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Abstract

The principles, models and steps of Bayesian time series analysis and forecasting
have been developed extensively during the past forty years. In order to estimate
parameters of an autoregressive (AR) model we develop Markov chain Monte Carlo
(MCMC) schemes for inference of AR model. It is our interest to propose a new prior
distribution placed directly on the AR parameters of the model. Thus, we revisit
the stationarity conditions to determine a flexible prior for AR model parameters.

A MCMC procedure is proposed to estimate coefficients of AR( p ) model. In order
to set Bayesian steps, we determined prior distribution with the purpose of applying
MCMC. We advocate the use of prior distribution placed directly on parameters. We
have proposed a set of sufficient stationarity conditions for autoregressive models of
any lag order.

In this thesis, a set of new stationarity conditions have been proposed for the AR
model. We motivated the new methodology by considering the autoregressive model
of AR(2) and AR(3). Additionally, through simulation we studied sufficiency and
necessity of the proposed conditions of stationarity. We also draw parameter space
of AR(3) model for stationary region of Barndorff-Nielsen and Schou (1973) and our
new suggested condition. A new prior distribution has been proposed placed directly
on the parameters of the AR( p ) model. This is motivated by priors proposed for the
AR(1), AR(2),. . . , AR(6), which take advantage of the range of the AR parameters.
We then develop a Metropolis step within Gibbs sampling for estimation. This
scheme is illustrated using simulated data, for the AR(2), AR(3) and AR(4) models
and extended to models with higher lag order.

The thesis compared the new proposed prior distribution with the prior distributions
obtained from the correspondence relationship between partial autocorrelations and
parameters discussed by Barndorff-Nielsen and Schou (1973). It discusses the study
by Jones (1987) in which the author generalized a Jacobian transformation based on
the expressions for parameters in terms of partial autocorrelations. We have pointed
out the limitations of Jones (1987). The proposed methodology is illustrated using
simulated and real data.
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Chapter 1

Introduction and motivation

1.1 Introduction and aim of this thesis

Time series are met frequently in many subject areas when observations are collected over time.

They are common throughout social science, economics and the humanities. For instance, a

time series dataset can consist of stock prices collected daily, measurements made by sensors

on an aircraft, or some from monitoring the vital signs of a patient in a hospital. One of

the objectives of time series analysis is to fit an autoregressive model of lag order p . Many

approaches have been proposed to estimate parameters of the AR( p ), but amongst the most

successful mechanisms of recent years have been Bayesian inference methods.

In recent years Bayesian inference has received a huge amount of attention, especially with re-

gards to the use of computational methods, particularly Markov chain Monte Carlo (MCMC)

algorithms. Whilst several ways exist to construct these chains, the most popular include the

Gibbs sampler, Geman and Geman (1984), a subset of the general MCMC technique of Metropo-

lis et al. (1953) and Hastings (1970).

The principles, models and method of Bayesian time series analysis and forecasting have been

1
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developed extensively during the last forty years. This development has involved thorough in-

vestigation of statistical and mathematical aspects of forecasting models and related techniques.

This thesis concerns estimation of the autoregressive (AR) model of order p .

One of the biggest challenges in developing MCMC schemes for time series analysis is stationary,

because it imposes restrictions on the parameter space. Although there are some limited studies

on stationarity for autoregressive models which give information about the space of the AR

parameters, previous studies were primely limited to the AR(3) model. The issue of deriving

stationarity conditions directly on the parameters of the autoregressive model has been of interest

for the last 60 years. However, the current solutions depend on iterative-based conditions, which

are quite difficult to interpret and do not lead to general conditions for higher lag order.

The aim of this thesis is to estimate parameters of the AR model of time series. A Markov Chain

Monte Carlo (MCMC) procedure is proposed to estimate coefficients of such a model. In order

to use the Bayesian procedure, we need to determine the prior distributions of the parameters.

It seems that it is desirable that one places prior distribution on the parameters, as opposed

to placing priors indirectly on functions of the parameters such as roots of the AR polynomial

or the partial autocorrelations. The reason behind this is that we believe in Bayesian statistics

we should put the prior distribution on the parameters and should get the posterior on the

parameters of the interest rather than placing prior distributions on the roots of the polynomial

or some function of them. Therefore, in this thesis, we advocate the use of prior distributions

placed directly on the parameters. In order to achieve this goal we need to revisit stationarity

as it restricts the space of the AR parameters and hence has an important impact on the priors.

In this thesis, we develop stationarity conditions for autoregressive models of any lag order

p . We motivate the new methodology by considering the autoregressive models of AR(2) and

AR(3). Additionally, through simulation we study sufficiency and necessary of the proposed

stationarity conditions for the AR( p ) model. We also draw the parameter space of the AR(3)

model for the stationary region of Barndorff-Nielsen and Schou (1973) and our new suggested
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condition. We propose a new prior distribution placed directly on the AR parameters of the

AR( p ) model. This is motivated by priors proposed for the AR(1), AR(2), . . . , AR(6) models,

which take advantage of the range of the AR parameters. We then develop a Metropolis within

Gibbs algorithm for estimation. This scheme is illustrated using simulated and real data for the

AR(2), AR(3) and AR(4) models and was extended to models with higher lag order.

We compare the proposed prior distribution with the prior distributions obtained from the corre-

spondence relationship between partial autocorrelations and parameters discussed by Barndorff-

Nielsen and Schou (1973). We discuss the study by Jones (1987) in which the author generalized

a Jacobian transformation based on the expressions for parameters in terms of partial autocor-

relations. We highlight some of the limitations of Jones (1987) in which the prior distribution of

parameters cannot be obtained by using his Jacobian transformation in the case of high order.

Simulation and real data are used to illustrate the proposed methodology.

1.2 Structure of the thesis

The layout of the thesis is organized as follows. Chapter 2 briefly outlines the literature review

of the different topics present in the thesis. It gives a short background of the application and

models of time series. It offers the literature of stationary time series models, it describes the

stationary process, real and complex roots, and discusses the classical root criterion to determine

whether a time series is stationary or not. This chapter also discusses an overview of Bayesian in-

ference including Markov Chain Monte Carlo, namely Gibbs sampling, the Metropolis- Hastings

algorithm and the related topic of convergence of Markov chains. Furthermore, the autoregres-

sive moving average (ARMA) model and arguments for the proposed framework are discussed.

Chapter 3 embraces a study on stationary processes for AR( p ) as a vector AR(1) model. This

chapter covers the study of sufficiency and necessary for the stationarity conditions of autoregres-

sive models. We propose a new set of stationarity conditions which consist of linear inequalities.
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We then derive necessary and sufficient conditions for the AR(2) and AR(3) models, and we

provide some results for the AR(4). Moreover, we provide a recursive mechanism to derive

sufficient conditions for the AR( p ) model, for any p ≥ 2 . A simulation study is conducted

for the AR(3) and AR(4) models in order to check sufficiency and necessary for our stationary

conditions. We explore the accuracy of the proposed stationarity conditions for the AR(3) and

the AR(4) via simulation. Finally, we give an alternative proof for the stationarity conditions

of AR(3) (Barndorff-Nielsen and Schou, 1973).

Chapter 4 extends the work of Chapter 3 to formulate prior distributions and to implement

MCMC steps. This chapter proposes suitable MCMC schemes consisting of Metropolis within

Gibbs sampling. We propose a new prior distribution placed directly on the AR parameters of the

AR( p ) model. This is motivated by priors proposed for the AR(1), AR(2), . . . , AR(6) models,

which take advantage of the range of the AR parameters. We then develop a Metropolis within

Gibbs algorithm for estimation. This estimation scheme is demonstrated by using simulated

data, for the AR(2), AR(3) and AR(4) models and is extended to models for higher lag order

p . This chapter also outlines the generalized posterior distribution for the AR( p ) model.

Chapter 5 is concerned primarily with two sections in order to study and compare the proposed

MCMC scheme with some previous studies relevant to our study. The purpose of the first

section is to compare the proposed prior distribution with the prior distributions obtained from

the correspondence relationship between partial autocorrelations and parameters as discussed in

Barndorff-Nielsen and Schou (1973). It discusses the study by Jones (1987) in which the author

generalized a Jacobian transformation based on the expressions for parameters in terms of partial

autocorrelations. This chapter illustrates some of the limitations of Jones (1987) in which the

prior distribution of parameters cannot be obtained using his Jacobian transformation in the

case of high order models. This comparison relies upon some methodological steps and practical

results when applying the prior distribution to obtain parameter estimates of the AR( p ) model.

The objective of the second section is to apply our proposed MCMC scheme, to both real data

and simulated data. This section compares the results obtained by our method to results of Box
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et al. (1976). This comparison is performed on different orders of AR( p ) models.

Chapter 6 summarizes the achievements of the thesis and provides overall conclusions. Finally,

some future work recommendations are provided. The programming language R has been used

throughout the thesis.



Chapter 2

Literature review

2.1 Introduction

This chapter provides a short background on the application and models of time series. It

provides the literature of stationary time series models, and in particular it describes the order

of stationary, real and complex roots, when models of times series are stationary and when roots

lie outside the unit circle. This chapter also gives on the overview of MCMC, Gibbs sampling, the

Metropolis Hastings algorithm and related topics. Furthermore, the Auto-Regressive Moving

Average (ARMA) model, Auto-Covariance Function (ACF), difference equation and partial

auto-correlation in time series are presented in order to discuss the general ideas about them.

2.2 Time series

There are many studies for parameter estimation in time series (Wold (1939); Box et al. (1976);

Shumway and Stoffer (2011); Kulahci and Bisgaard (2011)). The availability of computer power

has enabled us to perform complex computational Bayesian algorithms via simulation (Geman

6
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and Geman (1984); McCulloch and Tsay (1993); Cowpertwait and Metcalfe (2009); Petris et al.

(2009); Robert and Casella (2010)).

A time series is a set of observations made regularly in time (Chatfield, 2003). Time series

observations are either discrete or continuous. When data are made only at certain times,

usually equally spaced, a time series is said to be discrete. When data are taken constantly in

time, a time series is said to be continuous (Shumway and Stoffer, 2011).

The objective of time series analysis is to learn from the past and to predict future values of

time series, assisting managers or policy makers in making well informed decisions. A time

series analysis assesses the main properties of data and its variation. These factors, coupled

with advanced computing power, have led to time series methods being widely applicable in

government, industry and trade (Cowpertwait and Metcalfe, 2009).

Time series is applied in a wide range of areas. For instance, many known time series appear

frequently in economics. Examples include monthly total exports in successive months, or stock

markets recorded daily or monthly unemployment rates. Much work has been done regarding

the implementation of time series in economics ( Anderson (1971) and Enders (2008)). Social

scientists focus on inhabitant data, like birth rates, or school registrations. A demographer

aims at foretelling changes in inhabitants for as long as 10 or 20 years in coming years (e.g.

(Brass, 1974)). Epidemiologists may focus on the number of influenza cases noticed over some

time period. In medicine, blood pressure measurements traced over time might be helpful for

the evaluation of drugs employed in treating hypertension. A range of time series methods are

routinely applied in the physical and environmental areas (Shumway and Stoffer, 2011).

2.3 Stationary process

The fundamental concept for any time series analysis is stationary time series. In practice,

however, many economic, financial and climate time series are non-stationary and more difficult
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to deal with. A common practice way to transform the non-stationary time series to stationary

is the technique of differentiation. Furthermore, Box et al. (1976) developed this approach and

many refer to their approach as Box-Jenkins analysis. It is substantially for stationary time

series that models can be developed and we can forecast future values. However, in many

applications, especially in economics and business, it is the non-stationary time series that

are the most interesting (Kulahci and Bisgaard, 2011). One of the main characteristics that

differentiate time series analysis from classical methods is that observed data taken over time

can be dependent. However, in order to do any sort of analysis of time series some type of

invariance in the time series has to be assumed. For instance, the mean or variance of the time

series is not changing through time. One assumption that can be made is that a time series is

stationary. The concept of stationarity is that it is an invariance property that means statistical

features of the time series do not alter over time. Any sort of inference of time series would

not be applicable, if the marginal distribution were completely different Rao (2008) and Gilgen

(2006).

There are two types of stationarity, weak stationarity that only considers the covariance of a

process and strict stationarity which is a much stronger condition and imposes distributions that

are invariant through time.

Strict stationarity: a time series yt is said to be strictly stationary if the joint distribution of

yt1 , . . . , ytn is identical to the joint distribution of yt1+h
, . . . , ytn+h

for all t1, . . . , tn and for all

h , so that it remains the same after any arbitrary time shift (Cowpertwait and Metcalfe, 2009).

Weak Stationarity: the time series is weak stationary if the mean and the variance are

constants for all time t and the auto covariance function between yt and yt+h only depends

on the lag difference (Shumway and Stoffer, 2011). We can say that a time series yt is defined

as weakly stationary if and only if

1 .E(yt) = µ <∞ , that is, the expectation of yt is finite and does not depend on t.
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2 . γ(yt+h, yt) = γh , that is, for each h , the auto covariance of the random variables yt+h

and yt does not rely on t.

2.4 The ARMA model

In this section the autoregressive and moving average models are briefly discussed. The feature

of the MA( q ) model is that after h lags there is no correlation between two random variables.

On the other hand, at all lags for the AR( p ) model, there are correlations that need to be

considered. It can be noted that estimating the parameters of an AR( p ) model is much easier

than an MA. Thus, several ways exist in fitting an AR model to the observed data (it can be

noted that if the roots of the feature polynomial lie inside the unit circle, then the AR model

could be written as an MA, since it is causal) (Cowpertwait and Metcalfe, 2009). In order to

fit an AR model to the data, the order of the model needs to be chosen; often one utilizes AIC,

BIC or a similar criterion to define the order. However, in a real application, the chosen order

tends to be relatively large, order 14 for instance. The large order is selected due to a complex

auto-correlation structure and/or when correlations tend to decay slowly (Shumway and Stoffer,

2011). Therefore, a very helpful generalization that can be more elastic is the ARMA( p , q )

model. In this case

yt =

p∑
i=1

φiyt−i + εt +

q∑
j=1

θjεt−j

where φi and θj are parameters of AR and MA respectively, and εt is white noise (i.e. εt is

iid with zero mean and some variance σ2 ).

2.4.1 Auto covariance function (ACF)

The ACF is determined as the series of covariance of a stationary process. The linear dependence

amongst two points on the same sequence calculated at different times is measured by the auto

covariance. It can be said that different time series give an increase to various features in the
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ACF (Rao, 2008). In order to evaluate the degree of dependence in the data set and to choose

a suitable model for the data, the ACF is one of the essential tools that can be used. If the

data are values of a stationary time series ( yt ), then the ACF can provide us an estimate of the

ACF of ( yt ). This suggests that among many possible time series models which model is an

appropriate candidate for representing the dependence of the data (Brockwell and Davis, 2006).

Suppose that yt is a stationary time series with zero mean, then the auto covariance function

of yt at lag h is as follows:

γ(h) = Cov(yt+h, yt) = E[yt+hyt]

Note that the variance ( γ(h = 0) ) of the time series is obtained when h = 0 .

2.4.2 The auto covariance of an auto regressive process (AR)

Let us suppose the AR( p ) process of yt with zero mean:

yt =

p∑
j=1

φjyt−j + εt

where φj are the autoregressive parameters of the AR model and εt is white noise ( εt is iid

with zero mean and some variance σ2 ). It can be assumed that yt is causal (the roots of φ(z)

lie outside the unit circle). Given that yt is causal, the recursion for the covariance can be

derived. By multiplying both sides by yt−h for ( h ≥ 0 ) and taking expectations, we have

E(ytyt−h) =

p∑
j=1

φjE(yt−jyt−h) + E(εtyt−h)︸ ︷︷ ︸
=0

=

p∑
j=1

φjE(yt−jyt−h)

It can be observed that this equation would not hold if the process were not causal, since yt−h

and εt are not necessarily independent. Let us suppose c(h) = E(y0yh) and utilizing the above

equation we can see that the auto covariance satisfies a homogeneous difference equation as
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follows:

c(h)−
p∑
j=1

φjc(h− j) = 0 (2.1)

for h ≤ 0 . Recall the feature polynomial of an AR process φ(z) = 1−
∑p

j=1 φjz
j that has the

roots λ1, . . . , λp . The characteristic roots are used to obtain the solution for equation (2.1); it

can be seen that if the roots are all distinct, the solution of equation (2.1) satisfies:

c(h) =

p∑
j=1

Cjλ
−h
j = 0 (2.2)

where Cj are constants and are selected depending on the initial values (c(h) : 1 6 h 6 p) .

The straightforward way to prove equation (2.2) is to utilize a plug-in approach.This can be

done by plugging c(h) =
∑p

j=1Cjλ
−h
j into equation (2.1) as follows:

c(h)−
p∑
j=1

φjc(h− j) =

p∑
j=1

Cj(λ
−h
j −

p∑
i=1

φiλj
(−h+i))

=

p∑
j=1

Cjλ
−h
j (1−

p∑
i=1

φiλ
i
j)︸ ︷︷ ︸

φ(λi)

= 0 (2.3)

When we have a case where the roots of φ(z) are not distinct, let us suppose the roots are

λ1, . . . , λp with multiplicity m1, . . . ,mp (
∑p

h=1mh = p) . Thus, the solution of this satisfies:

c(h) =

p∑
j=1

λ−hj Pmj(h) (2.4)

where Pmj is mth
j order of polynomial and the ‘hidden’ parameters Cj are in Pmj(h) (Shumway

and Stoffer (2011) and Rao (2008)).
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2.5 Stationarity conditions for ARMA type time series models

Most of the time series literature, which is reviewed below, is particular to ARMA models.

As mentioned above, a stationary time series consists of observations fluctuating about a fixed

mean level with constant variance over the observational period. That is, the overall behavior

of the series remains the same with the passage of time (Peña et al., 2011). Schur (1918) -

Cohn (1922) (Schur-Cohn) established a non-linear dynamical system in order to calculate the

roots of a certain characteristic polynomial. The theory of stationary processes was developed

in the thirties and forties of the last century. Wold (1939)’s work was one of the first studies

on stationary time series. In the economics literature the classical roots criterion to check for

stationarity was first discussed by Samuelson (1941) and further discussed in Chipman (1950).

Stationary time series methods can be used for inference and prediction in a great number of

time series (Kulahci and Bisgaard, 2011). Engineering and natural and social sciences are some

of the examples of areas that use stationary time series.

Below we discuss some key developments of stationary time series. The inception of work

of stationary time series dates back to Wold’s decomposition theorem. According to Wold

(1939) any stationary time series is likely to be decomposed into two different elements: self-

deterministic and stochastic. This decomposition is operated by stochastic models which are

employed to evaluate the probability that the next observation of the variable is placed between

two specified limits, which define the confidence or the reliability of the forecast value. Wold

established first that the autoregressive (AR) model is stationary if the roots of its characteristic

polynomial lie outside the unit circle in the complex plane. Several other authors have provided

detailed proofs of this important result. Samuelson (1941) derived a transforming dynamic

system for solving polynomial equations. This system has been expressed through a set of

conditions for finding the roots of the characteristic polynomial. Anderson (1971) shows that

the so called “root” criterion of stationarity is required in order to write an AR process as an

infinite order moving average model (see also Wold (1939)). Brockwell and Davis (2001) study
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in detail the stationarity of AR processes. Wise (1956) conducted a study on the stationarity

conditions for the autoregressive and moving average time series models. He aimed at deriving

stationarity conditions on the space of parameters as opposed to the space of the characteristic

polynomial (Brockwell and Davis, 2002). However, these conditions are given iteratively from

one to another, there is no general formula and they are highly non-linear. They are very long

and they do not seem to have a pattern particularly useful for higher dimensions. In particular,

all determinant elements for polynomials are up to the fourth degree. Even for low dimensions

there is no insight on how a prior distribution could be formed based on Wise’s conditions.

Gargantini (1971) modify the Schur-Cohn criterion by reformulating its sufficient condition in

the presence of roundoff error for floating-point arithmetic. He discovered the explicit expression

of the coefficients of the increasing polynomials up to degree 4.

A groundbreaking study on the understanding of autoregressive models is Barndorff-Nielsen and

Schou (1973). The authors show that under stationarity there is a one to one corresponding

relationship between the parameters of the AR( p ) model φi and partial autocorrelations πi .

This suggests a one to one transformation because it re-parameterizes Φ in terms of the partial

autocorrelation Π of the AR( p ) process. This corresponding relationship was proved by the

authors for orders 1, 2, 3 and 4. Based upon this transformation, a number of studies (Barnett

et al. (1996); McLeod and Zhang (2008)) have been conducted to estimate the parameters of

autoregressive models. However, the recommended matrix equation for the relationship between

the roots of characteristic polynomials and the parameters of the autoregressive model is very

complicated. It becomes even more complex when the order is higher than four (Marriott et al.,

1995).

One of the effective studies on the stationarity of time series has been done by Priestley (1981).

The core of his study established a fixed domain for the AR(2) model. His purpose was to

achieve the conditions of stationarity in the autoregressive model by limiting the domain of

complex roots and real roots in a triangular region, the above results were limited to the AR(2)

model.
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Monahan (1984) propose a simple re-parameterization of the parameters of the ARMA model.

He conducted this by drawing values from a uniform distribution which is bounded to ensure

the stationarity and invertability regions of the process.

Okuguchi and Irie (1990) derived a set of determinant inequalities in cubic equations, which

described an alternative computation of the Schur-Cohn condition. Three conditions were known

for the quadratic equation, and the authors above extended them to higher degrees. They found

that the conditions stated by Schur-Cohn without using determinant inequalities were different

from the original as well as from the simplified Samuelson conditions, see Farebrother (1973).

They provided a direct demonstration of the equivalence of the Farebrother (1973) and Schur-

Cohn condition: using diagram matrix arguments.

Farebrother (1992) applies the Schur-Cohn criterion for establishing the stationarity region to

the AR(2), AR(3) and AR(4) models. He then looks at simplifying the inequalities and provides

some alternative expressions. These are all non-linear for the AR(3) model and equivalent to

the corresponding conditions of Samuelson (1941).

Marmol (1995) establishes a constant domain for the AR(2) model based on Schur-Cohn theory.

In order to make the AR(2) process stationary, Marmol (1995) relies on the use of two positive

determinants for parameters of the AR(2) model. Najim (2010) has provided the analysis

of stability domain of a second order transfer function. His aim was to obtain the region of

stationarity conditions in the autoregressive model by restricting the domain of complex roots

and real roots in a triangular region. He also presented the Schur-Cohn stability algorithm based

on a transfer function of all pass filter. A transfer function is defined based on the roots of the

AR(2) model when the roots lie outside the unit circle. He first expressed a condition required

for the stability in terms of kp as follows,

|kp| =

∣∣∣∣∣(−1)p
p∏
i=1

pi

∣∣∣∣∣ < 1 since |pi| < 1 ∀ i = 1, . . . , p
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Then a transfer function of a pth order all pass filter is developed. After, Najim (2010) has

looked at the correspondence relationship between the Schur-Cohn algorithm and his transfer

function using polynomial order of pth order. This polynomial vector is used in both the Schur-

Cohn algorithm and Levinson algorithm. The Schur-Cohn algorithm is written as follows:

 φp−1(x−1)

xp−1φp−1(x)

 =

 1
(1−k2

p)
−kp

(1−k2
p)

−kp
(1−k2

p)
x−1 1

(1−k2
p)
x−1


 φp(x

−1)

xpφp(x)

 (2.5)

while the expression for the Levinson algorithm satisfies

 φp(x
−1)

xpφp(x)

 =

 1 kp(x)

kp x


 φp(x

−1)

xp−1φp−1(x)

 (2.6)

where φp(x
−1) is the AR characteristic polynomial, φp(x) is the transfer function of the AR

model and φp is the pth coefficient of the AR model. The Levinson-Durbin algorithm is a

procedure in linear algebra in order to provide the solution of on equation involving a diagonal-

constant matrix. It can be noted that the matrices in equations (2.5) and (2.6) are inverse of

one another. This means the coefficients of equation (2.6) are the reflection of the Schur-Cohn

coefficients. Although this restriction is used as a criterion to determine coefficients of the AR(2)

model, it cannot be applied to transfer functions of an order greater than 2.

2.6 Bayesian inference

2.6.1 Introduction to the basic principle

Bayesian statistics requires a significantly different method of considering statistical inference

when it is compared to the traditional school such as confidence intervals, p-values, hypothesis

testing, etc. A major difference between the Bayesian framework and the frequentist way lies in

introducing the prior information through the framework of probability distributions (Dunson,
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2001). The prior distribution gives a summary of everything that is obtained about parameter θ ,

except the data; moreover, in the Bayesian approach, conclusions are normally reached using

probability statements.

The use of Bayesian approaches has significantly increased and these approaches have been imple-

mented to a wide range of study areas and scientific research. Bayesian data analysis includes

analyzing statistical models by integrating prior information about parameters (Spiegelhalter

et al., 2002). In Bayesian inference, the model for the observed quantity y = (y1, y2, ..., yn)T is

defined via a vector of unknown parameters φ using a probability distribution p(y|φ) where

it is assumed that φ is a random quantity having a prior distribution p(φ) . Thus, inference

about φ is based on its posterior density p(φ|y) , given by:

p(φ|y) =
p(φ)p(y|φ)

p(y)
(2.7)

where p(y) =
∑
p(φ)p(y|φ) if φ is a discrete random variable and p(y) =

∫
p(φ)p(y|φ)dφ in

the continuous case. Equation (2.7) may then be stated in a proportional form:

p(φ|y) ∝ p(φ)p(y|φ) (2.8)

All Bayesian inferences follow from the posterior distribution because it contains all the related

knowledge about the parameter of interest φ .

2.6.2 MCMC methods

MCMC methods focus on simulating direct draws from some distribution of interest, usually a

posterior distribution. Through the MCMC approach one can employ the previous sample to

randomly produce the next sample, producing a Markov chain.

Initiated in the early 1990s (Gelfand and Smith, 1990) a particular the MCMC method, the
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Gibbs sampler, is very extensively applicable to a broad class of Bayesian problems and it

has sparked a great rise in the application of Bayesian analysis. MCMC methods have their

origins in the Metropolis algorithm (Metropolis et al., 1953); an attempt made by physicists to

compute complicated integrals by considering them as expectations for some distribution and

then evaluating this expectation by drawing samples from that distribution. The Gibbs sampler,

mentioned above, (Geman and Geman, 1984) has its roots in image processing.

To utilize the MCMC iterations to obtain a satisfactory representation of the real posterior dis-

tribution, the chain must converge. Obtaining convergence poses a major application challenge

connected to any MCMC approach. This means that the MCMC results no longer depend on

the initial condition of the chain. This method for utilizing MCMC iterations as samples from

a posterior distribution f(.) can be summed up as follows:

1. Produce a Markov chain (φ1, . . . , φk) employing Gibbs sampling

2. Wait until the Markov chain reaches equilibrium; assume this happens at time T

3. The samples (φT+1, . . . , φT+k) in the Markov chain can then be taken a sample drawn

from f(.)

The time before T is defined as the burn-in period. It should be the time the Markov chain

really obtained convergence, in other words, the way T is calculated. Regrettably, T cannot

be calculated theoretically. Instead informal diagnostics must be utilized to determine if the

chain has obtained convergence. Various diagnostic approaches have been presented in order to

monitor the convergence of MCMC chains. The commonest and most usable diagnostic method

is the trace plot. “The trace plot” is a basic tool which is utilized for observing the mixing

behavior of the chain. Samples which are drawn from parameters of interest can be plotted as

a function of iteration number from the duplicated chains started from over-dispersed values.

Naturally, a wavy pattern suggests strong autocorrelations within the chain, at the same time

zigzag patterns demonstrate that the parameter proceeds more freely (Sorensen and Gianola,
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2002).

2.6.3 Gibbs sampling

Gibbs sampling proposed by Geman and Geman (1984) is a specific case of the Metropolis-

Hastings algorithm. Within Gibbs sampling, a sample (a random number or draw) is generated

from all full conditional distributions, hence sampling the joint posterior distribution. This is

simple if we can ascertain that each of these distributions is one of the well-known distributions

that we can easily sample from. An algorithm description is provided below.

The aim of Gibbs sampling is to iteratively apply a distribution for a random variable condition-

ing on impermanent (temporary) initial values of the others on a permanent cycle till samples

from the process empirically approximate the required marginal distribution (Gill, 2014). Thus,

random samples can be drawn from a conditional distribution for φ1 and then φ1 is used to draw

φ2 from its conditional distribution and so forth. The iterative nature of the Gibbs sampling

algorithm can be simplified by the requirement that it cycles throughout these full conditionals

drawing coefficient values on the basis of the most current version of all of the parameters al-

ready in the list. The order does not matter, however the use of the most recent draw from the

other samples is necessary.

Let us consider that it is intended to draw samples for the set of random variables for the

marginal posteriors of φ1, φ2, . . . , φp , where (Φ = φ1, φ2, . . . , φp) is the parameter vector of

interest, but the marginal distribution cannot be obtained from the joint posterior analytically.

However, the full conditional distributions, which can easily be sampled from, are available. The

procedure can be outlined as follows:

1. Determine initial values for the parameters φ , i.e., φ(0) = (φ
(0)
1 , φ

(0)
2 , . . . , φ0

p) ;

2. Following this, draw from each complete conditional distribution consecutively, employing
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the current updated values achieved from the earlier and most recent steps. That is, for

i = 1, . . . , N : y = (y1, . . . , yn)

(a) draw φ
(i)
1 ∼ π(φ1|φ(i−1)

2 , φ
(i−1)
3 , . . . , φ

(i−1)
p , y)

(b) draw φ
(i)
2 ∼ π(φ2|φ(i)

1 , φ
(i−1)
3 , . . . , φ

(i−1)
p , y)

...

(c) draw φ
(i)
p ∼ π(φp|φ(i)

1 , φ
(i)
2 , . . . , y).

3. Repeat step 2 until the chain converges.

When convergence is obtained, the entire set of simulation values are from the target posterior

distribution and a sufficient number has to be drawn so as to analyse all areas of the posterior.

The significant feature throughout every iteration of the cycling of the vector φ , conditioning

on the values of φ that have already been sampled for that cycle; otherwise the last cycle can

take the current φ values. As a result, the sample value for the p th parameter has to be

examined on all the i -step values in the final stage for a given cycle (Gill, 2014). The above-

mentioned statements distinctly show that having the complete set of conditional distributions is

needed to run the Gibbs sampling algorithm. Sometimes running Gibbs sampling could be very

inadequate, however it reduces multidimensional issues to a series of univariate conclusions by

considering parameters one by one and as a result it will be uncomplicated to program (Casella

and George, 1992). It can be observed that if the Gibbs sampler has been put to run for a

relatively long period, a whole sample of the values in the φ vector will be generated by a

complete cycle of the algorithm.

2.6.4 The Metropolis-Hastings Algorithm

One of the issues of implementing the Monte Carlo integration lies in achieving samples from a

complicated probability distribution p(y). Making an attempt to tackle this issue is at the roots

of MCMC approaches. Specifically, these trace to efforts by mathematical physicists to combine

complicated functions by drawing samples randomly ((Metropolis et al., 1953) and (Hastings,
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1970)). (Chib and Greenberg, 1995) provide a clear and distinct review of this method. Our

aim is to extract samples from p(φ) where p(φ) = f(φ)/k , and the normalizing constant k is

unlikely to be realized, and is not easy to calculate (because it involves intractable integrals). The

Metropolis algorithm (Metropolis et al., 1953) results in a series of draws from this distribution

as follows:

1. Use any starting value of φ0 satisfying f(φ0) > 0 .

2. Employing the most recent φ value, sample a proposed point φ∗ from some distribution

q(φ∗, φt−1) (Robert and Casella, 2010), which is the probability of returning a value of

φ∗ given a former value of φ1, φt . The algorithm precedes by computing the acceptance

probability which is the probability is defined that the candidate value φ∗ will be accepted

as the next value in the sequence. If φ∗ is accepted, then φt = φ∗, otherwise φt = φt−1.

This distribution is denoted as the proposal or candidate-generating distribution. Various

Metropolis-Hastings algorithms are constructed based on the choice of proposal density.

If the proposal density is independent of the current value in the sequence, q(φ∗|φt−1) =

q(φ∗), then the resulting algorithm is called an independence chain. There are other

proposal densities that can be defined by letting the density have the form q(φ∗|φt−1) =

h(φ∗ − φt−1),where h is a symmetric density about the origin.

3. With the proposed point being φ∗ , compute the density ratio at the candidate φ∗ and the

recent φt−1

α =
p(φ∗)

p(φt−1)
=

f(φ∗)

f(φt−1)
.

Since we are looking at the ratio of p(φ) under two different values, the normalizing

constant k cancels out.

4. When the jump causes a rise in the density p(α > 1) , accept the candidate point (φt = φ∗)

and go back to step 2. When the jump causes a fall in the density p(α < 1) then with

probability α accept the proposed point, else reject it and go back to step 2.
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We can outline the Metropolis sampling algorithm as first computing and then accepting a

candidate point with probability α (the probability of a move). This produces a Markov chain

(φ0, φ1, . . . , φt, . . . ) , as the transition probabilities from φt to φt+1 relies only on θt and not

(θ0, . . . , θt−1) . Following an adequate burn-in period (of say, k steps) the chain reaches its

stationary distribution and samples from the vector (θk+1, . . . , θk+n) are samples from p(y) .

2.7 MCMC approaches for stationary time series

A considerable amount of computationally intensive statistical analysis becomes feasible by

employing the currently developed techniques of repeated stochastic simulation. Recently, the

analysis of stationary processes in time series has been considerably influenced by computational

approaches, particularly MCMC. In the AR models, for instance, this is depicted by MCMC

schemes for predictive and posterior inference proposed initially by Monahan (1983), Albert and

Chib (1993) and McCulloch and Tsay (1993).

In the work of Monahan (1983), the Akaike information criterion (AIC) is utilised in order to

determine the autoregressive order. By linking prior information with the parameter struc-

ture of the model, Bayesian order-determination methods produce terms that penalize an over

parametrization of the model. Monahan (1983) developed a practical method of prior specifi-

cation for ARMA models. He utilized the normal and inverse gamma distributions and applied

his methods to a number of examples. He re-parameterized coefficients {φ1, . . . , φp = Φ} and

{θ1, . . . , θq = Θ} in terms of the partial autocorrelations π1, . . . , πp = Π which was used to im-

pose the stationarity of the autoregressive polynomial. Monahan (1983) yielded correct Bayes

factors for five substitute models and obtained four step ahead predictive means and standard

deviations for each model. However he used a normal prior which was restricted to the station-

arity region implied by the partial autocorrelation domain. Such a prior may not be suitable

for high order p, q and indeed he only provided examples with p+ q ≤ 2 , where p is the order

of the AR part and q is the order of the MA part. McCulloch and Tsay (1993) were one of
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the first to suggest the use of MCMC for AR models. They illustrate their methods on the

monthly retail price of systematic unleaded gas in America. Regarding the prior distribution,

these authors propose normal priors for the AR parameters and a gamma prior for the precision

(inverse of variance). The disadvantage of the proposal methods is that both the prior and

the posterior distribution of the AR coefficients have support on the real-line (normal distri-

bution), as a result, there is a positive probability assigned to values of AR parameters that

result in non-stationary time series. Thus the methods fail to take the stationary region into

account. Albert and Chib (1993) criticized McCulloch and Tsay (1993) and proposed different

MCMC simulation methods for estimating the parameters. They suggested a Gibbs sampler for

an autoregressive model which has intercept and variance shifts ruled by a Markov structure.

Although rejection sampling was considered as an improvement, this did not seem to work well

for a general AR order.

Barnett et al. (1996) consider a multiplicative seasonal AR model. They developed McCulloch

and Tsay (1993)’s idea and demonstrated how to concurrently select the model order of the

regular and seasonal polynomials. They tried to avoid outliers, impose stationarity, and eval-

uate missing observations. Barnett et al. (1996) made some new developments related to the

prior structure in AR and ARMA models with a main emphasis on a prior devoted for partial

autocorrelation coefficients, which shows the capability of complex statistical analysis of prior

and posterior distribution through MCMC models. This approach gives a degree of flexibility

in progressing structured prior distributions in applied situations.

Barnett et al. (1996) concentrate on the priors specified for partial autocorrelation coefficients πi

rather than autoregressive parameters φi . The authors enforce the stationarity conditions by

using a sufficient Metropolis within Gibbs algorithm in order to generate partial autocorrelation.

They illustrate how to carry out Gibbs sampling when the AR order is unknown. They also show

a way to combine different aspects of fitting AR models giving a more efficient and comprehensive
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treatment. Barnett et al. (1996) consider a model as follows,

yt = wt + ot

where yt is the tth observation, wt in the integrated AR process and ot is an addictive outlier.

The ARMA( p , q ) are

φ(B) = 1− φ1B − · · · − φpBp, θ(B) = 1− θ1B − · · · − θqBq

with orders p and q respectively. Barnett et al. (1996) provides details on the relationship

between partial autocorrelation πi and parameters φi . The authors have provided five as-

sumptions for the ARMA( p , q ) model.

Assumption 1: The roots of both φ(B) and θ(B) lie outside the unit circle.

Assumption 2: Both errors ot and εt follow normal distributions. These errors are modeled

as a finite mixture of normals in order to allow for additive and innovation outliers. Therefore,

ot ∼ N(0,K1tσ
2) and εt ∼ N(0,K2tσ

2) and Kt = (K1t,K2t) has a bivariate multinomial

distribution with K1t ≥ 0 and K2t ≥ 1 . When K1t > 0 , it indicates that there is an additive

outlier at time t. If K2t > 1, it means that there is an innovation outlier at time t. Furthermore,

in case there is no additive outlier and no innovation outlier then Kt = (0, 0) so that ot = 0

and εt ∼ N(0, σ2).

Barnett et al. (1996) assume that π = (π1, . . . , πp)
′

is the first p partial autocorrelations of

a zero mean stationary AR process with AR polynomial φ(B) and they assume that Π =

(Π1, . . . ,Πp)
′

to be the first q partial autocorrelations of an AR process with AR polynomial

θ(B). By re-parameterizing φ and θ in terms of π and Π, the stationarity constraints become

−1 < πi < 1 for i = 1, . . . , p and −1 < Πi < 1 for i = 1, . . . , q. The authors indicated that

in order to allow some of the πj and Πj to be zero, they let J1j = 0 if πj = 0 and let

J1j = 1 otherwise, j = 1, . . . , p. They also let J2j be defined similarly with respect to the Πj
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for j = 1, . . . , q.

Assumption 3: The authors priors incorporate indicator variables to assert a positive prior

probability that each partial autocorrelation coefficient is zero. For i = 1, . . . , p and j = 1, . . . , q

the indicators J1j and J2j are independently distributed. When J1j=1, then the prior for πj

has a uniform distribution on (-1, 1), and when J2j=1, then the prior for Πj has a uniform

distribution on (-1, 1).

Assumption 4: The prior for µ is flat and the prior for σ2 is the standard reference prior

f(σ2) ∝ 1
σ2 .

Assumption 5: There are no additive or innovation outliers when t ≤ 0.

The advantage of Barnett et al. (1996)’s approach is that one for one draws of each partial

autocorrelation can be obtained in a more complicated algorithm. The AR coefficients are

re-parametrized in terms of the reflection coefficients. Model order selection is performed by

associating a binary indicator variable with each parameter. Regarding sampling their posterior

distribution, their MCMC method appeals to stochastic variable selection and reversible jump

ideas. They have applied a MCMC method using Metropolis-Hastings. The proposal density is

as follows,

g(πi) ∝ f(yt|yt−1, πi 6=j , J1,Π, J2,K,O, σ
2, µ)

πj and J1j are generated jointly by first generating J1j from a binomial distribution with the

πj integrated out; next πj is generated conditional on J1j . Ot and Kt are generated from a

multinomial distribution, σ2 and µ are generated from an inverse gamma and a normal dis-

tribution, respectively. A disadvantage of this method is its complexity, in particular regarding

high order AR models. The model is more complicated and does not deal with the issue of

forecasting .

Barnett et al. (1997) employ MCMC methodology to predict the multiplicative seasonal and
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autoregressive moving average model. The proposed MCMC places a uniform prior on the

partial autocorrelations as well as the standard inverse gamma prior on the variance of the

innovations. This work makes use of the correspondence of the partial autocorrelation and the

parameters of the AR model, first proven in Barndorff-Nielsen and Schou (1973). However, the

algorithm of Barndorff-Nielsen and Schou (1973) is complex and does not focus on the forecasting

problem, and this limits the work of Barnett et al. (1997) as well.

Huerta and West (1999) highlight the development, specification and analysis of autoregressive

time series models, and expand the work of Barnett et al. (1996). The point that distinguishes

the work of Huerta and West (1999) from the work of Barnett et al. (1996) is the development

of classes of priors. Huerta and West (1999) include model order uncertainty into the linear AR

framework focusing on prior specification for latent structure. This results in a novel class of

prior distributions on the characteristic reciprocal roots of the process.

Huerta and West (1999) considered a standard AR model of order p as follows;

yt =

p∑
j=1

φjyt−j + εt

where φj are parameters of the AR model and εt is white noise ( εt is iid with zero mean and

some variance σ2). The characteristic polynomial is as follows:

φ(x) = 1−
p∑
i=0

φix
i =

n∏
i=1

(1− zix)

where {z1, . . . , zp} are the reciprocals of the roots of φ(x) = 0. By assuming a stationary

process, the roots of φ(x) lie outside the unit circle |zi| < 1 for each i. Authors have often

used the back-shift operator as a traditional representation φ(B)yt = εt

n∏
i=1

(1− ziB)yt = εt

Suppose the roots of zi are distinct and occur as two conjugate pairs which are real roots
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and complex roots. Huerta and West (1999) include model order uncertainty into the linear AR

framework concentrating on prior specification. This results in a novel class of prior distribution.

The authors have selected the marginal prior for both real roots and complex roots. The class

prior assumes that both real roots and complex roots are exchangeable. The marginal prior for

real roots is as follows.

Huerta and West (1999) selected a prior for autoregressive real roots (ri) for each i = 1, . . . , Ri

the real roots ri have a prior over support |ri| ≤ 1 with density function as follows:

ri ∼ ψr,−1I(−1)(ri) + ψr0I0(ri) + ψr1I1(ri) + (1− ψr0 − ψr,−1 − ψr1)gr(ri)

where I(.) is the indicator function, I0(r) = 1 if r = 0 and I0(r) = 0 otherwise, and gr(.)

is a continuous density function over (-1, 1). Furthermore, ψr,−1 , ψr0 and ψr1 are the prior

probabilities that ri = −1, 0, 1 respectively. Therefore, authors state that the marginal prior

for ri allows for roots on the stationary boundary ri = ±1. According to the authors, the

continuous part of the prior, gr(.) specifies the conditional prior pdf over the stationary region

−1 < ri < 1.

Huerta and West (1999) also adopted the uniform Dirichlet prior distribution as the default

prior for the three probabilities as follows,

(ψr1 , ψr0 , ψr,−1) ∼ Dir(ψr1 , ψr0 , ψr,−1|1, 1, 1)

Prior specification for each pair of complex roots are provided with some qualitative features.

They structured the prior for complex roots as follows,

ri ∼ ψc0I0(ri) + ψc1I1(ri) + (1− ψc1 − ψc0)gc(ri)

where I(.) is the indicator function. We will now discuss the components of the above equation.

ψc0 is the prior probability for the first component which corresponds to the zero root. This
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prior is coupled with a prior on real roots, a full prior expression of uncertainty about model

order is provided. The prior for ri has non-zero prior probability ψc0 on the stationary region.

The authors have used a uniform Dirichlet hyper prior distribution on the selection probabilities

for the complex roots as follows,

(ψc0 , ψc1) ∼ Dir(ψc0 , ψc1 |1, 1)

It can be noted that with the real roots, the complex roots are not identified. As the authors

stated, under this prior and assuming independence across i, the model is unchanged under

arbitrary permutations of the root index i.

Huerta and West (1999) have applied the method of MCMC in order to calculate posterior

probabilities. Their MCMC is based on the standard Gibbs sampling algorithm embracing

direct simulation of the truncated normal distribution by using the quantile function. Their

model parameters are as follows,

η = {zi = 1, . . . , p; (ψr,−1, ψr0 , ψr1); (ψc0 , ψc1 ;σ2}.

Thus, posterior inferences are based on summarizing the full posterior distribution. It can be

noted that Huerta and West (1999) have provided posterior conditional distributions for both

real roots and complex roots.

Their MCMC appeals to stochastic variable selection and reversible jump ideas. These references

show how model uncertainty might be embedded into MCMC methods in the context of linear

and stationary time series models. This MCMC is based on a standard Gibbs sampling algorithm

embracing direct simulation of the truncated normal by using the quantile function. They

selected the marginal prior for real roots and complex roots separately and also select the

stationary boundary for each of them. However, there is not a one to one relationship between

the roots of the characteristic polynomial and the AR coefficients. As p and q increase, the

roots are too many and these lead to prior identification problems. More importantly, the
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modeler will be interested in the posterior distributions of the coefficients and not of the roots.

2.8 Arguments for the proposed framework

We aim to estimate parameters of the AR model for time series. In this thesis we are placing prior

distributions directly on the parameters of the AR model not on functions of the parameters.

The reason behind placing priors on the parameters is that we believe in Bayesian statistics

we should put the prior distribution on the parameters and should get the posterior on the

parameters of the interest. However, there are other possibilities in order to do this.

Albert and Chib (1993) provide a model in which they put a normal prior distribution on the

parameters. They obtained a posterior distribution of all unknown parameters and functions

by simulating a prior distribution that is essentially a standard normal distribution on the AR

coefficients. However, we do not want to use Albert and Chib (1993)‘s approach because we will

end up with many rejection steps which is not an appropriate prior distribution to choose or we

have to put very appropriate prior distributions around zero.

A novel prior model has been developed by Barnett et al. (1996) for the AR model with the main

focus on priors specified for partial autocorrelation coefficients rather than raw AR parameters.

They enforce stationarity conditions by utilizing a very effective algorithm, which is Metropolis

within Gibbs, in order to generate partial auto-correlations. Basically, they place prior distribu-

tions on the roots of the polynomial. We believe that is a good approach for placing a prior on

the partial autocorrelation function. However, it is difficult to obtain the posterior distribution

because their model is too complicated, especially when the order of the AR model is high.

Additionally, their model does not deal with the forecasting problem.

Huerta and West (1999) have developed a model which concentrates on defining classes of prior

distributions for latent variables and parameters related to the latent components of the AR

model. They proposed a novel class of prior distributions for model order and model parameters,
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such priors characterizing the number and structure of latent underlying components in AR

processes. However, this approach is too complicated to use prior information on periodicity.

The authors MCMC algorithm is considerably more complex. Our proposed algorithms are

much easier than these three alternatives.

The above discussions are some alternative approaches that could have been used. However, our

proposed algorithms are much easier than these alternative approaches. We believe that prior

distributions should be directly placed on the parameter rather than the roots of the polynomial

or some function of them. Therefore, we will develop stationarity conditions for the AR model

in order to define flexible prior distributions which are directly placed on the AR parameters.



Chapter 3

Stationary AR processes

3.1 Introduction

This chapter studies stationarity conditions of AR( p ) model. It also highlights the sufficiency

and necessity for the stationary conditions of auto-regression models. We apply simulation

studies to the AR(3) and AR(4) models in order to check sufficiency and necessity for stationarity

conditions of the AR model.

It has previously been mentioned that our primary aim is to estimate autoregressive parameters

of Autoregressive for the AR( p ) model through MCMC. The parameter estimations for an

AR( p ) model are obtained directly by putting prior information on parameters instead of its

characteristic roots (Barnett et al., 1996) and (McLeod and Zhang, 2008). Therefore, relevant

information of parameters are needed in order to satisfy stationarity conditions of the AR( p )

model. Consequently, this chapter highlights the stationarity processes for the AR model in

which we are focusing on the study of the stationarity of the AR(1), AR(2) and AR(3) models.

It also covers how to derive the stationary process for the AR(4) model and how to derive

stationarity conditions for high order polynomial models. Furthermore, a simulation study is

30
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used in order to know the sufficiency and necessity of recommended stationarity conditions.

The results will be used in order to formulate a prior distribution and to implement MCMC

algorithms in the next chapter.

3.2 Representing a stationary AR( p ) process as a vector AR(1) model.

In this section we provide a simple proof of the root criterion for stationarity of AR( p ) models,

that is yt is defined to be stationary if the roots of the characteristic polynomial lie outside the

unit circle. Let yt be generated by the AR( p ) model:

yt = φ1yt−1 + · · ·+ φpyt−p + εt,

where φi are the parameters of the AR( p ) model and εt is white noise ( εt is iid with 0

mean and some variance). Then, yt is a stationary process if and only if the roots of φ(z) =

1−φ1z−· · ·−φpzp lie outside the unit circle. This proof is different from the previous proofs that

have been done through the polynomials of φ(z) for ARMA( p , q ) as can be seen in (Brockwell

and Davis, 2001). Let Xt be a vector of time series following the vector AR model of first order;

Xt = ΦXt−1 + εt, (3.1)

where

Xt =


X1t

...

Xkt

 , Φ =



φ11 φ12 . . . φ1k

φ21 φ22 . . . φ2k

...
...

...

φk1 φk2 . . . φkk


,

and εt is a multivariate white noise with mean vector 0 and covariance matrix Σ . Firstly, it

can be proven that equation (3.1) is stationary if the eigenvalues of Φ lie inside the unit circle.
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Thus, the process can be proven using k times backward iteration as follows:

Xt = ΦtX0 +
∞∑
i=0

Φiεt−i

The mean of Xt is E(Xt) = 0 , and lim
t→∞

Φt = 0 if the eigenvalues of Φ lie inside the unit

circle and V ar(Xt) is constant if the eigenvalues of Φ also lie inside the unit circle as:

V ar(Xt) =
∞∑
i=1

ΦiV ar(εt−i)(Φ
i)T =

∞∑
i=1

ΦiΣ(Φi)T .

Since the eigenvalues of Φ lie inside the unit circle, V ar(Xt) is finite (
∑∞

i=1 ΦiΣ(Φi)T is a con-

vergent series). Secondly, by presenting the AR( p ) model as a vector of the AR(1) model. Let

λ(I) be a matrix that has eigenvalues in its diagonal and zeros elsewhere. Therefore, the eigen-

values of λ(I) can be applied for to coefficients of the companion matrix of the autoregressive

model as follows:

Xt = ΦXt−1 + εt (3.2)

Equation (3.2) can be written in terms of vectors as follows:

Xt =



yt

yt−1

...

yt−p+1


=



φ1 φ2 . . . φp

1 0 . . . 0

0 1 . . . 0

0 0 . . . 0





yt−1

yt−2

...

yt−p


+



εt

0

...

0


,

where Xt−1 is a vector of size (k×1) and Φ is called the companion matrix of the characteristic

polynomial. The companion matrix can be used in order to find the upper and lower bound on

the roots.
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The variance matrix is as follows:

V ar(εt) =



σ2 0 . . . 0

0 0 . . . 0

...
...

...
...

0 0 . . . 0


=
∑

and Φ =



φ1 φ2 . . . φp

1 0 . . . 0

0 1 . . . 0

...
...

...
...

0 0 . . . 0


It can be proven that the eigenvalues of Φ are the inverse of the vector of φ(z) as follows.

Let p=2, the companion matrix is now

Φ =

φ1 φ2

1 0


In order to find the eigenvalues of Φ , the solution of |φ− λI| = 0 is needed (see (Hoffman and

Kunze, 1971)). It can be shown that the eigenvalues satisfy the inverse of polynomial φ(Z) as

follows:

∣∣∣Φ(2) − λI
∣∣∣ =

∣∣∣∣∣∣∣
φ1 φ2

1 0

− λ
1 0

0 1


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
φ1 − λ φ2

1 −λ

∣∣∣∣∣∣∣ = 0;

then

∣∣∣Φ(2) − λI
∣∣∣ = (φ1 − λ)(−λ)− φ2 = λ2 − φ1λ− φ2 = 0

and by dividing by λ2 we get

∣∣∣Φ(2) − λI
∣∣∣ = 1− φ1

λ
− φ2

λ2
= 0 (3.3)
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Therefore, by letting z = λ−1 , the equation (3.3) is φ(z) =0; this can be written as follows:

∣∣∣Φ(2) − λI
∣∣∣ = 1− φ1z − φ2z

2 = 0

It can be observed that if the roots of φ(z) lie outside the unit circle, then it can be noted that

λ = 1
z lies inside the unit circle when |z| > 1 . It is clear that {yt} is stationary if and only

if the root λ lies inside the unit circle. The determination between time series of the AR( p )

models and the eigenvalue solutions of
∣∣Φ(p) − λI

∣∣ = 0 . Thus, if we take the order p=3, the

companion matrix of Φ is as follows:

Φ(3) =


φ1 φ2 φ3

1 0 0

0 1 0


The solution of the characteristic roots of the Φ(3) matrix is as follows:

∣∣∣Φ(3) − λI
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣


φ1 φ2 φ3

1 0 0

0 1 0

−

λ 0 0

0 λ 0

0 0 λ


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
φ1 − λ φ2 φ3

1 −λ 0

0 1 −λ

∣∣∣∣∣∣∣∣∣∣
= 0,

and

∣∣∣Φ(3) − λI
∣∣∣ = 0 ⇒ (−λ)(−φ1λ+ λ2 − φ2)− (0− φ3) + 0 = 0

⇒ φ1λ
2 − λ3 + φ2λ+ φ3 = 0

⇒ −λ3 + φ1λ
2 + φ2λ+ φ3 = 0

By dividing the above equation by−λ3 , we can obtain:

∣∣∣Φ(3) − λI
∣∣∣⇒ 1− φ1

λ
− φ2

λ2
− φ3

λ3
= 0 (3.4)
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Therefore, by letting z = λ−1 , the equation (3.4) is |φ− λI|= 0, this can be written as follows:

∣∣∣Φ(3) − λI
∣∣∣⇒ 1− φ1z − φ2z

2 − φ3z
3 = 0

It can be seen that if the solution of φ(z) = 0 lie outside the unit circle, then we have reached

the point that λ = 1
z lies inside the unit circle when |z| < 1 . It is clear that {yt} is stationary.

Thus, the eigenvalues of the corresponding φ1, φ2 and φ3 lie inside the unit circle.

For p ≥ 3 ,

Φ(p) =



φ1 φ2 . . . φp

1 0 . . . 0

...
...

...
...

0 0 . . . 0


Now we can write

∣∣Φ(p) − λI
∣∣ as follows

∣∣∣Φ(p) − λI
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 − λ φ2 . . . . . . φp

1 −λ . . . . . . 0

...
...

...
...

...

0 0 . . . 1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 − λ φ2 . . . φp−1

1 −λ . . . 0

...
...

...
...

0 0 . . . −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
− (1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 − λ φ2 . . . φp

1 −λ . . . 0

...
...

...
...

0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
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We can write
∣∣Φ(p) − λI

∣∣ = 0 as follows:

∣∣∣Φ(p) − λI
∣∣∣ = (−λ)

∣∣∣Φ(p−1) − λI
∣∣∣+ φp

= (−λ)(λp−1 −
p−1∑
i=1

φi λ
p−i−1) + φp

= (−λ)(λp−1 − (φ1λ
p−2 + φ2λ

p−3 + · · ·+ φp−1λ
0) + φp

= −λp + φ1λ
p−1 + φ2λ

p−2 + · · ·+ φp−1λ+ φp = 0 (3.5)

By dividing the above equation (3.5) by(−λp ), we can obtain:

∣∣∣Φ(p) − λI
∣∣∣ = 1− φ1

λ
− · · · − φp−1

λp−1
− φp
λp

= 0

Therefore, by letting z = λ−1 , we can get;

∣∣∣Φ(p) − λI
∣∣∣ = 1− φ1z − φ2z

2 − · · · − φp−1z
p−1 − φpzp = 0

Thus, it can be noted that the eigenvalues of λ(I) for the coefficients of the AR( p ) model

are less than one when the polynomial φ(z) lies outside the unit circle because of the fact that

|z| > 1 . Therefore, it can be said that Xt is the series of a stationary process because the

characteristic roots lie within the unit circle.

3.3 Difference equation and back-shift operators

The AR model can be defined with regards to an inhomogeneous difference equation. This can

be represented with a backshift operator. The time series yt is AR( p ) if it satisfies the following

equation

yt − φ1yt−1 − · · · − φpyt−p = εt t ∈ Z

where εt is white noise (εt is iid with 0 mean and some variance). The autoregressive model is

a difference equation that could be an infinite number of simultaneous equations. Thus, to get
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a general solution for this problem, the AR model is written in terms of the backshift operator.

yt − φ1Byt − · · · − φpBpyt = εt ⇒ φ(B)yt = εt

where φ(B) = 1−
∑p

j=1 φjB
j , and B is the backshift operator. This can be defined as φ(B)Yt =

εt which provides the solution of the AR difference equation to be yt = φ(B)−1εt ((Kulahci and

Bisgaard, 2011), (Hipel and McLeod, 1994) and (Box et al., 2008)).

3.4 Autoregressive model of order p

Autoregressive models abbreviated AR( p ) are based on the thought that the current value of the

series {yt} , can be explained as a function of its p past values, (yt−1, yt−2, . . . , yt−p) , according

to

yt = φ1yt−1 + · · ·+ φpyt−p + εt, (3.6)

where {yt} is stationary, φ1, φ2, . . . , φp are constants and φp 6= 0 . Unless otherwise stated, we

assume that {εt} is a Gaussian white noise series with mean zero (µ = 0) and variance σ2
ε .

The mean of yt in equation (3.6) is zero. If the mean, µ , of yt is not zero, replace (yt) by

yt − µ in (3.6), i.e.,

yt − µ = φ1(yt−1 − µ) + φ2(yt−2 − µ) + · · ·+ φp(yt−p − µ) + εt,

yt = α+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, (3.7)

where α = µ(1 − φ1 − φ2 − · · · − φp). We note that (3.7) is similar to the regression model,

and hence the term auto (or self) regression. Some technical difficulties, however, develop from

applying that model since the regressors, yt−1, . . . , yt−p, are random components, whereas εt
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is fixed. A suitable form of the backward shift operator is as follows:

φ(B)yt = εt, (3.8)

where φ(B) = 1− φ1B − · · · − φpBp.

The simplest autoregressive model is

yt = φ1yt−1 + εt, (3.9)

where the εt is white noise, WN(0, σ2), and yt is stationary if only if |φ1| < 1 (Brockwell

and Davis, 2001) and (Shumway and Stoffer, 2011).

3.4.1 Stationarity conditions of the AR(2) model

In this section we discuss the AR(2) model in more detail and we derive the stationarity region

for this model; we propose an alternative and simpler proof. Our derivation is not based on

the Schur-Cohn criterion which is adopted in the proof of Marmol (1995) and Najim (2010).

Consider the AR(2) process

yt = φ1yt−1 + φ2yt−2 + εt (3.10)

where yt is stationary and φ1, φ2 are the AR coefficients. Unless otherwise stated, we assume

that εt is a Gaussian white noise process, i.e., εt is iid with mean zero and variance σ2
ε . We

can define B to be the backshift operator, so that Biyt = yt−i ; we can then write (3.10) as

(1− φ1B − φ2B
2)yt = εt, (3.11)

or
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φ(B)yt = εt.

It can be noticed that (3.10) is stationary when the roots of (1−φ1z−φ2z
2) = φ(z) lie outside

the unit circle. Next, we derive the stationary condition for AR(2). The roots of φ(z) are

z =
φ1±
√
φ2

1+4φ2

−2φ2

The roots of φ(z) might be real and distinct, real and equal or a complex conjugate pair.

Let

z1 =
φ1 +

√
φ2

1 + 4φ2

−2φ2

and z2 =
φ1 −

√
φ2

1 + 4φ2

−2φ2

(3.12)

Then,

z1 =
φ1 +

√
φ2

1 + 4φ2

−2φ2

.
φ1 −

√
φ2

1 + 4φ2

φ1 −
√
φ2

1 + 4φ2

=
φ2

1 − (φ2
1 + 4φ2)

−2φ2.[φ1 −
√
φ2

1 + 4φ2]

So

z1 = 2

φ1−
√
φ2

1+4φ2

and z2 = 2

φ1+
√
φ2

1+4φ2

,

Then from (3.12), z−1
1 , z−1

2 are

z−1
1 =

φ1 −
√
φ2

1 + 4φ2

2
, (3.13)

z−1
2 =

φ1 +
√
φ2

1 + 4φ2

2
. (3.14)
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We can write φ(z) = (1− z−1
1 z)(1− z−1

2 z) and so in model (3.10) we can write

εt = (1− z−1
1 B)(1− z−1

2 B)yt

From this representation, it follows that φ1 = (z−1
1 +z−1

2 ) by adding equations (3.13) and

(3.14) as follows

z−1
1 + z−1

2 =
φ1 −

√
φ2

1 + 4φ2

2
+
φ1 +

√
φ2

1 + 4φ2

2
= φ1 (3.15)

Also

φ2 = −(z1z2)−1, (3.16)

since

⇒ z−1
1 z−1

2 =
φ1 −

√
φ2

1 + 4φ2

2

φ1 +
√
φ2

1 + 4φ2

2
= −φ2

From the definition of stationarity of (3.10) implies | zi |> 1 thus | φ2 |=| z−1
1 || z−1

2 |< 1 .

Case(1): if φ(z) = 0 has two real roots: (φ2
1 + 4φ2) ≥ 0

−1 < z−1 < 1,

⇒ −1 < z−1
1 < z−1

2 < 1.

−1 < z−1
1 =

φ1 −
√
φ2

1 + 4φ2

2
< z−1

2 =
φ1 +

√
φ2

1 + 4φ2

2
< 1. (3.17)

From the right-hand side of (3.17):

φ1 +
√
φ2

1 + 4φ2

2
< 1,

⇒
√
φ2

1 + 4φ2 < 2− φ1,
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⇒ φ2
1 + 4φ2 < 4− 4φ1 + φ1

2,

φ2 + φ1 < 1. (3.18)

From the left-hand side of (3.17).

φ1 −
√
φ2

1 + 4φ2

2
> −1,

⇒ 2 + φ1 >
√
φ2

1 + 4φ2,

⇒ 4 + 4φ1 + φ2
1 > φ2

1 + 4φ2,

φ2 − φ1 < 1 (3.19)

Case(2): ifφ(z) = 0 has two complex conjugate roots: (φ2
1 + 4φ2) < 0

φ2 <
−φ2

1

4
,

because | φ2 |< 1 this implies,

−1 < φ2 <
−φ2

1

4
. (3.20)

A triangle region in the parameter space can be specified by these stationarity conditions.

The equations of (3.18), (3.19) and (3.20) allow us to describe the stationary and non-

stationary regions of the parameter space in Figure 3.1.

It can be noticed from Figure 3.1 that the triangle shape is the stationary region of real

roots and the curved shape is the stationary region of complex roots.
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Figure 3.1: The stationarity regions of real roots and complex roots of the AR(2)

3.4.2 Simulation of the stationary region AR(2)

As mentioned before, the stationary region of the AR(2) is a triangle. To ensure the result

of the theory, see section 3.4.1, the region of stationarity for complex roots and real roots

is a triangle according to the selected poles, as shown in Figure 3.2. We simulate data

from an AR(2) and then for each sample we estimate the parameters of φ1 and φ2 , but

it is clear that the estimated parameters can result in stationary or non-stationary time

series. We plot all parameters that satisfy the stationarity conditions. For this purpose,

we increase sample sizes to ensure, through plotting, the whole region of real roots and

complex roots is covered which we theoretically proved (see Figure 3.2). It can be noticed

that as sample sizes increased, the whole region of real roots is covered for the AR(2)

model. However, for the complex roots the whole region is not covered. When sample

sizes increased, the shape of the plot approaches its real triangle shape as mentioned in

section 3.4.1.
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Figure 3.2: Stationarity region of real roots and complex roots in the AR(2) for the different
sample sizes obtained from simulated parameters.

3.5 Stationary conditions of autoregressive models

In this section we propose a new set of stationarity conditions for autoregressive models

of any order p . We motivate the new methodology by considering first the autoregressive

model of order three, AR(3).
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3.5.1 Autoregressive model of order p = 3

Existing stationarity conditions

Consider that the time series {yt} is generated by the AR(3) autoregressive model defined

by

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + εt, (3.21)

where {εt} is a white noise process. In the sequel we derive inequalities involving

φ1, φ2, φ3 that are sufficient and necessary for the stationarity of {yt} . These inequalities

have been known since Barndorff-Nielsen and Schou (1973) and their proof is provided

by Okuguchi and Irie (1990) and Farebrother (1992), both of which make use of the

Schur-Cohn criterion. Our derivation is more direct and not based on the Schur-Cohn cri-

terion. Then we propose a new set of inequalities, which overcome several of the problems

encountered in the existing stationarity conditions.

First, we establish a relationship of the roots and the coefficients φ1, φ2 and φ3 with the

backward shift operator B , defined as usual by Bjyt = yt−j (shifting the time series yt

j time points backwards). We can write compactly the model (3.21) as

(1− φ1B − φ2B
2 − φ3B

3)yt = εt or φ(B)yt = εt,

where φ(B) is the autoregressive characteristic polynomial in B (here of order p = 3 ).

Let φ(x) = 1−φ1x−φ2x
2−φ3x

3 be the characteristic polynomial (in the complex valued

x ). The classic root criterion states that the time series {yt} is stationary if and only if

the roots of φ(x) lie outside the unit circle. Dividing φ(x) = 0 by x3 , we have that

1

x3
− φ1

x2
− φ2

x
− φ3 = 0
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Thus, by letting z = x−1 , the equation φ(x) = 0 can be written as

z3 − φ1z
2 − φ2z − φ3 = 0 (3.22)

Obviously, {yt} is stationary if and only if the roots of (3.22) lie inside the unit circle.

We now give the correspondence of the roots ρ1, ρ2, ρ3 of (3.22) and the coefficients

φ1, φ2, φ3 . We write (3.22) as

(z − ρ1)(z − ρ2)(z − ρ3) = 0

and expand this to get

(z2 − ρ1z − ρ2z + ρ1ρ2)(z − ρ3) = 0

z3 − ρ1z
2 − ρ2z

2 + ρ1ρ2z − ρ3z
2 + ρ1ρ3z + ρ2ρ3z − ρ1ρ2ρ3 = 0

z3 − (ρ1 + ρ2 + ρ3)z2 + (ρ1ρ2 + ρ1ρ3 + ρ2ρ3)z − ρ1ρ2ρ3 = 0 (3.23)

If we compare equations (3.22) and (3.23) we obtain

φ1 = ρ1 + ρ2 + ρ3 (3.24)

φ2 = −ρ1ρ2 − ρ1ρ3 − ρ2ρ3 (3.25)

φ3 = ρ1ρ2ρ3. (3.26)

In the next pages we will show that a necessary and sufficient set of conditions for the
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stationarity of {yt} is

φ1 + φ2 + φ3 < 1 (3.27)

−φ1 + φ2 − φ3 < 1 (3.28)

φ3(φ3 − φ1)− φ2 < 1 (3.29)

|φ3| < 1 (3.30)

Necessity: Under the assumption of stationarity we have |ρi| < 1 for all i = 1, 2, 3 ,

which from (3.26) immediately implies condition (3.30). Assume first ρ1, ρ2 and ρ3 are

real.

Next we prove (3.27)-(3.29). We start with (3.27).

φ1 + φ2 + φ3 = ρ1 + ρ2 + ρ3 − ρ1ρ2 − ρ1ρ3 − ρ2ρ3 + ρ1ρ2ρ3

= ρ1(1− ρ2) + ρ3(1− ρ2)− ρ1ρ3(1− ρ2) + ρ2

= (1− ρ2)(ρ1 + ρ3 − ρ1ρ3) + ρ2 (3.31)

< 1− ρ2 + ρ2 = 1,

since

ρ1 + ρ3 − ρ1ρ3 = ρ1(1− ρ3) + ρ3 < 1, as |ρ1| < 1.

Similarly for (3.28) we have

−φ1 + φ2 − φ3 = −ρ1 − ρ2 − ρ3 − ρ1ρ2 − ρ2ρ3 − ρ1ρ3 − ρ1ρ2ρ3

= −ρ1(1 + ρ2)− ρ3(1 + ρ2)− ρ1ρ3(1 + ρ2)− ρ2

= (1 + ρ2)(−ρ1 − ρ3 − ρ1ρ3)− ρ2 (3.32)

< 1 + ρ2 − ρ2 = 1,
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since

−ρ1 − ρ3 − ρ1ρ3 = −ρ1(1 + ρ3)− ρ3 < 1, as |ρ1| < 1.

Finally, for (3.28) we have

φ3(φ3 − φ1)− φ2 = ρ1ρ2ρ3(ρ1ρ2ρ3 − ρ1 − ρ2 − ρ3) + ρ1ρ2 + ρ1ρ3 + ρ2ρ3

= (1− ρ1ρ3)(ρ1ρ2 − ρ1ρ
2
2ρ3 + ρ2ρ3) + ρ1ρ3

= (1− ρ1ρ3)[ρ1ρ2(1− ρ2ρ3) + ρ2ρ3] + ρ1ρ3 (3.33)

< 1− ρ1ρ3 + ρ1ρ3 = 1,

since

ρ1ρ2(1− ρ2ρ3) + ρ2ρ3 < 1, as |ρ1ρ2| < 1.

Now suppose that there are two complex conjugate roots and one real root. Without

loss of generality suppose that ρ2 is real and ρ1, ρ3 are the two complex roots. Write

ρ1 = a+ bi and ρ3 = a− bi , for some real a and b , where i denotes the imaginary unit.

We have ρ1 + ρ3− ρ1ρ3 = 2a− a2− b2 < 1 , since |ρ1| =
√
a2 + b2 < 1 , hence from (3.31)

we have φ1 + φ2 + φ3 < 1 . Similarly, from −ρ1 − ρ3 − ρ1ρ3 = −2a − a2 − b2 < 1 and

(3.32), we obtain −φ1 + φ2 − φ3 < 1 . We also have

ρ1ρ2(1− ρ2ρ3) + ρ2ρ3 = ρ2(a+ bi)[(1− ρ2(a− bi)] + ρ2(a− bi)

= 2ρ2a− (ρ2a)2 − (ρ2b)
2 < 1,

since ρ2 is real and (ρ2a)2 +(ρ2b)
2 < 1 . Thus, from (3.33) we have φ3(φ3−φ1)−φ2 < 1 .

This proves (3.27)-(3.30) for complex roots.

Sufficiency: Now we prove that if conditions (3.27)-(3.30) are satisfied, then {yt} is

stationary. From condition (3.30) and equation (3.26) at least one of |ρ1|, |ρ2|, |ρ3| must

be strictly less than one. Without loss of generality suppose |ρ2| < 1.

Consider first the case of real roots ρ1, ρ2, ρ3 . Assume that {yt} were not stationary,
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that is |ρ1| ≥ 1 or |ρ3| ≥ 1 . If ρ3 > 1 , then ρ1 + ρ3(1 − ρ1) ≥ ρ1 + 1 − ρ1 = 1 , hence

from (3.31) we have φ1 + φ2 + φ3 ≥ 1 , which contradicts condition (3.27). If ρ3 < −1 ,

then −ρ1−ρ3(1 +ρ1) ≥ −ρ1 + 1 +ρ1 = 1 , hence from (3.32) we have −φ1 +φ2−φ3 ≥ 1 ,

which contradicts condition (3.28). By interchanging the roles of ρ1 and ρ3 we obtain

that |ρ1| ≥ 1 contradicts either (3.27) or (3.28). Hence, it is necessary that |ρ1| < 1 ,

|ρ2| < 1 and |ρ3| < 1 , i.e., {yt} is stationary.

Consider now the case of two complex conjugate roots. As before and without loss of

generality we assume that ρ1, ρ3 are complex, while ρ2 is real. We write as before

ρ1 = a+ bi and ρ3 = a− bi . As before, from condition (3.30) and |φ3| = |ρ1||ρ2||ρ3| < 1

we have that at least one of ρ1, ρ2, ρ3 has modulus less than one; without loss of generality

assume |ρ2| < 1 . Suppose that we have |ρ1| = |ρ3| =
√
a2 + b2 ≥ 1 . From (3.33) we have

φ3(φ3 − φ1)− φ2 = (1− a2 − b2)[2ρ2a− (ρ2a)2 − (ρ2b)
2] + a2 + b2. (3.34)

Put u = a2+b2 , A = 2ρ2a−(ρ2a)2−(ρ2b)
2 and B = (1−u)A+u . Since u ≥ 1 , if A ≤ 1 ,

we have B ≥ 1 . We note that for A ≤ 0 , (1− u)A ≥ 0 and so B = (1− u)A+ u ≥ 1 ,

since u ≥ 1 . If 0 < A ≤ 1 , then (1− A)u ≤ 1− A or B = (1− u)A + u ≥ 1 . We can

see that A > 1 is not possible. Indeed with the definition of A as above we have

(ρ2a− 1)2 = 1 + ρ2
2a

2 − 2ρ2a > −ρ2
2b

2 or A = 2ρ2a− ρ2
2a

2 − ρ2
2b

2 < 1.

Thus, from (3.34) we have φ3(φ3−φ1)−φ2 ≥ 1 , which contradicts (3.29). Hence |ρ1| < 1 ,

|ρ2| < 1 and |ρ3| < 1 , i.e., {yt} is stationary. We note that condition (3.29) introduces

non-linear terms in the left hand side of the inequality and hence it is this condition that

prevents generalisation to higher orders p > 3 . Even if interest is restricted to AR(3), it

is not easy to place a prior distribution on (φ1, φ2, φ3) satisfying (3.29).
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The new stationarity conditions

We propose that condition (3.29) can be replaced by two linear inequalities, which are

simple to interpret (like the inequalities (3.27) and (3.28)) and can be generalised for any

order p . We show that sufficient conditions for the stationarity of AR(3) are

φ1 + φ2 + φ3 < 1 (3.35)

−φ1 + φ2 − φ3 < 1 (3.36)

−φ1 − φ2 + φ3 < 1 (3.37)

φ1 − φ2 − φ3 < 1 (3.38)

|φ3| < 1. (3.39)

Inequalities (3.35), (3.36), (3.39) are the same as before, but now (3.29) is replaced by

(3.37) and (3.38). We prove that (3.35)-(3.39) are sufficient for stationarity. First we

prove that if conditions (3.35)-(3.39) are satisfied, then {yt} is stationary. It suffices to

prove that conditions (3.35)-(3.39) imply conditions (3.27)-(3.30). To this end, we need

to prove that the two conditions (3.37) and (3.38) imply (3.29). Indeed,

φ3(φ3 − φ1) ≤ |φ3(φ3 − φ1)|

= |φ3||φ3 − φ1|

< |φ3 − φ1|, (3.40)

since |φ3| < 1 .

• If φ3 ≥ φ1 , from −φ1 − φ2 + φ3 < 1 we have |φ3 − φ1| = φ3 − φ1 < 1 + φ2 , thus

from (3.40) we obtain φ3(φ3 − φ1)− φ2 < 1 .

• If φ3 < φ1 , from φ1−φ2−φ3 < 1 , we have |φ3−φ1| = φ1−φ3 < 1 +φ2 , thus from



CHAPTER 3. STATIONARY AR PROCESSES 50

(3.40) we obtain φ3(φ3 − φ1)− φ2 < 1 .

Thus, in every case condition (3.27) is satisfied, hence {yt} is stationary.

3.5.2 Checking sufficiency for the stationary conditions of the AR(3) model

In order to illustrate sufficiency of the stationary conditions for the AR(3) model, we

discuss some examples in order to know whether the parameters satisfy both recommended

stationary conditions and Barndorff-Nielsen and Schou (1973)’s conditions. This can be

done by assigning a set of parameters randomly for the AR(3) model that satisfy both our

recommended stationary conditions and Barndorff-Nielsen and Schou (1973)’s conditions

as mentioned in equations (3.27)-(3.29). Suppose we assign the values of the parameters

of the AR(3) model as follows:

yt = −0.4yt−1 − 0.8yt−2 − 0.6yt−3 + εt

It can be noted that the parameters of the above AR(3) model satisfy all four inequality

stationary conditions of (3.35)-(3.38) and Barndorff-Nielsen and Schou (1973)’s stationary

conditions of (3.27)-(3.29). Additionally, we assigned different values for the parameters

of the AR(3) model as follows:

yt = −0.38yt−1 − 0.42yt−2 + 0.36yt−3 + εt

It can be seen in the second example that the parameters also satisfy the stationarity

conditions of (3.27)-(3.29) proposed by Barndorff-Nielsen and Schou (1973). However,

the parameters only satisfy three conditions of inequality stationary conditions. The

fourth condition (3.37) is not satisfied with −φ1 − φ2 + φ3 = 1.16 . Therefore, our

recommended stationary conditions are not sufficient in this example. For this reason, in
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order to understand better the sufficiency of our recommended stationarity conditions in

comparison with existing conditions a simulation study is conducted.

Because our aim is to generalize the stationarity conditions, there might be other condi-

tions that are sufficient but not necessary and indeed much simpler conditions might be

possible. However, our proposed conditions are likely to be specific to a particular lag.

Thus, it will be difficult to propose a general formula. Because of the fact that we want

to generalize, we propose our stationarity conditions. Later in this chapter we provide a

general theorem to which our stationarity conditions are a particular case.

3.5.3 Grouping conditions of the AR(3) model

After realizing the sufficient stationarity conditions (3.35)-(3.39) are not necessary too,

we put these stationarity conditions into groups. Essentially, we put the proposing sta-

tionarity conditions that we have into groups for presentation purposes. The stationarity

conditions of group A are as follows:

φ1 + φ2 + φ3 < 1

−φ1 + φ2 − φ3 < 1

−φ1 − φ2 + φ3 < 1

Furthermore, the stationarity conditions of group B are as follows:

φ1 + φ2 + φ3 < 1

−φ1 + φ2 − φ3 < 1

φ1 − φ2 − φ3 < 1

If we put all the conditions from groups A and B together, we end up with another group

which we call group AB as follows:
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φ1 + φ2 + φ3 < 1

−φ1 + φ2 − φ3 < 1

−φ1 − φ2 + φ3 < 1

φ1 − φ2 − φ3 < 1

As we have seen the sufficient and necessary group conditions are either group A or B.

We also saw that if we put all these conditions together, we get the union of group A and

B which is group AB. The group AB is a subgroup of one of the other two groups. Based

on the stationary conditions of the AR(3) model, stationary conditions of AR( p ) models

are generalized for p > 3

3.5.4 Autoregressive model of order p ≥ 4 .

We turn our attention to sufficient conditions and derive a general set of sufficient station-

arity conditions for AR( p ). Later on in chapter 4 we will use these sufficient conditions

to build a prior for MCMC schemes. Consider the general autoregressive model of order

p ≥ 1 , defined by

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt, (3.41)

where as before {εt} is a white noise process. The following theorem provides a means

of building up the stationarity conditions. In fact, this is a general theorem which is not

a particular for the AR(4). Here, we use this theorem in order to build up the sufficient

conditions for the (AR) model.

Theorem 3.1. Consider a time series {yt} generated by (3.41) and define two new time

series {xt} and {zt} of lag order p− 1 as:

xt = (φ1 + φ2)xt−1 + φ3xt−2 + · · ·+ φpxt−p+1 + εxt,

zt = (φ1 − φ2)zt−1 − φ3zt−2 − · · · − φpzt−p+1 + εzt,
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If {xt} and {zt} are stationary then {yt} is stationary too.

Proof. We establish the following representations of yt :

yt = (φ1 + φ2)yt−1 + φ3yt−2 + · · ·+ φpyt−p+1 + εt

−φ2yt−1 + φ2yt−2 + φ3yt−3 + · · ·+ φpyt−p

−φ3yt−2 − · · · − φpyt−p+1

= (φ1 + φ2)yt−1 + φ3yt−2 + · · ·+ φpyt−p+1 + εt

−φ2(yt−1 − yt−2)− φ3(yt−2 − yt−3)− · · · − φp(yt−p+1 − yt−p)

= (φ1 + φ2)yt−1 +

p∑
i=3

φiyt−i+1 + εt −
p∑
i=2

φi(yt−i+1 − yt−i) (3.42)

and

yt = (φ1 − φ2)yt−1 − φ3yt−2 − · · · − φpyt−p+1 + εt

+φ2yt−1 + φ2yt−2 + · · ·+ φpyt−p

+φ3yt−2 + · · ·+ φpyt−p+1

= (φ1 − φ2)yt−1 −
p∑
i=3

φiyt−i+1 + εt +

p∑
i=2

φi(yt−i+1 + yt−i) (3.43)

Since {xt} is stationary, from (3.42), it follows that

yt +

p∑
i=2

φi(yt−i+1 − yt−i) (3.44)

is a stationary process. Also, since {zt} is stationary, from (3.43), it follows that

yt −
p∑
i=2

φi(yt−i+1 + yt−i) (3.45)
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If we add (3.44) and (3.45) we have that

yt −
p∑
i=2

φiyt−i

is stationary and by using yt as in (3.41) we have found φ1yt−1 to be stationary. Thus

{yt} is stationary. If xt and zt are stationary then yt is stationary too. However, if

yt is stationary, then xt and zt might not be stationary. Therefore, the converse of the

theorem is not true. We give an example later in order to illustrate this.

For p=3 we can see that the sufficient stationarity conditions (3.35) - (3.39) of the AR(3)

model (3.21) can be obtained by the stationarity conditions of the two AR(2) models

xt = (φ1 + φ2)xt−1 + φ3xt−2 + εxt = φ∗1xt−1 + φ∗2xt−2 + εxt, (3.46)

zt = (φ1 − φ2)zt−1 − φ3zt−2 + εzt = φ∗∗1 zt−1 + φ∗∗2 zt−2 + εzt. (3.47)

From the stationarity conditions of AR(2) we have

φ∗1 + φ∗2 < 1⇒ φ1 + φ2 + φ3 < 1

−φ∗1 + φ∗2 < 1⇒ −φ1 − φ2 + φ3 < 1

φ∗∗1 + φ∗∗2 < 1⇒ φ1 − φ2 − φ3 < 1

−φ∗∗1 + φ∗∗2 < 1⇒ −φ1 + φ2 − φ3 < 1

|φ∗2| < 1, |φ∗∗2 | < 1 ⇒ |φ3| < 1,

which are exactly conditions (3.35) - (3.39).

Moving to p=4 we can see that the sufficient stationarity conditions (3.48) - (3.56) of

the AR(4) model ( yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + εt ) can be obtained by the
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stationarity conditions of the following two AR(3) models.

xt = (φ1 + φ2)xt−1 + φ3xt−2 + φ4xt−3 + εxt

zt = (φ1 − φ2)zt−1 − φ3zt−2 − φ4zt−3 + εzt

In order to proceed further, we need the necessary conditions of xt and zt being station-

ary.

Case 1: If both xt and zt satisfy the AB conditions, then we obtain the results in eight

conditions for the AR(4) model.

Case 2: If one of xt and zt satisfy the conditions of groups A or B, then we obtain a

new group of conditions including seven conditions for the AR(4) model.

Case 3: If both xt and zt satisfy the conditions of either groups A or B (but not AB),

then we obtain another new group of conditions containing six conditions for the AR(4)

model.

In all three cases we have the extra condition |φ4| < 1 . In the application of Theorem 3.1

we ignore cases 2 or 3 and go with case 1. For p ≥ 4 some justifications for this choice

are as follows:

• We do not know the necessary stationarity conditions and as p increases the structure

of the groups gets more complicated. As groups vary from one to another the conditions

change within the same AR( p ) model.

• AB group conditions include all four inequality conditions to be satisfied. We show in

section 3.5.7 that based on simulated values, AB covers around 70% of the stationarity

region of the AR(3) model. However, A group conditions, which include three inequality
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conditions, covers around 15% of the stationarity region of the AR(3) model and group

B conditions covers the remaining 15% of the stationarity region. For a given time series,

we have either that the group conditions of AB which include all conditions are satisfied

or three conditions are satisfied in which case we have only group conditions A or B but

not AB.

• Adopting group AB we impose stronger conditions (rather than, e.g., A or B) and

as p increases this has the effect to shrink the resulting stationarity region towards the

middle of the axes (see Figure 3.5). This suggests that it is unlikely in general for these

conditions to be necessary as well, in particular for large p . However, as we aim to

use these conditions in order to construct weakly informative priors (see chapter 4), the

shrinking of the stationarity region is not a big concern. In fact for the AR(3) model we

show in chapter 4 that we get similar posterior samples whether we operate with a true

A or B or AB.

Operating as above by adopting case 1 enables us to go from p− 1 to p for p ≥ 4 using

only the proposed sufficient conditions.

As a result we can use conditions (3.35) - (3.39) of AR(3), in order to derive the stationarity

conditions of the AR(4) model, defined by

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−4 + εt.
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It turns out that the conditions are

φ1 + φ2 + φ3 + φ4 < 1 (3.48)

−φ1 − φ2 + φ3 − φ4 < 1 (3.49)

−φ1 − φ2 − φ3 + φ4 < 1 (3.50)

φ1 + φ2 − φ3 − φ4 < 1 (3.51)

φ1 − φ2 − φ3 − φ4 < 1 (3.52)

−φ1 + φ2 − φ3 + φ4 < 1 (3.53)

−φ1 + φ2 + φ3 − φ4 < 1 (3.54)

φ1 − φ2 + φ3 + φ4 < 1 (3.55)

|φ4| < 1. (3.56)

There are nine conditions; the first four come from the stationarity conditions of the

AR(3) time series xt , the next four come from the conditions of zt and the last condition

comes from both.

Next we give the number of inequalities involved for any p ≥ 1 . The following table

shows the number of inequalities for orders p = 1, 2, 3, 4 .

Order p No. of inequalities np

1 1

2 3

3 5

4 9

Let np be the number of inequalities of order p . From Theorem 3.1 we observe that for

each p ≥ 3 we have inequalities coming from two AR (p− 1) models, so we have

np = 2(np−1 − 1) + 1 = 2np−1 − 1.
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For example, we can trivially verify this from the table.

Now writing np recursively we have

np = 2np−1 − 1

= 2(2np−2 − 1)− 1 = 22np−2 − 21 − 20 = · · ·

= 2p−2n2 −
p−3∑
i=0

2i

= 3× 2p−2 − 2p−2 − 1

2− 1

= 3× 2p−2 − 2p−2 + 1

= 2× 2p−2 + 1

= 2p−1 + 1, (3.57)

for any p ≥ 3 .

Note that np = 2p−1 + 1 also works for p = 2 , as it is trivial to verify, and hence (3.57)

is true for any p > 1.

Finally, we provide an efficient way to compute the stationarity conditions of any p . The

proposed sufficient conditions for the stationarity of the time series {yt} generated by

the AR (p) model (3.41) can be compactly written in matrix form as

Apφ ≺ 1 and |φp| < 1, (3.58)

where ≺ denotes element wise inequality (<) , Ap is a p× p matrix of elements 1 and

-1 (see below),

φ =


φ1

φ2

...

φp

 and 1 =


1

1
...

1


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We define A1 = 1 and for any p ≥ 2 , the matrix Ap is given by

Ap =

 Ap−1 1∗2p−2

−Ap−1 1∗2p−2

 ,
where for any even positive integer n ≥ 2 , 1∗n is an n -dimensional column vector with

successive elements 1 and -1, i.e.,

1∗n =



1

−1

1

−1
...

1

−1


,

while for n = 1 we set 1∗1 = 1 .

For example, we have

A2 =

 A1 1∗1

−A1 1∗1


and (3.58) yields

A2φ =

 A1 1∗1

−A1 1∗1

 φ1

φ2

 =

 1 1

−1 1

 φ1

φ2

 ≺
 1

1

 ,
which together with |φ2| < 1 (given in (3.58)) gives the stationarity conditions of AR(2),

i.e., φ1 + φ2 < 1 , −φ1 + φ2 < 1 , |φ2| < 1 .
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For p = 3 we have

A3 =

 A2 1∗2

−A2 1∗2

 =


1 1 1

−1 1 −1

−1 −1 1

1 −1 −1


Thus, (3.58) yields

A3φ =


1 1 1

−1 1 −1

−1 −1 1

1 −1 −1



φ1

φ2

φ3

 ≺


1

1

1

 ,

which together with |φ3| < 1 yields the stationarity conditions (3.35) - (3.39).

For p = 4 we have

A4 =

 A3 1∗4

−A3 1∗4

 =



1 1 1 1

1 −1 −1 −1

−1 1 −1 1

−1 −1 1 −1

−1 −1 −1 1

−1 1 1 −1

1 −1 1 1

1 1 −1 −1



.
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Thus, (3.58) yields

A4φ =



1 1 1 1

1 −1 −1 −1

−1 1 −1 1

−1 −1 1 −1

−1 −1 −1 1

−1 1 1 −1

1 −1 1 1

1 1 −1 −1




φ1

φ2

φ3

φ4

 ≺


1

1

1

1

 ,

which together with |φ3| < 1 yields the stationarity conditions given in page 57.

3.5.5 Comparing stationarity regions for linear and non-linear condition of

the AR(3) model

In this section we aim to compare the stationary region of our linear inequality conditions

of (3.35) - (3.39) with the stationary region of the non-linear inequality condition of (3.27)

- (3.30). In general, it is hard to compare our linear conditions with non-linear equations

by visualizing 3-D graphs. Thus, in order to see how the our stationary region would look

like with regard to the stationary region of non-linear conditions of Barndorff-Nielsen and

Schou (1973), we construct 2-D graphs which are easier to interpret. We first fixed φ3

using different values between (-1, 1) and then we constructed 2-D graphs of linear and

non-linear inequality conditions. We used the following four different values of φ3 : -0.5,

-0.1, 0.1 and 0.5.
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(a) φ3 = −0.5 (b) φ3 = 0.5

(c) φ3 = −0.1
(d) φ3 = 0.1

Figure 3.3: Show the stationarity regions for the fixed value of φ3 of the two group conditions.
The blue shaped area shows the difference between the two group conditions and the red shaped
area shows the stationarity region from our proposed conditions. The big triangle shows the
overall stationarity conditions.

We fixed φ3 in Figure 3.3 in order to compare the stationarity regions of linear with non-

linear conditions in 2-D plot. It can be noticed from Figure 3.3 that the stationary region

of linear inequality conditions are not the same as the stationary region of non-linear

inequality conditions by Barndorff-Nielsen and Schou (1973). However, the stationary

region of our linear inequality conditions is within the non-linear stationary region.
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(a) φ1 = 0 (b) φ1 = 0.09

(c) φ1 = −0.3 (d) φ1 = 0.3

Figure 3.4: Show the stationarity regions for the fixed value of φ1 of the two group conditions.
The blue shaped area shows the difference between the two group conditions and the red shaped
area shows the stationarity region from our proposed conditions. The big triangle shows the
overall stationarity conditions.

Additionally, we need to see the effect of quadratic term in non-linear conditions when

we compare them with our linear conditions. This can be done by fixing either φ1 or

φ2 . Figure 3.4 shows the stationarity regions for the fixed value of φ1 of the two group

conditions. There are some differences between the two group conditions. However, our

linear conditions, which is a red shaped area, cover a wide areas of non-linear conditions

which is a blue shaped area. Obviously, from figures of 3.3 and 3.4, we observed that

there are significant differences between linear and non-linear conditions. But, we use our
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proposed linear conditions in order to identify prior distribution and we will show that

later for MCMC.

Moreover, we can simulate values in order to compare the stationarity regions of both

inequality conditions by visualizing 3-D graphs. Thus, we simulated values of φ1, φ2 and

φ3 in order to see how the stationary region of our linear conditions would look like based

on the stationary region of non-linear conditions. Then, we perform a rejection sampling

on the simulated parameters in order to save only those values which satisfy the inequality

conditions of Barndorff-Nielsen and Schou (1973).

(a) Non-linear (b) Linear

Figure 3.5: A 3D plot of linear and non-linear stationarity conditions for the AR(3) model using
simulated values

Despite the fact that side of the 3-D plot has a similar triangular shape, the two shapes

do not coincide. The ranges of all three parameters of the linear inequality conditions

are between(-1, 1). However, the ranges of φ1 , φ2 and φ3 were between -2.9 and 2.3,

-2.9 and 1, and -1 and 1 respectively. We have seen from both the 2-D figure 3.3 and

the 3-D figure 3.5 that the stationary region of our linear inequality conditions is not the

same as the stationary region of the non-linear conditions, but our stationary region is
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within the stationary region of the non-linear conditions. Therefore, in order to cover the

stationary region completely as Barndorff-Nielsen and Schou (1973) has covered, the idea

of grouping stationarity conditions of the AR(3) model can be used. This is presented in

the next section.

3.5.6 Comparing stationarity regions for linear grouping conditions and

non-linear conditions of the AR(3) model

We have already seen that AB is a set of sufficient conditions for the AR(3) model. In

this section, we aim to find necessary conditions for the AR(3) model. When we have all

four conditions, we have sufficient conditions. However, when we are trying to look at

necessary conditions, they are not always AB. The necessary conditions can be AB but

they can be three out of the four conditions

Figures 3.3, 3.4 and 3.5 suggest that our linear conditions do not completely cover the

stationarity conditions of Barndorff-Nielsen and Schou (1973). Therefore, we use the idea

of sub setting conditions. Group AB contains all four inequality conditions of (3.35) -

(3.38). Group B contains three inequality conditions from equation (3.35)- (3.37), and we

take out the equation of (3.37) in order to obtain the group conditions B.

Regarding the grouping of stationarity conditions, for a given time series, either we have

AB conditions for which all conditions are satisfied or a subset of three conditions are

satisfied in which we have only A or B but not A and B. It can be seen from Figure

3.6 that switching conditions for the AR(3) model is adequate, when we compare the

proposed conditions with the non-linear stationarity conditions of Barndorff-Nielsen and

Schou (1973).

Note that the right hand-side of Figure 3.6 is based on the new conditions of stationarity
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whereas the left side is Barndorff-Nielsen and Schou (1973)’s conditions. It is noted that

as long as the interval becomes wider, the range of φ1 and φ2 are not changed and the

same plots are obtained. So that the intervals for the parameters are not exceeded from

-2.9, 2.3 for φ1 and -2.9, 1 for φ2 .

Figure 3.6: 3D plots of grouping of linear stationarity conditions and non-linear stationarity
conditions for the AR(3) model using simulated values presenting different angles.

It would seem that the obtained result from Figure 3.6, the results obtained from groups

A, B and AB cover the same stationarity region of non-linear conditions.
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3.5.7 Explanation of the stationary conditions of the AR(3) model

It was mentioned earlier that stationary conditions for the AR(3) model can be achieved

based on the non-linear conditions available from the study of Barndorff-Nielsen and

Schou (1973). In order to determine the precision of the recommended linear stationary

conditions for the AR(3) model, the corresponding relationship between the partial auto-

correlations πi and the parameters φi from the study of Barndorff-Nielsen and Schou

(1973) are employed. The reason behind this is to confirm that the stationary conditions

are totally 100% achieved for parameters in the AR(3) model. As has been mentioned

before, the corresponding relationship between partial auto-correlations and parameters

is as follows:

φ1 = π1 − π1π2 − π2π3 (3.59)

φ2 = π2 − π1π3 + π1π2π3 (3.60)

φ3 = π3 (3.61)

According to the study of Barndorff-Nielsen and Schou (1973), if the values of partial

auto-correlations are between -1 and 1, then the group conditions can be satisfied. Based

on this information, n observations are simulated for partial auto-correlations that are

uniformly distributed on [-1, 1]. Parameter estimations of φ1 , φ2 and φ3 can be calcu-

lated for simulatedπ ’s based on equations (3.59)-(3.61). After obtaining on n×3 matrix

of parameters φs , the inequality conditions are checked for each of the stationary group

conditions of A, B and AB (see sections 3.5.5 and 3.5.6). Figure 3.7 illustrates the per-

centage of satisfaction of parameters that satisfy the stationarity conditions for the linear

group conditions and the non-linear conditions of the Barndorff-Nielsen and Schou (1973)

study. The result indicates that the parameters that satisfy the stationarity conditions

of the Barndorff-Nielsen and Schou (1973) study can 100% satisfy the stationary linear
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Figure 3.7: The percentage of satisfaction for the stationary conditions from non-linear to linear
conditions.

conditions, but in different percentages for the three group conditions as shown in Figure

3.7. For a given time series, we have either that the group conditions of AB which contain

all conditions are satisfied or that three conditions are satisfied in which case we have

only group conditions A or B but not AB. Thus, the parameters can be satisfied for at

least one of the groups of A, B or AB for the AR(3) model.

3.6 Simulation study for the stationarity conditions of the AR model

In this section, a simulation study is conducted in order to check and illustrate the suffi-

ciency and necessity of conditions of the AR(3) and AR(4) models. One of the issues that

arises in the statistical analysis of autoregressive models is the very complex nature of the

domain of the regression parameters (Barndorff-Nielsen and Schou, 1973). These authors

discovered a corresponding relationship between the parameters of the autocorrelation

function (φs ) and the partial autocorrelation function (πs ). The idea is that the corre-

spondence relationship between πs and φs can be used to simulate from and to partial

auto-correlations. In order to confirm the relationships by simulation, we want to simulate

πs and φs for checking the sufficiency and necessity for the AR(3) and AR(4) models.
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By simulating partial auto-correlations between (-1,1), AR coefficients can be obtained

and then stationarity conditions can be checked. When parameters φs are simulated, the

partial autocorrelation can be calculated in order to check sufficiency. Additionally, the

stationarity regions are detected for both linear inequality and linearity conditions using

rejection sampling on the simulated bounds. Although the corresponding relationship of

πs and φs is one-to-one, there is no general formula for obtaining an expression of πs as

a function of φs . In this and the next sections we derive this correspondence relationship.

3.6.1 Mapping of partial correlation into parameters for the AR(3) model

The corresponding relationships between parameters of the AR(3) model and partial

autocorrelations as described by Barndorff-Nielsen and Schou (1973) are

φ1 = π1 − π1π2 − π2π3 (3.62)

φ2 = π2 − π1π3 + π1π2π3 (3.63)

φ3 = π3 (3.64)

where |πi| < 1. The objective here is to find an expression of πi as a function of φi .

From equation (3.64) we know that

π3 = φ3,

and from (3.62) we also know that

φ1 + π2π3 = π1 − π1π2

φ1 + π2π3 = π1(1− π2)
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Therefore, the expression of π1 is given by

π1 =
φ1 + φ3π2

1− π2

(3.65)

Also from (3.63), we obtain

φ2 + π1φ3 = π2 + π1π2φ3

thus, the expression of π2 is given by

π2 =
φ2 + φ3π1

1 + π1φ3

(3.66)

It can be seen that π2 in the equation of (3.66) depends only on φ2, φ3 and π1. By

substituting equation(3.65) into (3.66), the expression of π1 can be obtained as follows:

π1 =
φ1 + φ3(φ2+φ3π1

1+π1φ3
)

1− (φ2+φ3π1

1+π1φ3
)

=
φ1 + φ2φ3

1− φ2 − φ1φ3 − φ2
3

(3.67)

Now by adding equation (3.67) to equation (3.66), we can get the expression of π2 as

follows

π2 =
φ2 + φ3( φ1+φ2φ3

1−φ2−φ1φ3−φ2
3
)

1 + φ3( φ1+φ2φ3

1−φ2−φ1φ3−φ2
3
)

(3.68)

Therefore, the expression of π2 using the corresponding relationship is given by

π2 =
φ1φ3 − φ1φ2φ3 + φ2 − φ2

2

1− φ2 − φ2
3 + φ2φ2

3

=
(φ1φ3 + φ2)(1− φ2)

(1− φ2
3)(1− φ2)
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Thus,

π2 =
φ1φ3 + φ2

1− φ2
3

(3.69)

In conclusion, an expression of πi as a function of φi can be given as follows:

π1 =
φ1 + φ2φ3

1− φ2 − φ1φ3 − φ2
3

(3.70)

π2 =
φ1φ3 + φ2

1− φ2
3

(3.71)

π3 = φ3 (3.72)

3.6.2 Mapping of partial correlations into parameters for the AR(4) model

Moving on to AR(4) we derive the relationship of πi as a function of φi . From Barndorff-

Nielsen and Schou (1973), we get

φ1 = π1 − π1 π2 − π2 π3 − π3 π4 (3.73)

φ2 = π2 − π1 π3 − π2 π4 + π1 π2 π3 + π1 π3 π4 − π1 π2 π3 π4 (3.74)

φ3 = π3 − π1 π4 + π1 π2 π4 + π2 π3 π4 (3.75)

φ4 = π4 (3.76)

For the purpose of both sufficiency and necessity, the study will depend on the condi-

tions above, i.e., equations (3.73)-(3.76). However, to confirm necessity for the provided

conditions from the AR(4) model, we will use the information that we have in equations

(3.73)-(3.76) in order to obtain the mapping of partial correlations into parameters for

the AR(4) model. Therefore, the following equations (3.77)-(3.80) can be obtained from
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the above equations (3.73)-(3.76):

π1 =
−π2 π3 − π3 π4 − φ1

π2 − 1
(3.77)

π2 =
π1π3π4 − π1π3 − φ2

−π1π3 + π1π3π4 + π4 − 1
(3.78)

π3 =
π1π2π4 − π1π4 − φ3

−π2π4 − 1
(3.79)

π4 = φ4 (3.80)

We need to reach the point that the right hand side of equations (3.77)-(3.80) do not

include πs . By substituting (3.80) into (3.77) we obtain,

π1 =
−π2π3 − π3φ4 − φ1

π2 − 1
(3.81)

Then by substituting (3.81) into (3.79) we obtain the following equation for π3

π3 =

(
(−π2π3 − π3φ4 − φ1)π2φ4

π2 − 1
− (−π2π3 − π3φ4 − φ1)φ4

π2 − 1
− φ3

)
(−π2φ4 − 1)−1

=
−φ1φ4 − φ3

φ4
2 − 1

(3.82)

Then by substituting (3.82) into (3.81) we obtain

π1 =

(
−π2 (−φ1φ4 − φ3)

φ4
2 − 1

− (−φ1φ4 − φ3)φ4

φ4
2 − 1

− φ1

)
(π2 − 1)−1

=
π2φ1φ4 + φ3π2 + φ3φ4 + φ1(

φ4
2 − 1

)
(π2 − 1)

(3.83)
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Then substituting (3.83) and (3.82) into (3.74) we obtain

π2 =

(
(π2φ1φ4 + φ3π2 + φ3φ4 + φ1) (−φ1φ4 − φ3)φ4(

φ4
2 − 1

)2
(π2 − 1)

−(π2φ1φ4 + φ3π2 + φ3φ4 + φ1) (−φ1φ4 − φ3)(
φ4

2 − 1
)2

(π2 − 1)
− φ2

)
(
−(π2φ1φ4 + φ3π2 + φ3φ4 + φ1) (−φ1φ4 − φ3)(

φ4
2 − 1

)2
(π2 − 1)

+
(π2φ1φ4 + φ3π2 + φ3φ4 + φ1) (−φ1φ4 − φ3)φ4(

φ4
2 − 1

)2
(π2 − 1)

+ φ4 − 1

)−1

Then by simplifying the above equation, we obtain the following equation for π2 :

π2 = −φ1φ3φ4
2 − φ2φ4

3 + φ1
2φ4 − φ2φ4

2 + φ3
2φ4 + φ1φ3 + φ2φ4 + φ2

φ1
2φ4

2 − φ4
4 + 2φ1φ3φ4 + φ3

2 + 2φ4
2 − 1

(3.84)

It can be seen that after reaching the point above that there is no more π5 on the right-

hand side of (3.84). We now obtain the following equation for π1 by substituting (3.84)

into (3.83)

π1 =

(
−
(
φ1φ3φ4

2 − φ2φ4
3 + φ1

2φ4 − φ2φ4
2 + φ3

2φ4 + φ1φ3 + φ2φ4 + φ2

)
φ1φ4

φ1
2φ4

2 − φ4
4 + 2φ1φ3φ4 + φ3

2 + 2φ4
2 − 1

−
(
φ1φ3φ4

2 − φ2φ4
3 + φ1

2φ4 − φ2φ4
2 + φ3

2φ4 + φ1φ3 + φ2φ4 + φ2

)
φ3

φ1
2φ4

2 − φ4
4 + 2φ1φ3φ4 + φ3

2 + 2φ4
2 − 1

+φ3φ4 + φ1)
(
φ4

2 − 1
)−1(

−φ1φ3φ4
2 − φ2φ4

3 + φ1
2φ4 − φ2φ4

2 + φ3
2φ4 + φ1φ3 + φ2φ4 + φ2

φ1
2φ4

2 − φ4
4 + 2φ1φ3φ4 + φ3

2 + 2φ4
2 − 1

− 1

)−1

(3.85)

Clearly, it can be seen that equation (3.85) is mathematically very complicated in order to

determine the mapping of partial correlation into parameters for π1 and π2 . Therefore,

the computer software Maple (version 18) is used to overcome this problem. After using



CHAPTER 3. STATIONARY AR PROCESSES 74

the Maple software, the result below is obtained.

π1 = − φ1φ2φ4 − φ3φ4
2 − φ1φ4 + φ2φ3 + φ3φ4 + φ1

φ1
2φ4 + φ1φ3φ4 − φ2φ4

2 − φ4
3 + φ1φ3 + φ3

2 + φ4
2 + φ2 + φ4 − 1

(3.86)

The final mapping of partial correlations Π into parameters( Φ ) for the AR(4) model is

as follows:

π1 = − φ1φ2φ4 − φ3φ4
2 − φ1φ4 + φ2φ3 + φ3φ4 + φ1

φ1
2φ4 + φ1φ3φ4 − φ2φ4

2 − φ4
3 + φ1φ3 + φ3

2 + φ4
2 + φ2 + φ4 − 1

(3.87)

π2 = −φ1φ3φ4
2 − φ2φ4

3 + φ1
2φ4 − φ2φ4

2 + φ3
2φ4 + φ1φ3 + φ2φ4 + φ2

φ1
2φ4

2 − φ4
4 + 2φ1φ3φ4 + φ3

2 + 2φ4
2 − 1

(3.88)

π3 =
−φ1φ4 − φ3

φ4
2 − 1

(3.89)

π4 = φ4 (3.90)

In order to confirm that our mapping of partial correlations ( π ) into parameters (φ ) for

AR( p ) models is correct, two approaches are mentioned here.

1 . Simulating πs .

One way to confirm this is by simulating πs conditioning on the fact that the values

of πs should be between (-1, 1). Then the values of φs can be calculated using

equations (3.73)-(3.76). After, by substituting φs into equations (3.87)-(3.90), the

new values of πs can be calculated. Then, it can be noted that the values of

simulated πs are the same as the values that the obtained from equations (3.87)-

(3.90). This confirms that mapping partial correlation into parameters in AR( p )

models is perfect.

2 . Cancelling φ4 .

The second way to confirm that the mapping of partial correlations into parameters

of AR( p ) models is applicable on a wider level is that, if we cancel out φ4 (φ4

= 0) in equations (3.87)-(3.90), it would give the same equations (3.70) - (3.72) of
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mapping partial correlations into parameters in the AR(3) model. In general, in

order to map partial correlations into parameters for AR( p ) models, if we set φp =

0, it would give the same equations for mapping partial correlations into parameters

for the AR( p− 1 ) model.

3.6.3 Checking necessity of the AR(3) stationarity conditions via

simulation

In this section we demonstrate the necessity of the stationarity conditions of the AR(3)

model. The following steps, which are derived from the mapping equations between partial

autocorrelations and parameters, will be performed (see Section 3.6). However, here we

only show the latest version of our trial and put them into practice to show whether the

parameters are necessary or not. In order to do that, we first simulate 300000 values

for all π ’s via the Uniform distribution between (-1, 1); see Table 3.1. Secondly, the

parameters φ ’s are computed based on the simulated π ’s, those parameters that satisfy

stationary conditions for the AR(3) model according to equations (3.59)-(3.61).

π1 =
φ1 + φ2φ3

1− φ2 − φ1φ3 − φ2
3

(3.91)

π2 =
φ1φ3 + φ2

1− φ2
3

(3.92)

π3 = φ3 (3.93)

Finally, the simulated parameters are checked to classify the parameters that satisfy the

stationary linear conditions (3.35)-(3.38). Table 3.1 shows that conditions one and two

are 100% satisfied and conditions three and four are 85% satisfied, where C1, C2, C3

and C4 represent the stationarity conditions of equations (3.35)-(3.38), respectively. We

narrow down these conditions into two group conditions which we call group condition A

and group condition B. The former means conditions one, two, and three are all satisfied
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Table 3.1: Necessity for the AR(3) stationary conditions.

n Simulation Calculate
C1 C2 C3 C4 A B Final

π1 π2 π3 φ1 φ2 φ3

1 -0.395 0.884 0.540 -0.523 0.909 0.540 1 1 1 1 1 1 1

2 -0.700 0.826 0.847 -0.821 0.929 0.847 1 1 1 1 1 1 1

3 0.178 -0.810 0.482 0.712 -0.965 0.482 1 1 1 0 1 0 1

4 -0.064 -0.772 -0.026 -0.134 -0.775 -0.026 1 1 1 1 1 1 1

5 -0.482 -0.670 0.017 -0.794 -0.657 0.017 1 1 0 1 0 1 1

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

299997 -0.691 -0.124 -0.451 -0.833 -0.474 -0.451 1 1 1 1 1 1 1

299998 -0.575 0.023 -0.490 -0.550 -0.252 -0.490 1 1 1 1 1 1 1

299999 0.542 -0.671 -0.027 0.889 -0.647 -0.027 1 1 1 0 1 0 1

300000 -0.813 -0.961 -0.147 -1.735 -1.195 -0.147 1 1 0 1 0 1 1

together, whereas, the latter means conditions one, two, and four are all satisfied at the

same time. Both groups A and B are satisfied by 85% of the observations. Finally, we

realized that for all the simulated data at least one of the two group conditions A or B

has been met.

3.6.4 Checking sufficiency for the AR(3) stationary conditions via

simulation

As we have already discussed the AR(3) model parameters do not go beyond -3 and 3 for

determining the stationary region of the AR(3) model. In accordance with the study of

Barndorff-Nielsen and Schou (1973), parameters φs have a relationship with the partial

auto-correlations πs (see equations (3.59)-(3.61)). Barndorff-Nielsen and Schou (1973)

proved that if the values of π are between [-1,1], the attained parameters must satisfy

the stationary conditions of the AR model. We use the simulation method to verify these

conditions (see Table 3.2). First, 1000000 observations of parameters φs are simulated

via the Uniform distribution to ensure that they have met all our four conditions explained
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Table 3.2: Sufficiency for AR(3) stationary condition

n
Similation Check condition

Filter
Calculate

Check
πφ1 φ2 φ3 C1 C2 C3 C4 π1 π2 π3

1 -0.155 -0.446 -0.151 1 1 1 1 1 -0.062 -0.432 -0.151 1

2 0.58 -1.892 0.662 1 1 0 0 0 -0.325 -2.685 0.662 0

3 -0.986 2.091 0.809 0 0 1 1 0 -0.745 3.752 0.809 0

4 -2.957 2.198 0.593 1 0 0 1 0 -8.106 0.685 0.593 0

5 -0.61 0.381 0.763 1 1 1 1 1 -0.635 -0.202 0.763 1

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

999998 -1.11 -0.487 -0.403 1 0 0 1 0 -1.042 -0.047 -0.403 0

999999 -0.218 0.053 -0.429 1 1 1 1 1 -0.36 0.18 -0.429 1

1000000 2.462 0.641 0.471 0 1 1 0 0 -2.705 2.313 0.471 0

in Section 3.5.1. Then, each of our conditions is checked in order to know whether the

four inequality conditions are satisfied or not. It can be seen from Table 3.2 columns

named C1, C2, C3, and C4 that “1” means the inequality condition is satisfied and zero

indicates the inequality condition is not satisfied. Then we used the rejection sampling

method in order to accept observations that satisfy the four conditions of (3.35)-(3.38)

together. Afterwards, the partial auto-correlations πs are calculated by using equations

(3.91)-(3.93). Finally, from the accepted values we verified that 100% of the parameter

values that satisfied the inequality conditions have met the πs assumptions that its values

are between [-1, 1]. This means that our conditions are sufficient 100% of the time.

3.6.5 Grouping conditions for the AR(4) model

The non-linear conditions of the AR(4) model are unknown as we had for the AR(3)

model. Thus, we do not know which subsets we can can have for the AR(4) model. There

are many possible subsets we can have by considering the linear conditions. Therefore,

the simulation method can be used in order to discover the subsets of A, B, C and D. In

order to attain sufficiency and necessity for stationarity conditions of the AR(4) model,
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four group conditions are built which are groups A, B, C and D. Table 3.2 will be used

in order to discover the different subsets. In the AR(3) model, we know that the subsets

have three inequalities and φi < 1 . Thus, there were three dimensions and there were

three inequalities in the subgroups. In the AR(4) model, we think that there will be four

inequalities. Therefore, we can consider that there are four inequalities in each subgroup.

Consequently, Table 3.2 is used in order to find subsets in the AR(4) form.

Group A consists of equations (3.48), (3.50), (3.53) and (3.55), group B consists of equa-

tions (3.49), (3.51), (3.52) and (3.54), group C consists of equations (3.48), (3.49), (3.54)

and (3.55) and group D consists of equations (3.49), (3.50), (3.51) and (3.52)

Group A
φ1 + φ2 + φ3 + φ4 < 1
−φ1 − φ2 − φ3 + φ4 < 1
−φ1 + φ2 − φ3 + φ4 < 1
φ1 − φ2 + φ3 + φ4 < 1

Group B
−φ1 − φ2 + φ3 − φ4 < 1
φ1 + φ2 − φ3 − φ4 < 1
φ1 − φ2 − φ3 − φ4 < 1
−φ1 + φ2 + φ3 − φ4 < 1

φ1 + φ2 + φ3 + φ4 < 1
−φ1 − φ2 + φ3 − φ4 < 1
−φ1 − φ2 − φ3 + φ4 < 1
φ1 + φ2 − φ3 − φ4 < 1
φ1 − φ2 − φ3 − φ4 < 1
−φ1 + φ2 − φ3 + φ4 < 1
−φ1 + φ2 + φ3 − φ4 < 1
φ1 − φ2 + φ3 + φ4 < 1

Group C
φ1 + φ2 + φ3 + φ4 < 1
−φ1 − φ2 + φ3 − φ4 < 1
−φ1 + φ2 + φ3 − φ4 < 1
φ1 − φ2 + φ3 + φ4 < 1

Group D
−φ1 − φ2 − φ3 + φ4 < 1
φ1 + φ2 − φ3 − φ4 < 1
φ1 − φ2 − φ3 − φ4 < 1
−φ1 + φ2 − φ3 + φ4 < 1

Figure 3.8: Group conditions for the AR(4) model.
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3.6.6 Necessity of the AR(4) stationary conditions

In Section 3.5.1, we have proposed that the AR(4) model has eight inequality equations

which restrict the values of the four parameters. To check necessity of the inequality

Table 3.3: Necessity for AR(4) stationary conditions

n
Simulate partial autocorrelation Calculate parameters Conditions for AR(4) Group condtions Satisfied

atleast oneπ1 π2 π3 π4 φ1 φ2 φ3 φ4 C1C2C3C4C5C6C7C8A1368B2457C1278D2345
1 -0.095-0.179-0.249 0.196 -0.108-0.166-0.218 0.196 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0.138 0.624 -0.864 0.418 0.951 0.389 -1.11 0.418 1 1 1 0 1 0 1 1 0 0 0 0 0
3 -0.784-0.002-0.695 -0.646 -1.236-0.902-1.204-0.646 1 1 1 1 1 1 1 1 1 1 1 1 1
4 0.937 0.134 -0.544 0.192 0.989 0.465 -0.714 0.192 1 1 1 0 0 1 1 1 1 0 0 0 1
5 -0.345 -0.44 0.213 0.269 -0.461-0.244 0.322 0.269 1 1 1 1 1 1 1 1 1 1 1 1 1
6 -0.142 0.174 0.47 0.699 -0.528 0.069 0.609 0.699 0 1 1 1 1 1 1 1 0 1 0 1 1
7 -0.106 0.456 0.575 0.905 -0.84 0.046 0.865 0.905 0 1 1 1 1 1 1 1 0 1 0 1 1
8 0.156 0.017 -0.498 0.615 0.468 0.036 -0.597 0.615 1 1 1 1 1 1 1 1 1 1 1 1 1
9 -0.318-0.468 0.816 0.983 -0.886-0.002 0.899 0.983 0 1 1 1 1 1 1 0 0 1 0 1 1
10 -0.523-0.404-0.257 -0.871 -1.062-1.109-0.987-0.871 1 0 1 1 0 1 1 1 1 0 0 0 1
11 -0.515-0.346-0.051 0.017 -0.71 -0.375-0.039 0.017 1 1 1 1 1 1 1 1 1 1 1 1 1
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .

99993 -0.745 0.117 0.265 0.203 -0.743 0.232 0.405 0.203 1 1 1 1 1 1 1 1 1 1 1 1 1
99994 -0.573-0.589 0.453 -0.599 -0.373-0.282 0.067 -0.599 1 0 1 1 1 1 0 1 1 0 0 1 1
99995 -0.309-0.476 0.128 -0.183 -0.372-0.494 0.055 -0.183 1 0 1 1 1 1 1 1 1 0 1 1 1
99996 -0.632 0.645 0.169 -0.716 -0.212 1.171 -0.07 -0.716 1 1 1 1 1 1 0 1 1 0 0 1 1
99997 0.161 0.02 -0.108 -0.28 0.129 0.047 -0.063 -0.28 1 1 1 1 1 1 1 1 1 1 1 1 1
99998 0.063 0.65 -0.527 0.903 0.841 0.064 -0.856 0.903 0 1 1 1 1 0 1 1 0 1 0 0 1
99999 0.909 0.621 0.975 -0.878 0.594 0.537 0.745 -0.878 0 1 1 0 1 1 0 1 0 0 0 0 0
100000 0.968 0.161 0.036 -0.658 0.83 0.218 0.566 -0.658 1 1 1 0 0 1 1 1 1 0 0 0 1

conditions of the parameters, we take advantage of Barndorff-Nielsen and Schou (1973)

which showed that the π ’s have the following relationship with the φ ’s as written below:

φ1 = π1 − π1 π2 − π2 π3 − π3 π4 (3.94)

φ2 = π2 − π1 π3 − π2 π4 + π1 π2 π3 + π1 π3 π4 − π1 π2 π3 π4 (3.95)

φ3 = π3 − π1 π4 + π1 π2 π4 + π2 π3 π4 (3.96)

φ4 = π4 (3.97)

C1 to C8 represent the stationarity conditions of equations (3.48) to (3.55), respectively.

The π ’s are between [-1,1] in order to obtain parameters that satisfy the stationary

conditions of the AR model. Therefore, 100000 observations of partial autocorrelations

are simulated between (-1,1) and then the parameters are calculated using equations

(3.94) to (3.97). After checking the stationary conditions for each of the achieved set
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of parameters, the percentage that, at least one of the group conditions is satisfied, is

calculated. It can be noted that 85% of the simulated data satisfies at least one of the

group conditions of Section 3.6.5. This can be another important aspect of the data.

Moreover, regarding to all conditions which have been met at once, there is a very small

percentage and it is only 8%. This means that if all conditions are together, they are

very unlikely to be necessary, they are sufficient conditions but unlikely to be necessary

conditions. Because of the fact that 8% is a small proportion, this proves that we need

to create subsets. Also, there is one more thing that needs to be shown, and it is the

result of Group A or Group B being met. Due to the fact that all eight basic inequality

equations can be seen in both groups, we thought it might be important to state the

result. Therefore, 77% of the simulated data met either the Group A or B condition but

not both together.

3.6.7 Sufficiency for AR(4) stationary conditions

The process we follow is the same as that for the AR(3) with some small changes. The

following steps, hence, are used that involve some expressions that come from rather

complicated equations, see Section 3.5.1. However, here we only show the latest version

of our trial. We simulate a number of values for all φ ’s between (a, b); we assume that the

range of a and b is not less than (-4) and (4). This assumption is based on the information

on the stationary regions for the AR(2) and AR(3) models available from Figures (3.2)

and (3.5). We simulated a series of sets of φ ’s by taking the stationary region for the

AR(4) model into account. Then, the simulated parameters are checked via rejection

sampling in order to classify the parameters that satisfy the stationary linear conditions

for the AR(4) model and those that do not satisfy them. The π ’s are computed for

those parameters that satisfy the stationary conditions for the AR(4) model according to
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Table 3.4: Sufficiency for AR(4) stationary conditions.

n
Simulate parameters Check stationary conditions Satisfied

all C
Calculate Satisfied

π Cφ1 φ2 φ3 φ4 C1 C2 C3 C4 C5 C6 C7 C8 π1 π2 π3 π4

1 1.887 0.999 0.923 -0.797 0 1 1 0 1 1 1 0 0 0.774 -2.495 -1.594 -0.797 0
2 -0.708 3.088 -1.494 -0.684 1 1 1 0 1 0 0 1 0 0.872 0.062 -1.898 -0.684 0
3 0.002 -0.104 0.195 -0.669 1 1 1 1 1 1 1 1 1 -0.249 -0.144 0.351 -0.669 1
4 2.422 -3.138 -3.042 0.433 1 1 0 0 0 1 1 0 0 3.874 -0.100 -2.453 0.433 0
5 0.362 -0.307 0.080 0.137 1 1 1 1 1 1 1 1 1 0.258 -0.306 0.132 0.137 1
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .

99998 -2.257 0.019 -2.803 0.970 1 1 0 1 1 0 1 1 0 0.010 -0.246 -85.651 0.970 0
99999 0.348 -0.039 0.089 0.242 1 1 1 1 1 1 1 1 1 0.404 0.020 0.183 0.242 1
100000 -3.386 -1.165 2.661 0.532 1 0 0 1 1 1 0 1 0 -1.072 -0.046 1.198 0.532 0

the equations below

π1 = − φ1φ2φ4 − φ3φ4
2 − φ1φ4 + φ2φ3 + φ3φ4 + φ1

φ1
2φ4 + φ1φ3φ4 − φ2φ4

2 − φ4
3 + φ1φ3 + φ3

2 + φ4
2 + φ2 + φ4 − 1

π2 = −φ1φ3φ4
2 − φ2φ4

3 + φ1
2φ4 − φ2φ4

2 + φ3
2φ4 + φ1φ3 + φ2φ4 + φ2

φ1
2φ4

2 − φ4
4 + 2φ1φ3φ4 + φ3

2 + 2φ4
2 − 1

π3 =
−φ1φ4 − φ3

φ4
2 − 1

π4 = φ4

Since in Barndorff-Nielsen and Schou (1973) φ ’s are computed from π ’s, we here convert

the situation and as shown we deriveπ ’s from φ ’s. The purpose of doing this is to

know whether any values of π ’s are outside the range of [-1, 1], hence indicating non-

stationarity. Table 3.4 displays that 100% of the values of the simulated φ satisfy the

stationary conditions, resulting in π ’s in [-1,1]. We are using Table 3.4 in order to confirm

the results we already presented mathematically. We know from this table that since these

stationarity conditions are sufficient, the PACF gives us values between (-1, 1). However,

it is our interest to see what are the range of values of the PACF.



CHAPTER 3. STATIONARY AR PROCESSES 82

Figure 3.9: Partial ACF for partial auto-correlations of the AR(4) model.

Figure 3.9 illustrates the PACF ranges of the four π ’s. The ranges of all π ’s are between

(-0.1, 0.1). This means that there is no significant correlation. Additionally, we want to

look whether the π ’s are independent to each other by visualizing graphs. Figure 3.10

indicates that there are no relationships between the partial autocorrelations. Thus, we

conclude that π ’s are independent to each other.
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Figure 3.10: shows the relationship between partial autocorrelation function π ’s



Chapter 4

MCMC methods for autoregressive

models

4.1 Introduction

As stated earlier a major focus of our project is on the estimation of autoregressive

parameters through MCMC methods. As is established in the literature (Barndorff-

Nielsen and Schou (1973) and Huerta and West (1999)) a prior distribution on parameters

or transformations of them, must respect the requirement of stationarity which imposes

conditions on those parameters. Thus, in this chapter, we define a new prior distribution

placed directly on the AR parameters. We go on to propose suitable MCMC schemes for

estimation. This is achieved through information obtained on the stationary conditions

for the AR( p ) model, for relatively low lag order (p ≤ 6) .

We propose a new prior distribution placed directly on the AR parameters of the AR( p )

model. This is motivated by priors proposed for AR(1), AR(2), . . . , AR(6), which take

advantage of the range of the AR parameters. We then develop a Metropolis within Gibbs

84
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algorithm for estimation. This scheme is illustrated using simulated data for the AR(2),

AR(3) and AR(4) models and then we extend to models with higher lag order. MCMC

has been applied on a set of simulated data; the data have been simulated on the basis

of an AR model.

4.2 Using the Gibbs sampler for AR(1)

Assume n observations are available, say y1, y2, . . . , yn . The aim is to estimate the

unknown parameters of φ and σ2 . We use the AR(1) model yt = φyt−1 + εt where

εt is white noise and εt ∼ N(0, σ2) . To compute with the Gibbs sampler, we need to

derive the conditional posterior distribution of the parameters. We assume that the prior

distribution of φ is a uniform distribution, and the prior of 1
σ2 (precision) is a gamma

distribution, i.e.,

φ ∼ U(−1, 1),

σ2 ∼ IG(a, b) or
1

σ2
∼ G(a, b).

The aim of employing the Gibbs sampler is to discover the posterior distribution of the

unknown parameters (φ, σ2) . This requires taking samples from the two distributions

below:

p(φ | y, σ2) and p(σ2 | y, φ)

From Bayes’ theorem we have

p(φ | y, σ2) ∝ p(y | φ, σ2)p(φ)

∝
n∏
t=1

e−
1

2σ2 (yt−φyt−1)2

p(φ)

∝ e−
1

2σ2

∑
(yt−φyt−1)2

I[−1,1], (4.1)
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where I[−1,1] is the indicator function on [-1,1]. We can extend the part of
∑n

t=1(yt −

φyt−1)2 from equation (4.1) in order to complete the square and obtain a truncated normal

posterior. Therefore

n∑
t=1

(yt − φyt−1)2 =
n∑
t=1

(y2
t + φ2y2

t−1 − 2ytφyt−1) =
n∑
t=1

y2
t + φ2

n∑
t=1

y2
t−1 − 2φ

n∑
t=1

ytyt−1

=
n∑
t=1

y2
t + φ2

n∑
t=1

y2
t−1 − 2φ

n∑
t=1

ytyt−1 +
(
∑n

t=1 ytyt−1)2∑n
t=1 y

2
t−1

− (
∑n

t=1 ytyt−1)2∑n
t=1 y

2
t−1

=
n∑
t=1

y2
t−1

(
φ2 − 2φ

∑
ytyt−1∑
y2
t−1

+

(∑
ytyt−1∑
y2
t−1

)2
)

+
n∑
t=1

y2
t −

(
∑
ytyt−1)2∑n
t=1 y

2
t−1

=

(
φ−

∑n
t=1 ytyt−1∑n
t=1 y

2
t−1

)2

1∑
y2
t−1

+
n∑
t=1

y2
t −

(
∑n

t=1 ytyt−1)2∑n
t=1 y

2
t−1

(4.2)

Now by using (4.1) and (4.2) we see that

p(φ | σ2, y) ∝ exp

{
−
∑n

t=1 y
2
t−1

2σ2

(
φ−

∑n
t=1 ytyt−1∑n
t=1 y

2
t−1

)2
}
I[−1,1], (4.3)

i.e., φ | σ2, y ∼ N
(∑n

t=1 ytyt−1∑n
t=1 y

2
t−1

, σ2∑n
t=1 y

2
t−1

)
I[−1,1] is a truncated normal distribution. Like-

wise, the posterior distribution of 1/σ2 is

p(1/σ2 | y, φ) = p(y | 1/σ2, φ)p(1/σ2 | φ)

=
n∏
t=1

p(yt | yt−1, φ, 1/σ
2)p(1/σ2 | φ)

∝
(

1

σ2

)n
2

e−
1

2σ2

∑n
t=1 (yt−φyt−1)2

(
1

σ2

)a−1

e−
b
σ2

∝
(

1

σ2

)a+n
2
−1

e−(b+ 1
2

∑n
t=1(yt−φyt−1)2) 1

σ2 (4.4)

Comparing equation (4.4) with the gamma distribution we see that

1

σ2
|y, φ ∼ G

(
a+

n

2
, b+

1

2

n∑
t=1

(yt − φyt−1)2

)
. (4.5)
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We can now apply the above Gibbs sampler to simulated data. The AR coefficient φ

is simulated by a truncated normal distribution, which ensures the sampled φ(i) are in

the stationarity region [-1,1], and the variance σ2 of the white noise process is simulated

from an inverse gamma distribution. First, we simulate n = 500 observations from the

AR(1) model with φ = 0.3 and σ2 = 1, then we estimate the parameters of φ and

σ2 in terms of the unknown parameters of the conditional distributions. Second, we use

these observations and we employ the Gibbs sampler to estimate φ and σ2 when the

number of iterations is k = 10000. Following this, by using the mode of the simulated

φ and σ2 , we estimate the parameters φ and σ2 , for iteration k = 10000. Figure 4.1

shows that φ has converged to 0.3 and σ2 has converged to 1. To assess the adequacy of

the MCMC estimates a Monte Carlo experiment has been used, i.e., the above procedure

of the Gibbs sampler is repeated N=100 times. Next, the mean of the N=100 MCMC

estimators has been taken for both parameters φ and σ2 . As a result, the convergence

of the parameters can be observed as the means were calculated to be φ = 0.29338 and

σ2 = 1.06 . We repeated this process for different φ and number of observations under

σ2 = 1 . Regarding the prior distribution of σ2 , as mentioned before the prior of 1
σ2

(precision) is a gamma distribution 1
σ2 ∼ G(a, b) . The prior of 1

σ2 is weakly informative,

since the variance of σ2 is large. Therefore, we set the parameters of the prior of the

gamma distribution to a=3 and b=10; see Table 4.1.

Table 4.1: Illustration of different results obtained from simulation study for φ and number of
observations when assuming a = 3 , b= 10 and σ2 = 1 .

The estimation of parameters of AR(1) by MCMC

Simulation Estimation by MCMC

n φ φ σ2

500
0.3 0.29439(0.05297) 1.00253(0.07694)
0.5 0.49954(0.04220) 1.07256(0.08681)
0.8 0.79536(0.03625) 0.98625(0.12002)

1000
0.3 0.29956(0.02792) 0.98933(0.05563)
0.5 0.49915(0.02449) 0.83844(0.06108)
0.8 0.80027(0.01909) 1.05825(0.08836)
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Figure 4.1: Trace plots of φ and σ2 of the Gibbs sampler for an AR(1) model ( k=10000, φ = 0.3
and σ2 = 1 ).

In Table 4.1, the a and b parameters chosen above have clearly worked well, because we

know that the true value of σ2 is 1. But, in reality we will not know σ2 . Hence a weakly

informative prior on σ2 will be explored (Ando, 2010). So we consider σ2 , if σ2 > 1

(unknown) we assume that σ2 is large therefore we try to take some different σ2 which

is greater than one. Thus, the estimation of φ and σ2 converges adequately to each φ

and σ2 assumed for simulating the AR(1) model. We know that if σ2 > 1 then 1
σ2 < 1 .

Thus, we assumed that a = 3 and b = 10 in order to always obtain a result for which

E( 1
σ2 ) < 1.

The Gibbs sampler is applied in order to estimate the parameters φ and σ2 (see Table

4.2).

4.3 Sampling the parameters of the AR(1) to AR(4) models

In order to assess the performance of the MCMC we shall simulate data from an AR( p )

model. We need to have information about the parameters in order to simulate data.
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(a) φ

(b) σ2

Figure 4.2: Illustration of the prior and posterior densities of the parameters φ and σ2 for the
AR(1) model.
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Table 4.2: Illustration of different results obtained from simulation study for φ , σ2 and number
of observations through mode.

The estimation of parameters of AR(1) by MCMC
Simulation Estimation by MCMC

n φ σ2 φ σ2

500
0.3 9 0.30462 (0.04241) 10.9244 (0.01714)
0.3 16 0.29776 (0.04089) 19.1466 (0.01319)
0.3 100 0.30231 (0.03675) 118.7674 (0.00541)

500
0.5 9 0.49936 (0.03542) 9.126308 (0.02035)
0.5 16 0.49861 (0.03408) 15.23834 (0.01553)
0.5 100 0.50226 (0.03325) 101.4965 (0.00512)

500
0.8 9 0.79439 (0.02782) 10.86549 (0.02828)
0.8 16 0.79861 (0.02294) 13.35446 (0.02166)
0.8 100 0.79911 (0.02439) 108.3137 (0.00839)

1000
0.3 9 0.29782 (0.02871) 10.18267 (0.01233)
0.3 16 0.29801 (0.02833) 18.96022 (0.00961)
0.3 100 0.29921 (0.02195) 82.87487 (0.00454)

1000
0.5 9 0.50365 (0.02648) 10.27576 (0.01331)
0.5 16 0.50408 (0.02445) 18.30929 (0.01098)
0.5 100 0.49576 (0.02334) 104.8193 (0.00406)

1000
0.8 9 0.80022 (0.01704) 8.664881 (0.01888)
0.8 16 0.79801 (0.01839) 17.74708 (0.01331)
0.8 100 0.80157 (0.01686) 115.5993 (0.00559)

There are several ways of doing this, but here we use correspondence of the partial auto-

correlations ( πi ) with the AR parameters. In particular, as these autocorrelations lie in

[−1, 1] we simulate values πi between (-1, 1).

After simulating πi , the values of φi in the AR( p ) model can be calculated based on

the corresponding relationship between πi and φi as discussed in Section 3.6 based on

equations (3.73)-(3.75). The AR(2) model is used as the example for clarifying how n

observations of the AR(2) model are simulated in order to apply MCMC to estimate

parameters of the AR(2) model. It is well-known that the corresponding relationship

between πi and φi for the AR(2) model stated by Barndorff-Nielsen and Schou (1973) as

follows

φ1 = π1(1− π2) (4.6)

φ2 = π2 (4.7)
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Figure 4.3: Trace plots of φ and σ2 from one iteration of the Gibbs sampler for an autore-
gressive model AR(1) with K=10000, φ = 0.5 and σ2 = 100.

The purpose behind this is to simulate n observations by using φ1 and φ2 , which are

obtained from equations (4.6) and (4.7).

4.4 Prior distribution of the AR(2) model

To determine the prior distribution of the AR(2) model, based on the available informa-

tion, we consider the parameters of the AR(2) model in more detail. The stationarity
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conditions in (3.18) and (3.19) restrict the range of parameters φ1 and φ2 as follows:

φ1 + φ2 < 1⇒ φ1 < 1− φ2 (4.8)

φ2 − φ1 < 1⇒ φ1 > φ2 − 1 (4.9)

|φ2| < 1⇒ −1 < φ2 < 1 (4.10)

Based on the information in equations (4.8)-(4.10), it can be seen that φ1 and φ2 lie

in the following ranges φ2 − 1 < φ1 < 1 − φ2 and−1 < φ2 < 1. We want to place

prior distributions directly on the parameters. Thus, we choose uniform distributions

for the priors because we want to have uninformative prior distributions. We propose

that φ1|φ2 has a uniform distribution and φ2 has a uniform distribution, i.e., φ1 | φ2 ∼

U(φ2 − 1, 1− φ2) and φ2 ∼ U(−1, 1) .

From this we can propose the joint prior distribution of φ1 and φ2 :

p(φ1, φ2) = p(φ1 | φ2).p(φ2) =

 1
4(1−φ2)

if φ2 − 1 < φ1 < 1− φ2 and −1 < φ2 < 1

0 otherwise

(4.11)

There might be some interest in the marginal prior distributions of φ1 and φ2 :

p(φ1) =

∫
φ2

p(φ1, φ2)dφ2 =

∫ 1+|φ1|

−1

1

4(1− φ2)
dφ2 =

log(2)− log(|φ1|)
4

(4.12)

By using equations (4.11) and (4.12), p(φ2 | φ1) is obtained as follows:

p(φ2 | φ1) =
p(φ1, φ2)

p(φ1)
=

1

(1− φ2)(log(2)− log(|φ1|))
. (4.13)

In order to estimate parameters through MCMC, the conditional posterior distributions

need to be derived. This is discussed in detail in the next section.
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4.5 Mean and variance of the prior distribution of parameters for the

AR(2) model

This section adopts the joint prior distribution (4.11) proposed in the previous section.

It then derives the mean and the variance of φ1 and φ2 . This might be useful when

considering what are the effects placed on φ1 and φ2 when we set the prior to be (4.11).

According to equation (4.12), we get

E(φ1) =

∫ 2

−2

φ1p(φ1)dφ1 =

∫ 2

−2

φ1
log(2)− log |φ1|

4
dφ1

=
log(2)

4

∫ 2

−2

φ1dφ1 −
1

4

∫ 2

−2

φ1 log |φ1|dφ1 =
log(2)

8
φ2

1 −
1

4
φ1

= log |φ1|+
1

8
φ2

1

∣∣∣2
−2

= 0

Furthermore, the variance of φ1 is

var(φ1) = E(φ2
1) =

∫ 2

−2

φ2
1

log(2)− log |φ1|
4

dφ1 = −φ
3
1 (3 log (|φ1|)− 3 log (2)− 1)

36

∣∣∣2
−2

=
4

9
≈ 0.444

From the joint prior distribution (4.11) it is easy to see that the marginal prior of φ2 is

the uniform U(−1, 1) distribution with mean 0 and variance 1
3

.

Figure 4.4 shows the PDF of the prior distribution of φ1 . It can be noticed that it a high

mode plot and the range of φ1 is between (-2, 2). It clear that the mean is zero in which

we have already proved mathematically.
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Figure 4.4: The marginal prior distribution of φ1 .

4.6 Posterior distribution for the AR(2) model φ1

In order to apply Bayes’ theorem, we consider n observations, y1, y2, . . . , yn, from the

AR(2) model:

yt = φ1yt−1 − φ2yt−2 + εt−2,

where εt is white noise and εt ∼ N(0, σ2) . The unknown parameters here are φ1, φ2 and

σ2 . Thus, the posterior distribution of φ1|φ2 is as follows:

p(φ1 | y, σ2, φ2) ∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2)2

.p(φ1 | φ2)

= e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2)2

.
1

2(1− φ2)
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In order to expand the part of
∑

(yt − φ1yt−1 − φ2yt−2)2 , initially we set zt = yt−φ2yt−2 ,

p(φ1 | y, σ2, φ2) ∝ e−
1

2σ2

∑
(zt−φ1yt−1)2

.I[a], (4.14)

where

I[a] =

 1 a ∈ A

0 a /∈ A where A={ (φ1, φ2) : φ2 − 1 < φ1 < 1− φ2 and −1 < φ2 < 1}.

Now, we can expand the part of
∑

(zt − φ1yt−1)2 from equation (4.14) by following the

same steps of equation (4.2). Then the following equation can be obtained

p(φ1 | y, σ2, φ2) ∝ e
− 1

2σ2

∑
y2
t−1

[
φ1−

∑
ztyt−1∑
y2
t−1

]2

I[a]

Now, it can be seen that the posterior distribution for φ1 | φ2 is truncated normally

distributed with specific mean and variance as follows

φ1 | φ2 ∼ N[φ2−1,1−φ2]

(∑
ytyt−1 − φ2

∑
yt−1yt−2∑

y2
t−1

,
σ2∑
y2
t−1

)
(4.15)

However, the posterior distribution of φ2 | φ1, y, σ
2 is:

p(φ2 | y, σ2, φ1) ∝ p(y | φ1, φ2, σ
2).p(φ2 | φ1)

= e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2)2

.
1

(1− φ2)(log(2)− log(|φ1|))

∝ e−
1

2σ2

∑
(zt−φ2yt−2)2 1

(1− φ2)
I[a] (4.16)

where

I[a] =

 1 a ∈ A

0 a /∈ A where A={ (φ1, φ2) : φ2 − 1 < φ1 < 1− φ2 and −1 < φ2 < 1}.
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By following the same steps of equation 4.5, the posterior distribution of 1
σ2 is:

1

σ2
|y, φ1, φ2 ∼ G

(
a+

n

2
, b+

1

2

n∑
t=1

(yt − φ1yt−1 − φ2yt−2)2

)
. (4.17)

It can be noted that the posterior distribution of φ1|φ2 has a known distribution which is

a truncated normal distribution. Therefore, a Gibbs sampler step can be used to simulate

φ1 . However, the posterior distribution of φ2 | φ1, y, σ
2 has an unknown distribution.

Thus, a Metropolis step is used in order to simulate φ2 . In the next section we propose

a Metropolis step in order to sample from, within a Gibbs sampler, φ1, φ2 | y, σ2 .

4.7 MCMC application for the AR(2) model

In order to perform MCMC for estimating the parameters of the AR(2) model, we first

simulate data from that model with different values of φ1 and φ2 where σ2 = 1 . In

order to apply Gibbs for φ1, the full conditional posterior distribution is required. the

distribution of φ1 | y, φ2 is truncated normal distribution with range φ2−1, 1−φ2, mean∑
ytyt−1−φ2

∑
yt−1yt−2∑

y2
t−1

and variance σ2∑
y2
t−1

see (4.15).

However, for φ2 we are not able to use the Gibbs sampling because the distribution of

φ2 | φ1, y is not known owing to the last part shown in equation (4.16). One idea is to

abandon Gibbs sampling altogether and to use a Metropolis step for both φ1 and φ2 .

This is a poor choice because it is hard to find suitable proposals; as we will see later the

random walk proposal does not do a good job. A more appealing proposal is to adopt a

Metropolis within Gibbs approach whereby φ1 is updated by Gibbs while φ2 is updated

by a Metropolis step. The details of this approach are discussed in this and the next

section.
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Figure 4.5: Trace plots of the estimated parameters φ1 and φ2 via MCMC of the AR(2) model
with K=50000, φ1 = 0.7 and φ2 = −0.7.

Finding a good proposal can be hard and there is no general rule to obtain one. We,

hence, first start with a random walk where φ2 is updated at iteration i using

φ
(i)
2 = φ

(i−1)
2 + εt, with εt ∼ N(0, V 2)

and

V =

√
1− s
s

for some 0 < s < 1.
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A rejection sampling step is performed for the conditions of |φ(i)
2 | ≥ 1 . Referencing to

our result gained from practical part there are many trials as we used in the basic step

simulation. We did simulation several times with various values of φ1 and φ2 . According

to Table 4.3 the simulated data was based on φ1 = 0.7 and φ2 = −0.7 and the outcome is

far from the true parameter for φ1 with mean=0.0523 and sd=0.0214, and mean=0.9681

and sd=0.0281 for φ2 when we had s=0.1 and σ=0.1; this result has 5.3% acceptance

rate. This result can be seen clearly from Figure 4.5.

Moreover, despite having poor results from the first trial, we had the second simulation

trial φ1 = 0.4 and φ2 = 0.5 . Referring to Table 4.3 we can show that the result is

poor because it is clear that both the Gibbs sampling and Metropolis cannot estimate the

parameters φ1 and φ2 properly since the obtained results are far from the true values.

The estimated mean for φ1 = 1.0941 with its sd=0.0955, and the estimated mean for

φ2 = −0.3477 with its sd=0.1040.

Finally we tested the method for a third set of simulated data with φ1 = 0.2 and φ2 = 0.2 .

Here, we still faced the same issue as we had for the previous simulated data. We repeated

the same procedures as the other trials and a set of values for s and σ were used which

can be seen in Table 4.3.

Additionally, we make some changes to s and σ in order to see different outputs. Several

different values of s and σ were used for the simulation data and the random walk pro-

posal. From the same table (Table 4.3), many trials were conducted and their acceptance

rates were recorded.

The conclusion is that the random walk proposal does not seem to work well, leading to

poor estimation. Thus, in the next section we develop a new proposal for the Metropolis

step.



CHAPTER 4. MCMC METHODS FOR AUTOREGRESSIVE MODELS 99

Table 4.3: Shows the parameter estimation of the AR(2) model via MCMC application with
K=50000, b=1000 and n=150.

s σ φ1(sd) φ2(sd) Acc .Rate

True parameters φ1 = 0.7 φ2 = −0.7 Trial 1

0.1 0.0523 (0.0214) 0.9681 (0.0281) 5.3%
1 0.3251 (0.1977) 0.2371 (0.4473) 42.2%0.1
10 0.4383 (0.2163) 0.0260 (0.4937) 59.1%

0.1 0.0641 (0.0239) 0.9640 (0.0321) 7.2%
1 0.3233 (0.1971) 0.2419 (0.4466) 42.2%0.5
10 0.4298 (0.2119) 0.0731 (0.4823) 62.2%

0.1 0.0073 (0.0242) 0.9629 (0.0330) 11.5%
1 0.2763 (0.1877) 0.3524 (0.4233) 51.2%0.9
10 0.3510 (0.2176) 0.1769 (0.4956) 65.3%

True parameters φ1 = 0.4 φ2 = 0.5 Trial 2

0.1 1.0941 (0.0955) -0.3477 (0.1040) 22.1%
1 1.3155 (0.1968) -0.6193 (0.2321) 45.3%0.1
10 1.3375 (0.1893) -0.6491 (0.2270) 59.3%

0.1 1.1027 (0.1004) -0.3573 (0.1111) 22.85%
1 1.3481 (0.1976) -0.6118 (0.2374) 47.2%0.5
10 1.3312 (0.1929) -0.6395 (0.2366) 61.2%

0.1 1.1125 (0.0981) -0.3687 (0.1076) 30.69%
1 1.2777 (0.2128) - 0.5732 (0.2567) 54.2%0.9
10 1.2944 (0.2138) - 0.5942 (0.2575) 61.3%

True parameters φ1 = 0.2 φ2 = 0.2 Trial 3

0.1 0.0220 (0.0621) 0.8423 (0.1742) 15.33%
1 0.1001 (0.1112) 0.3791 (0.5299) 54.2%0.1
10 0.1010 (0.1113) 0.3726 (0.5376) 55.1%

0.1 0.0244 (0.0637) 0.8279 (0.1909) 17.3%
1 0.1032 (0.1107) 0.3617 (0.5243) 59.6%0.5
10 0.1029 (0.1104) 0.3634 (0.5232) 60.1%

0.1 0.0289 (0.0673) 0.8082 (0.2101) 37.8%
1 0.1006 (0.1093) 0.3766 (0.5148) 62.1%0.9
10 0.0960 (0.1075) 0.4008 (0.5045) 62.3%

4.8 MCMC application with a new proposal for the AR(2) model

It has been mentioned previously that estimating the parameters using the Metropolis

algorithm provided poor estimation. It can be seen that results from parameter esti-

mates using the Gibbs sampler were more accurate than using Metropolis. Therefore,

the proposal of the random walk seems not to be able to estimate parameters of φ1 and
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φ2 accurately at the same time. For instance, if φ1 is estimated well, then φ2 is not

estimated as well.

Another problem that can be faced using the Metropolis approach is that we cannot pro-

vide informative priors for the AR(3) and AR(4) models. This means that information

about the priors of p(φj/φ(−j)) ( j 6= 1 ) cannot be obtained. This is because an informa-

tive prior cannot be obtained and the random walks proposal cannot estimate parameters

precisely. We sample from (4.16) and so we use Metropolis for φ1|φ2, y with (4.17) as

proposed. Thus, our revised recommended proposal has a truncated normal distribution

with respect of the stationarity conditions as follows:

φ2 ∼ N[φ1−1,1−φ1]

(∑
ytyt−2 − φ1

∑
yt−1yt−2∑

y2
t−2

,
σ2∑
y2
t−2

)
(4.18)

The same posterior distributions of (4.15) and (4.16) are used to sample from p(φ1|φ2, y, σ
2)

and p(φ2 | φ1, y, σ
2) , hence the Gibbs sampler and Metropolis are applied using the new

proposal in (4.18).

In order to evaluate the performance of our new MCMC approach, the same three simu-

lated data sets of the previous section are used. Firstly, MCMC is applied using the first

simulated data set of 150 observations when initial information of φ1 = 0.8 , φ2 = −0.8

and σ2 = 1 with a weakly informative prior on σ2 will be explored (Ando, 2010). So

we consider α = 3 and β = 10 . After applying MCMC using the new recommended

proposal, the obtained parameter estimates are φ1 = 0.796 and φ2 = −0.801 . This indi-

cates that parameter estimation using the new proposal is more accurate than that using

the random walk proposal. The difference between the true value and estimated value

for φ1 using the random walk proposal is 0.14. However, the difference between the true

value and estimated value for φ1 using our recommended proposal is 0.0032. Moreover,

the difference between the true value and estimated value for φ2 using the random walk
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Figure 4.6: Trace plots and histogram of estimated parameters φ1 and φ2 via MCMC of the
AR(2) model with K=20000, φ1 = 0.8 and φ2 = −0.8.

proposal is 0.4. However, the difference between the true value and estimated value for

φ2 using our recommended proposal is 0.001. This means that the accuracy of estimating

parameters of the AR(2) model using the recommended proposal is considerably higher

than using a random walk proposal. Figure 4.6 shows trace plots and histograms and

illustrates the convergence of the MCMC for the AR(2) model.

Secondly, MCMC is again applied to the second simulated data set using initial informa-

tion of φ1 = −0.4 , φ2 = −0.5 and σ2 = 1 . Table 4.4 indicates the parameter estimates

of φ1 and φ2 . It can be seen that using the recommended proposal gives us more precise
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Table 4.4: Shows the parameter estimation of the AR(2) model via MCMC application using
the recommended proposal.

Parameters φ1 Mean φ1 Mode φ1 SD φ2 Mean φ2 Mode φ2 SD

real φ’s φ1=0.8 and φ2=-0.8

Mean 0.7976 0.7971 0.0512 -0.8018 -0.8028 0.0505

real φ’s φ1=-0.4 and φ2=-0.5

Mean -0.4048 -0.4046 0.0938 -0.5068 -0.5084 0.0941

real φ’s φ1=-0.3 and φ2=-0.3

Mean -0.3004 -0.3052 0.1050 -0.3039 -0.3048 0.1046

results than using a random walk proposal, and errors have reduced to 0.02% and 0.02%

for φ1 and φ2 , respectively.

4.9 A prior distribution for the AR(3) model

For a given time series with AR coefficients φ1, φ2 and φ3 , we have corresponding sta-

tionarity conditions that are either in group A, B or AB. If we assume the true values

of φ1, φ2 and φ3 are corresponding to group A, then we need to provide a prior that

is constrained on the stationarity region which is imposed by the conditions of group A.

And, if the true values of φ1, φ2 and φ3 are corresponding to group B, then we should

choose a prior that reflects the stationary region of group B.

To cover the stationary conditions of the AR(3) model, conditions are divided into three

groups in order to determine the stationary region of the AR(3) model as described in

equations (3.35) to (3.39) in Section 3.6.1. For the purpose of determining the prior

distribution for the parameters of the AR(3) model, the inequality stationary conditions

are separated into three groups which are groups A, B and AB. The information has been

mentioned in detail in Section 3.5.6 in order to know how to switch a new inequality

stationary condition from equations (3.35) to (3.38) for two different stationary condition

groups which are groups A and B. Details about the prior distribution of each of the
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stationary condition groups of the AR(3) model are discussed in the following sections.

4.9.1 Prior distribution for group A

One of the most important parts in conducting MCMC method is choosing the right prior

in order to achieve the best result because MCMC is based on Posterior and Prior. As

it is known that in every order of autoregressive model there is a number of conditions

which have to be satisfied as they are already mentioned in section 3.5.6. Therefore, in

AR(3) model, the conditions of equations of (3.35) to (3.38) have been reached.

These conditions are used in simulation study for the stationary assumption purpose and

they are divided into two main groups named (A) and (B). Likewise, group (A) is based

on (3.35),(3.36) and (3.37) conditions as well as group (B) is based on ((3.35),(3.36) and

(3.38)) conditions. The purpose of making these two groups is to cover the stationary

area for AR(3) model. From section 3.5.3 we know that a time series is being stationary

if at least one of the group conditions are satisfied. Prior condition for AR(3) model as

mentioned above we have three group constraints of inequality which are;

Group A conditions:

φ1 + φ2 + φ3 < 1 (4.19)

−φ1 + φ2 − φ3 < 1 (4.20)

−φ1 − φ2 + φ3 < 1 (4.21)

|φ3| < 1. (4.22)
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From the conditions of (4.19)-(4.22), we have the following inequalities:

φ1 < 1− φ2 − φ3 (4.23)

φ1 > φ2 − φ3 − 1 (4.24)

φ1 > −φ2 + φ3 − 1. (4.25)

From equations (4.24) and (4.25), we can get that φ1 > |φ2− φ3| − 1. Additionally, from

equations (4.23), (4.24) and (4.25), we see that φ1 lies in the range |φ2 − φ3| − 1 < φ1 <

1 − φ2 − φ3 . Therefore, we propose that the conditional prior distribution of φ1 | φ2, φ3

is uniform, i.e., φ1 | φ2, φ3 ∼ U(|φ2 − φ3| − 1, 1 − φ2 − φ3) . So, the prior distribution of

φ1 given φ2 , φ3 is:

p(φ1 | φ2, φ3) =
1

2− φ2 − φ3 − |φ2 − φ3|
I[a]. (4.26)

where

I[a] =

 1 a ∈ A

0 a /∈ A
(4.27)

where A={(φ1 ,φ2 ,φ3 ): |φ2 − φ3| − 1 < φ1 < 1− φ2 − φ3 , |φ2| < 1 and |φ3| < 1 }.

By adding inequalities (4.19) and (4.20), we have φ2 < 1 , and from equation (4.21),

we obtain φ2 > φ3 − φ1 − 1 . Hence, φ2 lies in the range φ3 − φ1 − 1 < φ2 < 1 .

Thus, we propose that the prior of distribution φ2 | φ1, φ3 is uniform, i.e., φ2 | φ1, φ3 ∼

U(φ3 − φ1 − 1, 1) .This prior distribution has density function

p(φ2 | φ1, φ3) =
1

2 + φ1 − φ3

I[−2.9,1] (4.28)

We have chosen the range of φ2 to be (-2.9, 1) based on the 3-D plot of Figure 3.5 which

was already shown in Section 3.5.5. Regarding φ3 , we propose that the marginal prior
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distribution of φ3 is uniform, i.e., φ3 ∼ U(−1, 1) , with density

p(φ3) =
1

2
I[−1,1] (4.29)

Now, from equations (4.26) (4.28) and (4.29), the joint prior distribution group A is:

p(φ1, φ2, φ3) ∝ p(φ1 | φ2, φ3).p(φ2 | φ1, φ3).p(φ3)

∝ 1

(2 + φ1 − φ3)(2− φ2 − φ3 − |φ2 − φ3|)
(4.30)

4.9.2 Prior distribution for group B

Similarly, in order to choose the prior distribution for the stationary conditions for group

B, from equations (3.35), (3.36) and (3.38), we can see that φ1 satisfies

φ1 < 1− φ2 − φ3 (4.31)

φ1 > φ2 − φ3 − 1 (4.32)

φ1 < 1 + φ2 + φ3 (4.33)

From equations (4.31) and (4.33), the range of φ1 is

φ1 < 1− |φ2 + φ3| (4.34)

With reference to equations (4.32) and (4.34), we end up with φ1 having the uniform

distribution on the interval

φ2 − φ3 − 1 < φ1 < 1− |φ2 + φ3| .
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Therefore, the prior distribution of φ1 | φ2, φ3 is

p(φ1 | φ2, φ3) =
1

2− |φ2 + φ3| − φ2 + φ3

I[−1,1]. (4.35)

Also, regarding the prior distribution of φ2 | φ1, φ3 , we follow the same strategy as we

did for group A. By adding equation (4.31) and (4.32) we can get that φ2 is less than

one, i.e., (φ2 < 1) , and from equations (4.33), we can obtain

φ2 > φ1 − φ3 − 1, (4.36)

so that φ1 − φ3 − 1 < φ2 < 1 . Thus, the prior distribution for φ2 is:

p(φ2 | φ1, φ3) =
1

2− φ1 + φ3

(4.37)

By multiplying equations (4.29), (4.35) and (4.37) together, the joint prior distribution

for group B is:

p(φ1, φ2, φ3) ∝ 1

(2− |φ2 + φ3| − φ2 + φ3)(2− φ1 + φ3)
(4.38)

4.9.3 Prior distribution for Group AB

In Section 3.5.1, we have proposed a prior for each group separately. Here, we combine

both groups into a group that involves all four conditions. Next we work out the range

of φ1 in order to propose a suitable prior distribution. From equations (3.35) to (3.38)
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we have

φ1 < 1− φ2 − φ3 (4.39)

φ1 > φ2 − φ3 − 1 (4.40)

φ1 > −φ2 + φ3 − 1 (4.41)

φ1 < 1 + φ2 + φ3 (4.42)

Thus, from equations (4.39) and (4.42) we obtain that φ1 < 1− |φ2 + φ3| . Likewise from

equations (4.40) and (4.41) we can also obtain that φ1 > |φ2 − φ3| − 1. Hence, the range

of φ1 is |φ2 − φ3| − 1 < φ1 < 1 − |φ2 + φ3| . Therefore, we propose that φ1 | φ2, φ3 is

uniformly distributed, i.e., φ1 | φ2, φ3 ∼ U(|φ2 − φ3| − 1, 1 − |φ2 + φ3|). So, the prior

density for φ1 | φ2, φ3 is:

p(φ1 | φ2, φ3) =
1

2− |φ2 + φ3| − |φ2 − φ3|
I[a] (4.43)

where

I[a] =

 1 a ∈ A

0 a /∈ A

with A={ (φ1, φ2, φ3) : |φ2 − φ3| − 1 < φ1 < 1− |φ2 + φ3| , |φ2| < 1 and |φ3| < 1)}. By

adding equations (4.39) and (4.40), we see that φ2 is less than minus one, i.e., φ2 < 1 .

And, by adding equations (4.41) and (4.42) we can also obtain that φ2 is greater than

one, i.e., φ2 > −1 . Thus, the range of φ2 is −1 < φ2 < 1 . It can be noticed that

φ2 is independent from φ3 . Therefore, the prior distribution for φ2|φ3 is uniform, i.e.,

φ2|φ3 ∼ U(−1, 1) .

p(φ2|φ3) =
1

2
(4.44)
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Therefore, the joint prior distribution for the AB group is:

p(φ1, φ2, φ3) ∝ 1

4(2− |φ2 + φ3| − |φ2 − φ3|)
(4.45)

4.10 Posterior inference of the AR(3) model

After proposing a prior distribution for the parameters of the AR(3) model, the posterior

distribution can be routinely obtained. To this end, we assume that n observations are

available, say y1, y2, . . . , yn, from the AR(3) model.

yt = φ1yt−1 − φ2yt−2 + φ3yt−3 + εt,

where εt is white noise and εt ∼ N(0, σ2) . The unknown parameters here are φ1, φ2 , φ3

and σ2 . As has been stated in the previous sections, inequality stationary conditions for

the AR(3) model are divided into three different groups. Therefore, in the calculation of

the posterior distribution of a parameter restricted to lie within a particular group (A, B,

or AB) knowledge of that group is required. Here we only consider the case when φ1, φ2

and φ3 lie in group AB of the previous Section, but Section 4.14 discusses this in more

detail. The conditional posterior distribution of φ1 is:

p(φ1 | φ2, φ3, y, σ
2) ∝ p(y | φ1, φ2, φ3, σ

2).p(φ1|φ2, φ3)

= e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− |φ2 + φ3| − |φ2 − φ3|
∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

.I[a], (4.46)

where

I[a] =

 1 a ∈ A

0 a /∈ A
(4.47)
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with A={ (φ1, φ2, φ3) : |φ2 − φ3| − 1 < φ1 < 1 − |φ2 + φ3| , |φ2| < 1 and |φ3| < 1} .

So, in order to obtain the posterior distribution of φ1 | φ2, φ3, y, σ
2 , we write zt =

yt − φ2yt−2 − φ3yt−3 and then

p(φ1 | φ2, φ3, y, σ
2) ∝ e−

1
2σ2

∑
(zt−φ1yt−1)2

.I[a] (4.48)

Now, the part of
∑

(zt − φ1yt−1)2 from equation (4.48) can be expanded by following the

same steps as in equation (4.2), hence

p(φ1 | φ2, φ3, y, σ
2) ∝ e

−
∑
y2
t−1

2σ2

(
φ1−

∑
ztyt−1∑
y2
t−1

)2

I[a].

It can be observed that the posterior distribution for φ1|φ2, φ3y, σ
2 is a truncated normal

distribution with mean and variance specified as follows:

φ1 | φ2, φ3, y, σ
2 ∼ N[a,b]

(∑
ytyt−1 − φ2

∑
yt−1yt−2 − φ3

∑
yt−1yt−3∑

y2
t−1

,
σ2∑
y2
t−1

)
. (4.49)

where a = 1−|φ2 +φ3| and b = |φ2−φ3|−1 . In order to derive the conditional posterior

distribution of φ2|φ1, φ3, y, σ
2 , we follow a similar argument as before, i.e.,

p(φ2 | φ1, φ3, y, σ
2) ∝ p(y | φ1, φ2, φ3, σ

2)p(φ2 | φ1, φ3)

∝ p(y | φ1, φ2, φ3, σ
2)p(φ1, φ2, φ3) (4.50)

∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− |φ2 + φ3| − |φ2 − φ3|
.I[−1,1]

For the conditional posterior distribution of φ3|φ1, φ2, y, σ
2 , we get

p(φ3 | φ1, φ2, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

p(φ3 | φ1, φ2)

∝ p(y | φ1, φ2, φ3, σ
2)p(φ1, φ2, φ3) (4.51)

∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− |φ2 + φ3| − |φ2 − φ3|
.I[−1,1]
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Now we turn our attention to the posterior distribution for both groups A and B. We can

apply similar steps to the posterior distribution for the AB group.

First, the posterior distribution of group A is:

φ1 | φ2, φ3, y, σ
2 ∼ N[a,b]

(∑
ytyt−1 − φ2

∑
yt−1yt−2 − φ3

∑
yt−1yt−3∑

y2
t−1

,
σ2∑
y2
t−1

)
I[a].

(4.52)

I[a]. is the same structure as has been shown in equation (4.47) using different A which

is

A={ (φ1, φ2, φ3) : |φ2 − φ3| − 1 < φ1 < 1− φ2 − φ3 , φ3 − φ1 − 1 < φ2 < 1 and |φ3| < 1 }.

p(φ2 | φ1, φ3, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− φ2 − φ3 − |φ2 − φ3|
I[−1,1].

(4.53)

p(φ3 | φ1, φ2, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− |φ2 + φ3| − |φ2 − φ3|
I[a]

(4.54)

Regarding the posterior distribution of B, we have

φ1 | φ2, φ3, y, σ
2 ∼ N[a,b]

(∑
ytyt−1 − φ2

∑
yt−1yt−2 − φ3

∑
yt−1yt−3∑

y2
t−1

,
σ2∑
y2
t−1

)
I[a].

(4.55)

where

A={ (φ1, φ2, φ3) : φ2−φ3− 1 < φ1 < 1−|φ2−φ3| , φ3−φ1− 1 < φ2 < 1 and |φ3| < 1 }.

p(φ1 | φ2, φ3, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− φ2 + φ3 − |φ2 + φ3|
I[a]

(4.56)
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p(φ3 | φ1, φ2, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

× 1

2− |φ2 + φ3| − |φ2 − φ3|
(4.57)

By following the same steps of equation (4.5), the posterior distribution of 1
σ2 for each

group is:

1

σ2
|y, φ1, φ2, φ3 ∼ G

(
a+

n

2
, b+

1

2

n∑
t=1

(yt − φ1yt−1 − φ2yt−2 − φ3yt−3)2

)
. (4.58)

As has been indicated, we have been able to assign a posterior distribution for the AR(3)

model; we also could assign one for all group conditions by following the same steps as for

group AB. In the next section how MCMC can be applied for the AR(3) model will be

discussed. In the conclusion of this section, we derive conditional distributions assuming

the parameters lie in groups A, B and AB. In the next section we will implement these

MCMC schemes in R.

4.11 An MCMC application for the AR(3) model

To estimate parameters of the AR(3) model, 150 observations are simulated from the

AR(3) model where σ = 1 in order to obtain estimates of the parameters φ1 ,φ2 and φ3

for the group conditions of A, B and AB as mentioned previously. The Gibbs sampling

approach is used to estimate φ1 for each equation (4.49), (4.52) and (4.55) of the group

conditions assuming that each φ1 has the truncated normal distribution. A Metropolis

step is used to estimate the parameters φ2 and φ3 of all group conditions using a random

walk as a proposal. It can be seen from Table 4.5 that two simulated data sets are

employed to estimate the parameters of the AR(3) model using different values of the

variance of the proposal s . The variance σ2 has an Inverse Gamma distribution, hence

the precision 1
σ2 ∼ Gamma(α, β) assuming α = 3 and β = 10 .
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Table 4.5: Shows the parameter estimates of the AR(3) model via MCMC application. We
used the Gibbs sampling to obtain φ1 and Metropolis is used to obtain φ2 and φ3 when the
proposal is random walk with k=30000, m=1000, α = 3 and β = 10.

s φ1(Sd) φ2(Sd) φ3(Sd) Acc .Rate

φ1 = 0.1, φ2 = 0.2 and φ3 = 0.1

0.99 0.153(0.148) -0.226(0.678) 0.0217(0.675) 45.6%

0.9 0.006(0.112) 0.733(0.609) 0.176(0.415) 7.4%

0.5 0.154(0.122) -0.086(0.680) -0.278(0.742) 15.4%

0.1 0.065(0.138) 0.468(0.740) 0.237(0.664) 12.1%

0.01 0.123(0.184) 0.144(0.602) -0.412(0.801) 9.2%

Different parameter φ1 = −0.4, φ2 = −0.8 and φ3 = −0.6

0.99 -0.497(0.272) -0.085(0.618) -0.681(0.394) 13.1%

0.9 -0.535(0.200) -0.287(0.514) -0.744(0.403) 5.9%

0.5 -0.383(0.188) -0.677(0.563) -0.201(0.686) 6.1%

0.1 -0.559(0.127) -0.052(0.421) -0.695(0.643) 3.21%

0.01 -0.382(0.112) -0.368(0.469) 0.779(0.552) 1.15%

Because of the fact that the simulated data sets satisfy both of the groups AB and A,

therefore the posterior distributions of both group conditions AB and A are used to

estimate the parameters, respectively. After applying MCMC to the two data sets, it can

be noted that parameter estimation using both Gibbs sampling and Metropolis steps do

not give us precise and consistent results. This suggests that our parameter estimates are

poor. However, using the Gibbs sampler to estimate φ1 for the group condition A is more

closer to its true value. It is worth mentioning that we have used other different simulated

dataset parameters, but poor estimates throughout persist. Furthermore, Figure 4.7

indicates that none of the simulated parameters have reached convergence after 30000

iterations.

In the simulated data considered here, the true values of the parameters are known, hence

the true groups A, B, AB within which the parameters lie are also known. In real data

these groups will not be known, hence there must be some extra uncertainty associated

with the prior distribution. This is highlighted in Section 4.14 by utilizing Bayes factors

for model choice.
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Figure 4.7: Trace plots of the simulated parameters φ1 , φ2 and φ3 for the AR(3) model.

4.12 New MCMC proposal distribution for the AR(3) model

After realizing that the Random walk proposal was unable to precisely estimate the pa-

rameters of the AR(3) model, as mentioned in Section (4.11), we thought to use a new

proposal, similar to the proposal used for the AR(2) model in Section (4.8). The idea of

the new proposal is to assume a proposal for the parameters φ2 and φ3 in the form of a

truncated normal distribution as follows:

φ2 ∼ N[−1,1]

(∑
ytyt−2 − φ1

∑
yt−1yt−2 − φ3

∑
yt−2yt−3∑

y2
t−2

,
σ2∑
y2
t−2

)
(4.59)

φ3 ∼ N[−1,1]

(∑
ytyt−3 − φ1

∑
yt−1yt−3 − φ2

∑
yt−2yt−3∑

y2
t−3

,
σ2∑
y2
t−3

)
(4.60)

Regarding the posterior distribution of p(φ1 | φ2, φ3, y, σ
2) , by fixing the right-hand side

of equation (4.46) we obtained a good sufficient result for φ1 using the Gibbs sampler.
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We obtain a new proposal of equation (4.59) and (4.60) by fixing the right hand sides

of equations (4.50) and (4.51). Our new proposal is sufficient since it provides a good

estimate.

Regarding the conditional distributions for φ2 and φ3 , the same strategies of Section

4.11 are used for φ1|φ2, φ3, y . Through applying the Gibbs sampler φ1 parameters are

estimated, see Figure 4.8, for each of the group conditions the AB, A and B via equa-

tions (4.49), (4.52) and (4.55). Regarding the conditional posteriors of φ2|φ1, φ3, y and

φ3|φ1, φ2, y , the parameters of φ2 and φ3 are estimated using a Metropolis algorithm

for each group condition AB, A and B via equations (4.50), (4.53) and (4.56) to estimate

the parameter φ2 and (4.51), (4.54) and (4.57) to estimate the parameter φ3 . Figure

4.9 shows the competence and the precision of the MCMC process when estimating the

parameters φ2 and φ3 for the AR(3) model, this is when the true parameters in the

simulation process are φ1 = −0.4 , φ2 = −0.8 and φ3 = −0.6 . Regarding σ2 , we use an

inverse gamma distribution in parallel with the relevant discussion for the AR(2) model.

Based on our prior beliefs of σ2 , α = 3 and β = 10 is used. With regards to the accep-

tance rate as mentioned for the AR(2) model, its value is high because our proposals are

close to the posterior distributions, see Hoff (2009) and Robert and Casella (2010). The

blue lines of Figure 4.8 indicates we have used different priors p(φi) .

4.13 Bayes Factor

Model selection can be performed via the so-called posterior odds, that is the product

of the Bayes factor and the prior odds. The Bayes factor amongst a null model and an

alternative model is the ratio of their likelihoods. Given any two models, this leads to the

assumption of posterior model probabilities (Steel, 2008). Suppose we desire to compare

two models with the same mathematical structure, varying them only via the value of



CHAPTER 4. MCMC METHODS FOR AUTOREGRESSIVE MODELS 115

Figure 4.8: Shows the converged results of the parameter estimates for the AR(3) model via
the Gibbs sampling with K=30000, φ1 = −0.4 , φ2 = −0.8 , φ3 = −0.6 , α = 3 and β = 10.
The blue dashed lines indicate that different priors is used for φ1, and the histogram of the
right-hand side is zoomed from the histogram of the left-hand side.

their defining parameters. Let M0 the null model and let M1 indicate the alternative

one. Furthermore, each model gives a predictive distribution for yt given φ at time t.

The densities are:

p(yt|φ,Mi) where i = 0, 1

where φ is historical knowledge that is common to the two models at the time t , and

yt is an observation from a time series. The involvement of Mi in the above formula

differentiates between the two models which are M0 and M1. Therefore, the predictive
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Figure 4.9: Converged results of the parameter estimates for φ2 and φ3 via the Metropolis
algorithm with K=30000, φ1 = −0.4 , φ2 = −0.8 , φ3 = −0.6 , α = 3 and β = 10 the blue
dashed lines indicate that different priors is used for φ2 and φ3, and the histograms of the
right-hand side are zoomed from the histograms of the left-hand side.

densities at time t are (Kass and Raftery (1995), and West and Harrison (1999)):

p(yt|φ) = p(yt|φ,Mi) where i = 0, 1
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Thus, the Bayes factor for M0 against M1 based on the observed data of yt is:

K =
p(y|M1)

p(y|M0)
=

∫
φ1
p1(y|φ1)p(φ1)dφ1∫

φ0
p0(y|φ0)p(φ0)dφ0

,

K is known as the Bayes factor (BF). If K is large, the data indicate that there is more

evidence in support of the null model, and less in favour of the alternative model. Jeffreys

(1998) has used some rules for interpreting the BF as follows:

• If 1 < Bayes Factor ≤ 3, then there is weak evidence for M1

• If 3 < Bayes Factor ≤ 10, then there is substantial evidence for M1

• If 10 < Bayes Factor ≤ 100, then there is strong evidence for M1

• If Bayes Factor > 100, then there is decisive evidence for M1

4.14 MCMC procedure of estimating parameters of the AR(3) model using

Bayes factors

There are several conditions in the AR(3) model in order to guarantee stationarity, as

discussed in Section 4.9. In our MCMC method we have used both Gibbs sampling and

Metropolis Hastings. As given in the theory part, in order to cover stationarity of the

AR(3) model, the conditions are divided into three groups A, B and AB. Subsequently,

MCMC is applied using the posterior distributions, which were obtained for every group

condition, see Section 4.10. Hence, the Bayes factor was used to compare every pair of

models from the three models for each group in order to make a distinction between them.

First of all we used the truncated normal distribution since the posterior distribution of

φ1 in all groups has to be limited to a particular range. After that we applied the Bayes
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factor which tells us whether group A works better on a given dataset or group B based

on the parameter estimates.

All of the estimated parameters are involved, which means we check every single one of

them and use them in the Bayes factor formula as mentioned in Section 4.13. In order

to perform our MCMC method, we need to have specified data as the algorithm is based

on it. Therefore, we used a simulated dataset generated using particular parameters with

values φ1 = 0.5, φ2 = −0.4 and φ3 = −0.4 that satisfy group condition A as an example.

We simulated this data to give priority to group A conditions and then finally we will

approve it via the Bayes factor.

MCMC is then applied for group A conditions and as we know from theory (Section 4.9.1)

that φ1 in both group conditions is simulated by a Gibbs sampling step. Then, we took another

step forward to estimate φ2 and φ3 via Metropolis, see equations (4.52) and (4.55). This means

we need a proposal for each parameter and we recommend the truncated normal proposal, see

equations (4.59) and (4.60). Table 4.6 shows that the accuracy of parameter estimation for

group A is, to a great extent, satisfactory, as the errors between the estimated parameters and

the true parameters are between 2% and 6%, which is achieved when the posterior of A (Mo ) is

applied. More importantly, when the posterior distribution of the AB model which is used as an

alternative model (M1 ) in this process, the accuracy of estimation is better than the accuracy

of parameter estimations when applying MCMC for the group A, in this case, the error does

not exceed 2%. Similarly, the same procedure is used for group B conditions (see Table 4.7).

In the Bayes factor we include every estimated value of the parameters and the results of this

procedure is presented in Table 4.6. We used the data with parameters satisfying the group A

conditions which means that the result can tell us that group A supports the data better than

group B.

Figures 4.10 and 4.11 show that the parameter estimates are very close to each other using the
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Table 4.6: Results of MCMC and Bayes factor of some of the different parameters that have
been used for simulated data. The null model is group A and the alternative model is either
group B or AB.

Real φ’s 0.5 -0.4 -0.4 BF (Sd)

Mo (A) 0.5316(0.076) -0.445(0.082) -0.343(0.078)
1.040(0.082)

M1 (B) 0.1907(0.073) -0.176(0.066) -0.602(0.069)

Mo (A) 0.5316(0.076) -0.445(0.082) -0.343(0.078)
1.063(0.067)

M1 (AB) 0.5207(0.076) -0.388(0.068) -0.401(0.069)

Real φ’s 0.7 -0.5 -0.2 BF(Sd)

Mo (A) 0.7515(0.069) -0.611(0.075) -0.191(0.071)
1.040(0.082)

M1 (B) 0.5439(0.073) -0.433(0.066) -0.330(0.069)

Mo (A) 0.7538(0.070) -0.513(0.176) -0.188(0.069)
1.064(0.066)

M1 (AB) 0.7661(0.074) -0.501(0.067) -0.186(0.067)

Table 4.7: Results of MCMC and Bayes factor of some of the different parameters that have
been used for simulated data. The null model is group B and the alternative model is either
group A or AB.

Real φ’s -0.6 -0.6 -0.2 BF(Sd)

Mo (B) -0.611(0.078) -0.584(0.080) -0.170(0.079)
1.006(0.006)

M1 (A) -0.456(0.082) -0.431(0.079) 0.0211(0.083)

Mo (B) -0.613(0.079) -0.585(0.080) -0.174(0.080)
1.006(0.006)

M1 (AB) -0.613(0.086) -0.540(0.081) 0.184(0.084)

Real φ’s -0.68 0.4 0.74 BF(Sd)

Mo (B) -0.579(0.116) 0.3948(0.136) 0.7487(0.111)
1.019(0.053)

M1 (A) -0.537(0.048) 0.4212(0.057) 0.795(0.059)

Mo (B) -0.582(0.117) 0.394(0.137) 0.7499(0.110)
1.020(0.053)

M1 (AB) -0.540(0.050) 0.4149(0.057) 0.757(0.062)
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Table 4.8: Results of MCMC and Bayes factor of some of the different parameters that have
been used for simulated data. The null model is group AB and the alternative model is either
group B or B.

Real φ’s -0.2 0.3 0.8 BF(Sd)

Mo (AB) -0.159(0.067) 0.3164(0.054) 0.75(0.064)
1.085(0.421)

M1 (A) -0.155(0.067) 0.3149(0.056) 0.7424(0.065)

Mo (AB) -0.159(0.078) 0.3075(0.066) 0.7493(0.072)
1.155(0.519)

M1 (B) -0.147(0.076) 0.3136(0.063) 0.7253(0.073)

Real φ’s -0.3 0.3 0.6 BF(Sd)

Mo (AB) -0.403(0.060) 0.2632(0.074) 0.6628(0.070)
1.030(0.268

M1 (A) -0.401(0.062) 0.263(0.073) 0.6573(0.069)

Mo (AB) -0.403(0.061) 0.2674(0.072) 0.661(0.07)
1.050(0.277)

M1 (B) -0.406(0.070) 0.2718(0.078) 0.6411(0.069)

Real φ’s 0.7 0.7 -0.8 BF(Sd)

Mo (AB) 0.6252(0.060) 0.7291(0.056) -0.796(0.062)
1.263(0.417

M1 (A) 0.654(0.051) 0.7006(0.054) -0.86(0.075)

Mo (AB) 0.6642(0.064) 0.7047(0.047) -0.845(0.064)
1.018(0.306)

M1 (B) 0.6569(0.051) 0.7058(0.047) -0.852(0.066)

prior of group condition A compared to the prior of group AB, and using the prior of group

B compared to the prior of group AB. This means that although the Bayes factor could not

reject the alternative model, the prior of group conditions AB approximately satisfy both group

conditions A and B.
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Figure 4.10: Shows the distinction of the parameter estimates of the AR(3) model between null
model (AB) and alternative model (A). the red dot line is the true values, the blue dashed line
is the parameter estimates using Box-Jenkins and the red line is the parameter estimates using
MCMC. The curve shapes are the null models and the histograms are the alternative models.
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Figure 4.11: Shows the distinction of the parameter estimates of the AR(3) model between null
mode (AB)l and alternative model (B). the red dot line is the true values, the blue dashed line
is the parameter estimates using Box-Jenkins and the red line is the parameter estimates using
MCMC. The curve shapes are the null models and the histograms are the alternative models.

We verify easily this conclusion with our actual values of φ1 = 0.5, φ2 =-0.4 and φ3 =-0.4. We

obtain φ1 =0.532 and φ2 =-0.445 and φ3 =-0.343 based on group A conditions, while we obtain

φ1 =0.191, φ2 =-0.177 and φ3 =-0.603 based on group B conditions. We have seen that the

results of the Bayes factor were around one (see Table 4.6), we therefore could not reject the

alternative model, see Kass and Raftery (1995) and Triantafyllopoulos and Bersimis (2016).

We have repeated this process for several different values of the parameters. The results are

tabulated in Tables 4.7 and 4.8.

Regarding the intersection of group conditions of A and B (A∩B ), we did not consider the true

values of parameters of the AR(3) model when they are in the A∩B. This is because when we

consider A∩B, they only satisfy linear inequality equations (3.35) and (3.36). These inequality

conditions are already rejected when we use rejection sampling because they lie outside outside

the overall stationarity conditions
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4.15 Performance of the Bayes factor for determining the AR(3) model

In this section we conduct a simulation study in order to understand the performance of the

Bayes factor, in particular why it is sometimes unable to reject the alternative model when model

B is used as an alternative model for model A, despite the difference noticed in the precision of

parameter estimation for the two models. This case is studied via data simulation for the AR(3)

model based on the estimated parameters for both models. 150 observations are simulated for

the AR(3) model based on the condition that the parameters satisfy group A. For instance, the

chosen values of φ1 , φ2 and φ3 were 0.5, -0.4 and -0.4, respectively. Then, MCMC is applied

on the simulated data with the purpose of estimating the parameters of the AR(3) model via

the prior distributions available for groups A and B (see equations (4.30) and (4.38)). The

observed posterior modes of φ1 , φ2 and φ3 obtained by applying MCMC for group A were

0.532, -0.445 and -0.343 , respectively, and the observed posterior modes of φ1 , φ2 and φ3

of group B were 0.191, 0.177 and 0.603, respectively. Therefore, group A priors are to a large

extent satisfactory. As can be seen, the estimation of parameters obtained from group A is,

to some extent, more precise than those obtained from group B see Table 4.7. We applied the

Bayes factor in a way that group A plays the role of the null model (Mo ) and group B plays

the role of the alternative model (M1 ) as can be seen in Table (4.6). This procedure has been

repeated for many different parameters in order to be more confident about the performance of

the Bayes factor. The conclusion is that the null model using the prior distribution of group AB

cannot be rejected against the alternative models using groups A and B, respectively. Therefore,

the prior distribution of group AB conditions can be used as an alternative prior for both group

conditions A and B in order to estimate the parameters of the AR(3) model, as shown in Table

4.6 and 4.7. In conclusion, the prior distribution of AB captures much of the uncertainty and

hence we can obtain precise estimation.
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Table 4.9: Pseudo code of the MCMC procedure for the AR(2) model.

Update 1: φ1

initiate values: φ
(0)
1 , φ

(0)
2 and σ2(0)

φ
(new)
1 : sample from the truncated normal distribution of equation(4.15)

φ
(new)
1 : generated based on φ

(old)
2 and σ2(old)

Update 2: φ2

Set a proposal distribution q(φ
(new)
2 |φ(old)

2 ) as in equation (4.18)

φ
(new)
2 : sample from q(φ

(new)
2 |φ(old)

2 )
u: sample from U(0,1)

α = min

[
p(φ

(new)
2 )q(φ

(old)
2 |φ(new)

2 )

p(φ
(old)
2 )q(φ

(new)
2 |φ(old)

2 )
, 1

]
.

If α ≥ u, then φ2 = φnew2 ; otherwise φ2 = φold2 .

Update 3:

σ2(new): sample the precision( 1
σ2 )

(new)
from the Gamma distribution of equation (4.17)

σ2(new): generated based on φ
(new)
1 , φ

(new)
2 , a = 3 and b = 10

Table 4.10: Pseudo code of the MCMC procedure for the AR(3) model.

Update 1: φ1

initiate values: φ
(0)
1 , φ

(0)
2 , φ

(0)
3 . and σ2(0)

φ
(new)
1 : sample from the truncated normal distribution of equation(4.49).

φ
(new)
1 : generated based on φ

(old)
2 , φ

(old)
3 and σ2(old).

Update 2: φ2

Set a proposal distribution q(φ
(new)
2 |φ(old)

2 ) as in equation (4.59).

φ
(new)
2 : sample from q(φ

(new)
2 |φ(old)

2 ).
u: sample from U(0,1)

α = min

[
p(φ

(new)
2 )q(φ

(old)
2 |φ(new)

2 )

p(φ
(old)
2 )q(φ

(new)
2 |φ(old)

2 )
, 1

]
.

If α ≥ u, then φ2 = φnew2 ; otherwise φ2 = φ
(old)
2 .

Update 3: φ3

Set a proposal distribution q(φ
(new)
3 |φ(old)

3 ) as in equation (4.60).

φ
(new)
3 : sample from q(φ

(new)
3 |φ(old)

3 ).
u: from U(0,1)

α = min

[
p(φ

(new)
3 )q(φ

(old)
3 |φ(new)

3 )

p(φ
(old)
3 )q(φ

(new)
3 |φ(old)

3 )
, 1

]
.

If α ≥ u, then φ3 = φ
(new)
3 ; otherwise φ3 = φ

(old)
3 .

Update 4: σ2(new)

σ2(new): sample the precision( 1
σ2 )

(new)
from the Gamma distribution of equation (4.58).

σ2(new): generated based on φ
(new)
1 , φ

(new)
2 , φ

(new)
3 , a = 3 and b = 10.
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4.16 Prior distribution of the AR(4) model

In order to derive a prior distribution for the AR(4) model, we need to derive the equation of

the prior distribution as follows:

p(φ1, φ2, φ3, φ4) ∝ p(φ4) · p(φ3|φ4) · p(φ2|φ3, φ4) · p(φ1|φ2, φ3, φ4) (4.61)

In order to do this, we need to have all of the conditions related to the AR(4) model and

from them we are able to find the prior distributions for each parameter. Therefore, we can

take advantage of Section 3.6.4 where the conditions of the AR(4) model were found which are

shown below:

φ1 + φ2 + φ3 + φ4 < 1 (4.62)

−φ1 − φ2 + φ3 − φ4 < 1 (4.63)

−φ1 − φ2 − φ3 + φ4 < 1 (4.64)

φ1 + φ2 − φ3 − φ4 < 1 (4.65)

φ1 − φ2 − φ3 − φ4 < 1 (4.66)

−φ1 + φ2 − φ3 + φ4 < 1 (4.67)

−φ1 + φ2 + φ3 − φ4 < 1 (4.68)

φ1 − φ2 + φ3 + φ4 < 1 (4.69)

|φ4| < 1. (4.70)

It can be seen that there are nine inequalities and they should satisfy the stationarity conditions.

Due to the fact that φ4 is bounded, we easily deduce that an appropriate prior distribution

for φ4 is the uniform distribution on (-1, 1). Thus, from (4.70) it can be said that the prior
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distribution of φ4 can be as follows:

p(φ4) ∝ 1

2
(4.71)

Similarly, finding the prior distribution of φ3|φ4 can be done several ways. First, by adding

(4.66) to (4.67) we can obtain −2φ3 < 2⇒ φ3 > −1 , and by adding (4.62) to (4.63), we can get

2φ3 < 2 ⇒ φ3 < 1 . We can say that φ3 is independent of φ4 so p(φ3|φ4) = p(φ3).Therefore,

|φ3| < 1 so an appropriate prior for φ3 is φ3 ∼ U(−1, 1) .

As mentioned above, there are several ways to do what was done above. The following is another

way to derive the prior for φ3 by adding (4.64) to (4.67), we can obtain

2φ1 − 2φ3 + 2φ4 < 2 (4.72)

and by adding (4.65) to (4.66), we can obtain

+2φ1 − 2φ3 − 2φ4 < 2 (4.73)

Therefore, with regards to the condition φ3 > −1 , adding equation (4.72) to equation (4.73),

we can get that −4φ3 < 4⇒ φ3 > −1 . In order to prove that φ3 < 1 , equation (4.62) can be

added to equation (4.69) as follows:

2φ1 + 2φ3 + 2φ4 < 2 (4.74)

and by adding (4.63) to (4.68) we can obtain

−2φ1 + 2φ3 − 2φ4 < 2 (4.75)

Hence, adding (4.74) to (4.75), we can get 4φ3 < 4 and thus φ3 < 1 . Consequently we end up

with the same result as we had from the previous method and it can now be said that φ3 is
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independent of φ4 . Thus, the prior distribution of φ3 is p(φ3|φ4) ∝ p(φ3) = 1
2 . Thus,

p(φ3|φ4) ∝ 1

2
(4.76)

Moreover, having the prior distributions of φ3|φ4 and φ4 , it would be easier to derive the prior

distribution of φ2 by adding equations (4.62) and (4.68) together as follows:

2φ2 + 2φ3 < 2 (4.77)

Next, by adding (4.62) and (4.67) we can get:

2φ2 + 2φ4 < 2 (4.78)

From equations (4.77) and (4.78) we can obtain another equation which is:

4φ2 + 2φ3 + 2φ4 < 4

Then, by putting φ2 on the left hand-side alone and taking all other terms to the other side:

φ2 < 1− 1

2
φ3 −

1

2
φ4 (4.79)

After that (4.63) and (4.66) are added to create (4.80) as follows:

−2φ2 − 2φ4 < 2 (4.80)

and then (4.64) is added to (4.66) to obtain the following equation

−2φ2 − 2φ3 < 2 (4.81)
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Thus, another new equation is derived from combining (4.80) and (4.81), it is shown below:

−4φ2 − 2φ3 − 2φ4 < 4

and then

φ2 > −1− 1

2
φ3 −

1

2
φ4 (4.82)

It can be seen that all of these equations come from the nine conditions of the AR(4) model,

therefore, in order to get finalize the prior distribution of φ2 , another equation is obtained by

combining (4.79) and (4.82) as follows:

−1− 1

2
φ3 −

1

2
φ4 < φ2 < 1− 1

2
φ3 −

1

2
φ4 (4.83)

Therefore, the prior distribution of φ2 given φ3 and φ4 is as follows:

p(φ2|φ3, φ4) =
1

1− 1
2φ3 − 1

2φ4 − (−1− 1
2φ3 − 1

2φ4)

p(φ2|φ3, φ4) =
1

2
(4.84)

Hence the prior distribution of p(φ2|φ3, φ4) is as follows:

φ2|φ3, φ4 ∼ U(−1− 1

2
φ3 −

1

2
φ4, 1−

1

2
φ3 −

1

2
φ4) = U(−1, 1)

Now, we have nearly finished as there is only the prior distribution of φ1 left to be derived.
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From (4.62) to (4.69) we obtain inequalities for φ1 as follows:

φ1 < 1− φ2 − φ3 − φ4 (4.85)

φ1 > −1− φ2 + φ3 − φ4 (4.86)

φ1 > −1− φ2 − φ3 + φ4 (4.87)

φ1 < 1− φ2 + φ3 + φ4 (4.88)

φ1 < 1 + φ2 + φ3 + φ4 (4.89)

φ1 > −1 + φ2 − φ3 + φ4 (4.90)

φ1 > −1 + φ2 + φ3 − φ4 (4.91)

φ1 < 1 + φ2 − φ3 − φ4 (4.92)

Consequently, in order to assess a range for φ1 we have to look at those inequalities that are

quite similar which are (4.89) and (4.92) as they both have the less than sign. So that

φ1 < 1 + φ2 − |φ3 − φ4| (4.93)

If we take the absolute value of φ3 +φ4 , we can also obtain (4.85) to (4.88). Furthermore, from

equations (4.85) and (4.88), we can write them as one inequality which is,

φ1 < 1− φ2 − |φ3 + φ4| (4.94)

Again, by using the absolute value we can get the same inequality, i.e., from (4.93) and (4.94)

we can obtain the following equation:

φ1 < 1− |φ2| − |φ3 + φ4| (4.95)

It can be noted that we have only worked on the inequalities that have the less than sign (< ).

In order to compute the left- hand side for φ1 , it is important to consider those inequalities

that have the greater than sign (> ). Taking this into the consideration, we combine (4.86) and
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(4.87), and obtain:

φ1 > −1− φ2 + |φ3 − φ4| (4.96)

Likewise, we need to do the same procedure on (4.90) and (4.91) as shown below:

φ1 > −1 + φ2 + |φ3 + φ4| (4.97)

Therefore, the left-hand side of φ1 can be written by merging (4.96) and (4.97) as follows:

φ1 > −1 + |φ2|+ |φ3 − φ4| (4.98)

As a result, it can be seen that now we have both sides or one can say both limits, lower and

upper, by combining (4.95) and (4.98) as written down below

−1 + |φ2|+ |φ3 − φ4| < φ1 < 1− |φ2| − |φ3 + φ4| (4.99)

It is now known that p(φ1|φ2, φ3, φ4) can be as follows:

p(φ1|φ2, φ3, φ4) =
1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|
(4.100)

Now, the prior distribution of p(φ1, φ2, φ3, φ4) can be written as follows:

p(φ1, φ2, φ3, φ4) = p(φ4) · p(φ3|φ4) · p(φ2|φ3, φ4) · p(φ1|φ2, φ3, φ4)

=
1

2
· 1

2
· 1

2
· 1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|

∝ 1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|
(4.101)

It has been shown how prior distributions for the AR(4) model can be derived. These prior

distributions can be used in the next section in order to find the full conditional posterior

distributions for the AR(4) model.
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4.17 Posterior distribution for the AR(4) model

Assume n observations are available, say y1, y2, . . . , yn, for the AR(4) model.

yt = φ1yt−1 − φ2yt−2 + φ3yt−3 + φ4yt−4 + εt,

where εt is white noise and εt ∼ N(0, σ2) . The unknown parameters here are φ1 , φ2 , φ3 ,

φ4 and σ2 . Similar to the steps followed in the AR(2) and AR(3) models, full conditional

distributions can be derived for φ(j)|φ(−j), y for j = 1, , . . . , p . Thus

p(φ1|φ2, φ3, φ4, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3−φ4yt−4)2

p(φ1|φ2, φ3, φ4)

= e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3−φ4yt−4)2

.
1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|

∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3−φ4yt−4)2

I[a].

where

I[a] =

 1 a ∈ A

0 a /∈ A

for A={ φi ∈ that satisfy the conditions of the AR(4) model}. Let the variable of interest be

denoted by zt = yt − φ(−j)yt−(−j) for (j = 1, , . . . , 4) in order to be able to expand the part of∑
(yt − φ1yt−1 − φ2yt−2 − φ3yt−3 − φ4yt−4)2 which is inside the likelihood part of the posterior

distribution. This means that when we are trying to define the posterior distribution for φ1

zt = yt − φ2yt−2 − φ3yt−3 − φ4yt−4 . Therefore, the posterior distribution can be written as

follows;

p(φ1|φ2, φ3, φ4, y, σ
2) ∝ e−

1
2σ2

∑
(zt−φ1yt−1)2

I[a].
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Then, by following the steps of equation (4.2) and applying it to the above equation, the posterior

distribution of φ1|φ2, φ3, φ4, y, σ
2 is:

φ1|φ2, φ3, φ4, y, σ
2 ∼ N[−a1,a1]

(∑
ztyt−1∑
y2
t−1

,
σ2∑
y2
t−1

)

where [-a1,a1] is the range of φ1 , see equation (4.99). By adding zt = yt−φ2yt−2−φ3yt−3−φ4yt−4

to the above equation, the following equation can be obtained

φ1|φ2, φ3, φ4, y ∼ N[−a1,a1]

(∑
ytyt−1 − φ2

∑
yt−1yt−2 − φ3

∑
yt−1yt−3 − φ4

∑
yt−1yt−4∑

y2
t−1

,
σ2∑
y2
t−1

)
(4.102)

In order to derive the conditional posterior distribution for φ2|φ1, φ3, φ4, y, σ
2 , the procedure is:

p(φ2|φ1, φ3, φ4, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3−φ4yt−4)2

p(φ2|φ1, φ3, φ4)

∝ e−
1

2σ2

∑
(zt−φ2yt−2)2

.
1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|
I[−1,1],(4.103)

where zt = yt−φ1yt−1−φ3yt−3−φ4yt−4 , taking the same steps as before for φ1|φ2, φ3, φ4, y, σ
2 .

It is noted that the prior distribution of φ2|φ1, φ3, φ4 is used to derive the posterior distribu-

tion φ2 | φ1, φ3, φ4, y, σ
2 according to equation (4.103). However, we cannot put the posterior

distribution into any form of standard distribution, so we cannot directly simulate from it. Re-

garding the conditional posterior distributions of φ3 | φ1, φ2, φ4, y, σ
2 and φ4 | φ1, φ2, φ3, y, σ

2 ,

the procedure is similar, i.e.,

p(φ3|φ1, φ2, φ4, y, σ
2) ∝ e−

1
2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3−φ4yt−4)2

p(φ3 | φ1, φ2, φ4)

∝ e−
1

2σ2

∑
(zt−φ3yt−3)2

.
1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|
I[−1,1]

(4.104)
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Taking the same steps as above, where zt = yt − φ1yt−1 − φ2yt−2 − φ4yt−4 ,

p(φ4|φ1, φ2, φ3, y, σ
2) ∝ e−

1
2σ2

∑
(zt−φ4yt−4)2

.
1

2− 2|φ2| − |φ3 + φ4| − |φ3 − φ4|
I[−1,1],

(4.105)

where zt = yt − φ1yt−1 − φ2yt−2 − φ3yt−3. It can be stated that the posterior distribution for

φ(j)|φ(−j), y can be represented by a truncated normal distribution when j = 1 . However, when

j > 1, the posterior distribution is unknown. Therefore, for j > 1 , a Metropolis step should be

used where the proposed is a truncated normal distribution.

4.18 MCMC application for the AR(4) model

After realizing, as previously mentioned, that using a random walk as a proposal for the posterior

distribution was unable to accurately estimate parameters of the AR(2) and AR(3) models

(see Sections 4.7 and 4.11), we abandon the idea of using random walk proposal to estimate

parameters of the AR(4) model. Therefore the new recommended proposals are used in order to

obtain parameter estimates. Again, the idea of using the new proposal is to assume that φ2 , φ3

and φ4 have a truncated normal distributions. It can be noted that Gibbs sampling is used to

estimate φ1 from the conditional distribution of equation (4.102), and the parameters φ2 , φ3

and φ4 with posterior distributions of (4.103), (4.104) and (4.105), respectively, are estimated

through Metropolis steps. Additionally, the new recommended proposals of φ2 , φ3 and φ4 are

as follows:

φ2 | φ1, φ3, φ4, y, σ
2 ∼ N[−1,1]

(∑
ytyt−2 − φ1

∑
yt−1yt−2 − φ3

∑
yt−2yt−3 − φ4

∑
yt−2yt−4∑

y2
t−2

,
σ2∑
y2
t−2

)
(4.106)
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φ3 | φ1, φ2, φ4, y, σ
2 ∼ N[−1,1]

(∑
ytyt−3 − φ1

∑
yt−1yt−3 − φ2

∑
yt−2yt−3 − φ4

∑
yt−3yt−4∑

y2
t−3

,
σ2∑
y2
t−3

)
(4.107)

φ4 | φ1, φ2, φ3, y, σ
2 ∼ N[−1,1]

(∑
ytyt−4 − φ1

∑
yt−1yt−4 − φ2

∑
yt−2yt−4 − φ3

∑
yt−3yt−4∑

y2
t−4

,
σ2∑
y2
t−4

)
(4.108)

To estimate parameters of the AR(4) model, 150 observations are simulated for each of the

Figure 4.12: Illustration of convergence for the parameter estimates of φ1 , φ2 , φ3 and φ4 via
MCMC of the AR(4) model with K=50000, φ1 = −0.44 , φ2 = −0.05 , φ3 = 0.33 , φ4 = 0.77 ,
α = 3 and β = 10.

data sets after obtaining valid parameters of the AR(4) model. These parameters are obtained

based on the corresponding relationship between partial correlations (π) and parameters (φ)

as mentioned in Barndorff-Nielsen and Schou (1973)’s study. It is then guaranteed that the

parameters have a stationary process as described in Section 4.3. We use an inverse gamma

prior for σ2 as before. Once again we choose a weakly informative prior, 1
σ2 ∼ Gamma(a, b)
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assuming a=3 and b=10 (Ando, 2010).

Figure 4.13: Shows simulated posterior distributions for the parameters of the AR(4) model
with K=50000, φ1 = −0.44 , φ2 = −0.05 , φ3 = 0.33 , φ4 = 0.77 , α = 3 and β = 10.

After applying MCMC, the results of the parameter estimation presented are represented in

Table 4.11. To illustrate this table and to understand the MCMC results of the AR(4) model, the

parameters of φ1 = −0.44 , φ2 = −0.05 , φ3 = 0.33 and φ4 = 0.77 are used as an example after

simulating 150 observations based on the aforementioned parameters. Visual inspection of the

time series plot produced by ‘history’ in Figure 4.12 illustrates that the MCMC has converged. It

can be noted that the MCMC results of the parameters are φ1 = −0.42 , φ2 = −0.08 , φ3 = 0.32

and φ4 = 0.74 , and errors between the true parameters and the estimated parameters are within

1 to 3%. It can be seen from Figure 4.13 that the acceptance rates are relatively high. This is
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Table 4.11: MCMC results for the AR(4) model

Trial Stuation of parameters Iteration φ1 (Sd) φ2(Sd) φ3 (Sd) φ4 (Sd) Acceptance rate

1
Real value

20000
-0.1 0.6 0.2 0.2

63.69%
Estimate Value -0.102(0.232) 0.635(0.12) 0.207(0.183) 0.236(0.124)

2
Real value

100000
-0.1 0.6 0.2 0.2

64.03%
Estimate Value -0.0971(0.23) 0.638(0.12) 0.202(0.183) 0.234(0.123)

3
Real value

40000
0.727 -0.325 -0.496 0.575

58.43%
Estimate Value 0.707(0.374) -0.395(0.151) -0.49(0.229) 0.509(0.292)

4
Real value

40000
-0.4 0.2 0.4 0.4

92.37%
Estimate Value -0.517(0.117) 0.2(0.127) 0.493(0.124) 0.367(0.118)

5
Real value

50000
-0.44 -0.05 0.33 0.77

94.23%
Estimate Value -0.417(0.0258) -0.0774(0.0262) 0.321(0.0263) 0.742(0.0257)

because our proposals are close to the corresponding posterior distributions, see Hoff (2009) and

Robert and Casella (2009). Additionally, general formula will be derived in the next section in

order to generalize our prior and posterior distributions to AR( p ) models of any order.

4.19 Generalized posterior distribution for the AR( p ) model

It has been clearly mentioned that the aim of the current research is estimation of the param-

eters of the autoregressive model through using MCMC methods. The estimation process is

conducted via AR model parameters, thus, stationary conditions, derived by parameter models

in a conditional inequality way, should be taken into account (see Chapter 3). Therefore, prior

distribution obtained through stationary conditions, are used to develop a Metropolis within

Gibbs MCMC scheme. In order to generalize to the prior distribution for the AR( p ) model,

first we should consider the results of the prior distributions of AR models for orders which are

lower than 5 ( p < 5 ) as seen in equations (4.11), (4.45) and (4.101).

For p = 1, p(φ1) =


1
2 φ1 ∈ SC of AR(1)

0 otherwise
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For p = 2 , p(φ1, φ2) =


1

4(1−φ2) Φ ∈ SC of AR(2)

0 otherwise

For p = 3 , p(φ1, φ2, φ3) =


1

4(2−|φ2+φ3|−|φ2−φ3|) Φ ∈ SC of AR(3)

0 otherwise

For p = 4, p(φ1, φ2, φ3, φ4) =


1

8(2−|φ3+φ4|−|φ3−φ4|−2|φ2|) Φ ∈ SC of AR(4)

0 otherwise

Regarding the prior distributions of AR(5) and AR(6), please see Appendix C in order to clarify

how to obtain the below priors for both of them.

For p = 5, p(φ1, φ2, φ3, φ4, φ5) =


1

16(2−2|φ2|−2|φ4|−|φ3+φ5|−|φ3−φ5|) Φ ∈ SC of AR(5)

0 otherwise

For p = 6, p(φ1, φ2, φ3, φ4, φ5, φ6) =


1

32(2−2|φ2|−2|φ4|−2|φ5|−|φ3+φ6|−|φ3−φ6|) Φ ∈ SC of AR(6)

0 otherwise

Based on the above summary, the prior distribution of the AR( p ) model can be generalized,

for p > 4 as follows:

p(φ1, φ2, . . . , φp) =


1

2p−1(2−|φ3+φp|−|φ3−φp|−2
∑p−1
i=2(i∓3)

|φi|)
Φ ∈ SC of AR(p)

0 otherwise

(4.109)

the posterior distribution for the AR( p ) model can be generalized based on the posterior dis-

tributions of the AR( p ) models when p < 4 , as in equations (4.3) for AR(1), (4.16) for AR(2)

and (4.49)-(4.51) for AR(3) model. For the posterior distributions of the AR(4) model see
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equations (4.102) to (4.105). As a result of the summarization of the aforementioned posterior

distributions we can generalize the full conditional posterior distributions for the AR( p ) model

as follows;

φ(j) | φ(−j), y, σ
2 ∼ N[−a,a]

(∑
ytyt−(j) − [φ(−j)]

T
∑
yt−(−j)yt−(j)∑

y2
t−(j)

,
σ2∑
y2
t−(j)

)
(4.110)

where j ∈ {1, 2, . . . , p} , (−j) is {1, 2, . . . , p} with the element j removed and p is the order

of the AR model. [−a, a] are the lower and upper bounds of the truncated normal distribution

where a ∈ upper boundary values that satisfy stationary conditions of φ(j) Ḟor example, in the

AR(2) model when j = 1 , a = 1− φ2. Each of the vectors of φ(−j) is defined as follows:

φ(−j) =



φ1

...

φ(j)−1

φ(j)+1

...

φp


and yt−(−j) =



yt−1

...

yt−j+1

yt−j−1

...

yt−p





Chapter 5

Prior structures and comparative

results

This chapter mainly focuses on two parts in order to study and compare the current proposal

with previous studies relevant to the present study. The first part compares the proposed prior

distribution with the prior distributions obtained from the correspondence relationship between

partial autocorrelations and parameters discussed by Barndorff-Nielsen and Schou (1973). It

discusses the study by Jones (1987) in which the author generalized a Jacobian transformation

based on the expressions for the parameters in terms of partial autocorrelations. One of the lim-

itations of Jones (1987)’s study is that we cannot obtain a prior distribution for the parameters

using the Jacobian transformation in the case high order of polynomial models. This is discussed

in this chapter. This comparison relies on some theoretical mathematical steps and practical

results when applying these prior distributions to obtain parameter estimates of the AR( p )

model. We extend the work of Barnett et al. (1996) who placed uniform priors on the partial

autocorrelation and proposed a Metropolis Hastings algorithm. Considering the same priors, we

develop a Gibbs sampling algorithm which is easier and more routine to apply. The purpose of

the second part is to apply the proposed MCMC scheme of chapter 4 to both real data and sim-

138
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ulated data. Furthermore, this part compares the performance of the above MCMC algorithm

with Box et al. (1976) as well as with the Gibbs sampling scheme of the previous section.

5.1 Prior distribution based on Barndorff-Nielsen and Schou (1973)’s study

The focus here is on the differences amongst the current study and the Barndorff-Nielsen and

Schou (1973) one in terms of identifying prior distributions of autoregressive models. The recent

study shows the weakness of Barndorff-Nielsen and Schou (1973)’s study in that the relations

between the parameters and characteristic roots cannot be relied on. The reason is that the

Barndorff-Nielsen and Schou (1973) study is unable to identify a prior distribution for the

AR( p ) model, especially when the order of the model is high. For this purpose, identifying

prior distributions is highlighted for some primary orders (p < 3) . However, it can be shown

that a prior distribution cannot be identified when the order of the model is higher than three

(p > 3) . This is illustrated in detail in the next section.

5.1.1 Prior distribution of the AR( p ) model when p < 3

As previously mentioned, defining the prior distribution of the AR( p ) model is difficult in terms

of mathematical procedures when the model order is p ≥ 3 . First, the prior distribution is de-

fined when the order is p < 3 . This is done here to make a comparison between our suggested

prior distribution and the aforementioned one. In order to identify the prior distribution for the

AR(1), it can be shown that p(φ) = 1
2I[−1,1] which is based on |φ| < 1 and φ ∼ U(−1, 1) .

When we have a time series of order two, we use the following relationship between the par-

tial autocorrelations ( π ) and parameters ( φ ) from Barndorff-Nielsen and Schou (1973) are as
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follows:

φ1 = π1 − π1π2 (5.1)

φ2 = π2 (5.2)

We obtain π1 = φ1

1−φ2
and π2 = φ2 . The prior distribution for the AR(2) model can be identified

through the Jacobian transformation as follows:

p(φ1, φ2) = p(π1, π2).|J | (5.3)

Therefore, the Jacobian formula is

|J | =

∣∣∣∣∣∣∣
∂π1
∂φ1

∂π1
∂φ2

∂π2
∂φ1

∂π2
∂φ2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

1−φ2

φ1

(1−φ2)2

0 1

∣∣∣∣∣∣∣ =
1

1− φ2
.

Since the partial autocorrelations π1, π2 are on (-1, 1), we can propose that π1, π2 are uniformly

distributed on (-1, 1) and are independent. Hence, the prior distribution for the AR(2) model is

p(φ1, φ2) =


1

4(1−φ2) if φ2 − 1 < φ1 < 1− φ2 and −1 < φ2 < 1

0 otherwise
(5.4)

We note that our proposed prior distribution for φ1, φ2 (Chapter 4) coincides with (5.4). This

suggests that our proposal achieves the same prior distribution as equation (4.11), but it avoids

placing the priors on the partial autocorrelations. We avoid that because we can not identify the

relationship between parameters and autocorrelation of more than order four. And, our aim is

to place priors directly on the parameters rather than placing priors on the characteristic roots.

When identifying the prior distribution for p = 3 in order to establish the correspondence be-

tween parameters and partial autocorrelations described by Barndorff-Nielsen and Schou (1973),

we face a somehow more difficult and complex procedure. This is discussed in the following sec-
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tion.

5.1.2 Prior distribution of the AR( p ) model when p ≥ 3

This section shows that the procedure of defining a prior distribution, when using the relationship

between partial autocorrelations and parameters in Barndorff-Nielsen and Schou (1973)’s study,

faces some difficulties. This is because partial derivatives cannot be found easily when p ≥ 3. In

order to find the prior distribution for the AR(3) model, the mapping of partial autocorrelations

π into parameters φ can be used from Section 3.6 as has been shown from equations of (3.70)-

(3.72). It can be noticed that the range of πi are between (-1, 1) then we have used the

distribution of πi is uniformly distributed, πi ∼ U(−1, 1), for i = 1, 2, 3 and p(πi) = 1
2I[−1,1] .

In fact, there are other alternative prior distributions that we could have used such as normal

prior distribution. Therefore, the joint prior for the partial autocorrelations is as follows:

p(π1, π2, π3) = p(π1).p(π2).p(π3) =

(
1

2

)3

I[−1,1] (5.5)

To find priors for the AR(3) model, the concept of a derivative of a coordinate transformation

can be explored which is known as the Jacobian transformation, therefore, the equation of

{π(φi)}−1 can be transformed into an equation of φ(πi) and finding the Jacobian as follows:

p(φ1, φ2, φ3) = p(π1, π2, π3).|J | (5.6)

Thus, the determinate of the Jacobian matrix is needed in order to find the prior for the AR(3)

model. Therefore, the Jacobian of πi with respect to φi is as follows:

|J | =

∣∣∣∣∣∣∣∣∣∣
∂π1
∂φ1

∂π1
∂φ2

∂π1
∂φ3

∂π2
∂φ1

∂π2
∂φ2

∂π2
∂φ3

∂π3
∂φ1

∂π3
∂φ2

∂π3
∂φ3

∣∣∣∣∣∣∣∣∣∣
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From the fact that π3 = φ3 , and ∂π3
∂φ1

= ∂π3
∂φ2

= 0 and ∂π3
∂φ3

= 1 , the above equation simplifies to

|J | =

∣∣∣∣∣∣∣
∂π1
∂φ1

∂π1
∂φ2

∂π2
∂φ1

∂π2
∂φ2

∣∣∣∣∣∣∣ .
The partial derivative ∂π1

∂φ1
can be calculated as follows:

∂π1

∂φ1
=

1− φ2 + φ2φ
2
3 − φ2

3

(1− φ2 − φ1φ3 − φ2
3)2

=
(1− φ2)(1− φ2

3)

(1− φ2 − φ1φ3 − φ2
3)2

(5.7)

Additionally, the partial derivative ∂π1
∂φ2

can be calculated as follows:

∂π1

∂φ2
=

−φ1(−1)

(1− φ2 − φ1φ3 − φ2
3)2

+
φ3(1− φ2 − φ1φ3 − φ2

3)− φ2φ3(−1)

(1− φ2 − φ1φ3 − φ2
3)2

=
(φ1 + φ3)(1− φ2

3)

(1− φ2 − φ1φ3 − φ2
3)2

(5.8)

the partial derivative ∂π2
∂φ1

is:

∂π2

∂φ1
=

φ3

1− φ2
3

(5.9)

and the parial derivative ∂π2
∂φ2

can be calculated as follows:

∂π2

∂φ2
=

1

1− φ2
3

(5.10)

Hence, from equations (5.7), (5.8), (5.9) and (5.10), the Jacobian can be obtained as follow;

|J | =

∣∣∣∣∣∣∣
(1−φ2)(1−φ2

3)

(1−φ2−φ1φ3−φ2
3)2

(φ1+φ3)(1−φ2
3)2

(1−φ2−φ1φ3−φ2
3)

φ3

1−φ2
3

1
1−φ2

3

∣∣∣∣∣∣∣
Thus, the determinate of the Jacobian matrix is as follows:

|J | = 1

1− φ2 − φ1φ3 − φ2
3

(5.11)

After the Jacobian has been found from the above steps, now, from equations (5.5) and (5.11)
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the prior distribution for the AR(3) model can be written as follows:

p(φ1, φ2, φ3) =


1

23(1−φ2−φ1φ3−φ2
3)

if |φ2 − φ3| − 1 < φ1 < 1− |φ2 + φ3|, |φ2| < 1 and |φ3| < 1

0 otherwise

(5.12)

It can be seen from the above steps that the prior distribution for the AR(3) model is obtained

using the Jacobian transformation. But if, in the same way, the prior distribution is to be

identified for the AR( p ) model when p = 4 , it cannot be obtained the same way as has

been done for orders p = 2 and p = 3 . This is because when p > 3 , partial derivatives

between characteristic roots and parameters cannot be found or obtained. This is due to the

complicated relationship that can be seen from the mapping of characteristic roots to parameters

as obtained in equations (5.7) and (5.8). In addition, procedures for calculating the Jacobian

determinant for matrices of size r × r when r ≥ 3 , are mathematically complicated. Using

Maple 18 software, we attempted to obtain the determinant of the 4× 4 Jacobian matrix, but

because of the complexity of the process, the result was not achieved. Thus, it can be said that

the information described by Barndorff-Nielsen and Schou (1973) on the AR model cannot be

relied upon when we estimate parameters of the AR( p ) model and apply MCMC. This is when

parameters are directly estimated via parameters rather than characteristic roots. The proposed

prior distribution of Chapter 4 does not face these difficulties.

5.2 Prior distribution for the AR( p ) model based on Jones (1987)

In the previous section, we noted the difficulties of using the Jacobian transformation in ob-

taining a prior distribution for the AR( p ) model. But Jones (1987) has derived a Jacobian

transformation based on the correspondence between parameters and partial autocorrelations
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obtained from Barndorff-Nielsen and Schou (1973)’s study.

|J | =
p∏

k=2

(1− πk)[ k
2

](1 + πk)
[ k−1

2
] (5.13)

Thus, when a prior distribution is defined for the AR( p ) model through J(π → φ) then

p(φ1, . . . , φp) = p(π1, . . . , πp) |J |−1

As we know πi ∼ U(−1, 1) when i = 1, 2, . . . , p. Therefore, p(π1 . . . , πp) = p(π1) . . . p(πp)

based on the π ’s being independent. Thus, when a prior distribution is defined for the AR(2)

model, we are able to use the Jacobian transformation proposed by Jones (1987) as follows

p(φ1, φ2) = p(π1, π2) |J |−1

where |J | = (1− π2)[1](1 + π2)[ 1
2

]=1−π2

= 1− φ2

Then the prior distribution of the AR(2) parameters is

p(φ1, φ2) =


1

4(1−φ2) −1 < φ1 < 1 − 1 < φ2 < 1

0 otherwise

When a prior distribution is defined for the AR(3) model, it can be derived in the same way as

for the AR(2).

p(φ1, φ2, φ3) = p(π1, π2, π3) |J |−1 =
1

23
. |J |−1
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|J | can be obtained through equation (5.13), as follows

|J | = (1− π2)(1 + π2)[ 1
2

].(1− π3)[ 3
2

](1 + π3)

= (1− π2).(1− π3).(1 + π3)

= (1− π2).(1− π2
3)

By substituting into the above equation the expressions for the partial autocorrelations π2 and

π3 in terms of the parameters φ1 , φ2 and φ3 (as obtained in equation (3.70) and (3.71)), we

obtain

|J | =

(
1− φ2 + φ1φ3

(1− φ2
3)

)
.(1− φ2

3) = 1− φ2 − φ1φ3 − φ2
3

The prior distribution for the AR(3) model is this

p(φ1, φ2, φ3) =


1

8(1−φ2−φ1φ3−φ2
3)

Φ ∈ SC of AR(3)

0 otherwise

Regarding the AR(4) model, the prior distribution cannot be obtained in the same way as it

was obtained for the AR(2) and AR(3). In general, there is no explicit relationship of |J | in

terms of the φ ’s. For p = 4 , the Jacobian is

|J | = (1− π2)(1 + π2)[ 1
2

].(1− π3)[ 3
2

](1 + π3).(1− π4)2(1 + π4)[ 3
2

]

= (1− π2)(1− π2
3).(1− π4)2(1 + π4)

and by using equations (3.88) to (3.90), we can obtain an expression of |J | with respect to the

φ ’s. However, due to (3.88) this will be too complicated. Thus, as mentioned previously, we

cannot obtain prior distributions based on the mapping between partial autocorrelations and

parameters. Likewise, we cannot rely on the Jones (1987) method for defining prior distribution
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for the AR( p ) model. Our proposed a prior structure offers a general framework, which is

considerably simpler.

5.3 Gibbs Sampler for the AR(2) model using partial autocorrelations

The aim of this section is to derive full conditional posterior distributions for the AR(2) model

based on the corresponding relationship between the φ ’s and the π ’s. The parameters of the

AR(2) model φ1 and φ2 are converted to partial autocorrelations, π1 and π2 based on the

equations provided by Barndorff-Nielsen and Schou (1973). Here, we attempt to apply MCMC

through the Gibbs sampler in order to estimate parameters of the AR model. We extend

the work of Barnett et al. (1996) who placed uniform priors on the partial autocorrelations

and proposed a Metropolis-Hastings algorithm. Considering the same priors, we develop a

Gibbs sampling algorithm which is easier and more routine to apply. Assume n observations

are available, say y1, y2, . . . , yn . The aim is to estimate φ1, φ2 and σ2 . We use the AR(2)

model yt = φ1yt−1 + φ2yt−2 + εt where εt is white noise and εt ∼ N(0, σ2) . The unknown

parameters here are φ1, φ2 and σ2 . The posterior distribution for the AR(2) model using

partial autocorrelations is given by:

p(φ1, φ2 | y, σ2) ∝ p(y | φ1, φ2, σ
2).p(φ1, φ2)

It has been known from the corresponding relationship between the φ ’s and the π ’s based on

equations provided by Barndorff-Nielsen and Schou (1973) that:

φ1 = π1(1− π2) (5.14)

φ2 = π2 (5.15)
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When both π1 and π2 are uniformly distributed between -1 and 1 (i.e., π1, π2 ∼ U [−1, 1] ),

then

p(φ1, φ2 | y, σ2) ∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2)2

.I[−1,1],

where I[−1,1] indicates the indicator function on [-1,1]. For φ2 , the conditional posterior distri-

bution can be written as follows:

p(π2 | y, σ2, π1) ∝ p(y | π1, π2, σ
2).p(π2 | π1)

Because of the fact that π1 and π2 are independent, therefore p(π1, π2) = p(π1) and we have

p(π2 | y, σ2, π1) ∝ p(y | π1, π2).p(π1)

Hence,

p(π2 | y, σ2, π1) ∝ e−
1

2σ2

∑
(yt−π1(1−π2)yt−1−π2yt−2)2

.I[−1,1]

∝ e−
1

2σ2

∑
(yt−π1yt−1−π2(yt−2−π1yt−1))2

.I[−1,1]

Let us denote zs1 = yt − π1yt−1 and xs1 = yt−2 − π1yt−1 . Thus, the conditional posterior

distributions using partial autocorrelation for the AR(2) model is given by:

p(π2 | y, σ2, π1) ∝ e−
1

2σ2

∑
(zs1−π2xs1)2

.I[−1,1] (5.16)

We need to find an expression for the mean of the Normal distribution p( π2 | z, σ2 ) such that

p(π2 | z, σ2) ∝ e−
1

2σ2

∑
(π1−z))2
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Then, π2 | z, σ2 is normally distributed with mean equal to z and variance equal to σ2

Therefore, we take the sum in the right-hand side of equation (5.16) and changed as the follows:

∑
(zs1 − π2xs1)2 =

∑
(z2
s1 + π2

2x
2
s1 − 2π2zs1xs1)

=
∑

z2
s1 + π2

2

∑
x2
s1 − 2π2

∑
zs1xs1 +

(∑
zs1.xs1∑
x2
s1

)2

−

(∑
zs1.xs1∑
x2
s1

)2

Then,

∑
(zs1 − π2xs1)2 ∝

∑
x2
s1

(
π2 −

∑
zs.xs1∑
x2
s1

)2

, (5.17)

and by substituting (5.17) into (5.16) we get

p(π2 | y, π1, σ
2) ∝ e

− 1
2σ2

∑
x2
s1

(
π2−

∑
zs.xs1∑
x2
s1

)2

.I[−1,1],

If we compare the above equation with the normal distribution, we obtain the posterior distri-

bution for π2 , which is truncated normally distributed, as follows:

π2 | y, π1, σ
2 ∼ N[−1,1]

(∑
zs1xs1∑
x2
s1

,
σ2∑
x2
s1

)
(5.18)

where zs1 = yt - π1yt−1 , and xs1 = yt−2 - π1yt−1 . Therefore, the posterior distribution for

π2 is given by:

π2 | y, π1, σ
2 ∼ N[−1,1]

(∑
(yt − π1yt−1)(yt−2 − π1yt−1)∑

yt−2 − π1y2
t−1

,
σ2∑

(yt−2 − π1yt−1)2

)
(5.19)

Likewise,the conditional posterior distribution for π1 can be derived as follows:

p(π1 | y, π2, σ
2) ∝ p(y | π1, π2, σ

2).p(π1 | π2)
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Because of the fact that π1 and π2 are independent, therefore p(π1|π2) = p(π1) = 1
2I[−1,1] .

p(π1 | y, π2, σ
2) ∝ p(y | π1, π2, σ

2).p(π2)

∝ e−
1

2σ2

∑
(zs2−π1xs2)2

.I[−1,1] (5.20)

where zs2 = yt - π2yt−2 and xs2 = (1−π2)yt−1. Then, we re-express the sum in the right-hand

side of equation (5.20). It is noted that the same mathematical steps are used to obtain equation

(5.17) with the adaption of changing zs1 to zs2, as we end up with

∑
(zs2 − π1xs2)2 ∝

∑
x2
s2

(
π1 −

∑
zs2.xs2∑
x2
s2

)2

(5.21)

By substituting (5.21) into (5.20) we can obtain the conditional posterior distribution as follows:

p(π1 | y, π2, σ
2) ∝ e

− 1
2σ2

∑
x2
s2

(
π1−

∑
zs2.xs2∑
x2
s2

)2

.I[−1,1]

Thus, the posterior distribution of the partial autocorrelation π1 is a truncated normal distri-

bution:

π1 | y, π2, σ
2 ∼ N[−1,1]

(∑
(yt − π2yt−2)(1− π2)yt−1∑

((1− π2)yt−1)2
,

σ2∑
((1− π2)yt−1)2

)
(5.22)

5.4 Gibbs sampler for the AR(3) model using partial autocorelations

The objective of this section is to derive the conditional posterior distribution for the AR(3)

model based on the corresponding relationship between φs and πs . The parameters of the

AR(3) model φ1 , φ2 and φ3 are converted using the same steps as in Section (5.3). It is well

known from corresponding relationship between φs and πs , based on equations provided by
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Barndorff-Nielsen and Schou (1973), that:

φ1 = π1 − π1π2 − π2π3 (5.23)

φ2 = π2 − π1π3 − π1π2π3 (5.24)

φ3 = π3 (5.25)

where π1 , π2 and π3 are uniformly distributed between -1 and 1 i.e., ( π1, π2, π3 ∼ U [−1, 1] ).

As we know from Bayes’ theorem,

p(φ1 | y) ∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

.p(φ1) (5.26)

p(φ2 | y) ∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

.p(φ2) (5.27)

p(φ3 | y) ∝ e−
1

2σ2

∑
(yt−φ1yt−1−φ2yt−2−φ3yt−3)2

.p(φ3) (5.28)

The posterior conditional distribution for π3 of the AR(3) model using partial autocorrelations

is given by:

p(π3 | y, π1, π2, σ
2) ∝ p(y | π1, π2, π3, σ

2).p(π3 | π1, π2)

∝ p(y | π1, π2, π3, σ
2).

1

2
I[−1,1]

Note: p(πi|π−i) = 1
2 .I[−1,1] , because π1, . . . , πp are independent and πi ∼ U(−1, 1) , where

i = 1, . . . , p . By substituting the corresponding relationship into equation (5.28), we can get

p(π3 | y, π1, π2, σ
2) ∝ e−

1
2σ2

∑
(yt−(π1−π1π2−π2π3)yt−1−(π2−π1π3−π1π2π3)yt−2−π3yt−3)2

.I[−1,1]

∝ e−
1

2σ2

∑
(yt−π1yt−1+π1π2yt−1−π2yt−2−π3(π1π2yt−2−π2yt−1−π1yt−2+yt−3))2

.I[−1,1]
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Denote zs3 = yt − π1yt−1 + π1π2yt−1 − π2yt−2 , and xs3 = π1π2yt−2 − π2yt−1 − π1yt−2 + yt−3.

Then,

p(π3 | y, π1, π2, σ
2) ∝ e−

1
2σ2

∑
(zs3−π3xs3)2

I[−1,1] (5.29)

As constant terms can be added, we can obtain

p(π3 | y, π1, π2, σ
2) ∝ e

− 1
2σ2

(∑
z2
s3+π2

3

∑
x2
s3−2π3

∑
zs3xs3+(

∑
zs3.xs3∑
x2
s3

)2

)
I[−1,1]

Then, the posterior conditional distribution for π3 is given by

p(π3 | y, π1, π2, σ
2) ∝ e

− 1
2σ2

∑
x2
s3

(
π3− (

∑
zs3.xs3)∑
x2
s3

)2

.I[−1,1], (5.30)

so that given below the posterior distribution of π3 is the truncated normally distribution with

posterior mean and variance

π3 | y, π1, π2, σ
2 ∼ N[−1,1]

(∑
zs3.xs3∑
x2
s3

,
σ2∑
x2
s3

)

As zs3 = yt − π1yt−1 + π1π2yt−1 − π2yt−2 and xs3 = π1π2yt−2 − π2yt−1 − π1yt−2 + yt−3 , the

posterior conditional distribution of π3 is as follows

π3 | y, π1, π2, σ
2 ∼ N[−1,1]

(∑
(yt − π1yt−1 + π1π2yt−1 − π2yt−2)(π1π2yt−2 − π2yt−1 − π1yt−2 + yt−3)∑

(π1π2yt−2 − π2yt−1 − π1yt−2 + yt−3)2
,

σ2∑
(π1π2yt−2 − π2yt−1 − π1yt−2 + yt−3)2

)
(5.31)

Similarly, the conditional posterior distribution for π2 can be derived as follows

p(π2 | y, π1, π3, σ
2) ∝ p(y | π1, π2, π3, σ

2).p(π2 | π1π3)
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Again, by substituting the corresponding relationship into equation (5.27), we can get

p(π2 | y, π1, π3, σ
2) ∝ e−

1
2σ2

∑
(yt−(π1−π1π2−π2π3)yt−1−(π2−π1π3−π1π2π3)yt−2−π3yt−3)2

.I[−1,1]

∝ e−
1

2σ2

∑
(zs4−π2xs4)2

I[−1,1],

where zs4 = yt − π1yt−1 + π1π3yt−2 − π3yt−3 and xs4 = yt−2 − π1π3yt−2 − π1yt−1 − π3yt−1 .

Then,

p(π2 | y, π1, π3, σ
2) ∝ e

− 1
2σ2

(∑
z2
s4+π2

2

∑
x2
s4−2π2

∑
zs4xs4+(

∑
zs4xs4∑
x2
s4

)2

)

∝ e
− 1

2σ2

∑
x2
s4

(
π2−

∑
zs4.xs4∑
x2
s4

)2

.I[−1,1]

Thus, the posterior distribution of π2 is given by

π2 | y, π1, π3, σ
2 ∼ N[−1,1]

(∑
zs4.xs4∑
x2
s4

,
σ2∑
x2
s4

)
,

and we can conclude that

π2 | y, π1, π3, σ
2 ∼ N[−1,1]

(∑
(yt − π1yt−1 + π1π3yt−2 − π3yt−3)(yt−2 − π1π3yt−2 − π1yt−1 − π3yt−1)∑

(yt−2 − π1π3yt−2 − π1yt−1 − π3yt−1)2
,

σ2∑
(yt−2 − π1π3yt−2 − π1yt−1 − π3yt−1)2

)
(5.32)

Now, the posterior conditional distribution for π1 has to be derived. From Bayes’ theorem, we

know that

p(π1 | y, π2, π3, σ
2) ∝ p(y | π1, π2, π3, σ

2).p(π1 | π2, π3)

∝ p(y | π1, π2, π3, σ
2).I[−1,1]
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By using the corresponding relationship between parameters and partial autocorrelations that

was proposed by Barndorff-Nielsen and Schou (1973), we can amend the equation as follows

p(π1 | y, π2, π3, σ
2) ∝ e−

1
2σ2

∑
(yt−(π1−π1π2−π2π3)yt−1−(π2−π1π3−π1π2π3)yt−2−π3yt−3)2

.I[−1,1]

∝ e−
1

2σ2

∑
(zs5−π1xs5)2

.I[−1,1],

where zs5 = yt + π2π3yt−1 − π2yt−2 − π3yt−3 and xs5 = π2yt−1 + yt−1 − π3yt−2 − π2π3yt−2 .

Then, the posterior distribution for π1 is given by

p(π1 | y, π2, π3, σ
2) ∝ e

− 1
2σ2

∑
x2
s5

(
π1−

∑
zs5.xs5∑
x2
s5

)2

.I[−1,1],

and thus

π1 | y, π2, π3, σ
2 ∼ N[−1,1]

(∑
zs5.xs5∑
x2
s5

,
σ2∑
x2
s5

)
.

After substituting the equation for zs5 and xs5 , the posterior distribution of π1 can be written

as follows:

π1 | y, π2, π3, σ
2 ∼ N[−1,1]

(∑
(yt + π2π3yt−1 − π2yt−2 − π3yt−3)(π2yt−1 + yt−1 − π3yt−3 − π2π3yt−2)∑

(π2yt−1 + yt−1 − π3yt−2 − π2π3yt−2)2
,

σ2∑
(π2yt−1 + yt−1 − π3yt−2 − π2π3yt−2)2

)
(5.33)

5.5 MCMC results for the AR(2) and AR(3) models using partial

autocorrelation priors

In order to estimate parameters of the AR(2) and AR(3) models, a suitable MCMC scheme is

used whereby priors are placed on the partial autocorrelations. This results in a posterior infer-

ence for the partial autocorrelation; then posterior estimates of the AR parameters are implied
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Table 5.1: Pseudo-code of the MCMC procedure for the AR(2) model based on the partial
autocorrelation.

Update 1: π1, φ1

initiate values: π
(0)
1 , π

(0)
2 randomly chosen from U(-1, 1)

π
(new)
1 : sample from the truncated normal distribution of equation (5.22)

π
(new)
1 : calculated based on π

(old)
1 and π

(old)
2

φ
(new)
1 = π

(new)
1 − π(new)

1 π
(old)
2

Update 2: π2, φ2

π
(new)
2 : sample from the truncated normal distribution of equation (5.19)

π
(new)
2 : calculate based on π

(new)
1 and π

(old)
2

φ
(new)
2 = π

(new)
2

Table 5.2: Pseudo-code of the MCMC procedure for the AR(3) model based on the partial
autocorrelation.

Update 1: π1, φ1

initiate values: π
(0)
1 , π

(0)
2 and π

(0)
3 randomly chosen from U(-1, 1)

π
(new)
1 : sample from the truncated normal distribution of equation (5.33)

π
(new)
1 : calculate based on π

(old)
1 , π

(old)
2 and π

(old)
3

φ
(new)
1 = π

(new)
1 − π(new)

1 π
(old)
2 − π(old)

2 π
(old)
3

Update 2: π2, φ2

π
(new)
2 : sample from the truncated normal distribution of equation (5.32)

π
(new)
2 : calculate based on π

(new)
1 , π

(old)
2 and π

(old)
3

φ
(new)
2 = π

(new)
2 − π(new)

1 π
(old)
3 − π(new)

1 π
(new)
2 π

(old)
3

Update 3: π3, φ3

π
(new)
3 : sample from the truncated normal distribution of equation (5.31)

π
(new)
3 : calculate based on π

(new)
1 , π

(new)
2 and π

(old)
3

φ
(new)
3 = π

(new)
3

as in Barndorff-Nielsen and Schou (1973). Using the Gibbs sampler for the AR(2) and AR(3)

models we estimate partial autocorrelations. For the AR(2) model, partial autocorrelations of

π2 , π1 from equations (5.19) and (5.22), respectively, are simulated. For the AR(3) model,

partial autocorrelations of π3 , π2 , π1 from equations (5.31), (5.32) and (5.33) , respectively, are

simulated. Then, we calculate the parameters of the AR(2) model using equations (5.14) and

(5.15), and equations (5.23), (5.24) and (5.25) for the AR(3) model. One of the limitations of

estimating partial autocorrelations as described above is that the results sometimes are unde-

fined. This is because of the fact that, from equations of (5.31), (5.32) and (5.33) in section 5.4,
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it is possible that the denominator part of means and variances of the posterior conditional dis-

tributions of these partial autocorrelations can be zero. Thus, we have used rejection sampling

in order to reject the obtained undefined results. The results of parameter estimations obtained

from partial autocorrelations are not accurate in comparison with our new recommended pro-

posal. We have applied MCMC to a simulated set of observations from the AR(2) model using

equations (5.19) and (5.22). Then we calculate parameters through equations (5.14) and (5.15).

We have used the true values of φ1 = 0.3 and φ2 = 0.2 . The parameter estimates using the

partial autocorrelations based approach of Section 5.3 are φ1 = 0.14 and φ2 = 0.16 . The

obtained results using our proposed approach are φ1 = 0.306 and φ2 = 0.203 . The percentage

of the differences between the results obtained from partial autocorrelation and the true values

are 53% and 20% for φ1 and φ2 , respectively, and the percentage of the differences between

the results obtained from the proposed approach and the true values are 2% and 1.5% for φ1

and φ2 , respectively.

Figure 5.1 illustrates that the results obtained via our proposed prior distributions are more

sufficient and are almost the same as the true values. On the other hand, the zoomed histogram

of Figure 5.1 indicates that parameters estimated via partial autocorrelations are far from their

true values, and trace plots show that the MCMC chains reached convergence. It can be noted

that the obtained parameter estimates via partial autocorrelations are not accurate compared

with the results obtained from the new proposal. Therefore, in this thesis (Chapter 4) we have

proposed a new prior distribution placed directly on the parameters of the AR( p ) model.

5.6 Comparison between our proposed approach and the method of Box et al.

(1976)

Our aim in this section is to compare our results with those from the method of Box et al.

(1976) by using both real and simulated data. In order to focus on the estimation of the AR

parameters an affected by the estimation of σ2 , we fix σ2 and assume it is known or prespecified.
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Figure 5.1: Illustrates the results of a comparison between our proposed approach and priors
obtained from the correspondence relationship between partial autocorrelations and parameters
in Barndorff-Nielsen and Schou (1973) of the AR(2) model. The blue lines of the two histograms
indicate that different priors is used for φ1 and φ2.

Based on Box et al. (1976)’s analysis we chose a relatively large value for σ2 between 2 and 7.

Therefore, we are able to isolate the estimation of the AR coefficients alone. Later on, following

a fully Bayesian framework, we adopt a weakly informative gamma prior for the precision 1
σ2

as outlined in Section 4.2. We illustrate the above using both AR(2) and AR(3) models.

5.6.1 Simulation study for the AR(2) model

We have simulated data from the AR(2) model in order to use both the proposed and Box-Jenkins

estimation methods. We used the true values φ1 = 0.8 and φ2 = −0.8 . The obtained results

for the AR(2) model using the new proposed approach was φ1 = 0.7976 and φ2 = −0.7895 with

standard deviations of 0.0512 and 0.0514, respectively. The results obtained using Box et al.
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(1976)’s approach are φ1 = 0.7929 and φ2 = −0.7803 . It can be noted that the obtained results

for the AR(2) model using both approaches are approximately the same with almost 1% errors.

Trace plots and histograms were obtained for both parameters. The samples seemed to stabilize

Figure 5.2: Illustrates results of a comparison between the proposed approach and Box et al.
(1976)’s method for the AR(2) model. The blue lines indicate that different priors is used for
φ1 and φ2, and histograms of the right-hand side are zoomed from histograms histograms of
the left-hand side.

reasonably early, and the number of iterations was 20,000 iterations and the length of the burn-in

period was taken to be 10% of the iterations. The acceptance rate is high because our proposals

are close to the posterior distributions. The left-hand histogram of Figure 5.2 is zoomed in

order to clearly present differences between the parameter estimates obtained from Box-Jenkins

and our proposed approach, and how accurate these results are accurate in comparison to the

true values. Figure 5.2 indicates that there are no appreciable differences in the parameter

estimates of both approaches. This means that the obtained results for the AR(2) model using
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our proposed approach is satisfactory and sufficient. However, our proposed method benefits

from being able to easily quantify parameter uncertainty as in a Bayesian setting we are able to

provide credible intervals and to assess the quality of the estimates based on a sample from the

posterior distribution.

5.6.2 Simulation study for the AR(3) model

A set of observations are simulated in order to obtain parameter estimates of the AR(3) model

using our new MCMC proposal presented in Section 4.12. The aim is to compare our approach

with Box et al. (1976)’s method. The simulated data from Section 4.12 with true AR values

of φ1 = −0.4 , φ2 = −0.8 and φ3 = −0.6 were used for this comparison. The obtained

parameter estimates for the AR(3) model using our proposal are φ1 = −0.414 , φ2 = −0.792

and φ3 = −0.599 with errors of 1.4%, 0.8% and 0.1%, respectively. The results obtained using

Box et al. (1976) are φ1 = −0.367 , φ2 = −0.784 and φ3 = −0.557 with errors of 4.7%, 0.8%

and 4.2%, respectively . It can be noted that the MCMC estimates are closer to the true values

when compared to maximum likelihood estimates (Box et al., 1976); leading to smaller residuals

(errors).

Trace plots of Figures 4.8 and 4.9 indicate that the chain converged quickly, it was run for 20,000

iterations with a burn-in period of 10% of the iterations. In conclusion, the obtained results

using our recommended proposal are more accurate than the parameter estimates obtained using

Box-Jenkins. Similar comments to the AR(2) study apply about the access to uncertainty of

the parameter estimates.

5.6.3 Illustration for AR(2): monthly Sheffield temperatures

In this section we use real data in order to compare the performance of our proposed prior

distribution and that using Box et al. (1976). Data of monthly temperature for a Sheffield
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Figure 5.3: Shows the seasonality and the result of removing the seasonality pattern of the
monthly temperature data in Sheffield from January 2000 to December 2013.

site were taken from the Climate Research Unit, a subset of the CRU-TS3.22 dataset (http:

//badc.nerc.ac.uk/data/cru/) (these data are presented in Appendix D). Figure 5.3 indicates

that seasonal variation exists and it can be noted that the seasonality is removed. The AIC

statistics is used in order to select an AR model because the PACF indicates that an AR( p ) is

suitable. After using MCMC in order to estimate parameters of the AR(2) model using both

maximum likelihood and the proposed approach, the results can be compared.

Several models were fitted in order to select the final model based on Akaike information criterion

(AIC) results. The fitted models and their AIC results are presented in Table 5.3. We have

selected the AR(2) model because it has the lowest value of AIC (AIC=591.8 and σ2 = 2.46 ).

The obtained results for the AR(2) model using the new proposed approach for this data set are

φ1 = 0.29 and φ2 = 0.049 with standard deviations of 0.159 and 0.160, respectively. The results

obtained using Box et al. (1976) are φ1 = 0.289 and φ2 = 0.051 , with standard deviations 0.080

and 0.080, respectively. It is noted that the MCMC estimates for this model using the proposed

(http://badc.nerc.ac.uk/data/cru/)
(http://badc.nerc.ac.uk/data/cru/)
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Table 5.3: Shows different fitted time series models their their σ2 and AIC

Model
Coefficients

(Sd)
σ2 AIC

AR(1)
0.305

(0.076)
2.56 595.8

AR(2)
0.289 0.051

(0.080) (0.080)
2.46 591.8

AR(3)
0.286 0.201 0.109

(0.076) (0.083) (0.080)
2.53 595.7

MA(1)
0.287

(0.076)
2.59 595.5

MA(2)
0.285 0.0536

(0.0813) (0.077)
2.58 597.1

MA(3)
0.289 0.137 0.267

(0.077) (0.078) (0.096)
2.56 595.2

method are almost the same in comparison to the maximum likelihood ones. The errors between

the two approaches are 0.001 (for φ1 ) and 0.002 (for φ2 ). Trace plots in Figure 5.4 illustrate

that the chain converged reasonably early and the number of iterations was 20,000 with a burn-

in period of 10% of the iterations. The left-hand zoomed histograms of φ1 and φ2 in Figure 5.4

are the sampled posterior distributions. The black and red dashed lines show that the estimates

(posterior mode and MLE) using both approaches are almost the same. The blue dashed lines

in each graph illustrates that our prior distribution is a flat prior. In conclusion, the obtained

results from the monthly temperature data using our proposed approach were approximately

the same as parameter estimates obtained using Box et al. (1976). When fixing σ2 = 2.46 both

the MCMC and maximum likelihood estimates are very similar (as we have seen). However, in

practice we will not know σ2 and we shall not rely upon maximum likelihood estimation for

the variance. Following standard Bayesian procedures we place a gamma prior for the precision

1

σ2
∼ G(a, b),

where a and b are to be specified. Then the Metropolis within Gibbs MCMC scheme (see the

pseudo-code of the MCMC procedure in Table 4.9) is used. Table 5.6 shows posterior modes for

φ1, φ2 and σ2 for a range of values a and b. We have chosen α = 3 and β = 10 corresponding

to low precision with a mean of 0.3 and a variance of 0.03. This suggests a relatively weakly
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Figure 5.4: Illustrates results of a comparison between the proposed approach with Box et al.
(1976)’s method for the AR(2) model. The blue lines indicate that different priors is used for
φ1 and φ2.

informative prior for σ2 ( σ2 ∼ IG(3, 10) ) with mean equal to 5, mode equal to 3.333 and

variance equal to 25. Figure 5.5 shows the trace plot and the histogram of σ2 with the posterior

mode being equal to 0.1787. In comparison to the MLEs the posterior modes are close to them

(as well as close to MCMC using σ2 = 2.46 ), but the significantly lower σ2 = 0.1787 results

in much tighter credible intervals and hence more accurate estimates. Similar comments apply

about the access to uncertainty of parameter estimation.
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Figure 5.5: Illustrates estimated σ2 via MCMC for the AR(2) model fitted to the Sheffield
temperature data. The blue line indicates the prior distribution for σ2.

5.6.4 Illustration for AR(3): daily Sheffield temperatures

After using a simulated dataset to estimate parameters of the AR(3) model, now we use real

data in order to obtain parameter estimates using the current proposal and to compare with

the method of Box et al. (1976). In real data, results of a time series are not based on the

particular choice of parameter configurations. In this instance, Sheffield minimum average tem-

perature data taken using a Campbell Stokes recorder from January 2000 to December 2015 was

analysed. The data is presented on the http://www.metoffice.gov.uk/pub/data/weather/

uk/climate/stationdata/sheffielddata.txt website. It can be noted from Figure 5.6 that

there exist seasonal patterns. The seasonality is removed (see the lower panel of Figure 5.6) and

as above we use the AIC to identify the AR model. Table 5.5 illustrates that the AR(3) model

http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/sheffielddata.txt
http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/sheffielddata.txt
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Table 5.4: Illustrates results of the AR(2) parameters and σ2 using our proposed approach with
some different α and β

α β φ1(Sd) φ2(Sd) σ2(Sd)

3 10 0.2898(0.0093) 0.0502(0.0091) 0.1787(0.0202)

3 5 0.2899(0.0052) 0.0501(0.0057) 0.1163(0.0133)

3 1 0.2899(0.0033) 0.0501(0.0033) 0.0661(0.0075)

4 10 0.2900(0.0089) 0.0501(0.0088) 0.1765(0.0200)

4 5 0.2900(0.0057) 0.0501(0.0057) 0.1146(0.0129)

4 1 0.2899(0.0033) 0.0501(0.0033) 0.0655(0.0073)

5 10 0.2900(0.0088) 0.0500(0.0088) 0.1745(0.0197)

5 5 0.2900(0.0057) 0.0501(0.0056) 0.1133(0.0127)

5 1 0.2900(0.0032) 0.0501(0.0032) 0.0646(0.0071)

Figure 5.6: Illustrates the minimum average temperature data of Sheffield from January 2000
to December 2015.

is selected based on the lowest value of AIC (AIC = 520 with σ2 = 1.01 ) in order to obtain

parameters estimates.

The Metropolis within Gibbs MCMC scheme (see the pseudo-code of the MCMC procedure in

Table 4.10) is used. The obtained parameter estimates for the AR(3) model using our current

proposal are φ1 = 0.3268 , φ2 = 0.0071 and φ3 = 0.0977 with standard deviations of 0.0739,

0.0779 and 0.0741, respectively. The results obtained using maximum likelihood estimates are
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φ1 = 0.327 , φ2 = 0.007 and φ3 = 0.098 . The percentage of difference between results obtained

from the current proposal and Box et al. (1976) are for φ1 0.13%, φ2 0.09% and φ3 0.05%.

These are approximately the same results obtained using our recommended proposal in com-

parison to the MLEs. The left-hand zoomed histograms of φ1 , φ2 and φ3 of Figures 5.7, 5.8

and 5.9 show the sampled posterior distributions. The black and red dashed lines show that

the estimates (posterior mode and MLE) using both approaches are almost the same. The blue

line in each graph illustrates that our prior distribution is a flat prior. Table 5.6 shows posterior

modes for φ1 , φ2 , φ3 and σ2 for a range of values a and b. We have chosen α = 3 and

β = 10 corresponding to low precision with a mean of 0.3 and a variance of 0.03. This suggests

a relatively weekly informative prior for σ2 ( σ2 ∼ IG(3, 10)) with mean equal to 5, mode equal

to 3.333 and variance equal to 25. Figure 5.10 shows the trace plot and the histogram of σ2

with the posterior mode being equal to 0.103. In comparison to the MLE s of φ1 , φ2 and φ3

the posterior modes of φ1 , φ2 and φ3 are close to them and are also close to the posterior

modes when using fixed σ2 = 1.01 . However, the significantly lower σ2 = 0.103 results in much

tighter credible intervals and hence more accurate estimates.

Trace plots in Figures 5.7, 5.8, 5.9 and 5.10 of φ1 , φ2 , φ3 and σ2 , respectively, illustrate that

the chain converged reasonably early and the number of iterations was 20,000 with a burn-in

period of 10% of the iterations. In conclusion, the obtained results from daily minimum Sheffield

temperatures using our proposed approach were almost the same as the parameter estimates

obtained using Maximum likelihood estimation.
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Table 5.5: Shows different fitted time series models and their AIC.

Model
Coefficients

(Sd)
σ2 AIC

AR(1)
0.3438

(0.0029)
1.018 520.18

AR(2)
0.3305 0.0387

(0.0742) (0.0745)
1.017 521.91

AR(3)
0.3268 0.0071 0.0977

(0.0739) (0.0779) (0.0741)
1.01 520.00

MA(1)
0.3214

(0.0678)
1.032 522.27

ARIMA(1,1)
0.5006 -0.1799

(0.2039) (0.2348)
1.015 521.7

ARIMA(2,1)
0.9105 -0.1505 -0.5862

(0.6050) (0.2418) (0.5940)
1.014 523.49

MA(2)
0.3284 0.0647

(0.0739) (0.0674)
1.027 523.66

ARIMA(3,1)
0.0531 0.0952 0.1158 0.2767

(0.4144) (0.1574) (0.0741) (0.4133)
1.004 523.74

ARIMA(1,2)
0.693 -0.3583 -0.1097

(0.281) (0.2905) (0.1464)
1.013 523.21

ARIMA(1,3)
.-0.1464 -0.869 0.4513 1.0074

(0.0486) (0.051) (0.0732) (0.0557)
0.9424 523.05

ARIMA(3,3)
0.1924 -0.8426 0.3234 0.1422 0.9858 0.0794

(0.1994) (0.0466) (0.1805)(0.2126) (0.0453) (0.1192)
0.9301 523.37

Table 5.6: Illustrates results of the AR(3) parameters and σ2 using our proposed approach with
different α and β .

α β φ1(Sd) φ2(Sd) φ3(Sd) σ2(Sd)

3 10 0.329(0.012) 0.006(0.013) 0.098(0.012) 0.103(0.017)

3 5 0.329(0.004) 0.006(0.004) 0.097(0.004) 0.052(0.005)

3 1 0.329(0.001) 0.006(0.001) 0.097(0.001) 0.011(0.001)

4 10 0.329(0.012) 0.006(0.008) 0.098(0.008) 0.108(0.017)

4 5 0.329(0.004) 0.006(0.004) 0.097(0.004) 0.054(0.005)

4 1 0.329(0.001) 0.006(0.001) 0.097(0.001) 0.011(0.001)

5 10 0.329(0.001) 0.006(0.008) 0.098(0.008) 0.107(0.017)

5 5 0.329(0.004) 0.006(0.004) 0.097(0.004) 0.053(0.005)

5 1 0.329(0.001) 0.006(0.001) 0.097(0.001) 0.011(0.001)
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Figure 5.7: Trace plot of φ1 obtained from the MCMC of the minimum temperature data. The
blue lines indicate that different priors is used for φ1, and histogram of the right-hand side is
zoomed from histograms histogram of the left-hand side.

Figure 5.8: Trace plot of φ2 obtained from the MCMC of the minimum temperature data. The
blue lines indicate that different priors is used for φ2, and histogram of the right-hand side is
zoomed from histograms histogram of the left-hand side.
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Figure 5.9: Trace plot of φ3 obtained from the MCMC of the minimum temperature data. The
blue lines indicate that different priors is used for φ3, and histogram of the right-hand side is
zoomed from histograms histogram of the left-hand side.

Figure 5.10: Trace plot of σ2 obtained from the MCMC of the minimum temperature data.
based on choosing a G(3, 10) prior for the precision 1

σ2 . The blue lines indicate that different
priors is used for σ2.



Chapter 6

Conclusions and Discussion

6.1 Conclusions

The objective of the current work was to estimate parameters of the AR( p ) model using a

MCMC procedure. The estimations were obtained using both Gibbs sampling and Metropolis

steps. We propose a new flexible prior distribution placed directly on the AR parameters of

the AR( p ) model. This was motivated by priors proposed for the AR(1), AR(2), . . . , AR(6)

model, which take advantage of the range of the AR parameters. We then developed a Metropolis

step within a Gibbs sampler for estimation of parameters. This scheme was illustrated using

simulated data, for AR(2), AR(3) and AR(4) models, and we extended it to models with higher

lag order.

MCMC has been applied on a set of simulated data; the data have been simulated on the

basis of an AR on model. We have applied MCMC on the application of real data in order

to estimate parameters of the AR(2) and AR(3) models using the proposed approach and Box

et al. (1976). Our proposed approach gave approximately the same results as Box et al. (1976),

but our method benefits from being able to quantify parameter uncertainty, as in a Bayesian

168
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setting we are able to provide credible intervals and to assess the quality of the estimates based

on a sample from the posterior distribution.

We advocate the use of prior distributions placed directly on the parameters. Thus, the station-

arity conditions were revisited because this restricts the space of the parameters. Furthermore,

one of the advantages of this study is that we developed and derived stationarity conditions for

the AR( p ) model by determining the region of the stationarity conditions for the model. The

prior distribution for the AR(2) model placed directly on the parameters of the model provided

the same prior as that implied by placing uniform priors on the partial autocorrelations.

We determined the restriction of the stationarity conditions for the AR(3) model using a three

dimensional graph. This was done by simulating parameters of the AR(3) model using rejection

sampling. We have found that our new flexible prior distribution is more suitable than the prior

distributions obtained from the correspondence relationship between partial autocorrelations and

parameters discussed by Barndorff-Nielsen and Schou (1973) and Jones (1987) when applying

MCMC to estimate parameters of the AR( p ) model, especially when p ≥ 3 .

We concluded a study on simulated data to evaluate the performance of our new proposed prior

distribution for the AR(3) model. We have used Bayes factors in order to distinguish between

models.

There are a number of limitations that could be addressed in a future study. First, there is

not much information available on the stationarity conditions. A general formula for station-

arity conditions does not exist for the higher order polynomial model. Additionally, we cannot

control all parameters simultaneously in order to estimate parameters of the AR model using a

Metropolis approach.
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6.2 Extensions and future work

The models and methods developed in this thesis can be extended in various ways. Here we

outline some possibilities.

In Chapter 4 we developed MCMC schemes for inference of autoregressive models (AR). At the

core of our work is the specification of priors that respect stationarity. The proposed methodol-

ogy can be extended in order to get prior for moving average (MA) time series models. Indeed by

taking into account the duality between stationarity in autoregressive models and invertibility

in moving average models we can propose suitable MCMC inference for moving average mod-

els. The stationarity conditions proposed in Chapter 3 for autoregressive models are directly

translated to invertibility conditions for a suitable moving average model. Then Chapter 4 can

propose priors and MCMC inference for moving average models too. It is believed that with

some extensions the methodology in Chapter 4 can be extended to mixed-models, i.e., autore-

gressive moving average (ARMA) models. Indeed, the priors for stationarity should be as in

Chapter 4 and the priors for invertibility should be as discussed above. A suitable Metropolis

within Gibbs sampling scheme should be relatively simple. The proposal would involve separate

Metropolis steps for the AR and MA parts.

The starting point of this research was to propose priors placed on the AR coefficients rather

than placed indirectly on functions of the coefficients, such as the roots of the AR characteristic

polynomial or the partial autocorrelations. The proposed priors use uniform distributions and

respect the proposed inequalities which are imposed by the stationarity assumption. However,

the uniform distribution choice for the priors may be dropped. One could replace the uniform

with a truncated normal distribution in all our studies. This is somewhat an advantage of our

proposal, in that many distributions may be used to build the priors (as long as the inequalities

are respected). A future line of research could be directed in comparing the effect of different

priors (in particular building priors using the uniform against the truncated normal distribution).
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In Chapter 3 we have proposed a set of new stationarity conditions for the AR model. These

conditions offer greater simplicity in comparison to the existing conditions, because they consist

of linear inequalities. These inequalities can be exploited in order to propose a test for station-

arity, for example to be applied to co-integration. It is believed that there is a pattern over

which stationarity conditions (similar to those proposed in this thesis) of order more than four

can be built. It is hoped that an inductive algorithm can build groups of stationarity conditions

from one lag order to the next and a computer program could implement tests or checks of

stationarity very efficiently.

In Chapter 3 we have proposed a set of sufficient stationarity conditions for autoregressive models

of any order. However, the quest for necessary and sufficient conditions is still open and one

future direction of research would be to discover necessary and sufficient conditions for any order,

or at least for up to some lag order. In our study, we have found that the sufficient conditions

work well as we place priors based on them, but for testing or for other estimation problems, as

well as for theoretical purposes, it is desirable to have necessary and sufficient conditions.

The methodology in Chapter 4 may be extended to slowly-varying time-varying AR models.

There are a few opportunities here, such as the threshold autoregressive models, which are

suitable for locally-stationary data, or other AR models with time-varying AR coefficients. Such

models have been proposed, especially in the econometrics, finance, literature, and an extension

of our work could offer future lines of research.
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Appendixes

A MCMC application for AR(1)

In this appendix, MCMC is applied for the AR(1) model in a way that iterations are calculated

throughout mean and median. Several trials are conducted for each application using differ-

ent parametrization and different sample size. Additionally, Monte Carlo experiment has also

applied for each application.

A.1 MCMC for AR(1) through mean calculation

The result of Monte Carlo experiment (N=100) via Gibbs sampler for AR(1)

through mean.

n = 500 φ(SD) σ2(SD)

φ σ2 = 9

0.3 0.3035695(0.04241648) 11.45019(58.3374072289382)

0.5 0.4993794(0.03542788) 9.58903(49.1396869310546)

0.8 0.7942672(0.02782708) 12.17568(35.3621794418434)

φ σ2 = 16

0.3 0.2975381(0.04088179) 19.93656(75.8073674148096)

0.5 0.4982909(0.03408459) 16.04293(64.3705684886756)

0.8 0.7987673(0.02294168) 14.68617(46.1567575800935)

φ σ2 = 100

0.3 0.3020121(0.03750834) 125.3021(184.697515338205)

Continued on next page
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Table 1 – Continued from previous page

0.5 0.5024354(0.03325) 106.5376(195.88715332871)

0.8 0.7991675(0.02439708) 122.9728(119.118920229871)

φ σ2 = 10000

0.3 0.2988242(0.03364664) 10365.51(1590.02482028744)

0.5 0.4932745(0.02981814) 9706.166(826.199786675215)

0.8 0.7997934(0.02329609) 11151.09(1745.25217235901)

n = 1000 φ(SD) σ2(SD)

φ σ2 = 9

0.3 0.297507(0.02870523) 10.35882(81.0632252625435)

0.5 0.5034632(0.02648413) 10.49218(75.1360526072586)

0.8 0.8000454(0.01704109) 9.160845(52.9613609798699)

φ σ2 = 16

0.3 0.2979963(0.02833023) 19.29028(103.98212006649)

0.5 0.5041558(0.0244048) 19.01725(91.0089525506624)

0.8 0.7980846(0.01839579) 18.91693(75.088604553373)

φ σ2 = 100

0.3 0.2989155(0.02195994) 84.14596(220.080835690949)

0.5 0.4956312(0.02334992) 107.6356(245.838325900002)

0.8 0.8020782(0.01686264) 125.0334(178.781528793033)

φ σ2 = 10000

0.3 0.3013527(0.0241207) 9965.448(4438.13440357465)

0.5 0.5036863(0.02218887) 9745.297(16640.5880916956)

0.8 0.7934447(0.01574845) 10821.34(1718.80962120874)

B MCMC for AR(1) through median calculation

The result of Monte Carlo experiment (N=100) via Gibbs sampler for AR(1) through median.

n = 500 φ(SD) σ2(SD)

φ σ2 = 9

0.3 0.3036262(0.04241648) 11.27793(58.3374072289382)

0.5 0.4993833(0.03542788) 9.419552(49.1396869310546)

0.8 0.7942666(0.02782708) 11.60681(35.3621794418434)

φ σ2 = 16

0.3 0.2975074(0.04088179) 19.65716(75.8073674148096)

0.5 0.4983044(0.03408459) 15.76756(64.3705684886756)

Continued on next page
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Table 2 – Continued from previous page

0.8 0.7987807(0.02294168) 14.14226(46.1567575800935)

φ σ2 = 100

0.3 0.3020622(0.03750834) 122.9993(184.697515338205)

0.5 0.5024318(0.03325) 104.4498(195.88715332871)

0.8 0.799232(0.02439708) 115.3406(119.118920229871)

φ σ2 = 10000

0.3 0.2988705(0.03364664) 10209.84(1590.02482028744)

0.5 0.4932792(0.02981814) 9515.633(826.199786675215)

0.8 0.7998268(0.02329609) 10516.75(1745.25217235901)

n = 1000 φ(SD) σ2(SD)

φ σ2 = 9

0.3 0.2975043(0.02870523) 10.29701(81.0632252625435)

0.5 0.5034656(0.02648413) 10.41061(75.1360526072586)

0.8 0.800052(0.01704109) 8.976618(52.9613609798699)

φ σ2 = 16

0.3 0.2979671(0.02833023) 19.16991(103.98212006649)

0.5 0.5041792(0.0244048) 18.76385(91.0089525506624)

0.8 0.7980757(0.01839579) 18.47265(75.088604553373)

φ σ2 = 100

0.3 0.2989267(0.02195994) 83.62193(220.080835690949)

0.5 0.4956375(0.02334992) 106.5391(245.838325900002)

0.8 0.8020535(0.01686264) 120.3887(178.781528793033)

φ σ2 = 10000

0.3 0.3014118(0.0241207) 9894.474(4438.13440357465)

0.5 0.5036773(0.02218887) 9645.914(16640.5880916956)

0.8 0.7934537(0.01574845) 10511.05(1718.80962120874)

C Stationary conditions and Prior distribution for AR(5) and AR(6) model

In order to understand more about the stationary conditions and prior distribution of AR(p) , determining

stationary conditions and prior distribution have been done for AR(5) and AR(6).
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C.1 Stationary conditions and Prior distribution for AR(5) model

Determining stationary condition for the AR(5) model can be done through equation (3.70) which we know

as follow;

A5 =

 A4 I3
2

−A4 I∗2 3



A5Φ ≺ 1, (1)

φ1 + φ2 + φ3 + φ4 + φ5 < 1 (2)

φ1 − φ2 − φ3 − φ4 − φ5 < 1 (3)

−φ1 + φ2 − φ3 + φ4 + φ5 < 1 (4)

−φ1 − φ2 + φ3 − φ4 − φ5 < 1 (5)

−φ1 − φ2 − φ3 + φ4 + φ5 < 1 (6)

−φ1 + φ2 + φ3 − φ4 − φ5 < 1 (7)

φ1 − φ2 + φ3 + φ4 + φ5 < 1 (8)

φ1 + φ2 − φ3 − φ4 − φ5 < 1 (9)

−φ1 − φ2 − φ3 + φ4 + φ5 < 1 (10)

−φ1 + φ2 + φ3 − φ4 − φ5 < 1 (11)

φ1 − φ2 + φ3 + φ4 + φ5 < 1 (12)

φ1 + φ2 − φ3 − φ4 − φ5 < 1 (13)

φ1 + φ2 + φ3 + φ4 + φ5 < 1 (14)

φ1 − φ2 − φ3 − φ4 − φ5 < 1 (15)

−φ1 + φ2 − φ3 + φ4 + φ5 < 1 (16)

−φ1 − φ2 + φ3 − φ4 − φ5 < 1 (17)

From equations of (20) to (27), we can obtain right sides for φ1 as follow;

φ1 < 1− |φ2| − |φ3| − |φ3 + φ5|

However, from equations of (28) to (41), we can determine left side for φ1 which is;

φ1 > −1 + |φ2|+ |φ4| − |φ3 − φ5|
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Hence, (φ1, φ2, φ3, φ4, φ5) is uniformly distributed with upper and lower ranges which is (φ1, φ2, φ3, φ4, φ5) ∼

U(|φ2|+ |φ4| − |φ3 − φ5| − 1, 1− |φ2| − |φ3| − |φ3 + φ5|) where (i = 2, 3, 4, 5) .Therefore the prior distribution for

AR(5) is;

p(φ1, φ2, φ3, φ4, φ5) =
1

16(2− 2|φ2| − 2|φ4| − |φ3 + φ5| − |φ3 − φ5|)
(18)

C.2 Stationary conditions and Prior distribution for AR(6) model

Determining stationary condition for the AR(6) model can be done through equation (3.70) which we know

as follow;

A6 =

 A5 I4
2

−A5 I∗2 4



A6Φ ≺ 1, (19)

It can be seen that the above are one set of equations of stationary conditions,but these can be divided into

tow columns in order to simplify equations. As it has been known that there are 32 stationary conditions

in AR(6) model. Out of 32 equations, 32 of them are those φ1s in the column B which their signs are

+. The other remaining 16 stationary conditions are those that have been shown in the column D as the
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follows;

Set A conditions Set B conditions

φ1 + φ2 + φ3 + φ4 + φ5 + φ6 < 1 φ1 < 1− φ2 − φ3 − φ4 − φ5 − φ6 (20)

φ1 − φ2 − φ3 − φ4 − φ5 − φ6 < 1 φ1 < 1 + φ2 + φ3 + φ4 + φ5 + φ6 (21)

φ1 − φ2 + φ3 + φ4 + φ5 + φ6 < 1 φ1 < 1 + φ2 − φ3 − φ4 − φ5 − φ6 (22)

φ1 + φ2 − φ3 − φ4 − φ5 − φ6 < 1 φ1 < 1− φ2 + φ3 + φ4 + φ5 + φ6 (23)

φ1 − φ2 + φ3 − φ4 + φ5 + φ6 < 1 φ1 < 1 + φ2 − φ3 + φ4 − φ5 − φ6 (24)

φ1 + φ2 − φ3 + φ4 − φ5 − φ6 < 1 φ1 < 1− φ2 + φ3 − φ4 + φ5 + φ6 (25)

φ1 + φ2 + φ3 − φ4 + φ5 + φ6 < 1 φ1 < 1− φ2 − φ3 + φ4 − φ5 − φ6 (26)

φ1 − φ2 − φ3 + φ4 − φ5 + φ6 < 1 φ1 < 1 + φ2 + φ3 − φ4 + φ5 − φ6 (27)

φ1 − φ2 + φ3 − φ4 − φ5 + φ6 < 1 φ1 < 1 + φ2 − φ3 + φ4 + φ5 − φ6 (28)

φ1 + φ2 − φ3 + φ4 + φ5 − φ6 < 1 φ1 < 1− φ2 + φ3 − φ4 − φ5 + φ6 (29)

φ1 + φ2 + φ3 − φ4 − φ5 + φ6 < 1 φ1 < 1− φ2 − φ3 + φ4 + φ5 − φ6 (30)

φ1 − φ2 − φ3 + φ4 + φ5 − φ6 < 1 φ1 < 1 + φ2 + φ3 − φ4 − φ5 + φ6 (31)

φ1 + φ2 + φ3 + φ4 − φ5 + φ6 < 1 φ1 < 1− φ2 − φ3 − φ4 + φ5 − φ6 (32)

φ1 − φ2 − φ3 − φ4 + φ5 − φ6 < 1 φ1 < 1 + φ2 + φ3 + φ4 − φ5 + φ6 (33)

φ1 − φ2 + φ3 + φ4 − φ5 + φ6 < 1 φ1 < 1 + φ2 − φ3 − φ4 + φ5 − φ6 (34)

φ1 + φ2 − φ3 − φ4 + φ5 − φ6 < 1 φ1 < 1− φ2 + φ3 + φ4 − φ5 + φ6 (35)
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Set C conditions Set D conditions

−φ1 + φ2 − φ3 + φ4 + φ5 + φ6 < 1 φ1 > −1 + φ2 − φ3 + φ4 + φ5 + φ6 (36)

−φ1 − φ2 + φ3 − φ4 − φ5 − φ6 < 1 φ1 > −1− φ2 + φ3 − φ4 − φ5 − φ6 (37)

−φ1 − φ2 − φ3 + φ4 + φ5 + φ6 < 1 φ1 > −1− φ2 − φ3 + φ4 + φ5 + φ6 (38)

−φ1 + φ2 + φ3 − φ4 − φ5 − φ6 < 1 φ1 > −1 + φ2 + φ3 − φ4 − φ5 − φ6 (39)

−φ1 − φ2 − φ3 − φ4 + φ5 + φ6 < 1 φ1 > −1− φ2 − φ3 − φ4 + φ5 + φ6 (40)

−φ1 + φ2 + φ3 + φ4 − φ5 − φ6 < 1 φ1 > −1 + φ2 + φ3 + φ4 − φ5 − φ6 (41)

−φ1 + φ2 − φ3 − φ4 + φ5 + φ6 < 1 φ1 > −1 + φ2 − φ3 − φ4 + φ5 + φ6 (42)

−φ1 − φ2 + φ3 + φ4 − φ5 − φ6 < 1 φ1 > −1− φ2 + φ3 + φ4 − φ5 − φ6 (43)

−φ1 − φ2 − φ3 − φ4 − φ5 + φ6 < 1 φ1 > −1− φ2 − φ3 − φ4 − φ5 + φ6 (44)

−φ1 + φ2 + φ3 + φ4 + φ5 − φ6 < 1 φ1 > −1 + φ2 + φ3 + φ4 + φ5 − φ6 (45)

−φ1 + φ2 − φ3 − φ4 − φ5 + φ6 < 1 φ1 > −1 + φ2 − φ3 − φ4 − φ5 + φ6 (46)

−φ1 − φ2 + φ3 + φ4 + φ5 − φ6 < 1 φ1 > −1− φ2 + φ3 + φ4 + φ5 − φ6 (47)

−φ1 + φ2 − φ3 + φ4 − φ5 + φ6 < 1 φ1 > −1 + φ2 − φ3 + φ4 − φ5 + φ6 (48)

−φ1 − φ2 + φ3 − φ4 + φ5 − φ6 < 1 φ1 > −1− φ2 + φ3 − φ4 + φ5 − φ6 (49)

−φ1 − φ2 − φ3 + φ4 − φ5 + φ6 < 1 φ1 > −1− φ2 − φ3 + φ4 − φ5 + φ6 (50)

−φ1 + φ2 + φ3 − φ4 + φ5 − φ6 < 1 φ1 > −1 + φ2 + φ3 − φ4 + φ5 − φ6 (51)

From equations of (20) to (41), we can obtain right sides for φ1 as follow;

φ1 < 1− |φ2| − |φ3| − |φ3 + φ5| − |φ3 + φ6|

However, from equations of (28) to (41), we can determine left side for φ1 which is;

φ1 > −1 + |φ2|+ |φ4|+ |φ5|+ |φ3 + φ6|
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therefore; Hence, (φ1|φ2, φ3, φ4, φ5) is uniformly distributed with upper and lower ranges which is φ1|φ2, φ3, φ4, φ5, φ6 ∼

U(|φ2|+|φ4|+|φ5|+|φ3+φ6|−1, 1−|φ2|−|φ4|−|φ5|−|φ3+φ6| where (i = 2, 3, 4, 5, 6) .Therefore the prior distribution

for AR(6) is;

p =6, p(φ1, φ2, φ3, φ4, φ5, φ6) =


1

32(2−2|φ2|−2|φ4|−2|φ5|−|φ3+φ6|−|φ3−φ6|)
Φ ∈ SCofAR(6)

0 otherwise

D Monthly temperature for Sheffield

Data of monthly temperature for Sheffield site were taken from Climate Research Unit, CRU-TS3.22

dataset (http://badc.nerc.ac.uk/data/cru/) normalsize

Y/M Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2000 4 4.8 6.1 6.8 11.1 13.6 14.2 15.5 13.5 8.8 5.8 4.2

2001 2.3 3 3.9 6.1 11.5 12.9 16 15.6 12 12.1 6.6 2.4

2002 4.5 5.7 6.2 8.1 10.9 13.3 14.7 15.8 13.2 8.6 7.3 4.5

2003 3.6 2.9 6.5 8.8 11 14.9 16.3 16.7 13.2 7.9 7.1 3.7

2004 4.3 4.2 5.5 8.5 11.1 14.1 14.4 16.5 13.4 9.2 6.8 4.9

2005 5.1 3.1 6 7.6 10.3 14.4 15.5 15.1 13.7 11.5 5.5 4

2006 3.3 3 3.5 7.2 11 14.9 17.8 15 15.3 11.6 7.2 5.4

2007 5.8 4.7 5.8 9.9 10.8 14 14.5 14.8 12.9 10 6.7 4.1

2008 5.5 4.3 4.9 6.7 12.5 13.2 15.6 15.6 12.4 8.9 6.2 2.8

2009 2.4 3 5.9 8.6 11.1 13.9 15.5 15.7 12.9 10.3 7.3 2.3

2010 0.6 1.3 5 7.8 10 14.2 16.3 14.4 12.9 9.4 4.3 -1.1

2011 2.8 5.1 5.5 9.5 11.5 13.2 14.5 14.7 14 11.3 8.2 4.7

2012 4.3 3.2 7.2 6.2 10.5 12.6 14.5 15.6 12 8.2 5.8 3.7

2013 2.4 2 1.5 6.4 9.7 13 17.2 16 12.7 11.3 5.5 5.4

(http://badc.nerc.ac.uk/data/cru/)
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