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Abstract  

Alopecia areata (AA) is an autoimmune disease of hair follicles (HFs). The 

exact pathogenesis is unclear, but it is believed to result from T-cell mediated 

destruction of anagen HF due to the collapse of immune privilege (IP). In this 

study, we hypothesised that IP collapse is a consequence of an imbalance 

between regulatory T-cells (Treg) and inflammatory T-cells (Teff), which leads 

to the upregulation of the expression of Major Histocompatibility Complex (MHC) 

class I and class II molecules in HF, resulting in IFN- mediated attack of Teffs 

against HFs. 

 To test this hypothesis, we compared circulating lymphocytes from AA 

patients and healthy controls (HCs), using a flow-cytomteric technique. Data 

analysis showed that CD39 and HLA-DR+ suppressive Tregs were significantly 

reduced in AA patients indicating impaired function of circulating Tregs. This 

reduction was accompanied by a marked increase in the circulating Teff 

proportion, particularly in activated CD8+ T-cells (NKG2D+CD8+ T-cells), Th17 

and Th1. These findings were supported by immunofluorescence (IF) staining 

of AA skin sections, showing a marked reduction of CD39+ Tregs in diseased 

HF. To further characterise circulating lymphocytes, next generation sequencing 

(NGS) was performed to analyse T-cell receptors chain  (TCR) in patients and 

controls. Sequencing analysis revealed a predominance of two unique TCR 

clones in the total lymphocyte population shared by many AA patients 

suggesting clonal expansion in response to a specific antigen during the disease 

process. Interestingly, database searches found that these clones have over 80% 

amino acid identity to TCR clones from CD8+ T-cells isolated from diseased 

subjects, and therefore could be pathogenic. There was also predominance of 
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two public TCR clones within the Treg population in the HC group; suggesting 

that these clones have a protective effect. Our data support the hypothesis of a 

potential Treg role in preventing AA as their impairment leads to Teff 

predominance in peripheral blood, therefore specific Treg clones might be used 

for therapeutic purposes.  

Epigallocatechin gallate (EGCG) was proposed as a treatment to re-

establish Teff-Treg balance, due to its inhibitory effect on the Teff signalling 

pathway (IFN--JAK-STAT) and its stimulatory effect on Treg differentiation. 

EGCG showed an inhibitory effect on the JAK-STAT pathway by reducing the 

levels of p-STAT-1 protein in vitro in the Keratinocyte cell line (HaCat) and in the 

lymphocyte cell line (Jurkat); as well as ex vivo in PBMCs isolated from patient 

blood. The reduction of p-STAT1 was accompanied by a significant decrease in 

the expression of MHC class I and II genes in HaCat cells as well as a decrease 

in the proportion of activated CD8+ T-cells and Th1 cells in peripheral blood of 

AA patients. This data would support the development of a clinical pilot study to 

measure the efficacy of EGCG in enhancing hair re-growth in AA patients.  

To sum up, it has been demonstrated that Teff-Treg imbalance could have 

a role in IP collapse. Our data brings a new insight into the current understanding 

of the immunological basis for AA pathogenesis and could be used to facilitate 

the development of an effective therapeutic intervention.  
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Chapter 1 . Introduction 

1.1 Hair follicle structure and cycle 

The hair follicle (HF) is one of the skin appendages with many important 

functions, which range from biological processes such as thermoregulation, 

wound healing and sensory function to social function where hair is an important 

part of an individual’s self-image. HFs grow in cycles; anagen (growth phase), 

catagen (regression phase) and telogen (rest phase) before the hair is shed and 

the anagen phase starts again. Alopecia areata (AA) is non-scarring hair loss 

resulting from T-cell attack on anagen HF causing damage and hair cycle arrest 

with substantial changes in the HF histology. Therefore, an overview of HF 

structure, histology and growth cycle is crucial to the understanding of AA 

pathogenesis. 

1.1.1 Anatomy, histology and function 

The hair can be defined as a slender, thread-like outgrowth from a follicle 

in the skin of mammals (Paus et al., 1999b). The HF is located in the dermis and 

consists of concentric layers of keratinocytes, which are organised in three 

compartments in the horizontal cross section (Figure1.1) including the hair shaft, 

the inner root sheath (IRS), which is composed of the cuticle, Huxley and Henle 

layers, and the outer root sheath (ORS) (Stenn and Paus, 2001). The hair bulb 

is a reservoir of rapidly dividing epithelial cells, which are responsible for the 

formation of hair shaft and IRS (Paus et al., 1999b). Heterogeneous adult stem 

cells are housed in the bulge area, which is encircled by the arrector pili muscle 

(APM), which offers a specialised microenvironment or niche (Wang et al., 
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2012b). Stem cells in the bulge have a central role in hair follicle cycling and skin 

wound healing (Ito et al., 2005, Ansell et al., 2010).   

Longitudinally, the HF is divided into three zones (Figure1.1) including 

the lower zone (bulb and suprabulb), also called the lower cycling region, which 

extends from the base to the APM insertion. The middle zone (isthmus) extends 

from the muscle insertion to the sebaceous gland opening. The upper zone 

(infundibulum) extends from the opening of the sebaceous gland to the hair 

orifice (Sperling, 1991).  

 

 

 

 

 

 

 

 

Figure 1.1. Anagen hair follicle structure. 

The anagen hair follicle is composed of concentric layers of keratinocytes arranged 

horizontally as  outer root sheet (ORS), inner root sheet (IRS) and shaft, which has 

three layers cuticle, cortex and medulla (from out to in). The ORS is surrounded by 

connective tissue sheath (CTS) containing hyaline membrane, fibroblasts and collagen 

bundles. The three main anatomical zones longitudinally are: Lower (suprabulbar and 

bulb), middle (isthmus) and upper (infundibulum). The bulb region contains the dermal 

papilla surrounded by matrix. The isthmus and infundibulum region are associated with 

hair appendages, namely, sebaceous gland and arrector pili muscle. 
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Histologically, keratinocytes are the main cell population forming the HF 

while melanocytes are interspersed among the bulb matrix cells and give rise to 

hair pigmentation. The ORS contains melanocytes, Langerhans' cells (dendritic 

antigen-presenting cells), and Merkel cells (specialised neurosecretory cells) 

(Paus et al., 1999b). Outside the ORS, there is a connective tissue sheath (CTS) 

composed of a thin basal lamina, elongated fibroblasts and collagen bundles 

running in different direction to the ORS (Ito and Sato, 1990). The dermal papilla, 

which is composed of specialised fibroblasts located at the base of HF, plays a 

central role in hair growth and cycling  (Matsuzaki and Yoshizato, 1998). 

In addition to its role in hair growth, the HF has other functions. For 

example, the HF is a reservoir of Langerhans cells (LCs) that repopulate the 

epidermis after injury (Gilliam et al., 1998). LCs play the role of the sensor arm 

of skin immune system by detecting any skin intruder and activating the effector 

arm including perifollicular macrophages, mast cells and other immunocytes 

(Jimbow et al., 1969). However, the lower part of the HF has a very low number 

of natural killer cells (NK) and LCs giving a complex immunological profile to HF, 

which will be discussed in details in section 1.3. 

1.1.2 Hair cycle 

The hair follicle is a dynamic mini-organ, which undergoes cyclic changes 

(Figure 1.2) from the active growth phase (anagen) through the regression 

phase (catagen) and the quiescent phase (telogen)  (Dry, 1926), to eventual 

shedding (exogen) (Stenn and Paus, 2001, Milner et al., 2002). Transition 

between these phases is controlled by many local and systemic factors, such as 

cytokines and hormones, as reviewed by Stenn and Paus (2001). 
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Anagen 

The active growth phase of the hair cycle extends from the termination of 

telogen to the beginning of catagen (Muller-Rover et al., 2001). Anagen involves 

six stages that recapitulate the HF morphogenesis to some extent. In stage I, 

epithelial cells at the base of the telogen follicle (secondary hair germ) show 

mitotic activity (Oshima et al., 2001). In stage II, the hair germ cells grow 

downward into the dermis and enclose the dermal papilla. At this stage, the IRS 

starts to appear as keratinised plates overlying the matrix. At stage III, the cortex 

starts to differentiate as a conical structure inside the IRS slender and the hair 

follicle elongates further in stage IV (Oshima et al., 2001, Muller-Rover et al., 

2001). Stage V is characterised by commencing melanogenesis and 

keratinization of the cortex, which in turn penetrates the IRS at the level of the 

sebaceous gland during stage VI. Finally, stage VI shows the fully developed 

hair as depicted in Figure 1.1. As suggested by observational studies, AA is 

primarily a disease of anagen follicles where the inflammatory infiltrate is 

concentrated on anagen hair bulbs (Messenger et al., 1986), in addition to 

observing high levels of autoantibodies directed to multiple structures of anagen 

hair (Madani and Shapiro, 2000)  This predominance of AA in anagen stage has 

been attributed by some researchers to the melanogenesis that takes place in 

this phase, and melanocyte-associated proteins are believed to be a possible 

target of the autoimmune attack (Paus et al., 1993). 

In addition to the morphological characterisation of the anagen HF with 

the fully concentric layers IRS, ORS and hair shaft, immunohistochemical 

staining of anagen HF is characterised by positive staining for TFG-receptors 

1 and 2 (Muller-Rover et al., 2001) and higher levels of telomerase activity in the 

bulb area compared to catagen HF indicating active mitosis in this phase 
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(Ramirez et al., 1997). Many morphogenic gene families regulate HF cycling, 

such as homeobox, sonic hedgehog, fibroblast growth factor (FGF) and 

transforming growth factor beta (TGF-β) gene families providing another 

indication of the HF cycle as a highly regulated process (Stenn and Paus, 2001), 

particularly during the anagen-catagen transition. For example, fibroblast growth 

factor 5 (FGF5) expression is normally increased in late anagen exerting a 

catagen inducing effect (Hébert et al., 1994) while insulin like growth factor 1 

(IGF1) induces anagen prolongation and catagen inhibition (Philpott et al., 1994). 

Catagen 

At this stage of the hair cycle, the growth phase ends and a highly 

controlled process of apoptosis starts (Stenn and Paus, 2001). The first sign of 

regression is detachment of dermal papilla fibroblasts from the basement 

membrane (Figure 1.2) (Parakkal, 1970). This is followed by papilla shrinking, 

which eventually results in the release of papilla from the bulb. The lower cycling 

portion of the follicle ceases growth and cell division, which is accompanied by 

massive apoptosis in the bulb matrix causing shrinkage and involution of the 

lower two thirds of the follicle to form the epithelial column (Parakkal, 1970, 

Stenn and Paus, 2001). 

Immunostaining of this phase is characterised by a high positive TUNEL 

score indicating massive apoptosis has taken place (Muller-Rover et al., 2001). 

Moreover, there is perifollicular infiltration of mast cells and mononuclear 

inflammatory cells, particularly macrophages, along with increased expression 

of major histocompatibility molecules class I and II (MHC I and II) (Westgate et 

al., 1991). 
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Telogen 

This is the resting phase where follicles lie in the dermis as an epithelial 

sac overlying the dermal papilla, which appears as a condensed cluster of 

fibroblasts (Stenn and Paus, 2001). Inside the epithelial sac, the club hair is seen 

as a brush-like base attached to ORS. The hair germ, which is a specified region 

Figure 1.2. Representation of the hair growth cycle. 

In the hair cycle, the DP shrinks to form an epithelial column in the catagen phase. 

Telogen is the resting stage followed by renewed anagen, starting by formation of new 

hair germ and the events of the HF morphogenesis ensues to give rise to mature HF 

in anagen VI. Figure was created using Servier medical art.  
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of the epithelial sac at the very base of hair club, is composed of a cluster of 

small, densely packed cells that are developed from the stem cells of the bulge 

(Stenn and Paus, 2001). This phase is characterised by low level of DNA 

synthesis in telogen epithelial cells (Silver and Chase, 1970) and an absence of 

anagen HF protein synthesis, such as trichohyalin and the hair cortical keratins 

(Milner et al., 2002). 

Hair cycle changes in AA  

AA is likely to target anagen HF, and the pathology causes range of 

abnormalities from miniaturizing the anagen hair to a complete cessation of hair 

cycling according the severity of the disease. In the acute phase, infiltration of 

inflammatory cells interrupts the production of healthy hair fibre minimizing the 

hair size and affecting its integrity resulting in a breakage of hair fibres. 

Miniaturised or dystrophic anagen follicles are seen histologically which may 

continue producing an abnormal hair fibre (Whiting, 1987). In more severe cases, 

HF may be follow a truncated cycle with rapid progression from anagen to 

telogen resulting in the state known as nanogen, which has mixed features of 

anagen, telogen and catagen (Whiting, 2001). Another abnormality of hair cycle 

observed in AA is the high number of HFs pushed into the catagen phase (about 

50% of HFs) as the disease progresses, and they subsequently proceed to 

telogen ending in hair shedding. In chronic disease, the hair cycle seems to be 

distorted with more HF pushed into a prolonged telogen phase and some can 

be forced into telogen permanently and no new hair fibres are produced, and 

during that stage the inflammatory infiltrate decreases markedly (Whiting, 2003). 

1.2 Alopecia areata 

Alopecia areata (AA) is an autoimmune disease of the hair and nails 

resulting in non-cicatricial hair loss (Gilhar and Krueger, 1987, McDonagh and 
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Messenger, 1996, Gilhar et al., 1998). It can be a psychologically devastating 

disease often with no effective therapy available. An inadequate understanding 

of the disease pathogenesis is the main restriction of the therapeutics targeting 

of this disease. It is believed to be caused by T-cell mediated destruction of 

anagen HF associated with of the collapse of immune privilege (Safavi et al., 

1995, Gilhar and Kalish, 2006). 

1.2.1 Features 

AA presents typically with a well-demarcated patch of complete hair loss 

with no sign of inflammation (Gilhar et al., 2007). Characteristic short hairs 

tapered toward their base (exclamation mark hairs) may be present at the edge 

of lesional skin, and re-growing white hairs are seen in some cases (Tobin et al., 

1990). 

Based on the extent of hair loss, AA is classified clinically into three main 

patterns: patchy AA with partial scalp hair loss appears as either single or many 

discrete areas of total hair loss that may coalesce to form larger patches (Figure 

1.3.A); alopecia totalis (AT), which is characterised by total loss of scalp hair 

(Figure 1.3.B); and alopecia universalis (AU) with 100% loss of scalp and body 

hair. Other less common patterns of AA have been reported; for example, 

ophiasis and ophiasis inversus, which is characterised by band-like hair loss in 

the parieto-temporo-occipital and frontal temporo-occipital region of the scalp 

respectively (Figure 1.3.C and D) (Alkhalifah et al., 2010a). Nail abnormalities 

such as trachyonychia, longitudinal ridging and pitting, thinning or thickening can 

be observed in AA patients. Their reported incidence in association with AA 

ranges from 10% to 60% (Madani and Shapiro, 2000). 
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The main histopathologic feature of AA is the dense intra-follicular and 

peri-follicular lymphocytic infiltrate giving rise to what is called the “swarm of 

bees” appearance in skin biopsies particularly in the acute stage of the disease 

(Todes-Taylor et al., 1984, Perret et al., 1984). The infiltrate is mainly T-

lymphocytes both CD4+ and CD8+, in addition to LCs and macrophages (Zhang 

and Oliver, 1994). The expression of inflammatory markers, such as Intercellular 

Adhesion Molecule 1 (ICAM) (Zhang and Oliver, 1994) and MHC class I and II, 

is elevated in lesional skin (Messenger and Bleehen, 1985, Bröcker et al., 1987). 

Another characteristic is a reduced number of anagen HFs and more telogen 

and catagen HFs found in the affected areas, in addition to an increased number 

Figure 1.3. Clinical types of AA. 

A) Patchy AA with well-demarcated patches of total hair loss. B) AA totalis with 100% 

scalp hair loss. C) Ophiasis pattern of AA and D) Ophiasis inversus pattern of AA. 

The images were adopted from Alkhalifah et al. 2010 with permission. 
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of miniaturised hairs and decreased terminal hairs in chronic cases (Peckham 

et al., 2011). 

1.2.2 Epidemiology 

AA affects about 0.1% of the general population (Alzolibani, 2011) with 

lifetime risk approximately 1.7% -2.1% making it one of the most common 

autoimmune diseases (Safavi et al., 1995, Mirzoyev et al., 2014). In the UK, it 

affects 0.15% of the population (Delamere et al., 2008). Male and female 

individuals are equally affected  (Safavi et al., 1995) with peak incidence 

between 20-25 years of age and higher incidence is seen in patients with a 

family history of the condition (Alzolibani, 2011). Although AA remains patchy in 

most cases and spontaneous remission is expected in a considerable proportion 

of cases, 7% -25% progress to AT and AU according to data from tertiary and 

secondary centres (Walker and Rothman, 1950, Safavi et al., 1995). The 

percentage of cases progressing to more severe types reaches up to 43% in 

children (Tosti et al., 2006), and the cure rate of AT/AU is very limited. Although 

these studies have limitations, mainly in terms of the number of patients involved, 

variability of the figures and lack of up to date studies, these figures, especially 

in children, are striking because the cure rate from AT and AU is unfavourable 

with only 10% of these patients experiencing full hair regrowth (Safavi et al., 

1995). 

The morbidity of AA is not attributed to hair loss alone, but also to its 

psychologically distressing nature as most of the patients experience 

psychological problems in the longer term (Aghaei et al., 2014). The cosmetic 

impact of hair loss affects self-confidence negatively with consequent psychiatric 

comorbidity, such as anxiety, social phobia, and paranoid disorder (Colón et al., 

1991, Chu et al., 2012), and AA patients  have a higher incidence of depression 
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and neuroticism (Aghaei et al., 2014). Furthermore, AA has a negative impact 

on the quality of life (Dubois et al., 2010). Based on a systemic review performed 

in 2016, AA patients experience significant impairment in health-related quality 

of life, and mainly in the area of mental health (Rencz et al., 2016). 

1.2.3 Treatment 

To date, there is no FDA approved treatment of AA. This is mainly 

because none of the available treatments can alter the natural history of the 

disease nor do they have a significant long-term effect (Messenger et al., 2012, 

Alkhalifah et al., 2010b). 

The drugs that are the most commonly used in clinical practice (Table 1.1) 

have many limitations. In addition to their adverse effects, the relapse rate after 

treatment is high. For example, after systemic corticosteroid therapy, the relapse 

rate has been observed in 25% of patients within three months (Winter et al., 

1976), which does not outweigh the side effects. The relapse rate is even higher 

with topical immunotherapy estimated up to 60% with diphencyprone (Wiseman 

et al., 2001). Furthermore, the response rate is highly variable between the 

studies. For instance, the response rate to topical sensitizer Diphencyprone 

(DPCP) was 15% in one study and as high as 85% in another  (Happle et al., 

1983, Orecchia and Rabbiosi, 1985). Most importantly, AT and AU are highly 

resistant to all the current treatments with the best response rate of 20% 

(Alkhalifah et al., 2010b). 

Many biological drugs have either been proposed or trialled in AA patients, 

however, the results were not in general encouraging. For example, anti-TNF 

antibodies such as alefacept or etanercept (Strober et al., 2009, Strober et al., 

2005), and efalizumab, a CD11A antagonist and inhibitor of T-cell activation, 

were shown to be ineffective in AA (Price et al., 2008). IFN- is a main player in 
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AA pathogenesis where it mediates its inflammatory effect via the JAK-STAT 

pathway. Targeting the JAK-STAT pathway by a chemical inhibitor has shown 

promising results in AA. Three JAK inhibitors have been used in AA including 

ruxolitinib, tofacitinib and baricitinib. Oral administration of 20 mg twice daily 

ruxolitinib resulted in a complete hair regrowth in 9 patients in a small pilot study 

of 12 AA patients after 3-5 months of therapy (Xing et al., 2014). Tofacitinib is a 

JAK 1 and 3 inhibitor that was initially approved for the treatment of rheumatoid 

arthritis (Liu et al., 2016) and used in clinical trials for psoriasis (Hsu and 

Armstrong, 2014). Daily administration of 10 mg of Tofacitinib for at least 4 

months in a cohort of 90 AA patients  showed >50% improvement in 42% of the 

patients (Liu et al., 2016). Treatment with baricitinib, a JAK1 and 2 inhibitor was 

reported in 1 patient, showing full scalp hair regrowth after 9 months (Jabbari et 

al., 2015). JAK inhibitors are efficient but they are known for relapse that 

occurred within a few weeks after cessation of treatment (Kennedy Crispin et al., 

2016).  

JAK inhibitors have a range of potential side-effects (Shreberk-Hassidim 

et al., 2017). For instance, ruxolitinib is a broad JAK (1 and 2) inhibitor with 

potential to modulate the signalling pathway of cytokines including IL-17, IL-21, 

IL-22 (Fridman et al., 2010), IL-6 and TNF (Verstovsek et al., 2010). Ruxolitinib 

adverse-effects include reactivation of tuberculosis, thrombocytopenia, anaemia 

and there is a risk of other unknown long-term adverse-effects (Tefferi and 

Pardanani, 2011). Furthermore, JAK inhibitors are relatively of high cost; 

Ruxolitinib cost is £3600 for a 60-tablet pack of 15 mg or 20 mg tablets excluding 

the VAT, according to British National Formulary [BNF] online, which 

corresponds to approximately £43,200 per patient per annum.  
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Table 1-1. Drugs most commonly used in treatment of AA as reviewed by Messenger 

et al. (2012) with their mechanism of action and side effects. 

Treatment Mechanism of action Side-effects 

Intralesional/Topical 
Corticosteroids 

Anti-inflammatory 
 

Topical atrophy, 
telangiectasia and folliculitis 

Systemic corticosteroids 
 

Anti-inflammatory 
 

Hypertension, obesity, Acne 
impaired adrenocorticotropic 
hormone (ACTH) 

Contact immunotherapy Topical sensitizer, 
inducing lymphocyte 
apoptosis 
 

Bullous/vesicular reaction, 
urticaria, cervical 
lymphadenopathy, facial and 
scalp oedema 

Minoxidil Vasodilation, 
angiogenesis, 
proliferation and opening 
k+ channels 

Contact dermatitis and 
hypertrichosis 

Anthralin Inhibitory effect on the 

cytokines TFG 

Irritation and folliculitis 

 

1.2.4 Aetiology and pathogenesis 

Many components are believed to play a role in the pathogenesis of AA, 

such as genetic factors, which mostly reflect immunological involvement, atopy, 

trauma, infection and stress (McDonagh and Messenger, 1996). 

Genetic factors 

The role of genetic factors in AA pathogenesis was first suggested due to 

the increased frequency of the disease in individuals with a positive family 

history varying between 10-42% in different studies (Duvic et al., 2001, Colombe 

et al., 1995, Shellow et al., 1992, Alzolibani, 2011), and a concordance rate in 

monozygotic twins of about 55%  (Alzolibani, 2011) . In addition, a higher 

incidence of the disease compared to the general population has been seen in 

association with genetic disorders, such as Down syndrome and autoimmune 

poly-glandular syndrome 1 (APS1) at about 8.8%  (Carter and Jegasothy, 1976) 

and 30% (Tazi-Ahnini et al., 2002). 

A number of genes encoding for immune system components have been 

found to be involved in AA pathogenesis (Table 1.2). Association studies have 
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revealed well-established genetic association of AA to the MHC/ Human 

Leukocyte Antigen (HLA) complex, a region located at chromosome 6 p21.3 

region (Gilhar et al., 2007). Many studies have supported the links of AA with 

HLA- class II loci namely HLA-DR and HLA-DQB (Colombe et al., 1995, 

Colombe et al., 1999, de Andrade et al., 1999, Duvic et al., 1991, Megiorni et al., 

2011). HLA-DQB1*03 is a general common susceptibility allele for AA in many 

populations (Colombe et al., 1999, Gilhar et al., 2007). Strikingly, Colombe et al. 

(1999) found HLA-DQB1*03 in 80% of all AA patients enrolled in the study while 

DRB1*0401 (DR4) and DQB1*0301(DQ7) was detected only in patients with 

AT/AU, which implicates the role of HLA alleles not only in the aetiology of AA 

but also with its severity.  

Although, the association to HLA class I was less extensively studied, 

HLA-B18 and HLA-B12 have found as possible susceptibility loci in the Israeli 

and Finnish populations respectively  (Kianto et al., 1977, Hacham-Zadeh et al., 

1981, Haida et al., 2013). Xiao and colleagues (2006) have found higher 

frequencies of HLA- class I alleles namely HLA-A*02, A*03, B*18, B*27, B*52 

and Cw*0704 in Chinese patients (Xiao et al., 2006). All these findings support 

the notion of AA as a polygenic disease with MHC class I and II as the most 

commonly involved genes in AA pathogenesis. As HLA-B and HLA-DR genes 

encode for proteins of antigen presentation, their intimate association with AA 

indicates the key role of the immune system in AA pathogenesis. 
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Table 1-2. Some genes involved in AA pathogenesis and their function.  

Gene Genomic 

locus 

Function References 

AIRE 21q22.3 Central tolerance (Tazi-Ahnini et al., 2002) 

NOTCH4 6p21.3 T-cell maturation/ 

keratinocyte differentiation 

(Tazi-Ahnini et al., 2003) 

MIF 22q11.23 Pro-inflammatory cytokine   (Shimizu et al., 2005) 

PTPN22 1p13.2 Control T-cell activation (Kemp et al., 2006) 

CLTA-4 2q33.2 Inhibitor of T-cell activation (Petukhova et al., 2010)  

ULBP3-6 6q25.1 NKG2D ligands (Martinez-Mir et al., 2007) 

MICA 6p21.3 NKG2D ligand resulting in 

activation of NK cells 

(Barahmani et al., 2006)  

HLA-

DQB1 

6p21.32 Antigen presentation  (Betz et al., 2015) 

NOTCH4-Neurogenic Locus Notch Homolog 4. MIF-Macrophage Inhibitory Factor. ULBP-

Cytomegalovirus UL16-Binding Protein. PTPN22-Protein Tyrosine Phosphatase, Non-receptor 

type 22. CTLA-cytotoxic T-cell lymphocyte-associated protein. MICA-MHC class I chain related 

gene A. 

 

Many other genes of the immune system have been found to be 

associated with AA in the genome wide association study (GWAS) conducted 

by Petukhova and colleagues (2010), which identified a large number of genes 

involved in AA that had not been identified before because of the bias of gene 

selection in the association studies. In Petukhova’s GWAS, 1054 AA patients 

and 3278 healthy controls were studied and 139 single nucleotide 

polymorphisms were found to be associated with AA (Petukhova et al., 2010). 

In addition to HLA genes, genomic regions of association contain genes 

controlling regulatory T-cell function and proliferation, such as Cytotoxic T-

lymphocyte-Associated protein 4 (CTLA-4), IL-2RA and IL-2 (Petukhova et al., 

2010). Moreover, genes encoding NKG2D ligands namely ULBPs showed a 

strong association with these ligands, considered as a danger signal that can 

activate NK and CD8 cells upon antigenic stimulation (Barahmani et al., 2006).  
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Immunological factors 

The autoimmune aetiology of AA was questioned for many years, but with 

accumulating evidence, the status of AA as autoimmune disease has been 

confirmed. As early as 1984, Perret and Todes-Taylor observed a dense 

intrafollicular and perifollicular infiltration of T-lymphocytes both CD4+ and CD8+ 

T-cells into the affected areas of the skin of AA patients (Todes-Taylor et al., 

1984, Perret et al., 1984). Furthermore, inflammatory markers, such as; ICAM-

1, which is essential for the keratinocyte-leukocyte interaction that is followed by 

lymphocytic infiltrate (Zhang and Oliver, 1994), and MHC class I and II are 

elevated in lesional skin (Messenger and Bleehen, 1985, Bröcker et al., 1987). 

The disease association with other autoimmune disorders, such as vitiligo and 

autoimmune thyroiditis has always been proposed as a marker of autoimmunity 

in the origin of AA (Cunliffe et al., 1969, Milgraum et al., 1987). 

Additionally, autoantibodies to anagen HFs have been found in 100% AA 

patient serum (Tobin et al., 1994). However, these antibodies are 

heterogeneous and target different hair structures including cuticle, cortex and 

IRS and ORS. The antibodies are directed to one or more HF antigens such as 

hair-specific keratins (52, 50, 46 and 44KD) (Tobin et al., 1994), trichohyalin 

(Tobin, 2003), melanocyte-associated proteins (Bystryn and Tobin, 1994, Paus 

et al., 1993). Contradictory to the theory of the humoral immune system’s 

involvement in AA, antibodies to different HF structures fail to inhibit hair growth 

in human AA scalp tissue grafted onto nude mice that had regrown hair (Gilhar 

et al., 1992). As a result, it has been suggested that humoral immune system 

involvement is late and non-specific (Carroll et al., 2002). 

The theory of AA as a T-cell mediated tissue restricted autoimmune disease 

has become more established as evidence has confirmed the failure to develop 
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the disease when the immune system is inhibited as in the case of nude mice 

that were devoid of T lymphocytes (Gilhar and Krueger, 1987). Additionally, AA 

can be transferred by T-cells. For instance, bald human skin can re-grow hair 

when grafted onto SCID mice, however, injecting autologous T-cells isolated 

from AA patients into the same human skin graft resulted in hair loss with 

upregulation of antigen presenting molecules including HLA-DR indicating that 

auto-reactive T-cells can be an inducer of AA and their absence reverses the 

disease (Gilhar et al., 1998). 

Another widely proposed hypothesis of AA pathogenesis is immune privilege 

collapse. HF is an immune privileged site due to the absence of antigen 

presenting protein MHC class I and II on the surface of keratinocytes and very 

scant lymphocytes in normal HF under the effect of immunosuppressive factors. 

Collapse of the immunosuppressive microenvironment of the HF bulb results in 

HF attack by auto-reactive T-cells, particularly CD8+ T-cells, and subsequent 

HF damage along with infiltration of CD4+ T-cells and NK cells, more details of 

immune privilege hypothesis will be discussed in section 3. The key elements of 

AA pathogenesis, such as autoantibodies, T-cells, NK cells and IP have been 

elucidated better in animal models, which have contributed significantly toward 

our knowledge of AA pathogenesis.  

Animal models   

There are several animal models for AA, among the most extensively 

used ones are the spontaneous adult onset C3H/HeJ mouse and DEBR rat 

models. That is due to their marked similarities both phenotypically and 

histologically to human AA (Sundberg et al., 2015). AA in C3H/HeJ mouse was 

first described by Sundberg et al. (1994) and in the Dundee Experimental Bald 
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Rat (DEBR) model was described by Michie et al. (1991) (Michie et al., 1991, 

Sundberg et al., 1994). 

Animal models are of great value in studying AA pathogenesis by 

elucidating the role of key players in AA pathogenesis such as auto-antibodies, 

IFN-, T-cells and NK cells. For instance, IFN-as a key cytokine in AA 

pathogenesis was demonstrated by the resistance of IFN- deficient C3H/HeJ 

mice to AA development (Freyschmidt-paul et al., 2006). T-cell involvement has 

been demonstrated in the nude mouse model (Figure 1.4), which is an athymic 

mouse devoid of T-cells. Hair regrowth was noticed on the affected scalp from 

AA patients grafted onto nude mice (Gilhar and Krueger, 1987) whilst injecting 

T-cells re-induced hair loss in human AA scalp with regrown hair that had been 

grafted onto SCID mice (Gilhar et al., 1999). 

 

 

 

 

 

 

The contribution of auto-antibodies has been investigated in C3H/HeJ 

mice (Tobin et al., 1997) and DEBR rat (McElwee et al., 1996). McElwee and 

colleagues had measured the autoantibodies in sera of DEBR rat. Serum from 

the affected rat was reactive to various components of HF including cuticle, 

cortex and IRS using indirect immunofluorescence staining of cryosections of 

Figure 1.4. An example of animal study in AA. 

The nude mouse model contributes to the current understanding of AA 

pathogenesis. Grafting AA patient’s affected skin onto the nude mouse resulting in 

hair regrowth in the graft on these T-cell devoid mice.  
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HF from normal and affected rats (McElwee et al., 1996). That has been 

reproduced in C3H/HeJ mice by Tobin and colleagues (1997) where 

autoantibodies have found in 100% of the affected mice. An induced AA model 

has also been developed which offers better understanding of disease kinetics; 

a graft from affected C3H/HeJ was transplanted onto normal mice resulting in 

hair loss 8-10 weeks later (McElwee et al., 1998), and serial changes in the 

cellular infiltrate and HF morphology was studied. 

The limitations of these two models are the late onset and low penetrance 

of the disease. The hair loss is observed in ≤1% of C3H/HeJ mice by age of 4-

6 months, which increases to 20% at 18 months (McElwee and Hoffmann, 2002). 

In DEBR rat, the penetrance is higher (30% in male and 70% in female) but at 

later onset about 5-8months, which renders it a more expensive model 

compared to C3H/HeJ mice (Michie et al., 1991, Oliver et al., 1991). 

A new animal model with 100% incidence by age of 4months was 

developed by Alli et al. (2012) in C57BL/6J mice, which overcomes the 

penetrance limitation of C3H/HeJ and DEBR. The model was developed in 

retroviral transgenic mice that express monoclonal TCR, which induces 

development of CD8+ cells directed to HF that is followed by activation and 

expansion of CD8+ cells and their infiltration into HFs. The striking observation 

in this model is the ability to induce human AA analogous disease changes by 

CD8+ lymphocytes independently, which supports the notion of AA as CD8+ 

dependent autoimmune disease as discussed earlier (Alli et al., 2012). 

In addition to the limitation of disease penetrance in some of the 

previously discussed animal models, researchers have been debating whether 

they are the best models for studying human AA. There are differences in the 

location of lymphocytic infiltrate while it extends from sebaceous gland to the 
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bulb of affected HFs in humans and DEBR rat, it extends from supra-bulbar to 

sebaceous gland in affected HFs of C3H/HeJ mice (Sun et al., 2008). More 

significantly, there are differences in some molecular aspects of the disease; For 

example, AA in C3H/HeJ mice is characterised by a major defect in toll-like 

receptor 4 (TLR4) signalling which is not a feature of human AA (Gosemann et 

al., 2010, Gilhar et al., 2013). Furthermore, the animals are maintained in highly 

controlled conditions compared to human subjects where the environmental 

factors and stress might have a contribution in the disease induction (Sun et al., 

2008).  

A humanised mouse model of AA has been recently introduced by Gilhar 

et al. (2013). Healthy human scalp skin was transplanted onto Immune-

compromised SCID mice.  Intradermal injection of mononuclear cells enriched 

with NKG2D+ and CD56+ cells supplemented by IL-2 resulted in hair loss 

associated with dense infiltrate of CD4+ and CD8+ cells (Gilhar et al., 2013). 

This model is more powerful in studying the disease kinetics in the context of 

human pathogenesis. Furthermore, it highlighted the role of NKG2D+ cells in AA 

pathogenesis (Gilhar et al., 2013). 

Animal models have also contributed in elucidating the mechanisms of IP 

collapse. For instance, the molecular mechanism underlying the high expression 

of antigen presenting molecules MHC I and II was explained using the nude 

mouse model where injecting INF in the nude mouse with regrown hair 

resulted in hair loss associated with up-regulation of MHC class I and II and 

ICAM-1 (Gilhar et al., 1993). 

1.3 Immune privilege 

Immune Privilege (IP) is a tissue characteristic enabling the relative 

protection of allograft against immune attack (Head and Billingham, 1985, Paus 
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et al., 2003). A number of sites in the body enjoy IP, such as the anterior eye 

chamber, parts of the testis and ovary, the adrenal cortex, segments of the 

central nervous system behind the blood–brain barrier, the feto-maternal 

placental unit and the proximal third of the hair bulb and hair bulge regions of 

HF (Medawar, 1948, Niederkorn, 2003). Collapse of IP results in autoimmune 

attack of the originally privileged sites and subsequently autoimmune diseases 

such as autoimmune uveitis (Wilbanks and Streilein, 1991), autoimmune orchitis 

(Zhao et al., 2014), foetal rejection (Kanellopoulos-Langevin et al., 2003) and 

AA (Westgate et al., 1991). The collapse of anagen HF privilege is proposed as 

an initiating event in AA pathogenesis (Paus et al., 2003) where many molecular 

and cellular elements are involved in maintaining and establishing hair follicle IP. 

HF was first suggested as an immune privileged site by Billingham and 

Silvers in 1971, when the black guinea pig skin graft was accepted by the albino 

guinea pig. Black hair shafts were observed in the graft, which suggested that 

some of the donor melanocytes escape the immune rejection and grow in the 

recipient’s hair bulb  (Billingham and Silvers, 1971).  

In the normal IP state (Figure 1.5), the anagen HF is characterised by 

lack of expression of MHC class I and class II in the proximal part of the HF 

(Westgate et al., 1991, Christoph et al., 2000), and the entire lower two-thirds of 

the anagen HF is devoid of APCs (Moresi and Horn, 1997, Paus et al., 1999a). 

Only scant numbers of NK cells, CD4+ are found in the lower portions of the 

proximal hair follicle (Christoph et al., 2000). All these features are thought to be 

mediated by immunosuppressive factors, such as TGF-, - MSH, IL-10, 

adrenocorticotrophic hormone and immune-inhibitory signal (CD200) secreted 

by HF cells (Gruschwitz et al., 1990, Paus et al., 1993, Grabbe et al., 1996, 

Rosenblum et al., 2004, Ito et al., 2004).  
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In the aberrant IP state, cellular and molecular elements of normal HF 

are altered where expression MHC class I and class II is upregulated in AA 

compared to normal control skin (Ito et al., 2004) resulting in presentation of 

auto-antigen to cytotoxic T-cells and subsequent infiltration of CD4+ T-cells, NK 

and APC (Khoury et al., 1988). The expression of the main inducer of MHC class 

I (IFNwhich is a Th1 cytokine, is increased in the affected skin (Ito et al., 

2004). Opposite to the normal state, IP guardians, such as TGF- and-MSH 

are downregulated in AA affected areas (Taylor et al., 1992, Paus et al., 2003). 
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Figure 1.5. IP theory of AA pathogenesis. 

Normal HF with no APCs and scant CD4+ T-cells in the bulbar and supra-bulbar 

region, which are proposed to be mostly Tregs secreting IL-10 and TGF 

maintaining  the normal IP state of HF. Lesional HF is infiltrated with APCS, NK, 

CD8+ (Tc) and Th1 and Th17 cells. We propose that antigen identification and 

processing by APCs results in IFN- production, which in turn upregulates MHC 

class I with subsequent sequestration of Tc cells and further production of IFN-, 

upregulation of MHC class II and sequestration of Th1 and Th17 resulting in HF 

damage. Figure was created using Servier medical art. 
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1.3.1 Molecular elements of IP 

1.3.1.1 Major histocompatibility complex (MHC) classes I and II  

MHC class I molecules are expressed on the surface of  all nucleated 

cells, and act as a sensory arm of the immune system by presenting  antigens 

to the CD8+ cytotoxic T-cells (Qazi and Hamrah, 2013). MHC class II molecules 

are expressed on the surface APCs and present antigens to CD4+ T-cells 

(Bröcker et al., 1987). 

In this thesis, MHC antigens will be considered as the main 

representative of IP collapse since their absence is a unique feature of IP sites. 

No detectable MHC class I and II expression is found in the anagen HF 

particularly in the sub-infundibular and matrix keratinocytes (Harrist et al., 1983, 

Bröcker et al., 1987, Ito et al., 2004). Absence of these molecules in the 

privileged sites plays an important role in preventing the immune attack 

(Christoph et al., 2000). In the aberrant IP state, MHC class I expression is up-

regulated (Figure1.5) resulting in recruitment of CD8+ T-cells to the HF (Ito et 

al., 2004). Similarly, the expression of MHC class II was increased in AA affected 

skin as demonstrated by Messenger et al. (1985), however, it is thought to be a 

consequence of lymphocyte infiltration not a primary event in the pathogenesis 

(Khoury et al., 1988, Messenger and Bleehen, 1985). Therefore, decreasing the 

expression of MHC molecules is a key target in any AA treatment to reduce 

presentation of hair autoantigens to T-cells, and this feature could be employed 

as a marker to assess the success of any potential treatment of AA in 

experimental models.  

1.3.1.2 IP collapse inducers 

The main inducer of MHC class I expression and thereby IP collapse is 

INF-(Figure 1.5), and its role as a key cytokine in AA pathogenesis was 
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demonstrated by the resistance of INF deficient C3H/HeJ mice to AA 

development (Freyschmidt-paul et al., 2006). In agreement with its role as an 

AA inducer, injecting high dose IFN-increased the rate of AA incidence in the 

C3H/HeJ mouse model (Gilhar et al., 2005). In human AA, ectopic expression 

of MHC class I and II can be induced by INF-as demonstrated in the ex vivo 

HF model by Ito’s group (Ito et al., 2004). Moreover, IFN- is considered as a 

catagen inducer, which interferes with hair growth. This role replicates the AA 

nature as a disorder of HF growth cycling where increase in the number of 

catagen HF is one of histopathological characteristics of AA affected skin (Sato-

Kawamura et al., 2003). It is thought that environmental factors such as viral or 

bacterial infection induce IFN- production resulting in upregulation of 

chemokine expression, such as CXCL-9 (Gilhar et al., 2003) and CXCL-10 

(Kuwano et al., 2007) in the hair bulb. These chemokines in turn stimulate T-cell 

accumulation in and around the hair bulb (Ito et al., 2012). 

It is well known that IFN- mediates its action via the JAK-STAT pathway 

(Horvath, 2004). INF binds to its receptors, INFGR1 and 2, followed by their 

dimerization and activation of Janus kinase enzymes JAK1 and 2 accordingly 

(Figure1.6). JAK enzymes phosphorylate signal transducer and activator of 

transcription proteins (STAT1), which translocates into the nucleus and binds to 

IFN-gamma activated sequence (GAS). GAS is a specific DNA sequence that 

responds to INF binding by subsequent activation of INF dependent genes 

expression, which mediates the inflammation (Darnell et al., 1994).  

IFNactivates a large number of genes, up to 500, where the 

transcription factor, interferon regulatory factor (IRF-1), is among the key genes 

regulated by IFN(White et al., 1996).  IRF-1 activates a group of genes such 
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as those involved in transcription of antigen presenting molecules namely MHC 

class I and class II, transporter associated with antigen processing (TAP) (White 

et al., 1996), the cellular adhesion molecules such as ICAM-1 and VCAM-1 

(Lechleitner et al., 1998) and Th1 and Tc cells development and function 

(Matsuyama et al., 1993). IRF-1 is also considered a key negative regulator of 

Treg through repressing FOXP3 expression (Fragale et al., 2008). 

  

 

  

Figure 1.6. Schematic simplification of IFN- signalling pathway. 

IFN- binds to its receptors INFGR1 and 2, which upon dimerization bind to their 

prospective JAKs. JAK enzyme phosphorylates STAT-1 signal transducer that 

translocate to the nucleus where it activates IFN-gamma activated sequence (GAS) 

resulting in activation of transcription factors such as IRF-1 with subsequent 

activation of many genes involved in inflammation and autoimmunity such as genes 

of Th1 development, antigen presentation and adhesion molecules. 
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1.3.1.3 IP guardians 

Immune suppressive factors (IP guardians), such as indoleamine-2,3-

dioxygenase (IDO), IK/Red, transforming growth factor  (TGF-β), α-

melanocyte-stimulating hormone (α-MSH) and  interleukin 10 (IL-10) are 

elaborated by anagen HF (Kang et al., 2010). They mediate IP maintenance by 

different mechanisms. For example, IK cytokine is expressed on ORS and acts 

as an antagonist of IFN- induced MHC II expression (Muraoka et al., 2006). 

IDO mediates immunological tolerance by inhibiting lymphocyte proliferation 

(Hou et al., 2009). α-MSH, TFG- and IL-10 are important in peripheral 

immunological tolerance by inducing differentiation of naïve CD4+ cells into the 

regulatory phenotype (Taylor et al., 2000). Expression of these 

immunosuppressive molecules is decreased in AA (Kang et al., 2010). IP 

guardians are promising candidate targets for AA treatment where -MSH, IGF-

1 and TGF- have shown to decrease IFN- induced MHC I expression in HF 

(Ito et al., 2004), and -MSH has demonstrated therapeutic potential in 

experimental uveitis (Edling et al., 2011).  

Some studies suggest that blocking lymphocyte activity in immune-

privileged HFs is mediated through an inhibitory molecule expressed on the 

outer connective tissue sheath known as Programmed Death-Ligand 1 (PD-L1) 

that induces T-cell anergy  (Wang et al., 2013b, Guo et al., 2015). The same 

molecule plays a key role in feto-maternal tolerance (Guleria et al., 2005). Treg 

cells are postulated as IP guardian cells based on the ability to block disease 

onset in the mouse model (McElwee et al., 2005a), and their abundance around 

the normal HF as studied by Rosenblum’ group (Sanchez Rodriguez et al., 

2014) . Treg involvement in maintaining IP will be discussed in details in cellular 

mechanism of IP.  
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1.3.2 Cellular elements of IP 

1.3.2.1 Natural killer (NK) cells 

NK cells exert direct cytotoxic effects on tumour cells or infected cells 

lacking MHC I expression (Eric et al., 2008, Joncker and Raulet, 2008). Despite 

being MHC negative, the hair bulb is protected from perifollicular NK cell-

mediated attack (Christoph et al., 2000). This can be explained in the eye and 

HF by the presence of NK cell inhibitory cytokines, such as TGF- and MIF 

(Rook et al., 1986, Apte and Niederkorn, 1996, Ito et al., 2008). Moreover, NK 

cell activating receptor ligands such as MICA are not expressed on the ORS of 

anagen HF, thus boosting the protection against NK attack in normal IP state 

(Ito et al., 2008). NK receptors (NKG2D) that recognize MICA ligand are also 

weakly expressed on NK cells from healthy controls compared to AA patients 

(Ito et al., 2008). NKG2D also recognizes surface glycoproteins that bind human 

cytomegalovirus UL16 proteins (ULBPs), which stimulates immune cells to 

attack target cells, and genes encoding for ULBP have been found to be 

associated with AA (Petukhova et al., 2010). In the aberrant IP state, CD56+ NK 

cells contribute to the perifollicular infiltrate, which is accompanied by massive 

immune reactivity of HF to MICA, and increased expression of NKG2D on NK 

cells (Ito et al., 2008). Therefore some researchers conclude that maintaining 

the HF IP state is closely linked to blocking NK cell attack.  

1.3.2.2 Antigen presenting cells (APC) 

Langerhans cells (LCs), which are the skin resident dendritic cells (DCs), 

are normally very scant in the lower two-thirds of human HF (Moresi and Horn, 

1997). Additionally, they are non-functional as they lack MHC class II expression 

(Christoph et al., 2000). However, their role as the initiator of skin immune 

responses put this cell population at the centre of AA research. They have a 
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dual role where LCs recognise antigen, migrate to lymph nodes, display MHC 

class I or II and activate CD8+ or CD4+ cells respectively resulting in destruction 

of antigen-bearing infected cells or tumour cells (Mutyambizi et al., 2009). LCs 

also mediate the self-tolerance role where during the catagen phase of the hair 

cycle, LCs phagocytose apoptotic keratinocytes and melanocytes without 

inducing an immune attack (Mutyambizi et al., 2009). The tolerogenic phenotype 

of LCs is thought to be mediated by immunosuppressive molecules secreted by 

keratinocytes such as TGF or/and MSH (Grabbe et al., 1996) inducing IL-

10 secretion by LCs and thereby Treg development. Similar changes have been 

seen in melanoma where IL-10 secreted by tumour cells induced tolerizing LCs 

and mediated tumour evasion (Enk et al., 1997). 

In the eye, APCs’ tolerogenic effect has been demonstrated to have a 

central role in maintaining IP (Wilbanks and Streilein, 1991). Upon antigen 

inoculation, APCs induce differentiation of naïve CD4+ T-cells into regulatory T-

cells instead of inflammatory (Th1) cells under the effect of TGF-in aqueous 

humour (Wilbanks and Streilein, 1991, Orazio and Niederkorn, 1998). In the HF, 

this mechanism has not been studied and it is not known if APCs have a role in 

maintaining or collapsing the IP state. However, APCs expressing CD1a, CD40, 

CD54 and HLA-DR are detected in lymphocytic infiltrates in AA (Sato-Kawamura 

et al., 2003). Specifically, CD1a+ cells have been detected in high numbers in 

perivascular and peribulbar regions of affected HF in the acute phase of AA 

while they are scant in the chronic phase, which may suggest a primary role of 

APCs in the early phases of AA (Ghersetich et al., 1996). 

1.3.2.3 T-cells 

 Although the exact aetiology of AA is not known, T-cells and their 

cytokines play a pivotal role in the disease process. Normally, the hair bulb is 
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devoid of intra-epithelial T-lymphocytes (Christoph et al., 2000). IP collapse 

results in dense Infiltration of T-lymphocytes of both CD4+ and CD8+ phenotype, 

which is one of the histopathological hallmarks of the disease. 

1.3.2.3.1 CD8+ T-cells 

CD8+ cytotoxic T (Tc) lymphocytes constitute 20-40% of the lymphocytic 

infiltrate in AA affected skin (Todes-Taylor et al., 1984). While CD4+ cells 

infiltrate around the HF, CD8+ cells invade and infiltrate inside the bulb. They 

dominate the lymphocytic infiltrate in chronic cases of the disease indicating 

their destructive role in HF damage (Ito et al., 2012). CD8+ T-cells infiltration is 

believed to be downstream to IP collapse due to upregulation of MHC I by INF 

(Figure1.5). AA is considered to be mainly a CD8+ cell-mediated disease, which 

was demonstrated in many animal models. For instance, CD8+ T-cells cultivated 

with human HF homogenate induced hair loss in grafts of human AA scalp where 

the hair had initially regrown following grafting onto SCID mice (Gilhar et al., 

2001). Additionally, Alli’s mouse model described earlier showed development 

of AA in 100% of C57BL/6J mice by inducing the development of clonal CD8+ 

T-cells (Alli et al., 2012). 

NKG2D receptors, which are expressed on the surface of activated CD8+ 

T-cells, have attracted more attention when their ligands, namely ULBP3 and 

MICA, were showed to have a strong association with AA in GWAS, and up-

regulated in dermal papilla and dermal sheath of HFs of AA patients compared 

to normal subjects (Ito et al., 2008, Petukhova et al., 2010). NKG2D ligands 

activate cytotoxic activity of CD8+ T-cells (Petukhova et al., 2010, Xing et al., 

2014). This is followed by IFN- production by cytotoxic CD8+ NKG2D+ T-cells 

mediating inflammation and HF damage. These findings have been confirmed 

when the signalling pathway downstream of CD8+ cell activation, namely the 
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JAK-STAT pathway, has been targeted by a small molecule and shown to result 

in a complete hair regrowth in some AA patients (Xing et al., 2014).  

CD8+ T-cells mediate their cytotoxic effect through secreting granyzyme 

B and Fas/FasL cytotoxic mechanisms (Bodemer et al., 2000) and C3H/HeJ 

mice deficient in Fas or Fas L do not develop AA. Nonetheless, McElwee et al. 

(2005) showed that injection of CD8+ cells alone resulted in limited disease 

while injecting CD4+ CD25- cells alone induced a more extensive disease 

phenotype (McElwee et al., 2005a), which indicates probable  interaction 

between CD8+ and CD4+ cells is a key element in AA pathogenesis (Gilhar et 

al., 2002). 

1.3.2.3.2 CD4+ T-cells  

It is well known that CD4+ and CD8+ T-cells constitute the main 

components of the cellular infiltrate around affected HF in AA; however, the 

question of how they interact to cause the disease is still not answered. Strikingly, 

CD4+ cells constitute 60-80% of the lymphocytic infiltrate in AA affected skin 

(Todes-Taylor et al., 1984). However, there are many questions that recent 

researches have been attempting to elucidate. Importantly, which CD4+ cell 

subset has the key role in AA pathogenesis and whether they mediate their 

effect by collapsing IP and how. Naïve CD4+ can differentiate into effector 

inflammatory conventional T helper cells (Teff) such as Th1, Th2, Th17 or into 

CD4+ CD25+ regulatory T-cells (Tregs), which functionally inhibit any deleterious 

activity of Teff (Zhu et al., 2010). Each sub-population of CD4+ T-cells is 

characterised by their cytokine profile as well as cell surface or intra-cellular 

markers summarised in Table 1.3. 
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    Table 1-3. Main subsets of CD4+ cells and profile of secreted cytokines. 

CD4+  

subsets 

Surface/Intracellular 

Markers 

Cytokines 

secretion 

References 

Th1 CD4, CD119 IFN-, TNF-

IL-2 

(Romagnani et al., 

2000) 

Th17 CD4 IL-17, IL-21, IL-

22, IL-23, IL-6 

(Ghoreschi et al., 

2011) 

Th2 CD4 CRTH2 IL-4, IL-5, IL-10, 

IL-13 

(Noble et al., 1993) 

Treg CD4 CD25 FOXP3 TGF-, IL-10 (Levings et al., 2002)  

 

Inflammatory effector T-cells (Teffs)  

Inflammatory T-cells (Teff) include CD8+ T-cells (discussed previously in 

section 3.2.3.1.) and inflammatory cells differentiating from CD4+ T-cells such 

as Th1 Th2 and Th17. In this section, some evidence of Th1, Th2 and Th17 

association with AA pathogenesis will be discussed. The role of Th1 in AA 

pathogenesis is supported by INF role (section 3.1.2) as it is the main cytokine 

secreted by this population (Farrar and Schreiber, 1993). Furthermore, 

expression of Th1 chemokines such as CXCL-9, CXCL-10 and their receptor 

CXCR3 were up-regulated and this was correlated with disease activity (Kuwano 

et al., 2007). IL-2, which is another Th1 cytokine, was found to be elevated in 

peripheral blood of patients with severe AA (Teraki et al., 1996). Although the 

role of Th2 cells has not been studied thoroughly, IL-13 levels were found to be 

higher in AA patients compared to controls without specifying the type of AA 

(Tembhre and Sharma, 2013). Moreover, Th2 cytokines, such as IL-4 and IL-10, 

were found to dominate in sera of patients with localised disease while Th1 

cytokines, INFand IL-2, were elevated in patients with extensive disease 

(Teraki et al., 1996). 
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Th17 is another CD4+ cell population that has been suggested to be 

involved in AA pathogenesis. Th17 cytokines, particularly IL-17, are increased 

in AA patients’ blood, and IL-17 expression was found to be significantly higher 

in AA affected skin compared to control (Atwa et al., 2016). Additionally, 

infiltration of Th17 cells was detected around lesional HF (Tanemura et al., 

2013). Involvement  of Th17 cells in AA might be explained by their role in 

reducing Treg recruitment as suggested in one study by Katayama’s group 

(Tanemura et al., 2013) which probably resulted in inducing the inflammatory 

micro-environment of HF as proposed in Figure 1.5. Nonetheless, better 

understanding of Treg function and development is required to elucidate their 

role in AA. 

Regulatory T-cells (Treg) 

Naturally occurring Treg (nTregs) develop in the thymus and constitute 

4-10% of CD4+ T-cells population in peripheral blood. They play a central role 

in peripheral immune tolerance where they have an anergic effect on Teffs 

(Peterson, 2012). nTregs differentiate from CD4+ CD8- T-cells in the thymus 

where the transcription factor (FOXP3) plays a pivotal role in their differentiation 

and function. Mutation in FOXP3 in scurfy mice abrogates Treg development 

resulting in lethal autoimmune disease (Fontenot et al., 2003). Similarly, IL-2 is 

an essential element in nTreg development and function where mice deficient in 

IL-2 or its receptor CD25 have a profound reduction in the number of FOXP3+ 

Treg, Therefore nTreg are also named FOXP3+ CD25+ CD4+ T-cells (Jonuleit 

and Schmitt, 2003). Other subtypes of Tregs also develop from naïve CD4+ T-

cells in peripheral tissue up on antigenic stimulation and are called 

induced/adaptive Treg (iTreg) (Schmitt and Williams, 2013).   

https://www.ncbi.nlm.nih.gov/pubmed/?term=Katayama%20I%5BAuthor%5D&cauthor=true&cauthor_uid=23838575
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iTreg are subdivided according to their cytokine profile and FOXP3 

expression into; IL-10-Producing Treg Cells (Tr1), TGF- producing Treg cells 

(Th3) and FOXP3+ CD25+ CD4+ Treg (Figure 1.7). However, categorization of 

Treg population is a complicated topic as many other subtypes have been 

described in the literature, and Shevach made an analogy of Treg repertoire 

discoveries by developments in the ice cream industry from one original vanilla 

flavour to the huge number of flavours available today. For instance, subtypes 

such as T-cells , CD8+ Treg and CD4−CD8−double-negative (DN) Treg, NK 

Treg and more have been described (Shevach, 2006). Despite the fact that 

many T-cells exert immune suppression effects as explained, the discussion in 

this thesis will be confined to CD4+CD25+FOXP3, which is the main population 

of Treg that have been extensively studied and characterised. Nonetheless, 

phenotypic differentiation between natural or induced CD4+CD25+FOXP3+ 

Treg cells is not attainable (Shevach, 2006, Lan et al., 2012) due to lack of 

specific markers. Therefore, CD4+CD25+FOXP3+ T-cells in the thesis are 

referred to as Treg population either developed in thymus or periphery. 
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Figure 1.7. Differentiation and immunosuppressive mechanisms of natural and 

induced Treg. 

CD4+ T-cells develop into FOXP3+CD25+CD4+ Treg in thymus giving rise to natural 

Treg (nTreg).  Induced Treg cells develop in the periphery from naïve CD4+ T-cells, 

which differentiate to a distinct subtype of Treg according to the inducing cytokine. 

IL-10 and TNF induces differentiation of Tr1, TGF and IL-4 induces Th3 

development while induced FOXP3+ CD25+CD4+ Tregs develop under the effect of 

TGF- and IL-2. Each Treg subtype is characterised by a specific 

immunosuppressive mechanism; Tr1 and Th3 exert immunosuppression via IL-10 

and TGF- secretion respectively. Induced and natural FOXP3+CD25+CD4+ share 

their immunosuppressive mechanism including both cell contact and secretion of 

immunosuppressive molecules such as TGF, IL-10 and IL-35. Figure was created 

using Servier medical art. 
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Tregs can be classified into phenotypically and functionally distinct 

subpopulations based on CD45RA (Miyara et al., 2009) or CD45RO cell surface 

markers (Ye et al., 2015). Expression of CD45RO and CD45RA is usually 

regulated in a reciprocal manner where positively selected T-cells express 

CD45RO in the thymus, convert to CD45RA at the time of emigration to the 

periphery, and then switch back to CD45RO after antigen recognition (Vanhecke 

et al., 1995, Fukuhara et al., 2002). Therefore Tregs expressing CD45RA but 

not CD45RO (CD45RA+CD45RO-) are naïve cells that haven’t encountered 

antigen before (Rosenblum et al., 2016). Naïve CD4+CD25+FOXP3 Treg cells 

acquire CD45RO+ upon antigen presentation and proliferate, however, they 

need activation molecules to exert their immune-suppressive function such as 

CD39 (Ye et al., 2015), and named suppressive Tregs (Figure 1.8). Once 

inflammation subsides, effector Treg lose their activation markers and maintain 

only CD45RO+ markers and rest in lymph nodes or peripheral tissues as 

memory Treg (Rosenblum et al., 2016). 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Treg classification according to their development. 

Naïve Treg express CD25+FOXP3+ are converted into effector Treg upon antigen 

presentation acquiring CD45RO+ and CD39+, the latter will be lost once the 

inflammation subsides and cells will maintain CD45RO+ to be memory Treg. 

Figure was created using Servier medical art. 
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However, how Tregs mediate their suppressive function is more 

complicated and cannot be confined to CD39-mediated suppression. Tregs’ 

primary function is controlling expansion and activation of autoreactive Teff, 

which is mediated by many different suppressive mechanisms. Schmidt and 

colleagues (2012) postulated that Treg uses one or more of these mechanisms 

depending on the antigen, target cell type, activation status and cytokine 

microenvironment (Schmidt et al., 2012). Among the most known mechanisms 

are:  

1- Secreting immune-modulatory molecules such as IL-10, TGF- (Von 

Boehmer, 2005), IL-35 (Collison et al., 2007) and galactin-1 that result in cell 

cycle arrest, apoptosis and inhibiting pro-inflammatory cytokine secretion (Garín 

et al., 2007).  

2- IL-2 consumption where Tregs compete with Teffs for IL-2 required for Teff 

proliferation resulting in their deprivation and apoptosis (Pandiyan et al., 2007) . 

3- Direct cell-to-cell contact with Teff cells and resultant cytolysis mediated by 

the granzyme /perforin pathway (Grossman et al., 2004). Interestingly 

expression of MHC-II (HLA-DR) on Tregs identifies a distinct suppressive 

population that mediates an early cell-contact dependent mechanism to inhibit 

T-cell proliferation and induce FOXP3 expression (Ashley and Baecher-Allan, 

2009, Baecher-Allan et al., 2006). 

4- Modulating dendritic cell function is another suppressive machinery of Treg. 

That is mediated by engagement of CD223 (Lymphocyte-activation gene 3, 

LAG-3) molecules on the surface of Treg with MHC class II on DC inhibiting 

activation of  Teffs (Liang et al., 2008).  

5- Modulating T-cell response and inhibiting Teff proliferation via A2 adenosine 

receptor. CD39 and CD73 are ecto-enzymes expressed on Treg cells, and they 
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are considered key components in Treg suppressive machinery. CD39, ecto-

nucleoside triphosphate diphosphohydrolase 1, ENTPDase1,  is an enzyme of 

the ATPase family that hydrolyses ATP into AMP, which is subsequently 

hydrolysed by CD73, an ecto-5-nucleotidase, into adenosine (Antonioli et al., 

2013). Adenosine modulates the pro-inflammatory micro-environment induced 

by ATP into an anti-inflammatory milieu (Figure 1.9). Adenosine binds to 

receptors on the surface of T and B lymphocytes, DCs and NK cells inhibiting 

their development (Deaglio et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

Based on a recent study by Sanchez Rodriguez et al., 2014, CD4+ 

CD25+ FOPX3+ cells are more predominant in skin than peripheral blood 

constituting 20% of CD4+ T-cells in the skin. CD45RO+ memory Tregs express 

Figure 1.9. A schematic representation of CD39+ suppressive Treg function. 

CD39 induces the hydrolysis of the pro-inflammatory molecule ATP into AMP, which 

in turn will be hydrolysed by CD73 into adenosine. Adenosine is an anti-

inflammatory molecule inhibiting activated T-cells proliferation. Figure was created 

using Servier medical art. 
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activation markers such as CD25, CTLA-4 and ICOS (Sanchez Rodriguez et al., 

2014). These activated memory Treg are a considerable population of T-cells in 

the skin, particularly in hair bearing areas, which suggest their possible role in 

maintaining IP. 

A potential role of Treg cells have been identified in many skin diseases 

such as psoriasis vulgaris, mycosis fungoides and eczematous dermatitis 

(Fujimura et al., 2008, Sakaguchi et al., 2011). Depletion of CD4+ CD25+ Treg 

induces autoimmune disease in animal models (Sakaguchi et al., 1995, 

McElwee et al., 2005a). In AA, Tregs have a central role in the pathogenesis. 

For instance, CD4+ CD25+ Tregs have found to be very low in AA affected skin 

of C3H/HeJ mice (Zoller et al., 2004), and injecting these cells significantly 

reduced the disease incidence in C3H/HeJ mice (McElwee et al., 2005a). 

Furthermore, In human AA, the Treg cytokine TGF-wasfound to be 

significantly decreased in peripheral blood of AA patients compared to controls 

(Tembhre and Sharma, 2013). Moreover, peripheral Tregs were found to be 

functionally impaired in AA patients (Shin et al., 2013). The importance of Treg 

in AA pathogenesis has been recently supported by finding an association of 

novel regions containing genes important for Treg function such as IL-2RA, IL-

2/IL-21 and CTLA4 in AA patients in GWAS (Betz et al., 2015). 

It has been suggested that dysfunction of Tregs is one of the IP collapse 

mechanisms (Gilhar et al., 2007). In the eye, antigen specific Tregs have been 

found in spleen after experimental uveitis (Kitaichi et al., 2005), which clearly 

indicates Treg central role in maintaining IP in eye. Treg recruitment via IL-2 

induced hair regrowth in five AA patients, which might have been achieved by 

restoring the IP (Castela et al., 2014). However, the mechanism by which Treg 

maintain the IP in the HF is not entirely understood. Therefore, investigating 
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Treg population in peripheral blood and skin of AA patients will be one of the 

aims of the current research.  

Treg-Teff balance 

Alterations in the balance between Teff (Th1, Th2 and Th17) and Treg 

populations of CD4+ T-cells is the cause of autoimmunity in many diseases 

(Almeida et al., 2002, Cai et al., 2013), however, this mechanism is not 

elucidated in AA. Here, as simplified in Figure 1.10, IP is proposed to be 

maintained under the effect of immune-suppressive molecules such as IL-10 

and TGF- resulting in a Treg infiltrate around the normal immune-privileged HF 

with lack of Teff infiltration, and Tregs are probably contributing to maintenance 

of the IP microenvironment by secreting immunomodulatory molecules (Figure 

1.10 left panel). In the aberrant IP state (right panel), the balance between Teffs 

such as Th1 and Th17, and Tregs is reversed and more Teffs infiltrate the HF 

with low or non-functioning Treg, which could be a key event in the pathogenesis 

with more secretion of inflammatory cytokines such as IFN- and IL-17. The 

question, which has not been elucidated yet, is whether deficiency of Treg is the 

primary initiating event in IP collapse or it is secondary to the effect of 

inflammatory cytokines secreted by Teffs infiltrating the affected HF.  
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One of the examples of the reciprocal correlations between inflammatory 

and regulatory arms of the immune system is Th17/Treg balance. Both 

populations differentiate under the effect of the same cytokine TGF-, which up-

regulates expression of FOXP3 and RORγt  transcription factors in naïve CD4+ 

cells to develop Treg or Th17 cells respectively (Noack and Miossec, 2014). 

Although it has been found that the presence of IL-6 and IL-21 cytokines is 

essential to develop Th17 by TGF-, the exact mechanism of developing Treg 

by TGF- is not fully understood. Defective Th17/Treg balance has been 

proposed as a causative mechanism in the development several autoimmune 

diseases such as experimental autoimmune encephalomyelitis (Zhang et al., 

2011), rheumatoid arthritis (Wang et al., 2012a) and experimental autoimmune 

Figure 1.10. Proposed role of T-cells in IP collapse. 

In normal IP state (left panel), Treg and other HF cells secret IP guardians such as 

TGF- and IL-10 keeping MHC class I and II expression low, as a result, HF is 

devoid of inflammatory lymphocytes. In aberrant IP state (right panel), balance 

between inflammatory T-cells (Teff) such as Th1 and Th17 and Treg is a key event 

in the pathogenesis. Th1 and Th17 activation results in IFN- secretion leading to 

upregulation of MHC class I and II expression. Figure was created using Servier 

medical art. 
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uveitis (Zhang et al., 2016). This correlation has not been studied in AA. 

Therefore, in this work, a comprehensive analysis of Teff and Treg populations 

in peripheral blood of AA patients will be performed. 

1.4 TCR beta chain  

1.4.1 Adaptive immunity 

All multicellular organisms are equipped with many defence mechanisms 

against infectious agents such as viruses, bacteria, parasites and fungi. Innate 

immunity is the body’s non-specific first line defence against pathogens, and is 

mediated by macrophages and neutrophils (Dempsey et al., 2003). This innate 

immunity is reliant on germline-encoded receptors to recognize microorganisms, 

therefore, it is not specific and can recognise a wide range of invaders that bear 

a common surface marker, which is conserved over the course of evolution 

(Janeway, 2001). In contrast, adaptive immunity is a more specialised defence 

mechanism mediated by lymphocytes, and is capable of specifically recognising 

foreign micro-organisms or molecules and selectively eliminating them from the 

body. The adaptive immune system relies on pathogen-specific receptors 

encoded by a unique genetic mechanism during lymphocyte development 

(Dempsey et al., 2003). The huge diversity of lymphocyte receptor molecules 

explains why the mammalian immune system has the ability to neutralise almost 

any antigen to which it is challenged. The adaptive system includes 

both humoral immunity mediated by B-lymphocytes and cellular 

immunity mediated by T-lymphocytes. 

The main question in the field of immunity was how lymphocytes precisely 

recognise a specific antigen. Macfarlane Burnet first proposed the theory of 

clonal selection in 1950s to answer this question. Each naïve lymphocyte in the 

https://en.wikipedia.org/wiki/Humoral_immunity
https://en.wikipedia.org/wiki/Cell-mediated_immunity
https://en.wikipedia.org/wiki/Cell-mediated_immunity
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blood stream has antigen receptors with a single specificity (Figure 1.11). The 

specificity is determined by unique genetic mechanism during their development 

in the thymus and bone marrow, which generates millions of different variants of 

the genes encoding the receptor molecules. Re-arrangements of multiple sets 

of profoundly similar genetic regions create numerous functional genes, which 

are main contributor to the huge diversity  of B cell receptor (BCR) and T-cell 

receptor (TCR) repertoires (Jackson et al., 2013). This ensures that the millions 

of lymphocytes in the body collectively carry millions of different antigen receptor 

specificities, and that is what constitutes the lymphocyte receptor repertoire of 

the individual  (Silverstein, 2002). Throughout an individual's lifetime these 

lymphocytes experience a process associated to clonal selection; those 

lymphocytes that encounter an antigen on which their receptor binds will be 

activated and differentiate into effector cells. Activation triggers a process called 

clonal expansion where these cells proliferate and produce many identical 

progeny, known as a clone (Silverstein, 2002). T-cells have a central 

involvement in AA pathogenesis as discussed in section 1.3.2.3, therefore, 

studying their receptor’s (TCR) repertoire will be in the center of focus in this 

research.  

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2704/
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1.4.2 Structure of T-cell receptor (TCR) 

Unlike B-cells that mature in the bone marrow, naïve T-cells migrate to 

the thymus where they mature by expressing a unique antigen-binding receptor 

on their cell membrane called the T-cell receptor (TCR) (Tonegawa, 1983). 

While B-cells produce membrane-bound antibodies that recognise the antigen 

alone, the TCR recognises the antigen only when it is associated to cell-

membrane proteins (MHC class I and class II). These molecules are expressed 

on the surface of antigen presenting cells (APC) such as macrophages, DCs, 

cancer cells, virus-infected cells or self-cells (Kuby, 1997).  

Figure 1.11. A theory of clonal selection. 

 Naïve lymphocytes differ in their antigen specificity based on somatic 

rearrangement of their receptors. Upon encountering antigen, the antigen binds 

to its specific receptor on the naïve cell resulting in its activation and proliferation 

of a single cell producing more lymphocytes expressing identical surface markers 

(clonotype) in a process called clonal expansion. Figure was created using 

Servier medical art. 
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First, it is important to understand the TCR structure and function (Figure 

1.12). The TCR is a transmembrane glycoprotein, which consists of disulphide-

linked heterodimer proteins. In most T-cells, the heterodimer is composed of  

and  chains; while in small proportion of T-cells (about 5%), it is composed of 

and chains. The carboxyl terminal of each chain is characterised by a highly 

conserved sequence named constant region (C), while the amino domain 

exhibits high variability and is referred to as the variable region (V).  

The C region includes constant domain (C), hinge domain (H) composed 

of a short connecting sequence containing cysteine residues involved in 

disulphide bonding of the two chains of TCR heterodimer, followed by a 21-22 

amino acids sequence anchoring each chain into the plasma membrane and 

called the transmembrane region (Tm), and finally the cytoplasmic tail (Ct) of 5-

12amino acids at the carboxyl-terminal of each TCR chain (Kuby, 1997) (Figure 

1.13). 

The amino acids of the C region are encoded by the C gene segment, 

which is comprised of four exons encoding for C and H domains as well as Tm 

and Ct regions. The V domain of the TCR is preceded by a signal sequence, 

which is also called the leader peptide (L) that attaches the nascent receptor 

polypeptide to the endoplasmic reticulum during the process of protein assembly 

(Kuby, 1997). 
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The V domain has three hyper-variable regions equivalent to 

Complementarity-Determining Regions (CDRs) in immunoglobulin chains, 

known as CDR1, CDR2 and CDR3.  The antigenic specificity of the TCR is 

determined by these CDRs, while CDR1 and CDR2 (encoded by germline DNA) 

mainly fix the TCR to the MHC platform; CDR3 is the highly variable region, 

Figure 1.12. Schematic diagram illustrating TCR structure and function. 

The TCR recognises antigen associated with MHC molecules on the surface of the 

cell. It consists of and chains connected by a disulphide bond, and each of them 

contains two domains. The amino-terminal domain (NH2) exhibits sequence 

variation and referred to as V region while the sequence in the carboxyl domain 

(COOH) is conserved and known as C region. Figure was created using Servier 

medical art. 
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which mainly engages the solvent-exposed chain of MHC bound peptides (Davis 

and Bjorkman, 1988, Kuby, 1997).  

The V region is generated from rearrangement of two coding segments 

variable V and joining J segments while V is generated from rearrangement of 

three coding segments  V, J and diversity D. Diversity of TCR repertoires is 

generated through processes of V(D)J recombination during lymphoid 

differentiation (Davis and Bjorkman, 1988). Interestingly, this diversity is focused 

in CDR3, which is the main contact domain that interacts with the MHC 

presented antigenic peptide while CDR1 and CDR2 attach to the MHC residues 

(Davis and Bjorkman, 1988) . As VDJ recombination is the main mechanism that 

mediates CDR domains diversity, it will be discussed in more detail in the next 

section. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. TCR proteins and genes. 

The V domain is a highly variable peptide generated by somatic rearrangement of 

variable (V) diversity (D) and joining (J) genes in the chain while it is generated by 

rearrangement of V and J segments in a chain. The C region in both  and  chains 

consists of C domain, connecting segment H, Transmembrane region Tm and 

Cytoplasmic tail Ct encoded by germline conserved genes. Figure was created using 

Servier medical art. 
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1.4.3 V(D)J recombination   

V(D)J recombination is a vital process in the adaptive immune system to 

generate the diverse repertoire of T-cells required for antigen recognition. In the 

absence of this process, the immune system is compromised (Hodges et al., 

2003). Each developing T-cell generates a novel pair of variable regions of their 

cell surface receptor by recombination between three gene segments V, D and 

J at the level of genomic DNA during early lymphoid differentiation in the thymus 

(Tonegawa, 1983). This results in a novel amino acid sequence in the TCR 

antigen-binding site accounting for the specificity of each T-cell (Janeway, 2001). 

The mechanism of gene assembly is almost similar in all peptide chains of TCR 

except that of  and  chains lacking the D gene segment, however, the 

explanation in this section will be referred to the TCR -chain for simplicity and 

because the CDR3 region of the -chain accounts for most of the variation within 

an individual’s T-cell repertoire (Laydon et al., 2015). The gene encoding the 

TCRB is located on chromosome 7 at the 7q32–35 locus  (Caccia et al., 1984). 

The TCRB locus (Figure 1.14.A) comprises TCRBV families, which are grouped 

into 40-42 functional families with greater than 80% nucleotide sequence identity 

(Arden et al., 1995, Kuby, 1997). The TCRB locus also contains two C genes 

and two D gene segments. Each D gene segment  is associated with upstream 

J genes consisting of 13 J segments, referred to as J1S1 to J1S6 and J2S1 to 

J2S7 (Arden et al., 1995). 

The process of V(D)J recombination in the TCRB gene involves random 

rearrangement of three gene segments V, D and J in two separate steps. First, 

DJ segments are brought together, which is followed by recombining the V gene 

segment with the newly rearranged DJ block (Willerford et al., 1996) (Figure 

1.14.B). Somatic recombination is directed to the appropriate site by recognition 
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of specific DNA sequence motifs called recombination signals sequences (RSSs) 

that flank TCR recombining genes.  These motifs are formed of two blocks of 

conserved sequences of nonamer (ACAAAAACC or GGTTTTTGT) or heptamer 

(CACAGTG or GTGTCAC) found in the noncoding region flanking each V, D or 

J gene segment (Roth and Craig, 1998).  

Recombination is catalysed by a set of enzymes that are also involved in 

DNA repair such as RAG1, RAG2, and TdT (Bassing et al., 2002). Recombinase 

enzymes known as recombination activity gene 1 and 2 (RAG1 and RAG2) 

recognize RSSs (McBlane et al., 1995). In the TCRB gene, RAG1 and RAG2 

first form a complex with RSSs flanking D and J genes bringing them together 

and forming a hairpin loop of intervening nucleotides (McBlane et al., 1995, Roth 

and Craig, 1998) as illustrated in Figure 1.14.C. A 5nick is then introduced by 

RAG1 and RAG2 at the 5 end of RSS heptamer causing deletion of the 

intervening loop of DNA and generates a double strand break that is 

consequently repaired by V(D)J recombinase enzymes brining the D and J 

segments together (van Gent et al., 1996, Roth and Craig, 1998). The same 

process is repeated when joining the V gene segment to the newly rearranged 

DJ block (Hodges et al., 2003). 
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Figure 1.14. Germline organisation of the TCRB gene and explanatory example of 

its somatic rearrangement. 

A) Schematic representation of TCRB locus including V gene families (blue) and 2 D 

genes (yellow), 2 C gene segments (orange) and 2 J gene segments with S1-6 in J1 

and S1-7 in J2 (green). B) Schematic representation of VDJ recombination with 

explanatory example of one of the possible recombinations. The recombination in 

TCRB takes place into two steps. First, the D gene segment combines with the J 

segment then the V gene segment combines with the newly rearranged DJ gene. 

Secondly, the rearranged VDJ segment is then spliced post transcriptionally to the C 

transcript that contains poly A tail. N nucleotides (purple) are inserted during the 

recombination process. C) A cartoon view of a DJ recombination reaction. D 

segments (yellow) are flanked by RSSs with 12 bp-long spacers (red), while the J 

segments are flanked by RSS with 23 bp-long spacers (pink). Breaks are introduced 

directly between the heptamer and the coding sequence, and a DJ block is formed 

between a V and C segment (Market and Papavasiliou, 2003) leaving the intervening 

nucleotide including RSSs and their the spacers sequences. 
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Diversity is not only generated by the recombination but also by 

nucleotide addition and deletion that occurs at the junction sites during the 

recombination process such as incorporation of a short palindromic repeat (P-

nucleotides) at the recombining edges (Janeway, 2001). Diversification is further 

increased by (N-diversity mechanisms), which include  incorporation of  template 

independent GC rich nucleotides called N-nucleotides via the action of terminal 

deoxynucleotidyl transferase (Tdt) (Gilfillan et al., 1993, Cabaniols et al., 2001) 

as well as exonuclease trimming  of the recombining gene ends causing loss of 

some nucleotides (Pannetier et al., 1993).  Furthermore, the combinatorial 

association of individual TCRA and TCRB chains in T-cells is adding to the 

diversity producing a vast number of unique TCRs that can recognise huge array 

of antigens in specific manner. 

The small number of genes encoded for TCR have the potential to 

generate vast number of clonotypes estimated between 1015 to 1020 (Hodges et 

al., 2003).  Although the process of recombination is thought to be random, there 

are some clonotypes that are common and shared between individuals more 

than others, known as public clonotypes (Laydon et al., 2015). Due to the 

difficulty in studying such huge numbers of rearrangements and the importance 

of CDR3 in antigen recognition, studies of TCR repertoire have focused strongly 

on the diversity of CDR3, which is the MHC-binding region. Furthermore, the 

CDR3 region of the -chain accounts for most of the variation within a person’s 

T-cell repertoire, which will be the focus of the next generation sequencing work 

in this thesis. 
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1.5. EGCG as potential treatment for AA  

Green tea (Camellia sinensis), a commonly consumed beverage, has 

shown to have many health promoting effects. Catechins constitute about 40% 

of the dry weight of green tea. Epigallocatechin-3-gallate (EGCG) is the major 

catechin in green tea, constituting 60% of the total catechin (Yang et al., 2002). 

EGCG is a polyphenolic flavonoid (C22H18O11 of average molecular mass 458 

Da) (Figure 1.15) with anti-inflammatory, anti-oxidant and anti-tumour properties. 

 

 

 

 

 

 

 

 

 

 

1.5.1 Anti-inflammatory effect of EGCG  

EGCG has been proposed as an anti-inflammatory molecule for 

treatment of inflammatory and autoimmune conditions such as rheumatoid 

arthritis (Ahmed, 2010, Yang et al., 2014), diabetes (Wolfram et al., 2006), ocular 

inflammation (Cavet et al., 2011) and experimental autoimmune 

encephalomyelitis (EAE) (Aktas et al., 2004). EGCG was found to have an 

inhibitory effect on IFN- signalling via the JAK-STAT pathway. It reduces STAT-

1 translocation into the nucleus through inhibiting its phosphorylation. 

Furthermore, down-regulation of JAK1 and JAK2 enzymes has been achieved 

Figure 1.15. Chemical structure of EGCG. 

A polyphenol with chemical formula: C22H18O11 and average molecular mass: 

458.372Da. 

http://www.sciencedirect.com/science/article/pii/S0955286306001902#gr2
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by EGCG in human oral cancer cell lines (Cheng, 2007). Similarly, a STAT-1 

inhibitory effect of EGCG was reproducible in a study on colorectal cell lines 

(Ogawa et al., 2012). 

EGCG was also shown to inhibit T-cell proliferation through impeding IL-

2 utilisation (Pae et al., 2010). In Wu et al. study, EGCG at 2.5-10M 

concentration inhibits T-cell proliferation in primary T-cells isolated from C57BL 

mouse spleen by inhibiting cell division and cycle and IL-2 signalling (Wu et al., 

2009). A similar experiment in human subjects was performed by Katiyar (1999) 

by applying EGCG cream topically (3 mg EGCG on 2.5 cm2) to normal 

volunteers’ skin. The EGCG was applied 30 min before UVB exposure and an 

inhibitory effect of EGCG on UVB induced leukocyte infiltration (neutrophil, 

monocytes and macrophage) was observed (Katiyar et al., 1999). 

EGCG also has shown a stimulatory effect on Treg differentiation from 

naïve CD4+ T-cells via inducing FOXP3 expression with subsequent 

upregulation of IL-10 (Wong et al., 2011) and enhancing the naïve CD4+ T-cell 

differentiation toward the regulatory pole was also attributed to its inhibitory 

effect on STAT-1 and STAT-3 (Wang et al., 2013a). 

1.5.2 Safety profile of EGCG  

No adverse effects have been recorded in human healthy volunteers after 

oral administration of 800mg daily of EGCG  for 4 weeks, which is equivalent to 

EGCG content of 6-18 cups of tea daily giving EGCG a good dose safety margin 

(Chow et al., 2003). Additionally, EGCG is available in topical preparations with 

a good skin penetration index, to minimize any possible systemic side effects 

theoretically (Scalia et al., 2014), nonetheless, the evidence on its safety as 

topical application is limited.  These features support EGCG as a potential AA 

therapeutic candidate to investigate. 
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A study on the safety and tolerability of systemic administration of 

ascending doses of pure EGCG has also reported that catechin was well 

tolerated in healthy human volunteers at doses of up to 1.6g/day  (Ullmann et 

al., 2003). No changes in cardiovascular physical findings and clinical chemistry 

was observed in those volunteers. However, it is noteworthy that EGCG has 

poor bioviability as it is metabolised extensively in intestine and liver (Scalbert 

et al., 2002), so doses shown to have health promoting effect ranging (10-1000 

M) cannot be achieved by ingesting two to three 200 mg capsules or drinking 

green tea  (Nagle et al., 2006).  

1.5.3 Topical formulation of EGCG 

Using EGCG topically  is encouraged by its good dermal penetration 

characteristics mainly due to its low MW (458.372Da) (Bos and Meinardi, 2000). 

Also, EGCG  binds to the lipid bilayer (Sun et al., 2009) and its keratin binding 

is mediated by a group of hydrogen bonding, hydrophobic and aromatic 

interactions  (Marzinek et al., 2013) contributing its good intradermal permeation. 

However, the transdermal permeation is observed to be less than intradermal 

permeation when 10mg/cm2 formulation containing 6% green tea extract 

emulsion was applied to human Caucasian skin for 24hrs. EGCG recovery was 

measured 0.54and 0.38g/cm2 by HPLC in the epidermis and dermis 

respectively (Dvorakova et al., 1999, Dal Belo et al., 2009). Improving the limited 

transdermal penetration was achieved by incorporating nano-particles; for 

instance, catechins loaded chitosan particles resulting in a significant 

improvement of skin permeation and reduced its enzymatic digestion 

(Wisuitiprot et al., 2011) indicating the potential use of topical EGCG for AA 

treatment in the future. EGCG stability was another major concern for further 

clinical use, which was addressed by Alberts’s group. EGCG formulations 
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supplemented with 0.1 or 0.5% butylated hydroxytoluene (BHT) was highly 

stable when stored at 4°C as BHT prevents EGCG oxidation (Dvorakova et al., 

1999). 

In vivo, five different EGCG topical preparations (emulsion or gel) have 

been tested for their photo-stability and skin permeation. 1% o/w EGCG 

emulsion (containing 1.5% cetearyl alcohol, 1.5% glyceryl monostearate, 5% 

sweet almond oil, 5% cetearyl isononaoate, 0.5% dimethicone, 0.8% phenonip, 

5% montanov, 5% propylene glycol, 0.1% EDTA, 0.1% sodium dehydroacetate) 

showed the least photo-degradation and best skin penetration. The percentage 

of EGCG permeated into stratum conreum particularly to the deeper layers was 

about 36% of the applied dose as measured in vivo by direct HPLC using a tape 

stripping method after 60mins of EGCG emulsion application (Scalia et al., 

2014).  

In skin conditions, EGCG has been applied topically with a significant 

UVB protective effect. EGCG cream (3mg EGCG in 100l acetone on 2.5cm2) 

was topically applied to normal volunteers’ skin 30 min before UVB exposure 

(Katiyar et al., 1999). EGCG significantly reduced the UVB induced erythema as 

reflected by the chromometer readings, as well as leukocyte infiltration, which 

was observed as reduced myeloperoxidase MPO activity, compared to UVB 

only exposed skin. Yoon et al. (2013) have used 1% EGCG solution in 3% 

ethanol vehicle showing a significant improvement of acne vulgaris in an 8-

weeks randomized split-face clinical trial (Yoon et al., 2013). 

To sum up, the molecular targeting of key pathways and cells involved in 

AA pathogenesis and the availability of EGCG topical creams with a good 

penetration index and cost-efficiency make EGCG a promising therapeutic 
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candidate in AA, however, limited evidence on its safety as topical preparation 

should be considered. 

1.6 Hypotheses and objectives 

Hypothesis 1 

Disrupted balance between regulatory and inflammatory T-cells is the main 

driver of IP collapse in HF. 

Objectives 

A- Determine the phenotypic profile of T-cells in AA patients’ peripheral 

blood with detailed focus on regulatory T-cells.  

B- Perform molecular analysis of the T-cell receptor to determine whether 

there is an expansion of a particular clone of T-cells in AA that would 

suggest antigen-dependent T-cell activation. 

Hypothesis 2 

Inhibiting inflammatory cells and enhancing Treg function can be mediated by 

blocking the JAK-STAT pathway with EGCG. 

Objectives 

A- Optimise the EGCG dosage in vitro. 

B-  Construct an IFN-induced cellular model to induce JAK-STAT pathway. 

C-  Study the effect of EGCG on the IFN- signalling pathway (JAK-STAT) 

and  regulatory molecules involved in AA pathogenesis. 
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Chapter 2 . Material and Methods 

2.1 Reagents and buffers  

2.1.1 Chemicals and reagents 

Table 2-1. Chemical and reagents. 

Material Cat no./Source 

Dimethyl sulfoxide (DMSO) D8418, Sigma 

Foetal bovine serum (FBS) FB-1090, Biosera 

Ethylene-Diamine-Tetra-Acetic 

acid (EDTA) 

03701, Sigma 

Trypsin-EDTA T3924, Sigma 

Tris base T1503, Sigma 

Bovine serum albumin (BSA) A9418, Sigma 

Analytic grade solvents Ethanol 

and Methanol 

459836, 82762 

Sigma 

Iso-propranol I9516, Sigma 

Chloroform 372978, Sigma 

Glycine G8898, Sigma 

Skimmed milk powder 70166, Sigma 

Sodium dodecyl sulfate (SDS) L4390, Sigma 

Tween 20 P2287, Sigma 

Serum-free blocking buffer DAKO 

 

2.1.2 Buffers  

Media: purchased from Lonza: Roswell Park Memorial Institute (RPMI) 1640 

medium supplemented with L-glutamine (BE-12-702F) and Dulbecco’s modified 

Eagle’s medium (DMEM) high glucose medium supplement with L-

glutamine (BE-12-604F). The media was supplemented with 10% foetal bovine 

serum FBS unless stated otherwise. As all cell culture work was performed 
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under strict aseptic conditions, antibiotics were not required unless primary cells 

were used, when 1% Strep/Pen (Gibo) was added to the medium. 

Phosphate buffered saline (PBS): Used as a wash solution throughout this 

work, PBS tablets (P4417) were purchased from Sigma where one tablet 

dissolved in 200 mL of deionized water to give 0.01M phosphate buffer, 0.0027 

M potassium chloride and 0.137M sodium chloride, pH 7.4. For cell culture 

purposes, sterile BioWhittaker 1X PBS without Ca++ Mg++ or phenol red (BE-

17-516F) was used.  

PBS-EDTA: PBS supplemented with Ethylene-Diamine-Tetra-Acetic acid 

(EDTA) (BE02-017F) was purchased from Lonza to enhance HaCat cell 

detachment prior to trypsinisation. 

Freezing media: Used for cell cryopreservation and prepared on ice from 40% 

FBS and 10% DMSO.   

Phosphate buffered saline (TBS): 10X TBS was prepared for use in western 

blotting by dissolving 24.4 g Tris-HCl and 80 g NaCl in 1 litre of deionised water 

to obtain a buffer containing 50 mM Tris-Cl and 150 mM NaCl> The pH was 

adjusted to 7.5 with 1M HCl  

Tris-buffered saline Tween 20 (TBST): 1X TBST used in western blot was 

prepared by diluting 100 ml 10 × TBS in 1 litre of deionised water and adding 1 

ml of Tween 20. 

FACS wash buffer: used in the flow-cytometry experiment washing steps was 

prepared by dissolving 1g bovine serum albumin (BSA) (A9418, Sigma) in 100ml 

PBS.  

4% Paraformaldehyde: was used to fix the cells after flow-cytometry staining 

and was prepared by dissolving 4 g paraformaldehyde (P6148-500G, Sigma) 

in100ml of PBS pre-heated to 60ᵒC in ventilated hood.  The pH was adjusted to 
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7 and the solution was then aliquoted and frozen or could be stored at 2-8 °C 

for up to one month. 

Trypan Blue: (T6146, Sigma) was used to determine cell- viability. 

PBS/0.3% Triton X-100: 100 ml of the buffer was prepared by adding 300 µl 

Triton™ X-100 to 100 ml 1X PBS. 

PBS/0.15% Triton X-100: 100 ml of the buffer was prepared by adding 150 µl 

Triton™ X-100 to 100 ml 1X PBS. 

2.2 Blood samples 

2.2.1 Blood donors  

The study was reviewed and approved by the Institutional Review Boards 

and ethics committees at the University of Sheffield (LREC reference number 

002651) and Sheffield Teaching Hospitals (NHS permission reference number 

STH18941). Twenty patients with active hair loss and an established diagnosis 

of AA, were recruited and consented at the Department of Dermatology, Royal 

Hallamshire Hospital, Sheffield, UK. Patients diagnosed with other autoimmune 

diseases or receiving immunosuppressive drugs were excluded from the study. 

The cases recruited included 9 with patchy AA, 5 with alopecia totalis, and 6 

with alopecia universalis. Ten healthy controls were recruited at the University 

of Sheffield. Patients and healthy controls were age-matched and were all 

female of Caucasian ancestry, 18 years or over. 

2.2.2 Separation of peripheral blood mononuclear cell (PBMC)  

Peripheral blood mononuclear cells (PBMCs) were isolated from 

heparinised venous blood by density gradient purification using Lymphoprep as 

described by the manufacturer (07801, Stem Cell). Briefly, 10ml of fresh whole 

heparinised blood was diluted with an equal amount of PBS supplemented with 
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2% FBS, and carefully overlaid on top of 15ml Lymphprep medium. Samples 

were then centrifuged at 800Xg for 20mins at room temperature (RT); 

mononuclear cells (the buffy coat layer) at the plasma-Lymphoprep interface 

(Figure 2.1) were then collected and washed once. Viable PBMCS were counted 

using Trypan blue and processed immediately for flow-cyometry or frozen for 

use in other applications.  

 

 

 

 

2.3 Cell culture  

All cell culture work was performed under aseptic conditions in a laminar 

flow hood. 

2.3.1 Cell lines  

A human keratinocyte cell line (HaCat), derived from normal adult male 

skin, was kindly provided by Professor Sheila McNeil, Department of Materials 

Science and Engineering, University of Sheffield, and maintained in high 

glucose DMEM at 5-100% confluence. A human lymphocyte cell line (Jurkat), 

which was originally derived from T-cell leukaemia patient, was selected as a 

model of T-cells (Jurkat, Clone E6-1. ATCC TIB-152) and was kindly provided 

by Mrs Vanessa Singleton, Department of Infection and Immunity and 

Figure 2.1. PBMCs separation protocol using Ficoll gradient protocol. 

(adapted from StemCell technologies Image with permission). 

 

https://cdn.stemcell.com/media/images/brand/sepmate/sepmate-protocol.png 

https://cdn.stemcell.com/media/images/brand/sepmate/sepmate-protocol.png
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Cardiovascular Disease, University of Sheffield, and maintained in RPMI 1640 

at a cell density of 2-10 x105. For both cell lines, the media was supplemented 

with 10% foetal bovine serum (FBS, Gibco- BRL) and cells were maintained at 

37◦C in an atmosphere of 5% CO2. The cell culture work was performed under 

aseptic conditions in a laminar flow hood. The colony morphology of the cell 

lines demonstrated in Figure 2.2. 

 

 

 

2.3.2 Freezing  

For long-term storage, cells were cryopreserved in liquid nitrogen (≤-

150◦C). A generic freezing protocol was used to lower the temperature gradually. 

1-5 x 106 cells were re-suspended in 500l of the appropriate growth medium 

(DMEM for HaCat or RPMI-1640 for Jurkat/PBMCs) supplemented with 10% 

FBS. 500l of freezing medium was prepared from 400l (40% v/v) FBS and 

100l (10%v/v) dimethyl sulfoxide (DMSO) (D8418, Sigma). DMSO is a cryo-

protective agent and is used in order to minimise cellular damage during the 

freezing process. Freezing medium was added slowly to the cell suspension on 

Figure 2.2. Jurkat and HaCat cells morphology. 

On the left, Jurkat cells appeared as rounded cells and tend to clump forming grape-

like colonies, image at x20 magnification. On the right, HaCat cells appeared with 

polygonal morphology and forming a confluent monolayer imaged at 10x 

magnification. Images were captured by digital inverted microscope Evos XI core 

(AMG, WA, U.S.A). 
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ice. Cells were stored at -80◦C overnight prior to transfer to liquid nitrogen (≤-

150◦C).  

2.3.3 Thawing 

A fast thawing procedure was followed in order to minimise any toxic 

effects of DMSO. First, cells were warmed briefly in a water bath heated to 37◦C 

and then diluted with 5ml of pre-warmed growth media. The cell suspension was 

then centrifuged for 5mins at 1500rpm, the supernatant was discarded and an 

appropriate volume of growth medium was added to allow cell growth. 

2.3.4 Cell maintenance 

Cells were maintained so as not to exceed 90-100% confluence (for 

HaCat) or 1x106 per ml (for Jurkat and PBMCs) and then harvested, or sub-

cultured, according to the intended downstream application. For HaCat cells, 

cells were passaged twice a week. To detach these adherent cells, they were 

first washed once with PBS to remove any excess FBS, then incubated in PBS-

EDTA for 10 mins at 37◦C to facilitate detachment. The PBS-EDTA was then 

discarded and the cells were incubated with trypsin-EDTA for 3 to 5 mins at 37◦C 

(Hoornstra et al., 2013). The cells were dislodged and the trypsin was 

deactivated by adding fresh media. Finally, the cell suspension was centrifuged 

and the pellet washed once with medium before being seeded at the desired 

density. For Jurkat passaging, the cell suspension was spun and the pellet was 

re-suspended in RPMI-1640 at the desired density. Unless otherwise stated, 

PBMCs were maintained in CD3/CD28 beads (Dynabeads human T-cell 

activator CD3/ CD28) at 1:1 bead-to-cell ratio as recommended by the supplier 

(111.61D, Invitrogen) in presence of 30U/ml rIL-2 (200-02, Peprotech). Cell 

density was assessed by automated cell counter (TC20, BioRad) for cell 

suspensions and by light optical microscopy (Olympus, U-PMTVC, 2D0843, 
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Japan) for adherent cells. Cell incubation was performed at 37°C and 5% CO2 

in humidified air.  

2.3.5 Viability assay by Trypan Blue 

Trypan blue dye identifies nonviable cells by penetrating the damaged 

cell membranes to change their colour to blue (Wiegand and Hipler, 2008). For 

the trypan blue analysis, HaCat cells were trypsinised as described previously 

and Jurkat or PBMCs were directly collected from the suspension. An aliquot of 

10 μl of each sample was then mixed with 10 μl of trypan blue solution (T6146, 

Sigma) and incubated at RT for 1-2 mins. Nonviable and viable cells in a 10 μl 

aliquot of each sample were identified and counted in an automated cell counter 

(Automated Cell Counter TC10, BioRad, Hercules, CA, USA). 

2.3.6 IFN- Induced model 

In order to induce STAT-1 phosphorylation, cells were activated with IFN-

 .The cells were seeded at densities of 5x105 per well in 6-well plate (HaCat), 

2x105 per ml in a T25 flask (Jurkat) or at 5x105 per well in 6-well plate for PBMCs 

isolated from healthy control peripheral blood. After an overnight incubation, the 

cells were stimulated with 50 IU/ml (HaCat) or 100 IU/ml (Jurkat/ PBMCs) 

recombinant human IFN- (300-02, Peprotech) or left un-stimulated as a control 

for each batch. The optimal dosage that can induce STAT-1 phosphorylation 

without affecting cell viability and growth was selected based on an optimisation 

experiment where cells were incubated with a range of IFN-concentrations 10, 

20, 50, 100, 200 IU/ml for 24, 48 or 72hrs. 

2.3.7 Treatment with EGCG  

EGCG (E4143, Sigma) was dissolved in distilled water to give a 10mM 

stock solution as recommended by the supplier. Cells, pre-activated with IFN-, 
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were treated with 20 or 40M EGCG for 24 or 48hrs before being harvested for 

RNA or protein assays. For AA patient samples, PBMCs were seeded at a 

density 5x105 per well in 6-well-plate plate and incubated with 40M EGCG for 

48hrs without any prior induction with IFN-. Before selecting the mentioned 

dosage, an optimisation experiment was performed to assess the toxicity of 

EGCG on the cells. After an overnight incubation of HaCat or Jurkat cells, they 

were treated with serial concentrations of ECGC 10, 20, 40, 60 and 100M for 

24 or 48hrs, and the toxicity of EGCG was assayed with trypan blue (Singh and 

Katiyar, 2013). At the end of incubation period, trypan blue was added to 10l 

of the cell suspension (1:1) and the cell count and percentage of live cells were 

measured by automated haemocytometer. Each experiment was performed in 

triplicate and the cytotoxic effect of EGCG was presented as a mean and SD. 

Morphological changes were examined using a Leica AF6000LX inverted 

microscope. 

2.4 Flow-cytometry  

2.4.1 Flow-cytometry staining  

A multicolour flow-cytometry technique was used to analyse the 

circulating inflammatory and regulatory T-cells. Freshly isolated PMBCs were 

stained with two panels of antibodies in two separate tubes: the first panel was 

to look at the subsets of effector/inflammatory T-cells (Teff panel), and the other 

was to investigate the Treg subtypes (Treg panel) (Tables 2.2 and 2.3). Briefly, 

1-2 x106 PBMCs were incubated for 30mins at RT with viability stain (blue fixable 

live/ dead dye); the cells were then washed once with phosphate buffered saline 

(PBS) and incubated for 30mins at 4ᵒC with antibodies targeting surface 

markers in each panel. The cells were washed and fixed and permeabilised in 
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1ml fix/ perm buffer (Transcription buffer set, 562725, BD) for 40-50 mins at 4ᵒC. 

They were then transferred to fix/ wash buffer for a further wash and incubated 

with antibodies specific to intracellular antigens, FOXP-3, IL-10, TGF-or IL-17, 

for 40-50 mins at 4°C. Extracellular and intracellular antibodies were added to 

the cells at a 1:100 dilution. Finally, the cells were fixed in 2% PFA and the 

staining was visualised by BD LSR II (Becton Dickinson, Heidelberg, Germany). 

Table 2-2. Teff panel: Summary of the flurochrome-conjugated antibodies used to 

analyse the frequency of inflammatory T-cell subsets in PBMCs. 

Flurochromes/ 

Antibodies 

Purpose Catalogue 

no 

  Supplier 

Live/Dead Blue Dead cell exclusion L23105 Thermo-Fischer 

BUV496-Anti-CD3 Generic lymphocyte marker 564809 BD 

BV421- Anti-IL17 Th17 cells maker 562933 BD 

BV510 –Anti-CD4 Generic T helper marker 562970 BD 

BB515-Anti-NKG2D Activated CD8 564566 BD 

PE-Anti-CD119 Th1 marker 558937 BD 

PE-CF594-Anti CD8 Cytotoxic T-cells 562282 BD 

PECy7-Anti-CD25 Treg gating 557741 BD 

AF647-Anti-FOXP3 Treg marker 560045 BD 

APC-CY7-Anti-CRTH2 Th2 marker 303523   Biolegend 
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Table 2-3. Treg panel: Summary of the flurochrome conjugated antibodies used to 

analyse Treg subtypes in PBMCs. 

Flurochromes/ 

Antibodies 

Purpose Catalogue 

no. 

Supplier 

Live/Dead Blue Dead cell exclusion L23105 Thermo-

Fischer 

BUV496-Anti-CD3 Generic lymphocyte marker 564809 BD 

BV510 - Anti- CD4 Generic T helper marker 562743 BD 

PECy7 Anti- CD25 T-cell activation/ Treg      

identification 

557741 BD 

AF647 Anti- FOXP-3 Treg identification 560045 BD 

APC-H7-Anti-CD45RO Maturation/Differentiation 561137 BD 

PE Anti- LAG3 Treg suppressive marker 565616 BD 

PE-CF594 Anti- IL-10 Immunosuppressive cytokine 562400 BD 

PercP-5.5 Anti-TGF- Immunosuppressive cytokine 562423 BD 

BB515- Anti- CD39 Treg suppressive marker 565469 BD 

BV421-Anti-HLA-DR Treg suppressive 562970 BD 

 

2.4.2 Flow-cytometry analysis 

On LSRII, about 5x105 events were acquired for each sample, and further 

gating was performed to determine frequency of T-cell subpopulations. For 

analysis, first, lymphocytes were gated based on their scatter properties in terms 

of forward scatter (FSC) and side scatter (SSC), which represent cell size and 

granularity respectively (Figure 2.2.A), then doublet cells were excluded from 

the analysis based on the FSC and voltage pulse height and area (FSC-H/FSC-

A) as cells with higher area represent double cells or clumps, which could be 

misinterpreted as false positives (Figure 2.2.B). Dead cells were excluded based 

on the live-dead dye signal on UV-450/50 (Figure 2.2.C). At this point, the 

population of live single lymphocytes was analysed and the positive population 

for each marker was gated based on florescence minus one control (FMO) 

(Roederer, 2002, Tung et al., 2007). The FMO control includes all antibodies 
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used in the panel apart from the one of interest (Figure 2.2.D). Unstained, single 

cell controls and compensation controls were used to set up the experiment and 

a detailed analysis of the samples was performed on Flow Jo software to 

calculate the percentage of targeted T-cell subpopulation out of the parent 

population. 

 

 

 

 

 

 

 

Figure 2.3. The flow-cytometry gating strategy for T-cell analysis. 

PBMCs were labelled with a panel of antibodies and the signal produced was 

analysed as follows: A) Lymphocytes were gated based on SSC/FSC properties. 

B) SingleT-cells were gated based on FSC-H/A. C) Dead cells were excluded. D) 

An example of the FMO control where all antibodies were added to the tube of 

panel1 but no CD3 specific antibodies. E) An example of gating a population of 

interest where CD3+ cells situated in the area were gated based on the FMO CD3 

sample. 
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2.4.3 FACS sorting for Treg cells  

PBMCs were isolated by Ficoll gradient as described in section 2.2.2. 

Cells were then stained with CD4, CD25 and FOXP3 antibodies in concentration 

described in section 2.4.2. The cells were then fixed in 2% PFA before being 

sent to flow core facility to be sorted using BD FACS Aria. The cell count before 

and after sorting is shown in Table 2.4. 

Table 2-4. The count of cells before and after FACS sorting. 

Samples  PBMCs105 CD25+FOXP3+ 

HC-01 36 13000 

HC-15 15 43454 

HC-16 17 19000 

AA26 10 52326 

AA32 22 17746 

AA33 11 2944 

AA34 28 11531 

 

2.5 Western blotting  

2.5.1 Protein extraction protocol 

Cell lysate was prepared by homogenisation in RIPA buffer (150mM 

sodium chloride, 50mM Tris-HCl, pH 7.4, 2mM ethylenediaminetetraacetic acid, 

1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecylsulfate) 

containing halt protease inhibitor cocktail (P8340-5ML, Sigma) and halt 

phosphatase inhibitor cocktail (78420, ThermoFischer). First, cells were first 

washed with ice cold PBS, and incubated in 200l RIPA buffer for 20mins. The 

lysate was then spun at 13rpm for 10 mins at 4◦C to pellet the cell debris, and 

the supernatant (total protein) was collected into fresh tube, the lysate was 

stored in 50l aliquots at -80◦C. 
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2.5.2 Protein quantification by BCA assay   

The total protein in the cell lysate was quantified by a colorimetric method 

using a bicinchoninic acid assay (BCA) (Pierce™ BCA Protein Assay Kit, 23225, 

ThermoFischer). Standards were prepared from bovine serum albumin (BSA) in 

RIPA buffer, as described by the manufacturer, in order to obtain serial 

concentrations in µg/mL as follows: 2000, 1500,1000, 750, 500, 250, 125, 25 

and 0 as a blank. 20l of cell lysate (unknown samples) was diluted 1:3 in RIPA 

buffer. 25µL of each standard or unknown sample was loaded in duplicate to 

control for assay and sampling variance, and 200µL of the working reagent was 

added to each well. The plates were incubated at 37°C for 30mins. The 

absorbance (optical density, OD) was then measured at 562nm on a plate 

reader (VERSAMAX, Molecular Devices).  The corrected OD was found by 

subtracting the average absorbance of the blank standard from that of other 

individual samples and standards (Table 2.5).  

Table 2-5. A representative example of protein standard O.D readings. 

 

 

 

 

 

 

A standard curve was plotted using the corrected OD measurement for each 

BSA standard against its concentration in µg/mL. The standard curve equation 

Standards 

Conc.g/ml 

O.D1 O.D2 Average 

O.D 

Corrected 

OD 

2000 1.79 1.79 1.79 1.67 

1500 1.40 1.29 1.34 1.22 

1000 0.88 0.98 0.93 0.81 

750 0.65 0.65 0.65 0.53 

500 0.46 0.45 0.46 0.34 

250 0.27 0.28 0.28 0.16 

125 0.21 0.20 0.21 0.09 

25 0.14 0.14 0.14 0.02 

0 0.12 0.12 0.12 0.0 
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was used to determine the protein concentration of each unknown sample 

(Table2.6).  

  

 

Table 2-6. An example of protein quantification by BCA. 

Unknown O.D1 O.D2 Average 

O.D 

Conc 

g/ml 

Conc X 

3 

g/ul Volume 

Loaded 

Sample 1 0.95 0.98 0.96 1100 3300 3.3 12.1 

Sample 2 0.54 0.53 0.54 568 1704 1.7 23.4 

Sample 3 0.84 0.87 0.86 964 2893 2.8 13.8 

Sample 4 0.87 0.91 0.89 1006 3019 3.0 13.2 

Sample 5 0.72 0.73 0.72 798 2396 2.4 16.6 

Sample 6 0.72 0.73 0.73 805 2415 2.4 16.5 

 

2.5.3 SDS polyacrylamide gel electrophoresis  

Protein samples were separated using SD-PAGE separating gel (Table 

2.7). The gel percentage was selected based on the targeted protein size, a 10% 

gel was used for proteins larger than 30KDa, and a 15% gel was used for 

proteins lower than 30KDa. Stacking gel (Table 2.7) was poured on top of the 

separating gels to make up the well. 40g of total protein, as measured by BCA 
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Figure 2.4. Standard curve calibration based on standard (BSA) concentrations 

and OD measurements. 
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assay, were denatured at 95◦C for 5 mins in 1 x SDS sample buffer (B31010, 

Lifetechnologies) prior to loading with pre-stained protein ladder (56-0024, 

Geneflow) to visualise the protein size. The gel was resolved at 80V for 20 min 

followed by 120 V for 1.5 hrs in running buffer (Table 2.8). 

Table 2-7. SDS-PAGE Separating and stacking gels.             

Buffers Separating gel Stacking gel 

10% 15% 4% 

H2O 4 ml 3.8 ml 3.05 ml 

30% Acrylamide 3.35 ml 7.9 ml 650 μl 

1.5M Tris pH 8.8 2.5 ml 4 ml - 

0.5M Tris pH 6.8 - - 1.75 ml 

10% SDS 100 μl 160 μl 50 μl 

10% APS 50 μl 160 μl 650 μl 

TEMED 10 μl 16 μl 50 μl 

 

Table 2-8. Running buffer 

component Quantity 

Tris Base 30.2g 

glycine 188g 

10%SDS 100ml 

dH20 Make up to 1litre 

2.5.4 Western blotting 

After electrophoresis, separated proteins were transferred to PVDF 

membrane using iBlot gel transfer stacks (IB401002, Invitrogen) following a dry 

blotting method, using a voltage of 23mA for 6min as described by iBlot Dry 

Blotting System (IB1001, Invitrogen). Membranes were then blocked in 5% milk 

in TBST for 45mins, washed 3x10mins in TBST and probed overnight at 4◦C 

with primary antibody diluted in 5% milk in TBST according to the supplier’s 

recommendation (Table 2.9). After 3x10mins washes in TBST to remove excess 
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antibody solution, goat anti-rabbit IgG or horse anti-mouse IgG horseradish 

peroxidase (HRP)-conjugated secondary antibodies were used in 1:10.000 

dilutions for 45min at RT. When required, the membranes were stripped of 

bound antibodies using a stripping buffer (Table 2.10) 2x 10mins followed by 2x 

10 minute washes with PBS and 2x5 min washes with TBST. They were then 

re-blocked, and re-probed with the appropriate antibody. 

Table 2-9. Primary and secondary antibodies used for western blot analysis 

Catalo no /supplier Epitope Host MW kDa dilution 

Ab108248/Abcam CD39 Rabbit 58 1:1000 

NBP2-45314/ 

Novus Biologicals 

HLA-DR Mouse 28 1:1000 

MAB3171-SP/R&D IL-17 Mouse 17 1:1000 

9167/ CST STAT-1 Rabbit 91 1:1000 

9167/  CST p-STAT-1 Rabbit 91 1:1000 

Ab128915/ Abcam GAPDH Rabbit 35 1:10,000 

Ab20272/ Abcam B-actin Mouse-HRP 

conjugated 

42 1:10,000 

4050-05/ Southern-

Biotech 

Anti-rabbit IgG HRP Goat 2ndry 

antibody 

1:10,000 

7076P2/CST Anti-mouse  IgG HRP Horse 2ndry 

antibody 

1:10,000 

 

Table 2-10. Stripping buffer pH2.2. 

component Quantity  (upto1L dH2O) 

SDS 1g 

Glycine 15g 

Tween20 10ml 

 

To detect target proteins, an enhanced chemiluminescence (ECL) 

reaction was performed using EZ-ECL chemiluminescent reagent (20-500-120, 

Biological Industries) and visualised on ChemiDoc XRS+ System (Bio-Rad). 

After visualising the protein of interest, membranes were probed with an internal 
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control (B-actin or GAPD) to normalise any variation in the amount of protein 

loaded. Densitometric analysis was carried out using ImageJ software 1.41 

where the band density of each target protein was measured and normalised to 

the internal control. 

2.6 Enzyme Linked-Immuno-Sorbent Assay (ELISA)  

In order to assess the levels of the intracellular cytokines (IL-17 and IFN-

secretedbyPBMCs, ELISA was performed to investigate the level of these 

cytokines in the media before and after induction. PBMCs were isolated from 

heparinised blood by density gradient purification over Lymphoprep as 

described previously, the cells were then stored at - 80C. Samples were 

collected from 6 patients and 5 healthy controls. The cells were thawed as 

described previously and maintained in RPMI media supplemented with 10% 

FBS and 1% strep/ pen antibodies and incubated at 37ᵒC for 12 hours to rest 

the cells before performing any experiments. After this, living PBMCs were 

counted using trypan blue staining, and about 1x106 cells were activated with 

5ng/ml phorbol 12-myristate 13-acetate (PMA) (P-8139, Sigma) and 0.1g/ml 

ionomycin (I-0634, Sigma) for 3.5hrs or left un-stimulated. Supernatants were 

assayed for IL-17 or IFN- levels by IL-17 ELISA kit (KAC1591, Invitrogen) or 

IFN-ELISA kit (KHC4021, Invitrogen) according to the manufacturer’s 

instructions.  

The ELSA kits used in these experiments are solid phase Enzyme 

Amplified Sensitivity Immunoassays. A monoclonal antibody specific for IL-17 or 

IFN-was coated onto the wells. 50l of samples, including standards, control 

specimens, and unknowns, were pipetted into these wells in duplicate, followed 

by the addition of a biotinylated polyclonal second antibody. The microtitre plate 



Chapter 2: Materials and methods 

74 
  

was incubated for 2hrs at RT to allow the formation of a sandwich: coated 

cytokine-specific antibody/ cytokine/ secondary antibody-biotin, the plate was 

then washed to remove unbound biotinylated antibodies. 100l of streptavidin-

peroxidase was added to bind to the biotinylated antibody. After 45mins 

incubation at RT in the dark, the unbound enzyme was removed by washing and 

100l of chromogenic substrate solution was added. The reaction was stopped 

after 15-30mins with the addition of 100l stop solution and the microtiter plate 

was then read at a wavelength of 450nm, which was subtracted from readings 

taken at 630nm. The amount of substrate turnover was determined 

colorimetrically by measuring absorbance that was proportional to the IL-17 or 

IFN-concentration. A standard curve was plotted and the cytokine 

concentration in unknown samples was determined by interpolation from the 

standard curve. As the un-stimulated samples showed undetectable levels of 

protein, the readings included in the analysis were from PMA/ ionomycin 

stimulated samples.  

2.7 Immuno-fluorescence staining (IF) 

An immuno-fluorescent detection technique was used to study CD3, 

CD39 and FOXP3 expression as markers of suppressive Treg in HF in formalin-

fixed, paraffin-embedded (FFPE) skin tissue from AA and healthy subjects. 

Antigens were retrieved from deparaffinised sections by heating in a microwave 

set to full power for 10 mins. Non-specific binding sites were blocked using 

serum-free blocking buffer. The target antigens were initially labelled with 

primary antibodies to surface antigens (CD3 or CD39) overnight at 4ᵒC followed 

by labelling with the primary antibody against the intracellular marker (FOXP3) 

for 2hrs at RT in 0.2% Triton in PBS to enhance the membrane permeabilisation. 
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The sections were then incubated with fluorochrome-conjugated secondary 

antibodies for 1hr at RT, and the signal was detected using 

immunofluorescence-scanning microscopy (AF6000). The primary antibodies 

and the fluorochrome-conjugated secondary antibodies are listed in Table 2.11. 

Table 2-11. List of antibodies used for IF staining. 

Catalo no /supplier Epitope Host dilution 

ab178572 / Abcam CD39 Mouse 1:100 

ab54501 / Abcam FOXP3 Rabbit 1:100 

ab11089 / Abcam CD3 Rat 1:100 

A11008/ Lifetechnologies Anti-Rabbit IgG, Alexa Fluor 488 Goat 1:500 

A11004/ Lifetechnologies Anti-Mouse IgG, Alexa Fluor 568 Goat 1:500 

ab150159/ Abcam Anti-Rat IgG, Alexa Fluor® 647 Goat 1:500 

 

2.8 Gene expression analysis 

2.8.1 Q-PCR analysis 

2.8.1.1 RNA extraction and cDNA synthesis for q-PCR 

Total RNA was extracted using the Trizol reagent method (T9424, Sigma 

Aldrich). Cells were lysed with Trizol and the aqueous phase was separated and 

collected. RNA was then precipitated by addition of 0.5ml of isopropanol per 1ml 

of Trizol washed with 75% ethanol and finally resuspended in 20l RNase free 

water. RNA concentration was measured by Nanodrop (NanoDrop 1000 

Spectrophotometer version3.8.1) and 5µg total RNA was reverse transcribed to 

a first strand cDNA using SuperScript® III First-Strand Synthesis System kit 

using random hexamer (18080-051, Life Technologies), following the 

manufacturer’s protocol where cDNA synthesis mix contains 10X RTbuffer+ 
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20mM MgCl2+ 0.1M DTT+ RnaseOUT+ SuperScript III RT as summarised in 

Table 2.12.     

Table 2-12. Summary of cDNA synthesis protocol. 

Reaction Temperature◦C /duration Aim 

10l RNA+Primers+dNTPs 65 for 5mins Denaturation 

10l cDNA synthesis mix+ 

Random hexamer 

50 for 50mins 

85 for 5mins 

cDNA synthesis 

Terminate reaction 

1ml Rnase H 37 for 20mins Remove RNA 

 

2.8.1.2 Q-PCR analysis of gene expression 

The relative expression of genes of interest was measured by q-PCR 

using power SYBER green fluorescence (4367659, Life Technologies) and 

specific primers for the target gene (Table 2.13). A 10µl final volume of real-time 

PCR reaction, containing 600nM of forward and reverse primers, was run in 

triplicate. The targeted sequence-specific amplification was detected using 

SYBER green detector and the thermal profile (Table 2.14).  Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was run for each sample as an internal 

control to normalise any variation in the amount of RNA, and a NTC control was 

run to regulate any contamination. The PCR reaction was carried out in 384-well 

plates using the ABI Prism 7900HT Sequence Detection System (Applied 

Biosystems). 
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Table 2-13. Primer sequences (5' > 3') used in the q-PCR reactions. 

Gene Forward sequence Reverse Sequence 

STAT1 GCAGGTTCACCAGCTTTATGA TGAAGATTACGCTTGCTTTTCCT 

STAT3 CAGCAGCTTGACACACGGTA AAACACCAAAGTGGCATGTGA 

JAK-1 GCGGAGGGATCGACAAATGG TGGGACATAGCTTAAAGAGGCA 

JAK-2 CTCTTTGTCACAACCTCTTTGCC  TTGGAGCATACCAGAGCTTGG 

IRF1 GCAGCTACACAGTTCCAGG GTCCTCAGGTAATTTCCCTTCCT 

IL-17A AGATTACTACAACCGATCCACCT GGGGACAGAGTTCATGTGGTA 

CCL-5 CTCATTGCTACTGCCCTCTGCGCTCCTGC GCTCATCTCCAAAGAGTTGATGTACTC 

FOXP3 CGGACCATCTTCTGGATGAG TTGTCGGATGATGCCACAG 

HLA-DR ATCATGACAAAGCGCTCCAACTAT GATGCCCACCAGACCCACAG 

HLA-B CCGGACTCAGAATCTCCTCAG AAACACAGGTCAGCATGGGAA 

KRT14 CATGAGTGTGGAAGCCGACAT GCCTCTCAGGGCATTCATCTC 

KRT17 GGTGGGTGGTGAGATCAATGT CGCGGTTCAGTTCCTCTGTC 

TGF CTAATGGTGGAAACCCACAACG TATCGCCAGGAATTGTTGCTG 

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG 

B2M GAGGCTATCCAGCGTACTCCA CGGCAGGCATACTCATCTTTT 

β-Actin TCCCCCAACTTGAGATGTATGAAG AACTGGTCTCAAGTCAGTGTACAGG 

 

Table 2-14. Thermal profile used in q-PCR reaction. 

Reaction Duration/Temper

ature 

Cycle 

Hot start activation of polymerase 10 mins at 95◦C 1 

Denaturation 15s at 95◦C  

40  
Annealing and elongation  1min at 60◦C 

 

Dissociation curve 

 

15s at 95◦C 1 

15s at 60◦C 1 

15s at 95◦C 1 

 

2.8.2 Next generation sequencing (NGS) 

There has been increasing demand for a sequencing tool able to read 

long fragments of the genome in one experiment. 454 Life Technologies brought 

the first next generation sequencing platform to the market in 2005, and that was 

a great advance in the sequencing technology as it can produce about 1 million 
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reads per run with reads up to 300-500 bases (Margulies et al., 2006), however, 

this platform has limitations including its inability to identify homopolymers, 

which are stretches of nucleotides where all bases are identical, and its high 

cost that is considered ineffective compared to the relatively low number of reads 

(Hodkinson and Grice, 2015). More advanced platforms followed to provide 

cost-effectiveness, high sequence yield per run and improved resolution such 

as Illumina, Ion Torrent and SOLiD (Morozova and Marra, 2008) that have 

brought unprecedented advances to the field of genomic research. Illumina, 

which was introduced in 2006, is the most widely used platform due to its ability 

to produce large number of reads per run in a cost-effective way, ranging from 

500 million to 3 billion reads per run with maximum read length up to 300bp 

(Hodkinson and Grice, 2015). 

Illumina sequencing, in principle, is based on the Sanger sequencing 

technique, which was developed in 1977 by Frederick Sanger and colleagues 

(Morozova and Marra, 2008). The Sanger technique is based on incorporation 

of dideoxynucleotide non-reversible terminator (ddNTP) to the sequencing 

reaction that contains DNA polymerase, primers and ordinary deoxynucleotides 

(dNTP). The reaction is terminated when the terminator ddNTP is incorporated 

as it lacks the 3'-OH end required for a phosphodiester bond formation between 

two nucleotides. The ddNTPs are radioactively or fluorescently labelled, which 

emit fluorescence after the addition of each base to reveal DNA sequence 

product based on size initially upon gel electrophoresis but subsequently using 

capillary separation and laser data collection (Sanger et al., 1977, Morozova and 

Marra, 2008). 

The Illumina technique implements a similar principle to the Sanger 

technique except that the terminators are reversible (Bentley, 2006). gDNA was 

https://en.wikipedia.org/wiki/Frederick_Sanger
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extracted from total blood samples in this experiment and amplified by PCR 

reaction. Prior to sequencing, PCR product requires pre-library preparation, 

which includes incorporating an adaptor on either end of each DNA fragment 

followed by PCR amplification of adapter-ligated DNA molecules  using specific 

primers to enhance binding to complementary oligonucleotides on the surface 

of the flow cell in the illumine chip (Bentley, 2006). During the sequencing, 

Illumina involves an approach called sequencing by synthesis where reversible 

terminators are incorporated into the elongating neucleotide chain, and after a 

given time, the excess un-incorporated nucleotides are washed away, and an 

image of fluorescently labelled nucleotides will be captured (Bentley, 2006). The 

terminators are labelled with fluorochromes of four different colours to 

distinguish among the different bases at the given sequence position (Morozova 

and Marra, 2008). 

2.8.2.1 DNA extraction for NGS   

106 PBMCs isolated from heparinized venous blood by density gradient 

purification as described in section 2.2.2, and 1X104 CD4+CD25+FOXP3+ Treg 

sorted by FACS technique (as described in (section 2.4.3) underwent DNA 

extraction using two different kits. Genomic DNA (g-DNA) extraction from 

PBMCs was performed using Quick-gDNA extraction Miniprep (D-3006, Zymo 

research). Lysis step was performed by adding 500 µl of genomic lysis buffer to 

the cell pellet incubated 5-10mins at RT. The mixture was then transferred to a 

zymo-spin column in a collection tube and centrifuged at 10,000xg for 1min. 

DNA binding step was followed by adding 200µl of DNA pre-wash buffer and 

centrifuging at the same speed for one minute, which was followed by washing 

using 500µl of g-DNA wash buffer. After the wash step, DNA elution was 
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performed by adding 50l elution buffer and incubated at RT for 2-5mins before 

centrifuging at top speed to elute the DNA. The eluted DNA was stored at -20ºC.  

DNA extraction from FACs sorted Treg cells was performed using a kit 

that is suitable for paraffin fixed cells, Pico Pure DNA extraction kit (KIT0103, 

Applied Biosystems). 155l of reconstitution buffer was added to one vial of 

proteinase K provided in the kit to construct the extraction solution. 150l of 

extraction solution was added to the FACS sorted cell pellet and incubated at 

65◦C for 12hrs, and then incubated at 95◦C for 10mins to deactivate the 

proteinase K and stored at -20◦C. DNA samples were then stored at -80◦C to be 

used for multiplex PCR reaction. 

2.8.2.2 Multiplex- PCR amplification of the TRC CDR3 region 

TCR CDR3 was defined according to International Immunogenetic 

collaboration (IMGT) (Monod et al., 2004), TCRCDR3 begins with the second 

conserved cysteine encoded by the 3′ position of the V gene segment and 

ended with the conserved phenylalanine encoded by the 5′ position of the 

Jgene segment. Multiplex-PCR system was used to amplify the rearranged 

regions of TCRCDR3 from genomic DNA using 39 forward primers specific to 

TCR Vsegments and 13 reverse primers each specific to a TCR J segment 

(Primer sequences in appendix 1) to generate a template library for analyses 

using Genome Analyzer. 50L PCR reaction was set at 0.8μM forward (F) 

primers pool (22nM for each unique TCR Vβ F primer), 1.0μM reverse (R) 

primers pool (77nM for each unique TCR J primer), 200ng gDNA, 1 × QIAGEN 

Multiplex PCR master mix and 5% Q solution (QIAGEN). The PCR reaction was 

performed under thermal cycling conditions listed in table 2.15. A clean PCR 
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product using this protocol was obtained of about 500bp size as show in Figure 

2.5. 

Table 2-15. Summary of multiplex PCR thermal cycles 

Reaction Duration/Temperature Cycle 

Hot start activation of 

polymerase 

15mins at 95◦C 1 

Denaturation 30sec at 94◦C  

40 
Annealing  90sec at 59◦C 

Extension 1min at 72ᵒC 

Final extension 10mins at 72◦C 1 

 

 

 

 

 

 

 

 

 

 

2.8.2.3 Library preparation  

All experiments in library preparation stage were performed by Mr Matt 

Wyles in the Sheffield Institute for Translational Neuroscience (SITraN) under 

supervision of Dr. Paul Heath.  

DNA quantification 

Prior to library construction, an accurate measurement of the 

concentration of PCR products was performed using Quibt ds DNAHS assay 

(Q32851, Invitrogen). The assay involves adding Quibt working buffer provided 

in the kit to the standards and the samples in volumes stated in the protocol and 

Figure 2.5. PCR product of multiplex PCR.  

PCR products showed bands of about 500bps size. 
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incubated for 2mins at RT.  The concentration of the samples was then 

calculated automatically using Qubit® Fluorometer.  

DNA Fragmentation  

The size of DNA fragments (multiplex PCR product of PBMCs samples) 

was around 500bps, which cannot be sequenced in full by Hiscan SQ Illumina 

sequencer as it performs paired-end sequencing, coupled with 2 × 100 bp read 

lengths. Therefore DNA was first digested using the NEB double stranded DNA 

fragmentase enzyme (M03485, NEB) into appropriate size following the 

manufacturer’s protocol.  

The digestion step was followed by an accurate determination of DNA 

fragments size using Agilent High sensitivity DNA assay (5067-4626, Agilent). 

The technique involves separating the samples based on their size by 

electrophoresis after loading them in Agilent chip. The travel time of samples 

through the micro-channels is based on their size where smaller fragments 

migrate faster. The chip was then read on an Aligent 2100 Bioanalyser involving 

two key metrics; fluorescent intensity units (FU) that depends on the sample 

concentration and migration time, which relates to the size of the nucleotides. 

The Agilent2100 bioanalyser software generated graphs representing migration 

time in seconds (S) on X axis against the fluorescent units (FU) in the Y axis for 

the ladder (Figure 2.6.A). The software then calculated the size of DNA 

fragments based on standard curve plotting the migration time against known 

ladder sizes, and the results depicted manually on each peak in bp (Figure 2.A), 

which is then used to measure the size of DNA fragments for each well from the 

migration time. The samples (Figure 2.6.B) were successfully fragmented into 

about 200-300bp size after 20mins incubation with fragmentase enzyme at 37◦C.  
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Figure 2.6. Agilent 2100 bioanalyser analysis of DNA library preparation.  

A). Plot shows the migration time (seconds) against fluorescent intensity (FU) of the ladder with known size. B) Representative 

electropherogram of the DNA library after digestion where the peak point is at about 300bp.  

A) 

B) 
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DNA Purification  

Bead purification of the PCR products was performed as described by 

supplier AgenCourt AMPure XP (A63881, Beckman Coulter) to remove excess 

enzymes, primers, salts and nucleotide. The Agencourt AMPure XP  Purification 

systems utilize solid-phase paramagnetic bead technology for high-throughput 

purification of PCR amplicons where 1.8l of AMPure XP buffer was added to 

1.0l of PCR product and incubated for 5mins at RT, the beads-containing buffer 

selectively bind to PCR amplicons. The plate was then placed onto the 

Agencourt magnetic rack for 2mins before aspirating the cleared supernatant. 

The bead-bound PCR product was then washed 2X with 200l of 80% ethanol 

to remove contaminants and finally purified PCR was eluted from the beads by 

adding 40l of elution buffer to each well and incubated for 2mins at RT after 

removing the plate from the magnet. The plate was then replaced onto the 

magnet for 1min before transferring the eluent (purified sample) into clean tubes 

to be used in final library preparation. 

2.8.2.4 End library preparation  

Sequencing libraries were generated using the standard protocol in the NEB 

Ultra II DNA library prep kit for Illumina (E7645S, NEB) summarised in Figure 

2.7. First, end repair of the fragmented DNA was performed by adding dA tail at 

3’ end of the fragments and phosphorylation at 5’ end. In this reaction, 50l of 

fragmented DNA added to 3l of the NEBNext Ultra II End Prep Enzyme Mix 

and 7l of NEBNext Ultra II End Prep reaction buffer and mixed very well. The 

reaction was run in the thermocycler with the following setup: 30mins at 20°C, 

30mins at 65°C and hold at 4°C. 

That was followed by adaptor ligation; platform-specific adapters serve as a 

template for the PCR reaction for final library preparation. Adaptor, which is self-
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complimentary oligonucleotides forming a stem-loop containing uracil, was 

added to the DNA fragments. The following buffers were added directly to end 

repair reaction; 30μl of NEBNext ultra II ligation master mix, 1μl of NEBNext 

Ligation Enhancer and 2.5μl NEBNext Adaptor for Illumina, mixed 10 times and 

incubated for 15mins at 20◦C in the thermocylcer. That was followed by adding 

3μl of USER™ (Uracil-Specific Excision Reagent) enzyme to the ligation mixture 

and incubated at 37◦C for 15mins in order to generate a single nucleotide gap in 

the adaptor at the uracil residue to open the loops. 

Finally clean-up was performed to remove excess enzymes using Agencourt 

AMPure XP beads as described previously and a high sensitivity DNA 

bioanalyser chip (Agilent) was performed to assess the  size of the DNA 

fragments and the amount of the final library was quantified using the Qubit kit.  

2.8.2.5 Library amplification 

The adaptor-ligated DNA was amplified by PCR reaction (Table 2.16) 

where barcoding sequence identifying each sample was added to the DNA 

fragments, and indexed by forward and reverse primers for paired-end 

sequencing (P5 and P7 Primer) adding termini that bind to the oligonucleotides 

on the flow cell surface.  

P5 PCR Primer: 5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA3’  

P7 PCR Primer: 5’ CAAGCAGAAGACGGCATACGAGAT 3’.  
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Table 2-16. PCR reaction used in library amplification. 

Reagent Volume 

Adaptor-ligated DNA fragments 15 μl 

NEBNext Ultra II Q5 Master Mix 25 μl 

Index Primer/i7 Primer 5 μl 

i5 Primer 5 μl 

Total volume  50 μl 

 

All samples were indexed uniquely so they could be pooled together and 

sequenced in one lane of a HiScan SQ using a 2x100bp high output run. The 

reaction was run in the thermocycler using thermal profile in Table 2.17. 

Figure 2.7. Work flow of NEB library preparation kit. 

First, DNA fragments undergo end repair of the fragmented DNA by adding dA 

tail at 3’ end of the fragments and phosphorylation at 5’ end. Secondly, adapter 

ligation is performed. Thirdly, the adapter loop is cut by USER enzyme, and the 

library undergoes clean up step. Finally, PCR amplification is performed using P5 

and P7 indexed primers and involves inserting barcode for each sample.  
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Table 2-17. Thermal profile used in library amplification. 

Reaction Duration/Temperature Cycle 

Initial Denaturation 30s at 98◦C 1 

Denaturation 10s at 98◦C  

8 

Annealing and 

elongation 

75s at 65◦C 

Final extension 5mins at 65◦C 1 

 

A final clean-up using beads as described before was performed and 

the library size was about  300bp. The total DNA concentration in the final 

library (Table 2.18) was calculated by Quibt.  

Table 2-18. Concentration of DNA in final library as calculated by Quibt. 

Sample ID Fragment 
size 

Qubit nM  

PAA29 326 33 155.7 

PAA28 326 22.4 105.7 

PAA27 326 15 70.7 

PAA26 326 17.2 81.1 

PAA24 326 34.6 163.2 

PAA22 326 14.8 69.8 

PAA21 326 41.8 197.2 

PAA13 326 11.2 52.8 

PAA10 326 10.7 50.4 

PAA7 326 19.8 93.4 

PHC18 326 8.45 39.8 

PHC17 326 17.7 83.5 

PHC16 326 44.9 211.8 

PHC15 326 26.9 126.9 

PHC13 326 11.5 54.2 

PHC03 326 15.5 73.1 

PHC01 326 26.2 123.6 

FAA34 326 72.9 344.0 

FAA33 326 43.8 206.7 

FAA32 326 72.7 343.1 

FHC16 326 8.51 40.1 

FHC15 326 21.3 100.5 

FAA26 326 14.4 67.9 

FHC01 326 10.1 47.6 

F=FACS sorted samples, P=PBMC  
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2.9 Statistical analysis 

Q-PCR data was exported into an Excel file, Dct was calculated by 

subtracting Ct value of gene of interest (GOI) from housekeeping gene, then  the 

mean was calculated for the triplicate Dct values for each gene in the experiment. 

Differential expression was determined by the ΔΔCt method where means and 

SD were determined for experimental repeats. For flow-cytometry data, the 

percentage of each T-lymphocyte sub-population was compared between 

patients and HC. Comparison of data between variables in each experiment was 

performed using a two-tailed independent t-test, and the corrected t-test was 

used whenever the homogeneity of variance was violated. The analysis was 

carried out using Graphprism software version 6 with P ≤ 0.05 as the significance 

level. Descriptive statistics are presented as the mean ± SD.  
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Chapter 3 . T-cell role in AA 
pathogenesis 
 

3.1 Introduction 

As previously discussed in section 1.3, T-cells and their cytokines play a 

major role in the AA pathogenesis. The dense intrafollicular and perifollicular 

infiltration of T-lymphocytes into the affected HF is a histopathological hallmark 

of the disease (Todes-Taylor et al., 1984, Perret et al., 1984), where, CD4+ and 

CD8+ T-cells constitute the main components of the cellular infiltrate. Despite 

this, only a limited number of studies detailing changes in proportions of T-cell 

subsets in AA patients has been performed. Naïve CD4+ can differentiate into 

Th1, Th2, Th17 or CD4+ CD25+ regulatory T-cells (Treg) (Zhu et al., 2010). CD8+ 

cytotoxic T-cells (Tc) can be also further differentiated based on their activation 

marker (NKG2D) (Petukhova et al., 2010, Hu et al., 2016). In this study, 

representative groups of cytokines and cell surface markers have been selected 

to study different populations of inflammatory/effector T-cells (Teffs) (Table 3.1).  

Table 3-1. Main subsets of Teff cells and profile of secreted cytokines. 

T-cell  

subsets 

Surface/intracellular 

marker 

Additional markers 

Th1 CD4, CD119 NA 

Th17 CD4 IL-17 

Th2 CD4 CRTH2 NA 

Tc  CD8  NKG2D 

 NA- Not applicable as no additional marker was not used due to the restricted number 

of markers that can be used in this multi-colour flowcytometric panel.   

 

Regulatory T (Treg) cells constitute 20% of CD4+ T-cells in human skin  

(Sanchez Rodriguez et al., 2014). Tregs play a central role in peripheral immune 

tolerance where they have an anergic effect on the effector T-cells (Peterson, 
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2012). Peripheral blood Tregs have shown to be functionally impaired in AA 

patients (Shin et al., 2013). However, none of the subsequent studies have 

characterised Treg subtypes and their activation status to determine the cause 

of their functional impairment. Therefore, the aim of the work in this chapter was 

to analyse T-cell subsets (Teff and Treg) and characterise Treg cell subtypes 

and their activation status in AA patients and HC. 

3.2. Results 

3.2.1. Inflammatory T-cell subsets (Teff) in peripheral blood 

To determine T-cell subpopulations within the circulation, lymphocytes 

were isolated from peripheral blood, analysed using flow-cytometry and T-cell 

subtypes detected using flurochrome-conjugated antibodies for each population 

marker/s as listed in Table 3.1. Twenty AA patients, who were not on any 

treatment, and ten healthy controls (HC) were enrolled in the study. Changes in 

the proportions of different T-cell subsets were determined after gating around 

the total lymphocyte population and collecting about 500,000 cell events.  

3.2.1.1. CD4+ T-cells and their subtypes  

As a main component of diseased HF inflammatory infiltrate forming 

about 60-80% of perifollicular infiltrate (Todes-Taylor et al., 1984), the proportion 

of CD4+ T-cells and their subtypes in peripheral blood of patients and HC donors 

was investigated. Within the total CD3+ T-cells, there was a significantly higher 

proportion of circulating CD4+ T-cells (P=0.03) in the peripheral blood of AA 

patients when compared to the HC group by about 10% (Figure 3.1.A). The 

proportion of Th1, Th2 and Th17 subtypes as a percentage of the total CD4+ T-

cells population was determined using CD119 cell surface marker, CRTH2 cell 

surface marker and IL-17 intracellular cytokine as representative markers of 
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each subpopulation respectively. The proportion of Th1 subpopulation was 3 

times higher in patients (P=0.003), similarly, there was a higher proportion of 

Th2 cells where it significantly increased from 2% of CD4+ T-cells in healthy 

controls to 4% in patients (P=0.038). The proportion of the Th17 subset was 

significantly raised as well from only 3.3% of the total CD4+ T-cells pool in HC 

to about 12.4% in patients (P=0.001) (Figure 3.1.B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. CD4+ T-cell subsets.  

A) The frequency of CD4+ T-cells in the total lymphocyte population (CD3+). Data 

is shown as a percentage of total CD3+ T-cells. B) The frequencies of Th1, Th2 and 

Th17 in CD4+ population calculated as a percentage of total CD4+ T-cells. Data 

analysed by a two-tailed independent t-test, and the corrected t-test was used 

whenever the homogeneity of variance was violated. A 95% confidence interval was 

used where P≤ 0.05 is considered significant (*), P ≤ 0.01 (**). All bars plot depict 

mean with SEM in each study group. AA patients n=20, healthy controls (HC) n=10. 

A) B) 
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In view of the changes observed in Teff subset proportions, especially 

Th1 and Th17, an ELISA assay was performed to assess the level of the 

intracellular cytokines, IFN- and IL-17, produced by activated PBMCs. PBMCs 

isolated from patients and HC blood were activated with PMA/ ionomcyin, and 

the levels of IFN-and IL-17 in the supernatant were measured. It was found 

that patient PBMCs produced about seven times higher levels of IFN- (P≤0.01) 

compared to those of HC (Figure 3.2.A), and a significant increase in IL-17 

production in patient PBMCs by about 150 times (P=0.006) was observed in 

patient when compared to HC samples (Figure 3.2.B). 

 

 

 

 

 

 

 

 

 

 

3.2.1.2. CD8+ T-cells and activation status 

CD8+ T-cells (Tc) are another key Teff cell population in AA pathogenesis 

constituting 20-40% of the lymphocytic infiltrate around affected HF (Todes-

Taylor et al., 1984). However, it is not known if that is a reflection of systemic 

Figure 3.2 Production of IFN-y and IL-17 by PBMCs of patients and HCs. 

ELISA analysis of IFN- (A) and IL-17 (B) production (pg/ml) by PBMCs of patients 

(n=6) and healthy control (n=5) stimulated by PMA/ ionomycin for 3.5hrs. Data 

analysed by a two-tailed independent t-test, and the corrected t-test was used 

whenever the homogeneity of variance was violated. Individual data points and 

mean ± SD are shown. A 95% confidence interval was used where (**) indicates 

significant difference P value≤0.01. 
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involvement of CD8+ T-cells, therefore, it was sought to investigate this in 

peripheral blood. As a percentage of total CD3+ T-cells, the frequency of CD8+ 

T-cells was found to be slightly less in AA patients’ blood compared to HC, which 

was not statistically significant. However, looking at the activation status of these 

cells represented by expression of the NKG2D surface marker, the data 

demonstrated a significantly more activated Tc cell proportion in AA patients 

where there was about 12% increase in the expression of NKG2D+ marker on 

CD8+ T-cells isolated from patients’ blood (P=0.015) when compared to HC 

(Figure 3.3). 
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3.2.1.3. CD4+: CD8+ ratio  

The ratio of CD4+: CD8+ in peri-follicular lymphocytic infiltrates has been 

studied extensively, however, it is not known if this localised variation is a 

reflection of systemic derangement of these T-cell subsets. In this study, the 

Figure 3.3. CD8+ T-cells and their activated subset in patients and HCs. 

The frequency of CD8+ T-cells in the total lymphocyte population (CD3+) was 

slightly less in patients while the proportion of activated CD8+ T-cells subset 

(NKG2D+ cells) was significantly higher. Data analysed by a two-tailed 

independent t-test, and the corrected t-test was used whenever the homogeneity 

of variance was violated. A 95% confidence interval was used where P≤ 0.05 is 

considered significant. All bars depict mean with SEM in each study group. AA 

patients n=20, healthy controls (HC) n=10. 
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ratio of CD4+:CD8+ cells in the total CD3+ T-cell pool was investigated and a 

significantly higher CD4+:CD8+ ratio was observed in patients’ peripheral blood 

(3:1± 0.3) compared to HC (2:1 ± 0.09) P=0.04 (Figure 3.4).  
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3.2.2. Regulatory T-cells (Tregs) in AA patients  

Tregs infiltrate normal HF (Sanchez Rodriguez et al., 2014) and have a 

potential role in AA pathogenesis (Shin et al., 2013), therefore, detailed study of 

Tregs and their functional subsets in AA was performed. Circulating Tregs were 

identified by co-expression of CD25 and FOXP3 markers in the CD4+ T-cell pool, 

and detailed analysis of their subsets were performed based on the main 

functional subsets: naïve, memory or suppressive expressing a group of 

activation markers and immunosuppressive cytokines listed in Table 3.2.  

 

 

 

Figure 3.4. The ratio of CD4+:CD8+ T-cells in peripheral blood of AA patients and 

HCs. 

Data was analysed by a two-tailed independent t-test with A 95% confidence 

interval where P≤ 0.05 is considered significant. The box and whisker plots depict 

median with minimum to maximum values in each study group, AA patients n=20 

and healthy control (HC) n=10. 
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Table 3-2. Main subsets of Treg cells. 

  

3.2.2.1. Total Treg frequency in AA patients’ peripheral blood 

Within the CD4+ T-cell pool, total Tregs were found to be about 40% 

higher in peripheral blood of AA patients when compared to HCs (P=0.001). 

Interestingly, a higher proportion of CD45RO+ memory cells (about 15%) in the 

CD25+FOXP3+ Treg pool from patients was noted when compared to HC 

samples (10%) (Figure 3.5). 
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Treg subsets Generic Treg marker Additional markers 

Total Treg CD25 FOXP3  

Memory Treg  CD25 FOXP3 CD45RO 

Suppressive Treg  CD25 FOXP3 CD39, HLA-DR or  LAG3  

Suppressive cytokines 

producing Treg  

CD25 FOXP3 TGF- or IL1-0 

Figure 3.5. Percentages of CD25+FOXP3+ Tregs and their memory subset 

(CD45RO+) in peripheral blood of AA patients and HC. 

Data analysed by a two-tailed independent t-test, and the corrected t-test was used 

whenever the homogeneity of variance was violated. A 95% confidence interval was 

used where P≤ 0.05 is considered significant (*), P≤0.01 (**), All bars depict mean 

with SEM in each study group. AA patients n=20, healthy controls (HC) n=10. 
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3.2.2.2. Suppressive Treg frequency in in AA patients’ peripheral blood 

Next, it was important to study the functionality of Treg cells by looking at 

some key immunosuppressive surface markers such as CD39, HLADR and 

LAG3. Interestingly, the mean frequency of suppressive Treg subset (CD39+ 

cells) was 43.5% of the CD25+FOXP3+ population in HC, however, this was 

significantly less in AA patients at 21.4% (P=0.001). There was also a 

concomitant reduction in the expression of the HLA-DR suppressive marker by 

Tregs with 38% of Tregs are HLA-DR positive in HC compared to 22% in AA 

patients (P≤0.0001). Contrarily, there was no change in the percentage of LAG-

3+ cells in the Treg pool (Figure 3.6).  
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Figure 3.6. Suppressive subsets of CD25+FOXP-3+ Treg cells. 

The frequency of suppressive subsets indicated by expression of CD39, HLA-DR 

or LAG3 surface makers was calculated out of the total Treg pool. Data analysed 

by a two-tailed independent t-test, and the corrected t-test was used whenever 

the homogeneity of variance was violated. A 95% confidence interval was used 

where P≤ 0.05 is considered significant (*) P≤0.01 (**), P≤0.001 (***). All bars 

depict mean with SEM in each study group. AA patients n=20, healthy controls 

(HC) n=10. 
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3.2.2.3. Immunosuppressive cytokine expression by Tregs 

It was important to investigate the levels of intracellular cytokines 

produced by Tregs such as IL-10 and TGF- to enable detailed dissection of 

Treg suppressive machinery, as secreting these cytokines is another key 

mechanism in Treg suppressive function. There was no significant difference in 

the percentage of cells expressing IL-10 (P=0.8) nor TGF-cytokines (P=0.2) 

between patients and HC samples (Figure 3.7). 
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3.2.2.4. Treg:Teff  balance in AA patients’ peripheral blood 

To test the hypothesis of Treg:Teff balance disruption, a statistical 

correlation test was performed to see if there is any association between the 

changes observed in suppressive Treg populations and inflammatory T-cell 

subsets (Th1, Th17, Th2 and activated Tc). A two tailed, Pearson correlation 

Figure 3.7. Suppresive cytokine expression by CD25+ FOXP3+ Treg cells. 

The percentage of Treg cells expressing the intracellular markers IL-10 or TGF- 

was calculated. There was no statistcally significant difference in both subsets 

between patients and HC. Data analysed by a two-tailed independent t-test, and 

the corrected t-test was used whenever the homogeneity of variance was violated. 

A 95% confidence interval was used where P≤ 0.05 is considered significant. All 

bars depict mean with SEM in each study group. AA patients n=20, healthy controls 

(HC) n=10. 
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test was applied with a 95% confidence level. First, the correlation between the 

proportion of CD39+ suppressive Treg and Th17 was calculated. A significant 

negative correlation between the two T-cell subsets was found, Pearson’s R= -

0.46, P=0.006 (Figure 3.8). A high frequency of CD39+ Treg cells was 

associated with low frequency of Th17 cells in the peripheral blood, which was 

noticeably observed in HC samples. On the other hand, samples with reduced 

CD39+ Treg frequency tend to have high frequency of Th17 cells, which was 

evident in some patient samples, however; the heterogeneity of the patients 

recruited in this study may have limited the possibility to confirm the correlations. 

 

 

 

 

 

Figure 3.8. Correlation between Th17 and CD39+ suppressive Treg population 

(CD25+FOXP-3+CD39+). 

 The correlation was calculated by two-tailed Pearson’s correlation coffiecient test on 

SPSS software. It indicates a negative correlation between the suppressive Treg 

expressing CD39 marker and Th17 CD4+ T-cell population. Data analsyed from 10 

healthy control and 20 AA patients, Pearson’s r= -0.46, P=0.006. 
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      The HLA-DR+ Treg subset also showed significant negative correlation with 

Th17 cells, Pearson’s R= -0.53, P=0.002. The correlation is more evident in HC 

blood samples where high frequency of HLA-DR+ Treg was associated with low 

frequency of Th17 cells (Figure 3.9).  

 

Interestingly, this negative correlation of suppressive Treg subsets 

(CD39+Treg and HLA-DR+Treg) was specific to Th17 cells. There is no 

significant correlation between the frequencies of CD39+ Treg or HLA-

Figure 3.9. Correlation between Th17 and CD39+ suppressive Treg population 

(CD25+FOXP-3+HLA-DR+). 

 The correlation was calculated by two-tailed Pearson’s correlation coffiecient t on 

SPSS software. It indicates a negative correlation between the suppressive Treg 

expressing HLA-DR marker and Th17 CD4+ T-cells population. Data analsyed from 

10 healthy control and 20 AA patinets, Pearson’s r= -0.46, P=0.006. 
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DR+ Treg with any of the other Teff subpopulations including Th1 (CD119+ 

CD4+ T-cells), Th2 (CRTH2+ CD4+ T-cells), and activated cytotoxic T (Tc) cells 

(NKG2D+ CD8+ T-cells) (Table 3.3).   

Table 3-3. Correlation data between suppressive Treg cells and inflammatory T-cell 

subsets.  

Comparison R value P Value 

 

HLA-DR 

+ Treg 

vs IL-17+ CD4+ T-cells (Th17) -0.53,  0.002 ** 

vs CD119+ CD4+ T-cells (Th1) -0.33 0.06 

vs CRTH2+ CD4+ T-cells (Th2) -0.30 0.09 

vs NKG2D+ CD8+ T-cells  

(activated Tc) 

-0.18 0.31 

 

CD39+ 

Treg 

vs IL-17+ CD4+ T-cells (Th17) -0.46  0.006 ** 

vs CD119+ CD4+ T-cells (Th1) -0.21 0.24 

vs CRTH2+ CD4+ T-cells (Th2) -0.23 0.19 

vs NKG2D+ CD8+ T-cells  

(activated Tc) 

-0.29 0.08 

           R and P values are shown to each pair of data. 

3.2.2.5. CD39+ cell distribution in AA skin 

The observations of a significant deficiency in the proportions of CD39+ 

Tregs in the peripheral blood of patients, and its negative correlation with Th17 

suggested a need to investigate this marker further. Western blot analysis of the 

protein extracted from PBMCs of AA patients and HC was performed to look at 

CD39 protein expression. CD39 protein is found to be produced by PBMCs 

isolated from HC subjects but not by those of AA patients supporting the flow-

cytometry findings (Figure 3.10).  
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A further analysis of total FOXP3+ Treg and CD39+ suppressive Treg 

populations within skin tissue was undertaken to define their distribution in 

normal and diseased skin. Treg-specific immunofluorescence microscopic 

analyses were performed on formalin-fixed, paraffin embedded, 5μm thick scalp 

skin sections obtained from HC, and lesional and non-lesional areas of AA 

patients. Antibodies against CD3 (generic T-cell marker), FOXP3 (Treg marker) 

and CD39 (suppressive Treg marker) were used. Three populations have been 

identified using this panel; CD3+FOXP3+CD39+ cells are suppressive Treg, 

CD3+FOXP3+CD39- Non-suppressive Treg that can be naïve or memory, and 

CD3+FOXP-CD39- are Teff cells. Suppressive Tregs were preferentially 

localized to normal skin (Figure 3.11.A) with lack of Teffs. Tregs infiltrate the 

outer connective tissue layer of HFs in close proximity to the follicular epithelium. 

The same distribution of suppressive Treg was seen in non-lesional skin of AA 

patients (Figure 3.11.B) in addition to an intra-follicular infiltrate of non-

suppressive Treg (CD3+FOXP3+ CD39-Treg) and Teff (CD3+Foxp3- CD39-) in 

some sections. In contrast, diseased HFs lack these suppressive Treg, and they 

Figure 3.10. CD39 protein expression in AA and HC PBMCs. 

PBMCs isolated from blood of AA and HC donors were lysed and loaded in SDS 

gel, CD39 protein was detected using rabbit monoclonal antibodies. CD39 protein 

(6̃0KDa) was detected in HC but not AA samples.  
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are heavily infiltrated with Teff cells in presence of some non-suppressive Treg 

lacking CD39+ marker (Figure 3.11.C). 

  

Figure 3.11. Suppressive Tregs localize to HFs in human skin. 

Confocal microscopy of normal human skin, lesional and non-lesional skin of AA 

patients. Sections were stained for CD3 (blue), Foxp3 (green), CD39 (red), and 

DAPI (grey). Images taken at magnification X20 (left side) or X60 (right side). Small 

box is the zoom on 60X images without nuclei to clarify the triple staining. Scale 

bars: 100 μm. Arrows denote Treg (yellow) or Teff (orange).   
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Next, semi-quantitative analysis of IF images was performed to 

determine the frequency of Treg cells and their suppressive subtype in 

normal, non-lesional and lesional skin. The numbers of CD3+, FOXP3+ 

and CD39+ cells were counted per field, and the ratio of FOXP3+ cells to 

CD3+ T-cell pool in each field was calculated using FIJI cell counter 

software. The ratio of CD39+ cells in the FOXP3+ cell pool was calculated 

by the same method. Interestingly, the proportion of total FOXP3+ Treg 

cells was significantly reduced by about 80% in lesional skin compared 

to non-lesional skin (P≤0.01) and by about 90% when compared to 

normal skin (P≤0.001) (Figure 3.12). A similar trend was observed with 

suppressive Treg where the proportion was significantly less in AA 

affected skin compared to non-lesional (P≤0.5) and normal skin 

(P≤0.001). The data is representative of the skin sections of lesional 

areas from four AA patients and non-lesional skin sections of three 

patients and one healthy control. Only anagen HF were included in the 

analysis as AA is thought primarily to affect anagen HF, and to avoid the 

possibility that the variation observed in the sections were due to normal 

changes seen in the hair cycle stages. Due to that, data from two patients 

were excluded from the study as no anagen HFs were found as all HFs 

were in telogen phase. 
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3.3. Discussion 

 Autoimmunity is caused by defective balance of suppressive and 

pathogenic T-cells (Dejaco et al., 2006). This imbalance is proposed as the main 

mechanism in AA pathogenesis; however, despite the accumulating evidence 

on T-cells involvement, our understanding of the role of regulatory T-cells is very 

limited.  

 Tregs are key guardians of peripheral immune tolerance, and defects in 

their function can lead to fatal autoimmune diseases as seen in FOXP-3 null 

mice (Fontenot et al., 2003). Abnormality in lymphocyte function and numbers 

is not confined to the skin, as it can also be seen in spleen, skin draining lymph 

nodes (LN) and peripheral blood of affected subjects (McElwee et al., 2005b). 

For instance, CD4+CD25+ T-cells were found to be fewer in spleen and skin 

draining LN of affected C3H/HeJ mice compared to sham mice (Zoller et al, 

Figure 3.12. Treg distribution in normal and affected human skin.  

The percentage of total and suppressive  Treg indicated by expression of FOXP3 

and CD39 makers  was caluclated out of the total CD3+ or FOXP3+ T-cell pool 

respectively. Data analysed by ANOVA test with multiple comparison. A 95% 

confidence interval was used where P≤ 0.05 is considered significant (*),P≤0.01 

(**).  P≤0.001 (***). All bars depict mean with SEM of four fields in each study 

group.  
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2002). Zoller and et al. (2004b) investigated the frequency of CD4+CD25+ T-

cells in the peripheral blood of AA patients, which showed an unexpected 

significant increase in this population. However, there was a decline in their 

suppressive activity particularly in progressive AA  (Zoller et al., 2004, Shin et 

al., 2013). We think this reduction in Tregs’ inhibitory function can explain the 

severity of the disease in these patients as this may enhance auto-reactivity, 

thereby stimulating the inflammation by activated T-cells. Defective Treg 

function has been observed in other autoimmune diseases such as thyroiditis 

and autoimmune diabetes in animal models (Sakaguchi, 2004).  

In this study, flow-cytometery data showed a significant increase in 

CD4+CD25+FOXP3+ T-cells (Treg) by about 40% in patient’s peripheral blood 

compared to HC in agreement with previous researchers’ findings. This can in 

part be explained in the current study by the marked increase in CD4+FOXP3+ 

CD45RO+ T-cells (memory Treg), which is expected to be high as these cells 

encountered HF autoantigens previously. More importantly, the second question 

this study attempts to answer is whether these Treg cells are functionally 

suppressive. Different mechanisms are employed by Tregs to exert their 

suppressive function. The conversion of ATP to adenosine initiated by the 

ectonucleotidase CD39 (Antonioli et al., 2013); cell to cell contact mediated by 

HLA-DR+Tregs (Baecher-Allan et al., 2006); and suppressive cytokine secretion 

(Liberal et al., 2015) are among the most used suppressive mechanisms by 

Tregs. Therefore, it was important to elucidate which of these mechanisms if any 

is defective in AA?  

These data showed for the first time which regulators mediate the 

impairment in Treg function. There was a significant reduction in CD39 and HLA-

DR subsets of the Treg population by about 50% in AA subjects compared to 
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HCs. CD39 is ENTPDase1 that hydrolyses ATP into AMP, which is 

subsequently hydrolysed by CD73 into adenosine (Antonioli et al., 2013). Hence, 

CD39 plays a central role in modulating the pro-inflammatory micro-environment 

induced by ATP, into anti-inflammatory milieu driven by adenosine thereby 

inhibiting Teff development (Deaglio et al., 2007). In comparison to CD39- Treg, 

CD39+ Treg cells have higher suppressive capacity (Ye et al., 2015) and greater 

stability (Gu et al., 2017). That was supported in many studies where 

CD39+FOXP3+ cells show marked suppressive activity against Teff, particularly 

Th17 (Fletcher et al., 2009).  

Our immunostaining data have demonstrated the presence of CD39+ 

suppressive Tregs around the normal HF in human skin, preferentially in the 

outer connective tissue layer of the lower two-thirds of HF, which supports the 

proposed role of these cells in maintaining IP. Interestingly, the proportion of 

total Tregs to the infiltrating lymphocyte pool (CD3+ T-cells) was reduced 

significantly in non-lesional HF by about 80% (P≤0.01), and more significant 

reduction was observed when compared to normal HF (P≤0.001), and that was 

accompanied by reduction in the proportion of suppressive CD39+Treg. Our 

flow-cytometry data also demonstrated significant reduction of HLA-DR+ Treg 

where it is known that HLA-DR on Tregs mediates cell-to-cell suppression of 

Teff. Interestingly, Rissiek et al 2015 showed that HLA-DR expressing Tregs are 

almost always CD39+, which could explain their containment reduction 

observed in the current study (Rissiek et al., 2015).         

These findings provide a novel insight on the mechanism of IP 

maintenance. Thus IP collapse can be explained by two mechanisms; primary 

failure of Treg suppressive capacity, which is proposed in this study to be 

through CD39 molecule deficiency. Impaired Treg function has been proposed 
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as a key player in other autoimmune diseases such as rheumatoid arthritis 

(Ehrenstein et al., 2004) and psoriasis (Yang et al., 2016). Yang and colleagues 

showed Tregs isolated from psoriatic patients have impaired suppressive 

function being unable to inhibit proliferation of Teff in co-culture, and they 

produce inflammatory cytokines such IL-17 and IFN- attributing that to an 

activation of STAT-3 pathway in these cells. The second proposed mechanism 

of IP collapse is Treg functional failure secondary to the increase in Teff cell 

frequencies including CD8+ cells and inflammatory CD4+ cells. Due to Treg 

plasticity, production of inflammatory cytokines by Teffs such as IL-17 and IFN-

 probably results in Treg differentiation into Teff (Yang et al., 2008, Oldenhove 

et al., 2009). 

The suppressive cytokine secretory capacity of Tregs was investigated 

and showed no significant changes in the frequency of IL-10+ nor TGF-+Tregs 

between patients and HC. This finding was also supported by LAG-3 expression, 

which showed no difference between the two groups.  Activation gene (LAG3) 

was reported as a marker of IL-10 producing Tregs (Nakachi et al., 2017). These 

findings collectively suggest that Treg impaired function in AA is mainly due to 

defect in the cell-to-cell contact and CD39-mediated suppressive machinery and 

not in cytokine secretion. It is also suggested these two mechanisms are the 

main suppressive mechanisms via which Tregs mediate their inhibitory function 

around normal HF. 

      The defect in Treg function can be the drive to the increase in the 

inflammatory T-cells (Teff) that has been seen in this study. IL-17+ producing 

CD4+ T-cells (Th17) were four times higher in patients’ PBMCs compared to HC. 

Increase in Th17 around HF of AA patients associated with reduction in FOXP3+ 

Treg was observed in other studies (Tojo et al., 2013, Tanemura et al., 2013, 
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Han et al., 2015). A significant negative correlation was observed in this study 

between Th17 cells and suppressive Tregs, CD39+ Treg (r= -0.46) and HLA-

DR+ Treg (r= -0.53). Interestingly, this correlation was specific to Th17 cells with 

no significant correlation of suppressive Tregs with the other inflammatory T-

cells subsets being found. This correlation can be explained by the competing 

fates (either Th17 or Treg) of naïve T cell differentiation where the lineage choice 

is determined by relative amounts of IL-6 and TGF-β (Bettelli et al., 2006, Zhou 

et al., 2008). Therefore, Tregs might limit Th17 differentiation by exhausting  

common precursors (Bettelli et al., 2006).  

       Previous studies reported involvement of Th17 in AA as suggested by 

Aytekin et al (2015) due to association of IL-17 gentotype with increased 

susceptibility for AA (Aytekin et al., 2015). Furthermore, serum IL-17 level 

measured by ELISA was found significantly increased in its production in 

patients compared to HC (El-Morsy et al., 2016), which agrees with our ELISA 

data showing significant increase (p=0.006)  in IL-17 production by patients’ 

PBMCs. CD4+ helper T cells differentiation into Th17 cells is mediated by STAT-

3 activation under the effect of cytokines including transforming growth factor-β, 

IL-6, IL-1β, and tumor necrosis factor (TNF)-α, however, it is important to 

highlight that neuropeptides also control Th17-dependent pathways. This is 

supported by the fact that chronic stress can alter activated lymphocytes to a 

Th17 response in  mouse model (Harpaz et al., 2013). Therefore, the increase 

in IL-17 reported in this study could support the neuroendocrine-immune 

hypothesis of AA pathogenesis. For instance, episodes of alopecia areata (AA) 

have occurred after severely stressful life events (Reinhold, 1960, Paus and 

Arck, 2009). Similarly, neuropeptides such as substance P have been 

demonstrated to mediate a collapse of MHC class I–based hair follicle immune 
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privilege in organ-cultured normal human scalp hair follicles resulting in hair 

follicle degeneration (Siebenhaar et al., 2007).  Further studies are warranted to 

better delineate the exact role of IL-17 in AA pathogenesis. 

Our data showed that CD8+ T-cells were less frequent in PBMCs of 

patients compared to HC in line with the increase in CD4:CD8 cells ratio in 

peripheral blood agreeing with Luckac and colleagues’ study (Luckac et al., 

1993). This is also  in agreement with CD4:CD8 ratio around affected HF, in 

which the cellular infiltrate is composed of higher numbers of CD4+ T-

lymphocytes than CD8+ T-lymphocytes, and the ratio has shown to be slightly 

higher in the acute phase in comparison to the chronic phase (Ghersetich et al., 

1996). Interestingly, despite the observed reduction in CD8+ T-cell proportion, 

the NKG2D+ expression on CD8+ T-cells is significantly higher in patients 

compared to HC by about 12%. IFN, a main inducer of ectopic MHC class I 

expression (René et al., 1998), was produced in higher proportion by patients’ 

PBMCs (P≤0.01) that could be secreted by the activated CD8+ T-cells or Th1. 

NKG2D+ is closely associated with HF auto-reactivity in AA resulting in 

termination of the anagen phase of HF growth and precipitating catagen via 

binding to MICA molecules on target cells (Ito et al., 2008). The CD8+NKG2D+ 

T-cell subset has become an important measure in testing any response to a 

new treatment in AA.  

To sum up (Figure 3.14), this novel work demonstrated Treg-Teff balance 

disruption as a major player in AA pathogenesis. Impaired Treg function is 

mainly due to lack of CD39+ and HLA-DR+ mediated suppressive mechanisms 

with unaffected immune-suppressive molecules secretion and LAG3 mediated 

suppression. Impaired Treg functionality is accompanied by increased 

frequency of Th1, Th17 and NKG2D+ CD8+ T-cells.  
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One of the limitations in this part of the study is the low number of 

participants; therefore, more time is required to recruit more participants in order 

to gain a larger statistical population. That would also allow stratification of the 

data according to disease severity, which would give more information about the 

role of Treg in disease progression. More skin tissue sections would allow 

analysis of infiltrating T-cell subsets such as CD4+, CD8+ and Treg cells as well 

as their activation status in HF. That also requires taking in consideration 

whether the tissue biopsy is taken from margin or the centre of the hair loss 

patch and the stage of the disease. The data could then be compared with 

peripheral blood samples to further elucidate the reason for changes in 

circulating peripheral T-cell subsets noted in this thesis. 

   

Figure 3.13. Proposed T-cell involvement in AA pathogenesis.  

IP collapse in AA is mainly due to impairment of Treg function, which is mediated 

by lack of adenosine production via the CD39-mediated anti-inflammatory 

mechanism and cell-cell contact inhibition via HLA-DR while other mechanisms 

are not affected such as secreting immune-modulatory molecules such as IL-10, 

TGF- and LAG-3-mediated suppressive function. This is associated with 

increased frequency of Th1, Th17 and NKG2D+ subsets of CD8+ cells.   
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Chapter 4 . TCR clonotyping in AA 
patients 
 

4.1. Introduction 

 T-cells have a central role in AA pathogenesis indicated by the dense 

lymphocytic infiltrate of T-cells around HF along with their cytokines profile and 

genetic association to AA (Todes-Taylor et al., 1984, Xing et al., 2014, El-Morsy 

et al., 2016). In addition, flow-cytometry and IF findings shown in the previous 

chapter indicated a marked disruption of T-cell distribution in patients’ blood and 

skin when compared to HC. However, there is a gap in current understanding of 

the molecular basis of immune cell involvement in AA. Recently, huge effort has 

been directed towards deciphering the TCR signature of T-cell clones involved 

in many autoimmune diseases. This provides novel insight on the disease 

mechanism; as TCRs are the main determinants of epitope specificity and 

phenotype predominance in a disease, (Acha-Orbea et al., 1988). One example 

is TCR-specific antibodies showed protective effect against experimental 

autoimmune encephalomyelitis (EAE) in Lewis rats (Stevens et al., 1992, 

Vandenbark et al., 1989). 

The antigenic epitope is presented to the TCR in conjugation with major 

histocompatibility complex (MHC) molecules. Each unique TCR is generated by 

TCR and TCR chain rearrangements, where the greatest amount of diversity 

is found in the TRC chain, in particular in CDR3 region as explained in section 

1.4.3. CDR3 is generated by rearrangement of three genes V, D and J with the 

possibility of N nucleotide insertions into the VD and DJ junction increasing the 

region’s diversity. Advances in sequencing technology, in particular NGS 
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techniques, allow in depth analyses to be performed on the CDR3 region of TCR 

chain of many subjects at the same time (Morozova and Marra, 2008). 

Peripheral blood mononuclear cells (PBMCs) isolated from AA patients and 

HC represent total lymphocyte population. CD4+CD25+FOXP3+ T-cells were 

FACs sorted from PBMCs, and represented the regulatory T-cells pool (Treg). 

Multiplex PCR was performed on gDNA extracted from these samples using 39 

V primers and 13 J primers to amplify the rearranged CDR3 region, and the PCR 

products were analysed by NGS using the Illumina platform. The aim was to 

determine the TCR signature of total lymphocytes and Tregs involved in AA 

pathogenesis to unveil the complexity of the T-cell response in AA.  

  

4.2. Results  

4.2.1. Clinical data  

PBMCs were isolated from ten AA patients and seven healthy donors. 

Tregs were sorted from another four AA patients and three HCs. The clinical 

data on these patients is shown in Table 4.1. 
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          Table 4-1. Clinical data of participants.     

Patient ID Clinical type  Age 

    AA32 AA 25 

AA33 AA 65 

AA34 AU 55 

AA26 AU 58 

AA07 AA 68 

AA10 AU 69 

AA13 AA 39 

AA21 AT 52 

AA22 AU 51 

AA24 AU 68 

AA26 AU 58 

AA27 AA 49 

AA28 AT 34 

AA29 AA 66 

HC01 NA 40 

HC03 NA 34 

HC13 NA 45 

HC15 NA 35 

HC16 NA 29 

HC17 NA 25 

HC18 NA 27 
             HC=Healthy control, AA=Alopecia areata,  
            AT=Alopecia totalis, AU=Alopecia universalis 

 

4.2.2. Quality control 

The quality of the NGS data can be affected by a series of steps involved 

the sequencing process such as library preparation, base calling and read 

alignment. Therefore, a number of quality metrics were applied to assess the 

effect of each step of the upstream workflow on the data output. The sequence 

analysis viewer of Illumina provides quality control charts during the run to 

monitor the run quality and reliability. The base calling accuracy is one of the 

main quality metrics; it refers to the accuracy of the sequencer to recall the right 

base. This is measured by the Phred quality score (Q score), which calculates 

the probability of calling the incorrect base using the formula (Q=-10 log10 P) 

where P is the base calling error probability giving figures as shown in table 4.2 

where the higher Q score means the higher probability of calling the right base 
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during the sequencing process. In this NGS experiment, 89% of the data was 

above Q30 indicating the probability of calling the right base was 99.9% (Figure 

4.1).  

         Table 4-2. Quality score of NGS data. 

Phred Q 

Score 
Probability of 

incorrect base call 
Accuracy of 

Base call 

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.9% 

40 1 in 10,000 99.99% 

50 1 in 100,000 99.999% 

 

 

 

 

 

 

 

 

 

Figure 4.1. Quality score of NGS data.  

About 89% of data has Q score above 30 indicating 99.9% probability of calling 

the right base during the sequencing process. 
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The distribution of quality metric throughout the 200 cycles run was 

calculated by Illumina software. The clusters became unstable over the length 

of a 200 cycle run as it took 11 days. Therefore, it was observed that the quality 

was high initially, and dropped off gradually, however, it remained above Q30. 

Note the decline in quality at cycle 50 and 150 and indexing step at about 100 

cycle (Figure 4.2). 

 

 

 

 The drop in the quality at cycles 50, 100 and 150 can be explained by 

looking at signal intensity (Figure 4.3). This shows the signal intensity for each 

base (A, C, G, T) added to each cluster and imaged over the course of the entire 

200 sequencing cycles. Cycles 50 and 150 show a spike in intensity where the 

laser receives a power boost. Finally, the change in intensity during the middle 

part of the run is due to the index read where the barcodes added during the 

library preparation were sequenced during that time.   

Figure 4.2. Quality score distribution of NGS data throughput the run. 

Q score was above 30 thought the major time of the run, drops at about 50, 100 

and 150 can be seen.  
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Cluster density is another key metric that impacts sequencing 

performance and the quality of the run, while under-clustering causes lower data 

output, over-clustering lowers the Q score due to introducing sequencing 

artefact (https://support.illumina.com/content/ 770-2014-038.pdf).  Illumina has 

a so-called Chastity filter to measure the purity of the signal, and reads failing to 

pass the filter are considered less reliable and removed from the analysis. 

Therefore, the percentage of reads pass-filter (%PF) is an important quality 

indicator and over-clustering negatively impacts on the %PF causing its 

reduction. The study data in lane 1 (Figure 4.4) had cluster density (blue box) of 

about 700,000 clusters per mm2, and they were overlapping with %PF quality 

filter (red box) indicating optimal generation of sequence data. 

 

 

 

 

Figure 4.3. Signal intensity of recalled bases.  

The number of sequencing cycles on X-axis and the signal intensity on Y-axis. Bases 

were visualized in different colors, A=red, C=green, G=Blue and T=black. 

https://support.illumina.com/content/dam/illumina-marketing/documents/products/other/miseq-overclustering-primer-770-2014-038.pdf
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4.2.3. Primary analysis of TCR clonotype  

The bioinformatics analysis was performed in collaboration with Dr. 

Afsaneh Maleki-Dizaji, a research fellow in computational biology, Department 

of Computer Science, University of Sheffield. Reads of the DNA sequence were 

paired endwise. The Illumina sequencer generated bcl files, which were 

converted to fastq files by the bcl2fastq program. An average of 7.7 million total 

raw reads were obtained from each sample, and 7 million reads that met the 

quality requirements after removal of low-quality reads were aligned to the TCR 

CDR3 human genome using the MIXCR pipeline (Table 4.3).          

 

 

 

  

Figure 4.4. Cluster density and passing filter box plot quality control.  

The lanes (1-8) in flow cell are represented on the X-axis. The cluster density is 

represented on the Y-axis. The samples were loaded on lane 1 (23 samples). Cluster 

density in the blue box and %PF in the green box and the median shown by a red 

line. The cluster density and %PF boxes are overlapping.  

 

Lane 
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            Table 4-3. Raw statistics of TCR𝜷 sequences. 

Sample 

ID 

Total sequence 

read 

Total of 

assembled 

% of 

assembled 

reads 

FAA26 6362770 6021783 95% 

FAA32 7291450 5611589 77% 

FAA33 9373820 6609669 71% 

FAA34 3731882 3132306 84% 

FAA43 3731882 3042128 82% 

PAA7 8919572 8625223 97% 

PAA10 13198354 12698016 96% 

PAA13 17074228 16578466 97% 

PAA21 7932050 7678520 97% 

PAA22 11000178 10650348 97% 

PAA24 5477294 5302667 97% 

PAA26 9062926 8776243 97% 

PAA27 5839794 5658942 97% 

PAA28 8076702 7838701 97% 

PAA29 5721290 5539912 97% 

FHC01 3799472 3520331 93% 

FHC15 4825830 3702722 77% 

FHC16 2978560 2796238 94% 

PHC01 2625519 2565593 98% 

PHC03 13097328 12747960 97% 

PHC13 8083120 7822527 97% 

PHC15 5530536 5369027 97% 

PHC16 3784520 3663315 97% 

PHC17 6588222 6431118 98% 

PHC18 24908242 24104445 97% 

PHC01 2625519 2580114 98% 

 F=FACS, P=PBMC, HC=Healthy control, AA=alopecia areata patients. 

 

MiXCR pipeline is a universal software developed by MiLaboratory     

(https://milaboratory.com/software/mixcr/) for fast analysis of Ig and TCR 

repertoires (Bolotin et al., 2015). It processes raw fastq sequences of immune 

data into quantitated clonotypes. It handles single-end and paired-ends reads, 

corrects PCR errors, considering sequence quality and identifies germline 

hypermutations. The pipeline (Figure 4.5) first aligns the sequence reads to V, 

D and J reference genes of TCR region, it then assembles the identical 

https://milaboratory.com/software/mixcr/
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sequences into clonotypes, and a correction step is performed by discarding low 

quality reads that result from PCR and sequencing errors, and finally exports 

them in human-readable format. 

 

 

Figure 4.5. MiXCR workflow.  

Raw Fastq file is uploaded to the software, alignment is then performed and identical 

sequences are assembled into clonotypes and exported into readable format after 

correction of PCR and sequencing errors. Figure was adopted from MiXCR website. 
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4.2.4. Secondary analysis of TCR clonotype data 

The output of MiXCR was further analysed by complementary software 

called VDJtools (http://vdjtools-doc.readthedocs.io/en/latest/). It is a JAVA 

based framework which performs the post-analysis of TCR clonotypes and 

provides graphical representation of the data using TCR datasets  (Shugay et 

al., 2015). The figures in this section were created by the researcher unless 

otherwise mentioned.  

4.2.4.1. Estimating TCR repertoire diversity 

The TCR repertoire can be described as a collection of different species, 

and the biodiversity is assessed by species richness calculating the frequencies 

of shared species in a given group (Robins et al., 2009, Joachims et al., 2016). 

Thus, in order to determine the impact of clonal expansion on the diversity of 

TCR repertoire in total lymphocytes and Tregs of AA patients, the biodiversity 

was assessed in each group using a choa1 normalised sample estimate, which 

is one of the most commonly used measures to calculate species richness 

(Colwell et al., 2012). It was crucial to use normalised sample measure for 

diversity where datasets are normalized to the same size because increasing 

sample size results in higher diversity (Lemos et al., 2011). Although the 

differences in Chao1 figures between the study groups did not reach statistical 

significance, it can be observed that the TCR repertoire of total lymphocytes 

from patients was slightly less diverse (chao1=3.2) compared to controls 

(chao1=3.4), which was likely due to the presence of dominant clonotypes. On 

the other hand, the Treg repertoire showed higher diversity in patients 

(chao1=2.4) when compared to HC (chao1=2.3) reflecting the limited 

heterogeneity and predominance of a few clonotypes of Treg cells in HC (Figure 

4.6). 

http://vdjtools-doc.readthedocs.io/en/latest/
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4.2.4.2. Public sequence shared between individuals in each group  

Unlimited numbers of antigens can be encountered during an individual’s 

lifetime, and a huge number of diverse TCR regions can be detected in human 

blood. The observation of public TCR sequences shared by many individuals is 

therefore striking, suggesting immune-reactivity in those individuals to the same 

antigen. To investigate clonotype overlap, VDJtools produced pooled clonotype 

abundance table where the number of reads associated with public clonotypes 

was computed in each group as well as their frequency. Public clonotypes were 

Figure 4.6. TCR Repertoire diversity estimation. 

Boxplots of chao1 estimator for normalised datasets were used to assess the diversity 

of TCR repertoire in cases and controls. The figure was created by Dr. Afsaneh 

Maleki-Dizaji 
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considered by the software as those having identical CDR3 nt sequences, VDJ 

arrangements and start and end locations of each segment. The most prevalent 

public clonotype in each group is presented in Figure 4.7.  

CA*PGG*AS_GSYNEQFF and CASSLGTVYTEAFF were the most 

prevalent public clonotypes in all groups. Strikingly, there was clonal expansion 

of two CDR3 sequences; CASSYQGSTEAFF and CASSQDKGITNEKLFF in 

total lymphocytes from AA patients, and in relatively high frequency 0.005 and 

0.004. Despite the enormous number of TCR chains, these clones are not 

present elsewhere within the sample set including total lymphocytes of HC and 

Tregs from patients or HCs. CASTKTKRQGPISRPFPTGELFF, 

CANSTRGS_PGNTIYF and CASSPTGPTEAFF sequences were more 

abundant in Tregs isolated from patients (with frequency of 0.02, 0.01 and 0.08 

respectively) compared to controls (0.008, 0.002 and 0.003). On the other hand, 

some Treg clones were expanded in healthy individuals but not in patients. For 

instance, TCRβ sequences: CATSRDEGGLDEKLFF and 

CASRDGTGPSNYGYTF were found in Tregs of HCs at 0.003 and 0.002 

frequencies but not in Tregs from AA patients. The top ten public sequences and 

their frequencies in each study group shown in appendix 4. 

 



Chapter 4: TCR sequencing in AA patients 

123 
 

 

F
A

C
S

 H
C

 

F
A

C
S

 A
A

P
B

M
C

s
 H

C
 

P
B

M
C

s
 A

A

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

p
u

b
li

c
 c

lo
n

o
ty

p
e

 f
r
e

q
u

e
n

c
y

C A * P G G * A S _ G S Y N E Q F F

C A W S N R V _ R Q P Q H F

C A S S P G S Y L G N T IY F

C A T S D T E V _ D M N T E A F F

C A N S T R G S _ P G N T IY F

C A S S P T G P T E A F F

C A S S Y Q G S T E A F F

C A S S Q D K G IT N E K L F F

C A S R D G T G P S N Y G Y T F

C A T S R D E G G L D E K L F F

o th e r s

C A S T K T K R Q G P IS R P F P T G E L F F

 

 

4.2.4.3. TCR segment usage analysis 

To explore whether the usage of V and J segments is skewed in AA 

patients, a heatmap was generated demonstrating the weighted V and J 

segment usage profile of the TCR in each group. The heatmap reflects the 

frequency of associated reads for each of V/J segments present in each group. 

Total lymphocytes 

In total lymphocytes, the usage of V segments showed overall similarity 

between cases and controls with TRBV12-3 and TRBV24-1 the most frequently 

Figure 4.7. Distribution of public clonotypes in Tregs and total T-cells of patients and 

HCs.  

The top most frequent sequences, as calculated by pooled clonotype abundance tool 

of VDJtools software, are shown in different colours while the others are in grey.  
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used TRBV alleles (0.08% and 0.06% respectively) in both groups and TRBV11 

and TRBV14 the least utilised V genes with approximately 0.001% frequency 

(Figure 4.8.A). The raw data of V and J frequencies is demonstrated in appendix 

2. In comparison to controls, some differences were observed. For instance, 

TRBV19 and TRBV29-1 allels were relatively more frequently utilised in patients’ 

cells than HCs’. Post-hoc analysis was performed to determine if there was any 

statistically significant difference in the usage of each V region between patients 

and controls. TRBV19 was the most utilised V segment by TCR chains of total 

lymphocytes of patients with 1.02 fold increase (P=0.001) compared to HC 

(Figure 4.8.B).  
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TRBJ usage in total lymphocytes showed no difference between cases 

and controls (Figure 4.9). TRBJ1-1 and TRBJ1-5 were highly abundant in both 

groups compared to all other J genes followed by TRBJ1-4, which was relatively 

more frequent in patients. TRBJ2-1 was more frequently utilised in controls, 

Figure 4.8. V gene segment usage in TCR repertoire of Treg cells. 

 A). The frequency of each V segment usage in healthy controls (HC) and AA 

patients, the data represented in the heatmap is the  mean of seven HCs and ten AA 

patients. B) Changes in TCRV segment usage   between HC and AA where the 

difference was calculated by multiple t tests   * p≤0.05. ***p≤0.001. 
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however, no statistically significant difference in any J segment usage was 

observed using post-hoc analysis (Appendix 3). 

 

 

 

 

 

 

 

 

Tregs 

Regulatory T-cells showed a different V usage in their repertoire 

compared to total lymphocytes. TRBV12-4, 20-1 and 24-1 were more 

predominant in cases compared to controls, while other TRBV segments such 

as TRBV12-3, 2, 30 and 15 were more abundant in controls than cases (Figure 

4.10. A). Applying post-hoc statistical analysis to these data, the frequency of 

the TRBV2 segment was significantly higher in controls compared to patients 

(P=0.01), on the other hand, TRBV 6-3 showed significantly increased 

frequency in Tregs of patients (P=0.005) (Figure 4.10. B).   

Figure 4.9. J gene segment usage in TCR of Treg cells. 

Frequency of each J segment usage in controls (HC) and AA cases, the data 

represented in the heatmap is the mean frequency of each segment in seven HCs 

and ten AA patients.    
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A) 

B) 

Figure 4.10. V gene segment usage in TCR of Treg cells. 

 A). frequency of each V segment usage in controls (HC) and AA cases, the data 

represented in the heatmap is the mean of three HCs and four AA patients.  B). 

Changes in TCRV segment usage between HC and AA where the difference was 

calculated by multiple t tests * P≤0.05. 
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Looking at J segment usage, TRBJ1-2 and to a lesser extent TRBJ2-5 

and TRBJ2-4 were slightly more abundantly utilised in patients. HC have more 

abundant TRBJ2-2, 1-5, and 1-1 (Figure 4.11.A). Using post-hoc analysis, the 

frequency of TRBV 1-1 usage was significantly higher in HC (P=0.04), and 

TRBV2-5 is higher in patients (P=0.05) compared to patients (Figure 4.11.B). 
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Figure 4.11. J gene segment usage in TCR of Treg cells. 

 A). Frequency of each V segment usage in controls (HC) and AA cases, the data 

represented in the heatmap is the  mean of three HCs and four  AA patients.  B). 

Changes in TCRJ segment usage   between HC and AA where the difference was 

calculated by multiple t tests and * P≤0.05. 
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4.2.4.4. CDR3 length distribution 

In addition to rearrangement of V, J and intervening D sequences, random 

insertion of nucleotides called N between these segments contributes to CDR3 

structural diversity. In order to look at the intervening D segment and the inserts, 

VDJtools software provides data about CDR3 region bulk characteristics such 

as CDR3 nucleotide length, NDN length and insert size. Nucleotide length 

influences antigenic reactivity. The D region is located between the V and J 

segments and flanked by N nucleotides, so NDN represents the number of 

nucleotides that lie between V and J segment sequences in the CDR3 region. 

The software calculated the frequency of base addition and deletion, referred to 

as indel, at the V-D-J junction excluding the D region, yielding a  representation 

of V-D and D-J insert size, which will be referred to as insert in the data 

presented here. 

CDR3 nucleotide (nt) length ranges from 21 to 69nt, and the most frequently 

observed sizes are 39, 42, 45 and 48 nucleotides in TCR chains of total 

lymphocytes as well as Tregs in both patients and controls (Figure 4.12 A1 and 

2). Similarly, the NDN nucleotide size distribution was identical in Tregs of 

patients and controls where the most frequently observed size was 13nt. In total 

lymphocytes, the NDN length showed the same bell-shaped distribution ranging 

from 0 to 40nt; however, the most frequent length in controls was 13nt while it 

was 9nt in patients.  

On analysis of the insert between VD and VJ regions, a similar length 

distribution can be observed in total lymphocytes, where no insert (0nt) was the 

most commonly observed length in both study groups followed by 4nt length in 

patients and 7nt length in controls. In contrast, a marked difference can be seen 

in VD/VJ indel length in Treg cells; while no insert (0 nt) is the most frequent 
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distribution in patients, the inserts predominantly found in V-D/V-J region in 

controls with about 13nt indel the most commonly observed length, which might 

indicate the presence of a base deletion at the V-D/V-J junction in AA patients.  
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2- Tregs  

Figure 4.12. CDR3 bulk characteristics in total lymphocytes and Treg of AA patients, and healthy controls.  

A). Nucleotide length of CDR3 segment B). NDN nucleotides size C). V-D and D-J indel size. NDN and CDR3 length in cases 

and controls showed the same distribution for Tregs and total lymphocytes. V-D/V-J indel size showed marked difference 

between patients and controls in Tregs with 13nt is the most commonly observed length in controls and no insert the most 

common nt length in patients.  

 

1- Total Lymphocytes  
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4.3. Discussion 

 The imbalance between Teff and Treg in AA observed in this thesis 

suggested a need for further investigation of the molecular structure of the TCR 

of these cells to define clonally expanded T-cell populations. With a view to 

identify protective or pathogenic TCR clonotypes, CDR3 diversity is the main 

contributor to the huge number of clonotypes in TCR repertoires, and this region 

was therefore studied to determine the clonotypic dominance in AA.  As 

highlighted previously, the CDR3 region is formed due to V (D)J gene segment 

rearrangements contributing to the high diversity of TCR receptors, and the 

diversity is further enhanced by the insertion or deletion of N nucleotides.  

      Interestingly, TCR repertoire analysis demonstrated a unique 

predominance of certain public clonotypes in total lymphocytes of AA patients, 

displaying a signature of antigenic selection in those individuals; where 

CASSYQGSTEAFF and CASSQDKGITNEKLFF were only found in the TCR 

repertoire of total lymphocytes of patients compared to other study groups 

(Tregs and total lymphocytes of HC). This was complemented by the TCR 

biodiversity data, with lymphocytes from AA patients showing less diversity 

(chao1=3.2) indicating the predominance of certain clones suggesting clonal 

expansion in response to specific antigen(s). 

        The two public sequences were searched for any potential match in 

the NCBI database. CASSYQGSTEAFF showed no matches of 100% similarity 

to any sequence in the database, but about 92% aa identity to CDR3 of CD8+  

T-cell clone reactive to human tumour-associated antigen (Appendix 5. A), 

namely,  tumour-associated human telomerase reverse transcriptase (Cole et 

al., 2017). Similarly, there was no 100% identical match for the 

CASSQDKGITNEKLFF sequence, but about 81% similarity was found with a 
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TCRb chain from auto-reactive CD8+ T-cells (Appendix 5. B) isolated from 

diabetic mice (Vincent et al., 2010).  In contrast to the increased rates of 

additional autoimmune diseases such as thyroid disease and vitiligo found in 

AA, previous studies on the concurrence of AA with diabetes detected a 

negative association with type I diabetes mellitus found to be less common in 

AA patients although it is increased in frequency in their first degree relatives 

(Wang et al 1994, Noso et al 2015). This negative association may reflect 

differential HLA related susceptibilities to diabetes and AA. Nonetheless, it is 

noteworthy that the two public aa sequences showing identities to TCR chains 

were from CD8+ T-cells. In agreement with this, the VJ usage profile of 

lymphocytes was skewed toward the TRBV19 segment in patients with 0.06 

frequency compared to 0.03 in HC (P=0.001). This particular V gene segment 

has been associated with CD8+ T-cell response in many studies. For instance, 

the same pattern of TCR bias was seen in mice with Goodpasture disease, 

which is an autoimmune disease with autoantibodies against basement 

membrane of lung and kidney (Ooi et al., 2017). Preferential usage of TRBV19 

was also found in insulin reactive CD8+ T-cells isolated from NOD mice 

(Pearson et al., 2016). Finding similar TCR sequences in unrelated patients 

suggests that these clones, probably of CD8+ T-cells may have an important 

functional contribution to the immunology of AA. 

           In this thesis, it has been proposed that Tregs are potential 

guardians of IP thereby preventing AA development and flow-cytomtery data 

showed a significant reduction in the suppressive Treg population in AA patients. 

Interestingly, the Treg repertoire showed limited heterogeneity in HC indicating 

the possible predominance of certain clones in unaffected individuals. The TCR 

repertoire of Tregs from these donors showed a bias toward two TCR clones 
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that were totally absent in other groups CATSRDEGGLDEKLFF (Appendix 5. 

C) and CASRDGTGPSNYGYTF (Appendix 5. D), which showed 69% and 76% 

aa identity to TCR of PBMCs from  healthy donors on NCBI protein blast (Han 

et al., 2014) suggesting their role in maintaining normal immune haemostasis. 

These findings can be supported by looking at the VDJ composition of these 

public sequences; (V15 D1 J1-4) for the CATSRDEGGLDEKLFF sequence and 

(V2 D1 J1-2) for CASRDGTGPSNYGYTF revealing bias in V usage towards V 

genes used in these public sequences. TRBV15 was  more frequently utilised in 

controls 0.05 compared to 0.02 in patients. Similarly, there was preferential 

TRBV2 gene segment usage from 0.02 in HC to 0.007 in AA patients (P=0.01). 

Interestingly, the VD/DJ insert in the TCR chain of Tregs was markedly longer 

in controls with, typically 9 to 13nt insert compared to no insert in patients 

indicating probable base deletion in this junctional region of CDR3 in patients. 

Collectively, these data indicate a significant difference in the structure of the 

CDR3 region in Tregs from HC compared to patients, suggesting the presence 

of a particular clone of Tregs in HC that are deficient in AA patients, and raising 

the possibility of a role for these Treg clonotypes in preventing AA. 

      On the other hand, among the most utilised aa sequences by Treg of 

AA patients was CASTKTKRQGPISRPFPTGELFF, CANSTRGS_PGNTIYF 

and CASSPTGPTEAFF with frequencies of 0.02, 0.01 and 0.08 respectively 

compared to HC (0.008, 0.002 and 0.003). CASTKTKRQGPISRPFPTGELFF 

has no match to TCR chain in the database, but 80% aa identity to hypothetical 

protein from Acidobacteria bacterium (Appendix 5. E). CANSTRGS_PGNTIYF 

sequence has 72% aa identity (Appendix 5. F) to the TCR chain of CD4+ T-

cells isolated from synovial fluid of rheumatoid arthritis (RA) patients (Striebich 

et al., 1998). CASSPTGPTEAFF has 72% aa identity (Appendix 5. G) to TCRβ 
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transcripts of CD4+CD45RA- T cells isolated from peripheral blood of Sjögren's 

syndrome (SS) patients (Joachims et al., 2016). Of note, the two matches were 

to CD4+ T-cells from autoimmune conditions. Predominance of these Treg 

clones supports the finding that Tregs are still present around HF in affected 

skin, however, with impaired suppressive function. 

 Identifying pathogenic or protective  clones involved in AA pathogenesis 

is a vital discovery that can potentially lead to effective and specific therapeutic 

targeting of the disease. For instance, expanding a single clone of Tregs in vitro 

for treatment has been recently achieved with successful outcome reducing 

inflammation and neovascularisation in a mouse model of diabetic retinopathy 

(Deliyanti et al., 2017). Similarily, V8 positive cells developed in vivo by 

immunizing mice with a peptide specific for EAE, and then injected as a vaccine 

in the animal model  showed promosing effects against EAE develpoment 

(Vandenbark et al., 1989).  

This novel TCR skewing pattern determined in this study requires further 

confirmatory experiments. First, that can be acehived by PCR analysis of patient 

and HC samples for the public clones, V and J regions found to be predominante 

in this work. Secondly, performing NGS on larger number of participants and 

stratifying by disease severity. Importnantly, generating antibodies to the public 

clonotype found in this work and perforeming immuno-staining to test AA 

lesional skin reactivity to these antibodies would be a feasible confirmatory test.  

Finally, studying the TCR repertoire of T-cells isolated from lesional and non-

lesional skin would be ideal to determine the public TCR clonotype distribution 

in affected skin, howevere, it is challenging to perform due to the low number of  

T-cells  in the skin, in particular Tregs.  
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Chapter 5 . EGCG is a potential 
therapy for AA 
 

5.1. Introduction 

     As discussed in the previous two chapters, disruption of Treg-Teff 

balance is thought to be the key event in IP collapse and subsequent hair loss. 

The IP state is maintained by immunosuppressive molecules, such asMSH 

and TGF- where Tregs might contribute to this immunosuppressive 

microenvironment as proposed in this study. That maintains low expression of 

MHC class I and II, which guard privileged sites from an immune attack. IP 

collapse is induced mainly by IFN secreted by Teff resulting in the up-

regulation of MHC class I and II expression on the surface of keratinocytes in 

the proximal part of HF (René et al., 1998, Ito et al., 2004) leading to a 

lymphocytic attack towards the affected tissues. The IFN signalling pathway, 

namely JAK-STAT, has been targeted by a chemical inhibitor (ruxolitinib) 

resulting in successful hair regrowth in nine patients of a small pilot study (Xing 

et al., 2014). However, the broad targeting of JAK1 and JAK2 by this chemical 

inhibitor mediates a wide range of side-effects (Tefferi and Pardanani, 2011). In 

this study, EGCG is proposed to target the same pathway with a higher 

specificity and a relatively superior safety profile. In addition to its STAT-1 

inhibitory effect (Tedeschi et al., 2002), EGCG also has shown stimulatory effect 

on Treg differentiation from naïve CD4+ cells via inducing FOXP3 expression 

(Wong et al., 2011) and enhancing the naïve CD4+ differentiation toward the 

regulatory pole (Wang et al., 2013a). In this chapter, EGCG will be presented as 
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a theraputic molecule and its effect on key inflammatory and regulatory 

molecules invloved in AA pathoegensis will be investigated. The aim of the work 

presented in this chapter is to optimise EGCG dosage in vitro, construct 

an IFN-cellular model to induce the JAK-STAT pathway, and study the 

effect of EGCG on the IFN- signalling pathway (JAK-STAT) and 

regulatory molecules involved in AA pathogenesis. 

5.2. Results 

5.2.1. In vitro studies  

5.2.1.1 Optimization of EGCG dosage 

EGCG has been used topically at concentrations between 40-660Μ 

without inducing dermal toxicity (Zhao et al., 2015), with doses of 50-75M 

previously used in HaCat cells (Zhu et al., 2014) and 100M in epidermal 

keratinocytes (Hsu et al., 2003). The first step in this study was to test the range 

of EGCG dosages that can be tolerated by the HaCat and Jurkat cell lines. 10, 

20, 40, 60 and 100M EGCG concentrations were used to treat these cell lines 

for 24 and 48hrs, with cell viability assayed by microscopic evaluation and by 

staining the dead cells with trypan blue to find the percentage of viable cells in 

each group. 

 5.2.1.1.1 Cell viability by Trypan blue 

The effect of EGCG on cell viability was found to be dose-dependent, 

regardless of the duration of treatment. The viability of HaCat cells compared to 

untreated samples reduced slightly when treating the cells with 10M EGCG 

and continued to drop gradually when increasing the dose of EGCG to 20, 40 

and 60M. However, this reduction was mild and not statistically significant. A 

significant sudden drop in cell viability was observed in samples treated with 
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100M EGCG for 48hrs (P≤0.001), where it declines to about 50% (Figure 5.1). 

Data from 24hrs treated group can be found in appendix 6. 

The same trend was seen in Jurkat cells, although a very significant toxic 

effect (P≤0.001) of EGCG was observed at a lower dose of EGCG (60M) 

leading to approximately 30% reduction in cell viability, which dropped further 

by  50% when increasing the dose to 100M. Therefore, it was concluded that 

10, 20 and 40M EGCG dosages do not show statistically significant adverse 

effects on cell viability in either cell line.  
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5.2.1.1.2. Microscopic assessment of cell viability 

To confirm the viability assay results, microscopic assessment of HaCat 

and Jurkat cells was performed after 48hrs of treatment with EGCG. HaCat cells 

Figure 5.1. The effect of EGCG on cell viability of HaCat and Jurkat cells. 

The mean percentage (%) of viable cells in HaCat and Jurkat cell lines after treatment 

with different concentrations of EGCG (10, 20, 40, 60 and 100μM) for 48hrs. Slight 

reduction in viability can be seen in both cell lines after treatment with lower doses of 

EGCG 10, 20, 40M (not statistically significant) while a significant drop started to be 

seen at 100M in HaCat cells and 60M in Jurkat cells. The experiment was repeated 

three times and mean and SD were calculated. *** P≤0.001. 



Chapter 5: EGCG is a potential therapy for AA 

                                                         139  
 

treated with 10, 20 and 40M EGCG displayed the same morphology as the 

untreated control group, where the cells proliferated in a compact monolayer in 

a relatively non-structured pattern. On the other hand, 60M and 100M EGCG 

treated cells showed marked disruption in the monolayer of cultured cells, and 

a reduction in cell density with adherent cells displaying a longer, stretched 

morphology (Figure 5.2). The Jurkat cells tend to be round and clump together 

to form grape-like colonies in untreated samples, and the same morphology can 

be seen for 10, 20 and 40M EGCG treated samples (Figure 5.3). As with the 

HaCat cells, Jurkat cells cannot tolerate the higher doses of EGCG (60M and 

100M) and the cells appeared as discrete entities with small particles floating 

in the media, which are probably apoptotic bodies when compared to the 

microscopic images by Ivan et al. (Ivan et al., 2014). These results indicate the 

adverse effect of EGCG on cell viability, and thus its toxicity at higher dosages.  
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Figure 5.2. Morphological features of HaCat cells treated with EGCG. 

Cells treated for 48hrs with 10, 20, 40, 60 or 100M EGCG or left untreated as 

a conrol were examined under a light microscope at 10X magnification. The 

morphology in control versus 10, 20 , 40M EGCG-treated cultures is relatively 

similar; however, 60 and 100M EGCG alters the colony morphology forming 

less compact colonies.  
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Based on the viability assay and microscopic findings, 40M of EGCG  

was selected as an optimal dose that can be tolerated by HaCat and Jurkat cells 

without causing significant cell death. This dose was used in the subsequent 

experiments to investigate its effect on the expression of key molecules involved 

in JAK-STAT pathway.  

Figure 5.3. Morphological features of Jurkat cells treated with EGCG. 

Cells treated for 48hrs with 10, 20, 40, 60 or 100M EGCG or left untreated as a 

conrol were examined under a light microscope at 20X magnification. The morphology  

in control versus 10, 20 , 40M EGCG-treated cultures is relatively similar with grape-

like colonies; however, 60 and 100M EGCG alters colony morphology forming less 

compact colonies with more discrete cells .  
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5.2.1.2. Optimization of IFN- dose for the induced cellular model  

In order to study the effect of EGCG on the JAK-STAT pathway, 

particularly STAT-1 phosphorylation, which is the key event in activating this 

pathway by IFN-, it was important to design a cellular model where the pathway 

is triggered to mimic the pathogenic state. However, it was important first to 

optimise the dose of IFN- that can induce the phosphorylation of STAT-1 

protein without causing cell death. 

5.2.1.2.1 Cell viability assay  

Cell viability was measured by trypan blue assay in HaCat and Jurkat 

cells 48hrs following incubation with serial concentrations 25, 50, 100, 200IU/ ml 

of human rIFN-and compared to un-induced sample (media only). A slight 

decrease in cell viability (by 5 and 10%) when compared to an un-induced 

sample was observed in HaCat cells induced with 25IU/ ml and 50IU/ ml IFN-, 

respectively. The percentage of viable cells continued gradually to drop by 

increasing the dose of IFN-, until it is drastically decreased by approximately 

25% in samples induced by 100IU/ ml IFN- and 40% in cells incubated with 

200IU/ ml IFN- compared to the control group. The opposite effect on cell 

viability by IFN- can be seen in Jurkat cells where the viability was improved by 

activating the cells by IFN- in a dose-dependent manner. The percentage of 

viable cells recovered to a higher level by around 5% compared to the control 

group by 25 and 50IU/ml IFN-. Higher concentrations of IFN- showed a greater 

increase in cell viability with the percentage of viable cells increased by around 

15% and 20% in samples incubated with 100 and 200IU/ ml IFN-compared to 

un-induced samples (Figure 5.4).  
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5.2.1.2.2 Microscopic assessment of cell viability  

Microscopic evaluation of HaCat and Jurkat cells was performed to 

confirm the cell viability assay findings. A 25IU/ ml IFN--induced sample cannot 

be differentiated from the control sample in terms of colony morphology which 

appeared as a monolayer with polygonal-shaped cells. A slight reduction in cell 

density was observed in a sample induced by a 50IU/ml dose making the colony 

more loose, but no change in cells phenotype was observed. The HaCat cell 

monolayer was markedly disrupted by higher concentrations of IFN- (100 and 

Figure 5.4. The effect of IFN-y on cell viability in HaCat and Jurkat cells.  

Cells were incubated with serial concentrations of IFN- 25, 50, 100 and 200IU/ml 

for 48hrs and cell viability was measured by trypan blue assay. Slight reduction in 

viability can be seen in HaCat cells after treatment with 25IU.ml IFN-, and 

significant drop was caused by 200IU/ml concentration. Jurkat cells’ viability was 

increased gradually by IFN- and 200IU/ml dose caused the most significant rise in 

the percentage of viable cells The data is the mean of three independent repeats 

and SD was calculated. Asterisks denote a significant reduction in cell viability, * 

P≤0.05, ** P≤0.01. 

 

 

 



Chapter 5: EGCG is a potential therapy for AA 

                                                         144  
 

200IU/ml) with a significant number of small rounded particles with increased 

refractivity, probably apoptotic bodies (Figure 5.5.A). In agreement with the cell 

viability assay data, no adverse effect on the colony morphology nor cell 

phenotype was observed in Jurkat cells by any of the IFN- doses used for 

induction. This was demonstrated by the microscopic images in cells induced 

with the highest dose 200IU/ml and control group after 48hrs in culture, which 

appeared as rounded cells clumped together forming grape-like colonies (Figure 

5.5.B). Microscopic images of all groups of IFN- induced Jurkat cells are shown 

in appendix 7. 

It was concluded from the viability assay and microscopic assessment of 

both cell lines that 50IU/ml of IFN- is the maximum dose that can be used for 

induction in HaCat cells before causing significant toxicity while all the tested 

doses (25, 50, 100 and 200IU/ml) can be used safely in Jurkat cells. 
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Figure 5.5. Microscopic evaluation of HaCat and Jurkat cells 48hrs following 

activation with serial concentrations of IFN- 25, 50, 100 or 200IU/ml. 

 A) Morphology of HaCat cells in un-induced, 25 or 50IU/ml groups is relatively 

similar. 100 and 200IU/ml caused significant reduction in cell density with presence 

of small rounded particles in the media indicating cell death.  

B) Jurkat cell phenotype and colony morphology in 200IU/ml was not changed 

comapred to control group, and the other doses showed the same morphology 

(Appendix 7). Cells were examined under a light microscope at 10X magnification 

for HaCat and 20X for Jurkat. 
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5.2.1.2.3. Effect of IFN- on STAT-1 phosphorylation  

p-STAT-1 is a key and specific regulator of  the IFN- signalling pathway 

(Ivashkiv and Hu, 2004), therefore, HaCat and Jurkat cells were tested to identify 

the optimal dose of IFN- that can induce STAT-1 phosphorylation. Based on 

the viability assay, Jurkat cells were induced with 25, 50, 100 or 200IU/ml of IFN-

, while HaCat cells were induced with 25 or 50IU/ml for 48hrs. Western blotting 

revealed that p-STAT-1 was not expressed by steady-state HaCat and Jurkat 

cells, and STAT-1 phosphorylation was induced by the minimum concentration 

of IFN- (25IU/ml) in both cell lines (Figure 5.6). However, a significant increase 

in phosphorylation was observed at 100IU/ml and 200IU/ml for Jurkat cells and 

50IU/ml for HaCat cells (P≤0.5), when the band intensity was normalised against 

internal control (GAPDH). Therefore, 100IU/ml and 50IU/ml concentrations of 

IFN- were chosen for further experiments on Jurkat and HaCat cells, 

respectively. 
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5.2.1.3. The expression of p-STAT-1 is inhibited by EGCG treatment  

p-STAT1 functions as a transcription factor in the JAK-STAT pathway, 

which activates the primary genes related to inflammatory responses. Therefore, 

the effect of EGCG on the activation of STAT1 in IFN- induced HaCat and 

Jurkat cells was investigated. Jurkat and HaCat cells were first incubated with 

Figure 5.6. The effect of IFN-𝛾 on STAT-1 phosphorylation. 

Cell lysates of HaCat or Jurkat cells, incubated with serial concentrations of IFN- 

for 48hrs, were analysed with antibodies specific to the phosphorylated Tyr701 

residue of STAT-1. A)  STAT-1 phosphorylation in Jurkat cells was induced by all 

doses of INF-, but only significantly, by 100IU/ml and 200IU/ml. B) p-STAT-1 was 

induced significantly by 50IU/ml. A representative immunoblot is shown as well as a 

histogram representing the mean  ± SD of p-STAT-1 band intensities relative to 

internal control (GAPDH) for each sample (n=3) calculated by ImagJ software; * 

P≤0.05. 
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IFN- to induce STAT1 phosphorylation, then treated with EGCG at 20 or 40M 

for 24 or 48h.  

Analysis of p-STAT1 by western blot showed a 9% decrease in p-STAT1 

expression after 24h of treatment with 20M of EGCG in Jurkat cells. Further 

reduction of p-STAT1 expression up to 50% was achieved by increasing the 

concentration of EGCG from 20 to 40M for 24hrs. Moreover, prolonged time of 

incubation to 48hrs at 20M caused 30% drop. The percentage of reduction was 

based on the normalised band density relative to the internal control in each 

sample measured by densitometry (calculation in the appendix 8). The most 

marked reduction was observed in samples treated with 40M dosage of EGCG 

for 48h where the p-STAT-1 protein level was about 80% less than the untreated 

samples (Figure 5.7.A). In HaCat cells, reduction in p-STAT-1 protein was 

observed starting from the 24hrs treated cells at both dosages (20 and 40M), 

which continued to be the same in cells treated with EGCG for 48hrs with about 

80% drop in protein levels (Figure 5.7.B). Therefore, it was concluded that 48hrs 

treatment duration is more effective in inhibiting STAT-1 phosphorylation than 

24hrs in both cell lines, thus this longer treatment duration was used to look at 

the effect of EGCG on genes involved in IFN-signalling pathway and other 

regulatory genes involved in AA pathogenesis. 
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Figure 5.7. The effect of EGCG on  p-STAT-1 protein in HaCat and Jurkat cells. 

STAT-1 phosphorylation was induced by treating the cells with IFN- for 48hrs. The 

cells were then treated with 20 and 40M EGCG for 24 or 48hrs, with the protein 

levels determined by western blotting. A) Jurkat cells respond to EGCG treatment 

in a dose-dependent manner where 40M dosage showed a more marked reduction 

in p-STAT-1 protein compared to 20M. B) HaCat cells showed marked inhibition of 

STAT-1 phosphorylation at all doses and time points.  
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5.2.1.4. Effect of EGCG on IFN- downstream genes 

To investigate whether inhibition of the key signalling molecule p-STAT-

1 in the JAK-STAT pathway had an effect on IFN- downstream genes, q-PCR 

was used to quantify any changes in expression of a panel of INF- downstream 

genes. As explained in chapter 1, IFN- mediates its action via the JAK-STAT 

pathway (Horvath, 2004), where it binds to its receptors resulting in the activation 

of Janus kinase enzymes (JAK1 and JAK2). These kinases phosphorylate signal 

transducer and activator of transcription proteins such as STAT1, which 

translocates into the nucleus with subsequent activation of INF dependent 

genes expression (Darnell et al., 1994). Interferon regulatory factor (IRF-1) is 

among the key genes regulated by IFN that activates a group of genes that 

are involved in transcription of antigen presenting molecules namely TAP, HLA-

B and HLA-DR (White et al., 1996).  

HaCat and Jurkat cells were first induced by IFN- as described earlier 

then treated with 20 or 40M EGCG for 48hrs or left untreated as a control. Data 

analysis showed that EGCG inhibited JAK-2 expression significantly in a dose-

dependent manner in Jurkat cells (Figure 5.8). For instance, 20M EGCG 

dosage reduced JAK-2 mRNA expression levels by 20% (P≤0.05) and to 50% 

in 40M-treated samples (P≤0.01) compared to an untreated control. However, 

JAK-1 expression was not affected. As expected, EGCG also downregulated 

the expression of total STAT-1 significantly at 20 and 40M by about 50% 

(P≤0.05), however, there was no significant change in the expression of STAT2 

and STAT3 with any of EGCG concentrations. This inhibitory effect was 

reflected in the expression of a key downstream regulatory gene IRF-1, whose 

expression was dose-dependently inhibited by EGCG with significant reduction 
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(P≤0.05) to less than 50% of the expression level for the 40M-treated group 

compared to untreated controls.  
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A similar effect on the IFN-signalling pathway by EGCG was seen in 

HaCat cells (Figure 5.9). Significant inhibition of JAK-2 expression was observed 

(P≤0.05) in samples treated with 20 and 40M EGCG, and an increase in JAK1 

has been seen when cells were treated with 4 M of EGCG but this was not 

significant. JAK-2 inhibition was associated with significant downregulation of 

STAT-1 expression levels to about 50% less than the untreated sample, while 

STAT-2 and STAT-3 did not show any significant changes with EGCG treatment. 

The expression of the downstream regulatory molecule (IRF-1) was also 

reduced significantly in dose-depended manner with about 75% reduction in 

Figure 5.8. Effect of EGCG treatment on IFN- downstream genes in Jurkat cells.  

Following induction with IFN, Jurkat cells were treated with 20 or 40M EGCG 

for 48hrs and relative expression of IFN- downstream genes determined by q-

PCR. CT values were normalised to GAPDH and differential expression (2^−∆∆CT) 

of AA candidate genes in EGCG treated samples were calculated against untreated 

samples. Data represented as mean ± SEM (n = 4). Significant difference 

*P ≤ 0.05. **P ≤ 0.01. 
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20M EGCG treated samples (P≤0.05).and 80% drop in 40M EGCG treated 

samples (P≤0.01).  

 

 

 

 

 

 

 

5.2.1.5 Effect of EGCG on genes involved in IP molecules: HLA-DR and 

HLA-B 

Because of the importance of HLA class I and class II in the IP being 

expressed by the keratinocytes of lower two-thirds of HF in IP collapse, it was 

essential to investigate whether EGCG also affects the expression of these 

molecules. Keratinocytes (HaCat) cells were first induced by IFN- as described 

earlier then treated with 20 or 40 M EGCG for 24 or 48h or left untreated as a 

Figure 5.9. Effect of EGCG treatment on IFN-𝜸 downstream genes in HaCat cells. 

Following induction with IFN, HaCat or Jurkat cells were treated with 40M EGCG 

for 48hrs and expression of IFN- downstream genes investigated by q-PCR. 

Significant dose-dependent reduction in the expression of JAK-2, STAT-1, IRF-1, 

HLA-B and HLA-DR by EGCG was observed. CT values were normalised to GAPDH 

and differential expression (2^−∆∆CT) of AA candidate genes in EGCG treated 

samples was calculated against untreated samples. Data represented as mean ± 

SEM (n = 4). * Significant difference P ≤ 0.05, ** P ≤ 0.01. 
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control. The expression of HLA-B did not change after 48h of treatment of the 

cells with 20M EGCG at mRNA level. However, a significant decrease (p≤0.01)  

in its expression of about 65% was observed with 40M of EGCG treatment 

compared to untreated samples (Figure 5.10.A). In contrast, a significant 

reduction in HLA-DR expression was observed with the lower dose of EGCG 

(20M), which continued with higher dose (40M) with about 80% less 

expression of HLA-DR in those samples compared to untreated samples.  

To confirm the q-PCR data, western blot was performed on total proteins 

extracted from treated and untreated cells, and proteins were hybridized with 

the HLA-DR or internal control (GAPDH) antibody. Induction with IFN- 

enhanced the expression of HLA-DR in HaCat cells. However, treatment with 

EGCG for 24h or 48h reduced the amount of HLA-DR proteins in the cells by 

more than 36% (Figure 5.10.B). Hybridization with HLA-B antibody showed no 

signal even after induction with IFN- due to the relatively low expression level 

of HLA-B in HaCat cells at mRNA level (data not shown).  
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5.2.1.6 The effect of EGCG on pro and anti-inflammatory cytokines 

AA is the consequence of imbalance between inflammatory and 

regulatory arms of the immune system causing IP collapse. Therefore, the effect 

of EGCG on the expression of key inflammatory and regulatory candidate 

molecules involved in AA pathogenesis such as IL-17, CCL-5, TGF- and 

A) 

B) 

Figure 5.10. Expression of HLA-B and HLA-DR in HaCat cells treated with EGCG. 

HaCat cells were induced with IFN- for 48h then treated with 20 or 40µM EGCG for 

24 or 48hrs. A). Expression of HLA-B and HLA-DR investigated by q-PCR. CT values 

were normalised to GAPDH and differential expression (2^−∆∆CT) of HLA genes in 

EGCG-treated samples was calculated against untreated samples. Data 

represented as mean ± SEM (n = 4). Significant difference *P ≤ 0.05. **P ≤ 0.01. B). 

HLA-DR protein levels were analysed by western blot along with protein loading 

control (GAPDH). 
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FOXP3 was investigated by q-PCR in Jurkat and HaCat cell lines treated with 

20µm or 40M EGCG for 48hrs. CCL-5 expression was significantly reduced 

(P≤0.05), and that was not statistically significant in HaCat cells. The Th17 

marker (IL-17) was also significantly reduced by 20 or 40 M EGCG (P≤0.05) in 

both cell lines. On the other hand, expression of the anti-inflammatory cytokine 

TGF- was strongly enhanced in a dose-dependent manner (20M and 40 M 

with P≤0.05 and P≤0.01 respectively) in Jurkat cells while no significant effect 

was seen in HaCat cells. Expression of the Treg marker (FOXP3) was also 

increased but variation in the FOXP3 expression level did not reach statistical 

significance (Figure 5.11). 
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Figure 5.11. Effect of EGCG treatment on a group of inflammatory-regulatory genes 

involved in IP in HaCat and Jurkat cells. 

Following induction with IFN, HaCat or Jurkat cells were treated with 20 or 40M 

EGCG for 48hrs and expression of IL-17, CCL-5, FOXP3 and TGF- were 

investigated by q-PCR. CT values were normalised to GAPDH and differential 

expression (2^−∆∆CT) of AA candidate genes in EGCG treated samples was 

calculated against untreated samples. Data represented as mean ± SEM (n = 4). 

Significant difference *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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5.2.2 Ex-vivo studies  

To validate the in vitro data, an ex-vivo study was performed where 

lymphocytes (PBMCs) were isolated from the blood of patients (AA) and healthy 

(HC) donors using the ficoll method as described in section 2.2.2.  

5.2.2.1. IFN-signalling pathway is a key in AA pathogenesis  

The role of IFN- signalling in AA has been studied in lymphocytes 

isolated from regional lymph nodes (Xing et al., 2014). To investigate whether 

the same pathway is affected in circulating lymphocytes or specifically 

associated to skin, we looked at the level of IFN- protein produced by circulating 

lymphocytes in patients and HCs by ELISA after activating the cells with PMA/ 

ionomcyin. It was found that patient’s PBMCs produced about seven times 

higher levels of IFN- (P≤0.01) compared to HC (Figure 5.12.A). To confirm 

these findings, the level of p-STAT-1 protein was tested by western blotting in 

naïve PBMCs that had not been activated, and interestingly, the expression of 

p-STAT-1 protein was markedly less in PBMCs isolated from HC compared to 

patients’ blood (Figure 5.12.B).  
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Figure 5.12. Involvement of the IFN-𝛾 pathway in AA.  

A) ELISA analysis of IFN- production (pg/ml) by PBMCs of patients (n=6) and HC 

(n=5) stimulated by PMA/ ionomycin for 3.5hrs.  Individual data points and mean ± 

SD are shown. **P value≤0.01. B) Whole cell lysate probed against p-STAT-1 and 

GAPDH showing absence of p-STAT-1 expression in PMBCs of HC and its 

expression in those of patients. GAPDH used as protein loading control. To the left 

the molecular weights (kDa) are shown.  

 

B) 

A) 
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5.2.2.2. The effect of EGCG on STAT-1 phosphorylation 

To investigate the effect of ECGC on the IFN- signalling pathway (JAK-

STAT), PBMC were isolated from AA patients and treated with 40M EGCG for 

48h or left untreated as a control. At the end of the incubation period, the protein 

was extracted and the level of p-STAT-1 was detected by western blotting. As 

in Jurkat and HaCat cells, EGCG treatment markedly decreased p-STAT1 

protein expression in PBMC to about 80% compared to the untreated group as 

calculated by densitometry (Figure 5.13). 

 

 

 

 

 

 

 

 

 

5.2.2.3. The effect of EGCG on Treg-Teff balance  

As observed in chapter 3, there was imbalance in distribution of Treg and 

Teff in patient’s peripheral blood where the proportion of Teff was high and 

suppressive Treg was low compared to HC. Therefore, it was sought to 

investigate the effect of EGCG on these T-cell subsets. PBMC from 3 patients 

were treated with 20M EGC for 24hrs, and the panel of Teff and Treg was 

Figure 5.13. Effect of EGCG on p-STAT-1 and STAT-1 in AA subjects. 

PBMC cell lysate probed against p-STAT-1 and GAPDH (loading control). There 

is reduction in the up-regulated p-STAT1 expression in PMBCs of patients by 

EGCG.  
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analysed by Flow-cytometry as described in section 2.4. EGCG significantly 

reduced the proportion of Th1 cells by about 60% compared to untreated group 

(P≤0.05), with no effect on the proportion of Th2 population and insignificant 

increase in Th17 proportion (Figure 5.14. A). Interestingly, a significant reduction 

in the frequency of NKGD2+CD8+ T-cells was observed in EGCG treated 

samples (P≤0.05) by about 50% (Figure 5.14. B). Although no statistically 

significant effect can be seen on Treg cells and their subtypes, EGCG treated 

cells showed a slight increase in proportion of cells expressing TGF-, IL-10 

intracellular markers within the Treg population (Figure 5.14. C).  
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C) 

Figure 5.14. The effect of EGCG on Treg and Teff population in AA patients. 

A) The frequencies of Th1, Th2 and Th17 calculated as a percentage out of total 

CD4+ T-cells. B) The frequency of CD8+ T-cells was calculated in the total 

lymphocyte population (CD3+), and the proportion of activated CD8+ T-cells subset 

(NKG2D+ cells) was found within CD8+ T-cells. C) Percentage of CD25+FOXP3+ 

Tregs within CD4+ T-cell population,  and their suppressive subsets  represented 

by CD39, HLA-DR, LAG3, IL-10 and TGF- makers was calculated out of the total 

Treg pool. Data analysed by a two-tailed independent t-test, and the corrected t-test 

was used whenever the homogeneity of variance was violated. A 95% confidence 

interval was used where P≤ 0.05 is considered significant (*), P ≤ 0.01 (**). All bars 

plot depict mean with SEM in each study group. AA patients n=3 

A) B) 
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5.3. Discussion 

IFN- is pivotal element in inducing IP collapse in the HF, and inhibiting its 

signalling pathway is the target of many therapeutic options. JAK inhibitors 

including ruxolitinib, tofacitinib and baricitinib were recently used in clinical trials 

of several inflammatory and autoimmune diseases including skin diseases such 

as psoriasis (Hsu and Armstrong, 2014) and AA (Xing et al., 2014). JAK 

inhibitors are efficient but have relatively high cost and present a range of 

significant potential side-effects  (Shreberk-Hassidim et al., 2017). For instance, 

ruxolitinib is a broad JAK (1 and 2) inhibitor with potential to modulate the 

signalling pathway of cytokines including IL-6, IL-10, IL-22 and IL-3 (Murray, 

2007). Ruxolitinib’s side-effects include reactivation of tuberculosis, 

thrombocytopenia, anaemia and a risk of other unknown long-term side-effects 

(Tefferi and Pardanani, 2011). 

 In this thesis, EGCG was proposed as a potential therapeutic candidate for 

AA treatment mainly based on its anti-inflammatory properties and encouraged 

by its promising safety margin (Chow et al., 2003, Zhao et al., 2015). EGCG has 

an inhibitory effect on IFN- signalling via inhibiting STAT1 phosphorylation, 

which has been demonstrated by many studies (Tedeschi et al., 2002, Watson 

et al., 2004, Ogawa et al., 2012). It was therefore sought to establish whether 

EGCG acts directly on STAT1 and whether STAT1 inhibition can restore IP in 

HF.  

As both JAK1 and JAK2 catalyse STAT1 phosphorylation at Tyr701 (Shuai 

et al., 1993), the effect of EGCG on JAK1 and JAK2 expression was analysed 

by q-PCR, and EGCG was found to specifically inhibit JAK2 expression by about 

50%  but not JAK1 in both HaCat and Jurkat cell lines.  EGCG specifically blocks 

JAK2 and therefore will potentially be relatively safer and more efficient as the 
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broad JAK1/JAK2 inhibitors block the IFN- pathway as well as other pathways 

including IL-2, IL-6, IL-10, IL-23, and erythropoietin (Epo) (O'Shea and Plenge, 

2012). The specificity of EGCG as a pure JAK2 inhibitor does not reduce its 

efficiency as this was accompanied by reduction in STAT1 phosphorylation at 

Tyr701 in both cell lines and PBMCs isolated from patients’ blood as shown in 

this study. p-STAT1 interacts with IRF-1 which is a key regulator in IFN- 

signalling, and IFN- induced MHC I expression has been shown to be mediated 

by IRF-1 (Chang et al., 1992, Jarosinski and Massa, 2002). EGCG inhibitory 

effect on p-STAT1 lead to the significant reduction in IRF-1 expression observed 

in HaCat and JURKAT cells in keeping with the marked reduction in its protein 

level demonstrated in colonic epithelial cells (Watson et al., 2004). 

It is well known that activation of IFN-/STAT1/IRF-1 signalling leads to the 

activation of HLA class I and class II genes, in particular HLA-B and HLA-DR 

(Girdlestone et al., 1993). Interestingly, we found that HLA-B expression was 

significantly reduced after treating HaCat cells with 40M EGCG by about 66% 

when compared to untreated group. HLA-B expression is a major factor 

controlling immunological balance in tissues manifesting IP. For instance, low 

corneal HLA-B27 is an important contributor to ocular immune privilege (Lin et 

al., 2015). It has also been shown that MHC class I expression is very low in the 

proximal epithelium of healthy anagen HF (Harrist et al., 1983) but becomes 

highly expressed in AA lesional tissue (Gilhar et al., 2007). Interestingly, the 

current study also demonstrated the efficacy of EGCG to inhibit the expression 

of HLA-DR noticeably at mRNA and protein levels in HaCat cells treated with 

20M and 40M EGCG by about 80% drop compared to untreated group. This 

effect adds to the value of EGCG as a potential treatment for AA. Aberrant 

expression of HLA-DR in the pre-cortical matrix and dermal papilla (DP) of 



Chapter 5: EGCG is a potential therapy for AA 

                                                         164  
 

lesional anagen follicles was observed in AA (Messenger, 1984, Messenger and 

Bleehen, 1985, McDonagh et al., 1993). Therefore, it has been suggested that 

the treatment of AA with EGCG may have the same inhibitory effect on 

expression of HLA-B and HLA-DR in HF to enable IP restoration.  

Another action of EGCG demonstrated in this study was its ability to reduce 

the expression of IL-17 at mRNA level (Figure 3.11). IL-17 is a key pro-

inflammatory cytokine that has been found to be highly expressed in AA patients 

(Lew et al., 2012, Tembhre and Sharma, 2013, Aytekin et al., 2015). Targeting 

IL-17 by biological drugs such as secukinumab, ixekizumab and brodalumab 

has shown promising results in psoriasis (Wasilewska et al., 2016). Nonetheless, 

further experiments need to be performed to confirm EGCG effect on IL-17, 

particularly because flow-cytometric findings of Th17 cell frequency was not in 

keeping with q-PCR data on cell lines. EGCG can modulate immune function by 

enhancing the regulatory molecules. The current data show that EGCG was 

capable of enhancing the expression of FOXP3 and TGF- in Jurkat cells by 

about 120% in cells treated with 40M EGCG compared to untreated. These 

two molecules are markers for Tregs, which are guardians of IP in the HF. In 

agreement with that, EGCG-treated PBMC from AA patients showed increase 

in proportion of cells expressing IL-10 and TGF- markers. Another encouraging 

effect of EGCG is its ability to reverse the Teff proportion seen in AA patients 

where Th1 and NKG2D+ CD8+ were csignificantly reduced by about 50% after 

24hrs of treatment (P≤0.05).  

In this study, it has been shown that 40M EGCG which corresponds to a 

well-tolerated EGCG dose topically, would have multiple actions including 

inhibition of class I and class II HLA molecules through blocking STAT1 

phosphorylation by JAK-2 blockade as well as enhancing the function of Tregs, 
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promoting re-establishment of IP in the HF (Figure 5.16).  These findings support 

consideration of a clinical trial of EGCG in AA after confirming its proposed 

mechanism of action in HF organ culture model.  
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Figure 5.15. Schematic representation of proposed EGCG mechanism of action in AA. 

Normal HF has  scant or no APCs and scant CD4+ T-cells in the bulbar and supra-

bulbar region, which it is proposed to be mostly Treg secreting IL-10 and TGF 

maintaining  the normal IP state of HF. Affected HF is infiltrated with APCS, NK, CD8+ 

(Tc) and Th1 and 17. We propose that antigen identification and processing results in 

IFN-production, which in turns up-regulates MHC class I with subsequent 

sequestration of Tc cells and further production of IFN-and up-regulation of MHC 

class II and sequestration of Th1 and Th17 resulting in HF damage. It is proposed in 

this study that EGCG down-regulates JAK2 resulting in inhibition STAT-1 

phosphorylation, therefore, IFN- signalling pathway, and up-regulation of the 

regulatory arm acting on FOXP3 cells. Tools from Servier medical art were used to 

create the figure. 
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Chapter 6. Conclusion and future 
work 
 

 AA is a cosmetically disfiguring and psychologically disturbing skin 

disease, and poor mechanistic understanding of its pathogenesis has hampered 

the development of effective treatment. Many factors are thought to be involved 

in AA pathogenesis including IP collapse (Paus et al., 2003, Ito et al., 2004), 

where T-cells are thought to be the key mediators. For instance, T-cells are 

strongly associated with the histological picture of this disease (Todes-Taylor et 

al., 1984), and inflammatory T-cells mediate the disease progression in 

experimental models (Gilhar et al., 1999, Gilhar et al., 2002, Gilhar et al., 2003). 

Regulatory T-cells (Castela et al., 2014) and immunosuppressive molecules 

such as corticosteroids (Winter et al., 1976) and topical immunotherapy 

(Wiseman et al., 2001) limit AA progression in some patients. Therefore, 

imbalance in the T-cell compartments has been proposed in this thesis as a key 

mechanism in the pathogenesis. However, it was unknown which T-cell 

population is initially affected during AA pathogenesis and how these cells 

interact if more than one population involved.  

To answer these questions, a comprehensive study of T-cell phenotype 

in 15 AA patients and 10 HCs was performed by flow-cytometry to define which 

subtype/s of T-cells mediate IP collapse or maintenance. This experiment 

demonstrated Treg-Teff balance disruption in AA where the proportion of 

inflammatory T-cells (Th1, Th17 and NKG2D+CD8+ T-cells) was significantly 

higher in peripheral blood of patients when compared to HCs. This was 

accompanied by marked reduction in the suppressive Treg population, which 
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showed impairment in CD39 and HLA-DR-mediated suppressive mechanisms. 

There was also a low proportion of CD39+ Tregs in AA affected skin compared 

to normal skin observed by Immunofluorescence IF analysis of these skin 

sections. Despite these novel findings, this work has limitations mainly due to 

the low number of participants in the study to gain a better statistical confidence. 

Additionally, increased numbers of subjects would allow stratification of the data 

according to disease severity providing more information about the role of T-

cells in disease progression. The same is applied to IF data as the number of 

skin sections obtained was low. Although it is technically challenging to achieve, 

isolating T-cells from lesional and non-lesional skin for detailed phenotypic study 

would potentially allow better understanding of the pathology, and enable 

correlation of their tissue distribution to the changes in circulating lymphocytes 

observed in this thesis.  

In the second part of this thesis, molecular analysis of the T-cell repertoire 

was performed by NGS. Interestingly, the TCRchain of total lymphocytes was 

skewed toward two public clonotypes that found to be more prevalent in patients 

compared to HC, CASSQDKGITNEKLFF and CASSYQGSTEAF, suggesting 

their expansion in response to unique antigenic recognition. These public clones 

were found in the literature to have over 80% amino acid identity to 

TCRsequence of CD8+ T-cells, indicating the importance of this T cell 

population in the pathogenesis. These CD8+ T-cells were isolated from diabetic 

mice (Vincent et al., 2010) suggesting a correlation between diabetes and AA, 

which has been proposed in previous studies (Karadag et al., 2013).  

 As these data are novel, more work is required to confirm TCR skewing 

pattern noticed in this study on larger number of participants. For instance, 

validating the NGS findings by q-PCR analysis or in situ immune-reactivity of AA 
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lesional skin sections to antibodies synthesised against these clones is essential 

to confirm the abundance of these public clones in patient samples (Fang and 

Cui, 2011). As the public TCR clones mediates the autoimmune susceptibility, 

another confirmatory test can be performed is testing the ability of the public 

clone found by this study to provoke AA in experimental animals (Zhao et al., 

2016). Testing the reactivity of these clones to diabetes mellitus (DM) antigens 

such as insulin, tyrosine phosphatase-like proteins insulinoma antigen-2 (IA-2) 

and glutamate decarboxylase (GAD) (Roep and Peakman, 2012); as well as HF 

antigens such as hair-specific keratins (52, 50, 46 and 44KD) (Tobin et al., 1994), 

trichohyalin (Tobin, 2003) and melanocyte-associated proteins (Bystryn and 

Tobin, 1994, Paus et al., 1993) would elucidate  which antigen these clones can 

recognise.   

TCR analysis showed the prevalence of certain clonotypes in Tregs 

from HCs, CATSRDEGGLDEKLFF and CASRDGTGPSNYGYTF, which have 

high amino acid identity to CD4+ T-cells from healthy controls (Han et al., 2014). 

This was complemented with finding preferential usage of certain V segments 

by TCRof Tregs of HC such as TRBV2, and the observed deletion of the VD/DJ 

insert in the CDR3 region of TCR of Tregs of AA patients. Together, these data 

suggest the predominance of certain clones of Tregs in HC that are deficient in 

AA patient; therefore, their potential role in maintaining immune haemostasis. 

After validating these data by q-PCR or immune-assay, expanding these clones 

and injecting them as a therapy in an AA animal model would potentially confirm 

their role in maintaining IP. Applying this therapetutic approach in animal model 

to treat murine diabetic retinopathy facilitate its proposed use in AA animal 

model (Deliyanti et al., 2017).  
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Finally, it was sought to test the effect of EGCG on the key cells involved 

in AA as found by this study, namely CD8+ T-cells and Tregs. As CD8+ T-cells 

mainly secret IFN-, which mediates its effect via the JAK-STAT pathway, and 

due to the promising results from JAK inhibitor trials (Xing et al., 2014), targeting 

the JAK-STAT pathway by natural molecule was followed in this study. EGCG 

was proposed as a potential candidate in AA therapy, by virtue of its anti-

inflammatory effect mediated by STAT-1 inhibition (Tedeschi et al., 2002) and 

its positive effect on enhancing Treg differentiation (Wong et al., 2011). Both in 

vitro work, using HaCat and Jurkat cells, and ex vivo work, using PBMCs 

isolated from AA patients, showed the efficiency of 40M EGCG in reducing the 

levels of p-STAT-1 protein after 48hrs of treatment. This was accompanied by a 

significant reduction (P≤0.05) in expression of IFN- downstream genes 

including JAK-2, STAT-1 and IRF-1 in both cell lines, downregulation of CCL-5 

and IL-17 with upregulation of FOXP3 and TGF- expression in Jurkat cells. 

Downregulation of MHC class I and II genes in HaCat cells was also observed. 

These promising findings support EGCG as a candidate molecule for AA 

treatment especially as EGCG can be used topically with good penetration index 

(Scalia et al., 2014). This data would support the development of a clinical pilot 

study to measure the efficacy of EGCG in restoring IP to enhance hair re-growth 

in AA patients. 

As this study was performed mainly in cell lines, more work is required to 

assess the efficiency of EGCG as a potential treatment of AA. Organ culture of 

human HF from healthy individuals and AA patients could be performed in the 

future where the effect of EGCG on the expression of MHC class I and II can be 

analysed. Similarly, intralesional T-cells could be analysed for the effect of 

EGCG on their phenotype, activation, and cytokine release. To sum up, the work 
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in this thesis has brought a number of novel findings to the field of AA research, 

and these should be taken forward to facilitate the development of more effective 

therapy for the disease. 
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Appendix  

Appendix 1. Multiplex PCR primer sequences for V and J segments  (5' -> 3') 

TRBV gene segment(s)  Primer sequence  

TRBV2  TCAAATTTCACTCTGAAGATCCGGTCCACAA  

TRBV3-1  GCTCACTTAAATCTTCACATCAATTCCCTGG  

TRBV4-1  CTTAAACCTTCACCTACACGCCCTGC  

TRBV(4-2, 4-3)  CTTATTCCTTCACCTACACACCCTGC  

TRBV5-1  GCTCTGAGATGAATGTGAGCACCTTG  

TRBV(5-4, 5-5, 5-6, 5-7, 5-8)  GCTCTGAGCTGAATGTGAACGCCTTG  

TRBV(6-2, 6-3)  GCTGGGGTTGGAGTCGGCTG  

TRBV6-4  CCCTCACGTTGGCGTCTGCTG  

TRBV6-8  CACTCAGGCTGGTGTCGGCTG  

TRBV6-9  CGCTCAGGCTGGAGTCAGCTG  

TRBV7-2  CACTCTGACGATCCAGCGCACAC  

TRBV7-3  CTCTACTCTGAAGATCCAGCGCACAG  

TRBV7-4  CCACTCTGAAGATCCAGCGCACAG  

TRBV7-7  CCACTCTGACGATTCAGCGCACAG  

TRBV7-9  CACCTTGGAGATCCAGCGCACAG  

TRBV9  GCACTCTGAACTAAACCTGAGCTCTCTG  

TRBV10-1  CCCCTCACTCTGGAGTCTGCTG  

TRBV10-2  CCCCCTCACTCTGGAGTCAGCTA  

TRBV10-3  CCTCCTCACTCTGGAGTCCGCTA  

TRBV(11-1,11-2, 11-3)  GAGGCTCAAAGGAGTAGACTCCACTCT 

TRBV(11-1, 11-3)  CCACTCTCAAGATCCAGCCTGCAG  

TRBV(12-3, 12-4, 12-5)  CCACTCTGAAGATCCAGCCCTCAG  

TRBV13  CATTCTGAACTGAACATGAGCTCCTTGG  

TRBV14  CTACTCTGAAGGTGCAGCCTGCAG  

TRBV15  GATAACTTCCAATCCAGGAGGCCGAACA  

TRBV16  CTGTAGCCTTGAGATCCAGGCTACGA  

TRBV18  GCATCCTGAGGATCCAGCAGGTAG  

TRBV19  CCTCTCACTGTGACATCGGCCC  

TRBV20-1  CTTGTCCACTCTGACAGTGACCAGTG  

TRBV24-1  CTCCCTGTCCCTAGAGTCTGCCAT  

TRBV25-1  CCCTGACCCTGGAGTCTGCCA  

TRBV27  CCCTGATCCTGGAGTCGCCCA  

TRBV28  CTCCCTGATTCTGGAGTCCGCCA  

TRBV29-1  CTAACATTCTCAACTCTGACTGTGAGCAACA  

TRBV30  CGGCAGTTCATCCTGAGTTCTAAGAAGC 

 

TRBJ gene 

segment 

Primer sequence 

TRBJ1-1  TTACCTACAACTGTGAGTCTGGTGCCTTGTCCAAA 

TRBJ1-2  ACCTACAACGGTTAACCTGGTCCCCGAACCGAA 

TRBJ1-3  ACCTACAACAGTGAGCCAACTTCCCTCTCCAAA 

TRBJ1-4  CCAAGACAGAGAGCTGGGTTCCACTGCCAAA 

TRBJ1-5 CTTACCTAGGATGGAGAGTCGAGTC 

TRBJ1-6 CTGTCACAGTGAGCCTGGTCCCATTCCC 

TRBJ2-1  CGGTGAGCCGTGTCCCTGGCCCGAA 

TRBJ2-2 CCAGTACGGTCAGCCTAGAGCCTTCTCCAAA 

TRBJ2-3  ACTGTCAGCCGGGTGCCTGGGCCAAA 

TRBJ2-4  AGAGCCGGGTCCCGGCGCCGAA 

TRBJ2-5  GGAGCCGCGTGCCTGGCCCGAA 

TRBJ2-6  GTCAGCCTGCTGCCGGCCCCGAA 

TRBJ2-7  GTGAGCCTGGTGCCCGGCCCGAA 
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Appendix 2. The frequency of V J usage by FACS and PBMCs from patients and 

HC.  

sample_i
d 

TRBJ1
-1 

TRBJ1
-2 

TRBJ1
-3 

TRBJ1
-4 

TRBJ1
-5 

TRBJ1
-6 

TRBJ2
-1 

TRBJ2
-2 

TRBJ2
-3 

TRBJ2
-4 

TRBJ2
-5 

TRBJ2
-6 

TRBJ2
-7 

PBMCS_H
C15 

0.244 0.091 0.058 0.118 0.173 0.032 0.107 0.061 0.057 0.030 0.005 0.006 0.016 

PBMCS_H
C18 

0.202 0.085 0.069 0.095 0.189 0.036 0.109 0.071 0.068 0.043 0.012 0.006 0.016 

PBMCS_H
C01 

0.219 0.048 0.081 0.058 0.253 0.019 0.161 0.075 0.030 0.028 0.003 0.001 0.021 

PBMCS_H
C03 

0.202 0.107 0.065 0.116 0.142 0.030 0.103 0.070 0.098 0.033 0.013 0.005 0.016 

PBMCS_H
C13 

0.192 0.097 0.061 0.111 0.174 0.034 0.093 0.074 0.089 0.042 0.014 0.006 0.013 

PBMCS_H
C16 

0.281 0.080 0.062 0.103 0.167 0.037 0.074 0.078 0.045 0.037 0.007 0.002 0.025 

PBMCS_H
C17 

0.218 0.094 0.056 0.100 0.199 0.026 0.105 0.069 0.077 0.033 0.010 0.004 0.010 

PBMCS_A
A7 

0.153 0.131 0.065 0.107 0.190 0.031 0.103 0.061 0.091 0.051 0.014 0.002 0.001 

PBMCS_A
A10 

0.166 0.118 0.060 0.103 0.199 0.029 0.103 0.068 0.059 0.043 0.015 0.006 0.031 

PBMCS_A
A13 

0.329 0.079 0.063 0.120 0.122 0.029 0.069 0.086 0.055 0.026 0.008 0.002 0.012 

PBMCS_A
A21 

0.203 0.092 0.072 0.098 0.191 0.038 0.100 0.069 0.078 0.037 0.010 0.003 0.008 

PBMCS_A
A22 

0.214 0.112 0.058 0.118 0.148 0.041 0.097 0.064 0.070 0.038 0.017 0.004 0.018 

PBMCS_A
A24 

0.171 0.062 0.044 0.341 0.112 0.022 0.082 0.050 0.048 0.019 0.040 0.003 0.007 

PBMCS_A
A26 

0.237 0.093 0.075 0.101 0.177 0.043 0.071 0.073 0.072 0.036 0.011 0.003 0.008 

PBMCS_A
A27 

0.274 0.107 0.071 0.153 0.187 0.035 0.037 0.048 0.038 0.035 0.006 0.001 0.008 

PBMCS_A
A28 

0.230 0.082 0.057 0.110 0.144 0.033 0.104 0.073 0.083 0.042 0.016 0.006 0.019 

PBMCS_A
A29 

0.262 0.076 0.057 0.095 0.144 0.029 0.091 0.056 0.068 0.041 0.012 0.003 0.065 

FACS_AA
26 

0.121 0.076 0.067 0.095 0.158 0.032 0.116 0.068 0.137 0.037 0.066 0.015 0.010 

FACS_HC
01 

0.136 0.065 0.119 0.082 0.142 0.050 0.125 0.116 0.052 0.057 0.013 0.010 0.031 

FACS_HC
15 

0.119 0.182 0.077 0.068 0.073 0.078 0.103 0.034 0.063 0.004 0.027 0.015 0.156 

FACS_HC
16 

0.158 0.059 0.099 0.114 0.147 0.046 0.129 0.102 0.046 0.043 0.011 0.012 0.032 

FACS_AA
32 

0.088 0.127 0.114 0.130 0.098 0.069 0.081 0.073 0.053 0.055 0.036 0.004 0.073 

FACS_AA
33 

0.111 0.140 0.110 0.116 0.093 0.074 0.103 0.056 0.059 0.027 0.042 0.005 0.065 

FACS_AA
34 

0.093 0.133 0.114 0.107 0.095 0.068 0.092 0.070 0.058 0.042 0.029 0.013 0.085 
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Appendix 3. Post hoc analysis of VJ segment usage  

Calculating the fold changes in V or J segment frequency between healthy and patient 

samples. 

V segments 
PBMC 
Samples 

Fold 
Change 

P 

TRBV4.2 1.022 0.328 

TRBV19 1.016 0.001 

TRBV30 0.985 0.251 

TRBV6.4 0.99 0.159 

TRBV6.3 1.008 0.397 

TRBV7.9 1.008 0.147 

TRBV24.1 0.994 0.238 

TRBV18 0.996 0.058 

TRBV6.1 1.004 0.18 

TRBV12.4 0.996 0.429 

TRBV4.3 1.004 0.257 

TRBV4.1 0.996 0.28 

TRBV2 0.997 0.342 

TRBV23.1 1.003 0.23 

 

J segments 
PBMC 
Samples 

Fold 
Change 

P 

TRBJ1.1 1 0.95 

TRBJ1.2 1.01 0.37 

TRBJ1.3 1 0.61 

TRBJ1.4 1.02 0.26 

TRBJ1.5 0.98 0.16 

TRBJ1.6 1 0.47 

TRBJ2.1 0.98 0.08 

TRBJ2.2 1 0.19 

TRBJ2.3 1 0.98 

TRBJ2.4 1 0.69 

TRBJ2.5 1 0.15 

TRBJ2.6 1 0.36 

TRBJ2.7 1 0.89 

V segments 
in FACS 
samples  

Fold 
Change 

P 

TRBV12.4 1.031362 0.122504 

TRBV15 0.974515 0.237822 

TRBV12.3 0.981623 0.320266 

TRBV30 0.987527 0.136723 

TRBV2 0.989532 0.01056 

TRBV6.4 0.989735 0.080463 

TRBV23.1 0.991213 0.074426 

TRBV18 0.991401 0.199522 

TRBV4.3 1.008597 0.091488 

TRBV7.2 1.007843 0.224518 

TRBV10.3 1.007612 0.143311 

TRBV27 1.007165 0.22666 

TRBV20.1 1.00693 0.31493 

TRBV6.1 1.005858 0.172824 

TRBV28 1.005183 0.56941 

TRBV6.3 1.00489 0.003808 

TRBV29.1 0.995428 0.172708 

TRBV24.1 1.004588 0.204315 

TRBV4.2 1.004421 0.187009 

TRBV3.1 0.995767 0.047727 
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Appendix 4.  Frequency of top 10 

public aa sequences in each study 

group 

TRBV9 1.00413 0.167778 
J segments 
in FACS 
samples 

Fold 
Change 

P 

TRBJ1.1 -0.03447 0.97639 

TRBJ2.5 0.026076 1.018239 

TRBJ1.4 0.023731 1.016585 

TRBJ2.3 0.022998 1.016069 

TRBJ2.1 -0.02124 0.985388 

TRBJ2.2 -0.01767 0.987826 

TRBJ1.2 0.016845 1.011745 

TRBJ2.7 -0.01488 0.989738 

TRBJ1.5 -0.00982 0.993216 

TRBJ2.4 0.005837 1.004054 

TRBJ2.6 -0.00309 0.997862 

TRBJ1.6 0.002904 1.002015 

TRBJ1.3 0.002768 1.001921 

Group  Public AA sequence Frequency 

FACS AA  CAWSNRV_RQPQHF 0.03  
CA*PGG*AS_GSYNEQFF 0.03  

CASSPGSYLGNTIYF 0.02 
 

CASTKTKRQGPISRPFPTGELFF 0.01  
CATSDTEV_DMNTEAFF 0.01  

CAAQGNTEAFF 0.01  
CASSWGTGNGYTF 0.01  

CANSTRGS_PGNTIYF 0.01  
CASSPTGPTEAFF 0.008 

 
CASSLSDTQYF 0.006  

CASSDGSYQGNEQFF 0.007 

FACS HC CA*PGG*AS_GSYNEQFF 0.02  
CAWSNRV_RQPQHF 0.02  
CASSPGSYLGNTIYF 0.01  

CATSDTEV_DMNTEAFF 0.01  
CASTKTKRQGPISRPFPTGELFF 0.008  

CAAQGNTEAFF 0.008  
CASSWGTGNGYTF 0.005  

CASSLSDTQYF 0.005  
CASSDGSYQGNEQFF 0.004  

CASSPTGPTEAFF 0.002 

 CATSRDEGGLDEKLFF 0.003 

 CASRDGTGPSNYGYTF 0.002 

PBMC AA CASSYQGSTEAFF 0.01  
CASSQDKGITNEKLFF 0.01 

 
CAWSNRV_RQPQHF 0.01  

CARVPRAV_NTGELFF 0.005  
CASSQDGGVNTGELFF 0.004  
CASSPGGTANTEAFF 0.004  
CASSPGSYLGNTIYF 0.003  

CATSEGGLEAFF 0.003 
 

CA*PGG*AS_GSYNEQFF 0.001  
CATSDTEV_DMNTEAFF 0.002 

PBMC HC CAWSNRV_RQPQHF 0.02 
 

CA*PGG*AS_GSYNEQFF 0.01 
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Appendix 5.  NCBI search of public AA sequences identity  

A- CASSYQGSTEAFF 

Chain E, Human Leukocyte Antigen A02 Presenting Ilakflhwl, In Complex With 

Cognate T-cell Receptor 

Sequence ID: 5MEN_ELength: 240Number of Matches: 1 

 
CATSDTEV_DMNTEAFF 0.008  

CASSPGSYLGNTIYF 0.008  
CARVPRAV_NTGELFF 0.007  

CASTKTKRQGPISRPFPTGELFF 0.004  
CASSLGTVYTEAFF 0.004 

 
CASSLDSQ_RNTEAFF 0.003  

CASSQEGRARF 0.003  
CAAQGNTEAFF 0.002  

CASSDGSYQGNEQFF 0.001 

https://www.ncbi.nlm.nih.gov/protein/5MEN_E?report=genbank&log$=protalign&blast_rank=2&RID=34K6CJ69015
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Range 1: 90 to 101GenPeptGraphics 

Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

37.5 bits(81) 0.070 12/13(92%) 12/13(92%) 1/13(7%) 

Query  1    CASSYQGSTEAFF  13 

            CASSYQG TEAFF 

Sbjct  90   CASSYQG-TEAFF  101 

 

B- CASSQDKGITNEKLFF  

 

T-cell receptor beta chain, partial [Mus musculus] 

Sequence ID: ADD98295.1Length: 43Number of Matches: 1 

Range 1: 21 to 36 

Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

42.2 bits(92) 0.002 13/16(81%) 13/16(81%) 0/16(0%) 

Query  1   CASSQDKGITNEKLFF  16 

           CASSQD GI NE LFF 

Sbjct  21  CASSQDGGISNERLFF  36 

 

C- CATSRDEGGLDEKLFF 

T cell receptor beta, partial [Homo sapiens] 

Sequence ID: AIE10719.1Length: 81Number of Matches: 1 

Range 1: 31 to 46 

 

 

 

Query  1   CATSRDEGGLDEKLFF  16 

           CA SRD G  +EKLFF 

Sbjct  31  CASSRDLGATNEKLFF  46 

 

 

 

 

D- CASRDGTGPSNYGYTF  

T-cell receptor beta, partial [Homo sapiens] 

Sequence ID: AIE10595.1Length: 77Number of Matches: 1 

Range 1: 28 to 42 

Alignment statistics for match #1 

Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

32.0 bits(68) 11 11/16(69%) 12/16(75%) 0/16(0%) 

https://www.ncbi.nlm.nih.gov/protein/5MEN_E?report=genbank&log$=protalign&blast_rank=2&RID=34K6CJ69015&from=90&to=101
https://www.ncbi.nlm.nih.gov/protein/5MEN_E?report=graph&rid=34K6CJ69015%5b5MEN_E%5d&tracks=%5bkey:sequence_track,name:Sequence,display_name:Sequence,id:STD1,category:Sequence,annots:Sequence,ShowLabel:true%5d%5bkey:gene_model_track,CDSProductFeats:false%5d%5bkey:alignment_track,name:other%20alignments,annots:NG%20Alignments|Refseq%20Alignments|Gnomon%20Alignments|Unnamed,shown:false%5d&v=90:101&appname=ncbiblast&link_loc=fromHSP
https://www.ncbi.nlm.nih.gov/protein/ADD98295?report=genbank&log$=protalign&blast_rank=1&RID=34N3JZPN01R
https://www.ncbi.nlm.nih.gov/protein/AIE10719?report=genbank&log$=protalign&blast_rank=1&RID=34V1PDXA015
https://www.ncbi.nlm.nih.gov/protein/AIE10595?report=genbank&log$=protalign&blast_rank=4&RID=34X2ME4G014
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Score Expect Identities Positives Gaps 

35.0 bits(75) 0.97 13/17(76%) 13/17(76%) 3/17(17%) 

Query  1   CASRD-GTGPSNYGYTF  16 

           CAS D GTG  NYGYTF 

Sbjct  28  CASSDPGTG--NYGYTF  42 

 

E- CASTKTKRQGPISRPFPTGELFF 

hypothetical protein CO090_04760 [Acidobacteria bacterium 

CG_4_9_14_3_um_filter_49_7] 

Sequence ID: PJB79852.1Length: 61Number of Matches: 1 

Range 1: 33 to 44 

Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

32.9 bits(70) 14 10/12(83%) 10/12(83%) 0/12(0%) 

Query  8   RQGPISRPFPTG  19 

           R GPI RPFPTG 

Sbjct  33  RNGPIRRPFPTG  44 

 

 

F- CANSTRGS_PGNTIYF 

T cell receptor beta chain CDR3, partial [Homo sapiens] 

Sequence ID: AAC72553.1Length: 28Number of Matches: 1 

Range 1: 11 to 27 

Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

34.1 bits(73) 1.0 13/18(72%) 13/18(72%) 4/18(22%) 

Query  1   CANSTR---GSPGNTIYF  15 

           CA STR   GS GNTIYF 

Sbjct  11  CA-STRPGQGSSGNTIYF  27 

 

 

 

 

 

G- CASSPTGPTEAFF  

T-cell receptor beta chain variable region, partial [Homo sapiens] 

Sequence ID: ANO54375.1Length: 53Number of Matches: 1 

Range 1: 30 to 44 

https://www.ncbi.nlm.nih.gov/protein/PJB79852?report=genbank&log$=protalign&blast_rank=2&RID=38N4CM85014
https://www.ncbi.nlm.nih.gov/protein/AAC72553?report=genbank&log$=protalign&blast_rank=1&RID=38NMZUNU014
https://www.ncbi.nlm.nih.gov/protein/ANO54375?report=genbank&log$=protalign&blast_rank=4&RID=38PMB467014
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Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

35.0 bits(75) 0.59 12/15(80%) 12/15(80%) 2/15(13%) 

Query  1   CASSP--TGPTEAFF  13 

          CASSP  TG TEAFF 

Sbjct  30  CASSPLPTGSTEAFF  44 

 

H- CANSTRGSPGNTIYF  

T-cell receptor beta chain variable region, partial [Homo sapiens] 

Sequence ID: ANO55971.1Length: 33Number of Matches: 1 

Range 1: 11 to 24GenPeptGraphics 

Alignment statistics for match #1 
Score Expect Identities Positives Gaps 

34.1 bits(73) 1.3 12/15(80%) 12/15(80%) 1/15(6%) 

Query  1   CANSTRGSPGNTIYF  15 

           CA S RGS GNTIYF 

Sbjct  11  CASSLRGS-GNTIYF  24 

 

Appendix 6 cell viability in 24hrs EGCG  treated HaCat/Jurkat 
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Figure 1. The mean percentage (%) of viable cells in HaCat and Jurkat cell lines 

after treatment with different concentrations of EGCG (10, 20, 40, 60 and 

100μM) for 24hrs. 

Slight reduction in viability can be seen in both cell lines after treatment with 

lower doses of EGCG 10, 20, 40M (not statistically significant) while a 

significant drop started to be seen at 100M in HaCat cells and 60M in Jurkat 

cells. The experiment was repeated three times and mean and SD were 

calculated. Asterisks denote a significant reduction in cell viability, *** P≤0.001. 

https://www.ncbi.nlm.nih.gov/protein/ANO55971?report=genbank&log$=protalign&blast_rank=2&RID=337MA2MR014
https://www.ncbi.nlm.nih.gov/protein/ANO55971?report=genbank&log$=protalign&blast_rank=2&RID=337MA2MR014&from=11&to=24
https://www.ncbi.nlm.nih.gov/protein/ANO55971?report=graph&rid=337MA2MR014%5bANO55971%5d&tracks=%5bkey:sequence_track,name:Sequence,display_name:Sequence,id:STD1,category:Sequence,annots:Sequence,ShowLabel:true%5d%5bkey:gene_model_track,CDSProductFeats:false%5d%5bkey:alignment_track,name:other%20alignments,annots:NG%20Alignments|Refseq%20Alignments|Gnomon%20Alignments|Unnamed,shown:false%5d&v=11:24&appname=ncbiblast&link_loc=fromHSP
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Appendix  7. 48hrs IFN- treatment in Jurkat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 8. Densitometric analysis of p-STAT1 band in Jurkat and HaCat cells 

treated with EGCG.  

 

Jurkat  P-
STAT-1 

Inverted net 
band 

GAPDH Inverted net 
band 

final 
ratio 

% of 
reduction 

Un 194.6 60.4 4.2 102.6 152.4 53.2 0.1 
 

Ind 140.9 114.1 57.9 102.4 152.6 53.4 1.1 
 

20-24hr 145.6 109.4 53.2 102.1 152.9 53.7 1.0 8.8 

40-24hr 174.6 80.4 24.2 110.7 144.3 45.1 0.5 50.5 

20-48hr 158.4 96.7 40.4 102.5 152.5 53.2 0.8 30.0 

40-48hr 191.3 63.7 7.5 115.8 139.2 40.0 0.2 82.8 

Background 198.8 56.2 0.0 155.8 99.2 0.0 
  

 

 

0.0

0.5

1.0

1.5

Un Ind 20-24hr 40-24hr 20-48hr 40-48hr

P-STAT-1 Prottein expression

Figure 2. Microscopic evaluation of Jurkat cells 48hrs following activation with 

serial concentrations of IFN- 25, 50, 100 or 200IU/ml.  

Jurkat cell phenotype and colony morphology in control versus all the tested doses 

of IFN- 200IU/ml is relatively similar; Cells were examined under a light 

microscope using  20X objective. 
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-Servier medical art used to create some images in this thesis (with permission) 

can be accessed via this link (http://smart.servier.com/image-set-download).  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

UN Induced 20-24hr 40-24hr 20-48hr 40-48hr

p-STAT-1 Protein expression in HaCat

Samples p-STAT-
1  

inverted net 
band  

GAPDH  inverted net 
band  

Final  
RATIO 

% of 
reduction 

UN 239.5 15.5 0.6 218.3 36.7 21.8 0.0 
 

Induced 213.7 41.3 26.5 199.5 55.5 40.6 0.7 
 

20-24hr 236.7 18.3 3.4 215.6 39.4 24.5 0.1 78.5 

40-24hr 237.1 17.9 3.1 209.2 45.8 30.9 0.1 84.8 

20-48hr 239.1 15.9 1.0 219.7 35.3 20.4 0.0 92.5 

40-48hr 238.3 16.7 1.8 217.7 37.3 22.4 0.1 87.4 

Background  240.113 14.887 0 
  

0 
  

Figure 7.1. The effect of EGCG on p-STAT-1 protein in Jurkat cells. 

The band intensity of WB (Figure 5.7.) was calculate by ImageJ software following 

the formula recommended by the software : 

http://www.yorku.ca/yisheng/Internal/Protocols/ImageJ.pdf 

The data showed in the table was plotted in the figure here showing dose-dependent 

reduction of p-STAT-1 protein levels in Jurkat cells treated with 20 and 40M EGCG 

for 24hrs or 48hrs. 

Figure 7.2. The effect of EGCG on p-STAT-1 protein in HaCat cells. 

The band intensity of WB (Figure 5.7.) was calculate by ImageJ software following 

the formula recommended by the software : 

http://www.yorku.ca/yisheng/Internal/Protocols/ImageJ.pdf 

The data showed in the table was plotted in the figure here showing dose-dependent 

reduction of p-STAT-1 protein levels in HaCat cells treated with 20 and 40M EGCG 

for 24hrs or 48hrs. 

http://smart.servier.com/image-set-download
http://www.yorku.ca/yisheng/Internal/Protocols/ImageJ.pdf
http://www.yorku.ca/yisheng/Internal/Protocols/ImageJ.pdf
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