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 Abstract 

Human embryonic stem cells (hESCs) are derived from the inner cell mass of the 

human blastocyst. They are pluripotent cells which can differentiate into a wide range 

of cell types, making them potentially useful for the treatment of diseases such as 

diabetes, Alzheimer‟s disease and heart disease. The growing numbers of hESC lines 

being derived demands that suitable storage conditions are identified in order to 

maximise their potential for future therapies. Current methods employed for 

cryopreserving hESCs were adopted from embryo storage (vitrification) and 

conventionally-frozen mouse embryonic stem cells (mESCs) with post-thaw cell 

survival ranging from 1-90%. Thus, generating large numbers of cells is often time 

consuming and potentially prone to clonal selection from the limited post-thaw 

population. In this work, the approach used was to determine the fundamental physical 

properties important for cryopreservation including the hydraulic conductivity (Lp), 

solute permeability (Ps) and the non-osmotic volume (Vb). The hESC lines, RH1 and 

SHEF3, were compared with the embryonal carcinoma (EC) cell line 2102Ep, which 

was used as a reference cell line.  RH1 and SHEF3 had values for Vb of 0.22 and 0.19, 

respectively, which was comparable to that of human oocytes and human 

haematopoietic progenitor cells from bone marrow. The Lp and Ps values for RH1 and 

SHEF3 were determined in the presence of each of two cryoprotectants, dimethyl 

sulphoxide (Me2SO) and propylene glycol (PG), at RT and at +2°C. Cell growth and 

membrane integrity assays indicated that the RH1 and SHEF3 cells tolerated volume 

excursions between 40-130% and 40-170% of isotonic volume, respectively. These 

data were used to model protocols for the addition and elution of cryoprotectant that 

minimise osmotic stress during the storage of hESCs. The final protocols were tested 

and shown to support the hESC morphology and expression of TRA-1-60/81 and 

SSEA4. 
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Pure water would normally freeze at temperatures below 0°C, but the presence of 

solutes (for example, salt) depresses the temperature at which the system freezes. As 

temperature decreases, water molecules spontaneously arrange (through hydrogen 

bonding) into a high energy crystalline structure that forms a „nucleus‟ in a process 

known as nucleation. Due to the thermodynamically unstable nature of this 3-

dimensional structure, the small high energy ice crystals coalesce to form larger, more 

stable ice crystals. However, the behaviour of the ice crystals is dependent on the rate 

of cooling and warming. When cooling is slow, it allows more time for small ice crystals 

to aggregate to form larger crystals while rapid cooling maintains the presence of many 

small ice crystals. This process, where water molecules initiate ice formation, is 

specifically known as homogeneous or primary nucleation, while a heterogeneous or 

secondary nucleation refers to ice formation initiated by the presence of an appropriate 

particle on which water molecules can bind. In a binary system of sodium chloride 

(NaCl) and water, the presence of the solute (ie NaCl) initiates freezing by bringing 

about a reduction in temperature below the freezing point of the system (Fig. 1.1). The 

water in the system form ice crystals, leading to an increase in the concentration of 

NaCl. 

 

Cells are known to be largely composed of water which is important in the function and 

structure of organelles, protein and the plasma membrane. However, the volume of 

water reduces when cells are exposed to very low temperatures, thereby influencing 

the structure and function of proteins and the cell membrane. At such temperatures, it 

has been found that water bound to cell components does not freeze. This was done 

through measurements of the amount of electric energy required to melt a known 

sample of protein solutions and determining the latent heat of fusion released (Privalov, 

1968). The latent heat of fusion released was less than expected, leading to the 

categorising of such bound water as nonsolvent water. Other work have determined 

that about 10% of the water in fully hydrated cells is not involved in the crystallisation of 

water into ice or melting (Koga et al., 1966;Schreuders et al., 1996;Sun, 1999). 

1.1 Water and freezing 

1.2 Cells  
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Figure 1.1 Freezing in a binary system 
An illustration of the process of freezing in a binary system comprising of sodium 

chloride and water. As temperature depresses, secondary nucleation occurs where 

sodium chloride particles serve as nuclei onto which water molecules bind to initiate ice 

formation. The blue hexagonal structures represent ice crystals. 
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1.2.1 Mode of water and solute permeation 

It is important to know the method by which „freezable‟ water permeates the plasma 

membrane as this would impact upon the rate of water movement and therefore the 

location of ice. Based on the structure of the plasma membrane proposed by Davson 

and Danielli, the membrane is made up of a lipid bilayer. The polar head groups of the 

lipids are orientated into the cytoplasm while the nonpolar chains of each layer are 

faced inward towards each other (Fig.1.2). The mode of water permeation might then 

be proposed to occur through passive diffusion. A modified version of this bilayer 

model which is known as the fluid mosaic model, where the lipid bilayer is interspersed 

with proteins, is now the accepted structure of the plasma membrane (Singer and 

Nicolson, 1972). It has since been discovered that there are proteins which act as 

water channels known as aquaporins. 

 

 

Figure 1.2 Plasma membrane (Lipid Bilayer model) 
Structure of the plasma membrane with hydrophilic polar head groups facing the 
cytoplasm and aqueous extracelluar space, while nonpolar tails form a hydrophobic 
core.  
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1.2.2 Aquaporins 

The first aquaporin was found in red blood cell membranes and was initially termed 

CHIP28 (Benga et al., 1986;Moon et al., 1993;Agre et al., 1993a). Since then, 

aquaporins have been found in other mammalian cells and tissues such as rat testis 

(Ishibashi et al., 1997a), xenopus oocytes (Ishibashi et al., 1994a) and mouse oocytes 

and embryos (Edashige et al., 2000b;Sui et al., 2001). To date, nine aquaporins have 

been discovered, and shown to be responsible in transporting water and also small 

nonelectrolytes such as glycerol and urea (Ishibashi et al., 1994b;Ishibashi et al., 

1997b).  

The mode of transport of solutes and water through the lipid bilayer has been debated. 

Kedem and Katchalsky proposed the co-transport of water and solutes and developed 

a mathematical formula to describe this transport; this formula is known as the Kedem-

Katchalsky (KK) formalism (Kedem and Katchalsky, 1958e). The variable referred to as 

reflection coefficient, σ, describes the degree of interaction between water and solutes; 

a value of 1 means that all of the solute is being reflected from the cell membrane and 

therefore there is no interaction between solute and water during transport while a 

value of 0 denotes that the membrane cannot distinguish between water and solute, 

hence resulting in their transport through a common channel. 

The need for a reflection coefficient to determine the mechanism of water and solute 

transport has been opposed by the two-parameter (2P) formula, which assumes 

independent transport across the bilayer and characterises the cell membrane using 

the water permeability variable known as hydraulic conductivity (µm/atm/min), Lp, and 

solute permeability (cm/min), Ps  (Jacobs, 1933c).  Using a hypothetical cell with a 

known volume, the cell response when placed in a hypertonic solution with a 

subsequent return into isotonic medium was modelled. This produced a typical shrink-

swell curve (Fig. 1.3) due to the initial efflux of water from the cell and the re-entry of 

both water and solute to maintain osmotic and solute concentration equilibrium. Using 

the KK and 2P formalisms to produce a curve that matched the cell volume response 

resulted in similar curves; the use of σ in the KK formalism did not produce a more 

accurate curve (Kleinhans, 1998d). More recently, the use of the 2P and KK formalisms 

to determine the permeability parameters of human blood platelets concluded that the 

2P formalism produced more accurate results (Woods et al., 1999c). As a result, the 

2P formalism provides a simpler means of determining permeability parameters of a 

cell and is widely used in cryopreservation experiments. 
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Figure 1.3 Schematic of cell volume response in hypertonic and isotonic 
solutions 
 
Cells, when placed in hypertonic solutions respond by shrinking in cell volume due to 

water efflux and regain cell volume when placed in isotonic solution. The curve 

produced when plotting solution concentration and cell response is typically known as a 

shrink-swell curve. 
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1.2.3 Boyle van’t Hoff 

As mentioned above, a shrink-swell curve is produced when a cell is placed into 

hypertonic medium. However, the volume of water that is moving between the intra- 

and extracellular spaces is unknown but can be determined if cells are placed in hypo- 

and hypertonic media. The hypertonic solutions can be composed of variable amounts 

of impermeable solutes such as sucrose or sodium chloride (NaCl), while varying 

amounts of water can be used to dilute isotonic media in order to produce hypotonic 

solutions. In hypotonic solutions, cell volume increases from the influx of water while 

the opposite is true in hypertonic media due to the efflux of cell water. Consequently, 

any cell which responds accordingly is referred to as an „ideal osmometer‟ as is the 

case with red blood cells (Lovelock, 1953c;Jacobs, 1962c;Pegg, 1984). Other cells 

such as mouse and bovine embryos have also been found to behave as ideal 

osmometers in anisotonic solutions (Mazur and Schneider, 1986). The resulting curve 

is known as the Boyle van‟t Hoff (BvH) plot which relates cell volume with osmotic 

pressure (or solute concentration). Extrapolation of the plot to determine cell volume at 

infinite osmolality reveals the nonosmotic volume, Vb, or the volume that does not get 

involved in a cell‟s osmotic response (Cook, 1967b); it can also be referred to as 

nonsolvent water (Bobo, 1967). More importantly, the BvH plot also identifies a cell‟s 

volume excursion limit, which is the extent of swelling or shrinkage that can be 

tolerated by a cell before any damage is experienced. Identifying a cell‟s value for Vb 

also helps determine the volume of osmotic or moveable water, which is important 

during the cryopreservation process because the volume of water diminishes as water 

becomes ice. Subsequently, the concentration of solutes in the system also changes. 

Both ice and high concentrations of salts have been found to be detrimental to cell 

survival (Lovelock, 1953b;Diller, 1979b). 

 

The science of cryobiology explores the effect of low temperature on living organisms. 

The subset field of cryopreservation aims to preserve the structure and function of cells 

and tissues by preventing or minimising damage experienced during the process of 

preservation. 

1.3.1 Cryo-induced injuries 

As already mentioned, ice formation and high solute concentration can cause damage 

to cells during the process of preservation, but there is also chilling injury which is a 

result of exposure to low temperatures. The various forms of damage are discussed 

below. 

1.3 Cryobiology 
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1.3.2 Chilling injury 

Although organisms such as insects, frogs and snakes have developed methods of 

surviving whilst exposed to sub-physiological temperatures, many mammalian tissues 

and cells are unable to withstand low temperature exposure such as insect embryos 

belonging to Drosophila (Mazur et al., 1992), boar spermatozoa (Drobnis et al., 1993a) 

and Caenorhabditis elegans (Moss et al., 1997). Chilling injury has been associated 

with lipid-phase transition (LPT) in phospholipids of the cell membrane (Watson and 

Morris, 1987). Using Fourier transform infrared spectroscopy (FTIR), Drobnis and 

colleagues measured LPT in boar spermatoazoa, shrimp (Sicyonia ingentis) and 

human sperm (Drobnis et al., 1993b). In addition, concentration of potassium ions was 

measured because potassium leakage has been shown to accompany lipid phase 

transitions from liquid crystalline to the gel phase (Quinn, 1985;Morris and Clarke, 

1987). Each sperm sample was maintained at a range of low temperatures before the 

concentration of potassium in the extracellular medium was measured from each 

sample. For pig sperm, significant loss of potassium ions occurred between 18 and 

20°C; for shrimp, LPT occurred between 13 and −2°C at the completion of which 

potassium leakage was maximum; human sperm, on the contrary, resisted chilling 

injury and no leakage was detected by FTIR possibly due to the high cholesterol 

content of the membrane (Watson and Morris, 1987;Drobnis et al., 1993c). LPT has 

also been detected in immature bovine oocytes between 13 and 20°C, while it was 

observed around 10°C in in vitro matured oocytes (Arav et al., 1996). In order to reduce 

chilling injury, therefore, membrane phospholipids should be stabilised using stabilisers 

such as sugars or lipids which bind to the polar groups of phospholipids (Strauss et al., 

1986;Zeron et al., 2002).  

Sugars are natural cryoprotective agents (CPAs) that have also been found to have an 

effect on the location of ice formed during freezing (Lee Jr et al., 1992) by ensuring that 

sufficient dehydration occurs in order to maintain equilibrium between the volume of 

water inside the cell and in its suspending medium in order to ensure that all ice 

formation occurs in the extracellular space. The effect of exposure to cold temperatures 

without sufficient dehydration of intracellular water creates susceptibility for intracellular 

ice formation (IIF) to occur when cells reach temperatures at which ice forms.  

1.3.3 Intracellular ice formation (IIF) 

To understand the damaging effects of ice, the process of freezing must be explored. 

Freezing occurs when the water in a system converts to ice through the spontaneous 

binding of water molecules to form a crystalline structure (Pegg, 2006). At 0°C, water 

and ice crystals coexist in equilibrium which is why the process can also be referred to 
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as „equilibrium freezing‟. When heat is added, the ice crystals melt while removing heat 

increases the amount of ice, therefore 0°C can be referred to as the freezing point or 

melting point (Tm) depending on whether heat is being added or removed. As a result, 

freezing requires temperatures below the freezing point, a process known as 

supercooling, which can occur as low as -39°C where the presence of a nucleus 

initiates ice formation (Mazur, 1963a;Mazur, 1984c;Muldrew and McGann, 1990b). 

Once freezing is initiated, the latent heat of fusion is released (334kJ/kg), leading to a 

rise in temperature up to the freezing point. The temperature then remains at 0°C until 

all water in the system becomes ice. 

The location of ice formation is influenced by the rate of cooling and the extent of 

supercooling (Mazur et al., 1969a;Diller, 1979a;Pegg et al., 1984a;Toner et al., 1991). 

Cells need to be in osmotic equilibrium before undergoing cooling in order to achieve 

high percentage of survival which has been found to follow the pattern of an inverted U 

when plotted against cooling rate (Fig. 1.4). It has been shown that survival is lowest at 

very low and very high cooling rates. Mazur and colleagues used Chinese hamster 

culture cells frozen at different cooling rates to illustrate this phenomenon (Mazur et al., 

1972). Greatest loss of cell survival at very low cooling rate was attributed to the 

extended exposure of cells to high solute concentration; this is known as solution 

effect. At very high cooling rates, intracellular water is supercooled with tiny ice crystals 

which do not coalesce to form ice. However, the aggregation of these ice crystals to 

form larger ice can occur during warming in a process known as recrystallisation, and 

may explain the loss of cell survival. Consequently, rapid warming has been adopted 

as the preferred method of warming as it minimises the growth of intracellular ice by 

causing cells to bypass the nucleation temperature where ice crystals could grow 

(Mazur et al., 1972). These explanations of the causes of damage are referred to as 

Mazur‟s „two factor hypothesis‟ (Mazur et al., 1972). An intermediate cooling rate where 

cells are able to lose water in order to maintain equilibrium with the suspending solution 

ensures highest survival. 

Moreover, the formation of ice inside the cytoplasm has been found to be one of the 

main causes in the loss of survival of frozen cells (Pegg, 1987). Extracellular ice has 

also been found to have deleterious effects especially in tissues and organs because it 

disrupts the structure of the tissue (Pegg, 1987;Rubinsky and Pegg, 1988;Toner et al., 

1990b).  
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Figure 1.4 Two-factor hypothesis of freezing injury  
A schematic diagram depicting the effect of cooling rate on cell survival; cell survival is 

compromised at very low cooling rates by solution effects and at very high cooling rates 

by intracellular freezing. 
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1.3.4 Other forms of cryoinjury 

It has also been argued that it is not the formation of ice in the system which causes 

damage but the resulting high salt concentration that the cells are exposed to (Mazur, 

1984b). Published literature by Lovelock demonstrated the effect of solute 

concentration by using red blood cells suspended in isotonic saline. Subsequent 

freezing of the red cells showed damage between -3 and -10°C, which corresponds to 

the freezing point of isotonic saline, showing that haemolysis occurred where salt 

concentration was high (Lovelock, 1953a). 

Using erythrocytes suspended in 1300mOsm/kg of non-penetrating solutes, it was 

hypothesised that the solutes in the suspending medium exerted osmotic pressure on 

the cell membrane through the excessive shrinkage in cell volume causing haemolysis 

(Meryman, 1971). This led to the „minimum volume’ theory (Meryman, 1968;Meryman, 

1974), which states that cells can only tolerate a certain level of volume reduction. If 

this volume is exceeded due to the loss of osmotically active water, it can lead to the 

disorganisation of the cell contents and undue pressure on the plasma membrane, 

resulting in injury. Each cell type has its unique volume excursion limit. Generally, cell 

volume excursion for mammalian cells should be restricted to ±40% (Pegg, 1994).  

1.3.5 Cell-cell contact 

Other mechanisms for freezing injury have been attributed to cell density, which 

theorises that densely packed cells are more susceptible to damage as a result of 

mechanical stress due to the propagation of ice crystals during recrystallisation (Pegg, 

2006). Ice crystals disrupt the organisation of the cells, which is particularly crucial in 

tissues and organs which have a complex of cells to maintain their structure and 

functionality (Acker and McGann, 2000c). 

Evidence shows that the cell membrane plays an integral role in the propagation of ice 

crystals. In a study which investigated the mechanism of how this occurs, hamster 

fibroblast cells were cultured in 3 different ways: as a confluent monolayer, in 

suspension and as single cells attached to tissue culture plastic (Acker and McGann, 

2000b). The fluorescent stain, SYTO, which attaches to nucleic acids, was used to 

detect the presence of intracellular ice through the lack of fluorescence when IIF 

occurs. Ethidium bromide (EB) was used to detect damaged cell membranes through 

the presence of red fluorescence. It was found that the cells in a monolayer which had 

cell-cell contact had the highest occurrence of intracellular ice of all the culture models, 

indicating that the occurrence of IIF in one cell can initiate nucleation in other cells 

when they are in contact. Furthermore, cells which were in suspension or individually 
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attached to the tissue culture vessel showed no significant difference in the number of 

cells with intracellular ice and those with damaged cell membranes. However, cells in a 

confluent monolayer showed a significant difference in the occurrence of IIF and cells 

that had lost membrane integrity; at -9°C, 100% of the cells showed an incidence of IIF 

while only 20% of the cells showed damaged membranes, which suggests that 

intracellular ice does not have mechanical effect on cell membranes (Acker and 

McGann, 2000a). From the evidence in this particular study, it may be concluded that 

damaged cell membranes may lead to IIF by allowing ice formed in the extracellular 

medium pass through the membrane to induce nucleation in the cytoplasm. Mazur has 

also shown that the cell membrane is a site of injury when frozen yeast cells were 

found to leak their cell contents showing that cells with IIF possess damaged cell 

membranes (Mazur, 1965c). It has been suggested that extracellular ice changes the 

chemical, electrical and physical properties of the cell membrane leading to the loss of 

membrane integrity (Mazur, 1965b;Toner et al., 1990a;Harris et al., 1991). 

In addition, it could be argued that cells in the confluent layer are contact inhibited and 

in the quiescent (G0) phase of the cell cycle. While sub-confluent cells, individually 

attached to tissue culture are likely to be actively cycling and continue to proliferate. 

Freezing should, therefore, occur while cells are still dividing in order maximise 

recovery. 

Gap junctions, protein channels which connect one cell to another and allow passage 

of solutes, been recorded to facilitate ice formation. Madin-Darby canine kidney 

(MDCK) cells which do not form gap junctions when in monolayer culture, were frozen 

at cooling rates ranging from 0.2 to 10°C with no difference in survival at slow or rapid 

cooling. This suggests that the cells were not susceptible to intracellular freezing 

(Armitage and Juss, 2003b). In contrast, tissues and organs which have a complex 

system of cellular interactions pose challenges as shown in various studies (Berger 

and Uhrik, 1996;Acker et al., 1999). 

1.3.6 Cryoprotectants (CPAs) 

In order to minimise damage in cells and tissues during the process of preservation, 

compounds referred to as cryoprotectants (CPAs) have been shown to provide 

protection. The protective nature of one such compound was realised with glycerol in 

1969 by Smith, Polge and Parkes. It was discovered that the compound preserved the 

motility of fowl spermatozoa upon thawing from 80°C (Polge et al., 1949b). CPAs can 

be categorised into permeating and non-permeating groups. Permeating CPAs can 

traverse the lipid membrane, and are therefore able to maintain osmotic equilibrium by 

balancing the solute concentration gradient that occurs when cell water effluxes. These 
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compounds include glycerol, dimethyl sulphoxide (Me2SO), ethanediol (also known as 

ethylene glycol, EG), and propylene glycol (PG). Nonpermeating CPAs are unable to 

address the concentration gradient which makes them a less preferable choice for 

cryoprotection. Impermeable or non-penetrating CPAs include compounds such as 

trehalose, D-mannitol and sucrose. 

1.3.6.1 Mechanisms of CPA protection 

The mechanism by which CPAs protect cells is unknown but several theories exist. 

Generally, CPAs act by reducing the nucleation temperature of cells which means that 

ice formation occurs at a much lower temperature due to increased concentration of 

solutes in the system (Pegg, 1994). To illustrate this action, cold-acclimated and non-

cold acclimated rye protoplasts were suspended in a hyperosmotic solution. Cold-

acclimated protoplasts accumulate more solutes, and it was found that their nucleation 

temperature was much lower than that of non-cold acclimated rye protoplasts (-42°C 

and -14°C, respectively) despite equal cell volumes (Dowgert and Steponkus, 1983).  

Moreover, media containing glycerol, sodium chloride and water were subjected to 

varying sub-zero temperatures with concentration of salts measured at different 

temperatures (Mazur et al., 1981a). The results of the experiment are displayed in 

figure 1.5, which shows a higher proportion of unfrozen water with increasing 

concentrations of glycerol. This means that ice forms at a lower temperature with 

increasing CPA concentration, resulting in the presence of a larger volume of unfrozen 

water at lower temperatures. Although a comparative study using Me2SO was not 

carried out, the experiment illustrates the cryoprotective action of permeable CPAs. 

However, since Me2SO is more permeable to the cell membrane, it is more likely to 

cause a larger proportion of unfrozen water at similar subzero temperatures than 

glycerol which means ice would form at even lower temperatures. 
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Figure 1.5 Effect of cryoprotectant concentration on ice formation 
 
The diagram from Mazur 1981 shows the proportion of water that remains unfrozen at 

any given subzero temperature in a NaCl-glycerol-water solution with varying 

concentrations of glycerol. The unfrozen water fraction increases with increasing 

concentrations of glycerol, meaning that ice formation decreases with increased 

concentrations of cryoprotectant. 
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Furthermore, CPAs have been shown to protect cells by decreasing the concentration 

of damaging salts that the cells are exposed to, which is referred to as colligative action 

(Lovelock, 1953d). Solutions containing glycerol, salts and water were also used to 

demonstrate the protective action of CPAs. Measuring the concentration of salts in the 

solution at various temperatures showed that the concentration of salts at any 

temperature was lower with increasing concentrations of glycerol (Figure 1.6) 

(Lovelock, 1953e). This same protective action has been found with Me2SO (Lovelock 

and BISHOP, 1959). Simulations carried out by Sum and Pablo of 

dipalmitoylphosphatidylcholine (DPPC) lipid bilayer/water systems in the presence of 

Me2SO found that Me2SO caused dehydration of the lipid bilayer through hydrogen-

bonding with water molecules (Sum and de Pablo, 2003). Its hydrophobic groups (two 

methyl groups) and small molecular size gives Me2SO ability to permeate the lipid 

bilayer with its hydrophobic and hydrophilic regions (Anchordoguy et al., 1992). 

However, it is important to note that glycerol has been found to make cells such as red 

blood cells and MDCK cells more susceptible to intracellular freezing and therefore 

lower survival (Diller, 1979c;Armitage and Juss, 2003a). In a comparison of the 

cryoprotective action of glycerol and PG, it was found that PG was better at protecting 

red blood cells than glycerol (Boutron and Arnaud, 1984). PG was also found to be 

most effective for mature bovine oocytes (Lim et al., 1999). However, PG has been 

shown to adversely affect the physiology of mouse oocytes by increasing the 

concentration of calcium, thereby hardening the zona pellucida (Larman et al., 2007c). 

Moreover, disaccharides have been found to stabilise the cell membrane during 

freezing through interactions with the phosphate groups of the lipid bilayer more than 

other compounds such as Me2SO and glycerol, which are more toxic to the membrane 

(Anchordoguy et al., 1987c). As a result, the choice of CPA must therefore be 

determined for each cell type to find which is most suitable. The requirements for CPAs 

to confer protective action are that they are penetrable to the cell membrane, of low 

toxicity and molecular weight, and possess high solubility in aqueous solutions (Pegg, 

1994).  
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Figure 1.6 Graph demonstrating cryoprotective action on salt concentration in 
red blood cells during cooling 
  
The lines represent solutions with increasing concentrations of glycerol. It can be seen 

that the concentration of sodium chloride at a given temperature reduces as the 

glycerol concentrations increase. The horizontal line at 0.014 represents the salt 

concentration at which haemolysis of red blood cells first occurred. Diagram was 

adapted from Lovelock, 1953. 
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A cocktail of CPAs is generally used in vitrification where, unlike freezing, cell material 

solidifies into a highly viscous state without the formation of ice occurring (Mazur, 

1984a). A combination of different CPAs have been utilised in cryopreservation in order 

to avoid using damaging concentrations of one CPA and to achieve the necessary cell 

volume that would avoid damage (Ishimori et al., 1992;Ishimori et al., 1993;Paynter et 

al., 2005c). Viscosity is measured using the unit Poise (Pascal.second, Pa.s) and 

describes a fluid‟s resistivity to flow. The viscosity of pure water is 9 x 10-3 Poise or 

Pa.s  (Yannas, 1968) while that of a vitrified solution is about 1013 Poises. This state of 

viscosity can be described as „glassy.‟  

During freezing, the decrease in temperature causes an increase in solute 

concentration due to ice formation until the temperature reaches the glass transition 

temperature (Tg) where any remaining liquid, which has not been converted to ice, 

vitrifies. The Tg of pure water is about -140°C but the presence of CPAs causes 

vitrification to occur at a higher temperature. This means that frozen materials contain 

both vitrified liquid and ice crystals. In addition, due to the fact that there is no phase 

change in vitrification as in freezing, no latent heat is released. However, there is a 

change in specific heat, the amount of heat required to raise the temperature of a 

material by one degree Celsius. 

Although cells can tolerate conventional freezing, the high concentrations of CPA 

required for vitrification pose a toxic effect. Generally, a 60% (w/w) concentration of 

CPA to cell material is required in order for vitrification to occur. Glass-forming CPAs 

such as butanediol, PG and EG, differ in their glass-forming capacities. Butanediol is 

the best glass former of the CPAs mentioned, vitrifying at a concentration of about 35% 

(w/w). Moreover, there is a higher probability of vitrification occurring when cooling is 

rapid because the nucleation temperature is passed too rapidly to permit formation of 

ice. However, vitrification can occur with slow cooling if the concentration of CPA is 

extremely high, but again this is disadvantageous due to the toxic effects of the 

chemicals. Progress in developing vitrification solutions that will produce better 

vitrification more easily has been reported (Fahy et al., 1984;Fahy et al., 2004). 

Solutions combining sugars and polyalcohols are currently utilised. It has also been 

discovered that vitrification is most easily realised with minimum sample volume 

because of a lesser volume of water which has to be cooled. The small sample size 

decreases the probability of ice formation and ensures rapid cooling can occur (Arav et 

al., 2002).  

1.4 Vitrification 
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While ice formation does not occur during vitrification compared to freezing, there is a 

probability of ice crystals forming during rewarming of vitrified material. This process is 

called devitrification where the nucleation temperature is encountered, leading to an 

increase in the number of nuclei which then support crystal growth as temperature 

increases. The occurrence of freezing or vitrification is dependent on two main factors: 

the type of CPA present and the cooling rate (Mazur, 1963b;Sutton, 1991;Yavin and 

Arav, 2007). 

Vitrification has proven a useful cryopreservation procedure as it has been successfully 

employed in the storage of human oocytes and embryos (Kuwayama, 2007), mouse 

embryos (Kasai et al., 1990) and human embryonic stem cells (hESCs) (Reubinoff et 

al., 2001b;Richards et al., 2004a;Li et al., 2010c). 

 

At the root of every cell type are a group of cells known as stem cells which have not 

acquired a defined identity and therefore can generate any cell type. It is this 

developmental potential of stem cells that make them attractive for research 

investigations and possible use in cell therapy.  

There are different categories of stem cells; totipotent stem cells refer to germ cells 

(spermatozoa and oocytes) which can generate fertilised ova and continue in 

embryonic development to differentiate into every cell in the body. Pluripotent stem 

cells, however, have a more restricted differentiation capability but are still able to 

generate cells from the three germ layers: endoderm, mesoderm and ectoderm. 

Pluripotent stem cells can be isolated in vitro at the blastocyst stage of embryonic 

development. Moreover, there are multipotent stem cells which are only able to 

differentiate into cells of specific lineages such as mesenchymal stem cells (MSCs), 

neural and haematopoietic stem cells (HSC). The most characterised of these cells is 

the HSC. 

1.5.1 Hematopoietic stem cells 

The repopulation of blood cells (also known as haematopoiesis) is dependent on the 

self renewal capability of a small population of HSCs, which are found in 0.05 to 0.5% 

of the cells in the bone marrow (Gunsilius et al., 2001c) and have a turnover rate of 

about 2 weeks (Wilson et al., 2008). Although HSCs have also been found in peripheral 

blood, evidence shows that the population in the bone marrow of mice is 50-150 times 

that found in peripheral blood, while up to 10 times the population is found in human 

bone marrow than the peripheral blood counterpart  (Lewis et al., 1968;Richman et al., 

1.5 Stem cells 
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1976). HSCs have also been found isolated from umbilical cord blood (Broxmeyer et 

al., 2003).  

Phenotypically, murine HSCs have high level expression of the multidrug resistant 

(MDR) proteins, aldehyde hydrogenase (ALDH) and surface marker, sca-1 (Jones et 

al., 1996). Human HSCs, however, can be identified by their high level expression of 

the surface glycoprotein CD34 and very low expression or absence of CD33, CD38, 

thy-1 and CD71 (Gunsilius et al., 2001b).   

HSCs can be categorised into short-term and long-term repopulating cells. Short-term 

HSCs are the more committed cells and do not self-renew while the rare long-term 

HSCs possess self-renewing capabilities (Gunsilius et al., 2001a;Yoder, 2005). It is 

important to note that long-term human HSCs express high levels of CD34 which is 

down-regulated in long-term murine HSCs (Okuno et al., 2002). The combination of 

HSCs and more differentiated cells called progenitors accounts for the reconstitution of 

the haematopoietic system. There are two groups of progenitors, common lymphoid 

progenitors and common myeloid progenitors, which are responsible for the generation 

of B and  T cells, natural killer cells, platelets, granulocytes and monocytes (Akashi et 

al., 2000). 

Numerous cytokines are responsible for maintaining the activity of HSCs and 

haematopoietic progenitor cells (HPCs) in the body through the binding of specific 

receptors and the activation of various signalling pathways (Smith, 2003b). Granulocyte 

colony stimulating factor (G-CSF) promotes proliferation while tumour necrosis factor-

alpha (TNF-α) can either inhibit or activate HSCs depending on their concentration 

(Smith, 2003a). Wnt3a protein has also been found to act as a growth factor for HSCs 

(Ema and Nakauchi, 2003).  

1.5.2 Embryonal carcinoma cells 

Although adult stem cells like HPCs have been useful in the regeneration of blood and 

its derivatives- platelets, leukocytes and erythrocytes, - more primitive cells which 

possess greater differentiation capabilities would advance the field of cell therapy. Cells 

which have been useful in cell therapy research were discovered by Finch and 

Ephrussi in mice (Finch and Ephrussi, 1967a). These cells were referred to as 

teratocarcinomas because they were derived from a tumour, or teratoma, in mouse 

testis.  These tumours occur more frequently in ovaries and are also known as ovarian 

cysts (Stevens and Varnum, 1974). The isolation of the tumours and sub-culturing of 

these cells in vitro revealed pluripotent cells that could differentiate into cells of the  

germ layers- endoderm, mesoderm and ectoderm- which led to the term embryonal 
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carcinoma (EC) cells (Martin, 1981b;Evans and Kaufman, 1981f;Evans and Kaufman, 

1981g). EC cells maintained their undifferentiated status while in culture (Finch and 

Ephrussi, 1967b;Evans and Kaufman, 1981e) which was confirmed by subsequent 

teratoma formation when the cells were injected back into a mouse host. This was a 

major discovery which enhanced the understanding of early embryonic development.  

Following the successful derivation of murine EC cells, human EC cell lines have since 

been established. Many of the early cell lines, such as TERA1 and TERA2 (Fogh and 

Trempe, 1975), possessed limited differentiation capacity. Successive cell lines such 

as the subclonal line of TERA2 and NTERA2 possessed wider differentiation 

capabilities (Andrews et al., 1984b). Although mouse and human EC cells are similar in 

morphology, expression of alkaline phosphatase (Bernstine et al., 1973;Benham et al., 

1981) and growth characteristics, they differ in their expression of the stage-specific 

embryonic antigen SSEA1 (Kannagi et al., 1982). In mouse EC cells, the expression of 

SSEA-1 is an indication of their undifferentiated state, while the opposite is the case in 

human EC cells. In addition, human EC cells express SSEA3 and SSEA-4 antigens 

which are not expressed in murine EC cells (Kannagi et al., 1983). A further discovery 

was made when pluripotent cells were directly derived from the mouse blastocyst. 

These cells were termed mouse embryonic stem (mESC) cells (Martin, 1981a). It was 

important that mESCs were harvested at the right stage of embryonic development, 

which was determined to be 5 days post-coitum (Evans and Kaufman, 1981d). Earlier 

attempts to obtain ESCs from 3.5-day inner cell mass (ICM) and 6.5-day ectoderm 

failed (Solter and Knowles, 1975;Atienza-Samols and Sherman, 1978). It was also 

discovered that greater success in acquiring mESCs was influenced by the occurrence 

of diapause, a naturally occurring delay in blastocyst development which leads to an 

increase in the number of epiblast cells and therefore ESCs (Evans and Kaufman, 

1981c). Diapause occurs in female mice that have produced one litter and become 

pregnant while still nursing (Evans and Kaufman, 1981b). 

1.5.3 Embryonic stem cells (mouse and human) 

Following the discovery about mouse blastocysts, ESCs have also been derived from 

human blastocysts. The first human embryonic stem cells (hESCs) were derived from 

the ICM of pre-implantation embryos (Thomson et al., 1998g) (Fig. 1.7). One study 

found that there were more ICM cells in day 8 blastocysts than in earlier blastocysts 

(Stojkovic et al., 2004a), resulting in greater probability of forming a hESC line. The 

embryos are cultured in vitro for 5-8 days before the ICM is isolated from the 

blastocysts and transferred onto a feeder layer comprising mouse embryonic 

fibroblasts (MEFs) (Bongso et al., 1994;Reubinoff et al., 2000f;Stojkovic et al., 2004b). 
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Feeder-free culture of hESCs have been developed (Xu et al., 2001a;Rosler et al., 

2004d;Mallon et al., 2006;Van Hoof et al., 2008b) but requires an initial culture on 

MEFs for a few passages before transferring to a matrigel-coated tissue culture vessel 

which is then maintained in culture with MEF-conditioned media. Advances have been 

made to develop defined media that support feeder-free cultures of hESCs such as 

mTeSR by Stemcell Technologies and NutriStem by Stemgent. However, the cost of 

creating large banks of MEF cells is eliminated, and hESCs cultured without feeders 

may be utilised for clinical purposes. In order to bypass the use of MEFs at any stage 

of hESC culture, human-derived feeder cells have been developed from human 

foreskin fibroblasts (Inzunza et al., 2005a;Amit and Itskovitz-Eldor, 2006;Stacey et al., 

2006). hESC colonies grown on mitotically-inactivated human feeders have been found 

to be comparable to those cultured on MEFs, which makes the use of hESCs more 

clinically acceptable because of the lack of animal components in the growing of the 

cells. Moreover, serum-free media have also been developed in aid of creating hESCs 

which have not been in contact with animal-derived reagents before being used for 

therapeutic purposes (Richards et al., 2004a;Inzunza et al., 2005b;Passier et al., 

2005b).  

Mouse ESCs (mESCs) also require a feeder layer or the presence of leukaemia 

inhibitory factor (LIF) in growth medium to sustain an undifferentiated status (Nichols et 

al., 1990c;Fagundez et al., 2009). The absence of a feeder layer or LIF results in the 

development of three-dimensional cell aggregates known as embryoid bodies (EBs), 

which have been found to possess cells from all three germ layers (Evans and 

Kaufman, 1981a;Itskovitz-Eldor et al., 2000d;Reubinoff et al., 2000e;Fagundez et al., 

2009). 
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Figure 1.7 Derivation of embryonic stem cells  
The inner cell mass from pre-implantation embryos is separated from the blastocyst 

and cultured in vitro. The resulting colonies formed have been found to contain cells 

which are pluripotent and differentiate into cells from the three germ layers.  Examples 

of the types of cells they can potentially differentiate into are displayed. 
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It is not entirely clear how MEFs maintain the undifferentiated state of hESCs, but one 

study found that factors such as differentiation inhibiting activity (DIA) and leukaemia 

inhibitory factor (LIF), which are expressed in MEFs, seemed to regulate the 

pluripotentiality of hESCs (Nichols et al., 1990b). LIF binds to its receptor complex 

comprising a LIF receptor and a transmembrane protein known as gp130, activating 

the JAK/STAT3 pathway (Fig. 1.8). The janus family tryrosine kinases (JAK) 

phosphorylate STAT3 protein resulting in its translocation from the cytoplasm to the 

nucleus. STAT3 then binds to DNA, inducing the transcription of self-renewal genes 

(Kristensen et al., 2005). Although hESCs have remained undifferentiated in the 

absence of feeders, the hESC medium was supplemented with DIA and LIF (Nichols et 

al., 1990a). In addition to providing an extracellular matrix (ECM) to maintain the 

undifferentiated state of hESCs, MEFs are known to also detoxify the culture medium 

and secrete proteins required to promote cell growth (Lim and Bodnar, 2002). As a 

result, feeder-free systems which have been developed incorporate the use of MEF-

conditioned medium for hESCs in in vitro culture (Xu et al., 2001b;Rosler et al., 

2004c;Amit and Itskovitz-Eldor, 2006). Although LIF is integral to the maintenance of 

mESCs in culture, it is not adequate for the self-renewal process of hESCs.  

Other factors such as basic fibroblast growth factor (bFGF) (also known as FGF-2) and 

activin/nodal have been deemed essential for the self-renewal of hESCs (Brons et al., 

2007). bFGF promotes self-renewal of hESCs by inhibiting differentiation through the 

activation of phosphatidylinositol 3-kinase (PI3K)/Akt/PKB pathway (Kim et al., 2005). 

The PI3K/Akt/PKB pathway supports the expression of extracellular matrix molecules 

(ECMs), suggesting that these molecules are required for maintaining the 

undifferentiated state of hESCs. Moreover, activin/nodal pathway maintains 

pluripotency through the activation of intracellular proteins known as SMADs. SMADs 

belong to a family of proteins similar to the gene products of the Drosophila (Mad) and 

C. elegans, which are collectively referred to as Sma proteins. When nodal binds to 

activin receptors on the cell membrane, SMAD2/3 are phosphorylated. SMAD2/3 then 

form a complex with SMAD4 before translocating to the nucleus to promote 

transcription of Oct3/4 (Oh and Li, 1997;Gu et al., 1999;Song et al., 1999). Previous 

findings discovered that inhibition of SMAD2/3 phosphorylation led to the loss of Oct3/4 

expression in hESC (James et al., 2005a). However, there was no decrease in 

expression of Oct3/4 in the in vitro culture of mESC (James et al., 2005b).  
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Figure 1.8 Effect of LIF on pluripotency of hESCs 
 
 
The binding of LIF to its receptor complex initiates the recruitment of JAK kinases 

which activate the STAT3 signalling pathway and promote transcription of self-renewal 

genes. 
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Other reports have shown a decrease in levels of Oct3/4 in mESC due to the loss of 

SMAD2/3 or nodal (Conlon et al., 1994;Gendall et al., 1997a;Robertson et al., 

2003;Vallier et al., 2004), but the disparity in the reports has been attributed to the 

differences between gene expression in vitro and in vivo. 

Several genes have been used to characterise the pluripotency of mESCs and hESCs 

such as alkaline phosphatase (AP) and telomerase (Thomson et al., 1998f). However, 

a major difference between mESCs and hESCs is the expression of stage specific 

embryonic antigen, SSEA1. Like mouse EC cells, the expression of SSEA1 in mESCs 

denotes their undifferentiated state while the opposite is true in hESCs. Other genes 

that have been used to identify undifferentiated hESCs are tumour rejection antigens 

TRA-1-60 and -81, along with expression of proteins, SSEA3/4 and octamer 

transcription factor, Oct4 (Adewumi et al., 2007f).  

Oct4 is a nuclear factor that binds specifically to the promoter region of DNA expressed 

in undifferentiated cells (Rosner et al., 1990), positively promoting the transcription of 

the octamer motif found on genes such as Nanog (Kuroda et al., 2005), FGF4 (Yuan et 

al., 1995;Ambrosetti et al., 2000) and UTF1 (Nishimoto et al., 1999). Nanog is a 

transcription factor present in the ICM, undifferentiated mESC and hESCs. It is 

important for maintaining the ICM in vivo and ESCs in vitro. Knockdown of Nanog has 

resulted in the upregulation of transcription factors Gata4/6, which are required for 

endoderm differentitation (Rossant, 2004). Oct4 has been detected in both ovary and 

testis because they contain totipotent cells, with the ability to differentiate into any cell 

type. Expression of Oct4, therefore, indicates the capability of cells to remain 

undifferentiated.  

SSEA3 and SSEA4, expressed in hESCs and not in mESCs, are cell surface antigens 

which have been found on human and also primate ESCs. Previous work determined 

these antigens to be carbohydrates and changes in their carbohydrate structure appear 

to influence the development of pre-implantation embryos (Shevinsky et al., 

1982;Andrews et al., 1982b).  

Unlike SSEA3/4, TRA-1-60 is a proteoglycan and has been found expressed by EC 

cells (Andrews et al., 1984a;Badcock et al., 1999). It is associated with a keratan 

sulfate, representing a terminal modification of the protein core. Later studies identified 

that TRA-1-60 and TRA-1-81 were epitopes of the protein, podocalyxin, which is 

expressed by hEC and hESCs (Schopperle and DeWolf, 2007a). Podocalyxin is an 

integral membrane protein with one transmembrane domain, a small cytoplasmic 

domain and a large extracellular domain containing five putative N-linked glycosylation 

sites, three glycosaminoglycan sites, and a 270-amino acid mucin domain (Schopperle 
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and DeWolf, 2007b). Differentiation of hEC or hESCs causes the glycosylation of 

podocalyxin, resulting in the loss of binding affinity to and lack of expression of TRA-1-

60/81 (Schopperle and DeWolf, 2007c). This loss of expression of TRA-1-60/81 is 

similar to what occurs to the expression of SSEA1 in mECs or mESCs following 

differentiation (that is, loss of SSEA1 expression), suggesting that all three membrane 

proteins have comparable roles in early embryo development (Avner et al., 1985). 

1.5.3.1 Acquisition and use of hESCs 

Due to the ethical issues regarding the use of human embryos, research involving 

hESCs remains a controversial issue and therefore heavily regulated. Consent must be 

given by patients who have undergone in vitro fertilisation (IVF) to use any surplus 

embryos for research purposes. This is regulated by the Human Fertilisation and 

Embryology Act (HFEA) (Hunt, 2007). In addition, the UK requires all stem cell lines 

derived to be deposited to the UK Stem Cell Bank (UKSCB) to ensure that the cell lines 

are well characterised and made available for research (Healy et al., 2005b). All cell 

line deposits and applications to acquire cells from the UKSCB must be approved by 

the UK Steering Committee which oversees all activities involving hESCs (Healy et al., 

2005a;Hunt, 2007). So far, all hESC lines currently in the UK Stem Cell Bank are only 

for research and not clinical use (Hunt, 2007) but there is progress toward eliminating 

animal components from the routine culturing of the cells (Richards et al., 

2004a;Ellerstrom et al., 2006a), making them more useful for therapeutic purposes. 

Increasingly, there is a switch from using mouse fibroblasts as feeder layers and using 

human foreskin fibroblasts instead (Inzunza et al., 2005c). 

There has also been a push towards the use of autologous stem cells, which are 

obtained from a patient‟s own body and will avoid the occurrence of rejection after 

transplant (graft versus host disease, GVHD) (Tyndall and Gratwohl, 1996;Tamm et al., 

1996). This has already occurred with HSCs where the stem cells have been 

instrumental for blood regeneration and treatment of diseases which require a high 

dose of chemotherapy such as neuroblastoma (McElwain et al., 1979) and Hodgkin‟s 

disease (Laurence and Goldstone, 1999). However, the quantity of stem cells that can 

be retrieved from a patient may be inadequate for the treatment that is required. There 

is also an issue of the differentiation capacity of autologous stem cells as they are not 

pluripotent, and therefore may have limited number of cell types into which they can 

differentiate, making ESCs more advantageous.  
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1.5.4 Induced pluripotent stem cells (iPSCs) 

In order to avoid the ethical issues and post-transplant rejection associated with the 

use of hESCs, it is now possible to induce pluripotency in somatic cells by the 

introduction of up to four transcription factors, namely Oct3/4, Sox2, c-Myc, and 

Kruppel-like transcription factor, Klf4 (Takahashi and Yamanaka, 2006). This was first 

carried out in mouse fibroblasts and later in adult human fibroblasts (Yu et al., 

2007c;Takahashi et al., 2007c;Masaki et al., 2008;Park et al., 2008b).  

The roles of Oct3/4 in maintaining pluripotency has been previously described in 

section 1.5.4. Sox2, like Oct4, is associated with promoter regions of genes in hESCs 

(Boyer et al., 2005a). It encodes transcription factors that promote the transcription of 

self-renewal genes (Boyer et al., 2005b). In murine ESCs, Oct4 and Sox2 act 

synergistically to activate transcription of genes for pluripotency (Ambrosetti et al., 

1997;Remenyi et al., 2004).  c-Myc functions to enhance cell proliferation (Adhikary 

and Eilers, 2005) and it may also induce a global histone acetylation which allows more 

specific binding of Oct3/4 and Sox2 to their target proteins (Fernandez et al., 2003). 

Klf4 also promotes proliferation by binding to the promoter region of the p53 gene, 

which is known to activate apoptosis (Rowland et al., 2005). It has also been shown to 

repress Nanog during differentiation (Lin et al., 2005). However, overexpression of Klf4 

activates p21 which induces apoptosis and therefore suppresses proliferation (Zhang 

et al., 2000). This antiproliferation function of Klf4 can be inhibited by c-Myc (Seoane et 

al., 2002); thereby the use of Klf4 and c-Myc must be balanced to ensure effective 

reprogramming of somatic cells into pluripotent cells.  

The combination of Oct4, Sox2, Nanog, and LIN28 has also been identified in 

achieving pluripotency in human mesenchymal and human cord blood  (Yu et al., 

2007d;Haase et al., 2009a). Nanog has been found to increase the reprogramming 

efficiency (Silva et al., 2006) and cloning efficiency of hESCs (Darr et al., 2006). LIN28 

is an mRNA-binding protein that is found in ESCs, ECs, neurons and epithelia but is 

down-regulated in most adult tissues with the exception of skeletal and cardiac 

muscles (Richards et al., 2004b). It is comprised of two RNA-binding motifs, namely the 

cold shock domain that binds single nucleic acids and a retroviral-type zinc finger motif 

(Moss and Tang, 2003b). Due to its post-transcriptional function, LIN28 is required for 

the regulation of development during embryogenesis and therefore affects sex 

determination, and also the differentiation of cells into specific lineages (Yang and 

Moss, 2003;Moss and Tang, 2003a). As a result of their roles in maintaining the 

pluripotent status of cells and inducing proliferation, Oct3/4, Sox2, Nanog, LIN28, c-

Myc and Klf4 are employed for the transformation of somatic cells into pluripotent cells. 
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Success has also been achieved in generating iPS cells from mouse embryonic 

fibroblasts (Feng et al., 2009). Further advances have been made to replicate 

pluripotency induction with the aid of two factors instead of four (Zhao et al., 2008;Kim 

et al., 2008a). Recently, human cord blood has been found to produce iPS cells using 

only Oct4 and Sox2 (Giorgetti et al., 2009b). Similarly, MEFs have been reprogrammed 

into iPS cells using Oct4 and Klf4 combined with small chemical compounds (Shi et al., 

2008a;Shi et al., 2008b). 

To characterise the pluripotency of iPS cells, expression of ES markers such as 

SSEA3/4, TRA-1-60 and TRA-1-81 has been investigated (Takahashi et al., 

2007b;Lowry et al., 2008;Giorgetti et al., 2009a;Haase et al., 2009b). Moreover, iPS 

cell potential has been demonstrated by injecting the cells into severe compromised 

immunodeficient (SCID) mice to verify that they form teratomas as is the case with 

ESCs and ECs (Park et al., 2008a;Kim et al., 2008b;Okita et al., 2008b). The formation 

of EBs and subsequent replating onto tissue culture dishes have also been used to 

characterise cell plasticity which is shown by the presence of cells representative of the 

three germ layers  (Wernig et al., 2007;Takahashi et al., 2007a;Kim et al., 2008c). 

Human and mouse somatic cells induced to become pluripotent cells were found to 

have similar characteristics to their ES counterpart, indicating that reprogramming 

mechanisms are conserved across species. As a result, human iPS cells express the 

same genes found in hESCs and do not express SSEA1 as in mES cells. 

iPS cells are advantageous because an individual‟s somatic cells could be induced to 

become more embryonic in nature and then differentiate into the cells of interest. This 

eliminates the issue of immune rejection because a patient would be treated with their 

own cells rather than cells from another individual. However, there are concerns 

regarding the introduction of extra genes through retroviruses which may cause 

mutations in the genome (Yu et al., 2007a). Furthermore, c-Myc is oncogenic and could 

lead to tumour growth (Nakagawa et al., 2008;Okita et al., 2008a). It would be more 

clinically beneficial if the genes responsible for maintaining an embryonic status can be 

activated in adult/differentiated cells instead of adding further genes by viral transfer. 

However, before this can be achieved, the mechanisms of embryonic development 

need to be more thoroughly understood. 

In order to preserve these highly useful cells, an essential storage method such as 

cryopreservation should be utilised. This reduces the cost of maintaining cells in culture 

and also provides a way in which cell lines can be made widely available to 

researchers.  

1.6 Current cryopreservation protocols for SCs 
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It is important to note that cryopreservation media containing serum are generally used 

for the preservation of various types of cells and has been found to increase the 

recovery rate of intact and functional cells after thawing (Grilli et al., 1980b;Ellington et 

al., 1999). Freezing of cells in the presence and absence of serum in freeze media 

showed that cells in the presence of serum survived better than in medium without 

serum (Grilli et al., 1980a). Additionally, serum growth, and survival factors required by 

cells to proliferate in culture and exhibit essential function (Stojkovic et al., 2005a). 

Although the importance of LIF in growth medium has been discussed, experiments 

show that LIF can only maintain self renewal of mESCs in vitro in the presence of 

serum, which suggests it may contain additional factors that contribute to self-renewal 

(Berger and Sturm, 1997;Gendall et al., 1997b). However, there are published reports 

showing that hESCs can be maintained in serum-free media with the combination of 

serum-replacement media with human feeders (Inzunza et al., 2005d) or the addition of 

bone morphogenic protein 4 (BMP4) to growth medium (Ying et al., 2003a). BMP4 

induces the transcription of Id genes which suppress differentiation through the SMAD 

pathway (Ying et al., 2003b). This development of serum-free conditions will make 

hESCs more clinically useful due to the lack of animal components. 

1.6.1 Cryopreservation of HSCs 

Since HSCs are beneficial for clinical treatments of diseases such as leukaemia, 

lymphoma and aplastic anaemia, storage methods for bone marrow and blood have 

become important in order to ensure availability for use when required. 

Following initial murine models, cell concentrations of 5.6 x 108 cells/mL were frozen 

with cell recovery of 75% post-thaw (Rowley et al., 1994d). However, cell 

concentrations of up to 200 x 106 have been routinely used in cryopreserving 

peripheral blood stem cells (PBSCs) and umbilical cord blood (Rowley et al., 

1994c;Gluckman, 2001;Villalon et al., 2002). Cell density, as described in section 1.3.4, 

is important to cell survival as there is greater probability of damage occurring in 

densely packed cells due to recrystallisation. 

The discovery of the protective action of glycerol on spermatozoa (Polge et al., 1949a) 

led to its use in the freezing of bone marrow. Using a concentration of 12%, bone 

marrow was cooled at a rate 1°C/min to -15°C, then at 5°C/min to -40°C, and then 

cooled to -79°C or -196°C at any convenient rate. However, this was not an optimal 

cryopreservation method because it was determined that cell survival rate decreased 

as cooling rate was increased subsequent to freezing occurring. Moreover, 10-12% 

(v/v) Me2SO was found to increase the effectiveness of bone marrow which was shown 

by the improvement of haematological recovery in irradiated mice (Ashwood-Smith, 
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1961), but other published data indicated that glycerol was still a better CPA (Lewis 

and TROBAUGH, Jr., 1964a). The introduction of hydroxyethyl starch (HES) to a 

reduced concentration of Me2SO (6% HES and 5% Me2SO) has also been found to 

improve post-thaw recovery and prevent the occurrence of cell clumping (Stiff et al., 

1983a;Stiff et al., 1983b). Both glycerol and Me2SO are widely used in the 

cryopreservation of human and mouse HSCs and HPCs.  

Two methods of thawing frozen bone marrow have been tested (Lewis and 

TROBAUGH, Jr., 1964b). One involved the serial dilution of glycerol using CPA-free 

medium at 37°C, which resulted in damaged cells. Rapid thawing, however, resulted in 

better cell recovery (74%, expressed as percentage of cells in the same volume of 

unfrozen bone marrow) with characteristic morphology and motility (Lewis and 

TROBAUGH, Jr., 1964c). Consequently, rapid thawing is a preferred method for the 

post-freeze manipulation of bone marrow. Post-thaw recovery between 75 and 85% 

has been generally achieved, indicating that the cryopreservation methods developed 

for HSCs and HPCs produce comparable results (Linch et al., 1982;Rowley et al., 

1994b;Fleming and Hubel, 2006a).  

Similar cryopreservation procedures have been applied for storage of peripheral blood 

and umbilical cord blood with some modifications, including the use of a lower 

concentration of Me2SO (Abrahamsen et al., 2002b;Abrahamsen et al., 2004;Fleming 

and Hubel, 2006b), combining CPA with hydroxyethyl starch (HES) or other sugars 

(Moezzi et al., 2005;Rodrigues et al., 2008), and the sole use of sugars (Buchanan et 

al., 2004). 

1.6.2 Cryopreservation of mESCs 

Mouse ESCs (mESCs) have been cryopreserved by several methods, including in-situ 

freezing of the colonies in multi-well plates using culture medium that contained 10% 

Me2SO (Chan and Evans, 1991c;Ure et al., 1992b;Udy and Evans, 1994). However, 

the commonly used protocol is equilibrium or slow cooling method with medium 

containing 10% Me2SO, 50% foetal bovine serum (FBS) and culture medium. The cells 

are transferred into cryovials and cooled to -80°C at a cooling rate of 1°C/min (Kashuba 

Benson et al., 2008a). The cells are then plunged into liquid nitrogen (-196°C) from -

80°C. Thawing of the cells was carried out using pre-equilibrated medium at 37°C. It is 

important to note that these protocols have been utilised based on basic cryobiological 

tenets of avoidance of injury by exclusion of intracellular ice through slow freezing and 

rapid thawing.  
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Results of post-thaw recovery ranged from 10% to 90% survival and varied widely 

between cell lines (Kashuba Benson et al., 2008b). It has been suggested that less 

than 50% of cells in most mESC lines survive the cryopreservation process (Kashuba 

Benson et al., 2008c). Recently, a study was carried out to optimise current mESC 

cryopreservation protocol by determining cryopreservation variables such as Vb, Lp, Ps 

and osmotic tolerance limits that are required for the modelling of an optimal protocol 

(Kashuba Benson et al., 2008d). The designed protocol used 1M PG instead of 1.3M 

Me2SO combined with 50% FBS in culture medium. Cells were cooled at 1°C/min to -

41°C before being plunged into liquid nitrogen (Kashuba Benson et al., 2008e). 

Subsequent thawing of the cells occurred at room temperature with culture medium 

added drop-wise, resulting in post-thaw recovery of 64% of cells (measured by 

percentage of cells with intact membranes) which was a significant improvement over 

standard methods.  

1.6.3 Cryopreservation of iPSCs 

Similar cryopreservation protocols used in hESC storage have also been employed for 

the preservation of iPSCs (Yu et al., 2007b;Claassen et al., 2009a;Mollamohammadi et 

al., 2009f;Baharvand et al., 2010). The iPSC colonies are dissociated into single cells 

before being suspended in freeze medium containing 90% foetal calf serum (FCS), 

10% Me2SO and ROCK inhibitor, Y27632. The cell suspension is then cooled to -80°C 

in a freezing container before being transferred into liquid nitrogen (Mollamohammadi 

et al., 2009e). Reported post-thaw recovery rates for iPSCs have been over 80% 

(Claassen et al., 2009b;Mollamohammadi et al., 2009d). 

1.6.4 Cryopreservation of hESCs 

Unlike mESCs, optimisation of the cryopreservation methods for hESCs has not been 

carried out due to the lack of biophysical data on these cells. Hence, protocols based 

on those utilised for the preservation of mESCs and human embryos are currently in 

use, which were initially developed from methods used for other cells such as 

lymphocytes and T cells (Leibo, 1986). Subsequent modifications of these protocols 

have been developed for the preservation of hESCs. However, these protocols cannot 

be deemed optimal because biophysical data of hESCs may be very different to those 

of mESCs and mouse or human embryos. The current protocols being used for the 

storage of hESCs at low temperature are slow cooling and vitrification (Reubinoff et al., 

2001c;Ha et al., 2005a;Ware et al., 2005f). Until now, different stem cell laboratories 

have improved the preservation procedure by adding sugars to the CPA medium (Ji et 

al., 2004a;Wu et al., 2005e) and cytokine inhibitors such as Rho-associated kinase 

inhibitor (ROCK), Y-27632 (Martin-Ibanez et al., 2008f); others have tested cooling 
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rates and concluded that a rate of 1˚C/min is optimal for hESCs (Heng et al., 

2005b;Heng et al., 2006c;Katkov et al., 2006d); yet others have chosen the vitrification 

approach instead of slow cooling (Reubinoff et al., 2001d;Zhou et al., 2004c;Ware et 

al., 2005e;Li et al., 2010b). 

There has also been research investigating in-situ cryopreservation of hESCs which 

involves freezing of hESCs while adhered to the feeder layer or matrigel-coated tissue 

culture plastic (Ji et al., 2004b;Heng et al., 2005a;Heng et al., 2006f). Results indicated 

that virtually all hESC colonies remained intact following cryopreservation and there 

was less differentiation found in the adherent colonies than in hESCs frozen as a 

suspension (Ji et al., 2004c). However, this method of cryopreservation demands 

larger storage space in order to produce banks of cells that would be large enough for 

research or clinical purposes. Furthermore, the fact that a feeder layer might be 

required prevents such cells being utilised for clinical purposes. More recently, work 

has been published which studied the in-situ cryopreservation of cells in clinical 

„cassettes‟ that adhere to Good Manufacturing Practice (Amps et al., 2010). Although 

similar post-thaw results were achieved compared to cells cryopreserved on matrigel, 

the feeder cells will need to be eliminated in order for the cells to be used in the clinic. 

The vitrification methods used for hESCs are based on cryopreservation of bovine ova 

and embryos which are labour intensive, comprising the incubation of the cells in 

vitrification solutions for a few seconds at a time and then a final immersion in liquid 

nitrogen (Hunt and Timmons, 2007). The time-limited procedure introduces variability 

when carried out by different individuals and therefore creates the possibility of the cell 

material not vitrifying correctly. In addition, only about 12 colony fragments can be 

vitrified simultaneously which means that the procedure must be repeated a number of 

times in order to yield a substantial number of cells. Cell survival rates reported for 

vitrified cells range from below 15% to 81% (Reubinoff et al., 2001e;Zhou et al., 

2004b;Wu et al., 2005d).  

Similarly, slow cooling methods have resulted in poor post-thaw survival rates as low 

as 1% (Ware et al., 2005d;Suemori et al., 2006). Various approaches to improve the 

slow cool procedure include freezing of hESCs while they are still adhered to the 

mouse fibroblast feeder layer (Ji et al., 2004d), the addition of sugars like trehalose 

(Wu et al., 2005c) and the addition of caspase inhibitors to the cryoprotective medium 

(Heng et al., 2006b;Heng et al., 2007). More recent research has cryopreserved 

hESCs as a single cell suspension which allows the cryopreservation of much larger 

numbers of hESCs than the vitrification methods and is a much quicker and easier 

process to perform (Martin-Ibanez et al., 2008e). 
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The number of hESC lines being derived has increased dramatically in recent years; 

about 144 lines from various countries have been or will be deposited into the UK stem 

cell bank (Personal communication). In order to make these hESCs available to 

researchers, stocks of cells must be cultured and cryopreserved in order to make their 

dispatch to different locations an easier process (Hunt, 2007). However, there are 

issues to be resolved with the cryopreservation methods used which currently are 

suboptimal due to the wide range of post-thaw recovery achieved by various stem cell 

laboratories.  

Currently, each cell line dispatched by the UK stem cell bank is accompanied by a vial 

of MEFs and protocols for hESC propagation and cryopreservation. These protocols 

are usually the same as those used by the depositing laboratory. 

Table 1.1 lists the current preservation protocols used for mouse and human HSCs, EC 

cells, mouse and human ESCs, and iPSCs. All cell types in the listed protocols were 

subjected to rapid warming in pre-equilibrated medium at 37°C because it has been 

shown that recrystallisation or devitrification can be avoided. 

Although all cell types listed were cryopreserved using variations of slow cooling, hESC 

lines can also be vitrified. The base medium (BM) used in all vitrification solutions 

comprises of 89% (v/v) 25mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffered Dulbecco‟s Modified Eagle‟s medium (DMEM), 10% (v/v) FBS and 

1% non-essential amino acids. The composition for the first and second vitrification 

solutions, VS1 and VS2, are detailed in the table legend. It is clear that cells are 

gradually introduced to increasing solute concentration in order to minimise extensive 

cell volume shrinkage when cells with isotonic volumes come in contact with hypertonic 

media. Similarly, CPA is gradually diluted from cells by initial exposure to the first 

thawing solution (TS), TS1, which contains 80% (v/v) BM and 20% (v/v) BM with 1M 

sucrose, while TS2 contains 50% (v/v) TS1 and 50% BM. TS1 contains greater solute 

concentration than TS2 in order to induce gradual cell volume expansion.  

The protocols listed in table 1.1 have been developed according to cryobiological 

principles but without consideration of cells‟ physical properties which impact on the 

transport of water and CPA. 

 
 

1.7 Summary of cryopreservation protocols 
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Table 1.1 Current cryopreservation protocols for various cell types 
 

Cell type 
Freezing 

technique 
Cryopreservation 

medium 
Cooling 

rate 
References 

mESC 
Slow 

freezing 

Culture medium + 
1.3M Me2SO + 

50%FBS 

1°C/min 

(Chan and Evans, 1991b;Ure 
et al., 1992a;Kashuba 
Benson et al., 2008f) 

Culture medium + 
1M PG + 50%FBS 

(Kashuba Benson et al., 
2008g) 

iPSC 
Slow 

freezing 

90% FCS + 10% 
Me2SO + ROCK 

inhibitor 
1°C/min 

(Claassen et al., 
2009c;Mollamohammadi et 

al., 2009c) 

Mouse 
HSC and 
Human 
HSC 

Slow 
freezing 

10-12% Me2SO in 
medium 

1°C/min to  
-15°C;  

-5°C/min to  
-40°C; 

plunge in 
liquid 

nitrogen 

(Ashwood-Smith, 1961) 

20% Me2SO 

1°C/min to  
-40°C; 

10°C/min to 
-80°C 

(Rowley et al., 1994a) 

5% Me2SO + 
6%HES 

1°C/min to -
80°C; 

plunge in 
liquid 

nitrogen 

(Stiff et al., 1983c) 

EC 
Slow 

freezing 
90% FCS + 10% 

Me2SO 
1°C/min UK Stem Cell Bank 

hESC 

Slow 
freezing 

90% FCS + 10% 
Me2SO 

1°C/min (Hunt and Timmons, 2007) 

Vitrification 

VS1, VS2 (1) 

1min in VS1; 25sec 
in VS2 twice 

plunge in 
liquid 

nitrogen 
(Hunt and Timmons, 2007) 

 
 

(1) VS1- 80% (v/v) base medium with 1M sucrose + 10% (v/v) Me2SO + 10%(v/v) EG. VS2 

is comprised of 50% (v/v) base medium with 1M sucrose + 10% (v/v) base medium + 

10% (v/v) Me2SO + 10% (v/v) EG 
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Although protocols used for hESC storage were adapted from well known methods 

used to preserve other cell types, it is clear that advances to cryopreservation methods 

have improved the recovery rates of hESCs. However, these modified protocols have 

been developed empirically through experimentation of components that can improve 

the cryopreservation process. There is also the fundamental issue that cells of the 

same or different species have been found to possess different physical properties 

which affect the efficiency of their storage as is the case with mouse and bovine 

oocytes (Ruffing et al., 1993;Benson and Critser, 1994). It was found that the 

blastocyst stage of embryos for mouse and cattle have the respective surface areas of 

1.7 x 104µm2 and 7.1 x 104µm2, with corresponding volumes of 2.2 x 105µm3 and 17.7 x 

105µm3 (Whittingham et al., 1972;Hochi et al., 1996b). As a result, their surface area to 

volume ratio differs greatly, which determines how quickly cell water effluxes when the 

embryos are in a hypertonic solution. This phenomenon is also true in the case of 

human oocytes where significant differences in osmotic properties have been found 

(Van den Abbeel et al., 2007). As a result, there may be differences in the properties of 

the embryos formed from these oocytes, and subsequently in ESCs derived from the 

embryos. 

It is therefore the aim of this PhD study to determine the physical properties of each 

cell type to be cryopreserved in order to establish a method which is optimal for its 

preservation. These properties include the cells‟ non-osmotic volume, surface area, 

hydraulic conductivity (Lp) and solute permeability (Ps) (Pegg and Diaper, 1990), which 

are necessary to prevent osmotic stress and for modelling protocols for the best mode 

of adding and removing CPAs. The step-by-step approach to designing a 

cryopreservation protocol has been employed for the storage of various cell types 

including mESCs, bone marrow, haematopoietic progenitors, oocytes and 

haematopoietic stem cells from umbilical cord blood (Hubel, 1997;Paynter et al., 

1999a;Hunt et al., 2006;Kashuba Benson et al., 2008h;Son et al., 2010). However, this 

approach has not been applied to hESCs. 

 

 

 

 

1.8 Project objectives 
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Establishing the basic physical properties of hESCs will enable the optimisation of 

current cryopreservation protocols by identifying the variables contributing to the 

damage of cells during the process of preservation which could be a result of osmotic 

damage, CPA toxicity or freezing injury. 

In addition, growth and membrane integrity assays will be carried out to assess the 

effect of various anisotonic conditions. This will indicate the range of osmolalities and 

volume excursions (that is, shrinkage and expansion) that the cells will tolerate before 

becoming damaged. Once these parameters have been established, they can be used 

to model different cryopreservation protocols to establish the best procedure for 

addition and removal of CPA which allows osmotic excursions within the cells‟ 

tolerance limits. The method of CPA introduction is important because of the effect of 

its toxicity and the length of exposure which must be minimised. Careful elution of the 

CPA is also essential as water will enter the cell causing it to expand; excessive 

swelling can also be damaging to the cells. 

Furthermore, the effectiveness of the protocol will be assessed by examining the 

membrane integrity by the exclusion of propidium iodide (PI); the functionality of the 

cells will also be tested by their ability to adhere to the MEF layer in vitro and form 

colonies; thirdly, formation of embryoid bodies (EBs) will be performed to assess the 

differentiation capability of the cells. Surface marker expressions of the hESCs will also 

be tested.  

Experiments were initially carried out on the human embryonal carcinoma cell line, 

2102Ep, because these cells possess similar markers to those found on human 

embryonic stem cells such as TRA-1-60, TRA-1-81, Oct4, and SSEA3/4 (Andrews, 

2002b).  They can also be cultured easily because they do not require a feeder layer. 

The effect of freezing on gene expression can therefore be studied due to similar 

expression patterns between 2102Ep and hESCs. 

This research will be carried out to test the following hypothesis: that a systematic 

approach to designing a cryopreservation protocol, which is based on the biophysical 

properties of cells, combined with experimental analyses produces a better optimised 

procedure than methods derived only by empirical analyses. For hESCs, it includes the 

following aims: 

 Establishing basic biophysical properties 

1.9 Optimal cryopreservation protocol for hESCs 
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 Identifying variables which lead to cell injury during the cryopreservation 

process by carrying out CPA toxicity assays, cooling rate experiments, growth 

and membrane integrity assays 

 Using physical properties and optimal cryopreservation conditions to model 

cryopreservation protocols best suited to the cell lines 

 Carrying out experimental analysis to determine the efficacy of the 

cryopreservation protocol designed by carrying out growth and membrane 

integrity assays, replating cryopreserved cells in culture and analysing hESC 

colonies for characteristic gene expression and cell pluripotency. 
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All cells were incubated at 37˚C and 5% CO2. 

 

Cells were mycoplasma tested during cell culture to ensure absence of infection. First the 

cells were washed three times with phosphate buffered saline (PBS) (Invitrogen). 200µL of 

methanol was added to the cells and allowed to fix for 5minutes before they were washed 

again with PBS. The cells were incubated with 200µL of 4',6-diamidino-2-phenylindole 

(DAPI) for a further 5 minutes at room temperature. DAPI binds to the DNA in the cells and 

can be detected with a fluorescence microscope.  Non-infected cells will have DAPI 

staining only in the nucleus while infected cells will have DAPI staining both in the nucleus 

and cytoplasm. 

Consequently, this work aims to use a systematic approach in determining the biophysical 

properties of two different hESC lines, namely, SHEF3 and RH1. SHEF3 cell line 

(University of Sheffield) was manually passaged, meaning each colony was separated 

from the feeder layer using a dissecting tool which was used to eliminate any differentiated 

areas before transfer into a new culture vessel (Reubinoff et al., 2000d). RH1 (Roslin 

institute, Edinburgh), however, was maintained in vitro by trypsinisation into single cells 

before transfer onto a new feeder layer. Single cell dissociation is now widely applied for 

the culture of hESCs and provides a less laborious means of up-scaling (Rosler et al., 

2004b;Hasegawa et al., 2006a;Ellerstrom et al., 2007d). 

Both SHEF3 and RH1 hESC lines and MEFS were transported as frozen vials stored on 

dry ice in a Styrofoam box. These vials were then stored at -80°C for short-term storage or 

in the vapour phase of liquid nitrogen for longer-term storage. 

 

The embryonal carcinoma cell line, 2102Ep, were cultured in Dulbecco‟s Modified Eagle‟s 

medium (DMEM) (Invitrogen) with 10% foetal bovine serum (FBS). Cells were trypsinised 

2.1 Cell culture 

2.2 Mycoplasma testing 

2.3 Human embryonic stem cell lines used in project 

2.4 Transportation of hESC lines and MEFs between UKSCB 
and University of York 

2.5 2102Ep cell culture 
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using 0.25% trypsin/EDTA, neutralised with growth medium and subcultured every 2-3 

days.  

Mouse embryonic fibroblasts (MEFs) were cultured in 10% FBS/DMEM. They were 

passaged using 0.25% trypsin/EDTA every 3-4 days at a ratio of 1:3.  

2.6.1 Inactivation of mouse embryonic fibroblasts 

MEFs were inactivated using 10μg/mL of mitomycin C (Sigma) in DMEM/FBS. MEF 

monolayers were washed three times with phosphate buffered saline (PBS) and incubated 

with 5mL of mitomycin C (10μg/mL) at 37˚C for 2-3 hours. Mitomycin C was removed, the 

cells washed three times with PBS, trypsinised, and either frozen in 10% v/v dimethyl 

sulphoxide (Me2SO) in FBS or plated out as required on gelatinised tissue culture flasks. 

2.7.1 Derivation of human embryonic stem cells and acquisition of cell lines 

Human embryonic stem cells (hESCs) are derived from the inner cell mass of blastocysts 

of embryos which are genetically disadvantaged or are no longer required for in vitro 

fertilisation. All embryos used for the derivation of hESC lines are patient-approved. The 

hESC lines used in this project were approved by the UK steering committee to be used 

for the intended research and also by the ethics committee at the University of York which 

agreed the use of human derived cells in the laboratory. Frozen vials of mitotically-

inactivated mouse embryonic fibroblasts (MEFs) and 2102Ep were also acquired from the 

UK Stem Cell Bank (UKSCB) for the support of hESC growth in vitro. 

2.7.2 hESC in vitro culture 

hESC colonies, begin to appear between 10 days and 2 weeks post-thaw. Once the 

colonies are in culture for a period of time, they begin to differentiate around the periphery 

displaying a „fried-egg‟ appearance where the cells become less cohesive. Passaging the 

colonies should occur while still undifferentiated but detecting the right time is subjective 

and requires experience with the culture of these cells.  

The manual passaging of hESC colonies through the use of collagenase is routinely used 

by researchers. Although it is time-consuming, it ensures the transfer of mostly hESCs and 

not the inactivated feeders that support their undifferentiated growth. Moreover, the use of 

2.6 Mouse embryonic fibroblast (MEF) culture  

2.7 Human embryonic stem cell (hESC) culture 
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trypsin-EDTA proved unsuccessful for disaggregating hESC colonies. However, quicker 

and less laborious methods have been developed which dissociate hESC colonies into 

single cells and have been shown to result in subsequent formation of colonies (Hasegawa 

et al., 2006b;Ellerstrom et al., 2007c). Although an easier method of passaging, the single-

cell dissociation of hESCs results in the transfer of both hESCs and MEFs. Human 

embryonic stem cell lines (hESCs), RH1 and SHEF3, were cultured on a MEF feeder layer 

in a growth medium containing knockout DMEM, 20% knockout serum, 1% non-essential 

amino acids, 1% glutamine, 0.2% betamercaptoethanol and 0.2% basic fibroblast growth 

factor (bFGF) (See table 2.1). The medium was changed every 2-3 days. The cells were 

passaged using recombinant trypsin (TrypLE Invitrogen); 1mL of TrypLE was used to 

wash each well of a 6 well plate and removed to leave only trace amounts of the enzyme 

on the cells. The cells were incubated for 1-2 minutes while monitored closely to ensure 

disaggregation of the hESC colonies, which were then washed off the feeder layer using 

the growth medium. All medium components were purchased from Invitrogen. 

Table 2.1 hESC Medium components 
 

 hESC Medium 

 50mL 25mL 

Knockout DMEM 38.4mL  19.4mL 

Knockout serum 10mL  5mL 

Non essential amino acids (NEAA) 100X (final 

concentration: 1X) 

500µL (1%) 250µL 

Glutamax 100X (final concentration: 1X) 500µL (1%) 250µL 

Β-mercaptoethanol, 100mM 100µL (0.1mM) 50µL 

bFGF, 10µg 100µL (4ng/mL) 50µL 

 

 

This assay was performed in order to optimise the concentration of Mitomycin C used for 

inactivation of mouse embryonic fibroblasts (MEFs). Currently, 10μg/mL is used. For the 

assay however, four other concentrations were tested- 2.5, 5, 25 and 50μg/mL- and there 

was a control sample not treated with mitomycin C. MEF cells were seeded onto wells of a 

96-well plate (1280 cells per well and 7 replicates per concentration) and incubated 

2.8 MTT Assay 
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overnight to allow the cells to adhere to the culture vessel. 100μL of Mitomycin C was 

added to each well, except for the control sample, and incubated for 3 hours. The cells 

were washed 3 times with PBS, media was added to cells before an overnight incubation. 

The medium was replaced with 100μL of fresh medium and 25μL of 5mg/mL MTT (3-(4,5-

dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide) solution added, followed by 

incubation at 37˚C for 3 hours. The medium was then replaced with 200μL acidic 

isopropanol to dissolve the formazan and pipetted up and down several times. Absorbance 

was measured on an ELISA plate reader at a wavelength of 570nm. 

 

Cells were washed with PBS which was then aspirated completely from the culture vessel. 

An appropriate volume of TRIZOL reagent (Invitrogen) was added to the cells- 0.5mL per 

well of a 6-well plate or T25 flask, 1mL per T75 or 2mL per T175- and incubated at room 

temperature for 5minutes. 200µL of chloroform per 1mL of TRIZOL was added to the cell 

samples and placed on a vortex for 15 seconds. Samples were allowed to incubate for 

5minutes at room temperature before undergoing centrifugation at 12000g for 20 minutes 

at 4˚C. The upper aqueous layer was carefully transferred into a new tube. 0.5mL of 100% 

isopropanol per 1mL of TRIZOL was subsequently added to the tube and mixed by brief 

vortexing. The sample was incubated for 30minutes at room temperature or 4˚C. 

Centrifugation at 12000g for 15minutes at 4˚C followed before the isopropanol was 

removed from the RNA pellet. The pellet was washed in 1mL of 75% ethanol and vortexed 

briefly. Another centrifugation step followed at 12000g for 5minutes. The ethanol was 

removed and the pellet allowed to air dry briefly. The pellet was resuspended in 

RNase/DNAse-free water. Quantification of the concentration of RNA was carried out 

using a spectrophotometer (Nanodrop). 

 

A 20µL DNase digestion reaction was prepared by combining a set amount of RNA in 

water with 2µL of RNase-free DNase 10X reaction buffer and 1unit per microgram RNA of 

RNase-free DNase. Nuclease-free water was added to the mixture to a final volume of 

20µL and resuspended gently by pipetting. Incubation followed at 37˚C for 30 minutes. 1µL 

of DNAse Stop solution was added to terminate the reaction. The cell sample was then 

incubated at 65˚C for 10 minutes to inactivate the DNAse enzyme. Reagents for DNase 

treatment were purchased from Promega. 

2.9  RNA Extraction 

2.10 DNAse treatment of RNA 
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The following reagents were added to two eppendorf tubes: oligo dt primer, 10mM dNTPs 

and water; one for cDNA synthesis and another for a no-RT control. The resulting mix was 

then incubated at 65˚C for 5 minutes and chilled on ice for 2 minutes. While on ice, a 

master mix was prepared comprising a first strand buffer, 0.1M DTT and water, which was 

added to the cDNA and control samples. The mix was incubated at 42˚C for 1hour, and 

then incubated at 70˚C for 15 minutes in order to inactivate reverse transcriptase. RNAse 

H was added to each sample and incubated at 37˚C for 20 minutes. The cDNA and no-RT 

product were diluted to a yield of about 0.5μg. 

RNA was extracted using Trizol according to the manufacturer‟s instructions. Chloroform 

was added to the Trizol lysate to separate RNA from DNA. 100% isopropanol was added 

to the sample and incubated at 4˚C for 30 minutes in order to precipitate RNA. The 

resulting RNA pellet was washed in 75% ethanol and precipitated by centrifugation at 

12000g for 5 minutes. All traces of ethanol were then removed. DNAse/RNAse-free water 

was added to dissolve the RNA product. Subsequently, the RNA was treated with DNAse 

using Ambions DNA-free kit. 0.1 volume of the DNAse inactivation reagent was added to 

RNA, incubated for 2 minutes at room temperature, and centrifuged for 1 minute to pellet 

the inactivation reagent. Absorbance was measured using a Nanodrop spectrophotometer. 

5x105cells/mL resuspended in cold buffer (0.2% BSA and 5mM EDTA in PBS) was used 

for each analysis (100μL/sample). Each primary antibody- TRA-1-60, TRA-1-81, SSEA3/4, 

and SSEA1- was added to each cell sample (1:100) except for the negative controls, and 

then placed on ice in the dark for 45 minutes. 1mL of buffer was added to all the tubes 

which were spun for 5minutes at 450xg at 4˚C. 100μL of FITC-conjugated secondary 

antibody was then added (1:50 dilution) and the tubes incubated on ice in the dark for 45 

minutes. Cells were centrifuged and resuspended in 100μL buffer and analysed by flow 

cytometry (Cyan, Beckman Coulter).  

 

2.11 cDNA synthesis 

2.12 Reverse Transcription-polymerase chain reaction (RT- 
PCR) 

2.13 Characterisation by surface marker expression using flow 
cytometry 
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There are various ways in which biophysical properties of cells can be determined. 

Photomicrography is a direct method of monitoring volume but can only analyse a small 

number of cells while the Coulter counter is an indirect method of measuring volume 

changes and allows for a large number of cells to be analysed (Mazur, 2007).  

The Coulter counter is an electronic particle sizer comprising a glass tube which has a 

small orifice through which cells can pass. There are electrodes inside and outside the 

tube between which a current flows and the apparatus causes a constant current to pass 

through the orifice. As the cells enter the glass tube and are pulled through suction, they 

displace a certain amount of buffer thereby causing the resistance of the orifice to change. 

The result is a voltage peak in the output. 

The Coulter Principle states that the voltage output is directly proportional to the three 

dimensional volume of the particle that produced it. Thus, the larger the amount of 

electrolyte displaced, the larger the voltage output and pulse; small cells will produce small 

pulses; larger ones, larger pulses (McGann et al., 1982). The Coulter counter is 

advantageous because it allows for a large number of cells to be analysed and has upper 

and lower threshold settings which eliminate particle sizes of extreme values, leading to 

more accurate results. 

Many studies utilised the Coulter counter in cell size measurements which will also be 

employed in this PhD project (Liu et al., 1995;Woods et al., 2000b;Si et al., 2006;Kashuba 

Benson et al., 2008i).The Coulter counter (model ZM) was equipped with a 100μm orifice 

through which each cell sample passes. The counter is attached to a standard PC which 

runs an ADWIN™1MHz A/D converter program (Keithley) that converts the volume data 

from the cell sample into a voltage pulse. Time files are first created by the user and are 

used by the Coulter to record data at specific time intervals. Data for 1000 cells are 

collected for each run performed and saved for subsequent analysis by a purpose-written 

PASCAL computer program. The software places the values for the cell volume and puts 

them in order, recording the modal value from each data set. 

All cells that passed through the Coulter counter were suspended in PBS+ (0.5% bovine 

serum albumin in PBS); no adjustments were made for different solutions because the 

current that passes through the equipment is constant. The only change that occurs is in 

2.14 Coulter counter 
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the voltage pulse produced which is influenced by the size of the cell passing through the 

current flow. 

 

Isotonic medium was first prepared which contained 0.5% bovine serum albumin in PBS 

(PBS+). Hypertonic and hypotonic solutions were then prepared by the addition of sucrose 

or ultrapure water to the isotonic solution (300mOsm/kg). The hypertonic solutions ranged 

from 500 to 1200mOsm/kg while the hypotonic were between 150 and 300mOsm/kg. A 

freezing point osmometer was used to confirm the osmolality of each solution.  Each 

solution was prepared at 2X the required final concentration. 

 

Cell volume changes in response to anisotonic conditions were analysed by a Coulter 

counter technique. 

 

Propidium iodide (PI) exclusion was used to determine the effect of anisotonic conditions 

on the cell membrane. The cells were exposed to varied osmolalities for 5 minutes before 

being centrifuged and resuspended in buffer solution comprising 0.2%BSA and 5mM 

EDTA in PBS. The fluorescent dye, PI, was added to the cell suspension at a 

concentration of 0.6µg/mL; cells with damaged membranes uptake the dye while those 

with intact membranes exclude the dye. In order to provide quantitative data, fluorescent 

beads at a concentration of 1080beads/µL were added to the cell sample to aid in provide 

absolute cell counts. Samples were analysed by flow cytometry. The number of cells per 

µL was determined using the formula given by the manufacturer:  

(Number of cell events counted/ Number of beads counted) x Bead concentration x 

Dilution factor  

 

The cells were trypsinised as previously described. The cell suspension was centrifuged at 

1200rpm for 5 minutes. 1.74x104 cells were exposed (in triplicate) to different anisotonic 

conditions (150, 225, 500, 800, 1200mOsm/kg plus isotonic control). After treatment, the 

cells were centrifuged at 1200rpm for 5 minutes, resuspended in at 5.8x103cells/replicate, 

2.15 Preparation of anisotonic conditions 

2.16 Cell Volume Analysis 

2.17 Membrane integrity assay 

2.18 Assessment of cell growth 
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and seeded onto 3 wells of a 6 well plate. After 48 hours in culture, the cells were 

trypsinised and counted using a haemocytometer. 

 

The cells were trypsinised as previously described and the cell suspension centrifuged at 

1200rpm for 5 minutes. Equal numbers of cells were then subjected to different anisotonic 

conditions (75, 150, 225, isotonic, 500, 800, 1200mOsm/kg). 5x104 cells were seeded in 6 

wells of a 94 well plate (6 replicates per condition). After 4 hours, the cells were gently 

washed with PBS. The adherent cells were fixed in 70% ethanol in PBS for 15minutes. 

The ethanol solution was discarded and the cells stained at RT overnight with 0.1% crystal 

violet in 95% ethanol in PBS. Stained cells were lysed with 2% SDS in PBS for 15 minutes 

in order to release the dye, and absorbance was read at 570nm. 

 

The cells were trypsinised as earlier described. Equal cell concentrations were exposed to 

anisotonic conditions. In sucrose solutions, the exposure time was 5 minutes while in 

solutions with either Me2SO or PG the exposure time was 15 minutes. The cell 

suspensions were pelleted by centrifugation at 1200rpm for 5 minutes before being 

resuspended in fresh PBS+. PI was then added to each cell sample and placed on ice 

before analysis through flow cytometry. 

 

All data were collated and plotted using Excel or SigmaPlot. The error bars were standard 

error of mean (SEM). Statistical analysis was performed using the statistics package 

SPSS. Tests applied included the normality test, Levene‟s test of equality of variance, one 

way analysis of variance (ANOVA), post-hoc test and Student‟s t-test to analyse the data 

and make comparisons between data sets. 

2.19 Adhesion assay  

2.20 Membrane Integrity assessment 

2.21 Statistical analysis 
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This chapter focuses on the fundamental properties required to design an optimal 

cryopreservation protocol for hESCs. Although several studies have been carried out 

on the cryopreservation of hESCs with varied outcomes, the protocols developed have 

been largely empirical with exceptions in studies of optimal cooling rates (Ha et al., 

2005b;Ware et al., 2005c). The current methods have been based on those used for 

other cell types and not on systematic derivation which combines theoretic predictions 

of optimal conditions with experimental analysis. It is in such a case that any protocol 

can be described as „optimal‟. The physical properties that will be determined in this 

chapter include nonosmotic volume (Vb), hydraulic conductivity (Lp) and solute 

permeability (Ps).  

3.1.1 Nonosmotic volume (Vb) 

Initially, in the presence of CPAs, the extracellular solution possesses a higher solute 

concentration than the intracellular space which increases the osmotic pressure 

exerted on the cell membrane, causing the movement of water from the inside of the 

cell to the suspending medium (van't Hoff, 1887). Simultaneously, there is a 

concentration gradient formed that then causes the influx of CPA into the cell in order 

to re-establish equilibrium across the cell membrane; water simultaneously enters the 

cell in response to the increased osmotic pressure. This process continues until there 

is no more movement of solute or water between the intra- and extracellular 

compartments; the cell can now be described as being in equilibrium with the 

suspending medium. Figure 3.1 shows the sequential occurrence of these events; (a) 

water moves out of the cell in response to osmotic pressure; (b) the CPA begins 

moving into the cell in response to the concentration gradient; (c) the movement of 

solute and water continues until there is osmotic and concentration equilibrium.  

Van‟t Hoff‟s equation for pressure describes the relation between solute concentration 

and cell volume, 

Vrel = 1/Mrel,  

Vrel is cell volume relative to the initial volume and Mrel is the solute concentration. This 

equation supports the fact that when osmotic pressure (which is proportional to solute 

concentration) increases, the cell reduces in volume. 

 

 

3.1 INTRODUCTION 
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Figure 3.1 Cell response in medium CPA-containing medium 
Illustration of a cell freezing in a multi-solute system. The arrows indicate the direction 

of movement of cryoprotectant (CPA) and water. (a) First water moves out of the cell in 

response to the hypertonic medium which results in cell shrinkage. (b) Water and CPA 

then move into the cell to maintain osmotic and concentration balance. (c) Cell regains 

its isotonic volume and is considered to be in equilibrium. 
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While the cell experiences a volume flux, there is a part of the volume which does not 

experience any change and it is referred to as the nonosmotic volume; it is also known 

as the nonsolvent volume or the volume of water that is unavailable to dissolve solutes. 

The nonosmotic volume has been found to include water bound to solids such as 

proteins and cellular organelles (Cook, 1967a).  Understanding of this volume has 

come mainly from the work on erythrocytes which have been regarded as “perfect 

osmometers,” shrinking in volume when in solutions of high solute concentrations and 

then swelling in order to maintain solute concentration and osmotic equilibrium 

(Jacobs, 1962b). 

Determining the nonosmotic volume of a cell can be achieved by several methods 

including desiccation, submergence in an electrolyte or non-electrolyte solution. 

Desiccation is useful in providing the volume of cell water but it does not illustrate the 

osmotic behaviour of the cell while the other methods do. However, one disadvantage 

of submerging cells in an electrolyte solution is that it may affect the equilibrium state of 

the already present ions in the cells (Jacobs, 1962a). For example, when a cell is 

submerged in a saturated sodium chloride solution, the permeability of the cell 

membrane to ions increases. Therefore, using a non-electrolyte solute like sucrose, 

which remains impermeable to the cell membrane, will provide the osmotically active 

water volume without affecting the equilibrium state of ions in the cell. The osmotic 

properties of various cells have been determined using sucrose to make the hypertonic 

solutions (Gilmore et al., 1995a;Wu et al., 2005h;Seki et al., 2007). 

 

Passing the cells in anisotonic solutions through the Coulter counter produces voltage 

outputs which correspond to cell volume. The voltage output can be plotted against the 

reciprocal osmolality to generate a linear plot known as the Boyle van‟t Hoff plot, 

named after the British physicist, Robert Boyle, and Dutch chemist, Jacobus van‟t Hoff. 

The equation for the line is, 

 Vrel= Vint + (1-Vint)/Me
rel, 

where Vrel is the cell volume relative to the isotonic cell volume, Vint is the non-osmotic 

volume and Me
rel is the isotonic osmolality.  

Although cell suspensions that will pass through the Coulter counter will mostly contain 

hESCs, there is a probability of cross-over of MEF cells, which is why modal cell 

volumes will be used rather than mean cell volumes in order to eliminate any outlying 

data from MEFs. Mode, in comparison to mean, is unaffected by outlying data in cell 

suspensions with varied cell sizes (Pegg and Lancaster, 1998). The resulting Boyle 

van‟t Hoff plots generated from the cell volume measurements will be modal cell 
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volumes plotted against the inverse osmolality. Extrapolation of the linear plot (to the y-

intercept) estimates a value for the non-osmotic cell volume since the y-intercept 

represents a value for cell volume at infinite osmolality. Determination of the 

nonosmostic volume establishes the volume of osmotically active water. In addition, 

cell volume measurements of latex beads with known volumes make it possible to 

calculate cell volume of hESCs. If it is assumed that the shape of the cells is 

spheroidal, the formula for volume of a spheroid can be used to determine the radius of 

the each cell which then means the cell surface area can be calculated using the 

mathematical formula for calculating the area of a sphere (A = 4πr2). 

3.1.2 Membrane permeability properties (Lp and Ps) 

The surface area to volume ratio (S/V) is important in determining how rapidly a cell will 

lose its osmotically active water in an anisotonic solution or, in other words, its 

hydraulic conductivity (Lp). A small cell with a large S/V ratio will therefore allow a more 

rapid flow of water due to the availability of more membrane for water to permeate than 

a large cell which has a smaller S/V ratio (Dumont et al., 2004). Rapid water movement 

across the cell membrane may be attributed to the presence of aquaporins in the 

membrane which aid in the transport of water. In fact, aquaporins have caused a 10-

fold increase in osmotic water permeability in xenopus oocytes (Ishibashi et al., 1994c). 

Edashige et al, in measuring the Lp and activation energies of mouse morulae and 

embryo, found they possessed high water permeability and low activation energy which 

suggested transport of water through facilitated diffusion (Edashige et al., 2006b). 

Immunocytochemical analysis revealed aquaporin 3 was the protein responsible for 

water transport in mouse morulae. Cells with high permeability to water, therefore, 

have the ability to equilibrate quicker and can be cooled at high cooling rates without 

the occurrence of intracellular ice. 

Aquaporins have also been shown to be involved in the transport of some CPAs. 

Reports by Yamagi et al. showed aquaporin 3 also responsible for the transport of 

glycerol, ethylene glycol, propylene glycol and dimethyl sulfoxide in xenopus oocytes 

(Yamaji et al., 2006a). Another member of the aquaporin family, aquaporin 9, has been 

shown to transport neutral solutes including purines, polyols and carbamides across 

the cell membrane (Tsukaguchi et al., 1998). Other published data have shown that 

water, glycerol and ethylene glycol permeate mouse morulae through channel-

dependent means (Edashige et al., 2006a). However, it was determined that simple 

diffusion was responsible the transport of water and solutes across mouse embryo 

membrane due to measured values Lp being low and high for activation energy 

(Edashige et al., 2007a). It has been suggested, then, that permeability may be 
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dependent on the stage of embryo development and responsible for the difference in 

tolerance to cryopreservation at these stages. Studies by Mazur and colleagues 

demonstrated this phenomenon, showing that permeability of mouse embryos to 

glycerol increased from oocytes and 1-cell zygotes to 8-cell embryos (Mazur et al., 

1976;Jackowski et al., 1980). 

Although the S/V ratio and the presence of aquaporins affect the values of Lp and Ps in 

cells, permeability is also dependent on temperature and type of CPA. It is evident in 

biological processes that the lower the temperature, the slower the rate of water and 

solute movement. Moreover, the nature of CPA impacts how easily or rapidly they are 

able to permeate the cell membrane because each CPA differs in its molecular weight 

and viscosity. 

To determine the Lp and Ps of cells in this chapter, a curve-fitting approach will be 

adopted (Higgins and Karlsson, 2010) where hypothetical values of Lp and Ps are 

adjusted until the curve produced by the values fit the experimental data for cell 

volumes at various time points. Similar approach has been utilised in studies for other 

cell types including human and mouse oocytes, spermatozoa, chondrocytes and 

CD34+ cells from umbilical cord blood (Noiles et al., 1993;Woods et al., 1999b;Paynter 

et al., 1999e;Woods et al., 2000a;Paynter et al., 2001a;Xu et al., 2003b;Hunt et al., 

2003j;Wu et al., 2005g). The statistical calculation of Chi-square, Χ2, which measures 

the goodness of fit, was used to determine the best-fit curve. The Lp and Ps of each cell 

line will be determined while the cells are suspended in two different CPAs, Me2SO and 

PG, and at two different temperatures, RT and +2°C. This is in order to carry out a 

comparative study of any effect the CPAs might have on the plasma membrane and 

also the permeability of the cells to each solute to determine the better CPA. 

3.1.3 PG and Me2SO 

Throughout this study, PG and Me2SO will be the only CPAs tested in various assays. 

Me2SO is widely used in preserving various cell types and is the only CPA used in slow 

cooling protocols for hESCs. However, PG is a more stable glass former than Me2SO 

and EG (the second CPA used in vitrifying hESCs) (Baudot et al., 2000;Baudot and 

Odagescu, 2004), which means it vitrifies more easily. It can also be utilised in lower 

concentrations and can produce a greater depression in the temperature at which ice 

forms, suggesting PG possesses the potential to reduce the occurrence of intracellular 

ice during cooling and recrystallisation during warming. For the cryopreservation of 

mESCs, it was found that PG was the optimum CPA compared to Me2SO and EG 

(Kashuba Benson et al., 2008j). On the contrary, 2,3-butanediol which is also a stable 

glass former has been shown to be more toxic than PG (Wusteman et al., 2002). As a 
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result, PG has been chosen, in this study, as a second CPA in the cryopreservation of 

hESCs. Its toxicity to the cell lines will be assessed and compared to that of Me2SO. 

In addition, the effect of each CPA on the stabilisation of phospholipids in the 

membrane of each hESC line will be analysed using PI exclusion to test for membrane 

integrity. Me2SO has been found to stabilise liposomes in concentrations higher than 

1M through interaction with polar headgroups of phospholipids in the cell membrane 

(Anchordoguy et al., 1987b). However, disaccharides such as trehalose and sucrose 

conferred greater protection through hydrophobic interactions with phospholipids 

(Anchordoguy et al., 1987a) but their impermeability to the cell membrane means they 

are unable to maintain osmotic and concentration equilibrium in cells. The ability of PG 

to protect cell membranes and the concentration at which it does so will be crucial in 

determining whether it is a better membrane stabiliser at concentrations which are non-

damaging to the cells. 

 

 Determine whether hESCs act as „perfect osmometers‟. 

 Establish the basic physical properties of hESCs (Vb, Lp and Ps) and comparing 

any differences between the two hESC lines. 

 Compare the effect of two CPAs, PG and Me2SO, on the permeability of each 

hESC line at two different temperatures, at room temperature (RT) and on ice (+2°C). 

3.2 Chapter aims 
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3.3.1 Volume calibration 

Prior to using the Coulter Counter, volume calibrations had to be carried out using latex 

beads (Beckman Coulter) measuring 5µm and 10µm in diameter. The beads were 

added to isotonic PBS+ solution and passed through the Coulter counter to determine 

their modal voltages. There were five blocks of data per run and 6 replicates for each 

set of beads. The data were then used to plot a standard line; the y-intercept 

corresponded to the instrument offset voltage which will either be subtracted or added 

to the measured cell volumes. 

3.3.2 Non-osmotic cell volume (Vb) 

Cells were trypsinised and resuspended in PBS+ (300mOsm/kg). 100μL of cells were 

added to 20mL of each anisotonic condition for 5 minutes and analysed by the Coulter 

counter ZM (Beckman Coulter) at 10 second intervals for 90 seconds (150, 225, 300, 

500, 800, and 1200mOsm/kg). The duration of cells in anisotonic medium was chosen 

to be 5 minutes as an initial duration of 10 minutes appeared to be damaging to the 

cells and a linear plot for the Boyle van‟t Hoff graph could not be achieved. For each of 

the experiments, 1000 cells were analysed per run and 10 runs for each condition. As 

cells passed through the 100μm aperture of the Coulter counter, an amount of PBS+ is 

displaced leading to an emission of a voltage pulse equivalent to the cell volume. A 

PASCAL program was utilised to calculate modal voltages at the different osmolalities 

from the range of voltage outputs produced by the Coulter Counter. The average modal 

voltages for each anisotonic condition were then calculated. These modal values were 

plotted on a Boyle van‟t Hoff plot.   

3.3.3 Adhesion assay  

The cells were trypsinised as previously described and the cell suspension centrifuged 

at 1200rpm for 5 minutes. Equal numbers of cells were then subjected to different 

anisotonic conditions (75, 150, 225, isotonic, 500, 800, 1200mOsm/kg). 5x104 cells 

were seeded in 6 wells of a 94 well plate (6 replicates per condition). After 4 hours, the 

cells were gently washed with PBS. The adherent cells were fixed in 70% ethanol in 

PBS for 15minutes. The ethanol solution was discarded and the cells stained at RT 

overnight with 0.1% crystal violet in 95% ethanol in PBS. Stained cells were lysed with 

2% sodium dodecyl sulphate (SDS) in PBS for 15 minutes in order to release the dye, 

and absorbance was read at 570nm. 

3.3 Materials and Methods 
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3.3.4 Timecourse experiments 

The 2102Ep and hESCs were trypsinised as previously described and exposed to 

either 10% (v/v) Me2SO or 5% (v/v) PG at one of two temperatures (+2°C and +20°C). 

Using the ADWIN program, a timing file was created for each temperature to allow the 

program to record modal voltages. At +20°C, the timing file was 2 second intervals for 

the first 10 seconds and increasing intervals for 3 minutes; and at +2°C, 5 second 

intervals and increased to 18 minutes. For the experiments carried out at +2°C, all CPA 

solutions were immersed in ice until fully-equilibrated.  19mL of CPA in isotonic PBS+ 

was aliquotted into a container and placed onto the Coulter stand so that the orifice 

was fully immersed in the solution.  A trigger mechanism was activated at the same 

time as 1mL of cell suspension was added to the solution close to the orifice. 1000 

cells were collected for each interval and the data for cells at RT and at +2°C were 

recorded.  The modal voltages were then normalised to the average modal voltage for 

the isotonic control and plotted against time. 

3.3.5 Lp and Ps determination 

Following generation of the shrink-swell curves from the timecourse experiments, two 

programme files were created:  a data file that contained all the experimental data from 

the timecourse experiment and a parameter file which contained the cells‟ physical 

properties and hypothetical values for Lp and Ps. The cell volumes over the time course 

were fitted to a two parameter model (Kedem and Katchalsky, 1958d) using the 

following equations, 

Volume flux of water = -Lp (Πe – Πi), where Jvw is the volume flux; Π is the 

external and internal osmolality (or internal and external osmotic pressure); and Lp is 

the hydraulic conductivity; (Πe – Πi) can also be defined as (Ce – Ci) x RT, where R is 

the universal gas constant (Joules/mol/K) and T is temperature (in Kelvin, K). The 

equation then becomes  

 Volume flux of water = -Lp (C
e – Ci) x RT 

Volume flux of CPA = Vs x Ps (C
e – Ci), where Ps is the solute permeability, Vs is 

the partial molar volume of CPA and C is the internal and external concentration of 

CPA in mol/L. The partial molar volume was calculated by dividing the molecular 

weight of CPA by its density; for Me2SO, Vs = 71cm3, while for PG Vs = 73.5cm3. 

With all other variables known in the equations except for Lp and Ps, hypothetical 

values for the unknowns were utilised in order for a curve to be generated. A purpose-

written computer program, TWOPSTEP, which simultaneously calculates the 2P 
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formula, plots the corresponding shrink-swell curve onto the experimental data. Manual 

iteration of the values for Lp and Ps was performed until the best curve to fit the 

experimental data was achieved which was indicated by the value of chi-square value, 

χ2 (Bevington, 1969); the lower the value of χ2, the better the fit. This approach to 

determining permeability values has been applied in other studies (Walcerz et al., 

1995;Hunt et al., 2003i).  

3.3.6 Growth and propidium iodide exclusion assays 

The effect of anisotonic conditions were tested by studying the effects of various 

osmolalities using methods described in the previous chapter. 

 

3.4.1 Determination of offset voltage 

In order to determine the offset voltage of the Coulter counter with a 100µm orifice, 

latex beads of known volume and which are within 5-20% of the size of the orifice were 

utilised. Hence, it was appropriate to use 5µm and 10µm latex beads for the calibration 

of the apparatus. Performing runs with the beads in isotonic PBS+ and repeating this 

process 6 times produced average modal voltages of 0.22V and 1.62V for the 5µm and 

10µm beads respectively (Table 3.1). These modal voltages along with their known 

volumes produced a standard curve with the y-intercept of +0.0117V (Figure 3.2), 

which represents the value of error in the voltage readings the equipment produces. 

This value was subtracted from all other modal voltages retrieved from the Coulter 

counter to make the data more accurate. 

3.4 Results 
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Table 3.1 Volume calibration using latex beads 
 Known volume of polystyrene latex beads and their corresponding modal voltage. 
 

Particle size 
Volume 

µm3 

Average modal 

Voltage (n=6) 

Standard 

deviation 

Standard error of 

mean 

5µm 68.28 0.22 0.0097 0.0039 

10µm 528.33 1.62 0.019 0.0076 

 

 

 

 

 
Figure 3.2 Standard line for latex bead volume 
Standard line from the modal voltages of 5 and 10µm polystyrene beads at preset gain 

setting of 4 and attenuation setting at 8. Each set of latex beads had 6 replicates. The 

standard deviation (SD) values for the 5 and 10µm polystyrene beads were 0.019 and 

0.010 (n=6), respectively. The error bars are not visible because of very low SD values. 

y-intercept revealed an offset voltage 0.011V. 
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3.4.2 Determination of non-osmotic volume (Vb) 

2102Ep cells were initially used in all experiments performed in order to become 

familiar with the protocol before using the hESCs, RH1 and SHEF3. It was evident from 

the volume response of all the cells to the various anisotonic conditions that they acted 

as osmometers.  

Cell volume measurements from the Coulter counter were recorded as voltages which 

were then adjusted by subtracting the value of the offset voltage (+0.0117V) 

determined earlier from the latex bead measurements. The voltages were then plugged 

into the equation for the line produced from the latex bead calibration to determine the 

actual value for cell volume for the different cell lines. The equation for the standard 

curve was y = 0.0031x + 0.0117, where y is the modal voltage (V) and x is the 

corresponding cell volume (µm3).  

The Boyle van‟t Hoff plots generated showed extrapolation of the linear regression to 

the y-axis produced a Vb for 2102Ep cells of 0.25volts (or cell volume equalling 81µm3) 

(Figure 3.3), while those for RH1 and SHEF3 were 0.22volts (61µm3) and 0.19volts 

(68µm3), respectively (Figure 3.4-3.5). 

It should be noted that for all three cell lines, there was a shift from linearity for cells in 

500mOsm solution, which may be the result of an error in the preparation of the stock 

solution which may have been more hypertonic than required. 
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Figure 3.3 Boyle van’t Hoff plot for 2102Ep 
Human embryonal carcinoma cell line, 2102Ep, was trypsinised and centrifuged at 

1200rpm. The cell pellet was resuspended in PBS+. 1mL of cell suspension was added 

to 19mL of each of the hypo- or hypertonic solutions made up in PBS+ solution and left 

in solution for 5 minutes. The cells were then passed through the Coulter counter for 

subsequent volume measurements. Boyle van‟t Hoff plot indicated that the value for its 

non-osmotic volume, Vb, was 0.25.  Cell volume measurements were normalised to the 

isotonic cell volume.Data are means ±SEM (n=6). 
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Figure 3.4 Boyle van’t Hoff plot for RH1 
Human embryonic stem cell line, RH1, was trypsinised and centrifuged at 1200rpm. 

The cell pellet was resuspended in PBS+. 1mL of cell suspension was added to 19mL 

of each of the hypo- or hypertonic solutions made up in PBS+ solution and left in 

solution for 5 minutes. The cells were then passed through the Coulter counter for 

subsequent volume measurements. Boyle van‟t Hoff plot indicated that the value for its 

non-osmotic volume, Vb, was 0.22. Cell volume measurements were normalised to the 

isotonic cell volume. Data are means ±SEM (n=6). 
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Figure 3.5 Boyle van’t Hoff plot for SHEF3 
Human embryonic stem cell line, RH1, was trypsinised and centrifuged at 1200rpm. 

The cell pellet was resuspended in PBS+. 1mL of cell suspension was added to 19mL 

of each of the hypo- or hypertonic solutions made up in PBS+ solution and left in 

solution for 5 minutes. The cells were then passed through the Coulter counter for 

subsequent volume measurements. Boyle van‟t Hoff plot indicated that the value for its 

non-osmotic volume, Vb, was 0.19.  Cell volume measurements were normalised to the 

isotonic cell volume. Data are means ±SEM (n=4). 
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3.4.3 Basic cell properties 

Some relevant biophysical properties of the three cell types are listed in table 3.2.  The 

cell volumes were measured using the Coulter counter with the instrument offset 

correction shown in Fig. 3.2. The cells were assumed to be spherical and the radius 

was calculated from the standard formula for the volume of a sphere ie Volume = 

4/3πr3, where r is the radius of the sphere. The surface area of each cell was then 

calculated from the formula for the surface area of a sphere, Area = 4πr2. The osmotic 

volume of each cell type was calculated from the relevant Boyle van‟t Hoff plot 

(Osmotic volume = 1-Vb).  

The water content of the cells was assumed to be 87% (or 0.87) of total cell volume, 

following Dick‟s work on the measurement of the water content of erythrocytes in 

comparison to several different cell types (Dick, 1966). It was found that cell water 

content did not vary widely between different cell types and were comparable to that of 

erythrocytes. Water volume was measured using dehydration, and calculating cell 

volume before and after dehydration was carried out. Erythrocytes, compared to other 

cell types, are less complex because they mainly contain haemoglobin which is a well-

characterised protein for which osmotic data is available, and lack a nucleus and 

membrane-bound organelles (Dick, 1969). In contrast, other cells contain organelles 

and several proteins which may be known but are less characterised and lack osmotic 

data. As a result, osmotic data from erythrocytes provide a more accurate estimate of 

cell water volume than other cell types.  Water volume in a similar study on umbilical 

cord blood cells has also used Dick‟s value of 0.87 (Hunt et al., 2003h). Assuming this 

value for the proportion of cell volume occupied by water, therefore, the actual volume 

of cell water can be calculated (ie 0.87 x Cell volume).  

3.4.4 Adhesion assay 

The first assay performed to assess the effect of anisotonic solutions on the different 

cell lines was an adhesion assay was carried out on 2102Ep cells. Results showed a 

larger percentage of cells in hypotonic media adhered to the tissue culture plastic 

compared to cells in isotonic or hypertonic media (Fig. 3.6) but there were no 

significant differences between the various anisotonic conditions tested. As a result, 

this assay was not carried out on any of the hESC lines because it was not helpful in 

determining the osmotic tolerance of the cells. 
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Table 3.2 Biophysical properties of hEC and hESCs.  
Basic cell properties for embryonal carcinoma cell line, 2102Ep, and human embryonic 
stem cell lines, RH1 and SHEF3.  
 

 

Cell 
Identity 

Cell 
isotonic 
volume 
(µm

3
) 

Cell 
surface 

area 
(µm

2
) 

Non-
osmotic 
volume 

(Vb) 

 Osmotic 
water 

volume 

(1- Vb) 

Proportion 
of total 

cell water 
volume (1) 

2102Ep 1035 494 0.25 0.75 0.87 

RH1 2901 984 0.21 0.79 0.87 

SHEF3 2097 792 0.19 0.81 0.87 

 
(1) See (Dick, 1966) 
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Figure 3.6 2102Ep cell adhesion following exposure to anisotonic media 
2102Ep cells exposed to hypo- and hypertonic media did not show significant 

difference in the number of cells that attached to tissue culture plastic compared to 

cells in isotonic media. The y-axis shows number of cells attached normalised to cells 

in isotonic media. Data are means ±SEM (n = 3). 
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3.4.5 Determination of tolerance limits 

Due to the results of the adhesion assay, the osmotic tolerance of each cell line was 

tested using PI exclusion and cell growth assays. The isotonic control for each assay 

was treated in the same way as all other conditions. All percentages in the PI exclusion 

assays are shown in relation to the number of cell input, but the cells that might have 

floated off during the assay were not accounted for because the aim of the assay was 

to compare the results of each anisotonic condition with the isotonic control.  

For the 2102Ep cells, there was a significant difference in cell growth under hypertonic 

conditions (Fig. 3.7A) compared to the isotonic control, indicating the cells‟ sensitivity to 

these treatments and, more importantly, to volume shrinkage. There were no significant 

differences between the hypotonic treatments and the isotonic control. Following 

calculation of the percentage of cells that excluded PI dye through flow cytometer 

analysis, there were significant responses in solutions measuring 75 and 150mOsm/kg 

(Fig. 3.7B). Significant damage was also observed at each of the hypertonic conditions 

tested (500-1200mOsm/kg).  

For the RH1 cells, significant damage was experienced at 75 and 1500 mOsm/kg (Fig. 

3.8) while damage was experienced at 75, 150 and 1500 mOsm/kg in the SHEF3 cells 

(Fig. 3.9).  The equations for the lines in the Boyle van‟t Hoff plots were used to 

calculate the modal voltage that corresponds to the osmolality where damage was 

induced. This voltage was then plugged into the equation of the standard curve from 

the latex bead calibration to calculate the cell volumes in each anisotonic solution 

which caused damage. This volume was then divided by the cell volume in isotonic 

medium to calculate the extent of expansion and shrinkage each cell line could 

withstand.  

As a result, it was determined that 2102Ep cells could tolerate shrinkage of up to 60% 

and expansion by 70% of isotonic volume. For RH1 cells, the volume excursion limit 

was shrinkage by 60% and expansion of up to 30% or 60-130% of isotonic volume. 

SHEF3 cells could tolerate between 60-170% of their isotonic volume. 
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Figure 3.7 Cell volume excursion limits for 2102Ep 
Assessment of the osmotic tolerance of human embryonal carcinoma cell line, 2102Ep. 
(A) Growth assessment of 2102Ep cells after on day 3 after exposure to anisotonic 
conditions revealed damage in all hypertonic solutions. (B) Assessment of membrane 
integrity by exclusion of propidium iodide dye also showed some damage at all 
anisotonic conditions except 225mOsm. Data are mean ±SEM. Statistical analysis was 
carried out using Levene‟s test for variance and Student‟s t-test (*p<0.05, **p<0.01, 
***p<0.001) (n=3). Using the Boyle van‟t Hoff data, the damage at 150mOsm and 
500mOsm correspond to shrinkage beyond 60% and expansion beyond 170% which 
gives a volume flux tolerance between 60-170% of isotonic volume. 
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Figure 3.8 Cell volume excursion limits for RH1 
(A) Growth assessment of RH1 cells after on day 3 after exposure to anisotonic 

conditions showed damage at 75 and 1500mOsm. (B) Assessment of membrane 

integrity by exclusion of propidium iodide dye only showed damage atg 75mOsm. Data 

are mean ± SEM. Statistical analysis was carried out using Levene‟s test for variance 

and Student‟s t-test (*p<0.05, **p<0.01, ***p<0.001) (n=3). Using the Boyle van‟t Hoff 

data, the damage at 75mOsm and 1500mOsm correspond to shrinkage by 60% and 

expansion of up to 30% or a volume flux tolerance between 60-130% of isotonic 

volume. 
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Figure 3.9 Cell volume excursion limits for SHEF3 
(A) Growth assessment of SHEF3 cells after on day 3 after exposure to anisotonic 

conditions only showed damage in hypotonic media. (B) Assessment of membrane 

integrity by exclusion of propidium iodide dye showed significant damage at 75 and 

1500mOsm. Data are mean ±SEM. Statistical analysis was carried out using Levene‟s 

test for variance and Student‟s t-test (*p<0.05, **p<0.01, ***p<0.001) (n=3). Using the 

Boyle van‟t Hoff data, the damage at 150mOsm and 1500mOsm correspond to 

shrinkage by 60% and expansion up 70% or a volume flux tolerance between 60-170% 

of isotonic volume. 
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3.4.6 Effect of anisotonic medium on hESC colony morphology 

Further attempt to analyse the effect of anisotonic media on hESCs was carried out by 

assessing colony morphology. However, exposure to each of the anisotonic conditions 

did not inhibit the ability of the hESCs to adhere to the feeder layer and produce 

colonies with characteristic hESC morphology- closely packed cells in the 

undifferentiated core and a defined periphery that separates the colony from the MEF 

layer. The colonies in hypotonic media appeared with less closely packed cells than the 

hypertonic or isotonic conditions (Fig. 3.10). However, no further analyses were carried 

out on the morphology such as size measurements of colonies produced in each 

anisotonic medium because the aim of the assay was to assess whether certain 

anisotonic conditions affect the adherence and subsequent colony formation of 

replated cells. 
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Figure 3.10 Phase contrast images of colonies in anisotonic conditions 
hESC colonies at a magnification of 10X in hypotonic conditions (A-C) while those in 

hypertonic media are shown in D-G. All colonies exhibit characteristic morphology with 

tightly packed cells on the core and a defined periphery between the colony and the 

MEF layer which can be clearly seen in the isotonic medium. The arrow in D indicates 

some area of differentiation. (n = 3 for each condition) 
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3.4.7 Timecourse responses of cells to CPAs 

Analysis of the effect of PG and Me2SO on each cell line was carried out. 2102Ep cells 

shrank and regained their isotonic volume in Me2SO at RT (Fig. 3.11A) while cells 

required more than 20 minutes to equilibrate in Me2SO at +2°C (Fig. 3.11B). However, 

2102Ep responded similarly in PG at both temperatures (Fig. 3.12).  

The RH1 ESC line in Me2SO shrunk by 50% and 30% at RT and +2°C, respectively, 

and regained their isotonic volume; volume shrinkage experienced was within their 

tolerable limits of volume flux (Fig. 3.13 A&B). On the contrary, longer time periods 

were required for isotonic cell volume to be restored in PG at each temperature (Fig. 

3.14 A&B).  

In contrast, SHEF3 required a much longer duration than RH1 to regain isotonic cell 

volume for all conditions except in PG at RT (Figs. 3.15 and 3.16). Both Me2SO and 

PG caused greater osmotic responses in SHEF3 than in RH1 cells which may indicate 

greater susceptibility of SHEF3 cells to damage. SHEF3 may also possess a lower 

permeability than RH1 to the CPAs which may be the reason for its inability to regain 

isotonic cell volume. In addition, shrinkages experienced in Me2SO exceeded the 

tolerance limit (>60% of isotonic cell volume) determined earlier while shrinkage in PG 

was close to tolerable limits. This suggests that Me2SO may have damaged the cell 

membrane and PG may be a preferable CPA for SHEF3.  
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Figure 3.11 Best-fit curves for 2102Ep in Me2SO 
 
Cells were exposed to 1.225M Me2SO for 5 minutes before cell volume was measured 

using the Coulter counter. Timecourse responses of the human embryonal carcinoma 

cell line, 2102Ep, to a single exposure to at (A) RT and (B) +2°C. Data are means 

±SEM (n = 4).  
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Figure 3.12 Best-fit curves for 2102Ep in PG 
 
Timecourse responses of the human embryonal carcinoma cell line, 2102Ep, to a 

single exposure to 0.66M PG at (A) RT and (B) +2°C. Data are means ±SEM (n = 4). 

500µL of cells were added to 19.5mL of 0.66M PG solution and left for 5 minutes at 

each temperature before measuring cell volume response on the Coulter counter. 
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Figure 3.13 Best-fit curves for RH1 in Me2SO 
Timecourse responses of the hESC line, RH1, to a single exposure to 1.225M Me2SO 

at (A) RT and (B) +2°C. Data are means ±SEM (n = 4). 500µL of cells were added to 

19.5mL of 1.225M Me2SO solution and left for 5 minutes at each temperature before 

measuring cell volume response on the Coulter counter. 
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Figure 3.14 Best-fit curves for RH1 in PG 
Timecourse responses of the hESC line, RH1, to a single exposure to 0.33M PG at (A) 

RT and (B) +2°C. 500µL of cells were added to 19.5mL of 0.33M PG solution and left 

for 5 minutes at each temperature before measuring cell volume response on the 

Coulter counter. Data are means ±SEM (n = 4).  
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Figure 3.15 Best-fit curves for SHEF3 in Me2SO 
Timecourse responses of the hESC line, SHEF3, to a single exposure to 1.225M 

Me2SO at (A) RT and (B) +2°C. 500µL of cells were added to 19.5mL of 1.225M 

Me2SO solution and left for 5 minutes at each temperature before measuring cell 

volume response on the Coulter counter. Data are means ±SEM (n = 4).  
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Figure 3.16 Best-fit curves for SHEF3 in PG 
Timecourse responses of the hESC line, SHEF3, to a single exposure to 0.66M PG at 

(A) RT and (B) +2°C. 500µL of cells were added to 19.5mL of 0.66M PG solution and 

left for 5 minutes at each temperature before measuring cell volume response on the 

Coulter counter. Data are means ±SEM (n = 4).  
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3.4.8 Summary of data from curve-fitting 

2102Ep- Cells recovered their isotonic cell volume in Me2SO at RT compared to +2°C. 

However, cells recovered isotonic volume in the presence of PG at either temperature, 

indicating that PG may be a more appropriate CPA if exposure is carried out on ice due 

to its ability to permeate the cells more rapidly than Me2SO at low temperatures. 

RH1- Cells recovered isotonic volume in Me2SO at both RT and +2°C but failed to 

recover in PG at either temperature, indicating that this cell line is more permeable to 

Me2SO than to PG. 

SHEF3- Similar recovery of isotonic volume occurred in Me2SO and PG at either 

temperature but cells appeared damaged in Me2SO due to cell volume shrinkage which 

exceeded tolerable limits of the cells. In contrast to RH1 cells, SHEF3 may possess 

lower permeability to either CPAs due to not regaining isotonic cell volume in similar 

exposure times. 

3.4.9 Permeability variables determined 

A summary of the permeability parameters for 2102Ep, RH1 and SHEF3 is shown in 

table 3.3. It is clear that all values for Lp and Ps are higher at RT than +2°C and 

therefore the recovery of the isotonic cell volume is slower and requires a much longer 

time period at +2°C. Subsequently, the cells are exposed to the toxic effects of the 

CPA for a longer period of time at +2°C. The effect of CPA on the cells‟ permeability 

and the differences between the cells are also illustrated. 

Similar values of Ps were established for 2102Ep cells in either CPA at RT while Ps at 

+2°C was higher for PG than for Me2SO, which support the findings from the 

timecourse experiments that either CPA will be appropriate except if exposure was 

carried out at very low temperatures.  

For the RH1 cells, similar Lp values were attained for both CPAs but Ps values were 

one order of magnitude higher for Me2SO at both temperatures than for PG. Although 

cells lost water at the same rate, isotonic cell volume was either not regained or 

required a longer time period in PG due to the cells‟ lower permeability to this CPA. 

Furthermore, similar permeability values for CPA were established for SHEF3 

illustrating why similar cell recovery occurred within the same time period (33 minutes). 

However, the higher recovery of cell volume in PG at RT can be explained by the 

higher value for Lp which means more water entered the cells during volume recovery. 
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It also confirms that PG may be more suitable and less toxic to SHEF3 cells than 

Me2SO. 

 
 
 
 
 
 
 
 
Table 3.3. Hydraulic conductivity and solute permeability 
Permeability properties for 2102Ep, RH1 and SHEF3 cells for Me2SO and PG at RT 
and +2°C. 
 

Cell 
identity 

Cryoprotectant Lp (cm/atm/s) Ps (cm/s) 

RT +2°C RT +2°C 

 

2102Ep 

Me2SO 1.05x10-6 2.2x10-7 3.88x10-5 6x10-7 

PG 7x10-7 2.0x10-7 3.0x10-5 2.08x10-6 

 

RH1 

Me2SO 1.3x10-6 1.52x10-7 1.9x10-5 6.48x10-6 

PG 2.5x10
-6

  5.0x10
-7

  4.5x10
-6

  3.0x10
-7

  

 

SHEF3 

Me2SO  8x10
-6

  3x10
-7

  3x10
-6

  2.53x10
-7

  

PG 2X10
-5

  4x10
-6

  2.75x10
-6

  2.5x10
-7
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Biophysical properties of various cell types have been investigated and published but 

such data are unavailable for hESCs. Previous cryopreservation studies have mostly 

been based on increasing post-thaw survival and not deriving an optimal 

cryopreservation method that requires fundamental physical properties of cells to be 

known. In order for these properties to be determined, it first had to be established 

whether hESCs behaved as perfect osmometers, responding to anisotonic media by 

the shrinking and expanding in cell volume; and secondly, their various physical 

properties could be determined. It was the aim of this chapter, therefore, to utilise 

hESC lines which had undergone different culturing methods in the early stages 

following derivation to assess whether the culturing techniques may affect their 

membrane properties and therefore how each responds to cryopreservation.  

Due to their colony forming nature in vitro and in order to obtain accurate data for 

membrane properties, single cell suspensions were required which were attained by 

the trypsinisation of hESC colonies using the recombinant trypsin, TrypLE (Invitrogen). 

TrypLE has been shown to dissociate hESCs colonies successfully into single cells 

with subsequent regeneration of new colonies in vitro (Ellerstrom et al., 2007b). This 

trypsin is gentler and more effective for cells that have been manually passaged or 

enzymatically treated as was the case with the hESC lines, SHEF3 and RH1, 

respectively. The human embryonal carcinoma cell line, 2102Ep, was used in 

preliminary experiments because it is of the same species as SHEF3 and RH1, it has 

been shown to express similar cell surface markers as hESCs, and lastly, can be easily 

cultured without the need for a feeder layer to maintain an undifferentiated state 

(Andrews, 2002a;Adewumi et al., 2007e).  

Exposure of all cell lines to anisotonic media revealed that 2102Ep, SHEF3 and RH1 

behaved as perfect osmometers over the range of 150-1200mOsm/kg as illustrated in 

the Boyle van‟t Hoff plots produced for each cell line. However, the data point at 

500mOsm/kg for each cell line deviated from linearity compared to other data points. 

This could have been due to error in the preparation of the stock solution which may 

have been more concentrated than 500mOsm/kg and caused greater shrinkage than 

expected. However, the R2 values for all three cell lines showed that the linearity of the 

plots was unaffected by the inclusion or exclusion of the data point; Vb values, 

therefore, remain good estimates. Similar deviation from linearity occurred with CD34+ 

cells at 140mOsm/kg with the value of Vb unaffected (Hunt et al., 2003g). Extrapolation 

of the plot indicated that the nonosmotic volume for 2102Ep, SHEF3 and RH1 were 

0.25, 0.19 and 0.22, respectively, which are comparable to the nonosmotic volumes for 

3.5 Discussion 
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various cell types, including CD34+ cells from the umbilical cord blood (0.27) (Hunt et 

al., 2003f), human oocytes (0.20) (Paynter et al., 1999b) and human haematopoietic 

progenitors from bone marrow (0.205) (Gao et al., 1998). However, the Vb values were 

much lower than those reported for mouse embryonic stem cells (0.497) (Kashuba 

Benson et al., 2008k) human chondrocytes (0.414) (Wu et al., 2005i) and human 

spermatozoa (0.50) (Gilmore et al., 1995c). Interestingly, cell volume measurements 

for human haematopoietic progenitors from bone marrow were measured using both 

optical and electronic particle sizer methods, resulting in cell volumes which were not 

significantly different from each other. It may be more efficient therefore to carry out 

volume measurements of hESCs using video microscopy because of the smaller cell 

sample required which will allow hESCs to be used for other assays.  

The assays used in this chapter to test the effect of anisotonic media were membrane 

integrity test through the exclusion of PI, cell adhesion to the feeder layer and growth 

assay to assess functionality by the production of colonies in culture. The adhesion 

assay did not produce any significant differences between the various osmolalities, 

which led to only the membrane integrity and cell growth assays to be utilised in 

determining the extent of shrinkage and swelling the cells can tolerate before 

experiencing osmotic damage. Li et al performed cell adhesion assays post-thaw using 

H9 hESCs to compare cells which were treated with a p160-Rho-associated coiled-coil 

kinase (ROCK) inhibitor, Y-27632, and those that were untreated (Li et al., 2008e). The 

cells were disrupted into single cells, replated onto Matrigel-coated plates, and 

incubated for 12 hours, yielding marked difference between the two groups of cells. 

Although the role of ROCK is not well understood, it has been shown to induce 

apoptosis and is involved in the regulation of cell motility and cell proliferation (Riento 

and Ridley, 2003). In hESCs, dissociation of the colonies activates ROCK and 

therefore apoptosis (Ohgushi et al., 2010a). As a result, the addition of a ROCK 

inhibitor such as Y-27632 will be beneficial for hESC survival (Narumiya et al., 

2000;Watanabe et al., 2007b). 

Membrane integrity and cell growth assays provided more useful information on 

osmotic tolerance, indicating that the volume excursion limit for each of the cell lines 

was 60-170% of the isotonic volume for 2102Ep cells and SHEF3 cells, while that of 

RH1 cells was 60-130%. Each cell line could tolerate a greater shrinkage than that of 

umbilical cord blood cells (45-140% of isotonic volume) (Hunt et al., 2003e) and sea 

urchins (Adams et al., 2003) but were more comparable to mouse ES cells (63-153% 

of isotonic volume) (Kashuba Benson et al., 2008l), which may indicate the greater 

stress capacity of embryonic cells compared with more differentiated cell types. It is 

evident that shrinkage beyond 40% of initial volume induced osmotic stress in SHEF3 
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cells exposed to Me2SO. This shrinkage limit is similar to that of human oocytes which 

are able to maintain membrane integrity following shrinkage of up to 40% (McWilliams 

et al., 1995). 

The establishment of the osmotic tolerance limits of the cells made it possible to 

calculate water and solute permeability in the presence of CPA. Although the Kedem 

and Katchalsky formalism (Kedem and Katchalsky, 1958c) is commonly used in 

calculating these parameters, Kleinhan‟s 2P formalism (Kleinhans, 1998c) provides a 

simpler means by excluding the reflection coefficient and assuming the transport of 

water and solute through different membrane channels. This simpler formalism was 

used in this chapter to generate curves to fit the experimental shrink-swell curves 

produced by each cell line. Manual iteration occurred by changing the values of each 

permeability parameter until the best-fit curve was achieved. The resulting Lp and Ps 

determined were at least an order of magnitude higher at RT than at +2°C, indicating 

the faster movement of water and solutes through the cell membrane at the higher 

temperature which confirms that biological processes occur more rapidly at higher 

temperatures than lower temperatures. 

For all cell lines, Lp values were an order of magnitude greater in Me2SO than that of 

mESCs (Kashuba Benson et al., 2008m). In PG, however, 2102Ep cells possessed the 

same Lp value of 7 x 10-7 cm/atm/s at RT as mESCs while those of RH1 and SHEF3 

were one and two orders of magnitude higher than the value for mESCs, respectively, 

indicating that these hESC lines were more permeable to water and may possess more 

water channels than their mouse counterparts. SHEF3 also possessed higher Lp values 

in Me2SO and PG than human white blood cells and Pacific oyster oocytes (McGann et 

al., 1984;Salinas-Flores et al., 2008). It can be suggested that aquaporin 3 may be 

present on hESC membranes and responsible for the facilitated diffusion of water 

across the cell membrane which is the case various cell types (Ishibashi et al., 

1994d;Ishibashi et al., 1997c;Edashige et al., 2000a). Consequently, a further 

investigation into the expression of aquaporin 3 and other members of the aquaporin 

family should be carried out because there are currently no reports that hESC 

membranes possess these proteins. 

Ps value in Me2SO for RH1 was an order of magnitude higher than SHEF3 cells at both 

temperatures while permeability to PG was similar for both cell lines at either 

temperature. However, it is clear that either cell line required a much longer time period 

to regain isotonic cell volume in PG which may subject the cells to the toxic effects of 

the CPA. For SHEF3, however, PG appears the more suitable CPA due to the damage 

experienced in Me2SO and the greater restoration of isotonic cell volume in PG. PG 
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has also been found to be the optimal CPA for mESCs (Kashuba Benson et al., 2008n) 

and is widely used in cryopreserving human oocytes (Paynter et al., 2001b;Paynter et 

al., 2005b). However, its effect on cellular physiology should be considered as it has 

been shown that PG causes cellular degeneration and hardening of the zona pellucida 

in human oocytes (Larman et al., 2007b). In contrast to SHEF3, RH1 was more 

permeable to Me2SO as it only gained about 60% of its isotonic volume at both RT and 

+2°C in PG. Human oocytes, however, regained isotonic cell volume quicker in PG 

than Me2SO (Paynter et al., 1999c;Paynter et al., 2001c). Although similar permeability 

to PG was determined for SHEF3 and RH1, surface area to volume (S/V) ratio may 

provide an explanation why SHEF3 was more permeable to PG than RH1 in the same 

exposure period. Using the calculated volume and area of each cell line, SHEF3 has 

an S/V ratio of 0.38 compared to 0.33 for RH1 which suggests that more water and 

solute will permeate the SHEF3 membrane than the RH1 membrane. 

The damage experienced by SHEF3 in Me2SO may provide an explanation for hESC 

susceptibility to differentiation post-thaw. Katkov et al. found reduced expression of 

Oct4 in hESC when Me2SO was used in slow-cooling procedures (Katkov et al., 

2006c). Hence, loss of membrane integrity pre-cooling may be related to the down-

regulation of pluripotent genes and increased differentiation post-thaw. Since loss of 

pluripotency has been found connected to deficiency in intercellular interaction in ES 

cells (Wong et al., 2004;Todorova et al., 2008), it can be suggested that hESCs which 

have experienced stress due to extensive shrinkage or swelling may lose the ability to 

form colonies in vitro because they lack the necessary GAP junctions through which 

they communicate. Wong and colleagues identified that hESCs express connexin 43 

and connexin 45 which are involved in cell proliferation, cell differentiation and 

apoptosis (Wong et al., 2004). Consequently, hESCs can lose the potential to grow in 

culture, form EBs in suspension cultures or develop teratomas when injected into 

immunodeficient mice. Loss of GAP junctions can also cause hES cells to be 

vulnerable to apoptosis, which has been linked to the loss of E-cadherin dependent 

intercellular contact that stimulates ROCK (Wong et al., 2006;Ohgushi et al., 2010b). 

This confirms why the addition of a ROCK inhibitor to cryoprotective medium improves 

survival of hESCs post-thaw (Li et al., 2008d;Li et al., 2008i;Claassen et al., 2009d). 

Moreover, damage on the cell membrane may facilitate the growth of ice in the 

intracellular space due to extracellular ice acting as a nucleus for the supercooled 

water in the cytoplasm to form ice during cooling (Mazur, 1965a). Furthermore, there is 

an indication that the single or one-step addition of 10% Me2SO is a sub-optimal 

method of CPA addition to SHEF3 but this cannot be verified until further analysis is 

carried out in the next chapter.  
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Differences between RH1 and SHEF3 indicate that membrane physiology may differ 

from one cell line to another, which may be a result of what stage in embryo 

development they were derived. This may impact on how permeable the membrane of 

each cell line is to water and CPAs as increases in permeability were evident in mouse 

at later stages of development compared to earlier stages (Mazur et al., 1976). Again, 

the presence of protein channels that may be involved in transporting CPAs across the 

cell membrane should be investigated because they may possess different channels 

which may be selective for specific CPAs. Disparities in the response to 

cryopreservation have been reported for cells of the same species as is the case for 

spermatozoa from different males (McLaughlin et al., 1992;Thurston et al., 2002;Leibo 

et al., 2007). As a result, a uniform protocol may not be possible for hESC lines, which 

suggests that a routine measurement of the physical characteristics of each hESC line 

is essential in achieving optimal survival of cells. 

This chapter has demonstrated the biophysical properties of 3 cell types and their 

influence on cell response to sudden changes in osmolality, which in turn affects the 

choice of CPA that should be used in cryopreserving the cells, the temperature at 

which the solute should be introduced, and the length of exposure that would prevent 

osmotic stress. The membrane integrity and cell growth assays have also revealed the 

effects of damage on the potential of hESCs post-thaw, and prove good measures of 

the consequences of anisotonic conditions. As a result, these assays will be carried out 

throughout the rest of the study. The tolerance limits of cell volume shrinkage and 

expansion established in this chapter can be used to model protocols that allow the 

addition and elution of CPA without inducing osmotic damage with the aim of 

developing optimal criteria for the cryopreservation of hESCs. 
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One of the advantages of a systematic approach to designing a cryopreservation 

protocol is that each source of damage to cells is identified and can therefore be 

eliminated or the effect minimised in order to optimise cell survival. This chapter 

considers sources of damage such as CPA toxicity, osmotic effects and the likelihood 

of intracellular ice. Each cryopreservation criterion will be combined with biophysical 

properties established in the previous chapter to model a variety of protocols in order to 

ascertain the procedure that is optimal for each hESC line. 

4.1.1 Cryoinjury  

Other forms of cell damage include membrane lysis and exposure to damaging 

concentrations of salts inside and outside the cell (Lovelock, 1953f;Pegg and Diaper, 

1988;Muldrew and McGann, 1990a;Muldrew and McGann, 1994). It has been 

hypothesised that the excessive loss of water affects the organisation of organelles in 

the cytoplasm (Litvan, 1972) due to the lack of water that normally exists between each 

organelle. Furthermore, ice crystals forming inside the cells cause damage by unknown 

mechanisms- presumably mechanical. The formation of ice crystals is dependent on 

the membrane permeability of cells to water and the rate of cooling. 

In order to avoid IIF, it is important to use CPAs that will protect cells from damage, and 

this is also dependent on the cells‟ permeability to the CPA. Various CPAs are 

available for preserving cells at low temperatures. Each of these CPAs permeates the 

membrane at a different rate depending on the cell type as has been shown in previous 

studies such as those involving human spermatozoa, bovine chondrocytes, and human 

platelets (Gilmore et al., 1995e;Woods et al., 1999a;Xu et al., 2003a). The rate of CPA 

permeation through the cell membrane depends on the biophysical properties of the 

particular cell type (Lovelock, 1954;Wu et al., 2005j) and the temperature at which the 

additive is introduced (Mazur et al., 1974;Agca et al., 1998).  

Mathematical formulae have been developed to measure the permeability 

characteristics of cell membranes to water and solutes (Jacobs, 1933b;Kedem and 

Katchalsky, 1958b). The KK formalism assumes the co-transport of water and solutes 

through a common channel and introduces a reflection coefficient, σ, which is the 

degree of interaction between the solute and solvent (Kedem and Katchalsky, 1958a). 

Conversely, the 2P formalism assumes the independent transport of solute and solvent 

through separate channels (Kleinhans, 1998b). Both of these formalisms have been 

used in modelling the transport of water and cryoprotectant through the cell membrane 

(Jacobs, 1933a;Gilmore et al., 1995b;Paynter et al., 1999f;Hunt et al., 2003d;Chaveiro 

et al., 2004). It has been found that the values for hydraulic conductivity (Lp) and solute 

permeability (Ps) were similar with either formalism (Kleinhans, 1998a). 
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It is also important to consider the toxicity of CPAs to cells. Results in chapter 3 have 

shown that the hESC lines possess varying permeabilities to Me2SO and PG. In this 

chapter, the protective abilities of each CPA were compared in the cryopreservation of 

hESCs by evaluating their effect on the membrane integrity and functional capabilities 

of the cells following exposure to each CPA.  

4.1.2 Cryopreservation protocol design 

The determination of Lp and Ps for each hESC line in the previous chapter is used to 

model various CPA addition and removal protocols, which can then be used in cooling 

experiments to test different cooling rates and assess the effectiveness of the 

protocols. Similar steps have been carried out in the design of a cryopreservation 

procedure for articular cartilage and umbilical cord blood stem cells (Pegg and Diaper, 

1990;Woods et al., 2003a). The resulting methods of adding and eluting CPA can 

minimise osmotic damage that may occur from the extensive shrinkage or expansion in 

volume that the cells may experience. However, the results of modelling only provide 

theoretical predictions of how the cells should react. Hence, experimental testing such 

as toxicity assays must accompany the freezing tests to ensure that non-toxic 

concentrations of CPA are utilised for the preservation of the cells. The ideal CPA 

concentration would be high enough to reduce the concentration of damaging salt 

concentrations and low enough to remain non-toxic to the cells (Lovelock, 1953g;Mazur 

et al., 1981b). Finally, cooling experiments where several cooling rates are tested can 

be performed to reduce damage that may occur from solution effects or intracellular ice 

formation (see Fig. 1.4). Optimised protocols can then be compared to the current slow 

cooling protocol used in cryopreserving hESCs which will also be modelled. Figure 4.1 

illustrates the steps for designing an optimal cryopreservation protocol.  

The aim of this chapter is to investigate each of the cryopreservation variables that may 

cause cell damage in order to determine the optimal conditions, which will be used in 

designing a cryopreservation protocol that can be easily executed in a laboratory and 

which minimises the length of exposure to CPA. 
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Figure 4.1 Schematic diagram of designing a cryopreservation protocol 
Illustration of the steps required in designing a cryopreservation protocol. First, 
nonosmotic volume and biophysical properties are determined. Secondly, osmotic 
tolerance of each cell type is established. Thirdly, the 2P formalism is used to model 
CPA addition and removal. Lastly, CPA toxicity and cooling rate assays provide optimal 
CPA concentration and cooling rate. Theoretical protocol is assessed using membrane 
integrity and cell growth assays. 

 

 

 4.2 Chapter aims 
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 Use established biophysical properties and osmotic tolerance limits of each cell 

line (from chapter 3) to model protocols for adding and eluting CPA. 

 Carry out CPA toxicity assays to determine optimal CPA by assessing effect of 

varying concentrations on membrane integrity and in vitro cell growth. 

 Perform cooling rate assay to determine optimal cooling rate. 

 Define optimal protocol for each hESC line based on the assays carried out and 

assess whether a uniform protocol is possible for both hESC lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Materials and Methods 
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4.3.1 Toxicity after exposure to cryoprotectant 

The toxicity of Me2SO and PG to the cells was assessed by using the addition 

protocols modelled for adding CPA which was then followed by a further 15minutes of 

exposure. The cells were either replated onto MEF feeders to investigate their colony-

forming capabilities or underwent a propidium iodide (PI) assay to assess their 

membrane integrity. Cell counts were carried out using a haemocytometer while flow 

cytometry was used to calculate the percentage of cells that excluded PI. 

4.3.2 Stepwise addition of PG 

0, 2.5, 5, 10, 15% PG were added to the cells following the modelled protocols in order 

to ascertain the highest CPA concentration each cell line can tolerate before 

experiencing damage.  

4.3.3 Stepwise elution of PG 

PG was eluted from RH1 cells using PBS+ solution and allowing 10 minutes between 

each dilution step. However, a solution of PBS+ and D-mannitol was used in diluting 

PG from SHEF3 cells whilst allowing 10 minutes between intermediate steps (see 

Tables 4.2 & 4.10). 

4.3.4 Stepwise addition of Me2SO 

0, 5, 10, 15, and 20% Me2SO were tested using the addition protocol in order to 

determine the optimal concentration that does not induce damage to the cells. 

4.3.5 Stepwise elution of Me2SO 

For the RH1 cells and SHEF3 cells, the CPA was removed in a stepwise fashion using 

a solution of PBS+ containing 2% (w/w) D-mannitol. D-mannitol is a non-permeable 

osmoticant which was added to the thawing medium to restrict the degree of swelling 

the cells experienced. The duration for each intermediate step was 4 and 15minutes for 

RH1 and SHEF3 cells, respectively (see Tables 4.4 & 4.6).  

4.3.6 Addition and elution modelling 

The permeability parameters and the biophysical properties determined for the hESCs 

and the hECs were entered into a purpose-written program, PLOTSTEP. The program 

uses the physical properties- internal and external osmolalities, Lp, Ps, and the partial 
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molar volume of CPA- to solve the Kleinhan‟s two parameter modelling equation for 

volume flux and change in concentration of CPA. With all of the variables known, the 

volume flux experienced by the cells can be calculated. The PLOTSTEP program 

allows for the addition of CPA to occur in one or more steps. Manual iteration of the 

internal and external concentrations was then carried out until the volume flux 

experienced by the cells lay within their tolerance limits. The modelling was carried out 

using 10% (v/v) Me2SO and 5% (v/v) PG as the target concentrations at two different 

temperatures for each of the cell lines. In addition, modelling of currently used 

protocols for each cell line was performed which involves addition of 10% Me2SO at RT 

in a single step. Although some add 10% Me2SO in a dropwise fashion, there is no 

published data that states the equilibration period allowed between each drop. 

However, it was difficult to model the current elution protocol because the amount of 

elution medium and the length of time that cells remain in the medium vary between 

technicians. 

4.3.7 Cooling  

Cells were trypsinised as earlier described and subsequently subjected to the addition 

protocols for adding 10% PG or 10% Me2SO. The cell suspensions were then 

aliquotted into 2mL cryovials, placed into a rate-controlled freezer and cooled at  0.3, 1, 

3, or 10°C/min to -50°C. The cryovials were subsequently transferred into the vapour 

phase of a liquid nitrogen Dewar until thawed. 

4.3.8 Thawing 

Cells were thawed in a 37°C water-bath until all ice was melted. The CPA was then 

eluted in a stepwise fashion as earlier mentioned. The cells were subsequently 

centrifuged at 1200rpm to remove the CPA completely and resuspended in isotonic 

media. 

 

 

 

 

 4.4 Results 
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4.4.1 Addition modelling data 

The modelling of CPA addition to each cell type was carried out in order to determine 

whether the current cryopreservation protocol used for hESCs was adequate or 

required optimisation.  

For the hEC cells, the addition of 10% (v/v) Me2SO (1.29M) and 5% (v/v) PG (0.66M) at 

RT could be completed in a single step with the cell volume flux remaining within the 

tolerable limits of shrinkage (<60%) (Figs. 4.2A & 4.3A). However, the addition of 

Me2SO and PG at +2°C had to be done in four and two steps, respectively; it would 

require twice the time for the cells to equilibrate in 1.29M Me2SO than in 0.66M PG 

(Fig. 4.2B & 4.3B). 

The addition of PG to the RH1 cells, however, had to be carried out in two steps at 

each temperature (Fig. 4.4). In order for the cell volume and concentration of CPA 

inside and outside the cells to be equilibrated, a period of 10 minutes and one hour had 

to be allowed at RT and +2°C, respectively. On the other hand, the single addition of 

10% Me2SO was adequate at both RT and +2°C (Fig. 4.5). 

As with the RH1 cells, the addition modelling showed that 0.66M PG is best added to 

SHEF3 cells in two steps at RT (Fig. 4.6A) and in five separate steps at +2°C with 

50minute equilibration periods (Fig. 4.6B). Me2SO had to be added in four steps at both 

temperatures in order for the cells to avoid osmotic damage; equilibration periods of 17 

and 50 minutes had to be incorporated at RT and +2°C, respectively (Fig. 4.7). 

Modelling the currently used protocols for each of the cell lines (Fig. 4.8) revealed that 

the theoretic modelling did not provide a different method for adding Me2SO at RT to 

2102Ep and RH1. However, the current method of adding Me2SO to SHEF3 shows that 

the cells experience shrinkage beyond their tolerable limits which suggests they must 

already be damaged before being subjected to cooling. 
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Figure 4.2 Modelled protocols for addition of Me2SO to 2102Ep cells 
Modelling addition of 1.29M Me2SO to human embryonal carcinoma cell line, 2102Ep 

at (A) RT and (B) +2°C. At RT, the CPA addition occurred in a single step while at 

+2°C, it would have to occur in 4 steps at increments of 0.3M in order to maintain the 

extent of volume expansion and shrinkage the cells could tolerate. The osmotically 

induced volume excursions (solid line) and intracellular CPA concentration (dashed 

line) are displayed. 
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Figure 4.3 Modelled protocols for addition of PG to 2102Ep cells 
Modelling addition of 0.66PG to human embryonal carcinoma cell line, 2102Ep at (A) 

RT and (B) +2°C. At RT, the CPA addition occurred in a single step while at +2°C, it 

would have to occur in 2 steps at increments of 0.3M in order to maintain the extent of 

volume expansion and shrinkage the cells could tolerate. The osmotically induced 

volume excursions (solid line) and intracellular CPA concentration (dashed line) are 

displayed. 
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Figure 4.4 Modelled protocols for addition of PG to RH1 cells 
Modelling addition of 0.66M PG to human embryonic cell line, RH1 at (A) RT and (B) 

+2°C. At RT and +2°C, the CPA addition occurred in two steps in increments of 0.3M to 

maintain the tolerable volume excursion of the cells. The osmotically induced volume 

excursions (solid line) and intracellular CPA concentration (dashed line) are displayed. 
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Figure 4.5 Modelled protocols for addition of Me2SO to RH1 cells 
Modelling addition of 1.29M Me2SO to human embryonic cell line, RH1 at (A) RT and 

(B) +2°C. At RT and +2°C, the CPA addition occurred in a single step to maintain the 

tolerable volume excursion of the cells. The osmotically induced volume excursions 

(solid line) and intracellular CPA concentration (dashed line) are displayed. 
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Figure 4.6 Modelled protocols for addition of PG to SHEF3 cells 
Modelling addition of 0.66M Me2SO to human embryonic cell line, SHEF3 at (A) RT 

and (B) +2°C. At RT, the CPA addition occurred in two separate steps in increments of 

0.33M, and in 5 steps at +2°C in increments of 0.13M to maintain the tolerable volume 

excursion of the cells. The osmotically induced volume excursions (solid line) and 

intracellular cryoprotectant concentration (dashed line) are displayed. 
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Figure 4.7 Modelled protocols for addition of Me2SO to SHEF3 cells 
Modelling addition of 1.29M Me2SO to human embryonic cell line, SHEF3 at (A) RT 

and (B) +2°C. At RT and +2°C, the CPA addition occurred in four separate steps in 

increments of 0.3M to maintain the tolerable volume excursion of the cells. The 

osmotically induced volume excursions (solid line) and intracellular CPA concentration 

(dashed line) are displayed. 
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Figure 4.8 Standardised CPA addition protocol modelled using 2-parameter 
formalism 
Modelling addition of 1.29M Me2SO at RT to (A) hEC line, 2102Ep, hESC lines 

(B) RH1 and (C) SHEF3. The osmotically induced volume excursions (blue solid line) 

and intracellular CPA concentration (red solid line) are displayed. Modelling of these 

protocols showed that adding 1.29M Me2SO at RT to 2102Ep and RH1 causes volume 

excursions that stay within the cells‟ tolerable limits while these conditions cause 

SHEF3 to exceed its tolerable volume shrinkage limits (shrinking below 40% of the 

isotonic volume). 
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4.4.2 Summary of modelling for CPA addition 

2102Ep- Me2SO should be added to cells in a single step at RT and 4 separate steps 

at +2°C. PG is best added in one step at RT and 2 steps at +2°C. It should be noted 

that protocols carried out at +2°C take about 18 hours and 8 hours for Me2SO and PG, 

respectively, while CPA addition can be performed in about 2 minutes at RT. 

RH1- Me2SO should be added to cells in a single step at either temperature while PG 

addition should occur in 2 steps at either temperature. However, it will take more than 

24 hours for cells to equilibrate in PG at +2°C. The quickest protocol was the addition 

of Me2SO at RT which only required about 3 minutes. 

SHEF3- Me2SO should be added to cells in 4 steps at either temperature with 

equilibration times of 18 minutes at RT and 50 minutes at +2°C. PG should be at added 

in 2 steps at RT with equilibration times of 2.5 hours, while 5 steps at +2°C were 

required with equilibration periods of 50minutes. Similar to RH1, the quickest protocol 

was the addition of Me2SO at RT which could be carried out in 1.5 hours. 

Standardised protocol for addition of Me2SO agreed with theoretical prediction for 

addition of Me2SO to 2102Ep and RH1 but showed that SHEF3 cells undergo osmotic 

stress when Me2SO is added in a single step. 
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4.4.3 Elution modelling data 

The same formula used in modelling CPA addition was used to model how each CPA 

should be removed from each cell line at each temperature, the concentrations of CPA 

used were 1.29M (10% v/v) for Me2SO and 0.66M (5% v/v) for PG. 

At RT, the 2102Ep cells only needed a single step of dilution for Me2SO to be eluted 

(Fig. 4.9A) while three dilution steps were required for Me2SO to be removed from the 

hECs at +2°C (Fig. 4.9B). However, removal of PG from the cells could be carried out 

in a single step at either temperature while staying within the tolerable limits of cell 

volume expansion (Fig. 4.10).  

At RT, PBS+ containing 2% mannitol was also required for the removal of Me2SO from 

RH1 cells in three steps (Fig.4.11A) while the elution of Me2SO from RH1 cells at +2°C 

(Fig. 4.11B) was possible in a single step. 2% mannitol was added to the dilution 

medium in order to restrict the expansion in cell volume that the cells would experience 

in isotonic medium. Mannitol made the medium hypertonic exerts shrinkage in cell 

volume. Mannitol was also added to the dilution medium for the elution of PG at RT 

while two steps were required to remove PG at +2°C (Fig. 4.12).  

The SHEF3 cells also required 2% mannitol in isotonic medium for the removal of 

either CPA at both temperatures (Figs. 4.13 & 4.14).  
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Figure 4.9 Modelled protocols for elution of Me2SO from 2102Ep cells 
Modelling removal of 1.29M Me2SO from human embryonal carcinoma cell line, 

2102Ep at (A) RT and (B) +2°C. The osmotically induced volume excursions (solid line) 

and intracellular CPA concentration (dashed line) are displayed. 
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Figure 4.10 Modelled protocols for elution of PG from 2102Ep cells 
Modelling removal of 0.66M PG from human embryonal carcinoma cell  line, 2102Ep at 

(A) RT and (B) +2°C. The osmotically induced volume excursions (solid line) and 

intracellular CPA concentration (dashed line) are displayed. 
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Figure 4.11 Modelled protocols for elution of Me2SO from RH1 cells 
Modelling removal of 1.29M Me2SO from human embryonic cell line, RH1 at (A) RT 

and (B) +2°C. Mannitol was added in the elution medium to reduce the cell volume 

expansion experienced by the cells. The osmotically induced volume excursions (solid 

line) and intracellular CPA concentration (dashed line) are displayed. 
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Figure 4.12 Modelled protocols for elution of PG from RH1 cells  
Modelling removal of 0.66M PG from human embryonic cell line, RH1 at (A) RT and (B) 

+2°C. Mannitol was added in the elution medium to reduce the cell volume expansion 

experienced by the cells. The osmotically induced volume excursions (solid line) and 

intracellular CPA concentration (dashed line) are displayed. 
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Figure 4.13 Modelled protocols for elution of Me2SO from SHEF3 cells 
Modelling removal of 1.29M Me2SO from human embryonic cell line, SHEF3 at (A) RT 

and (B) +2°C. The osmotically induced volume excursions (solid line) and intracellular 

CPA concentration (dashed line) are displayed. 
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Figure 4.14 Modelled protocols for elution of PG from SHEF3 cells 
Modelling removal of 0.66M PG from human embryonic cell line, SHEF3 at (A) RT and 

(B) +2°C. The osmotically induced volume excursions (solid line) and intracellular CPA 

concentration (dashed line) are displayed. 



Chapter 4 

107 
 

4.4.4 Summary of modelled protocols for elution of PG and Me2SO  

The same concentrations of CPA were used in modelling how each CPA should be 

removed from each cell line at each temperature. The summary of the findings are as 

follows: 

2102Ep- Me2SO could be diluted in one step at RT and in three steps at +2°C while 

one step was required for the dilution of PG at either temperature. 

RH1- three-step dilution of Me2SO was required at RT and one step at +2°C. For the 

removal of PG from the cells, 3 steps were required at RT and 2 steps at +2°C. 

SHEF3- A four-step dilution was required for the removal of Me2SO from the cells at 

either temperature. However, 3 steps were required for the dilution of PG at either 

temperature. Dilution of Me2SO at RT would require 1.5hours to perform compared to 

30minutes required for the dilution of PG at the same temperature. Similar time period 

(about 4hours) would be required for the dilution of either CPA at +2°C.  

Based on the modelling of the addition and elution protocols, therefore, the procedures 

which are most practical and easily carried out in the laboratory are as follows: 

1) Addition and removal of PG for RH1 at RT 

2) Addition and elution of Me2SO at RT for both SHEF3 and RH1, and  

3) Addition and removal of PG or Me2SO at RT for 2102Ep 

It is clear that protocols carried out at +2°C are impractical and cannot be carried out 

conveniently in a laboratory. As a result, only the practical methods will be illustrated in 

tables 4.1 to 4.8 which show how each protocol can be carried out by giving the 

concentration of CPA that should be present at each step until the target concentration 

is achieved. Only protocols for the hESCs have been illustrated. 

It can also be said that the predictions from the modelling support earlier findings in the 

previous chapter where there were indications that either PG or Me2SO may be used in 

cryopreserving 2102Ep cells while Me2SO remains the preferable CPA for both SHEF3 

and RH1. However, it was interesting that RH1 cells equilibrated quicker in PG at RT 

than SHEF3 cells which agrees with timecourse responses in chapter 3 but contradicts 

the permeability values determined which shows similar Ps values for both hESC lines.
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Table 4.1 
Table of the molar Me2SO concentrations at each intermediate step during the addition 

of cryoprotectant to SHEF3 at RT up to the end concentration 

 
Intermediate molar Me2SO concentrations (w/w)   Final w/w% 

Me2SO 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 

0.32 

(2.5%) 

0.64 

(5%) 

      5% 

0.32 

(2.5%) 

0.64 

(5%) 

0.96 

(7.5%) 

1.28 

(10%) 

    10% 

0.32 

(2.5%) 

0.64 

(5%) 

0.96 

(7.5%) 

1.28 

(10%) 

1.60 

(12.5%) 

1.92 

(15%) 

  15% 

0.32 

(2.5%) 

0.64 

(5%) 

0.96 

(7.5%) 

1.28 

(10%) 

1.60 

(12.5%) 

1.92 

(15%) 

2.24 

(17.5%) 

2.56 

(20%) 

20% 

 
Each step was designed to restrict shrinkage to ≥40% cell volume. Equilibration period 

for each step was 15 mins. 
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Table 4.2 
Table of the molar Me2SO concentrations and wt% of D-mannitol at each intermediate 
step during the elution of cryoprotectant to SHEF3 at RT up to the end concentration 
 
Starting molar 

Me2SO 

concentration 

Intermediate molar Me2SO concentration + wt% D-mannitol  Resuspension in 

Me2SO /mannitol-

free PBS
+
  

medium 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

5% 0.32 

(2.5%)+ 

2% 

0.16 

(1.25%)+ 

2% 

   

C
e
n

tr
if

u
g

a
ti

o
n

 (
1

2
0

0
rp

m
, 
5

m
in

s
) 

0 + 0% 

10% 0.64 

(5%) + 

2% 

0.32 

(2.5%) + 

2% 

0.16 

(1.25%)+ 

2% 

  0 + 0% 

15% 1.28 

(15%) + 

2% 

0.64 

(10%)+ 

2% 

0.32 (5%) 

+ 2% 

0.16 

(2.5%) 

+ 2% 

 0 + 0% 

20% 1.92 

(20%) + 

2% 

1.28(15%)  

+ 2% 

0.64 

(10%) + 

2% 

0.32 

(5%) + 

2% 

0.16 

(2.5%) 

+ 2% 

0 + 0% 

Each step was designed to restrict swelling to ≤170% cell volume. Equilibration period 
for each step was 20 mins 
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Table 4.3 
Table of the molar Me2SO concentrations at each intermediate step during the addition 
of cryoprotectant to RH1 at RT up to the end concentration 
 

Intermediate molar Me2SO Concentrations Final w/w% Me2SO 

Step 1 Step 2 

0.64 (5%)  5% 

1.28 (10%)  10% 

1.28 (10%) 1.92 (15%) 15% 

1.28 (10%) 2.56 (20%) 20% 

Each step was designed to restrict shrinkage to ≥40% cell volume. Equilibration period 
for each step was 4 mins. 
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Table 4.4 
Table of the molar Me2SO concentrations and wt% of D-mannitol at each intermediate 
step during the elution of cryoprotectant from RH1 at RT up to the end concentration 
 

Starting molar 

Me2SO 

concentration 

Intermediate molar Me2SO concentration (w/w) + 

wt% D-mannitol  

Resuspension in 

Me2SO/mannitol-free 

PBS
+
 medium 

 Step 1 Step 2 Step 3 Step 4 Step 6 

5% 0.32 

(5%) + 

2% 

   

C
e
n

tr
if

u
g

a
ti

o
n

 (
1

2
0

0
rp

m
, 
5

m
in

s
) 

0 + 0% 

10% 0.64 

(5%) + 

2% 

0.32 

(2.5%) + 

2% 

  0 + 0% 

15% 1.28 

(10%)  + 

2% 

0.64 

(5%)   + 

2% 

0.32 

(2.5%) + 

2% 

 0 + 0% 

20% 1.92 

(15%)+ 

2% 

1.28 

(10%) + 

2% 

0.64 

(5%) + 

2% 

0.32 

(2.5%)  

+ 2% 

0 + 0% 

Each step was designed to restrict swelling to ≤130% cell volume. Equilibration period 
for each step was 4 mins 
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Table 4.5 
Table of the molar Me2SO concentrations at each intermediate step during the addition 

of cryoprotectant to RH1 at +2°C up to the end concentration 

Intermediate molar Me2SO Concentrations (w/w)  Final w/w% Me2SO 

Step 1 Step 2 

0.64 (5%)  5% 

1.28 (10%)  10% 

1.28 (10%) 1.92 (15%) 15% 

1.28 (10%) 2.56 (20%) 20% 

Each step was designed to restrict shrinkage to ≥40% cell volume. Equilibration period 
for each step was 20 mins. 
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Table 4.6 
Table of the molar Me2SO concentrations at each intermediate step during the elution 
of cryoprotectant from RH1 at +2°C up to the end concentration 
 

Starting molar 

Me2SO 

concentration 

Intermediate molar Me2SO 

concentration (w/w) 

Resuspension in 

Me2SO/mannitol-free 

PBS+ medium 

 Step 1 Step 

2 

Step 

3 

Step 

4 

Step 

6 

5% 0.32 

(2.5%) 

   
C

e
n

tr
if

u
g

a
ti

o
n

 (
1

2
0

0
rp

m
, 

5
m

in
s
) 

0  

10% 0.64 

(5%) 

   0  

15% 1.28 

(10%) 

   0  

20% 1.28 

(10%) 

0.64 

(5%) 

  0  

Each step was designed to restrict swelling to ≤130% cell volume. Equilibration period 
for each step was 20 mins 
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Table 4.7 
Table of the molar PG concentrations at each intermediate step during the addition of 
cryoprotectant to RH1 at RT up to the end concentration 
 

Intermediate molar PG Concentrations (w/w) Final w/w% 

PG 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

0.33 

(2.5%) 

     2.5% 

0.33 

(2.5%) 

0.66 

(5%) 

    5% 

0.33 

(2.5%) 

0.66 

(5%) 

0.99 

(7.5%) 

1.32 

(10%) 

  10% 

0.33 

(2.5%) 

0.66 

(5%) 

0.99 

(7.5%) 

1.32 

(10%) 

1.65 

(12.5%) 

1.98 

(15%) 

15% 

Each step was designed to restrict shrinkage to ≥40% cell volume. Equilibration period 
for each step was 8 mins and 13mins for the last step. 
 



Chapter 4 

115 
 

 
 
 
 
 
 
 
 
 
 
 
Table 4.8 
Table of the molar PG concentrations at each intermediate step during the elution of 
cryoprotectant from RH1 at RT up to the end concentration 
 

Intermediate molar PG concentrations  Resuspension 

in Me2SO-free 

PBS+ medium  Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 

7 

2.5%       

C
e

n
tr

if
u

g
a

ti
o

n
 (

1
2
0

0
rp

m
, 

5
m

in
s
) 0  

5% 0.33 

(2.5%) 

0.16 

(1.25%) 

    0  

10% 0.99 

(7.5%) 

0.66 

(5%) 

0.33 

(2.5%) 

0.16 

(1.25%) 

  0  

15% 1.64 

(12.5%) 

1.32 

(10%) 

0.99 

(7.5%) 

0.66 

(5%) 

0.33 

(2.5%) 

0.16 

(1.25%) 

0 

Each step was designed to restrict swelling to ≤130% cell volume. Equilibration period 
for each step was 10 mins 
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4.4.5 Effect of cryoprotectant on membrane integrity and functionality of the 
cells 

Due to results in the previous chapter that showed rapid permeation of CPA through 

the cell membrane at RT, toxicity of Me2SO and PG was analysed only at this 

temperature in order to minimise exposure to damaging effects of each CPA. 

Consequently, short-term exposure of the hESCs to varying concentrations of Me2SO 

and PG at RT was carried out following the protocols in the tables earlier displayed in 

order to determine the highest CPA concentration the cells can tolerate. The results of 

the PI exclusion assays indicated that damage to the RH1 and SHEF3 cell membranes 

was induced at Me2SO concentrations ranging from 10-20% (v/v) (Figs. 4.15A and 

4.16B). However, 10% Me2SO was acceptable because the percentage of cells with 

membrane damage was not much lower than that of cells in isotonic medium or 5% 

Me2SO. Moreover, there was considerable cell growth for both RH1 and SHEF3 cells in 

10% Me2SO compared to the untreated cells (Figs. 4.15B & 4.16A). 

The dye exclusion assay indicated significant damage to RH1 cell membrane 

compared to isotonic, but the actual percentage of cells in 10 and 15%PG were not 

much lower compared to the untreated cells (Fig. 4.17B). Furthermore, the results 

showed significant damage to the growth of SHEF3 cells which were exposed to 

15%PG (Fig. 4.18). 
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Figure 4.15 Effect of exposure to Me2SO on RH1 cells 
(A) Results of membrane integrity assay using propidium iodide showed damage was 

highest at the highest concentration of Me2SO.  (B) Cell growth assessment of human 

embryonic stem cell line RH1 after 15 minutes exposure to varying concentrations of 

Me2SO at RT following modelled protocol. Data are mean ± SEM (n = 4 for A and n = 3 

for B). Statistical analysis was carried out using the ANOVA test (*p<0.05, **p<0.01, 

***p<0.001). 
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Figure 4.16 Effect of exposure to Me2SO on SHEF3 cells    
(A) Cell growth assessment of human embryonic stem cell line SHEF3 after 15 minutes 

exposure to varying concentrations of Me2SO at RT following modelled protocol.  Cell 

growth was lowest at the highest concentration of Me2SO (B) Results of membrane 

integrity assay using propidium iodide showed damage was highest at the highest 

concentration of Me2SO. Data are mean ± SEM (n = 4 for A and n = 3 for B). Statistical 

analysis was carried out using the ANOVA test (*p<0.05, **p<0.01, ***p<0.001). 



Chapter 4 

119 
 

 

Figure 4.17 Effect of exposure to PG on RH1 cells  
(A) Cell growth assessment of human embryonic stem cell line RH1 after 15 minutes 

exposure to varying concentrations of PG at RT following modelled protocol.  (B) 

Results of membrane integrity assay using propidium iodide showed highest degree of 

damage at the lowest concentration of PG. Data are mean ± SEM (n = 4 for A and n = 

3 for B). Statistical analysis was carried out using the ANOVA test (*p<0.05, **p<0.01, 

***p<0.001).
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Figure 4.18 Effect of exposure to PG on SHEF3 cells 
(A) Cell growth assessment of human embryonic stem cell line SHEF3 after 15 minutes 
exposure to varying concentrations of PG at RT following modelled protocol.  (B) 
Results of membrane integrity assay using propidium iodide showed significant 
damage at the lowest and highest concentrations of PG. Data are mean ± SEM (n = 4 
for A and n = 3 for B). Statistical analysis was carried out using the ANOVA test 
(*p<0.05, **p<0.01, ***p<0.001). 
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4.4.6 Effect of cooling rate  

Following the results of the toxicity assay, the optimal CPA concentrations determined 

when using Me2SO and PG were utilised in cooling rate experiments. As a result, 10% 

PG and 10% Me2SO were added to each hESC line at RT. PI dye exclusion assay 

showed significant damage to RH1 cells in 10%PG (v/v) occurred at cooling rates of 

0.1°C/min and 10°C/min while no significant damage occurred between 0.3-3°C/min 

(Figs. 4.19 & 4.20). Freezing the cells at various cooling rates showed significant 

membrane damage to SHEF3 cells frozen in 10% Me2SO at rates between 0.3-

10°C/min (Figs. 4.21 & 4.22A). The number of cells harvested for the cooling rate of 

1°C/min showed the highest cell growth compared to the untreated cells and those 

frozen at other rates (Figs. 4.22B). 

Similarly, in 10% Me2SO (v/v), RH1 cells were best frozen at a cooling rate of 1°C/min 

due to the highest proportion of intact cells at this rate (Figs. 4.23 & 4.24). 

So far, then, the toxicity and cooling rate assays suggest that 10% Me2SO and a 

cooling rate of 1°C/min are optimal conditions for the cryopreservation of RH1 and 

SHEF3. The only difference in protocol is the method of adding and removing the CPA 

to each cell line.  
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Figure 4.19 Membrane integrity of RH1 cells in 10%PG at +20°C.  
Flow cytometry analysis of RH1 cells that excluded propidium iodide following freezing 

at cooling rates from 0.1 to 10°C/min. 
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Figure 4.20 Post-thaw results RH1 frozen in 10%PG.  
Effect of freezing hES cell line, RH1, at the cooling rate 0.1°C/min. Analysis of 

membrane integrity using flow cytometry and PI dye to identify membrane intact cells. 

Recovery of PI negative cells is expressed relative to unfrozen control. Data are mean 

± SEM (n = 4).  
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Figure 4.21 Membrane integrity of SHEF3 cells in 10% Me2SO at RT.  
Flow cytometry analysis of SHEF3 cells that excluded propidium iodide following 
freezing at cooling rates from 0.3 to 10°C/min. 
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Figure 4.22 Graphical representation of post-thaw results SHEF3 frozen in 10% 
Me2SO.  
Effect of freezing hES cell line, SHEF3, at cooling rates ranging from 0.3 to 10°C/min.  

(A) Analysis of membrane integrity using flow cytometry and PI dye showed significant 

damage to cell membrane at all cooling rates compared to the unfrozen control. 

Recovery of PI negative cells is expressed relative to unfrozen SHEF3 cells. (B) 

Growth assay showed the optimal cooling rate to be 1°C/min. Recovery is expressed 

as number of cells relative to unfrozen control. Data are mean ± SEM (n = 4 for (A) and 

n = 3 for (B)). Statistical analysis was carried out using the ANOVA test (***p<0.001). 
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Figure 4.23 Membrane integrity of RH1 cells in 10%Me2SO at RT. 
Flow cytometry analysis of RH1 cells that excluded propidium iodide following freezing 

at cooling rates from 0.3 to 10°C/min. 
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Figure 4.24 Post-thaw results RH1 frozen in 10%Me2SO.  
Effect of freezing hES cell line, RH1, at the cooling rate 0.1°C/min. Analysis of 

membrane integrity using flow cytometry and PI dye to identify membrane intact cells. 

Recovery of PI negative cells is expressed relative to unfrozen control (that is, cells in 

culture). Data are mean ± SEM (n = 4). 
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Following the establishment of the necessary physical properties and tolerable osmotic 

limits in chapter 3, the work in this chapter uses that biophysical data to demonstrate 

the optimal concentration of CPA which is least toxic to the cells and the most 

favourable mode of adding and removing the solute. In addition, the freezing 

experiments carried out determined the optimal cooling rate for freezing down each 

hESC line in Me2SO and PG. 

In order to investigate the best method of adding and diluting CPA to/from each of the 

three different cell types, a purpose-written computer program which uses Kleinhan‟s 

two parameter formalism was employed to experiment with various protocols. The 

software calculates volumetric water flux and the volumetric flux of CPA using the Lp 

and Ps of the cells that have already been determined in known concentrations of CPA. 

The computer program allowed the modelling or a single or multistep addition/removal 

of the CPAs to/from the cells. This same methodology was used for designing the 

protocols for chondrocytes (Pegg et al., 2006) and CD34+ cells from umbilical cord 

blood (Hunt et al., 2003c). 

It has emerged through the modelling of addition protocols that the hESCs and the hEC 

line achieve their isotonic cell volume as long as they do not experience beyond 50% 

shrinkage which agreed with already determined osmotic limits. Similar volume 

excursion limits have been found for human oocytes (Paynter et al., 2005a). The extent 

of shrinkage permitted by each of the cells is slightly different in the various CPAs. 

This work is the first report of an investigation into the addition and elution steps 

involved in cryopreserving and thawing hES cells. Current cryopreservation procedures 

for hESCs have not taken into account the method of adding and eluting CPAs. 

Existing slow cooling protocols for hESCs involve the single addition of 5-20% Me2SO 

to cell clusters or cell suspensions and then cooling at rates between 1-2°C/min 

(Richards et al., 2004a;Heng et al., 2005c;Hunt, 2007). The freezing of cell clusters 

rather than a single cell suspension poses the problem of the CPA unable to permeate 

equally into all cells in a colony. Cells on the periphery encounter the CPA before those 

in the core which will lead to some cells having greater or lesser volume than their 

isotonic volume because they have not had enough time to equilibrate. Such cells are 

more susceptible to damage when subjected to freezing due to the possibility of 

intracellular ice formation which has been proven to be more damaging in an organised 

array of cells in a cluster than in a cellular suspension (Jacobsen et al., 1984). As a 

result, it is advantageous to freeze hESCs as a single cell suspension rather than 

clusters where every cell can be equally equilibrated in medium containing CPA before 

4.5 Discussion 



Chapter 4 

129 
 

being subjected to freezing. However, it is evident that a single addition of 10% Me2SO 

was only appropriate for the RH1 cell suspension; it was best added in 4 separate 

steps for the SHEF3 cell line, indicating that various stem cell lines may require 

different protocols for CPA addition. This was confirmed through modelling of currently 

used protocol where addition of 10% Me2SO to RH1 caused a cell response that was 

within the determined osmotic tolerance while SHEF3 cells experienced shrinkage 

beyond tolerable limits. Theoretical modelling of CPA addition methods was useful in 

identifying that it was the mode of adding 10% Me2SO which induced excessive 

shrinkage in SHEF3 cells rather than the chemical toxicity of the compound. Further 

evidence to support this was revealed in the toxicity assays that showed 10% Me2SO 

as an optimal concentration for SHEF3 cells.  

Vitrification is another method of hESC cryopreservation that has been employed, 

using brief exposure times to concentrated vitrification solutions of 60 and 25 seconds 

at either room temperature or 37°C (Hunt, 2007). This increases the probability of 

osmotic stress and damage from the pre-cooling process because much longer 

equilibration times may be required but timecourse experiments like those in the 

previous chapter combined with addition modelling will need to be carried out to 

determine appropriate exposure times. In addition, current exposure times to 

vitrification solutions (which generally contain high concentrations of Me2SO and 

ethylene glycol) may subject cells to the toxic effects of the high CPA concentration; 

they are also considered impractical because of high probability of technical variability 

in execution of the protocol but studies have not been carried out to assess the time 

required for the CPAs to successfully permeate hESCs and avoid damage. Moreover, 

rapid cooling through the plunging of hESC clusters into liquid nitrogen may be 

damaging to the cells and a cause of poor post-warming recovery. The membrane 

integrity and functional assays along with freezing experiments carried out in this 

chapter have shown that damage occurs in hESCs at the slowest and most rapid 

cooling rates, a phenomenon which has historically been demonstrated and analysed 

by Mazur (Mazur et al., 1972). Hence, the modelling of various protocols was important 

in reducing osmotic damage and made it possible to investigate the length of exposure 

to CPA which is safe for the cells. 

Recent work by Higgins proposed a mathematical strategy that challenged the idea 

that the shortest exposure to CPA minimises toxicity. Two approaches were considered 

for minimising toxicity; one used a constant rate of toxicity with the assumption that it 

was independent of CPA concentration while the second approach assumed that 

toxicity was proportional to the square of the intracellular CPA concentration (Higgins, 

2010a). The results of this work found that the second approach produced minimal 
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damage by using a hypotonic vehicle solution during CPA addition and removal, which 

caused the cells to swell to the maximum tolerable volume and minimised the 

intracellular CPA concentration (Higgins, 2010b). It must be noted that while these 

results are interesting, they are theoretical and will need to be tested experimentally. 

Based on the modelling of diverse protocols for adding and diluting CPAs, it was 

determined that adding and removing Me2SO at RT was optimal for both RH1 and 

SHEF3 cell lines. Both cell lines also required the addition of 2% mannitol to the 

dilution medium in order to minimise the cell volume expansion that the cells 

experience. Addition of compounds such as mannitol during the dilution of CPA has 

been used for human oocytes to increase post-thaw recovery (Bernard and Fuller, 

1996). The time required in carrying out the addition and removal of Me2SO at RT was 

not excessive and can be routinely executed in a laboratory. For RH1 and SHEF3, 

addition of Me2SO at RT required 3 minutes and 1 hour, respectively; dilution of the 

CPA from each cell line required 8 minutes and 1 hour, respectively.  

Toxicity data achieved in this chapter showed that cell growth of the SHEF3 cells 

relative to isotonic control was about 80% after exposure to 10%PG (1.3M) and about 

60% after exposure to 10% Me2SO (1.28M). Similar results were realised with the 

cryopreservation of mouse ESCs where higher post-thaw recovery was achieved in 

cells cryopreserved in 1M PG than in 1M Me2SO (Kashuba Benson et al., 2008o). 

However, this is inconsistent with the results for RH1 cells which indicated that cell 

growth was much higher in Me2SO than in PG, which suggests that different hESC 

lines require diverse CPAs for optimal post-thaw survival. The addition modelling 

showed that SHEF3 required 5 hours to equilibrate in 5%PG which means twice the 

amount of time would be required for 10%PG to permeate the cell membrane, an 

impractical method for routine purposes but which may be considered for long-term 

storage of the cells. 

When using Me2SO, however, both SHEF3 and RH1 were best frozen using a cooling 

rate of 1°C/min which is concurrent with the cooling rate that has been used for the 

cryopreservation of hESCs in Me2SO (Ware et al., 2005b;Nishigaki et al., 2009) and 

other types of stem cells such as cord blood stem cells and human dental pulp-derived 

stem cells (Woods et al., 2006;Woods et al., 2009). The cooling rate of 10°C/min was 

most detrimental to both hESCs in both CPAs. Similarly, the lowest survival for CD34+ 

cells in Me2SO was found at 10°C/min (Hunt et al., 2003k). Although exposure times 

vary for these hESC lines, there is uniformity in the concentration of CPA utilised and 

cooling rate required. 
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The step-by-step procedure of cryopreserving the hESCs in this work is outlined in 

section 4.6, detailing how the serial addition and elution of CPA should be carried out 

for RH1 and SHEF3 in Me2SO. Such detailed steps have only been published for the 

vitrification of hESCs where equilibration steps in each of the vitrification solutions used 

were stated (Hunt and Timmons, 2007). 

This chapter has shown that investigating each of the variables necessary for 

cryopreservation is important for designing an optimal cryopreservation protocol. 

Theoretical modelling of protocols in addition to performing membrane integrity and 

functional tests have contributed to ensuring that the designed protocols are optimal for 

cell survival. As a result, 10% Me2SO and a cooling rate of 1°C/min remain suitable for 

cryopreserving hESCs but equilibration times in CPAs differ from conventional methods 

and should be adapted for increased cell survival. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

132 
 

 

Freezing SHEF3 using 10% Me2SO as a cryoprotectant. 

1. Add cryoprotectant in increments of 2.5% allowing cells to equilibrate for 18 

minutes. 

2. Transfer cells into a cryovial. 

3. Place cryovial into a rate-controlled freezer and set cooling rate to 1°C/min. 

Cool cells to -50°C and transfer into a liquid nitrogen dewar. 

Thawing SHEF3 frozen in 10% Me2SO 

1. Add medium containing 2% mannitol to dilute the concentration to 5% Me2SO. 

Then carry out subsequent dilutions until the concentration is 1.25% (each 

dilution step should reduce CPA concentration to half the initial concentration). 

Allow 35 minutes after for first step and 15 minutes for subsequent steps for 

cells to equilibrate. 

2. Pellet the cells by centrifuging at 1200rpm for 5 minutes. 

3. Resuspend cells in growth medium. 

Freezing RH1 using 10% Me2SO as a cryoprotectant. 

1. Add 10% Me2SO to the cells allowing an equilibration period of 4 minutes. 

2. Transfer cells into a cryovial. 

3. Place cryovial into a rate-controlled freezer and set cooling rate to 1°C/min. 

Cool cells to -50°C and transfer into a liquid nitrogen dewar. 

Thawing RH1 frozen in 10% Me2SO 

1. Add medium containing 2% mannitol to dilute the concentration to 5% Me2SO. 

Then carry out subsequent dilutions until the concentration is 2.5% (each 

dilution step should reduce CPA concentration to half the initial concentration). 

Allow 4 minutes for cells to equilibrate after each dilution step. 

2. Pellet the cells by centrifuging at 1200rpm for 5 minutes. 

3. Resuspend cells in growth medium. 

4.6 Designed cryopreservation protocols 
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This chapter focuses on evaluating the effect of the designed cryopreservation protocol 

for both RH1 and SHEF3 on pluripotency, gene expression and cell survival post-thaw; 

advantages of the designed protocol will be identified and compared to the 

conventional slow cooling protocol which is in general use.  

A cryopreservation study by Katkov and colleagues compared the pluripotency of 

control cells (unfrozen cells) with H9 hESC line containing Oct4 promoter driven, 

enhanced green fluorescent protein (EGFP) that had been subjected to freeze/thawing 

(Katkov et al., 2006b). Flow cytometry analysis, after 3 days in culture, showed that 

control cells, which were passaged on the same day as the frozen cells were thawed, 

had majority of the cells being EGFP-positive, while thawed cells were only 10% 

EGFP-positive. Although Oct4-positive expression increased after 7 days, there were 

large numbers of EGFP-negative cells within each hESC colony in the control and 

thawed cell populations. Similar decreases in post-thaw expression of Oct4 were found 

in other studies (Richards et al., 2004a). Since Oct4 is widely used as a marker for 

pluripotency (Thomson et al., 1998e;Reubinoff et al., 2000c;Boyer et al., 

2005c;Adewumi et al., 2007d), a loss in expression may suggest a loss of pluripotency 

and/or increased differentiation. However, Oct4-positive cells increased after 7 days in 

culture, which raises the debate whether loss of Oct4 is a reversible process. In 

addition, cells which lost Oct4 expression were also found to be non-viable through PI 

staining (Katkov et al., 2006a), however these cells were not shown to be either 

necrotic or apoptotic. Heng and colleagues identified that loss of viability in cells of the 

H1 hESC line that have undergone slow-cooling was due to apoptosis rather than 

necrosis (Heng et al., 2006d). In this study, 98% of cells appeared viable immediately 

after warming, but survival decreased after incubation at 37°C; deterioration of the cells 

was found to be slowed by keeping the cells at 4°C. Terminal deoxynucleotidyl 

transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) assay confirmed 

apoptosis-induced nuclear DNA fragmentation combined with immunocytochemistry 

analysis which detected caspase-3 staining, another marker for apoptosis. Research 

by Baust and colleagues also identified the apoptotic pathway in frozen-thawed hESCs 

as a major contributor to cell death along with necrosis and cell lysis; these three 

modes of cell death were collectively referred to as cryopreservation-induced delayed-

onset cell death (CIDOCD) (Baust, 2002b). Previous work on frozen-thawed human 

fibroblasts showed an up-regulation of transcriptional and proteolytic activity of 

caspase-3 (Baust et al., 2002). Further up-regulation of transcriptional activity of 

caspase-8 and -9 was also found (Baust et al., 2002).  

5.1 Introduction 
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Caspases can be classed into initiator and effector caspases based on structure and 

function. Their structure consists of an N-terminal regulatory prodomain of varying 

lengths followed by a catalytic domain at their core (Fig. 5.1). They are activated by the 

cleaving of other caspases and cellular proteins, thereby forming an apoptotic cascade. 

Initiator caspases (caspases 3, 6 and 7) are first activated through the binding of 

adaptor molecules and then subsequently activate effector caspases (caspases 8, 9 

and 10) which cause apoptosis to occur (Fig. 5.2) (Thornberry et al., 1997). Apoptosis 

can occur either through the intrinsic or extrinsic pathway. The intrinsic pathway is 

initiated by stimuli (for example, irradiation and proapoptotic drugs such as 

staurosporine) which cause the release of cytochrome c in the intermembrane 

mitochondrial space. Cytochrome c moves into the cytosol where it binds apoptotic 

protease-activating factor 1 (Apaf-1) to form a complex that activates caspase-9 and in 

turn activates caspase-3. However, the extrinsic pathway begins by the binding factors 

to a death domain-containing receptor on a cell‟s surface, which activates caspase-8 or 

-9 and stimulates caspase-3, -6 or -7. Knowledge of apoptotic events in frozen-thawed 

hESCs, therefore, has initiated the use of caspase inhibitors in freezing and thawing 

media in order to maximise cell survival. 

In this chapter, the roles of necrosis and apoptosis will be assessed using Annexin V-

FITC and PI dyes. The incorporation of both dyes indicates apoptotic activity while the 

detection of PI alone shows membrane-damaged and necrotic cells. Similar dual 

staining have also been utilised in determining cell viability (Yang et al., 1998;Tijssen et 

al., 2000;Abrahamsen et al., 2002a;Li et al., 2008c;Wagh et al., 2011). Yet other 

studies have used the exclusion of single dyes such as trypan blue or PI to evaluate 

cell viability (Katkov et al., 2006e;Guan et al., 2008). 
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Figure 5.1 Caspase structure  
Characteristic structure of caspases, showing a catalytic core (the dark middle region) 

and an N-terminal prodomain. Cleavage at the aspartate (Asp) sites activates the 

enzyme to induce apoptosis. 

 

Figure 5.2 Two main apoptotic pathways.  
The extrinsic pathway involves the association of death receptors through death 

domain proteins (such as Fas-associated death domain, FADD) which activates 

caspase-8 or-10. The intrinsic pathway begins with the release of cytochrome c in the 

mitochondria which moves into the cytosol. It then binds Apaf-1 which activates 

caspase-9. Both of the pathways lead to the activation of effector caspases (3, 6 and 7) 

which result in cell death. 
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5.1.1 Post-thaw assessment of cell survival  

Cell survival has been evaluated differently through gene expression and occurrence of 

apoptotic events, but insufficiently defined for hESCs that have undergone 

cryopreservation. It is adequate to say that hESC survival post-thaw can be assessed 

by their functionality which has been characterised by their ability to remain 

undifferentiated, express known surface and nuclear markers, and capable of 

differentiating into specific lineages. However, due to the many possible lineages that 

the cells could differentiate into, such a basis to classify cell survival is inadequate. In 

addition, use of the term „viability‟ in various studies has also been questioned due to 

lack of an exact scientific meaning. Having viability clearly defined, therefore, will 

determine the kind of assays that will be used in characterising post-thaw cell survival 

(Pegg, 1989). 

5.1.2 Functionality of Human Embryonic Stem Cells 

The international stem cell initiative (ISCI) was a thorough investigative study with the 

objective to define characteristics that stem cell lines may have in common such as 

gene expression profiles, hence providing a standard for characterising hESCs 

(Adewumi et al., 2007c). 59 hESC lines from different laboratories were analysed for 

this work. Although there were some commonalities in expression of cell surface 

markers and protein antigens, variations were still observed between various cell lines 

(Adewumi et al., 2007b). Other studies have examined plasma membrane proteins that 

may be similarly expressed between hESC lines (Josephson et al., 2006;Dormeyer et 

al., 2008). 

The attractive feature of hESCs is their ability to become any cell type, thus it is 

essential that this capability be maintained before and after cryopreservation. As a 

result, hESCs must be maintained in an undifferentiated state in order to differentiate 

into a desired lineage. The work in this chapter sets out to differentiate each hESC line 

used in the study into the osteogenic lineage. Similar attempts have been carried out 

by other groups who have differentiated hESCs into osteoblasts (Andrews et al., 

1994;Cao et al., 2005d). Moreover, others have differentiated hESCs into hepatocytes 

(Rambhatla et al., 2003), haematopoietic progenitors (Ng et al., 2005b), and 

cardiomyocytes (Mummery et al., 2003a;Bielby et al., 2004c;Passier et al., 

2005a;Passier and Mummery, 2005b). All of these differentiation procedures were 

performed with an initial step of forming aggregates of hESCs called embryoid bodies 

(EBs). These spheroidal structures are created by disaggregating hESC colonies and 

introducing them to a feeder-free culture system where they exist in suspension. 

Subsequent manipulation, involving the addition of necessary factors, promotes the 
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EBs to differentiate into the desired cell type. For example, a cocktail of 

dexamethasone, ascorbic acid and β-glycerolphosphate has been added to EBs to 

promote osteogenic differentiation (Bielby et al., 2004b;Cao et al., 2005a). It has also 

been found that EBs in suspension medium can spontaneously differentiate into the 

three germ layers (Thomson et al., 1998d;Reubinoff et al., 2000b).  

hESCs have also been differentiated without the requirement for EB formation, for 

example in the generation of haematopoietic colony forming cells (Kaufman et al., 

2001b) which was achieved by the co-culture of hESC colonies with irradiated mouse 

bone marrow stromal cells or mouse yolk-sac endothelial cells (Kaufman et al., 2001a). 

Differentiation into neural progenitors has been found in hESC colonies following a 3-4 

week culture of hESC colonies without replacing the MEF layer (Reubinoff et al., 

2001a). 

Markers such as α-fetoprotein, brachyury and nestin represent endoderm, mesoderm 

and ectoderm, respectively, and have been detected using assays such as RT-PCR 

and immunocytochemistry (Reubinoff et al., 2000a;Itskovitz-Eldor et al., 2000c). 

A major challenge regarding the differentiation of hESCs is the lack of a standardised 

protocol, making it difficult to reproduce the results from one laboratory to another. It 

also introduces variability in the success of the procedure. It is evident that uniformity is 

required in executing differentiation protocols and that hESCs must maintain their 

ability to remain undifferentiated in culture, forming characteristic colonies with 

appropriate morphology (Fig. 5.3). However, assessing colony morphology is also a 

subjective process and requires a standardised morphology which can be used to 

identify undifferentiated and differentiated colonies. 
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Figure 5.3 SHEF3 Colonies 
(A) Undifferentiated colony with a defined edge and tightly packed cells in the core; 

there is a clear separation between the colony and surrounding feeder layer of mouse 

embryonic fibroblasts. (B) Differentiated colony with a „fried-egg‟ appearance; the edge 

of the colony is less defined than that of an undifferentiated colony. 
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5.1.3 Criteria for testing optimal cryopreservation protocol 

In this chapter, four criteria will be used in assessing hESC survival following 

cryopreservation in 10% Me2SO according to the designed protocol in the previous 

chapter. Cryopreservation in 10% PG will also be carried out to compare its effect to 

that of 10% Me2SO and the conventional or unoptimised protocol. The four criteria for 

assessment of hESC survival are as follows: 

 Ability of the hESC lines to form colonies in culture post-thaw. 

 Expression of the characteristic cell surface markers TRA-1-60, TRA-1-81, 

SSEA4 which indicate undifferentiated cell population.  

 Ability of hESCs to form EBs and differentiate into a specific cell lineage 

 Reduction in apoptotic events in cells that have undergone the designed 

protocol compared to those cryopreserved under the unoptimised protocol. 

 

 Characterise hESCs by surface marker expression pre-freeze which would be 

analysed by flow cytometry. 

 Assess effectiveness of designed protocols from chapter 4 by comparing 

surface marker expression after freeze-thaw to expression prior to freezing, EB 

formation and subsequent expression of markers specific for each germ layer. 

 Test differentiation capability of freeze-thawed cells by carrying out osteogenic 

differentiation. 

 Compare the effect of PG and Me2SO on cell survival by apoptotic assay 

involving staining with annexin V-FITC and PI. 

Each of the set objectives above will be carried out to prove the study hypothesis that a 

systematic approach to designing a cryopreservation protocol produces a more optimal 

procedure than one designed through an empirical approach. 

 

 

 

5.2 Chapter aims 
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5.3.1 Preparation of embryoid body (EB) medium 

For 100mL, 

84mL  α-MEM (1.5 g/l glucose) with Glutamax 

15 ml FBS (final: 15%) 

1 ml 100x penicillin/streptomycin (final: 1x) 

5.3.2 Embryoid body formation 

RH1 and SHEF3 colonies were washed with 1X PBS, which was then aspirated. 500 µl 

1 mg/ml collagenase Type IV (GIBCO) solution was added for each well of a 6-well 

plate and incubated for 5 minutes at 37°C. 1mL of hESC growth medium was added to 

each well and colonies were gently detached from the MEF feeder layer using a 1000 

µl pipet tip. Colonies were then transferred into a 50mL tube (2 6-well plates per 50mL 

tube) and allowed to settle by gravity. Suspending medium was gently pipetted out of 

the tube. hESC medium was added to colonies for a second wash. 

5.3.3 Surface Marker Expression profiles 

The following surface markers were assessed in 2102Ep, RH1 and SHEF3 cells: TRA-

1-60, TRA-1-81, SSEA4, and SSEA1 using flow cytometry as described earlier (See 

sections 2.5 and 2.7 for culturing methods, and section 2.13 for flow cytometry 

procedure). Expression of SSEA3 was not tested due to unavailability of the 

appropriate isotype control and secondary antibody at the time the assay was carried 

out. 

5.3.4 Differentiation potential of hESCs 

In order to assess the potency of RH1 and SHEF3, two approaches were considered: 

spontaneous differentiation and directed differentiation, which both require the initial 

formation of EBs. Both approaches have been utilised in characterisation studies 

involving hESCs (Itskovitz-Eldor et al., 2000b;Conley et al., 2004b;Bhattacharya et al., 

2005;Ng et al., 2005a;Cao et al., 2005b).  

5.3.4.1 Primer design  

Two genes that represented each germ layer (Table 5.1) were chosen in order to carry 

out RT-PCR analysis of spontaneous differentiation in RH1 and SHEF3. Human mRNA 

sequences of each gene of interest were acquired from the National Center for 

5.3 Materials and Methods 
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biotechnology information (NCBI) database. Primer sequences were chosen from the 

mRNA sequence and compared with the mouse mRNA using a sequence alignment 

program, ClustalW2, in order to increase binding specificity to human genes. This was 

useful to carry out because the hES cell suspensions contained mouse cells from the 

inactivated mouse feeder layer.  

5.3.4.2 Gene expression of embryoid bodies from SHEF3 and RH1 

EBs remained in suspension cultures for 10 days before being disaggregated using 

either recombinant trypsin, TrypLE (Invitrogen) or 1.2units/mL of liberase (Roche). RNA 

was extracted from disaggregated EBs and used to generate cDNA as described in 

sections 2.7 and 2.8. Each primer pair (Table 5.1) was added to the cDNA product for 

each cell line in order to run a PCR reaction. NCAM and GFAP were used as markers 

of the endoderm; GATA6 and SOX7 represented the ectoderm while brachyury and α-

fetoprotein represented the mesodermal germ layer. 
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Table 5.1 RT-PCR primers for germ layer detection 
Primers are markers for endoderm, mesoderm and ectoderm  

 

 

PRIMER 
ANNEALING 

TEMP (˚C) 

ELONGATION 

TIME 

(seconds) 

SIZE 

(bp) 
PRIMER SEQUENCE 

NCAM 59 30 814 
Forward: 
TGTCATCTACGGTTAACATCAGCGCG 
Reverse: 
CCTGAACCGAGTCCATCATCCAAG 

GFAP 59 30 89 
Forward: 
TCAAGTGTCTCAGTCCACCTGAGC 
Reverse: 
CAAGTGCTGAGAATCAAGCTCCCAC 

GATA6 59 30 649 
Forward: 
CCCAAGAGGCTTGCTGAAAGAGTG 
Reverse: 
ACAATCCAAGCCGCCGTGATGAAG 

SOX7 59 30 230 
Forward: 
ACGGTGGCTCACGCCTGTAATC 
Reverse: 
GCAATCTCAGCTCACTGCAACCTC 

BRACHYURY 59 30 241 
Forward: 
ACGTCACCGCCTTAGGATTCGAC 
Reverse: 
ACATCTGCTGACGTCATCGTGACG 

α-

FETOPROTEIN 
59 30 127 

Forward: 
AGAGGAGATGTGCTGGATTGTCTGC 
Reverse: 
ATTGACCACGTTCCAGCGTGGTC 
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5.3.4.3 Osteogenic differentiation 

Day 5 EBs were transferred into a tube before being washed twice with 5mL of 1X PBS 

under slight agitation and disrupted using either recombinant trypsin, TrypLE 

(Invitrogen) or 1.2units/mL of liberase (Roche). EBs were incubated at 37°C for 30 

minutes with shaking every 10 minutes. EB medium was added to the tube and 

resuspended using a 5mL pipet. Cell count was carried out using a haemocytometer. 

1x105 cells were seeded onto each well of a 6 well plate and allowed to adhere 

overnight. Medium was changed from EB medium to osteogenic medium containing 

hESC medium supplemented with 10mM β-glycerophosphate, 50µg/mL L-ascorbic 

acid-2-phosphate and 1µM dexmethasone. 

5.3.5 Cell viability assay using conventional Annexin-V/PI 

hESCs were frozen using the optimal cooling rates that were earlier determined and 

stored in liquid nitrogen vapour phase for 7 days. The cells were then thawed and CPA 

diluted according to the designed protocols. hESC concentration was adjusted to 

1x106cells/mL. Then cells were incubated for 30 minutes at 37˚C. 0.5mL of cell 

suspension from both samples were placed in microfuge tubes and centrifuged for 5 

minutes at 1000xg. Cells were resuspended in 0.5mL cold PBS. Centrifugation was 

repeated and the cells resuspended in 0.5mL cold binding buffer. 1.25μL of annexin V-

FITC (Calbiochem) was added to the cells and incubated for 15 minutes at room 

temperature in the dark. Again, the cells were centrifuged and resuspended in 0.5mL 

cold binding buffer. Lastly, 10μL of propidium iodide (PI) was added to the samples and 

which kept on ice and in the dark. Analysis by flow cytometry followed shortly 

thereafter. Phosphatidylserine which is normally on the cytoplasmic surface of the cells 

translocates to the cell surface when apoptosis is induced. Annexin V has a strong 

affinity to phosphatidylserine and therefore binds to apoptosed cells. Figure 5.4 shows 

a schematic which is used to identify necrotic and apoptotic cells. 
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Figure 5.4 Schematic diagram of viability assessment by Annexin V-FITC and PI 
The upper right hand quadrant shows cells which are stained with both PI and Annexin 

V-FITC and are apoptotic. However, the bottom left-hand quadrant indicates cells 

which have not been stained with either PI or Annexin V-FITC and are considered 

viable and membrane intact. 
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5.4.1 Surface marker expression prior to freeze-thaw process 

Characterisation of the surface marker expressions of the hEC line, 2102Ep, and 

hESCs RH1 and SHEF3 was carried out by flow cytometry to ensure that an 

undifferentiated cell population was being utilised in subsequent analyses that would 

be performed. Results showed characteristic marker expression in all cell lines (Figs. 

5.5-5.7). All cells lacked expression of SSEA1 and showed positive expression of 

SSEA4, TRA-1-60, and TRA-1-81. 

5.4.2 Formation of embryoid bodies (EBs) and spontaneous differentiation 

In order to test the potential of each hESC line without injecting immunodeficient mice 

with a cell suspension of pluripotent material, an alternative assay which has been 

utilised in studies involving hESCs combines the formation EBs in suspension cultures 

with either an assay to detect markers from the three germ layers through spontaneous 

differentiation or directed differentiation into a specific lineage. RH1 and SHEF3 

colonies formed EBs when in suspension culture with each of the three-dimensional 

structures displaying a darkened differentiated core (Fig. 5.8). However, further 

analysis to examine the presence of cells from the different germ layers was performed 

by expression of various genes through RT-PCR but SOX7 was the only gene detected 

in both hESCs (Fig. 5.9). This may be an indication that RT-PCR is not the best 

method of detecting genes of the three germ layers because they may be expressed at 

very low levels. 

5.4.3 Osteogenic differentiation 

Following the results of the RT-PCR, an attempt to carry out directed differentiation 

using the EBs generated yielded no results because disrupted EBs failed to attach to 

the tissue culture plastic. Several attempts at disrupting EBs with TrypLE or 

collagenase IV and seeding the cells to perform osteogenic differentiation also yielded 

no results. Assay was repeated over a period of 6 months without success. 

5.4 Results 
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Figure 5.5 Surface marker expression of 2102Ep cells  
The hEC line, 2102Ep showed (A) Negative expression to SSEA1, a marker for 

differentiation. Positive expression was detected for (B) SSEA4 and TRA-1-60, and 

also (D) TRA-1-81. Red histograms indicate antibody controls. The y-axis indicates the 

cell count on a logarithmic scale. 
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Figure 5.6 Surface marker expression of RH1 cells. 
Flow cytometry analysis indicated (A) Positive expression of SSEA4 (B) No expression 

of SSEA1, a marker for differentiation and positive expression of TRA-1-60 and (C) 

positive expression of TRA-1-81. Red histograms indicate antibody controls while blue 

and green histograms represent gene expression. The y-axis indicates the cell count 

on a logarithmic scale. 
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Figure 5.7 Surface marker expression of SHEF3 cells. 
Flow cytometry analysis of hESC line, SHEF3, showed (A) Negative expression to 

SSEA1, a marker for differentiation. Positive expression was detected for (B) SSEA4 

and TRA-1-60, and also (D) TRA-1-81. Red, purple and blue histograms indicate 

antibody controls, while green and black histograms represent gene expression. The y-

axis indicates the cell count on a logarithmic scale. 
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Figure 5.8. Embryoid bodies  
Disaggregated RH1 and SHEF3 colonies possess the ability to form EBs in suspension 

cultures. The EBs were of varied sizes. 
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Figure 5.9 RT-PCR analysis of hESC gene expression 
PCR images of (A) expression of house-keeping gene, GAPDH, for RH1 and SHEF3 

EBs, and marker expression for each of the three germ layers in (B) SHEF3 and RH1. 

SOX7 was the only gene detected in both RH1 and SHEF3 EBs. 
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5.4.4 Analysis of colony morphology 

Post-thaw analysis of hESC colonies after undergoing freezing in Me2SO and PG 

showed characteristic morphology with defined periphery and tightly packed 

undifferentiated cells in the core of the colony (Fig. 5.10) but size measurement of the 

colonies was not carried out. 

5.4.5 Post-thaw marker expression 

Following freeze-thaw in Me2SO and PG using the designed cryopreservation protocol 

and rapid warming in a 37°C water bath, SHEF3 cells were characterised for 

expression of pluripotent markers in order to ensure that pluripotency was maintained 

during the process. Flow cytometry analysis showed positive expression to TRA-1-

60/81 and SSEA4 indicating their undifferentiated state (Fig. 5.11). There were no post-

thaw results for RH1 due to contamination that occurred while the cells were in culture. 

5.4.6 Comparative analysis of cell survival using Annexin V/PI 

Cell survival according to flow cytometry analysis was higher for hESCs cryopreserved 

with the designed protocols for PG and Me2SO than those frozen using the 

conventional protocol (Figs. 5.12 and 5.13). Significantly higher numbers of necrotic 

and apoptotic cells were found in cells under the conventional protocol compared to the 

designed protocols. Although there were no significant differences between cells frozen 

in PG and Me2SO, the scatter plots show a high proportion of the cell population which 

were Annexin V-positive in cells frozen in PG than in Me2SO. This was also the case 

with cells frozen using the conventional protocol. 
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Figure 5.10 Post-thaw analysis of SHEF3 colonies in Me2SO and PG 
Images of hESC colonies in vitro following freeze-thaw process (n = 5). In Me2SO, 5X 

(A) and 10X (B), and in PG at magnification of 5X (C) and 10X (D). Images show tightly 

packed cells in each colony with defined peripheries that distinguishes the colony from 

the MEF feeder layer. 
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Figure 5.11 Surface marker expression of SHEF3 after undergoing freezing in 
Me2SO and PG. 
hESCs maintained expression of SSEA4, TRA-1-60 and TRA-1-81 following freezing 

and thawing using the designed cryopreservation and thawing protocols when using 

PG or Me2SO. Red histograms indicate antibody controls. The y-axis indicates the cell 

count on a logarithmic scale. 
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Figure 5.12 Flow cytometry analysis of apoptosis in SHEF3 following freeze-thaw 
using designed and unoptimised protocols. 
Flow cytometry scatter plots show necrotic, apoptotic and viable SHEF3 cells after 

staining with Annexin V-FITC and PI dye. Necrotic and apoptotic cells were higher in 

the conventional protocol compared to the designed protocols for adding and removing 

10%Me2SO and 10%PG. Early apoptotic cells appear highest in both cells frozen in 

10%PG and conventional protocols. 
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Figure 5.13 Post-thaw analysis of apoptotic events in SHEF3. 
Apoptotic and necrotic events were lower in the cells cryopreserved under the 

designed protocols for Me2SO and PG than under the conventional protocol (single 

addition of 10% Me2SO). There were no significant differences in the number of 

necrotic and apoptotic cells in cells cryopreserved in either Me2SO or PG while 

significant differences were observed between cells which had undergone the designed 

protocols compared to the conventional protocol. Data are means ±SEM (n = 3). 

Significance analysis was carried out using the ANOVA test (**p<0.01, ***p<0.001). 
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In this chapter, the designed protocols for cryopreserving hESCs in PG and Me2SO, 

and eluting the CPAs post-thaw were assessed for their effectiveness in maintaining 

hESC characteristics. The influence of each CPA on apoptotic events was also 

measured and compared in order to determine which CPA was better in improving cell 

survival. 

Initial characterisation of each hESC line showed that the cells expressed characteristic 

surface markers prior to being frozen. The hEC cells, 2102Ep, and hESC lines, RH1 

and SHEF3, all expressed pluripotent markers which were part of a panel of markers 

used in the international stem cell initiative project to characterise hESC lines 

(Adewumi et al., 2007a;Wright and Andrews, 2009). Although a specific function of the 

surface antigens SSEA3/4 is not clear, they have been found to be involved in early 

embryo development. Therefore, the lack of expression of these antigens signifies a 

less primitive status (Damjanov et al., 1994). In addition, the SSEA1 antigen which is 

associated with the induction of differentiation in human teratocarcinoma and hESCs, is 

normally not expressed in such cells (Kannagi et al., 1983). It has been shown that 

differentiation leads to a diminished expression of the SSEA3 antigen and the positive 

expression of SSEA1 (Andrews et al., 1982a); TRA-1-60/81 expression also 

disappears. Although SSEA3 expression was not assessed in this study, SSEA4 is 

closely related to SSEA3, and it can be concluded that its expression also diminishes 

upon differentiation (Fenderson et al., 1987).  

SHEF3 and RH1 also formed EBs in suspension as expected but disaggregating the 

EBs to perform osteogenic differentiation was problematic. A therapeutically useful 

hESC line should not only be free of reagents sourced from animals, it should also be 

capable of being differentiated into a desired cell type. Both RH1 and SHEF3 cells 

displayed the capability of creating EBs, but did not express the lineage-specific 

markers chosen to represent the three germ layers in this work. This might have been 

due to the length of time that the EBs were in culture. The EBs in this project were in 

suspension culture for 14 days because it has been shown that there is reduced 

marker expression in day 21 EBs compared to day 14 EBs (Bhattacharya et al., 2005). 

It is possible that the chosen markers may have been expressed in such low levels that 

they would not be detected by RT-PCR. As a result, quantitative PCR (qPCR) might 

have been a more appropriate method because it is able to detect low level expression 

of markers that may not be identified by RT-PCR (Moore et al., 2010). Other assays 

such as immunocytochemistry have also been used in identifying lineage-specific 

markers (Thomson et al., 1998c;Reubinoff et al., 2000g;Carpenter et al., 2003). This 

5.5 Discussion  
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chapter has shown that the spontaneous differentiation of hESCs is not an optimal 

method of assessing their pluripotency. The attempt to perform osteogenic 

differentiation following current procedures (Bielby et al., 2004a;Cao et al., 2005c) was 

also unsuccessful, proving that the need for more robust differentiation protocols to be 

developed. Currently, available osteogenic differentiation methods vary in the number 

of days that the EBs should be in suspension and in the means that the EBs should be 

disaggregated. 

All post-thaw analyses were carried out on SHEF3 cells due to contamination of RH1 

cells in culture which meant there were not enough cells to carry out required assays. 

Hence, post-thaw results cannot be compared between hESC lines for lack of 

necessary data. After undergoing freeze-thaw in each CPA, the morphology of SHEF3 

cells compared to conventional hESC morphology (Thomson et al., 1998b;Reubinoff et 

al., 2000h;Ellerstrom et al., 2006b), with each colony possessing an undifferentiated 

core and differentiated cells on the periphery. Colony scoring was not performed due to 

the variability in the size of colonies even when similar cell numbers are replated from a 

single cell suspension. Ji and colleagues found that colony size varied by as much as a 

factor of three (Ji et al., 2004e). The cryopreservation of cell clusters or clumps has 

also been found to generate colonies of different sizes because some clumps divide 

into smaller clumps during the freeze-thaw process (Hunt and Timmons, 2007). 

Advances to generate uniform sized colonies are existent where hESCs are 

propagated by plating single cell suspensions on micropatterned extracellular matrix 

islands (Peerani et al., 2007b;Bauwens et al., 2008). It has been found that colony size 

is involved in maintaining an undifferentiated phenotype in hESCs (Peerani et al., 

2007a). Larger colonies, which have higher cell densities than smaller colonies, 

maintained an undifferentiated state by suppressing activation of SMAD1 (see section 

1.5.3 that describes activation of SMAD2/3 maintains pluripotency) (Peerani et al., 

2007c). It may therefore be possible to identify undifferentiated colonies by measuring 

their sizes. Additionally, the length of time allowed before passaging may be 

determined in order to avoid hESC colonies from differentiating and ensuring the 

replating of undifferentiated colonies. Although the effect of PG and Me2SO on hESC 

proliferation may be determined as a result of colony scoring, it does not necessarily 

provide information on the phenotype of the colonies because sections of 

undifferentiated colonies have been found to contain differentiated cells (Ware et al., 

2005a;Ha et al., 2005c).  

Several cryopreservation studies involving hESCs have therefore utilised colony 

morphology only as part of evaluating cryopreservation methods (Reubinoff et al., 

2001f;Zhou et al., 2004a;Wu et al., 2005b;Ha et al., 2005d;Li et al., 2008h). The 
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subjectivity of identifying cells which are undifferentiated, therefore, required more tests 

to be performed in this study to ensure that the cells possessed pluripotency markers 

such as SSEA4, TRA-1-60 and TRA-1-81. Similar tests have been used in other 

cryopreservation studies to prove the undifferentiated state of hESC lines (Reubinoff et 

al., 2001g;Wu et al., 2005a). SHEF3 cells maintained expression of earlier mentioned 

markers, identifying the cells as a pluripotent population, which suggests that the 

appropriate concentration of either PG or Me2SO does not affect expression of surface 

markers. Yet other studies have carried out karyotype analysis in order to detect 

chromosomal changes as a result of cryopreservation methods with many finding no 

abnormal changes (normal karyotype, diploid) (Richards et al., 2004a;Ji et al., 

2004f;Wu et al., 2005f;Martin-Ibanez et al., 2008d). Chromosomal changes have been 

observed in long-term culture of hESCs where there has been a gain of chromosome 

17q and 12 (Draper et al., 2004). It has been suggested that the gain of chromosome 

17q may confer proliferative advantage on hESCs by inhibiting apoptosis and 

differentiation through the expression of inhibitor genes which lie on the chromosome 

(Chiou et al., 2003). Chromosome 12 has been shown to be associated with Nanog in 

mESCs (Chambers et al., 2003) and hECs (Mostert et al., 1998). Although karyotype 

analysis was not performed in this study, it may influence the choice of CPA used in 

cryopreservation based on its effect on phenotype and proliferation. 

This chapter showed SHEF3 possessed an undifferentiated phenotype after freeze-

thaw, but a more definitive evaluation of cell survival was determined by carrying out an 

apoptotic assay using PI and annexin V conjugated with FITC. Assessment of 

apoptotic and necrotic events showed that cell death by necrosis was generally lower 

than by apoptosis, an agreement with published data by Heng et al, which stated that 

loss of viability during freeze-thaw was due to apoptosis rather than necrosis (Heng et 

al., 2006a). Apoptosis was assessed by terminal deoxynucleotidyl transferase (Tdt)-

mediated dUTP nick-end-labeling (TUNEL) assay which detects apoptosis-induced 

fragmentation of nuclear DNA (Heng et al., 2006e). Baust and colleagues also found 

that loss of viability of peripheral blood mononuclear cells (PBMCs) was largely due to 

apoptotic events (Baust et al., 2007b).  

Interestingly, this PhD study found early apoptotic cells which were only positive for 

annexin V in cells cryopreserved with PG, suggesting that these cells could have 

apoptosed if more time was allowed before analysis. A study by Baust and colleagues 

showed that though PBMCs were 80-90% viable immediately post-thaw, further 

incubation at 37°C resulted in significant decline in viability due to increase in necrotic 

and apoptotic events in the cells but more largely due to apoptosis (Baust et al., 

2007a). This discovery of early apoptotic cells may provide an explanation for why the 
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toxicity assay in chapter 4 showed a higher percentage of cell numbers for SHEF3 in 

10%PG than in 10%Me2SO. Although there were no significant differences in the 

number of necrotic and apoptotic cells between cells frozen in 10%PG or in 

10%Me2SO, the presence of early apoptotic cells in 10%PG confirms that Me2SO 

remains the optimal CPA for SHEF3 cells and produced more viable cells. Other 

studies have measured cell viability by trypan blue exclusion (Reubinoff et al., 

2001h;Baust, 2002a;Martin-Ibanez et al., 2008c;Mollamohammadi et al., 2009b), 

counting cells that exclude the dye on a haemocytometer. It is not an optimal assay 

because it does not discriminate between cells which have membrane damage from 

cells which are necrotic and can no longer proliferate. The analysis of necrotic cells by 

the trypan blue method is also skewed and based on the individual carrying out the 

analysis. Using the annexin V dye to distinguish between necrotic cells and apoptotic 

cells is a better means of analysis. A study by Li and colleagues used Annexin V-FITC 

to detect apoptosis in single cell suspensions of hESCs which had undergone five 

rounds of freeze-thaw (Li et al., 2008b). hESCs cryopreserved in medium 

supplemented with Rho-associated kinase inhibitor (ROCK) were found to produce 

more colonies and proliferated at a faster rate than hESCs frozen without the ROCK 

inhibitor (Li et al., 2008a). The results of cell survival in this chapter agree with earlier 

results of toxicity assays previously discussed in chapter 4, which indicated the use of 

10% Me2SO as the optimal CPA concentration to be applied for cryopreservation of 

RH1 and SHEF3. Moreover, the shorter time period required for the addition and 

elution of Me2SO at RT, determined by theoretical modelling also demonstrated best 

methods because hESCs would have shorter exposure times to Me2SO than to PG. 

The measure of apoptotic events in the cells was evaluated to ensure and provide 

additional evidence that the designed cryopreservation protocols were more optimal by 

producing significantly higher numbers of undamaged cells than the cells 

cryopreserved under the conventional protocol. 

This chapter highlights the importance of using an optimised cryopreservation protocol 

for the storage of hESCs. First, it proves that the cryopreservation and CPA removal 

protocols designed in this work maintained the expression of pluripotent markers TRA-

1-60, TRA-1-81 and SSEA4 in the hESCs. Secondly, this chapter provides an 

optimised cryopreservation method using Me2SO which has not been published before. 

Post-thaw analysis of the cells indicated significantly higher post-thaw recovery in cells 

cryopreserved using the designed protocol for 10% Me2SO than the unoptimised 

protocol for adding 10% Me2SO. It is important to note that Me2SO has been shown to 

cause differentiation in hESCs through the loss of Oct4 expression (Katkov et al., 

2006f), but it has not been concluded that the lack of expression of this marker is 

necessarily related to the loss of pluripotency.  
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In conclusion, knowledge of the biophysical properties of hESCs has enabled the 

design of a cryopreservation protocol which considers and minimises damage that 

each parameter for cryopreservation may induce. As a result, better post-thaw results 

were produced than current slow cool methods. Following the freeze-thaw process 

using the designed cryopreservation procedures in this chapter, the hESCs showed 

expression of pluripotent markers, high cell viability, and the ability to form EBs. 
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The pluripotency of hESCs makes them potentially useful for clinical therapies and for 

basic research, for example, into developmental regulation and onset of disease 

(Draper and Andrews, 2002;Gerecht-Nir and Itskovitz-Eldor, 2004;Davila et al., 2004). 

However, a lot more research needs to be carried out. Each stem cell line that has 

been derived requires a storage method in order for expansion to occur. 

Cryopreservation is one such method where hESCs can be stored and resurrected 

when required. As a result, many studies have been performed to find the optimal 

cryopreservation method for hESCs (Katkov et al., 2006g;Li et al., 2008j). This work 

offers a different perspective in such research by providing the fundamental properties 

of hESCs which are necessary to design an optimal cryopreservation protocol. This is 

the first time a systematic approach has been applied to the research of hESC 

cryopreservation. 

 

The first challenge in carrying out this cryopreservation study was the colony-forming 

nature of hESCs in vitro since single cell suspensions were required in order to 

establish biophysical properties of the cells. Gap junction proteins such as Connexin 43 

and 45 (Wong et al., 2004;Huettner et al., 2006) have been found in hESCs and are 

required for electrical and chemical signals to be passed from one cell to another within 

a colony. These gap junctions have been shown to be necessary for the maintenance 

of pluripotency in mouse (Egashira et al., 2004) and human ESCs (Carpenter et al., 

2004;Wong et al., 2004). They are also involved in maintaining self-renewal properties 

in somatic cells such as neural stem cells (Cai et al., 2004) and mesenchymal stem 

cells (Valiunas et al., 2004;Lin et al., 2007). There is, therefore, a risk of differentiation 

when hESC colonies are disaggregated into single cells. However, evidence exists in 

published literature for successful dissociation of hESCs into single cells which 

possessed high replating efficiency and maintained an undifferentiated state in sub-

culture populations (Hasegawa et al., 2006c;Ellerstrom et al., 2007a). As a result, each 

hESC line used in this study was dissociated into single cells before each assay was 

carried out.  

Although single cell dissociation of hESCs is now routinely carried out for many hESC 

lines, dissociation-induced apoptosis should be considered because Ohgushi and 

colleagues showed that the loss of E-cadherin-dependent intercellular contact in hESC 

colonies activates Rho proteins which are regulators of apoptosis (Ohgushi et al., 

2010c). Since Rho-dependent protein kinase (ROCK) induces apoptosis in hESCs, 

ROCK inhibitors have been added to culture media to improve plating efficiency and 

even cryopreservation media to improve cell survival. ROCK inhibitors were not added 

6.1 Challenges 
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to any of the media used in culturing or cryopreserving hESCs in this study, but may 

prove beneficial to hESCs which are cryopreserved using the designed protocol 

developed in this work. 

Another challenge in this study was the use of MEF feeders to subculture each hESC 

line. Although feeder-free hESC culture existed, it was not well-established at the 

beginning of this study and problems existed such as an adaptation period that had to 

be allowed for the cells to adjust when transferred from a feeder layer to feeder-free 

system (Xu et al., 2001c;Rosler et al., 2004a;Amit and Itskovitz-Eldor, 2006;Mallon et 

al., 2006). Consequently, hESC populations used in our study were a heterogeneous 

population of hESCs and some MEFs. As a result, modal values for cell volume were 

used rather than mean values because mode has been shown to be unaffected by 

outlying data when there is a broad distribution of data (Pegg and Lancaster, 1998). 

Modal values represent the most frequently occurring cell volumes during 

measurement which are more representative of the cell population. 

 

The hEC line, 2102Ep, was used in preliminary experiments due to its expression of 

similar surface markers to RH1 and SHEF3. This PhD study identified that 2102Ep 

possessed similarities in biophysical properties to hESCs. The biophysical and gene 

expression data were evidence that not only can 2102Ep be used as a reference cell 

line for biochemical study of hESCs (Josephson et al., 2007) but can also be employed 

for cryopreservation studies. 

Although differences were discovered in biophysical data established for RH1 and 

SHEF3, there were similarities in membrane permeability values to those of human 

spermatozoa and human oocytes (Gilmore et al., 1995d;Paynter et al., 1999d) which 

may indicate that cells from the same species may be categorised into a set range of 

values for Lp and Ps. However, further studies to acquire biophysical data for every 

hESC line derived are required and should be documented to assess the variation in 

permeability to water and CPAs. 

It was clear that the cell populations used in the assays performed had pluripotent 

characteristics from the surface marker expressions of each hESC line. RH1 and 

SHEF3 expressed characteristic markers before and after freezing using the slow cool 

method designed in this work. Similar to this study, post-thaw characterisation of the 

undifferentiated state of hESCs has been carried out using flow cytometry to analyse 

their expression of cell surface markers such as SSEA4, TRA-1-60 and TRA-1-81 

(Martin-Ibanez et al., 2008b;Li et al., 2008g;Amps et al., 2010). However, a real-time 

6.2 Achievements 
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PCR analysis of the level of expression of each gene would provide information on 

whether the genes were up or down-regulated compared to cells under the 

conventional cooling protocol. Proteomic analysis has been employed to analyse 

oocyte proteins which were either up or down-regulated after the freeze-thaw process 

(Larman et al., 2007a). This method of analysis may identify the difference in the level 

of protein expression between hESCs before and after freezing and provide more 

information on the effect of PG and Me2SO on gene expression. Although PG and 

Me2SO did not affect surface marker expression of SHEF3, earlier chapters have 

shown that PG induces osmotic stress to the cells and also requires much longer 

equilibration periods than Me2SO. In a comparative study by Katkov and colleagues, 

ethylene glycol (EG) was found to maintain pluripotency similarly to Me2SO but better 

than PG, and was also found to be less toxic than both PG and Me2SO (Katkov et al., 

2011). 10% was chosen for the concentration of EG used in the study because 

conventional slow cooling protocols for hESCs use 10% Me2SO (Katkov et al., 2011). 

Another study has shown the possibility of hESC cryopreservation without using 

Me2SO (Nishigaki et al., 2009). Instead, a combination of 40% (v/v) EG and 10% (v/v) 

PEG was used to cryopreserve the Japanese hESC line, Khes1, resulting in higher cell 

recovery compared to the cells that were preserved with cryoprotective medium 

containing Me2SO (Nishigaki et al., 2009). This study has shown that an investigation 

into the CPA permeability into hESC membranes and a toxicity assay would provide 

more certain results of the optimal concentration and mode of addition and removal of 

CPA to/from hES cells. 

The aim of this work was not only to design an optimal cryopreservation protocol for 

hESCs, but also to contrast the difference between adopting a trial and error approach 

and a systematic approach. Based on the CPAs tested, results achieved showed that 

10% Me2SO remains an optimal concentration and 1°C/min an optimal cooling rate for 

slow cooling of hESCs which are similar to conventional protocols. More importantly, 

this study showed a distinct difference in the mode of CPA addition and elution 

between each hESC line. For RH1, a single step addition of 10% Me2SO and three 

step elution were most suitable, while a four step addition and removal method were 

the optimal protocols for SHEF3 cells. Further analysis of the effect of CPA on 

apoptotic events in SHEF3 cells showed the highest occurrence in cells cryopreserved 

using conventional protocols compared to the designed protocols. The designed 

protocol for 10% Me2SO produced the lowest numbers of apoptotic cells, which 

supports earlier findings that it is a better CPA than PG. 

Many studies exist which have taken different approaches to optimise cryopreservation 

procedures for various cell types. A theoretical approach based on computer 
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simulations or mathematical formulae has been applied to spermatozoa, peripheral 

blood HPCs and umbilical cord blood (Tijssen et al., 2000;Hunt et al., 2003a;Woods et 

al., 2003b;Woelders and Chaveiro, 2004) while an empirical or „trial and error‟ 

approach was taken for optimising hESC cryopreservation methods (Chan and Evans, 

1991a;Chen et al., 2009a;Mollamohammadi et al., 2009a;Amps et al., 2010) produced 

better results than existent protocols. However, this study combined the use of a 

theoretical approach using of the 2 parameter formula to determine osmotic properties 

of hESCs, and an empirical approach by choosing two commonly used CPAs and 

carrying out timecourse responses of the cells to each using a time period of 5 minutes.   

The work in this thesis presents novel data because none of the cryopreservation 

variables have been determined for any of the hESC lines currently available. 

Determination of physical parameters and tests of functionality produced a more 

optimal cryopreservation protocol for hESCs than the conventional or less optimised 

protocol, hence proving the hypothesis. It should become routine practice that the 

biophysical data for each hESC line be determined as part of the characterisation 

process. 

 

The designed protocols in this study have shown that damage to hESCs is significantly 

minimised compared to currently used cryopreservation protocols. However, there are 

possible ways to further optimise the final protocols designed for RH1 and SHEF3 in 

this study such as investigating warming rates and adding caspase inhibitors to 

cryopreservation and thawing media. More differentiation protocols also need to be 

tested and modified accordingly in order to successfully achieve directed differentiation. 

Additionally, knowledge of the role of aquaporins in solute transport may be useful in 

the selection of CPAs that can be used for cryopreserving various hESCs. 

6.3.1 Warming rate experiments 

Experiments studying the effect of various warming rates will be valuable due to their 

role in recrystallisation which was previously discussed in the introductory chapter. 

Although cooling rates were investigated in this study, the frozen cells were warmed in 

a 37°C water bath which was assumed to provide rapid warming that will avoid the 

occurrence of recrystallisation. It has been stated that this method of warming thawed 

frozen cells equates to a rate of 120°C ± 7°C/min (Hunt et al., 2003b). However, using 

a cryomicroscope to visualise the events occurring during thaw may result in the choice 

of a more optimal warming rate. The effect of cooling and warming rates have been 

tested on the survival of hamster tissue culture cells (Mazur et al., 1969b), porcine and 

6.3 Future Work 
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bovine embryos (Hochi et al., 1996a;Sanchez-Osorio et al., 2010), human erythrocytes 

(Pegg et al., 1984b) and human spermatozoa (Henry et al., 1993). 

6.3.2 Addition of caspase inhibitors to optimised CPA media 

The Annexin-V results showed that both designed protocols using PG and Me2SO 

produced fewer numbers of necrotic and apoptotic cells post-thaw than the 

unoptimised cryopreservation protocol. In the future, therefore, caspase inhibitors can 

be incorporated in the designed cryopreservation procedure in order to enhance 

survival because they have been shown to reduce the occurrence of apoptosis and 

also differentiation (Watanabe et al., 2007a;Van Hoof et al., 2008a;Martin-Ibanez et al., 

2008a;Li et al., 2008f;Claassen et al., 2009e). 

6.3.3 Improvement of differentiation protocols 

The formation of EBs prior to performing directed differentiation has been used as an 

assay for the pluripotency of hESCs (Itskovitz-Eldor et al., 2000a;Conley et al., 

2004a;Bhattacharya et al., 2005) but attempts to differentiate hESCs into osteogenic 

cells following EB formation were unsuccessful despite using available differentiation 

protocols. Another possible differentiation assay is cardiomyocyte differentiation which 

is also not reproducible as it is partly dependent on the occurrence of spontaneous 

events. EBs are cultured for several days in suspension before being plated onto 

gelatinised tissue culture dishes for 2-3 weeks; the dishes are then searched for 

beating areas which are only present in 8-25% of EBs (Passier and Mummery, 2005a); 

this process is time-consuming. Yet there are other protocols which introduce bone 

morphogenic protein-2 (BMP-2) in day 30 EBs (Kim et al., 2008d) or BMP-4 to day 4 

EBs (Takei et al., 2009). Mummery and colleagues have also developed 

cardiomyocytes through the co-culture of EBs with visceral-endoderm-like cells from 

mice (Mummery et al., 2003b). Better assays for hESC differentiation need to be 

developed that will be reproducible in different laboratories and produce a uniform 

outcome. 

An in vivo assay where hESCs are injected into severe combined immunodeficient 

(SCID) mice and induce teratoma formation is a true test of pluripotency, which has 

been performed in many studies involving hESCs (Thomson et al., 1998a;Xu et al., 

2001d;Reubinoff et al., 2001i;Zhou et al., 2004d;Li et al., 2010a). The resulting 

teratomas have been found to contain cells representing the three germ layers. 
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6.3.4 Expression of aquaporins on hESC membranes 

Additional data that may be worth investigating in order to improve the optimisation 

process of a cryopreservation protocol is determining which aquaporins are embedded 

in the plasma membrane of cells. Aquaporins were first detected on the plasma 

membrane of human erythrocytes as proteins which aided water transport (Agre et al., 

1993b). There are several aquaporins, among which is aquaporin 3 (AQP3) which has 

been found to transport both water and CPAs in xenopus oocyte and mouse morulae 

(Yamaji et al., 2006b;Edashige et al., 2007b). In mouse morulae, glycerol and ethylene 

glycol were found to be transported by AQP3 (Edashige et al., 2007c), while Yamaji 

and colleagues showed that AQP3 not only transports glycerol and ethylene glycol but 

also acetamide, PG and Me2SO in xenopus oocytes (Yamaji et al., 2006c). However, 

the transport of Me2SO was not as efficient in xenopus oocytes as for the other CPAs 

(Yamaji et al., 2006d). It is therefore possible that aquaporins may be involved in the 

movement of solutes across the membranes of hEC cells and hESCs. If this is true, 

then any damage to the aquaporins will affect the length of time it takes for the cells to 

equilibrate and may explain why some of the cells in the experiments described in 

Chapter 3 did not regain their original cell volume. Although Lp and Ps values provide 

information about cell membrane permeability, the mechanism by which water and 

solutes traverse the membrane is unknown. The presence of an additional protein for 

the transport of CPAs and water may also affect the type of CPA used in 

cryopreservation as every CPA will vary in molecular weight; larger molecules may 

require a carrier protein to traverse the plasma membrane.  

 

The in vitro propagation of RH1 and SHEF3 in this study involved the use of animal 

components such as MEF feeders and cryopreservation medium containing FCS, 

which restricts the hESC lines to research purposes alone. However, alternative use of 

xenogeneic-free cultures (Stojkovic et al., 2005b;Inzunza et al., 2005e;Mallon et al., 

2006) and autogenic feeders (hESC-derived fibroblasts) (Stojkovic et al., 2005c;Chen 

et al., 2009b) will render these hESC lines more clinically applicable. Designed 

protocols for RH1 and SHEF3 developed in this study can therefore be used in 

cryopreserving potential hESC lines for therapeutic purposes. 

The UK stem cell bank (UKSCB) which acts as a depository and a centre for 

standardising protocols pertaining to hESCs will also benefit from the design of an 

optimised cryopreservation protocol because it will not only improve current storage 

methods but will advance the use of uniform protocols between recipient laboratories. 

Each hESC line sent out from the UKSCB is accompanied with protocols for its 

6.4 Study conclusion 
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propagation and cryopreservation. As a result, a more optimal cryopreservation 

protocol will reduce the delay that can be caused by several unsuccessful attempts to 

resurrect hESCs after receipt of cells from the UKSCB.  

In conclusion, it is clear that investigating the fundamental biophysical properties of 

cells is beneficial and essential for the design of an optimal cryopreservation protocol. 

All of the results indicate that the designed protocols allowed the effective storage of a 

single cell suspension of hESCs. The protocols also produced hESCs which 

maintained their expression of pluripotent markers and a lower percentage of necrotic 

and apoptotic cells than that of the unoptimised protocol currently used to freeze 

hESCs. A systematic approach to the design of a cryopreservation procedure, 

therefore, is crucial for the survival of hESCs. Further research into other cell 

membrane properties such as the composition of aquaporins, and the addition of 

caspase inhibitors to cryoprotective medium will enhance cell survival. 
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Optimal cryopreservation protocol designed for SHEF3 and RH1 

Freezing SHEF3 using 10% Me2SO as a cryoprotectant. 

1. Add cryoprotectant in increments of 2.5% allowing cells to equilibrate for 18 

minutes. 

2. Transfer cells into a cryovial. 

3. Place cryovial into a rate-controlled freezer and set cooling rate to 1°C/min. 

Cool cells to -50°C and transfer into a liquid nitrogen dewar. 

Thawing SHEF3 frozen in 10% Me2SO 

1. Add medium containing 2% mannitol to dilute the concentration to 5% Me2SO. 

Then carry out subsequent dilutions until the concentration is 1.25% (each 

dilution step should reduce CPA concentration to half the initial concentration). 

Allow 35 minutes after for first step and 15 minutes for subsequent steps for 

cells to equilibrate. 

2. Pellet the cells by centrifuging at 1200rpm for 5 minutes. 

3. Resuspend cells in growth medium. 

Freezing RH1 using 10% Me2SO as a cryoprotectant. 

1. Add 10% Me2SO to the cells allowing an equilibration period of 4 minutes. 

2. Transfer cells into a cryovial. 

3. Place cryovial into a rate-controlled freezer and set cooling rate to 1°C/min. 

Cool cells to -50°C and transfer into a liquid nitrogen dewar. 

Thawing RH1 frozen in 10% Me2SO 

1. Add medium containing 2% mannitol to dilute the concentration to 5% Me2SO. 

Then carry out subsequent dilutions until the concentration is 2.5% (each 

dilution step should reduce CPA concentration to half the initial concentration). 

Allow 4 minutes for cells to equilibrate after each dilution step. 

2. Pellet the cells by centrifuging at 1200rpm for 5 minutes. 

3. Resuspend cells in growth medium. 
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Abbreviations 

°C  degree Celsius 

AQP  Aquaporin 

bFGF  Basic fibroblast growth factor 

BMP  Bone morphogenic protein 

bp  base pair 

BSA  Bovine serum albumin 

CPA  Cryoprotectant 

DAPI   4',6-diamidino-2-phenylindole  

DIA  Differentiation inhibiting activity 

DMEM  Dulbecco‟s Modified Eagle‟s medium  

EB  Embryoid body 

EC  Embryonal carcinoma 

ECM  Extracellular matrix  

FADD  Fas-associated death domain 

FBS  Fetal bovine serum 

FGF  Fibroblast growth factor 

FTIR   Fourier transform infrared spectroscopy 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hESC  Human embryonic stem cells 

HPC  Haematopoeitic progenitor cell 

HSC  Haematopoeitic stem cell 

ICM  Inner cell mass 

IIF  Intracellular ice formation 
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iPSC  Induced pluripotent stem cell 

IVF  In vitro fertilisation 

JAK   Janus family tryrosine kinases 

LIF   Leukaemia inhibitory factor 

Lp  Hydraulic conductivity 

LPT  Lipid-phase transition 

MDCK   Madin-Darby canine kidney  

Me2SO  Dimethyl sulfoxide 

MEF  Mouse embryonic fibroblast 

MTT   3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide 

PBS  Phosphate buffered saline 

PBS+  Phosphate buffered saline with bovine serum albumin 

PG  Propylene glycol 

Ps  Solute permeability 

rpm  Rotations per minute 

RT  Room temperature 

S/V  Surface to volume ratio 

SEM  Standard error of mean 

Tg  Glass transition temperature 

UKSCB UK Stem Cell Bank 

Vb  Non-osmotic volume 

Π  pi 

Χ2  Chi square 
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