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One of the most essential processes in classical computation is that related to the
information manipulation; each component or register of a computer needs to com-
municate to others by exchanging information encoded in bits and transforming
it through logical operations. Hence the theoretical study of methods for informa-
tion transfer and processing in classical information theory is of fundamental impor-
tance for telecommunications and computer science, along with study of errors and
robustness of such proposals. When adding the quantum ingredient, there arises
a whole new set of paradigms and devices, based on manipulations of qubits, the
quantum analogues of conventional data bits. Such systems can show enormous
advantage against their classical analogues, but at the same time present a whole
new set of technical and conceptual challenges to overcome. The full and detailed
understanding of quantum processes and studies of theoretical models and devices
therefore provide the first logical steps to the future technological exploitation of
these new machines. In this line, this thesis focuses on spin chains as such theoreti-
cal models, formed by series of coupled qubits that can be applied to a wide range of
physical systems, and its several potential applications as quantum devices. In this
work spin chains are presented as reliable devices for quantum communication with
high transfer fidelities, entanglement generation and distribution over distant par-
ties and protected storage of quantum information. Methods to design these tools
to have some robustness against errors and noise are provided, giving optimism for
future quantum technologies.
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Chapter 1

Introduction

“It always bothers me that, according to the laws as we understand them today,
it takes a computing machine an infinite number of logical operations to figure
out what goes on in no matter how tiny a region of space, and no matter how
tiny a region of time. How can all that be going on in that tiny space? Why
should it take an infinite amount of logic to figure out what one tiny piece of
space/time is going to do? So I have often made the hypotheses that ultimately
physics will not require a mathematical statement, that in the end the machinery
will be revealed, and the laws will turn out to be simple, like the chequer board
with all its apparent complexities.”

Richard Feynman

Quantum mechanics has had a huge impact into many areas of science by pro-
viding a whole new mathematical framework that helped – and keeps helping – us
to enhance our knowledge of Nature in a very accurate way. This theory is so pow-
erful that its applications reached the information science arena, giving rise to what
could be – if not yet – a new technological revolution.

The idea of a mathematical computational model based on quantum mechanics
came first from the need of finding a more general representation than the one of-
fered by the classical Turing machine [5]. The Church-Turing thesis asserted that any
algorithmic process could be efficiently simulated using a Turing machine which, in
turn, could be simulated by a universal Turing machine. However, the original uni-
versal Turing machine was soon insufficient to simulate any algorithmic process.
Some problems cannot be efficiently solved by classical computers, even after ran-
domised algorithms were introduced [6] and the Church-Turing thesis was strength-
ened with the ad hoc hypothesis of a probabilistic Turing machine.

At the same time, the simulation of Nature’s processes has been one of the main
applications in the history of computation. Yet, the fact that Nature is also quan-
tum sets a practical limitation on its complete simulation. The number of variables
needed to tackle problems related to quantum phenomena grows exponentially with
the size of the system in a classical computer. There are ways to partially overcome
this limitation, both from the software perspective such as excellent approximation
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models (e.g. perturbation or density functional theories) or the hardware architec-
ture with the use of distributed computing approaches. However, no classical com-
putational paradigm has yet been postulated for an efficient and accurate complete
description of such problems.

Another important aspect is that there is a limitation in the evolution flow on the
manufacturing of electronic devices. In 1965, Moore predicted that the number of
transistors per integrated circuit was doubling and would double once every year
[7]. Ten years later he adjusted such prediction to allow the number of transistors
to double once every two years only [8] for the following decade. The direct con-
sequence of this is that computers – and other electronic devices – would double in
power by allocating more transistors that are smaller in size. We all have been able to
observe the validity of such prediction, embedded in the information revolution we
have witnessed these last two decades. However, this exponential trend based on
the capabilities of the current technological approach to semiconductors is about to
bow as quantum effects start interfering and become more prominent in such small
scales.

It was soon demonstrated that a quantum computer could efficiently solve some
of these aforementioned limitations. Deutsch [9] proposed that a new version of
the universal Turing machine could be quantum. Problems that have no classical
efficient solution such as finding the prime factors of an integer [10] or searching in
an unstructured space [11] could potentially be solved in a quantum computer, as
shown by Shor and Grover. Also, in the same way classical computers efficiently
simulate many classical problems, quantum computers would also be expected to
excel in the simulation of quantum phenomena. The variables needed for such sim-
ulations grow linearly with the size of the problem, in contrast with the exponential
growth of the classical counterpart. The recognition of quantum effects as a tool
for computation would also help to keep up with Moore’s law as we can envisage
transistors as small as one single atom [12].

Quantum computing is not the only application promised from the exploitation
of quantum phenomena. Under the same framework, new technologies and de-
vices are already being realised, e.g. to allow for secure communication (quantum
cryptography [13] and quantum communication [14]) or to enhance the precision of
physical measurements (quantum metrology [15]). Even though the present work
will focus on computing, it is important to remark that the quantum and mathemat-
ical formalism behind it provides a total new way of dealing with information. The
extension of this theory is so vast that it may well end up contributing to science and
technology with forms that we have yet not been able to even imagine.

All of the previous are just a few examples of the potential advances this tech-
nology can offer. It may happen that difficult constraints are encountered in its de-
velopment process -some of which, have in fact already been found- but there is a
strong argument for researchers to pursue this field as far as we can. This thesis aims
to contribute a humble tiny piece of this huge quantum puzzle and to illustrate in
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detail the applications of spin-chains for quantum computing.

1.1 Quantum Information and Quantum Computation

In this section the fundamentals of the theory behind Quantum Information and
Computation (QIC) technologies are provided as a set of general definitions [16]. A
broad picture of the state of the field from the experimental point of view is reviewed
and a list of desirable qualities, when it comes to the physical implementation of a
quantum computer device, is examined.

1.1.1 General definitions

Qubit

In classical computing, bits are the basic units of information. A bit can be rep-
resented by any two states device as a 0/1, +/- sign, true/false, the presence or
absence of a hole in a punched card, etc. Yet it will always be in one of these two
values. On the contrary, one of the remarkable features of quantum mechanics is
that it allows a two level quantum system to be in a linear combination of its two
possible states or superposition. This gives rise to the analogous concept of the bit in
quantum computing: the qubit.

By convention, we take 0 and 1 as the two possible states of a bit and, similarly, |0〉
and |1〉 as the states of a qubit. These two states are referred to as the computational
basis, orthonormal vectors by which any arbitrary qubit can be represented such as,

|Ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex numbers. |α|2 and |β|2 are the probabilities of measuring
the qubit to be in the state |0〉 and |1〉, respectively. Given that such probabilities must
sum to one, a qubit state will always fulfill the normalisation relation |α|2 + |β|2 = 1.

State space

Any quantum physical system has an associated Hilbert space H , which in the con-
text of quantum information is a finite vector space with inner product also called
state space. The system, in turn, can be described by one state vector, which will be
a unit vector |Ψ〉 of its Hilbert space. Such unit vector can be represented as a linear
combination of the vectors that form a complete set on that space.

We have seen that one possible set of two vectors spanning the Hilbert space of a
single qubit is |0〉 and |1〉, which by convention correspond to the vectors

(
1
0

)
and

(
0
1

)
,

respectively. This implies that the Hilbert space for one qubit has dimension two, C2.
Such vectors are linearly independent and orthonormal, so any state of the qubit can
be described as a linear combination (or superposition) of these two (Eq. 1.1). When
encountering a system with more than one qubit, the dimension of the Hilbert space
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is not 2 anymore and 2N vectors are required to fully describe the system, N being
the number of qubits, H =

⊗
N C2.

Basis

The same Hilbert space H can have more than one complete set of vectors. If the
vectors of a set are linearly independent, such set will form a basis for H . For in-
stance, a single qubit can have |0〉 and |1〉 as a basis but also |ϕα〉 ≡ 1√

2

(
1
1

)
and

|ϕβ〉 ≡ 1√
2

(
1
−1
)
. The vectors of both sets are orthogonal to each other, linearly inde-

pendent and can be transformed to another by a unitary transformation, so any state
of the qubit can be represented with any of both basis.

Having said that, in quantum information, and due to their resemblance with
strings of bits, it is common to take as a complete basis the 2N possibilities of dis-
tributing the "zeros" and "ones" in a system ofN qubits. This way, the v basis vectors
of a system can be written as |Φv〉 = |φ1〉 ⊗ |φi〉 ⊗ ...|φN 〉 with i being the qubit in-
dex and |φi〉 ∈ (0, 1). This notation is often simplified, as shown below, with all the
values being written in order inside a single ket. As an example, for a three qubits
system, the 23 = 8 vectors describing the basis will be the following:

|Φ1〉 = |000〉

|Φ2〉 = |100〉

|Φ3〉 = |010〉

|Φ4〉 = |001〉

|Φ5〉 = |110〉

|Φ6〉 = |101〉

|Φ7〉 = |011〉

|Φ8〉 = |111〉.

We will refer to this basis as the site basis and it will be the one used in this work.
The vectors will be labeled in the same consistent way, in increasing order of "ones"
and by moving one "one" forward at a time.

Quantum states

We have seen that any state vector |Ψ〉 of the Hilbert space can be represented as
a linear combination of the vectors that form a complete basis set. Therefore any
arbitrary quantum state of a system can be described as a superposition of the basis
vectors, |Φv〉,

|Ψ〉 =
∑
v

cv|Φv〉, (1.2)
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with the normalisation condition
∑

v |cv|2 = 1. Again, the superposed nature of
quantum states is in sharp contrast to what the states in classical computation look
like. Yet, as it will follow, there is much more behind these superpositions and some
states, such as entangled states, point to a rich variety of potential advantages for
quantum information applications.

In order to understand the particularities and differences of quantum states, the
state vector |Ψ〉 representation, even though very intuitive, is not always the most
convenient. We here introduce a mathematical tool named the density operator or
matrix, ρ, under which any quantum state can be represented in an equivalent man-
ner to the state vector representation. Under this general description, any quantum
system can be described by,

ρ =
∑
i

pi|ψi〉〈ψi|, (1.3)

being pi the probability of finding the system in the pure state |ψi〉 and with the
fulfillment of the normalisation condition

∑
i pi = 1. The density operator is always

positive and has trace equal one. It evolves by a unitary transformation such that
ρ(t2) = Uρ(t1)U

†, being U the unitary operator that relates the state of the system at
time t2 with the system at time t1 [16].

• Pure state

If the state of the quantum system is fully known the system is in a pure state. A
superposition of pure states is also a pure state. In terms of the density matrix we
have a pure state if and only if tr(ρ2) = 1 (or ρ ≡ ρ2). This implies the existence
of just one state with probability p = 1 and therefore the density matrix can be
reduced to ρ = |ψ〉〈ψ|. It can be then easily shown that tr(ρ) = tr(ρ2) = 1 as
ρ2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| because 〈ψ|ψ〉 = 1.

We therefore know that pure states can still be easily represented as a state vector
|Ψ〉, and given that over this work we will be mostly dealing with pure states, we
will stick to this representation.

• Mixed state

In some circumstances, the state of a quantum system is found to be as an en-
semble or mixture of pure states. This is that the system is formed by a set of pure
states |ψi〉with probability pi. In such cases it is then useful to use the representation
from Eq. 1.3. Again, the trace of the squared density matrix, ρ, offers a criterion to
determine whether the state is in a mixture: tr(ρ2) < 1.

Quantum measurement

The measurement of the state of a qubit is one of the most fundamental challenges in
QIC technologies and a direct consequence of quantum mechanics. When perform-
ing a computation, one will surely need to know the outcome state sooner or later
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in order to make a use of it. However, the complete knowledge of a quantum state
is, unfortunately, something not easily attainable. Any superposition representing
the state of a single- or a multiple-qubit state will project upon measurement into a
different state, called the post-measurement state.

The nature of such post-measurement state, |Ψ′〉, depends on the measurement
operator, Mw, acting on the state space of the system being measured, where w is the
index of the possible outcomes of the measurement, what forms a complete set of
measurement operators. If we measure a state |Ψ〉, the probability of measuring w is
P(w) = 〈Ψ|M †wMw|Ψ〉, and the sum of all the outcome probabilities is normalised to
unity as the measurement operators satisfy the completeness equation

∑
wM

†
wMw =

I . This measurement leaves the system in the state:

|Ψ′〉 =
Mw|Ψ〉√

〈Ψ|M †wMw|Ψ〉
(1.4)

This means that even though we can operate and perform computation on the
different amplitudes in quantum superposition and therefore take advantage of them,
we will need to use clever methods to gain as much information as possible from
the final state. This becomes more problematic when dealing with mixed states, as
uncertainty upon measurement does not only come from the collapse of the quan-
tum superposition into the post-measurement state but also from the classical uncer-
tainty due to the state being a probabilistic ensemble of pure states. The probability
of measuring the state ρ is P(w) = tr(M †wMwρ) leaving the post-measurement state
ρ′ = MwρM

†
w

tr(M†wMwρ)
.

Entanglement

Entanglement is one of the most characteristic features of quantum mechanics and
implies a strong correlation between qubits or subsections of a quantum system.
This correlation can be mathematically recognised in the way the quantum state
looks like: an entangled state can not be described as a product state of each of the
N sections forming the system, this is |Ψ〉 6= |ψ1〉⊗|ψi〉...|ψN 〉. A state describing two
qubits A and B, |ΨAB〉 = 1√

2
(|10〉+ |11〉) can be factorised as a product state between

the subspaces HA and HB , such that |ΨAB〉 = |1A〉 ⊗ 1√
2
(|0B〉+ |1B〉). If the state is

instead entangled, such as the Bell state |ΨAB〉 = 1√
2
(|10〉+ |01〉), there is no way to

separate the subspace components from A and B.
Entanglement has profound implications when it comes to fitting quantum me-

chanics into our intuitive description of the world. Let us suppose we have two
entangled qubits. When either of the two qubits are measured, the state of the other
qubit is influenced by the measurement outcome, no matter how far apart they are.
This contradicts the locality hypothesis, which states that any physical process of a
system occurring at one location should not have any effect on the properties of an-
other system in a different location if information cannot travel faster than the speed
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of light. On the other hand, entanglement also disagrees with the realism hypothe-
sis, which affirms that physical properties have well-defined values independently
of whether they have or have not been measured. This lack of local realism led
Einstein, Rosen and Podolsky (EPR) to question the completeness of Quantum Me-
chanics [17]. However, the EPR classical interpretation was soon called into question
in 1963 when John S. Bell showed through his ’no-go theorem’ that systems strictly
subject to local realism cannot reproduce all the predictions of quantum mechan-
ics. This was theoretically proved through the violation of Bell’s inequality [16],
results that were confirmed experimentally by John F Clauser and Stuart J Freed-
man in 1972 [18], and have more recently been backed with demonstrations [19] that
are loophole-free [20]. Certainly, we must abandon the idea of local realism when
navigating the seas of quantum mechanics.

There are mathematical quantities that allow us to prove whether a state is en-
tangled and in what extent: Von Neumann entropy and Entanglement of Formation.
The Von Neumann entropy, S(ρ), determines whether a state ρ is pure or mixed and
it is defined by:

S(ρ) ≡ −tr(ρ log ρ). (1.5)

If S(ρ) = 0, the state is pure, otherwise it is in a mixture. This mixed state hap-
pens to be completely mixed if the entropy is equal to log d with d being the di-
mension of the Hilbert space [16]. The presence of bipartite entanglement between
subsystems A and B using this measure can be identified by tracing out B from the
density matrix, ρ, such that ρA = trBρ. If S(ρA) = 0 there is no entanglement be-
tween A and B [21], while if nonzero, the presence of entanglement is guaranteed
provided that the overall state of A and B is pure.

Even though the entropy is a good measure of the level of mixture in the system
and allows to identify the presence of entanglement, when dealing with mixed states
it does not provide a good indication on how much entangled the state is. In order
to quantify this, we need a monotonic measure called Entanglement of Formation
(EOF ) [22]. This is a bipartite measure of entanglement for mixed states and it
is going to be formally defined in Chapter 2. However let us now mention that,
when dealing with pure states, the amount of entanglement can also be expressed
by the simple formula of the pure concurrence [22], C, of an arbitrary two qubits
state |Ψ〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉:

C = 2|c00c11 − c01c10|. (1.6)

EOF and C ∈ {0, 1}, and the state is said to be maximally entangled when
EOF = 1 (or C = 1). Bell states (also refered as EPR pairs) are a set of four max-
imally bipartite entangled states widely used in QIC. There are also states that ex-
hibit multipartite entanglement, some examples include GHZ, W or Cluster states
and different ways of calculating their concurrence exist [23, 24].
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Entanglement represents an essential resource for quantum computation and it
is used in many quantum information protocols [25]. Teleportation of one qubit
is a process in which the state of a quantum bit can be transmitted with the use
of one classical communication channel and a pre-shared maximally entangled Bell
state [26]. Similarly, a pre-shared pair of entangled qubits is needed for superdense
coding [27], protocol which allows to transmit two bits of information per qubit, or
for some quantum key distribution (QKD) protocols [28], enabling two parties to
share a cryptographic key securely.

Decoherence

Quantum noise or decoherence is a fundamental obstacle in the processing of quan-
tum information placing one of the biggest challenges for the practical realisation
of a quantum computer [16]. Because all quantum systems will ultimately be open
(this is, coupled to external degrees of freedom, usually called ’environment’), the
system will eventually get entangled with external degrees of freedom and the co-
herence of any quantum superposition will be lost. Amplitude or phase evolution
will be affected by decoherence, hampering the conservation of the quantum state.

The coherence times are the average times for which the superposition of a quan-
tum state is conserved and they are strongly dependent on the qubit implementa-
tion. T1 is the timescale for the amplitude damping, process in which there is an
energy loss for the system until the thermal equilibrium is reached due to its cou-
pling with the environment. For example, this is the time taken at low temperatures
for an "excited" state |1〉 to decay into its "ground" state |0〉. T2 is the timescale of
the phase damping, i.e. time needed for a state |0〉+|1〉√

2
to acquire a random relative

phase. In general, T2 is much smaller than T1, meaning that T2 is more important for
quantum computation. In addition, even though decoherence is generally referred
to time-dependent quantum noise, static disorder due to slowly varying energy fluc-
tuations or fabrication defects are another types of error that will probably be present
in realistic systems.

Even though implementations (see later in this introduction) allowing a high
degree of isolation of the qubit such as ion traps or NV-centres [29] are being re-
alised along with developing fault-tolerant quantum computation proposals based
on topological phenomena [30], the complete suppression of decoherence is unlikely.
Nonetheless, instead of trying to avoid errors, one could think of correcting them.
Error correcting codes can make the number of errors due to quantum noise almost
negligible, providing that the system has been optimised up to a certain threshold
of allowed disorder [31], but at the expense of an important experimental overhead
as more qubits are required.
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Quantum gates

In order to perform a quantum computation, as in classical computing, we need a
quantum circuit formed by gates. Such gates are used to manipulate and change
the information. In classical computers, gates are physical electronic devices able to
perform a logical (Boolean) operation to one single string of bits (NOT) or between
two different strings (AND, OR, NAND, XOR, NOR, XNOR). Quantum computers
need analogous components able to perform different unitary operations to single
qubits (i.e. state rotations or Hadamard gates) and multiple qubits (i.e. controlled
gates such as CNOT).

Single qubit gates can be described as unitary matrices, U †U = I , of size two.
To illustrate some of the most common examples, the X (or NOT), Z and Hadamard
gates act on an arbitrary qubit α|0〉+ β|1〉 of a circuit as,

.

These can be represented in the computational basis with the following matrices,

X =

(
0 1

1 0

)
Z =

(
1 0

0 −1

)
H =

1√
2

(
1 1

1 −1

)
(1.7)

On the other side, multiple qubit gates have multiple qubits as input/output and
the output of the operation depends on the relation between their states. One of the
most used ones is the CNOT gate, which uses a control, |C〉, and a target, |T 〉, qubit.
This gate will perform an X operation to the target qubit (X|T 〉) as long as the control
qubit is in a state |1〉. In circuit language, this gate is described as follows,

being the operation |C ⊕ T 〉 the addition modulo two (also simulated by a XOR
gate) and represented by the following 4x4 matrix,

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.8)
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A set of gates is said to be universal if any computation can be described using
a sequence of gates from that set. For example, a set of AND, OR, NOT gates is
enough to grant universality in classical computing. In the early 90’s universality
was shown to be attained even from only NAND (or NOR) gates [32]. In the quan-
tum counterpart, any arbitrary operation can be described in a circuit built with a
toolkit formed by single qubit gates, to perform any arbitrary single qubit rotation,
and any two qubit gate capable of producing entanglement, such as a CNOT gate,
to allow for arbitrary operations on multiple qubits [16, 33].

1.1.2 State of the art

The number of scientific and technological achievements with applicability to QIC
technologies has been growing exponentially every year since the first ideas on the
potential applications of quantum computers were born [9, 34, 35].

Hardware implementations for the realisation of qubits have been proposed, us-
ing systems as diverse as photons, semiconductors, superconductors or molecules,
some of which will be explored in Section 1.2.3. Each of these presents strengths and
weaknesses as many factors come into play: coherence times, scalability, initialisa-
tion, read-out, gate operations, etc. For example, NV-centers and ion traps present
excellent long coherence times (T2 of the order of seconds) but show control issues
when scaling to larger systems. If one could extract and combine the benefits of each
implementation we would be closer to the building of a large-scale quantum com-
puter. This is the idea behind the pursue of hybrid quantum computer architectures
[36], schemes that would make the most of each implementation’s potential. It is, in
fact, from such perspective that we think the class of devices proposed in this thesis
could be included in the prospective design of a scalable quantum computer.

Even though new cryogenic methods and refinement on the materials engineer-
ing enhance coherence times and increase quantum computing speed, e.g. for su-
perconducting qubits the coherence times increased from ∼ 1 ns to ∼ 100 µs [37],
decoherence is still a problem. For now, error correcting codes are one of the best
solutions to this issue and these techniques are already being applied with practical
error rates [38]. Another way to potentially avoid decoherence is to use topological
quantum computer architectures which perform computation through the braiding
of quasiparticles called non-abelian anyons [30, 39, 40], but this is still a theoretical
model as, even though predicted, non-abelian anyons have not yet been definitively
detected.

With respect to quantum communication, photon-based qubits are the preferred
platform due to their relative resistance against decoherence (as they interact very lit-
tle with the environment) and abilities to be guided through long distances in optical
fibers [41]. Quantum communication protocols realising quantum key distribution
(QKD), superdense coding and teleportation have been implemented [42–44] and
some QKD devices are already being commercialised [45]. Quantum communica-
tion is quickly developing up to a level where ambitious applications are envisaged
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such as the design and implementation of a quantum internet [46] or the realisation
of satellite-based communication. The latter is already a reality and the distribution
of an entangled pair of photons has been attained over distances as large as 1200 km,
something crucial for many applications [47].

From the simulation point of view, since the very first quantum algorithms by
Grover, Deutsch and Shor were formulated, hundreds of new algorithms have been
proposed [48]. Experimental demonstrations of algorithms running in different quan-
tum computer platforms of modest size have been realised [49, 50]. Large computer
companies such as IBM, Google, Microsoft or Intel are stepping forward in the race
for the commercialisation of the first quantum computer, making the scalability of
their computer prototypes and the design of quantum software and algorithms their
main priority. In 2016, Google and Martinis’ group presented a quantum computer
build out of an array of 9 superconducting qubits which were able to detect and cor-
rect bit-flip errors among themselves [38]. A year after, this computer was able to
calculate the potential energy surface of the hydrogen molecule [51], reporting for
the first time the use of a quantum computer to solve a real quantum chemistry prob-
lem. At the same time, IBM released their 5-qubits quantum computer (which they
would soon upgrade to 17-qubits), also using superconducting qubits, and made it
available to public through their cloud system called ’Quantum Experience’ (QX).
Both Google and IBM released their own quantum software, OpenFermion [52] and
QISkit [53], respectively, providing the user with an accessible interface to program
and run their own quantum algorithms. New ambitious goals have been already
set for 2019, with IBM announcing the release of a 50-qubits computer and Google
promising a 72-qubits quantum chip, systems that are believed that would outper-
form the computer capabilities of their classical counterparts.

1.1.3 Device design and DiVincenzo criteria

Even though still in its infancy, this field is growing fast. A ceaseless search for
efficient quantum software (logic, algorithms, cryptography, etc) and reliable hard-
ware (buses, memories, gates, routers, etc) contributes to a better understanding of
what this technology will look like in a not too far future. However, the nature of
the implementations that will be needed in a quantum computer is still not known,
as no definite architectural proposal has really outperformed the others yet. In the
meantime, devices and protocols based on different implementations able to ma-
nipulate and operate with quantum information are being designed and even fab-
ricated. Back in 2000, DiVincenzo published his popular criteria for the physical
implementation of quantum computation and communication [54] where he estab-
lished a set of conditions any quantum device would be required to satisfy. This
thesis presents a model along with its design capable to implement different quan-
tum operations that we believe can be of technological interest. Because of this, let
us first briefly go through DiVincenzo criteria, which will later help us to evaluate
the performance and suitability of our proposal as a quantum device.
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1. The system needs to be scalable and its qubits have to be well characterised.

The qubit is the building block of QIC and therefore it is essential to have it
very well defined. This entails that the physical realisation of the qubit has to be
a two levels system with a complete knowledge of the parameters that differentiate
each of the levels (e.g. their energies). However, one isolated qubit has not much use
other than its sole study and parametrisation. At the moment, and still under debate
[55], the estimated number of qubits needed to outperform a classical computer is
about 50 [56]. Therefore there is an obvious need for any proposed system to be able
to handle several qubits. This will add more parameters that need to be taken into
account, such as physical interactions between qubits, state correlations and external
field fluctuations. There are several proposals for the realisation of a qubit and we
will briefly see some of them in the following section.

2. There must be a way to initialise the system to a specified state.

In computing any variable needs to have an initial value assigned. It does not
matter if it is defined in the context of a high level language program or as a register
of the processor. In example, the arithmetic logic unit (ALU) of a computer processor
performs basic operations (add, subtract, multiply and divide) between a small set
of registers that temporarily allocate the data needed for a specific operation. If the
computation needs to calculate the sum (add) of two variables, the control unit (CU)
needs to first allocate the value of those variables into the registers rA and rB. If this
initialisation is not done, the sum operation will not be correct.

Even though this requirement may sound a bit too obvious, when applying this
to QIC, initialisation becomes a real technical issue. One possible method for doing
this would be to cool down the system to its ground state, as long as such state is well
specified (i.e. through natural thermalisation at very low temperature so the state is
approximately pure). Alternatively, one could perform a set of projective measure-
ments to prepare the system to a useful known state. It is however important to pay
special attention to the time needed for this, which even though is strongly related
to the physical implementation, will always need to be shorter than the operation
times.

3. The relevant decoherence time needs to be much longer than the operation
time.

As already introduced, decoherence can be problematic for the processing of
quantum information. Such disturbance affects the state of the system converting
it to a mixed state or by altering the state amplitudes. The integrity of the compu-
tation is consequently compromised. It is therefore required that the computation
runs in a much smaller time scale than decoherence does.
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A possible way around relies on error correcting codes, which make use of ancil-
lary qubits to identify and correct the errors caused by decoherence. However such
methods are not exempt of limitations, as they require many additional ancillary
qubits and the level of decoherence still needs to be below a threshold to guarantee
fault-tolerance [16].

4. There must exist a universal set of quantum gates.

We have seen that one-qubit gates along with a single two qubit gate capable of
generatin entanglement form a universal set [16], which allows any computation to
be represented under those gates. However, alternatives to these gates performing a
specific operation are also available. We will here explore one such alternative when
presenting our proposed entangling gate in Chapter 5.

The unitary operations performed by a quantum gate are generated by the spe-
cific Hamiltonian of the device. This means that the dynamics of the device needs to
have some level of controllability, this is to turn on/off the evolution at the required
time (i.e. switch-off qubit-qubit interactions). In addition, such switch needs to be
quick enough to optimize the operation time of the gate. Quantum gates will also
suffer from fabrication random errors and therefore the maximum tolerable deco-
herence time should always be smaller than the operation time.

5. A specific qubit has to be accessible for measurement.

In the same way it is basic for the computation to require input of an initial state,
it is also essential to be able to retrieve the output. This is done by reading out
the state of certain specified qubits without changing the state of the rest of qubits.
Once again, in order to be efficient, the measurement has to be done on a short time
scale in order to avoid decoherence errors. However even when the efficiency of the
measurement is low, one can improve it by running the same computation several
times and take the averaged value of the sample.

6. There must be a way to encode the state of a stationary qubit into a flying
qubit.

The hardware of a quantum computer will be mainly built out of static qubits,
as well as short-ranged quantum communication devices, an example of which will
be explored in Chapter 3. However, the quantum communication needed to cover
longer distances will require the use of flying qubits, which will generally be pho-
tons. This makes it necessary to find a way to encode the state of the static qubit into
a photon state. This is a hard requirement to fulfill and up to date only few modest
size implementations have achieved it [57–59].
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7. There must be a way to transmit flying qubits between two points.

In all quantum communications, the coherence of the photonic qubit needs to be
preserved until the full state has been transmitted. There are many cryptographic
techniques and protocols that are focused on allowing the communication to fulfill
this requirement [14, 41].

1.2 Spin Chains

In the early 1920s, the Stern-Gerlach experiment [60] demonstrated the existence of
a quantized property of the electron: the spin. This was later regarded as an intrin-
sic angular momentum of elementary particles that can take discrete non-negative
values depending on the nature of the particle (fermions or bosons). Because it is
a natural two level quantum system, the spin-12 can be described under the qubit
model of Eq. 1.1. It is in this context that spin chains are approached in QIC, as any
qubit can be mathematically regarded as a spin. Hence, in the quantum information
language, spin chains are a theoretical model composed of an ensemble of two-level
quantum systems coupled to each other [61]. The spin chain formalism can be ap-
plicable to a range of physical systems representing a chain of permanently coupled
qubits. Thus, our focus will be on the mathematical aspect of this device putting
special attention to the structure and natural dynamics of these chains.

The angular momentum associated to the spin-12 is an observable that can be de-
scribed with the Pauli operators. These are defined by the following 2x2 Hermitian
matrices σx, σy and σz :

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(1.9)

The two states of the spin-12 are thus the eigenstates of the Pauli operator σz act-
ing at site i of an N-site chain, with eigenvalues +1 and -1 respectively and represent
the spin up | ↑〉 and spin down | ↓〉 states. Such states are mapped into the compu-
tational basis or the qubit |1〉 and |0〉 states, respectively. Because the components of
the spin are well-defined using the Pauli matrices, such operators are very useful for
the general treatment of two level systems. Importantly, the Pauli matrices and the
Identity matrix (see below) form a complete set of 2x2 Hermitian matrices by which
any single qubit gate (see Section 1.1.1) can be described.

I =

(
1 0

0 1

)
(1.10)
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1.2.1 Models

An N -sites spin-12 chain with nearest-neighbour interactions and open boundary
conditions can be described by the following general Heisenberg Hamiltonian [62]:

H =
1

2

N−1∑
i=1

Ji,i+1[(1 + λ)σixσ
i+1
x + (1− λ)σiyσ

i+1
y + Γσizσ

i+1
z ] +

N∑
i=1

εiσ
i
z (1.11)

The on-site energies, εi, are called homogeneous if they are not site dependent.
The strength of the interaction between sites is defined by the coupling energies,
Ji,i+1. Several spin models arise depending on the symmetry of the interaction be-
tween spins, also named anisotropy. The Heisenberg model or XXX model is ob-
tained when λ = 0 and Γ = 1. If λ = 0 and Γ 6= 1, the spin chain is described by a
XXZ model with the special case of Γ = 0 regarded as the XX (also called XY) model.
This is the one considered in this thesis and will be described in detail in Section
2.1.1. For completeness, if λ 6= 0 and Γ 6= {0, 1} the model is called XYZ, and when
λ = ±1 and Γ = 0, it is called the Ising model.

1.2.2 Applications

In recent years spin chains have acquired growing importance within the field of
quantum information processing, mainly as means of efficiently transferring in-
formation [61–64]. Such chains can represent the "perfect wire" for quantum data
transmission through microscopic distances. Therefore, a spin chain able to ensure
faithful and efficient state transfer between two sites can be applied to the building
of quantum buses interconnecting various computer components, such as registers
within quantum processors or memories. This would allow the communication and
scalability of the components of a quantum computer without the need of convert-
ing the quantum state into different types of information in all-solid state quantum
computer implementations. Schemes allowing quantum state transfer in spin chains
include the engineering of interactions [65–68], and alternative encoding schemes
such as wavepacket [65, 69] or dual rail encoding [70].

Spin chain systems are also used for the creation and distribution of entangled
qubits within a solid state-based quantum processor or computer [2, 62, 71–76]. Both
entanglement creation and distribution can be seen as an alternative for quantum
communication between two registers which can be attained through teleportation
protocols [26, 77], which rely on pre-shared pairs of maximally entangled qubits.
Examples include proposals on the generation of entanglement through the natural
dynamics of the system [2, 4, 71, 73, 78], statically by initialising an antiferromagnetic
chain to an appropriate eigenstate [79–82] or by performing a sudden change of the
Hamiltonian or "quench" of Kondo spin chains [62, 83, 84].

In addition, complex structures of spin networks with different geometries can be
defined under the same formalism of a spin chain [62]. Such devices can allow for the
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transfer [66, 85], routing [86], switching [87] or splitting of the quantum information
through active or passive operations that are being applied to parts of the network.

1.2.3 Physical implementations

We now review a few examples of solid-state experimental platforms that could re-
alise a spin chain. This is by no means an exhaustive exploration of all the possible
physical implementations given that, as already mentioned, any proposal of a qubit
that can in turn be effectively coupled to more of them can be mapped onto a spin
chain or network. We thus have focused on some of the most pursued implementa-
tions which satisfy, to a greater or lesser extent, the DiVincenzo criteria.

Quantum dots

Quantum dots (QD) are small structures that have electrons or excitons confined by
a localised potential with discrete electronic states. Because of that, they are also
called "artificial atoms" and can be realised in different ways, i.e. as electrostatically
defined quantum dots or as self-assembled quantum dots. The use of this type of
semiconductor nanostructures was proposed as a platform for quantum computa-
tion [88, 89]. There are different types of quantum dots depending on how the in-
formation is encoded: electron quantum dots [65, 89] or exciton quantum dots [90–
92].

Quantum dot excitons encode the qubit state with existence or nonexistence of a
ground state exciton in the QD as the logical one or zero, respectively [93, 94]. When
no external fields are applied, the system is in its ground state and when electromag-
netic radiation is applied, the system can be initialised to the desired state. On the
other hand, the use of single spins in electron quantum dots can also encode a qubit
given that, as already shown, spin-12 is a perfect example of a two level system. Mag-
netic and electric fields allow the control of individual spins while for the read-out
there must be a spin-to-charge conversion before a charge measurement is applied
[95]. Nonetheless, alternative methods for initialisation, control and measurement
of single spin quantum dots have been proposed using ultrafast optical pulses [96].

Superconducting qubits

Superconducting quantum circuits are currently one of the preferred platforms to
build a quantum computer. These are based on the electrical (LC or resonant circuit)
circuit forming a loop which can be described as an harmonic oscillator. Such circuit
is generally build with Aluminum which at low temperatures allows the friction-
less flow of electricity [97]. A Josephson Junction imposes a non-linear inductance
and anharmonicity to the superconducting circuit and simulates a two level artifi-
cial atom [98]. This system allows the design and measure of macroscopic quantum
effects by tuning the classical electrical elements of the circuit.
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Depending on the degree of freedom being used for the encoding, we can dis-
tinguish three types of superconducting qubits: charge, flux and phase qubits [99].
In flux qubits, the two quantum states of the qubit are a magnetic flux pointing
up and down and are represented by a double-well potential. A charge qubit en-
codes the qubit as an integer number of Cooper pairs in a superconducting island.
Phase qubits use the change on the oscillation amplitudes of phase of the conduc-
tance wavefunction (which is a superconducting order parameter) across a Joseph-
son Junction. The Transmon qubit (or Xmon) forms part of this last group and is
currently the dominant qubit implementation of this type [99].

Regulated microwave pulses allow to perform single qubit rotations as well as
state initialisation. Two qubit gates are implemented by coupling different qubits ei-
ther by using a quantum bus or by joining neareast-neihgbour qubits to an electrical
circuit. The read-out process depends on the type of qubit, e.g. for flux qubits the
state is measured using a magnetometer.

Two of the main drawbacks of superconducting qubits [100] are related to the
errors in the manufacturing process of the device, and the low temperatures required
(around 50 mK) to operate, which hampers the scaling of this architecture.

Trapped ions

An alternative solid-state hardware approach uses ion traps, where a small number
of atoms or ions are confined in an isolated space using electromagnetic fields [101].
Each ion encodes the qubit state in the two internal levels defined within an hy-
perfine manifold or a forbidden optical transition, states which can be efficiently
controlled attaining long coherence times [102]. Initialisation is done by cooling
down the system to its ground state using optical pumping and the state is mea-
sured using state-dependent fluorescence techniques with very high fidelities [101,
103, 104]. Single qubit gates are realised by the application of appropriate pulses
of electromagnetic radiation, providing a quantum logic of excellent fidelity [103].
Interactions between neighbouring ions are due to Coulomb interactions mediated
with laser pulses, which allow for multiple qubit quantum gates [41]. In fact, the
first ever logical CNOT gate was realised with trapped ions according to Cirac and
Zoller’s proposal [105, 106].

While ion traps provide excellent coherence times of the order of minutes for
hyperfine qubits and seconds for optical traps [103], the scaling of these systems to
a large number of qubits, even though progress in micro-fabrication techniques is
being made, is still not possible, making the scalability issue the main disadvantage
of this platform [100, 104].

NMR-based processors

Another proposed platform takes advantage of Nuclear Magnetic Resonance (NMR)
techniques and store the quantum information in the nuclear spins of the atoms of an
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ensemble of molecules [62, 102]. One qubit gates are realised using radio-frequency
pulses that allow to manipulate the nuclei. The spin magnetization defining the state
of the qubit is measured as an induced current of a coil surrounding the sample.

Such experiments can use liquid or solid samples. In liquid NMR (LNMR), the
sample is dissolved in a solvent and can be seen as an ensamble of independent
quantum computers (one molecule as one computer) running in parallel. The cou-
plings between spins depend on the type of molecules but are generally weak due
to the molecular motion [62]. Solid-state NMR (SNMR) allow for faster gates due to
stronger dipolar interactions as the molecules are now fixed. They present relaxation
times T1 of the order of seconds, and even minutes for solid-state samples along with
a phase damping time scale T2 of the order of hundreds of milliseconds.

One disadvantage is initialisation as it is difficult to prepare the system in an
initial pure state even though techniques such as pseudo-pure state initialisation
or algorithmic cooling have been proposed [107]. Nevertheless, in 1999 Samuel L.
Braunstein showed that no entanglement is found in NMR experiments [108], so the
practicality of such devices for quantum computation is limited [25]. The type of
measurements allowed is quite restricted as it is not possible to address individually
a single nucleus, and the measurement output is an average over all the molecule’s
signals [16].

The main advantages of this type of physical realisations rely on the advanced
and mature state of the NMR techniques, something that has allowed to demon-
strate many QIC experiments and has helped in the development of other quantum
computer technologies. Up to date, functional NMR quantum computers able to run
algorithms and quantum error correction protocols have been implemented up to a
size of 12 qubits [109].

Others

Many other technologies with QIC capabilities have been proposed. Coupled waveg-
uides and photonic lattices present a particularly useful tool as they allow for the
systematic engineering of networks of different geometries and coupling configura-
tions [62, 110, 111]. In such structures, the qubit is represented by a distinct lattice
site, or the individual waveguide, and the encoding is realised by the presence or ab-
sence of a photon at a given site, corresponding to the |1〉 and |0〉 states, respectively
[112]. Molecular and atomic spins in solids are also good qubit candidates due to
their long coherence times, examples include fullerenes [113], 31P donors in silicon
[114] or diamond NV-centres [115]. The latter has emerged as one of the preferred
candidates for room temperature QIC due to its robust spin quantum states [116].
Among its advantages, it is possible to prepare the electronic and nuclear spins of
a NV-centre with high fidelity and detect their quantum states in a single measure-
ment [116].
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1.3 Thesis outline

In addition to this Introduction, this thesis is divided in five more chapters. Chapter
2 describes the mathematical methods used to obtain the results that will be pre-
sented. Three chapters will be the main core of the thesis and will focus on the
detailed investigation of the three different spin chain applications we here fore-
see: quantum data buses, quantum state memories and quantum entangling gates.
Chapter 3, part of which is based on [3], discusses the use of spin chains for quan-
tum state transfer with a focus on the presence of Anderson localisation when ran-
domised on-site energies are present. The next application of spin chains is de-
scribed in Chapter 4 where the quantum state localisation and protection due to
the presence of topologically protected eigenstates is considered. Some of the re-
sults are based on the work published in [1]. The last application we contemplate is
the use of spin chain systems as quantum entangling gates and we present detailed
analysis of this in Chapter 5, study that is also published in [2, 4]. Finally, Chapter 6
covers a general discussion on the feasibility for our proposed models and protocols
to be used as a reliable quantum device: we revisit the set of requirements stated
by DiVincenzo criteria and assess the performance of the suggested applications in
physical systems. In addition, an outlook on the future of this research topic is also
given as a part of the concluding remarks.
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Chapter 2

Methods

In this chapter we describe in detail the procedures followed to perform the nu-
merical calculations used to generate the results of this thesis. We have made
use of our own numerical methods (mainly coded in Fortran90 and Python) to
perform the computations needed. When required, the numerical results have
been compared with the analytical counterparts to ensure the correctness of our
approach.

The theoretical nature of this work makes the computer our laboratory and the
numerical simulations of the quantum systems here explored, our methods. The
first thing our computations need is input of the initial conditions of the system
which the Hamiltonian represents. The diagonalisation of the Hamiltonian matrix
allows us to obtain the eigenstates and eigenvalues of the system, providing the nec-
essary ingredients to solve the Schrödinger equation. In order to assess the quality
of the different proposed devices we calculate various quantities that measure the
performance of a given operation, i.e. fidelity, entanglement or occupation probabil-
ity. Such performance is tested against the presence of different types of fabrication
errors or operation time delays in order to evaluate the robustness of the various
protocols and devices proposed in this thesis. The mathematical theory behind the
methods used and described here is accompanied with an outline of a simplified
version of the algorithm used to compute them written in pseudocode.

2.1 Building the spin chain

2.1.1 Hamiltonian and Schrödinger equation

One of the postulates of quantum mechanics states that the time evolution of any
system is governed by the Schrödinger equation [117, 118],

i~
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉. (2.1)

By solving it for a given initial state |Ψ(0)〉, the state of the system at any time t,
|Ψ(t)〉, can be determined. In conservative systems the total energy of the system is
conserved as its Hamiltonian does not depend on time. We here consider our system
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to be well isolated and therefore uncoupled to an external environment, hence its
total energy will be constant. In such cases, given the eigenvalues and eigenstates of
the Hamiltonian, the time-dependent Schrödinger equation can be solved.

In order to obtain those we need to solve the eigenvalue equation ofH:

H|ϕk〉 = Ek|ϕk〉, (2.2)

being {|ϕk〉} the set of eigenstates with their corresponding eigenenergies, {Ek}.
Once these quantities are obtained, we can write our state at any time in terms of the
eigenstates ofH, as they form a complete basis set:

|Ψ(t)〉 =
∑
k

ak(t)|ϕk〉, (2.3)

with,

ak(t) = 〈ϕk|Ψ(t)〉. (2.4)

Given that the eigenstates of the system do not depend on t, the time dependence
of |Ψ(t)〉 is contained in the coefficients a(t)k. If we now project Eq. 2.1 onto the
eigenstates ofH,

i~
∂

∂t
〈ϕk|Ψ(t)〉 = 〈ϕk|H|Ψ(t)〉, (2.5)

and knowing from Eq. 2.2 that 〈ϕk|H = Ek〈ϕk|, we can write Eq. 2.5 as,

i~
∂

∂t
ak(t) = Ekak(t). (2.6)

By direct integration the time dependence of the coefficients is ak(t) = ak(0)e−iEkt/~

and therefore the state of the system evolves as,

|Ψ(t)〉 =
∑
k

ak(0)e−iEkt/~|ϕk〉, (2.7)

with ak(0) = 〈ϕk|Ψ(0)〉. In our calculations, we have set ~ = 1.
It is then clear that our top priority will be to obtain the eigenvectors and eigen-

values from the diagonalisation of our Hamiltonian in Eq. 2.2, from which we can
find an exact solution of Eq. 2.1 when the Hamiltonian does not depend on time. In
order to do so we first need to build the Hamiltonian matrix, which will require a
set of basis states. The site basis is usually taken for convenience, however we could
have chosen any different complete basis set. The form of the Hamiltonian matrix
will differ depending on the basis vectors of choice but its evolution will be the same.
The algorithm followed to build and diagonalise the Hamiltonian is outlined in Alg.
1.

As already introduced, there are several Hamiltonian models to represent spin
chains. In this thesis we wish to account for one-dimensional spin chain systems
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with nearest-neighbour interactions. We will consider the XY Hamiltonian (also re-
ferred to as XX Hamiltonian):

HXY =
1

2

N−1∑
i=1

Ji,i+1

(
σixσ

i+1
x + σiyσ

i+1
y

)
+

N∑
i=1

εi
2

(σiz + I), (2.8)

where Ji,i+1 are the positive couplings between nearest-neighbour sites i and i + 1,
which will acquire different values depending on the type of chain under study, and
N is the total number of sites in the chain. The X, Y and Z components of the spin
are represented by the Pauli matrices already introduced in Section 1.2.

The first term of Eq. 2.8 imposes an isotropic coupling between the X and Y com-
ponents of the spin-spin interactions between sites i and i + 1. By doing this we
ensure that the total Z component of the system commutes with the Hamiltonian.
As will be discussed in Section 2.1.2, the immediate consequence of this is that the
system conserves the total number of excitations (in our notation this is the num-
ber of ‘ones’ in the total qubit state), something desirable for quantum information
applications.

The second term represents the on-site energies of the chain corresponding to the
energy cost of exciting one site |0〉 → |1〉 (see Fig. 2.1). When no perturbations are
considered, this term will be omitted as we choose all the on-site energies, εi, to be
equal and, for convenience, rescaled to zero.

Even though it is quite common to see spin Hamiltonians represented by Pauli
matrices as in Eq. 2.8, sometimes it can be clearer to write them in qubit notation.
This is attained by using the following notation

σx = |1〉〈0|+ |0〉〈1| (2.9)

σy = i (|1〉〈0| − |0〉〈1|) (2.10)

σz = |1〉〈1| − |0〉〈0|, (2.11)

and rewriting the Hamiltonian in terms of raising and lowering operators. In this
thesis we use this notation and convert the Hamiltonian from Eq. 2.8 to the following
form:

HXY =

N−1∑
i=1

Ji,i+1[|1〉〈0|i ⊗ |0〉〈1|i+1 + |0〉〈1|i ⊗ |1〉〈0|i+1] +

N∑
i=1

εi|1〉〈1|i. (2.12)

Under this notation it is then easy to understand the first term as the hopping
of an excitation, |1〉, over the chain sites as shown in Fig. 2.1. In addition, the
above Hamiltonian can be mapped to a model of noninteracting spinless fermions
with nearest-neighbour interaction through the Jordan-Wigner transformation [119],
making this Hamiltonian a general representation for many real fermionic systems:
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HXY =

N−1∑
i=1

Ji,i+1(a
†
iai+1 + a†i+1ai) +

N∑
i=1

εi(a
†
iai). (2.13)

FIGURE 2.1: Schematic labeled representation of a one-dimensional
linear spin chain with the particle hopping term Ji,i+1 and the on-site

energies εi.

Data:
k: number of basis vectors
N : number of sites
J [N − 1]: array with pre-defined couplings
Result: k eigenstate vectors ϕk[k] and k eigenvalues Ek
H = 0 (initialise Hamiltonian matrix);
Basisk[N ] = 0 (initialise k basis vectors to have all 0’s);
for all the excitation subsectors E do

Basisk[N ]=all k permutations of E 1’s in vectors of size N ;
end
for every pair of basis vectors {basisi, basisj} do

if same number of 1’s then
sum the two vectors w[N ] = basisi[N ] + basisj [N ];
for every term n in w[N ] do

if two consecutive 1’s then
fill Hamiltonian term H[i, j] with J [n− 1];

end

end

end

end
Diagonalise H with LAPACK subroutine⇒ {ϕk[k]} and {Ek};

Algorithm 1: Building and diagonalising the XY Hamiltonian of a linear chain.
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2.1.2 Encoding and initial injection

As already discussed in Section 1.2, the sites (or spins) of a spin chain are qubits,
as any two level quantum system can be mapped into a spin-12 . The encoding of
quantum information over a spin chain is done (unless otherwise stated) by direct
correspondence between a single site and a single qubit (site 7→ qubit). Each qubit
can either contain a spin down state (| ↓〉), a spin up state, (| ↑〉), or a superposition
of both (α| ↓〉 + β| ↑〉). Given the spin/qubit correspondence we can translate such
states into a more common qubit notation such that,

| ↓〉 7→ |0〉 (2.14)

| ↑〉 7→ |1〉 (2.15)

α| ↓〉+ β| ↑〉 7→ α|0〉+ β|1〉 (2.16)

Any pure non-entangled state of the full N -sites chain can be formally written
as a tensor product state of the individual qubits such that |Ψ〉 = |ψ1〉 ⊗ ...|ψi〉 ⊗
|ψi+1〉...|ψN 〉, being 1, ..., i, i+ 1, ...N the labels of each qubit or site (as shown in Fig.
2.1) and |ψi〉 any arbitrary state (α|0〉+β|1〉). It is although common to simplify such
expression notation and omit the tensor products, e.g. a state with a spin up at site
i = 1 and the rest down would read |Ψ〉 = |100..0〉. From now on, we will use the
term excitation to refer to a spin up or a qubit in the |1〉 state.

The total number of excitations in the chain is given by the operator E =
∑N

i |1〉〈1|i.
This number is conserved given that its operator commutates with the Hamiltonian,
[H, E ] = 0. This implies that our Hilbert space H can be decomposed into excita-

tion subspaces HE each containing VE =

(
N

E

)
= N !/

(
E !(N − E)!

)
basis vectors,

corresponding to all the possibilities of distributing the number of indistinguish-
able excitations E in a chain of N sites. Each basis vector is therefore defined by
|Φv〉 = |φ1...φi...φN 〉 with φi ∈ 0, 1 and

∑N
i φi = E . The possibility of partitioning

H allows us to treat each HE eigenspace independently.
As stated by DiVincenzo [54] (and already addressed in Section 1.1.3), one of

the fundamental requirements for a device to realise quantum computation relies
on its initialisation. One must be able to initialise the qubits comprising a quantum
computing device to a known state, e.g. |00...0〉. We are interested in having our spin
chain initially with all the spins down, | ↓↓ ... ↓〉, which happens to be the ground
state. This state will not evolve until we inject an excitation by flipping one of the
spins to a spin up | ↑〉 or to a superposition α|0〉 + β|1〉. We will use the term initial
injection to refer to this process.

In our numerics, we prepare the system for such initial injection by mapping our
initial state into the Hamiltonian eigenstates, given that they also form a complete
basis themselves. Suppose that we inject into a system that has all spins down,
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|vac〉 = |00..0〉, an arbitrary qubit state of α|0〉+ β|1〉 into the site s. This initial state
can be mapped to the N one-excitation sector eigenstates such that,

|Ψ(0)〉 = (α|vac〉+ β
N∑
k=1

〈ϕk|00..1s..00〉|ϕk〉). (2.17)

As in Eq. 2.7, the subsequent time dependence of such a state is,

|Ψ(t)〉 = α|vac〉+ β

N∑
k=1

〈ϕk|00..1s..00〉e−iEkt/~|ϕk〉, (2.18)

and the algorithm used to compute it is presented in Alg. 2.
Injecting and retrieving information will depend on the specific hardware used

for embedding the mathematical concept of spin chain and some specific methods
will be discussed in Section 6.1.

Data:
T : total time
V : injected vector index
Result: evolved state Ψ(t)

for all eigenstates k do
ak(0) = CONJG[ϕk[V ]];

end
t = 0;
for t < T do

for all eigenstates k do
ak(t) = ak(0)EXP[−itEk];

end

end
Ψ(t) =SUM[ak(t)ϕk]

Algorithm 2: Encoding of the initial state and time evolution.

2.2 Measures of device performance

2.2.1 Fidelity

The fidelity is one of the most common measures to test the performance of a chain
as a quantum device. This is a time-dependent quantity that indicates how close the
evolving state (e−iHt/~|Ψ(0)〉) of a system is to any arbitrary desired state (|Ψdes〉). In
order to obtain this we calculate the modulus square of the overlap between these
two states as,

F(t) = |〈Ψdes|e−iHt/~|Ψ(0)〉|2, (2.19)
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with 0 ≤ F(t) ≤ 1 (see Alg. 3). This allows us to study the quality of state transfer for
a spin chain acting as quantum wire (as will be seen in Chapter 3). For instance, we
can check when and how well a spin up state |1〉 injected at site i = 1 arrives to the
other end of the chain (site i = N ) by calculating the overlap between the evolution
of the initial state, |110...0〉, and the desired state, |00...1N 〉. A fidelity close to 1
indicates a good quality of the quantum state transfer, in this specific case, between
sites i = 1 and i = N . It is also important to note that the transfer of the quantum
state is considered to be useful as long as its transfer fidelity is above a threshold of
2
3 [62, 120]. This measure does not only allow us to asses transport features but also
to identify formation of new states, e.g. as a result of a quantum operation "hidden"
in the natural dynamics of the chain (as will be seen in Chapter 3).

Data:
Ψ(t) = SUM [ak(t)ϕk]: evolved state
V : desired vector state index
T : total time
Result: fidelity F(t)
t = 0;
for t < T do

for all eigenstates k do
F (t) = F (t) + CONJG[ak(t)ϕk[V ]] ∗ [ak(t)ϕk[V ]]

end

end

Algorithm 3: Calculation of fidelity

2.2.2 Site occupation probability

The study of the structure of the full state, |Ψ(t)〉, allows us to obtain the probability,
Pi, of every site, i, to be occupied by an excitation (|1〉i). When studying localisation
and transfer suppression phenomena (as in Chapter 3) it is useful to look at these
probabilities. If we map our k eigenstates into our V site basis vectors, |Φv〉, such
that,

|ϕk〉 =
V∑
v

ck,v|Φv〉, (2.20)

we know that we can describe our state as,

|Ψ(t)〉 =
∑
k

ak(t)
∑
v

ck,v|Φv〉. (2.21)

We can then combine the coefficients into a single expression such that dk,v(t) =

ak(t)ck,v. From here, the site occupation probabilities are easy to extract for the one-
excitation subsector as there is a direct mapping between the vectors, |Φv〉, and the



50 Chapter 2. Methods

sites, i, as V = N , and we can show that Pi =
∑N

k |dk,i(t)|2. This however gets
more complicated when increasing the number of excitations (V 6= N ), where we
need to find the occupation probability of a site i by summing all the coefficients
of the vectors with nonzero probabilities at that site, Pi =

∑
k |dk,v(t)|2 with |Φv〉 =

|00..1i..0〉.
In this thesis we will also look at the site occupation probability of the eigen-

states in order to analyse localisation signatures (explored in Chapter 3 and 4). In
such cases, we will only consider the first excitation subsector so the probabilities
can be obtained from projecting the eigenstates into the site basis vectors, Pi =∑N

k |〈ϕk|Φi〉|2

2.2.3 Entanglement of formation

In order to quantify entanglement we use the entanglement of formation, EOF , a
bipartite measure of entanglement for mixed states [121]. We will apply this measure
to find the degree of entanglement between an arbitrary pair of qubitsA and Bwhen
considering the general case of mixed states. We choose this quantity and not the
pure concurrence (see Section 1.1.1) because although our initial states will be pure,
due to entanglement with the rest of the chain at later times, the state of just sites A
and B could be mixed. This entanglement measure is defined by,

EOFAB = ξ(CAB), (2.22)

being ξ(CAB) = h(1+
√
1−τ
2 ) and h = −x log2 x − (1 − x) log2(1 − x) [22]. This can

be computed by obtaining the square roots of the four eigenvalues, λi =
√
εi, of the

matrix ρAB ρ̃AB (see Alg. 4). The reduced density matrix of sites A and B, ρAB , is
calculated by tracing out the rest of sites of a chain in a state ρ, i.e. ρAB = trrest(ρ),
and ρ̃AB = (σAy ⊗ σBy )ρ∗AB(σAy ⊗ σBy ). By arranging these λi in decreasing order, τ is
obtained as

τ = [max(λ1 − λ2 − λ3 − λ4, 0)]2. (2.23)

EOFAB ∈ [0, 1] so that two maximally entangled qubits A and B present an
EOFAB = 1. This is attained when the state between A and B is pure, entangled
and there is no entanglement with the rest of the chain.
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Data:
ρAB[4]: reduced density matrix of qubit A and B
σ[4]: σAy ⊗ σBy
T : total time
Result: entanglement EOF (t)

t = 0;
for t < T do

M=ρABσCONJG[ρAB]σ;
Diagonalise M with LAPACK subroutine⇒ {E1, E2, E3, E4};
for i<4 do

λi =SQRT[Ei];
end
Sort {λi} in decreasing order.;
τ =MAX[(λ1 − λ2 − λ3 − λ4)2, 0];
x = 1+SQRT[1− τ ]/2;
EOF (t) = xLOG[x]− (1− x)LOG[1− x];

end

Algorithm 4: Calculation of EOF

Fidelity and EOF can be useful quantities when used together. In some appli-
cations using EPR pairs as a resource, such as teleportation or superdense coding,
it does not suffice the promise that the pair of qubits is maximally entangled and it
is relevant to know which of the four Bell states is being shared. In such scenarios,
testing for entanglement using EOF and then identifying such state using fidelity
against the four Bell states may be a convenient procedure.

2.3 Perturbations

The manufacture of any quantum device, no matter how precise its fabrication is,
will be subject to errors. Quantum phenomena that underpin the desired applica-
tions of such devices might get heavily disturbed by these errors, due to extreme
sensitivity of the phenomena to the errors. On one hand, we wish to account for
time-independent perturbations that affect the on-site energies of the spins and their
interactions as fabrication defects. Such errors are included in the system through a
set of R (typically R ∼ 1000) random disorder realisations over which we will av-
erage the out-coming results, i.e. energy spectrum, fidelity or EOF . On the other
hand, we also consider asynchronous state injections for the cases when the system
is initialised from more than one site.
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2.3.1 Diagonal disorder

One approach to model local fabrication errors is to consider energy fluctuations.
We do this by adding random disorder to the diagonal terms of the Hamiltonian.
Diagonal disorder encompasses both the case of local fabrication defects and local
fields fluctuations, which has been shown to be some of the most damaging source
of static decoherence for the single excitation sector in spin chains [64].

The second term of the Hamiltonian from Eq. 2.12 is set to have εi = Eriγ, where
ri is a random number from a uniform distribution between −1/2 and 1/2, E is a
dimensionless positive parameter that fixes the scale of the disorder and γ is one of
the characteristic energies of the system (e.g. the coupling energy between sites). It
is important to note that the perturbation added to the diagonal terms of the Hamil-
tonian involving basis vectors with more than one excitation, 〈0..1i1j ..0|H|0..1i1j ..0〉,
will be calculated as the sum of the random disorder added to the single excitation
vectors, εi + εj .

2.3.2 Off-diagonal disorder

Our second approach to model fabrication errors and local defects accounts for static
coupling errors introduced in the off-diagonal terms of the Hamiltonian matrix.
Such perturbation represents random disorder in the couplings of the chain, Ji,i+1.
In order to do so we modify the first term of the Hamiltonian from Eq. 2.12 by set-
ting Jeffi,i+1 = Ji,i+1 +Eri,i+1γ, where ri,i+1, E and γ have the same meaning as in the
previous section.

2.3.3 Time Delays

When dealing with the entangling protocols shown in Chapter 5, for some cases the
ideal injection scenario will be the injection of excitations simultaneously at different
sites a and b, e.g. the state |1a0...01b〉. We want to assess how damaging for those
protocols it is to inject such excitations in a slightly asynchronous way. This is at-
tained by adding a time delay tD = DtE being D the scale of the delay (0 ≤ D ≤ 1)
and tE the original operation time (in our case, the time needed for the protocol to
complete the entangling operation).

This injection is performed in two parts. First, we initiate the time evolution
of the initial state that has an excitation at site a, |00..1a..00〉. Right before the de-
layed time, at t−D, we retrieve the overall state of the system |Ψ(t−D)〉. We can write
|Ψ(t−D)〉 =

∑N
i ci|Φ1ex

i 〉 (with N being the total number of sites and equal to the vec-
tors of the one excitation subsector) where

∑N
i |ci|2 = 1 and |Φ1ex

i 〉 = |00..1i..00〉.
Then when injecting a second excitation at site b, we need to map these coeffi-
cients ci into the two excitations vectors, |Φ2ex

v 〉 = |00..1i1b..00〉 with i 6= b, to find
|Ψ(t+D)〉 =

∑
v ci|Φ2ex

v 〉. It is important to note that in our calculations the time delay
is not long enough to allow numerically zero probability of the first injected state
at site a to be located at site b by the time the second state is injected, hence the
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aforementioned treatment is an accurate approximation and no renormalisation is
required.

Data:
R: number of realisations
E: scale of the disorder
Basisk[N ]: site basis vectors
Result: perturbed Hamiltonian H
H=0 (initialise Hamiltonian matrix);
if diagonal disorder then

if k<N then
rk =RAND(−1/2, 1/2);
H[k, k] = rk ∗ E ∗ Jmax;

else
for s in Basisk[N ] do

if Basisk[s] = 1 then
H[k, k] = H[k, k] +H[s, s];

end

end

end

end
if off-diagonal disorder then

for i<(N-1) do
ri =RAND(−1/2, 1/2);
J [i] = J [i] + ri ∗ E ∗ Jmax;
Build Hamiltonian as in Algorithm 1.;

end

end

Algorithm 5: Addition of fabrication defects
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Chapter 3

Spin chains as quantum buses

In this chapter we examine the use of spin chains as quantum wires or buses.
One of the approaches to engineering the system to allow for quantum state
transfer (QST) is considered in detail. We consider the robustness of the wire
against random local errors, and how such disorder affects the state transfer. We
demonstrate that when diagonal perturbations are high enough, spin chains are
good systems in which to observe Anderson localisation signatures. Part of this
work has been published in: R. Ronke, M. P. Estarellas, I. D’Amico, T.P.
Spiller & T. Miyadera, "Anderson localisation in spin chains for perfect
state transfer", Eur. Phys. J.D. 70, 189, (2016).

It is undeniable that telecommunications are nowadays key in our daily life.
Sound, video, images, and any sort of data are being massively and constantly
shared through several communication protocols as data packets. Physical means
to transmit the information are required, both for short- and long-distance connec-
tions. Classical communications run through several platforms such as radio chan-
nels, optical fibers or copper wires that transfer the bits that form each data packet in
the form of electromagnetic waves or optical pulses. Nevertheless, in the era of In-
ternet, fiber optics has become the preferred media for long range communications
due to its ability to support large bit rates (hundreds of gigabits per second) and
their robustness against electromagnetic interference.

On a smaller scale, computer hardware needs a means to connect and commu-
nicate between its various components, which will tend to sit very close (the size
of current Intel microprocessors is of 37.5 mm2 with a feature size of 22 nm [122]).
Any processing unit contains various registers, {Ri}, that temporarily store data be-
fore and after being processed and over which the logical operations that define the
overall computation are applied. In example, the data and the instructions to be im-
plemented in a processing unit need to arrive to the register location, communicate
with the ALU (or logical arithmetic unit) and go back to the main memory after the
computation. In classical computer architecture this is generally attained with the
use of data buses. Such components allow for the transmission of a certain width
(generally 8, 16, 32 or 64 bits) of data or instructions between two locations. As
the transfer is done over short distances, the bus device is generally implemented



56 Chapter 3. Spin chains as quantum buses

through copper wires.
In the context of quantum technologies, quantum communication soon became

a field by itself. Certainly, a quantum counterpart to transfer information is on de-
mand and an effective way to transfer qubits is required, as stated by the last two
requirements of DiVincenzo criteria [54] (see Section 1.1.3). As in its classical coun-
terpart, long-distance quantum communication has been dominated by photonics.
Even though single photons may not be the preferred qubit implementation out
of which a quantum computer can be built, they do provide several advantages
when used for quantum communication applications. These moving entities can be
guided through optical fibers for long distances with very low loss rates. This is a
clear advantage as there already exists a classical worldwide network’s built out of
optical fibers, reducing the cost of designing and developing a new quantum com-
munication infrastructure.

As with classical computers and conventional data, a quantum computer pro-
cessor will need buses to be able to transmit quantum data between its components
or registers without losing its state coherence. Clearly the use of photonics for such
short range communication presents some drawbacks. Quantum computer hard-
ware is generally built out of static qubits (e.g. superconductors, ion traps or quan-
tum dots) and the use of photons will require to convert the solid qubit state into
states of light and vice-versa. This type of encoding/decoding may be worth it for
long distances due to the advantages of the use of photons as qubits, as already
commented, but it may add an extra cost on smaller scales. Likewise, the moving of
solid-state qubits from one location to another needs a precise control of the system
and it implies that an extra source of systematic errors will be present. In order to
overcome these limitations, Bose pioneered the idea of using spin chains as quantum
data buses [61, 120], an idea that attracted lot of attention and was soon investigated
by many [63, 66, 123]. Bose’s main motivation was the possibility of building a wire
with the same type of solid-state qubit than the rest of the hardware. The theoret-
ical model behind spin chains can indeed be applied to several solid-state imple-
mentations of permanently coupled qubits, something that makes them interesting
systems to study a wide variety of quantum protocols. Another of the advantages
of using the spin chains as quantum wires is that they can be set to operate through
their natural dynamics, hence with the requirement of a minimal external control.

The applicability of chains of solid-state qubits as data buses requires a method
to transport an arbitrary quantum state from one site to another with little external
control. There are several strategies to allow for good state transfer, however we
will mainly focus on one of them to enable what is called ’perfect state transfer’
(PST) and explore its capabilities. As a part of such exploration we will examine the
robustness of spin systems for transfer operations and investigate the presence of
Anderson localisation in the strong disordered regime.
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3.1 State Transfer

The transfer of a quantum state over a spin chain implies that the state that sits at
one site is reliably transfered to another site of the chain. We will name these two
participant sites register rA and register rB and assume they are separate by a finite
distance that can be covered by a set of N interacting qubits, as shown in Fig. 3.1 for
the case of a linear chain.

FIGURE 3.1: General linear spin chain acting as a quantum bus be-
tween registers rA and rB.

This protocol can be outlined by the following steps,

1. Placement or injection of the initial state at the register rA.

2. Time-evolution of the system for a finite time, tT

3. Extraction or measurement of the state at the register rB.

A good way to assess the performance and information transport quality of the
quantum bus under this protocol is by the calculation of the fidelity F (see Section
2.2.1). The state transfer is considered to be ideal or perfect when the evolution of
the initial state (quantum state in rA) is arranged to achieve F(tT ) = 1 against the
final state (quantum state in rB) at a known time tT .

The initial state evolves with the natural dynamics of an N -site spin chain de-
scribed by the time-independent Hamiltonian of the system, which in this thesis
is the one considered in Eq. 2.12 is considered (see Section 2.1.1). Among various
strategies, one of the keys to attain optimised transfer fidelities relies on the engi-
neering of the system interactions. But before looking at this let us first consider
the transfer capabilities of unmodulated systems, that is, with uniform interactions
[120].

3.1.1 State transfer in linear chains

We now wish to explore the transfer abilities of linear uniform chains. We consider
an N -sites chain with all their spins, i, initially down (or in state |0〉 = |010i...0N 〉) to
transfer an injected state |Ψ(0)〉 = |1〉rA ⊗ |0〉rest from register rA to rB. This means
that after a given time tT , the state will be |Ψ(tT )〉 = |1〉rB ⊗ |0〉rest.

Let us consider a very simple case: a 3-sites chain with equal couplings Ji,i+1 = 1.
In Fig. 3.2 we present the fidelity, F(t), of the overall state |Ψ(t)〉 against the initial
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FIGURE 3.2: Dynamics of a 3-sites spin chain transferring an excita-
tion between registers rA and rB. Solid profile is the fidelity of the
state against the initial state (excitation at site rA). Dashed profile is
the fidelity of the state against the desired state (excitation at site rB)

state at |ψrA〉 (solid profile) and the transfered state |ψrB〉 (dashed profile). Both
profiles have a periodic behavior and we observe that as the solid profile decreases
away from unity, the dashed profile does increase up to a maximum (F(tT ) = 1),
therefore the state is perfectly transferred from site rA to rB. It is however clear that
the dynamics will not stop there and the excitation will keep oscillating back and
forth between sites, due to its periodic nature. Yet, if the value of tT is known (for
instance, through calibration of the device), the state can be measured or extracted
at this time (or any multiple) by the user or the implicated computer component (see
Section 6.1 for further discussion on this).

FIGURE 3.3: Dynamics of a 6-sites spin chain transferring an excita-
tion between registers rA and rB. Solid profile is the fidelity of the
state against the initial state (excitation at site rA). Dashed profile is
the fidelity of the state against the desired state (excitation at site rB)
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Unfortunately, this behaviour is not scalable and the time needed for the transfer,
tT , grows exponentially with N [120]. Additionally, the dynamics of the system
loses its periodicity and the maximum transfer fidelity attained is not unity anymore.
Nonetheless, some exceptions are found for certain chain sizes (N = p−1,N = 2p−1

and N = 2m − 1, p being a prime) which yield to what is called "pretty good state
transfer", with fidelities approaching to unity as long as one waits enough time, an
effect presumably related to number theory [124]. This can be observed from the 6-
sites chain example shown in Fig. 3.3 (N = p−1), in which is possible to reach a good
transfer quality if enough time has passed (tT ∼ 75 J−1). However, when increasing
the chain size up to N = 14 (Fig. 3.4) the transfer fidelity does not approach to unity
even when the time window considered is of three orders of magnitude higher than
the one for the N = 3 sites example.

FIGURE 3.4: Dynamics of a 14-sites spin chain transferring an exci-
tation between registers rA and rB. Solid profile is the fidelity of the
state against the initial state (excitation at site rA). Dashed profile is
the fidelity of the state against the desired state (excitation at site rB)

3.1.2 State transfer in other geometries

Even though the first picture of a data bus that comes to one’s mind is that of a linear
chord or wire (similarly to the one presented in Fig. 3.1), one could also conceive
the possibility of transferring information through more complex geometries. For
instance, some computation could need a transport device that distributes a state
among different parties. This would imply a communication based on broadcast
topology, 1 to N, instead of a point-to-point, 1 to 1, communication.

Multiple M -branched systems such as the one in Fig. 3.5 (also called spin star)
allow, in example, an excitation initially injected at site rA, |ψ(0)〉 = |1〉rA⊗|0〉rest, to
be routed to a certain rBi by tuning the couplings or adding local magnetic fields [87,
125]. Interestingly, it also allows to distribute the initial state |ψ(0)〉 between all the
rBi sites. However, the probability of the transfered state at time tT will be shared
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between all the branches. This means that the overall state of the system once the
transfer is complete will be in a superposition of |Ψ(tT )〉 = 1√

M

∑M
i |1〉rBi ⊗ |0rest〉.

This is a type of multipartite entangled state called W state and it is maximally en-
tangled between the M parties due to the presence of entangled Bell states between
pairs. Such states are used as a popular entanglement resource for many quantum
information applications due to its robustness against noise and qubit loss [126, 127]

FIGURE 3.5: Example of a spin star system with one hub, rA, and five
branches, rBi.

Examples like this one form altogether a zoo of different protocol topologies with
various purposes and applications. In fact, quantum information processing, sim-
ilarly to what is encountered in classical networks, will need components such as
routers, splitters or switches that process and help distributing the quantum infor-
mation during its communication. For such purposes, higher geometric arrange-
ments other than linear chains are good candidates and are also being explored [62,
85, 128, 129]. It is important to note that similarly to what happens with linear sys-
tems, these more complex structures will also have scalability issues in their transfer
fidelities. Fortunately there are design schemes that can help to overcome these lim-
itations for both linear and branched systems.

3.1.3 Perfect State Transfer

There is a clear potential of spin chains and spin networks to work as quantum data
buses, yet the previously presented uniform coupling scheme has been shown to
have a scalability issue. In order to overcome this hurdle, several spin chain de-
signs providing good throughputs on state transport through arbitrary distances
have been proposed. When these schemes allow for an ideal transfer of the state
(fidelity of the transfer is unity), we say that they allow for perfect state transfer (PST).

Quantum state transfer with high fidelity can be enabled through many strate-
gies. Examples include the application of local magnetic fields [130], the use of dif-
ferent state encodings such as dual- and multi-rail encoding [70] or wavepacket en-
coding [131], or the use of adiabatic techniques [132]. Last but not least, one of the
most popular ways to enable the chain to allow for PST is by the engineering of
spin-spin interactions.



3.1. State Transfer 61

Before going more into detail about how the couplings can be engineered, let us
first go through the requirements needed for a system to present PST. In fact, many
of the previously mentioned schemes have one thing in common and it is that they
rely on a system that is mirror-symmetric. This symmetry is closely related to a
characteristic energy spectrum and it can be engineered through the interactions or
the geometry of the network. In such designs, one of the consequences of mirror
symmetry is a periodic dynamics of a state, |ψ〉, that (following the example from
Fig. 3.1) moves between the initial injection site rA and its mirror, rB, such that,

e−iH2tT |ψrA〉 = e−iHtT eiθ|ψrB〉 = ei2θ|ψrA〉, (3.1)

being e−iHt what defines the time evolution of the initial state with respect the
HamiltonianH of the system (see Section 2.1.1 for more detail), and |ψrA〉 and |ψrB〉
the states corresponding to an excitation at sites rA and rB, respectively. The sys-
tem takes time tT to transfer a state from register rA to its mirror position rB and,
by symmetry, twice that time for the state to go back to its initial position [123].

When referring to these systems, we will call the time tT needed to transfer the
state from the initial position to its mirror, the mirroring time, tM . The dynamics of the
system is therefore periodic up to a phase 2θ (which is a global phase, hence can be
corrected) and period 2tM . This mirroring phenomenon arises from the fact that for
a particular coupling condition the spin chain can be mapped onto a macroscopic
spin, with the mirroring corresponding to its precession [65, 123]. Hence, we can
operationally define the mirror operatorM having the following effects to each term,
a, b, y, z ∈ {0, 1}, in any arbitrary superposition state of the chain:

M |a〉1|b〉2...|y〉N−1|z〉N = |z〉1|y〉2...|b〉N−1|a〉N (3.2)

Any initial state |Ψ(0)〉 can thus be decomposed into its even and odd parts under
the mirror operator M , such that

|Ψ(0)〉 =
1√
2

(|Ψ+(0)〉+ |Ψ−(0)〉), (3.3)

being |Ψ±(0)〉 ≡ 1√
2
(|Ψ(0)〉 ±M |Ψ(0)〉). Thus the Hamiltonian eigenstates (which

are also eigenstates of M as [M,H] = 0) can be decomposed as superpositions of
even and odd energy eigenstates |Ψ±(0)〉 ≡

∑
±k a±k|ϕ±k〉. Then for the evolved

state at time tM to have unit fidelity against the mirrored initial state M |Ψ(0)〉, up to
a global phase, it has to be of the form

|Ψ(tM )〉 =
eiθ√

2
(|
∑
+k

a+k|ϕ+k〉 −
∑
−k

a−k|ϕ−k〉) (3.4)

It is therefore clear that this mirroring phenomenon is closely related to the prop-
erties of the eigenstates. The energy spectrum plays indeed an important role in the
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PST dynamics. The general state of the system after a full period from Eq. 3.1 can be
rewritten in terms of the eigenstates, |ϕk〉, such as,

|Ψ(2tM )〉 =
∑
k

ake
−iEk2tM |ϕk〉 = ei2θ

∑
k

ak|ϕk〉 (3.5)

From which the condition Ek2tM − 2θ = 2mkπ, with mk being integers, must
be fulfilled in order to show PST. Eliminating θ between two states r and s we can
rewrite this condition in the form,

(Es − Er)2tM = 2(ms −mr)π. (3.6)

And by calculating the ratio between two sets we can eliminate the common
factors such as,

Es − Er
Ev − Ew

=
ms −mr

mv −mw
∈ Q, (3.7)

and because m’s are integers, we can deduce that the spectrum needs to be such that
the ratios of the differences between eigenvalues are rational numbers (Q). In fact, it
can be shown that this condition is not fulfilled for linear uniform chains withN ≥ 4

[65] and the energy differences stop being commensurate, causing the dynamics to
deviate from PST.

The couplings can be arranged in different ways to allow for perfect or nearly-
perfect state transfer. Some of them require the engineering of all the spin-spin in-
teractions, Ji,i+1, [63, 68, 133] and others only ask for control of the boundary inter-
actions, J1,2 and JN−1,N [134–137]. Other proposals exploit this boundary control so
that the distant spins get entangled in the ground state (named long-distance entan-
glement) and communication can be achieved through teleportation [77, 79, 82]. We
here will focus on an arrangement example proposed by Nikolopoulos and Chris-
tiandl [65, 66] where the N − 1 interactions of an N -sites linear chain are defined
as,

Ji,i+1 = J0
√
i(N − i), (3.8)

with i being the site number.
In any practical system there will be a maximum spin-spin coupling strength,

independent of the length N and set by a characteristic value for the particular
physical realisation of the spins. Therefore, to address this practical constraint, we
keep the maximum coupling value Jmax = 1 constant as N is varied (even though
not all authors working on such models have considered this physical constraint
[62, 66, 138]). Jmax is then our unit of energy and its coupling occurs in the mid-
dle of the chain. As a result J0 = 2Jmax/N for even (J0 = 2Jmax/N

√
1− 1/N2

for odd) length chains and all the couplings Ji,i+1 are symmetric about the center
(J1 = JN , J2 = JN−1, ..., Ji = JN−i+1).
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The Hamiltonian of a chain with engineered couplings according to Eq. 3.8 ful-
fills the energy spectrum condition (Eq. 3.7) and the single excitation energy levels
are equidistant, therefore their ratios are rational. This distribution is then enough
to impose the mirror symmetry with a periodic dynamics and, therefore, ensure PST
for any arbitrary chain length.

FIGURE 3.6: Dynamics of a 14-sites PST -engineered spin chain trans-
ferring an excitation between registers rA and rB (upper panel). Site

occupation probabilities for all sites i against time (lower panel).

Throughout the rest of this chapter we will be considering PST systems under
this scheme. Even though in our examples here we have chosen a simple initial
state due to its convenience, any arbitrary state, including states with more than one
excitation and entangled states, is allowed to be used in this protocol [123, 139]. The
time scale for an excitation to exhibit PST from one end of a chain to the other is
defined by tM = π~/2J0. This time scales with N when Jmax is maintained. In all
cases the full periodicity of the system evolution is given by tF = 2tM .

The previously presented N = 14 uniform linear chain (Fig. 3.4) provides a suit-
able system where to test the effect of engineering the interactions between sites ac-
cording to Eq. 3.8. We use this as an illustrative example and present the dynamics
of the new chain in Fig. 3.6. The upper panel shows the fidelities of the initial (solid
profile) and mirror (dashed profile) state. The lower panel maps the site occupation
probabilities at all the times for all the sites, labeled as "spins", being the red color
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areas the ones containing the maximum probability. It can be observed from the dy-
namics and the site probabilities that the transfer of the state is completed at all the
periods. Therefore, it is indeed demonstrated that the enforcing of mirror symmetry
through engineering of the couplings allows for PST.

From the lower panel of Fig. 3.6 we observe that the site-occupation probabilities
only attain the maximum (red) probability at the edge sites. This implies that the ex-
citation does not travel along the chain as a localised peak. Such behaviour is backed
from the eigenstate occupation probabilities, Pi,k (see Section 2.2.2), presented in Fig.
3.7, which spread across the chain. The spreading allows the delocalisation of the
initial injection and its later (tM ) relocalisation at site N = 14 when the phases of
all the eigenstate amplitudes arrange themselves suitably. The inset of Fig. 3.7 also
shows how the PST engineering scheme used here imposes the required equidistant
energy spectrum. We will come back to the discussion of the eigenstate and energy
spectrum later in Section 3.2.3.

FIGURE 3.7: Eigenstate occupation probabilities of a 14-sites PST -
engineered spin chain and its energy spectrum (inset) for the first ex-

citation subspace.

When other geometries other than linear systems come into play, the engineering
of the couplings can still allow for PST. Spin networks distributed as a certain cate-
gory of graphs can be mapped into linear chains through engineering of the graph
couplings. This would allow for point-to-point perfect communication between the
edges or branches [65], something that can lead to some interesting behaviours such
as the creation of entangled states through the dynamics of branched systems [129].

3.1.4 Effects of perturbations

We have seen that some spin chain designs allow for the perfect transfer of an ar-
bitrary state between two sites or more under ideal conditions. However, no real
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implementation will be perfectly manufactured or completely isolated from exter-
nal disorder, and the dynamics of the system will subsequently be disturbed. Time-
dependent factors such as random fluctuating fields or qubit coherence times are
subject to the type of implementation chosen to fabricate the spin chain (see discus-
sion in Section 1.2.3). A more general form of noise errors that is more independent
of the platform but still unavoidable is the random static disorder such as the one
related to the fabrication process of the chain or the presence of non-uniform local
fields. The robustness of PST designs against this type of errors has been widely
studied [64, 140–144] showing that such devices have a considerable level of robust-
ness against moderate errors, e.g. transfer fidelities of around 80% are attained with
on-site errors of around 10% and coupling errors of 5% the maximum coupling Jmax
[64].

Detailed studies [64, 73, 142, 145–147] conjecture that the effects of static random
perturbations to the state transfer scale with the size of the chain. We will show that
this is a direct consequence of the presence of localisation signatures that appear
when the size of random errors is high enough and the system is considerably large.
In the next part of this chapter we explore this phenomenon and relate it to Anderson
localisation. We therefore investigate the question of if and how random defects
would affect the relevant transmission properties of PST spin chains for different
levels of disorder and spin chain sizes.

3.2 Disorder and Anderson localisation

The exponential decrease of conduction due to the presence of static random fluctu-
ations in solids had been observed in several experiments, mainly in ones related to
spin diffusion [148–150]. The classical Boltzmann scattering description was insuffi-
cient to explain the deviations found in the resistance from Ohm’s law for increasing
sample sizes [151]. It was not until 1958 that this phenomenon was formally ex-
plained by P. W. Anderson [152] and not until ten years later that his arguments were
entirely accepted and followed by many [151, 153–155]. Since then, its reach and in-
fluence has been greatly extended in condensed matter physics, to many systems
and phenomena (examples include the integer quantum Hall effect [156], classical
waves [157, 158], photonics [159, 160] or Bose-Einstein condensates [161, 162]).

The presence of weak disorder leads to a decrease of spin diffusion or electri-
cal conductivity, something related to the electrons scattering by the impurities of
the random potential. For strong random disorder, the transport is halted and the
wavefunction of an electron in a periodic lattice is localised and characterized by an
exponential decay, |ψ(x)〉 ∼ e|x−xo|/ξ, that falls with distance, x, from the site of max-
imum amplitude, x0. ξ is the localisation length, related to the degree of localisation,
being a state with ξ → 0 strongly localised and a state with ξ → ∞ completely ex-
tended. This localisation behaviour could not be predicted by classical theory, which
assumes that electrons move through classical trajectories between collisions. Such
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approximation is valid as long as the mean-free path, l, is bigger than the Fermi
wavelength, λF , (corresponding to the electron responsible of the charge current,
with energy EF ) however when disorder is high enough then λF ∼ l and quan-
tum effects become prominent. Indeed, Anderson introduced that the fundamen-
tal reason for which this localisation and transfer suppression arise is associated to
quantum interference of wavefunction components that are scattered by the random
potential.

When weak disorder is present in a conductor, the resistance increases as the
result of weak localisation [153]. This type of localisation is due to a destructive
quantum interference of the electron wavefunction with itself. If no interference is
present, the total probability of the electron to go from xo to x is

∑
k A

2
k, being the

k’s all the possible wave paths and A their amplitudes. When xo = x, there will be
two time-reversed paths, k1 and k2, starting at, xo, and returning to the same point
which contribute 4A2

k1=k2
to the total probability. This increase of the probability to

go back to its initial site due to interference in the weak disorder regime is enough
to decrease the conductivity.

In the limit of very strong disorder, in addition to the previous effects, the eigen-
states localise at positions where the random potential forms a deep well. Their
overlap with other states will be reduced, as localised states will be dominant in
some regions but negligible in others. Due to this small state overlap and big en-
ergy differences, the hopping amplitudes are not enough to delocalise the particles
and the transport is affected. This behaviour scales with the system size, N , in all
dimensions as it becomes more prominent.

The theory of Anderson localisation predicts localisation of all states of one-
dimensional disordered lattices [163]. However it should be noted that in one di-
mensional finite systems disorder does not necessarily imply the complete vanish-
ing of extended states, as discussed by Pendry in the case of ’necklace’ states [164].
Therefore there are important theoretical motivations for considering non-uniform
and finite systems, along with the fact that experimental systems are finite in extent.

In this study we will simulate a random potential including diagonal disorder to
the Hamiltonian according to Section 2.3.1. In what follows we will restrict ourselves
to the dynamics of a single excitation injected at the beginning of the chain. Such
dynamics, in an ideal condition, is perfectly periodic and transfers the state back
and forth from its initial to its mirror position. Because the appearance of Anderson
localisation can be observed from the spatial localisation of the state wavefunction,
from the transport of the quantum particle, or from the eigenstate and eigenenergies
spectrum, we will here explore all of these points for a different range of chain sizes
and disorder strengths.

3.2.1 Spatial localisation

For infinite one dimensional systems with diagonal disorder, Anderson localisation
implies that any initially localised state remains so at all times. For example, in a
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semi-infinite discrete chain with one excitation started at the end site i = 1 and an
overall state of the form |Ψ(t)〉 =

∑∞
i=1 ci(t)|Φi〉, with |Φi〉 being the site vectors for

the one excitation subspace, the localisation condition can be written as

∞∑
i=1

Pii <∞, (3.9)

at all times t and with Pi = |ci(t)|2.
One of the cases where the semi-infinite condition is satisfied is when the site

occupation probabilities follow a power decay,

Pi ∼ i−(2+δ), (3.10)

for all times and positive δ.
Even though such consideration is done for infinite-length chains, we will stick

to this form of scaling dependence for finite scenarios. In order to do so we need to
normalise the occupation probabilities, Pi. For large values of chain length N , the
normalisation factor, αN , can be approximated to α∞ = 1

ζ(2+δ) , being ζ the Riemann
Zeta Function, as ζ(r) =

∑∞
i (1/ir). This way, the normalised probability takes the

form,

Pi = αN i−(2+δ) (3.11)

For (δ = 0), we find the critical normalisation α∞Cr = 1
ζ(2) . Similarly, for the

whole range of N (100 to 1000) in our study, αNCr can be approximated to α∞Cr ∼
0.6, so we can plot one critical probability distribution for comparison with all the
numerical simulations at different N values, from 100 to 1000.

We wish to explore how the effect of random disorder scales with the chain size.
In Fig. 3.8 we present the effective steady state site occupation probabilities Pi

ss (see
definition below) as a function of the site number, i, for a range of chain lengths
N = [100, 1000], with a strength of disorder E = 1.0 (see Section 2.3.1 for more
detail).

In order to approximate a steady state condition, the dynamics of each of the
systems is evolved to t = 5tM when the excitation is initially injected at site i = 1.
Results of the site occupation probabilities, Pi, are then averaged over 100 time steps
that go from t = 5tM to t = 7tM :

Pi
ss

=

∑7tM
t=5tM

P(t)i

100
. (3.12)

A plot of α∞Cr i−2 is included. This line gives the accepted cut-off for Ander-
son localisation in the limit N → ∞. Identifying everything below the cut-off as
localised, and everything above as not, we can conclude that chains with N about
∼ 500 and above exhibit Anderson localisation under this criterion (according to Eq.
3.9) for an excitation initially at the chain end.
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FIGURE 3.8: Effective steady state site occupation probabilities versus
chain site, i, for a range of chain lengths N = [100, 1000] and disorder
of strength E = 1.0, when the excitation is injected at site 1. For com-
parison, the critical line given by i−2 is added (with a normalisation

factor α∞Cr = 0.6).

Given the approximate straight line behaviour of the data plots, in terms of an
analytic approximation to the probabilities given by Pi = αN i

−(2+δ), we can com-
ment that δ exhibits slow variation withN . For smallN , δ is negative and increasing,
crossing the threshold for localisation (δ = 0) at about N ∼ 500.

One way to consider the localisation length is by looking for the fraction of the
chain over which most of the state probability is contained. In Fig. 3.9 we show the
fraction of the whole chain, n/N , over which the steady state probability needs to be
summed in order to achieve a total probability of Pssi = 0.95, as a function of both
disorder strengthE and the chain lengthN . Here n is defined as the smallest integer
such that

1

Nd

∑
d

1

Nt

∑
tj

n∑
i

|c(d)i (tj)|2 ≥ 0.95, (3.13)

with d ranging over Nd = 100 disorder realizations, tj over the Nt = 100 discretized
time steps from t = 5tM to t = 7tM .

This calculation shows the Anderson localisation regime, E > 0.6 and N & 500,
for the excitation release at i = 1, where the chain fraction is close to zero. This
means that in this regime most of the state probability is localised close to the initial
site. Fig. 3.10 shows how for a fixed strength of disorder, E = 1, as the chain gets
bigger the 95% of the averaged steady state probability (calculated according to Eq.
3.13) is compressed closer to the initial site, i = 1. Such results indicate that, for high
amounts of disorder and large chains, the excitation gets localised close to its initial
position (i.e. around the first four sites for the case N = 1000).
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FIGURE 3.9: Ratio n/N against chain length N and perturbation
strength E for achieving a total site occupation probability of 0.95,

when the excitation is injected at site i = 1.

FIGURE 3.10: Number of sites n needed to localise a 95% of the total
averaged steady state probability against chain length N for a system

initialised at site i = 1 and with a disorder strength E = 1.
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FIGURE 3.11: Maximum fidelity of the transferred state in a window
of 4.5tM versus chain length N and perturbation strength E, for exci-
tation released at the chain end site i = 1. Results are averaged over

100 disorder realizations.

It is also important to note, that if we change the initial injection site we may
obtain different results, even the absence of Anderson localisaton. This is somewhat
counterintuitive, as Anderson localisation is normally expected to be independent
of initial conditions. However this expectation is correct only when uniform sys-
tems are considered, where uniform disorder implies the same local effect on the
eigenvalues. When, as in this case, the unperturbed system is non-uniform, uniform
disorder may affect locally the properties of the system.

3.2.2 Effects on the dynamics

The appearance of Anderson localisation was originally introduced as a way to
explain the lack of spin diffusion or electron conductivity in randomly disturbed
lattices. Therefore an interesting alternative and complementary perspective from
which to consider Anderson localisation effects is to examine transport. The spin
system here considered, without any disorder, is by design a "perfect wire" as the
chain is enabled to transport an excitation (in analogy of a charge or a spin carrier)
from one end to the other with perfect fidelity in a time tM . Furthermore, modest
lengthN chains with low levels of disorder exhibit potentially useful robustness and
the state can still be successfully transferred [64, 73], which is why PST spin chains
are considered to be useful elements for short range quantum communication. Nev-
ertheless, for larger N values there is seen to be exponential damping of the transfer
fidelity with N , as already sensed from the previous analysis, along with Gaussian
dependence on the relevant noise amplitude [64, 73, 143].
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Previous work on this topic has looked at the transfer fidelity at some chosen
time, which for example would be t = tM if the objective is perfect quantum com-
munication along a chain. However to link such transport studies to the onset of
localisation effects, it is important to examine the fidelity over a range of times to
ensure that the maximum transfer fidelity is precisely determined. In fact one con-
tribution to fidelity loss could simply be a shift in the time of an excitation arriv-
ing at its destination, rather than a suppression of the arrival happening at all. To
demonstrate true localisation and therefore total suppression of PST, we have there-
fore taken the maximum value of the state transfer fidelity over a significant range
of time spanning a number of tM .

The maximum state transfer fidelity, Fmax, is calculated as an average over 100
disorder realisations of the maximum fidelity of the mirror state (this is a state with
an excitation at site i = N ) in a time window of 4.5tM . In Fig. 3.11 we show this
Fmax as a function of both chain length N and disorder strength E, for an excitation
released at the chain end site i = 1. The PST behaviour is visible for all N at zero
disorderE = 0, with fidelities close to unity, along with the region of high fidelity for
modestN and smallE. The presence of such stable range demonstrates the practical
application regime of PST spin chains for short range communication. However,
for larger amounts of disorder, the figure shows a clear decay and the maximum
fidelity approaches zero. Given that the plot is of maximum fidelity over a significant
time window, this is therefore evidence for the presence of Anderson localisation,
complementary to the results on the spatial distribution of the steady state given in
the previous section.

FIGURE 3.12: Averaged fidelity of the transferred state in a time win-
dow of 4.5tM versus chain length N , at exactly tM (red) and maxi-
mum value over 4.5tM (black), E = 0.1 (left panel) and E = 1.0 (right

panel). Black and red dashed lines are a fit for all values of N.

More detail on the decay of the fidelity of the state transport is presented in the
two panels of Fig. 3.12. The figure presents the averaged transfer fidelity at exact tM
and the maximum transfer fidelity over a time window (4.5tM ) for small (E = 0.1)
and large (E = 1.0) levels of disorder. When the disorder is weak (left panel), the
maximum transfer fidelity occurs at the expected time of t = tM and falls off expo-
nentially but slowly with N (left panel), again demonstrating practical and usable
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high fidelities for modest N ∼ 100. For stronger disorder levels (right panel), there
is rapid exponential decay of the fidelity, both for the maximum fidelity and for the
fidelity at tM , approaching zero even for moderate length chains. Additionally, for
such level of disorder, the maximum fidelity deviates from occurring at tM . The
analysis of the fidelity then demonstrates the strong suppression of PST for a strong
levels of disorder and large systems, and supports the appearance of Anderson lo-
calisation along with the spatial arguments.

3.2.3 Effects on the eigenstates and energy spectrum

Strong random disorder affects the Hamiltonian spectrum by localising its eigen-
states in such a way that localised and extended states will not coexist at the same
energy region of the spectrum. Therefore, signatures of Anderson localisation have
to be also apparent from the study of the eigenstates and spectrum of spin chains
[142]. In order to study how the diagonal random disorder affects the eigenstates,
|ϕk〉, of the system we obtain the occupation probabilities as function of the site num-
ber i, Pi,k = |〈Φi|ϕk〉|2, being Φi the basis vectors representing the single excitation
subspace (see Section 2.2.2 for further detail). We here restrict ourselves to a strength
disorder of E = 1.0, for which we already know the state transfer is suppressed and
therefore constitutes an optimal value where to observe strong localisation phenom-
ena.

Fig. 3.13 shows the site occupation probabilities of the N eigenstates for a single
noise realisation of a N = 1000 sites chain. The left (right) inset demonstrates that
the eigenstates which peak at the first (last) three sites of the chain are not extended
anymore as they are indeed completely localised within very few sites. This is the
expected signature of Anderson localisation in one-dimensional systems in which
most of the probabilities of the eigenstates of the Hamiltonian are contained over
one or few sites. In fact, Anderson theory predicts that for one-dimensional periodic
systems under random disorder all the eigenstates will be equally localised. We do
not observe this complete localisation because, as already commented, our system
is not periodic given the presence of non-uniform interactions between sites. Nev-
ertheless, because our coupling scheme imposes a weaker spin-spin interaction at
the ends, the disorder is sufficient to cause strong localisation at the ends but not in
the middle. Having said that, we would expect that, eventually, stronger levels of
disorder would completely localise the eigenstates peaking in the middle sites of the
chain.

We further support the presence of localised eigenstates by considering P i,max,
the maximum site occupancy probability over all the eigenstates averaged over 1000
realizations. In Fig. 3.14, the maximum averaged site occupation probabilities are
shown. The probability of one eigenstate being in the first (last) sites is close to 1.
This behaviour is, as expected from previous findings, size dependent and the max-
imum values increase with the size of the chain (see inset). We contrast this with the
corresponding probability distribution for the unperturbed case (pink dashed line
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profile): in this case all the states are delocalised along the chain as extended states
and hence the maximum probability of occupying any site in the chain is very small
and roughly uniform all along the chain. This delocalisation of all eigenstates is cru-
cial for PST (as already seen with the earlierN = 14 example of Fig. 3.7): the injection
of an initially localised excitation, for example at the end of the chain, is thus injec-
tion of a superposition over many eigenstates, giving raise to the well known PST
dynamics. When disorder localises the relevant eigenstates at the chain ends, the
same initial injection is then a superposition with far fewer significant amplitudes
corresponding to more localised eigenstates (eventually just one, for large disorder).

FIGURE 3.13: Site occupation probabilities versus site number i for
the N eigenstates of the system for one random realization. Left and
right inset show three representative eigenstates which peak on the
three initial and final sites of the chain, respectively. Central inset
shows the site occupation probabilities of the states peaking in the

middle sites of the chain.

The suppression of transport due to Anderson localisation is then explained by
combination of eigenstates localisation and splitting of the relevant eigenergies. The
upper panels of Fig. 3.15 show the eigenstates localised by disorder on the right con-
trasted with the delocalised unperturbed states on the left, for the first few sites of
the chain. The lower panels show the corresponding energy spectra. For the un-
perturbed case, the energy levels form a band with an equally spaced distribution
of k energy values such that Ek = (N − 2k + 1)J0. However, when random disor-
der is added such that E 6= 0 and we are in the Anderson localisation regime, the
perturbed energy levels are no longer uniformly distributed in the band, and gaps
begin to appear (see r.h.s lowest panel of Fig. 3.15). Importantly, the energies cor-
responding to the eigenstates localised on the few first sites are well separated, as
shown by the black lines in the lowest r.h.s panel.

The localisation process can be exemplified by comparing the initial state as in-
jected at site 1 for both the unperturbed and perturbed cases shown in the upper
panels of Fig. 3.15. At time t = 0, the initial state will be a superposition of all the
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FIGURE 3.14: Averaged maximum occupation probabilities for each
site averaged over 100 independent realizations versus site number.
The inset shows the difference between the averaged maximum prob-

abilities at the first six sites for N=1000, 600 and 300 (as labeled).

non-vanishing eigenstates at site 1 and its energy will be the corresponding linear
combination of eigenenergies. For the unperturbed case, these eigenstates will be
many, and by inspection and by considering that the energy band is very dense, we
may deduce that the energy from the corresponding linear combination of eigenen-
ergies will not be very different when moving from the first to the next sites (this is
in fact corroborated by PST).

However, for the disordered chain, we can approximate the state as injected in
site 1 as,

|Ψinj〉 = c11|ϕ1〉+ c12|ϕ2〉+ c13|ϕ3〉, (3.14)

which will be dominated by approximately one eigenstate, |ϕ1〉 (see Fig. 3.15, top
r.h.s. panel). Its energy will then be

〈Ψinj |H|Ψinj〉 =
∑
i

〈Ψinj |c1iEi|ϕi〉,

and we can approximate 〈Ψinj |H|Ψinj〉 ≈ E1 as we know that |a11|2 � |a12|2, |a13|2

(see upper r.h.s panel of Fig. 3.15).
Bearing in mind that the dynamical evolution of our Hamiltonian will conserve

the energy, and having shown that our initial state sits on the E1 energy level, we
can conclude in addition to the eigenstate localisation argument that, because the
eigenstates peaking at the nearby sites have energies far apart from the initial one
(see Fig. 3.15, bottom-right panel), the state transfer will be strongly diminished.
Therefore localisation for this specific case is indeed supported by both eigenstate
and eigenenergy arguments and the no coexistence of localised states with extended
ones: spatially close overlapping eigenstates have distant eigenenergies, states with
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close energy levels have spatially distant eigenstates with vanishing overlap.

FIGURE 3.15: Site occupation probabilities of the eigenstates peaking
at the first few sites of an unperturbed (l.h.s) and perturbedN = 1000
chain with E = 1.0 (r.h.s) (top panels) and their energy spectra (other
panels). Both bottom panels display a zoom to clearly observe the
energy splitting, equally spaced for the unperturbed chain and ran-
domly spaced (white gaps) for the perturbed chain. The black lines in
the bottom r.h.s. panel indicate the eigenergies corresponding to the

eigenstates |ϕ1〉, |ϕ2〉, |ϕ3〉 in the top r.h.s. panel.

3.3 Summary

In this chapter we have explored the ability of spin systems, mainly one-dimensional
spin chains, to transfer quantum states. This behaviour has made this system very
popular due to its potential applications to communicate quantum information over
small distances, e.g. between registers of a quantum processor, as an alternative to
photonics. The transport phenomenon can be triggered in several ways, but here
we considered the engineering of the chain interactions. Under ideal conditions,
such scheme leads to the quantum transport with perfect fidelities (PST). Previous
investigations on the robustness of the transfer of quantum states over spin chains
have showed that they present a level of robustness in their transport properties,
which is why they are of interest for quantum information transport.

In that line, we have investigated in detail the phenomenon of localisation in
one-dimensional PST spin chains in the moderate-strong disorder regime. Our in-
vestigations show that transport is affected by moderate disorder and suppressed
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for levels of disorder of the order of E ∼ 1 and for growing chain lengths N , due
to the spatial localisation of a locally injected excitation. One excitation injected at
the chain end exhibits genuine Anderson localisation for this level of disorder and
chains longer than N ∼ 500. These localisation signatures are also reflected in the
system eigenstates, with eigenstates localised over few sites at the beginning and
end of the chain for N & 500 and E ∼ 1. These localised states have energies that
sit far apart in the energy spectrum, as well as vanishing overlap with closer states,
further supporting the lack of hopping between stated sites.

On one hand, we have seen how the exhibition of localisation phenomena due
to random disorder can indeed damage the desired result of the operation for which
a spin chain device is set. In this case, the operation desired was related to state
transport, but it could be any other, and the existence of methods to protect such
operations from disorder would be very useful. On the other hand, the presence
of localised eigenstates could be something to take advantage of. The utilisation of
such states could lead us to the possibility of using spin chains for quantum state
localisation purposes and therefore memories. Let us now move to the next chapter
and explore all these questions.
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Chapter 4

Spin chains for protected quantum
state localisation

In this chapter we consider spin chain families inspired by the Su, Schrieffer
and Hegger (SSH) model. The presence, nature and robustness of topologically
protected localised eigenstates is investigated in detail. The potential use of
such systems for storing quantum states and serving as quantum memories is
also examined. Part of this work has been published in: M. P. Estarellas, I.
D’Amico & T.P. Spiller, "Topologically protected localised states in spin
chains", Scientific Reports 7, 42904, (2017).

In the previous chapter we have focused on systems designed to serve as quan-
tum wires, that is, designed to allow for perfect or high fidelity state transfer and
distribute a quantum state from its initial position to a desired location. However,
now we want to consider a different application also crucial in the exploitation of
quantum technologies. While spin chain models, as we have already explored, have
been identified as promising candidates for short-range quantum communication,
any implementation of a quantum computer will also need to have a means to store
quantum information. Classical computers use silicon-based memories to save their
digital bits temporarily (volatile memories such random-access memories or RAM)
or permanently (non-volatile memories such the read-only memories or ROM). Yet
a quantum counterpart of such devices, even in its most primitive form such as in
gate processed circuits, will have to face an additional hurdle: decoherence, which
can have a considerable impact in the quantum properties of the system as we have
previously seen. For this reason, proposals to build the first quantum state memories
(and other applications) pay special attention to the protection of the coherence of
the stored quantum state against external disorders and possible small deformations
during the fabrication process of the device. This context of finding a way to create a
dissipation-free zone for the manipulation of qubits, is where the idea of topological
quantum computers appeared [39, 165, 166].
Topology has acquired an increasing importance in condensed matter physics since
the observation of the Quantum Hall effect [167] and the first experimental real-
ization of a topological insulator [168]. One of the most sought applications of the
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topological state confinement is its use to design coherence protected quantum tran-
sistors [169]. Such systems can embody quantum information as topologically pro-
tected states and they open new paths in the search for a robust quantum processing
architecture.
In this chapter we apply the well known Su, Schrieffer and Hegger (SSH) model
[170], one of the simplest models showing non-trivial topological effects for one-
dimensional systems, to linear spin chains. We explicitly demonstrate the presence
of such effects through the confinement of an eigenstate and the opening of a gap in
the energy spectrum. We extend this idea to a set of related chain configurations with
different coupling patterns and number of confined states present. These configura-
tions display one or more localised eigenstates with most of their state probability
confined in one site of the chain. The localisation is such that it opens the possibility
of injecting or initialising a qubit state locally and keep the information encoded in
such a state at that individual site. The robustness of the localised state is investi-
gated by simulating static random disorder, showing that these protected states are
very robust against this type of perturbations. Systems with such resilience against
fabrication defects or quasi static fields are of clear interest for quantum information
tasks and their ability to perform potential memory applications is discussed in this
chapter.

4.1 SSH model

The Su, Schrieffer and Hegger (SSH) model was first presented in 1979, to describe
a soliton formation in polyacetylene, (CH)x, and allow the understanding of its con-
duction mechanism [170]. This polymer has a dimerised chain pattern constructed
by the alternating single and double bonds as result of the sp2 hybridization of the
carbon atoms. This is a consequence of the Peierls instability [171] (also called the
Jahn Teller effect), the distortion of a uniform lattice that lifts the degeneracy of the
two states in the Brillouin zone opening an energy gap in the spectrum. The system’s
ground state is therefore a superposition between two isoenergetic configurations
corresponding to the two resonant forms of the molecule, which are equivalent un-
der interchange of single with double bonds alternatively, as shown schematically
in Fig. 4.1.

These two configurations (α and β from Fig. 4.1) coexist through the dynamics
of a charge carrier, also called soliton, which appears as an electronic zero-energy
mode in the middle of the band gap. It is in this situation where the symmetry of the
system is broken and this soliton creates a domain wall between the two configura-
tions. Under chemical doping, more of these solitons appear and the conductivity
of the polymer increases [172]. This phenomenon drove the scientific community to
the further study of conducting polymers culminating in the form of a Nobel Prize
in Chemistry for Heeger, MacDiarmid and Shirakawa in 2000 [173–175].
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FIGURE 4.1: Schematic diagram of the process that leads to a soliton
formation in polyacetylene driven by the dimerisation of the lattice

caused by the Peierls instability.

The domain wall that appears between the two configurations is a protected
eigenstate at zero energy also called a zero mode. Jackiw, Rebbi and Schrieffer ex-
plained the presence of this mode through field theory [176, 177], while more mod-
ern literature makes use of the topology argument [111, 178–181]. We will here focus
on the latter.

4.1.1 Topological characterisation

Topology studies whether objects can be transformed into each other continuously
[182]. In condensed matter physics we can ask whether the Hamiltonians of two
quantum systems can be continuously transformed into each other. If that is the case,
then we can say that those two systems are topologically ’equivalent’. If we consider
all Hamiltonians without any constraint, every Hamiltonian could be continuously
deformed into every other Hamiltonian of the same size, and all quantum systems
would be topologically equivalent. This, however, changes drastically if we restrict
ourselves to systems with a conserved topological invariant [183], e.g. the presence
of an energy gap. If an energy gap is present, then the Hamiltonian of the system
has no eigenvalues in a finite interval and there is a finite energy cost to excite the
system above this gap. So our constraint or invariant would be to preserve the gap
over the Hamiltonian finite transformation. In this example, then we say that two
gapped quantum systems are topologically equivalent if their Hamiltonians can be
continuously deformed into each other without ever closing the energy gap.

Discrete symmetries can have a rich influence on topology (time-reversal sym-
metry, particle-hole symmetry,...) and in the SSH model we explicitly encounter
chiral (also named sublattice) symmetry. Systems with such symmetry are charac-
terised by the possibility of dividing the degrees of freedom into different groups,
something that happens when the lattice has two sublattices (A and B):
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FIGURE 4.2: Diagram showing the sublattices A and B joined by
weak (thin line) and strong (thick line) couplings.

As a consequence, the Hamiltonian of this system can be reduced to,

H =

(
0 HAB

H†AB 0

)
(4.1)

and the sublattice symmetry arises from the following operation,

σzHσz = −H (4.2)

This immediately reveals that if (ΨA,ΨB)T is an eigenvector of the Hamiltonian
with energy ε, then (ΨA,−ΨB)T is also an eigenvector with energy −ε. The conse-
quence of this symmetry is therefore a symmetric spectrum.

Interesting topological phenomena arise when connecting two regions with topo-
logically distinct regions [111, 184, 185]. In a dimerised system such as the SSH
model, we can understand the soliton as an interface between two topologically dis-
tinct dimers configurations or domain wall, e.g. the α and β configurations shown
in Fig. 4.1. Additionally, we could also think of a defect acting as a domain wall at
the edge of a chain as an interface between the dimerised system and the vacuum.
This means that a topological transition at the soliton or defect site must exist and
that a localised state will be present. Both case scenarios will be explored here by
studying two different dimerised chain configurations.

Widely used topological invariants in one dimensional systems such as the wind-
ing number [183] or the Zak phase [186, 187] are useful quantities to identify topo-
logically distinct configurations. These can be applied to the SSH model in order to
characterise each of the dimer configurations and demonstrate the topological na-
ture of the domain wall or ‘soliton’ between them. See [188] for more detail on the
topological properties of the SSH model.

4.1.2 Application to Spin Chains

As already pointed out, there are potential advantages of building protected quan-
tum regions, and the possibility of constructing spin chains to be topologically anal-
ogous to the SSH model makes them a good system in which to study this type of
localisation and protection phenomena. We here translate the polyacetylene picture
into the spin chain formalism. Previous works have already done the same extrap-
olation to different experimental set-ups such as edges of graphene ribbons [189],
edges of honeycomb arrays of microcavity pillars [190], optical waveguides [110] or
Bose-Einstein condensates of Rb87 atoms in suitable optical lattice potentials [179,
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187], motivating the further theoretical exploration of these models. We simulate
the dimerisation caused by the Peierls instability in polyacetylene by modulating
the inter-site coupling or interactions of a one-dimensional finite spin chain. Here
we consider symmetric chains with an odd number of spins or sites with alternat-
ing weak (δ) and strong (∆) couplings. Each chain is symmetric with respect to the
mid point, here labeled as site i = 0. We consider two different chain configurations
(sketched in Fig. 4.3), configuration (a) and (b), and the coupling nature of site 0 will
determine the rest of the chain. As seen in the previous section, the soliton is the
domain wall between the two distinct configurations of the ground state in poly-
acetylene. This is here mimicked as a defect weakly coupled to the rest of the system
at site i = 0 in configuration (a). On the other hand, the inverted scenario is also ex-
amined in configuration (b), flipping the inter spin couplings, and leaving two edge
defects, which still create a domain wall between two different configurations.

FIGURE 4.3: Spin chain configurations (a) and (b).

The time independent Hamiltonian of an N -site spin chain of this form can be
written as (see Section 2.1.1 for further detail),

H =
m∑

i=−m
εi|1〉〈1|i +

m∑
i=−m

Ji,i+1[|1〉〈0|i ⊗ |0〉〈1|i+1 + |0〉〈1|i ⊗ |1〉〈0|i+1], (4.3)

where m = (N − 1)/2. Ji,i+1 are the coupling strengths between two nearest-
neighbour sites and are pre-engineered to take two different values, ∆ and δ. As an
example. in the calculations presented here and unless stated otherwise, we choose
a ratio between the couplings of δ/∆ = 0.025, with a chain length ofN = 101. There-
fore, for the first case (Fig. 4.3-a), site 0 is weakly coupled (J−1,0 = J0,1 = δ) to the
rest of the chain such that,

i ∈ 2Z

{
Ji,i+1 ≡ δ, Ji+1,i+2 ≡ ∆ (0 ≤ i < m)

Ji,i+1 ≡ ∆, Ji+1,i+2 ≡ δ (−m ≤ i < 0)
(4.4)

In the second case (Fig. 4.3-b), site 0 is strongly coupled to the rest of the chain,
J−1,0 = J0,1 = ∆,

i ∈ 2Z

{
Ji,i+1 ≡ ∆, Ji+1,i+2 ≡ δ (0 ≤ i < m)

Ji,i+1 ≡ δ, Ji+1,i+2 ≡ ∆ (−m ≤ i < 0)
(4.5)
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4.2 Characterisation of the localised state(s)

In order to study and characterise the localisation features of our system, the eigen-
states and their relative eigenvalues need to be obtained. This is done through diago-
nalization of the Hamiltonian defined in Eq. 4.3 for both chain configurations shown
in Fig. 4.3 (see Chapter 2 for more detail). As expected in analogy with the results
previously obtained for other SSH-like models, a localised state at the central site is
found for the spin chain configuration (a) and two localised states at the edges are
found for the spin chain configuration (b). We characterise the nature of such states
not only from the static point of view, but also dynamically. This is attained from
evolving the system when an excitation is initially injected at those localised states.
In this section we demonstrate state localisation supported by the eigenstates, en-
ergy spectrum and dynamics of the system.

4.2.1 Eigenstates and energy spectrum

Let us first focus on the single-excitation eigenstates and the band structures of these
two types of chain. The study of the eigenstates of the system, |ϕn〉 with n ∈ [1, N ],
immediately shows localisation signatures for both types and such features will be
discussed separately.

Spin chain configuration (a):

By looking at the eigenstates’ probabilities we observe a confined state sitting in
the middle of the chain. Fig. 4.4 shows the absolute squared amplitudes, hence the
occupation probabilities, as a function of site number i, Pi,n = |〈i|ϕn〉|2, for each
eigenstate.

The localised state sits at site i = 0 as predicted and seen from the green pro-
file of Fig. 4.4 that peaks up to ∼ 1. This means that almost the entire occupation
probability of that eigenstate is contained at that site, hence it is localised. The rest
of the eigenstates, as observed in the figure and with some enlarged areas presented
in the insets for more clarity, are spread along the chain and therefore completely
delocalised.

The presence of a confined eigenstate is however not enough to ensure that the
state will remain localised and protected, and the inspection of the full energy spec-
trum is needed. In Fig. 4.5 the spectrum of this configuration clearly shows the
presence of an energy gap. In the middle of the gap and between twenty-five higher
and twenty-five lower twofold degenerate states, there is one zero-energy state cor-
responding to the eigenstate confined at site i = 0. This observation is crucial as it is
the presence of the gap that protects the state.

With the use of symmetry arguments and by simplifying the chain in smaller
sections of dimers we can accurately explain the features of the spectrum. Due to
the chiral symmetry of the chain configuration, an operator M reflects the system
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FIGURE 4.4: Eigenstate occupation probabilities, Pi,n, versus site
number i for a N = 101 sites spin chain under (a) configuration. The
localised state peaks at ∼ 1, sits at site i = 0 and it is shown in green.
The rest of eigenstates are delocalised over the chain and the two in-

sets show two different enlarged sections with such states

FIGURE 4.5: Energy spectrum of N = 101 sites spin chain with con-
figuration (a). Each of the states in the bands are two-fold degenerate

and one single localised state sits in the middle.

about its middle site (i = 0). Such an operator commutes with the Hamiltonian and
therefore non-degenerate eigenstates of the system must each be even or odd (with
eigenvalue +1 or −1) underM. On the other hand, given that ∆� δ, each the pair
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of strongly (∆) coupled sites can be seen as a dimer. Each dimer formed by sites |i〉
and |i + 1〉 has the eigenstates 1√

2
(|i〉 ± |i+ 1〉) with eigenvalues ±∆. Using these

dimer states (rather than the site states) as basis states we can explain the positions
of the energy bands in Fig. 4.5. The mid points of these bands are at the dimer ener-
gies±∆ and we have m/2 weakly coupled dimers either side of the central site state
|i = 0〉. Using these dimer states as a basis, the higher energy (+∆) dimer states for
positive i (0 < i ≤ m) can be treated as an m/2-site weakly coupled uniform spin
chain with a constant coupling of δ/2. This can be confirmed by comparing each
of the bands with the analytical formula for the energy spectrum of a uniform spin
chain En = δ(1 − cos( π

m/2(n − 1))) [120], being n = 1, 2, ..,m/2 and J the uniform
coupling. From this we can assert that the eigenstates are delocalised superpositions
of the dimer states with eigenvalues forming a band that spreads from ∆−δ to ∆+δ,
with a characteristic cosine distribution within the band, as observed in each bands
of Fig. 4.5. The higher energy (+∆) dimer states for negative i (−m ≤ i < 0) can be
treated analogously, with eigenvalues degenerate with the positive i states. Enforc-
ing the symmetry under reflection M means that the final upper band eigenstates
for this configuration are even or odd superpositions of the positive and negative
i band states. These odd and even states are degenerate, which explains why each
band level, as shown in Fig. 4.5, is doubly degenerate. A similar analysis follows for
the positive and negative i lower energy (−∆) dimer states, giving a band of doubly
degenerate states ranging from−∆−δ to−∆+δ, with the same characteristic cosine
distribution. The full set of 2m+ 1 eigenstates and eigenvalues for this type of chain
is completed with the inclusion of the localised state |i = 0〉 that has zero energy.

Spin chain configuration (b):

The previous picture gets more complicated when considering the eigenstate and
energy spectrum of the configuration (b). In Fig. 4.6, the eigenstates occupation
probabilities are again displayed and two states with probabilities ∼ 1 are found
confined at the edges of the chain. Additionally and in contrast with the previous
case scenario, we now observe three localised eigenstates peaking at ∼ 0.5 in the
three middle sites of the chain (i = −1, i = 0 and i = 1). From these, two of them
peak at the central site while the other one peaks at its neighbouring sites. The
remaining eigenstates are still delocalised along the chain (see insets of Fig. 4.6).

The energy spectrum now displays three degenerate zero-energy eigenstates in
the middle of the gap, corresponding to the ones peaking at the edges and neighbour
sites of the central site of the chain (see Fig. 4.7). These states are surrounded by
twenty-four higher/lower twofold degenerate states and one highest/lowest state
forming two other bands against the bulk of states. The latter two states occur at
energies ±2

√
∆ and correspond to the two additional states peaking in the chain

centre in Fig. 4.6.
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FIGURE 4.6: Eigenstate occupation probabilities, Pi,n, versus site
number i for a N = 101 sites spin chain under (b) configuration. Two
localised states peak at the edges of the chain ∼ 1 and are shown in
red and green. Three eigenstates peak at ∼ 0.5 at the three central
sites of the chain and are shown in blue. The rest of eigenstates are
delocalised over the chain and the two insets show two different en-

larged sections with such states.

FIGURE 4.7: Energy spectrum of N = 101 sites spin chain with con-
figuration (b). Each of the states in the bands are two-fold degenerate
and a further state sits above/below the upper/lower band. Three

degenerate states sit at zero energy.
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FIGURE 4.8: State amplitudes versus site number, i, and energy, En,
for the three states corresponding to the ones whose probabilities are
in the center of the chain with configuration (b) and its neighbouring
sites (trimer subsystem). Their energies correspond to the ones sitting
above/below the upper/lower bands of the spectrum spin chain and
to one of the zero-energy states sitting in the gap. The structures of

these states are equivalent to the ones in Eq. 4.6.

Again, symmetry and dimerisation arguments help us understand the spectra
and eigenstates of this configuration. Let us now simplify the structure of configu-
ration (b) by partitioning the system. In this case we have the end sites (| −m〉 and
|m〉) weakly coupled (δ) to two subsystems of (m − 2)/2 dimers. In turn, these two
subsystems are weakly coupled to a trimer; this a strongly coupled (∆) subsystem
of three sites corresponding to | − 1〉, |0〉 and | + 1〉 sitting in the middle. We focus
first on the trimer and given that δ � ∆ we can approximate its eigenstates to the
ones obtained from an isolated trimer. The eigenstates of a trimer are then given by
Eq. 4.6, with |φ−〉 having energy −

√
2∆, |φ0〉 having energy zero and |φ+〉 having

energy
√

2∆.

|φ−〉 =

−1/2

1/
√

2

−1/2

 |φ0〉 =

−1/
√

2

0

1/
√

2

 |φ+〉 =

 1/2

1/
√

2

1/2

 (4.6)

We can relate the structure of such trimer states to the three semi-localised states
that sit in the middle, the amplitudes of which are shown in Fig. 4.8. The trimer state
|φ+〉 corresponds to the one sitting above the upper band of Fig. 4.7, the trimer state
|φ−〉, to the one below the lower band, and the third trimer state |φ0〉 to the one in the
mid-gap at zero-energy. Adding the later to the other two edge states |−m〉 and |m〉
we obtain the triply degenerate level at zero energy between the bands. The band
levels themselves are again even or odd superpositions of the positive and negative
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i band states (as for configuration (a)) with the same cosine distribution except that
here each band contains (m − 2) levels (instead of m). The total level count is thus
still 2m+ 1.

4.2.2 State Dynamics

In addition to the static argument, we also wish to explore the behaviour of the
localised states with time. To do so the evolution of the initial state |Ψ(0)〉 = |1〉k ⊗
|0〉rest−of−chain with injection at the central site k = 0 for configuration (a) and edge
site k = −m for configuration (b) has been studied.

FIGURE 4.9: Fidelity of the initial state |Ψ(0)〉 = |1〉k⊗|0〉rest−of−chain
at the central site (k = 0) for configuration (a) and edge site (k = −m)
for configuration (b). The inset is a blow-up of a section at time ∼ 300.

More arguments supporting localisation are obtained from the observation of
Fig. 4.9. The fidelities (F(t) = |〈Ψ(0)|Ψ(t)〉|2) of the states injected at the sites that
present confined eigenstates remain almost constant and very close to unity (pre-
sented as an inset in the center of the figure). This implies that most of the probabil-
ity of the initial state remains contained on the localised eigenstate and its evolution
will not give significant non-zero probability components at any other site.

4.3 Ratio and length dependence

As shown in [111], the topological distinctiveness of the two α and β phases (or the
vacuum) leads to the formation of an exponentially localised state with a wavefunc-
tion of the approximated form |ψi〉 = (−∆/δ)−|i|/2 for even sites and |ψi〉 = 0 for
odd sites i. All the previous analysis has been done considering a pretty low cou-
pling ratio value, δ/∆ = 0.025. This means that, given that ∆� δ, the dimerisation
of the system is very marked. With such a coupling ratio, the exponential decay of
the localised amplitudes is such that our states are indeed highly localised and non-
overlapping. However, the localisation features seen along the previous section are
still significant for coupling ratios an order of magnitude bigger and the exponential
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FIGURE 4.10: Change on the structure of the probability peak, Pi,loc,
of the localised state at site i = 0 for configuration (a) –left panel– and
i = −m for configuration (b) –right panel– with coupling ratio δ/∆.

decay of the localised state state confined to the sites with even index is more vis-
ible. This is presented in the two panels of Fig. 4.10 where it can be observed that
the occupation probability, Pi,loc, on the relevant sites i = 0 and i = −m for con-
figurations (a) and (b), respectively, does not start decreasing from Pi,loc ∼ 1 until
the coupling ratio is δ/∆ = 0.25. In such case, the occupation probability is of the
order of 0.6 for configuration (a) and 0.88 for configuration (b). For higher ratios the
probability profile of the localised state of configuration (b) has a more pronounced
exponential decay for even sites of the chain, as observed for the profile δ/∆ = 0.5,
and its tails end up overlapping with the localised state that sits at the other edge of
the chain. Such behavior can also be understood from the influence of ∆ and δ to the
spectrum structure (see Fig. 4.5). If the coupling ratio increases by increasing δ, the
eigenstates in the energy bands spread between higher limits as, in absolute values,
they go from ∆ + δ to ∆− δ. This affects the protection of the localised states as with
the increase of δ (or the decrease of ∆) the gap becomes smaller and vanishes when
δ/∆→ 1.

We can therefore assert that there is scope for flexibility in the tuning of the cou-
pling ratio. Moderate coupling ratios still allow for significant localisation patterns
as long as the energy gap is conserved. The scalability of the system, on the other
hand, will depend on the type of configuration. In the case of configuration (a), the
chain can be enlarged as much as desired by adding dimers at either sides of the
central i = 0 site. The localised state will still be present with a probability depen-
dent only on the chosen coupling ratio. If we want, on the contrary, to reduce the
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length of the chain, the shortest length allowed for this chain type will be N = 5

in order to preserve the symmetry of the spectrum (the central weakly coupled site
and two strongly coupled dimers at each side). In the case of configuration (b) there
is more than one localised eigenstate present. Such states sit at the ends of the chain
and therefore if the system is too short the tails of the two localised eigenstates will
unavoidably overlap (similarly to what happens when the coupling ratio is high).
Through investigation of a range of systems, the limit found for δ/∆ = 0.025 cou-
pling to start happening is N < 45. In Fig. 4.11 the eigenstate occupation probabili-
ties of a N = 21 sites chain are shown in order to illustrate this. For such a scenario,
the two eigenstates that were localised at each edge site of the chain for large N
are now overlapped and peaking up to ∼ 0.5 in probability simultaneously at both
sides, so we lose the localisation property. However, due to the superposed nature of
the two eigenstates (symmetric and antisymmetric) any state initially injected at one
of the edge sites of the chain transfers to its opposite (mirror) site at the other edge
and we therefore foresee the application of such system for quantum state transfer
purposes.

FIGURE 4.11: Eigenstate occupation probabilities, Pi,n, versus site
number i for a N = 21 sites spin chain under (b) configuration. The
localised state peaks at ∼ 1, sits at site i = 0 and it is shown in green.
The rest of eigenstates are delocalised over the chain. The rest of
eigenstates are delocalised over the chain and the two insets show

two different enlarged sections with such states

From the above observations we can justify our decision of studying the example
of N=101 and δ/∆ = 0.025, which is well into a region where the localised states are
both N and δ/∆ independent. We however remark that this is not the extreme limit
where to observe localisation and protection phenomena and other chain lengths
and coupling ratios can indeed be considered.

4.4 Robustness and Protection

The previous discussion of the bands and eigenstates explains how the energy gap is
created. The choice of a small coupling ratio (in our case we are taking δ/∆ = 0.025)
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leads to gaps between the localised states and the bands of order ∆. This gap protects
the structure of the state as the energy needed for a perturbation to excite the state
up to the next level is, also, of the order of ∼ ∆. If the coupling ratio is lowered then
the spread of the bands increases, relative to the separations between the localised
states, reducing the effect of the energy gap protection.

This protection is crucial because any implementation of a quantum state mem-
ory, no matter how small, will need to show at least –and assuming the role of a
volatile memory only, hence temporary– some level of robustness against external
disorder, i.e. without losing its coherence. In this section we will investigate this in
detail by imposing on the system two different types of disorder and then inspecting
the impact these have on the spectrum.

4.4.1 Diagonal disorder

FIGURE 4.12: Maximum occupation probabilities for each site of con-
figuration (a), averaged over 100 independent noise realisations, with
E = 0.0 (black), E = 0.1 (darkgrey), E = 1.0 (grey) and E = 1.5 (light
gray) levels of diagonal disorder. The y-axis representing the scale of

the disorder E has some band gap regions omitted for clarity.

We have already mentioned that one approach to modelling disorder is to add
random diagonal disorder to the Hamiltonian (see Chapter 2). The dimensionless
parameter E that sets the scale of the disorder is weighted against ∆. Due to the
stochastic nature of these calculations, we average the maximum site occupancy
probability for all the N eigenstates over 100 realisations of the disorder (average
denoted by a bar),

P̄i ≡ max
n
|〈i|ϕn〉|2. (4.7)
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FIGURE 4.13: Maximum occupation probabilities for each site of con-
figuration (b), averaged over 100 independent noise realisations, with
E = 0.0 (black), E = 0.1 (darkgrey), E = 1.0 (grey) and E = 1.5 (light
gray) levels of diagonal disorder. The y-axis representing the scale of

the disorder E has some band gap regions omitted.

Fig. 4.12 and Fig. 4.13 represent the maximum occupation probabilities of the
two chain configurations for cases with E = 0.1, E = 1.0, E = 1.5 and without
added diagonal disorder, E = 0.0. For configuration (a) (Fig. 4.12), as the level of
disorder increases, the maximum probabilities along the chain sites get higher in
comparison with the unperturbed (E = 0) scenario (black profile). This means that
the eigenstates are not uniformly spread anymore and they start to present Anderson
localisation [152] (see also Section 3.2). It is seen however that the probability of the
state being in the middle of the chain remains peaked at unity for levels of disorder
of the order of E ∼ 1.

Similarly, for configuration (b) (Fig. 4.13)) the states undergo localisation as the
perturbation increases. The protected behaviour is also observed for the states peak-
ing at the ends sites and at sites i = ±1 (the eigenstate that is closely approximated
by |φ0〉 of Eq. 4.6). Remarkably, this last state is protected even when the growing
Anderson localisation affecting the neighbouring sites induced by increasing disor-
der is greater than the topologically-induced localization as observed from the ’W’
shape of the two profiles with higher disorder E. We also note that the two states
with energies ±

√
2∆, peaking at the mid point of the chain (i = 0) and with eigen-

states that are closely approximated by the states |φ−〉 and |φ+〉 of Eq. 4.6, have some
amount of protection but start to be affected for E ∼ 1.

This behaviour can be further understood by observing the averaged energy
spectrum for these same levels of disorder as shown in Fig. 4.14. With increasing
disorder, the band energies spread and the band gaps shrink. Further increasing of
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FIGURE 4.14: Energy spectrum of N = 101 sites spin chain with con-
figuration (a) –upper panel– and (b) –lower panel–, averaged over
100 independent noise realisations and for different levels of diago-

nal disorder.

the disorder strength eventually closes the gaps and the protection suffers. How-
ever, we have observed that the localisation remains very strong: even with a dis-
order strength of E = 3.0 (three times the strong coupling value ∆) the unit peaks
decrease by only 4%, so are still strongly localised with a probability ρi ≈ 0.96. As
already noted, the eigenstates approximated by states |φ−〉 and |φ+〉 of Eq. 4.6 that
peak at site i = 0 are less protected against disorder than the other localised states
because their energy gaps are somewhat smaller than those of the zero energy states.

4.4.2 Off-diagonal disorder

Off-diagonal disorder is another type of static disorder affecting the couplings be-
tween sites, as already introduced in Chapter 2. As the name indicates, such random
errors affect the off-diagonal terms of the Hamiltonian. Similarly to the diagonal dis-
order we scale the perturbation added against the strong, ∆, coupling. The average
of the maximum probabilities against site over 100 independent realisations for both
configurations are shown in Fig. 4.15 and Fig. 4.16.

In contrast with what it was observed in the previous section, the localised states
for both chain configurations are more affected by the off-diagonal disorder. This
can be observed from the rapid decrease on the localised profiles from Fig. 4.15 and
4.16 asE gets larger. Even though the profile is still well-defined, its maximum prob-
ability decreases as much as∼ 0.6 when E = 1.5. In Fig. 4.17 the change on the peak
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FIGURE 4.15: Maximum occupation probabilities for each site of con-
figuration (a), averaged over 100 independent noise realisations, with
E = 0.0 (black), E = 0.1 (darkgrey), E = 1.0 (grey) and E = 1.5 (light
gray) levels of off-diagonal disorder. The y-axis representing the scale

of the disorder E has some band gap regions omitted.

FIGURE 4.16: Maximum occupation probabilities for each site of con-
figuration (b), averaged over 100 independent noise realisations, with
E = 0.0 (black), E = 0.1 (darkgrey), E = 1.0 (grey) and E = 1.5 (light
gray) levels of off-diagonal disorder. The y-axis representing the scale

of the disorder E has some band gap regions omitted.

representing the localised state probability for both configurations and types of dis-
order is presented against the perturbation strength, E. There is a sharp difference
between both disorder scenarios showing a faster decay of the localisation when the
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couplings are affected. This difference is attributed to the nature of the off-diagonal
perturbation: as the errors on the couplings get bigger, the more broken the dimeri-
sation symmetry is and the system approximates to a fully uniform chain, hence
the energy gap closes faster. We note that the localisation peak for configuration (a)
has a more pronounced decay in the low perturbation regime because the localised
site i = 0 is doubly disordered from errors due to the double nature of its coupling,
while the localised site at i = −m of configuration (b) is coupled to just one site.

FIGURE 4.17: Maximum occupation probabilities for the localised
sites i = 0 for configuration (a) (purple profile) and i = −m for
configuration (b) (yellow line) against diagonal (solid lines) and off-

diagonal (dashed lines) disorder.

All these observations are clear signatures of the presence of topologically pro-
tected localised states in both types of configurations sitting in the middle of the
energy gap. Even though we observe higher robustness of the system against di-
agonal disorder, it is important to note that we have here stressed the system up to
unrealistically high levels of disorders (150% of the strong coupling ∆) and yet we
get outstanding stability of the localised profiles. Indeed such states present for now
the desired characteristics for the potential use of such system for storing applica-
tions.

4.5 Quantum memory applications

Over the last sections we have studied in detail the presence, nature and protection
of localised states in our two chain configurations. Our findings suggest that such
systems allow for any single qubit state injected into the sites where the localised
state is confined to be stored in a robust manner. In this section we ought to explore
if such behaviour is really attained, and therefore whether the system application as
a quantum memory is something feasible.

In order to do so we inspect how disorder affects the dynamics of the system.
In Section 4.2 we dealt with systems with a |1〉 state initialised (injected) at the sites
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FIGURE 4.18: In the upper panel, fidelity of one initial excitation in-
jected at the middle site (site encoding) containing the localised eigen-
state of a N = 21 sites chain with configuration (a) and δ/∆ = 0.025
with no disorder (yellow profile) and 10% of diagonal disorder (blue
profile). The green profile represents the fidelity of the initial state
when the excitations is injected at the localised eigenstate (eigenstate
encoding). In the lower panel, unperturbed phase dynamics of the
excitation injected at the middle site (solid lines) and averaged disor-
dered (E = 0.1) phase dynamics over 100 realisations (dashed lines)
for a chain configuration (a), site encoding and different coupling ra-

tios (δ/∆).

with confined eigenstates that proved the localisation as the fidelity of the initial
state remained very close to unity over time. The picture is still the same when
the initial state is an arbitrary qubit state α|0〉 + β|1〉 and disorder is added and the
amplitude of the dynamics, hence the fidelity, remains the same as the state remains
within the energy gap (as seen on the upper panel of Fig. 4.18 for the injection at site
i = 0 and diagonal perturbation E = 0.1).

On the other hand, the fidelity figure is not enough to ensure that the quantum
state is indeed stored. Even though the amplitude, ||2, remains constant, relative
phases between the qubit components could quickly intervene and destroy the co-
herence of the initial state. One way to check this is by looking at the phase dynamics
of the initial state 〈Ψ(0)|Ψ(t)〉 and how it changes with disorder. When looking at
the averaged phase over 100 noise realisations (lower panel of Fig. 4.18) we observe
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that with no disorder (solid lines) the phase factor remains at 1 (similar to what hap-
pens with the fidelity). The oscillations in the site encoding fidelity are due to small
components of non-localised energy eigenstates, so the frequency is dominated by
∆. These contributions from non-localised energy eigenstates become more signifi-
cant as the coupling ratio is reduced. However, the phase coherence starts dropping
when the diagonal disorder added is of a strength E=0.1 and adds a phase error
to the initial state. This behaviour has been contrasted with different coupling ra-
tios and it has been shown to be similar for all of them. The phase error makes
the system presented under the current encoding unsuitable for quantum memory
applications, as it represents a relative phase on a qubit superposition involving an
amplitude with no excitation and an amplitude with one site excitation.

Nevertheless, in the case at hand, because of the potentially very strong spatial
localisation of the protected states, we can encode instead a single logical qubit for
each of the topologically localised eigenstates (|ϕL〉), with presence or absence of the
excitation being in the |1L〉 or |0L〉 qubit state, respectively, such that,

|ΨL(t)〉 = α|0L〉+ βe−iELt/~|1L〉 (4.8)

This latter ‘eigenstate encoding’ allows the use of these protected states as qubits
even when their spatial localisation is not so strong and the physical states extend
over several spins, as long as the eigenstate remains isolated in an energy gap and
thus accessible through energy-specific addressing. In this case the number of log-
ical qubits that a system could host would depend on the number of topological
protected ’solitons’ or defects embedded in its couplings’ structure.

The probability of finding the state initially injected at the localised state (eigen-
state encoding) is constant at unity (dashed green profile of upper panel of Fig. 4.18).
Thus the eigenstate encoding alternative for storing applications becomes very rel-
evant. For configuration (a), even though the localised state will remain protected
(within an energy gap) when diagonal disorder is added, it will shift an energy ∆EL

(see left panel of Fig. 4.19). In that case the qubit should be encoded into the per-
turbed localised eigenstate at energy ∆EL. As the state remains well within the large
gap, its energy should be relatively easily identified experimentally. Hence although
both encodings will present a phase oscillation, the use of the eigenstate encoding
and the fact that the initial state will be injected into a well known eigenstate at ∆EL

will allow us to know the periodicity of this phase and hence correct for it, if needed.
However, when off-diagonal disorder is affecting the system, the quantum state

can still be encoded at the localised site. The encoded state will not suffer phase er-
rors and will remain localised as long as the level of disorder is not large enough to
close the gap. This behaviour is caused by the symmetric nature of the off-diagonal
disorder. In Section 4.2 we explained how the energy spectrum is constructed as
even and odd superpositions of the now perturbed (by ε) dimer states, and there-
fore will have energies of ∆ + ε and −∆ + ε. Because of this, the symmetry over the
zero energy level of the spectrum is preserved (as shown in the right panel of Fig.
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FIGURE 4.19: Energy levels for a N = 21 sites spin chain with con-
figuration (a) with no noise (black solid lines) and 10% (red dashed
lines) of diagonal (left panel) and off-diagonal (right panel) disorder.

4.19) and the localised state sitting in the middle of the gap remains unperturbed.
The possibility of safely injecting the initial state directly on site may be indeed con-
venient to the user as there is no need to inject at a given energy, as for the eigenstate
encoding.

Depending on the physical realisation implementing our chain configurations
different types of disorder will be encountered. Quantum memory applications will
be able to be attained given that the appropriate encoding is chosen. When diagonal
disorder is affecting the system, the use of the eigenstate encoding will allow pro-
tection of the localised state from phase errors up to 300% of ∆, but with the added
difficulty of having to inject the initial state at the precise ∆EL energy. On the other
hand, when off diagonal disorder is present, even though less robust (the localised
states are protected up to 100% of ∆), we can still safely use the site encoding and
inject the state at the defect site with the zero-energy confined state associated with
no phase errors taking place.

4.6 Summary

Over this chapter we have investigated the presence and robustness of topologically
localised states in engineered spin chains, inspired by the SSH model and relying
on the dimerisation of their sites. The presence of these states can be selectively ma-
nipulated through control of the chain coupling distribution and length. Localised
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states can be engineered to exist at the centre and/or the ends of the chain, as in
configurations (a) and (b).

We have shown that these topologically localised states exhibit a high level of
protection to increasing diagonal and off-diagonal disorder, with higher protection
resulting from larger energy gaps. These gaps, along with the rest of the energy spec-
trum, depend directly on the coupling ratio δ/∆ and such dependence has been in-
vestigated. The protection and robustness is an essential requirement when thinking
of quantum architecture components. In order to attain completely robust localised
states against fabrication defects and avoiding phase errors for quantum memory
applications we propose two different types of encoding: state injected at the lo-
calised site or at the energy of the localised eigenstate, each of which yields favor-
able results depending on the type of disorder perturbing the system. The presence
of these localised states therefore provides an interesting system presenting two or
more degenerate zero-energy states in which to encode protected quantum informa-
tion. We can thus conclude that such systems are good potential candidates from
which to design a quantum memory device.

Members of these dimerised families of spin chains with such symmetry break-
ers, when engineered and combined, could also represent promising elements for
the construction of more complex quantum logic networks, thus providing a novel
system with which to perform quantum information processing. In order to inves-
tigate such applications, in our next chapter we will examine the dynamics, state
transport and computational abilities such as entanglement generation of appropri-
ate spin chain systems inspired by the above types in a more extensive way, along
with the robustness of these applications to disorder.



99

Chapter 5

Spin chains as quantum entangling
gates

In this chapter we model a dimerised spin chain embedding three defects or
weakly coupled sites. Three different entangling protocols are proposed as well
as their latter storage, one producing a Cluster state and two generating a Bell
state, depending on the initial state injection. The potential use of such protocols
as quantum entangling gates and its robustness is considered. Part of this work
has been published in: M. P. Estarellas, I. D’Amico & T.P. Spiller, "Ro-
bust Quantum Entanglement Generation and Generation-plus-Storage
Protocols with Spin Chains", Phys. Rev. A 95, 042335, (2017) and K.
N. Wilkinson, M. P. Estarellas, I. D’Amico & T.P. Spiller, "Rapid and
Robust Generation of Einstein-Podolsky-Rosen Pairs with Spin Chains",
Quant. Inf. Comp. 18(3&4), 0249–0266, (2018).

At the lowest level of the physical layer of any classical computer architecture
we encounter integrated circuits made up of many logic gates. Each of these gates
is designed to perform a specific logical operation, a set of which will define any
sort of computation and allow for universality (universal Turing machine). As an
example, the arithmetic logic unit or ALU is one of the most essential components
of any processor and is nothing more than an integrated combinational logic cir-
cuit designed to do some simple but essential arithmetic operations (add, subtract,
increment, decrement, etc) to strings of binary code or bits.

With the quantum ingredient, technology needs to deal with other capabilities
offered by the exotic nature of the quantum systems. One of the most important of
these capabilities is entanglement. Many operations in quantum information rely on
the sharing of entangled qubits between different parties, such as teleportation pro-
tocols [191], dense coding [27], and one-way quantum computing [192]. Therefore,
such quantum phenomenon constitutes an essential resource for many applications
in quantum technology. Accordingly, and analogously to classical computing, a uni-
versal set of gates able to operate under the rules of quantum logic is on demand
(as already stated in Section 1.1.3 where DiVincenzo list [54] was analysed). Among
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them, quantum entangling gates will be essential for the exploitation of the tech-
nology power of a true quantum Turing machine as well as other applications in
quantum communications.

Over the years, several proposals for the generation of entangled states have
been made and successfully realised experimentally. In solid-state implementations,
previous works report the use of spin chains to allow for entanglement generation
through different approaches. One of them studies the so called long distance en-
tanglement generation [72, 77, 79, 82] which refers to the presence of a Bell state-like
eigenstate between the edges of an antiferromagnetic chain. Another approach re-
quires the moving of spin entities adiabatically [193, 194] in order to create entan-
glement. Other methods of generating entanglement include the use of correlated
static disorder [195], due to fermionic exchange [73], using branched systems [129]
or kondo chains [62].

In this context, this chapter will show how our set of proposed spin chain config-
urations, that we name ABC-type spin chains, allow for entanglement generation
without being susceptible to some of the limitations of previous proposals. Our
proposed device has the advantage of using physically static qubits (or ‘stationary
qubits’) and is based upon their natural dynamics. This gives ABC-type chains the
potential to fulfill the role of gates between closely spaced distanced quantum regis-
ters. In addition, this protocol is driven by the natural dynamics of the chain limiting
the need of user interaction with the system. However, note that some interaction
is required as initialisation and extraction of the desired input/output states will be
needed. Depending on the initial state injected to the system, the protocol will lead
to two different maximally entangled states: a cluster state or a Bell state. Based on
the same principles seen in the previous chapter, this protocol also offers the possi-
bility of localizing and therefore storing the entangled state. We have tested the re-
silience of the protocol against fabrication defects, by adding random fluctuations to
both the sites and the couplings of the chain, as well as time delays, by variating the
injection times when dealing with simultaneous initialisations involving more than
one site. Highly favourable results have been obtained showing clear optimism in
the prospective use of such devices for real application. In this line, we have gone a
step forward by seeking a compromise between the fidelity of the desired entangled
state, the overall robustness of the protocol and, quite importantly, the time needed
for the entanglement operation to deliver. Such times are very relevant features of
the device due to the necessity to have quickly operating gates able to perform as
many operations as possible before the coherence of the qubits implementation de-
cays.

5.1 ABC-type spin chains

The system considered in this chapter to serve as an entangling gate is a spin chain
of N = 7 sites with alternating weak (δ) and strong (∆) couplings, in a distribution
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such that there are three sites (labeled A, B and C) weakly coupled to the rest of the
chain as shown in Fig. 5.1.

FIGURE 5.1: ABC-type spin chain configuration.

This spin chain can be described by the following time independent Hamiltonian
(see Section 2.1.1 for more detail),

H =

N∑
i=1

εi|1〉〈1|i +

N−1∑
i=1

Ji,i+1[|1〉〈0|i ⊗ |0〉〈1|i+1 + h.c.], (5.1)

with Ji,i+1 equal to either ∆ or δ depending on the site (see Fig. 5.1). In previous
literature [1, 196, 197] it has been demonstrated that related dimerised chains have
high fidelity quantum state transfer (QST) properties, something that we will exploit
in our protocol in order to generate the desired entangled state.

5.2 Entanglement generation protocols

The entanglement generation protocol can be illustrated in the form of the schematic
diagram shown in Fig. 5.2. The initial injection, which will define the overall initial
state of the chain, is of particular relevance. First, it is one of the only two interactions
the user has to make with the system, and second, because it will determine the final
entangled state. Table 5.1 shows the three different initial states we are considering
and the site of the chain into which they are locally injected (simultaneous double
excitation states injections at A and C sites, or single excitation state injection at B
site).

We then let the system naturally evolve to a given time. This entangling time,
tE , depends on the version of the protocol we use depending on the state to be gen-
erated (Cluster or Bell state). For the Cluster state generation, this is the mirroring
time (tE ≈ tM ), the time needed for an arbitrary initial state to propagate to its
mirror position in the system. However, for the Bell state generation, this time is ap-
proximately half the mirroring time (tE = tM/2). In all cases, at tE the system state
becomes maximally entangled between sitesA and C. The two entangled qubits can
be extracted – if desired – from sites A and C at the extraction time tE . An alternative
to this is to protectively store the state using a slightly modified system configuration
and the protocol, as we will show later in this chapter (see Section 5.5).
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FIGURE 5.2: Entangling protocol. (a) Initial injection (red) at sites A
and C (solid arrows) or at site B (dashed arrow). (b) Evolution of
the system up to time tE ≈ tM or tE ≈ tM/2. (c) Generation of a
maximally entangled Cluster state or Bell, respectively, between sites

A and C (green).

FIGURE 5.3: Cluster state creation written as a circuit.

5.2.1 Cluster state creation

Let us now investigate in more detail the protocol for the generation of the cluster
state. The equivalent circuit to represent our cluster state generation gate is pre-
sented in Fig. 5.3. A cluster state is a maximally entangled state formed by an equal
superposition of all the site basis vectors. In this case, the protocol is initiated at t = 0

with the injection of two initial |+〉 = 1√
2
(|0〉 + |1〉) states at the chain ends (sites A

and C). We can write the initial state in the standard basis as

|Ψ(0)〉i =
1

2

(
|+〉A ⊗ |+〉C

)
⊗ |0〉rest−of−chain =

1

2

(
|0〉A|0〉C + |1〉A|0〉C + |0〉A|1〉C +

|1〉A|1〉C
)
⊗ |0〉rest−of−chain. (5.2)

First, the fidelity of the initial state is calculated and presented as the red profile
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Entangling Protocols

Initial state Entangled State tE

i |Ψ(0)〉AC = (|+〉A ⊗ |+〉C) |Ψ(tE)〉AC = 1
2 (|00〉AC − |01〉AC − |10〉AC −

|11〉AC)
tM

ii |Ψ(0)〉AC = |1〉A ⊗ |1〉C |Ψ(tE)〉AC = −i√
2
(|10〉AC + |01〉AC) tM/2

iii |Ψ(0)〉B = |1〉B |Ψ(tE)〉AC = −i√
2
(|10〉AC + |01〉AC) tM/2

TABLE 5.1: Initial injections and their corresponding product entan-
gled states at tE ≈ tM or tE ≈ tM/2. The |+〉 state corresponds to
1√
2
(|0〉+ |1〉). For simplicity, only the states of the relevant sites (A, C

or B) are presented and a compact notation is used.

FIGURE 5.4: Fidelity of the initial state |Ψ(0)〉AC [i] (red profile) and
numerically calculated EOFN (green profile) for a N = 7 ABC spin
chain and δ/∆ = 0.1. Blacked dashed profile is the analytically ob-

tained EOFA of the system derived from the trimer model.

in Fig. 5.4, which is the probability of recovering the initial overall state as a function
of time, F(t) = |〈Ψ(0)|Ψ(t)〉|2, i.e. the overlap between the initial state and the
overall state at any time (see Chapter 2). From Fig. 5.4, we observe that the fidelity
(red profile) peaks up to unity at twice (and even multiples of) the mirroring time,
so at 2tM , 4tM , etc. This means that the dynamics of the system evolves in a periodic
fashion and the initial state is recovered regularly. We now obtain the EOF between
sites A and C, which is a bipartite measure of entanglement (see Section 2.2.3 for
more details about this measure). At the mirroring time, the EOF (green profile)
is maximum. Two qubits are maximally entangled when EOF = 1 and our results
show that the two qubits states A and C approach this condition and their state can
be approximated as it follows:
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|Ψ(tE)〉 ≈ 1

2

(
|0〉A|0〉C − |1〉A|0〉C − |0〉A|1〉C −

|1〉A|1〉C
)
⊗ |0〉rest−of−chain. (5.3)

The state is very similar to the initial one but with the crucial difference of three
additional -1 signs which make the state impossible to separate in a product state of
qubits A and C.

Trimer model approximation

This behavior can be understood analytically if we consider the Hamiltonian of an
effective, one-excitation subspace, reduced ‘toy model’ with just three sites ABC
equally coupled (JAB = JBC = η) so the presence of the dimers in between for the
original model is encapsulated into this η interaction,

H =

0 η 0

η 0 η

0 η 0

 . (5.4)

The trimer eigenstates resulting from the Eq. 5.4 diagonalization are given by

|φ−〉 =
1

2

−1√
2

−1

 |φ0〉 =
1√
2

 1

0

−1

 |φ+〉 =
1

2

 1√
2

1

 , (5.5)

with |φ−〉 having energy E− = −
√

2η, |φ0〉 having energy E0 = 0, and |φ+〉 having
energy E+ =

√
2η.

We can now write the initial state (Eq. 5.2) in terms of these eigenstates and each
of them can be time evolved through its propagator (e−iEt):

|Ψ(t)〉 = a−e
−iE−t|φ−〉+ a0e

−iE0t|φ0〉+ a+e
−iE+t|φ+〉, (5.6)

where a−, a0 and a+ are the coefficients resulting from mapping the initial state from
the site basis (Eq. 5.2) into the eigenstate basis (Eq. 5.5),

a− = 〈φ−|Ψ(0)〉
a0 = 〈φ0|Ψ(0)〉
a+ = 〈φ+|Ψ(0)〉.

(5.7)

It is important to note that in this special case there is no need to consider the
second excitation subspace in the Hamiltonian as it will be equivalent to the one ex-
citation subspace. Therefore, the diagonalisation of the full one- and two-excitations
subspace would lead to three pairs of degenerate eigenstates with their correspond-
ing eigenvalues. This is because, as we are dealing with the special case of a trimer,
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the eigenstates and eigenvalues (and therefore the evolution) of the two excitations
states will be equivalent to the one excitation states due to the particle-hole symme-
try of the site basis set (|100〉 → |011〉, |010〉 → |101〉, |001〉 → |110〉). Similarly, we do
not include the |000〉 state in the trimer representation as it does not evolve at all but
it has to be considered for the proper normalization of the overall state.

It can be then shown that all the terms of our initial state (except the inert |0〉A|0〉C
state) will acquire a −1 phase factor at the mirroring time, giving the overall state of
Eq. 5.3. The mirroring time will be equal to half the time needed for all the propa-
gators of the eigenstates to be equal to unity (at a time 2tM ), this is the time needed
to revive the system into its initial state. Given that one of the eigenstates does not
evolve (E0 = 0), such time is found solving the following system of equations,e−i

√
2η2tM = 1

ei
√
2η2tM = 1,

(5.8)

and therefore the mirroring time (which approximates to the entangling time tE) is
resolved to be tM = π/

√
2η.

Following a similar line, the EOF profile for the reduced model has been ana-
lytically characterized. The overall state for this trimer system, after initialisation, at
any time can be written as

|Ψ(t)〉 =
1

2

(
|0〉A|0〉C + cos(

√
2ηt)

(
|1〉A|0〉C + |0〉A|1〉C + |1〉A|1〉C

))
|0〉B

− i√
2

sin(
√

2ηt)
(
|0〉A|0〉C +

1

2
|1〉A|0〉C +

1

2
|0〉A|1〉C

)
|1〉B . (5.9)

As introduced in Chapter 2, the first step to calculate the EOF is to find the
reduced density matrix of the two qubits involved. For our state, this is done by
tracing out site B, giving the form

ρAC = |αAC〉〈αAC |+ |βAC〉〈βAC |, (5.10)

where the unnormalised components are given by

|αAC〉 =
1

2

(
|0〉A|0〉C + cos(

√
2ηt)

(
|1〉A|0〉C + |0〉A|1〉C

+ |1〉A|1〉C
))
,

(5.11)

and

|βAC〉 =− i√
2

sin(
√

2ηt)
(
|0〉A|0〉C

+
1

2
|1〉A|0〉C +

1

2
|0〉A|1〉C

)
.

(5.12)
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FIGURE 5.5: Bell state creation written as a circuit.

At t = tM , sin(
√

2ηt) = 0 and cos(
√

2ηt) = −1 and Eq. 5.10 reduces to the pure
state given by Eq. 5.11, which at this point is maximally entangled due to the addi-
tional −1 phase factors. We compute the EOF for such an approximated state at all
times, by considering η as the effective coupling between A − B and B − C of the
original N = 7 site chain. Its value can then be obtained by the eigenvalues imme-
diately above (or below) zero of the overall spectrum and knowing that E+ =

√
2η

(E− = −
√

2η). In terms of the original chain parameters, this gives,

η =
∆

2

√
1 + 3(

δ

∆
)2 −

√
1 + 6(

δ

∆
)2 + (

δ

∆
)4, (5.13)

(see Appendix A –‘Derivation of η’– for further details on this derivation). After
scaling the state dynamics against ∆, we obtain an approximate profile to the full
numerical result, as shown by the black dashed line of Fig. 5.4. Clearly the trimer
approximation accurately reproduces the overall entanglement evolution, without
though the fine oscillations that are due to the full chain dynamics.

Once the effective coupling η is known, the entangling time can also be analyti-
cally approximated as tE = tM = π/

√
2η. We thus provide an analytic interpretation

of the system behavior that demonstrates the importance of the presence of sites A,
B and C for the operation of our protocol, mathematically validates the entangled
state formation, and gives accurate recipes to obtain a value for η and, consequently,
the required extraction time tE .

5.2.2 Bell state creation

In this version of the protocol the dynamics of the spin chain generates a Bell state
or EPR pair. The equivalent circuit to represent the Bell state generation gate is pre-
sented in Fig. 5.5. This same state can be achieved by using two different system ini-
tialisations, the (ii) simultaneous injection of two excitations at sites A and C or (iii)
single-excitation injection at site B. These possibilities present different advantages.
The single injection at the centre allows generation and distribution of a Bell state
with the convenience and easiness of having to initially interact with one site only
(siteB). However, some applications such as modular quantum processor proposals
may need to generate this same state with simultaneous compliance and contribu-
tion of two distant parties or quantum registers [198], i.e. the two parties A and C
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FIGURE 5.6: Fidelity of the initial state |Ψ(0)〉AC [ii - left panel] and
|Ψ(0)〉B [iii - right panel] (red profile) and numerically calculated
EOFN (green profile) for a N = 7 ABC spin chain and δ/∆ = 0.1.
Blacked dashed profile is the analytically obtained EOFA of the sys-

tem derived from the trimer model.

may need to agree priori initiating the protocol. We can then write the state of the
chain at t = 0 as follows:

ii) |Ψ(0)〉ii =
(
|1〉A ⊗ |1〉C

)
⊗ |0〉rest−of−chain. (5.14)

iii) |Ψ(0)〉iii = |1〉B ⊗ |0〉rest−of−chain. (5.15)

Similarly to the cluster state creation protocol, in Fig. 5.6 we consider the evolu-
tion of both initial states and observe a maximum peak of EOF at what is now half
the mirroring time, tM/2. At this time, the state between siteA and C is a maximally
entangled Bell state.

Again, this can be analytically explained by approximating the problem to the
reduced trimer as in Eq. 5.4 and Eq. 5.5. As already covered in the previous section,
due to particle-hole symmetry of this particular system, we can consider the one-
excitation states equivalent to the two-excitation ones such that the initial state (ii)
will be mathematically equivalent to (iii) (|101〉 → |010〉). This simplifies the analysis
allowing us to only expand on the analytics of the (iii) type injection, where one
excitation is injected at site B.

The initial state can thus be decomposed in terms of the trimer eigenstates,

|Ψ(0)〉iii =
1√
2

(
|φ+〉+ |φ−〉

)
. (5.16)

As done before, the state of the system at any time can be found by evolving each
of the eigenstates in Eq. 5.16 through its propagator (e−iEt). At the mirroring time,
tM = π√

2η
, the system will have returned to its initial position. This differs from

the previous protocol and tM coincides with the time where the fidelity of the initial
state is equal to unity, as the mirrored state is by symmetry equal to the initial one.
At half this time ( tM2 ), though, we see from the numerical results presented in Fig.
5.6 that EOF becomes maximum and our state at that time can be written as,
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|Ψ(
tM
2

)〉iii =
1√
2

(e
−iE+

π
2
√
2η |φ+〉+ e

−iE− π
2
√
2η |φ−〉). (5.17)

Using the explicit expression of the basis vectors, this yields to the expected max-
imally entangled Bell state between sites A and C:

|Ψ(
tM
2

)〉iii =
−i√

2

(
|1〉A|0〉C + |0〉A|1〉C

)
⊗ |0〉B. (5.18)

Similarly, due to particle-hole symmetry, a bit-flip operation on the state obtained
in Eq. 5.18 leads the state generated through (ii) initial injection,

|Ψ(
tM
2

)〉ii =
−i√

2

(
|0〉A|1〉C + |1〉A|0〉C

)
⊗ |1〉B. (5.19)

As the analytic envelope shown in Fig. 5.6 shows, this treatment is a good ap-
proximation for the part of the system we are concerned with and explains the ob-
served numerical behaviour. As per in the previous section, the effective coupling
η and, therefore, the mirroring time tM can be approximated from Eq. 5.13. Hence,
we can have an approximate idea of when the sites A and C will become maximally
entangled. In that sense, the trimer model is a useful way to predict the time scale of
the dynamics. However, let us note that one thing is the time scale and the other is
the dynamics per se. We can already see that even though the trimer approximates
well the curve of the dynamics (as shown in Fig. 5.4), it does not account for the
secondary oscillations seen in the real dynamics. Such oscillations are due to the in-
terplay of a more complicated spectrum, consequence of the additional levels caused
from the presence of the dimers and a larger excitation subspace that now also ac-
counts for two excitations. Furthermore, for the entangled state obtained from (ii)
injection, the real state from the N = 7 system dynamics is poorly approximated.
This is due to the fact that the excitation that sits at site B in the entangled state ob-
tained from the reduced model (Eq. 5.19) is in reality delocalised over several sites
such that the state takes the form:

|Ψ(
tM
2

)〉ii =
1√
2

(
|1〉A|0〉C + |0〉A|1〉C

)
⊗
[
α|1〉B|0〉rest-of-chain + β|0〉B|χ〉rest-of-chain

]
,(5.20)

Nevertheless, note that the picture for the Bell state involving qubit A and C,
which is the part of the state we are concerned about, is not affected.
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5.3 Robustness of the protocols

5.3.1 Random static disorder

Any practical application of such protocols will be subject to the presence of fabri-
cation errors in the construction of the device. We have therefore investigated the
effects on the generation of the two entangled states after introducing two different
types of random static disorder into our system. By considering two different types
of such perturbations we aim to simulate a wide range of realistic physical systems
subject to different noises. Similarly, we investigate the time delays of asynchronous
initial injections (specifically for cases (i) and (ii)) and how those affect the amount
of entanglement generated in the final state.

The first approach to model local fabrication errors is to consider energy fluctua-
tions affecting the sites themselves, and this is attained by adding random diagonal
disorder to the Hamiltonian. This type of disorder can be understood as an on-site
random potential. In our second approach we consider static errors in the couplings
by introducing off-diagonal random noise to the Hamiltonian (see Chapter 2). Both
types of perturbations have been scaled to the characteristic energies of the system
by weighting them against the weak, δ, coupling. In order to have an understanding
of the practical impact of these two types of fabrication errors, we also consider the
case where both disorders are present. We simulate this by adding a randomized
perturbation simultaneously to both diagonal and off-diagonal terms of the Hamil-
tonian.

In the following we compare two scenarios. In the first, given the stochastic
nature of these calculations, we present an (ensemble) average over 1000 realisations
(EOF1000) of the EOF computed at exactly the entangling time, tE , that is expected
for the perfect system. Of course in the disordered systems there may well be an
error in the actual time at which the EOF peaks; however, in this first scenario
we assume that this timing error is unknown and we take the entanglement at the
expected ideal time for it to peak and average this.

The second scenario corresponds to cases where the timing error could be known
in advance. The maximum EOF over a time window is then calculated and, again,
the (ensemble) average over 1000 realizations presented. Given that we are here con-
sidering fabrication disorder, this would be equivalent to the calibrations which are
implemented routinely on current electronic components to get their exact specifica-
tions through a set of independent measurements on each device. Calibration would
enable the state extraction to be performed at the time when the EOF is maximum,
for each individual (disordered) device. For this reason there is also significant value
in considering the average maximum EOF over a time window. This time window
has been taken to be of a complete time period of the fidelity of the initial state,
∼ 2tM .

The robustness of the protocol is strongly linked to the nature of the initial in-
jected state. For this reason let us first consider the effect of disorder separately for
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each of the three cases shown in Table 5.2 and then comment on the features they
have in common.

i) Protocol with initial state |Ψ(0)〉AC = (|+〉A ⊗ |+〉C)

To begin, we consider the results from the first scenario for the cluster state gener-
ation, this is considering the average EOF at the exact tE (Fig. 5.7, blue symbols
and shades). These show that the entanglement, at the extraction time tE predicted
for the perfect device, and with disorders smaller than 10% of the weak coupling δ,
is very high (EOF1000 > 0.9) for both types of noise. However, when the disorder
levels increase, for the case of diagonal disorder the EOF drops sharply, reaching
EOF1000 ∼ 0.2 with a disorder level at 50% of the weak coupling. Nevertheless, at
this same level of off-diagonal disorder the averaged entanglement is still consider-
ably high (EOF1000 ∼ 0.6).

FIGURE 5.7: Averaged EOF at tE (blue -lower- line) and maximum
EOF over a 500 units of time window (black -upper- line) for different
levels of off-diagonal, diagonal and both disorders weighted against
the weak coupling (δ) for protocol (i) and δ/∆ = 0.1. Black and blue
shadows represent the standard deviation, black and blue bars repre-

sent the standard error of the mean.

These values improve considerably in the second scenario we consider, that is if
there is the possibility of making additional independent measurements on each de-
vice (calibration). As seen in Fig. 5.7 (second panel, black symbols and gray shades),
when considering diagonal disorder, the maximum entanglement over a time win-
dow of 500 units of time does not go lower than EOF1000 = 0.4 even with noise
perturbations at 50% of the weak coupling.

For disorder added to the couplings this second scenario is extremely robust,
with maximum average entanglement value over the time window always above
EOF1000 = 0.9 even for noise perturbations at 50% of the weak coupling (Fig. 5.7,
first panel, black symbols and gray shades).

When both disorders are added (third panel of Fig. 5.7, where we plot up to 25%
disorder), we get a similar trend to the one obtained with the effect of diagonal dis-
order only in both EOF measurements. We can conclude from this that disruption
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from diagonal fabrication errors will be dominant for this system, and so reduction
of these is the most important practical challenge with regard to fabrication errors.

ii) Protocol with initial state |Ψ(0)〉AC = (|1〉A ⊗ |1〉C)

FIGURE 5.8: Averaged EOF at tE (blue -lower- line) and maximum
EOF over a 250 units of time window (black -upper- line) for differ-
ent levels of off-diagonal and diagonal disorders weighted against
the weak coupling (δ) for protocol (ii) and δ/∆ = 0.1. Black and blue
shadows represent the standard deviation, black and blue bars repre-

sent the standard error of the mean.

We now focus on the first (ii) of Bell state creation protocols. The results of our ro-
bustness test show a remarkable improvement on the resilience of the system against
both types of disorder compared with the previous figure. In Fig. 5.8 we again ob-
serve very high values of the averaged EOF when off-diagonal disorder is added.
For both calculations scenarios, the average EOF values do not peak below 0.8 even
with level of disorder of a 50% the weak coupling δ. Similar to the previous case,
this protocol also shows more effect when subject to diagonal disorder. However,
this is with a clear improvement with respect the previous results as it now decays
much more slowly reaching a value of EOF ≈ 0.5 with 50% of diagonal disorder.

In addition, the two calculated EOF measures EOF at tE and EOFmax (blue
and black lines) have closer values and their standard deviations (blue and black
shades) spread less than the ones for the previous protocol for both types of added
disorders.

iii) Protocol with initial state |Ψ(0)〉B = |1〉B

If we now move to the single-excitation protocol, we observe from Fig. 5.9 that the
robustness of the system gets even better. The results for off-diagonal disorder show
extremely high averagedEOF values, with bothEOF at tE andEOFmax remaining
always around 0.9. The standard deviations of each ensemble are very small indicat-
ing that the random error fluctuates within a small range away from the ideal one.
For diagonal disorder, we still observe a more pronounced effect but now close to
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0.6 at the maximum disorder strength giving the best results of the three protocols
under the same conditions.

FIGURE 5.9: Averaged EOF at tE (blue -lower- line) and maximum
EOF over a 250 units of time window (black -upper- line) for differ-
ent levels of off-diagonal and diagonal disorders weighted against
the weak coupling (δ) for protocol (iii) and δ/∆ = 0.1. Black and
blue shadows represent the standard deviation, black and blue bars

represent the standard error of the mean.

From the analysis of the three versions of our protocol we can find some common
trends. For the three injections, the robustness of the system against off-diagonal
disorder is remarkably high. The reason for this is that this type of noise only affects
the upper and lower band of the energy spectrum in a symmetrical way, leaving
the genuinely zero-energy states at zero. Once again, this can be understood from
considering our trimer ‘toy model’ with disorder added to the couplings, such that
η + d and η + e are the off-diagonal terms in the Hamiltonian:

H =

 0 η + d 0

η + d 0 η + e

0 η + e 0

 , (5.21)

which yields the eigenvalues

ε = ±
√

2η2 + 2ηd+ 2ηe+ d2 + e2 , 0 . (5.22)

As seen in Eq. 5.22, the diagonalisation of such perturbed Hamiltonian leaves the
zero-energy state undisturbed.

The same behavior is observed when considering the complete ABC chain sys-
tem. To illustrate this, the effect of a single realisation of such perturbation in the en-
ergy levels is shown in the left panel of Fig. 5.10, and the standard deviation of the
average energy values over 1000 noise realisations is presented in the right panel.
We show the energy spectrum of our N = 7 site system, up to the two-excitation
subspace (and ignoring the inert, zero-excitation, ‘vacuum’ state), and with a level
of disorder E = 5, corresponding to 500% of the weak coupling δ (we use a huge
amount of disorder to make this effect more visible). The spectrum comprises 7
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FIGURE 5.10: Effect of the off-diagonal disorder to the energy levels
of an ABC chain with N = 7, δ/∆ = 0.1 and up to the two-excitation
subspace. In the l.h.s panel we show the symmetric effect of such dis-
order by presenting the unperturbed energy levels (black solid lines)
against the energy levels of a system perturbed by 500% of disorder
(red dashed lines). Similarly, in the r.h.s panel the unperturbed spec-
trum is shown against the standard deviation (red shade) of an en-
semble of 100 noise realisations of 500% disorder. From the last we

note that the four central 0-energy state remain unperturbed.

single-excitation energy states plus 21 = N !/
(
2!(N − 2)!

)
two-excitation states. In

this case the latter can be expressed approximately as product state combinations of
the former.

This enables understanding of the 10 states (close to zero energy) sitting in the
gap between two ‘bands’. In the single-excitation subspace the spectrum consists of
three states belonging to the relevant ABC sites (see Eq. 5.5) with energies ±

√
2η, 0,

sitting in the gap, and two states in the upper ‘band’ and two states in the lower
‘band’. In the two-excitation subspace the ABC system can be thought of as gen-
erating a trimer of three ‘hole’ states (a ‘hole’ being the lack of an excitation in the
all excited ABC system and therefore effectively equivalent to the one-excitation
states as previously explained), leading to three states in the gap with same energies
±
√

2η, 0. Four additional two-excitation states in the gap can be understood ana-
lytically as products of a single-excitation state from the upper band with a single-
excitation state from the lower band state. The sublattice (or chiral) symmetry of our
system imposes mirror symmetry about zero energy on the spectrum; hence, when
taking products of single-excitation upper and lower band states we obtain in the
gap two exactly zero-energy states and two states with very small energy, equal to
the energy difference between the two single-excitation states in a band, which is
of the order of η. We therefore have four exactly zero-energy states in the gap (see
the four points in the right panel of Fig. 5.10 with no red shade contribution), along
with three states at very small positive energy and three states at very small negative
energy, but still clearly within the gap.
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As already mentioned, the off-diagonal disorder perturbs the system spectrum
symmetrically; consequently the exactly zero-energy states contained at the 0-energy
level in Fig. 5.10 are completely protected. At zero energy, the single-excitation and
two-excitation (single ‘hole’) trimer states do not move in energy according to Eq.
5.22, while the two single excitation product band states suffer canceling shifts.

From this analysis we can now also understand why theEOF , even though very
robust, does decrease somewhat as the off-diagonal disorder is increased. Despite
the four exactly zero-energy states in the middle of the energy gap being protected
against this type of noise, the dynamics of the entangling protocol also involves other
states in the energy gap (which do suffer small effects due to off-diagonal noise). The
states forming the bands also contribute small amplitudes to the protocol dynamics,
as the initial states are prepared as site, rather than energy eigenstates.

5.3.2 Time delays

To consider another practical form of error with this model, we also investigate how
the asynchronous injection at sites A and C affects theEOF value found at exactly tE
for the Cluster (i) and the Bell (ii) state creation. This type of error does not affect the
protocol (iii) as it only needs a single site injection at site B. The effect of this error
on the protocol is shown in Fig. 5.11. We observe that even with an injection time
delay of 10% tE , the EOF is still at the high value of 0.91 and 0.95, respectively. We
can conclude that our protocol is therefore also robust against asynchronous state
injections.

FIGURE 5.11: EOF at tE against the input delay as a fraction of
the mirroring time for protocols (i) –purple profile– and (ii) –yellow
profile– with asynchronous injections of |+〉 and |1〉 respectively at

sites A and C, and δ/∆ = 0.1.
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5.4 Protocol optimization

In the previous sections we have been considering a small ratio, δ/∆ = 0.1 in or-
der to obtain a well defined profile for the fidelity and EOF dynamics. It can be
deduced from Eq. 5.13 that for larger ratios the effective coupling, η, will also be
larger. This would effectively increase the overlap between the relevant eigenstates
(approximated by Eq. 5.5) peaking at sites ABC and, consequently, the dynamics
would be faster. The entangling times along with the robustness of these protocols
can then be improved up to a certain level and such optimization will be inspected
in this section.

In Fig. 5.12, we present the behavior of our protocols for different coupling ratios.
First it is crucial to recalculate the entangling times, tE , for each ratio in order to
know when the EOF peaks to a maximum. This time will still be close to tM for the
Cluster state and tM/2 for the Bell state protocols. However, because tM is inversely
proportional to η, with an increasing value of the coupling ratio, δ/∆, η will also
increase and therefore our entangling protocol will be faster, as observed in the inset
of Fig. 5.12.

FIGURE 5.12: EOF at tE for the three different protocols (i, ii and iii)
against varying coupling ratio, δ/∆, for an ABC chain with N = 7.
In order to calculate such values it is essential to know the rescaled
times. The inset shows how the entangling times, tE , vary with the

coupling ratio.

A faster entangling time, tE , does not necessarily mean that the state retrieved at
that time will have an optimal EOF (i.e. close to 1). In Fig. 5.12, we present how the
nature of the entangled state involving sites A and C measured at the recalculated
times tE varies with the coupling ratio. We observe a non-linear non-monotonic de-
cay of theEOF with coupling ratio but still obtaining decent values of entanglement
for certain coupling ratios corresponding to the maxima of the oscillating profiles.
Here it is of particular interest the protocol (ii), where the Bell state is created with
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two initial injections, showing a decay that can be observed in the minima of the
oscillations but not in their maxima, which remain very close to unity.

We want to find a compromise between the entangling times, tE , the EOF of
the state obtained at those times and the robustness of the protocol. We have al-
ready seen that we can shorten our times by increasing the coupling ratio, δ/∆, and
that we can still obtain reasonable amounts of entanglement at those times. We now
want to study the behavior of the protocol with increasing coupling ratio against
static perturbations and therefore test its robustness against off-diagonal and diag-
onal disorder. In order to do so we have considered the overall protocols for three
different coupling ratios corresponding to different maxima of each profile of Fig.
5.12 as summarized in Table 5.2.

Coupling ratios

i. Cluster state ii. Bell State iii. Bell state

0.205 0.260 0.204

0.382 0.330 0.280

0.490 0.523 0.373

TABLE 5.2: Chosen coupling ratios δ/∆ corresponding to some of the
maxima of Fig. 5.12 profiles for protocols (i), (ii) and (iii).

The different panels of Fig. 5.13 show the averaged EOF obtained at tE for
each of the studied coupling ratios and several levels of diagonal and off-diagonal
disorder (up to 50% of the weak coupling) for protocols (i), (ii) and (iii). We see
that when using higher coupling ratios our protocols are still considerably resilient
against static perturbations compared with the ones with a ratio δ/∆ = 0.1. Also,
particularly in the case when diagonal disorder is present, which was previously
shown to be the most damaging type of static deformation for our protocol, the pro-
tocol performance is dramatically improved with an increasing coupling ratio: for
δ/∆ > 0.37 in all three cases, the averaged EOF at tE does not go lower than 0.8
with a diagonal disorder of a 50% of the weak coupling. Additionally, as the cou-
pling ratio gets bigger, each realisation for the EOF calculation deviates less from
the averaged value as shown by the narrower standard deviation shades from Fig.
5.13. Such results offer clear evidence that our protocols can be optimized in terms
of making the entangling operation times faster without necessarily sacrificing the
quality of the entangled state, hence offering an optimal EOF and resilience against
disorder.

Let us finish this section commenting on the scalability of the system. The chain
length in this model can be increased by adding sets of four sites (two dimers, one
either side of site B to preserve the symmetry) and the system will still support the
protocol presented here. Yet this chain growth would increase the time taken for
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FIGURE 5.13: Averaged EOF at tE for different levels of off-diagonal
(l.h.s) and diagonal (r.h.s) disorders and coupling ratios from Table
5.2 for each of the three protocols (i), (ii) and (iii). The black dashed
line shows the averaged EOF for a ratio δ/∆ = 0.1 and orange, yel-
low and blue solid lines show the other three compared ratios. The
shadows represent the standard deviation of the average for each av-

eraged profile.
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entanglement creation, exponentially with chain length, due to the exponential de-
crease of η with length. The important feature of the application proposed in this
work is the robust creation and storage of entanglement and we foresee its useful-
ness for modular quantum computer schemes. Therefore, the scalability with chain
length is less of an issue for this than for applications with the chain acting as a
quantum communication bus only.

5.5 Entanglement plus storage protocol

For quantum processing purposes a very useful capability to control is the produc-
tion of entanglement and its storage until the rest of the system needs to utilize it for
further operations. The ABC-type chains indeed offer this flexibility. To this pur-
pose, we propose an extended version of our entangling protocol by considering a
slightly different ABC chain, with two dimers at the edges of the chain, so that the
three ABC defects are now completely embedded in the dimerised chain (see Fig.
5.14).

FIGURE 5.14: Extended version of the ABC-type spin chain configu-
ration with two pairs of dimers coupled to site A and C.

The entangling protocol is the same as that demonstrated in Fig. 5.2, as the value
of η is not affected. For the sake of brevity, in this section we will only consider
the generation and then localisation of the Cluster state, hence the initial injection of
two |+〉 states at sites A and C. We obtain essentially identical behavior in both the
dynamics and the resilience against disorder, yet we incorporate an additional step
corresponding to a ‘switching off’ (decoupling) of site B at tE . This separates the
system into two independent but equivalent chains, as seen in Fig. 5.15, when the
full entangled state is approximately contained at the X sites of the two subsystems.

The single-excitation spectrum of each of the decoupled chains contains a topo-
logically protected, strongly localised eigenstate at site X . The presence of this state
can be explained by considering site X as a defect between two topologically dis-
tinct configurations, giving rise to a spatially localised state at zero energy within an
energy gap [1], as discussed with detail in Section 4.2. The occupation probability
distributions of the five single-excitation eigenstates for the new separated chain are
presented in Fig. 5.16. Note that the middle site 3 contains almost the entire occupa-
tion probability of the localised eigenstate (highlighted in blue); this state is basically
completely localised at site X with negligible contributions at other sites.
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FIGURE 5.15: Entangling-plus-storage protocol. (a) Initial injection
(red) at site A and C. (b) Evolution of the system up to time tE which
approximates to tM as shown previously, and generation of a max-
imally entangled Cluster state, respectively, between site A and C
(green). (c) Decoupling of site B and at tE and localisation of the en-

tangled state at sites X.

FIGURE 5.16: Occupation probability distributions for the five eigen-
states of one of the newly separated chains containing central site X.
The eigenstate peaking at site X is highlighted in blue and contains

most of its probability at that site.

To model the decoupling we assume that this can be performed on a time scale
much shorter than tE and so employ the sudden approximation to decompose the
state of the fully coupled system into the eigenstates of the new decoupled subsys-
tems. From our previous asynchronous injection studies, presented in Fig. 5.11, we
can deduce that the errors caused by time delays on the decoupling of site B will
have a minor effect to the overall protocol. We also note that efficient experimental
methods to perform similar types of decoupling have been proposed, e.g. applied
to molecular spin-chain systems [199].

Let us now simulate such decoupling based in the sudden approximation and
present it in Fig. 5.17. At t = t−E , immediately before decoupling site B, the full
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FIGURE 5.17: Fidelity of the initial state |Ψ(0)〉AC (i) (red profile) and
numerically calculated EOF (green profile) for a N = 7 ABC spin
chain and δ/∆ = 0.1. Black profile represents the fidelity of the Clus-

ter state.

coupled dynamics generates two entangled qubits that are indeed localised at the
sites A, C, that is the two X sites of the newly decoupled chains at time t = t+E ,
immediately after decoupling. It is therefore expected that the entangled state will
inherit the topological localisation of the two shorter and equivalent chains after
site B is decoupled. The dynamics of such a protocol show that the fidelity of the
entangled state at t+E , (F = |〈Ψ(t+E)|Ψ(t)〉|2), once siteB has been decoupled, does not
reach values lower than 0.9, hence remains quite localised. For extraction purposes,
the entanglement will be most useful if it is localised at just the sites X shown in
Fig.5.16. Therefore we calculate the EOF just for those two sites, by tracing out the
rest of the chain. We show that the resultant EOF does not drop below 0.9 either,
meaning that the probability of finding the two entangled qubits localised at sites
X is basically constant and very high with time after site B is decoupled. This type
of localisation is also shown to be extremely protected against disorder, as already
shown in previous work [1] and in Chapter 4.

5.6 Summary

In this chapter we have presented a robust entangling gate protocol using spin
chains, as well as proposing a protocol to localise and store the two resulting en-
tangled qubits. We have demonstrated the potential for ABC spin chains to gener-
ate Cluster states and EPR pairs through three different entangling protocols. We
have shown numerically and analytically that, after a suitable initial state injection,
the natural dynamics of a three-defect, ABC-type chain gives rise to the formation
of two maximally entangled qubits. These two entangled qubits can be either ex-
tracted at a known time tE , or localised and stored, so that the extraction and usage
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of such a resource can be done at any desired time. The resulting entanglement of
formation has been shown to be very robust against two potential fabrication er-
rors of the chain, and also time delay errors on the state injection. It is important to
note that the errors considered here are very large and we assume that there exists
enough control on the fabrication of real systems such that errors are of just a few
percent. Nevertheless, we conclude that diagonal errors are more damaging than
off-diagonal disorder (against which there is excellent robustness), so in practical
implementations diagonal disorder is the fabrication error to focus on reducing. We
also find that timing injection errors at the few % (of tE) level also have a very small
effect on the performance of the protocol.

Importantly, our results prove the possibility of using a large range of character-
istic coupling ratios for rapid generation of entangled states to a high fidelity. By
increasing the value of δ, the entangled state is generated faster and with only a
very small to fidelity loss. For the protocols (i) and (iii) and the highest ratio con-
sidered (δ/∆), we incur a very small reduction in EOF of approximately 0.05; on
the other hand, for the protocol (ii), we can retain an EOF of almost unity for all
characteristic coupling ratios we considered. This result is particularly encouraging
due to the exponential speedup of both entanglement protocols that we observe as
the coupling ratio increases. Furthermore, not only is the robustness to off-diagonal
disorder almost independent of coupling ratio, but that the robustness to diagonal
disorder increases significantly as the coupling ratio is increased. This result exposes
an interdependent relationship between the speed and robustness to disorder of the
protocols. The ability to maximize both of these factors at little to no reduction in the
maximum EOF allows us to proposeABC chains as rapid and reliable entanglement
generation devices that present several advantages in front of previous implemen-
tations.

All this suggests that our proposals could be promising candidates for the realisa-
tion of reliable quantum communication/processing between modules in quantum
processors and networks. Our protocols have potential for application in several
quantum computer architectures and across of a variety of platforms, particularly
where ’off-line’ and robust entanglement creation and distribution between two par-
ties is required as a resource.
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Chapter 6

Conclusions

Throughout this thesis three main applications of spin chain models have been ex-
plored. We have considered in detail the use of such systems to allow for reliable
quantum state transfer, to localise quantum states in a protective way and to be used
as a quantum entangling gate. Detailed discussion on the outcome of our investi-
gations has already been covered in previous chapters, and we can summarise the
main conclusions as follows:

• Short-range quantum communication with high fidelities can be achieved us-
ing spin chain models.

• Spin chains are suitable systems in which to investigate localisation phenom-
ena such as Anderson localisation.

• Based on the SSH model, dimerised spin chain systems can be designed to
present topologically localised protected states, robust to high levels of static
disorder and with potential use for quantum memory applications.

• Localised states in SSH-based spin chains arise from the presence of zero en-
ergy modes protected by an energy gap, the size of which can be modulated
with the coupling ratio.

• Dimerised spin chain systems with embedded defects serve as a platform from
which to build a robust quantum entangling gate able to generate maximally
entangled states in three different ways, depending on the initial injection.

• A protocol to store the entangled qubits involving the decoupling of one of the
defects is proposed, as well as methods for optimising the operation times and
the robustness of the protocol.

6.1 Discussion and practical considerations

The results obtained encourage the possibility of engineering real physical devices to
perform a set of quantum operations potentially interesting for computation through
the application of our proposed protocols. Nevertheless, as already introduced in
Section 1.1.3, there is a set of conditions our quantum devices should satisfy. We
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therefore wish to conclude this work with a brief discussion on the fulfillment of the
DiVincenzo criteria and other practical considerations of the physical platforms able
to embody our proposed spin chain systems.

6.1.1 Qubit characterisation and scalability

As already summarized in Section 1.2.3, any two level quantum system can define
the qubit of a spin chain. Various physical platforms are candidates for the reali-
sation of the qubit, from real spins to artificial atoms such as quantum dots or su-
perconducting systems. The possibility of scaling the number of qubits and con-
trolling their interactions is of fundamental importance when designing a quantum
computer. For our specific device, the number of qubits for short-range commu-
nication purposes will depend on the distance to be covered. On the other hand,
for the simplest localisation or quantum gate devices, less demanding lengths of 5
and 7 qubits, respectively, are required. In addition, control of interactions between
nearest-neighbour qubits is also essential, as all the protocols here presented are
strongly dependent on the chosen coupling scheme. For short-range communication
purposes, PST requires the tuning of all the spin-spin interactions, while the proto-
cols based on dimerisation of the chain need the engineering of alternate sites with
weak and strong couplings. The experimental realisation of the PST scheme pre-
sented here is not an easy task as control over all the couplings is required. In solid-
state set-ups PST has only been achieved for moderate chain lengths, e.g. quantum
state transfer over three sites using a LNMR platform [200]. Nevertheless, optical
waveguides have become an optimal platform where to put into test QST proto-
cols, e.g. the coherent transfer of the initial state over 19 sites using coupled optical
waveguides using this coupling configuration has been successfully demonstrated
[112] and, more recently, entanglement between a photon propagating through a
PST waveguide array and another photon at a different location has been shown to
be preserved [201]. Other QST protocols allowing the relaxation of the constraint
of engineering of all the couplings have been proposed and realised [202]. Among
them we find strategies based on the idea of weakening the end spin couplings to
gapped systems [62, 203]. One example is the engineering of dimerised chains,
scheme that has been widely used in this work (see Chapter 4 and 5). This dimer
configuration might be more amenable to chemical engineering approaches due to
its resemblance to some molecular structures. Similar coupling arrangements have
also been implemented in a chain of identical coupled dielectric resonators placed
in a microwave cavity [111] or optical waveguides in silicon [110], where topolog-
ically protected localised states as the ones we encounter in Chapter 4 have been
experimentally found.
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6.1.2 Initialisation, injection and measurement

The initialisation, injection and extraction of quantum information will depend on
the specific hardware used for embedding the mathematical concept of spin chains.
A precise and selective control on such methods is crucial for all the protocols here
presented. In Chapter 3, an initial state needs to be injected at one site in order to be
transfered to another location from which, for communication purposes, it will have
to be extracted or measured at some point. Similarly, the main differences between
the three entangling protocols here presented are the initial conditions, hence the ini-
tially injected states. However, the preparation of pure states in multi qubit systems
is not an easy task. Initialisation in ion traps examples involve methods of laser cool-
ing that can bring the ions to the ground state [104] with preparation errors below
10−3 [103]. Other methods include the passive relaxation of the qubit to its ground
state. At very low temperatures, the qubit is in a thermal state that will approximate
to the ground state assuming one waits long enough, the long waiting times being
the main issue of these methods. Several ways of initialising superconducting qubits
have been proposed, from performing successive projective measurements or cool-
ing with a microwave pulse to coupling the qubit to a tunable harmonic oscillator
[204]. When coming to injection, using quantum dots as an example and assuming
that a site can be individually addressed, we can consider two injection scenarios
[64]. The first consisting of the application of a π-pulse on a specific site of an ex-
citonic QD [205]. The second method applies a SWAP operation that exchanges the
quantum states contained in the injection site and an external register [206] the cou-
pling of which can be set on/off. It is crucial that this operation is performed fast with
respect the relative timescale of decoherence of the particular implementation (e.g.
in QD the SWAP operation can be achieved with times of the order of ∼ ps, well
bellow the typical coherence times) [71].

When it comes to the state extraction, we have already seen that one method to
store our generated entangled quantum state once the operation has finished im-
plies the decoupling of site B from an ABC spin chain (see Section 5.5). One could
quickly couple/decouple the site(s) containing any generated or transfered state to
an external register through a SWAP operation similarly to what was described for
the initialisation method. These give us the profitable possibility of isolating the
state produced for later measurement or to serve as input of a further operation
without the need of our device to stop running. For measuring the state, the meth-
ods will depend upon the implementation. To mention some examples, in electron
quantum dots, these include all-electrical measurements based on current detection
or charge sensing [207], or measurement of the polarisation of the photon produced
by the decay of an exciton [208]. The state transfered over a chain of coupled waveg-
uides as well as the entanglement fidelity can be measured using polarization state
tomography techniques [201].
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6.1.3 Universal set of quantum gates

The experimental realisations of qubit already mentioned present methods to per-
form single and multi-qubit gate operations. In this work we focus on entangling
gates, which have already been realised in different platforms. In electron quantum
dots, creation of entanglement between the solid-state qubit and a photon has been
demonstrated [209]. Schemes for quantum gates between trapped atoms aided with
optical qubits have also been proposed [210]. We here propose an alternative strat-
egy for a quantum entangling gate that uses the natural dynamics of the interacting
system. Hence, for the correct application of such gate, the platform used will re-
quire to be able to coherently transport the injected states as presented in Chapter
5.

6.1.4 Decoherence vs Operation times

Both static and dynamical decoherence can affect the integrity of our protocols and
cause unreliable results. In our entangling protocols, excellent entanglement fideli-
ties are obtained even when the presence of static random disorder is of the level
of 50 times one of the characteristic energy of the system. This indicates that these
systems perform very well against this point of DiVincenzo criteria with regard to
static decoherence. The robustness investigations carried over this thesis also give
the upper boundd of the allowed fabrication defects when it comes to engineering
such devices, which happen to be very high.

With respect to dynamical decoherence, and as already introduced, the operation
times of any quantum device must be much shorter than the relevant decoherence
times of the qubit. In order to judge our system against it, we qualitatively assess
the possibility of performing one of our quantum entangling protocols on few ex-
perimental platforms and discuss its viability. We consider some of the typical char-
acteristic coupling energies for electron qubits in GaAs/AlGaAs quantum dots [65],
exciton qubits in self-assembled quantum dots [71, 90, 92], trapped ions [101, 211]
and superconducting qubits [37, 212]. We use this energies to estimate ∆ and then tE
for the particular case of the Bell state creation (ii) protocol (see Section 5.3.1). Table
6.1 shows results for the mid coupling ratio of 0.330 (extracted from Table 5.2) which
though providing excellent fidelity and robustness, does not correspond to the best
case scenario. From our numerics for the two excitation protocol with a ratio of 0.330
we have tE = entangling time = 11.93/∆. We compare our results for the tE with
typical coherence times for the various hardwares. Table 6.1 shows that for most
platforms tE is much smaller than the characteristic coherence times.

Such short times indicate that a number of consecutive entangling operations of
the order of ∼ 1000 would be possible before starting to lose the coherence of the
qubit state for a set of common physical implementations. The possibility of per-
forming multiple operations gives clear optimism on using our protocol in experi-
ments. Our choice regarding the investigation of static decoherence is also validated
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Entangling times vs. Decoherence

Platform Characteristic
energy, ∆

Entangling time,
tE

Coherence time

QDs (electrons) 0.05 meV 20 ns 1 µs

QDs (excitons) 1 meV 8 ps 1 ns

Trapped 171Yb+ ions 100 MHz 0.1 µs 10 min

Superconducting qubits 1 GHz 0.1 ns 100 µs

TABLE 6.1: Approximated entangling times of our protocol for differ-
ent experimental realisations and their coherence times.

from these rapid entangling times, as for some cases such types of disorder might be
as relevant as the dynamical ones.

Additionally, we can also think of using our schemes to localise and protect a
quantum state as a tool to avoid decoherence damaging the computation. These
systems could serve as external registers where to temporary allocate the state for
its later use via SWAP operations activated by coupling/decoupling to the running
circuit. For this purpose, more detailed investigations should be carried out on how
other sources of decoherence affects the localisation of the states explored in Chapter
4.

6.1.5 From static to flying qubits

While photon based qubits are ideal platforms for long range communication, solid-
state qubits serve as optimal quantum memories and processors. A direct conse-
quence of this is that any spin chain device requires a way to pass the quantum
information from the solid-state to the flying qubit. Platforms implementing spin
chains are already capable to do this transformation. Examples include the coherent
state transfer between an ion trap of cold rubidium atoms to a single photon [213]
or the quantum state transfer from a single photon to a single electron spin confined
in an InGaAs quantum dot [214]. Also, interfaces coupling superconducting and
photonic qubits can be created using microwave cavities or quantum dots [215].

In conclusion, devices based on the spin chain models presented here look promis-
ing candidates for QIC technologies as their potential implementations fulfill mostly
all the points of DiVincenzo criteria. The precision of the engineering as well as the
capabilities of some of the practical realisations presented here evolve very fast. This
gives hope that eventually issues related to scalability, control and decoherence will
be minor and the future architecture of a functional and robust quantum computer
will be defined.
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6.2 Future directions

Spin chains have been shown to be versatile theoretical models, with implementa-
tions able to fulfill DiVincenzo criteria, and relatively simple to analyse and simulate.
This makes them a valuable tool to study the quantum behaviour of different geome-
tries and coupling configurations, which can be applied to a wide variety of physical
systems. In this vein, future work may focus on the capabilites and performance of
more complex spin networks going beyond one-dimensional schemes. Particularly,
we are interested in extending the localisation of the topologically protected eigen-
states studied in Chapter 4 to two-dimensional square lattices, geometries which are
more resemblant to solid-state crystal lattices. The study of the dynamical behaviour
enabling state transfer, generation of quantum states on demand, such as entangled
states, or the routing of information through manipulation of the couplings con-
figuration and chain topologies forms also interesting problems worthy of future
detailed investigation. Bigger systems as well as higher excitation subspaces, will
require a larger computational effort, then the redesign of code to be able to run
under an OpenMP and MPI parallel paradigms is a must for this purpose.

To move our results closer to reality, further investigations could include more
details on specific implementations and taking into account other relevant exper-
imental parameters. Similarly, the quantum abilities of these and other protocols
could be tested against other types of decoherence, both dependent and indepen-
dent of time. In this direction, the use of mathematical tools such as master equa-
tions for the description of the continuous evolution of the open quantum system
could be useful a addition to our analysis.
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Appendix A

Derivations

A.1 Effective coupling ABC η

When calculating the single excitation spectrum of the 7 sites ABC chain in Chapter
5, seven different energy states are obtained. Two on an upper band E+2, E+3, two
on a lower band E−2, E−3 and three sitting in between (energy gap), E+1, E0 and
E−1. From diagonalising the full Hamiltonian in terms of ∆ and δ we obtain the
following analytical forms of such eigenvalues:

E±3 = ±
√

∆2 + 3δ2 +
√

∆4 + 6∆2δ2 + δ4√
2

E±2 = ±
√

∆2 + δ2

E±1 = ±
√

∆2 + 3δ2 −
√

∆4 + 6∆2δ2 + δ4√
2

E0 = 0

The three states sitting in the energy band (E±1, E0) can be related to the trimer
model of 5.5 to a good approximation, with the site basis states being those with an
excitation at A, B and C. The presence of the dimers in between sites A, B and C is
responsible for the upper/lower bands. Therefore, the ‘effective’ coupling between
A-B and B-C, η, will be related to the energy difference between the states in the gap.
In the trimer model, this difference is equal to

√
2η. If we relate this to the energies

of the full spectrum, we can approximate η:

∆E = |E+1 − E0| = |E0 − E−1| =
√

2η (A.1)

E+1 =
√

2η →
√

∆2 + 3δ2 −
√

∆4 + 6∆2δ2 + δ4√
2

=
√

2η

η =

√
∆2 + 3δ2 −

√
∆4 + 6∆2δ2 + δ4

2
. (A.2)

After rearranging in terms of δ/∆ we obtain the expression presented in Eq.
(5.13).
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List of Abbreviations

ALU Arithmetic Logic Unit
CPU Central Processing Uunit
CU Control Uunit
EOF Entanglement Of Formation
EPR Einstein Podolsky Rosen
GHZ Greenberger-Horne-Zeilinger state
LNMR Liquid Nuclear Magnetic Resonance
NMR Nuclear Magnetic Resonance
PST Perfect State Transfer
QD Quantum Dot
QIC Quantum Information and Computation
QKD Quantum Key Distribution
QST Quantum State Transfer
QX Quantum EXeperience
RAM Random Access Memory
ROM Read Only Memory
SNMR Solid Nuclear Magnetic Resonance
SSH Su Schrieffer Heeger
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