ cj (2.5)

m∑
i=1

biyi ≥
m∑
i=1

n∑
j=1

aijxjyi ≥
n∑
j=1

cjxj (2.6)

From the above derivation, it can be observed that, for any y = {y1, y2, ..., ym} that satisfies

Condition (2.5) and yi ≥ 0 could lead to a upper boundary bjyj for the primal problem. Therefore,

the dual problem of (2.3) is:

minimize
m∑
i=1

biyi (2.7a)

subject to
m∑
i=1

aijyi ≥ cj j = 1, 2, ..., n (2.7b)

yi ≥ 0 i = 1, 2, ...,m (2.7c)

From (2.6), it is clear that there is always a gap between the value of the objective functions of

the primal and the dual problem if the solution is only feasible but not optimal. This gap will be

shortened as the solution approaches towards the optimal solution, and in the end when the optimal

solution is identified, this gap will be eliminated and the objective function values of the primal

and dual problems will be identical.

2.3 Non-linear programming

Compared with an equally sized linear programming problem, a non-linear programming problem

usually involves higher computational cost to obtain a solution, and whether a global optimal

solution can be found still depends on the convexity of this problem. Nevertheless, research

on non-linear programming has always been an area of active interest since non-linearity
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is an inevitable factor in complex and realistic cases. For such non-linear programming

studies, derivative-based optimality criteria theory is a basic concept for algorithm development.

Accordingly, details of derivative-based optimality criteria theory are described in the following

sections.

2.3.1 Optimality criteria for problems with equal constraints

A non-linear problem with only equality constraints can usually be formulated as:

(for sake of simplicity, demonstration in Sections 2.3.1 and 2.3.2 is based on formulation with

only two variables)

maximize f(x, y) (2.8a)

subject to h(x, y) = c, i = 1, 2, . . . , l (2.8b)

Assume that f(x, y) and h(x, y) both have continuous first partial derivatives, then (2.8) could be

transformed to this Lagrange function:

L(x, y, λ) = f(x, y)− λ · (h(x, y)− c) (2.9)

where λ is a new variable introduced in a Lagrange function called Lagrange multiplier.

Based on (2.9), the optimality condition of point (x?, y?, λ?) is given by:

∇(L(x, y, λ)) = 0 (2.10)

Fig. 2.4 presents a graphical demonstration of (2.10). It can be seen that if a point (x1, y1) is

an intersection point between the contour line of f(x, y) and the trajectory of h(x, y) = c,

then there can be found a point (x2, y2) which neighbours (x1, y1) that could provide a more

favourable solution f(x2, y2). Hence, at the optimal point (x?, y?), f(x, y) and h(x, y) = c must

be tangential, which leads to the equation (2.10).
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Figure 2.4: Optimality criteria of a non-linear mathematical program with equal constraints, where dashed
lines are contour lines of objective function f(x, y), and the solid line represents equal constraint h(x, y) =
c.

2.3.2 Optimality criteria for problems with unequal constraints

The above optimality criteria only applies to non-linear problems with equality constraints (i.e.

(2.8b)). For problems with inequaliity constraints, the optimality criteria are slightly different. For

the sake of completeness, this will also be demonstrated through an example.

For a non-linear programming problem with inequaliity constraints, the formulation is:

maximize f(x, y) (2.11a)

subject to g(x, y) ≤ c, i = 1, 2, . . . , l (2.11b)

The corresponding Lagrange function is:

L(x, y, µ) = f(x, y)− µ · (g(x, y)− c) (2.12)

And the optimality criteria of (2.12) are:
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µ ≥ 0 (2.13a)

∇(L(x, y, µ)) = 0 (2.13b)

µ · (g(x, y)− c) = 0 (2.13c)

Condition (2.13) is a widely used optimality criterion called the Karush-Kuhn-Tuker condition

(Nocedal et al. 2006). In this condition, (2.13a) is the dual transformation result of (2.11b). (2.13b)

is the same as (2.10), which represents the gradient relation between f(x, y) and g(x, y) at the

optimal point. To understand (2.13c), we can usefully consider the optimization problem in two

situations. In the first situation, as shown in Fig. 2.5a, it is assumed that the maximum point for

fmax(x, y) is located in the region of g(x, y) ≤ c. In this situation, it is clear that the optimal

result of (2.11) is effectively fmax(x, y), which means that the constraint g(x, y) ≤ c is inactive

in problem (2.11) (i.e. the removal of g(x, y) ≤ c will not affect the optimal solution of (2.11))

and the optimal solution only requires ∇(f(x, y)) = 0. Therefore, in this situation µ = 0. In the

second situation shown in Fig. 2.5b where fmax(x, y) is located out of the constrained region of

g(x, y) ≤ c, the optimal point must be located at the tangent point between the contour line of

f(x, y) and the boundary of g(x, y) ≤ c. Therefore, in this situation, g(x, y) = c. From these

findings it can be shown that µ · (g(x, y)− c) = 0, which is the condition shown in (2.13c).

2.4 Elastic and plastic design

In addition to knowledge of mathematical programming, the basic assumptions used in

engineering design are also a crucial component of structural optimization. One of the most

important assumptions is related to the strain-stress relation of the material. A demonstration of

this starts with the typical steel stress/strain curve shown in Fig. 2.6a (Rees 2006). From this graph,

it can be seen that the steel goes through an elastic deformation phase (i.e. where stress and strain

have a linear relationship) and a plastic deformation phase (i.e. where stress and strain have a non-

linear relationship) before it reaches the rupture point. Furthermore, the plastic deformation phase

can be divided into three stages, which are the perfect plastic stage (i.e. stress is maintained at the

same value as strain increases), the strain-hardening stage (i.e. stress increases as strain increases),
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(a) (b)

Figure 2.5: Two situations of a non-linear mathematical program with inequality constraints: (a) Optimal
point for fmax(x, y) locates in the region of g(x, y) ≤ c; (b) Optimal point for fmax(x, y) locates outside
of the region of g(x, y) ≤ c; dashed lines are contour lines of objective function f(x, y), and the grey area
represents unequal constraint g(x, y) ≤ c.

and necking stage (i.e. stress decreases as strain increases). Therefore, it is clear that this typical

stress/strain curve is a non-linear and non-convex function, which causes computational difficulty

for design or research work. Consequently, one usually assumes that the material can only deform

in the elastic phase, which leads to the currently widely used elastic design approach. In elastic

design, as long as one position of the entire structure reaches the yielding stress, then the loading

capacity of this structure is considered to be achieved. Nevertheless, from Fig. 2.6a it is clear that

elastic deformation only takes up a small part of steel’s strain capacity. Hence, the assumption of

elastic design will lead to a waste of material. Therefore, a rigid-plastic model has been developed

to make use of material’s plastic capacity and also simplify the calculation process. In the rigid-

plastic model, it is assumed that the relation between stress and strain is always plastic-perfect as

shown in Fig. 2.6b. Although in reality this kind of material does not exist, for ductile material with

plastic deformation much larger than elastic deformation, this model is still applicable (Nielsen &

Hoang 2011).

2.4.1 Upper and lower boundary theory

In design with the rigid-plastic model, a structure is considered to collapse when a mechanism is

formed, identified using upper or lower bound theory. To demonstrate this, three basic conditions
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Figure 2.6: Steel stress/strain curve: (a) curve for a realistic scenario; (b) curve with assumptions made in
plastic rigid design.

must first be introduced:

1) Mechanism condition: At the point of collapse, sufficient plastic hinges (at positions where the

maximum material capacities are reached) form to create a mechanism.

2) Equilibrium condition: At the point of collapse, the internal bending moments are just in

equilibrium with the applied loads.

3) Yield condition: At the point of collapse, stresses at all positions within the structure are smaller

than or equal to the specified maximum stress (e.g. usually yield stress).

With these conditions, it is defined that for a specified structure, a loading that leads to satisfaction

of yield and equilibrium conditions will be a lower bound on the plastic collapse load; a loading

that leads to satisfaction of mechanism and equilibrium conditions will be an upper bound on the

plastic collapse load; and a loading that leads the satisfaction of mechanism, equilibrium, and yield

conditions will equal the exact plastic collapse load.

2.4.2 Plastic vs. elastic beam design example

The efficiency of the plastic design method can be demonstrated through a simple beam example

(e.g. Fig. 2.7), which involves a beam having fixed supports at the two ends and takes a downwards
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uniform load across the span. Fig. 2.7b shows the moment graph for elastic design where the

moments at the support position are twice the moment at the middle position. Consequently, the

maximum stress within the cross section located at the middle span position is only half of the

yield stress. On the other hand, in plastic design (i.e. Fig. 2.7c), this beam collapses when three

hinges form at the right end, midspan, and left end position. This collapse condition redistributes

the moment such that the moments at the two ends equal the moment at midspan. Hence, the

maximum stresses located at midspan and the two end positions are identical, which leads to a

more efficient design to take the uniform load.

From the above demonstration, it can be seen that plastic design could lead to more efficient

solutions than the elastic design approach. Considering that the purpose of this study is structural

optimization, plastic design is accordingly used as the main design approach in this study.

2.5 Mathematical theories of optimal structures

2.5.1 Michell’s optimality criterion

With the knowledge of mathematical programming and plastic design, we can now look at the

fundamental mathematical theory of structural layout optimization. Michell (1904) first studied

the least material truss problem and derived the criteria of the optimal truss topology based on the

mathematical theory of Maxwell (1864). The specific problem studied by Michell (1904) is to find

the optimal layout of the least material truss with stress constraints and a single load condition,

and the optimality criterion is:

“A frame therefore attains the limit of economy of material possible in any frame-structure under

the same applied forces, if the space occupied by it can be subjected to an appropriate small

deformation, such that the strains in all the bars of the frame are increased by equal fractions of

their length, not less than the fractional change of length of any element of the space.”

This optimality criterion underpins the topology optimization area, and Michell has demonstrated

its implications through several classical cases. Fig. 2.8 shows one of the examples presented by

Michell, the cantilever problem with a single load and fixed supports around a circular boundary.

In Fig. 2.8, it can be observed that tension and compression members intersect each other at

90◦. This is a general member arrangement that appears in many other Michell structures (e.g.
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(a)

(b)

(c)

Figure 2.7: Elastic and plastic design example: (a) An I-section beam that takes uniform load across the
span and has fixed supports at two ends; (b) Elastic design: moment distribution across the span and stress
distribution at the middle and two ends; (c) Plastic design: moment distribution across the span and stress
distribution at the middle and ends; where ω, l and fy represent loading per unit length, total beam length
and yield stress.
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those structures that satisfy the optimality criterion). Similar to this member arrangement, Michell

listed several other arrangements based on optimality criterion. By knowing these arrangements,

one can derive the optimal topology of some cases as Michell did. However, this approach is

rather difficult to apply to a case with arbitrary loading and support positions. Therefore, whilst

Michell’s analytical approach provides a strong foundation for this field, it is rarely helpful in

specific structural design applications.

Figure 2.8: Michell cantilever with point load A and pin supports around circle B, where red and blue lines
respectively represent bars in tension and compression.

2.5.2 Three regions in Michell structures

The general member arrangement that appear in Michell structures were extensively studied in

Prager & Rozvany (1977), who derived that any point within a Michell structure must be located

in one of the following three types of regions: (1) structurally rich forms in which (generally

orthogonal) truss bars are strained to their respective limits in tension and compression; (ii)

similarly rich forms but where all bars experience stresses in only one direction; and (iii) simpler

flexureless line or surface structures. These have been defined respectively as: (i) T-type, (ii)

S-type, and (iii) R-type structures. T-type region contains adjoint strains in two orthogonal

directions. Thus optimized structure in this region usually have tension and compression members

intersecting with each other at 90◦ (e.g. Fig. 2.8 and the fan structure in Fig. 2.9b). S-type region

contains adjoint strains of only one sign in arbitrary directions. One example of S-type is the

surface of a balloon, where every position is in tension. R-type region contains adjoint strain of

one sign in one direction, thus optimized structures in this region usually are single or parallel bars
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all in tension or all in compression (e.g. Fig. 2.9b). Additionally, based on the strain direction, S-

and R-type structures can further be classified into R+, R−, S+, S− type structures (e.g. Fig. 2.9a).

Following on this theory, many studies have been performed using the analytical approach to

identify the exact volume and member arrangement of Michell structures for different specific

problems (Chan 1960, Rozvany 1998, Dewhurst 2001, Lewiński & Rozvany 2007, 2008,

Graczykowski & Lewiński 2010). These are very useful to verify the correctness of a newly

developed numerical approach.

(a)

(b)

Figure 2.9: Types of optimal regions in Michell trusses: (a) symbols of five types of region, where + and
− represent tensile and compressive strain respectively; (b) a Michell structure with T-type structures in
the middle region and R−-type structures at the two sides; red and blue lines respectively represent bars in
tension and compression.

2.5.3 An example of interactive collaboration between analytical and numerical

approach: optimal topology to withstand uniform load between pin supports

Among all the classical topology optimization cases, the optimal topology to carry uniform gravity

loads between pin supports is a problem that has been studied by engineers for hundreds of

years. The widely accepted solution is a funicular parabola structure that uses only compressive

internal force to resist the external applied loads (only for cases with supports located at he bottom
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corners of the design domain). The theory behind this solution is the fundamental concept of arch

bridges and other arch-shaped structural components. However, recently Darwich et al. (2010)

investigated this problem using a numerical optimization approach and identified that the optimal

solution is Fig. 2.10, which contains a rich structure that emerges from a given support position

and ends at the one-third span position that connects a funicular structure in the middle part. Since

surprisingly this solution conflicts with the long-held and widely accepted solution, the analytical

approach is used in Tyas et al. (2010) to prove the optimality of the structure. It has been found

that, in situations with σc/σt ≥ 3, the parabola funicular structure is the optimal solution, where

σc and σt represent, respectively, maximum compression and tension stresses. Nevertheless, in

more the general situation with σc/σt = 1, Fig. 2.10 is the optimal solution. Although the volume

difference between these two solutions is not significant, this example shows that the topology

optimization technique could lead to solutions that could never be obtained using only engineering

intuition.

Figure 2.10: Optimal topology for uniform gravity load between pin supports problem, where red and blue
lines respectively represent bars in tension and compression

2.6 Discrete layout optimization

2.6.1 Ground structure approach

Although analytical approaches could lead to exact optimal solutions, the significant effort

required makes these methods unsuitable for solving general problems. Therefore, engineers

have been using numerical methods to search for optimized structures. An automatic layout

optimization scheme was first developed by Dorn et al. (1964). Prior to their work, the main
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Figure 2.11: Ground structure approach: (a) initial design domain, support and loading conditions; (b)
node discretization; (c) create all possible interconnections of discrete nodes (build ground structure); (d)
use linear programming to select the optimal subset structure; red and blue lines respectively represent bars
in tension and compression.

focus of structural optimization research was on size optimization (determining the size of already

present members). Pearson (1958) found that some members would disappear when undertaking

size optimization. Based on this finding, Dorn et al. (1964) proposed a ground structure-based

approach in which each node was connected to every other node and the optimal subset of

members was identified via optimization, with most members having zero area. Through this

approach, layout optimization was transformed into a member sizing problem, which can be solved

by LP.

As Fig. 2.11 shows, this approach can be divided into three steps. Firstly, the design domain

is discretized into a grid of nodes. Secondly, all possible interconnections of discrete nodes are

created (build ground structure). Thirdly, the optimal subset structure is selected from the ground

structure using linear programming tool. The linear programming formulation for m bars and n

nodes is stated as follows:

min V = qT c

subject to Bq = f

q+
i , q

−
i ≥ 0, i = 1, ...,m

(2.14)

where V represents the total structure volume, qT = {q+
1 , q

−
1 , ..., q

+
m, q

−
m}, cT =

{l1/σ+
1 , l1/σ

−
1 , ..., l1/σ

+
m, l1/σ

−
m}, B is a 2n × 2m equilibrium matrix, and f =

{fx1 , f
y
1 , f

x
2 , f

y
2 , ..., f

x
n , f

y
n}; and li, q

+
i , q

−
i , σ

+
i , σ

−
i represent, respectively, the length, tensile

member force, compressive member force, tensile stress capacity and compressive stress capacity

of member i. fxj and fyj represent the component of load in the x and y directions respectively for

the load applied to node j.
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Variables in this formulation are the axial forces of each member. By allowing the cross sectional

areas to be able to become zero (or very close to zero), the optimal subset structure is selected

from the ground structure via removing unnecessary members.

Despite the fact that Dorn’s approach is capable of producing a similar solution to Michell’s, it does

not use Michell’s optimality criteria theory. The central idea of the ground structure approach is

to select the best solution from every possible one. Despite the efficiency of linear programming

technology, the very large number of calculations required is the main limitation of the ground

structure approach. The fact that the number of members increases as a function of the square of

the number of nodes means that practically large 3D problems are unlikely to be solvable in the

foreseeable future using the classical ground structure method.

2.6.2 Hemp’s theory

Michell and Dorn pioneered, respectively, analytical and numerical approaches to structural

optimization. Although these two approaches have the same goal, they were isolated from each

other for many years until Hemp (1973) combined them together. Hemp applied LP duality theory

to the ground structure approach formulation and obtained the following formulation:

max W =
n∑
j=1

Fjuj/σε (2.15a)

subject to:

σ+|εi|/σ + σ−|εi|/σ ≤ ε (2.15b)

where W is the total virtual work; Fj , uj are external force and displacement respectively of node

j; εi is strain of member i; and σ and ε are constants of a Lagrangian multiplier.

From duality theory, it can be obtained that when the objective volume in formulation (2.14)

reaches a minimum, the virtual work in formulation (2.15a) would be at its maximum.

Additionally, the strain within each member must satisfy constraint (2.15b). Consider constraint

(2.15b) together with Michell’s optimality criterion: Hemp suggests that for those members that

exist in the optimal structure, Constraint (2.16) must be satisfied, and for those members that do

not exist, Constraint (2.17) must be satisfied.
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σ+|εi|/σ + σ−|εi|/σ = ε (2.16)

σ+|εi|/σ + σ−|εi|/σ < ε (2.17)

Therefore, the optimality criteria proposed by Hemp are:

i. The structure should be capable of effectively carrying its alternative system of forces.

ii. Each member should be stressed to the limit σ+ or σ−.

iii. The framework allows a virtual displacement of its nodes, which produces non-negative strains

in members loaded to stress σ+, non-positive strains in members loaded to a stress σ−, and zero

strains in members not stressed to these limits.

iv. The strains of members that exist in the optimal topology satisfy Constraint (2.16).

v. The strains in all members (including those not present in the optimum structures),

corresponding to the displacement of iii, satisfy Constraint (2.15b).

Hemp’s work is significant because conditions iv and v above can be used to govern whether or

not it is advantageous to include a given member in the optimal truss, which connects Michell’s

optimality criterion and Dorn’s ground structure approach.

2.6.3 Member adding method

As computer technology has developed, the ground structure method has naturally lent itself to

numerical implementation. However, despite the efficiency of LP approaches, even these methods

become computationally intractable for large-scale problems, due to the numbers of potential

members in the ground structure. With regard to this problem, Gilbert & Tyas (2003) proposed

an iterative scheme called the ‘member adding method’, which could effectively decrease the

computational cost of the classical ground structure approach. In the member adding method, a

sparsely populated ground structure (e.g. a subset of the fully connected ground structure that

usually contains only members connecting neighbouring nodes) is initially used, and necessary

members are added in each iteration based on Hemp’s optimality criteria (e.g. constraint (2.15b)).

Since virtual displacements of each node could be automatically obtained when the primal problem
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is solved, the strain of each potential member within the fully connected ground structure could

be calculated with little computational cost. Hence, after each iteration, members that violate

constraint (2.15b) could be easily picked out and added to the ground structure. Consequently, the

size of the ground structure is gradually increased, and the objective function value is decreased.

In the end, the iteration scheme stops when no member in the fully connected ground structure

violates constraint (2.15b). Hence, the global optimality of the approach can be guaranteed.

The efficiency of the member adding method has been proved with numerical examples in Gilbert

& Tyas (2003), and it has been used in many other truss optimization studies such as those by

Pritchard et al. (2005), Darwich et al. (2010), Tyas et al. (2010), He & Gilbert (2016), and Smith &

Gilbert (2007). From the previous studies, it could be concluded that this approach can effectively

reduce the computational cost of layout optimization. Therefore, it will be used as a core method

in this study.

2.6.4 Geometry optimization

With the member adding method, layout optimization can quickly produce solutions for various

problems. However, it has been observed that the results are usually very complex. Due to this

reason, He & Gilbert (2015) make an attempt to reduce the complexity of the solutions obtained

via layout optimization by using geometry optimization as a post-processing method. In this

approach, a non-linear, non-convex problem is solved to find the optimal positions of the nodes

within a certain limit. Additionally, between iterations, nodes can also merge into one when two or

more nodes are very close to each other. Although a non-linear optimization problem is required to

be solved, this problem is started from an optimized structure that has most nodes and members in

the ground structure eliminated. The computational cost is therefore relatively small. Additionally,

with the optimized structure as the initial of the optimization, the results are usually more optimal

than layout optimization results. From the examples in He & Gilbert (2015, 2016), He et al.

(2017), it is clear that more rational structures can be identified by geometry optimization with

only a slightly higher computational cost than when using only layout optimization. Therefore,

this approach will also be used in this study to improve the quality of the optimized results.
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2.6.5 Structural optimization with multiple load cases and the superposition

approach for solving multiple load case problems

Previous sections have introduced optimization formulations for single load case problems.

However, in reality, buildings usually need to take different load cases in different scenarios.

Problems with multiple alternative load cases are therefore an important part of layout

optimization. Hemp (1973) studied this problem and proposed the optimality criterion for a truss

structure under multiple alternative load cases to be:

“that each member should be stressed to the limit σT or −σC by at least one system of force”

which leads to the following multiple load case optimization formulation for M load cases, m

members and n nodes:

min V = lTa

subject to Bqα = fα

a ≥ 0

ai ≥ {q+
i /σ

+
i + q−i /σ

−
i }α

{q+
i }α, {q

−
i }α ≥ 0

(2.18)

where α = 1, 2, ...,M and i = 1, 2, ...,m; V represents total structure volume, a =

{a1, a2, ..., am}, l = {l1, l2, ..., lm}, B is a suitable (2n × 2m) equilibrium matrix, qT =

{q+
1 ,−q

−
1 , ..., q

+
m,−q−m}, fα is the load case vector, where fα = {fx1 , f

y
1 , ..., f

x
n , f

y
n}α;

and ai, li, q
+
i , q

−
i , σ

+
i , σ

−
i represent, respectively, the cross section area, length, tensile force,

compressive force, tensile stress capacity, and compressive stress capacity of member i and also

{fxj }α and {fyj }α represent, respectively, the x and y direction component load applied on node j

in load case α.

This formulation can be used to solve problems with arbitrary load cases. Nevertheless, in a

situation with only two load cases, Hemp (1973) derived the dual formulation as:

max W =
2∑

a=1

Wa (2.19)
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where

Wa =
n∑
j=1

fajUaj/σε (2.20)

and

f1j = (F1j + F2j)/2, f2j = (F1j − F2j)/2 (2.21)

This formulation indicates that the total virtual work of the optimal truss for two-load case F1 and

F2 is equal to the sum of the virtual works of two optimal trusses for, respectively, load cases f1

and f2. With LP duality theory, the optimal truss for two alternative load cases F1 and F2 can be

obtained by superimposing two optimal trusses for, respectively, single-component load cases f1

and f2.

Following Hemp’s work, the superposition approach has been extensively studied by Rozvany &

Hill (1978), and it is found that, when some special conditions are satisfied, the superposition

approach can be applied to problems with more than 2 load cases, which can be used to reduce the

computational cost of some special cases.

2.7 Continuum topology optimization

Compared with discrete layout optimization, more studies have focussed on finite element-

based continuum topology optimization. This kind of optimization approach started with the

homogenisation method (Bendsøe & Kikuchi 1988). In this approach, the material distribution

in the design domain is represented by a finite number of elements, and each of them contains

infinitely many microscopic voids. The optimization target is to seek the porosity of the elements

under some user-defined optimality criteria. Unlike the philosophy underlying the ground structure

approach, this approach inspired researchers with the idea of looking at topology optimization

as a process of placing material in the most needed places. Due to the popularity of the finite

element method, this approach was intensively studied by many researchers, and many subsequent

approaches were developed in this process. These approaches include: SIMP, where the isotropic

material is simplified with a penalization method (Bendsøe 1989, Zhou & Rozvany 1991, Mlejnek

1992); Evolutionary Structural optimization (Huang & Xie 2010a,b); the level set approach

(Allaire et al. 2002, 2004); topology derivative (Sokolowski & Zochowski 1999); and the phase

field method (Bourdin & Chambolle 2003).
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Among all of these optimization approaches, SIMP remains the most widely used approach at

the present time. Similar to the homogenisation method, material distribution in this approach is

represented by a finite number of elements whose density can be varied during the optimization

process, and the stiffness contributed by each element is determined by this element’s density.

However, the stiffness is not linearly related to the density, but is proportional to the p power of

density (e.g. Eqn. (2.22)). This condition can effectively push the density variables to present

a binary distribution, which leads to a penalty for the grey elements (i.e. elements with density

between 0 and 1). Fig. 2.12 shows an example obtained with the SIMP 99-line algorithm (Sigmund

2001).

E = E0ρ
p (2.22)

where E is the Young’s modulus of one element, E0 is the Young’s modulus of the pre-defined

material, ρ is the density of this material, and p is the penalty parameter.

Figure 2.12: An optimized structure generated with the 99 line MATLAB script implementing the SIMP
algorithm, where the command used is “top(50,50,0.3,3.0,1.5)” and the five parameters in the used
command are design domain width, design domain height, volume fraction, penalty parameter p and filter
diameter rmin respectively. (Sigmund 2001)

SIMP contains several parameters that can significantly affect the solution quality. First is the

mentioned penalty parameter p. Usually, it is larger than 1 to act as a penalty, and the given

recommendation is p = 3. The reason for the apparently magic effect of this value is discussed in

Bendsøe & Sigmund (1999) and Amstutz (2011). The second one is rmin, which is the diameter

of one element’s filter region. By using the average density within this filter region, the so-called
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checkerboard effect could then be eliminated (Sigmund 2001). The final important parameter is

the numerical damping parameter η, which appears in the move limit calculation process (Sigmund

2001, page 121). The recommended value of η is 0.5. Increase in η leads to a larger step between

iterations, which can cause numerical oscillation or a locally optimal result.

The continuum optimization approach is used in this thesis only for reproducing works of previous

studies. The reason it is not chosen for building structure optimization because it usually requires

a post-processing stage to transform the structure into a skeletal, or truss-like structure. Therefore,

by directly using truss layout optimization, solutions can be obtained with less computational cost.

More importantly, the continuum approach cannot guarantee a global optimal solution, and it can

therefore sometimes output misleading results. Hence, in a situation where the global optimal

solution is not known, the continuum approach is less reliable.

2.8 Transmissible load

Whilst in real design problems, the positions of wind loads, snow loads are dependent on the

structure, optimization problems discussed in previous sections use loads with fixed positions,

which potentially narrows the search area. To address this problem, (Fuchs & Moses 2000, Yang

et al. 2005) proposed a approach for applying design-dependent loads. In this approach, instead of

using a fixed position, loads are applied on a transmissible line. Hence in optimization solution,

the optimal positions of the loads on their corresponding transmissible lines and the optimized

structure are identified simultaneously.

2.8.1 Prager structure

Rozvany & Prager (1979), Wang & Dow (1982), Rozvany & Wang (1983b) considered

transmissible loads in the context of topology optimization. These studies identified the funicular

arch-grid structures which are sometimes called Prager structures. The approach employed

introduced a virtual rigid bar along the transmissible line, which required that the virtual strains

vanish along it. Consequently, the virtual rigid bars can transmit the load from any arbitrary point

of application to the real structure. Additionally, these virtual rigid bars cause zero addition to the

overall structural volume because they can carry the load with zero cross-sectional area. However,
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this method was only applicable to Prager structure problems where only tension members or only

compression members exist.

2.8.2 Rigid bar approach

Fuchs & Moses (2000) demonstrated that the rigid bar approach can be used to apply transmissible

loads to more general cases (the detail formulation can be found in Section 3.4.2). This approach

was then used by Fuchs & Moses (2000) with SIMP to identify the optimal structure that takes

uniform load between simple supports, and the outcome is identical to the analytical solution of

Prager’s research. Yang et al. (2005) and Chiandussi et al. (2009) have implemented the rigid

bar approach with evolutionary methods and the optimality criteria method respectively, and both

have obtained similar optimization results to Fuchs & Moses (2000).

2.8.3 Migrating load approach

Darwich et al. (2010) incorporated an alternative equilibrium-based transmissible loads model

(migrating load approach) in the classical plastic, linear programming (LP)-based, layout

optimization formulation. In the formulation developed, LP variables (load variables) are

introduced to represent potential loads applied at each node along the line of action of a given

transmissible load. Constraints ensure that the sign and magnitude of the total load applied to all

nodes within a group are the same as for the total applied load. The detail formulation of migrating

load approach can be found in Section 3.4.1.

2.9 Lateral stability system

For a building structure, the lateral stability system is indispensable, due to the existence of wind,

earthquakes and imperfections of the building itself. These effects are particularly important in

the design of tall buildings and the requirement for lateral stability can govern the layout of the

whole building. Consequently, many solutions exist to provide lateral stability for tall buildings; a

detailed classification can be found in Gunel & Ilgin (2007). For the sake of clarity, three widely

used lateral stability systems are introduced here:

Tubular system
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Figure 2.13: Four tubular buildings: (a) John Hancock Building, Chicago (Jovianeye 2011) (b) China
World Trade Center Tower III, Beijing (Holton 2008) (c) Burj Khalifa, Dubai (Donaldytong 2012) (d)
Willis Tower, Chicago (Soakologist 1998)

Tubular systems are widely used in many tall buildings to provide lateral stability. The tubular

system is defined by Fazlur Rahman Khan as:

“a three dimensional space structure composed of three, four, or possibly more frames, braced

frames, or shear walls, joined at or near their edges to form a vertical tube-like structural system

capable of resisting lateral forces in any direction by cantilevering from the foundation.”(Ali 2001)

As this definition describes, a tubular system usually contains closely spaced columns on the

perimeter of its exterior, which forms a hollow cantilever perpendicular to the ground, in order to

provide stability against lateral loading from all directions.

The first example of the tube structure is the 43-storey Khan-designed DeWitt-Chestnut

Apartments Building, built in 1963 in Chicago. After that, the tube structure underwent rapid

development in the following decades. Consequently, there are many subsequent designs based

on the classical tubular system, such as braced tube, tube in tube, bundled tube, and so on (Ali

& Moon 2007). Currently, the tubular system has been used in many famous skyscapes such as

the John Hancock Building in Chicago (e.g. Fig. 2.13a), the China World Trade Center Tower III

in Beijing (e.g. Fig. 2.13b), the Burj Khalifa in Dubai (e.g. Fig. 2.13c), and the Willis Tower in

Chicago (e.g. Fig. 2.13d).

Outrigger system

Other than the classical tubular buildings, a normal lateral stability system usually contains two

parts: the core and perimeter structures. Whilst the core structure has a strong shear resistance

and relatively low overturning resistance, the perimeter structure has large overturning resistance
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Figure 2.14: Three buildings using outrigger system: (a) Jin Mao Building, Shanghai (Airunp 2005); (b)
International Commerce Centre, Hongkong (WiNG 2010); (c) U.S. Bank Center, Milwaukee (Sulfur 2006)

but is relatively weaker in terms of shear deformation control. Therefore, the two structures

are usually both provided to resist overturning and shear deformation. However, the difference

in deformation behaviour of the core and perimeter structures causes issues (e.g. in concrete

structures, the difference in vertical member shortening will increase over time due to creep and

shrinkage). Consequently, an outrigger bracing system has been developed to connect the core and

perimeter structures through belt trusses, which leads to a greater lateral stability for tall buildings.

The outrigger system is also a popular solution in providing lateral stability for tall buildings, and

examples can be found in Fig. 2.14.

The performance of an outrigger system is affected by the location of outriggers throughout the

height of the entire building. Lee & Tovar (2014) studied the optimal location of outriggers in tall

buildings with the elastic optimization method. In this study, the truss bars in the beam and the

floor are invariant pre-existing bars in the optimization problem, and the density of the truss bars in

the outrigger is a design variable for the optimization problem. The value of this density is either 0

or 1, which leads to a controllable total number of outriggers. For this purpose, the penalty factor

in SIMP is used to control the value of density. With the above approach, the optimal locations for

a fixed-number of outriggers could be identified, and more importantly, it gave an example of how

SIMP can be applied to discrete optimization to solve problems that involve binary variables.
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Diagrid system

Figure 2.15: Three buildings using the diagrid bracing system: (a) 30 St Mary Axe, London (Guichard
2010); (b) Hearst Tower, New York (Alsandro 2006); (c) CCTV Headquarters, Beijing (Stojakovic 2013)

The diagrid bracing system is a recently developed, widely used, tall building lateral stability

system. Compared with outrigger bracing, diagrid bracing can provide overturning and shear

resistance by itself, and thus high core strength is not needed. Also, different from the tube

system, columns on the exterior surface can be eliminated by allowing bracing members to take

vertical loads. For this reason, diagrid bracing is highly functional, considering both aesthetic

and efficiency aspects. Accordingly, diagrid bacing systems have attracted much interest from

civil engineers, and many world-famous buildings have used this system in the past ten years.

Examples of diagrid buildings can be found in Fig. 2.15.

Although the behaviour of a diagrid frame is very different to that of classical frame (e.g. with

beams and columns), the design process for a diagrid building can be simplified with knowledge

of structural optimization. For example, in the design of the Swiss Re Building, intended to be

a symbolic diagrid bracing structure, a parametric optimization scheme was used to design the

external form. Instead of exact connection positions, the external form was defined by a few

parameters, and hence the complex geometric model could be rapidly generated (Foster 2005).

Additionally, during the design of the CCTV headquarters, Beijing, China, an optimization process

was used to modify the bracing pattern by adding or removing diagonals, subject to strength and

stiffness requirements of a Level 1 earthquake analysis (Carroll et al. 2005).
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2.9.1 Optimization of bracing system

The design of a tall building against lateral loading can be treated as a cantilever problem. As

already mentioned, the cantilever problem was first studied by Michell (1904) (e.g. Fig. 2.8).

Hemp (1973) re-considered this problem with different support conditions and obtained the

optimal solution with an analytical approach. (e.g. Fig. 2.16a). Considering the complexity of

the Hemp-Michell cantilever, Hemp (1973) further proposed a slightly less efficient solution with

much simpler topology as shown in Fig. 2.16c. Following on from Hemp’s work, the cantilever

problem constrained within a half strip was studied by Graczykowski & Lewiński (2010) with an

analytical approach, and the exact topology and volume were obtained for cases with different

aspect ratios (e.g. Fig. 2.16b). Although the initial purpose of these studies was not bracing

or tall building layout design, considering the similarity between these classical cantilevers and

tall building bracing systems, these solutions are frequently obtained in many other bracing

optimization studies.

Stromberg et al. (2011) investigated bracing topology using a continuum approach. With the

consideration of fabrication issues, pattern gradation constraints were used in the optimization

process. Simple and repeatable results were therefore obtained, and the importance of principal

stress trajectories is emphasized. Additionally, three characteristics related to the shear and

bending behaviour are noted through the analysis of the optimized structures. Following on from

the previous study, Stromberg et al. (2012) introduced a beam/column member into the bracing

design and identified the topology as in Fig. 2.16c. Due to the superior simplicity and efficiency of

this topology, parametric studies have been carried out on this topology for different aspect ratios.

It is worth noting that the effect of a column’s stiffness on the optimal bracing topology has also

been studied for one aspect ratio, and it has been found that the middle intersection point gradually

moves from the 3/4 position to the 1/2 position as the column stiffness increases.

Different from Stromgberg’s studies, Allahdadian et al. (2012) used dynamic loading in continuum

topology optimization of multi-storey structures. In this study, cases with rigid and flexible beams

were considered. The results obtained in cases with non-rigid beams were found to be similar to

Stromberg bracing, while the results in cases with rigid beams were found to be similar to knee

bracing structures.

Liang et al. (2000) assumed that for the lateral load cases and geometries investigated, the column
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Figure 2.16: Three classical cantilever solutions, where red and blue lines respectively represent bars in
tension and compression: (a) Michell-Hemp cantilever; (b) Michell-Hemp cantilever constrained within a
half-strip; (c) Stromberg Bracing (Stromberg et al. 2012) .

and beam sizes determined from a gravity load analysis were adequate for the lateral case.

Optimization based on this assumption led to new bracing structures different from Stromberg

et al. (2012). This study was followed by (Baldock 2007), and more engineering-concerned

(e.g. displacement control) and architecture-concerned (e.g. symmetry condition) constraints

were involved in the optimization process. During his investigation, he pointed out limitations

of ESO being a complex overall process and, more importantly, pointed out that the outcome will

vary depending on the initial variable values, which means that these results cannot be considered

as globally optimal.

Other optimization studies have been based on pre-defined structures. Burry et al. (2005)

simultaneously applied lateral and gravity loads in a shape optimization problem for a pre-defined

structure. However, the purpose was to improve the initially proposed design, and hence the

final optimized result is very much like the initial design, apart from some minor details. Moon

et al. (2007) and Moon (2008) optimized the stiffness of diagrid bracing systems, using the angles

between members as variables. In this investigation, the optimal angle for a building with a

specified storey number was identified, and the effect of the existence of corner columns was
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also studied. Later, the performance of the diagrid structure was analysed by Moon (2012) with

twisted, tilted, and freeform towers, considering different horizontal and vertical load cases.

2.10 Conclusions

The following conclusions have been obtained from the review of previous studies, and these

identified problems will be addressed in the following chapters:

1. Although discrete truss layout optimization is suitable for the optimization of bracing truss

structures, it appears not to have been used in previous studies for bracing structure optimization.

2. Currently there exist two transmissible load approaches. However, their respective effectiveness

has not yet been critically investigated. Additionally, although wind load is naturally a kind of

transmissible load, no previous study has treated it using transmissible load approaches.

3. Bracing members usually provide lateral stability through working together with column and

beam members that take gravity loads. However, the interactions between bracing structure and

column-beam frame structure appears not to have been previously studied in detail.



Chapter 3

On transmissible load formulations in

topology optimization [i]

Preface

For building bracing design, the numerical techniques that are used in this thesis are layout

optimization, geometry optimization and transmissible load approach. The former two are

well developed techniques. However, currently there are two alternative approaches for the

transmissible load (e.g. the migrating load approach and the rigid bar approach) and it has been

identified in Tyas & Gilbert (2011) that these two approaches may produce different solutions for

the same cases. Therefore, before the case study on bracing optimization, the difference in the

formulations of the two approaches are investigated in this chapter through mathematical and

numerical methods. It has been found that whilst migrating load approach is feasible for all

situations, rigid bar approach is only feasible for some special cases. This occurs because the

rigid bars that are used to transmit the loads onto the structure may form a part of the structure.

Consequently, the rigid bar approach may leads to some incorrectly strengthened structures.

[i]The content of this chapter was originally prepared for a journal paper: Lu, H., Tyas, A., Gilbert, M. (2017), ‘On
transmissible load formulations in topology optimization’, Structural and multidisciplinary optimization. Note that
since this is a continuation of the Tyas & Gilbert (2011), part of this chapter is from Tyas & Gilbert (2011) (i.e. Section
3.2.2, Fig. 3.2, Fig. 3.3a, Fig. 3.4, Fig. 3.5a). Main contribution from the author is identification of the mathematical
difference between the formulations of two previous formulations and reproduction of the results from previous studies
for further numerical prove.
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Abstract In the field of topology optimization, so-called transmissible (or ‘design dependent’)

loads are sometimes used to avoid the form of the optimal structure being influenced by the

locations of external applied loads, which are often not known a priori. Such loads are usually

defined to act along specified lines of action, and have previously been represented in the

problem formulation via constrained displacement (rigid bar) or equilibrium (migrating load)

formulations. In this paper the range of applicability of each of these formulations is considered.

It is demonstrated that the constrained displacement formulation as currently used should only be

used in very special circumstances; otherwise incorrect or misleading topologies are likely to be

identified.

3.1 Introduction

Whilst the field of topology optimization has a history stretching back well over a century, the

problem of optimizing the position of applied loads in addition to structural layout has received

relatively little attention. This is perhaps surprising, since in many cases the position at which

external loads act cannot be precisely determined in advance, and will depend on the structural

topology. Such loads have been termed design dependent by Yang et al. (2005), though the term

transmissible is perhaps more illuminating (Fuchs & Moses 2000), as it highlights the requirement

for the loads to be allowed to move through the design space to their most optimal points of

application on the structure.

Transmissible loads appear to have been first considered in the context of topology optimization

by Rozvany, Prager and co-workers (Rozvany & Prager 1979, Rozvany et al. 1982, Rozvany &

Wang 1983a). The funicular arch-grid structures identified in these studies are sometimes referred

to as Prager-structures. The approach employed required that the virtual strains vanish along the

line of action of a transmissible load. This is equivalent to introducing a ‘virtual’ rigid bar along

this line, which can transmit the load from any arbitrary point of application to the ‘real’ structure.

Since this rigid bar can carry the load with zero cross-sectional area, it can be of arbitrary length

without adding to the overall structural volume. However, it is important to realize that when

using this approach a zero virtual strain requirement will also be imposed on the ‘real’ structure,

and therefore has the potential to affect its topology. The method was used to demonstrate the

optimality of Prager-structures for a range of problems when member stresses and strains were
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constrained to be of one sign only, leading to funicular structures. However, similar constraints

on the virtual displacement along the lines of action of transmissible loads have also been used in

more recent finite element-based topology optimization studies (e.g. Fuchs & Moses (2000), Yang

et al. (2005), Chiandussi et al. (2009)).

Gilbert et al. (2005) and Darwich et al. (2010) incorporated an alternative equilibrium based

transmissible loads model (migrating load approach) in the classical plastic, linear programming

(LP) based, layout optimization formulation. In the formulation developed, LP variables (load

variables) are introduced to represent potential loads applied at each node present along the line

of action of a given transmissible load. Constraints ensure that the sign and magnitude of the total

load applied to all nodes within a group is the same as the total applied load.

The existence of these different formulations raises two questions: 1) Are these two approaches

mathematically equivalent, and 2) if not, what do the differences mean for the efficacy of

the two methods? We will demonstrate in this article that there is a simple but fundamental

difference between the two approaches, meaning that the rigid bar formulation will typically lead

to physically illogical solutions, whereas the migrating load approach results in correct solutions.

3.2 Comparison between rigid bar and migrating load approaches

3.2.1 Conceptual formulation

The conceptual formulations of the rigid bar and migrating load approaches are presented through

a simple example which only contains six nodes Fig. 3.1. In this example, the left boundary is

fixed in x and y direction. Load P could be transmitted to any nodes on the right boundary. In the

optimized solution, the optimal point of the transmissible load P is the middle point.

The features of the two approaches can be described as follows.

For the rigid bar approach, as shown in Fig. 3.1b, the load is transmitted to the optimal point

through loads generated in virtual, cost-free, rigid bars. It is important to note that due to these

rigid bars, the virtual displacements are constant along the right boundary.

For the migrating load approach, the single external load P is replaced by three load variables,

applied to the three nodes on the line of action of the external load. These three load variables are
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controlled by sign and sum constrains (e.g. P1,2,3 ≥ 0 and
3∑
i=1

Pi = P). In situation presented in

Fig. 3.1c, where the load is transmitted to the middle node, P1 = P3 = 0 and P2 = P. There are

no explicit constraints on the virtual displacements on the line of action of the transmissible loads.

Figure 3.1: Rigid bar and migrating load approach for a problem involving six nodes: (a) the design problem
and the trajectory of the transmissible load P; (b) solution obtained with rigid bar approach, where solid
and dotted grey lines represent rigid bars have respectively non-zero and zero internal force; (c) possible
solution obtained via migrating load approach, where P1, P2 and P3 are the load variables and they must
satisfy the sum and sign constraint in (c).

3.2.2 Mohr’s circle analysis.

We first note the three general types of optimal structural layouts: (i) structurally ‘rich’ forms

in which (generally orthogonal) truss bars are strained to their respective limits in tension and

compression, (ii) similarly ‘rich’ forms but where all bars experience stresses in only one direction,

and (iii) simpler flexure-less line or surface structures. These have been defined respectively as:

(i) T-type, (ii) S-type and (iii) R-type structures (Rozvany (1997)). Rozvany & Wang (1983a)

show how the rigid bar approach could successfully be used to identify R-type structures, but no

rigorous assessment of the applicability of the method to the richer T-type and S-type structures

appears to have been published in the literature.

As already noted, the rigid bar approach requires constant virtual displacements along the line of

action of a transmissible load, which means the virtual strain equals to zero along the same line.

For sake of simplicity we will assume henceforth, without loss of generality, that our problem is

confined to 2-dimensions, and that the transmissible load acts in a direction normal to the x-axis,

so that the y-virtual strain, εyy is zero.

From analysis of Mohr’s Circle of strain with the requirement that εyy = 0, we obtain:
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εxx = ε1 + ε2 (3.1)

γxy = 2
√
−ε1ε2 (3.2)

θp = tan−1 −(ε1 + ε2)

2
√
−ε1ε2

± π

4
(3.3)

where εxx is the x-virtual strain, ε1,2 are the principal strains, γxy is the engineering shear strain

and θp the angle between the trajectories of principal strain and the x-axis.

It is immediately apparent that the rigid bar approach can never be compatible with S-type

structures. This is because the principal strains in such structures are of the same sign, and so no

real values can be found for the shear strain or principal angle. (This is of course to be expected,

since S-type structures intrinsically comprise bi-axial tension or compression fields).

For T-type structures, ε1 = 1
σ+ , ε2 = − 1

σ− and, where σ+ and σ− are the allowable stress in

tension and compression respectively, furnishing:

εTxx =
σ− − σ+

σ+σ−
(3.4)

γTxy = 2/
√
σ+σ− (3.5)

θTp = tan−1 σ− − σ+

2
√
σ+σ−

± π

4
(3.6)

For the particular case of equal magnitudes of allowable tension and compression stress, these

simplify to:

εTxx = 0 (3.7)

γTxy =
2

σ
(3.8)

θTp = ± π

4
(3.9)

where σ = (σ+ + σ−)/2.

The constraints on the geometry imposed by (3.6) and (3.9) are particularly noteworthy results

since they show that the rigid bar formulation is incompatible with T-type layouts apart for the

unique case where the trajectories of principal strain are aligned at ±π
4 to the line of the action of

the transmissible load.
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As for the migrating load approach, the present authors and their co-workers used this formulation

for inclusion of load transmissibility (Gilbert et al. 2005, Darwich et al. 2007, 2010), and the

results in the second and third articles show clearly that this approach is capable of producing

a curvilinear T-type structure. Indeed, the structure presented in those articles (e.g. Fig. 3.2b)

was later demonstrated by Tyas et al. (2010) to be globally optimal. It appears therefore that the

numerical analysis used by Darwich et al. (2007, 2010) avoided the problems shown above to be

inherent in the rigid bar approach. With this background, we now proceed to look more carefully

at numerical examples.

3.3 Numerical examples

The suitability of migrating load and rigid bar approaches can be succinctly demonstrated through

two numerical examples. In the following examples, we apply the migrating load approach to

discrete optimization only and the rigid bar approach to both discrete and continuum optimization.

The application of the rigid bar approach to contiuum problems aims at reproducing the work of

Fuchs & Moses (2000), allowing us to interrogate their results in the light of the Mohr’s circle

analysis set out above. We use the SIMP based continuum formulation (Sigmund 2001) with the

displacement constraints set out by Fuchs & Moses (2000) introduced using the method presented

in Houlsby et al. (2000). We use the η1 and η2 parameters as described by Fuchs and Moses

(2000). The adjustment of parameters in the continuum approach is similar to the original study

(Fuchs & Moses 2000). As for the discrete optimization formulation, a post-possessing technique

(He & Gilbert 2015) is used in Fig. 3.2 & Fig. 3.4 to produce a visually clearer solution.

3.3.1 Example 1 - uniform load between pinned supports

The first numerical example involves vertical loads uniformly distributed along a horizontal line

and free to migrate along the vertical lines, and is supported by two pinned nodes at the left and

right bottom corners. Sum of the vertical loads is 1 and a 100×100 grid is used for discrete

optimization, but for visual clarity, only every fifth node is shown in Fig. 3.2a. As for continuum

approach, 50×50 design domain size is used and the Young’s Modulus is set to 1. Fig. 3.2b and

Fig. 3.2c shows the result from discrete optimization with migrating load approach. The optimal

form corresponds to the solution identified by Darwich et al. (2007, 2010) and later demonstrated
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(a) (b) (c)

Figure 3.2: Migrating load approach: uniform load between pinned supports, where (a) is design domain
description, (b) shows transmissible trajectory and result from discrete optimization and (c) shows final
position of loads. Red bar takes tensile force and blue bar takes compressive force.

(a) (b) (c)

Figure 3.3: Rigid bar approach: uniform load between pinned supports, where (a) is discrete optimization
result, (b) is early stage result of continuum optimization and (c) is final result of continuum optimization.
Red, blue, grey solid, grey dotted lines represent, respectively, bars take tensile force, bars takes compressive
force, rigid bars have non-zero internal force, rigid bars have zero internal force.
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by Tyas et al. (2010) to be the globally optimal solution, including both rich T- and funicular

R-regions.

Figure (3.3a) shows the optimal form for the same discrete problem when the rigid bar formulation

is applied (here, displaying a 20x20 grid for visual clarity). This solution appears to comprise a

central funicular R-region, spanning between two T-regions which are artificially braced by the

presence of the zero-cost vertical rigid bars. As shown in Fig. 3.3b and Fig. 3.3c, the continuum

approach outputs a similar result to the initial solution presented in the lower left image in Fig. 3.6

of Fuchs & Moses (2000). They suggested that in this solution, the optimal form (assumed to

be a parabola) was obscured by ”noise” which could be removed by the application of a filter

parameter η1. Fig. 3.3c shows, as Fuchs & Moses (2000) found, that the filtering does indeed

reveal a parabolic solution. With the level of resolution of the mesh used in this study, this solution

is indistinguishable from the true optimal form Fig. 3.2c.

3.3.2 Example 2 - Cantilever subject to uniform load

Figure (3.4a) illustrates the initial conditions of the second numerical case. The only difference

between this and the previous example is the support condition; in this example, the structure is

supported by a vertical line support symmetrical about the horizontal centre-line over a height

equal to one-third of the horizontal extent of the design domain.

Figure 3.4b and 3.4c show the result for the migrating load formulation. Here, the optimal

structural form follows that presented by Fig. 4.18 of Hemp (1973) , the so-called Hemp cantilever,

with the load having been transmitted to be applied along the horizontal centre-line of the structure.

Figure 3.5a shows the discrete layout optimization result for this problem with the rigid bar

formulation. It is clear that, without the assistance of the rigid bars, which can artificially stiffen

the structure on each vertical line, this solution would be unstable. This highlights the fundamental

problem of the rigid bar approach. The rigid bars are introduced into the problem definition order

to facilitate transmission of applied loads onto the structure, and are not intended to form part

of the structure. In Fig. 3.5a, however, rigid bars appear as load carrying members in the real

structure.

Figure 3.5b shows the equivalent result from continuum optimization. As with the previous

example, the initial, unfiltered continuum solution is similar in form to the discrete solution (
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Fig. 3.5a). Application of the Fuchs & Moses (2000) filter to this solution results in the form

shown in Fig. 3.5c, which bears little resemblance to the actual optimal form shown in Fig. 3.4c.

L
/3

L
/3

L
/3

L

(a) (b) (c)

Figure 3.4: Migrating load approach: cantilever subject to uniform load, where (a) is design domain
description, (b) shows transmissible trajectory and result from discrete optimization and (c) shows final
position of loads. Red bar takes tensile force and blue bar takes compressive force.

(a) (b) (c)

Figure 3.5: Rigid bar approach: cantilever subject to uniform load, where (a) is discrete optimization result,
(b) is early stage result of continuum optimization and (c) is final result of continuum optimization. Red,
blue, grey solid, grey dotted lines represent, respectively, bars take tensile force, bars takes compressive
force, rigid bars have non-zero internal forces, rigid bars have zero internal forces.

3.3.3 Commentary

The example presented in Sections 3.3.1 and 3.3.2 demonstrate precisely the conclusion of

the Mohr’s Cirlce analysis: namely that, when the optimal form comprises curvilinear T-type

structural regions, the rigid bar approach will produce structurally illogical forms which are

artificially stiffened by the cost-free rigid bars. Comparison of the discrete and continuum rigid

bar ”optimal structures” suggests that, the unfiltered continuum solution does not comprise the

correct solution over-written by noise. Instead, the unfiltered structure appears to be the correct
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solution to a problem which does not correctly model the concept of transmissible loads. Filtering

the results of Example 1 does lead to a structure ( Fig. 3.3c) which broadly resembles the true

optimal form (Fig. 3.2c). This is likely to be due to the fact that the T-type regions in the optimal

structure are limited in extent. However, in the case of Example 2, the filtered result (Fig. 3.5c)

bears little comparison to the true optimal form (Fig. 3.4c). It is also notable that the filtering

increases the compliance of the structures in Example 1 and 2 by 52% and 395% respectively.

This emphatically shows that the ”filtering” is actually driving the solution to a fundamentally

different structural form.

We emphasize that these issues only arises in the case of the rigid bars interacting with a curvilinear

T-type structure. In the case of R-type (funicular) structures the issues do not occur since the

structures comprise entirely line or surface elements. This is because, in R-type structures, external

loads are resisted through internal axial forces only, and equilibrium dictates that the structural

members cannot be co-axial with the line of action of the transmissible loads[ii]. The virtual rigid

bars thus never form part of the real load carrying structure.

This can be demonstrated by re-visiting the problem set out in Section 3.3.1. Wang & Rozvany

(1983) showed that when the ratio between compressive and tensile stress capacity is larger than 3

(e.g. σ−/σ+ ≥ 3) , the optimal form is a funicular R-structure. This was supported by numerical

results presented by Dawich et al (2010) which showed that as σ−/σ+ dropped below 3, T-region

Hencky nets emerged adjacent to the supports. Thus, it should be expected that the rigid bar

formulation will find the correct funicular structure for σ−/σ+ ≥ 3, and inadmissible, artificially

strengthened structures for lower values. The results in Fig. 3.6 show this to be the case.

It is worth noting that, whilst (as explained in Section 3.2.2) the rigid bar approach is unfeasible in

regions where ”curvilinear” T-type structures exist, there is one special T-type geometry which is

compatible with the rigid bar formulation. For equal compressive and tensile stresses, Eqn. (3.9)

shows that the rigid bar formulation will be admissible where the true optimal form comprises a

rectilinear net oriented at ±45◦ to the line of action of the applied load. In the Hemp cantilever

example, such a region exists in the triangular area immediately adjacent to the vertical support

line; the rigid bar approach does indeed find the correct layout in this region (Fig. 3.5a).
[ii]An exception is when a support lies along the line of action of a transmissible load. This was discussed by Rozvany

& Wang (1983a) who sensibly considered it to be of no practical significance as in this case the load can migrate directly
to the support and no structure is required.
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(a) (b) (c)

Figure 3.6: Rigid bar approach: uniform load between pinned supports, where (a) σ−/σ+ = 3.33, (b)
σ−/σ+ = 2.50 and (c) σ−/σ+ = 2.00; where σ− and σ+ represents compressive and tensile stress
capacity. Red, blue, grey solid, grey dotted lines represent, respectively, bars take tensile force, bars takes
compressive force, rigid bars have non-zero internal forces, rigid bars have zero internal forces.

3.4 Formal mathematical status of the rigid bar and migrating load

appraches

Having demonstrated the differences between the rigid bar and migrating load approaches from

a Mohr’s circle analysis, and by numerical examples, we now investigate the differences in the

mathematical formulations of the two methods.

3.4.1 Dual theory based proof of the difference between migrating load and rigid

bar approach

In Darwich et al. (2010) an equilibrium-based LP transmissible loads formulation (migrating load

approach) for a design domain which contains n nodes and m members is stated as:

min V = cTq (3.10a)

subject to:

Bq− f̃ = 0 (3.10b)

Hf̃ = f̂ (3.10c)

q ≥ 0 (3.10d)

f̃k ≤ 0 or f̃k ≥ 0} k = 1....p (3.10e)
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Where cT = {l1/σ+
1 ,−l1/σ

−
1 , ..., lm/σ

+
m,−lm/σ−m}, and li is the member length of

member i, B is a suitable 2n × 2m matrix containing direction cosines, qT =

{q+
1 ,−q

−
1 , q

+
2 ,−q

−
2 , ..., q

+
m,−q−m}, with q+

i and q i being the tensile and compressive forces in

member i, H is a 2p × 2n matrix, and where p is the number of node groups to which external

loads are applied, f̂T = {f̂x1 , f̂
y
1 , f̂

x
2 , f̂

y
2 ..., f̂

x
p , f̂

y
p }. The LP variables are the bar forces in q and

the nodal loads in f̃ , where f̃T = {f̃x1 , f̃
y
1 , f̃

x
2 , f̃

y
2 , ..., f̃

x
n , f̃

y
n}.

For sake of simplicity, we assume there is only one vertical transmissible load f̂ and f̂ ≥ 0. Hence

the formulation becomes:

min V = cTq (3.11a)

subject to:

Bq− f̃ = 0 (3.11b)

Hf̃ = f̂ (3.11c)

q ≥ 0 (3.11d)

f̃ ≥ 0 (3.11e)

Now, LP duality principles can be used to derive the dual formulations as follows:

min W = umaxf̂ (3.12a)

subject to:

BTu ≤ c (3.12b)

umax ≤ uytrs (3.12c)

Where W is the work done by the applied loads, u = {ux1 , u
y
1, ..., u

x
n, u

y
n}, with uxj and uyj being

the displacement in x and y direction of node j, umax is the maximum displacement along the

transmissible trajectory, uytrs = {uyk, u
y
k+1, ..., u

y
k+p−1} and uyk to uyk+p−1 are the y-direction

displacements of nodes located on the transmissible trajectory.

During the dual transformation, (3.12c) is a direct result caused by (3.11e). Hence, in
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circumstances where (3.11e) is removed from (3.11), (3.12c) becomes:

umax = uytrs (3.13)

As demonstrated by Fuchs & Moses (2000), (3.13) is the mathematical fundamental of rigid bar

approach. Therefore, if (3.11e) is removed from migrating load approach, then immediately, it is

equivalent to rigid bar approach. Hence the only difference between migrating load and rigid bar

approach is (3.11e) (or (3.10e)), which are the constrains that control the sign of load variables.

3.4.2 Lagrangian function based proof of the difference between migrating load

and rigid bar approach

(Notations in this section is independent of notations used previously.)

The conclusion of Section 3.4.1 also can be derived using the Lagrangian function. For the sake

of completeness, we first note the mathematical derivation in Fuchs & Moses (2000). First, the

transmissible load topology optimization was stated as:

max
ρ

max
pim

min
u
{u′Ku− p′u|

∑
j

ρjVj = ρ0V ;

∑
m∈M

pim − pi = 0, i ∈ I}
(3.14)

where K is the stiffness matrix of the structure, u is the displacement vector, ρj is the element

density of element j, Vj is the volume of element j, ρ0 is a parameter which controls the amount

of material available for the design, V is the total volume of the design domain, pi is the applied

load i with i ∈ I and each pi can be split into pims with m ∈M , and where M is the set of nodes

located on the transmissible trajectory of pi.

Equ (3.14) leaded to following Lagrangian function:

L(ρρρ, λ,u, pim, µi) = (u′Ku− p′u)− λ(ρjVj − ρ0V )

−
∑
i∈I

µi(
∑
m∈M

pim − pi)
(3.15)



CHAPTER 3. ON TRANSMISSIBLE LOAD FORMULATIONS IN TOPOLOGY OPTIMIZATION 50

Equating the derivation of (3.15) with respect to pim to zero gave:

uim − µi = 0, i ∈ I (3.16)

Equation (3.16) means that displacements of all nodes along the transmissible line are constant.

Based on that conclusion, Fuchs & Moses (2000) suggested that “one could assume the existence

of infinity stiff axial elements of zero mass along the line”.

Based on Conclusion of Section 3.4.1, if we add the load variable sign control constrain (pimpi ≥

0) to (3.14), it yields:

max
ρ

max
pim

min
u
{u′Ku− p′u|

∑
j

ρjVj = ρ0V ;

∑
m∈M

pim − pi = 0; pimpi ≥ 0, i ∈ I}
(3.17)

Formulation (3.17) leads to following Lagrangian function:

L(ρρρ, λ,u, pim, µi) = (u′Ku− p′u)− λ(ρjVj − ρ0V )

−
∑
i∈I

µi(
∑
m∈M

pim − pi)−
∑

i∈I,m∈M
ξim(pimpi − ϕim)

(3.18)

Equating the derivation of (3.18) with respect to pim to zero gives:

uim− µi − ξimpi = 0, i ∈ I (3.19)

This leads to a conclusion that, a slack variable, equal to ξimpi, exists between µi and uim. This

conclusion is exactly the same as (3.12c), which means (3.17) is equivalent to the formulation

for migrating load approach. This again proves that only difference between migrating load

formulation (i.e. (3.17)) and rigid bar formulation (i.e. (3.14)) is pimpi ≥ 0, which are the

constrains that control the sign of load variables.
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3.5 Conclusion

Two approaches to the modelling of load transmission through a design domain to the optimal

point of application with a structure have been considered. It has been demonstrated that, there

is a fundamental difference between the commonly used (kinematic) rigid bar formulation and

the less used (equilibrium) migrating load approach. A simple strain analysis has demonstrated

the limitations of the rigid bar approach, and shows that this is only usable where the actual

optimal structure is a funicular, or a rectilinear net oriented at a specific angle to the line of the

applied loads. Numerical results have demonstrated that, in other cases, the rigid bar approach

will generate physically illogical forms, with the ”optimal structure being artificially strengthened

by the presence of the zero-cost rigid bars which form part of the structure itself. The application

of filtering to structures found by the rigid bar approach has been shown to result in entirely

different structural forms, accompanied by very large increases in compliance. Conversely, the

migrating load approach does not suffer these limitations and produces numerical results which

match know correct optimal forms. Finally, we have shown that the mathematical formulations for

the migrating load and rigid bar formulations differ in one simple, but important way; the rigid bar

formulation omits constraints on the signs of the load variables. In conclusion, our findings show

that the rigid bar approach generally fails to identify correct optimal structural forms and should

be used with caution, if at all.

3.6 Postscript

It has been identified that the rigid bar approach and the migrating load approach are

mathematically different. The rigid bar approach implicitly assumes the presence of zero-cost load

transfer members, and this assumption will usually lead to incorrectly strengthened structures.

However, in certain circumstances, zero-cost members do actually exist. An example is the

column-beam frames that have been designed for gravity loads and are not fully stressed when

acting in bracing frames. Therefore, in the bracing frame design process, by treating column-

beam frame as rigid bars could lead to efficient designs. Therefore, in the following chapters,

which mainly focus on bracing layout optimization, Chapters 4 and 6 will take advantage of this

idea to develop an enhanced understanding of the optimality of certain bracing systems.



Chapter 4

Optimal bracing systems in buildings:

bracing pre-existing frames [i]

Abstract Bracing is commonly used to provide resistance to lateral forces in building structures.

However, traditional bracing design approaches appear not to be underpinned by clear fundamental

principles. Here, theoretically optimal arrangements of bracing members are sought for frames

with pre-existing members, already designed to carry gravity loads. For sake of simplicity existing

frame elements are assumed to be capable of carrying additional loads and three types of bracing

are considered: tension only bracing, bracing intersecting only at the corners of the existing frame,

and unconstrained optimal bracing, where bracing elements can intersect at any location. Layout

optimization techniques are used to identify initial design solutions, against which the efficiency

of other bracing layouts can be judged. These are then related to Michell trusses to obtain exact

reference volumes, against which the efficiency of other bracing layouts can be judged. It is

shown that tension only bracing is inefficient and that the optimal angle of intersection between

pre-existing frame members and intersecting tension/compression bracing member pairs is 45◦,

something that can potentially be adopted as a basic principle when designing bracing for a pre-

existing frame.
[i]The content of this chapter was originally prepared for a journal paper: Lu, H., Gilbert, M., Tyas, A. (2017),

‘Optimal bracing systems in buildings: bracing pre-existing frames’, Structural and Multidisciplinary Optimization

52
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4.1 Introduction

The lateral restraint system is an indispensable part of any building. This is particularly true in

a tall building structure, where the requirements for lateral strength and stiffness can govern the

layout of the whole building. Consequently, the design of efficient bracing layouts to resist lateral

wind loading is an area of active interest to structural engineers.

Optimization of bracing systems has often focussed on geometry or size optimization. For

example, Moon et al. (2007) analysed diagrid bracing systems, using the angles between bracing

members as parameters which were varied to optimize the lateral stiffness of the structure.

Bobby et al. (2013) and Lee & Tovar (2014) optimized an outrigger bracing system by using

binary variables to represent the existence of belt trusses; Sala & Candiani (2014) used the

size optimization technique proposed by Baker (1990) to identify the optimal section sizes of

a fixed topology bracing system whilst Tangaramvong & Tin-Loi (2015) used a discrete approach

to optimize the bracing topology using a sparsely populated ground structure (only members

connecting neighbouring nodes were considered). Others have used continuum optimization

techniques (e.g. Liang et al. (2000), Allahdadian et al. (2012), Stromberg et al. (2012), Kingman

et al. (2015)) or genetic algorithms (e.g. Baldock (2007), Yazdi & Sulong (2011), Richardson

et al. (2013)). However, to date classical discrete layout optimization methods appear not to have

been used to benchmark the efficiency of commonly used bracing systems.

The mathematical basis for the problem of finding the structural layout consuming the least volume

of material was developed by Michell (1904). Whilst Michell’s analytical approach provides a

strong foundation for the field, it is seldom applied to practical structural design applications,

partly because of the difficulty of identifying the optimal structure for specified loading and

support conditions. However, the approach readily lends itself to numerical implementation,

where the optimal layouts of discrete members are found from a ‘ground structure’, comprising all

possible interconnections of discrete node points within a design space. Using linear programming

(LP) techniques numerical layout optimization results can be found which closely approximate

classical Michell forms for any given problem (Dorn et al. 1964, Hemp 1973); more recently the

computational efficiency of this method was improved by Gilbert & Tyas (2003). Here, numerical

layout optimization will be used to investigate the optimal bracing layout in various different

scenarios.
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Stromberg et al. (2012) and Liang et al. (2000) have considered the optimization of bracing

systems within a beam/column frame represented by discrete beam members. Stromberg et al.

(2012) optimized the bracing topology with different type connections between continuum and

discrete beam elements and the effect of column stiffness on the optimal bracing layout was also

considered. Liang et al. (2000) assumed that the beam/column members sized in a gravity load

analysis would also be adequate for lateral load cases, and optimized the bracing topology for

several bay aspect ratios. This raises two questions: (i) if the beams and columns designed for

gravity loads have sufficient reserves of strength, such that they do not need to be resized to act

as part of the lateral stability system, can general rules governing the optimal layout of bracing

members be found? Also, (ii) if the structural system is optimized for both gravity and lateral load

cases, and combinations thereof, what is the form of the optimal bracing system in this case? This

study focuses on optimizing the layout of bracing elements within a pre-existing frame, where

the members have already been designed to carry gravity loading, and are assumed to have the

requisite additional reserves of strength to support lateral loads; the more holistic design problem,

where the sizes of pre-existing frame members may need to be resized as a result of the forces

generated in load cases involving lateral loads, other scenarios will be the subject of Chapter 5.

This chapter is organized as follows: Section 4.2 outlines the assumptions made with respect to

loading and pre-existing frame performance; Section 4.3 describes the problem types considered

and the numerical layout optimization method employed to obtain initial solutions; Sections 4.4

and 4.5 consider respectively single bay and multibay/storey building types, with exact analytical

solutions derived for key problem types; finally conclusions from the study are drawn and the

direction of future research is outlined in Section 4.6.

4.2 Assumptions

For the design of steel framed buildings, British Standard 5950-1:2000 suggests the following load

combinations:

p1 : 1.4Gk + 1.6Qk (4.1a)

p2 : 1.0Gk + 1.2Qk + 1.2Wk (4.1b)

p3 : 1.0Gk + 1.2Qk − 1.2Wk (4.1c)
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where Gk is the characteristic permanent load, Qk is the characteristic imposed load and Wk is the

characteristic wind load.

Here, for simplicity the concept of Notional Horizontal Load (NHL) (a small lateral load which is

applied as part of the main gravity load case (4.1a)) is ignored, and it is assumed that the bracing

design is dominated by the wind load cases, (4.1b) and (4.1c).

From (4.1) it is clear that the maximum partial factor multipliers for gravity loads exist in load

case (4.1a), and that the gravity load is decreased in load cases (4.1b) and (4.1c). Therefore, for

the purpose of the studies herein, the following assumptions have been made:

• Assumption 1: The loads generated in the columns in load case (4.1b) and (4.1c) are always

less than those resulting from load case (4.1a).

• Assumption 2: Vertical gravity loads are only carried by the columns in all load cases.

• Assumption 3: The sizes of pre-existing horizontal members (i.e. floor beams and/or slabs)

are dominated by the gravity load case, (4.1a), and the axial loads induced in them by lateral

load cases (4.1b) and (4.1c) are small in comparison.

Assumption 1 means that the sizes of the columns are not determined by the lateral load cases, and

thus that the columns may be assumed to have infinite strength when designing for lateral loads.

Assumption 2 is widely adopted in design practice, where columns are often first designed to resist

gravity loads, with the design of bracing members to resist lateral loads coming later. Together

these two assumptions mean that the vertical loads in load combination (4.1) will not affect the

optimal layout of the bracing system, and the wind load (i.e. 1.5Wk) is governing. Assumption

3 means that the structural members forming the floors effectively possess infinite reserves of

strength, and can distribute applied lateral loads to either side of the frame. With these three

assumptions, the design of a bracing system for a frame already designed to carry gravity loads is

considered, where the bracing need only resist lateral loads. This effectively replicates one step

in the traditional design procedure for buildings (e.g. Brown et al. (2009) suggest that the sizes

of beams and columns are first determined by considering gravity loads, with the sizes of bracing

members then determined by considering lateral loads). A similar approach has also been used in

previous bracing topology optimization studies; for example Mijar et al. (1998), Liang et al. (2000)
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and Stromberg et al. (2012), who all take (or design) a column-beam frame capable of carrying

gravity loads and then, considering only lateral loads, carry out bracing topology optimization.

4.3 Problem specification

4.3.1 Cases considered

Based on the assumptions made in Section 4.2, the general problem to be addressed here distils

down to the simple problem shown in Fig. 4.1. This is a single storey frame bay subjected to a

unit horizontal load P at the left top corner, with fixed pin supports at the bottom corners. For

sake of simplicity the connections between members are treated as pin joints. Edge column and

beam members are assumed to be pre-existing members which have infinite reserves of strength

when functioning as part of a braced frame. Note that this can be viewed as removing the bending

moment effect Ph from the problem and reducing it to one of finding the optimal bracing to resist

the load in pure shear (e.g. see Stromberg et al. (2012)). It is also worth noting that Rozvany

et al. (2006) studied the effect of including fully and partially stressed pre-existing members in an

optimization by fixing member cross-sectional areas. In this numerical study, in order to account

for the possibility that pre-existing members can also disappear from the final structure (i.e. have

zero force), pre-existing members are treated as being composed of material of infinite strength.

Figure 4.1: Bracing design case with pre-existing members around the edge of the bay, pinned supports
at the bottom corners and a horizontal load at the top left corner. A ‘ground structure’ comprising
interconnecting members (2 × 4 nodal division discretization shown, not including all connections for
sake of clarity).

Two load cases involving horizontal loads of equal magnitude applied in opposite directions are



CHAPTER 4. OPTIMAL BRACING SYSTEMS IN BUILDINGS:
BRACING PRE-EXISTING FRAMES 57

used to replicate real-world conditions, and to also ensure the resulting layout is symmetric.

According to the superposition theory proposed by Hemp (1973), a two load case solution can

be obtained by superposing the results from two design problems involving single load cases.

Therefore, all design problems considered herein can be treated as single load case problems.

Three generic types of bracing systems are considered for various different aspect ratios (h : b see

Fig. 4.1):

• Case 1: Tension only bracing. This is frequently employed in practice as it obviates the

need to take action to ensure compression members do not buckle. Numerically, this is

implemented by making the compression stress capacity of bracing members infinitesimally

small.

• Case 2: Bracing connected only at corners. Both tension and compression members are

allowed to be present in the bracing system and the maximum tension stress is equal

to the maximum compression stress. Numerically, bracing connected only at corners is

implemented by removing the nodes along the perimeter of the design space, except at the

corner points.

• Case 3: Optimal reference bracing. Both tension and compression members can be present

in the bracing system and the maximum tension stress is equal to the maximum compression

stress. Connections between bracing members and the beams or columns can exist at any

location. The allowable stress of the bracing members is considered to be identical in both

tension and compression. The resulting constraint-free bracing layout can be expected to be

the most efficient of the three cases in terms of material consumption.

4.3.2 Single load case layout optimization formulation

The single load case layout optimization formulation for a two-dimensional problem can be stated

as follows (after Dorn et al. (1964)):

min V = qT c

subject to Bq = f

q+
i , q

−
i ≥ 0, i = 1, ...,m

(4.2)
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where there are m members and n nodes in the problem, and V represents the volume of

the structure, qT = {q+
1 , q

−
1 , ..., q

+
m, q

−
m}, cT = {l1/σ+

1 , l1/σ
−
1 , ..., l1/σ

+
m, l1/σ

−
m}, where and

li, q
+
i , q

−
i , σ

+
i , σ

−
i represent, respectively, the length, tensile member force, compressive member

force, tensile stress capacity and compressive stress capacity of member i. B is a 2n × 2m

equilibrium matrix and f = {fx1 , f
y
1 , f

x
2 , f

y
2 , ..., f

x
n , f

y
n}, where fxj and fyj represent the component

of load applied to node j in the x and y directions respectively. This problem is in a form suitable

for solution using linear programming (LP).

The adaptive ‘member adding’ method proposed by Gilbert & Tyas (2003) is used to reduce the

computational cost associated with solving problems; this involves solving a small initial problem

involving sparse connectivity, and then iteratively adding further connections until a provably

optimal solution is found. Additionally, to improve the quality of the optimized results, the

geometry optimization rationalization procedure proposed by He & Gilbert (2015) is here used

as a post-processing tool.

Finally, although formulation (4.2) is strictly speaking a ‘plastic’ formulation, the optimal layouts

from plastic and elastic (minimum compliance) design optimization procedures are identical when

only a single load case is involved.

4.3.3 Practical considerations

Some of the solutions generated by layout optimization are complex in form, leading to justifiable

questions over their practical usefulness. However, as Cox (2014) suggested, in the field of

structural design there is a need for reference solutions, against which alternatives can be judged

(Cox pointed out that just as there is a limit on the theoretical thermal efficiency of a heat engine,

set by the Carnot cycle, so there is a lower limit on the volume of material necessary to form a

structure). Thus even a complex solution provides a useful reference against which alternative

designs can be judged, where the latter may include simplified variants of the optimal reference

form.

Also, many of the layouts presented in this paper contain long compression members and it

might reasonably be suggested that buckling will limit the capacity of such elements in practice.

However, for the purposes of this study the effect of member buckling under compressive load

will be ignored. Whilst incorporating buckling may, in principle, lead to different optimal layouts,
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there are two reasons for this omission. Firstly, as already stated, one goal of the study is to

establish definite benchmarks for optimal layout and efficiency, against which real-world designs

may be judged. The significance or otherwise of buckling effects in a given scenario depends

to a great extent on specific design decisions, and this emphasizes the need for benchmarks to

properly assess the effects of these decisions. Secondly, previous work by two of the present

authors (Tyas et al. 2005) has indicated that the reduction in the strength of real steel members

due to member buckling is rarely significant when suitable member cross-sections are used. This

latter study considered standard circular hollow structural steel sections, widely available in the

UK, and showed that a near-linear relationship held between member cross-sectional area and the

required compression capacity for a given unrestrained length. Euler buckling was significant only

for very long, and/or very lightly loaded members, whereas, ‘...at most combinations of load and

length, there exists a member which can effectively utilize the majority of its compressive crushing

strength and minimise the effect of Euler buckling’. Also buckling can often be addressed by either

selecting a suitable member cross-section in the detailed design stage, and/or by providing lateral

restraint at intermediate locations (e.g. at floors), though this is likely to be more difficult in the

case of small buildings, with lightly loaded members.

4.4 Optimized single bay bracing designs

Optimized bracing layouts and associated volumes for each of the three cases described in Sections

4.3.1 are shown for a range of aspect ratios in Fig. 4.2a to Fig. 4.2c. The volumes of these frames

are also presented in Fig. 4.3. Note that although the optimized layouts were initially obtained

numerically, using the approach described in Section 4.3.1, the volumes of the simple layouts (e.g.

those involving diagonal bracing) can be obtained analytically via simple calculation. Also, it

is shown in Section 4.4.2 & 4.4.3 that the more complex layouts are closely related to Michell

cantilevers for which known analytical solutions exist. For this reason exact analytical volumes

are shown in Fig. 4.2.

4.4.1 Case 1: Tension only bracing

It is evident from Fig. 4.2a that tension only bracing leads to very simple optimized layouts. It is

also evident from Fig. 4.3 that tension only bracing requires at least double the volume of material
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(a)

(b)

(c)

Figure 4.2: Optimized bracing layouts for various h:b aspect ratios (4:1, 3:1, 2:1, 1:1, 1:2, 1:3 & 1:4): (a)
Case 1 - tension only bracing; (b) Case 2 - bracing connected only at corners; (c) Case 3 - optimal reference
bracing. The corresponding analytical volume is indicated below each layout, where P is the magnitude of
the horizontal load applied at the top left corner of the design domain, of breadth b and height h, and σ is
the limiting tensile strength. Element color key: red = tensile, blue = compressive, grey = zero force, black
= pre-existing (assuming left to right loading).
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Figure 4.3: Volume comparison for the three bracing cases considered (where P is the magnitude of the
horizontal load applied at the top left corner of the design domain, of breadth b and height h, and σ is the
limiting tensile strength)

required by any other kind of bracing. This is because only one of the two inclined members carries

a force when a horizontal load is applied. Thus, since the lateral load direction can be reversed,

at least twice the volume of material must be consumed as when standard tension / compression

bracing is used, assuming that the allowable stresses are equal in tension and compression. The

issue of buckling must obviously be considered, but often this can be addressed by modifying the

shape of the cross section and/or providing sufficient lateral restraint. The use of tension only

bracing is therefore not a good choice when material savings are of paramount importance.

4.4.2 Case 2: Bracing connected only at corners

The optimized bracing layouts for Case 2, shown on Fig. 4.2b, are in most cases quite complex.

It is also evident that their forms resemble Michell cantilevers. This observation gives rise to the

following hypothesis:

Hypothesis 1: The optimized result for the case with connections only at corners is a combination

of two adjacent Michell cantilevers, contained within a laterally restricted design space (so-called

Michell cantilevers in a half strip).



CHAPTER 4. OPTIMAL BRACING SYSTEMS IN BUILDINGS:
BRACING PRE-EXISTING FRAMES 62

Figure 4.4: Ability of a pre-existing beam member with infinite reserves of strength to make an external
load ‘transmissible’ (i.e. each of the above cases is equivalent)

The exact volume of a Michell cantilever in a half strip has been obtained using analytical methods

by Graczykowski & Lewiński (2010). To explain the relationship between Case 2 and a Michell

cantilever, first consider the influence of the infinite strength (i.e. rigid) pre-existing members.

Fuchs & Moses (2000) demonstrated that a rigid member transforms any external load applied

along its line of action into a ‘transmissible load’. Therefore, a horizontal load applied at the

end of a pre-existing beam with infinite reserves of strength can be transmitted to any other point

along the beam, as illustrated in Fig. 4.4. Given this, a relationship between Case 2 and a Michell

cantilever problem can be established, as indicated in Fig. 4.5. This gives rise to the following

relation:

Relation 1: The volume of the optimal Case 2 layout for a problem with an aspect ratio h : b,

where h : b ≥ 1, is twice the volume of a Michell cantilever of aspect ratio h
2 : b (though the latter

is subjected to a loading at the centreline).

A similar logic can also be applied for low aspect ratio cases, leading to the following relation:

Relation 2: The volume of the optimal Case 2 layout for a problem with an aspect ratio h : b,

where h : b ≤ 1, is 2h
b times the volume of a Michell cantilever of aspect ratio h : b

2 (though the

latter is subjected to a loading at the centreline).

Therefore, using Relation 1 and 2, exact analytical solutions can be obtained for bracing problems,

with numerical values for these solutions taken e.g. from Graczykowski & Lewiński (2010).

Whilst it has been demonstrated that the layouts shown in Fig. 4.2b are the combination of two

constrained Michell cantilevers, an unconstrained Michell-Hemp cantilever (Hemp 1973) could

alternatively be used. Fig. 4.6 shows the outcome when an expanded design domain is used,

in this case using an aspect ratio of 10:1. Although unlikely to be of practical relevance, it is
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of interest that the bracing volume is in this case reduced by 20.6% from the restricted domain

equivalent.

Figure 4.5: Demonstrating the equivalence between Case 2 (bracing only connected at corners) and a Hemp-
Michell cantilever: (a) starting problem, in this case with a frame with a 2:1 aspect ratio; (b) base supports
replaced by reaction forces; (c) corner forces replaced by equivalent loads (since forces can be distributed
arbitrarily along rigid members); (d) design domain divided along line of antisymmetry; (e) corner loads
replaced by supports and appropriate forces added along line of division.

4.4.3 Case 3: Optimal reference bracing

In Case 3 bracing members are free to intersect pre-existing members at any location around the

perimeter of the design space, as shown in Fig. 4.2c.

An important feature of the layouts obtained is stated in Property 1:

Property 1: If a pre-existing member with infinite reserves of strength actively carries load, then

the optimal intersection angle between this and intersecting tension/compression member pairs

will be 45◦.

This property can easily be verified with the aid of a Mohr’s circle analysis, as shown in Fig. 4.7.

(It can also be observed that the angle between bracing members in tension and compression in

the Mohr’s circle is 180◦, or 90◦ in practice, a characteristic of an optimal Michell structure.) This

presupposes that tension and compression members are simultaneously intersecting a given point

on the pre-existing member, or, from an optimization theory point of view that a T -region exists

within the building envelope (see e.g. Rozvany et al. (1995)). (Alternatively if a situation arises

where there is only an intersecting tension or compression member (i.e. anR+ orR−-region) then
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Figure 4.6: Optimized layout for Case 2 (connections only at corners) when the bracing elements are
allowed to extend beyond the lines of the columns

the Mohr’s circle analysis indicates that the maximum angle of intersection is 45◦.)

For low aspect ratio cases it is evident that the optimal bracing layout resembles standard knee

bracing, as shown in Fig. 4.8. However, some of the layouts shown in Fig. 4.2c are rather

more complex; see the 1:3 and 1:4 aspect ratio layouts. In Table (4.1) the bracing volumes are

compared with the volumes of standard knee bracing; this suggests that standard knee bracing

is very efficient, becoming only slightly less so as the intersection angle between the bracing

members and the pre-existing frame members deviates markedly from 45◦.

It can also be observed that the more complex layouts found for low aspect ratios have similarities

with the layouts of Michell cantilevers. Thus, following a similar process to that outlined in

Fig. 4.5, a relationship between these layouts and the corresponding Michell cantilever truss can

be established, as shown on Fig. 4.9. This leads to the following relation:

Relation 3: The volume of the optimal Case 3 layout for a problem with an aspect ratio h : b,

where h : b ≤ 1, is 2h
b times the volume of a Michell cantilever of aspect ratio b

2 : 2h (though the

latter is subjected to a loading at the centreline).

Using Relation 3, analytical solutions can be obtained for the Case 3 low aspect ratio cases, with
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Figure 4.7: Use of a Mohr’s circle analysis to demonstrate that 45◦ is the optimal intersection angle between
a pre-existing beam/column and an optimal tension/compression bracing member pairs. (An optimal
bracing member follows the direction of principal strain (Hemp 1973), whilst the strain in a pre-existing
member is zero due to its infinite strength. Thus the subtended angle between such members will be 90◦ on
the circle, or 45◦ in reality.)

Figure 4.8: A standard knee bracing layout

Table 4.1: Comparison between optimal reference bracing (Case 3) and standard knee bracing volumes
(where P is the magnitude of the horizontal load applied at the top left corner of the design domain, of
breadth b and height h, and σ is the limiting tensile strength).

Aspect ratio (h:b) 1:2 1:3 1:4
(Angle between knee bracing members) (45◦) (33.7◦) (26.6◦)

Volume of Case 3 optimal bracing (×Pb/ σ) 1.00 0.71790 0.60691
Volume of standard knee bracing (×Pb/ σ) 1.00 0.72222 0.62500
Difference (%) 0 0.60175 2.9806
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Figure 4.9: Demonstrating the equivalence between Case 3 (optimal reference bracing) and Hemp-Michell
cantilever solutions: (a) starting problem, in this case using frame with 1:3 aspect ratio; (b) rotate the
problem by 90◦ clockwise; (c) design domain divided into Structure I & II along the line of antisymmetry;
(d) point loads are replaced by distributed loads (since forces can be distributed arbitrarily along rigid
members); (e) Structure I & II are combined into a Michell cantilever.

numerical values for these solutions taken e.g. from Graczykowski & Lewiński (2010).

4.5 Multi-storey / multi-bay buildings

Bracing members may cross several stories in multi-storey buildings (Moon et al. 2007). In such

a building each floor-slab can be considered as a pre-existing member. Therefore, in this section

the focus is on considering the contribution of additional intermediate beams and columns. (Also,

an intermediate pin support is added to the bottom of each intermediate column.)

Firstly, it is observed that for Cases 1, 2 and 3 all layouts revert to cross bracing once intermediate

beams and columns are added. Therefore, for sake of clarity, only results for a 4:1 aspect ratio

structure is considered further, as shown in Fig. 4.10a.

Since there are intermediate connections available across the height of the multiple storey building,

Case 2 & 3 become identical, with the volume of the bracing structure shown in Fig. 4.10a being

equal to 8.00Pb/ σ in both cases. However, the volume of the Case 1 (tension only bracing)

structure is still double the volume of the corresponding Case 2 & 3 (tension / compression

bracing) structures, for the reason given in Section 4.4.1.

It is worth noting that the cross bracing layout shown in Fig. 4.10a is not the only optimal solution

since there are many variants of this layout that satisfy Property 1 (see Section 4.4.3); thus
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Fig. 4.10c shows an equivalent optimal solution. Additionally, it should be noted that although

the results shown in Fig. 4.10 relate to the case when horizontal loads are applied only to the

top of the building, due to the existence of Property 1, structures similar to Fig. 4.10c are found

when loading is applied uniformly throughout the building height, with the density of the bracing

net depending on the spacing between columns and beams. It can also be observed that these

solutions resemble the braced tube structures that have been used in practice (e.g. see Fig. 4.10b

& Fig. 4.10d). However, although 45◦ diagonal bracing is optimal if the assumptions stated in this

paper are adopted, if bracing members are allowed to also take vertical gravity loads the optimal

angle is likely to change somewhat (as is evident on Fig. 4.10b & Fig. 4.10d, where angles of less

than 45◦ to the vertical have been adopted in practice). This suggests that there is an opportunity

to develop an alternative holistic optimization approach involving multiple load cases (i.e. gravity

and lateral) for the design of new buildings, though in this case it must be borne in mind that a

side effect will be a lack of clarity on what constitutes ‘bracing’, since diagonal members may be

designed to be active in both gravity only and lateral load cases.

(a) (b) (c) (d)

Figure 4.10: Comparison of optimal bracing layouts in multi-storey frames and sample braced tube
structures constructed in practice: (a) the optimal layout for a 4:1 aspect ratio case with intermediate pre-
existing beams and columns; (b) John Hancock Center in Chicago, a braced tube structure similar to (a);
(c) an alternative optimal layout with the same volume as (a); (d) One Maritime Plaza in San Francisco,
a braced tube structure qualitatively similar to (c). Element color key: red = tensile, blue = compressive,
black = pre-existing (assuming Case 2 or 3 bracing and left to right loading). Note however that the angles
in (b) and (d) differ from the 45◦ found to be optimal when bracing a pre-existing frame.
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4.6 Conclusions

In this paper, theoretically optimal layouts of bracing systems designed for pre-existing building

frames have been identified. For the sake of simplicity, it has been assumed that pre-existing

members designed for gravity loading will have sufficient reserves of strength to accommodate

the additional forces that result from lateral loads. Three different cases have been considered:

• Case 1: Bracing systems comprising tension only members have been demonstrated

to be inefficient from a theoretical standpoint. Replacing tension only bracing with

tension/compression bracing will save at least 50% of the material needed if the limiting

tensile and compressive material strengths are equal (i.e. assuming that buckling does not

reduce the maximum compressive stress that can be sustained).

• Case 2: When bracing is only allowed to connect at the corners of the pre-existing frame

it is shown that the optimal layout takes the form of two adjacent Michell cantilevers. This

allows exact reference volumes to be obtained, against which the efficiency of other bracing

layouts can be judged.

• Case 3: When bracing is allowed to connect pre-existing frame members at any location it is

shown that intersecting tension/compression bracing member pairs meet each pre-existing

member at 45◦ in the optimal layouts. It is also shown that traditional cross bracing and

knee bracing are very efficient from a theoretical standpoint.

In the case of multi-storey frames, layouts involving diagonal cross-bracing, with braces meeting

pre-existing members at 45◦, are shown to be most efficient. Also it is evident that the theoretically

optimal layouts identified herein quite closely resemble those which have been employed in braced

tube building frames in practice. However, the exact reference solutions derived herein are only

strictly applicable when bracing a pre-existing frame; the more general holistic frame design case,

where all framing elements are optimized simultaneously, under the action of multiple load cases,

is the subject of Chapter 5.



Chapter 5

Optimal bracing systems in buildings:

holistic design [i]

Abstract In this study the holistic bracing design problem is considered, in which the layout

of all principal members in a building structure are sought. Multiple load cases arising from the

requirements of a commonly used structural design code are used to illustrate the methodology. It

is found that the optimal layouts obtained differ from those obtained in Chapter 4, when bracing

was sought for a pre-existing frame. It is also demonstrated that a parameter related to the

difference in vertical and horizontal loads applied in different load cases is a key factor determining

the optimal layout of frame members. Simple benchmark problems and a practical building design

example are used to illustrate the concepts explored.

5.1 Introduction

Ensuring adequate resistance to lateral loads is central to the design of any building. When

designing a building, structural engineers normally rely on codes of practice, which generally

require that several separate load cases are considered. Often the load case which involves

application of the maximum lateral load includes design gravity loads which are not at their

maximum value. This is because it is considered improbable that maximum gravity loads will

coincide with, say, maximum wind loads. As a result, in many bracing optimization studies, it is
[i]The content of this chapter was originally prepared for a journal paper: Lu, H., Gilbert, M., Tyas, A. (2017),

‘Optimal bracing systems in buildings: holistic design’, Structural and multidisciplinary optimization
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assumed that the sizes of the main columns and beams in the structural frame are determined by

consideration of gravity load cases (only), and that these members will have sufficient strength to

play their required roles in resisting horizontal loads without needing to be resized; this scenario

is considered in more detail in Chapter 4. There are consequently relatively few examples of

what may be termed ‘holistic’ optimization of the structural frame, in which all load cases are

considered when selecting all members forming the frame of a building. This runs contrary to

recent practice in the field of structural engineering, where, for example, diagrid exoskeleton

frames are increasingly being used to resist both vertical and lateral loads (see detail in Section

2.9).

Considering previous research involving holistic optimization of frames, Burry et al. (2005)

simultaneously apply lateral and gravity loading in a shape optimization problem for a pre-defined

structure, whilst Moon et al. (2007) consider diagrid bracing systems, using the angles between

bracing members as parameters which are varied in order to optimize the lateral stiffness of the

structure. In addition to these academic studies, optimization has been used in the practical design

of landmark structures. For example in the design of the diagrid structure for the Swiss Re

(‘Gherkin’) building in London, a parametric optimization scheme was used to design the external

form to resist gravity and wind loading. Instead of using prescribed joint positions, the external

form was defined by a small number of parameters, enabling a complex geometric model to be

manipulated rapidly (Foster 2005). For the design of the visually striking CCTV headquarters

building in Beijing, an iterative optimization process was used in the design of the bracing, adding

or removing diagonals to meet the strength and stiffness requirements associated with a Level 1

earthquake (Carroll et al. 2008).

Whilst these studies have yielded interesting findings, it appears that no rigorous academic studies

of the holistic frame layout design problem have been conducted to date. Addressing this is the

main driver for the present study. Both theoretical and numerical layout optimization approaches

are used to identify optimal framing systems capable of withstanding gravity loads only and also

combined gravity plus lateral loading scenarios.
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5.2 Consideration of multiple load cases

In Chapter 4, pre-existing members of the frame (i.e. beams and columns which have already

been designed to resist gravity loads) are assumed to have infinite reserves of strength, and do not

need to be resized to play an active role in the bracing system. However, this may not always be a

valid, conservative, assumption. For example, it is possible in the case of a tall, slender, frame that

the design of the columns may be partly determined by the loads induced in them by the lateral

load. Additionally, decoupling the different load cases in this way may mean that more optimal

holistic designs are missed. Therefore in this chapter, all main load cases are considered in the

optimization.

As stated in Chapter 4, for the design of steel framed buildings, British Standard 5950-1:2000

suggests the following load combinations:

p1 : 1.4Gk + 1.6Qk (5.1a)

p2 : 1.0Gk + 1.2Qk + 1.2Wk (5.1b)

p3 : 1.0Gk + 1.2Qk − 1.2Wk (5.1c)

where Gk is the characteristic permanent load, Qk is the characteristic imposed load and Wk is the

characteristic wind load. (For sake of simplicity notional horizontal forces are neglected.)

To tackle the resulting design problem three assumptions were introduced in Chapter 4:

• Assumption 1: The loads generated in the columns in load case (5.1b) and (5.1c) are always

less than those resulting from load case (5.1a).

• Assumption 2: Vertical gravity loads are only carried by the columns in all load cases.

• Assumption 3: The sizes of pre-existing horizontal members (i.e. floor beams and/or slabs)

are dominated by the gravity load case, (5.1a), and the axial loads induced in them by lateral

load cases (5.1b) and (5.1c) are small in comparison.

In this chapter, all of these assumptions are removed. This means that vertical loads can be resisted
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by any frame member, and the sizes of the column members may be partly governed by the lateral

load cases.

5.2.1 Parameter governing the optimal layout, ∆Vnorm

Using the British Standard load cases (5.1) and with Assumptions 1, 2 and 3 removed, a parameter

governing the optimal layout can be identified. To establish this, Rozvany’s work on optimization

with multiple load cases (Rozvany et al. 2014) and the superposition method of Rozvany & Hill

(1978) will be used.

Figure (5.1a) shows a graphical depiction of the load cases (5.1). Here V is the vertical load in

load cases (5.1b) and (5.1c) (i.e. 1.0Gk + 1.2Qk) and ∆V is the additional vertical load in load

case (5.1a) (i.e. 0.4Gk+0.4Qk). ∆H is used to represent the difference in horizontal load between

the gravity and lateral load cases. Since the horizontal loads in the first load case are equal to zero,

∆H = H .

The optimized solution to the problem shown in Fig. 5.1a can be obtained using the superposition

approach put forward by Rozvany & Hill (1978). However, this approach requires there to be 2n

load cases, with n being a positive integer. Following Rozvany et al. (2014), a fourth, dummy load

case p4 can be introduced, comprising vertical loads V −∆V . According to Property 3 in Rozvany

et al. (2014), since ∆V > 0, the optimized result for the problems shown in Fig. 5.1a and Fig. 5.1b

must be identical. Providing the problem shown in Fig. 5.1b satisfies the specific conditions of

the superposition approach, then the optimized solution may be obtained by superimposing the

optimized results of four single component load cases p1 to p4; see Fig. 5.1c. Derivation of the

component load cases p1 to p4 is presented in Appendix I of current chapter.

Using the superposition approach, the optimum structure for all four load cases can be obtained by

superimposing the optimal layouts for each of the four individual component load cases. Referring

to Fig. 5.1c, it is obvious that the optimal layout for load case p1 will be vertical columns running

along the outer edges of the domain. Also, it is obvious that the optimal layout for load case p4

will comprise no members at all (since there are no applied loads). Therefore, the optimal bracing

layout can be obtained simply by superimposing the optimal layouts arising from load cases p2

and p3. As these latter layouts depend only on ∆V and ∆H , a new parameter ∆Vnorm = ∆V/∆H

can be introduced as the parameter that controls the form of the optimal layout. Table (5.1) shows
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a sample calculation of ∆Vnorm. To verify the correctness of the superposition approach, solutions

were also obtained for sample problems using the standard multiple load case LP formulation, as

shown on Fig. 5.2 (details of the formulation are given in Appendix II of current chapter).

Figure 5.1: Use of superposition approach to derive the optimization result of multiple load cases: (a)
three load cases based on British Standard load case combination, where V = 1.0Gk + 1.2Qk, ∆V =
0.4Gk + 0.4Qk, ∆H = 1.2Wk, where Gk, Qk and Wk are, respectively, characteristic permanent, imposed
and wind loads; (b) as (a) but with additional dummy load case added to enable superposition principle
to be applied; (c) using superposition, the solution to (b) can be obtained by superimposing the individual
results from four single load case problems, p1 to p4.

Table 5.1: Calculation example of parameter ∆Vnorm, where pi represents the ith load case.

Load case Load type Load magnitude

p1
Vertical load 400 kN
Horizontal load 0 kN

p2
Vertical load 200 kN
Horizontal load 100 kN

∆Vnorm (400− 200)/(100− 0) = 2

The finding that there is a parameter ∆Vnorm which governs the optimal layout is significant. Since

different design codes stipulate that different combinations of loads are involved in the various

load cases to be considered, this indicates that the optimal layout will be strongly influenced by

the choice of design code. This fact is unlikely to have been anticipated by the code writers.
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(a)

(b)

Figure 5.2: Numerical verification of superposition approach using layout and geometry optimization: (a)
example with ∆Vnorm = 3; (b) example with ∆Vnorm = 6, where ∆Vnorm is the parameter governing layout
for multiple load case problems. On the left hand side are optimized results from single component load
cases p2 and p3, see Fig. 5.1c, and on the right hand side are multiple load case results. Red and blue bars
represent, respectively, members taking tensile and compressive forces. For the multiple load case results
the force distribution shown corresponds to the load case with horizontal loads acting from left to right.

5.3 Examples: simple single and multi-storey braced frames

In this section, examples of the relationships between ∆Vnorm and the optimal layout are presented

for two types of braced bay, one with loading applied only at the top corners of the design domain,

and the other with the frame split into square vertical bays with loading at each ‘floor’ level. The
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numerical multiple loading layout optimization approach described in Appendix II is used.

5.3.1 Problem definition

Figure (5.3) shows the design domain and load and support conditions for the cases considered in

this study. For sake of simplicity, the aspect ratio of the design domain of all cases has been fixed

to 4:1. Table (5.2) presents the values of the load parameter V and H in Fig. 5.3. In the study V

is kept constant but the horizontal load H is varied, replicating a changing external environment.

For the vertical load V defined by the British Standard the ratio of the vertical load in the gravity

and wind load cases can be denoted c, where:

c =
1.4Gk + 1.6Qk

1.0Gk + 1.2Qk
= 1.33 +

0.07Gk

1.0Gk + 1.2Qk
(5.2)

Therefore, from Eqn. (5.2), it is clear that cmin = 1.33 when Gk = 0 and cmax = 1.40 when

Qk = 0. This means that the horizontal load H equals (c−1)P
∆Vnorm

and − (c−1)P
∆Vnorm

in load cases p2 and

p3 respectively. For the examples documented, c has been taken as 1.35, though with checks later

undertaken using c = 1.33 and c = 1.40 to verify that the main findings were largely unaffected by

this choice.

The volumes of the optimized layouts are compared to two other layouts: standard cross bracing

and the modified layout identified by Stromberg et al. (2012).

5.3.2 Optimal layout results

Figures 5.4 and 5.5 show the optimal layouts and corresponding normalized volumes for the single

and multi-storey frames described in Section 5.3.1. Note that simple (pinned) frame connections

have been assumed in the models. Also note that, as indicated in Table (5.2), a high value of

∆Vnorm is associated with a low value of lateral load H .

Firstly, as expected, the optimized bracing can be observed to always be more efficient (i.e. to

consume less material) than both standard cross bracing and Stromberg bracing. However, the

differences between the normalized volumes of the different layouts are comparatively small

(maximum difference is 7%). This is partly because the normalized volume includes both the
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Figure 5.3: Loads for single- and multi-storey bracing layout optimization study: (a) single-storey cases;
(b) multiple-storey cases; values of V and H are given in Table 3.

volume of vertical columns and the volume of interconnecting bracing elements.

Secondly, it is clear that as ∆Vnorm increases, the optimized layouts tend to include highly inclined

members to transmit the applied vertical loading more directly towards the supports. This finding

is at variance with the finding in Chapter 4 that there should be a 45◦ intersection angle between

columns and bracing members, since this only applies if the columns are assumed to have infinite

reserves of strength, which is not the case here.

Thirdly, it is clear that whilst Stromberg bracing is more efficient than standard cross bracing

when ∆Vnorm is low, the situation is reversed when ∆Vnorm is high. This is a result of the fact that

the shallow inclined members of the Stromberg bracing layout are most suitable for cases when

horizontal loads are significant. In such cases it can be observed that Stromberg bracing has a

much simpler layout than the optimized layouts, but the associated volume is only slightly higher.

This suggests that Stromberg bracing provides a practical layout.
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Table 5.2: Load values of V and H in different load cases, where pi represents the ith load case; P is a
unit load; c is a loading coefficient, assumed to be 1.35 based on British Standard 5950-1:2000 load case
combinations, see Eqn. (1); ∆Vnorm is the parameter governing layout for multiple load case problems (load
positions are shown in Fig. 5.3).

Load case Load type Load magnitude

p1
V c · P
H 0

p2
V P

H (c−1)P
∆Vnorm

p3
V P

H − (c−1)P
∆Vnorm

Figure 5.4: Volume comparison and optimized layout results for a single-storey frame based on British
Standard loading with c = 1.35 and ∆Vnorm = (0.4Gk + 0.4Qk)/(1.2Wk), where c is the ratio of the
vertical load between load cases (i.e. (1.4Gk + 1.6Qk)/(1.0Gk + 1.2Qk)); all the volumes are normalized
against the volumes of standard cross bracing systems; red and blue bars represent, respectively, members
taking tensile and compressive forces when horizontal loads are applied from left to right.
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Figure 5.5: Volume comparison and optimized layout results of multi-storey cases based on British Standard
loading with c = 1.35 and ∆Vnorm = (0.4Gk + 0.4Qk)/(1.2Wk), where c is the ratio in vertical load
between load cases (e.g. (1.4Gk + 1.6Qk)/(1.0Gk + 1.2Qk)); all the volumes are normalized against the
volumes of standard cross bracing systems;red, blue bars represent, respectively, members taking tensile
and compressive forces in the load case which includes horizontal loads from left to right.

5.4 Bracing design of a small office building

Here the optimization of the frame of a four-storey steel frame structure for a small office building

is considered. In this case ∆Vnorm equals 0.68 and 2.33 for the major and minor wind directions

respectively.

Figure 5.6 shows details of the building. Lateral stability of the frame is provided by the presence

of braced bays through the full height of the frame (Fig. 5.6 shows a typical plan above ground

floor level). Actions applied to this structure are shown in Table (5.3). Load cases for a braced bay

are based on British Standard loads, defined in Eqn. (5.1). For sake of simplicity only the wind

load case acting normal to the long side of the building, and the design of the bracing resisting

this load is considered in the design. The steel has a yield stress of 355MPa in both tension and

compression and an elastic modulus of 205GPa.

The optimized bracing design is shown in Fig. 5.7a. To permit comparison, a conventional design

is shown in Fig. 5.7c, depicting the bracing layout presented by Brettle & Brown (2009). An

intermediate optimized design, which is obtained in optimization with horizontal beams, is also

shown in Fig. 5.7b.

To achieve the conventional design shown in Fig. 5.7c, Brettle & Brown (2009) kept the sizes of

all columns and bracing members constant throughout the height of the frame, even though the
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Figure 5.6: Plan of a typical small office building, after Brettle & Brown (2009)

Table 5.3: Characteristic actions on the small office building

Actions on roof Actions on floors

Permanent action 0.9kN/m2 3.7kN/m2

Variable action 0.6kN/m2 3.3kN/m2

Wind action 89.5kN 187.1kN

forces in the members reduce significantly from ground to top floor. This kind of rationalization is

common in practice. However, to remove the associated inefficiency, and hence to provide a fair

comparison with the optimized layouts, here the members were resized, with the chosen sections

being the most efficient H-section column and circular hollow sections available in the UK (Tata

Steel Europe Limited 2016). The horizontal beams used in the conventional design were then also

used as pre-existing members in the intermediate optimized design shown in Fig. 5.7b.

To realize the optimized designs shown in Fig. 5.7a and Fig. 5.7b a two-stage process was adopted.

Firstly, layout optimization and geometry optimization were used to find the optimal layout of the

braced bay (the 6m wide four-storey right hand bay shown in Fig. 5.6) and associated volume

of required material (these were 0.0900m3 and 0.0976m3 for the layouts shown in Fig. 5.7a and

Fig. 5.7b respectively, compared with 0.1032m3 for the layout shown in Fig. 5.7c). Secondly,

in a post-optimization rationalization step the column and inclined bracing members were each

assigned the most efficient Tata Steel section to transmit the required load, taking account of

member buckling effects in compression members as necessary. The total steel masses of the

resulting optimized bracing systems are shown in Fig. 5.7. The structure shown in Fig. 5.7a
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Figure 5.7: Different braced bay designs for a typical small office building: (a) optimized bracing design;
(b) optimized deisign with pre-existing beams; (c) conventional braced bay; (d) sections chosen for the
structure shown in (b), with buckling effects considered; (e) sections chosen for the structure in (c), with
buckling effects considered. Note that the selected bay could be found in Fig. 5.6 using reference points in
this graph.
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has the lowest mass, representing a 32% material saving compared to the conventional design

shown in Fig. 5.7c (this is greater than the reduction prior to rationalization, of 13%, which in turn

exceeds the reductions found previously due to the comparative inefficiency of the layout shown

in Fig. 5.7c).

In addition to the strength of the bracing system, the stiffness of the frame must also be checked.

Linear elastic static analyses were therefore conducted as a post-processing step for the three cases,

considering load case (5.1b). The tip displacements for the designs shown in Fig. 5.7a, (5.7b) and

(5.7c) were found to be 55.1mm, 44.5mm and 57.7mm respectively, which all satisfy the design

code requirements (for details see Appendix III).

Compared to the optimized design shown in Fig. 5.7a, the intermediate optimized structure

containing pre-existing beams (Fig. 5.7b) has a simpler layout and is thus likely to be easier to

construct in practice; Fig. 5.8a shows a visualization of how this could look in reality.

5.5 Conclusions

In this paper layout optimization has been used to identify efficient bracing systems for building

frames. Whereas Chapter 4 considered bracing for frames containing pre-existing members, in

this chapter a holistic optimization strategy in which the sizes and locations of all members are

sought has been adopted. The following conclusions can be drawn:

• The optimal layouts obtained using the holistic strategy differ from those obtained when

seeking to brace a frame comprising pre-existing members (as considered in Chapter 4).

• For the simple holistic design problems involving square bays, the optimal layouts obtained

were only slightly more efficient than the layouts incorporating 45◦ cross-bracing or

Stromberg bracing (max. difference = 7%).

• When one of the applied load cases involves no lateral load, the optimal layout was found to

be controlled by a parameter ∆Vnorm, where ∆Vnorm =∆V /∆H and ∆V and ∆H represent

respectively the differences in vertical and horizontal load between the load cases.

• Since different design codes stipulate different combinations of loads in the various load

cases considered, this indicates that the optimal layout will be influenced by the choice of
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Figure 5.8: Visualization of small office building employing optimized bracing structure shown in Fig. 5.7b
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design code. This outcome is unlikely to have been anticipated by the code writers.

• The bracing layout presented by Stromberg et al. (2012) has been found to be very efficient

in cases where the horizontal load dominates (e.g. ∆Vnorm < 3). However, standard cross

bracing becomes more efficient when the vertical load dominates (e.g. ∆Vnorm ≥ 3).

• Adopting a holistic design strategy, in which non-vertical members are allowed to carry

gravity loads as well as act as bracing members, appears to be most worthwhile in cases

where the vertical load dominates (e.g. ∆Vnorm ≥ 5).

• Layout optimization has been applied to the design of the frame of a small four storey

office building comprising rectangular bays. This led to an unconventional frame layout

and a reduction in the volume of material required compared with the conventional layout

considered (13% prior to rationalization).

Appendix I : Application of principle of superposition

A superposition approach may be used to obtain the optimization solution for multiple load cases

via superimposing the optimization solutions of certain single component load cases. Hemp (1973)

first demonstrated that this approach could be applied to two arbitrary multiple load cases and

it was later expanded by Rozvany & Hill (1978) to be suitable for more than two load cases.

Nevertheless, in situations with more than two load cases, certain conditions need to be fulfilled

for the superposition approach of Rozvany & Hill (1978) to be valid. Rozvany and Hill’s method

involves the replacement of the actual load cases with associated “component” load cases. In

situation with four alternative load cases (e.g. p1, p2, p3 and p4), there exist four component load

cases in superposition approach (e.g. p1, p2, p3 and p4) and each of them could be obtained based

on the original four alternative load cases using Eqn. (5.3).

p =
1

4



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


p, (5.3)

where p = {p1, p2, ..., pn} is the vector of component load cases; p = {p1, p2, ..., pn} is the
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vector of alternative load cases.

Rozvany & Hill (1978) demonstrate that, if one of several specific conditions is met at every point

in the design domain, then the superposition approach is feasible. For sake of simplicity, two

necessary conditions are set out here for the case of four actual load cases.

Condition 1 requires that, at an arbitrary point in the design domain, the sum of the maximum and

minimum stresses from the four load cases is not less than the sum of the stresses from the other

two load cases (e.g. (5.4)).

|q1|+ |q4| ≥ |q2|+ |q3| (5.4)

where qi is the stress at an arbitrary position within the design domain under ith load case ;

maxi|qi| = |q1| and mini|qi| = |q4| after subscript arrangement.

Condition 2 requires, at any arbitrary point in the design domain, the stress generated by at least

one of the component load cases is zero.

Given the method to obtain component load cases and the conditions for superpositon approach,

proving the superposition approach is feasible for case shown in Fig. 5.1b can be divided into two

parts. Firstly, consider an arbitrary point at any location within the design domain, except the

two vertical edges. It is clear that under component load case p1 in Fig. 5.1c, at all such points

the stresses equal to zero. Secondly, for an arbitrary point at the left vertical edges on two sides,

consider the four load cases shown in Fig. 5.1b, stress of this point resulted by the four load cases

(e.g. q1, q2, q3 and q4) have the following relation:

q1 ∝ V + ∆V q2 ∝ V −∆B

q3 ∝ V + ∆B q4 ∝ V −∆V

where ∆B is the stress change caused by the bending

effect of ∆H on the design domain.

(5.5)

In case shown in Fig. 5.1, ∆V and ∆B are relatively small compared to V , therefore V −∆B > 0

and V −∆V > 0. It is thus clear that |q1|+ |q4| = |q2|+ |q3|, which means that points in the left

edge fulfils Condition 1. This argument clearly applies equally to the right edge. Consequently,

one of the two conditions applies at each and every point in the design domain, and thus the
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superposition approach is feasible to be used in case shown in Fig. 5.1b to derive the optimized

result.

Appendix II : Multiple load case plastic layout optimization

formulation

The LP plastic truss layout optimization problem formulation for problems involving multiple load

cases can be written as:

min V = lTa

subject to Bqα = fα

a ≥ 0

ai ≥ {q+
i /σ

+
i + q−i /σ

−
i }α

{q+
i }α, {q

−
i }α ≥ 0

(5.6)

where α = 1, 2, ...,M and i = 1, 2, ...,m; and M , m, n represent, respectively, the number

of load cases, members and nodes of the design problem; V represents total structure volume,

a = {a1, a2, ..., ai}, l = {l1, l2, ..., li}, B is a suitable (2n × 2m) equilibrium matrix,

qT = {q+
1 ,−q

−
1 , ..., q

+
m,−q−m}, fα is the load case vector, where fα = {fx1 , f

y
1 , ..., f

x
n , f

y
n}α;

and ai, li, q
+
i , q

−
i , σ

+
i , σ

−
i represent, respectively, the cross section area, length, tensile force,

compressive force, tensile stress capacity and compressive stress capacity of member i and also

{fxj }α and {fyj }α represent, respectively, the x and y direction component load applied on node j

in load case α.

The adaptive member adding method for multiple load case problem proposed by Pritchard

et al. (2005) has been employed to reduce the computational cost and the geometry optimization

rationalization scheme propose by He & Gilbert (2015) has been used to simplify the resulting

layouts shown herein.
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Appendix III : Influence of second order effects

One main function of bracing is to control the second order effects induced by lateral

displacements. Here the practical design example described in Section 5.4 will be considered.

Eurocode 3 (1993) uses a parameter αcr to account for second order effects. An approximate

formula for αcr is shown in Eqn. (5.7). Eurocode 3 stipulates that, using an elastic analysis, if

αcr > 10, then second order effects can be neglected. If 3 > αcr > 10, then the amplification

factor given in Eqn. (5.8) must be applied to the horizontal load. If αcr < 3, then a global second

order effect analysis must be carried out.

αcr =

(
HEd

VEd

)(
h

δH,Ed

)
(5.7)

Amplification factor =
αcr

αcr − 1
(5.8)

whereHEd is the total horizontal reaction at the bottom of the storey, VEd is the total design vertical

load applied on the storey, h is storey height and δH,Ed is the horizontal displacement at the top of

the storey, relative to the bottom, calculated using an elastic analysis.

For each structure shown in Fig. 5.7 values for αcr can be obtained for each storey and the

minimum of these found. The minimum αcr values for Fig. 5.7a, Fig. 5.7b and Fig. 5.7c were

found to be 19.20, 27.55 and 23.47 respectively. Since all these values are larger than 10, then,

according to Eurocode 3, second order effects can be neglected.

In some circumstances αcr may drop below 10. In this case the amplification factor shown in Eqn.

(5.8) can be employed during the layout optimization process to obtain an acceptable design.



Chapter 6

Bracing topology optimization with

transmissible loads

6.1 Introduction

Whilst wind loading is treated as position-fixed loading in all the scenarios of Chapters 4 and 5, in

reality, the acting positions of wind loads are effectively dependent on the shape of the structure

(e.g. Fig (6.1)). Hence, using fixed-position loading rules out some feasible solutions before the

optimization begins (since the solutions of layout optimization are highly sensitive to the loading

positions). To address this problem, the transmissible load technique introduced in Chapter 3 will

be used in this chapter for layout optimization. By doing so, the optimization search range can

be expanded, and the building’s external shape and the bracing structure can be simultaneously

identified during the optimization.

6.2 Approaches and assumptions

Chapter 3 introduces and compares two transmissible load approaches: migrating load and rigid

bar approach. The conclusion is that whilst the migrating load approach can be used in general

cases, the rigid bar approach, because of its limitations, can only be used in situations where

certain conditions are met. The key limitation of the rigid bar approach centres on the concept

of ”virtual” rigid bars, introduced into the optimization formulation as a means of allowing the

87



CHAPTER 6. BRACING TOPOLOGY OPTIMIZATION WITH TRANSMISSIBLE LOADING CONDITION 88

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

Figure 6.1: Two examples show that acting positions of the wind loads are dependent on the structure shape.

transfer of load from an arbitrary application point to the optimal point of interaction with the

”real” structure. The problem identified in Chapter 3 is the danger of these virtual bars artificially

stiffening and strengthening the real structure. It was shown in Chapter 3 that, in general, the

concept of virtual rigid bars is safe to use as a load transfer mechanism only if the true optimal

structural form is either an R-field catenary, or a T-field where the optimal trajectories of the

tension and compression members are oriented at ±45◦ to the rigid bars.

However, there are circumstances where effectively rigid ”real” bars are present in a structure and

can be used as zero-cost elements to transfer load from an arbitrary point of application to the

optimal point of interaction with the structure. One such type of real rigid bar is a floor plate in

a framed building. The floor plates are typically designed for maximum factored gravity loads,

and when wind load cases are considered, the factored loads applied to the floor members are

significantly lower. This means that, when wind loading is considered in conjunction with less-

than-maximum factored gravity loads (see, e.g. Eqn. (4.1)), the floor members are likely to have

very large reserves of strength and can therefore act as ”cost-free” axial load members to transfer

the wind load from the point of application at the perimeter of the building to the optimal location

of interaction with the bracing system. Consequently, the rigid bars in the optimisation formulation

are actually real members and the problem with the rigid bar formulation identified in Chapter 3 is

eliminated. Similar assumption has been used in previous studies, for example, Allahdadian et al.
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(2012) considered bracing optimization of a multi-storey building with rigid intervening beams. In

addition, floor beams and/or slabs are also treated as un-designable rigid members in the external

envelope optimization of Bobby et al. (2013). Besides the assumption for horizontal members,

it is also worth noting that the vertical loads are not considered in this chapter, since the current

target is simultaneously optimizing the building envelope and inside bracing structure and vertical

load cannot be known before the building shape is determined.

6.3 2D Single load case optimization

Figure 6.2 shows the bracing design case of this study. This is a typical 40-storey office building

with 4m storey height and 10m storey width. Each floor is treated as a horizontal pre-existing

rigid member with infinite strength. Since the obtainedHorizontal loads are assumed to be applied

at 40m, 80m, 120m, and 160m height position of the two side boundaries. The magnitude of the

wind loading is estimated using examples in Brettle & Brown (2009). The maximum tension and

compression stress used for the bracing members are both 275MPa.

Figure 6.2: Case description, where bold lines represent pre-existing beams.

Four different cases are studied for this 40-storey building:

(1) Case 1: Bracing optimized with rigid floor members
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(2) Case 2: Bracing optimized without rigid floor members

(3) Case 3: Fixed topology - Stromberg bracing

(4) Case 4: Fixed topology - Cross bracing

Considering that the main function of the bracing system is to control lateral displacement, an

elastic analysis would consequently be involved in the optimization process. It is worth noting that

Sved (1954) proved that the optimal topology would be identical for optimization with strength

criteria and stiffness criteria in single load case situation. Therefore, if a structure optimized under

strength criteria does not achieve the required stiffness, one could multiply all of the sections of

the optimized structure with an amplification factor to achieve the required stiffness.

Hence, the optimization process includes four steps: (1) Layout optimization is used to identify the

optimal topology and section size; (2) For Cases 1 & 2 only, geometry optimization is used based

on the layout optimization results to identify more rational results; (3) The optimized structures

were put into an elastic analysis to obtain the maximum lateral displacements; (4) According to

the lateral displacements data and the suggested displacement limit (Renuka & Kumar 2015), a

factor is chosen to amplify all of the members in these four cases.

The optimization results are shown in Fig. 6.3, where the volumes and displacement data are

results after amplification. Note that under a suggested lateral drift limit H/500 (Renuka & Kumar

2015), an amplification factor equal to 7 is chosen for all the members.

The structure shown in Fig. 6.3a exhibits many similarities to that presented in Fig. 3.5a. The

current solution is constrained by the horizontal limits set upon the design domain, and, of course,

here, the rigid bars are either real floor members (within the structure) or transferring the wind

load from the outer perimeter of the design domain to the catenary members at the uppermost

outside edge of the structure. The Michell bracing shown in Fig. 6.3b is less efficient (e.g. 6.67%

more material than Fig. 6.3a) and it does not have a repetitive pattern at every floor. Stromberg

(e.g. Fig. 6.3c) and Cross bracing (e.g. Fig. 6.3d) have much simpler topology, but their volumes

are respectively 9.11% and 15.4% higher than Fig. 6.3a.

Additionally, it has been noticed that the perimeter shape of Fig. 6.3a is very different from the

other results. This happens since the top wind loads are transmitted through rigid members to the

middle position. In this situation, one could choose to treat the rigid bars as ’virtual’ members,
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which are only used for numerical load transmission. Consequently, a building with optimized

exterior shape could be obtained. Alternatively, these rigid members could also be treated as real

floor members, which makes the bracing shown in Fig. 6.3a also suitable for rectangular-shaped

buildings.

Figure 6.3: Results of 2D bracing optimization: (a) Case 1: Bracing optimized with rigid floor members; (b)
Case 2: Bracing optimized without rigid floor members; (c) Case 3: Fixed topology - Stromberg bracing;
(d) Case 4: Fixed topology - Cross bracing; red, blue and grey lines represent bars in tension, compression
and takes no forces respectively, when horizontal loads are applied from left to right

6.3.1 Relation between topology simplicity and rigid floor number

In Fig. 6.3a it can be seen that, along the central vertical axis of the structure, the tension and

compression bracing members intersect with the rigid bar at ±45◦, as required for a T-field by

the Mohr’s circle analysis set out in Section 4.4.3. At all other horizontal positions, only a single

tension or compression member intersects. This does not in fact contract the 45◦ rule set out in

Section 4.4.3 because here, the structure comprises an R-field and the 45◦ rule does not apply.

This can be shown by consideration of a Mohr’s circle analysis when one of the principal strains

is not at the limiting value, which is discussed in detail in Section 8.2 and Fig. 8.4.

In addition to strengthening & stiffening the optimum structure, the inclusion of the effectively
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rigid floor members in the optimisation analysis also greatly simplifies the optimal topology

compared to the “optimal” Michell structure without the floor members Fig. 6.3a & b. However,

even though the lateral loads are applied at every tenth floor, the rigid-member optimised solution

effectively ties in every floor into a repetitive bracing system. This repetitive system takes

advantage of the presence of every rigid floor member, tying all the floors into a stiff, strong

bracing frame. Thus, the penalty that is paid for the lighter, stiffer structure is the presence of

considerably more bracing members than are required in the Stromberg or X-bracing solutions

Fig. 6.3c & d.

To investigate the potential for reducing this number of bracing members, alternative layout

optimisations were conducted, where the bracing members were allowed to connect to only every

second, fifth or tenth rigid floor (Fig. 6.4). It can be observed that with the increase of the number

of the rigid floors, the number of repetitions of the structure is reduced, but the repetitive structure

gradually becomes complicated. Consequently, the desired simple structure may appear when the

number of rigid floors is not too large nor too small.

Figure 6.4: Results of 2D bracing optimization with different number of pre-existing beams: (a) 20 pre-
existing beams across the height, (b) 8 pre-existing beams across the height, (c) 4 pre-existing beams across
the height; red and blue lines represent bars in tension and compression respectively, when horizontal loads
are applied from left to right.
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6.3.2 Implication of single load case result

The single load case result could be used in situations when the wind load comes from one major

direction; an example is shown in Fig. 6.5. Note that for this kind of building if braced faces are

only added at two sides of the building, the lateral drift may be higher than the requirement in the

middle position across the width. In this situation, more braced surfaces may be added across the

building width to control the lateral displacement, which is similar to adding intermediate supports

to a simply supported beam. In the example shown in Fig. 6.5, one additional braced face is added

in the centre of the building.

Figure 6.5: Single load case result implementation example, where the building needs to take wind load
from one major direction; red and blue lines respectively represent bars in tension and compression.

6.4 3D multiple load case optimization

The example shown in Section 6.3 presents optimization results in the single load case situation.

Nevertheless, tall buildings in reality usually need to take wind load from different directions.

Therefore, the 3D bracing design case with multiple alternative load case are also studied in this

section. The investigated case is shown in Fig. 6.6. This is the same as the cases in Section 6.3:

this is a 40-storey building with 4m storey height. Since a 3D design domain is used, the storey

size is correspondingly set to 40m ×40m. It has already been demonstrated in Section 6.3.1 that
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bracing complexity is related to the number of the rigid floors. Therefore, as in Fig. 6.4a, every

other floor is treated as a rigid floor for the load transmission. As shown in Fig. 6.6, two load

cases that include wind load in, respectively, the x and y direction, are applied at the 40m, 80m,

120m, and 160m height position of this building. Pin supports are added along the four external

boundaries of the bottom surface. The maximum tension and compression stress used for the

bracing member are both 275MPa.

Figure 6.6: 3D Case description, where red and blue arrows represent loads in load case 1 and 2.

Based on these general conditions, two different cases are studied:

(1) Case 5: Bracing member could exist anywhere within the cuboid design domain

(2) Case 6: Bracing members can only exist at the external surface of the design domain.

In this section, only layout optimization is used to identify the optimized structure. Nevertheless,

since in this case there are only two multiple load cases, the superposition approach described in

Section 2.6.5 is used to reduce the computational cost. Additionally, by analysing the results from

the single-component load cases, a better understanding of the optimized structure for multiple

load cases could potentially be achieved. It is worth noting that in the superposition approach,

the same rigid floor members need to be added to each of the component load cases to obtain

correct solutions. The relationships between two multiple load cases and component load cases
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are established in Fig. 6.8a and Fig. 6.9b.

The optimized results are shown in Fig. 6.7. It can be observed that the optimized results for both

cases are simple and rational. For Case 5, all of the bracing members locate on the diagonal of

the structure, which leads to usable space located in the four triangular regions of the building (i.e.

Fig. 6.7a). The results from Component load cases 1 and 2 are similar to the 2D results, where

all the bracing members intersect with rigid floor member at 45◦ in the centre line. In addition, it

can be observed that in each component load case, bracing members appear at the diagonal only.

Therefore, as shown in Fig. 6.8a, it can be derived that all the horizontal loads are transmitted

through the rigid members to the floor central position. It is also worth noting that this is similar

to the results shown in Fig. 6.3a and Fig. 6.4a. A part of the top rigid floor members are treated as

’virtual’ members that are used for numerical load transmission only, which leads to a pyramid-

like exterior shape on the top of the optimized structure. Alternatively, these rigid floor members

can be treated as real members to make the bracing topology shown in Fig. 6.7a fit for a cuboid

building.

(a) (b)

Figure 6.7: Results from the 3D bracing optimization cases: (a) Case 5 - bracing member could exist
anywhere within the cuboid design domain; (b) Case 6 - bracing members can only exist at the external
surface of the design domain.

The results of Case 5 have 14.3% less material than Case 6, but the bracing member distribution

in Case 6 is more suitable for the current exoskeleton structure. Since bracing members could

exist only at the external surface, in the results of component load cases, the horizontal loads are
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Figure 6.8: Relation between original load cases and component load cases in Case 5 where a bracing
member could exist anywhere within the cuboid design domain: (a) top view graph of the original load
cases on the building; (b) top view graph of the component load cases; (c) top view graph of the final acting
positions of the transmissible loads in the component load cases; (d) numerical results of the component
load cases; red and blue lines respectively represent bars in tension and compression.
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Figure 6.9: Relation between original load cases and component load cases in Case 6 where bracing
members could only exist at the external surface of the design domain: (a) top view graph of the original
load cases on the building; (b) top view graph of the component load cases; (c) top view graph of the
final acting positions of the transmissible loads in the component load cases; (d) numerical results of the
component load cases.
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transmitted through rigid floor members to the corner positions (e.g. Fig. 6.9a). Consequently,

similar results to Fig. 6.3a can be observed in the result of Component load case 2 in Fig. 6.9d,

through the bracing members exist in two mutually perpendicular planes. Additionally, it can be

observed that identical topology to the result of Component load case 2 can be obtained by rotating

the optimized result of Component load case 1 in 90◦ around the z axis. Therefore, the structures in

each side of Fig. 6.7b are identical to each other, which further reduced its construction difficulty.

Beghini et al. (2014) suggest that for a structure under lateral loading, the top half is dominated

by shear effect, while the bottom half is dominated by bending effect. This principle could also

be observed in the optimized results of Case 6. It has been found that in the bottom position of

Fig. 6.7b bracing members intersect with each other at 90 degrees, which means that they do not

interact with the rigid plate that is used to transmit horizontal shear force. Additionally, it has been

observed that the corner column only exists in the bottom half of Fig. 6.7b. Moon et al. (2007)

once studied the effect of keeping and removing the corner columns in diagrid bracing structures.

The result shown in Fig. 6.7b suggest that placing corner columns in a region where the bending

effect dominates will contribute to structural efficiency.

6.5 Conclusion

This chapter studies the optimized bracing topology with transmissible load technique. The

following conclusions have been obtained:

(1): A simple and efficient structure has been identified in the 2D single load case. It could be

used in situations where lateral loads are coming from one major direction (i.e. Fig. 6.5).

(2): Under the assumption of pre-existing beams, the simplicity of the optimized structures is

related to the number of pre-existing beams across the height of the design domain. However,

either too many or too few pre-existing beams will both lead to an increase in structure complexity.

An intermediate number of pre-existing beams leads to the most rational structures.

(3): In the 3D optimization cases with multiple load cases, two structures are identified using

different constraints. One of them allows structure members to exist only in the external surface of

the building, and the other allows structure members to exist anywhere within the design domain.

The logic of the optimization results is demonstrated using the superposition approach. The former
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leads to a less efficient structure, but its topology is more practically acceptable than the latter

result. These optimization results could be chosen for use based on the practical requirements of

real scenarios.



Chapter 7

Layout optimization formulation for

combined structure of trusses and

frames

7.1 Introduction

When designing a steel-framed building, both truss bracing structures and moment resisting frames

have been widely used to provide lateral stability. Layout optimization of the former has been

investigated in previous chapters. However, the optimal structure of a moment resisting frame or

the optimal combination of trusses and frames is still unknown. In a previous study, a similar

grillage problem has been considered by Prager (1974). In this study, only the moment resistance

is considered as a variable for each member, and the axial force is not involved. The objective

in a typical grillage design problem is to find the minimum total moment resistance, rather than

to find the minimum volume. Therefore, although moment is considered in the grillage problem,

from a mathematical perspective, it is still very similar to the truss layout optimization problem.

Liang et al. (2000), Stromberg et al. (2012) used moment-resisting elements (beams) in bracing

design cases. However, the positions of these beams are fixed, and therefore they are not a part of

the topology optimization. To date, in previous literature, there exists no method for the combined

layout optimization of trusses and frames. Therefore, a new approach for moment resisting frame

layout optimization is necessary and this chapter is an attempt to address this problem.

100
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7.1.1 Optimization formulation

In truss layout optimization, a structural member’s cross-sectional area is designed to take axial

force only. Nevertheless, in moment resisting frame optimization, a member should have the

capability to take axial force, shear force, and moment. Consequently, the optimization problem

changes from a linear problem to a non-linear problem since one member’s moment resistance

is non-linearly related to its cross-sectional area. However, solving a non-linear problem is

more computationally expensive than solving a linear problem. Therefore, the challenge of this

problem lies in developing a robust and efficient optimization approach. To achieve this, the

usual development approach is to find the non-linear formulation first and then make assumptions

to simplify the algorithm. Therefore, the non-linear formulation for the frame optimization is

considered first.

Revising the truss optimization formulation, it contains three main components: (1) Objective

function, which is the relation between total volume and cross section area of each member; (2)

Equilibrium function, which guarantees that the applied load is transmitted through an optimized

structure into supports; (3) Strength criteria, which establish the relation between internal force

and cross section area for each member.

min V = lTa (7.1a)

subject to Bq = f (7.1b)

ai = g(ma
i ,m

b
i , fi, li) (7.1c)

Where ma
i , mb

i , fi and li are as defined in Fig. 7.1.

Figure 7.1: Force components of a beam

These three constituents are the sufficient and necessary components of a truss optimization
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problem. Since the truss and frame layout optimization approaches are both based on the ground

structure approach, these three aspects are also sufficient and necessary components of a frame

optimization formulation. Therefore, firstly, for the objective function, it stays the same as the

truss optimization since for each member the relation V = la remains unchanged. Secondly, for

the equilibrium function, additional force components mA and mB need to be added to the vector

q to represent the moments at two ends (e.g. Fig. 7.1). Due to this change, the equilibrium matrix

B also needs to be modified correspondingly.

The last part is strength criteria. Whilst in truss optimization, all the cross-sectional area is used

to take the axial force, in rigid optimization it also needs to take moment and shear force. Hence,

the stress distribution within a cross section needs to be considered first. For this purpose, it is

first assumed that a square section is used for all members in the optimization (e.g. Fig. 7.2a).

Based on this assumption, consider the situation where a member simultaneously takes bending

moment and compression force; the corresponding normal stress distribution can be obtained as

in Fig. 7.2b. From the stress distribution, it is clear that axial force is taken by the mid-part area

(e.g. aN) and moment is taken by the area on the top and bottom sides (e.g. aM). Therefore, the

stresses caused by axial force can be obtained with Eqn. (7.2). Assuming that the one with larger

absolute value in ma and mb will be used in the bending stress calculation of the whole bar, the

equation for bending stress (e.g. σM) is obtained as Eqn. (7.2b).

Figure 7.2: Force distribution within a square section: (a) within a square section, the top and bottom
area aM is used to take moment and aN is used to take axial force; (b) normal stress distribution within
the section; (c) shear stress distribution within the section; (d) modified shear stress distribution within the
section.
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σN =
f

aN
(7.2a)

σM =
max(|ma|, |mb|)

ZM
(7.2b)

where ZM is the plastic section modulus of aM, σM is the bending stress, and σN is the normal

stress caused by axial force.

From Eqn. (7.2b), it is clear that the plastic section modulus ZM is a necessary parameter for σM.

Hence, based on the cross section assumption shown in Fig. 7.2a, ZM is obtained as Eqn. (7.3).

ZM =
1

4
aM(l + d) (7.3)

From Fig. 7.2a, it is clear that

l =
√
aN + aM (7.4a)

d =
aN

l
=

aN√
aN + aM

(7.4b)

Therefore, combining Eqn. (7.4) and Eqn. (7.3) yields:

ZM =
1

4
aM(
√
aN + aM +

aN√
aN + aM

) (7.5)

In most situations, bending is accompanied by shear force. As shown in Fig. 7.2c, shear stress

is mainly concentrated on the middle part of the section in reality. Therefore, for the sake of

simplicity, it is assumed that shear stress is evenly distributed in aN (e.g. Fig. 7.2d). Consequently,

shear stress τ may be obtained as Eqn. (7.6).

τ =
ma +mb

laN
(7.6)

The middle part aN takes axial force and shear force. Therefore, based on the yield criteria of von

Mises, the following constraint needs to be satisfied for each member:
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σ2
N + 3τ2 ≤ σ2

max (7.7)

Gathering all of the above information, the rigid joint optimization formulation becomes:

min V = lTa (7.8a)

subject to Bq = f (7.8b)

σmi =
max(|ma

i |, |mb
i |)

1
4a

M
i (
√
aN
i + aM

i +
aN
i√

aN
i +aM

i

)
(7.8c)

σni =
qi
ani

(7.8d)

τi =
ma
i +mb

i

liani
(7.8e)

σmax ≥ σmi (7.8f)

σ2
max ≥ (σni )2 + 3τ2

i (7.8g)

where i = 1, 2, ..., n and n represents total bar number of the optimization problem.

In this formulation, Eqn. (7.8c) and (7.8g) are non-linear constraints. Whilst (7.8g) is a conic

quadratic function (e.g. a typical convex function), (7.8c) is a non-convex function that would

require significant computational cost. Consequently, linearisation of Eqn. (7.8c) would yield

significant reduction in computational cost. For this purpose, instead of using Eqn. (7.5), ZM is

approximated by its first-order expansion:

ZM(anew
N , anew

M ) ≈ ZM(aold
N , aold

M ) +
∂ZM

∂aM
(anew

M − aold
M ) +

∂ZN

∂aN
(anew

N − aold
N ) (7.9)

The approximate equation (7.9) could be simplified to:

ZM(anew
N , anew

M ) ≈ Z0 +
∂ZM

∂aM
anew

M +
∂ZN

∂aN
anew

N (7.10)

where

Z0 = ZM(aold
N , aold

M )− ∂ZM

∂aM
aold

M −
∂ZN

∂aN
aold

N (7.11)
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Based on Eqn. (7.5), it can be obtained that:

∂ZM

∂aM
=

4a2
N + 3a2

M + 6aNaM

8
√

(aN + aM)3
(7.12a)

∂ZN

∂aN
=

3a2
M + 2aNaM

8
√

(aN + aM)3
(7.12b)

Z0 = − a
2
M + aNaM

8
√
aN + aM

(7.12c)

In the optimization, the values of ∂ZM
∂aM

, ∂ZN
∂aN

, and Z0 are given a relatively large value in the first

step, and in the subsequent steps, their value would be calculated using Eqn. (7.12). With this

iterative scheme, in each step the problem that needs to be solved is a conic optimization problem

that requires low computational cost. For the sake of completeness, the formulation for this conic

problem is shown in Eqn. (7.13).

minV = lT(aN + aM) (7.13a)

s. t. (7.13b)

Bq = f (7.13c)

|m1i| ≤ σ0(Z0i + ∂Z
∂aNi

aNi + ∂Z
∂aMi

aMi)

|m2i| ≤ σ0(Z0i + ∂Z
∂aNi

aNi + ∂Z
∂aMi

aMi)

vNi = 1
l (m1i +m2i)

(aNiσ0)2 ≥ (qi)
2 + 3v2

Ni

aNi ≥ 0

aMi ≥ 0



i = 1, 2, ..., n (7.13d)

7.1.2 Numerical examples - Moment load

In the previous truss optimization approach, only force load could be applied to a layout

optimization problem. Nevertheless, as the moment resisting capability is introduced in frame

optimization, moment load could be applied to the optimization problem, as well. Therefore, this

section shows several numerical results related to moment load.

As Fig. 7.3 shows, the cases studied in this section are a square design domain with four sides fixed
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in x, y and rotation displacement and one moment load applied in the middle. Figs. (7.3a), (7.3b),

and (7.3c) show three cases with different moment load magnitudes. From the results, it can be

observed that moment-resisting beams only appear in the middle position, which directly connects

to the loading position. Hence, the moment load is transmitted through the beams to the nearby

nodes. This effectively turns a moment load into several force loads with different directions, and

then these forces are transmitted through a Michell cantilever to the closest support on the side.

Since there are four supports that have the same smallest distance to the middle loading point,

two of them have been used in this case to take the load, which causes the symmetrical topology

in Fig. 7.3. It is worth noting that in other cases with different loading magnitude, structures

connecting to all the four supports are also found.

Figure 7.3: Cases with different in-plane moment load at the centre where the load magnitude for (a)
500kNm; (b) 2000kNm; (c) 4000kNm; red, blue and black lines represent members take tensile axial force,
compressive axial force and bending moment.

It is worth noting that the three cases in Fig. 7.3 have the same design domain, support condition,

and loading position, and only differ in loading magnitude. In previous truss optimizations, this

setting should lead to an optimized solution with the same topologies having different volumes.

However, in rigid optimization, the optimized topologies are also different. This happens because

for a specific member, its plastic modulus Z is non-linearly related to its cross-sectional area.

Therefore, the general benefit of using moment-resisting beams increases as the cross section area

increases. Consequently, in situations with relatively large loading values (e.g. Fig. 7.3c), more

beams appeared in the optimized solution for load transmission.

In theory, length of beam members gradually increases as the loading magnitude increase.

However, continuum does not exist in discrete approach. Therefore, when the loading magnitude

is relatively small, beam members are only used to connect the center node and the most

neighbouring nodes (i.e. Fig. 7.3a). When the loading magnitude is relatively large, beam
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members are used to connect the center node and the secondly neighbouring nodes (i.e. Fig. 7.3b

& c). Therefore, it can be obtained that the optimized results in the moment load cases are highly

dependent on the density of the node grid.

7.1.3 Numerical examples - bracing design under restricted design domain

In previous truss optimization, the optimized results are efficient, but they usually require relatively

more space. In contrast, moment-resisting frames are less efficient but could provide sufficient

usable space. Hence, these two structures are usually combined to guarantee the stability and

usability of a structure. This combined structure could not be studied with previous truss

optimization, where members can take only axial force. Therefore, the optimal combination

structure is investigated in this section using a frame optimization approach.

As Fig. 7.4 shows, the cases studied in this section are two-storey braced frames. Two bottom

corners of the design domain are fixed in x, y and rotation displacement, and lateral loads are

applied at 10m and 20m height position at the two sides. The aspect ratio of the design domain is

h:w=2:1, and holes have been added to the design domain to control usable space.

From the results, it is clear that structure efficiency is decreased as the hole size increases. The

horizontal beams in Fig. 7.4a are replaced by truss structures somewhat similar to Michells

cantilever in the other two cases and this yields 33.2% and 43.2% material reduction for Fig. 7.4b

and Fig. 7.4b. Moreover, it can be observed in Fig. 7.4b that in each of the truss structures, the

top and bottom horizontal bar take forces with different signs. This means that a truss structure is

used to provide the moment resistance against lateral load. In addition, if we treat the horizontal

truss structures in Fig. 7.4b and Fig. 7.4c as two giant beams, it can be observed that the horizontal

members on the top and bottom of the giant beams disappear at the centre, where shear is the

dominating effect.

As shown above, in 2D cases, rigid joint optimization could be used to identify the optimal

combination between truss and beam structure and conduct investigation in structure material

and space efficiency. These applications could readily be expanded to 3D cases. Nevertheless, in

3D cases, rigid joint optimization is potentially more useful since some space structures like grid

shells require moment resistance to be stable.
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Figure 7.4: Cases with different design domain spaces: (a) only one layer of nodes located in the grey area;
(b) one layer of nodes located on the two sides and 1.5m design space for the top and middle horizontal
areas; (c) one layer of nodes located on the two sides and 3m design space for the top and middle horizontal
areas.

7.2 Frame optimization formulation with multiple load cases

Section 7.1 demonstrated the formulation for frame optimization in the single load case.

Nevertheless, it is clear from previous content that the multiple load case is a necessary

consideration for structure layout optimization. Therefore, the frame layout optimization

formulation with multiple load cases is discussed in this section.

Hemp (1973) suggested in optimization with multiple load cases that “each member should be

stressed to the limit σT or −σC for at least one system of force”. This means that for each

member, its cross-sectional area is dominated by one load case, and that the stresses caused by

other load cases must be equal to or less than the stress limit. Given this, we could consider a

simple example for a square cross section in a scenario with two multiple load cases.

Figure 7.5 shows that for the same cross section under different load cases, the proportion of aM

and aN is different. In this case, some part of aN that is used to take axial force and shear force in

load case 1 have been used to take moment in load case 2. However, the total cross-sectional area

is unchanged. Therefore, we need an additional variable a and the constraint (7.14) to take this fact

into consideration. Note that in reality, the cross section remains the same for different load cases,
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and the stress magnitude within this section may vary. However, in the optimization formulation,

in order to maintain it as a convex problem, the stresses caused by different load cases are equal to

the stress limit, and the required areas of different load cases may vary. Therefore, (7.14) shows a

greater than or equal to relation instead of an exclusively equal relation.

Figure 7.5: Example of a single member’s cross-sectional area in two load cases, where aM is the area used
to take moment and aN is the area used to take axial and shear force.

a ≥ {aM + aN}α, α = 1, 2, ...,m (7.14)

where m represents the number of the load cases.

As previously demonstrated, one member’s cross-sectional area is dominated by one or several

major load cases, and the required areas for other minor load cases may be less than the total

area. Consequently, when the areas for a minor load case are considered, the area parameters

{aM}α and {aN}α may take any feasible values between the required value (e.g. lower boundary)

and the total area value (e.g. upper boundary). Therefore, instead of directly using the values of

{aM}α and {aN}α in the first-order approximation equation (i.e. Z = Z0 + ∂Z
∂aN

aN + ∂Z
∂aM

aM), one

should re-calculate {aM}α and {aN}α based on the axial force and moment values produced by

the concerned load case.

Summarizing all of the above considerations on multiple-load cases, the following formulation
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can be obtained for frame layout optimization of n members and m multiple-load cases.

minV = lTa (7.15a)

s. t. (7.15b)

Bq = f (7.15c)

ai ≥ aαMi + aαNi

|mα
1i| ≤ σ0(Zα0i + ∂Zα

∂aαNi
aαNi + ∂Zα

∂aαMi
aαMi)

|mα
2i| ≤ σ0(Zα0i + ∂Zα

∂aαNi
aαNi + ∂Zα

∂aαMi
aαMi)

vαNi = 1
l (m

α
1i +mα

2i)

(aαNiσ0)2 ≥ (qαi )2 + 3(vαNi)
2

ai ≥ 0, aαNi ≥ 0, aαMi ≥ 0



i = 1, 2, ..., n

α = 1, 2, ...,m
(7.15d)

7.3 Use of an I section in frame optimization algorithm

The formulation in Section 7.1 is based on solid square sections. Nevertheless, since the 2D

problem only involves moment in one direction, the I section is a better choice for moment-

resisting purposes. For this reason, the property of the I section is investigated in this section.

A typical I section is presented in Fig. 7.6a. Based on the size parameters shown in this graph, the

formulation for the cross-sectional area a and full plastic modulus Z can be obtained as:

a = twd+ 2wtf (7.16)

Z = wtf (d+ tf ) + 0.25twd
2 (7.17)

From Eqn. (7.16) and (7.17), it can be determined that in a situation with a constant cross-sectional

area a, Z could reach an infinitely large value if tw is infinitely small and d is infinitely large.

Obviously, this could not happen in reality because the capacity of one section is dominated by

local buckling effects if its tw is very small. Therefore, according to Eurocode 3, to guarantee that

one section’s full plastic moment capacity is larger than its local buckling moment capacity, this

section needs to be at least class 2, which means that its sizes need to satisfy the size conditions
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Figure 7.6: Typical I section, (a) size parameters of an I section; (b) an area distribution with aN only in the
web; (c) an area distribution with aN also in the flange; aN is the area used to take axial and shear force, and
aM is the area used to take moment.

below:

7.32tf ≤ (w − tw)/2 ≤ 8.1tf

65.08tw ≤ d ≤ 81.36tw

(7.18)

Note that condition (7.18) is specifically for steel with 355MPa as maximum stress and class 2

cross section.

Rearranging condition (7.18) yields:

14.64tf + tw ≤ w ≤ 16.2tf + tw

65.08tw ≤ d ≤ 81.36tw

(7.19)

Defining that tf = ztw, condition (7.19) could therefore be written as:

w = (xz + 1)tw

d = ytw

(7.20)

where 14.64 ≤ x ≤ 16.2, 65.08 ≤ y ≤ 81.36, z > 0

Consequently, with (7.20), area a and plastic modulus Z for this section could be written as:

a = yt2w + 2(xz2 + z)t2w = (2xz2 + 2z + y)t2w (7.21)
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Z = (0.25y2 + z2 + yz + xyz2 + xz3)t3w (7.22)

From (7.21) and (7.22), it is clear that the unit of a is the square of the length, while the unit of Z

is the cubic of the length. Hence, a dimensionless relation between a and Z could be defined by

the following equation:

Z

a
3
2

=
0.25y2 + z2 + yz + xyz2 + xz3

(2xz2 + 2z + y)
3
2

(7.23)

Therefore, the following formulation can be used to obtain the maximum plastic modulus for a

determined cross-sectional area:

max g(x, y, x) = 0.25y2+z2+yz+xyz2+xz3

(2xz2+2z+y)
3
2

subject to 14.64 ≤ x ≤ 16.2

65.08 ≤ y ≤ 81.36

z > 0

(7.24)

With a numerical non-linear programming solver (e.g. fmincon of MATLAB), the solution of

(7.24) could be obtained as:

g(x, y, x)max = 2.4734 when x = 14.64 y = 81.36 z = 1.20 (7.25)

This solution leads to:

d = 81.36tw, w = 18.568, tf = 1.2tw (7.26)

Eqn. (7.26) shows the necessary size constraints for an I section with given cross-sectional

area to reach its maximum moment capacity. Note that these size constraints are derived based

on a full bending situation. Although in the optimization every member has the possibility to

simultaneously take axial force and moment, the proportion between axial force and moment are

not known a priori. Therefore, one could assume that the section shape is first designed according

to the full bending moment situation and the force distribution within this section is considered
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later.

As shown in Fig. 7.6b and Fig. 7.6c, for an I section there are two situations for force distribution:

(1) axial force exists only in the web; (2) axial force exists in both the web and the flange. With

Eqn. (7.26), it can be derived that in the first situation, the section modulus is:

Z = 2.4734
√

(aM + aN)3 −
2.8054a2

N√
aM + aN

(7.27)

And for the second situation, the section modulus is:

Z = 3.73aM
√
aN + aM −

aM

6.62
√
aN + aM

(7.28)

Eqn. (7.27) and (7.28) can be used to obtain the first-order derivative equation. From Fig. 7.6, it

is clear that Eqn. (7.27) should be used when an is less than the web area and that Eqn. (7.28)

should be used when an is larger than the web area. This switch in formulation leads to a non-

smooth curve for plastic modulus Z. Therefore, a damping ratio may be introduced within the

sequential programming algorithm for a quick convergence. Details about this may be studied in

future development.

7.4 Conclusion

In this chapter, a new optimization formulation for identifying combined truss and frame structures

has been developed. A sequential conic programming scheme has been used to solve this non-

linear formulation. Its implication have been demonstrated in numerical examples with moment

loading and restricted design domain. To make this formulation be able to solve more general

problems, potential approaches for considering I section and multiple load cases have been

proposed. However, more investigation needs to be done on the implementation of the proposed

approaches in the future.
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Discussion

8.1 Different optimized solutions under different assumptions

In Chapters 4, 5, and 6, different optimized results are obtained using different assumptions.

Specifically, in Chapter 4, pre-existing columns and beams are used; in Chapter 5, no assumption

are used; in Chapter 6, only pre-existing beams are used. Generally, this would lead to the most

efficient results in Chapter 4 and the most practical results in Chapter 5. However, even for the

most practical cases in Chapter 5 (e.g. Section 5.4), only realistic loads and local buckling effects

are considered during the optimization. Many more conditions that exist in realistic cases are

not considered (e.g. joint cost, global buckling effect, dynamic loading resistance). However,

considering lots of realistic conditions in layout optimization for conceptual design may be not

suitable for two reasons: (1) the non-linearity of the the problem definition for some of these

features means that, even with state-of-the-art mathematical technique, this problem may involve

very high computational cost, and the final result is highly likely to be a local optimum; (2) even

if the global optimal solution could be obtained, the optimal structure could be very complex, as

observed in most Michell structures. Consequently, the optimized results are very difficult to be

used for practical cases. Therefore, it is better to consider only limited practical conditions and to

use the optimized results in the conceptual design stage to consider the economic efficiency of the

structure.

To decide which chapter’s optimization approach should be used, one must know the initial

conditions and design procedures of the specified design problem. For projects with building

114
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shape fixed and column and beam members that mainly used to take gravity loads and designed

separately with lateral stability system, the approaches and results in Chapter 4 may be used. For

projects with building shape fixed and gravity load frame designed simultaneously with lateral

stability system, the approaches and results in Chapter 5 may be used. For projects with unfixed

building shape, the approaches and results in Chapter 6 may be used to find the external building

shape and the internal bracing structure. These are illustrated in Table 8.1. Additionally, it has

been pointed out in Table 8.1 that the optimization problem with bracing structure and building

envelope simultaneously designed under horizontal and vertical loads is not considered in this

thesis. This is because the vertical loads on each floor are effectively related to the envelope of

the building. However, there appears to be no effective approach to include this relation in the

optimization problem. Potentially it is possible to use non-linear constraints in a post-process

to address this problem. Nevertheless, more effort is required in future work to investigate this

approach.

Table 8.1: Optimization loads and targets of previous chapters

8.2 Optimal intersection angle with pre-existing bars

Assumptions about pre-existing members are an important part of this study because they usually

lead to simple and efficient structures. As previously mentioned, Rozvany et al. (2006) and

Lewiński (2006) have studied the properties of pre-existing members in optimized structures.

Nevertheless, some new properties about pre-existing members have been identified during this

study. Therefore, the properties of pre-existing members are summarised and discussed in this

section.

Before discussing the properties of pre-existing members, it must be pointed out that there are
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situations where pre-existing members may not be part of the optimized structure. An extreme

example of this may be a pre-existing member that is located far away from the loads and supports

involved in the optimization. However, since the purpose of introducing pre-existing members

is to identify simple and efficient structures, these cases attract little interest for the optimization

purpose of this study. Therefore, in the cases discussed below, only the situations where the pre-

existing bars are used are considered.

There are currently two ways to add a pre-existing bar to the optimization problem: increase

the stress capacity of the specified members or impose a positive lower boundary on the cross-

sectional area of the specified members. The former is not strictly adding a pre-existing member

to the optimization problem, rather, increasing the stress capacity of the concerned members could

make the optimization algorithm more inclined to use them. Therefore, both of the approaches

could be used to add pre-existing members.

Using the first method, the pre-existing members can be divided into two categories: members

with infinite stress capacity and with limited stress capacity. The cost function and adjoint strain

of these two types of rods are shown in Fig. 8.1. From this graph, it is clear that cost function

and adjoint strain decrease as the stress capacity increases. In the case where the stress capacity is

infinite (e.g. Fig. 8.1c), the values of cost function and adjoint strain are both zero. Additionally,

for a T-region problem, the adjoint strain obtained by this analysis can be used in the Mohr circle

analysis to obtain the optimal angle between the pre-existing bar and the common bar.

Corresponding to the three situations illustrated in Fig. 8.1, the optimal angle problem is

considered in these three situations. Firstly, in the absence of a pre-existing bar, as shown in

Fig. 8.1a, the angle between the members should be 90◦. Secondly, in the other extreme case where

the stress capacity of a pre-existing member is infinite, it is demonstrated in Section 4.4.3 that the

optimal angle between this pre-existing member and another normal member is 45◦. Thirdly, for

the intermediate situation between the previous two where a pre-existing member has finite stress

capacity, a similar analytical method can be used to derive the optimal intersection angle. Assume

that the stress capacities of the two concerned members are σ and nσ, respectively, in the case

of equal compressive and tensile capacity. The adjoint strains of these two bars are therefore εxx

and εxx/n. Given this, the Mohr’s circles of the pre-existing member and normal member can

be obtained as shown in Fig. 8.1b (e.g. small circle for pre-existing member and large circle for

normal member). Therefore, based on this Mohr’s circle analysis, the optimal intersection angle



CHAPTER 8. DISCUSSION 117

Figure 8.1: Cost function, adjoint strain, and Mohr’s circle analysis for three different members: (a) member
with normal stress capacity σ; (b) member with increased stress capacity nσ; (c) member with infinite stress
capacity.
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Figure 8.2: Examples for pre-existing members with nσ stress capacity and normal members with σ stress
capacity:(a) n=1, pre-existing member not used; (b) n=1.1, the theoretical and numerical intersection angles
are 77.690◦ and 78.173◦; (c) n=2, the theoretical and numerical intersection angles are 60.000◦ and 61.650◦;
(d) n=5, the theoretical and numerical intersection angles are 50.768◦ and 51.590◦; black members represent
pre-existing members, and angles shown in the graph are numerical results.
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between them can be obtained as:

θ = (cos−1(1/n))/2 or
π

2
− (cos−1(1/n))/2 (8.1)

This equation is validated using numerical examples shown in Fig. 8.2. Note that these results are

from the approach used in previous chapters that involves both layout and geometry optimization.

From the comparison between the numerical value (i.e. obtained from measuring the optimized

structure shown in Fig. 8.2) and the theoretical value (obtained using (8.1)), it is evident that the

difference is very small. Additionally, a part of this difference is from the numerical solution error.

Therefore, the above theory and practice are consistent with each other.

For the second method, the cost function and adjoint strain graph of a member with area lower

boundary equal to a0 are shown in Fig. 8.3 (Rozvany et al. 2006, Lewiński 2006). From this graph,

it is clear that there are three different pre-existing bars in this method: fully stressed pre-existing

member with area larger than a0, fully stressed pre-existing member with area equal to a0, and

not fully stressed pre-existing member. In the case of pre-existing rods that are not fully stressed,

their properties are in fact the same as those of pre-existing members with infinite stress capacity

mentioned in the previous section, which also proved that the optimal intersection angle between

this and a normal member is 45 degrees. In the case of pre-existing bars that are fully stressed

and have an area larger than a0, it is shown in Fig. 8.3 that its adjoint strain of this pre-existing

member is equal to the adjont strain of a normal member. Consequently, the intersection angle for

this kind of member is 90◦. For this intermediate situation where the pre-existing member is fully

stressed and has an area equal to a0, its adjoint strain could take any value between −εxx and εxx.

Hence, its optimal intersection angle cannot be predicted using current methods.

It is worth noting that above analysis only apply to T-region situation. For an R-region structure,

it has been described in Section 2.5.2 that it only contains strain in one direction. Therefore,

according to Hemp’s theory described in Section 2.6.2, the minor principal strain can take an

arbitrary value between 0 and the limiting value. Based on this point, the Mohr’s circle analysis

is illustrated in Fig. 8.4. It could be observed that the optimal intersect angle equals to 45◦ and

90◦ when the minor principle strain equals to 0 and the limiting value respectively. Therefore, in

any R-region structure, the optimal intersection angle between a pre-existing member with infinite

strength and a normal member must be between 45◦ and 90◦. This conclusion is consistent with
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Figure 8.3: Pre-existing member with area lower boundary, where a, f and σ represents area, material cost
and adjoint strain : (a) curve of cost function; (b) relation between cost and adjoint strain.

numerical results in Fig. 3.5a and Fig. 6.4a.

Figure 8.4: Mohr circle analysis for R-region problem, where red, blue and black dash line represents,
respectively, bracing member in tension, bracing member in compression and pre-existing member with
infinite reserves of strength.

8.2.1 Pre-existing cases with non integer aspect ratio

A 45 degree principle is proposed in Section 4.4.3 and it is proved by Mohr’s circle analysis and

results from numerical cases with integer aspect ratio (e.g. height : width = 4:1 or 3:1 et al.).

For sake of completeness, cases with non-integer aspect ratio are further studied and the results

are shown in Fig. 8.5 (case description is show in Fig. 4.1). Note that in cases in this section

does not include top horizontal pre-existing members and horizontal loads are applied at both

top corners. It can be seen that the intersection angles between normal bracing members and

pre-existing members are 45◦ or very close to 45◦. Not all the intersection angles are exactly

45◦ because of the numerical errors caused by the limited number of nodes used in these cases.

For sake of displaying clarity, the node grids used in Fig. 8.5a, b and c are 5×7, 5×11, 5×15
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respectively. The numerical error reduces as the increase of node number used in the optimization

cases. Therefore, it can be obtained from Fig. 8.5 that in cases with non integer aspect ratio, the

form of the optimized structure are adjusted to be more complex to meet the 45◦ rule.

(a) (b) (c)

Figure 8.5: Pre-existing cases with none integer aspect ratios, where width : height equals to 1:1.5 in (a),
1:2.5 in (b) and 1:3.5 in (c). Element color key: red = tensile, blue = compressive, black = pre-existing
(assuming left to right loading).
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Conclusions

This thesis has focused on the application of layout optimization to the design of bracing; the

findings can be summarised as follows:

• For the two transmissible load approaches explored (i.e. the migrating load and the rigid

bar approach), clear differences between them have been identified in this study, proved via

mathematical and numerical methods. Whilst the migrating load approach is feasible for

all situations, the rigid bar approach may output erroneously strengthened structures. The

reason for this is the virtual rigid bars that are used to transmit the loads onto the structures

may form part of the structure. Therefore, the rigid bar approach should be used with

caution, and users should if necessary check whether the optimized structures are feasible

without the virtual rigid bars.

• Three different cases have been studied in this thesis: (1) bracing optimized within a pre-

existing column-beam frame, (2) bracing optimized with multiple load cases that include

both horizontal and vertical loads, and (3) bracing optimized with transmissible loads (and

pre-existing beams). The results are compared with standard bracing structures with respect

to material consumption and stiffness. In both measures, the optimized structures appear to

be better than standard structures. It is worth noting that the use of different assumptions

leads to different optimization results, and these results may be chosen for use based on

other practical conditions in realistic cases.

• In the cases involving a pre-existing column-beam system considered in Chapter 4, three

122
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different kinds of bracing were analysed. This indicated that conventional cross bracing

is in general the most efficient structural solution. In addition, through the analysis of

the optimized structures, it was found that tension/compression member pairs with normal

strength should intersect pre-existing members with infinite strength at 45◦ in an optimal

structure. This finding was proved via a Mohr’c circle analysis. Additionally, a more general

rule for the intersection angle between members with different strength has been identified

and included in the discussion.

• In the holistic design cases in Chapter 5, the optimized layout was found to be dominated by

only one parameter, formally proved using superposition approach. Since the conditions for

the superposition approach are only satisfied for load cases based on the British Standard,

the use of different design codes may lead to different results; this is something that is

unlikely to have been anticipated by the code writers. In addition, layout optimization has

been applied to the design of the frame of a small four storey office building comprising

rectangular bays. This led to an unconventional frame layout and a 32% reduction in the

mass of material required compared with the equivalent conventional design.

• In Chapter 6, wind loads were treated as transmissible loads and the building envelope

identified simultaneously with the inner bracing structure. Simple and efficient structures

have been identified for both 2D and 3D scenarios; they may be selected for use based on

the real-world conditions pertaining to a specific design project.

• In Chapter 7, a new layout optimization formulation which can consider moment resisting

frame members is proposed. In this new approach, members can take axial force only or

moment only or axial force and moment simultaneously. Thus new benchmark structures

with combined truss and frame members can be identified. Although in most cases, it has

been found that pure truss structures are still the optimal results, it has been shown that frame

members appears in the optimized results of cases with space restricted design domain and

cases with moment loads.
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Recommendations for future work

Areas for further work are indicated below:

• For the transmissible load approach, it has been proved in this thesis that the rigid bar

approach and the migrating load approach are mathematically different. Additionally, it

has been shown that the rigid bar approach will lead to misleading results in some cases.

However, the migrating load approach is also not a perfect solution. Problems such as

load splitting and loads transmitted to an arbitrary internal position within the structure.

Therefore, it would be useful to use geometry optimization to implement the transmissible

load (allowing loaded node to move along a pre-defined transmissible line during the

optimization).

• Though bracing optimization cases with different conditions have been studied in this thesis,

the load cases considered were relatively simple as was the shape of the design domain.

Hence it would be worth applying the same method to building design cases with unusual

shapes (e.g. Swiss Re Building in London, CCTV headquarters in Beijing etc.) and also

using realistic multiple load cases in the optimization process. It was mentioned previously

that doing a 3D optimization with many alternative load cases may lead to structure with

high complexity. In relation to this, it would be worth trying to use several primary load

cases in the first layout optimization stage and then doing size and/or shape optimization

using the remaining, secondary, load cases.

• A optimization approach for combined trusses and frames has been proposed in Section

124
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8. Further development on this approach could focus on the following three aspects: (1)

expand the applicability of this approach to make it suitable for 3D cases; (2) consider

involving beam members with different cross section shapes in the optimization problem;

(3) since the number of variables and constraints in this new approach is much larger than

in the truss layout optimization problem, it would be worth investigating methods that can

be used to reduce the numerical cost. Since the simplified formulation can be solved via

conic quadratic optimization, a ”member adding” method could potentially be developed,

utilizing values from the corresponding dual formulation.
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