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Abstract 

The continuous increase of big data applications in number and types creates new 

challenges that should be tackled by the green ICT community. Data scientists 

classify big data into four main categories (4Vs): Volume (with direct implications 

on power needs), Velocity (with impact on delay requirements), Variety (with 

varying CPU requirements and reduction ratios after processing) and Veracity 

(with cleansing and backup constraints). Each V poses many challenges that 

confront the energy efficiency of the underlying networks carrying big data traffic. 

In this work, we investigated the impact of the big data 4Vs on energy efficient 

bypass IP over WDM networks. The investigation is carried out by developing 

Mixed Integer Linear Programming (MILP) models that encapsulate the distinctive 

features of each V. In our analyses, the big data network is greened by progressively 

processing big data raw traffic at strategic locations, dubbed as processing nodes 

(PNs), built in the network along the path from big data sources to the data centres. 

At each PN, raw data is processed and lower rate useful information is extracted 

progressively, eventually reducing the network power consumption. For each V, we 

conducted an in-depth analysis and evaluated the network power saving that can 

be achieved by the energy efficient big data network compared to the classical 

approach. Along the volume dimension of big data, the work dealt with optimally 

handling and processing an enormous amount of big data Chunks and extracting 

the corresponding knowledge carried by those Chunks, transmitting knowledge 

instead of data, thus reducing the data volume and saving power. Variety means 

that there are different types of big data such as CPU intensive, memory intensive, 

Input/output (IO) intensive, CPU-Memory intensive, CPU/IO intensive, and 
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memory-IO intensive applications. Each type requires a different amount of 

processing, memory, storage, and networking resources. The processing of different 

varieties of big data was optimised with the goal of minimising power consumption. 

In the velocity dimension, we classified the processing velocity of big data into two 

modes: expedited-data processing mode and relaxed-data processing mode. 

Expedited-data demanded higher amount of computational resources to reduce the 

execution time compared to the relaxed-data. The big data processing and 

transmission were optimised given the velocity dimension to reduce power 

consumption. Veracity specifies trustworthiness, data protection, data backup, and 

data cleansing constraints. We considered the implementation of data cleansing and 

backup operations prior to big data processing so that big data is cleansed and 

readied for entering big data analytics stage. The analysis was carried out through 

dedicated scenarios considering the influence of each V’s characteristic parameters.  

For the set of network parameters we considered, our results for network energy 

efficiency under the impact of volume, variety, velocity and veracity scenarios 

revealed that up to 52%, 47%, 60%, 58%, network power savings can be achieved 

by the energy efficient big data networks approach compared to the classical 

approach, respectively.  
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Chapter 1 Introduction 

In recent years, energy crises and environmental protection are under the spotlight, specifically, 

the remarkable growth of energy consumption in ICT (Information and Communication 

Technologies). According to [1], in the first quarter of 2007, British Telecom consumed about 

0.7% of the total UK’s power consumption and therefore was the largest single power consumer 

in the UK. In the same line, about 8% of the total electricity in the United States is being consumed 

by information and communication technologies [2], and an increase of more than 4% per year has 

been predicted. 

 

So far, applications such as telework telecom applications, video conferencing, e-commerce, and 

their impact on human movements, have stamped ICT as an environment-friendly sector, however, 

there is a downside of ICT. Due to the ICT availability, everywhere and anywhere in our daily life, 

(both private and professional), the power that is needed to maintain and operate the network is 

being considered as an essential problem associated with bandwidth growth. Another aspect, 

energy consumption of computers and network equipment is becoming a significant part of the 

global energy consumption as a result of the network expansion [3]. For example, during the last 

decade, the Internet bandwidth has increased by approximately 50 to 100 times [4], and 

accordingly, the network power consumption has increased simultaneously. Thus, lots of attention 

is being focused on “energy-aware” ICT solutions [3]. One of the most significant current 

discussions in today’s ICT sector is the increase in energy consumption due to the massive increase 

in the number of devices accessing the Internet – with around 40% of the world population having 

an Internet connection [5] – and the huge amount of generated data. Data centre power 
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consumption is in the range of 100-130 GWh per year, as measured by the power usage 

effectiveness (PUE) index, and computer room air conditioning consumes up to half the total 

power consumed by the data centre [6]. The amount of data created between the period of the dawn 

civilisation and 2003 is estimated to be five Exabyte. Currently, the same amount of data is created 

every two days [7]. This massive increase in generating data and the huge data generated is referred 

to as big data.  

 

Data scientists classify big data into four main categories (4Vs): volume (implies enormous 

volumes of data), variety (refers to the many sources and types of data) velocity (deals with the 

pace at which data flows from source), and veracity (refers to the biases, noise and abnormality in 

data). Each V carries many challenges that have implications on the power consumption of the 

underlying networks carrying the big data traffic. 

 

The first challenge facing the Data Centres (DCs) is the enormous Volume of data fluxing to them. 

Voluminous growth in generating big data is causing drops in the percentage of processed data of 

organisations due to the lack of resources and poor analysis tools [8]. Thus, a large amount of the 

data that is to be processed is either neglected, deleted or delayed. Hence, there is unnecessary 

networking power consumption, extra wastage of storage and bandwidth because of transferring 

raw data, which leads to increasing the financial and environmental costs. 

 

Variety means that there are different types of big data applications such as CPU intensive, 

memory intensive, Input/output (IO) intensive, CPU-Memory intensive, CPU/IO intensive, and 

memory-IO intensive applications. Each application requires different amounts of processing, 
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memory, storage, and networking resources. These different types come from the diversity of big 

data sources, such as healthcare sensors, smart devices, social networks [8]. 

 

Velocity is data in motion, which is the speed at which data is fluxing in and processed in the DCs. 

High-speed processing of such immense data volumes as produced by plentiful data sources calls 

for new processing and communications methodologies in the big data era. The processing velocity 

of big data can be classified into two modes: expedited-data processing mode and relaxed-data 

processing mode. Expedited-data processing mode is used for the CPU hungry applications that 

need to be processed in real time [9], e.g. remote patient monitoring. Relaxed-data processing mode 

can tolerate some delay and can be processed in a batch processing mode after being stored inside 

DCs, such as digital image processing and automated transaction processing. 

 

Veracity of big data is a more serious challenge to data scientists since they need to distinguish 

between the meaningful data and the dirty data [10]. Low-quality data causes the U.S. economy to 

waste $3.1 trillion each year [10]. Veracity specifies trustworthiness, data protection, data backup, 

and data cleansing constraints. Data cleansing [11] deals with detecting and removing dirty data 

due to overlaps, errors, duplications, and contradictory materials from big data to improve its 

quality. It provides easy access to accurate, consistent and consolidated data of different data 

forms. 

 

Significant efforts have been dedicated to optimise the power consumption of conventional data 

centres and the power consumption and communication cost of big data networks including 

energy-efficient data centre designs [12, 13], energy-efficient inter- and intra-data centre network 
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architectures [14, 15], designing energy-efficient cloud computing services and energy-efficient 

resource provisioning, and virtual network embedding for cloud systems [16, 17], minimisation of 

overall cost for Big Data placement, processing, and movement across geo-distributed data centres 

[18-20], and minimisation of the communication cost of big data queries and real-time big data 

processing on the heterogeneous systems [21, 22]. 

 

To understand the usefulness of our proposed Energy Efficient Big Data Networks (EEBDN) 

concept, consider an example of a Classical Big Data Network (CBDN), where all the big data 

Chunks Traffic (CHT); which is the unprocessed big data traffic, generated by the source nodes is 

forwarded to the DCs to be processed there. On the other hand, in the EEBDN, a progressive 

processing technique is implemented to process the CHT at strategic locations, dubbed Processing 

Nodes (PNs), built into the network along the path from the data source to the destination. Our 

progressive processing can be classified into three main stages: edge processing stage, which is 

implemented in the Source PNs (SPNs), intermediate processing stage, implemented in the 

Intermediate PNs (IPNs), and central processing stage, implemented in the DCs. During the 

processing of big data, the extracted information from the CHT raw traffic, referred to as Info 

traffic (INF), is smaller in volume compared to the original big data traffic each time the data is 

processed, hence, reducing network power consumption.  

 

Typically, the size of Info is very small compared to the size of Chunks [23] in many big data 

applications such as remote patient monitoring, where info is used for example to capture only the 

abnormality in the heartbeat from a huge amount of measured heartbeat rate time series.  

Processing Nodes (PNs) are attached to the core nodes. Each PN is composed of internal switches 
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and routers, limited storage, and a limited number of servers depending on the available building 

space and its structure is similar to the cloud structure in [16]. DCs, however, are assumed to have 

large enough processing and storage capabilities. PNs are capable of processing different amount 

of big data traffic depending on their processing and storage capacity.  

 

For energy efficiency in big data networks, the work in this thesis presents detailed analyses of the 

process of big data applications inside the PNs by considering the 4 Vs of big data and exemplifies 

its implication in the EEBDN. The approach exploits energy-efficient processing of big data 

Chunks along the path from the source to the destination, starting from the SPNs, moving through 

the IPNs, and finally reaching the DCs. This approach showed the impact of increasing the total 

resources utilisation (such as PNs’ and DCs’ servers, switches, and routers), which reduced the 

overall energy consumption. Furthermore, this approach showed the impact of processing the 

CHT, (which typically contained large data volume, along the way from source data nodes to the 

destination) on the network power consumption.  

 

The extracted knowledge from the CHT (i.e. the INF) is typically smaller in size, and this led to a 

significant reduction in big data traffic each time the data is processed, hence, reducing the network 

power consumption.  The benefits were maximised using a mixed integer linear programming 

(MILP) mathematical optimisation, and a heuristic was developed and used to verify the MILP 

optimisation. The goal of the optimisation was to ensure that power consumption is minimised by 

effectively considering the distinct features of each V as mentioned earlier. 
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1.1 Research Objectives 

The following primary objectives were set for the work reported in this thesis:  

1. To design a network architecture that supports energy-efficient big data processing 

by building Processing Nodes (PNs). 

2. To develop a scheme for the transmission and processing of enormous volumes of 

big data, starting at processing nodes close to the data source, with significant 

processing resources provided at centralised data centres. 

3. To capture the distinct features of big data’s variety by evaluating the energy 

efficiency implications of processing various big data applications in networks 

where edge, intermediate, and finally central processing in networks is considered.  

4. To utilise the proposed network architecture to handle the challenges of the 

velocity dimension of big data where data can have expedited or relaxed 

processing requirements.  

5. To investigate the impact of the veracity dimension on energy efficient big data 

networks by performing the cleansing operation in the proposed network 

architecture before processing big data applications such that the data is readied 

for big data processing. 

 

1.2 Original Contributions 

The main contributions of this thesis are as follows: 

1. We introduced MILP models to minimise the power consumption of networks that 

include processing nodes considering the impact of volume and variety of big data 

in IP over WDM core networks. As a result, we made the following contributions: 
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(i) we evaluated, using MILP and heuristic, the volume dimension by analysing 

the optimal distribution of big data volumes in different processing locations that 

have different processing capabilities where Chunks demand similar processing 

and yield similar volume reduction ratios; (ii) we examined, using MILP, the 

impact of variety by considering the case where different CPU workloads are 

required to serve different volumes of Chunks at different volume reduction ratios; 

(iii) we used our progressive processing technique to optimise the processing 

locations of the big data Chunks and compared the results to the classical technique 

where no PNs exist in the network. The processing locations are optimally chosen 

at either SPNs, inside “location optimised” DCs or at the IPNs. Thus, we jointly 

minimised the power consumption of the overall network and processing resources 

since the network elements, e.g., router ports, the routing paths, and the processing 

resources, have their energy efficiently utilised; (iv) we assessed the impact of the 

energy efficiency of PNs hardware on the proposed energy efficient big data 

networking approach where the PNs constituents (LAN switches, routers, and 

servers) consume higher power compared to data centre equipment; (v) we 

considered a software matching problem to evaluate the performance limits of our 

approach where each PN contains different software packages used to process 

different big data applications.  

 

2. We developed a MILP model to jointly minimise the power consumption of the 

network and the power consumption of the processing of information given the 

velocity dimension of big data. We considered bypass IP over WDM core 
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networks with our progressive processing approach. As a result, we made the 

following contributions: (i) we explored the impact of the big data processing 

velocity dimension on the IP over WDM network energy efficiency considering 

an expedited-data processing mode and a relaxed-data processing mode, (ii) we 

used our progressive processing technique to process big data Chunks and 

compared the results to the classical approach where progressive processing is not 

allowed. In our approach, the processing locations are optimally selected at the 

SPNs, at the IPNs or inside the centralised data centres (DCs). As a result, a 

significant reduction in the network power consumption is achieved each time the 

data is processed along the journey from the source to the DCs. 

 

3. We developed a MILP model to jointly minimise the power consumption of the 

network and the power consumption of the processing of information given the 

veracity dimension of big data. Here we considered the power consumption of 

bypass IP over WDM core networks and the power consumption of processing 

nodes. As a result, we made the following contributions: (i) we studied the 

influence of Veracity by performing cleansing and backup for big data Chunks 

before processing, where a Backup Node (BN) location is optimally selected to 

store a copy of the cleansed big data Chunks; (ii) we employed our energy efficient 

edge, intermediate, and centralised processing technique to process the cleansed 

Chunks in optimal locations in the core network and compared the results to the 

classical approach that lacks progressive processing. The optimally selected 

processing locations for the energy efficient approach are either the SPNs where 
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Chunks are generated, inside location optimised DCs, or at the IPNs, between the 

SPNs and the DCs. Accordingly, the network elements, e.g., router ports, the 

routing paths, and the processing resources, are efficiently utilised to jointly 

minimise the power consumption of the overall network and processing resources. 

 

1.3 Related Publications 

The original contributions in this thesis are supported by the following publications: 

 Journals 

1. Al-Salim, A., EL-Gorashi, T., Lawey, A. and Elmirghani, J.M., “Greening Big Data 

Networks: Velocity Impact”. IET Optoelectronics. 2017 Nov 21. 

2. Al-Salim AM, Lawey AQ, El-Gorashi TE, Elmirghani JM. “Energy efficient big 

data networks: impact of volume and variety”. IEEE Transactions on Network and 

Service Management (TNSM), pp. 458-474, 2017 Dec 28. 

3. Al-Salim, A., El-Gorashi, T., Lawey, A.Q., and Elmirghani, J.M., “Greening Big 

Data Networks: Veracity Impact”, Springer Journal of Photonic Communications, 

Accepted, March 2018. 

 Conferences 

4. A. M. Al-Salim, A. Q. Lawey, T. El-Gorashi, and J. M. Elmirghani, "Energy 

Efficient Tapered Data Networks for Big Data Processing in IP/WDM Networks," 

in Transparent Optical Networks (ICTON), 2015 17th International Conference on, 

2015, pp. 1-5. 
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5. A. M. Al-Salim, H. M. Mohammad Ali, A. Q. Lawey, T. El-Gorashi, and J. M. 

Elmirghani, "Greening Big Data Networks: Volume Impact," in Transparent 

Optical Networks (ICTON), 2016 17th International Conference on, 2016, pp. 1-6. 

 

1.4 Thesis Structure 

Following the introduction in Chapter 1, the rest of the thesis is organised as follows: 

Chapter 2 reviews optical networks, energy efficient optical networks, mixed integer linear 

programming (MILP), IP over WDM networks, and provides an overview of the main topics 

related to the work on energy efficiency in optical networks.  

Chapter 3 discusses the main sources of big data, big data characteristics, Hadoop-MapReduce 

scheme, and reviews the work on big data processing and networking. Attention is given to the 

related work on minimising communication cost and energy efficiency in big data networks. A 

special section is dedicated to introducing the proposed topics on energy efficient big data 

networks and comparison with the classical networks with an illustrated example. 

Chapter 4 introduces a MILP model and a heuristic to examine the impact of big data’s volume 

on energy efficient big data networks. It also introduces a MILP model to examine the impact of 

the big data’s variety dimension on energy efficient big data networks. 

Chapter 5 introduces a MILP model that focuses on power minimisation in big data networks 

given the big data’s velocity requirements. 

Chapter 7 introduces a MILP model to minimise big data networks and processing power 

consumption given the veracity dimension of big data.  
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The thesis concludes in Chapter 7, which summarises this work’s main contributions and gives 

recommendations for future work. 
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Chapter 2 Optical Networks 

The globalisation of the Internet and the boom in high bandwidth applications such as video 

streaming and Big Data applications has greatly accelerated the call to develop the 

communications infrastructure. Accordingly, such huge bandwidth requirements have gradually 

resulted in developing the bandwidth supported by the optical fibre to reach its current maximum 

of 1.050 petabit/s over 52.4 km of 12-core (light paths) optical fibre [24]. Nowadays, the optical 

fibre is the dominant medium which can handle such immensely growing traffic. This is because 

of its many advantages compared to copper and wireless mediums such as high reliability and low 

signal attenuation.   

 

2.1 The Evolution of Optical Networks  

In 1965 fibre optics has come to the light and this has been considered as the start of networks 

revolution [25]. Since then to present, the development in optical networks has undergone two 

main phases: Phase one is related to the transmission where the optical fibre is used only to transmit 

huge traffic in peer to peer fashion while the routing and switching are electronic devices 

responsibility. That was the era of Synchronous Optical Networks (SONET) and Synchronous 

Digital Hierarchy (SDH) [26].  

 

Phase two has witnessed the revolution with the introduction of multiplexing techniques such as 

Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), Code Division 

Multiplexing (CDM), and Wavelength Division Multiplexing (WDM) [26].  TDM specifies time 

slots for users to transmit data over a single communication channel with fixed bit rate as shown 
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in Figure 2-1 [27]. This technique helps to utilise all the available bandwidth but users’ data may 

be delayed depending on the time slot window.  

               Multiplexer           Demultiplexer

T1

T2

T3

T2
T1

T3

Time Slot 1

               Multiplexer           Demultiplexer

T1

T2

T3

T2
T1

T3

Time Slot 1

T2 T3T1 T2 T3T1

Figure 2-1: Time division multiplexing (TDM). 

FDM [28] divides the total bandwidth of the system into different sub-channels without 

overlapping and this technique is useful when transmitting different requests at the same time but 

at a lower bit rate per request as shown in Figure 2-2. 

WDM [26, 29, 30] is a technique that enables multiple data stream to be sent on multiple 

wavelengths as shown in Figure 2-3. In WDM, the spectrum of the transmitted signals is divided 

into a number of non-overlapping wavelengths (or frequency) slots, with each wavelength serving 
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a specific communication channel operating at maximum electronic speed, and this allows the 

huge bandwidth of optical fibre to be utilised [30].  

Figure 2-2: Frequency division multiplexing (FDM). 
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Figure 2-3: Wavelength division multiplexing (WDM). 
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2.2 WDM Switching Technology 

Basically, there are four types of switching technology in WDM networks which are Optical 

Circuit Switching (OCS), Optical Packet Switching (OPS), Optical Burst Switching (OBS), and 

Optical Label Switching (OLS). 

 

2.2.1 Optical circuit switching (OCS) 

OCS can be defined as a source-destination permanent connection. Each connection requires 

dedicated path or a guaranteed amount of bandwidth and a wavelength all time [31, 32]. 

The sum of the bandwidth of all connections should be less or equal to the total link bandwidth. 

Before a source starts sending data to a destination, a Routing and Wavelength Assignment [26] 

algorithm, [31] assigns specific wavelengths and route to the lightpath. 

 

The pros of OCS lie in assigning dedicated wavelengths during the transmission process, which is 

useful in terms of reliability and security for real-time applications. While the cons of this 

technique lie in utilising a portion of the total bandwidth which means that the remaining 

bandwidth is useless until the circuit is released. Moreover, there is delay in establishing the 

connection before the transmission process, which might be inappropriate for delay-sensitive 

applications.   

 

2.2.2 Optical packet switching (OPS) 

OPS is a technique in which different data segments from different users can share the same 

wavelength and there is no wavelength reservation and no wasted connection capacity. OPS can 

be divided into two types: synchronous and asynchronous. The size of packets in the synchronous 
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approach are fixed and each packet should contain synchronisation bits. While in the asynchronous 

technique the size of packets is flexible with no synchronisation clock required between sender 

and receiver [26, 33, 34]. The first approach is used for delay sensitive applications while the 

second one is not. 

 

2.2.3 Optical burst switching (OBS) 

Traffic in the optical network is greatly increasing and this requires very fast switching in the order 

of few nanoseconds [33, 35, 36]. OBS combines the merits of both OCS and OPS and may be 

efficient as it first does not need packet switching buffering but it may also not utilise the whole 

wavelength band resulting in wastage.  OBS includes two packets, control packet, and data burst 

packet. The control packet is used to establish the path for the data burst. This is done by sending 

this packet along the route to the destination node. It is processed electronically at the core network 

nodes to decide a specific route for each data burst packet. The ingress OBS node then gathers 

these data burst packets, which have different size and sends them to the destination as shown in 

Figure 2-4.  

 

Figure 2-4: Optical burst switching network. 
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2.2.4 Optical label switching (OLS) [16] 

OLS combines the benefits of optical burst switching OBS and optical packet switching OPS and 

overcomes their disadvantages [37-39]. It can hold-up both packets and bursts by assigning 

different labels for each of them. Before sending data, OLS ensures a lightpath between source 

and destination is established. This is done by sending a signal to the control layer to establish a 

Label Switching Path (LSP). Generally, all packets carrying the same label should be transmitted 

through the same LSP. When a packet passes through intermediate switching nodes and reaches 

the edge router, it is assigned a new label by this router according to the labels stored in the router 

using the forwarding labels table. The packets with new labels are forwarded to their destinations 

according to the label forwarding table. 

 

2.3 IP over WDM 

The IP over WDM network is comprised of two layers the IP layer and the optical layer as shown 

in Figure 2-5. The IP layer consists of a core IP router connected to an optical switch. The IP router 

aggregates data traffic from low-end access routers. The optical layer provides the needed huge 

capacity and bandwidth for the communications between IP routers [40]. Optical switches are 

connected to physical fibre links, and each link may contain multiple fibre strands. Each fibre is 

supplemented by: pair of wavelength multiplexer/demultiplexers required to 

multiplex/demultiplex wavelengths; transponders that can provide optical/electrical/optical (OEO) 

conversion and hence also full wavelength conversion at each core node; and, for long distance 

transmission, Erbium Doped Fiber Amplifiers (EDFAs) are used to amplify the optical signal. An 

automatically controllable optical cross-connect (OXC) switch is used as the core optical switch 

box or a dumb optical patch panel can be used instead [25, 41]. 
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Figure 2-5: IP over WDM network. 

IP over WDM networks can be realised in two ways: Lightpath non-bypass and lightpath bypass. 

Considering lightpath non-bypass, the lightpath must be dropped at each intermediate node and all 

the data carried by a lightpath must be processed and forwarded by all IP routers on its path to the 

destination node. In contrast, the lightpath bypass approach uses a cut-through lightpath, where a 

lightpath directly bypasses intermediate nodes. Only destination node IP router processes the 

lightpath data. This requires the optical nodes to have intelligence to bypass lightpaths destined to 

other nodes. The implementation of lightpath bypass however has the advantage of introducing a 

significant reduction in the number of working IP router ports [42, 43]. The communications 

between core routers are directly over lightpaths, where each lightpath joins a pair of router ports, 
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and lightpaths are considered virtual links for the IP layer.  IP routers play a major role in the total 

energy consumption in an IP over WDM transport network. Thus, minimising the required number 

of IP router ports can potentially maximise the energy consumption saving in an IP over WDM 

network [42, 43].  

 

2.4 Energy-Efficiency in Optical Networks 

2.4.1 Introduction 

Today, most of the energy need is being provided by traditional energy sources, such as 

hydrocarbon energy sources. According to [3], about 85 percent of the primary energy of USA’s 

electricity is provided using this source, however, this energy is not renewable, and its use is 

expected to be finally minimised. Also, large amounts of Green House Gases (GHG), the main 

reason for Global Warming, are emitted because of the combustion of hydrocarbon materials. 

Thus, hydrocarbon energy sources utilisation should be minimised. If traditional energy sources 

such as coal or natural gas are used, a network component that consumes 1 kWh of such traditional 

electrical energy emits approximately 228 grams of CO2 to nature [4]. The latest report of 

SMARTer2030 estimates that the ICT emissions could be reaching 1.25Gt CO2e in 2030 or 1.97% 

of global emissions [44] 

 

In order to address this important problem, mutual responsibility requires both network operators 

and system vendors, alike, to corporate in order to reduce the carbon footprint and reduce the 

environmental impact of communication networks [45]. In [4], the use of renewable energy has 

been proposed to reduce the CO2 emissions at a given energy consumption level. A Linear 

Programming (LP) model was also developed for energy minimisation in the network when 



 
 

21 

 

renewable energy is used and a novel heuristic was proposed for improving renewable energy 

utilisation. While the routing in the electronic layer consumes a large amount of power, routing in 

the optical layer coupled with renewable energy nodes significantly reduces the CO2 emission of 

the IP over WDM network considered by 47% to 52%, and the new heuristic introduced hardly 

affects the QoS. Secondly, in many science and technology areas, energy-aware ICT solutions are 

being proposed [43], low-energy equipment and components are being developed, not only to 

decrease the energy cost but also to help save our environment [3].  

 

For example, if 1kW non-renewable power consumption can be eliminated by changing the 

network design, then a significant reduction, about 2 tons, in CO2 emission may be achieved every 

year. As a family vehicle typically emits 150 g/km of CO2; therefore, in a year a 1 kW router port 

emits CO2 amount approximately equivalent to 13 k journeys in a family vehicle. It was shown 

that ICT is one of the most promising areas for exploring energy conservation. 

 

2.4.2 Power consumption problem and energy efficiency solutions 

So far, the main research focus in ICT was to achieve higher data rates, without much consideration 

of energy efficiency. However, one of the main drawbacks of many of these new techniques is that 

these approaches significantly increase system complexity and energy consumption [46]. 

Although, the power consumption of ICT networks can be reduced on one of three levels, namely 

circuit, equipment and network level; a combination of approaches can be used. For example, 

energy efficiency approaches can be implemented at the equipment level, i.e. energy-efficient 

components, as well as at the network level, ie energy-efficient routing and traffic grooming, in 

the network at the same time [47].  To reduce the networks power consumption, various methods 
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and approaches have been proposed and investigated comprehensively. At the circuit level, for 

example; components are being designed such that their core processors and electronic modules 

work and are managed at very low operational power. On the transmission side, the deployment 

of Long-reach WDM transceivers and low attenuation low-dispersion fibers increases the 

transmission efficiency effectively, whereas at the system level, sleep-wake cycles can effectively 

be used in power saving in various network equipment [48]. In the following sections, the energy 

minimisation in the different network levels is being discussed. 

 

2.5 Energy Minimisation in Core Networks 

Energy consumption in core networks is primary due to data transmitters and switching equipment 

such as transponders, OXC (Optical Cross Connects), EDFAs (Erbium Doped Fibre Amplifiers), 

and routers. The energy consumed in core networks is large [3], and the percentage of the total 

network power consumption that the core network is responsible for is expected to increase 

significantly with the growing demand for data-intensive applications from the Internet. Therefore, 

power consumption in backbone networks has received increased attention. In addition, heat 

dissipation has attracted increased attraction.  

 

Due to the fact that power consumption of the backbone network is often limited to a few locations, 

minimising the power consumption of the IP over wavelength-division-multiplexing (WDM) 

backbone network is essential [43]. For present and future Internet, WDM networks will continue 

to be employed as they are able to provide a huge amount of bandwidth. The formation of the 

backbone networks relies on the use of these networks in a large scale [2]. The invention of OXC 

nodes, which can switch the wavelengths completely in the optical domain, has enabled new 
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dynamic optical capabilities in WDM extending the use and utility of WDM into the future. A 

future promising technique for managing the increased power consumption in the core network is 

Optical bypass [49]. Processes like traffic engineering or power consumption minimisation in 

optical-to-electrical-to-optical conversion by optically bypassing the energy exhausting nodes in 

the network can be deployed to reduce the network power consumption. In [48] a dynamic routing 

protocol has been proposed which minimises the power consumption in the core optical WDM 

network. 

 

As WDM optical networks have the ability to route each optical circuit, i.e. lightpath, on a 

dedicated wavelength passing a series of optical fibre links from source to destination without the 

need for intermediate data processing, the deployment of optical technologies based on WDM 

continues to be one of the promising techniques to reduce core networks energy consumption. The 

use of WDM based optical core networks significantly reduces the need for 

optical/electronic/optical (OEO) conversions, and hence the extra power consumption in the 

optoelectronic devices. 

Consequently, in the past few years, the energy efficiency of the transport layer of IP/WDM 

networks has received increased research attention [50].  

 

Mixed integer linear programming (MILP), models have been built to study the optimisation of 

core networks to minimise the embodied energy and the operational energy of networks. Two 

approaches have been investigated for energy efficiency in core content distribution networks: data 

compression in optical networks and locality in P2P networks [51].  The physical topology of IP 

over WDM networks has been optimised considering the embodied energy of the network devices 
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in addition to the operational energy and it has been compared to optimising the physical topology 

considering operational energy only. In addition, investigations have been carried out for the power 

consumption savings achieved by optimising the data compression ratio of traffic demands in 

IP/WDM networks. Moreover, the energy consumption of BitTorrent, the most popular P2P 

content distribution protocol, has been compared to client/server (C/S) systems over IP over WDM 

networks. 

 

Generally, in the past, energy efficiency has received little attention by network architects and 

operators. With the increase in energy prices and environmental concerns, energy-efficiency has 

become a significant design metric in recent research efforts. The current research approaches to 

reduce core networks energy consumption can be summarised in four categories: (1) selectively 

turning off network elements, (2) energy-efficient network design, (3) energy-efficient IP packet 

forwarding, and (4) green routing [3]. 

 

2.5.1 Selectively turning off network elements  

This approach aims to save energy in the core network by selectively switching off idle network 

components during low load periods as in [52], for example during the night, while adjusting the 

network vital and essential functions which enable it to serve the remaining traffic. 

 

As mentioned in [3], node turn off can be executed in the following situations (i) at the node idle 

time, i.e. when it is totally unused, (ii) when the traffic passing the node goes below a given 

threshold, the remaining traffic routing responsibility is left to upper layers, and (iii) after 

proactively rerouting the traffic along other routes, in order to avoid traffic loss and disruptions.  
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The above-mentioned approaches add extra burdens in addition to control, management, and 

operation of the network. Regarding the first approach, it requires no or minimal additional 

network control and the second only requires gathering congestion information, while the third 

approach can be applied only in a network that has some form of automatic provisioning and/or 

adaptive provisioning in place.  

 

On one hand, links can be switched off in the same manner, i.e. when there is no traffic passing 

through them, or when traffic goes below a specific level, or if it is possible to perform traffic 

rerouting.  A drawback to this approach is that most of the core network components, 

unfortunately, cannot be shut down without affecting the overall network performance. So, to 

perform this approach it is important to evaluate it carefully under QoS and connectivity 

constraints, as shutting off a core node requires rerouting of the connection and this may cause 

congestion or the traffic may be routed over a longer route which is unacceptable for different 

reasons as it may cause extra delay. 

 

2.5.2 Energy-efficient network design 

The second proposed solution to achieve energy efficiency, [49], is the possibility of devising 

energy efficient network components and architectures. For instance, an IP/WDM network design, 

where the IP routers, EDFAs, and transponders energy consumption is minimised jointly, is found 

to have a significant impact on network energy efficiency.  In [53], heuristics have been proposed 

to minimise the energy consumption of the network. The IP/WDM implementation has been 

considered in two ways, non-bypass and bypass. As mentioned above, the results in the literature 

show that lightpath bypass achieves higher energy saving compared to non-bypass, relying on the 
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fact that in lightpath-bypass the number of IP routers can be decreased. The power consumption 

of routers, EDFAs, and transponders has been measured and reported in [54]. It was showed that 

the total power consumption of routers is much more than that of EDFAs and transponders in 

IP/WDM networks. 

 

Furthermore, in order to reduce the IP layer energy consumption, energy-aware packet switching 

has been proposed in [48] and [55]. It was showed that the main parameter that affects the power 

consumption in the router is the IP packet size. In general, there is an inverse relationship between 

packet size and router power consumption, i.e. the smaller the IP packet the higher the energy 

consumed by the router. This is attributed to the small ratio of payload to header size in small 

packets. Therefore, small packets call for frequent routing table look up, path computation and 

processing in general in routers [49]. As a result, by optimising the data packet size a new energy 

efficient routing paradigm for IP packets can be achieved.  On the other hand, there exists a 

relationship between packet switching delay and energy-efficient IP packet forwarding. So, 

another energy efficient IP packet switching mechanism is being evaluated, namely pipeline 

forwarding. This approach is a time-based IP packet switching scheme. In this scheme, energy 

efficient IP packet switching is carried out along all the path to the network edges [56]. 

 

2.5.3 Green routing  

The final solution considered here is the energy-aware routing (green routing) scheme which has 

been proposed in [57] as a novel routing scheme in core networks. In this scheme, the network 

energy consumption is considered as the design optimisation objective. Several other energy-

aware routing schemes have been proposed, for example, an energy-aware routing scheme, which 
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considers line card/chassis reconfiguration in IP routers. Comparing this scheme to the traditional 

shortest path or non-energy-aware routing scheme, significant energy saving is obtained [58]. Due 

to the fact that line cards and chassis are essential energy consuming components in the core 

network and in traditional routing schemes, and the fact that they are not configured to utilise 

energy efficiently, the energy saving of this energy-aware scheme was remarkable. 

 

In addition, in the future energy efficient routing needs to be dynamic such that the traffic rerouting 

and the energy saving are done according to traffic variation. However, recent research has raised 

a concern that with current ever increased demand for the Internet and ICT services and products, 

the increase in energy efficiency is not able to counter the current huge growth in the deployment 

of new services and applications. 

 

2.6 Linear Programming  

The recent development of linear programming is attributed to World War II when a system that 

can maximise the efficiency of available resource was highly required and was of utmost 

importance [59]. Linear programming has been considered as one of the most important scientific 

achievements in the mid-20th century as it has had a very remarkable impact on all society sectors 

since 1950. Nowadays linear programming is saving thousands or millions of dollars for most 

companies and businesses. 

 

2.7  Linear Programming Capabilities  

The most common type of problems that linear programming can solve is the general problem that 

involves the allocation of limited resources in the best (or optimal) way to achieve the goal of 
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gaining maximum profit or minimum cost. The range of activities that this definition can be applied 

to is diverse indeed, ranging from allocating production facilities to products to the national 

resource allocation to domestic needs, from portfolio selection to shipping patterns selection, from 

agricultural planning to computerised and networked systems designing, and so on [60].  

 

Linear programming uses mathematical modeling to characterise the problem under consideration. 

As the name implies, all the mathematical functions in the model have to be linear functions and 

the word programming was a military term that is a synonym to the word ‘planning’ of schedules 

efficiently or deploying men optimally and does not refer to computer programming. Thus, linear 

programming refers to the planning of activities to gain optimal results that achieve the specified 

goal among all feasible alternative results. In addition to the most common application of 

allocating resources, linear programming has numerous important applications. Any programme 

whose mathematical model fits the very general linear programming format is a linear program as 

well [59]. 

 

2.8 A Linear Program General Form 

A linear program consists of two parts. The first part is the expression being optimised, which is 

called the objective function. This function must be optimised under the restriction of a given set 

of constraints. The second part is the variables 𝑥ଵ, 𝑥ଶ  … 𝑥௡ , which are called decision variables, 

and their values are subject to 𝑚 +  1 constraints, every equation ending with a 𝑏௜, in the example 

below, plus the non-negative equation. A point consists of a set of 𝑥ଵ, 𝑥ଶ  … 𝑥௡ satisfying all the 

constraints is called a feasible point and the set of all such points is called the feasible region. Thus, 

the solution of a linear program must be a point in this feasible region and any other solution 
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outside this region does not satisfy all the constraints [61]. An example of a linear programme is 

given below: 

Objective Function:    

Minimise        𝑐ଵ𝑥ଵ + 𝑐ଶ𝑥ଶ  + . . . . +𝑐௡𝑥௡ = z                  

Subject to:      𝑎ଵଵ 𝑥ଵ +  𝑎ଵଶ 𝑥ଶ + . . . . + 𝑎ଵ௡ 𝑥௡ = 𝑏ଵ 

                        𝑎ଶଵ 𝑥ଵ +  𝑎ଶଶ 𝑥ଶ + . . . . + 𝑎ଶ௡ 𝑥௡ = 𝑏ଶ 

                           ⋮                ⋮                          ⋮           ⋮ 

                          𝑎௠ଵ 𝑥ଵ +  𝑎௠ଶ 𝑥ଶ + . . . . + 𝑎௠௡ 𝑥௡ = 𝑏௠ 

                          𝑥ଵ        ,            𝑥ଶ ,   .  .  .  .  ,          𝑥௡   ≥   0 

 

2.9 Simplex Optimisation 

In 1947, the Simplex method of optimisation was developed by George Dantzig, a member of the 

U.S. Air Force, in order to provide an efficient algorithm for solving linear programming problems 

of enormous size [59].  

 

The simplex method is a mathematical procedure that uses iterations to improve the solution at 

each step and when there is no possibility of further improvement, the procedure stops. The 

procedure starts with a random vertex of the objective function and repeatedly tries to find a new 

vertex value which improves the solution compared to its predecessor.  The search continues till 

the best result, which cannot be improved any more, is obtained. The solution of a linear program 

is accomplished in two steps. In the first step, known as Phase I, a starting extreme point is found. 

Depending on the nature of the program this may be trivial, but in general it can be solved by 

applying the simplex algorithm to a modified version of the original program. The possible results 
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of Phase I are either that a basic feasible solution is found or that the feasible region is empty. In 

the latter case the linear program is called infeasible. In the second step, Phase II, the simplex 

algorithm is applied using the basic feasible solution found in Phase I as a starting point. The 

possible results from Phase II are either an optimum basic feasible solution or an infinite edge on 

which the objective function is unbounded below [62]. The Simplex method is based on the 

following property: If the objective function, z, does not take the max value in the A vertex, then 

there is an edge starting at A, along which the value of the function grows [63]. 

 

2.10 Adapting Model to the Simplex Method [63] 

The following points must be taken into consideration to set a linear programming model in the 

standard form: 

 The objective must be maximising or minimising the function. 

 All restrictions must be equal. 

 All variables are not negative. 

 The independent terms are not negative. 

The non-negativity condition can be achieved by adding slack variables, for example: 

Given the linear program: 

            Maximise:                     − 𝑥ଵ + 3 𝑥ଶ − 3 𝑥ଷ  

            Subject to:                      3 𝑥ଵ   −     𝑥ଶ − 2 𝑥ଷ ≤ 7  

                                                 −2 𝑥ଵ   − 4 𝑥ଶ + 4 𝑥ଷ ≤ 3 

                                                           𝑥ଵ                    − 2 𝑥ଷ ≤ 4  

                                                        −2 𝑥ଵ  +  2 𝑥ଶ +    𝑥ଷ ≤ 8  
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                                                            3 𝑥ଵ                             ≤ 5  

                                                                               𝑥ଵ, 𝑥ଶ, 𝑥ଷ ≥ 0  

By adding the Slack variables, we get: 

            Maximise:      𝛿  =          − 𝑥ଵ + 3 𝑥ଶ − 3 𝑥ଷ  

            Subject to:     𝑤ଵ = 7 −  3 𝑥ଵ  −   𝑥ଶ − 2 𝑥ଷ  

                                   𝑤ଶ = 3 +  2 𝑥ଵ +  4𝑥ଶ − 4 𝑥ଷ              

                                        𝑤ଷ = 4 −   𝑥ଵ               + 2 𝑥ଷ  

                                    𝑤ସ = 8 − 2 𝑥ଵ − 2 𝑥ଶ −   𝑥ଷ 

                                    𝑤ହ = 5 −  3 𝑥ଵ  

                                         𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑤ଵ,  𝑤ଶ,  𝑤ଷ,  𝑤ସ,  𝑤ହ ≥ 0  

 

2.11 Network Design Problems with Linear Programming  

Linear programming in computer networks is very popular and is considered a very efficient 

design tool. Below are illustrative simple numerical examples that represent some network design 

problems [64]. Network design problems can be formally formulated using mathematical 

notations. A good mathematical notation can represent a specific design problem in a compact and 

clear way and it simplifies the understanding of the given design problem. Furthermore, network 

design problems can be presented in two ways: link-path formulation and node-link formulation. 

 

2.11.1 Link-path formulation 

Let us consider a simple network consisting of three nodes where each node is connected to the 

other two nodes, i.e., the network topology looks like a triangle, see Figure 2-6. Given the node, 
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link, path, demand, demand path-flow variables, Constraints, and the objective function are 

defined in  [64]. 
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(a) Path:1-2-3

Path:2-3

Path:1-3-2

Path:2-1-3

Path:1-2

Path:1-3

(b)

 

Figure 2-6: (a) A three node network example (b) All possible paths for the three-node example.  

 

2.11.1.1 Network flow example in link-path formulation 

Example description: 

Suppose that the demand volume between nodes 1 and 2 is 5, between nodes 1 and 3 is 7, and 

between nodes 2 and 3 is 8 (units), and the demand is assumed to be bi-directional. 

ĥ12 = 5,   ĥ13  = 7,  ĥ23  = 8 

The demand volume for the given network for a pair of nodes can be routed over two paths. For 

instance, the demand pair with end nodes 1 and 2, its demand volume is routed over the direct-link 

route 1-2 and the alternate route 1-3-2 via node 3 as shown in Figure 2-6-b. So, if we use 𝑥ො with an 
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appropriate subscript identifier to denote the unknown demand path-flow variables, then for 

demand pair (1,2), we can write: 

𝑥ොଵଶ +  𝑥ොଵଷଶ = 5 (=ĥ12) 

In any communication system, the total link load must not exceed the total link capacity. Thus, we 

have the following inequality for link 1-2: 

𝑥ොଵଶ +  𝑥ොଵଶଷ + 𝑥ොଶଵଷ ≤ Ĉ12 

In this example, we assume that the capacity of the first two links is 10 and the third is 15 (units); 

thus:  Ĉ12 = Ĉ13 = 10,   Ĉ23 = 15 

Suppose the goal of this example is to minimise the total routing cost. Assuming that the cost of 

routing one unit of flow on every link along its path is simply set to 1, the total routing cost for 

all the flow variables is: 

𝑭 = 𝑥ොଵଶ + 2𝑥ොଵଷଶ + 𝑥ොଵଷ + 2𝑥ොଵଶଷ + 𝑥ොଶଷ + 2𝑥ොଶଵଷ 

Put all together: 

Minimise:          𝑭 = 𝑥ොଵଶ + 2𝑥ොଵଷଶ + 𝑥ොଵଷ + 2𝑥ොଵଶଷ +  𝑥ොଶଷ + 2𝑥ොଶଵଷ 

Subject to: 
 

𝑥ොଵଶ + 𝑥ොଵଷଶ     = 5 

  𝑥ොଵଷ + 𝑥ොଵଶଷ   = 7 

    + 𝑥ොଶଷ + 𝑥ොଶଵଷ = 8 

𝑥ොଵଶ   + 𝑥ොଵଶଷ  + 𝑥ොଶଵଷ ≤ 10 

 𝑥ොଵଷଶ + 𝑥ොଵଷ   + 𝑥ොଶଵଷ ≤ 10 

 𝑥ොଵଷଶ  + 𝑥ොଵଶଷ + 𝑥ොଶଷ  ≤ 15 

𝑥ොଵଶ, 𝑥ොଵଷଶ, 𝑥ොଵଷ, 𝑥ොଵଶଷ, 𝑥ොଶଷ, 𝑥ොଶଵଷ ≥ 0  
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Optimal solution/optimal cost is: 

𝑥ොଵଶ
∗ = 5,          𝑥ොଵଷ

∗ = 7,          𝑥ොଶଷ
∗ = 8,          𝐹∗ = 20. 

 

2.11.2 Node-link formulation 

The notions of link and path was used in the mathematical formulation presented in the previous 

network optimisation problem example. However, there is still another way to represent the same 

problem. Consider directed demands on directed links and fixed demand pairs and fixed nodes. 

Here we considered the total link flow for a specific demand on each link, which is zero for most 

links. Now from the point of view of a fixed node which is not the destination or the end node of 

the considered demand, called transit or an intermediate node, the flows come into this node on 

the incoming links and go out on its outgoing links un-altered, provided the node is not the source 

node or the destination node of the demand. This is called flow conservation law which is described 

in  Figure 2-7. 

 

Figure 2-7: Demand flow view between nodes 1 and 2. 

 link flow: traffic of one demand on each link 

 flow conservation: Source, Destination, Transit node. 

ĥ12 

  𝑥෤ଵଷ,ଵଶ 

  𝑥෤ଵଶ,ଵଶ 

  𝑥෤ଷଶ,ଵଶ   𝑥෤ଵଷ,ଵଶ 

3` 

  𝑥෤ଷଶ,ଵଶ 

ĥ12 

  𝑥෤ଵଶ,ଵଶ 
1` 2` 
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2.11.2.1 Optimisation in node-link formulation example 

If we consider demand (1:2) and according to the flow conservation law, with the use of the 

convention that anything entering the node is negative and anything leaving is positive, we may 

write the following equation for node 1: 

−ĥ12 −𝑥෤ଶଵ,ଵଶ − 𝑥෤ଷଵ,ଵଶ +   𝑥෤ଵଶ,ଵଶ +   𝑥෤ଵଷ,ଵଶ = 0 

It is important to consider that for each undirected link, one of its two flows is always equal to 0. 

This is because what really matters is the net flow on a link, which means: 

ĥ12 −𝑥෤ଵଶ,ଵଶ − 𝑥෤ଷଶ,ଵଶ +   𝑥෤ଶଵ,ଵଶ +   𝑥෤ଶଷ,ଵଶ = 0 

Making use of the above observations we can write the set of flow conservation equations for 

demand (1:2) as: 

𝑥෤ଵଶ,ଵଶ + 𝑥෤ଵଷ,ଵଶ                                           =      ĥ12 

−𝑥෤ଵଷ,ଵଶ        + 𝑥෤ଷଶ,ଵଶ                     =       0 

−𝑥෤ଵଶ,ଵଶ                    − 𝑥෤ଷଶ,ଵଶ                     =  −ĥ12 

If we now consider the demand (1:3) from node 1 to node 3, and demand (2:3) from node 2 to 

node 3, we obtain the following equalities: 

𝑥෤ଵଶ,ଵଷ + 𝑥෤ଵଷ,ଵଷ                             =      ĥ13 

−𝑥෤ଵଶ,ଵଷ                    + 𝑥෤ଶଷ,ଵଷ          =       0 

−𝑥෤ଵଷ,ଵଷ − 𝑥෤ଶଷ,ଵଷ          =   − ĥ13 

𝑥෤ଶଵ,ଶଷ + 𝑥෤ଶଷ,ଶଷ =   ĥ23 

−𝑥෤ଶଵ,ଶଷ + 𝑥෤ଵଷ,ଶଷ =   0 

−𝑥෤ଵଷ,ଶଷ + 𝑥෤ଶଷ,ଶଷ = −ĥ23 
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Finally, considering the links, the sum of all flows routed on a link must not exceed its capacity, 

which leads to a new set of (capacity) constraints. For example, for link 1→2 the capacity 

constraint is:  

𝑥෤ଵଶ,ଵଶ + 𝑥෤ଵଶ,ଵଷ ≤Ĉ12 

On the other hand, for link 1→3, we have the following capacity constraint: 

𝑥෤ଵଷ,ଵଶ + 𝑥෤ଵଷ,ଵଷ + 𝑥෤ଵଷ,ଶଷ ≤Ĉ32 

In the same manner, the capacity constraints for the other links in the network can be formulated. 

Putting everything together along with the objective function, and eliminating those arc flow 

variables which are assumed to be equal to 0, we get the following formulation: 

Minimise: 

𝑭 = 𝑥෤ଵଶ,ଵଶ + 𝑥෤ଵଷ,ଵଶ + 𝑥෤ଷଶ,ଵଶ + 𝑥෤ଵଶ,ଵଷ + 𝑥෤ଵଷ,ଵଷ − 𝑥෤ଶଷ,ଵଷ + 𝑥෤ଶଵ,ଶଷ − 𝑥෤ଵଷ,ଶଷ + 𝑥෤ଶଷ,ଶଷ 

Subject to: 

𝑥෤ଵଶ,ଵଶ +𝑥෤ଵଷ,ଵଶ        = −ĥ12 

 −𝑥෤ଵଷ,ଵଶ +𝑥෤ଷଶ,ଵଶ       = 0 

−𝑥෤ଵଶ,ଵଶ  −𝑥෤ଷଶ,ଵଶ       = ĥ12 

   𝑥෤ଵଶ,ଵଷ +𝑥෤ଵଷ,ଵଷ     = ĥ13 

   −𝑥෤ଵଶ,ଵଷ  +𝑥෤ଶଷ,ଵଷ    = 0 

    −𝑥෤ଵଷ,ଵଷ −𝑥෤ଶଷ,ଵଷ    = −ĥ13 

      𝑥෤ଶଵ,ଶଷ  +𝑥෤ଶଷ,ଶଷ = −ĥ23 

      −𝑥෤ଶଵ,ଶଷ +𝑥෤ଵଷ,ଶଷ  = 0 

       −𝑥෤ଵଷ,ଶଷ −𝑥෤ଶଷ,ଶଷ = ĥ23 
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2.12 Summary 

This chapter presented an overview of optical networks, and the evolution of the optical networks, 

as well as a general overview of the WDM switching technologies. It also considered special 

attention to the IP over WDM networks and reviewed the main work done in the literature on the 

energy efficiency of the optical core networks, such as green routing and energy efficient network 

design. This chapter also presented an overview of the linear programming and showed its general 

form as well as its capabilities. Furthermore, it presented the Simplex method of optimisation as 

an efficient algorithm for solving linear programming problems, and highlighted the main points 

that must be taken into consideration to set a linear programming model. Finally, this chapter 

showed network design problems with linear programming and provided illustrative examples. 

 

 

 

  

𝑥෤ଵଶ,ଵଶ   +𝑥෤ଵଶ,ଵଷ      ≤ Ĉ12 

      𝑥෤ଶଵ,ଶଷ   ≤ Ĉ21 

 𝑥෤ଵଷ,ଵଶ   +𝑥෤ଵଷ,ଵଷ   +𝑥෤ଵଷ,ଶଷ  ≤ Ĉ13 

     𝑥෤ଶଷ,ଵଷ   +𝑥෤ଶଷ,ଶଷ ≤ Ĉ23 

  𝑥෤ଶଷ,ଵଶ       ≤ Ĉ32 
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Chapter 3 Energy Efficient Big Data Networks 

3.1 Understanding Big Data 

The term Big Data refers to the large-scale data sets collected from everywhere that are very 

complex and complicated, which became a problem for traditional data processing technologies. 

This immense amount of data brings the challenge of how, where, and when to handle, process, 

analyse, store, and transfer Big Data [65].  Big Data can be defined as “datasets whose size is 

beyond the ability of typical database software tools to capture, store, manage, and analyse.”[66]. 

  

3.1.1 Big data sources [67] 

A huge amount of information comes from various sources in Big Data environments. Each one 

of the high-level categories of Process-mediated, Machine-generated, and Human-sourced 

information has different type data source. Five of the eleven various data types, outlined in Figure 

3-1, are representing the Machine-generating category. Two of them which are Application 

Servers log information and Network Activity and Research Information has a significant 

contribution to Big Data environments. This is because they can be considered as the backbone to 

provide a reliable access to cloud-based environments, beside supporting access to the external 

and internal data centres.   

 

The other three types that represent a considerable contribution to the Big Data environments are 

Click-Stream information from the online applications and mobile apps, Geo-location 

information from mobile devices and telematics, and Sensors information from telematics and 

manufacturing machinery.  Examples of these data sources can be seen in XML and JSON formats 
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and can be described as a multi-structured format.  Three main data sources are associated with 

Process-mediated data in Big Data environments which are Operational Application Data such 

as point of sale, customer care, and supply chain, External Augmentation Data such as 

demographic or psychographic, and Curated Business Information such as a single version of 

truth customer or product information.  Relation structured format is the general structure for each 

one of these types.  

 

Human-sourced information is generated from four data sources. The top one that generates a 

huge amount of data in Big Data environments is Human generated documents such as emails 

and applications form documents. According to [68], there are more than 210 billion emails sent 

in a single day. The second type is Social Media data (e.g., Twitter, Facebook, Forum, Blogs, etc.). 

Image content such as pictures and videos come in the third place and finally, Audio information 

like streaming audio, call centre voice logs is the fourth type of Humana-sourced information 

sources. So, many researchers describe Big Data as “unstructured data” because of these four 

types. The reason is, for example, it is easy for people to read and recognise scanned images, 

forms, hand-writing documents while analysing such documents is difficult for the automated 

systems and database servers. Figure 3-1 illustrates big data sources. 

 

3.1.2 The main of characteristics big data  

Big Data is characterised by four main properties: volume, variety, velocity, and veracity as 

indicated in Figure 3-2 [69]. The need for extracting knowledge from Big Data has led to the 

creation of platforms that can process big data to deduce useful information insight from the huge 
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amount of data that has immense volume, a wide range of variety, different velocity, and a different 

ratio of veracity.   

 

Figure 3-1. Big data sources [67]. 

3.1.2.1 Volume 

By 2020, the foreseen amount of data that will be stored in the world is 35 Zettabyte (ZB), while 

the actual stored data was 800,000 Petabytes (PB) in the year 2000. Facebook processes more than 

500 Terabytes (TB) every single day [70]. More than 210 billion emails are sent every day [68]. 
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The daily Internet traffic is more than 2 Exabyte per second [71]. NASA data warehouse of Climate 

Change alone is projected to store more than 350 PB by 2030 [72]. The Square Kilometre Array 

is another project of NASA which opened in 2016 and streams 700TB/second of data from a single 

square kilometre.  

 

Figure 3-2: The four Vs of big data [69]. 

This amount of data is created from only three projects of NASA [72]. Many enterprises and 

scientific research generate hundreds of terabytes of data every hour during the year. The challenge 

of Big Data is that a lot of generated data nowadays is not analysed at all or addressed to extract 

insight. Figure 3-3 [65] shows that the amount of processed data is decreasing compared to the 

dramatic increase in the amount of data being generated. Massive data volumes need analysis, 
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management, and processing technologies, otherwise, organisations could be overwhelmed by the 

Big Data. 

 

Figure 3-3: Volume of data is increasing, while the percentage of data that can be processed is declining [65]. 

 

3.1.2.2 Variety [73]  

The new challenge that data centres should deal with is variety. Variety simply means all types of 

data. The boom in sensors industry, smart devices, and social networks technologies has led to 

dramatic increase in data volume and complexity. The complexity of data comes from not only 

traditional data as there are many unstructured, semistructured, and raw data sources that 

contribute a lot in increasing data complexity. Emails, sensors data, blogs, social media, forums, 

video and audio streaming, log files, search indexes, and more can make tradition database systems 

struggle to store, process and analyse to obtain the useful information being generated form such 

types of data since they are not related to the relational database technologies. The successful 
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organisation should be able to handle the variety of data which includes traditional and non-

traditional data such as text, video, audio, sensors data, etc.  

 

3.1.2.3 Velocity [73]  

The conventional definition of the velocity of data is that it is the speed of creating, collecting, 

archiving and storing all data types and how quickly can organisations manage all these together. 

That is true when enterprises were dealing with terabytes of data. Today things change: enterprises 

are dealing with petabytes and Zettabyte and will deal with Exabytes soon. The dramatic increase 

in the velocity and volume of data being created from streaming systems such RFID sensors had 

made it impossible to be handled by the traditional systems. This led to thinking differently when 

dealing with the velocity problem. A simple example of processing data in real time is GPS 

because it updates the location information frequently and this can give an accurate statistical 

picture of the number of people living now in a city in space and time. 

 

A new definition of velocity relates to data in motion and the speed at which the data is fluxing. 

Effective handling of Big Data requires analysis, in this case, while the data is flowing and not 

only after the data storage. This is because there is an immense amount of produced data which 

has a very short life cycle and this requires extracting the useful knowledge from Big Data in near 

real time. 

 

3.1.2.4 Veracity 

The veracity of Big Data is the most serious challenge to data scientists compared to volume and 

velocity since they need to distinguish between meaningful data and noise and meaningless / 
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inconsistent data [74]. Significant efforts are need to keep dirty data out from organisations 

databases. A key motivation here is that low quality of data is costing the U.S. economy $3.1 

trillion each year [74]. 

 

3.2 Hadoop-MapReduce: The Storage and Processing Platform for Big Data 

Map Reduce [75] is a software model used to perform certain processes on huge volumes of data 

such as word counting, text searching, sorting, merging etc. Two main tasks are performed in patch 

processing of the data sets: Computing and combining. Computing is the process of assigning a 

specific computational task on each record. It requires mapping an operation on each record. 

Combining is the process of consolidating and merging the output results from mapping processes. 

Having divided the large input volume data into many independent different Chunks, the Map task 

is executed in a parallel manner on each Chunk to produce intermediate key-value pairs. This 

intermediate data is grouped by performing shuffle processes and is served as input to the user 

Reduce function which is responsible for reducing/merging all these intermediate key-value pairs 

to produce the final associated key-value result.  

 

3.2.1 Hadoop-MapReduce  

Hadoop [76] framework is an open source Linux based platform written in Java and distributed 

under Apache License. The basic idea of Hadoop has come out from Google File System GFS [77] 

and Google MapReduce [75]. It operates under commodity hardware which is relatively 

inexpensive compared to special expensive hardware such RAID systems. Its high-level structure 

consists of two main parts to address Big Data challenges, the computational part which is a 

software programming framework called MapReduce that is responsible for analysing and 
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processing efficiently petabytes of data sets; and a storage part which is the Hadoop Distributed 

File System (HDFS). HDFS handles consistently an immense amount of data and transforms it to 

the user application at high bandwidth in a reliable way. The utility and efficiency of Hadoop 

comes from its capability of distributing both data processing and storage units across multiple 

hosts to perform and execute an efficient parallel segmentation, processing, and reassembly on the 

huge amount of data. Moreover, it has an effective redundancy technique that is able to overcome 

machine failure and recovers data automatically and immediately by performing automatic 

replication to user data [78]. 

 

3.2.2 Implementing Hadoop-MapReduce [79] 

Architecturally, Hadoop-MapReduce clusters consist of three major layers which control the 

parallel patch processing and computational units (i.e., the MapReduce framework), and the patch 

storage unit which is the HDFS. These three layers are Client machines layer, Master nodes layer, 

and Salve nodes layer as shown in Figure 3-4. The master layer includes servers that supervise two 

main functions: storing huge volumes of data in the HDFS and this job is done by a unit called 

Name Node; secondly, performing parallel processing for all HDFS data and this job is done by a 

node called Job Tracker that runs MapReduce. The slave layer consists of most cluster machines 

and is responsible for doing the hard work. In each slave machine of the small cluster, there are 

two major key elements that maintain the communication with the master layer: Data Node that 

handshakes, communicates, and receives orders from the Name Node; and Task Tracker that 

handshakes, communicates, and receives orders from Job Tracker. In medium and large clusters, 

the Task Tracker and the Data Node are separated. The Client machines layer is located above the 

master and slave layers. Hadoop platform is installed on the client. All Hadoop parameters such 
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as replication factor, cluster size, file size, number of mappers, number of reducers, etc. are 

configured by the user to draw the roadmap for the Hadoop cluster. Moreover, it is responsible for 

loading data into the cluster, and assigning MapReduce jobs, and how these data should be treated. 

Also, it observes and oversees the results that come out from the underlying layers.   

 

Figure 3-4: Hadoop MapReduce architecture. 

 
 Job Tracker and Task Tracker (MapReduce server) 

After finishing the process of loading the file and replicating the blocks related to that file, the 

client now signals the JobTracker to start the computation process. JobTracker consults the 

NameNode about the locations of these blocks in the DataNodes. Then it assigns a MapReduce 

task to all TaskTrackers running on those DataNodes. 
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Like DataNodes, TaskTracker heartbeats JobTracker informing the status of their Map task. 

Having finished each Map task, the results are stored locally and temporary in its node. This is 

called the intermediate or shuffle data. This data then is aggregated over the network to other nodes 

that execut Reduce tasks. Finally, the MapReduce task result is provided back to the client. 

 Replica and Rack Awareness 

When a block of an HDFS file is to be written into DataNode, it is replicated 3 times (if the user 

has configured the replication factor to be equal 3 which is the default Hadoop replication value) 

and is stored in a way that no DataNode in a specific rack has more than one copy of the same 

block of a file, and no more than two copies are stored in the other rack. The result is one replica 

in a rack, and two replicas are stored in two DataNodes in another rack. The strategy in copying 

the block from node to node in the same rack is done by the NameNode by sending a signal to one 

of the nodes to grab a copy of the block from the other node. This replication scenario is pipelined 

according to the minimum distance from the client. This is useful to improve the cluster 

performance by minimising the writing cost and maximising data protection in case of DataNode 

and/or in case the rack switch goes off for any reason such as power failure.  

 

3.3 Network Architecture Utilised by Big Data 

Typically, big data relies on a network architecture that compromises three network levels as 

shown in Figure 3-5. The access networks (User-Level) are directly connected to the end user 

devices and are responsible for collecting vast amounts of unprocessed data generated by many 

Internet-connected devices. Data centre networks (Destination-Level) are in charge of storing and 

processing big data using servers (up to 1 million servers are currently typical in a large data centre) 

that execute high performance parallel computational jobs such as MapReduce [75]. Aggregation 
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networks (Bridge-Level) act as a bridge that connects data sources with remote data centres. This 

intermediate level receives the large volumes of raw data from the access network and forwards it 

to the remote data centres which in turn send back the results of the processed big data to the users. 

In this section, we introduced the main challenges associated with big data networks and review 

technical solutions that aim to reduce the communication cost in big data networks. Then, we 

introduce recent work we carried out to improve energy efficiency in big data networks. 

 

Figure 3-5: The network architecture utilised by big data. 
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3.3.1 Challenges of big data processing  

Big data is currently generated at such high rate that a significant part of the data is not analysed 

at all or processed to extract insight. Recall Figure 3-3 that showed a decrease in the ratio of 

processed data to the overall huge volume of big data being created [65], and this results in: 

 Massive networking power wastage due to transmitting unprocessed data when in many cases 

there is no interest in the raw data, but only in the knowledge extracted from such data. In some 

cases, such knowledge is easy to extract, for example, events. 

 High financial cost due to resource wastage.  

 Wasting storage and other network resources such as bandwidth and physical equipment to 

store and deliver minimally analysed data. 

 

Managing massive data volumes calls for new processing and communications approaches. In 

addition, gathering and transmitting big data is exposing new challenges in how to efficiently and 

economically transport big data over the network with acceptable service quality while providing 

adequate processing and storage resources. For instance, medical sensor data must be transferred 

and processed in a very tight timeframe and the results have to be sent back to the hospital or 

patient wearable device as soon as possible before a health risk materialises. Such application-

level constraints impose even more challenges and hard trade-offs on the energy efficiency that 

can be attained from optimising big data processing and networking. 

 

The main challenge in terms of the volume of data is that the real interest is typically not in the 

data, but in the knowledge, that can be extracted from the data. Therefore, the challenge in terms 

of processing and networking lies in designing network architectures and algorithms that enable 
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the data to be processed as close to the source as possible to reduce its volume and transmit the 

lower volume “knowledge”, which we refer to as “Info” resulting in lower network resource 

requirements and lower power consumption. Consider for example heart rate monitoring. The 

resulting waveform can have a large volume when measured over a long period of time. The 

waveform hopefully indicates for years that the person is fine and therefore its transmission to 

emergency services or to data centres is redundant data. If the data is processed near the source, 

then a simple message made up of few bits of information (knowledge) can be sent either to 

indicate that the person is fine or that emergency services should be directed to the person’s 

location. To capture the range of possible applications, we considered different data reduction 

factors that relate the volume of the original data to the volume of the knowledge extracted, all 

measured in bits. 

 

3.4 Related Work: Networks and Big Data Processing Solutions 

The challenges highlighted in the previous section led researchers to think critically about feasible 

solutions to reduce big data communication costs, such as the cost of energy needed for data 

transfer and processing. For instance, possible questions related to the potential of processing a 

large part of the data locally at the User-Level, versus forwarding big data to the data centres for 

storing and processing.  

 

Alternatively, big data may be transferred and gradually processed in different intermediate nodes 

of the big data network. In the following sections, we review some of the recent approaches used 

to handle big data in access networks, optical core networks, and data centre networks. 
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3.4.1 Big data in social networks 

Extracting knowledge from big data in social networks requires intricate processing. Researchers 

are working extensively to develop efficient approaches that address such challenges. 

 

In [80], Z. Yun et al. proposed a comprehensive multi-dimension approach to extract knowledge 

from user behaviour data in social networks and two main big data characteristics were considered 

as their primary concern: Variety and Veracity. They covered comprehensively three main 

knowledge dimensions of data: Transactional dimensions such as sender, receiver, length, etc., 

Data Quality Dimensions such as timeliness, completeness, objective, reputation, readability, 

accessibility, etc., and Data effect dimensions such as emotions, valence, motive, intentions, 

incitement, etc. Also, they developed the hypergraph model which has already been applied in 

social tagging system and used it in social networks analytics.  

 

T. Wei et al. in [81] used personal ad-hoc clouds which involved individuals’ activities and 

behaviour in social networks to analyse social network-sourced Big Data. In [82], X. Han et al. 

developed a Big Data model than can be used in recommendation systems. The input to this model 

is the output of analysing social networks data using MapReduce.  In [23], Y. Chen et al analysed 

and compared two MapReduce traces obtained from Facebook and Yahoo!. They evaluated the 

cluster performance of these realistic workloads to present a useful tool for designing and 

managing MapReduce systems. This work was extended by Y. Chen et al in [83], to develop the 

Berkeley Energy Efficient MapReduce (BEEMR) workload manager which is motivated by the 

significant analysis of real-life large dataset traces at Facebook. 
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3.4.2 Big data in I/O environments 

In [84], P. DeMar et al. described the network research activities for Big Data at Fermilab. Also, 

they described the current R&D works and challenges of processing and movement across 100 GE 

wide-area networks of exascale datasets obtained from the Large Hadron Collider (LHC) Compact 

Muon Solenoid (CMS) experiments. Fermilab R&D experiments involve crucial work such as 

optimising system performance in the network I/O environments, improving application 

performance in the 100GE network, and monitoring and reconfiguring network path. S. U. Zai et 

al. developed in [85] a Multipath Transmission Control Protocol (MPTCP) that provides better 

throughput when dealing with Big Data application compared to the single path TCP. Also, they 

considered the Couple Congestion Control (CCC) with MPTCP to improve throughput. In [86], J. 

Liu et al. proposed an algorithm to reduce Big Data movement by segmenting, analysing, and 

reusing the same results which were obtained from different segments running similar tasks. A. 

Rajendran et al. presented results in [87], to maximise throughput in large-scale data movement 

through optimising and careful tuning of scientific applications and middleware. They discussed 

in detail the performance of data transfer at 100 Gbps speed and 53 ms latency. Furthermore, they 

measured the performance of both applications of High Energy Physics (HEP) and data transfer 

middleware (GridFTP, Globus Online, Storage Resource Management, XrootD and Squid). 

 

3.4.3 Big data storage and segmentation 

In [88], P. Bajcsy et al. presented a methodology of image computation and processing on a 

Hadoop cluster. They designed a benchmark and evaluated it on many image sets; each set sized 

over one half of Terabyte. The aim of this method is to improve image processing on Hadoop 

clusters. K. Lee et al. presented in [89], an optimised scalable framework called SPA for distributed 
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processing of big Resource Description Framework (RDF) graph data in the cloud. They evaluated 

this data partitioning framework extensively through many experiment and obtained an efficient 

result for partitioning, distributing, and processing big RDF datasets. In [90], M. Shtern et al. 

introduced a novel approach called DaasPatcher ecosystem to share segmented Big Data on the 

cloud. This ecosystem has the ability to refine and improve enhanced data-as-a-service (eDaaS) in 

the clouds by determining the data that providers are willing to share with different types of clients. 

In [91], R. Zhou et al examined the overall effect of deduplicating Big Data workloads. Also, they 

studied the advantages and disadvantages of various deduplication layers, locations, and 

granularities. Furthermore, they investigated the relation between energy expense and redundancy 

degree. 

3.4.4 Local gathering and processing of big data in access networks (user-level) 

In this section, we review effective techniques to help reduce the big data transmission cost by 

processing big data locally in the access networks (User-Level). 

 

3.4.4.1 MapReduce on IoT  

Generally, IoT devices generate small volumes of data per device but owing to the large number 

of IoT devices expected, the overall data volume can be large.  The immense amount of data 

generated by the IoT environment is transferred from IoT source data nodes to high-performance 

server clusters in clouds and data centres that perform extensive parallel processing tasks such as 

MapReduce to extract useful information to be sent to users.  However, this is not a cost-effective 

approach in terms of transmission because moving such huge amounts of data from the users to 

the remote data centres requires significant communication resources and causes network 

congestions problems which have a negative impact on QoS, especially in the case of delay 
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sensitive data that must be processed in near real time. Therefore, moving processing elements 

closer to the big data sources to execute MapReduce jobs is essential to overcome such problems. 

Ichiro [92], presented a MapReduce framework to locally process as much data as possible on 

multiple nodes of the IoT environment rather than transmitting the data to data centres. 

 

3.4.5 Big data in aggregation networks (bridge-level) 

The aggregation network compromises Internet Service Providers (ISPs) and Content Distribution 

Networks (CDNs). It is located beyond the access networks and is responsible for collecting and 

delivering the large data volumes to the data centres to be processed. In addition, it is responsible 

for pushing high volume applications’ data, such as IPTV, online social networks, photos, and 

video streaming, from the data centres into user devices. Such huge and costly traffic creates 

significant challenges to the aggregation network. Hence, it is of high importance to investigate 

how to process big data before the aggregation network to reduce traffic that is forwarded to the 

data centres through the aggregation network. 

 

3.4.6 Processing and transporting big data in geo-distributed networks 

(datacentres level) 

In the following section, we discuss big data queries, scheduling and transporting big data in bulk, 

running MapReduce, and minimising the cost of big data processing. The techniques developed 

here can be directly or indirectly harnessed to minimise power consumption in geo-distributed data 

centres. 
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3.4.6.1 Query evaluation of big data  

Query evaluation refers to the amount of computing, storage, and communication resources 

allocated to a query, a search or a process run on big data. To process big data queries across 

multiple data centres, it is important to efficiently evaluate the resources required to meet the 

demands of such queries. For instance, if the source data of a specific query is located at two data 

centres, then a number of options are considered [22]: The First option that is to be considered is 

to examine whether it is a cost-effective approach in terms of network resources to replicate 

millions of gigabytes of source data from one data centre to another and process the query at one 

of them, especially, if the data centres are at locations that are geographically far apart. Second, if 

there are enough computation and storage resources for such a query to be served at only one data 

centre, or if it is more efficient to be served at a third data centre that has enough resources and is 

not far from both original data centres. Alternatively, the communication cost can be reduced while 

responding to big data queries by employing multiple data centres.  A substantial question for 

query evaluation of big data processing in geo-distributed clouds is how to satisfy as many queries 

as possible while keeping the communication cost to a minimum. Since the available bandwidth 

between different data centres varies over time and the communication cost is substantial, due to 

the large amounts of data transferred, there is a need to develop methods to minimise the 

communication cost when responding to big data queries. An effective approach to resolve big 

data queries in a distributed system is described in [22]. This approach aims to satisfy as many 

queries as possible over several time slots while keeping the communication cost at a minimum 

level. At the beginning of each time slot, this approach checks whether the available resources of 

the data centres are enough to meet the query demand, and if yes, the query is processed, otherwise 

it is excluded. 
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3.4.6.2 Scheduling and transferring big data bulk 

Scheduling solutions for big data bulk transfer across geo-distributed data centres are required to 

satisfy transmission tasks that have different urgency levels. Such tasks can be optimally and 

dynamically arranged to fully exploit the available bandwidth at any time. Full bandwidth 

utilisation is essential to reduce the number of links over time. The flexibility of transmission 

scheduling provided by Software Defined Networks (SDN) enables dynamic optimal routing of 

individual big data Chunks within each transfer by temporarily storing them at intermediate data 

centres and transmitting them at distinct scheduled times to reduce bandwidth requirements [93]. 

 

3.4.6.3 Sequence execution of MapReduce jobs  

This deals with finding the best ways of processing big data jobs according to either the delay cost 

or another monetary cost, e.g. electricity cost. Sequencing techniques, such as Geo-Distributed 

MapReduce (G-MR) [19], are crucial in geo-distributed data centres to guarantee efficient big data 

processing.  The process of determining the optimum execution path for a large data set is complex 

because every possible data motion should be considered. Thus, G-MR uses a data transformation 

graph (DTG) algorithm which helps find the best execution path for performing a sequence of 

MapReduce jobs in geo-distributed data sets. 

 

3.4.6.4 Joint optimisation of job distribution and routing 

Optimally distributing the processing of big data jobs among different nodes, taking into account 

routing paths, is more efficient for the network in terms of computation and communication 

requirements. A good example is proposed in [20] which takes into account the joint optimisation 
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of four main aspects in geo-distributed data centre so that the overall computation and transmission 

cost is minimised:  

 Task assignment: Here the task that should be served first is determined together with the 

tasks service order. 

 Data placement: This deals with the best processing locations for big data Chunks.  

 Data Centre Resizing (DCR): This establishes the minimum amount of storage and 

processing elements required to serve big data Chunks. 

 Routing: Here the best transmission path for transferring the Chunks is determined. 

 

3.4.6.5 In-Network processing, network function virtualisation (NFV), and grid 

computing 

In-network processing is proposed in [94] to achieve network-awareness to reduce bandwidth 

usage by custom routing, redundancy elimination, and on-path data reduction. In [95], Global 

Network Operators outlined the benefits, enablers, and challenges for Network Functions 

Virtualisation (NFV) such as reducing equipment cost and power consumption through equipment 

consolidation and by exploiting the economies of scale in the IT industry.   

 

The authors in [96]  presented a phased solution approach to dimension the computing resources 

deployed in Grid infrastructure. The dimensioning problems that usually arise in Grid computing 

include the number of servers to be provided, where to place them, and which network to install 

to interconnect server sites and users generating Grid jobs. In [16], the authors developed an energy 

efficient cloud computing framework in IP over WDM core networks. 
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3.4.7 Energy efficient cloud computing services in optical networks and big data 

transfer in elastic optical networks (EON) 

In [16], the authors presented a framework for energy efficient cloud computing services in IP 

over WDM core networks. In [97] mixed integer linear programming (MILP) models and 

heuristics are developed to minimise delay and power consumption of clouds over IP/WDM 

networks. The authors of [98], exploited anycast routing by intelligently selecting destinations and 

routes for users traffic served by clouds over optical networks, as opposed to unicast traffic, while 

switching off unused network elements. A unified, online, and weighted routing and scheduling 

algorithm is presented in [99] for a typical optical cloud infrastructure considering the energy 

consumption of the network and IT resources. In [100], the authors provided an optimisation-based 

framework, where the objective functions range from minimising the energy and bandwidth cost 

to minimising the total carbon footprint subject to QoS constraints. Their model decides where to 

build a data centre, how many servers are needed in each datacentre and how to route requests. In 

[101], the authors described the drivers, building blocks, architecture, and enabling technologies 

for elastic optical networks. The authors in [102] suggested that efficient bulk-data transfer in 

elastic optical networks (EONs) can be achieved with Malleable Reservation (MR). The authors 

in [18] discussed the technologies needed for realising highly efficient data migration and backup 

for big data applications in elastic optical inter-data-centre (inter-DC) networks. In [103], the 

authors investigated offline and online Routing and Spectrum Assignment (RSA) problems for 

anycast requests in elastic optical inter-DC networks by formulating an Integer Linear 

Programming (ILP) model and proposed several heuristics based on single-DC destination 

selection. In [104], we presented preliminary results to demonstrate the impact on network power 

consumption of processing and transferring big data in bypass IP over WDM networks. We 
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considered one big data type from the MapReduce platform that was obtained from the log files of 

MapReduce clusters from Facebook [23]. In this type, the volume of the output of the reduced 

process is very small compared to the input of the mapping process. We investigated improving 

the energy efficiency of big data networks by processing this data type progressively in processing 

nodes (PNs) of limited processing and storage capacity along the data journey through the IP over 

WDM core network to the DCs. The amount of data transported over the core networks was 

significantly reduced each time the data was processed; therefore, we referred to such a network 

as an Energy Efficient Tapered Data Network.  

 

3.5 The Proposed Energy Efficient Big Data Networks (EEBDN) 

The concept of the EEBDN is illustrated in Figure 3-6. Figure 3-6-a displays a Classical Big Data 

Networks (CBDN) where the processing of big data Chunks (the raw big data before processing) 

is achieved inside DCs after being generated and forwarded by the source nodes (an example of a 

source node in Figure 3-6-a is National Health Service (NHS) node #14). In the EEBDN, shown 

in Figure 3-6-b, IP over WDM core nodes are attached to PNs (e.g., node #12) that can process 

Chunks and extract useful knowledge such as transportation and weather trends. We refer to the 

extracted knowledge after processing the raw big data Chunks in this work as info. These Info 

pieces are optimally transferred through energy efficient routes from the PNs to the DCs. The 

structure of a PN is similar to the cloud structure presented in [16]. It consists of a limited number 

of servers, storage (to store Chunks) and internal switches and routers. A PN is capable of edge 

processing the locally generated data and the data generated by other nodes and forwarding the 

results (Infos) to the DCs. The capacity of a PN is limited by the available space to build the PN 

inside the network centre. Note in Figure 3-6-b that the data generated by the source nodes can 
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either be Chunks, Infos or both. The latter is the case if the source has processing elements. This 

type of source core node is referred to as a Source PN (SPN). On the other hand, the processing 

capability located at intermediate core nodes is referred to as Intermediate PN (IPN). IPNs perform 

the progressive processing of Chunks generated by other SPNs that did not perform local 

processing due to insufficient processing resources. 

 
(a) 

 
(b) 

Figure 3-6. (a) The CBDN. (b) The EEBDN [104]. 
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We assumed, for realistic considerations, that each PN’s processing and storage capacity varies 

from one PN to another. The DCs’ capacities are, however, large enough for the central storing 

and processing of the remotely forwarded Chunks from the PNs. When Chunks are processed 

inside DCs, the corresponding results (i.e., Infos) are stored there. It is essential to mention here 

that the amount of computing resources required to process the Chunks in both approaches (i.e., in 

the EEBDN and in the CBDN) remains the same. In addition, in both approaches, the processing 

resources are utilised in an energy efficient manner where we calculated the processing power 

consumption assuming that the minimum number of servers are utilised and also that slicing 

techniques are employed [105]. 

 

However, the energy savings obtained from the EEBDN approach comes from the optimal 

distribution of the processing resources among the network core nodes. Note in Figure 3-6-b 

Chunks can be processed either in SPNs or IPNs. Once the PNs’ servers are fully utilised, no more 

edge or intermediate processing is performed. The centralised processing inside the DCs dominates 

the processing of big data since DCs’ capacities are large enough for the central storing and 

processing of the remotely forwarded Chunks from the PNs. 

 

The PNs are located close to the user while data centres are typically in central locations in the 

network and may be far from the user. Therefore, PNs enable edge processing of big data, hence 

saving power. PNs are different when compared to data centres in additional ways. PNs may have 

a limited set of software packages; they are small and hence may be less energy efficient. These 

are among the constraints considered in our progressive processing approach. In big data analytics, 

because of the variety in big data applications, the ratio of the size of Infos to the size of Chunks 
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(i.e., output/input) is diverse [23]. For example, Infos size << Chunks size (i.e., the ratio can be << 

1) in many big data applications, such as video monitoring in surveillance cameras that capture 

points of interest. While on the other hand, Chunks size ≈ Infos size (i.e., the ratio ≈ 1) in other big 

data job types, such as Call Detail Record (CDR) data produced by a telephone exchange or other 

telecommunications equipment. Further, there are several mixtures of jobs performed in big data 

analytics where the ratio is in between. The Info extracted can be the presence or absence of a 

person or an object in the video. We refer to this ratio as the Processing Reduction Ratio (PRR).  

 

PRR is the ratio of the final reduced data (the information or knowledge of interest) to the original 

data size. For example, a 1 MB video clip may be the data. The presence or absence of a person in 

the clip may be the knowledge of interest. If the video is processed and a 1 kB packet is sent instead 

of the video clip, then PRR is 0.001. Therefore, we introduced Equation (3-1) where the volume 

of the Chunks is multiplied by different PRRs to produce the Infos carried by the corresponding 

Chunks. For instance, in MapReduce jobs, a Chunk of 1000 Gigabit (Gb) and PRR of 0.001 results 

in Info of 1 Gb [23]. Accordingly, significant network power saving is achieved if such Chunks 

are processed locally in the edge (SPNs) and progressively in the IPNs. Thus 

 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐼𝑛𝑓𝑜 = 𝑃𝑅𝑅 × 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶ℎ𝑢𝑛𝑘 (3-1) 

To provide a clear picture of the relation between the output data size and the input data size for 

different big data jobs, we summarised the table that appeared in [23], which is obtained from a 

Facebook cluster of a MapReduce trace file in a two week period as shown in Table 3-1.   

Job counter  Chunks (input) size  Infos (output) size PRR 

1145663 6.9 MB 60 KB 0.0086 
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7911 50 GB 61 GB 1.19 

11491 1.5 TB 2.2 GB 0.0014 

670 2.1 TB 2.7 GB 0.0012 

1876 711 GB 860 GB 1.21 

169 2.7 TB 260 GB 0.096 

Table 3-1. MapReduce Facebook Cluster Summary [23]. 

Note that we did not consider big data job types where PRRs > 1 (i.e., Info size > Chunk size) since 

our main objective is to reduce the network power consumption and it is axiomatic that such a type 

of job is directly forwarded to the DCs skipping our PNs. Forwarding such Chunks directly to the 

DCs confines the extra traffic generated by the Infos to the inside of the DCs only. This leads to 

upscale the big data traffic in the network. Therefore, reducing the big data traffic overhead in big 

data processing using control node with intelligent algorithm is important. In this thesis, we present 

new proposals and scenarios to illustrate the impact of the 4Vs of big data on the network power 

consumption and to optimise the DCs’ locations by exclusively dealing with each V.  

 

3.5.1 EEBDN: An illustrative example 

To illustrate the concepts of the proposed EEBDN, consider the example network shown in Figure 

3-7. There are four zones in Figure 3-7, with each connected to a certain PN, where each PN receives 

a different number of Chunks depending on its zone user population. For instance, zone 2 generates 

more Chunks compared to zone 4 that has a lower user population. The PN connected to a certain 

zone is referred to as a source PN (SPN) as it is the first PN in which Chunks are received from its 

corresponding zone and locally or centrally processed. Each SPN can locally process a different 
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maximum number of Chunks depending on its processing, storage and internal switches and 

routers capacity. The remaining Chunks that cannot be processed locally in an SPN are forwarded 

either to another optimally selected PN or a DC. 

 

Figure 3-7: EEBDN: An illustrative example. 

The PN connected to a certain zone is referred to as a source PN (SPN) as it is the first PN in which 

Chunks are received from its corresponding zone and locally or centrally processed. Those PNs 

that receive Chunks from other SPNs are called intermediate PNs (IPNs). An IPN, with respect to 

a given SPN, might itself be an SPN that implements local processing for its corresponding zone. 
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This means that a PN can perform both the roles of SPN and IPN if needed. The unprocessed 

Chunk traffic from SPNs to IPNs or to DCs is called Chunk Big Data Traffic (CHT).  

 

After processing the Chunks either in SPNs, IPNs or in the DCs, knowledge is extracted in the 

form of smaller rate traffic that we called the Info Big Data Traffic (INF). INF propagates from 

PNs (SPN or IPNs) toward DCs through the core network. Note that DCs have the special property 

that both the locally generated INF and the remotely received INF from other PNs do not flow 

outside the DC. As mentioned before, a PN is built at a certain core node; therefore, the PN ID is 

the same as the core node ID at which it is installed. This also applies to the DC-ID. Each zone in 

Figure 3-7 represents a probable scenario that our approach can optimise as follows: Zone 

1: The SPN #1 of zone 1 is capable of processing all incoming Chunks (Chunks #1, #2, #3) and 

all the output (Infos #1, #2, #3) are optimally aggregated to DC #1. This scenario generates only 

INF in the network from SPNs to DCs. 

Zone 2: The SPN #2 of zone 2 can process Chunks #4, #5 and #6. Chunk #7 is, however, 

transported as a CHT to an optimal IPN (IPN #5) as one or more of the resources (CPU, storage, 

internal switches and routers) of SPN #2 are fully utilised. After Chunk #7 is forwarded to IPN #5, 

it is processed there and the output (Info #7) is aggregated as an INF through an energy efficient 

route to DC #1.  

Zone 3: The SPN #3 of zone 3  processes its own data (Chunks #8 and #9) and also acts as an IPN 

to process other incoming Chunks (Chunk #11 from SPN #4) when it is not being fully utilised. 

The movement of Infos from this PN represents the INF. 

Zone 4: The SPN #4 of zone 4 has the smallest processing and storage space, thus it processes the 

smallest number of Chunks (Chunk #10) and forwards any extra Chunks to the next optimal PN or 
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DC. For instance, Chunk #11 is forwarded to IPN #3. However, when all other PNs deplete their 

processing resources, then any extra unprocessed Chunks by SPN #4 (i.e., Chunk #12) are 

uploaded directly from SPN #4 to be processed by an optimally selected DC (DC #2 in Figure 3-7). 

For such an event, CHT starts to dominate the network traffic from SPNs to DCs. 

 

3.6 Summary 

This chapter presented the main sources and characteristics of big data as well as an introduction 

to Hadoop-MapReduce, which is the main storage and processing framework of big data. It also 

showed the main challenges facing the classical big data networks in terms of processing and 

networking. Then, it gave a comprehensive literature review that summarised the work done 

previously in the literature on big data processing and networking with focusing on minimising 

big data communication cost and power consumption. Finally, it gave a brief description of the 

classical big data networks with its drawback followed by the proposed energy efficient big data 

networks and its main benefits and promises with an illustrative example.  
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Chapter 4 Energy Efficient Big Data Networks: The Impact of Volume 
and Variety 

In this chapter, we studied the impact of big data’s volume and variety dimensions on the EEBDN 

by developing a Mixed Integer Linear Programming (MILP) model to encapsulate the distinctive 

features of these two dimensions. Firstly, a progressive energy efficient edge, intermediate, and 

central processing technique is proposed to process big data’s raw traffic by building processing 

nodes (PNs) in the network along the way from the sources to datacentres. Secondly, we validated 

the MILP operation by developing a heuristic that mimics, in real time, the behaviour of the MILP 

for the volume dimension. Thirdly, we determined the energy efficiency limits of the EEBDN 

approach under several conditions where PNs are less energy efficient in terms of processing and 

communication compared to data centres. Fourthly, we evaluated the performance limits in the 

EEBDN approach by studying a “software-matching” problem where different software packages 

are required to process big data.   

 

The results are then compared to the Classical Big Data Networks (CBDN) approach where big 

data is only processed inside centralised data centres. The results also identify the limits of the 

progressive processing approach and in particular the conditions under which the CBDN 

centralised approach is more appropriate given certain PNs energy efficiency and software 

availability levels. 

 

4.1 Energy Efficient Big Data Networks: Impact of Volume 

The remarkable evolution of Internet-enabled technologies is driving the world to be inundated by 

a colossal amount of data generated from various domains, such as bioinformatics, health 
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informatics, social media, text, log files, sensors data, video streaming, purchase transaction 

records and more. The term big data has been devised to describe the handling of the enormous 

number of data types generated by numerous data sources.  As mentioned earlier, the first 

challenge facing the DCs is the enormous volume of data fluxing to them. Although it is currently 

extremely hard to determine the volume of data generated by a significant number of Internet-

enabled devices, the situation is going to be more complicated in the near future, as the projected 

number of Internet-connected devices is anticipated to reach 100 billion devices by 2020 [106]. 

Based on the International Data Corporation (IDC) report [107], the overall envisaged data volume 

will reach 40,000 Exabytes in 2020. Facebook and Twitter create more than 18 Terabytes (TB) 

every single day [8]. More than 210 billion emails are sent every day [108]. The size of the climate 

change data repositories is projected to grow to nearly 350 Petabytes (PBs) by 2030 [109].  Five 

PBs is equivalent to the total number of letters delivered by the US Postal Service in one year 

[110]. This exponential increase in the speed of generating data, in the volumes of data and in the 

variety of big data sources comes in parallel with drops in the percentage of data processed inside 

datacentres (DC) because of insufficient and inefficient analysis tools [8], recall Figure 3-3. 

Accordingly, a large amount of the data to be processed is neglected, deleted or delayed. Thus, 

immense networking power is consumed due to transferring unprocessed data from its sources to 

DCs, while the only interest is in the small volume of knowledge it carries. Furthermore, extra 

wastage in storage and bandwidth can result from transferring raw data, which leads to a 

magnification of the financial costs. High-speed processing of such immense data volumes as 

produced by plentiful data sources calls for new processing and communications methodologies 

in the big data era.  
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4.1.1 Problem statement 

In this section, we focused on the big data large volume and variety and address the problem of 

power minimisation in networks that support big data. Despite the large volume associated with 

big data, the real interest in most cases is in the knowledge derived after processing the data and 

not in the data itself as discussed earlier. Therefore, in this work, we addressed four main problems. 

Firstly, where to process big data to minimise power consumption given limited processing 

capacity at the source and intermediate nodes but large processing capability at central data centres.  

Secondly, we addressed the problem of how to optimally, from an energy efficiency point of view, 

deal with big data Chunks that have variable processing requirements. Thirdly, we considered the 

problem of jointly optimising communication and processing power consumption in big data 

networks when the processing equipment power consumption increases for the same task. This 

increase can happen when variable size and sophistication equipment is used. Here we evaluated 

the impact on the choice of optimal location to process content, given that the optimal location of 

where to process is dictated by the interplay between communications and processing power 

consumption. Fourthly, we focused on the problem of how to optimally deal with a software 

matching problem where some nodes may not have the full software library needed to process 

different big data applications.  

 

4.1.2 Volume MILP model 

In this section, we introduce a MILP model for the EEBDN by taking into consideration the bypass 

approach in an IP over WDM network. For details of energy efficient MILP optimisation in DCs 

and IP over WDM network architectures see [4, 17, 42, 43, 47, 111-113]. We placed capacitated 

PNs at each core node of the NSFNET, as depicted in Figure 4-1, with DCs with large enough 
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capacities. The NSFNET network consists of 14 nodes connected by 21 bidirectional links [42]. 

The DCs are used to process all extra big data Chunks originated by other PNs and to receive the 

results of the processed Chunks (i.e., Infos) produced by the PNs to store them for further use.  

 

Figure 4-1. NSFNET network with PNs 

The IP over WDM power consumption comprises the power consumption of the router ports, 

transponders, EDFAs, regenerators and optical switches. On the other hand, the power 

consumptions of the PNs and the DCs are composed of the power consumption of the servers, 

storage, and the internal LAN switches and routers. We assume that the power consumption of 

routers and switches is proportional to the offered load. Note that, in addition to the existence of 

these big data Chunks and Infos in the network, we assumed, for realistic considerations, that there 
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is additional traffic between core nodes, which is referred to as regular traffic. This traffic 

represents any data that is not intended for big data analytics [47]. 

Main Features of the MILP Model: 

From the introduction and the example in Chapter 3, Section 3.5.1, we summarise the main features 

of our model as follows: 

 The model optimises the location where the processing of each Chunk is carried out, in stages 

by starting the processing locally at the SPNs, moving through the IPNs, and finally stepping 

out towards the data centres. 

 The model optimises the destination of Infos so that each Info goes to one DC that is optimally 

located.  

 The model performs a consolidation process to serve as many Chunks as possible in the same 

server, by ensuring that the total CPU utilisation in one server allocated to process one or more 

Chunks does not exceed the server CPU capacity. Accordingly, the number of Chunks per server 

is optimised.   

 The model ensures that all servers usage of a given PN does not exceed the processing capacity 

of that node. For blocking avoidance, the internal LAN switches and routers capacity are 

assumed to be large enough. Note that the traffic is routed over the network since the model 

ensures that the flow conservation requirements of big data and regular traffic are satisfied at 

all networking levels (i.e. IP and optical layers of the IP over WDM network). In the heuristic, 

we employed a minimum hop routing algorithm. Scheduling, capacity consideration, and 

routing the intra data centres traffic are left for future work.   

 The model optimises DCs locations which are used for processing the incoming Chunks when 

all PNs are fully utilised and for receiving the Infos from PNs to store them for further analysis.  
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 Assessing the energy efficiency limits of PNs in the EEBDN when less energy efficient 

(compared to DCs) networking and computing equipment is used inside PNs . 

 Analysing the software matching problem and its effect on EEBDN performance where Chunks 

are associated with the correct PNs hosting the appropriate software package that can process 

that Chunk.  
 Table 4-1 defines the parameters and variables used in the EEBDN MILP model: 

Notation Description 

𝑠 𝑎𝑛𝑑 𝑑 Denote source and destination points of regular traffic demand between a node 

pair. 

𝑖 𝑎𝑛𝑑 𝑗 Denote end points of a virtual link in the IP layer. 

𝑚 𝑎𝑛𝑑 𝑛 Denote end points of a physical fibre link in the optical layer. 

𝑅௦ௗ  The NSFNET regular traffic demand from node 𝑠 to node d (Gbps). 

𝑁 Set of IP over WDM nodes. 

𝑁௜  The set of neighbour nodes of node i in the optical layer. 

𝑁𝑆௣ Number of servers at the PN p. 

𝑆𝑊௦௖ The CPU workload of the server required to process Chunk c generated at source 

node s (GHz). 

𝑀𝑆𝑊                        Maximum server workload (GHz). 

𝑀𝑃௣ Maximum workload node p. 𝑀𝑃௣ =  𝑁𝑆௣ ∙ 𝑀𝑆𝑊 (GHz). 

𝑀𝑆𝑅௣ Maximum internal switches and router capacity of the PN p (Gbps). 

𝑀𝑆௣ Maximum storage of node p  (Gb). 

𝑁𝐶𝐻 Total number of Chunks in one node per second. 

𝐶𝐻௦ Set of Chunks in a source node s.            
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𝐶𝐻𝑉௦௖  The volume of Chunk c generated at source node s (Gb). 

𝑃𝑅𝑅௦௖ Processing reduction ratio for Chunk c generated by node s (unitless). 

𝑊𝐿                                  Number of wavelengths in a fibre. 

𝐵 Wavelength bit rate (Gbps). 

𝑆 Maximum distance between neighbouring EDFAs (km). 

𝑃𝑅                                Power consumption of a router port (W). 

𝑃𝑇𝑅                                     Power consumption of a transponder (W). 

𝑃𝑂௜ Power consumption of optical switch installed at node i ∈ N (W). 

𝑃𝐸 Power consumption of EDFA (W). 

𝑃𝑅𝐺 Power consumption of a regenerator (W). 

𝐷௠௡ Distance between node pair (m, n) (km). 

𝐴௠௡ Number of EDFAs on physical link (m, n). Typically,  𝐴௠௡ = ቔ
஽೘೙

ௌ
− 1ቕ +

2 [42]. 

𝑅𝐺௠௡ Number of regenerators on physical link (m, n). 

𝑃𝑈𝑁 Power usage effectiveness of IP over WDM networks (unitless). PUN is defined 

as the ratio of the power drawn from the electric source to the power used by the 

equipment (networking in this case). PUN accounts for cooling, lighting and 

related power consumption. 

𝑃𝑈 Power usage effectiveness of the PNs and DCs (unitless). 

𝑆𝑀𝑃 Server maximum power consumption (W). 

𝑆𝐸𝐵 PNs’ and DCs’ switch energy per bit (W/Gbps). 

𝑅𝐸𝐵 PNs’ and DCs’ router energy per bit (W/Gbps). 
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𝑅𝑆 Internal PNs’ and DCs’ switches redundancy. 

𝑅𝑅 Internal PNs’ and DCs’ routers redundancy. 

𝑅𝑆𝐺 PNs and DCs storage redundancy. 

𝑃𝑆𝐺 PNs’ and DCs’ storage power per Gigabit (W/Gb). 

𝛿 Server power per GHz, 𝛿 =  (𝑆𝑀𝑃 − 𝑃𝐼𝐷𝐿𝐸) / 𝑀𝑆𝑊 (W/GHz). GHz is used to 

specify the capability of a processor and the number of processors a job needs. 

𝐷𝐶𝑁 Number of location optimised DCs. 

Table 4-1: List of parameters and their definitions. 

Table 4-2 defines the variables used in the EEBDN MILP model: 

Notation Description 

𝐶𝐻𝑇௦௣ Big data Chunks traffic generated at SPN s and directed to destination node p (p could 

be SPN, IPN or DC) (Gbps). 

𝐼𝑁𝐹௣ௗ  Aggregated big data Info traffic from PN p to DC d. Node p could be SPN or IPN only 

(Gbps). 

𝐶௜௝ Number of wavelength channels in the virtual link (i, j). 

𝑅௜௝
௦ௗ

 Traffic flow of the regular traffic Rsd between node pair (s, d) traversing virtual link (i, 

j). 

𝑊௠௡
௜௝

 Number of wavelength channels in the virtual link (i, j) traversing physical link (m, n). 

𝑊௠௡ Number of wavelength channels in the physical link (m,n). 

𝐶𝐻𝑇௜௝
௦௣

 Traffic flow of the big data Chunks traffic CHTsp between node pair (s, p) traversing 

virtual link (i, j). 
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𝐼𝑁𝐹௜௝
௣ௗ Traffic flow of the big data Info traffic INFpd between node pair (p, d) traversing virtual 

link (i, j). 

𝐴𝑅௜  Number of aggregation ports in router i utilised by regular traffic Rsd 

𝐴𝐶𝐻௜  Number of aggregation ports in router i used in big data Chunks traffic CHTsp.   

𝐴𝐼௜ Number of aggregation ports in router i utilised by big data Info traffic INFpd. 

𝐹௠௡ Number of fibers in physical link (m,n). 

𝑃𝑁𝑊௣ Total PN p workload (GHz). 

𝑌௦௣௖ Yspc = 1 if Chunk c is generated at SPN s and processed in PN p, else Yspc = 0. 

𝑆𝐶𝐻௣ Amount of big data Chunks stored in PN p (Gb). 

𝐷𝐶ௗ  DCd = 1 if a DC is built at core node d, else DCd  = 0. 

Table 4-2: List of variables and their definitions. 

Under the bypass approach, the total IP over WDM network power consumption is composed of 

the following components 

1) The power consumption of router ports 

෍ 𝑃𝑅 ∙  (𝐴𝑅௜ + 𝐴𝐶𝐻௜ + 𝐴𝐼௜) + 𝑃𝑅 ∙ ෍ ൫𝐶௜௝൯.

௝∈ே: ௜ஷ௝௜∈ே

 (4-1) 

2) The power consumption of transponders 

෍ ෍ 𝑃𝑇𝑅 ∙ 𝑊௠௡.

௡∈ே೘௠∈ே

 (4-2) 

3) The power consumption of regenerators is 

෍ ෍ 𝑃𝑅𝐺 ∙

௡∈ே೘௠∈ே

 𝑊௠௡ ∙ 𝑅𝐺௠௡. (4-3) 

4) The power consumption of EDFAs 
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෍ ෍ 𝑃𝐸 ∙ 𝐴௠௡ ∙ 𝐹௠௡ .

௡∈ே೘௠∈ே

 (4-4) 

5) The power consumption of optical switches 

෍ 𝑃𝑂௜

௜∈ே

. (4-5) 

Equation (4-1) evaluates the total power consumption of the router ports for all the types of traffic, 

which are the regular traffic Rsd, big data Chunks traffic 𝐶𝐻𝑇௦௣, and big data Info traffic 𝐼𝑁𝐹௣ௗ . It 

computes the total power consumption of the ports aggregating data traffic and the ports connected 

to optical nodes. Equations (4-2) and (4-3) evaluate the power consumption of all the transponders 

and regenerators in the optical layer. Equation (4-4) evaluates the total power consumption of the 

EDFAs in the optical layer. Equation (4-5)) evaluates the total power consumption of the optical 

switches. The power consumption of the PNs and DCs is composed of the following sections: 

1) The power consumption of internal PNs and DCs switches and routers 

𝑃𝑆𝑅 = ෍ ෍ 𝐶𝐻𝑇௦௣

௦∈ே

∙  (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)                                

௣∈ே

 

+ ෍ ෍൫𝐶𝐻𝑇௣ௗ + 𝐼𝑁𝐹௣ௗ൯

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

  

+ ෍ ෍ 𝐼𝑁𝐹௣ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

 
(4-6) 

Equation (4-6) evaluates the total power consumption of the internal switches and routers in the 

PNs and DCs. This is done by multiplying the incoming and outgoing big data traffic by the 

switches’ and routers’ energy per bit. We performed the analysis by considering a network 

architecture where 𝑅𝑆 = 𝑅𝑅 = 1. 

2) The power consumption of the storage  
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෍ 𝑆𝐶𝐻௣ ∙ 𝑅𝑆𝐺 ∙ 𝑃𝑆𝐺

௣∈ே

. (4-7) 

3) The power consumption of all servers inside PNs and DCs 

෍ 𝛿 ∙ 𝑃𝑁𝑊௣

௣∈ே

+  𝑁𝑆௣ ∙ 𝑃𝐼𝐷𝐿𝐸.  (4-8) 

Equation (4-7) represents the storage power consumption of node p. We performed the analysis 

by considering a network architecture where 𝑅𝑆𝐺 = 1. Equation (4-8) represents the PNs and DCs 

power consumption. Note that server power consumption is a function of the idle power, maximum 

power and CPU utilisation [114]. Therefore, the power consumption of all servers inside the PNs 

and DCs is calculated using equation (4-8). The model is defined as follows: 

Objective: Minimise  

𝑃𝑈𝑁 ∙ ቌ෍ 𝑃𝑅 ∙  (𝐴𝑅௜ + 𝐴𝐶𝐻௜ + 𝐴𝐼௜) + 𝑃𝑅 ∙ ෍ ൫𝐶௜௝൯

௝∈ே:௜ஷ௝௜∈ே

+ ෍ ෍ 𝑃𝑇𝑅 ∙ 𝑊௠௡ +

௡∈ே೘௠∈ே

෍ ෍ 𝑃𝑅𝐺 ∙ 𝑊௠௡ ∙ 𝑅𝐺௠௡ +

௡∈ே೘௠∈ே

෍ ෍ 𝑃𝐸

௡∈ே೘௠∈ே

∙ 𝐴௠௡ ∙ 𝐹௠௡ + ෍ 𝐸𝑂௜

௜∈ே

ቍ 
 

+  𝑃𝑈 ∙ ቌ෍ 𝛿 ∙ 𝑃𝑁𝑊௣.

௣∈ே

+  𝑁𝑆௣ ∙ 𝑃𝐼𝐷𝐿𝐸 + ෍ ෍ 𝐶𝐻𝑇௦௣

௦∈ே

∙  (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

 

+ ෍ ෍൫𝐶𝐻𝑇௣ௗ + 𝐼𝑁𝑇௣ௗ൯

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

  

+ ෍ ෍ 𝐼𝑁𝐹௣ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

+ ෍ 𝑆𝐶𝐻௣ ∙ 𝑅𝑆𝐺 ∙ 𝑃𝑆𝐺

௣∈ே

ቍ. 
(4-9) 
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Equation (4-9) gives the model objective, which is to minimise the IP over WDM network power 

consumption as well as the PNs’ and DCs’ power consumption. 

Subject to: 

PNs and DCs Constraints: 

1) Processing counter of big data Chunks constraint  

෍ 𝑌௦௣௖

௣∈ே

= 1,  (4-10) 

∀𝑠 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝐻௦ . 

Constraint (4-10) ensures that a Chunk c generated by PN s is processed by no more than one PN 

p. However, our model performs slicing, i.e., multiple servers could process a given Chunk in a 

PN as long as these servers belong to that PN. 

2) Big data Chunks traffic constraint  

𝐶𝐻𝑇௦௣ = ෍ 𝐶𝐻𝑉௦௖ ∙ 𝑌௦௣௖

௖∈஼ுೞ

, (4-11) 

∀𝑠, 𝑝 ∈ 𝑁.  

Constraint (4-11) calculates the big data Chunks traffic generated at source node s and directed to 

node p. This traffic is generated by transmitting CHVsc from node s to node p in one second. 

3) Aggregated processed big data traffic constraint  

෍ 𝐼𝑁𝐹௣ௗ

ௗ∈ே

= ෍ ෍ 𝐶𝐻𝑉௦௖ ∙ 𝑌௦௣௖ ∙ 𝑃𝑅𝑅௦௖ ,

௖∈஼ுೞ௦∈ே

 (4-12) 

   ∀𝑝 ∈ 𝑁.  

Constraint (4-12) represents the aggregated big data Info traffic INFpd generated by PN p and 

destined to DC d. The big data Info traffic is obtained by multiplying the Chunks (CHVsc) allocated 

to the PN p by the PRRsc. 
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4) Number and locations of DCs constraints  

෍ 𝐼𝑁𝐹௣ௗ ≥ 𝐷𝐶ௗ

௣∈ே

, (4-13) 

∀𝑑 ∈ 𝑁,  

෍ 𝐼𝑁𝐹௣ௗ ≤ 𝑍 ∙ 𝐷𝐶ௗ,

௣∈ே

 (4-14) 

∀𝑑 ∈ 𝑁,  

𝐷𝐶𝑁 = ෍ 𝐷𝐶ௗ .      

ௗ∈ே

 (4-15) 

Constraints (4-13) and (4-14) build a DC in location d if that location is selected to store the results 

of the processed big data traffic (i.e., Infos) or selected to process the incoming big data Chunks 

from PNs, where Z is a large enough unitless number to ensure that DCd = 1 when ∑ INF୮ୢ୮஫୒  is 

greater than zero. Constraint (4-15) limits the total number of built DCs to DCN. 

5) PNs and DCs workload and processing capacity constraints  

𝑃𝑁𝑊௣ = ෍ ෍ 𝑆𝑊௦௖ ∙ 𝑌௦௣௖

௖∈஼ுೞ

,

௦∈ே

 (4-16) 

∀𝑝 ∈ 𝑁 and  

𝑃𝑁𝑊௣ ≤ 𝑁𝑆௣ ∙ 𝑀𝑆𝑊 + ൫𝑀 ∙ 𝐷𝐶௣൯,    (4-17) 

∀𝑝 ∈ 𝑁.  

Constraint (4-16) represents the total workload at PN p, which is the summation of the CPU 

workload of all the servers in that PN. Constraint (4-17) ensures that the total workload of PN p 

does not exceed the maximum workload assigned to this PN, M is a large enough unitless number. 

However, the workload capacity is large enough if a DC is built at core node p. Note that, the 



 
 

80 

 

model implements a consolidation process by processing as many Chunks as possible within the 

same server to minimise the network power consumption and number of active servers. 

6) PNs and DCs storage constraints  

𝑆𝐶𝐻௣ = ෍ ෍ 𝐶𝐻𝑉௦௖ ∙ 𝑌௦௣௖

௖∈஼ுೞ

,

௦∈ே

 (4-18) 

∀𝑝 ∈ 𝑁 and  

      𝑆𝐶𝐻௣ ≤ 𝑀𝑆௣ + ൫𝐻 ∙ 𝐷𝐶௣൯, (4-19) 

∀𝑝 ∈ 𝑁.  

Constraint (4-18) represents the size of Chunks in Gb stored in PN p. Constraint (4-19) ensures 

that the total data stored in PN p does not exceed the storage capacity of that PN.  H is a large 

enough unitless number to guarantee that there is no storage capacity limitation at the DCs. 

7) PNs and DCs internal switches and routers constraints  

෍ 𝐶𝐻𝑇௦௣  ≤ 𝑀𝑆𝑅௣ + ൫𝐴 ∙ 𝐷𝐶௣൯,                

௦∈ே

 (4-20) 

∀𝑝 ∈ 𝑁.  

Constraint (4-20) ensures that the total amount of big data traffic between the PNs does not exceed 

the maximum switching and routing capacity of the internal switches and routers in those PNs. On 

the other hand, the capacity of the DCs’ switches and routers is unlimited, where A is a large 

enough unitless number to guarantee that there is no capacity limitation at the DCs. To avoid 

blocking of big data Chunks, we assumed that the internal switches and routers capacity of the PNs 

is also large enough. 

The IP over WDM Network Constraints: 

1) Flow conservation constraints for the regular traffic 
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෍ 𝑅௜௝
௦ௗ

௝∈ே: ௜ஷ௝

− ෍ 𝑅௝௜
௦ௗ

௝∈ே: ௜ஷ௝

= ൝
𝑅௦ௗ            𝑖 = 𝑠
−𝑅௦ௗ         𝑖 = 𝑑

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4-21) 

∀𝑠, 𝑑, 𝑖 ∈ 𝑁: 𝑠 ≠ 𝑑. 

2) Flow conservation constraints for the big data Chunks traffic 

෍ 𝐶𝐻𝑇௜௝
௦௣

௝∈ே:௜ஷ௝

− ෍ 𝐶𝐻𝑇௝௜
௦௣

௝∈ே: ௜ஷ௝

= ൝

𝐶𝐻𝑇௦௣     𝑖 = 𝑠

−𝐶𝐻𝑇௦௣  𝑖 = 𝑝

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4-22) 

∀𝑠, 𝑝, 𝑖 ∈ 𝑁: 𝑠 ≠ 𝑝. 

3) Flow conservation constraints for the big data Info traffic 

෍ 𝐼𝑁𝐹௜௝
௣ௗ

௝∈ே:௜ஷ௝

− ෍ 𝐼𝑁𝐹௝௜
௣ௗ

௝∈ே:௜ஷ௝

= ൝

𝐼𝑁𝐹௣ௗ       𝑚 = 𝑝     

−𝐼𝑁𝐹௣ௗ     𝑚 = 𝑑     

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4-23) 

∀𝑝, 𝑖 ∈ 𝑁, ∀𝑑 ∈ 𝑁: 𝑝 ≠ 𝑑. 

Constraints (4-21)-(4-23) represent the flow conservation constraints for the regular traffic Rsd, big 

data Chunks traffic CHTsp and big data Info traffic INFpd, in the IP layer. These constraints ensure 

that the total outgoing traffic should be equal to the total incoming traffic, except for the source 

and destination nodes. It can also ensure that the flow can be divided into multiple flow paths in 

the IP layer. 

4) Virtual link capacity constraint 

ቌ෍ ෍ 𝑅௜௝
௦ௗ

ௗ∈ே: ௦ஷௗ௦∈ே

+ ෍ ෍ 𝐶𝐻𝑇 ௜௝
௦௣

௣∈ே: ௦ஷ௣௦∈ே

+ ෍ ෍ 𝐼𝑁𝐹௜௝
௣ௗ

ௗ∈ே: ௣ஷௗ௣∈ே

ቍ ≤ 𝐶௜௝ . 𝐵 
(4-24) 

∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗. 

Constraint (4-24) ensures that the summation of all traffic flows through a virtual link does not 

exceed its capacity. 

5) Optical layer flow conservation constraints:  
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෍ 𝑊௠௡
௜௝

௡∈ே೘

− ෍ 𝑊௠௡
௜௝

௡∈ே೘

= ൝

𝐶௜௝            𝑚 = 𝑖

−𝐶௜௝          𝑚 = 𝑗

 0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(4-25) 

∀𝑖, 𝑗, 𝑚 ∈ 𝑁: 𝑖 ≠ 𝑗. 

Constraint (4-25) represents the flow conservation constraints in the optical layer. It ensures that 

the total outgoing wavelengths in a virtual link should be equal the total incoming wavelengths, 

except for the source and the destination nodes of the virtual link. It is assumed that wavelength 

conversion is available in the model to enable better utilisation of bandwidth and reduce blocking 

probabilities. 

6) Physical link capacity constraints 

 ෍ ෍ 𝑊௠௡
௜௝

௝∈ே: ௜ஷ௝௜∈ே

≤ 𝑊𝐿 ∙ 𝐹௠௡. 
(4-26) 

∀𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁௠. 

Constraint (4-26) ensures that the summation of the wavelengths in a virtual link traversing a 

physical link does not exceed the capacity of the fibres in the physical link. 

7) Wavelengths capacity constraint 

෍ ෍ 𝑊௠௡
௜௝

௝∈ே: ௜ஷ௝௜∈ே

= 𝑊௠௡ 
(4-27) 

∀𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁௠ .  

Constraint (4-27) ensures that the summation of the wavelengths traversing a physical link do not 

exceed the total number of wavelengths in that link. 

8) Number of aggregation ports utilised by regular traffic constraint 

       𝐴𝑅௜ =
1

𝐵
∙ ෍ 𝑅௜ௗ

ௗ∈ே: ௜ஷௗ

         
(4-28) 
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∀𝑖 ∈ 𝑁. 

9) Number of aggregation ports utilised by CHT traffic constraint 

𝐴𝐶𝐻௜ =
1

𝐵
∙ ෍ 𝐶𝐻𝑇௜௣

௣∈ே: ௜ஷ௣

        (4-29) 

∀𝑖 ∈ 𝑁. 

10) Number of aggregation ports utilised by INF traffic constraint 

𝐴𝐼௜ =
1

𝐵
∙ ෍ 𝐼𝑁𝐹௜ௗ

ௗ∈ே: ௜ஷ௣

          
(4-30) 

∀𝑖 ∈ 𝑁. 

Constraints (4-28)-(4-30) calculate the number of aggregation ports for each router that serves the 

regular traffic Rsd, big data Chunks traffic CHTsp and big data Info traffic INFpd. 

 

The MILP in Section 4.1.2 is used to evaluate the proposed EEBDN. In addition, the same model 

can be used to evaluate the CBDN approach by introducing a constraint that prevents the 

processing of big data outside the DCs. The classical model is characterised by: 

 Each node of the NSFNET generates a similar number of Chunks as in the scenarios of the 

EEBDN model. 

 The classical model optimally selects DC locations to host, store and process Chunks that are 

forwarded by all the nodes through energy efficient routes.  

 The extracted knowledge from the Chunks (i.e. Infos) is stored in the same DC that processed 

the corresponding Chunks for further analysis.  
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 The DCs process the incoming Chunks with minimum power consumption by utilising the 

lowest number of servers that can handle those Chunks. This is emphasised by calculating the 

processing power consumption required by the minimum number of servers. 

 The processing of big data is carried out inside the DCs only when there are no PNs in the 

network. The objective of the model is to minimise the Network Power Consumption (NPC) 

and the DC power consumption. 

 

4.1.3 Volume heuristic  

In this section, we validated the MILP operation by developing a heuristic that mimics, in real 

time, the behaviour of the MILP. Having obtained results from the MILP we developed insight 

into what minimises power consumption in our proposed progressive processing big data 

networks. We observed from the results that the MILP attempts to process all the data in the source 

node if the source node has enough capacity, which reduces the communication transmission 

power consumption needed otherwise to reach remote processing nodes. If the source processing 

node does not have enough capacity then the Chunks are transmitted to the processing node at 

minimum hop distance and when such intermediate nodes are depleted of processing capability, 

the minimum hop data centre is used. Routing in the network was observed to follow minimum 

hop routing. None of these rules were written in the MILP. The MILP was only required to 

minimise the total power consumption (network and processing). We therefore used these insights 

to construct our heuristic, which therefore mimics the MILP behaviour. The heuristic uses simple 

rules as described above and hence can run fast unlike the MILP. Therefore, the heuristic can be 

used to provide real time control and routing in the network. 
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The heuristic is used for two main purposes. Firstly, as a verification of the MILP results. Secondly, 

since the heuristic uses simple rules, it runs fast unlike the MILP. Therefore, it can enable network 

control (which Chunk to process where for example) and routing which can both be performed in 

real time through the use of the heuristic. The second objective (real time control of the network) 

is fully achieved by our heuristic. The first objective (verification of MILP) is partially achieved. 

The heuristic uses the optimum data centre node locations (nodes 4 and 13) obtained from the 

MILP. The heuristic is otherwise independent of the MILP. The flowchart of Figure 4-2 shows the 

heuristic, which aims to process the incoming Chunks by utilising the minimum number of 

resources so that minimal power is consumed. The heuristic is initialised by defining the physical 

network topology, in this case the NSFNET, with 14 nodes and 21 links. 12 PNs are distributed in 

the network and 2 DCs are located at nodes 4 and 13. Note that between each node pair there exists 

a regular traffic demand Rsd in the network. 

 

Each node receives a number of Chunks (β) from its corresponding zone. Each Chunk is 

characterised by a volume and CPU workload requirements. The heuristic starts at the edge 

processing stage by selecting an SPN, then picks a Chunk from this SPN to read its CPU 

requirement. The heuristic checks the processing capacity of that SPN and the Chunk is processed 

locally in the current SPN in case there are enough processing resources. This approach guarantees 

the implementation of as much edge processing as possible. The heuristic repeats this process for 

all SPNs. Note that changing the order of SPN selection does not change the results as each SPN 

can be totally packed with processing jobs and in this case all processing tasks have the same CPU 

requirement. Once a Chunk is processed locally in an SPN, a corresponding INF demand is 

calculated between that SPN and the nearest DC following a minimum hop path. In case all Chunks 
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are processed locally by SPNs, the only demands in the network are therefore the INF and regular 

demands. Those demands are routed and the NPC is calculated using the algorithm developed in 

[42].  

 

Figure 4-2: EEBDN: volume heuristic. 

Begin
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However, the progressive processing stage inside the IPNs and the central processing stage inside 

the DCs are started when the SPNs are not capable of implementing full edge processing, (i.e. not 

all Chunks are processed locally in the SPNs). This is done by forwarding the remaining non-

locally processed Chunks from all SPNs along the minimum hop path to the nearest IPNs/DCs. An 

IPN is selected if there is spare processing capacity. This results in the CHT traffic demands 

between the SPNs and IPNs/DCs. The heuristic then obtains the INF demands resulting from 

processing the non-locally processed Chunks in IPNs. Therefore, in this case the network has three 

traffic demands: INFsd from partial local processing in SPNs, INFsd from progressive processing 

in IPN and the CHTsd demands. Again, these types of traffic demands are routed over the network 

as well as the regular traffic Rsd according to the heuristic in [42] and the total NPC is calculated. 

  

4.1.4 Complexity analysis 

The proposed EEBDN heuristic aims to work around the NP-hard complexity [115] of the MILP 

model solved using CPLEX. There are two main processes in the heuristic. Firstly, the bin packing 

problem where objects (where a number of Chunks per node (β)) of different volumes must be 

packed into a finite number of bins (servers) each of capacity C in a way that minimises the number 

of bins used. This is a greedy approximation algorithm where for each Chunk, it attempts to place 

it in the first server that can accommodate this Chunk. Thus, it requires О(𝛽 𝑙𝑜𝑔 𝛽) time [116]. 

Secondly, the generation of initial set of paths is based on minimum hop routing algorithm, which 

has a complexity of the order 𝑂(𝑁) [117], where N is the number of nodes in the network. Thus, 

the overall complexity is О(𝛽 𝑙𝑜𝑔 𝛽) + 𝑂(𝑁) for the processes of the proposed heuristic. 
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4.2 Results of Volume Scenarios 

Our MILP model and the heuristic were evaluated using the NSFNET network depicted in Figure 

4-1. The storage capacity of the PNs was assigned to be large enough. Note that we used processor 

cycles in GHz as a measure of the total processing capability of a node [118]. Table 4-3 summarises 

the input parameters.  We performed the MILP optimisation using the AMPL/CPLEX software 

running on a PC with 8 GB RAM and an i5 CPU. The heuristic is implemented using MATLAB 

on the same PC. A single run for the MILP took around 10 s to finish, while the heuristic took less 

than 1 s. Note that the computational complexity of the MILP grows fast with network size. 

Server CPU capacity in GHz (MSW)  4 GHz 

Max server power consumption (MSP) 300 W [16] 

Idle server power consumption (PIDLE) 200 W 

PNs and DCs switch power consumption (PS) 3.8 kW  [16, 119]  

PNs and DCs switch capacity (CS) 320 Gbps [16, 119] 

Energy per bit of the PNs and DCs switch (𝑆𝐸𝐵) = 𝑃𝑆/𝐶𝑆 11.875 W/Gbps  

PNs and DCs router power consumption (PR) 5.1 kW  [16, 119] 

PNs and DCs router capacity (CR) 660 Gbps [16, 119] 

Energy per bit of the PNs and DCs router (𝑅𝐸𝐵) = 𝑃𝑅/𝐶𝑅 7.727 W/Gbps  

PNs' and DCs' storage power per Gigabit (PSG) 0.008 W/Gb [16] 

Router power consumption (PR) 825 W [54] 

IP over WDM regenerator power consumption (PRG) 334 W [54] 

IP over WDM transponder power consumption (PTR) 167 W [54] 

IP over WDM optical switch power consumption (POi) ∀𝑖 ∈ 𝑁 85 W [54] 
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IP over WDM EDFA power consumption (PE) 55 W [54]   

Wavelength bit rate (B) 40 Gbps 

Distance between EDFAs (S) 80 km 

Number of wavelengths per fiber (WL) 32 

Number of location optimised DCs (DCN) 2  

IP over WDM power usage effectiveness (PUN) 1.5 [16] 

PNs and DCs power usage effectiveness (PU) 2.5 [16] 

Table 4-3: Input data for volume MILP model. 

To provide a holistic assessment of the impact of the volume dimension on the EEBDN, we 

evaluated the proposed progressive processing approach in two volume scenarios. 

 

4.2.1 Scenario #1: Deterministic Chunks volume, PRR = 0.001, number of servers 

per PN = 5-15 servers 

In this scenario, we considered the number of Chunks generated per node (β) which vary between 

5 and 30. There are two different units used in conjunction with each Chunk. Firstly, the size of 

the Chunk which is quoted in Gb and we considered the transmission of each Chunk in one second. 

Therefore, for example, the data rate associated with the transmission of an 80 Gb Chunk is 80Gb/s. 

Secondly, each Chunk has a GHz number associated with it which indicates the processing 

requirement of the Chunk. For example, a processor may be able to handle 4 GHz and the Chunk 

may require 1 GHz. Thus, if β = 5, this means that the total number of Chunks to be processed in 

the network is 70 (since there are 14 nodes in the NSFNET), and it takes one second for the 

transmission of the given Chunks and the corresponding Infos. This is a reasonable assumption as 

we considered the network resources capacity to be enough to handle the Chunks. We leave the 
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impact of the capacitated resources on the EEBDN for future work. Note that there is no 

transmission of Chunks and Infos in the network when they are handled by the DCs.  

 

We considered the following scenario. The processing capacity of each PN is different and varies 

between 5 and 15 servers per PN. Each Chunk demands 3 GHz of the CPU for processing. The 

volume of each Chunk is 80 Gb and the PRRsc is assumed to be 0.001 for all Chunks (i.e., 99.9% 

reduction). An example of such case is Electrocardiography (ECG) used to detect abnormality 

during each heartbeat of millions of patients. Table 4-4 summarises the input values needed in this 

scenario. The results in Figure 4-3-a are based on our MILP optimisation and heuristic and compare 

our EEBDN power consumption with the NPC of the CBDN approach where big data Chunks are 

sent directly to the DCs for processing.  

Number of Chunks 

per node (β) 

Number of servers 

per PN (NSp) 

CPU workload per Chunk 

in GHz (SWsc) 

Chunk volume 

in Gb (CHVsc) 
PRRsc 

5-30 5-15 3 [75] 80 [23] 0.001 [23] 

Table 4-4: Volume Scenario #1 parameters. 

For the MILP, and for all cases, the NPC increased when β increased as more Chunks are delivered 

to the network. Introducing the PNs has, however, greatly bounded the growth in power 

consumption when the number of Chunks increased which leads to network power savings 

compared to the classical approach in all the cases of the considered values of β due to processing 

near the source.  At β = 5, the network power saving is smaller than that at β = 15 since the big 

data traffic is a small portion of the overall network traffic at these low number of Chunks per node 

(𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 =  𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 +  𝐵𝑖𝑔 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑓𝑓𝑖𝑐). At β = 15, big data traffic 

becomes larger due to the large number of Chunks generated per node and therefore saving power 
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by processing big data leads to best network power saving at these intermediate levels of big data 

value. At β = 30, the big data volume has become so large and dominant that full edge processing 

(i.e. in the SPNs and IPNs) is not possible given the servers numbers in SPNs and IPNs and 

therefore the network carries more Chunks (unprocessed big data) compared to the case where β 

= 15 which has more Infos. Note that a maximum network power saving of 38% is achieved at β 

= 15, and an average network power saving of 32% is computed considering all β values, compared 

to the classical approach where no PNs exist in the network for the range of parameters considered. 

For the heuristic, the same inputs in Table 4-4 are used. The performance of the EEBDN heuristic 

was compared to the MILP performance in Figure 4-3-a and the heuristic and MILP are in close 

agreement. 

 

From Figure 4-3-a, the heuristic power savings approach those of the MILP (The MILP power 

saving is only slightly (i.e. 1.15%) higher than the heuristic’s). Moreover, the heuristic can help 

extend the evaluation by increasing the number of incoming Chunks and resources beyond the 

MILP computational limits. Note that the heuristic for the classical approach is implemented using 

the same heuristic with an additional condition that prevents processing big data outside the DCs. 

The results for the EEBDN were repeated 11 times and the graphs showed the average values. The 

95% confidence interval [120] is shown as error-bars. 

 

Figure 4-3-b shows the utilisation of the processing capacity as a percentage of the PN processing 

capacity. At β = 5 all the SPNs can perform edge processing. When β is between 10 and 15, some 

PNs with large capacities perform edge processing, as well as processing received Chunks from 

other SPNs that have less processing space, hence PNs here perform progressive processing.  
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(a) 

 
(b) 

Figure 4-3 (a) CBDN power consumption vs EEBDN power consumption (MILP and heuristic) for volume 
Scenario #1. (b) Utilisation of processing capacity % in the EEBDN with different values of β for volume 
Scenario #1. 
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This results in a CHT between SPNs and IPNs, and very small amount of CHT between SPNs and 

DCs, thereby minimising the DCs processing utilisation. Note that PN #12, which has the capacity 

to process up to 20 Chunks, is 100% utilised at β = 15.  This is because this node processed its 

own 15 Chunks and handled an extra five progressed Chunks from other SPNs. At β > 20, no edge 

processing inside SPNs and progressive processing inside IPNs is possible since all PNs processing 

space is depleted and all Chunks are centrally processed inside the DCs. Therefore, the DCs 

processing utilisation increases dramatically. Note that nodes 4 and 13 have high utilisation as they 

are the two data centre nodes. 

 

The main goal in this chapter is to show the effectiveness of our progressive processing approach 

compared to the classical centralised processing approach. We carried out a comparison with the 

classical (centralised) case, which is the case that is known in the literature and can act as a 

benchmark. Furthermore, we evaluated the complexity of our heuristic in Section 4.1.3 and 

therefore provide details relating to complexity / efficiency of our heuristic. The effectiveness of 

our heuristic was evaluated and it produced results close to the optimum MILP results, for example 

Figure 4-3-a. 

 

We re-evaluated the volume scenario of MILP model and heuristic on two more different 

networks. The COST239 network [121], (see Figure 4-4-a), which is smaller than the NSFNET 

and consists of 11 nodes and 25 bidirectional links, and the Italian network [51, 122], (see Figure 

4-4-b) which is bigger than the NSFNET and consists of 21 nodes and 36 bidirectional links. The 

results in Figure 4-5-a and Figure 4-5-b show that the average power savings of the MILP model 

and the heuristic obtained in the COST239 network are 58% and 56%, respectively for the volume 

scenario. 
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(a) (b) 

Figure 4-4: The COST239 network, and (b) the Italian network. 

 

(a) 
 

(b) 
Figure 4-5: CBDN power consumption vs EEBDN power consumption (a) COST239 network, (b) Italian 
network. 
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On the other hand, the power savings of the MILP and heuristic obtained in the Italian network are 

52% and 51%, respectively for the volume scenario. Note that nodes #4 and #8 are selected as the 

best DCs locations in COST239 network, and nodes #7 and #9 are selected in the Italian network. 

These node selections were made based on a MILP optimisation similar to that in [43]. The 

heuristic and MILP results are in close agreement in the cases described above. 

 

4.2.2 Scenario #2: Deterministic Chunks volume, PRR = 0.001, number of servers 

per PN = 10-30 servers 

In this scenario, we considered a variation of scenario A where the average processing capability 

per node is increased but the processing capacity per node remains random between 10 and 30 

servers instead of 5 to 15 servers. This is to study the effect of increasing the processing capacity 

on the progressive processing of larger big data volume, which eventually influences the energy 

efficiency of the network. See Table 4-5. 

Number of Chunks 

per node (β) 

Number of servers 

per PN (NSp) 

CPU workload per Chunk 

in GHz (SWsc) 

Chunk volume in 

Gb (CHVsc) 
PRRsc 

10-60 10-30 3 [75] 80 [23] 0.001[23] 

Table 4-5: Volume Scenario #2 parameters. 

Figure 4-6-a shows the NPC of the classical networks and EEBDN. The power saving increased at 

10 ≤ β ≤ 30 and reached a maximum value of 52% at β = 30 (compared to the maximum power 

saving of 38% at β = 15 in Scenario #1). This is because most of the big data traffic in the network 

is the INF when 10 ≤ β ≤ 30 with a small amount of CHT as most of the Chunks are processed 

locally and in the intermediate nodes. After that point (i.e., β > 30), the CHT between the PNs and 

DCs dominates the network where the computing resources of all PNs are depleted, which leads 
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to reduced power savings. However, the average power saving increases to 44% for 10 ≥ β ≥ 60 

(higher than the average power saving of 32% in Scenario #1) as more Chunks are processed in 

SPNs and IPNs. Thus, increasing the PNs processing capacity has a positive impact on both the 

average network power saving and the total number of served Chunks in the system. 

 

It should be noted that a full treatment of the internal design of processing nodes requires 

consideration of their internal architecture. For example, a fat-tree, spine-and-leaf, D-Cell or some 

other data centre architecture. This is however beyond the scope of the current work. It also 

introduces high complexity that is hard to handle in the MILP. We calculated the number of 

switches and routers needed by considering the amount of traffic arriving to a processing node and 

the data rate that can be handled by a switch or a router. This approach is appropriate for the 

ingress/egress router, which must handle the entire PN traffic. The approach however replaces the 

many small switches in the fat-tree or spine-and-leaf by a single large switch, or few large switches. 

This is not a typical implementation; however, it may be considered in our small processing nodes 

that have 5 to 15 servers or 10 to 30 servers (maximum 60 servers). It is an approach, which 

simplifies the models used. Typically, in current data centres, about 90% of the power consumption 

of IT is attributed to servers and 10% to communication equipment [123]. Therefore, having 

considered the power consumption of a large switch (or few large switches) instead of multiple 

smaller switches (and their architecture) results in changes in power consumption bounded 

typically by less than the 10% figure. 

Figure 4-6-b shows that the SPNs now can locally process all the Chunks when β = 10 since their 

processing capacity has increased. At 20 ≤ β ≤ 40, PNs start to reach their maximum processing 

capacity, such as PNs #2 and #3 at β = 20 and 30, respectively.  
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(a) 

 
(b) 

Figure 4-6: (a) CBDN power consumption vs EEBDN power consumption for volume Scenario 2. (b) 
Utilisation of processing capacity % in EEBDN with different values of β for volume Scenario 2. 
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Note that only at β = 20 is the processing utilisation of nodes #7 and #10 > 100% because they are 

selected as DCs, while at all other values of β, nodes #4 and #13 dominate the selectivity of DCs 

locations, as in Scenario #1. We also note that the processing utilisation of the DCs of the present 

scenario is smaller than that of Scenario #1 at β = 30, at which the DC utilisation reaches the 

maximum value for in Scenario #1. This is due to the growth in the PNs’ processing capability in 

the current scenario, which helps to reduce the DCs’ processing utilisation. 

 

In summary, increasing the PNs’ processing capacity has a noteworthy impact on network power 

saving as the volume of the processed big data inside SPNs and IPNs increases, which results in 

serving a larger number of Chunks as close to the edge as possible. In both scenarios, these are 

very general results as they contain all the cases, which are full edge processing inside SPNs when 

big data traffic is small, progressive processing inside IPNs for intermediate levels of big data 

traffic, and full central processing inside the DCs when the volume of big data traffic is very high. 

 

4.3 Assessing the Energy Efficiency Limits of PNs in the EEBDN 

Progressive processing is an appealing approach to reduce the power consumption associated with 

big data traffic as illustrated in the previous sections. In reality, however, PNs might be equipped 

with components that have lower energy efficiency compared to those hosted in the centralised 

DCs. This might be due to technology, economic and/or space limitations in PN sites. In this 

section, we analysed the impact on the power consumption of EEBDN of utilising less energy 

efficient equipment (servers, LAN switches and routers) in PNs compared to the large DCs. Two 

cases were studied: (i) PRR=0.001 and (ii) PRR=0.6, with β =30 (Chunks per PN) in both cases. 
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4.3.1 Results  

Results are shown in Figure 4-7 where the y-axis is NPC. Note that total power consumption 

follows similar trends. The x-axis represents PNs power consumption as a percentage of the data 

centres equipment power consumption. For instance, 10% means that the PNs equipment consume 

10% more power compared to the corresponding equipment in the DCs. Therefore, if the DC server 

consumes a maximum of 300 W, the PNs server consumes a maximum of 330 W. Since the 

equipment in the classical approach is regarded as the basis of this comparison, the total power 

consumption in the classical approach is not affected by this analysis as shown in Figure 4-7 (red 

bars). In addition, and to reduce the complexity of the analysis, the DCs are fixed in the optimal 

locations obtained in Section 4.2.1and 4.2.2 as their location is not the critical element that we 

assessed.  

 

When PRR=0.001 (green bars) and the PNs equipment power consumption is 0% to 60% greater 

than the DCs equipment’s power consumption, the power saving is at its maximum. After this 

critical stage, the energy efficiency of our approach declines gradually, approaching the energy 

efficiency of the classical central processing approach (i.e. 80% case). Comparing this to the case 

where the PRR=0.6, we noticed that our approach is useful only when the PNs equipment power 

consumption is between 0% and 20% greater than the DCs equipment power consumption. Beyond 

this range, the optimal solution is processing the majority of the Chunks in the centralised DCs 

rather than in the PNs. Therefore, our approach is the better approach at a wider range of energy 

inefficiency values at PNs when the type of big data applications allows for higher reductions (i.e. 

lower PRRs). This is because lower PRR is associated with higher network power savings, and to 

lose this high saving, the PNs need to be implemented using equipment with lower energy 
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efficiency (70% to 90% less energy efficient than the DCs). Our goal here is to show the impact 

of processing locally versus processing totally in the central data centres. Total processing in the 

central data centres becomes more attractive at the point when PNs are 90% less energy efficient 

than data centres and here the long journey to central data centres just becomes viable, comparing 

for example PRR=0.001 and the 80% and 90% cases, for the set of power consumption parameter 

we used. In practice, such a point may not be reached with current equipment trends and therefore 

edge processing may remain viable for big data even when the edge equipment is not as energy 

efficient as the central data centre equipment. 

 

An extreme potential scenario may be a situation where the central data centre power usage 

effectiveness (cooling, lighting) becomes a factor of 2 better than the edge PN power usage 

effectiveness and PNs are made of conventional processors that are four to five times less energy 

efficient than the best recent processors that have 64 cores which may be used in data centres in 

future [124, 125]. This situation is represented by the 90% case in Figure 4-7.  

 
Figure 4-7: CBDN power consumption vs EEBDN power consumption when PNs equipment consume more 
power than DCs equipment at PRR=0.001 and PRR=0.6 with β=30. 
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We conclude that at lower PRR, the EEBDN can host energy inefficient equipment in PNs and yet 

gain considerable network power saving. However, at higher PRR, i.e. higher INF traffic, the 

network power saving is already small; therefore, the network can only sustain PNs equipment 

with energy efficiency values very close to those in data centres, e.g. within 20%.  

 

4.4 Software Matching Problem and Its Effect on EEBDN Performance  

Another idealistic assumption made in the previous sections is that all PNs can process all types 

of big data Chunks, i.e. they are provided with all the necessary software packages that correspond 

to all the possible types of Chunks. This is obviously not possible in small sized PNs due to 

processing and storage limitations. Therefore, in this section, we assessed the impact of software 

shortage in PNs on the performance of the overall EEBDN approach in terms of number of 

processed Chunks at the edge. This analysis is carried out by extending our model to include a 

software matching dimension where Chunks are associated with the correct PNs hosting the 

appropriate software package that can process that Chunk. Note that DCs are assumed to host all 

the software packages needed. Therefore, if the software required by the arrived Chunk is not 

available in the receiving SPN, the SPN forwards (i.e. matches) that Chunk to the nearest IPN/DC 

that host the required package. In the software matching problem, it is worth noting that big data 

applications may be numerous covering for example healthcare, vehicular, smart city, 

manufacturing, agriculture, financial and other applications. Therefore, a single PN may not hold 

a full suite of software packages to support all the applications, due to size (storage for example) 

limitations, or due to security, isolation and resilience requirements where some high value (e.g. 

financial) or life critical (e.g. healthcare) applications must be segregated. 
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4.4.1 MILP model extension description 

In addition to the parameters mentioned in Section 4.1.2, we define the following parameters in 

Table 4-6: 

Notation Definition 

𝑆 Set of all software packages 

𝑃𝐾௣,௚ 𝑃𝐾௣,௚ = 1 if software package g (𝑔 ∈ 𝑆) is available at node p; otherwise, 

𝑃𝐾௣,௚ = 0.  

𝐶𝑆𝐹௦,௖,௚ 𝐶𝑆𝐹௦,௖,௚=1 if Chunks c generated at node s needs software package g; otherwise,  

𝐶𝑆𝐹௦,௖,௚ = 0. 

Table 4-6: List of parameters and their definitions. 

In addition to the constraints mentioned in Section 4.1.2, we defined the following constraint: 

𝑌௦௣௖ ≤ ෍ 𝐶𝑆𝐹௦,௖,௚ ∙ 𝑃𝐾௣,௚

௚∈ௌ

  (32) 

∀𝑠, 𝑝 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝐻௦ 

Constraint (32) ensures that Chunk c generated at node s, which requires software package g, can 

be processed at node p if p contains the required package g. 

 

4.4.2 Results  

We assume that each PN receives β (=10) Chunks from its corresponding zone, and each Chunk 

needs a unique software package. This models the case where Chunks’ population spans a wide 

spectrum of types. In addition, we analysed a different number of packages per PN. In each case 

corresponding to a certain number of packages per PN, all PNs host the same types of packages. 
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Hosting different types of packages can only be an informed decision when the packages are 

optimally placed at PNs, which we left for future work. Also, recall that DCs contain the set of all 

software packages. Upon the arrival of the Chunks, the SPN decides whether to process the Chunks 

locally based on software availability, otherwise, the Chunk is forwarded to the nearest DC. 

 

Figure 4-8: Software packages availability and its impact on EEBDN performance at β=10. 

 

Figure 4-8 shows the effect of software package availably inside the PNs on the network 

performance at β=10. The x-axis represents the number of packages per PN, while the y-axis 

quantifies the number of edge processed Chunks (i.e. in SPNs). 

 

Since we assumed that the packages are homogeneously distributed among the PNs (i.e. all PNs 

host similar packages), when a Chunk is not matched to its SPN due to lack of the required package, 
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this Chunk cannot be matched to any other IPN and it is processed in the central DCs. The extreme 

example for this case is when all PNs lack all packages as shown in Figure 4-8 at 0 number of 

packages per PN.  

 

The performance of our approach almost linearly improves with the availability of more software 

packages in PNs as more Chunks are processed in the edge network while the rest are forwarded 

to the DCs.  When PNs host the full package set, the maximum performance can be reached as all 

Chunks are processed locally in the edge SPNs. Note that in this case, there are 120 software 

packages running in the network. The number of running packages in the network can be reduced 

by optimally allocating packages to PNs according to the incoming Chunks-SPN-packages 

distribution. This can guarantee processing all Chunks with a smaller number of software instances 

in the network. 

 

The proposed edge processing (with progressive processing) approach, may increase the number 

of software packages installed, however this may not have a direct cost implication. Typically, site 

software licenses can be offered which cover all the sites of the user. If, however, a given software 

package does not offer this facility then the extra cost may be offset by the financial savings as a 

result of energy savings, however techno-economic studies are beyond the scope of this work. It 

is also worth highlighting the fact that the non-availability of a software package in a close-by PN 

may lead to longer journeys in the network and increased power consumption. Figure 4-8 showed 

the split between edge and central processing as nodes have more of the software packages, up to 

the point where every node has all the software packages. 
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4.5 Energy Efficient Big Data Networks: Impact of Variety  

Variety means that there are different types of big data such as CPU intensive, memory intensive, 

Input/output (IO) intensive, CPU-Memory intensive, CPU/IO intensive, and memory-IO intensive 

applications. Each requires difference amount of processing, memory, storage, and networking 

resources. 

 

The different types come from the diversity of big data sources, such as sensors, smart devices, 

and social networks, etc. Therefore, big data has a complexity feature as it comes from not only 

traditional structured data (e.g., customer data, sales data) but also unstructured (e.g., social media, 

photos, PDF) and/or semi-structured, which is a combination of both (e.g., email, XML). Such 

complexity can cause traditional database systems to struggle to store, process and analyse big 

data to obtain useful information since they are not related to the relational database technologies. 

Successful organisations that rely on big data to enrich their decision-making should be able to 

handle the variety of data [8].  

 

4.5.1 Variety MILP model 

The MILP model presented in Section 4.1.2 is also used to evaluate the impact of variety on 

EEBDN. However, the input data to the model is modified to satisfy the distinct features of the 

variety domain. 

 

4.5.2 Results of variety scenarios  

We presented in this section the following two scenarios: 
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4.5.2.1 Scenario #1: Deterministic CPU workload per Chunk with different PRR per 

Chunk 

In this scenario, all Chunks have similar CPU requirements while they exhibit different PRRs. 

Each PRR could represent a particular application that encodes information differently. Table 4-7 

shows the input parameters used in this section. All nodes generate 10 to 60 Chunks and the volume 

of Chunks varies between 10 and 330 Gb using a random uniform distribution. The values of the 

PRRsc of Chunks range between 0.001 and 1 per Chunk, i.e., some Infos volume would be equal to 

its corresponding Chunk volume, with PRRsc being generated using a random uniform distribution. 

Each Chunk demands CPU workload of 3 GHz.   

Number of Chunks per PN 10-60 (random uniform) 

Number of Chunks per PN 10-30 (random uniform) 

CPU workload per Chunk in GHz (SWsc) 3 [75] 

Chunk volume in Gb (CHVsc) 10-330 (random uniform) [23] 

PRRsc 0.001-1 (random uniform) [23] 

Table 4-7: Variety Scenario #1 parameters. 

Figure 4-9-a shows that the maximum power saving is 43% at β = 30 Chunks and the average power 

saving is 40%. An interesting feature in this figure is the effect of “variety of big data applications” 

on the network power saving compared to the previous section, i.e., volume Scenario #2, where 

we obtained an averaged maximum power saving of 52% with a single value for PRR = 0.001. 

PRR in this scenario covers values with small reduction percentages, i.e., INF volume is larger 

here compared to the volume Scenario #2, which reduces the power savings achieved. From the 

results in Figure 4-9-b, it is apparent that the system shows similar performance to volume Scenario 
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#2, in which some PNs exhaust their processing capacity earlier than other nodes, such as PNs #1, 

#7 and #11 at β = 10, while other PNs are fully utilised later as is the case for PN #9 at  

 
(a) 

 
(b) 

Figure 4-9: (a) The CBDN power consumption vs the EEBDN power consumption for variety Scenario #1. 
(b) Utilisation of processing capacity % in EEBDN with different values of β for variety Scenario #1. 
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β = 40. Note that the selected DCs in all cases here are nodes #4 and #13 when applying the 

different number of Chunks per node. The similar performance of this scenario and volume 

Scenario #1 is due to the assumed insensitivity of CPU utilisation to different values of PRRsc as 

shown in Table 4-7. 

 

4.5.2.2 Scenario #2: Different CPU workloads and PRR per Chunk  

This scenario further investigates the effects of various data types on the overall network and PN 

performance. We considered different volumes of big data Chunks generated by PNs with different 

PRRsc per Chunk, such that each PRRsc represents a specific type of data and each Chunk acquires 

a distinct CPU portion to reflect a more realistic picture for the network. Table 4-8 shows that the 

CPU workload per Chunk, Chunk volume and PRRsc per Chunk which follow a random uniform 

distribution between 1 and 4 GHz, 10 and 330 Gb and 0.001 and 1, respectively.  

Number of Chunks per PN 10-60 (random uniform) 

Number of Chunks per PN 10-30 (random uniform) 

CPU workload per Chunk in GHz (SWsc) 1-4 [75] 

Chunk volume in Gb (CHVsc) 10-330 (random uniform) [23] 

PRRsc 0.001-1 (random uniform) [23] 

Table 4-8: Variety Scenario #2 parameters. 

Figure 4-10 shows a sample of the input data for this scenario considering node #8 at β = 10. Note 

the variation among different Chunks in terms of volume, processing requirements and reductions 

ratios. This is because big data applications and forms are growing at an incredible rate, therefore 

we explored the conceivable space in this scenario. For instance, Chunk #1 has a large volume and 

requires high processing workload and produces information with very small volume (i.e. high 
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reduction ratio). This can represent a WordCount program [126], which is both CPU-intensive and 

network intensive as an application. This program reads text input files to search and count the 

number of occurrences of a specific word to produce a very small volume Info that is only an 

integer number indicating the count value. Chunk #4 comes with large volume, needs large 

processing resources and produces large volume Info.  

 

Figure 4-10: Sample of input data for variety Scenario #2 for node #8 at β = 10. 

 
This can represent an image processing application that modifies certain properties of an image, 

such as brightness level, which does not result in a huge reduction in image size. Figure 4-10 shows 

those two points in the explored space and displays their corresponding applications. 

 

Figure 4-11-a displays the main findings and differences with the previous variety Scenario #1, 

where the CPU workload per Chunk was fixed at 3 GHz. The main observations are as follows: 

first, the maximum power saving (47%) exceeds the one obtained in the variety Scenario #1 (43%). 
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This is due to the ability to consolidate the CPU processing for more Chunks by PNs as some 

Chunks arrive with lower processing requirements compared to the variety Scenario #1. The same 

observation is also true for the average power savings (43% for the current scenario, 40% for 

variety Scenario #1). Second, the maximum power saving occurred at β = 40 and not β = 30 as 

observed in the variety Scenario #1. This is also due to the extra available processing space at the 

IPNs due to processing Chunks with low processing requirements. 

 

This section tries to capture the distinct features of variety by allowing the modelled big data 

network to handle Chunks associated with different reduction ratios, CPU processing 

requirements, and volumes. There are a number of key take away messages. Figure 4-11-a shows 

results when the network has regular traffic and big data traffic. Here the larger the big data traffic, 

the more is the traffic reduction that can be achieved by processing big data and hence the larger 

the power saving. As shown in Figure 4-11-a, however, beyond a certain big data traffic volume, 

the processing capability of PNs at the edge gets depleted and the power savings drop (in Figure 

4-11-a, the savings drop from 47% to 44%). In addition, big data applications that have small PRR 

(i.e. large reduction after processing) are critical in terms of network power saving and hence 

should be given priority. Figure 4-10 shows example applications and their PRR values. 

Figure 4-11-b shows the processing utilisation for the different PNs and DCs. Firstly, we noted that 

some PNs are capable now of serving more Chunks. For instance, PNs #1 and #7 can process 

locally up to 20 Chunks, while other PNs can serve up to a maximum of 40 Chunks, such as nodes 

#3 and #6. This is higher than what some PNs in the variety Scenario #1 could serve. This shows 

the impact of having various CPU workloads per Chunk which extend the PNs ability to server 
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more Chunks with lower CPU requirements. Secondly, the model, in most stages, selected 

optimally the prevailing DC locations at nodes #4 and #13.  

 
(a) 

 
(b) 

Figure 4-11: (a) CBDN power consumption vs EEBDN power consumption for variety Scenario #2. (b) 
Utilisation of processing capacity % in the EEBDN with different values of β for variety Scenario #2. 
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Note that we re-evaluated our results where we optimised the locations of 5 DCs rather than 2 DCs 

locations in the NSFNET. Nodes #1, #4, #7, #9 and #13 are the optimum DCs locations for all 

scenarios including the classical approach. Under the 2 DCs scenario the EEBDN approach 

resulted in up to 52% and 47% power saving compared to CBDN approach under the volume and 

variety scenarios. With 5 DCs the savings increased to 54% and 48% under the volume and variety 

scenarios due to the availability of more nearby destinations for the data.  

 

Furthermore, it should be noted that energy efficiency in core networks is essential due to the high 

energy density in core nodes and the increasing power consumption of large data centres which 

are placed in the core network, a view shared by GreenTouch where the GreenTouch effort resulted 

in the development of methods to improve the energy efficiency of core networks by 316x 

compared to their 2010 levels[43], [54], [127]. Our work here considers big data traffic as well as 

regular traffic. For regular traffic see equations (4-31), (4-32), (4-33), and (4-34), and for example 

the explanation of Figure 4-11-a. The interest in big data is attributed to its large volume and the 

ability to reduce this volume through processing, hence saving power. Table 4-9 summarises the 

results obtained in the two scenarios.  

Parameters 
Scenario 

#1 #2 

Volume per Chunks in 

Gb (Chunksc) 

10-330 

(random uniform) 

10-330 

(random uniform) 

PRRsc 
0.001-1 

(random uniform) 

0.001-1  

(random uniform) 
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CPU workload per 

Chunk in GHz (Wsc) 
3 

1-4 

(random uniform) 

Number of servers per 

PN (NSp) 
10-30 10-30 

Results 
Scenario 

#1 #2 

Maximum network 

power saving 
43% 47% 

Table 4-9. Variety Scenarios Summary. 

 
4.6 Assessing the EEBDN by Considering Different Power Profiles 

In the previous sections we implemented the EEBDN using the power profile of 2010 [54], where 

the IP over WDM network equipment consumes high power. In this section, however, we assessed 

the efficiency of our EEBDN using two different power profiles compare to the 2010 power 

profile. These two power profiles are based on the projections of the 2020 equipment power 

consumption. The first one is the Business as Usual (BAU) power profile, and the second one is 

the GreenTouch Business as Usual (BAU+GT) power profile [128]. Table 4-10 shows the power 

consumption values of various components that have been used for the MILP model for a 2010 

network and a 2020 BAU and BAU+GT network worked out according to the methods 

aforementioned. 

Device 2010 power consumption 
2020 power consumption 

BAU BAU+GT 

Router Port 40 Gb/s 825 w 178.2 w 21.3 w 

Transponder 40 Gb/s 167 w 35.7 w 27.6 w 
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Regenerator 40 Gb/s 334 w 71.4 w 55.2 w 

EDFA 55 w 15.3 w 15.3 w 

Optical Switch 85 w 85 w 8.5 w 

Table 4-10 Power Consumption Values. 

We re-evaluated the volume scenario #1 for the MILP model but with using the power profiles 

BAU and BAU+GT and compared it to 2010 power profile. Results shows that our EEBDN 

performs efficiently using power profiles 2010 and BAU as the power savings reached up to 38% 

and 37%, respectively. Using the BAU+GT power profile, had, however, slightly reduced the 

power saving and reached up to 33%. This means that our approach performs efficiently even if 

the energy efficiency of the network equipment is improvement by 315x [128]. 

 

Figure 4-12: CBDN power consumption vs EEBDN power consumption of 2010, 2020 BAU, and 2020 BAU+GT 
power profiles. 
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4.7 Summary 

This chapter presented a Mixed Integer Linear Programming (MILP) model to study the impact of 

big data’s volume and variety on network power saving when such networks carry big data traffic. 

We employed our progressive processing technique to process big data raw traffic in the edge 

stage, intermediate stage, and the central processing stage. This is done by building Processing 

Nodes (PNs) in the ISP network centres that host the IP over WDM nodes. A PN is a mini 

datacentre (DC) with a limited processing and storage capacity depending on the available building 

space inside the core centre. The volume scenarios captured generic results that showed how the 

processing capability of the PNs dictates the big data volume that exists in SPNs, IPNs and data 

centres. We obtained up to 52% and 34% of network power saving in two different volume 

scenarios, compared to the power consumption of the classical processing approach where the 

Chunks are directly forwarded from the source node to the DCs.  

 

The results of the MILP model for the volume dimension are validated by developing a heuristic 

that mimics the MILP model behaviour. We further assessed the energy efficiency limits of PNs 

in the EEBDN and the results showed that employing PNs equipment with lower energy efficiency 

compared to the DCs equipment led to lower utilisation in our approach. Furthermore, we analysed 

a software matching problem and its impact on EEBDN performance. The results revealed that the 

performance of our approach improves with the availability of more software packages in PNs as 

more Chunks are processed in the edge of the network and the approach reached maximum 

performance when PNs host the full software package set. The variety scenarios revealed the 

impact of serving Chunks with different CPU workloads, volumes and PRRs on the power saving. 

In view of that, Chunks that utilise small portions of the CPU help the nodes process as many 
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Chunks as possible inside the local servers, hence, reducing the number of unprocessed Chunks in 

the network. We obtained up to 47% and 43 % of network power savings in two different variety 

scenarios.  
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Chapter 5 Energy Efficient Big Data Networks: Impact of Velocity 

Velocity is a property of data in motion. It is the speed at which data is fluxing in to be processed 

[8]. The flux rate can grow larger for applications collecting information from wide spatial or 

temporal domains. For instance, the Square Kilometre Array [109] telescope combines signals 

with a flow speed of 700 TB/second of data received from thousands of small antennas spread 

over a distance of more than 3000 km. In another example, five million trade events created each 

day are scrutinised to identify potential fraud [129]. Five hundred million daily call detail records 

are analysed in real-time to predict customer churn faster [129]. 

 

An effective tactic to deal with the velocity of big data is to perform analysis while flowing and 

not only after being stored because there is an immense amount of data that has very short life 

cycles [129]. This requires extracting the useful knowledge from big data in near real time. 

Therefore, the intention of the present study in this chapter is to analyse both time dependent types 

of big data applications: expedited-data processing and relaxed-data processing. 

 

This chapter, makes a number of new contributions beyond the previous chapter as follows: Firstly, 

we developed a MILP model to examine the impact of the velocity of big data on network power 

consumption in bypass IP over WDM core networks. We consider an expedited-data processing 

mode and a relaxed-data processing mode. In the relaxed-data mode, the execution time needed to 

process an application is relatively long as it can tolerate some delay. In the expedited-data mode, 

the execution time required to process delay sensitive applications is optimised to be as short as 

possible. Secondly, we extended the objective of the MILP model so that it minimises the network 

power consumption as well as minimising the execution time of big data applications. The addition 



 
 

118 

 

of the time dimension is essential when considering big data applications where velocity (time 

sensitivity) is an important attribute. Thirdly, we used our progressive processing technique to 

process big data Chunks and compared the results to the classical approach where progressive 

processing is not allowed. In our approach, the processing locations are optimally selected at 

Source PNs (SPNs), at the Intermediate PNs (IPNs) or inside the centralised data centres (DCs). 

As a result, a significant reduction in the network power consumption is achieved each time the 

data is processed along the journey from the source to the DCs. Note that the main similarities in 

all the MILP models are due to the comparable goals of optimising the processing locations of 

Chunks, optimising the locations of the DCs, ensuring the flow conservation of big data traffic, 

and minimising the power consumption of PNs, DCs, and IP over WDM network. In summary, 

the differences between the different MILP models we developed reflect the different requirements 

and features of big data forms/applications where a particular big data V may be important.  

 

The intention of this chapter is to analyse both time dependent types of big data applications: 

expedited-data processing and relaxed-data processing. Relaxed-data processing can tolerate some 

delay and can be processed in a batch processing mode after being stored inside DCs, such as 

digital image processing and automated transaction processing. Several benefits can be gained in 

batch processing jobs, such as avoiding the idle status of computing resources by shifting the time 

of job processing to less busy hours, hence, gaining a higher overall rate of utilisation. Further, 

batch processing reduces the system overhead by running a program one time to achieve multiple 

tasks for the same job rather than running that program many times to perform those different 

tasks. On the other hand, in expedited-data processing, it is essential to analyse data as fast as 

possible to maximise its value while fluxing into the DCs. For instance, sometimes two minutes 
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delay is too much to catch fraud or it could lead to a disaster, such as the situation of remote patient 

monitoring that requires the analysis of the abnormality in their sensed organ readings almost 

immediately. An effective method to quickly process data is to provide sufficient and efficient 

computational resources to decrease the processing latency of such CPU intensive applications. 

This can be done by optimally allocating processing workloads according to the data type. If it is 

expedited-data, then the allocated CPU should be a large portion of the CPU processing capacity, 

so as to serve the expedited-data quickly. Therefore, increasing the CPU frequency has a positive 

impact on decreasing the execution time of CPU intensive applications [9]. Equation (5-1) 

represents the CPU performance relationship [130].  

 𝐶𝑃𝑈 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝐶𝐸𝑇)

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 (𝐼𝐶)
 =   

𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝐶𝑃𝐼)

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑃𝑊)
. (5-1) 

The term 𝐶𝐸𝑇 represents the total duration a CPU requires to execute a program with a certain 

number of instructions (𝐼𝐶). Note that the program is used to extract useful knowledge from a 

given Chunk. The term 𝐶𝑃𝐼 is the average number of clock cycles needed to execute each 

instruction of that program. PW represents the CPU cycles per second in GHz used to process a 

given Chunk. Note that in [130] PW is referred to as Clock Rate.  

 

In our model, Chunks initially request a certain 𝐶𝐸𝑇, called 𝑅𝐶𝐸𝑇. Based on the 𝑅𝐶𝐸𝑇, 𝐶𝑃𝐼 and 

𝐼𝐶, the initially requested 𝑃𝑊 for Chunks is deduced, called 𝑅𝑃𝑊. However, to expedite the 

process, the model can allocate processing workloads for Chunks that exceeds the 𝑅𝑃𝑊, called 

Allocated PW (𝐴𝑃𝑊). Based on 𝐴𝑃𝑊, 𝐶𝑃𝐼 and 𝐼𝐶, the model can deduce the optimal CPU 

execution time to process a Chunk, referred to as Allocated CET (𝐴𝐶𝐸𝑇). Note that 𝐴𝐶𝐸𝑇 can be 

shorter than 𝑅𝐶𝐸𝑇 for expedited-data processing. 
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5.1 Velocity MILP Model 

In this section, and for the completeness of our work in the previous chapter, we introduced a 

MILP model for the EEBDN in the bypass approach of the IP over WDM network. We attached 

capacitated PNs at each core node of the NSFNET, as shown in Figure 4-1, with DCs with large 

enough capacities. The DCs are employed to process all incoming big data Chunks from PNs. 

Further, the DCs receive Infos produced by the PNs.  

 

We performed the MILP optimisation using the AMPL/CPLEX software running on a PC with 8 

GB RAM and an i5 CPU. The model execution takes few minutes to around two hours to solve 

the problem in the scenarios studied in the work. However, for faster results and larger networks, 

the current MILP can be applied using a High-Performance Computer (HPC). For example, we 

used a Polaris machine with 16 cores (processors) and 256 GB of RAM. Furthermore, a heuristic 

can be implemented to achieve two main purposes. Firstly, as a verification of the MILP results 

and secondly, since the heuristic uses simple rules, it runs fast unlike the MILP. Therefore, a 

heuristic can enable network control (which Chunk to process where for example) and routing, 

which can both be performed in real time using the heuristic. To demonstrate the potential of 

serving both types of time dependent data (expedited-data and relaxed-data) and the suitability of 

this approach for the EEBDN, we presented a 𝐶𝐸𝑇 dimension, i.e., the CPU Execution Time 

required to process big data Chunks. The assigned processing resources per Chunk are optimally 

allocated for PNs in a manner that satisfies the Chunk minimum processing duration requirements. 

In addition to the parameters defined in Table 4-1: List of parameters and their definitions. 

 in Chapter 4, we defined the following parameters in Table 5-1: 
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Notation Description 

𝑅𝐶𝐸𝑇௦௖ Requested CPU execution time of Chunk c generated by node s. 

𝑅𝑃𝑊௦௖ Requested processing workload for Chunk c generated by node s.  

Ф  Required processing weight for Chunks (W/GHz). 

Table 5-1: List of parameters and their definitions. 

In addition to the variables defined in Table 4-2 in Chapter 4, we defined the following variables 

in Table 5-2: 

Notation Description 

𝐴𝑃𝑊௦௣௖ Allocated processing workload of Chunk c that is generated by node s and processed 

at node p.  

𝐴𝐶𝐸𝑇௦௣௖  Allocated CPU execution time of Chunk c that is generated by node s and processed 

at node p. 

𝑃𝑊 Total processing workload consumed by all the Chunks in the network including 

DCs. 

𝑇௣ Maximum CPU execution time allocated to process Chunks at processing node 

p, 𝑇௣ =  𝑀𝑎𝑥൫𝐴𝐶𝐸𝑇௦௣௖൯. 

𝑀𝐴𝑋𝑇 Maximum CPU execution time needed to process all the Chunks in the network. 

𝑇 =  𝑀𝑎𝑥൫ 𝑇௣൯. 

𝑀𝐼𝑁𝑇 Minimum CPU execution time needed to process all the Chunks in the network. 𝑇 =

 𝑀𝑖𝑛൫𝑇௣൯. 

Table 5-2: List of variables and their definitions. 
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The model is now updated, defined as follows: 

Objective: Minimise 

𝑃𝑈𝑁 ∙ ቌ෍ 𝑃𝑅 ∙  (𝐴𝑅௜ + 𝐴𝐶𝐻௜ + 𝐴𝐼௜) + 𝑃𝑅 ∙ ෍ ൫𝐶௜௝൯

௝∈ே:௜ஷ௝௜∈ே

+ ෍ ෍ 𝑃𝑇𝑅 ∙ 𝑊௠௡ +

௡∈ே೘௠∈ே

෍ ෍ 𝑃𝑅𝐺 ∙ 𝑊௠௡ ∙ 𝑅𝐺௠௡

௡∈ே೘௠∈ே

+ ෍ ෍ 𝑃𝐸 ∙ 𝐴௠௡ ∙ 𝐹௠௡ +

௡∈ே೘௠∈ே

෍ 𝐸𝑂௜

௜∈ே

ቍ 

+  𝑃𝑈 ∙ ቌ෍ 𝛿 ∙ 𝑃𝑁𝑊௣

௣∈ே

+ ෍ ෍ 𝐶𝐻𝑇௦௣

௦∈ே

∙  (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

 

+ ෍ ෍൫𝐶𝐻𝑇௣ௗ + 𝐼𝑁𝑇௣ௗ൯

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

  

+ ෍ ෍ 𝐼𝑁𝐹௣ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

+ ෍ 𝑆𝐶𝐻௣ ∙ 𝑅𝑆𝐺 ∙ 𝑃𝑆𝐺

௣∈ே

ቍ 

−Ф ∙ ෍ 𝑃𝑁𝑊௣ .

௣∈ே

 
(5-2) 

 

 

Equation (5-2) gives the model objective which maximises the CPU workload per node 𝑝 and 

minimises the IP over WDM network, PNs and DCs power consumptions. Ф is a weight that 

controls the model emphasis on the Chunks' allocated CPU workload in the nodes within the fixed 

nodes’ processing capacity. The objective function (equation (5-2)) minimises the network power 

consumption, minimises the processing power consumption and to different extents, through the 
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parameter Ф, the objective function maximises the amount of processing used such that expedited 

data can be served quickly when present. For example, if 100% of the data requires expedited-

processing, then a high value of Ф is used. Conversely, when all the data requires relaxed-

processing, the value of Ф that should be used is low and approaches zero. In this case, the 

objective function, equation (5-2) simply minimises the overall power consumption made up of 

network and processing power consumptions. Therefore, there is a trade-off between power saving 

and the proportion of big data that requires expedited processing. 

Subject to: 

In addition to constraints (4-10)-(4-30) defined in Chapter 4, the model is subject to the following 

constraints 

𝑃𝑁𝑊௣ = ෍ ෍ 𝐴𝑃𝑊௦௣௖

௖∈஼ுೞ௦∈ே

 

∀𝑝 ∈ 𝑁, 

(5-3) 

𝑃𝑊 = ෍ 𝑃𝑁𝑊௣,     

௣∈ே

 (5-4) 

𝐴𝑃𝑊௦௣௖ ≥ 𝑌௦௣௖      

∀𝑠, 𝑝 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝐻௦, 

(5-5) 

𝐴𝑃𝑊௦௣௖ ≤ 𝑀. 𝑌௦௣௖  

∀𝑠, 𝑝 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝐻௦, 

(5-6) 

    𝐴𝑃𝑊௦௣௖ ≤ 𝑀𝑆𝑊 

∀𝑠, 𝑝 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝐻௦ and 

(5-7) 

   ෍ 𝐴𝑃𝑊௦௣௖ ≥ 𝑅𝑃𝑊௦௖

௣∈ே

 (5-8) 
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∀𝑠 ∈ 𝑁, ∀𝑐 ∈ 𝐶𝐻௦. 

Constraint (5-3) replaces constraint (4-16). It calculates each PN’s workload (i.e. 𝐴𝑃𝑊௦௣௖) by 

summing the CPU workload allocated to each individual Chunk processed at that PN. Constraint 

(5-4) calculates the total Chunks allocated to the processing workload per node. Constraints (5-5) 

and (5-6) specify the processing location of Chunk c generated by node s and processed at node p, 

where M is a large enough unitless number to ensure that 𝑌௦௣௖ =  1 when 𝐴𝑃𝑊௦௣௖ is greater than 

zero. Constraint (5-7) ensures that the processing workload allocated for each Chunk does not 

exceed the maximum processing threshold 𝑀𝑆𝑊. Constraint (5-8) ensures that the allocated 

processing workload for each Chunk satisfies the minimum processing workload requested for that 

Chunk. Note that we calculated the 𝐴𝐶𝐸𝑇 in equation (5-9) as follows: 

𝐴𝐶𝐸𝑇௦௣௖ =
𝐶𝑃𝐼 ∙ 𝐼𝐶 ∙ 𝑌௦௣௖

(𝐴𝑃𝑊௦௣௖ . 𝑌௦௣௖ + 𝑒)
 

(5-9) 

where e is a very small number to ensure that 𝐴𝐶𝐸𝑇௦௣௖ equals zero when 𝑌௦௣௖ is zero. Note that 

equation (5-9) is calculated offline after running the model and obtaining 𝑌௦௣௖ and 𝐴𝑃𝑊௦௣௖. 

 

5.2 Velocity Model Results 

The NSFNET network is also considered for evaluating the impact of velocity on the EEBDN. We 

consider two velocity scenarios as follows: 

 

5.2.1 Scenario #1: Deterministic volume and RCET per Chunk  

In this scenario, we assumed that there is only relaxed-data Chunks in the network with a PRR per 

Chunk of 0.001 and a volume per Chunk of 80 Gb. Each node generates 100 Chunks per second 

and can process locally a different number of Chunks depending on the PN’s resources capacity. 
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The Instruction count (𝐼𝐶) per Chunk is assumed to be 1 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 instructions. CPUs are used with 

𝐶𝑃𝐼 =  1 so that each instruction needs only one clock cycle to be executed, these values approach 

the values in [131]. 𝑅𝐶𝐸𝑇 is assumed to be one second (i.e., 𝑅𝑃𝑊 = 1 𝐺𝐻𝑧). However, Chunks 

can have 𝐴𝐶𝐸𝑇 < 𝑅𝐶𝐸𝑇, by optimally selecting 𝐴𝑃𝑊 > 𝑅𝑃𝑊. Note that each PN has been 

assigned a random uniformly distributed amount of storage ranging between 10 Pb to 70 Pb. 

Furthermore, the number of servers per PN is random (uniform distribution) and ranges between 

10 and 30 servers. Table 5-3 shows the input values used in this scenario.  

Number of Chunks per node per second (CHs) 100 

PNs storage capacity (MSp) ∀𝑝 ∈ 𝑁 10 Pb - 70 Pb (random uniform) 

Number of servers per PN (NSp) ∀𝑝 ∈ 𝑁 10-30 (random uniform) 

Volume per Chunk in Gb (Chunksc) 80 

PRRsc per Chunk 0.001 

Instruction Count (IC)  10ଽ 

CPI 1 

Requested CPU execution time RCETsc in seconds 1 

Maximum CPU workload allowed for each Chunk in 

GHz MSW 
4 

Required processing weight for Chunks (Ф) 0-1500 

Table 5-3: Velocity Scenario #1 parameters. 

Figure 5-1-a illustrates the energy efficient part of velocity. It shows the relationship between 

increasing the required processing weight (Ф) and network power consumption. Recall that Ф 

represents a measure of the degree to which the processing of Chunks is expedited, where larger 
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values of Ф correspond to Chunks preferring shorter 𝐴𝐶𝐸𝑇. In classical big data networks, the 

network power consumption remains steady when increasing Ф as all Chunks directly traverse to 

the DCs before processing. In the EEBDN and up to Ф = 1000, a slight increase in power 

consumption appears in the network (from 3.46 (relaxed-data which is not velocity sensitive) to 

3.5 MW as indicated in Figure 5-1-a). This means that a considerable number of Chunks are 

processed locally inside the PNs and the type of network traffic at this point is mostly INF. This 

results in a 60% power saving compared to the classical approach. At the point where Ф = 1100, 

however, the effect of Ф becomes evident as the network power consumption increases 

dramatically and the power saving decreases to 33%. This means that PNs allocated higher CPU 

processing workloads per Chunk, which causes fewer Chunks to be locally processed, and more 

Chunks to be forwarded to the optimal DC, i.e., a larger amount of CHT traffic flows in the 

network. For the same reason, the effect of Ф becomes greater when Ф = 1200 and above, where 

it causes a maximum level of network power consumption and a minimum power saving of 15%. 

Therefore, the EEBDN are always better than the classical approach in terms of network power 

savings even when they serve computationally demanding requests.  

 

Note that the reason of why the power saving remained steady and then started to decrease sharply 

at Ф=1000 is because the input parameters do not include a variety, i.e. serving only one big data 

application with deterministic volume, CPU, PRR per Chunk. We also evaluated the case where 

𝐼𝐶 = 2 billion and kept 𝑅𝐶𝐸𝑇 = 1 seconds and 𝐶𝑃𝐼 = 1, hence requiring the system to finish the 

processing job at the same time interval. The results showed a reduction in network power saving 

to 32% at Ф = 0 & 800, and 15% at Ф = 1500. This is because CPU workload is proportional to 

the 𝐼𝐶 in this case. This leads to higher processing requirements that might exceed PNs processing 
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capacity, hence increasing the central processing at DCs, thereby increasing network power 

consumption as more CHT flows in the network. 

 

To conclude, Ф and the percentage of the amount of data that requires expedited-processing are 

proportionally-related. For example, if 100% of data requires expedited-processing, then the value 

of Ф is high, while this percentage decreases to almost 0% when the value of Ф is low, which 

means nearly all data requires relaxed-processing. On the other hand, if mixed modes are operated 

in the network, (i.e., around 50% of data requires relaxed-processing and the other 50% of data 

requires expedited-processing.), then the value of Ф is moderate. 

 

Figure 5-1-b illustrates the expediting part of velocity. It displays the effect of increasing Ф on the 

CPU execution time needed to process all the Chunks in the network. When the value of Ф is 

between 0 and 1100, power saving is more important, therefore, allocating minimum number of 

servers, hence most of the Chunks are served in longer time at 𝑀𝐴𝑋𝑇 of one second, which is the 

maximum allowed time. Conversely, if these Chunks need to be processed in near real time (i.e., 

large value of Ф), allocating high number of servers is important to have 𝑀𝐴𝑋𝑇 equal to the 

minimum allowed CPU execution time of 0.25 second, hence less edge and progressive processing 

is achieved and more central processing, thereby, reducing the network power saving. This 

happened at the point where Ф ≥ 1200 in our analysis when all Chunks are allocated a shorter 

𝐴𝐶𝐸𝑇 of 0.25 second (𝑖. 𝑒. 𝐴𝑃𝑊௦௣௖  = 𝑀𝑆𝑊). On the other hand, the request for the minimum 

CPU execution time appears earlier in the DCs at small values Ф, therefore 𝑀𝐼𝑁𝑇 = 0.25 for the 

central processing since there is large enough number of servers inside the DCs. Figure 5-1-c shows 

the relationship between Ф and the total amount of computational resources (𝑃𝑊) allocated to all 
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Chunks in the network. All Chunks are allocated the minimum CPU workload at 0 ≤ Ф ≤ 10 

(i.e. 𝑃𝑊 = 𝐴𝑃𝑊௦௣௖ ∙ 100 𝑐ℎ𝑢𝑛𝑘𝑠 𝑝𝑒𝑟 𝑛𝑜𝑑𝑒 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝐶𝐻௦) ∙  14 𝑛𝑜𝑑𝑒𝑠 = 1400 𝐺𝐻𝑧). 𝑃𝑊 

increases gradually when increasing Ф until all Chunks demand the maximum allowable 

processing value (𝑀𝑆𝑊) when Ф ≥ 1200. Figure 5-1-d shows that the processing resources of all 

PNs are fully utilised at all values of Ф. At low values of Ф the processing resources of the PNs 

are fully utilised to serve the largest possible number of Chunks to reduce the network power 

consumption. At high values of Ф, the PN processing resources are also fully utilised by serving a 

lower number of Chunks for a shorter 𝐴𝐶𝐸𝑇.  As in previous results, different PNs have different 

processing capacities, as illustrated in Figure 5-1-d Chunks that require processing resources 

beyond the ability of the PNs are forwarded to the DCs. Therefore, the processing utilisation of 

the DCs (which are selected optimally at nodes 3 and 14) grows progressively as Ф increases. It is 

an indication that the DCs are receiving gradually more Chunks from the PNs. As a result, the 

larger the value of Ф, the smaller the number of locally processed Chunks inside the PNs, and the 

higher the number of forwarded Chunks to the DCs. 
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 (b) 

(c) 

 
(d) 

Figure 5-1: (a) Network power consumption for the CBDN and EEBDN vs ф when CHs=100, for velocity 
Scenario #1. (b) Max and Min CPU execution time needed to process the Chunks in the network vs Ф when 
CHs=100, for velocity Scenario #1. 
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To conclude, using our EEBDN approach, serving Chunks in relaxed-data mode results in a 60% 

network power saving whereas serving Chunks in expedited-data mode results in a 15% network 

power saving. 

  

5.2.2 Scenario #2: Different volume, PRR and RCET per Chunk 

In this scenario, we assumed that each node generates 100 Chunks per second with random uniform 

distribution that ranges between 10 Gb and 330 Gb per Chunk. To evaluate a variety of big data 

applications in the network, the PRR of the Chunks is varied using a random uniform distribution 

between 0.001 and 1. Furthermore, different 𝑅𝐶𝐸𝑇 are assigned for the Chunks in a random 

uniform distribution that varies between the shortest 𝐶𝐸𝑇of 0.25 seconds to the longest 𝐶𝐸𝑇of 1 

second. Chunks with a 𝑅𝐶𝐸𝑇 = 0.25 seconds are already within the minimum 𝐴𝐶𝐸𝑇 allowed in 

our analysis; therefore, changing the value of Ф has no impact on the processing allocation for 

those Chunks. Table 5-4 displays the input values for this scenario. 

Number of Chunks per node per second (𝐶𝐻௦) 100 

PNs storage capacity (MSp) ∀𝑝 ∈ 𝑁 10 Pb - 70 Pb (random uniform) 

Number of servers per PN (NSp) ∀𝑝 ∈ 𝑁 10-30 (random uniform) 

Volume per Chunk in Gb (Chunksc) 10-330 (random uniform) 

PRRsc  0.001-1 (random uniform) 

Instruction count (IC) 10ଽ 

CPI 1 

Requested CPU execution time (RCETsc) in seconds 0.25-1 (random uniform) 
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Number of Chunks with RCET = 0.25 seconds 450 

Number of Chunks with RCET > 0.25 seconds 950 

Maximum CPU usage allowed for a Chunk in GHz (MSW) 4 

Required processing weight for Chunks (Ф) 0-2700 

Table 5-4: Velocity Scenario #2 parameters. 

Figure 5-2-a shows a gradual increase in the network power consumption for the EEBDN while it 

remains constant for the classical approach when applying all the given values of Ф. The 

interesting point for this trend when compared to the results in the velocity Scenario #1 is the large 

escalation in the network power consumption at all values of Ф even though the network is serving 

Chunks with larger volumes of up to 330 Gb compared to the 80 Gb Chunk size in the velocity 

Scenario #1. This is because the 𝑅𝐶𝐸𝑇 now is different from one Chunk to another, which reflects 

the diversity in the requested processing workloads (𝑅𝑃𝑊). For instance, there are already 450 

Chunks in the network that requested the shortest 𝐶𝐸𝑇 by consuming the maximum allowable 

CPU workload(𝑀𝑆𝑊), whereas the 𝑅𝐶𝐸𝑇 was initially fixed at the longest time of one second for 

all Chunks in Scenario #1, and that initially consumed the lowest 𝑅𝑃𝑊 values. Therefore, at 0 ≤ 

Ф ≤ 1000, the maximum power saving decreased to 32% compared to the velocity Scenario #1. 

The power saving begins to decline gradually until it reaches a minimum level of 21% at Ф ≥ 2700, 

where all the Chunks are processed now in expedited-data mode. At this point, the CHT traffic 

reaches the highest level since every Chunk requests the minimum allowed 𝐶𝐸𝑇 value, whereas 

the allocated CPU workload per Chunk (𝐴𝑃𝑊) reaches a maximum level. Figure 5-2-b explains 

the effect of Ф on the 𝑇௣  for each PN and DC. Nodes 4 and 13 are selected as optimal DCs for 

handling big data Chunks and Infos. Moreover, the DCs take the longest 𝑇௣ of one second for 

processing Chunks at the point where 0 ≤ Ф ≤ 100.   
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(a) 

 
(b) 

Figure 5-2: (a) Network power consumption for the CBDN and EEBDN vs ф when CHs=100, for velocity 
Scenario #2. (b) CPU execution time (Tp) allocated to process Chunks at each PN and each DC vs ф when 
CHs=100, for Scenario #2. 
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After that point, 𝑇௣ is at the shortest period of 0.25 seconds, which means that the allocated 

processing resources for all Chunks inside the DCs are at the maximum value.  On the other hand, 

the longest 𝑇௣ of one second for all PNs is allocated for most of the Chunks when 0 ≤ Ф < 1100. 

After that point, the impact of Ф on 𝐶𝐸𝑇 is dictated based on the PN processing capacity.  That is, 

the effect of increasing Ф appears and begins first within the PNs with higher processing 

capacities, such as PN #12 (30 servers) at Ф = 1100, while it affects later PN #11 (20 servers) at 

Ф = 1900 and PN #7 (with only 10 servers) at Ф = 2200. This is because the optimal approach to 

minimise network power consumption by decreasing the CHT flow is for the PNs with the largest 

capacity to allocate the shortest 𝐴𝐶𝐸𝑇 for as many Chunks as possible and for the PNs with lower 

processing capacity to allocate longer 𝐴𝐶𝐸𝑇𝑠. The 𝑇௣ of all the PNs is at the lowest value when Ф 

> 2600, which means that all the PNs’ processing resources are fully utilised with the highest 𝐴𝑃𝑊 

values. This leads to fewer locally processed Chunks inside the PNs and a greater number of 

processed Chunks inside the DCs. 

 

5.3 Summary 

This Chapter introduced a Mixed Integer Linear Programming (MILP) model to investigate the 

impact of the velocity of big data on the EEBDN in bypass IP over WDM core networks. We used 

the proposed EEBDN approach by introducing Processing Nodes (PNs) that are attached to the IP 

over WDM nodes to progressively process big data in the edge, intermediate, and central networks. 

We served big data in two modes: expedited-data mode and relaxed-data mode. In the first mode, 

the Chunks are processed quickly by utilising a greater number of computational resources 

compared to the second mode. The average network power saving was 60% and 15% in the first 

and second mode, respectively. The reason for the reduction in power saving for the second mode 
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is that more servers are employed to implement less edge and progressive processing, hence 

smaller number of Chunks can be processed locally in the source PNs and along the route in the 

intermediate PNs due to the higher CPU workload per Chunk. 
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Chapter 6 Energy Efficient Big Data Networks: Impact of Veracity 

The veracity of big data is a more serious challenge to data scientists since they need to distinguish 

between meaningful data and dirty data [132]. Significant effort is needed to keep dirty data out 

of organisations’ databases. A good reason to motivate big data scientists to analyse the veracity 

is that, for example, low quality data causes the U.S. economy to waste $3.1 trillion each year 

[132]. 

 

Data cleansing [11] deals with detecting and removing errors and duplications from data to 

improve its quality. When dealing with multiple big data sources, the need for data cleansing 

becomes significant since the sources may contain dirty data due to overlaps, duplications or 

contradictory materials. Therefore, it is important to cleanse data so that it is readied for big data 

analytics, see Figure 6-1. Hence, providing easy access to accurate, consistent and consolidated 

data of different data forms is needed [133]. 

 

Figure 6-1 illustrates an architectural framework for big data analytics. Pooling data generated from 

multiple applications and locations is the first phase of big data analytics. In the second phase, the 

data is in a ‘raw’ state and needs to be cleansed and readied via several cleansing and 

transformation options, such as Extract, Transform, Load (ETL) steps [134]. Another approach, 

which works for the batch processing mode, is data warehousing, wherein data from diverse 

sources is cleansed, aggregated and made ready for processing [133]. Once the data is cleansed, it 

should replace the dirty data in the original sources to give legacy applications the improved data.  

Depending on whether the data is structured or unstructured, various data formats can be input to 

big data analytics platforms, such as Hadoop [8] and MapReduce [75].  
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Figure 6-1 Architectural framework for big data analytics [133]. 

 

6.1 Veracity MILP Model Description 

The objectives of the present section are as follows: (i) to optimise the storage location of cleansed 

big data Chunks before processing, subject to PN storage limitations, and (ii) to build 1 to N (N is 

the number of nodes in the network) DCs for backup of the cleansed big data Chunks to store one 

copy of each cleansed Chunk for the purposes of protection and to recall them for future analytics, 

and (iii) minimise the power consumption while meeting the first two objectives. The optimisation 

can find the location of 1 to N such DCs. In the results, we evaluated the case of one backup DC 

for all the cleansed data, we referred to this DC as a Backup Node (BN). 

 

We extend the model in Chapter 4 to satisfy those objectives. The cleansing process is performed 

at each SPN when receiving raw data from multiple sources, and generates cleansed Chunks with 

smaller volumes. These cleansed Chunks are progressively processed in the EEBDN. Limited 

storage capacity for the PNs is considered to capture the distinct impact of storage limitations on 
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the optimal location to store the cleansed Chunks in the network. We assume that the cleansing 

phase in the SPNs is implemented using temporary storage shared among the Chunks; however, 

the long-term storage of the cleansed Chunks is determined by the model.  A cleansed Chunk 

replica is a backup Chunk created if the original Chunk is lost or destroyed. This backup Chunk is 

optimally stored in the BN. This BN could be either SPN or IPN. However, selecting the location 

of the BN in the same location of one of the two locations optimised DCs is not considered in our 

work. The number of employed BNs can be decided according to the level of resilience desired 

for the big data original Chunks. In addition to the parameters defined in Table 4-1 in Chapter 4, 

we defined the following parameter: 

𝑃𝑆𝐵 BN storage power per Gigabit (W/Gb). 

In addition to the variables defined in Table 4-2 in Chapter 4, we defined the following variables, 

see Table 6-1. 

Notation Description 

𝐵𝑁ௗ  BNd = 1 if node d is a backup node, else BNd = 0. 

𝐵𝐶𝐻௦ௗ  Backup Chunks traffic from source node s to backup node d. 

𝐵𝐶𝐻௜௝
௦ௗ

 Traffic flow of the backup Chunk traffic BCHsd between node pair (s, d) traversing 

virtual link (i, j). 

𝐴𝐵௜  Number of aggregation ports in router i utilised by backup Chunk traffic BCHsd. 

𝑆𝐵𝐶𝐻ௗ  Amount of backup Chunks stored in BN d in Gb. 

Table 6-1: List of variables and their definitions. 

The power consumption of the router ports is calculated as follows: 

𝑃𝑅𝑃𝑂𝑅𝑇𝑆 = ෍ 𝑃𝑅 ∙  (𝐴𝐵௜ + 𝐴𝑅௜ + 𝐴𝐶𝐻௜ + 𝐴𝐼௜) + 𝑃𝑅 ∙ ෍ ൫𝐶௜௝൯

௝∈ே:௜ஷ௝௜∈ே

. (6-1) 
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Equation (6-1) replaces equation (4-1). It calculates the power of the router ports when backup big 

data traffic BCHsd exists in the network.  

 

The power consumption of the internal switches and routers is calculated as follows: 

 𝑃𝑆𝑅 = 2 ∙ ෍ ෍ 𝐵𝐶𝐻௦ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵) + 

௦∈ே

෍ ෍ 𝐶𝐻𝑇௦௣

௦∈ே௣∈ே

∙  (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)  

+ ෍ ෍൫𝐶𝐻𝑇௣ௗ + 𝐼𝑁𝑇௣ௗ൯

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

  

+ ෍ ෍ 𝐼𝑁𝐹௣ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

. 
(6-2) 

Equation (6-2) replaces equation (4-6). It calculates the power consumption of the internal 

switches and routers in the SPNs, IPNs and DCs, as well as the extra internal switches’ and routers’ 

power consumption in the SPNs and BNs resulting from sending backup Chunks between them. 

As we assumed a homogeneous network and equipment, the total power consumption in the SPNs 

due to backup Chunk traffic is equal to the power consumption of the BN receiving that traffic, 

hence the factor of two in equation (6-2). The power consumption of the storage for the BN is 

calculated using equation (6-3). 

𝐵𝑁𝑆𝑇𝑂𝑅𝐴𝐺𝐸 = ෍ 𝑆𝐵𝐶𝐻ௗ ∙ 𝑅𝑆𝐺 ∙ 𝑃𝑆𝐵

ௗ∈ே

.  
(6-3) 

To assess the impact of the veracity on the EEBDN, we integrated the PNs’ storage limitations and 

cleansed Chunks backup dimension with the objective function that optimises the variety. We 

chose the variety model as it encapsulates the volume analysis and considers a generic data input. 

The objective of the model is: 
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Objective: Minimise 

Minimise: 

𝑃𝑈𝑁 ∙ ቌ෍ 𝑃𝑅 ∙  (𝐴𝐵௜ + 𝐴𝑅௜ + 𝐴𝐶𝐻௜ + 𝐴𝐼௜) + 𝑃𝑅 ∙ ෍ ൫𝐶௜௝൯

௝∈ே:௜ஷ௝௜∈ே

+ ෍ ෍ 𝑃𝑇𝑅 ∙ 𝑊௠௡ +

௡∈ே೘௠∈ே

෍ ෍ 𝑃𝑅𝐺 ∙ 𝑊௠௡ ∙ 𝑅𝐺௠௡ +

௡∈ே೘௠∈ே

෍ ෍ 𝑃𝐸

௡∈ே೘௠∈ே

∙ 𝐴௠௡ ∙ 𝐹௠௡ + ෍ 𝐸𝑂௜

௜∈ே

ቍ 
 

+  𝑃𝑈 ∙ ቌ෍ 𝛿 ∙ 𝑃𝑁𝑊௣

௣∈ே

+ 2

∙ ෍ ෍ 𝐵𝐶𝐻௦ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵) + 

௦∈ே

෍ ෍ 𝐶𝐻𝑇௦௣

௦∈ே௣∈ே

∙  (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)  

+ ෍ ෍൫𝐶𝐻𝑇௣ௗ + 𝐼𝑁𝑇௣ௗ൯

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵)

௣∈ே

  

+ ෍ ෍ 𝐼𝑁𝐹௣ௗ

ௗ∈ே

∙ (𝑅𝑆 ∙ 𝑆𝐸𝐵 + 𝑅𝑅 ∙ 𝑅𝐸𝐵) + ෍ 𝑆𝐶𝐻௣ ∙ 𝑅𝑆𝐺 ∙ 𝑃𝑆𝐺

௣∈ே௣∈ே

+ ෍ 𝑆𝐵𝐶𝐻ௗ ∙ 𝑅𝑆𝐺 ∙ 𝑃𝑆𝐵

ௗ∈ே

ቍ. 
(6-4) 

Equation (6-4) presents the model objective, which is to minimise the IP over WDM network 

power consumption, the PN power consumption and the BN power consumption. The model 

objectives are subject to the following constraints in addition to the constraints defined in Chapter 

4: 
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Subject to: 

1) BN for big data Chunks constraint which is 

෍ 𝐵𝐶𝐻௦ௗ

ௗ∈ே

= ෍ ෍ 𝐶𝐻𝑉௦௖

௖∈஼ுೞ௦∈ே

. 
(6-5) 

Constraint (6-5) calculates the backup Chunk traffic generated at source node s and stored at BN 

d. This is done by summing the individual cleansed original Chunks generated at source node s 

that are to be stored at node d. This constraint ensures that only a single copy of a Chunk is stored. 

2) Number of BNs and location constraints which are 

෍ 𝐵𝐶𝐻௦ௗ ≥ 𝐵𝑁ௗ

௦∈ே

 

∀𝑑 ∈ 𝑁, 

(6-6) 

෍ 𝐵𝐶𝐻௦ௗ ≤ 𝑍 ∙ 𝐵𝑁ௗ  

௦∈ே

 

∀𝑑 ∈ 𝑁, 

(6-7) 

𝐵𝑁 = ෍ 𝐵𝑁ௗ = 1

ௗ∈ே

 and (6-8) 

𝐷𝐶ௗ ≤ 1 − 𝐵𝑁ௗ 

∀𝑑 ∈ 𝑁. 

(6-9) 

Constraints (6-6) and (6-7) build a BN in location d if that location is selected to store the backup 

Chunks, where Z is a large enough unitless number to ensure that 𝐵𝑁ௗ =  1 when ∑ BCHୱୢୱ஫୒  is 

greater than zero. Constraint (6-8) calculates the total number of backup nodes in the network (we 

displayed the results when only one backup node is optimally selected in the network). Constraint 

(6-9) ensures that selecting a node as a DC and BN is not allowed.  

3) BN and PNs storage capacity constraint  
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𝑆𝐵𝐶𝐻ௗ ≤ 𝑀𝑆ௗ +  𝐻 ∙ 𝐵𝑁ௗ (6-10) 

∀𝑑 ∈ 𝑁. 

Constraint (6-10) ensures that if a PN d is chosen to be a BN, then that node has a large enough 

storage capacity, where H is a large enough unitless number, while the PN d has a limited storage 

otherwise.   

4) Flow conservation constraints for big data backup Chunks traffic which is 

෍ 𝐵𝐶𝐻௜௝
௦ௗ

௝∈ே: ௜ஷ௝

− ෍ 𝐵𝐶𝐻௜௝
௦ௗ

௝∈ே: ௜ஷ௝

= ൝
 𝐵𝐶𝐻௦ௗ    𝑚 = 𝑠         
−𝐵𝐶𝐻௦ௗ  𝑚 = 𝑑        

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6-11) 

∀𝑠, 𝑖 ∈ 𝑁, ∀𝑑 ∈ 𝑁: 𝑠 ≠ 𝑑. 

Constraint (6-11) represents the flow conservation constraint for big data backup traffic in the IP 

layer. This constraint ensures the total outgoing traffic should be equal to the total incoming traffic, 

except for the source and destination nodes. It can also ensure that the flow can be divided into 

multiple flow paths in the IP layer.  

5) Virtual link capacity constraint  

ቌ෍ ෍ 𝑅௜௝
௦ௗ

ௗ∈ே: ௦ஷௗ௦∈ே

+ ෍ ෍ 𝐵𝐶𝐻௜௝
௦ௗ

ௗ∈ே: ௦ஷௗ௦∈ே

+ ෍ ෍ 𝐶𝐻𝑇 ௜௝
௦௣

௣∈ே: ௦ஷ௣௦∈ே

+ ෍ ෍ 𝐼𝑁𝐹௜௝
௣ௗ

ௗ∈ே: ௣ஷௗ௣∈ே

ቍ ≤ 𝐶௜௝ ∙ 𝐵 
(6-12) 

∀𝑖, 𝑗 ∈ 𝑁: 𝑖 ≠ 𝑗.  

Constraint (6-12) replaces constraint (4-24) as defined in Chapter 4. It ensures that the summation 

of all the traffic types flow through a virtual link and does not exceed its capacity. 

6) Number of aggregation ports constraint  
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𝐴𝐵௜ =
1

𝐵
∙ ෍ 𝐵𝐶𝐻௜ௗ

ௗ∈ே: ௜ஷௗ

 
(6-13) 

∀𝑖 ∈ 𝑁. 

Constraint (6-13) calculates the number of aggregation ports for each router that serves the back 

up traffic 𝐵𝐶𝐻௦ௗ. 

7) Amount of stored backup Chunks constraint  

𝑆𝐵𝐶𝐻ௗ = ෍ ෍ 𝐶𝐻𝑉௦௖ ∙ 𝐵𝑁ௗ

௖∈஼ுೞ௦∈ே

 

∀𝑑 ∈ 𝑁. 

 (6-14) 

Constraint (6-14) represents the size of the backup Chunks stored in the BN d.  

 

6.2 Veracity Model Results 

The NSFNET network is also considered to examine the impact of veracity on network power 

consumption. In this section, we presented the results of two scenarios depending on the SPNs 

storage capacity. 

 

6.2.1 Scenario #1: Veracity with large enough storage capacity 

As in previous sections, we compared the EEBDN approach (now with cleansing) to the classical 

approach where Chunks are not cleansed and directly sent to DCs. This means that the raw traffic 

volumes in the EEBDN are smaller compared to the classical approach where the cleansing and 

processing happen inside the DCs only. For each approach, we evaluated two modes of operation. 

In the first mode, there is a BN in the network and in the second mode no BN is employed. 

Therefore, we compared the two approaches (EEBDN vs CBDN) against each other for each mode. 

For the EEBDN approach, the cleansed Chunk volumes vary in a random uniform distribution 
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between 10 Gb and 220 Gb. On the other hand, a larger volume range for the classical approach is 

assumed between 10 Gb and 330 Gb. In all cases, the SPNs storage is large enough to store the 

cleansed data. We used the input values shown in Table 6-2 to examine the influence of veracity 

on network power consumption. 

Number of Chunks per PN (β) 10-60 

Number of servers per PN (NSp) 10-30 (random uniform) 

CPU workload per Chunk in GHz (Wsc) 1-4 (random uniform) 

Cleansed Chunk volume in Gb (Chunksc)  5-220 (random uniform) 

Uncleansed Chunk volume in Gb (Chunksc) 10-330 (random uniform) 

PRRsc 0.001-1 (random uniform) 

Table 6-2. Veracity Scenario #1 parameters. 

Figure 6-2-a shows the network power consumption of the classical approach and the EEBDN 

approach with and without performing the Chunks backup modes. The system performance yields 

noteworthy differences in the network power saving between the two modes. For instance, the 

maximum power saving is 45% in the backup mode while it is 58% for the no backup mode at β 

= 50. The average power saving in the backup mode is 41% and 52% in the no-backup mode. The 

reason for the lower power savings in the backup mode is due to the presence of the extra backup 

traffic between the SPNs and BNs that increases the network power consumption and reduces the 

network power savings. On the other hand, there is no backup traffic in the no-backup scenario, 

but only CHT appears in the network, which is either from SPNs to IPNs or from SPNs to DCs, 

thereby minimising the power consumption.  
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(a) 

 
(b) 

Figure 6-2 (a). Network power consumption for the CBDN and EEBDN with and without BN for veracity 
Scenario #1. (b). Storage used in the PNs and DCs and BN with different values of β for veracity Scenario 
#1. 
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Figure 6-2-b displays the PN, DC and BN storage utilisations with different values of β for the 

EEBDN approach. It shows that node 6 is selected as the BN at all values of β. This is due to the 

strategic location of node 6, which has the minimum number of hops to all other nodes. In addition, 

the DC locations are selected at nodes 4 and 13 for all values of β. Note that up to β = 30, the DC 

storage utilisation remains steady as the original Chunks are processed either locally in the SPNs 

or intermediately in the IPNs. At β = 40 the BCH dominates the network compared to the CHT 

and INF. At the stage where 40 < β ≤ 50, the DCs start to receive a considerable number of original 

Chunks because most PN resources are utilised. Accordingly, CHT increases considerably in 

addition to the existing BCH, thereby yielding an overall increase in network power consumption 

as discussed earlier. When 50 < β ≤ 60, all PN processing resources are depleted, thus, the increase 

in the DC storage utilisation is significant as any extra Chunks are forwarded to a DC for storing 

and processing. Consequently, the combined traffic (CHT and BCH) is now at its maximum value 

at β = 60. 

 

6.2.2 Scenario #2: Veracity with limited storage capacity per PN 

In this scenario, we considered the impact of using limited storage in the PNs to allow the model 

to optimise the location of the cleansed Chunks for the EEBDN approach. We reused the same 

inputs that appeared in Table 6-2 and limited the PNs’ storage capacities so they randomly varied 

between 1 Tb to 4 Tb per PN following a uniform distribution. 

 

Figure 6-3-a & b displays the PN storage and processing utilisation, respectively. To illustrate the 

impact of limited storage capacity on the EEBDN with cleansing, we showed the results for two 

SPNs, #3 and #12. We assigned a low storage capacity of 1Tb to these two SPNs and a high 
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processing capacity of 30 servers. Figure 6-3-a shows that for all values of β, each of the two SPNs 

could store a maximum cleansed Chunk volume ≤ 1 Tb only, and any cleansed Chunks above 1 

Tb would be optimally forwarded and stored at another IPN or to the DCs for processing. Recall 

that the SPNs have no cleansing limitations as the cleansing temporary storage is shared among 

raw Chunks. However, the cleansed Chunks need to be stored for long term usage at certain PNs, 

as optimally selected by the model. For example, at β = 60, the total cleansed volume was 7617 

Gb at PN #6 and 6087 Gb at PN #12, however, the actual stored amount of data was 995 Gb inside 

PN #6 and 998 Gb inside PN #12, due to the 1 Tb storage capacity of both PNs. The remaining 

cleansed Chunks by those two SPNs were optimally sent and stored at one of the DCs. Figure 6-3-

b shows the processing utilisation for the two example PNs. Interestingly, for all values of β, the 

average processing utilisations of both PN #6 and PN #12 were around 16 GHz below the 

maximum processing capacity (which is 120 GHz: 30 servers with 4 GHz CPU per server). This 

is because the model skips those PNs after full utilisation of the storage capacity regardless of the 

availability of processing resources, which leads to a smaller number of locally processed Chunks. 

 

Figure 6-3-c illustrates the impact of considering limited PNs storage on network power 

consumption for the classical approach and the EEBDN approach with and without cleansing of 

backup Chunks. The figure shows a decrease in the network power saving for both backup and no-

backup modes compared to the veracity Scenario #1 where the PNs have a large enough storage 

capacity. The maximum power saving obtained in this scenario declined to 40% for the backup 

mode and 51% for the no-backup mode at β = 50, while it was 45% and 58% at β = 50 with and 

without backup mode in the veracity Scenario #1, respectively. The reason behind this decrease in 

power saving is that the limited storage capacity of the PNs leads to a smaller number of cleansed 
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Chunks being processed locally in the edge and progressively in the INPs although there are still 

available processing resources.  

 
(a) 

 
(b) 

 
   (c) 

Figure 6-3 (a) PNs storage size with different values of β for veracity Scenario #2. (b) Utilisation of processing 
capacity for different values of β when considering limited storage per PN for veracity Scenario #2. (c) 
Network power consumption for the CBDN and EEBDN with and without BN with limited storage per PN 
for veracity Scenario #2. 
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Thus, increasing the amount of CHT in the EEBDN results in a higher network power 

consumption. The maximum network power saving obtained in the present scenario for the 

backup mode was 40%, while it was 51% for the no-backup mode. 

 

6.3 Summary 

This work introduced a Mixed Integer Linear Programming (MILP) model to investigate the 

impact of the veracity of big data on the EEBDN in bypass IP over WDM core networks. We 

presented the EEBDN approach by introducing Processing Nodes (PNs) that are attached to the 

ISP network centres which host the IP over WDM nodes. A PN is a small version of a datacentre 

(DC) with a capacity that is limited by the available space to build the PN inside the network 

centre. We introduced a progressive processing technique to serve big data applications in source 

PNs, intermediate PNs and DCs taking into consideration the veracity dimension. We optimised 

the storage locations of the cleansed data as well as optimising the location of a single backup node 

to store a copy of the cleansed Chunks for future use. The veracity scenarios had a maximum 

network power savings of up to 58% in the no backup mode and up to 45% in the backup mode. 

The lower saving for the no backup mode is due to the movement of Chunks from the source PNs 

to the backup PN without processing them during that journey. In addition, we noted that the 

veracity scenario under the PNs storage limitations utilises fewer of the available processing 

resources as it is influenced by the PNs limited storage capacity. 
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Chapter 7 Conclusions and Future work 

7.1 Conclusions 

This work introduced Mixed Integer Linear Programming (MILP) models to investigate the impact 

of the 4Vs of big data on the EEBDN in bypass IP over WDM core networks. Each V poses a 

number of challenges in the EEBDN. We presented the EEBDN approach by introducing 

Processing Nodes (PNs) that are attached to the ISP network centres that host the IP over WDM 

nodes. A PN is a small version of a datacentre (DC) with a capacity that is limited by the cost and 

avaliable space to build the PN inside the network centre. We introduced a progressive processing 

technique to serve big data applications in source PNs, intermediate PNs and DCs taking into 

consideration the volume, variety, velocity and veracity dimensions. The first challenge facing the 

Data Centres (DCs) is the enormous volume of data fluxing to them. The volume scenarios showed 

that the network power saving was mainly affected by the volume of the served Chunks and its 

correspoding Processing Reduction Ratio (PRR), which is the ratio of the output after processing 

Chunks to the input. This power saving is higher for larger volumes compared to smaller ones 

under the same PRR due to the high reduction in the router ports. On the other hand, applying 

different PRRs has a significant impact on the power saving, i.e., the larger the reduction ratio, the 

greater the network power saving. We obtained up to 52% and 34% of network power saving in 

two different volume scenrios, which is a saving compared to the power consumption of the 

classical networking and processing approach where the Chunks are directly forwarded from the 

source node to the DCs for processing. Variety means that there are different types of big data 

such as CPU intensive, memory intensive, Input/output (IO) intensive, CPU-Memory intensive, 

CPU/IO intensive, and memory-IO intensive applications. Each requires difference amount of 

processing, memory, storage, and networking resources. The variety scenarios revealed the impact 
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of serving Chunks with different CPU workloads on the power saving since various big data 

applications require different amounts of computing resources. In view of that, processing Chunks 

that utilise small portions of the CPU help to process as many Chunks as possible inside the local 

server, hence, reducing the number of unprocessed Chunks in the network. We obtained up to 47% 

and 43 % network power savings in two different variety scenarios. In the velocity section, we 

served big data in two modes: expedited-data mode and relaxed-data mode. Expedited-data 

processing mode for CPU hungry applications that need to be processed in real time, e.g. remote 

patient monitoring. Relaxed-data processing can tolerate some delay and can be processed in a 

batch processing mode after being stored inside DCs, such as digital image processing and 

automated transaction processing. In the first mode, the Chunks are processed quickly by utilising 

a greater number of computational resources compared to the second mode. The average network 

power saving was 60% and 15% in the first and second mode respectively. The reason for this 

decline in power saving is that in the second mode more servers are employed to implement less 

edge and progressive processing, hence smaller number of Chunks can be processed locally in the 

source PNs and along the route in the intermediate PNs due to the higher CPU workload per Chunk 

needed. Veracity of big data is a more serious challenge to data scientists since they need to 

distinguish between the meaningful data and the dirty data. Veracity specifies trustworthiness, 

data protection, data backup, and data cleansing constraints. Data cleansing deals with detecting 

and removing dirty data due to overlaps, errors, duplications, and contradictory materials from big 

data to improve its quality. It provides easy access to accurate, consistent and consolidated data of 

different data forms. In the veracity section, we optimised the storage location of the cleansed data 

as well as optimising the location of a single backup node to store a copy of the cleansed Chunks 

for future use. The veracity scenarios had network power consumption savings of 58% in the no 
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backup mode and 45% in the backup mode due to the movement of Chunks from the source PNs 

to the backup PN without processing them during that journey. In addition, we noted that the 

veracity scenario under the PNs storage limitations utilises fewer of the available processing 

resources as it is influenced by the PNs limited storage capacity. The main advantages of the 

EEBDN can be summarized in the following:  

 Achieving considerable saving in the network power consumption even the energy 

efficiency of the network equipment is enhanced by 315x. Therefore, our model can be 

applied under different power profiles of the IP over WDM network, PNs, and DCs. 

 Reducing the load of big data processing in the DCs. 

 Serving expedited big data applications by processing as much applications as possible in 

the edge so that the processing is achieved in the locations that are closer to the user level. 

Furthermore, expedited data processing can be prioritized to be served earlier than the 

delay-tolerant applications. 

 The EEBDN algorithm and its MILP model can be generalized and used by other industrial 

areas and businesses apart from the ICT, such as electric power planet and oil and gas 

industries.   

However, there are several disadvantages that can be tackled in this work such as the overhead big 

data traffic that might be upscaled when Inof size is greater than the Chunk size. Therefore, 

reducing the big data traffic overhead in big data processing using control node with intelligent 

algorithm is important. Also, the PN that is included in the core network node is not scalable and 

limited to the available building space of the core network. Moreover, this algorithm is assumed 

to be use by a single operator in the whole network, having a multi-operator services can, however, 

enhance the performance of big data processing and build a more flexible and reliable services.  
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7.2 Future Research Directions 

In the context of the energy efficient big data, open research challenges include optimum energy 

efficient virtualisation, optimum placement of processing nodes, optimum control and 

management and network processing algorithms. Below we outline some of the research directions 

that can be pursued to mitigate the impact of big data on the energy consumption of networks. 

1. Attaching a metric to each Chunk that specifies how many times this Chunk will likely be used 

in the future (frequency). For example, a Chunk made up of temperature readings (where the 

reduction is based on the number of readings above a threshold) may only be used once, as 

the readings become dated. 

2. Attaching a metric that specifies the popularity of Chunk where a Chunk that is popular is 

demanded by several other PNs, so there is a PN to PN communications. For example, weather 

readings where a value of temperature or pressure (extracted) above a certain value is 

demanded and is useful in several nodes to predict / report future weather trends; another 

example is the patient set of readings which are confidential, therefore, those readings will 

likely be of interest to the source node, data centre and doctor node. 

3. Our approach can easily be generalised to handle big data bulks that are partially or fully 

processed at each node, where each bulk contains several Chunks. Some applications produce 

bulks of data Chunks. Our study can be generalised to model this scenario. In this case, Chunks 

belonging to a certain big data bulk can be progressively processed in different PNs along 

different paths and the results can be aggregated to the DCs. This helps perform partial and/or 

full processing of the bulk (depending on PNs processing capacity). Therefore, it is 

advantageous to find a "window" of contiguous spare capacity at intermediate nodes. If such 

a window can be identified, the efficiency improves as each intermediate node processes a bit 
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more the bulk until one node on the way extracts Info from the corresponding Chunk, 

otherwise, the final data centre has to process part or the whole bulk. 

4. Clustering can be implemented where SPNs and IPNs form clusters that complement each 

other in terms of the availability of software packages, e.g. each PN has a different software 

package. 

5. Scheduling can be implemented by introducing storage nodes that have less processing 

capabilities to store Chunks until a processor of the correct software type is free. Furthermore, 

the latency analysis plugin is important to provide minimum (best case) and maximum (worst 

case) latency time for each Chunk in big data processing in the EEBDN. 

6. Progressive processing in access, edge and core nodes: Rather than starting big data 

processing at core nodes, it may be more efficient to start processing at the access and edge 

layers where much of the big data sources are located. This could be achieved through 

installing mini processing units along the way at each layer until the core network is reached. 

Such a scenario can help distribute the processing load of big data and can help extract 

knowledge gradually and reduce the volume of data handled. The large number of sites where 

routers, switches and home gateways are placed can be utilised optimally to extract the right 

Info at the right place if such sites are equipped with processing capabilities. 

7. Virtualisation: The virtualization of processing and network functions can increase the 

network energy savings by optimally sharing the big data infrastructure among several 

operators. For instance, in Figure 3, PNs resources (e.g. servers, storage and internal LAN) 

and the external core network resources, such as core routers, can be virtualised and controlled 

at different granularity levels that vary with time according to the jobs specifications. Game 

theoretical approaches can be beneficially employed here among the different operators to 
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share their resources as for example some operators might momentarily have specific resource 

types that are urgently needed by another operator. Virtualisation naturally provides the means 

to elastically discover and share such available resources. 

8. Control and management: Resource optimisation can be done in distributed or centralised 

fashion. In both cases it is important to employ the correct control plane that targets specific 

big data jobs requirements. For instance, some big data jobs are more suited to processing 

under a centralised controller such as batch processing jobs that are aggregated in one location 

and have flexible execution duration. On the other hand, distributed control planes can 

facilitate the execution of small size and mission critical data as well as ensuring the service 

availability. To minimise energy consumption on a global level, it is vital to jointly optimise 

processing and network control planes, such as SDN, to orchestrate big data Chunk analysis 

and transport in the network.  

9. Development of optimum network processing algorithms: The above challenges require the 

development of efficient algorithms that map the theoretical models’ insights into real time 

applications. Big data energy minimisation algorithms in the network can be built based on 

the already available experience gained during the last 10 years in green ICT research. 

However, big data comes with its unique properties and prerequisites that establish upper 

bounds on the energy savings that can be gained by algorithms working on generic types of 

traffic. For instance, Geo distributed MapReduce algorithms can be equipped with the 

capability to implement coding across Infos to reduce traffic, hence energy consumption; 

however, Info protection against loss has to be balanced against the energy saving achieved 

by Info coding. 
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10. Incorporation of renewable energy sources to focus on reducing the CO2 emissions of 

backbone IP over WDM networks. A MILP optimization model for hybrid-power” (i.e. 

renewable and non-renewable energy sources) IP over WDM networks can be set up to 

minimize the non-renewable energy consumption and CO2 emission using the EEBDN 

approach. 
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