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Abstract

Active magnetic levitation AML systems have been widely used in magnetic levitation

vehicles, wind turbine, medical applications, micro robot actuation and turbo-machinery.

Contactless support of objects continues to be a fantasy for several centuries. The utiliza-

tion of magnetic forces seems to be the ideal solution in many situations to such a goal.

Using magnetic forces to support an object without any mechanical contact is constrained

by the laws of magnetism. Earnshaw’s theorem states that when the inverse-square-law

forces govern several charged particles, they can never be within a stable equilibrium. The

interaction between ferromagnetic objects and electromagnets of either the active or pas-

sive type, is associated with an unstable nature. This unstable behaviour can be represented

by highly non-linear differential equations. In the literature many researches are based on

linearised models around a specific nominal operating point then linear controller is uti-

lized to control the system. The associated problem with the linear control technique is

that the system only be adequately controlled in a small region around the equilibrium

point but the variation of operating regions in such non-linear system is wide following a

major disturbance. In this research, two kinds of non-linear observer-based excitation con-

troller are proposed for Maglev to ensure the stability of non-linear system in the presence

of large disturbance and over larger operation regions. A combination of full-order Non-

linear high-gain observer (NHGO) with LQR-feedback linearisation is considered as first

proposal . Second proposed controller is based on the Lyapunov stability theorems, and a

further non-linear full-order observer-based controller via a non-linear fuzzy sliding mode

controller is developed for Maglev system. The proposed control approaches are tested

and validated through simulated exercises of a magnetic levitation system. Comparative

assessments of the approaches are presented and discussed through the thesis.
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Chapter 1

Introduction

1.1 Introduction

Active magnetic levitation AML systems have been widely used in medical applications

(Allaire et al., 1996), turbo-machinery (Field and Iannello, 1998), magnetic levitation ve-

hicles (Jang et al., 2011), micro robot actuation (Hagiwara et al., 2012) and wind turbine

(Aravind et al., 2012). Contactless support of objects continues to be a fantasy for several

centuries. The utilization of magnetic forces seems to be the ideal solution in many situ-

ations to such a goal. Using magnetic forces to support an object without any mechanical

contact is constrained by the laws of magnetism. Earnshaw’s theorem (Bleuler et al., 2009)

states that when the inverse-square-law forces govern several charged particles, they can

never be within a stable equilibrium. The interaction between ferromagnetic objects and

electromagnets of either the active or passive type, is associated with an unstable nature

(Bassani, 2011).

This unstable behaviour can be represented by highly non-linear differential equations.

In the literature many researches are based on linearised models around a specific nomi-

nal operating point then linear controller is utilized to control the system. The associated

problem with the linear control technique is that the system can be only be adequately con-

trolled in a small region around the equilibrium point but the variation of operating regions

in such non-linear system are wide following major disturbance (Mahmud et al., 2012).

Furthermore, linear controllers provide large actuation and zero tracking error cannot be

guaranteed in the in presence of disturbance, Kelly 1998 (in Yu and Li (2014)). Thus,

1
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non-linear control is considered as a better choice to ensure the stability of non-linear sys-

tems in the presence of large disturbance and over larger operating regions (Lahdhiri and

Alouani, 1995; Mahmud et al., 2012).

In the design of any optimal controller, whether it is linear or non-linear, it is essential

that all state variables of the system are available, whether measured all (which in many

cases not applicable) or estimated. State estimation can resolve the difficulties associated

with unmeasured states.

This research focus on the design of two kinds of non-linear observer-based excitation

controller for magnetic levitation system. To implement this control in practical setting, the

states of the Maglev system are observed using a dynamic estimator rather than measuring

them.

1.2 Research problem statement

Most of controlled systems, in one aspect or another, are non-linear, with non-linear dy-

namics due to saturation of actuators, non-linearity of sensors or systems governed by

non-linear differential equations. Although linear control tools may work well in many

non-linear systems, but in some cases non-linear effects need to be taken in consideration

to stabilize the system. Furthermore, considering the non-linear aspect may significantly

enhance the performance and improve the overall robustness.

Magnetic levitation systems (Maglevs) are known to have reduced maintenance costs

and reduced power consumption. Since a Maglev system is highly non-linear unstable sys-

tem, an optimized non-linear observer-based control is proposed to tackle the non-linearity

problem and to improve system robustness to disturbances and to ensure that the system

works in a wider operation range.
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1.3 Research aims and objectives

The research will focus to resolve the difficulty of stabilizing an unstable high non-linear

Maglev system. The research work undertaken in this thesis aims to reduce the gap be-

tween the most recent advances in control theory and the corresponding engineering appli-

cations to Maglevs. In this respect, research undertakes developments in non-linear state

feedback and observer based control of Maglevs.

The objectives of this research can be divided into several items as follows:

� To design and develop non-linear high-gain observer and fuzzy sliding mode ob-

server to estimate the system states to be used in optimal states feedback control.

� To research and design a non-linear controller for a highly non-linear unstable Maglev

system by implementing non-linear full-order observer-based controller via LQR-

feedback linearisation.

� To apply and improve the robustness of non-linear full-order observer-based con-

troller via LQR-feedback linearisation against parameters mismatch by utilizing in-

tegral action.

� To research and design a non-linear controller by implementing non-linear full-order

observer-based controller via a non-linear fuzzy sliding mode controller.

� To apply Spiral Dynamic Algorithm (SDA) as an optimization algorithm to solve

single objective optimization problem for control parameters to achieve better sys-

tem performance.

1.4 Research methodology

At the beginning, an intensive literature review has been conducted. The idea behind do-

ing this is to explore the latest developments within the scope of the research for acquiring
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better and understanding of existing techniques. This includes studying magnetic levita-

tion systems and their applications, superficial understanding of non-linear observer-based

methods and any related previous works undertaken.

Secondly, model the behaviour of the unstable magnetic levitation system which can

be represented by highly non-linear differential equations. Design non-linear observer that

can help to obtain best estimation of the unmeasured states, so that all system states will

be available to design a robust controller to overcome the non-linearity of the magnetic

levitation system.

Thirdly, design and simulate a base controller technique that treats a non-linear system

in a limited range as a linear system without linearising the model of the system directly.

The observer-based non-linear controller will be tuned and tested on several single objec-

tive optimization test functions using two kinds of optimization algorithm.

During the forth phase of the research, based on Lyapunov stability criteria another

non-linear controller is designed. This design involves a continuous control law to derive

the states trajectories of non-linear plants to well-chosen surface and discontinuous control

law with high speed switching control to maintain all state trajectories on the surface all

the time.

The last phase will constitute performance evaluation of the proposed algorithm. Best

combination of the non-linear controller and observer in light of intensive comparative is

expected to emerge.

1.5 Contributions and publications of the thesis

Magnetic levitation system is inherently unstable and non-linear in nature. In this research,

two kinds of non-linear observer-based excitation controller are proposed for Maglev to

ensure its stability in the presence of large disturbance and over larger operation regions.

A combination of full-order Non-linear high-gain observer (NHGO) with LQR-feedback

linearisation is considered as a first contribution of this research. Second contribution is

based on the Lyapunov stability theorems, as another non-linear full-order observer-based
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controller via a non-linear fuzzy sliding mode control.

Publications arising form this research that are in print are listed below. There are

further publications not listed that are in preparation for submission.

� A.M. Benomair and Tokhi, M.O. (2016), “Nonlinear full-order observer-based con-

troller design for active magnetic levitation via LQR-feedback linearisation”, Int. J.

Modelling, Identification and Control, Vol. 26, No. 1,pp.59–67.

� A. M. Benomair and M. O. Tokhi, “Control of single axis magnetic levitation sys-

tem using fuzzy logic control”, 2015 Science and Information Conference (SAI),

London, 2015, pp. 514-518.

� A. M. Benomair, F. A. Bashir and M. O. Tokhi, “Optimal control based LQR-

feedback linearisation for magnetic levitation using improved spiral dynamic algo-

rithm”, 2015 20th International Conference on Methods and Models in Automation

and Robotics (MMAR), Miedzyzdroje, 2015, pp. 558-562.

� A. M. Benomair, A. R. Firdaus and M. O. Tokhi, “Fuzzy sliding control with non-

linear observer for magnetic levitation systems”, 2016 24th Mediterranean Confer-

ence on Control and Automation (MED), Athens, 2016, pp. 256-261.

� F. Bashir, H. L. Wei and A. Benomair, “Model selection to enhance prediction per-

formance in the presence of missing data”, 2015 20th International Conference on

Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, 2015,

pp. 846-850.

1.6 Thesis organisation

The thesis is organized in a way to show the significant steps that reflect the research and

development of designing non-linear controllers for non-linear Maglev system as well as

implementing full-order non-linear observers and their platform of testing and validation

methods. A brief summary of overall thesis is given as follows:
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Chapter One: Deliberates a description of the research background, problem statement

of this research , the aims and objectives and contributions of this research.

Chapter Two : Introduces a literature review about two types of non-linear controllers,

along with brief overview of Magnetic Levitation systems and non-linear observer.

Chapter Three: Describes the dynamic model of non-linear Maglevs and introduces

non-linear high gain observer and fuzzy sliding mode observer as an observer to

estimate the full states.

Chapter Four: Explores and investigates with computer simulations the design of full

state feedback control to solve the regulation problem and introduces some tech-

niques of tracking control design, discusses how integral action would help to im-

prove the robustness of the proposed controller.

Chapter Five: Introduces sliding mode control (SMC) approach and investigates fuzzy

sliding mode control with computer simulations and comparison of SMC using

boundary layer versus fuzzy type one.

Chapter Six: Deliberates the Spiral Dynamic Algorithm (SDA) to solve the optimiza-

tion problem of the tuning parameters of the proposed controllers and compares the

results those of invasive weeds another optimization algorithm (IWO).

Chapter Seven: Main conclusions drawn from the work and recommendations for fur-

ther work are presented in this chapter.

1.7 Summary

Research background and the research problem statement has been instituted in this chap-

ter. The research aim and objectives have been stated and the research methodology has

been formulated and contribution to knowledge arising from this research has been high-

lighted.



Chapter 2

Literature Review

2.1 Introduction

This chapter is divided to into three main sections. The first section discusses control

systems in general, then it focuses on non-linear controllers; two non-linear control types

are briefly discussed. The magnetic levitation system and some of its applications are

reviewed in the second section. The third section highlights the principle of non-linear

observer and review of literature on full-order observer in different applications.

2.2 Non-linear control

Feedback control is a method where the output of the controlled system is fed-back to the

input in order to make the system output follow a desired reference signal. Thus the be-

haviour of the controlled system is modified or changed by comparing the feedback system

output to the desired reference to make the output tracking as close as possible to the ref-

erence. According to the chart shown in Figure 2.1, the control system using feedback can

be classified into two main branches, namely output feedback and state feedback control.

For Single Input Single Output (SISO) systems, output feedback control uses the avail-

able measured output (part of system dynamics) as a feedback signal to control the system

which can be represented using transfer function (see Figure 2.2). Examples of possible

methods are given in the chart but in this work the output feedback control type is not

considered.

7
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The second type of feedback control is state feedback in which the dynamics of the

system can be represented by states (see Figure 2.3), where r represents the reference, xm

is the scaled input, x̂ represents the estimated states, u is the control efforts which is a

summation of feedforward and feedback control signals uff and ufb respectively and y is

the system output. A state may be regarded as type of accumulation of past information

of the system behaviour or say information storage (Kalman et al., 1969). This type of

control is based on the assumption of that all the system states are measured or at least can

be estimated using any type of observer/estimator. Having system dynamics in state-space

representation, state feedback control can be classified into two categories:

Linear control that applies to systems made of linear / linearised system; in these sys-

tems, the output of the system is proportional to system input and they obey the superpo-

sition principle. In state-space, system with these properties can be represented by linear

differential equations with parameters which do not change over time, a major subclass

can be called as linear time invariant (LTI) which can be represented in the form of

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) +D u(t)
(2.1)

where x(.), u(.) and y(.) are state, input and output vectors respectively, A(.), B(.), C(.)

and D(.) are state, input, output and feedforward matrices of the system. Some linear

control techniques can be implemented to control this type of system such as LQR, pole-

placement, H∞ and adaptive control.

Non-linear control can be used to a wider range of systems that do not obey the super-

position principle. These systems can be represented by non-linear differential equations

of the form

ẋ = f(x) + g(x)u

y = h(x)
(2.2)
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System 
output

System 
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Figure 2.2: Feedback control system block diagram

where x∈ Rn×n is the state vector; u ∈ Rm×m is the control vector; y ∈ R is the system

output vector; f(x) and g(x) are n-dimensional vector fields in the state space representa-

tion and h(x) is the differentiable vector field of x. A non-linear system can be controlled

using direct non-linear control technique, meaning that there is no need to linearised the

system i.e. the system model is represented by non-linear differential equations, using

mathematical techniques that have been developed to handle even uncommon categories

of non-linear systems including limit cycle theory, describing function and Poincaré maps.

Some of non-linear control techniques are illustrated in the chart, e.g. small-gain theory

and passivity analysis. However, in this work sliding mode control (SMC) is of the interest

using non-linear control based on Lyapunov stability. More details of SMC are provided

in the next section.

An alternative method of implementing non-linear control is to use an indirect method,

i.e. instead of linearising the mathematical model of the system directly using a linearisa-

tion method, linearisation can be done using output or state feedback as a system input to

Plant
State

Feedback

Observer

Feedforward 
&

Trajectory
Generator

∑ ∑ 
m

x

x̂

fb
u

ff
u

u yr

 

Figure 2.3: State feedback control system block diagram
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cancel the non-linearity in the system, and this can be achieved using either input-output

linearisation or input-state linearisation. However, this does not mean that if the plant is

linear then a non-linear control techniques cannot be used, as in many cases non-linear

control can be best option for its attractive features such as faster speed, better precision

or reduced energy which can eventually justify the more difficult design procedure of non-

linear control.
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2.2.1 Feedback linearisation control

Feedback linearisation as mentioned previously is considered as a non-linear control method

in which non-linear system is indirectly linearised, where linearisation is achieved by ex-

act feedback and exact state transformations rather than linearising the system dynamics

directly using linear approximation, Tylor series or Jacobian transformation.

Feedback linearisation is to employ a non-linear control law so that the controlled sys-

tem combined with non-linear control behaves linear and controllable in the closed-loop.

As shown in Figure 2.4, feedback linearisation is implemented using two control loops,

the inner control loop is referred to as non-linear linearising control law, while the outer

control loop is to control the resultant linear system achieved by the inner loop control

(Erbatur et al., 1994).

v
∑ 

Linear

Coordinate
Transformation

Linear 
Compensator

Feedback 
Linearisation

Non-linear 
System

ur y

 

Figure 2.4: Feedback linearisation control block diagram

There are two types of feedback linearisation, input-output linearisation in which input-

output map is completely linearised, yet the state equations might be partially linearised.

Another type of feedback linearisation is input-state linearisation or referred to by some as

full-state linearisation where the state equation is completely linearised.

In input-output linearisation, the method of linearising input-output map can be briefly

explained by writing the state and output equations in the form of

ẋ(t) = f(x, u)

ẋ(t) = g(y, v)
(2.3)
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where ẋ is the dynamic change of the system, x, u and y represent the states, input and

outputs of the system receptively and v is the control synthesis or the input to the linearised

system. State equation is said to be related to output equation if there is a diffeomorphism

as

T :→ Rn+1 →→ Rn+1 (2.4)

such that T1(x, u) = y1,T2(x, u) = y2, ... and Tn+1(x, u) = v. Thus the feedback

equivalent to the system can be represented in terms of state equation as



ẏ1

ẏ2
...

ẏn


=



y1

y2
...

yn


+



0

0

...

1


v (2.5)

which is considered as linear, time-invariant and controllable single input system.

In this work, input-state linearisation is implemented as non-linear control to control

Maglev system, more details of which are provided in chapter 4.
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2.2.2 Sliding mode control

One of the earliest attempts to use variable structure control with sliding mode control was

successfully managed to stabilize a linear second order system in phase form in The Soviet

union by Emelyanov (Emelyanov, 1967, 1970). Since then, many studies have considered

sliding mode control whether in the the control theory or on controlling various systems

in many applications, including linear (Emelyanov and Taran, 1963) and non-linear sys-

tems (Hung et al., 1993), analogue and discrete systems (Gao et al., 1995), SISO (Young,

1977) and MIMO systems (Young, 1978), infinite- dimensional and large-scale system and

stochastic systems(Hung et al., 1993). The use of sliding mode control has been extended

to the other control functions apart from stabilization. These include construction of state

observer, and driving the system states towards the sliding manifold as regularization tech-

nique.

In optimal control, a typical task is to design a control law to map current states of the

controlled system at time t to the system input u, so the system dynamics can be stabilized

around the origin where all the states converge to zero. Thus, whatever point the system

begins away from the origin, the control law ensures that it comes back to it. Thus if

the difference between the system output and desirable tracked reference is represented

by state vector x, then the control action needs to return the state that belongs to this

vector to zero, so the system output will track the reference. In sliding mode control, the

desirable behaviour of the controller system is constrained to a reduced-order subspace out

of its configuration space. This subspace is referred to as sliding surface, that is because

feedback of the closed-loop confines the trajectories to this sliding surface and slide along

it.

Sliding mode control design involves two steps

• Design sliding mode surface such that system trajectories exhibit required perfor-

mance when confined to this surface, where system tracks the desirable reference.

• Design feedback gains to drive the system states to this surface and maintain them

around it.



2.2. Non-linear control 15

The robustness of the sliding mode control is referred to the control law of the kind

that is not contentious, i.e. utilizing switching function in its law can drive the sliding

trajectories to sliding mode in finite time. Defining switching function as a function of the

distance away from the manifold, i.e. σ(x), SMC control law would fluctuate form one

state to another depending on the sign of the distance. Once the trajectories approach the

surface, where σ(x) = 0, they will slide along it and move towards the origin, x = 0.

The use of switching function results in non-decaying high- frequency oscillation with

small amplitude that appears in the neighbourhood of the sliding surface (see Figure 2.5).

This high-frequency switching is known as “chattering phenomena”. This chattering can

be considered as un-modelled fast dynamics in the control system which ideally means the

device is switching at infinite frequency. From practical point of view this is unwanted for

many reasons:

• Chattering results in law accuracy in the control (Mehta and Bandyopadhyay, 2015).

• A high switching in the controlled system would cause fatigue.

• Chattering in electronic circuits means energy losses as heat and more electric power

consumption.

• Overall this results in reduced serviceable life of the device.

Figure 2.5: SMC chattering phenomena
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Many approaches have been proposed to reduce the chattering. The first approach

introduced is the use of a continuous approximation to replace the switching function in

the discontinuous control (Kwatny and Siu, 1987). However, this at the end will sacrifice

the robustness of sliding mode control (Young and Drakunov, 1992). Then few years

later, a method was introduced to replace the switching function sgn(σ(x, t)) by saturation

function sat(σ(x, t)), in which the thickness of the boundary layer around the switching

surface is vary to take advantage of the system bandwidth. However, making boundary

layers vary for some systems can result in large boundary width (Kachroo and Tomizuka,

1996). Further improvident can be done by decaying the boundary layer region (Sun et al.,

2016) when the states reach/lie the sliding surface (σ(x) = 0) in order to remove the

chattering. In this method the thickness of the boundary layer will be lead to zero and

eventually converge to zero around the origin (see Figure 2.6) where the system trajectories

are maintained around the surface till all system states converge to zero at origin that is

where ess = 0.

Figure 2.6: Variable boundary layer vs. constant boundary layer

Another method proposed to overcome the chattering problem is high-order sliding

mode control (Benallegue et al., 2008; Bethoux et al., 2003; Goel and Swarup, 2016).

This method, it makes selection of high-order sliding mode surface in terms of a set of

continuous function of s, ṡ, ....., s(r−1) and the set

Sr = [x|s(x, t) = ṡ = ......... = s(r−1) = 0]

assuming the system with relative degree to r to sliding variable s(x, t), Sr is the rth order
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sliding mode. The robustness of this high-order sliding mode control is ensured and the

convergence time is chosen in advance. However, eliminating a chattering problem is only

valid for low-order systems, as for high-order systems this would involve high-order dif-

ferentiation which increases the noise-sensitivity (Levant, 2003). An alternative approach

is to replace the sign function for higher relative degrees to so-called super twisting sliding

mode control. The control law of the super-twisting sliding mode controller to eliminate

the chattering for the system with unknown bounded perturbation can be described as

u = −K1

√
|σ| sign(σ) + v (2.6)

where u in the sliding control action, σ is the sliding surface and v is the integration of v̇

that is given by

v̇ = −K2 sign(σ) (2.7)

where K1 and K2 are the tuning gain for the modified controller.

A computational intelligence approach is another method for the engineering prob-

lems associated with sliding mode control “chattering elimination”, where a fuzzy tuning

scheme is used to replace the switching function sgn(σ(t)) in discontinuous control and

the equivalent control stays the same as in classic sliding control. The asymptotic con-

vergence of this strategy is proven using Lyapunov stability theory for many applications

such as joint control of a hydraulically actuated mini-excavator considered by Ha et al.

(2001). Although some robustness limitation might be associated with fuzzy sliding mode

control using fixed fuzzy in presence of uncertainties for some application. However, for

many applications high computational load associated with adaptive fuzzy sliding mode

controllers is not appreciated (Hassrizal and Rossiter, 2016).



18 Literature Review

2.3 Magnetic levitation system

Magnetic levitation systems (Maglevs) provide a contribution in the industry by which

systems have reduced the electricity consumption, have risen the power efficiency and re-

ducing the cost of the maintenance. The common applications of Maglev are Power Gen-

eration (e.g. wind mill), Medical Device (such as Magnetically Suspended Artificial Heart

Pump) and Maglev train. The subsequent subsections will show some uses of Maglevs.

2.3.1 Maglev trains

In recent years, population has grown not only in big cities but also in urban areas. Nowa-

days, it is very difficult to build new highways or airports close to larger cities. Moreover,

the vast majority of current transportation utilize oil which means increment in the level

of collateral environment impacts. It is an obvious requirement for quicker, cleaner and

non-oil methods for transportation. Maglev trains is being one of the innovations which is

centre of attention of various organisations and nations.

While conventional train gets guidance and support from the conventional rail and uses

its rotary motor for propulsion, the Maglev train is supported and guided electromagnet-

ically, magnetic levitation, and it uses a linear motor to get its propulsion force. Mainly

there are three types of magnetic levitation. That is

• Electromagnetic suspension (EMS): This kind of levitation depends on the attraction

force between electromagnets and the guide-way. EMS is inherently unstable which

makes air-gap control and maintaining it uniform challenging. However, EMS is

capable to levitate the train at low and zero speed. EMS is integrated in Korean

UTM, Japanese HSST and German Transrapid.

• Electrodynamic suspension (EDS): In this technique there are two sets of magnet,

one set is attached to the vehicle whereas the other is located on the guide-way.

Magnetic repulsive force is used in this methodology rather than attraction force.

The repulsive force between the attached magnets to the train and the magnetic field
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Figure 2.7: EMS Maglev train Srivastava (2016)

levitates the train, the magnetic field is generated by the induced currents throughout

the conducting sheet located on the guide way. EDS is magnetically stable so there

is no need for control, and it is more reliable in case of load variation and highly

recommended for high-speed operation. Two types of magnets can be used in EDS

the permanent magnets (PM) or the superconducting magnets (SCM).

Figure 2.8: EDS Maglev train

• Hybrid Electromagnetic suspension (HEMS): Beside electromagnets, permanent

magnets are utilized in this type of suspension to lessen the electric power consump-

tion, as the magnetic field formed by the permanent magnets is able to levitate the
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vehicle in a certain steady- state air-gap and electric power consumption is almost

zero for the electromagnets.

Figure 2.9: HEMS Maglev Train

2.3.2 Active magnetic bearings

The limitations associated with other contactless levitation approaches such as high rotor

speeds, damping and vibration control can be efficiently overcome by using active mag-

netic bearings. The electronic hardware of the active magnetic bearing can be categorized

into control system with its associated sensor system and the actuator system. The purpose

of using such electronic hardware is to detect the position of the rotor and react on position

displacements with a controlled positioning actuator action. The active magnetic bearing

system has two radial planes (x,y) and an axial axis z of possible movement of the rotor as

shown in Figure 2.10.

A contactless position sensor steadily detects the deviation between desired position

and actual position (considered as a position error) of the rotor and feedbacks this infor-

mation into a controller. These electromagnets exert electromagnetic forces of repelling

effect which stabilise the rotor motion around the equilibrium point.
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Figure 2.10: Active magnetic bearing (Bleuler et al., 2009)

Different control techniques implemented on active magnetic bearing systems (AMBs)

are included in the literature. Halas (2001) investigated a proportional, integral and deriva-

tive (PID) controller in simulation studies. The simulation was carried out on non-rotating

levitated objects. Another useful theoretical discussion has been reported by Bleuler et al.

(2009) where PID controller has been used as part of a closed loop control technique for

active magnetic bearings. The study shows that a conventional linear PID controller should

be able to control a nonlinear active magnetic bearing system. Further studies using other

control techniques have also been conducted. These include adaptive control (Knospe

et al., 1995), robust active / robust fuzzy control (Gosiewski and Mystkowski, 2008; Hong

and Langari, 2000), multi-variable feedback control (Cole et al., 2002) and fuzzy logic

control (Liebert, 1995).

A number of these control techniques are based on linear system theory therefore re-

quiring linearization of active magnetic around the operation point. Non-linear control as

reported by Liebert (1995) is more complicated compared to linear control design. The

basic task of both conventional bearings and active magnetic bearings is almost the same.

However, there is a significant difference in the physical construction and the method of

operation of these active magnetic bearings used in many specialized applications such as

the following:

• Vacuum and clean room, due to contactless nature of active magnetic bearing in
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such environment there is no need for lubricants, and they are inherently clean and

suitable for vacuum environments (Bleuler et al., 2009).

• In medical application as the artificial heart, the use of magnetic levitation in left

ventricular assist device (LVAD) is being researched (Chen et al., 2002)

• Due to low vibration and contamination of active magnetic bearing, used in high-

speed precision machine spindles, semiconductor manufacturing and in turbo-machinery

(for achievable high speed rotations) (Bleuler et al., 2009), (Clark et al., 2004).

• In aerospace for energy storage flywheels (Bleuler et al., 2009)

The significant use of active magnetic bearing is in Renewable Energy (due to the rising

cost of energy coupled with harmful environmental effects of electric power production)

like wind power generation. Vertical wind turbines equipped with AMBs can be started

with wind velocity of just around 1.5m/s. Several researchers have discussed one of the

important parts in the Horizontal Axis wind turbine that is direct drive generator (Polinder

et al., 2006; Shrestha et al., 2017, 2008, 2010). Some have explored possibilities to reduce

the weight of the heaviest part in the wind turbine, direct drive generator. It has been

suggested that using a hybrid solution “combination of mechanical bearing and magnetic

bearings” can significantly reduce the weight of the direct drive machine. Moreover, hybrid

concept provides flexibility on the axial direction and the ease of control with each other.

Zhang et al. (2012a) have presented a horizontal axis wind generator with an active axial

bearing and two passive redial bearings (permanent magnet), where a comparison between

the conventional and variable universe fuzzy PID strategies to control the axial position of

the rotor (one degree of freedom) has been presented. The results show preferable static

and dynamic performance of the variable universe fuzzy PID controller.

Rosales et al. (2013) have compared two small wind turbines, one with a ball bearing

and the other with magnetic bearings. The results show that there is a boost in power by

7.2 and 33.2 percent with the Maglev wind turbine under a wind speed of 8 and 4 m/s

respectively. Moreover, the start-run time is just about 8.96 s quicker for wind turbine

using magnetic bearing for wind speed of 4m/s. This time becomes significant considering
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the interval of time that takes gusts of wind. It further concludes that Maglev small wind

turbine operates employing a speed of just under 3 m/s.

Kumbernuss et al. (2012) give full description of a Vertical Axis Wind Turbine (VAWT)

using magnetic bearing. In past few years, the literature is mostly on levitation mecha-

nisms. In the work of Kazadi et al. (2008) carried out research on the development of

magnetic bearings to improve machine efficiency, and further maintenance problems, vi-

bration, noise and friction. Regarding the vertical axis wind generator, there are some

studies like “Maglev wind power turbine shaft wheel drive” by Chen Qiuping and Xiao

Liu titled “vertical-wide Maglev wind power generator” cited in (Wu et al., 2010), and

the like, which make use of permanent magnet to achieve the magnetic drive. However,

the dynamic performance of a magnetic bearing depending on the permanent magnet can-

not satisfy the need for small vertical turbines, as Maglev wind turbines using permanent

magnet are not reliable.

Although the static performance is useful, the dynamic performance is poor, and im-

portantly they cannot guarantee stability for the rotor. On the other hand, there are not

many studies on examining active Maglev vertical wind turbines, “Although it is claimed

that many Maglev wind turbine products have been developed, relevant published stud-

ies are rate”, Zhang et al. (2012a) introduced magnetic levitation supporting the structure

of Vertical Axis Wind Turbine (Wu et al., 2010; Zhang et al., 2012b). The authors com-

pared conventional PID with self-adaptive integral-type sliding mode control (AISMC).

The simulations show better dynamic response and robust characteristic using AISMC,

and that AISMC control can limit the overshoot within 10%, shorting the response time by

0.038s and the system has better disturbance capability than the conventional PID.
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2.4 Non-linear observer

Estimating a state of a dynamical system, whether it is estimated from system input or

output, is known as “observing the state”, that is where the name of “observer” in the

theory of systems comes from. In the early works, the principle of observer has been

widely studied and proven in many linear systems, Linearised systems, in the so-called

“observer-based control”. However, applying such type of linear observer to non-linear

system theory has been successfully implemented by using the extended Kalman filter

(Primbs, 1996).

Attempts have continued to construct a non-linear observer using tools developed from

pure non-linear systems theories. One of the most highlighted results, which used Lya-

punov stability theory, was presented by Thau (1973) and Kou et al. (1975). Primbs (1996)

has considerably simplified both these results and has and presented with examples.

Techniques relying on Lie-algebraic approach have been introduced in non-linear ob-

server design by converting non-linear states of the system to linear states where any appli-

cable linear theory can be utilized. Non-linear state transformations method in non-linear

observer design was primarily developed and introduced by Zeitz (1987) who has designed

non-linear observer by transformation into a generalized canonical from and Keller (1987)

has extended the Luenberger observer for non-linear control systems.

Baumann and Rugh (1986) introduced the method of injecting non-linear output, of

single-input multi-output (SIMO) non-linear system, based on system linearisation in or-

der to place the eigenvalues of the family of linearised closed-loop systems at specific

values, so that the linearised error dynamics would have locally constant eigenvalue with

respect to the closed-loop operating points. This method was illustrated in application of

automatically balancing of an inverted pendulum. Figure 2.11 summarises the methodol-

ogy that can be used to design a non-linear observer.
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Figure 2.11: Non-linear observer design hierarchy

“ The first appearance of High Gain Observer (HGO) was in linear feedback

control in 1979 in Doyle and Stein’s work of LQR loop transfer recovery

(Doyle and Stein, 1979). In this work, state-feedback control was designed

to shape the frequency of the loop transfer function, and then the observer was

brought in to recover the frequency response. Although it was not called high

gain observer, but the way is worked is to tune some parameters in Riccati

equation, and the parameters are actually tuned to produce high gain observer

used in these days” (Khalil, 2015).

In the late of 1980’s, high-gain observer was used in controlling non-linear systems

(Esfandiari and Khalil, 1987; Saberi and Sannuti, 1990). Two groups of researches simul-

taneously developed techniques in high-gain observer for non-linear tems. These were a

French group lead by Hammouri, Gauthier and a US group lead by Khalil. The French

group focused on stabilising the non-linear system globally under global Lipschitz and the

structure of non-linear zeros in this work was more general. However, the work done by

Khalil’s group was in lack of global Lipschitz conditions, i.e. the characteristic of this

work doesn’t require that non-linearity of the system to satisfy Lipschitz conditions, as

when the observer gain is sufficiently increased that could destabilize the system, which

means only semi-global results were achieved in this work with a compact set which can

be made arbitrary large. The first demonstration of the presence of peaking phenomena

in non-linear feedback control was in Esfandiari and Khalil’s work (Khalil, 2008), where
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undesirable peak would make the transient response worse and worse as the observer gain

increased. It was found that the interaction of peaking phenomena with non-linearity of

the system drives the system to unstable region and causes the system to have finite escape

time.

The suggested seemingly simple solution to such problem was to bound the state esti-

mation during the very beginning of the response, the peaking period, so the plant can be

protected from this peaking and the estimated states remain very close to initial condition

values. This period of peaking is too short compared to the time constant of the overall

closed-loop dynamics, since the observer dynamics are designed to be much faster than

the dynamics of the closed-loop under the state-feedback (Esfandiari and Khalil, 1992).

Another solution was proposed by Atassi and Khalil (2001) who proved that the stabil-

ity of closed-loop system under state-feedback using sufficiently high observer gain was

to saturate the control action instead. The idea of this saturation is realised as follows: Ex-

tended High Gain Observer (EHGO) is designed first then a compact of set of operations

under state-feedback control need to be determined which means looking for a compact set

of initial conditions and what a compact set of the state trajectories belong to, after this find

the maximum control to be fed to the system and saturate the control just above this value.

This solution proves stability and also shows how output feedback controller can recover

the performance of the state feedback controller. In this work the solution of saturating the

control action is used to overcome the peaking problem. Some of previous related works

that use or implement High-Gain observer (linear / non-linear) are summarized in Table

2.1.

To design a robust controller to overcome the non-linearity of the magnetic levitation

system as well as deal with the uncertainties in the system, all system states need to be

available to the controller. Both types of robust state-feedback controller, linear and non-

linear, are based on the assumption that all the state variables are measurable or all the

state variables need to be converted in terms of measured variables and this is difficult in
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practice. The issues linked to unmeasured states could be solved through the state estima-

tion process (Shao et al., 2015). Considering that all state variables of magnetic levitation

system are available for feedback, the position of a levitated object can be measured with

an appropriate sensor and current through the coil generating active magnetic field. How-

ever, the velocity measurement is a challenging task, since the only option is numerical

differentiation of the position.

A linear reduced-order observer-based control scheme has been proposed by Munaro

et al. (2002) to ensure local stability for perturbations in the equilibrium and estimated

states. The design technique of tracking controllers using integral control reported by

Munaro et al. (2001) has used linear reduced-order observer to estimate the states of the

input-state linearisation design.

A non-linear full-order high-gain observer has been conducted in magnetic levitation

educational ball system by Baranowski and Piatek (2008) and compared with reduced-

order linear observer, where these observers are used with two different structures, namely

PID with a non-linear feed-forward and a cascade linearising feedback. The results show

that both observers provide much smoother control signal than those with numerical dif-

ferentiation, and full-order Non-linear high gain observer provides larger operation range

than the reduced-order observer. However, the control signal provided by reduced-order

observer differed only in small details caused by additional disturbance, since the full-

order observer used only one measurement while the reduced-order used two disturbed

measurements instead of three measurements for the full-order observer.

In Mahmud et al. (2012) combined non-linear high-gain observer with exact linearisa-

tion approach and used to control interconnected power system. Full estimated states of

power system were directly fed back as an input to the system to conduct the control law

which in this case was not expressed in terms of all measurement variables. The method-

ology of designing non-linear high gain observer and the theory behind are presented and

justified in their paper, and this approach is mainly adopted in this research. The novelty

of this work is to design the linear gain of the high-gain observer (HGO) which is calcu-
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lated from analogy of linear observer gain design, that is Kalman filter linear gain. The

influence of the disturbance such as noise-sensitivity and uncertainties are not considered

in their work.



Chapter 3

Dynamic Model of Magnetic Levitation
System

3.1 Introduction

Active magnetic levitation (AML) systems have been widely used in medical applications

(Allaire et al., 1996), turbo-machinery (Field and Iannello, 1998), magnetic levitation ve-

hicles (Jang et al., 2011), micro robot actuation (Hagiwara et al., 2012) and wind turbine

(Aravind et al., 2012). Contactless support of objects continues to be a fantasy for several

centuries. The utilization of magnetic forces seems to be the ideal solution in many situ-

ations to such a goal. Using magnetic forces to support an object without any mechanical

contact is constrained by the laws of magnetism. Earnshaw’s theorem (Bleuler et al., 2009)

states that when the inverse-square-law forces govern several charged particles, they can

never be within a stable equilibrium. The interaction between ferromagnetic objects and

electromagnets of either the active or passive type (Bassani, 2011) is associated with an

unstable behaviour.

This unstable behaviour can be represented by highly non-linear differential equations.

In the literature many researches are based on linearised models around a specific nominal

operating point. In such cases, the tracking performance can rapidly deteriorate as devia-

tion from the operating point increases. However, in order to guarantee a local asymptotic

stability over larger range and ensure good tracking, it is necessary to consider a non-

linear model (Al-Muthairi and Zribi, 2004; Shameli et al., 2007; Yu et al., 2010) rather

30
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than a linearised one (Barie and Chiasson, 1996; Cho et al., 1993; Mizuno et al., 1996;

Romero Acero et al., 2016; Shi and Lee, 2010; Uswarman et al., 2014; Yu and Qian,

2012).

3.2 Nonlinear dynamic model of active magnetic levita-

tion

Figure 3.1 shows an active magnetic levitation system (AML). The Maglev system serves

to keep a small steel ball in stable levitation at some steady-state operating position. An

electromagnet is used to produce forces to support the ball. The electromagnetic forces are

related to the electrical current passing through the electromagnet coil.

Figure 3.1: Active magnetic levitation system (AML)

Electromagnetic force produced by current can be calculated by applying Kirchhoff’s

voltage law to the electric system loop

v(t) = vR + vL = i . R + Li̇+ iL̇ (3.1)

where v is applied voltage, i is coil current,R is coil resistance and L(x) is coil inductance.

A typical approximation according to Wong (1986) it is assumed that the inductance varies
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inversely with the position of the ball;

L(x) = Lc +
L0x0
x

(3.2)

where x0 is considered as an arbitrary reference position. An alternative approximation for

L(x) is given by Woodson and Melcher (1968) as

L(x) = Lc +
L0(

1 +
x

a

) (3.3)

where, Lc is constant inductance of the electromagnetic coil in the absence of object, x

is the position of the object, L0 and a are system parameters. However, in this work the

approximation in equation (3.2) is used because of its simplicity.

The stored magnetic energy is a function of the coil current i and the separation of the

ball ferromagnetic x

W (i, x) =
1

2
L(x) i2 (3.4)

Since the electromagnetic force is the partial derivative of the stored magnetic energy,

assuming magnetically linear material, the strength of electromagnet is given by

fem = −∂W
∂x

= −i
2

2

[
dL(x)

dx

]
(3.5)

Considering equation (3.2)

fem = −1

2
L0x0

(
i

x

)2

(3.6)

A conservation of energy argument by Barie et al. (1996) paper shows that magnetic

constant of the coil is given as

c =
1

2
L0x0 (3.7)
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Substituting for L(x) from equation (3.2) into equation (3.1) and considering equation

(3.7) yields

∂i

∂t
=
−R
L

i+

(
2c

L

i

x2

)
∂x

∂t
+

1

L
v (3.8)

The object is suspended by balancing between the force of gravity and electromagnetic

force. Applying Newton’s 3rd law of motion, the dynamic form of the mechanical system

can be written as follows:

Define the states x1 = x (position), x2 = V (velocity), x3 = i (current) and the system

input u = v (applied voltage). The non-linear state space model of AML system can be

expressed as



ẋ1

ẋ2

ẋ3


=



x2

g − c

m

(
x3
x1

)2

−R
L
x3 +

2c

L

(
x2x3
x21

)
+

1

L
u


(3.9)
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3.3 Non-linear observer design for magnetic levitation sys-

tem

To design a robust controller to overcome the non-linearity of the magnetic levitation sys-

tem as well as dealing with the uncertainties in the system, all system states need to be

available to the controller. Both types of robust state-feedback controller, linear and non-

linear, are based on the assumption that all the state variables are measurable or all the

state variables need to be converted in terms of measured variables and this is difficult in

practice. The issues linked to unmeasured states could be solved through the state estima-

tion process (Shao et al., 2015). Considering that all state variables of magnetic levitation

system are available for feedback, the position of a levitated object can be measured with

an appropriate sensor and current through the coil generating active magnetic field. How-

ever, the velocity measurement is a challenging task, since the only option is numerical

differentiation of the position. This requires to design an observer to estimate unmeasured

system states. In this work, a non-linear high-gain observerNHGO is proposed for many

reasons;

• High gain observer is reasonably simple to be designed as it does not it requires

involve complicated formula nor solving complex differential equations.

• It can guarantee semi-global or even global stability for large class of high-order

non-linear systems which means it can provide stability for large operation range for

any arbitrarily chosen initial conditions.

• It is considerably fast, i.e. observer estimation error converges to zero within very

short finite time.

• It is robust to many types of disturbances whether it external or internal including

system parameters mismatch.

• In case of being used in state feedback, high gain observer can provide very simi-

lar performance compared to the performance provided by measured state feedback

controller.
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3.3.1 Non-linear high-gain observer design

Let, the non-linear system be represented as

ẋ = f(x) + g(x)u

y = h(x)
(3.10)

where x∈ Rn×n is the state vector; u ∈ Rm×m is the control vector; y ∈ R is the system

output vector; f(x) and g(x) are n-dimensional vector fields in the state space represen-

tation and h(x) is the differentiable vector field of x. To design an optimal controller

based on state feedback for such a non-linear system; all states need to be measured or

estimated. The object position can be measured by an appropriate sensor and coil current.

The velocity measurement, however, is not straight forward. The difficulties associated

with unmeasured states can be solved through a state estimation process.

A non-linear observer can be set up as

˙̂x = f(x̂) + g(x̂)u+ l(x̂)(y − h(x̂)) (3.11)

where g(x̂) =

[
0 0 1/L

]T
, h(x̂) = x̂1 and l(x) is non-linear gain which can be written

as

l(x̂) = (J(x̂))−1G (3.12)

Here, J is the Jacobian matrix of coordinates obtained from non-linear coordinate trans-

formation,

J(x̂) =
∂

∂x



h(x̂)

Lfh(x̂)

...

Ln−1f h(x̂)


(3.13)
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Thus from formulation of the above equation, and the proof of associated theorem

presented in Mahmud et al. (2012), the non-linear gain for the AML is obtained as

l(x) =


dh(x̂)

dLfh(x̂)

dL2
fh(x̂)


−1 

G1

G2

G3

 (3.14)

where Lfh(x̂) denotes a Lie derivative of h(x̂) in the direction of vector field f and G

vector is the linear gain which can be calculated using any linear observer such as Kalman

filtering in Mahmud et al. (2012). Here, the row vectors dh(x̂), dLfh(x̂) and dL2
fh(x̂)

must be linearly independent (observability condition) (Hedrick and Girard, 2005). After

manipulations, the Jacobian matrix J can be written as follows

J(x̂) =


1 0 0

0 1 0

2c

m

x̂23
x̂31

0 −2c

m

x̂3
x̂21

 (3.15)

It can be readily shown that

|J(x̂)| = −2c

m

x̂3
x̂21

(3.16)

hence the non-linear gain l can be written as
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l =


G1

G2

x̂3
x̂1
G1− m

2c

x̂21
x̂3
G3

 (3.17)

Therefore, the non-linear observer for AML system can expressed as 3.18


˙̂x1

˙̂x2

˙̂x3

 =



x̂2

g − c

m

(
x̂3
x̂1

)2

−R
L
x̂3 +

2c

L

x̂2x̂3
x̂21


+


0

0

1

L

u

+


G1

G2

x̂3
x̂1
G1− m

2c

x̂21
x̂3
G3

 (x1 − x̂1)

(3.18)

Verification of this kind of observer is considered a difficult task as it requires that the

right side of equation (3.9) should ascertain the global Lipschitz condition. For this reason

this type of observer is considered only as local stable observer, which means that the esti-

mation error dynamics of equation (3.11) should have a finite escape time (observer error

converges to zero within a finite time). Thus in this work the gains ’G’ were constructed in

such a way, that the observer dynamics (high-gain observer ’HGO’) are much faster than

the system dynamics (at least five-times).

The estimated states which are obtained from the non-linear observer are used to im-

plement the control law of the exact linearising controller (see Figure 3.2).
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Figure 3.2: Full-order non-linear observer-based excitation

3.3.2 Implementation and results of non-linear observer

This section presents simulation results assessing the performance of Non-linear high-gain

observer (NHGO). The results are split into two main parts. The first part will highlight

the capability of the observer in terms of the state estimation. Then the noise rejection will

be presented in the second part.

In order to chose the observer gains, the design methodology that detailed in section 3.3

will be followed. The dynamics of the non-linear observer for AML system was expressed

in equation (3.18); the observer-based controller assigns the observer eigenvalues in a way

that makes the observer dynamics faster than the dynamics of closed-loop system under

state feedback.

The linear gain “G” of the proposed observer was calculated according to the formula

that was used in (Baranowski and Piatek, 2008; Khalil and Praly, 2014) and (Khalil, 2008)

in the form of

G =


G1

G2

G3

 =


3 a
ε

3 a2

ε

a3

ε

 (3.19)

where ε ∈ (0, 1] and a are parameters to be tuned. The closed-loop system under output

feedback is asymptotically stable for all ε > 0. The parameter a is recommended by

(Baranowski and Piatek, 2008) to be at least 150, whereas in (Khalil and Praly, 2014) ε is
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instead tuned within the range of [0.01- 0.01]. However, in this work ε was set to 0.5 and

a should be at least 10 to have good noise rejection in very noisy conditions. This results

in

G =


6a

12a
2

8a3

 (3.20)

Simulations were carried out with the system parameter values shown in Table 3.1:

3.3.2.1 Estimation of system states

In this section, estimation of all system states is considered without introducing any type

of measurement noise in order to enhance the transient response of the estimation error

utilizing various values of a in the range of [50,150], while ε in equation (3.19) was set to

0.5.

Figures 3.3 - 3.5 show estimation error of estimated states (position, velocity and cur-

rent) against time per second using the non-linear full-order observer-based controller for

Maglev system via LQR-feedback linearisation. The simulation here compares the per-

formance of the proposed non-linear observer for different values of a. Simulations were

carried out with the following values for the system parameters: M = 21.2 × 10−3 kg,

C = 8.248× 10−5 N×m/A2 , R = 4.2 Ω, L = 0.02 H. Initial conditions of the non-linear

Maglev model were different from the ones for the non-linear observer as they were set for

non-linear model to x10 = 18 × 10−3 m for the position, the velocity was set to x20 = 0

Table 3.1: Parameters of magnetic levitation system

Symbol Description Value Unit

L Coil Inductance 200 mH
R Coil Resistance 4.2 Ω
m Steel Mall Mass 0.0212 Kg
c Electromagnet Force Constant 8.248× 10−5 N.(m/A)2
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m/s and x30 =
√
m× g × 18× 10−3 = 0.9039 A as initial condition for the current, and

the initial conditions for the observer were [0.014, 0, 0.7030].

Figure 3.3: Position estimation error without noise

Figure 3.4: Velocity estimation error without noise
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Figure 3.5: Current estimation error without noise

Figures 3.3 and 3.4 show the estimation error for all estimated states in absence of

noise when the linear gain was a = 150 is less than the estimation error when a = 10 or

50. As noted, in absence of disturbance, the non-linear observer with higher linear gain

performed much better, as the states estimate converged faster to the actual states.

3.3.2.2 Noise rejection

Noise, model mismatch and disturbance are other issues that must be taken into considera-

tion in observer tuning. The maximum linear gains of the non-linear observer is to be tuned

to achieve reasonable noise attenuation with adequate margins of stability. In this section,

the robustness of non-linear high gain observe is tested by introducing disturbance.

Experiments were carried out to verify the robustness and stability of this algorithm

(non-linear full-order observer-based controller for Maglev system via LQR-feedback lin-

earisation). Simulation results were obtained using different tuning parameters for the

observer when measurement noise was introduced; the system measurements were influ-

enced by uncorrelated stochastic white Gaussian noise , additive output noise, with zero

mean value and the same covariance of c(.) and sampling time Ts(.) in second. The con-

troller tuning parameters were fixed and the same system parameters and initial conditions
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in section 3.3.2.1 were used.

Figures 3.6 to 3.8 show the estimated state x̂1 position state x1 for different values of

a set to 10, 50 and 150 respectively when the system input was step input of 0.015 for 2

seconds then step up to the value of 0.03 for another 2 seconds.

Figure 3.6: Position state versus estimated state when a = 10

Figure 3.7: Position state versus estimated state when a = 50
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Figure 3.8: Position state versus estimated state when a = 150

It can be seen that the observer was more able to reject the measurement noise when

a was set to 10 as the estimation went smoother than others. Moreover, the control action

was much smoother using the observer with 10 as tuning value for a compared to values

of 50 and 150 as shown in Figure 3.9.

Figure 3.9: Control efforts with different observer tuning parameters
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However, it can be seen that the track estimation went off the measured position state

for sometime when a = 10 and in the case of having a = 150 the system tended to be more

sensitive to the noise, in contrast to the observer when a = 50 tended to have less smooth

estimation with better tracking. Mean square error (MSE) values for full estimated states

(position, velocity and current) are presented in Table 3.2 using different observer gains.

As noted the lowest error was likely to be provided by the observer when the linear gain

was set to a = 50.

Table 3.2: MSE values for the estimated states using different observer tuning parameters

observer gain MSE

“ a” Position Velocity Current

10 3.05× 10−7 5.84× 10−4 5.70× 10−5

50 1.42× 10−7 3.36× 10−4 7.85× 10−5

150 1.80× 10−7 4.80× 10−3 1.58× 10−4

Simulation results in Figure 3.10 demonstrate the potential of having a = 50 to con-

duct the linear gain for the non-linear observer to enhance the overall system response,

compared to the gain a = 10 and for when a getting high to 150.

Figure 3.10: Step response with different observer tuning parameters

For maximum noise limits to be taken into account, the maximum linear gains of the
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non-linear observer are chosen , for the system to be less susceptible to noise and have an

adequate margin of stability a needs to be set to 50 and ε = 0.5 with this noise level.
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3.4 Sliding mode observer for magnetic levitation system

In the case of designing an observer for linear/ linearised system, a high value of the linear

Luenberger observer gain “L” will make the estimated states converge very quickly to the

system states. Nevertheless the initial estimator error can be prohibitively large leading to

the so-called peaking phenomenon.

The aforementioned problem justifies utilizing sliding mode observer. The sliding

mode observer drives the estimated states to hypersurface (sliding surface) around zero

estimated error utilizing instead non-linear high gain. This non-linear gain can be im-

plemented with any scaled function such as signum, saturation, or tanh function. This

kind of non-linear gain will maintain the observer trajectories slide along a surface once

the estimated states hit this sliding surface where the observed outputs exactly match the

the measured outputs. Hence, this attractive feature would reduce the sensitivity of the

estimated states to many types of noise (Drakunov, 1983; Utkin et al., 2009).

3.4.1 Sliding mode observer design

According to Drakunov (1992), sliding mode observer can be adequate for non-linear sys-

tems. The observer dynamics for non-linear Maglev system, with a special case where

system has no input, can be expressed as

˙̂x = (J(x̂))−1 +M(x̂) ∗ sign (V (t)−H(x̂)) (3.21)

where (J(x̂))−1J is the inverse of Jacobian linearisation matrix and The sign(.) is a vector

of n dimension that extends the scalar signum function for z∈ Rn as

sign(zi) =


sign(z1)

sign(z2)

sign(z3)

 (3.22)
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and M(x̂) is a diagonal matrix suitably positive large gains to guarantee reachability to

sliding mode.

M(
ˆ

x)
4
= diag(m1(x̂),m2(x̂),m3(x̂)) (3.23)

whereas H(x(t)) is a vector of system output h(x) that equals to y(t) assuming inverse of

Jacobian linearisation matrix exits to have well defined observer and repeated Lie deriva-

tive of h(x) . In practice

H(x)
4
=


h1(x)

h2(x)

h3(x)

 4=


h(x)

Lfh(x)

L2
fh(x)

 (3.24)

The rate of change of the observation error over time / observation error dynamics in

terms of the transformed state can be written as

ė =
d

dt
[H(x)−H(x̂)] (3.25)

thus 
ė1

ė2

ė3

 =


h2(x)−m1(x̂).sign(v1(t)− h1(x̂(t)))

h3(x)−m2(x̂).sign(v2(t)− h2(x̂(t)))

h4(x)−m3(x̂).sign(v3(t)− h3(x̂(t)))

 (3.26)

To conclude, the necessary condition for the observability of non-linear MIMO system

form (Slotine et al., 1986a):

“In order for the system to be observable one must be able to perform

successive differential operations on H(x) until an implicit inversion can be

performed to obtain x”.

In the other words, the system is said to be observable as long as the calculated Jacobian

linearisation matrix is square matrix and invertible (Drakunov, 1992).
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However, the sufficient condition for the error dynamics ė1 to reach e1 = 0 sliding

surface in finite time is when mi(x̂) ≥ |hi+i(x(t))| beside that when it comes to the sliding

mode observer with an input, additional conditions are necessary for the observation error

being independent of that input. The observer then

˙̂x = (J(x̂))−1 + β(x̂) sign (V (t)−H(x̂)) + B(x̂)u (3.27)

Slotine in (Slotine et al., 1986a) simplified the observer structure to reduced-order observer

in companion form for non-linear system with modified sufficient condition in terms of

single measured state (output) as

˙̂xn = −αn x̃1 + f(x)− βn sign(x̃1) +B(x̂)u (3.28)

with a condition of Kn+1/Kn ≥ a and the value of a should be positive i.e. a ≥ 0 to place

all the poles in left-side of s-plane.

In the same way, the reduced-order sliding mode observer for magnetic levitation ball

system can be express as

˙̂x1 = f1 − α1 x̃1 − β1 sign (x̃1)

˙̂x2 = f2 − α2 x̃1 − β2 sign (x̃1)

˙̂x3 = f3 − α3 x̃1 − β3 sign (x̃1) + 1
L
u

(3.29)

where

f1 = x̂2

f2 = g − c
m

(
x̂3
x̂2

)2
f3 = R

L
x̂3 + 2 c

L

(
x̂2x̂3
x̂21

) (3.30)

and x̃1 is the estimation error for the estimated state x1, that is the measured position of

the object which can be written as

x̃1 = x̂1 − x1 (3.31)
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A mathematical representation of signum function can be written as

sign(x̃1) =
x̃1
|x̃1|

=


−1 |x̃1| < 0

1 |x̃1| > 0

(3.32)

3.4.2 Implementation and results of sliding mode observer

In this section, simulation results of the active magnetic levitation system are presented to

demonstrate the feasibility of sliding mode observer. The results are split into two main

parts. The first part shows the performance of sliding mode observer in terms of estimation

of system sates and noise rejection. Then fuzzy sliding mode observer is introduced to

improve the trajectory tracking in the presence of the some uncertainties.

Simulations were carried out with same system parameters that shown in subsection

3.3.2.1. For different set-points the initial conditions of the object were set at 18 mm and 14

mm for the system model and the observer respectively. Simulations were obtained using

full-order sliding mode observer-based controller for Maglev system via LQR-feedback

linearisation to avoid any extra chattering caused by the controller (see Figure 3.11).

Figure 3.11: Full-order sliding mode observer-based controller for Maglev system via
LQR-feedback linearisation

To verify the robustness of the observer, measurement noise was introduced using

Gaussian noise generator in Matlab Simulink with zero mean value and covariance of

c(.) and sampling time Ts(.) in second.

Consider a third order Maglev system with single measurement, that is the position of

the object, which is corrupted by noise ξ = ξ(t). In these results, the conventional sign
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function in equation (3.29), sign (x̃1), can be replaced by the saturation boundary layer

function to achieve decrease in switching and discontinuous action in the control loop

(Utkin et al., 2009). The saturation function can be expressed as

sat(x̃1) =
x̃1

|x̃1|+ φ
=


x̃1
φ

∣∣∣ x̃1φ ∣∣∣ ≤ 1

sign
(
x̃1
φ

) ∣∣∣ x̃1φ ∣∣∣ > 1

(3.33)

i.e. for large value of φ, sat(x̃1) = sign(x̃1). However, around the origin with small φ-

vicinity, the boundary layer is continuous i.e. sat(x̃1) 6= sign(x̃1). Equation (3.29) can be

rewritten as

˙̂x1 = f1 − α1 (x̃1 + ξ)− β1 sat (x̃1 + ξ)

˙̂x2 = f2 − α2 (x̃1 + ξ)− β2 sat (x̃1 + ξ)

˙̂x3 = f3 − α3 (x̃1 + ξ)− β3 sat (x̃1 + ξ) + 1
L
u

(3.34)

The presence of the term x̃1 + ξ would involve fairly stochastic analysis. However,

useful insight can be obtained by using appropriate approximation, that is assuming ξ is

deterministic signal with bounded spectrum (Slotine et al., 1986b)

0 ≤ w < w− or Fξ(w) = 0

where Fv(w) is the Fourier transform of the noise v

Figures 3.12 to 3.14 show the estimated states x̂1, x̂2 and x̂3versus the position, velocity

and current states from simulated non-linear Maglev model, when the system input was

step of 0.018 for 2 second then step down to the value of 0.015 for another 2 seconds in

presence of mass uncertainty of 10%. Initial conditions of the model were [0.018, 0,

0.9039] whereas the initial conditions for the observer were [0.014, 0, 0.7030].
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Figure 3.12: Estimated position using full-order sliding mode observer-based controller
via LQR-linearisation in presence of mass uncertainty 10%

Figure 3.13: Estimated velocity using full-order sliding mode observer-based controller
via LQR-linearisation in presence of mass uncertainty 10%

It is noted that relatively good tracking performance for the combined observer has

been achieved. The velocity estimation had an estimation error of 0.0739 m/s in steady-

state of 10% of mass mismatch whereas in presence of mass uncertainty with the value of

50%, the steady-state estimation error for the velocity increased to be 0.3827 (see Figure
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3.15).

Observer gains α1, α2 and α3 were initially tuned using optimization algorithm (Improved

spiral Dynamic Algorithm (ISDA)) (Nasir and Tokhi, 2015) to the values of 745.5461, 300

and 597.2114 respectively, and for β1, β2 and β3 gains to 736.2675, 3000 and 299.9370

Figure 3.14: Estimated current using full-order sliding mode observer-based controller via
LQR-linearisation in presence of mass uncertainty 10%

Figure 3.15: Estimated velocity using full-order sliding mode observer-based controller
via LQR-linearisation in presence of mass uncertainty 50%
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in the mentioned order, the maximum mass uncertainty with this tuning was only 50%.

However, the maximum uncertainty increased to 125% just by increasing α2 to 8500 and

β2 to value of 9000.

If disturbance rejection with zero steady-state error is needed, at the same time to

eliminate the estimation error, then integral action must be included in the control law

(Alvarez-Ramirez et al., 1998; Werner, 1999). The proposed observer was compared with

the observer that was combined with LQi-linearisation as shown in Figure 3.16, in which

an integral action was involved in the feedforward path. Figure 3.17 shows a comparison

of the tracking of the combined step and ramp reference with different amplitude values

for the observer with and without integral action in the presence of 10% mass uncertainty.

Sin tracking in the presence of 20% mass uncertainty is shown in Figure 3.18

Figure 3.16: Full-order sliding mode observer-based controller for Maglev system via
LQi-feedback linearisation

It is noted that integral action eliminated the steady-state error. However, the resul-

tant overshoot for the system with integral action was twice as the system without it, and

percentage overshoot of 15% against 7.92%.
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Figure 3.17: System response comparison of the implemented SMC observer with LQR-
linearisation versus SMC observer with LQi-linearisation in presence of 10% of mass un-
certainty

Figure 3.18: Sin response comparison of the implemented SMC observer with LQR-
linearisation versus SMC observer with LQi-linearisation in presence of 20% of mass
uncertainty
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3.5 Fuzzy sliding mode observer

Sliding mode control has become a well-known approach to deal with system parameters

mismatch and disturbance because of the concept of equivalent control and sliding mode

surface. The use of sliding mode control has been extended to the other control func-

tions apart from stabilization. The approach has been used to construct the state observers.

In the literature, the robustness of sliding mode observer with respect to disturbance has

been theoretically and experimentally proven. Despite of these advantages of sliding mode

control, in general, chattering phenomenon would still be considered a major drawback.

Another limitation of using sliding mode observer would be that measurement noise am-

plification in the state estimation. Fuzzy systems are meant to be employed in a situation

of having variation in the system parameters or modelling uncertainties. Hence fuzzy logic

should be incorporated with sliding mode control to resolve all restrictions associated with

use of sliding mode. In this work, a combination of sliding mode technique and fuzzy

singleton-type is proposed.

3.5.1 Fuzzy sliding mode observer design

In this design, the signum function of the proposed sliding mode observer is replaced by

fuzzy logic which plays a role in improving the overall performance and the robustness of

the resultant observer. To guarantee that the estimated states converge toward the system

states, in other words the estimation error tends to zero in finite time and this convergence

time should be faster than time constant of system by multiple times, fuzzy rule base is

designed in such a way to imitate the needed action from conventional switching function

“signum” by reversing fuzzy output to be opposite to the sign of the estimation error to

maintain zero estimation error (Firdaus and Tokhi, 2015).

Fuzzy logic structure can be described by four different function blocks, namely Fuzzi-

fication, rule- base, inference engine and defuzzification. Figure 3.19 shows the basic

structure of fuzzy sliding mode observer. Fizzification is used to map the real data for the

estimation error into fuzzy linguistic terms to ensure further fuzzy inferences can be car-
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Figure 3.19: Basic structure of fuzzy sliding mode observer

ried out based on the rule-base. The linguistic rules in the rule-base are usually described

by fuzzy conditional statements such as

Rule 1: IF x̃1 is NB, then Ufo is PB

Rule 2: IF x̃1 is NM, then Ufo is PM

Rule 3: IF x̃1 is NS, then Ufo is PS

Rule 4: IF x̃1 is Z, then Ufo is Z

Rule 5: IF x̃1 is PS, then Ufo is NS

Rule 6: IF x̃1 is PM, then Ufo is NM

Rule 7: IF x̃1 is PB, then Ufo is NB

The fuzzy linguistic rules are defined here within the range of [-1 , 1] to simplify the

notation. Consequently, the actual variations in the input is to be normalized into the

interval [-1 , 1] using input scaling factor. Therefore, fuzzy output can be expressed as

Fout = Gi ufi (3.35)

where Fout, ufi is the fuzzy output and input respectively, Go (refer to Figure 3.19) is an

output amplification factor and Gi is the input scaling factor is to be tuned to ensure that

the universe of discourse of the input variable is mapped into unity interval (Chen and

Perng, 1994).
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A fuzzy set of seven triangular membership functions, namely: Negative Big (NB),

Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS), Positive

Medium (PM), and Positive Big (PB) are considered for the input, with the range of [-1, 1]

as shown in Figure 3.20.

Figure 3.20: Membership functions for fuzzy input ‘FUi’

Triangular Fuzzy Number (TEN) of the membership function used to define a triangu-

lar membership can be defined by triple (a1,a2 and a3 ) with the values of

NB: a1= −∞ a2 = −1 a3 = −0.5

NM: a1= −1 a2 = −0.5 a3 =−0.2

NS: a1= −0.5 a2 =−0.2 a3 = 0

Z : a1= −0.2 a2 = 0 a3 = 0.2

PS: a1= 0 a2 = 0.2 a3 = 0.5

PM: a1= 0.2 a2 = 0.5 a3 = 1

PB: a1= 0.5 a2 = 1 a3 =∞

The output membership is designed using fuzzy singleton method to speed up the estima-

tion process, in which the linguistic variable definition associated with input is the same

as the previously defined input. However, the linguistic variable definition for the output

was simplified to new form, that is the term set of the output variable is no longer a fuzzy

number rather than a crisp value in the base variable space as shown in Figure 3.21.
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Figure 3.21: Membership functions for fuzzy output ‘FUo’ using fuzzy singleton method

The crisp output variable ufo of Fuzzy sliding mode observer (FSMO) using fuzzy

singleton method can be calculated by the weighted average defuzzification method as

uf0 =

∑N
i=1 µRi ufi∑N
i=1 µRi

(3.36)

where N is the number of the fuzzy set (here N=5), µRi is the membership function of ith

fuzzy set and uf0 is defuzzified value.

3.5.2 Implementation and results of fuzzy sliding mode observer

Computer simulation results are obtained to demonstrate the feasibility of full-order fuzzy

sliding mode observer FSMO. This section is divided to two parts where the performance

of FSMO is compared with SMO with and without integral action. Firstly, full-order

fuzzy sliding mode observer-based controller via LQR-feedback linearisation is compared

with Full-order sliding mode observer-based controller via LQR-feedback linearisation,

i.e. no integral action is involved in the feedforward path. Figure 3.22 to 3.24 compare

the estimation error of step trajectory tracking for full states for both observer assuming no

present uncertainty.

It is noted that the performances of both observers were close to each other with little

advance to FSMO observer. However, once different mass uncertainty percentages are

introduced to the system, the performance of sliding mode observer using boundary layer

tended to be better in terms of estimation error compared to FSMO. This because the

rate of convergence of SMO using boundary layer is faster than the FSMO. Table 3.3
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Figure 3.22: Position estimation error of sliding mode observer vs. fuzzy sliding mode
observer

Figure 3.23: Velocity estimation error of sliding mode observer vs. fuzzy sliding mode
observer

numerically compares the estimation Integral absolute error (IAE) error of the estimated

position of both observers, FSMO and SMO.

The step responses and the control actions with both observers were almost identical,

Figures 3.25 and 3.26 compare the corresponding performances and the control actions of

FSMO versus SMO , when the input is step of 0.018m for 2s then step down to 0.015m for
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Figure 3.24: Current estimation error of sliding mode observer vs.fuzzy sliding mode ob-
server

the next 2s, in absence of any uncertainty.

Figure 3.25: Step response comparison between FSMO and SMO without integral action
in presence of different percentages of mass uncertainties
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Table 3.3: Position estimation IAE comparison between FSMO and SMO without integral
action and with different percentages of mass uncertainties

mass uncertainty IAE error

(m + %) FSMO SMO

10 0.808 0.598
20 1.594 0.792
30 2.408 1.165
40 3.242 1.565
50 4.088 1.971
60 4.945 2.381
70 5.817 2.795
80 6.693 3.217
90 7.580 3.639

Figure 3.26: Control efforts of FSMO and SMO without integral action and with different
percentages of mass uncertainties

On the other hand, once the integral action was implemented to eliminate the steady-

state error FSMO provided less estimation error than SMO while combining the observers

with LQi-feedback linearisation. Moreover, the maximum mass uncertainty that can be

handled by SMO dropped by 30% versus 115% for FSMO. Table 3.4 compares the esti-

mation MSE error of the estimated position, velocity and current of both observers FSMO

and SMO with constant input setting at of 0.015m.
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Table 3.4: MSE of the estimated position (x1), velocity (x2) and current (x3) for FSMO
and SMO with integral action and different percentages of mass uncertainties

mass uncertainty FSMO SMO

(m + %) x1 x2 x3 x1 x2 x3

0 2.28 ∗ 10−5 0.039 0.004 0.014 0.044 0.732
10 2.31 ∗ 10−5 0.078 0.008 0.014 0.213 0.753
20 2.39 ∗ 10−5 0.127 0.015 0.015 0.415 0.773
30 2.50 ∗ 10−5 0.176 0.020 0.015 0.612 0.789
40 2.70 ∗ 10−5 0.224 0.03 0.014 0.682 0.775
50 2.87 ∗ 10−5 0.271 0.037 - - -
60 2.98 ∗ 10−5 0.318 0.045 - - -
70 3.02 ∗ 10−5 0.364 0.054 - - -
80 3.08 ∗ 10−5 0.409 0.062 - - -
90 3.10 ∗ 10−5 0.453 0.070 - - -

115 3.54 ∗ 10−5 0.533 0.094 - - -

3.6 Summary

In this chapter, a mathematical non-linear model of highly non-linear unstable Maglev

system has been presented in the first part for use in further control design.

In the second and third parts of this chapter, two types of full-order observer, namely

non-linear high gain observer and fuzzy sliding mode observer have been designed. Sim-

ulation experiments highlight the trade off between the bandwidth and noise- sensitivity,

as it should be noticed that increasing value of the linear gain “a” in non-linear observer

leads to increasing the high-frequency oscillations due to measurement noise amplifica-

tion. However, noticeable performance degradation can be noticed when the value of a is

smaller than 10.

Furthermore, the simulation results of the siding mode observer and fuzzy sliding mode

observer have shown the improvement achieved in the robustness of the observer with

fuzzy logic, especially when the integral action is implemented to eliminate the steady-

state error. The FSMO can achieve reduced estimation error and can handle larger maxi-

mum mass uncertainty compared to SMO.



Chapter 4

LQR-feedback linearisation

4.1 Introduction

Non-linear systems have some features such as multiple isolated equilibrium points, finite

escape time and they may exhibit properties such as limit cycle, bifurcation, and chaos.

Such properties make non-linear control challenging. As an example finite escape time

means that the system output becomes unbounded because one or some of the system

states escape to infinity in finite time, which is not the case in a linear system where the

system will be unstable when time tends to infinity. Moreover, trajectories of non-linear

systems emanate out of an equilibrium point even without perturbation. In contrast, trajec-

tories can reach equilibrium point in finite time (only asymptotically in linear systems).

There are two ways to control a non-linear system. One of these ways is to linearise

the system by approximating the non-linear system with a series of linear systems using

Taylor series or Jacobian transformation and then apply a linear control technique such as

PID, LQR, etc.

The second way to control a non-linear system is to apply a non-linear control method.

Again there are two types of methods:

• Techniques that would treat the non-linear system in a limited range of operation as

a linear system such as feedback linearisation and gain scheduling.

• Applying direct non-linear control based on Lyapunov stability like sliding mode

control, backstepping or non-linear damping.

63
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In this chapter, the indirect non-linear control method is proposed to control highly non-

linear Maglev system, where the system is linearised by feeding back the full system state

as an input to cancel the non-linearity in the system. Then linear quadratic control is

implemented to control the resultant linear system.

4.2 Feedback linearisation scheme

The central idea of the feedback linearisation approach is to cancel the nonlinearity a non-

linear system so that the closed-loop dynamics are in (fully or partly) in linear form. Feed-

back linearisation is achieved by exact feedback and exact state transformations, rather

than by linear approximation of the dynamics. Define the transformed states z, for which

the equivalent model is in a simpler form, as


z1

z2

z3

 =



x1

x2

g − c

m

(
x3
x1

)2

 (4.1)

To ensure that transformation is invertible, the system states are restricted to x1 > 0

and x3 > 0. In the new coordinates the system equations become


ż1

ż2

ż3

 =


z2

z3

−2c

m

(
x3ẋ3
x21
− x23ẋ1

x31

)

 (4.2)
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Substituting for ẋ1 and ẋ3 from equation 3.9 into equation 4.2, yields


ż1

ż2

ż3

 =


z2

z3

w

 =


z2

z3

α(x) + β(x)u

 (4.3)

where

α(x) =
2c

mL

((
1− 2

c

L

1

x1

)
x2x

2
3

x31
+
R

L

(
x23
x21

))

β(x) = − 2c

mL

(
x3
x21

)
 (4.4)

The nonlinearities can be cancelled by the control law of the from

u =
1

β(x)
[w − α(x)] (4.5)

where w is an equivalent input (synthetic control), leading to a linear input-state relation

of the form
ż1

ż2

ż3

 =


0 1 0

0 0 1

0 0 0



z1

z2

z3

+


0

0

1

w (4.6)

The transformed system using feedback linearisation can be expressed in state variable

form as

ż(t) = Az(t) +B w(t) (4.7)

Before proceeding to design the controller, the new transformed system needs to be ver-

ified that it is controllable. Satisfaction of this property means that the states of the sys-

tem can be driven anywhere in finite time as desired. Rank of the controllability matrix
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[
A AB A2B

]
(3×3)

= (number of states).

The controller makes use of the states of the transformed system z and the reference

input r to produce the command for the process through its new command input w which

can be written as

w(t) = −K z(t) +Kr r (4.8)

here K is the gain vector to be designed using LQR, Kr is the feed-forward gain and r is

the reference input.

4.3 Full state feedback control

The stability of the new dynamics can be achieved using a linear state feedback control

law that achieves the given requirements.

w(t) = −K z(t) (4.9)

In this research, linear quadratic regulation method is used to determine full state-feedback

control gain matrix K, by seeking to minimize a cost function J

J(z) := min
w(.)

=

∫ ∞
0

zTQz z(t) + wTQw w(t) dt (4.10)

subject to the constrains

ż(t) = Az(t) +B w(t) ∀z(0) = z0 (4.11)

where Qz(3 × 3) and Qw(1 × 1) are typically positive semi-definite and positive definite

matrices respectively. Tuning these parameters will balance the relative importance be-

tween the control accuracy versus effort. The solution to the LQR problem is a linear



4.4. Tracking control design 67

control law of the form:

w(t) = −Q−1w BTP z(t) (4.12)

where P is a positive definite matrix which satisfies the algebraic Riccati equation

PA+ ATP − P BQ−1w BTP +Qz = 0 (4.13)

Thus, the LQR method is used for determining the optimal state-feedback control matrix

‘K = Q−1w BTP ’ to allocate the eigenvalues of the closed-loop system λ(A−BK) on the

left half plane. Since the design of the state feedback matrix K is based on solving the

regulator problem (no reference inputs), the stable closed-loop system will reach a steady

state to a constant input reference signal but steady state errors may be present.

4.4 Tracking control design

One of most significant advantages of having a controller with two degrees of freedom,

where feed-forward and feedback control are combined, is that the control design problem

can be split into two parts. The function of feedback control might be meant to provide

effective disturbance attenuation and improve overall robustness, whereas the function of

the feed-forward may be independently designed to obtain the desired response to the

reference and also to reduce the effects of measured disturbance (see Figure 4.1).

Feed-forward is a powerful technique that simply complements the feedback control

in presence of a reference input. This tracking control design can be used to reduce the

impact of the measured disturbance as well as improving the response to reference signal.

4.4.1 Static feed-forward gain

Combination of feedback and feed-forward is considered as one of the major advantage

of modern control with two degrees of freedom, with which the control actions can be

split into feedback Fb(t) that can reduce the effect of disturbance and maintain system
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Figure 4.1: Simulation scheme for control of the non-linear model of the Magnetic levita-
tion using exact input-state feedback linearisation

robustness, and feed-forward Ff (t) which can be independently designed to overcome the

measured disturbances and improve tracking control.

Feedforward gain does not affect the stability of the system, which is completely de-

termined by the eigenvalues of λ (A − BK) but it has only an effect on the steady state

solution. Hence a scalar feedforward gain Kr is introduced to track the reference signal

and to remove the steady state error. The transformed closed-loop system equations can be

written as

ż(t) = (A−BK) z(t) +BKr r(t) (4.14)

Particularly, the equilibrium point (i.e no change in the system dynamics that is when ż(t))

and steady-state output for the asymptotically stable closed loop system are given as

ze = −(A−BK)−1BKr r (4.15a)

and

yr,e = C ze (4.15b)

Thus for zero steady state tacking errorKr should be chosen such that yr,e = r (the desired
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output value). Solving equations (4.15a) and (4.15b) for scalar gain Kr yields

Kr = −1/(C(A−BK)−1B) (4.16)

4.4.2 Feed-forward control with integral action “LQi”

In this section, the modification of feed-forward control using static gain is described.

The new algorithm combining both integral action and feed-forward gain are described in

the next stage. LQR is considered as a proportional state feedback control technique in

which the controller does not have an integral action. This implies that the steady state

error is not zero when the system is subjected to a disturbance. Hence, in case of having

disturbance or if nonzero reference are expected the control law of proportional feedback is

a consequence of LQ problem formulation. Recall the equations of disturbance free plant

where the system is linearised using feedback linearisation described by equation 4.11:

ż(t) = Az(t) +B w(t)

This structure is modified in a way so that the resultant controller can deal with the un-

wanted disturbance. The basic idea is to augment the state vector with a new state ‘i’ to

describe the integral of the difference between the set-point and the measured output as

d

dt

 z

i

 =

 Az +B w

r − yr,e

 =

 Az +B w

r − C ze

 (4.17)

Thus the new representation of the overall plant can be rewritten with the augmented

state-space as

d

dt

 z

i

 =

 A 0

−C 0


 z

i

+

 B

0

w +

 0

I

 r (4.18)
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where the augmented state matrix and input vector are respectively represented by

Aaug =

 A 0

−C 0

 and Baug =

 B

0

 (4.19)

with the control law:

w = −
[
K −Ki

] z

i

+Kr r (4.20)

or it can be expressed in such form as

w = −Kaug zaug +Kr r (4.21)

thus the overall closed-loop system can be written as follows:

d

dt

 z

i

 = (Aaug −Baug) ∗
[
K −Ki

] z

i

+

 BKr

I

 ∗ r (4.22)

The controller needs to be designed so that the poles of the closed-loop are chosen for

the system to be stable, i.e the real part of the eigenvalues of the augmented state matrix

‘Aaug’ must be negative. The block diagram of closed-loop system with integral control is

shown in Figure 4.2.

Figure 4.2: Block diagram of the closed-loop system with integral control
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4.5 Implementation and results

This section presents simulation results assessing the performance of the proposed con-

trollers. Two types of tests are presented in this section. Firstly, the optimal control based

LQR-feedback linearisation for magnetic levitation using static feed-forward gain in sec-

tion 4.4.1. Then feedback linearisation with integral action in the feed-forward scheme in

section 4.4.2.

4.5.1 LQR-feedback linearisation

The simulation results are obtained from the algorithm coded in MATLAB 2015b in Simulink.

Using personal computer (PC) with the specifications of processor CPU Intel (R) core

(TM) i5-2400 and RAM of 8.00 GB and Windows 7 professional operation system.

Firstly, The non-linear model of magnetic levitation and controller design are simulated

in Simulink and the without observer, i.e feedback the states from the model assuming all

the states are measurable as shown in Figure 4.3 .

Figure 4.3: LQR-feedback linearisation plus feed-forward gain

LQR minimizes a performance index (i.e. quadratic cost function) which mainly has

two penalty matrices: state weighting matrix Qz and control weighting matrix Qw.Both of

these parameters greatly influence the performance of the LQR controller. However, it is

not a trivial task to tune those two matrices.

Initially the weights of the LQR are assumed as Qw=1 and Qz = CT ∗ C and since it



72 4. LQR-feedback Linearization

is position control based, the output vector can be written as C =

[
1 0 0

]

Qz = CT ∗ C =


1

0

0


[

1 0 0

]
=


1 0 0

0 0 0

0 0 0

 (4.23)

Hence, the corresponding cost function will pose equal importance on the control effort

and to fast convergence of the state variables. This implies to start with Qw = 1 and

Qz = diag( 1 0 0 ). State feedback gain can be calculated using Matlab command:

K = lqr(Sys,Qz, Qw)

and

Sys = ss(A,B,C, 0);

where K(1× 3) is vector of constant gain for position, velocity and current states respec-

tively. Adjusting these parameters intuitively by trial and error to maintain the smallest

possible error between the reference input and the system output for an acceptable con-

trol effort, form the initial results of system response and the control effort highlights

the range of interest for optimization. As seen in Figure 4.4 the system response with

Qz = diag( 1000 0 0 ) i.e Qz11 = 1000 is relatively slow, whereas with Qz11 set to the

value 1e5 would show reasonably fast response. The control effort reached about 25 v and

only around 8 v when the control weighting Qz11 was set to 1e−4 and 0.1 respectively as

shown in Figure 4.5.

The classic approaches are labour-intensive, time consuming and do not guarantee the

expected performance. Furthermore, these techniques only aim to minimize the quadratic

performance index and do not consider other control objectives such as minimizing the

overshoot, rise time, settling time, and steady state error. Based on aforementioned results,

the searching range for both parameters are specified. The state weighting matrix and
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Figure 4.4: System response for different manual setting of state weighting matrix

Figure 4.5: Control effort for different settings of control weighting matrix

control weighting matrix are refined as Qz = diag( 9.31× 104 0.7287 0.7378 ) and

Qw = 6.34× 10−4 using the improved spiral dynamic algorithm (ISDA) (Nasir and Tokhi,

2015) to obtain a satisfactory performance (see Figures 4.6 and 4.7).

Further results were obtained using the proposed non-linear observer (HGO) with

LQR-feedback linearisation with static gain (shown in Figure 4.8), as previous results were

based on the assumption that all the states were available for the optimal controller. How-

ever, this is not the case since the only measurement available is the position of the object.

The linear gain “G” of the proposed observer was calculated according to the formula
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Figure 4.6: Optimized controlled position and the control effort using ISDA with step input

Figure 4.7: Optimized controlled position and the control effort using ISDA with sine input

that was used in (Baranowski and Piatek, 2008; Khalil, 2008; Khalil and Praly, 2014) in

the form of

G =


G1

G2

G3

 =


3 a
ε

3 a2

ε

a3

ε

 (4.24)

where G1 = 3a, G2 = 3a2, G3 = a3 and ε ∈ (0, 1], a is a tuning parameter to be tuned to

meet the requirements. In this work ε has been set within the specified range to the value
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Figure 4.8: State feedback with full-order estimator for Maglev

of 0.5 and a should be at least 10. This results in

G =


6a

12a
2

8a3


These gains need to be tuned so that the dynamics of the observer should be faster than

the system dynamics “pushing the observer poles further on the left side of S-plane”.

At the beginning, the parameters of state weighting matrix Qz and control weighting

matrix Qw are tuned manually to maintain the smallest possible error taking into account

the control effort to be acceptable, and further to have an idea about the optimization

range for the tuning parameters for the controller. Figure 4.9 shows the response and

control effort of the controlled system with the controller settings of Qw = 0.0001 and

Qz = diag(1e5 0 0) (which correspond to the closed-loop poles –31.6228, –15.8114 +

27.3861 i, –15.8114–27.3861 i), the observer parameters a and ε set to values of 150 and

0.5 respectively, and the initial conditions set to x1(0) = 0.018, x2(0) = 0 and x3(0) =√
m× g × 18× 10−3 = 0.894.

Further, controller parameters were tuned using (ISDA) algorithm (Nasir and Tokhi,

2015) to obtain a satisfactory performance. Number of search points and maximum itera-

tion number were set to 20 and 50 respectively. Gains for both state weighting matrix of

Qz = diag(V1 V2 V3) and control weighting matrix of Qw = V4 were distributed within

the range after many adjustments and trials as shown in Table 4.1

The best optimum cost function value achieved among many trials was 4.9709× 10−06
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Figure 4.9: System response and control efforts with manual tuned controller

Table 4.1: Optimization range for state and control weighting matrix

Parameter No. Minimum Maximum

V1 107 108

V2 500 103

V3 0 10
V4 10−4 10−2

and the optimal gain values were V1 = 6.69121007, V2 = 548.7702, V3 = 548.7702 and

V4 = 55 × 10−04. This results in LQR-feedback gains for the three feedback states as

K1 = 2.7714× 1005, K2 = 8.5622× 1003 and K3 = 131.3964 with the feed-forward gain

value equal to kr = 2.7714 × 1005. The corresponding poles for closed-loop system with

these settings are −65.2696,−33.0634 + 56.1511 i, –33.0634–56.1511 i)

There were improvements in terms of system performance as well as the control actions

for the controller using the optimised gains compared to the response and control efforts

achieved with the manually tuned controller. Table 4.2 highlights some of the performance

indices for both controllers. As noted, the position overshoot was reduced further with

optimized controller than the manually tuned one. In contrast, the system response was

slowed to 3.6 ms instead of 2.8 ms. Figure 4.10 and Figure 4.11 compare the step and sine

response for the system with the manually tuned and optimized controllers.

The performance of the system might seem to be not significantly improved. However,

the generated control signals from the optimized system were remarkably much smoother
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Table 4.2: Performance indices for manual tuned and optimized controller

Performance index Manual tuning Optimization

Percentage overshoot (%) 10.5 7.35
Rise time (ms) 2.8 3.6

Figure 4.10: Step response comparison between manually tuned and optimised LQR-
feedback controllers

Figure 4.11: Sine response comparison between manually tuned and optimised LQR-
feedback controllers
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than those with the manually tuned controller as depicted in Figures 4.12 and 4.13

Figure 4.12: Step control actions comparison between manually tuned and optimised LQR-
feedback controllers

Figure 4.13: Sine control actions comparison between manually tuned and optimised LQR-
feedback controllers

Finally, both controllers were tested for robustness in the presence of mass uncertainty

in percentage values of 5,10, 20, 50 and 80 % so that the mass value in the mathematical

model of the system was higher than the one used in controller and observer designs.

For a comparative assessment, integral of absolute error over time was used, where the

error is the difference between the set-point and the measured output (feedback signal).

IAE can be calculated using the equation:

IAE =

t∫
|e(t)| dt (4.25)
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Table 4.3 presents an IAE error comparison between the given controllers with constant

input of 0.015. As noted, IAE values with 10% mass mismatch were relatively low. Closer

inspection of the table shows that the response improved moderately especially when mass

uncertainty was increased to 80% as IAE error was just about 9.5 for the optimized con-

troller whereas it was around 61 for manually tuned controller.

Sample of simulation results with 50 and 80% mismatch are shown in Figures 4.14 and

4.15 comparing the robustness of manual tuned controller with optimized controller using

(ISDA) (Nasir and Tokhi, 2015). The single most striking observation to emerge from the

performance comparison was the response from both controllers has steady-state error and

this error increased with percent uncertainty.

Table 4.3: Mass uncertainty versus IAE error of LQR-feedback linearisation with different
tuned gains

mass uncertainty IAE error

(m + %) initial gains optimized gains

10 5.9331 7.5241
20 10.0165 7.7168
30 8.3709 7.9838
50 10.6649 8.5557
80 60.8029 9.5957

Figure 4.14: System response and control efforts with mass uncertainty of 50 % for both
manual and optimized tuned controller
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Figure 4.15: System response and control efforts with mass uncertainty of 80 % for both
manual and optimized tuned controller

4.5.2 LQi-feedback linearisation

In addition to non-linearity feature of the Maglev system, any change in the operating

condition would introduce additional modelling errors. That is why from a design point of

view it is important to be able to measure the robust properties of the closed-loop system.

In this section an integral control action is included to remove the steady-state error in case

of parameters mismatch, subsequently improving the robustness of the proposed controller.

Consider the augmented system with an integral control action in terms of augmented

states matrix ‘Aaug’ and input vector ‘Baug’ as expressed in equation 4.22. Experimentally

it can be constructed using a script command in Matlab as

Sys1 = ss(Aaug, Baug, Caug, 0)

Then the augmented gains vector ‘Kaug’ can be calculated by running the Matlab command

Kaug = lqi(Sys1, Qzaug, Qw)

where Qzaug = diag([V 1, V 2, V 3, V 4]) and V is gains vector that was used to regulate the

deviation in the trajectories of the state variable (z(t)), whereas Qw is to penalize the input

signal. ki can be obtained from Kaug(1 × 4) = [K − ki] as the fourth element in the
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vector;

ki = −Kaug(1, 4)

For a step signal with initial value of 0.033 m, then step down to 0.02, finally to the value of

0.015 m and step time of 10 s, initial conditions for both controller and non-linear observer

were fixed to the values of 0.018 m for position with the corresponding current of 0.9039

A, and the initial velocity was set to zero. Three of the best optimized controller “Opt 1,

Opt 2 and Opt 3” were tested in terms of tracking the prescribed trajectory and control

actions. The optimized gains for both state weighting matrix of Qz = diag(V1 V2 V3 V4)

and control weighting matrix Qw = V5 are as shown in Table 4.4

Table 4.4: Optimization gains for state and control weighting matrix

Parameter No. Opt 1 Opt 2 Opt 3

V1 6.72× 106 2.71× 106 2.71× 105

V2 2.32× 104 105 6900
V3 9.67× 103 0 0
V4 1.61× 109 4.43× 109 3.77× 108

V5 0.0061 9× 10−4 9× 10−6

Figure 4.16 shows that the performance of Opt 2 and Opt 3 were close to each other.

However, the control effort provided by Opt 2 was much smoother than those with Opt 1

and Opt 3, see Figure 4.17).

The results are summarized in Table 4.5, in which a comparison between the perfor-

mance indices for optimization results 2 and 3, whereas Opt 1 results are excluded because

of slow response and a very noisy control action.

Table 4.5: Performance indices for Opt 2 and Opt 3

Performance index Opt 2 Opt 3

Percentage overshoot (%) 3.266 3.266
Peak time (s) 1.187 1.302
Rise time (s) 0.086 0.146
Settling time (s) 0.143 0.214

Sample of simulation results for step response with 30 mismatch and 50% mismatch
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Figure 4.16: System response of the proposed controller LQi for Opt 1, Opt 2 and Opt 3

Figure 4.17: Control action of the proposed controller LQi for Opt 1, Opt 2 and Opt 3

with sine reference amplitude of 0.1 and frequency 2 rad/sec are shown in Figures 4.18

and 4.19. The figures also show comparison and control efforts of Opt 2 and Opt 3 in

the presence of mass uncertainty. It can be seen that response speeds of both controllers

were much closer to each other in the presence of mass uncertainty. However, the control

action provided by Opt 2 was smoother than that with Opt 3 control action and Opt 2 still

achieved less overshoot 3.67 % compared to Opt 3 (4.87 %).

Based on the results achieved Opt 2 was considered as final fine-tuning for the param-

eters of the proposed LQi controller. The feedback gains were thus obtained as K1 =

1.87 × 105, K1 = 7.17 × 103 and K3 = 119.71 the integral gain ki = 2.21 × 106 and

proportional gain kr was set to zero.
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Figure 4.18: Step response and control efforts for Opt 2 and Opt 3

4.6 Comparison and discussion

In this section, the obtained results using LQR-feedback linearisation with static feed-

forward gain is compared with those of LQi results. Mainly this section will focus on the

performance of both controllers in the presence of mass uncertainty. Figure 4.20 compares

between step responses of the system with LQR and with LQi with mass uncertainty of

80%, although the responses with integral action were slowed down, rise time of the sys-

tem with the LQR was about 0.045 second whereas for the system with LQi was up to

0.078 second. However, integral action helped to eliminate steady-state error, as well as it

produced smoother control actions than the LQR action especially around the high edge of

step input (see Figure 4.21 ).

Numerically Table 4.6 compares Integral squared error (ISE) of LQR and LQi in the

Figure 4.19: Sine response and control efforts for Opt 2 and Opt 3
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Figure 4.20: Comparison between step response of LQR and LQi in presence of 80% mass
uncertainty

Figure 4.21: comparison between control efforts of LQR and LQi in presence of 80% mass
uncertainty
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presence of different mass uncertainty with step input of 0.015 for 1.5 s then step up to

0.03 and simulation run time of 3 second.

Table 4.6: ISE error for LQR and LQi in the presence of mass uncertainty

mass uncertainty ISE

( m + %) LQR LQi

5 58.42 3.54
10 86.14 3.59
20 105.45 3.62
30 157.04 3.73
50 193.4 3.91
80 196.53 4.75

4.7 Summary

In this chapter, an indirect non-linear control strategy has been discussed, where feedback

linearisation was used to linearise a non-linear Maglev system into the new z coordinate

system, therefore, the system can be treated as a linear system in a limited range of op-

eration. Unmeasured states were estimated using non-linear high gain observer. Optimal

control LQR based on full- states feedback was designed to stabilize the transformed lin-

ear system in the absence of reference. Reference tracking and disturbance rejection is

assigned firstly to static feed-forward gain. This kind of strategy introduced steady-state

error in presence of mass uncertainty when the obtained results were evaluated. Then

integral action was implemented to improve the robustness to parameters mismatch. Op-

timization algorithm (ISDA) was used to optimize the controller parameters. The results

show the new closed-loop system with integral action has the ability to maintain stable

suspension well and to suppress the disturbance caused by noise or parameters mismatch.



Chapter 5

Sliding Mode Control

5.1 Introduction

Sliding mode control is considered as a direct ways to control a non-linear control method

based on Lyaponov stability theory. Sliding mode control is a form of Variable Structure

Control (VSC) which was investigated first in early 1960s by Emelyanov and several co-

researches in the Soviet Union, the ideas did not appear outside of Russia until the mid

1970s when a book by Itkis (1976) and a survey paper by Utkin (1977) were published in

English (Edwards and Spurgeon, 1998). It is a practical switching feedback control (dis-

continuous non-linear control) in which the gains in every feedback path switch between

two values in accordance to some rules. The idea is based on bang-bang control theory

that was used in early days in high speed switching circuitry and computer products.

The law of this variable structure control is designed in effective way to provide the

robustness of controlling non-linear plants against any disturbances and the measurement

noise. The control law can be divided into two main parts, namely continuous and discon-

tinuous control law. The continuous control law needs to be designed in a way to drive the

state trajectories of non-linear plants in the state space to well-chosen surface. Whereas

discontinuous control law essentially utilizes a high speed switching control to maintain

the state trajectories on a surface all the time. This surface can be called switching surface

because in case the plant trajectory is above the surface the control input needs to switch

from one gain to another to bring the trajectory back to the surface and visa versa, if the

state trajectory dropped down the surface a control path needs to switch in opposite di-

86
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rection to drive the trajectory back toward the surface (DeCarlo et al., 1988). The surface

can at the same time be called sliding surface on which the plant’s trajectory slide alone to

guarantee the stability of the system which means output feedback trajectories of the closed

loop system converge to Lyapunov stable equilibrium points (zero dynamic system).

5.2 Sliding mode control approach

The state variables for the magnetic ball levitation system are described as x =

[
x1 x2 x3

]T
,

with the position of the object, velocity and coil current. Define the vector of the desired

values as xd =

[
r1 r2 r3

]T
, where r1 represents the desired position and r2 and r3

equal to zero. Then the vector of tracking error is defined as

E =

[
e ė ë

]
=

[
e1 e2 e3

]
(5.1)

A sliding mode controller can be effectively applied to a non-linear system in spite of

parameter uncertainties and external disturbances. The dynamics of a nonlinear system

can be described in the state space form as follows

ẋ(t) = f(x; t) + g(x; t) u(t) (5.2)

For a control system, generally the sliding surface is a function of the system states σ(x; t)

which can be selected as

σ(x; t) = S x(t) (5.3)

where S is a matrix of positive constant elements with a dimension of [m× n]. For a

3rd order system, the time varying surface σ(t) can be defined in terms of tracking error

instead of a function of system states as

σ(t) =

(
d

dt
+ s

)3−1

E (5.4)
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where s is strictly positive constant and indicates the slope of sliding surface. Thus from

equation (5.4), the sliding surface can be written as

σ(t) =

[
s2 2s 1

]
e1

e2

e3

 (5.5)

or it can be simplified as follows

σ(t) =

[
s1 s2 1

]
e1

e2

e3

 (5.6)

where s2 = 2
√
s1 .

The next step is to design a control input which can bring the system trajectories to-

wards sliding surface (see Figure 5.1 ). Considering the dynamical system in equation

(5.2), the developed control law is required to drive the system’s trajectories towards the

sliding surface in finite time t ≤ tr and maintain motion on the surface “ σ = 0” thereafter

in the presence of disturbance.

Figure 5.1: Sliding surface

A stability control law is designed using Lyapunov stability condition σT σ̇ < 0. The
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general form of the control law for the sliding mode controller can be written as

u = ueq + un = −Kx (5.7)

where ueq and un are the equivalent control and natural control receptively. ueq can be

interpreted as a continuous control law to maintain the dynamics of the system on both

sides of the sliding surface “ i.e σ̇ = 0”(Slotine et al., 1991), while the natural control un

is discontinuous control law to be designed to account for nonzero uncertainties (DeCarlo

et al., 1988).

Substituting for u(t) from equation (5.7) into equation (5.2), yields the closed-loop

dynamics of the system as

ẋ(t) = f(x; t) + g(x) (ueq + un) (5.8)

5.2.1 Equivalent control

The controllability condition of the system to ensure the existence of control signal that

can bring the system trajectory closer to the sliding mode is

∣∣∣∣∂σ∂xg(x, t)

∣∣∣∣ = 0 (5.9)

i.e the matrix product ∂σ
∂x
g(x, t) is non-singular for all t and x.

Once the sliding mode is achieved where σ(x) = 0 the sliding trajectories in this mode

σ(x) should be constant. The sliding motion along the sliding mode, that is described by

the differential equation of the sliding mode trajectories, should equal to zero to guarantee

the system would slide toward the equilibrium along the sliding mode surface, i.e.

σ̇(x) = 0 (5.10)

Hence, the necessary condition for the output trajectory to reach the sliding surface σ is

that σ̇ = 0 which is expressed using the chain rule as ∂σ
∂x
ẋ = 0. Substituting for ẋ from
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equation 5.2 yields

[
∂σ

∂x

]
ẋ =

[
∂σ

∂x

]
[f(x, t) + g(x, t)u] = 0 (5.11)

and in terms of sliding constant S it can be written as

σ̇ = Sẋ(t) = 0 (5.12)

Thus the equivalent control is augmented by auxiliary control effort termed as hitting the

sliding surface (i.e un=0) and determined to solve equation 5.11, expressed as

ueq =

([
∂σ

∂x

]
g(x, t)

)−1 [
∂σ

∂x

]
f(x, t) (5.13)

Since the sliding motion is equal to S which can be calculated from equation (5.2), i.e

∂σ
∂x

= S. The so-called equivalent control with respect to sliding constant S can be written

as

ueq = −(S ĝ(x))−1S f̂(x, t) (5.14)

where ĝ(x) and f̂(x) are based on best estimated model as can be illustrated in Figure 5.2

Figure 5.2: Sliding mode control block diagram
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5.2.2 Natural control

The natural control is used to maintain the status trajectory on sliding surface using signum

function which requires infinite switching on the part of actuator and the control signal.

To ensure sliding mode exists a sliding mode control of the following form is applied

u = ueq + un

The sliding mode control to control the non-linear Maglev system with Non-linear high-

gain observer (NHGO) is illustrated in Figure 5.3

Sgn (s ) C+ _ +
+

un

ueq

u x yxr xe s 

Measured state  

(Position x1)

Estimated state +
_

Sliding mode 

observer

x̂

−𝒌 𝑺𝑩  𝒙, 𝒕  
−𝟏

 

1x̂

− 𝑺𝑩  𝒙, 𝒕  
−𝟏

𝑺𝒇 (𝒙, 𝒕) 

𝑺 )t(u)t,x(B)t,x(f)t(x 

Figure 5.3: The sliding mode control details including natural and equivalent control

For system in equation (5.2), consider the Lyapunov function candidate

V (σ(x)) =
1

2
σT (x)σ(x) =

1

2
‖σ(x)‖2 (5.15)

where ‖σ(x)‖2 is the distance away from the sliding surface σ(x) = 0. Sliding mode

will exist if

σT (x) σ̇(x) =
∂V

∂σ

∂σ

∂t
=
∂V

∂t
< 0 (5.16)

in neighbourhood of sliding surface.
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For this equality σT (x) σ̇(x) is to remain all the time less than zero, which means

that convergence of the system trajectories towards the sliding surface is guaranteed by

selecting feedback law so that σ and σ̇ have opposite signs such as

• u(x) can make σ̇ to be negative when σ is positive

• u(x) can make σ̇ to be positive in case σ is negative

By having this, once the trajectories move away from the surface in positive direction the

input signal (system input / controller output) would bring it back to the surface, and this

can be achieved by reversing the motion around the sliding surface, i.e by making the rate

of change of the sliding surface (σ̇ ) to be negative and vice versa.

Thus the control law of discrete/ natural un(x) can be chosen so that

un(x) =


u−(x) if σ(x) > 0

u+(x) if σ(x) < 0

(5.17)

or it can be expressed mathematically in general form as

un = −M sign(σ) (5.18)

the resultant form can be scaled as expressed in (Firdaus and Tokhi, 2016) as

un = −M(S ĝ(x))−1sign(σ) (5.19)

5.3 Fuzzy sliding mode control

The essential purpose of using this technique is to improve the switching function of nat-

ural control (un) with fuzzy logic. The proposed method endeavours to eliminate the

chattering phenomenon during sliding mode condition on the sliding surface. The general

structure of Fuzzy sliding mode controller (FSMC) is shown in Figure 5.4. The member-

ship functions of fuzzy input (Un) and output (FUn) are created through the the values of
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Fuzzy 

Logic
C+ _ +

+

un

ueq

u x yxr xe s 

Measured state  

(Position x1)

Estimated state +
_

x̂

1x̂

− 𝑺𝑩  𝒙, 𝒕  
−𝟏

𝑺𝒇 (𝒙, 𝒕) 

𝑺 )t(u)t,x(B)t,x(f)t(x 

Non linear Observer

Figure 5.4: General structure of FSMC

sliding surface (σ) as shown in Figure 5.5. Here only input membership function is shown

here, since in this work two types of membership function for the output were used, and

output membership functions will be shown later. Fuzzy sets of seven membership func-

tions, namely: Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero

(Z), Positive Small (PS), Positive Medium (PM), and Positive Big (PB) are used, with the

range [-1, 1] for both input and output.

Considering the fuzzy input and output, the rules-base to produce the desired natural

control (un) can be set up as in Table 5.1

Table 5.1: The Fuzzy rule base for FSMC

HHH
HHHufn

σ
NB NM NS Z PS PM PB

PB PM PS Z NS NM NB

Figure 5.5: Membership functions for fuzzy input ’Un’
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The natural control obtained after defuzzification process can be expressed as

un = Gu ufn (5.20)

where Gn is a gain to factorise the output signal, while ufn represents the crisp values

obtained from the FLC. Thus the overall control signal of FSMC can be written as (see

Figure5.6 )

u = −(S ĝ(x))−1S f̂(x, t) +Gu ufn (5.21)

Fuzzy 

Inference 

Rule 

Base 

  
GuGs

Fuzzification Defuzzification

FLC

eesesS 
21

Figure 5.6: FSMC block diagram in detail
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5.4 Implementation and results

This section presents simulation results assessing the performance of the SMC. The results

are split to two main sub-sections, where in the first part results of SMC with SMO ob-

server are presented, and in the second part results obtained by FSMC and FSMO are pre-

sented and discussed. A comparative assessment of the performances of both controllers

is also presented.

5.4.1 Sliding mode controller

The simulation results were obtained from the algorithm which was coded in MATLAB

2015b Simulink using a personal computer with the same specifications stated in section

4.5.1. The system parameters were as shown previously in Table ??.

Sliding mode control is considered as an optimal control where all the states need to

be available, which is not the case here, as the position of the object is the only measured

state, whereas the velocity and current are estimated using Sliding mode observer (SMO).

The details of the implemented Sliding mode control (SMC) with Sliding mode observer

(SMO) are shown in Figure 5.7.

Sgn (s ) C+ _ +
+

un

ueq

u x yxr xe s 

Measured state  

(Position x1)

Estimated state +
_

Sliding mode 

observer

x̂

−𝒌 𝑺𝑩  𝒙, 𝒕  
−𝟏

 

1x̂

− 𝑺𝑩  𝒙, 𝒕  
−𝟏

𝑺𝒇 (𝒙, 𝒕) 

𝑺 )t(u)t,x(B)t,x(f)t(x 

Figure 5.7: SMC with SMO

In the feedback loop continuous control input/ equivalent control input was used to
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bring the system states to the sliding surface as described in equation (5.14);

ueq = −(S ĝ(x))−1S f̂(x, t)

where S is second order sliding mode surface constant defined as vector of [s1 s2 1], ĝ(x)

is the input vector with value of [0 0 1/L] , and f̂(x, t) is the best estimated model of

Maglev system that equals to [f̂1 f̂2 f̂3] as was expressed in equation (3.31)

f̂1 = x̂2

f̂2 = g − c

m

(
x̂3
x̂2

)2

f̂3 =
R

L
x̂3 +

2 c

L

(
x̂2x̂3
x̂21

)

Discontinuous control input/ natural input in the feed-forward path was used to preserve

the sliding trajectories (system trajectories around sliding surface) from moving away from

sliding manifold as described in equation 5.19

un = −M(S ĝ(x))−1sign(σ)

where M is the natural gain to be tuned, by which the input is constrained based on the

following condition

|un| ≤M, M > 0 (5.22)

and switching function sign(σ), well-known function in conventional sliding mode the-

ory, is to reverse the sliding motion by changing the sign of rate of change of the sliding

dynamic around sliding surface σ̇(x), which can be written as

sign(σ) =
σ

|σ|
=


−1 |σ| < 0

1 |σ| > 0

(5.23)

The simulation results compare the performances obtained using conventional switching
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function with those acquired using a boundary layer, where the saturation function was

used to solve the chattering problem described as

sat(σ) =
σ

|σ|+ φ
=


σ
φ

∣∣∣σφ ∣∣∣ ≤ 1

sign
(
σ
φ

) ∣∣∣σφ ∣∣∣ > 1

(5.24)

A thin boundary layer as shown in Figure 5.8 was introduced in neighborhood of the slid-

ing surface to eliminate the chattering when all trajectories are inside φ(t) for all time,

therefore the input u was interpolated inside φ(t) as illustrated in Figure 5.9.

Figure 5.8: Saturation function

Figure 5.9: Boundary layer

Figure 5.10 shows the sine response of SMC using signum and saturation function to

each other in the the presence of 30% mass mismatch. It can be seen that both controllers

have achieved similar performances in terms of reference tracking. However, a boundary

layer using saturation function helps to improve the smoothness of the control action. Fig-

ures 5.11 to 5.13 illustrate the control actions of both controllers in presence of different

percentages of mass uncertainty for variety of inputs, constant of 0.015 m, step of 0.018

initially till 1.5 second then step down to 0.015 and finally sine input with frequency of 2
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rad/s.

These results were obtained using second order sliding surface with two gains (s1 and

s2) as presented in equation 5.5 where s2 = 2
√
s1 with tuned value of 62.7660 and s1

= 984.8940, natural gain M was 8786.9907, states were estimated using optimized SMO

with six gains shown in Table 5.2 . The maximum percentage mass uncertainty with these

tuned parameters was 75%.

Table 5.2: SMO observer parameters used with SMC controller

Parameter
α β

1 2 3 1 2 3

Values 3958.22 10307.34 9509.15 7962.62 6575.31 7223.49

Figure 5.10: Sine response of SMC controller in presence of 30% of mass uncertainty

5.4.2 Fuzzy sliding mode control

In this section simulation results assessing the performance of (FSMC) combined with

FSMO are presented. Previous results have highlighted one of the main disadvantages of

the SMC method; its dependence on system model, which affects the robustness of the

controller. Moreover, there is the chattering phenomenon during sliding mode condition
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Figure 5.11: Control efforts of SMC controller with sine input in presence of 30% of mass
uncertainty

Figure 5.12: Control efforts of SMC controller with step input in presence of 50% of mass
uncertainty

in the sliding surface. To overcome these problems FSMC is proposed, since fuzzy logic

control is not a model based technique.

In this type of design the same equivalent control as in equation (5.14) was used. FLC

was implemented in the natural control input by replacing the switching function to adapt

to the sliding surface σ. Triangular membership functions for input Un and the output FUn

were used in the fuzzification procedure to adjust the thickness of the boundary layer as
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Figure 5.13: Control efforts of SMC controller with constant input in presence of 75% of
mass uncertainty

an output. Fuzzy rules were designed for the fuzzy output to always have opposite sign to

σ to ensure the sliding trajectories move toward the sliding surface. The rules from Table

5.1 are described as

Rule 1: IF σ is NB, then Un is PB

Rule 2: IF σ is NM, then Un is PM

Rule 3: IF σ is NS, then Un is PS

Rule 4: IF σ is Z, then Un is Z

Rule 5: IF σ is PS, then Un is NS

Rule 6: IF σ is PM, then Un is NM

Rule 7: IF σ is PB, then Un is NB

Two scaling factors Gs and Gu as shown in Figure 5.6 were used to normalise the input to

fuzzy block and to amplify the fuzzy output respectively. These gains are tuned manually.

First simulation results were obtained using fuzzy sets of seven triangular membership

functions for output, namely: Negative Big (NB), Negative Medium (NM), Negative Small

(NS), Zero (Z), Positive Small (PS), Positive Medium (PM), and Positive Big (PB), with

the range of [-1, 1] as shown in Figure 5.14. The crisp output variable of FSMC was

calculated by centroid defuzzification method. Triangular Fuzzy Number (TEN) of the
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membership function used to define a triangular membership by triple (a1,a2 and a3 ) with

the values

NB: a1= −∞ a2 = −1 a3 = −0.5

NM: a1= −1 a2 = −0.5 a3 =−0.2

NS: a1= −0.5 a2 =−0.2 a3 = 0

Z : a1= −0.2 a2 = 0 a3 = 0.2

PS: a1= 0 a2 =0.2 a3 = 0.5

PM: a1= 0.2 a2 =0.5 a3 = 1

PB: a1= 0.5 a2 = 1 a3 =∞

Figure 5.14: Membership functions for fuzzy output “FUn”

The same equivalent control was used with second order sliding surface with two tuned

gains s1 = 34026 and s2 = 368.9228, whereas the scaling factors in natural control were

set to the values of 10−5 and 7000 forGs andGu respectively. Fuzzy sliding mode observer

(FSMO) was used to estimate the states using Fuzzy inference system (Mamdani) (fis)

file which was designed using fuzzy toolbox in Matlab. The same fuzzy sets of seven

membership function for input and output were implemented in FSMO observer. The

scaling factors for the observer were given the same values used in the controller and α1

to α3 were given values of 736.2675, 9000 and 299.9370 respectively. Figures 5.15 and

5.16 show step and sine responses and control actions for FSMC with FSMO.
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Figure 5.15: Step response and control actions for FSMC controller with FSMO observer
using fis file

Figure 5.16: Sine response and control actions for FSMC controller with FSMO observer
using fis file in presence of 20% of mass uncertainty

Further results were obtained using the fuzzy singleton method, in which the linguistic

variable definition associated with input was the same as the previously defined input.

However, the linguistic variable definition for the output was simplified to a new form;

the set of output variable was no longer a fuzzy number but was a crisp value in the base



5.4. Implementation and results 103

variable space as shown in Figure 5.17. The crisp output variable ufs of FSMC using fuzzy

singleton method can be calculated by the weighted average defuzzification method as

ufs =

∑5
i=1 µRi ufsi∑5
i=1 µRi

(5.25)

All control parameters for the controller (both equivalent and natural control) and the

Figure 5.17: Membership functions for fuzzy output ’FUn’ using fuzzy singleton method

observer were the same as the ones used previously in FSMC using fis file. The only

change was that the membership function for fuzzy output of singleton- type replaced the

classic triangular membership functions for the output.

Figures 5.18 to 5.22 compare the performance of FSMC controller with observer using

the classic approach (fis file) with FSMC using fuzzy singleton method for both controller

and observer in the presence of different percent mass uncertainties and different inputs.

Figures 5.21 and 5.23 show the corresponding control actions.

Although the control actions for both techniques seem to be close to each other, better

response can be obtained using fuzzy singleton method.

Table 5.3 shows a numerical comparison between both techniques for constant input of

0.015 for 4s. It is noted that the maximum uncertainty percentage for FSMC using classic

approach was 90% against 113% for FSMC using fuzzy singleton output membership

function. Moreover, simulation results show a significant reduction in computation time

which was just 4.08 second for FSMC using singleton by contrast to FSMC using fis. file

that was 57.96 s.
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Figure 5.18: A comparison between step response for FSMC using singleton method and
using fis.

Figure 5.19: A comparison between sine response for FSMC using singleton method and
using fis.

5.5 Comparison and discussion

In this section, a comparison between SMC and FSMC is presented. For a fair comparison

the states were estimated using the same Non-linear high-gain observer (NHGO) with

the tuned parameters a = 50 and ε = 0.5. A block diagram representation of active

magnetic levitation with the implemented controllers (SMC/FSMC) with Non-linear high-
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Figure 5.20: A comparison between step response for FSMC using singleton method and
using fis. file in presence of 10% mass uncertainty

Figure 5.21: A comparison between control efforts for FSMC using singleton method and
using fis. file in presence of 10% mass uncertainty with step input

gain observer (NHGO) is shown in Figure 5.24.

Initially, the set point for the system was located at 15 mm with initial position of x1e =

18× 10−3 m, x2e = 0 m/s and the obtained initial current as x3e =
√
m× g × 18× 10−3

= 0.9039 A. Figure 5.25 shows the performances of SMC and FSMC. It is noted that both

controllers could stabilise the object and track the set point and the response rise time was

shorter with FSMC. Moreover, FSMC generated much smoother control signal than SMC

as shown in Figure 5.26

Table 5.4 explores the effect of uncertainty in the mass of object in the system with set-
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Figure 5.22: A comparison between sine response for FSMC using singleton method and
using fis. file in presence of 20% mass uncertainty

Figure 5.23: A comparison between control efforts for FSMC using singleton method and
using fis. file in presence of 20% mass uncertainty with sine input

point of 15 mm, as the mass was decreased to the limit of 70% and increased up to around

255%. It is noted that FSMC achieved the minimum IAE as well as minimum MSE.

Step responses of the magnetic ball system with these two controllers are shown in

Figures 5.27-5.30 in the presence of different percentage mass uncertainties.
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Table 5.3: ISE error for classic approach versus fuzzy singleton method in presence of
mass uncertainty

mass uncertianty ISE

( m + %) Fis. file singleton

10 63.32 52.63
20 115.79 103.93
30 169.64 153.83
50 281.86 254.21
80 417.03 379.09
90 392.49 395.45
100 - 387.37
110 - 298.33
113 - 224.96

Figure 5.24: Sliding mode control block diagram

Figures 5.31 and 5.32 show the control efforts of SMC and FSMC with mass uncer-

tainties of 80% and 120% respectively. As noted FSMC delivered a smooth control signal

and overcame the chattering phenomenon.
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Figure 5.25: System response using SMC and FSMC with set-point of 15 mm

Figure 5.26: The control effort of SMC and FSMC controllers with set-point of 15 mm
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Table 5.4: The performance indices for the control schemes with set-point of 15 mm

mass uncertainty SMC FSMC

(m %) IAE MSE IAE MSE

70 - - 16.405 8.03× 10−3

78* 27.398 4.46× 10−3 - -
80 27.478 4.24× 10−4 10.959 5.56× 10−4

90 13.933 3.23× 10−4 5.631 3.32× 10−4

105 5.284 3.94× 10−4 2.414 2.85× 10−4

110 9.157 5.11× 10−4 6.168 3.81× 10−4

120 11.095 9.33× 10−4 10.966 6.21× 10−4

122.3* 28.344 2.70× 10−3 - -
130 - - 15.848 2.81× 10−1

150 - - 25.848 3.61
180 - - 41.334 8.03
200 - - 51.805 9.98
250 - - 78.624 12.95

255.5* - - 81.377 13.17.

Figure 5.27: System response in the presence of mass uncertainty, m=80%
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Figure 5.28: System response in the presence of mass uncertainty, m=90%

Figure 5.29: System response in the presence of mass uncertainty, m=110%
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Figure 5.30: System response in the presence of mass uncertainty, m=120%

Figure 5.31: The control effort of SMC and FSMC with mass percentage of 80%
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Figure 5.32: The control effort of SMC and FSMC with mass percentage of 120%

5.6 Summary

In this chapter, SMC as a direct nonlinear control method based on Lyapunov stability has

been implemented. A classic SMC with a conventional switching function has been com-

pared first with the results acquired using a boundary layer, that is a saturation function.

Simulation studies have shown the capability of SMC with a boundary layer to solve the

chattering problem, as it provided a smoother bounded control. However, the robustness

against mismatch is not improved using such technique.

A fuzzy boundary layer using linguistic fuzzy rules versus the conventional sliding

mode control was introduced. The results proved that FSMC is an effective method in

reducing the number of switches in the control action without degrading any of the other

performance indices. Fuzzy based rules played a role of applying a small or large control

efforts to return the trajectories to the selected sliding manifold in case the trajectory leaves

the sliding surface.

Finally, the robustness of FSMC against parametric uncertainties was dramatically im-

proved using singleton method where the output variable was characterised by seven fuzzy

singletons distributed over the interval [-1, 1].



Chapter 6

Optimization of the controller and
observer parameters with Spiral
Dynamic Algorithm

6.1 Introduction

Tamura and Yasuda (2011a) proposed an optimization algorithm the so-called Spiral Dy-

namic Algorithm (SDA) algorithm based on two dimensional metaheuristics logarith-

mic spiral phenomena. In their study, it is shown that SDA can more effectively pro-

duce solutions than Particle swarm optimization (PSO) in the problem of three types of

2-dimensional benchmark. In the same year, the design principle for two dimensional

was used to developed n-dimensional optimization SDA algorithm ((Tamura and Yasuda,

2011b)). These algorithms have been inspired by natural motion of the spiral such as hurri-

canes, spiral galaxies, nautilus shells and whirling currents (some of the motion are shown

in Figure 6.1). The strength of this algorithm is referred to its advantages, that is, SDA has

a powerful capacity in local search, fast convergence toward a solution. The algorithm has

few control variables and it is easy to implement (Benasla et al., 2014).

6.2 Spiral dynamic algorithm

In the search space, SDA utilizes a dynamic step size to provide the motion from one

location to another. The search points spread out in the search space in the way they

spirally move toward the centre form the outermost layer. Diversification with a large

113



114 6. Optimization of the controller and observer parameters with SDA

step size would occur at the beginning of a search point then this step size gets smaller

and smaller while the search point converges toward the spiral centre as the number of

iterations increases. Figure 6.1 shows some spiral shapes and highlights the continuous

reduction in the step size according to different spiral radius values, r, and rotation angle,

θ.
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Figure 6.1: Graphical representation of spiral model

The spiral radius r and the rotation angle θ can be considered as crucial parameters as

the accuracy and convergence speed of this algorithm mainly depends on the selection of

values for these parameters. Figure is adapted from (Tamura and Yasuda, 2011a), where

in case 1: r = 0.9 and θ = π/4, case 2: r = 0.95 and θ = π/4 and case 3: r = 0.9 and

θ = π/2. The value of rotation angle must lie on the range of 0 to 2π around the origin

at each k, while the range of the spiral radius should be within the range of 0 to 1 which

represent the convergence rate of the displacement between the search point and the origin

at each k.

The spiral radius can be expressed in the dynamic formulation as (Tamura and Yasuda,

2012):

xi(k + 1) = Sn(r, θ)xi(k)− (Sn(r, θ)− In) (6.1)

Sn = r Rn (6.2)
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where x represents the coordinate location of the search point, while k represents the itera-

tion number. Table 6.1 describes the rest of notations and parameters of the n-dimensional

SDA.

Table 6.1: Spiral dynamic algorithm variables

Symboles Description

x∗ Spiral centroid point
xi(k) Position of ith point in kth generation
r Convergence rate or spiral radius
θi,j Rotation angle in the range of 0 ≤ θ ≤ 2π
m Maximum number of search points
Rn Composition of rotation matrix n× n in search

space base on combination of 2 axes
Sn Multiplication of a composition of rotational

n× n matrix Rn and radius r
kmax Maximum number of iterations

For n-dimensional SDA, a rotation matrix can be defined as

Rn
i,j(θi,j) =



1

. . .

1

cosθi,j · · · −sinθi,j

1

... . . . ...

1

sinθi,j cosθi,j

1

. . .

1



(6.3)

The objective function, f(xi(k)) is calculated using the corresponding flow chart de-

picted in Figure 6.2
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Figure 6.2: SDA flow chart operation
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The Pseudo code of the n-dimensional algorithm programmed by Tamura and Yasuda

(2011a) can be described by the steps shown below

� Step 0: Preparation

Set the optimization parameters, number of search points m ≥ 2, angle 0 ≤ θ ≤ 2π,

radius 0 < r < 1 and maximum number of iterations Kmax.

� Step 1: Initialization

Initial points to be set randomly to xi(k + 1) = Sn(r, θ)xi(k)− (Sn(r, θ)− In)

Set spiral centre point to x∗ = xig(0), where ig = argminif(x1(0)) and i =

1, 2, ...,m

� Step 2: Updating xi

xi(k + 1) = Sn(r, θ)xi(k)− (Sn(r, θ)− In)x∗ and i = 1, 2, ...,m

� Step 3: Updating x∗ x∗ = xig(k + 1),

ig = argminif(x1(k + 1))

� Step 4: Checking iteration limit Terminate if k = kmax.

Otherwise k = k + 1 and return to step 2.

In this optimization, the radius r was set to the value of 0.95 and the rotational angle

was chosen to be π/4 to perform the trajectories of the spiral dynamics. The objective or

fitness function of SDA is selected in such a way to reduce the error of the object position

to as minimum as possible. The performance index of this optimization was the Mean

square error (MSE) as follows

MSE =

√√√√ 1

n

n∑
i=1

(e)2 (6.4)

In general, optimization can be performed to guarantee reduction of the overall error,

which is represented by the summation of weighted multivariate MSE of the processes
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optimization as

Costfunction = w1MSE1 + w2MSE2 + ............+ wqMSEq (6.5)

where q represents the total number of the optimized errors and w1, w2, ..... and wn are the

weighting factors that can take any value within the range of 0 to 1.
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6.3 Simulation results

6.3.1 Optimisation of LQi-Feedback linearisation

The control strategy for magnetic levitation system is to stabilize the object (regulation

problem since the system is unstable) using three feedback gains (K) and then track the

provided reference using feedforward gains (proportional gain Kr and integral gain Ki).

Figure 6.3 illustrates the control gains to be optimized using SDA as an optimization algo-

rithm. This implies to optimize four gains of main diagonal of the state weighting matrix,

that is Qz = diag(V 1V 2V 3V 4), and the control penalize gain of the control weighting

matrix of Qw = V 5. The cost function is to minimize the MSE of the position tracking

error which can be expressed as

 

Linear Quadratic Regulation 

Feedforward gain 

Ref. Position 

)( xzz 

)( xzKw
T ),(  uxfx ),(  wxuu 

Linearization loop
Nonlinear 

Observer  

i
K

r
K

∑ 

∑ 

∑ 

SDA 

Figure 6.3: Optmization of LQi-feedback linearisation

MSE =

√√√√ 1

n

n∑
i=1

(Ref.− x1)2 (6.6)

where n is dimension of search space, Ref. is the given reference or set-point and x1 is

measured position of the object.
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In the SDA implementation process, initially a wide range was assigned for the tuning

parameters as shown in Table 6.2 and the number of the search points was only 5 while

iteration was 15. One solution selected among several potential solutions, was assessed on

this optimization problem of tracking a step input with initial value of 0.015 m for 1.5 s

then step up to the value of 0.03 for another 1.5 s. Figure 6.4 shows the SDA fitness cost

function for Opt 1

Table 6.2: Optimization range for tuning parameters of LQi-feedback linearisation for Opt
1

Value

Gain minimum maximum

V1 10 1× 106

V2 1 1× 104

V3 1 1× 104

V4 1× 102 1× 107

V5 9× 10−6 1× 10−2

Figure 6.4: SDA fitness cost function for Opt 1 for LQi-feedback linearisation

The best estimated tuned gains were used to modify the range of the search space that

was used for optimization trial Opt 2 and Opt 3 as shown in Table 6.3. Number of the

search points was 20 and the number of iterations was 50 for Opt 2 while these were 100

and 500 respectively for Opt 3. The resultant optimization gains for state and control
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weighting matrix were as mentioned previously in chapter 4 in Table 4.4. A comparison of

system response and control efforts for the proposed LQi-feedback linearisation is shown

in Figures 4.16 and 4.17 respectively.

Table 6.3: Modified optimization range of tuning parameters of LQi-feedback linearisation
for Opt 2 and Opt 3

Value

Gain minimum maximum

V1 2.7094× 105 2.7094× 107

V2 6900 10000
V3 1 10
V4 4.4324× 107 9× 109

V5 9× 10−6 9× 10−3

Figure 6.5: SDA fitness cost function for Opt 2 for LQi-feedback linearisation

6.3.2 LQi-feedback linearisation results using SDA versus IWO

To illustrate the efficiency of the SDA optimization algorithm, a comparison was carried

out between SDA and Invasive weed optimization (IWO) to find the best solution for this

optimization problem. The IWO algorithms is inspired by the growth phenomena of weeds



122 6. Optimization of the controller and observer parameters with SDA

(Karimkashi and Kishk, 2010). In both optimization algorithm, the same number of search

points and generations were used in both optimizations for feasibility and reliability. Ta-

ble 6.4 shows the optimized gains for the proposed LQi-feedback linearisation obtained

using SDA and IWO methods. Although IWO converged faster toward the minimum cost

function, the obtained minimum cost function value using SDA (1.56×10−18) was smaller

than the one obtained with IWO (2.65× 10−17).

Table 6.4: Comparison of optimized LQi-feedback linearisation gains using SDA and IWO

Gain SDA IWO

K1 1.8659× 105 7.7979× 105

K2 7.1656× 103 2.3506× 104

K3 119.7134 273.4662
KI −2.2192× 106 −9.6470× 106

Kr 0 0

As it can be seen in Figure 6.6, the optimized controller using SDA achieved a faster

response than the controller using IWO. The response with SDA based controller settled

in 0.197s and that with IWO based controller settled in 0.652 s. Moreover, the percentage

overshoot was 5.06% using SDA against 21.26% when IWO was used. The rise time of

SDA based system response is less than the one for IWO’s response. Table 6.5 compares

the performance indices using SDA and IWO.

Table 6.5: Performance indices for LQi-linearisation using SDA Vs. IWO

Performance index SDA IWO

Percentage overshoot (%) 5.06 21.26
Peak time (s) 1.181 1.169
Rise time (s) 0.084 0.070
Settling time (s) 0.197 0.652

Figure 6.7 shows the control action of LQi-feedback linearisation. It can be seen that

the control effort using SDA was smoother than using IWO; the standard deviation of

control effort using IWO was twice as much as using SDA, that is 4.3057 against 2.5714.
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Furthermore, the power consumed using the SDA optimized controller was two thirds

of the power consumption with the IWO optimized controller; the steady state voltage

with IWO based system was around 11.2 compared that with SDA based system, which

was around 7.21.

Figure 6.6: LQi-feedback linearisation response using SDA against IWO

Figure 6.7: LQi-feedback linearisation control efforts using SDA against IWO
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6.3.3 Optimization of fuzzy sliding mode control

In this section, SDA is used to optimize fuzzy sliding mode control for Maglev system.

Figure 6.8 illustrates the control gains to be optimized. The parameters to be tuned are

sliding constants of the sliding surface in equation (5.6), that is s1 and s2 where s2 = 2
√
s1,

and the scaling factors of the fuzzy sliding mode control Gs and Gu. Here, Non-linear

high-gain observer (NHGO) is used to estimate the full states with observer gain a = 30

and ε = 0.5.
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Figure 6.8: Optmization of Fuzzy sliding mode controller (FSMC)

In the SDA process, the range for the tuned parameters was modified after many trials

as shown in the Table 6.6. One selected solution among several potential solutions was

assessed on the optimization problem of tracking a step input with initial value of 0.018 m

for 1.5 s then step down to the value of 0.015 for another 1.5 s. Number of search points

was 30 while iteration was 120 for the selected results. The initial conditions were [0.018,

0 , 0.9039 ] for both the observer and for the mathematical model of Maglev system.
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Table 6.6: Optimization range of tuning parameters of FSMC using SDA

Value

Gain minimum maximum

Gs 2× 10−3 5× 10−3

Gu 900 1000
s1 7000 7700

Figure 6.9: SDA fitness cost function for FSMC

6.3.4 FSMC using SDA versus IWO

The same number of search points and generation were used in both SDA and IWO. Al-

though SDA converged faster toward the minimum cost function, where Elapsed time was

2119 s for SDA and 3228s for IWO. However, the obtained minimum cost function value

using IWO (1.3624× 10−5) was smaller than the one obtained with SDA (6.8145× 10−5).

Note that the measured position was corrupted by noise. Tuned parameters for the pro-

posed FSMC obtained using SDA and IWO are summarized in Table 6.7.

Table 6.7: Comparison of FSMC gains using SDA and IWO

Gain SDA IWO

Gs 2× 10−3 6.7761× 10−5

Gu 901.5956 2.7092× 103

s1 7.6993× 103 4.9808× 104
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As can be seen in Figure 6.10, the optimized controller using SDA resulted in faster

response than the controller using IWO; the response of SDA optimised system settled in

0.175 s and that with IWO optimised system settled in 0.5 s. Moreover, the rise time was

0.056 s using SDA against 0.156 s when IWO was used. However, the steady state error

of the tuned FSMC using IWO was less than that using SDA. Table 6.8 compares the

performance indices for FSMC using SDA and IWO.

Table 6.8: Performance indices for FSMC response using SDA Vs. IWO

Performance index SDA IWO

Percentage overshoot (%) 0 0
Steady state error (m) 1.1× 10−4 2 × 10−5

Rise time (s) 0.056 0.156
Settling time (s) 0.175 0.500

Figure 6.10: FSMC response using SDA against IWO

Figure 6.11 shows the control action of FSMC optimised with SDA and IWO. It can

be seen that the control efforts were close to each other with the IWO based effort slightly

smoother than using SDA; the standard deviation of control effort of IWO was 0.4906

against 0.5316 for SDA.
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Figure 6.11: FSMC control efforts using SDA against IWO

6.4 Summary

The SDA optimization algorithm mainly used in this research has been presented. The

methodology of this algorithm has been discussed first by providing the Pseudo code of

the n-dimensional problem reported by Tamura and Yasuda (2011b).

SDA based optimization approach for controlling Maglev system using two types of

observer-based non-linear control, namely LQi-linearisation and fuzzy sliding mode con-

trol has been presented. A comparative assessment of optimised system responses and

control efforts using SDA and IWO has been carried out showing superiority of SDA.
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Conclusion and future works

7.1 Conclusion

A literature review has been conducted in detail to gain knowledge of state of the art in

magnetic levitation systems and their applications. Since a Maglev system is a highly non-

linear unstable system, it is necessary to focus on understanding the non-linear observer-

based controlling methods and any relative work done to resolve the current problem. In

this work, a new simplified version of an optimized non-linear observer-based control has

been proposed to overcome the non-linearity problem and to improve the robustness and

enhance the performance to ensure the system works in a wide operation range.

In continuous-time design, the state variable vector for Maglev system contains the

derivative of the position signal. Generally, these signals are noisy, that is why differen-

tiation of the state variable has been avoided as derivative operation would amplify the

noise. In this work, two types of non-linear observer have been proposed to tackle this

point and to make all state variables available for the optimal control approach. Simulation

experiments highlight the trade off between the bandwidth and noise-sensitivity. Linear

gain of the non-linear high gain observer has been carefully tuned to balance between in-

clination of noise rejection and serious degradation in the performance, as the sensitivity

of the system to the noise is less with lower value of linear gain to the limit where the sys-

tem performance becomes worse. Furthermore, the simulation results of the fuzzy sliding

mode observer have highlighted the improvements of the observer’s robustness compared

128
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to the sliding mode observer without fuzzy logic.

Optimal control LQR based on full-state feedback has been proposed in this work to

stabilize the transformed linear system where all state variables have been estimated using

non-linear high gain observer. Computer simulation results have shown that using inte-

gral action in feedforward path could improve the robustness in the presence of parameter

mismatch as compared to using static feed-forward gain, where steady-state error has been

introduced in presence of mass uncertainty. Optimization algorithm (ISDA) was used to

optimize the controller parameters. It has been shown that the new closed-loop system

with integral action has the ability to maintain stable suspension well and to suppress the

disturbance caused by noise or parameter mismatch.

SMC based on Lyaponov stability has been implemented. The chattering phnomenon,

which refers to oscillations with finite frequency and amplitude in the discontinuous con-

trol law, around the sliding surface is considered as a common problem of using conven-

tional switching function in SMC. A fuzzy boundary layer using linguistic fuzzy rules has

been introduced as a solution to eliminate the chattering. FSMC is an effective method

in reducing the number of switching in the provided control action without degradation in

the performance. The robustness of FSMC in the presence of parameter uncertainties has

been dramatically improved using singleton method where the output variable has been

characterised by seven fuzzy singletons distributed over the interval [-1, 1].

SDA based optimization approach for controlling Maglev system using two types of

observer-based non-linear control, namely LQi-linearisation and fuzzy sliding mode con-

trol has been presented. A comparative assessment of optimised system responses and

control efforts using SDA and IWO has been carried out showing superiority of SDA.
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7.2 Recommendation for future works

• In this work, fuzzy boundary layer was introduced as a solution to eliminate the

chattering in SMC. Further consideration of fuzzy control parameters such as the

parameters of the fuzzy membership function with optimisation may result in en-

hanced performance of the system and achieve optimal results.

• Some of the system characteristics in time-domain are in conflict with each other.

That is, whether to speed up the response and end up with an overshoot or having less

overshoot and slow down the performance. Multi objective optimization techniques

may be suggested to separately define the conflicted characteristics into standalone

objective or different error functions.

• Multi objective optimization would be an appropriate solution to provide a set of

solutions to balance between fast response and having smoother control action.

• The implementation of the process on real-world hardware or real-time targets can be

carried out to verify the proposed model and controller, that is by applying modelling

standards to the real-time hardware verification to make sure of errors that introduced

in the development earlier are reduced.
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