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Abstract 

 

Over recent years, an increasing body of evidence has suggested that elevated 

atmospheric CO2 concentrations can alter plant microbial interactions. However, 

there is limited consensus whether these impacts will be positive or negative for 

plants in terms of disease resistance. Accordingly, there is a pressing need to 

gain a better understanding of the molecular and physiological mechanisms by 

which CO2 shapes the plant’s ability to interact with its biotic environment, which 

is essential to predict impacts of future climate scenarios on crop production. 

The work described in this thesis has used a range of CO2 concentrations, 

from past through present to future predicted concentrations, to study the immune 

response of the model plant Arabidopsis thaliana to aboveground pathogens and 

belowground rhizosphere bacteria. Furthermore, a novel developmental 

correction was established, which enables assessing the direct immunological 

effects of CO2 on microbial interactions without bias from age-related resistance 

arising from the stimulatory effects of CO2 on plant development. 

Changes in disease resistance at elevated CO2 (eCO2), against the 

necrotrophic fungus Plectosphaerella cucumerina (Pc) and the obligate 

biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) were associated with 

changes in production and sensitivity of the phytohormones jasmonic acid (JA 

and salicylic acid (SA), respectively. However, priming of SA-dependent defence 

was not the only mechanisms contributing to eCO2-induced resistance against 

Hpa. The increased resistance to Hpa at sub-ambient CO2 (saCO2) against Hpa 

operated independently of SA signaling and was associated with changes in 

cellular redox state and priming of pathogen-inducible intracellular ROS. Based 

on the defence phenotypes of knock-down mutants in glycolate oxidase, the 

H2O2-generating enzyme of the photorespiration cycle, and transcriptional 

profiling of the peroxisomal catalase gene CAT2, it is proposed that the enhanced 

Hpa resistance at saCO2 is controlled by photorespiratory ROS. 

Below-ground, the root colonisation of a specialised rhizobacterial strain 

Pseudomonas simiae WCS417 was found to be dependent on CO2 concentration 
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and soil-nutritional status, whereas root colonisation by the soil saprophytic strain 

Pseudomonas putida KT2440 was largely unaffected by these variables. Hence, 

changes in atmospheric CO2 have a greater impact on specialist rhizosphere 

microbes. Furthermore, the ability of P. simiae WCS417 to promote plant growth 

and elicit an induced systemic resistance (ISR) was highly dependent on CO2 

and nutritional status of the soil. These results suggest that the effects of 

atmospheric CO2 on rhizosphere microbes depend on the rhizosphere species in 

question and the nutritional status of the soil.  

To obtain a more global impression of the impacts of CO2 on rhizosphere 

interactions, rhizosphere soil was studied for bacterial community diversity and 

composition using PCR-based community profiling techniques. This revealed that 

CO2 has a measurable impact on microbial communities in a time-point 

dependent manner, whereby the effects of eCO2 are more pronounced at earlier 

stages and the effects of saCO2 are more pronounced at later stages. To study 

the biochemical basis of these CO2 effects on the rhizosphere effect, a new mass 

spectrometry-based method was developed to study quantitative and qualitative 

impacts of CO2 on non-sterile rhizosphere chemistry. These experiments 

revealed that the diversity of chemical signals greatly increases with rising CO2 

concentrations, and that saCO2 and eCO2 are associated with rhizosphere 

enrichment of different classes of chemicals.  

Together, the results presented in this thesis provide novel insights into 

the mechanisms by which plants have adapted to past CO2 climates, and the 

potential impacts by which future CO2 scenarios will affect interactions with 

hostile and beneficial microbes. Further research is required to explore the 

combined impacts of eCO2 and other environmental changes due to global 

climate change, such as elevated temperatures and drought.  
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Chapter 1: General Introduction 

1.1 Introduction 

Plants employ their immune system to manage interactions with a wide 

range of microorganisms, above- and below-ground. These interactions can be 

beneficial or detrimental to plant health, depending on the microbe in question, 

the host plant and the prevailing environmental conditions (Newton et al., 2010). 

Over the last few decades, the molecular mechanisms driving these processes 

have been investigated extensively, but knowledge gaps remain. A central 

component of these interactions involves immune regulation by phytohormonal 

signalling networks. For instance, the phytohormones salicylic acid (SA), 

jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) all play major roles in 

the maintenance of plant immunity, through complex, and interlinked, signalling 

networks (Bari and Jones, 2009; Pieterse et al., 2009). Many of these 

phytohormones are involved in interactions with pathogens and beneficial 

rhizosphere microorganisms (Carvalhais et al., 2013). However, the identity of 

root-exuded chemical signals that govern the recruitment and/or selection of 

beneficial microbes in the rhizosphere are less clear (Haldar and Sengupta, 

2015). Furthermore, our knowledge about how environmental factors, such as 

those imposed by anthropogenic changes to the global climate, will affect plant 

hormonal signalling, and how this will alter the plant’s immune function and its 

communication with pathogens and rhizosphere microbiota, remains poorly 

understood. 

Rising levels of carbon dioxide (CO2) are caused directly by combustion 

of fossil fuel and indirectly through land use changes, such as deforestation 

(Pielke, 2005; Cook et al., 2016). Increases in CO2 have generally stimulatory 

effects on plant growth, yield, reproductive fitness and photosynthetic efficiency, 

known as the CO2 fertilisation effect (Ainsworth and Rogers, 2007). However, 

rising CO2 will also increase the occurrence of extreme weather events, such as 

heat waves and drought (Hansen et al., 2012), which are detrimental to crop 

development and yield (Gray and Brady, 2016). The beneficial effects of CO2 

fertilisation are not predicted to sufficiently offset the negative impacts of climate 
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change (Long et al., 2006).  Consequently, in socio-economic terms, the negative 

effects of climate change will be of global significance, resulting in widespread 

malnutrition from unsuitable or unproductive agricultural land (Fischer et al., 

2005). Most future emission scenarios, modelled and published by the 

intergovernmental panel on climate change (IPCC, 2013), predict a stark decline 

in agricultural land, due to longer and more widespread periods of aridity, as well 

as rising sea levels encroaching on coastal areas (United Nations, 2015). 

Possible increases in global crop prices will focus economic pressure on 

developing countries and could result in widespread civil conflict (Hanjra and 

Qureshi, 2010). Moreover, an increasing body of evidence suggests that rising 

CO2 concentrations will influence the outcome of plant-pathogen interactions 

(Eastburn et al., 2011) and interactions with rhizosphere-inhabiting microbes 

(Gschwendtner et al., 2015), thereby affecting plant development and crop yield. 

This introduction aims to highlight the current knowledge about impacts of 

atmospheric CO2 on plant-microbe interactions, and identify knowledge gaps 

regarding the effects of CO2 on plant immunity and rhizosphere interactions. 

1.2 Shifting global climate. 

1.2.1 The greenhouse effect and the importance of CO2. 

To predict how plants respond to changes in global atmospheric CO2, it is 

important to understand i) how plants have adapted to past atmospheric CO2 

concentrations and ii) how plants respond to future CO2 concentrations. CO2 is 

an important gas for global temperature regulation. The Earth warms due to the 

constant exposure to short-wave solar energy. Subsequent long-wave radiation, 

emitted by Earth, is ‘trapped’ and redirected by atmospheric ‘greenhouse’ gases 

(GHGs), causing tropospheric warming via the greenhouse effect (Donohoe et 

al., 2014). Without this greenhouse effect, our planet would maintain a global 

temperature of -18°C, which is 33°C colder than the current average temperature 

of 15°C (Lacis et al., 2010). A few major atmospheric gases are involved in the 

greenhouse effect, predominantly water (which contributes 75% of the warming 

effect) and CO2 (which contributes 20%), with the remaining contributions from 

methane, ozone, N2O and chlorofluorocarbons (together, 5%; Lacis et al., 2010). 

Once present in the atmosphere, GHGs can have a long-lasting contribution to 
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global climate (Archer et al., 2009). Furthermore, their warming effect will 

modulate the influence of the hydrological cycle on the global climate (Lacis et 

al., 2010). 

1.2.2 Past CO2 concentrations. 

Deuterium ratios and CO2 measurements from the Vostock ice-cores, 

indicate that cycles of CO2 and temperature are strongly coupled over the last 

800 k years (Petit et al., 1999; Fig. 1.1 a). Within this time-frame, the Earth has 

consistently experienced periods of interglacial warming and glacial cooling every 

100 k years (Fig. 1.1 a). These cycles are thought to occur through the combined 

influence of solar insolation, changes in biosphere and ocean chemistry (with 

resultant carbon-cycle feedbacks) and orbital forcing (Ganopolski and Calov, 

2011). Switches are often followed by increases in global CO2 concentration, due 

to release of CO2 from deglaciation (Shakun et al., 2012), which then drives 

further increases in global temperature. The importance of CO2 as a GHG has 

been further demonstrated through radiative forcing models where removal of 

CO2 from the atmosphere results in rapid global cooling (Lacis et al., 2010). 

To understand plant responses to CO2, it is important to consider their 

evolution in context of Earth’s CO2 history. Land plants evolved around 476 

million years ago (mya) in the mid Ordovician period (Gray, 1993; Kenrick and 

Crane, 1997). Flowering plants became prevalent in the Cretaceous around 

90mya, but diversified much earlier (Qiu et al., 1999). This means that modern 

plant species have repeatedly been exposed to periods of extreme global 

warming and high CO2, alternated with glacial periods of low CO2 (see Fig. 1.1 

c). For instance, the flowering plant Arabidopsis thaliana, which is commonly 

used to study molecular-genetic mechanisms of plant development and plant-

environment interactions, diverged in a period of relatively low CO2 (~ 200 ppm) 

during the Miocene (Beilstein et al., 2010; Beerling and Royer,  2011). 

Experiments at sub-ambient CO2 (saCO2) conditions can reveal new insights 

about the physiological and metabolic plant functions that were necessary to 

adapt and survive over past glacial periods (Ward and Gerhart, 2010). 
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1.2.3 Current and future CO2 projections.  

 Since 1852, the concentration of atmospheric CO2 has risen steeply from 

~280 ppm to over 400 ppm (IPCC, 2013). As the population of the world 

increases, so does the demand for energy to fuel economic development. Due to 

government subsidies for coal power, and storage restrictions for sustainable 
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alternatives, current energy supplies are provided predominantly through 

combustion of fossil fuels (Goldemberg, 2006). Although there is a global 

government initiative to reduce international carbon emissions, this falls short of 

what is required to meet warming targets, partly because they ignore long-term 

feedbacks (Hansen et al. 2007; Hansen et al. 2008). Thus, phasing down 

emissions is as much a political issue as it is a humanitarian necessity (Obama, 

2017). In the UK, policy includes energy based carbon budgets which are 

implemented to reduce the carbon cost of buildings, industry, transport and the 

implication of renewable sources of energy production (Department of Energy 

and Climate Change, 2011). The current target in the EU is at 2°C above pre-

industrial levels (EU, 2005), which implies an atmospheric concentration of 450 

ppm CO2 should not be exceeded (Hansen et al. 2007). Depending on 

international adherence to such carbon targets, there are various projections of 

future CO2 concentrations and the climate (Fig. 1.1 b; van Vuuren et al., 2011a). 

These scenarios stipulate that to stay within CO2 and temperature targets, fossil-

fuel based power needs to be globally phased out within the next decade (Hansen 

et al., 2008). Currently, renewable sources of energy are becoming cheaper and 

more viable solutions (REN 21, 2017), and many countries are already generating 

a significant proportion of their domestic energy through renewables (for instance 

the share for the UK is 22.2% with 28.8% for the EU and 8.4% in the US). 

Adherence to warming targets would result in a more positive future climate 

scenario (Fig. 1.1b), and may provide a better opportunity to effectively manage 

global agriculture and food production. In addition, if handled correctly, policy 

informing adherence to these targets should not be a detriment to economic 

growth (Obama, 2017). Without such measures, atmospheric CO2 will likely 

exceed 1000 ppm over the next century (van Vuuren et al., 2011a).  

Nevertheless, if atmospheric CO2 concentrations exceed 1000 ppm, it will 

be critical to understand the direct impacts of increasing CO2 on plant 

development and environmental interactions, such as resistance to pathogens. 

Accurate predictions of the ways by which increased CO2 affect plant life and 

agricultural efficacy will determine how well people can adapt to an uncertain 

future (Hanjra and Qureshi, 2010). Of major interest are the effects of CO2 on 

disease resistance, singularly and in unison with extreme weather events 



6 
 

(Rosenzweig et al., 2014). For instance, it is estimated that a loss of 

approximately $5 billion USD in annual crop revenue can be attributed to global 

warming (Lobell and Field, 2007), but how much of this is due to altered plant- 

pathogen interactions remains undefined. Certainly, range, duration of infection, 

and disease severity have been reported to increase for many economically 

important crop diseases due to warming (Sharma et al., 2007; Evans et al., 2008; 

Laine, 2008). Although most studies agree that rising CO2 will have an effect on 

plant-pathogen interactions, there is little consensus whether these impacts will 

be positive or negative on crop production, especially when considering other 

factors associated with global climate change (Eastburn et al., 2011). Hence, 

there are pressing social and financial incentives to understand the effects of 

increasing CO2 levels on both natural and agricultural plant production systems.  

1.3 Plant perception, recognition and responses to pathogenic microbes. 

The current thesis focuses on the interactive effects of CO2 concentration 

and plant responses to microorganisms, both pathogenic and beneficial. A critical 

factor in plant survival is strict transcriptional control used to manage and alleviate 

biotic stresses, such as pathogen challenge. Activation of stress-inducible 

defences are costly and often occur at the expense of growth or other cellular 

functions (Herms and Mattson, 1992; Walters and Heil, 2007). As such, regulation 

is stringently controlled and tolerant to minor stress (Heil, 2002). Depending on 

the type and perceived severity of the threat, plants can tailor the amplitude and 

timing of their immune response though specialised defence signalling cascades. 

Plant pathogens are often categorised by their trophic mode; necrotrophic 

pathogens lyse and feed off living cells, whereas biotrophic pathogens require 

living cells for sustenance. The majority of attackers are hemibiotrophic 

pathogens, which employ an initial biotrophic stage, followed by the necrotrophic 

infection strategy.  

Biotrophic pathogens are predominantly detected by recognition of 

pathogen associated molecular patterns (PAMPs; (Zipfel and Felix, 2005). 

Typically, PAMPs are highly conserved molecules shared between a range of 

microbial taxa. A well-known example is  flg22, which is a highly conserved 22 

amino acid fragment of flagellin, the structural protein in flagellar filaments of 
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bacteria (Felix et al., 1999; Boller and Felix, 2009). Recognition of PAMPs results 

in pattern-triggered immunity (PTI), which confers a broad-spectrum protection 

against many potentially hostile microbes. Some pathogens produce effectors 

that actively subvert the PTI response, resulting in effector-triggered susceptibility 

(ETS). The plant counteracts ETS through the production of resistance proteins, 

which can recognise and bind to specific effectors, or act to protect the molecular 

target on which the pathogen effectors acts (McDowell and Woffenden, 2003). 

Effector-triggered immunity (ETI) invariably results in resistance through the 

hypersensitive response (HR; Greenberg, 1997). Many of the downstream 

defences contributing to ETI are controlled by, or associated with, the 

phytohormone salicylic acid (SA; Vlot et al., 2009), which has been implicated 

multiple times in enhanced resistance at eCO2 (e.g. Mhamdi & Noctor 2016). 

Unlike PTI, whose targets are highly conserved, ETI is subject to adaptive 

diversification as pathogens shed or adapt ineffective effectors, or synthesise 

novel ones that suppress ETI. Plants are therefore under selection to evolve new 

R proteins to combat these ETI-suppressing effectors (Abramovitch et al., 2006; 

Fu et al., 2007; Cui et al., 2009; Houterman et al., 2009). Hence, plants and 

pathogens maintain an evolutionary ‘arms race’, the outcome of which depends 

on the equilibrium between the pathogen’s ability to supress the immune system 

and plant’s capacity to recognise the pathogen. As a result, the frequency of 

resistance (R) proteins and effectors in any given host-pathogen population are 

in constant flux (Dangl and Jones, 2001; Jones and Dangl, 2006). 

ETI confers no protection against necrotrophic organisms, which destroy 

and feed from lysed host cells. HR response causes cell lysis which can further 

facilitate necrotrophic infection (Glazebrook, 2005). To resist necrotrophs, plants 

have evolved an alternative immune strategy that is largely under control by the 

phytohormone JA (Pozo et al., 2005; Bari and Jones, 2009). Local recognition of 

damaged-self, through damage associated molecular patterns (DAMPs), results 

in a systemic activation and priming of JA-dependent defences (Wasternack and 

Hause, 2013). Despite the differences in recognition, both DAMP- and PAMP-

triggered immunity are dependent, to an extent, on the co-receptor BAK1 

(Chinchilla et al., 2009), indicating that these processes share common signalling 

steps. The spatially regulated suppression of JA by SA and the downstream 
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defence regulator NPR1 (Koornneef et al., 2008) illustrated that the activation of 

SA- and JA-dependent defences is carefully controlled (Glazebrook et al., 2003). 

Another hormone, ABA, is linked to plant growth and the regulation of defence 

responses to abiotic stress, such as drought and high temperatures, as well as 

responses to eCO2 (Sah et al., 2016; Zhou et al., 2017). ABA is also involved in 

early immune responses to pathogens, where it controls PAMP-induced stomatal 

closure, as well as the localised accumulation of reactive oxygen species (ROS) 

and callose. At later stages of infection, ABA modulates the intensity and 

specificity of SA- and JA-dependent defence responses (Ton et al., 2009). The 

fact that all of these hormones play an active role in immunity, while also 

controlling elements of plant development, highlights the importance of hormonal 

networks to simultaneously coordinate growth and defence. 

1.4 Elevated CO2 effects on plant pathogen interactions. 

1.4.1 Impacts of eCO2 on plant physiology. 

Direct effects of climate change on plants are multifaceted. For instance, 

many crops produce sub-optimal yields when grown outside of a certain 

temperature range (e.g. in rice and maize (Amthor, 2001; Luo, 2011). 

Furthermore, RuBisCO activity can be drastically reduced by elevated levels of 

O3 (Krupa et al., 2000), while drought can have severe impacts on plant both 

above- and below-ground physiology and development (Farooq et al., 2009; 

Song et al., 2012). Furthermore, plant interactions with pathogens can be 

exacerbated by changing environmental conditions (Boyer, 1995; Mcelrone et al., 

2005).  

Elevated CO2 (eCO2) promotes above- and below-ground generation of 

biomass (Hovenden and Williams, 2010) and development. This includes the 

initiation of flowering (Pritchard et al., 1999; Springer and Ward, 2007) and 

developmental changes in foliar nutrient composition (Conroy, 1992; Teng et al., 

2006). Generally, eCO2 benefits reproductive fitness through increased 

production of flowers and fruit (~19% and 18% respectively), as well as increased 

seed mass (4%; Jablonski et al., 2002). Free air CO2 enrichment (FACE) 

experiments have shown that augmentation of developmental and reproductive 

traits are linked to enhanced C sequestering due to increased rates of 
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photosynthesis and enhanced water use efficiency (Leakey et al., 2009). 

Although eCO2 boosts biomass as a result of greater C sequestering, the 

nutritional value of the foliar material may decline, as C:N increases. Decreased 

tissue N generally reduces palatability of foliar tissues to herbivores and 

pathogens (Taub and Wang, 2008); although see Robinson et al., 2012). 

Changes in C:N also present a problem agriculturally, as the nutritional value of 

seed and fruit are compromised by eCO2 (seed N decreases by 14%; (Jablonski 

et al., 2002). Below-ground, eCO2  is often reported to decrease root:shoot ratio, 

suggesting much of the additionally sequestered C is used to boost leaf 

development (Miri et al., 2012).  

1.4.2 A meta-analysis of the impacts of eCO2 on plant disease. 

Despite the wealth of information about the effects of CO2 on plant 

morphology and physiology, there is currently limited consensus about the 

impacts of CO2 on plant resistance to pathogens. To date, 72 studies have tested 

various host-plant interactions with multiple different pathogens (Table 1.1; plant-

herbivore interactions have also been studied in detail, but these are outside the 

scope of this project – reviewed by Robinson et al., 2012). Of those, 31 plant-

pathogen interactions have positive outcomes for host resistance, 19 have 

negative outcomes and 22 report no change in host resistance (Table 1.1). Some 

studies link the disease phenotype to altered leaf development. For example, at 

eCO2 Stylosanthes scabra develops twice as many lesions from the canker 

causing fungus, Colletotrichum gloeosporioides, than at ambient CO2 (aCO2; 

Pangga et al. 2004), which is related to an increased canopy size and catchment 

surface for spore attachment. Interestingly, these data contrasted with reports 

that C. gloeosporioides shows reduced virulence at eCO2 (Chakraborty & Datta 

2003). Plant size and leaf surface area are often reported as factors contributing 

to increased disease incidence at eCO2 (e.g. Eastburn et al., 2010; Melloy et al., 

2014), although biomass and surface area have been shown to increase in 

instances where disease severity was reduced (Kretzschmar et al., 2009; Runion 

et al., 2010; dos Santos et al., 2013). Hence, plant responses to pathogens at 

eCO2 likely involve other aspects of pre- and post-invasive immunity. For 

example, reduced stomatal density and stomatal aperture, have been reported to 
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play a role in pathogen resistance at eCO2 (Lake and Wade, 2009; Eastburn et 

al., 2010; Li et al., 2014b; Zhang et al., 2015; Zhou et al., 2017)  

1.4.3 CO2 and pre-invasive resistance. 

Although leaf traits, such as surface area, biomass and RGR, increase at 

eCO2, stomatal development is reduced. Furthermore, stomatal conductance (gs) 

decreases at increasing CO2 levels, due to an over-abundance of C (Ainsworth 

and Rogers, 2007). This occurs either through a reduction in stomatal density, or 

through reduced stomatal aperture. Early work has established an inverse 

relationship between stomatal density and CO2 concentration (Beerling & Kelly 

1997; Penuelas & Matamala 1990; Woodward & Kelly 1995). This correlation was 

so strong that stomatal measurements on fossil plants are now commonly used 

as a proxy method for gathering data on paleo-CO2 (Royer, 2001). The 

relationship between CO2 and stomatal density is reliant on the action of the HIC 

gene (High Carbon Dioxide), which acts as negative regulator of stomatal 

development at eCO2 (Gray et al., 2000). Interestingly, some experimental data 

indicate no change, or even an increase in stomatal density at eCO2 under more 

complex scenarios (Estiarte et al., 1994; Bettarini et al., 1998; Lake and Wade, 

2009). For many foliar pathogens, natural openings, like stomata and 

hydathodes, are an important entry point into the leaf (Melotto et al., 2006; 

Sawinski et al., 2013). So, the higher the stomatal density, the more opportunity 

there is for pathogen invasion (Jordá et al., 2016). Strict control over stomatal 

development and aperture in response to infection is therefore an important 

feature of pre-invasive defence, which may increase by higher concentrations of 

atmospheric CO2. However, there is a great deal of inconsistency in the literature 

about the contribution of pre-invasive stomatal defence to disease resistance. For 

instance, increased resistance to Pseudomonas syringae pv. tomato DC3000 

(Pst) in tomato at eCO2, was associated with smaller stomatal apertures (Li et al., 

2014b; Zhang et al., 2015), while another study revealed reduced resistance to 

Pst at eCO2 (Zhou et al., 2017). Counterintuitively, at eCO2, significant increases 

in stomatal density and trichrome numbers after Erysiphe cichoracearum 

(powdery mildew) infection are linked to increased susceptibility (Lake and Wade, 

2009), even though this pathogen is not known to infect via stomata (Schulze-

Lefert and Vogel, 2000).  While both partial closure, and decreased stomatal 
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density, can limit pathogen entry, reduced gs at eCO2 has also been shown to 

increase canopy temperatures through decreased transpirational cooling (Ziska 

and Bunce, 1997). This additional factor may act as an compounding factor on 

disease severity (Garrett et al., 2006). In tomato, bypassing stomatal immunity by 

syringe infiltration of Pst, resulted in elevated levels of Pst resistance at eCO2 (Li 

et al., 2014b), whereas Zhou et al. (2017) reported enhanced Pst susceptibly 

under these conditions in Arabidopsis. In summary, it is difficult to gauge a 

consistent pattern from the literature about the potential impacts of eCO2 on pre-

invasive defence. However, the majority of studies suggest that eCO2 may 

increase the effectiveness of pre-invasive defence by boosting stomatal 

immunity.  

1.4.4 CO2: an enhancer or suppressor of post-invasive defences? 

Plant exposure to eCO2 results in changes in resource allocation (Berger et al., 

2007), which influences profiles of secondary metabolites (Lavola et al., 2000; 

Kuokkanen et al., 2001; Matros et al., 2006) that in turn play an important role in 

post-invasive defence against pathogens. Changes in leaf chemistry at eCO2 

have been linked to a decrease in Phyllosticta minima disease in Acer rubrum 

(Mcelrone et al. 2005). Specifically, increases in leaf tannins and phenolic content 

were recorded at eCO2. Furthermore, enhanced production of defence-related 

secondary metabolites, such as phenolics, flavonoids and glucosinolates, as well 

as increases in phenylalanine ammonia lyase (PAL) activity, have been 

associated with eCO2 in various plant species (Matros et al., 2006; Kretzschmar 

et al., 2009; Mathur et al., 2013). As PAL is a key enzyme in alternate SA 

biosynthesis (Seyfferth and Tsuda, 2014), the dominant view supports that 

increased defence against biotrophic pathogens at eCO2 is associated with SA. 

Indeed, SA-controlled defence-related (PR) genes, such as PR-1, PR-2 and PR-

5, have been shown to be expressed to higher levels in Arabidopsis at eCO2, 

including the SA isochorismate biosynthesis gene, ICS1 (Mhamdi and Noctor, 

2016). Increased PR gene expression at eCO2 was also reported in tomato 

leaves and roots (Jwa and Walling, 2001), while increased activity of the PR 

protein β-1,3-glucanase and osmotin were found during infection of potato by 

Phytophthora pathosystem (Plessl et al., 2007; Liu et al., 2013). Moreover, 

multiple studies have recorded increased levels of total SA in different plant 
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species, including Arabidopsis, tobacco, tomato, maize, barley and wild bean 

(Jwa and Walling, 2001; Matros et al., 2006; Huang et al., 2012; Zhang et al., 

2015; Mhamdi and Noctor, 2016). Together, these data indicate that eCO2 

augments basal and/or pathogen-inducible SA levels. Other defence hormones 

have received considerably less attention, such as jasmonic acid (JA) signalling, 

which controls post-invasive defences against necrotrophs (Turner et al., 2002).  

Remarkably, of the 19 cases reporting a repressive effect of eCO2 on plant 

resistance, 7 involve necrotrophic pathogens (24%; Table 1.1). By contrast, of 

the 29 cases reporting a stimulatory effect of eCO2 in resistance, only 3 involve 

necrotrophic pathogens (10%; Table 1.1). This disparity suggests that eCO2 

generally represses host resistance against necrotrophic infection. Nevertheless, 

some studies on tomato reported enhanced JA accumulation at eCO2 during 

infection by Pst and tomato yellow leaf curl virus (TYLCV), respectively (Huang 

et al., 2012; Zhang et al., 2015). However, Pst is a (hemi)biotroph that uses 

coronatine to activate JA signalling and suppress SA (Block et al., 2005), which 

may become more effective at eCO2 (Zhou et al., 2017), whereas the 

mechanisms of resistance against TYLCV, although not fully understood, involve 

SA and not JA (Moshe et al., 2012). Furthermore, basal transcription of JA related 

genes, LOX3, OPR3, JAZ10 and PDF1.2, in Arabidopsis correlated with 

resistance against the necrotrophic fungus Botrytis cinerea at eCO2 (Mhamdi and 

Noctor, 2016). However, more conclusive evidence from basal resistance 

phenotypes of JA signalling mutants remained absent. In contrast to these 

studies with tomato and Arabidopsis, exposure of maize and tea to eCO2 was 

found to suppress JA signalling and increase susceptibility to Fusarium rot and 

Colletotrichum blight, respectively (Vaughan et al., 2014; Li et al., 2014b). 

Lipoxygenase, which is involved in the initial steps of JA synthesis, is encoded 

by a diverse family of LOX genes (Turner et al., 2002). In maize, immune 

suppression against Fusarium was associated with a decrease in LOX gene 

expression, with the notable exception of LOX2, the function of which is 

undetermined, and LOX10, which only has a putative function in JA production 

(Chauvin et al., 2013). In addition, JA production to infection, as well as 

downstream production of the anti-fungal phytoalexins, zealexin and kaualexin, 

were lower at eCO2. In tea, LOX activity and associated  gene  e x p r e s s i o n



  

 

Table 1.1. A summary of the known changes in disease response in plants at eCO2. 
     

Disease severity Observations Set.c 
CO2 

(p.pm) 
Pathogen Typed Reference 

Decreased 

Hyaloperonospora brassicae (downy 
mildew) and Alternaria brassicae (blight) 

 Brassica juncea (mustard)a C, C:N, S:N increase, N decrease. Increase in sugar, phenolics, glucosinolates and PAL activity FACE 550 
Biotroph, 

necrotroph 
Constant Mathur et al. 2013 

Puccinia psidii (rust) Eucalyptus globulus (blue gum)a Decreased C:N, increased growth. Essential oils unaffected 
CEF/ 
OTC 

750 Biotroph Constant Ghini et al. 2014 

Ampelomyces quisqualis (leaf spot) and 
Podosphaera xanthii (powdery mildew) 

Cucurbita pepo (Zucchini)a Fungicides unaffected by CO2  CEF 800 Biotroph Semi-constant Gilardi et al. 2017 

Ceratocystis fimbriata (wilt) Eucalyptus urophylla (rose gum)a Growth increased, C increased, N decreased CEF 553;878 Necrotroph Constant dos Santos et al. 2013 

Erysiphe graminis (powdery mildew) Hordeum vulgare (barley)a  
Reduction in photosynthesis; decline in carboxylation efficiency; silicon accumulation (contrasting results). Leaf age 
affects response 

CEF 700 Biotroph Constant Hibberd et al. 1996a, 1996b 

Pseudomonas syrinage (DC3000) Solanum lycopersicum (tomato)a Lower stomatal aperture, controlled by NO. Increased SA and JA accumulation CEF 800 Biotroph Pulse 
Li et al. 2014; Zhang et al. 
2015 

Pseudomonas syrinage (DC3000) Arabidopsis thaliana (thale cress)a Increased SA accumulation and transcripts. Evidence for a role of redox activity CEF 1000 Biotroph Constant Mhamdi & Noctor 2016 

Tomato mosaic virus (TMV) Solanum lycopersicum (tomato)a Increased SA and JA accumulation CEF 800 Biotroph Pulse 
Huang et al. 2012; Zhang et 
al. 2015 

Blumeria graminis (powdery mildew)  Hordeum vulgare (barley)a Decreased stomatal conductance CEF 700 Biotroph Constant Mikkelsen et al. 2014 

Potato virus Y (PVY) Nicotiana tabacum (tobacco)a 
Increased phenylpropanoids; PAL; altered C:N; and SA production, as well as lignification. Decreased nicotine 
production. 

CEF 1000 Biotroph Constant Matros et al. 2006 

Puccinia sparganioides (rust) Scirpus olneyi (sedge)a Reduced N FACE 700 Biotroph Constant Thompson & Drake 1994 

Peronospora manshurica (downy mildew) Glycine max (soybean)a No changes in stomatal density; defence expression not measured. No noted changes in N, C:N or phenolics FACE 550 Biotroph Constant Eastburn et al. 2010 

Cronartium quercuum (fusiforme rust) 
Pinus taeda (loblolly pine)a and 
Quercus rubra (northern red oak)a 

Increased height and stem diameter FACE 720 Biotroph Constant Runion et al. 2010 

Fusarium circinatum (pitch canker) Pinus taeda (loblolly pine)a  As above FACE 720 Biotroph Constant Runion et al. 2010 

Erysiphe alphitoides (powdery mildew) 
Quercus mongolica (Japanese 
oak)a 

Increased height, diameter and mass, as well as carboxylation and electron transport rates FACE 500 Biotroph Semi-constant Watanabe et al. 2014 

Phythophthora sojae (root rot elicitor) Glycine max (soybean)a Increased leaf areas and photosynthesis, glyceollin (phytoalexin) but only in resistant cultivar FACE 720 Biotroph Constant Braga et al. 2006 

Phythophthora sojae (root rot elicitor) Glycine max (soybean)a Increased growth, photosynthetic assimilation, altered C:N, defence related flavonoids and intermediates  FACE 760 Biotroph Constant 
dos Santos Kretzschmar et 
al. 2009 

Phytophthora parasitica (black shank) Lycopersicon esculentum (tomato)a 
Increased PR mRNAs in roots. Slight changes in PR mRNAs and wound response genes in leaves and slight 
changes in SA and ABA levels. 

CEF 700 Hemibiotroph Pulse Jwa & Walling 2002 

Phytophthora infestans (late blight) Solanum tuberosum (potato)a Increased expression of PR-proteins 3-1,3-glucanase and osmotin in leaves CEF 700 Hemibiotroph Constant Plessl et al. 2007 

Colletotrichum gloeosporioides 
(anthracnose) 

 Stylosanthes scabra (legume)a Reduced incubation period, germtube growth, appressoria production. Increased disease severity in field conditions CEF 700 Hemibiotroph Constant 
Chakraborty et al. 2000; 
Chakraborty & Datta 2003 

Phyllosticta minima (leaf spot) Acer rubrum (maple)a Reduced stomatal conductance and aperture; Reduced N; Increased C:N ratio, phenolics and tannins. FACE 600 Hemibiotroph Semi-constant Mcelrone et al. 2005 

Cercospora species Solidago rigida (goldenrod)a Reduced N; Reduced photosynthetic rate FACE 560 Hemibiotroph Constant Strengbom & Reich 2006 

Cylindrocladium candelabrum (leaf spot) 
Eucalyptus urophylla (eucalypt)a Increases in height, shoot and root weight CEF 

645; 904 
Hemibiotroph Pulse Silva et al. 2014 

 1147 

Potato virus Y (PVY) Nicotiana benthamiana (tobacco)a  OTC 750 Virus Constant Ye et al. 2010 

Fusarium pseudograminearum (crown rot) 
Triticum aestivum (wheat – various 
cultivars)a 

Increased dry weight and size. Severity very dependent on cultivar used CEF 690 Hemibiotroph Constant Melloy et al. 2014 

Potato virus X (PVX) Nicotiana benthamiana (tobacco)a Temp increased resistance, ROS production increased and pathogen virulence proteins decreased CEF 970 Virus Constant Aguilar et al. 2015 

a – C3 photosynthesis; b – C4 photosynthesis; c - Setting refers to the type of facility used where CEF is controlled environment facility, FACE is free air CO2 enrichment and OTC is open topped chambers in field sites;     

d - Constant CO2, plants grown from seed; Pulse, plants moved to high CO2 before experiment; Semi-constant, plants were grown initially in ambient before relocation to eCO2 for between 2 weeks and 4 years depending on the species and experimental design.  



 

Disease severity Observations Set.c CO2 (ppm) Pathogen Typed Reference 

Botrytis cinerea (grey mould) A. thaliana (thale cress)a Increased JA transcripts. Evidence for a role of redox activity CEF 1000 Necrotroph Constant Mhamdi & Noctor 2016 

        

Increased 

Pseudomonas syringae (DC3000) Arabidopsis thaliana (thale cress)a Decreased stomatal aperture. Disease symptoms unaffected. CEF 800 Biotroph Semi-constant Zhou et al. 2017 

Erysiphe cichoracearum (powdery mildew) Arabidopsis thaliana (thale cress)a Increased stomatal density; increased guard cell length; increased trichrome numbers CEF 800 Biotroph Constant Lake & Wade 2009 

Albugo candida (rust) Brassica juncea (mustard)a Increase carbohydrates. FACE 550 Biotroph Constant Mathur et al. 2013 

Pyricularia oryzae (blast) Oryza sativa (rice)a Lower silicon content FACE 650 Biotroph Constant Kobayashi et al. 2006 

Phytophthora cactorum, P. plurivo (root rot)  Fagus sylvatica (beech)a Root pathogen – interesting question, poorly executed CEF 800 Hemibiotroph Constant Tkaczyk et al. 2014 

C. gloeosporioides (anthracnose) 
 Stylosanthes scabra (shrubby 
stylo)a 

Increased canopy size 
CEF/ 
FACE 

700 Hemibiotroph Constant Pangga et al. 2004 

Cercospora (leaf spot) 
Cercis canadensis (redbud) and 
Liquidambar styraciflu (sweet gum)a 

Increased photosynthetic efficiency mitigating effects. FACE 580 Hemibiotroph Semi-constant McElrone et al. 2010 

Various fungal pathogens (leaf spot)  various C3 grassesa More prominent at low community diversity FACE 560 Hemibiotroph Constant Mitchell et al. 2003 

F. pseudograminearum (crown rot) 
Triticum aestivum (wheat – various 
cultivars)a 

Increased dry weight and size. Severity very dependent on cultivar used CEF 690 Necrotroph Constant Melloy et al. 2014 

F. verticillioides (rot) Zea mays (maize)b 
Decreased fumonisin production, increased intracellular CO2, decreased stomatal conductance, decreased JA, LOX 
activity and phytoalexin production in response to infection 

CEF 720 Hemibiotroph Constant Vaughan et al. 2014 

Septoria glycines (brown spot) Glycine max (soybean)a Increased plant height and canopy density. Barely passable increase in disease severity FACE 550 Necrotroph Constant Eastburn et al. 2010 

Rhizoctonia solani (sheath blight) Oryza sativa (rice)a Increased number of tillers FACE 560 Necrotroph Constant Kobayashi et al. 2006 

Phytophthora citricola (root rot) Fagus sylvatica (beech)  Increased biomass when N increases. Infection slightly mitigated by N. Survivors more resistant in F2 FACE  Necrotroph Constant 
Fleischmann & Oswald 
2010 

F. pseudograminearum (crown rot) Triticum aestivum (wheat) Pathogen fitness drastically increases, could effect F2 
CEF/ 
FACE 

550 Necrotroph Constant Melloy et al. 2010 

C. gloeosporioides (brown blight) Camellia sinensis (tea)a Suppresses JA and caffeine accumulation CEF 800 Necrotroph Pulse Li et al 2016 

Unknown fungal pathogen Spartina patens (C4 grass)b Increased water content FACE 700 Unknown Constant Thompson & Drake 1994 

Barley yellow dwarf virus (BYDV) Triticum aestivum (wheat)a Increased virus titre. Growth parameters less affected by infection at eCO2 CEF 650 Virus Pulse Trębicki et al. 2015 

F. graminearum (blight)  Triticum aestivum (wheat)a Fusarium acclimated to eCO2 was effective against resistant cultivar CEF 780 Hemibiotroph Constant Váry et al. 2015 

Septoria tritici (blotch) Triticum aestivum (wheat)a Both pathosystems enhanced yield loss particularly when acclimated CEF 780 Necrotroph Constant Váry et al. 2015 

        

No Change 

Erysiphe graminis (powdery mildew)  Triticum aestivum (wheat)a Reduced Nitrogen content; increased water content CEF 700 Biotroph Constant Thompson et al. 1993 

Erysiphe necatrix (powdery mildew)  Vitis vinifera (grapevine)a Increased chlorophyll content, intercellular carbon and photosynthesis. CEF 799 Biotroph Constant Pugliese et al. 2010 

Podosphaera xanthii (powdery mildew)  
Cucurbita pepo (zucchini cv. 
Genovese)a 

Increased intercellular carbon and photosynthesis. Decreased chlorophyll content CEF 800 Biotroph Constant Pugliese et al. 2012 

Melampsora medusae (leaf rust)  Populus tremuloides (aspen)a Increased growth; changes in cuticular wax deposition and composition FACE 550 Biotroph Constant 
Karnosky et al. 2002; Percy 
et al. 2002 

Bipolaris sorokiniana (spot blotch)  Hordeum vulgare (barley)a Decreased stomatal conductance CEF 700 Hemibiotroph Constant Mikkelsen et al. 2014 

Pyrenopeziza betulicola (leaf spot) Betula pendula (silver birch)a Reduction in stomatal conductance FACE 700 Hemibiotroph Pulse Riikonen et al. 2008 

Various fungal pathogens (leaf spot, rust, 
powdery mildew) 

 various C4 grasses, forbs and 
legumesb 

Increased infection with added N FACE 560 (Hemi)biotroph Constant Mitchell et al. 2003 

a – C3 photosynthesis; b – C4 photosynthesis; c - Setting refers to the type of facility used where CEF is controlled environment facility, FACE is free air CO2 enrichment and OTC is open topped chambers in field sites;     

d - Constant CO2, plants grown from seed; Pulse, plants moved to high CO2 before experiment; Semi-constant, plants were grown initially in ambient before relocation to eCO2 for between 2 weeks and 4 years depending on the species and experimental design.  



  

 

Disease severity Observations Set.c CO2 (p.pm) Pathogen Typed Reference 

Phytophthora cajani (blight)  Cajanus cajan (pigeonpea)a Incubation period delayed eCO2, lower colonisation CEF 500-700 Hemibiotroph Constant Sharma et al. 2015 

F. virguliforme (sudden death syndrome)  Glycine max (soybean)a No reported changes FACE 550 Hemibiotroph Constant Eastburn et al. 2010 

F. pseudograminearum (crown rot)  Triticum aestivum (wheat)a Increased F. pseugograminearum biomass. Sacrophytic capacity unaffected FACE 550 Hemibiotroph Constant Melloy et al. 2010 

Septoria glycines (brown spot)  Glycine max (soybean) a Increased plant height and canopy density. More severe in combination with O3 FACE 550 Necrotroph Constant Eastburn et al. 2010 

F. culmorum and F. pseudograminearum 
(crown rot) 

 Triticum aestivum (wheat – various 
cultivars)a 

Huge effect of successive cycles. Susceptible cultivar more effected. Huge amount of inherent variation. FACE 700 Hemibiotroph Constant Khudhair et al. 2014 

Various fungi  Ambrosia artemisiifolia (ragweed)a Decreased association with penicillium  FACE 550 Various Semi-constant Ruion et al. 2014 

F. pseudograminearum (crown rot) 
 Triticum aestivum (wheat – various 
cultivars)a 

Increased dry weight and size. Severity very dependent on cultivar used CEF 690 Hemibiotroph Constant Melloy et al. 2014 

Various pathogens  Prairie legume Generalist herbivores associated with height, negatively correlated with pubescence. Opposite for specialists.r FACE 560 Various Constant Lau et al. 2008 

Puccinia striiformis (stripe rust) Triticum aestivum (wheat)a  FACE 820 Biotroph Constant Chakraborty et al. 2011 

Various fungal pathogens Coffea arabica (coffee)a N decreased, photosynthetic rate increased FACE 550 Various Constant Ghini et al. 2015 

Collectotrichum gloeosporioides 
(anthracnose) 

Stylosanthes scabra (pencilflower)a Increased leaf canopy affect production and dispersal of spores  
CEF/ 
FACE 

700 Hemibiotroph Constant Chakraborty et al. 2000 

Erysiphe graminis (powdery mildew), 
Puccinia species (rust) Septoria tritici (leaf 
blotch) 

Triticum aestivum (wheat)a and 
Brassica napus (rapeseed)a 

Bioass, N and C unaffected FACE 550 Biotroph Constant Oehme et al. 2013 

F. oxysporum (wilt) Lactuca sativa (lettuce)a Total bacterial abundance reduced. Temp increased disease CEF 800 Necrotroph Constant Feroccino  et al. 2013 

Puccinia recondite (leaf rust) Triticum aestivum (wheat)a Increased photosynthetic rate, WUE, biomass, conductance. Decreased ozone sensitivity FACE 610 Biotroph Constant Tiedemann & Firshing 2000 

a – C3 photosynthesis; b – C4 photosynthesis; c - Setting refers to the type of facility used where CEF is controlled environment facility, FACE is free air CO2 enrichment and OTC is open topped chambers in field sites;     

d - Constant CO2, plants grown from seed; Pulse, plants moved to high CO2 before experiment; Semi-constant, plants were grown initially in ambient before relocation to eCO2 for between 2 weeks and 4 years depending on the species and experimental design.  
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were decreased at eCO2 (Li et al., 2016). Furthermore, soybean showed reduced 

levels of LOX7 and LOX8 gene expression at eCO2, which was associated with 

increased herbivory by the Japanese beetle and corn root worm (Zavala et al., 

2008). It has been proposed that elevated SA levels at eCO2 can suppress JA-

dependent defences against herbivores (DeLucia et al., 2012). However, this 

hypothesis has not been validated and it remains unclear whether this type of 

signalling cross-talk could affect resistance against necrotrophic pathogens at 

eCO2. Thus, the majority of studies suggest that eCO2 represses resistance 

against necrotrophic pathogens, but contrasting reports about the effects of eCO2 

on JA signalling merits further investigation.  

The signalling pathways controlled by defence regulatory hormones 

interact strongly with primary metabolism (Rojas et al., 2014), which could have 

a contribution to eCO2-induced resistance. For instance, a recent study 

demonstrated that eCO2-induced increased resistance in Arabidopsis against Pst 

is associated with altered redox status (Mhamdi and Noctor, 2016). At eCO2, the 

metabolic profiles were radically different from air-grown plants and, upon further 

analysis, it became clear that transcription of genes controlling antioxidants and 

ROS homeostasis, such ascorbate and glutathione, were enhanced at eCO2. 

Furthermore, mutants in NADH generating enzymes (i.e. np-gapdh and nadp-

me2), which play important roles in redox homeostasis, were impaired in eCO2-

induced resistance against Pst. Changes in primary metabolite profiles of the 

plants, such as enhanced amino acid profiles and non-structural carbohydrate 

(NSC) contents (Mathur et al., 2013; Mhamdi and Noctor, 2016), may have a 

contribution to this process. For instance, sugar signalling has been shown to 

regulate redox homeostasis and (a)biotic stress responses (Keunen et al., 2013). 

Together, these data highlight the need for further research that focuses 

specifically on the link between plant development and primary metabolism, on 

the one hand, and post-invasive defences, on the other hand. 

1.4.5 Host defence responses to sub-ambient CO2. 

The effects of sub-ambient CO2 (saCO2) on disease resistance is less well 

studied than the effects of eCO2. Over shorter than evolutionary time scales, CO2 

has been relatively constant, although fluctuations occur along altitude gradients, 
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seasons and day/night cycles (Brooks et al., 1997). However, due to 

anthropogenic climate change, plants are currently experiencing unprecedented 

rates by which atmospheric CO2 is changing, potentially outpacing the 

evolutionary adaptation of plant metabolism. This is highlighted in Arabidopsis, 

where no changes in developmental responses were reported over 15 

generations of exposure to eCO2 (Teng et al., 2009). On the other hand, 

herbarium records show that stomatal density has decreased in response to post-

industrial rises in CO2 (Woodward and Kelly, 1995). Whether such CO2-related 

changes are the result of genetic adaptation or phenotypic plasticity, remains a 

matter of debate (Ward and Gerhart, 2010). Despite the physiological ability of 

plants to adapt to changing CO2 concentrations, our current crops are genetically 

very similar to their ancestral species that survived under the low atmospheric 

CO2 concentrations of relatively recent glacial periods (Badr and El-Shazly, 

2012). Accordingly, one could argue that our current crop germplasm is 

genetically adapted to cope with saCO2 conditions, rather than the predicted 

eCO2 levels in the near future.  

The impacts of saCO2 on plant immune signalling and disease resistance 

remain poorly understood. A transcriptomic analysis of Arabidopsis at saCO2 (Li 

et al., 2014c) uncovered increased expression of photorespiration-related genes 

at saCO2. Interestingly, in addition to redox regulatory genes (e.g. CAT2, APX1, 

GST, AOX1D), plants at saCO2 also displayed increased transcription of defence-

related genes, such as ICS1, PR1, LOX3, MYC2, ERF1-1. Although these data 

are too preliminary to support conclusions about effects of saCO2 on disease 

resistance, they indicate changes in primary metabolism that favour immunity, 

which is supported by other studies. For instance, in peppermint, it was shown 

that secondary metabolites, such as terpenoids, were increased at saCO2 

(Forkelova et al., 2016). Moreover,  the relative investment of winter wheat in 

non-structural carbohydrates and phenylalanine-derived secondary metabolites, 

such as ferulic acid, luteolin, chrysoeriol, tricin, apigenin and putrescine, is 

enhanced at saCO2, indicating that stress tolerance takes priority over 

development at saCO2 (Huang et al., 2017). Such trade-offs between primary and 

secondary metabolism may have aided plants in reaching an optimum balance 

between growth and stress tolerance in a carbon-limited environment over recent 
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glacial periods. In contrast to the above studies, a study on Sequoia sempervirens 

reported reduced investment in foliar phenolic defence compounds, which may 

repress pathogen resistance at saCO2 (Quirk et al., 2013). Remarkably, there is 

only one study that has directly addressed the impacts of saCO2 on disease 

resistance: Zhou et al. (2017) showed in Arabidopsis that saCO2 increases 

resistance to Pst (Zhou et al., 2017). This resistance was associated with reduced 

levels of ABA that cause insensitivity to the Pst effector coronatine, which 

counters pre-invasive defence by inducing stomatal re-opening. While enhanced 

stomatal immunity may explain part of this saCO2-induced resistance, saCO2-

exposed plants were still more resistant after leaf infiltration with Pst (Zhou et al., 

2017), suggesting involvement of additional post-invasive defences. As ABA acts 

as a repressor of SA-dependent defences (Moeder et al., 2010), the observed 

reduction in ABA signalling at saCO2 may play a role in saCO2-induced resistance 

against (hemi)biotrophic pathogens (Zhou et al., 2017). Whether attenuation of 

infection at saCO2 is specific to Arabidopsis and/or (hemi)biotrophic pathogens, 

and whether other defence regulatory mechanisms than ABA and stomatal 

immunity are involved as well, remains to be investigated. In particular, further 

research is required to better understand plant metabolic responses to saCO2, 

which would allow greater insight into the conditions under which plant 

metabolism evolved over recent glacial periods.  

1.5 Interactions with below-ground beneficial microbes. 

The rhizosphere can be defined as the thin layer of root-surrounding soil 

that is under direct physio-chemical and biological influence from plant roots 

(Bakker et al., 2013). From a biological and biochemical perspective, the 

rhizosphere is a dynamic system, shaped not only by soil type, plant species and 

associated microbes (Berg and Smalla, 2009), but also influenced by the 

environmental conditions to which the plant is exposed (Classen et al., 2015). 

The rhizosphere often contains higher microbial titres than the surrounding soil 

as it contains higher concentration of plant-derived organic matter, which 

provides substrate for microbial growth (Lugtenberg and Kamilova, 2009). In 

particular, carbon (C) is present in higher concentrations in plant root exudates 

and occurs in more digestible forms than other soil-based C, including organic 

acids such as malate and citrate (Rengel and Marschner, 2005). The beneficial 
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association between plants and mutualistic rhizosphere organisms relies mostly 

on plant-derived C and requires intricate coordination between both organisms. 

For instance, plants recognise plant-growth promoting rhizobacteria (PGPR) 

through microbe-associated molecular patterns (MAMPs; often equivalent to 

PAMPs), which can result in PTI (Millet et al., 2010). However, the intensity of 

PTI during beneficial interactions can be subdued, either by plant-mediated 

suppression of the immune response (Maunoury et al., 2010), or by PTI-

suppressing effectors from the mutualist (Zamioudis and Pieterse, 2012). There 

is increasing evidence that JA and ET signalling play important roles in mediating 

associations with beneficial microbes (Van Wees et al., 2008; Van der Ent et al., 

2009; Jung et al., 2012), indicating that plants use defence hormones to 

coordinate long-range responses and gain selective control of the extent and 

expense of the association. For example, plants can limit endophytic colonisation 

by nitrogen-fixing rhizobia through JA-mediated autoregulation of nodulation 

(Nakagawa and Kawaguchi, 2006; Oka-Kira and Kawaguchi, 2006). 

PGPR benefit plant development through a combination of mechanisms.  

Apart from mobilising insoluble phosphates and nitrates (Vessey, 2003; Vassilev 

et al., 2006), growth stimulation can occur directly through microbial production 

of growth hormone homologues, such as auxin, brassinolids and cytokinins (Ping 

and Boland, 2004), suppression of ethylene production (Glick et al., 2007), and 

manipulation of ABA signalling to stimulate photosynthesis (Zhang et al., 2008). 

Growth stimulation can also occur indirectly through competitive exclusion of soil-

borne pathogens (Bolwerk et al., 2003; Kamilova et al., 2007), including the 

production of antibiotics (Lugtenberg and Kamilova, 2009), competition for micro-

nutrients, such as iron, and signal disruption by degradation of quorum sensing 

molecules (Lin et al., 2003). Importantly, certain PGPR and plant-growth 

promoting fungi (PGPF), such as mycorrhiza, elicit an induced systemic 

resistance (ISR) response (van Loon et al., 1998; Van Wees et al., 2008; Pineda 

et al., 2010; Lakshmanan et al., 2013). ISR can provide an advantage to plants, 

especially in environments with heightened disease pressure or limiting nutrient 

availability. Research on the Arabidopsis - Pseudomonas simiae WCS417 

interaction has revealed important regulatory mechanisms driving the ISR 

response. WCS417-mediated ISR in Arabidopsis relies on an ethylene- and JA-
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dependent signalling pathway (van Loon et al., 1998) and results in systemic 

priming of SA-independent defences (Verhagen et al., 2004; Van der Ent et al., 

2009). More recent work on this model system has revealed that root colonisation 

by P. simiae WCS417 triggers a MYB72-dependent iron starvation response that 

results in the synthesis of iron-mobilizing phenolic metabolites and their release 

into the rhizosphere through activity of the beta-glucosidase BGLU42 (Zamioudis 

et al., 2014). In a subsequent paper, Zamioudis et al (2015) showed that the onset 

of ISR and the accompanying iron deficiency response is triggered by WCS417-

produced volatile organic compounds (VOCs). Interestingly, the associated gene 

expression response to WCS417 in roots was dependent on CO2 and 

photosynthesis, indicating that atmospheric CO2 controls the rhizosphere 

interaction with ISR-eliciting PGPRs (Zamioudis et al., 2015). 

Effective communication between plants and rhizosphere microbes 

requires specialised chemical signals (semiochemcials) that are produced and 

perceived by both plants and microbes. The chemical exudation profile from plant 

roots is complex (Uren, 2007), and varies according to plant species, plant age, 

microbiome context, and physiochemical soil properties (Gregory, 2007). The 

role of root-exuded primary and secondary metabolites as chemo-attractants is 

well established (Barbour et al., 1991; Dharmatilake and Bauer, 1992; Kape et 

al., 1992; Pandya et al., 1999). Flavonoids, strigolactones, organic acids, and 

benzoxazinoids have been reported to stimulate colonisation by beneficial 

PGPRs, rhizobia and PGPFs (Dharmatilake and Bauer, 1992; Steinkellner et al., 

2007; Neal et al., 2012; Lakshmanan et al., 2013). Despite this knowledge, the 

specificity of chemotaxis-inducing and/or biocidal secondary metabolites to 

beneficial rhizosphere microbes remains relatively unknown. Organic acids have 

been demonstrated to trigger positive chemotaxis in PGPR. One example from 

root-exuded malic acid, which recruits the beneficial PGPR Bacillus subtilis F17 

(Lakshmanan et al., 2013). As malic acid is a primary metabolite and, therefore, 

an easily accessible C source, it seems unlikely that this chemical has a specific 

signalling function in the rhizosphere. Benzoxazinoids, such as DIMBOA, have 

also been shown to recruit beneficial Pseudomonas putida KT2440 to the 

rhizoplane of maize (Neal et al., 2012). DIMBOA is a tryptophan-derived 

secondary metabolite with antibacterial activity (Guo et al., 2016). In contrast to 
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other soil bacteria, P. putida KT2440 is highly tolerant to the biocidal activity of 

DIMBOA and activates genes controlling a positive chemotactic response when 

exposed to DIMBOA (Neal et al., 2012). Although KT2440 can persist 

saprophytically in soil without roots, it colonises the rhizosphere of plants, where 

it can elicit an ISR response (Matilla et al., 2010) and prime JA-dependent 

defences (Neal and Ton, 2013).  

Systematic studies of rhizosphere chemistry present practical problems 

due to the difficulty in defining the rhizosphere in spatial terms, which makes it 

difficult to obtain chemical extracts from rhizosphere soil without mechanically 

damaging delicate root tissues. This explains why most profiling studies of root 

exudation chemistry are based on sterile, hydroponically cultivated, root systems 

(van Dam and Bouwmeester, 2016), even though these profiles will be 

fundamentally different than the in situ chemistry of microbially diverse, non-

sterile, rhizosphere soil, which is arguably the most important factor for biological 

interactions in the rhizosphere.  

 

1.6 Effects of CO2 on belowground interactions in rhizosphere. 

1.6.1 Effects of CO2 on rhizosphere chemistry.  

Knowledge regarding the effects of CO2 on root exudation profiles remains 

fragmented. Most studies are limited to specific classes of chemicals or global 

estimations of total C budget. Moreover, many reports seem to contradict each 

other (Rice et al., 1994; Ross et al., 1995; Kassem et al., 2008; Eisenhauer et al., 

2012).. At ambient CO2 concentrations, it has been estimated that up to 30% of 

all assimilated C is exuded by the plant in ambient conditions (Bais et al., 2006). 

Although concrete evidence remains scarce, it is generally assumed that 

increasing CO2 concentrations stimulate exudation of C-based chemistry into the 

rhizosphere (Phillips et al., 2009; Eisenhauer et al., 2012). Clearly, more research 

is needed to validate these assumptions and identify the quantitative and 

qualitative changes in root exudation and/or rhizosphere chemistry at changing 

atmospheric CO2 concentrations. 
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The impact of eCO2 on root-exuded primary metabolites has been 

investigated in rye grass (Lolium multiflorum), bean (Phaseolus vulgaris) and 

barley (Hordeum vulgare), where it was found that exuded amino acid profiles 

remained unaffected by eCO2 (Phillips et al., 2006; Haase et al., 2007). By 

contrast, Calvo et al. (2017) reported reduced levels of amino acids  in root 

exudates of barley at eCO2 (Calvo et al., 2017), which occurred in a growth-stage 

dependent manner. The latter findings may be relevant for the composition of the 

microbial community in the rhizosphere, since rhizobacteria commonly respond 

to amino acids with positive chemotaxis (Nelson, 2004). Additionally, Calvo et al. 

(2017) reported cultivar-dependent changes at eCO2 in phytohormones, 

including indole acetic acid, IAA, cytokinins and auxin, (Calvo et al., 2017). Many 

rhizosphere microbes manipulate these hormones to aid in root colonisation and 

growth promotion, indicating that they may play a key role in rhizosphere 

communication at eCO2 (Garcia de Salamone et al., 2001; Khalid et al., 2004; 

Ahmad et al., 2005). Notably, most analyses of root exudation chemistry at eCO2 

involve targeted quantifications of specific classes of metabolites (i.e. amino 

acids, sugars or hormones), whereas a more comprehensive un-targeted 

profiling of rhizosphere chemistry at eCO2 has never been conducted.  

Untargeted metabolite profiling by tandem mass spectrometry provides a 

powerful and accurate tool to identify a range of primary and secondary 

metabolites that could potentially influence rhizosphere interactions, including 

amino acids, phytohormones, coumarins, flavonoids, organic acids, 

glucosinolates and oxylipins (Strehmel et al., 2014). However, these profiling 

techniques are typically performed on plants grown in hydroponic sterile 

conditions. Considering that active semio-chemcials in the rhizosphere can be 

microbial products that are derived from root exudates or produced de novo by 

rhizosphere-inhabiting microbes, the chemical exudation profiles from sterile 

roots might miss important chemical signals (van Dam and Bouwmeester, 2016). 

Recently, Pétriacq et al. (2017) have developed a non-sterile cultivation system 

that allows for the collection of extracts from plant-free and plant-containing soils 

(Pétriacq et al., 2017; Appendix 1). This method is based on comparisons 

between untargeted mass-spectrometry-based profiles from extracts of plant-free 

and plant-containing soils. Subsequent statistical filtering for markers that are 
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statistically enriched in extracts from plant-containing pots, allows for quantitative 

and qualitative analysis of rhizosphere chemistry from different plant-soil 

combinations. A further advantage of the method developed by Pétriacq et al. 

(2017) is that it enables profiling of microbial communities. The possibility of 

simultaneously profiling rhizosphere chemicals and rhizosphere microbes entails 

a powerful new technique to establish causal relationships between rhizosphere 

chemistry to rhizosphere microbiota. In this context, the method by Pétriacq et al. 

(2017) would provide a very attractive approach to study the impacts of CO2 on 

the chemical and microbial composition of the rhizosphere.  

1.6.2 Effects of eCO2 on rhizosphere microbes. 

The influence of eCO2 on total microbial biomass, colonisation, and 

community composition can be either positive or negative (Paterson et al., 1997; 

Wiemken et al., 2001; Montealegre et al., 2002). This variability has been 

attributed to complex interactions between biotic and abiotic environmental 

conditions, as well as host plant genotype (Classen et al., 2015). As outlined 

earlier, root-associated microbes can form functional symbioses with plants and 

rely largely on root-exuded C, which changes under varying CO2 conditions 

(Denef et al., 2007). Hence, CO2 can be expected to have far-reaching impacts 

on the beneficial root-associated microbes. Indeed, ample research has shown 

mostly positive impacts of eCO2 on rhizobium-plant and mycorrhiza-plant 

associations (summarised in Compant et al., 2010). By contrast, little is known 

about the effects of atmospheric CO2 on PGPR (Drigo et al., 2008), the known 

published interactions since 2010 are summarised in Table 1.2 (pre 2010 can be 

found in Compant et al., 2010). This knowledge gap justifies future research to 

determine the effects of future CO2 climates on PGPR colonisation and plant 

responses to PGPR, such a growth promotion and ISR. 

Table 1.2. A summary of the known changes in PGPR response at eCO2.    

Species Observations Set.c,d 
CO2 

(ppm) 
Reference 

Burkholderia sp. 
 Phytolacca americana (pokeweed)a and 
Amaranthus cruentus (purple amaranth)b 

Increased tissue Cs and phytoremediation effects OTC 860 Tang et al., 2011 

Pseudomonas 
fluorescens 

Medicago truncatula (barrelclover)a 
Increased development, vegetative growth and C/N content. 
Lower bacteiral colonisation. 

CEF 750 
Lepinay et al., 
2012 

Burkholderia sp. Lolium multiflorum (ryegrass)a 
Growth stimulation through regulation of photosynthesis. 
Decreased toxic metal in shoots. 

OTC 860 Guo et al., 2014 

Pseudomonas 
fluorescens 

Bouteloua gracilis (blue grama)b 
Increased productivity, increased capacity to store C, 
decreased C loss via microbial respiration 

CEF 703 Nie et al., 2015 

Cyanobacteria Vigna unguiculata (cowpea)a Enhanced root growth and nitrogen fixation FACE 550 Dey et al.,  2017 

a – C3 photosynthesis; b – C4 photosynthesis; c - Setting refers to the type of facility used where CEF is controlled environment facility, 
FACE is free air CO2 enrichment and OTC is open topped chambers in field sites; d - All plants were grown from seed in constant 
CO2. 
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1.6.2 Effects of saCO2 on rhizosphere microbes. 

 Studies concerning the effects of saCO2 on rhizosphere microbes are rare. 

One study about the effect of saCO2 and eCO2 on fungal species in grassland 

rhizospheres reported soil type-dependent relationships between CO2 

concentration and fungal species richness and abundance (Procter et al., 2014). 

Depending on the soil type, certain fungal clades, such as Chytridomycota and 

Glomeromycota, responded positively to increases in CO2 while others, such as 

Basidiomycota and Ascomycota, were unaffected. Similarly, in an Adenostoma 

fasciculatum dominated, natural chaparral community exposed to an saCO2-to-

eCO2 gradient, positive correlations were found between rising CO2 levels and 

fungal hyphal length, spore volume and a change in fungal species dominance 

(Treseder et al., 2003). In contrast, in a C3/C4 grassland communities exposed to 

saCO2-to-eCO2 gradient, microbial biomass was decreased at both saCO2 and 

eCO2 (Gill et al., 2006). These studies illustrate that the effects of reduced CO2 

concentrations on soil and rhizosphere microbes remain largely unclear, probably 

due the complexity of different interacting factors, such as nutrient content, soil 

type, and plant species.  A global assessment of the effects of saCO2 on microbial 

communities in relation to the associated chemistry would cast more light on the 

role of rhizosphere interactions in plant adaptation to past saCO2 climates.   

1.7 Thesis outline. 

This introductory Chapter has highlighted the need for more research concerning 

the effects of atmospheric CO2 on plant microbial interactions, with a greater 

focus on the role of plant development, metabolism and physiology. If performed 

over a range of past-to-future CO2 concentrations, this data will aid in 

understanding how plants have adapted to historic CO2 concentrations and how 

plants are likely to respond to future concentrations.  

The aim of this PhD research was to determine how different CO2 

concentrations affect the plant’s ability to interact with above- and below-ground 

microbes.  

Chapter 2 is the methods chapter of this thesis and provides a detailed 

description of all techniques, materials and equipment used for the experiments 

that are outlined in the experimental Chapters 3 - 5. The technique to profile 
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simultaneously chemistry and microbial populations in the rhizosphere (applied 

in Chapter 5) is further detailed in Appendix 1, presenting the recently published 

technical advance paper by Petriacq et al. (2017), to which I have made a 

substantial contribution during my PhD.  

Chapter 3 is the first experimental chapter of this thesis, which describes 

the effects of glacial-to-future CO2 concentrations on aboveground Arabidopsis-

pathogen interactions. As atmospheric CO2 affects growth stage (Ainsworth et 

al., 2002; Mhamdi and Noctor, 2016), I hypothesised that plants that are 

continuously cultivated at eCO2 or saCO2 show altered developmental rates, 

which in turn would have indirect effects on plant-pathogen interactions. Because 

resource allocation changes throughout a plant’s life-cycle (Boege and Marquis, 

2005), it can be expected that the developmental stage has an impact on plant-

microbe interactions. Indeed, the stimulatory effects of plant age on disease 

resistance, generally referred to as age-related resistance, is a common 

phenomenon in plants (Garcia-Ruiz and Murphy, 2001; Kus et al., 2002; 

Rusterucci et al., 2005; Shibata et al., 2010). To address these differences, a 

developmental correction is required to ensure that physiological plant age is 

similar at the time of pathogen challenge. Surprisingly, very few previous studies 

have considered plant development as an influencing factor on CO2-induced 

effects on plant-microbe interactions. A notable exception is the study by Staddon 

et al. (1998), who reported that the stimulatory effect of eCO2 on root 

development largely drives the increase in AMF colonization at eCO2. Using a 

developmental correction, Chapter 3 of this thesis describes the direct impacts 

of eCO2 and saCO2 on post-invasive immunity in Arabidopsis and the resulting 

effects on interactions with biotrophic and necrotrophic pathogens. Subsequent 

molecular and biochemical characterization of CO2-dependent resistance 

phenotypes uncovered different mechanisms by which CO2 shapes plant 

immunity. Apart from priming effects of eCO2 on hormone-dependent defences, 

this Chapter provides evidence that enhanced photorespiration contributes to 

plant defence against biotrophic pathogens at saCO2.  

Chapters 4 focuses on the effects of glacial-to-future CO2 levels on 

belowground interactions in the rhizosphere of Arabidopsis. This Chapter 

investigates the effects of CO2 and soil type on two previously characterised 
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soil bacteria was investigated. These experiments revealed that CO2 has 

differential impacts on rhizosphere colonisation by the specialised 

rhizobacterial strain P. simiae WCS417 and the generalist saprophytic soil 

coloniser P. putida KT2440. Moreover, plant growth and systemic resistance 

(ISR) responses to P. simiae WCS417 were altered at different CO2 regimes and 

dependent on the soil nutritional status. Together, this Chapter provides evidence 

that the impacts of atmospheric CO2 on plant-rhizosphere interactions are highly 

dependent on the microbial species and the nutritional status of the soil.  

Chapter 5, has employed the profiling technique described by Pétriacq et 

al (2017; Appendix 1) to obtain a global impression of the impacts of past-to-

future CO2 on rhizosphere microbial communities and rhizosphere chemistry. 

Using T-RFLP profiling, this Chapter reveals that atmospheric CO2 has a 

measurable impact on microbial community structures in a plant development-

dependent manner. Using un-targeted mass-spectrometry-based metabolite 

profiling, this Chapter furthermore reveals quantitative and qualitative impacts of 

CO2 on rhizosphere chemistry. Together, this Chapter provides evidence that 

both the microbial and chemical diversity increased with rising CO2 

concentrations.  

Finally, Chapter 6 of this thesis, the general Discussion, provides a wider 

reflection on the experimental results of my PhD. The results of the experimental 

Chapters 3 - 5 are discussed in the context of future climate change and plant 

evolution during recent glacial periods.  

Decreased (Thompson and Drake, 1994; Hibberd et al., 1996a; Hibberd et al., 1996b; Chakraborty et al., 2000; Jwa and Walling, 2001; Chakraborty and Datta, 2003; Mcelrone 

et al., 2005; Braga et al., 2006; Matros et al., 2006; Strengbom and Reich, 2006; Plessl et al., 2007; Kretzschmar et al., 2009; Eastburn et al., 2010; Runion et al., 2010; Ye et al., 2010; Huang 

et al., 2012; Mathur et al., 2013; dos Santos et al., 2013; Ghini et al., 2014; Melloy et al., 2014; Mikkelsen et al., 2014; Silva and Ghini, 2014; Watanabe et al., 2014; Li et al., 2014b; Aguilar et al., 

2015; Zhang et al., 2015; Mhamdi and Noctor, 2016; Gilardi et al., 2017) 

Increased (Mitchell et al., 2003; Pangga et al., 2004; Kobayashi et al., 2006; Lake and Wade, 2009; Fleischmann et al., 2010; McElrone et al., 2010; Melloy et al., 2010; Melloy 

et al., 2014; Tkaczyk et al., 2014; Vaughan et al., 2014; Trębicki et al., 2015; Váry et al., 2015; Li et al., 2016; Zhou et al., 2017) 

No Change (Thompson, 1993; Sharbel et al., 2000; Karnosky et al., 2002; Percy et al., 2002; Lau et al., 2008; Riikonen et al., 2008; Chakraborty and Newton, 2011; Pugliese et 

al., 2012; Khudhair et al., 2014; Ghini et al., 2015; Sharma et al., 2015)(Tiedemann and Firsching, 2000; Ferrocino et al., 2013; Oehme et al., 2013) 

PGPR (Tang et al., 2011; Lepinay et al., 2012; Guo et al., 2014; Nie et al., 2015; Dey et al., 2017) 
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Chapter 2: Materials and Methods 

2.1 Reagents and chemicals.  

All chemicals, solvents and reagents (analytical grade) used throughout 

this project were purchased from Sigma-Aldrich, (UK), unless stated otherwise. 

Jasmonic acid (JA) was obtained from OlChemim (CZ; http://www.olchemim.cz/). 

2.2 Plant cultivation and growth conditions.  

Arabidopsis thaliana (Arabidopsis) was cultivated in mx flow 6000 

cabinets (Sanyo, UK) under ambient conditions (aCO2; 400 ppm, i.e. µL L-1), sub-

ambient CO2 (saCO2; 200 ppm), or elevated CO2 (eCO2; 1200 ppm). Growth 

chambers were supplemented with compressed CO2 (BOC, UK) or scrubbed with 

Sofnolime 797 (AP diving, UK) to maintain constant CO2 levels at indicated 

concentrations. For experiments with plant-free control soils, pots of unseeded 

soil were set-up and maintained in the same growth conditions as samples. Most 

plants were grown in ‘standard’ pots, but various experiments were undertaken 

in ‘specialised’ pots, as detailed below. Arabidopsis wild-type accession 

Columbia 0 (Col-0), was used throughout these studies along with the Col-0 

mutant lines npr1-1 (Cao et al., 1997), sid2-1 (Wildermuth et al., 2001),  jar1-1 

(Staswick, 2002), aos1-1 (Przybyla et al., 2008), rbohD/F (Torres et al., 2002), 

gox1-2 (SALK_051930; Alonso et al., 2003) and haox1-2 (SALK_022285; Alonso 

et al., 2003). Plants were cultivated under short-day conditions (8.5: 15.5 h light: 

dark; 20 °C light, 18 °C dark; 65% relative humidity). For ‘standard’ pots, seeds 

were stratified for 2 days (d) in the dark at 4 °C and planted in 60-mL pots, 

containing a sand (silica CH52) : dry compost (Levington M3) mixture, in a ratio 

of 2 : 3 for nutrient rich soil, or 1 : 9 for nutrient poor soil (v:v in both instances). 

Pots were transferred to trays to allow for bi-weekly watering. At 7 d post-

germination (dpg), seedlings were thinned to prevent crowding. 

2.3 Experimental set-up of growth system for metabolite collection. 

For metabolite extractions and sampling of soil bacterial communities, 

‘specialised’ pots were used. This method, detailed in Appendix 1, involves 

custom-made 30-mL collection tubes (Starlab, UK), plugged with micracloth 

(VWR, UK) and filled with nutrient poor soil. To prevent cross contamination 

http://www.olchemim.cz/
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between samples, tubes were placed in individual petri-dishes (Nunclon™ Delta, 

8.8 cm2 ThermoScientific, UK) and subsequently wrapped in aluminium foil to 

limit algal growth in the soil matrix. Growth conditions of Arabidopsis were then 

as described above. All pots were watered twice weekly with 5 mL of autoclaved 

distilled water applied to the petri-dishes, using a 5-mL pipette (Starlab, UK). The 

final watering date was set at 3 d before sampling, which resulted in consistent 

soil water contents at the time of sampling (Pétriacq et al., 2017; Appendix 1).  

2.4 Development measurements and correction. 

Developmental stage of plants was evaluated by counting the number of 

leaves. To determine the size of the plants, rosette area was estimated non-

destructively from digital photographs (Canon EOS 500D) of rosettes, taken with 

a size standard. Image analysis involved converting pixels per rosette into area 

(mm2), using imaging software (Corel Paintshop Pro, ver. X7). To determine root 

growth, root material plus soil was collected carefully and oven dried using an 

economy incubator 2 (Weiss Technik, UK; 60°C). Subsequently, soil was 

carefully extracted from surrounding soil and weighed using an analytical balance 

(Mettler Toledo AJ100).  

2.5 Plant developmental correction (DC).  

CO2 directly impacts plant growth-stage. To compare plants with similar 

developmental stages, a correction was applied. Using leaf numbers of 3- and 

4.5-week old plants as a proxy of development stage at different CO2 regimes 

(Boyes et al., 2001), seed germination at saCO2 was started 7 days earlier than 

at aCO2, whereas seed germination at eCO2 was delayed by 3 days in 

comparison to aCO2. DC resulted in plants with equal number of leaves at all 

three CO2 concentrations at the day of pathogen inoculation (8-leaf stage for 

Hyaloperonospora arabidopsidis, Hpa, and 18-leaf stage for Plectosphaerella 

cucumerina, Pc; see below).  

2.6 Pathogenicity assays using Hpa and Pc.  

To determine disease resistance, plants were grown in ‘standard’ 60-mL 

pots and either inoculated with the obligate biotroph, Hpa, or the fungal 

necrotroph, Pc. Due to its sensitivity to age-related resistance (ARR), assays with 
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Hpa, (strain WACO9) were conducted with relatively young plants (3-week old at 

aCO2 for non-DC experiments or 8-leaf stage for DC experiments). Plants were 

spray-inoculated with 5 × 104 conidiospores mL-1 and left at high humidity (100% 

relative humidity, RH) by placing transparent lids on trays. Subsequently, whole-

plant tissues were collected at 6 or 7 days post inoculation (dpi) to determine the 

extent of hyphal colonization by trypan-blue staining and microscopy analysis 

(Optika LAB-30), as described previously (Luna et al., 2012). Levels of Hpa 

colonisation were assigned to four distinct classes, as is illustrated in Fig. 2.2. I, 

no pathogen development; II, presence of hyphal colonisation; III, extensive 

colonisation and presence of conidiophores; IV, extensive colonisation and the 

presence of conidiophores and > 10 oospores. At least 50 leaves from more than 

15 plants per treatment were used to determine distributions of inoculated leaves 

across the four Hpa colonization classes. Images of disease symptoms were 

taken on an Olympus SZX12 binocular microscope and a Leica MZ FLIII. 

Differences in distribution of leaves across Hpa colonization classes were 

analysed for statistical significance, using Chi-square tests (using R, v. 3.1.2).  

To ensure necrotrophic infection, assays with Pc (strain BMM) were 

based on droplet inoculation (6 µL, 5 × 106 spores mL-1) on 4 to 6 fully expanded 

leaves of plants (n = 8) at the 18-leaf stage (4.5-week old at aCO2), as described 

previously (Pétriacq et al., 2016a). Disease progression was measured as lesion 

diameters at 8 and 13 dpi. Four lesion diameters per plant were averaged and 

treated as one biological replicate (n = 8). Differences in average lesion diameter 

between treatments were analysed for statistical significance by ANOVA (using 

R, v. 3.1.2).  

2.07 Gene expression analysis by reverse-transcriptase quantitative PCR. 

RNA extraction a trizol-containing extraction buffer, cDNA synthesis and 

real-time quantitative qPCR (RT-qPCR) were performed to determine relative 

gene expression levels, as described previously (Pétriacq et al., 2016a). Gene-

specific primers for RT-qPCR are listed in Table 2.1. Basal expression of CAT2 

(AT4G35090), GOX1 (AT3G14420) and HAOX1 (AT3G14130) were determined 

in shoot material of plants at the 8-leaf stage.  Each biological replicate consisted 

of shoot material from one plant (n = 5). Basal and hormone-induced expression 

of PR1 (AT2G14610) and VSP2 (AT5G24770) were determined in plants of the  
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Fig. 2.1 Representative examples of the four different Hpa colonization classes that were used to quantify Arabidopsis resistance. To 

visualise Hpa colonisation, leaves were stained with lactophenol trypan-blue, as described previously (Luna et al. 2012). Class I is 

defined by a lack of hyphal growth; Class II sustains hyphal development, but not the production of asexual conidiospores; Class III 

is characterised by extensive hyphal colonisation and the formation of conidiophores and asexual condiospores; Class IV is similar 

as class III, but with additional formation of sexual oospores (> 10 per leaf). Black bars indicate scales. 
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8-leaf stage after spraying shoots with double-distilled water, 0.1 mM JA, or 0.5 

mM salicylic acid (SA), supplemented with 0.01% Silwet L-77 until imminent 

runoff. Each biological replicate in these assays consisted of 4 leaves from 4 

different plants (n = 3). In all cases, gene expression was normalised against 

Arabidopsis house-keeping genes, At5g25760 (SAND) and At2g28390 (UBC; 

Czechowski et al., 2005). Pipetting was performed with a QIAgility robot and RT-

qPCR using a Rotor-Gene Q instrument (QIAGEN), SYBR Green (Thermo-

Fisher) and a three-step cycle setting, 30s 95°C, 20s 58°C and 20s 62°C for 40 

cycles. Differences in relative transcript levels were analysed for statistical 

significance, using Welch’s t-test (R, v. 3.1.2). Assays to quantify CAT2, GOX1 

and HAOX1 (At3g14420, At3g14130 and At4g35090, respectively) gene 

expression were repeated once with similar results.  

Table 2.1 Primers used for mutant genotyping and RT-qPCR analysis of gene expression 

    
 

 Gene Gene locus Forward primer sequence (5' - 3') Reverse primer sequence (5' - 3') 

Genotyping 

    

GOX1  AT3G14420 CCG AAA GCT ATT AAA CAG CCC CTT ACA TTG CAC CCA ACT TCC 

HAOX1 AT3G14130 GCA GAA TGG AGG GGT TTA GTC CAT GCA AGA ATC TTG CTC CTC 

SALK Insert (LBb1.3)  - ATT TTG CCG ATT TCG GAA C 

      

qRT-PCR 
primers 

Gene expression    

GOX1  AT3G14420 AGA ACA GCA GCA ACA CAG AAC 
CAC TAG GCT TGG TTT GTG ATC 
TGA TA 

HAOX1 AT3G14130 
GAA TTA AAT CTA TGC TCT GAT CCT AAA 
ACC 

GAA CAA GTC CAA CGT ACT ATT 
GTC TT 

CAT2 AT4G35090 CGA GGT ATG ACC AGG TTC GT CTT CCA GGC TCC TTG AAG TTG 

PR1 AT2G14610 GTC TCC GCC GTG AAC ATG T CGT GTT CGC AGC GTA GTT GT 

VSP2 AT5G24770 GGA CTT GCC CTA AAG AAC GAC ACC 
GTC GGT CTT CTC TGT TCC GTA 
TCC 

UBC 9 AT5G25760 TCA CAA TTT CCA AG^ GTG CTG C TCA TCT GGG TTT GGA TCC GT 

SAND AT2G28390 AAC TCT ATG CAG CAT T GGT GGT ACT AGC ACA A 

DNA quantification    

HpaACT g_ID_807716 GTG TCG CAC ACT GTA CCC ATT TAT 
ATC TTC ATC ATG TAG TCG GTC 
AAG T 

Pcβ-Tub  CAA GTA TGT TCC CCG AGC CGT GAA GAG CTG ACC GAA GGG ACC 

AtACT2 AT3G18780 AAT CAC AGC ACT TGC ACC A GAG GGA AGC AAG AAT GGA AC 

        

  

2.7 RT-PCR quantification of pathogen DNA. 

The results of both the Hpa and the Pc assays were verified in independent 

DC experiments with wild-type plants (Col-0), using quantitative PCR (Fig. S3).  

Shoot material was collected at 6 dpi (n = 4) for quantification of Hpa biomass; 

fully expanded leaves were collected at 8 dpi (n = 4) for quantification of Pc 

biomass. For DNA quantification of Hpa and Pc infection, DNA was extracted 

from infected plants (n = 5) using CTAB extraction protocol (2% CTAB; 100mM 
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Tris-HCl pH 8, 1.4M NaCl; 20mM EDTA; 1% PVP- 40; 2µ ml-1 2-

Mercaptoethanol) and subsequent chloroform-isopropanol precipitation, as 

described previously (López Sánchez et al., 2016). The qPCR quantifications of 

Hpa and Pc biomass were performed with pathogen-specific primers (Table S2), 

using the PCR conditions described by Anderson and McDowell (2015) and 

Sanchez-Vallet et al., (2010), respectively. Relative levels of pathogen DNA were 

calculated by normalisation against genomic DNA of the Arabidopsis ACT2 gene 

(AT3g18780).  

 

2.8 In situ detection of reactive oxygen species.  

Extracellular reactive oxygen species (ROS) were analysed by 3,3’-

diaminobenzidine (DAB) staining (Daudi and O’Brien, 2012), whereas 

intracellular ROS were quantified by 2′,7′-dichlorofluorescein diacetate (DCFH-

DA; Pétriacq et al., 2016b). Each biological replicate in these assays consisted 

of one individual leaf collected from different plants (n = 10 for DCFH-DA, n = 5 

for DAB). In both cases, mock- or Hpa-treated leaves were sampled at 48 hours 

post inoculation (hpi). ROS intensities from DAB or DCFH-DA images were 

obtained with an Olympus SZX12 binocular microscope (using a HQ510 1p 

emission filter for DCFA-DA fluorescence; Ex/Em: 492-495/517-527 nm) and 

quantified using Photoshop (v CS.5), by calculating fluorescent pixels relative to 

dark leaf area (Luna et al., 2011; Pétriacq et al., 2016b). Statistical evaluation 

was performed using ANOVA (R, v. 3.1.2). 

2.9 Targeted quantification of hormones.  

Salicylic acid (SA) and jasmonic acid (JA) were quantified by ultra-pure 

liquid chromatography quadrapole time of flight mass spectrometry (UPLC-Q-

TOF-MS) with MSE,  using the methods detailed in Pétriacq et al., 2016b. Briefly, 

phytohormones were double- extracted from freeze-dried leaf material (10 mg dry 

weight) in a total volume of 1.5 mL of ethyl acetate. Each biologically replicated 

sample (n =5) consisted of four pooled leaves of similar size and age from 

different plants. Hormones were quantified by UPLC-Q-TOF-MSE in negative 

electrospray ionization mode (ESI-), using standard curves of pure SA and JA. 
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Compound identity was verified by the following fragmentation patterns: SA, 

137→93; and JA, 209→59. 

2.10 Metabolite extraction for untargeted profiling.  

Metabolic profiles of leaves at saCO2 or aCO2 were analysed after 

application of DC. To this end, plants in the 8-leaf stage were inoculated with Hpa 

or water, after which leaf tissues of 4 plants from each pot were pooled as one 

biological replicate. Replicates (n = 3) were collected in the middle of the 

photoperiod and snap frozen in liquid nitrogen at 24 hpi and 72 hpi. For the 

analysis of rhizoshere chemcials, extracts from plant-containing pots and plant-

free pots were collected by applying ice-cold extraction solution (5 mL) 50% (v/v) 

with 0.05% formic acid (v/v) to the top of the pots. After 1 min, 4 - 4.5 mL, the 

extract was recovered from the hole in the pot’s base. Extracts were centrifuged 

to pellet soil residues (5 min, 3500 g), and 4 mL of supernatant was transferred 

into a centrifuge tube and flash-frozen in liquid nitrogen, freeze-dried for 48 hours 

(Modulyo benchtop freeze dryer, Edwards, UK), and stored at -80 °C. Dried 

aliquots, from either collection method (i.e. foliar material or soil chemicals), were 

re-suspended in 100 µL of methanol: water: formic acid (50: 49.9: 0.1, v/v) and 

prior to UPLC-Q-TOF analysis they were sonicated at 4 °C for 20 min, vortexed 

and centrifuged (15 min, 14000 g, 4 °C) to remove any large particles. 

Supernatants (80 µL) were aliquoted into glass vials containing a glass insert 

before injection through the UPLC system.  

 2.11 Untargeted metabolic profiling by UPLC-qTOF-MSE.  

To determine metabolic profiles, UPLC-Q-TOF-MSE analysis of methanol 

extracts was carried out as described previously (Pétriacq et al., 2016b), using 

the following modifications: high-resolution full-scan mass spectrometry was 

performed with a SYNAPT G2 HDMS Q-TOF mass spectrometer (Waters), 

coupled to a UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm, Waters) with a guard 

column (VanGuard, 2.1 x 5 mm, 1.7 µm, Waters) for separation of compounds at 

a flow rate of 400 μL min−1. The mobile phase consisted of A; water with 0.05% 

formic acid, and B; acetonitrile with 0.05% formic acid with a gradient applied: 0 

– 3 min 5 – 35 % B, 3 – 6 min 35 – 100 % B, holding at 100 % B for 2 min, 8 – 10 

min, 100 – 5 % B. The column temperature was kept at 45 °C with an injection 
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volume of 10 μL. Buffer (50% methanol) was injected between treatments and 

between ESI- and ESI+ ionization modes for stabilization of the electrospray 

ionization source. Ions were detected over a mass range of 50 – 1200 Da, using 

a scan time of 0.2 s (ESI- and ESI+) with the instrument operating in sensitivity 

mode for the MS full scan (i.e. without collision energy). Collision energy was 

ramped in the transfer cell from 5 to 45 eV (MSE), using the conditions highlighted 

in Table 2.2. Prior to analysis, the Q-TOF detector was calibrated with a solution 

of sodium formate. During each run, accurate mass measurements were ensured 

by infusing leucine enkephalin peptide as an internal reference, or lock mass (10 

s scan frequency, cone voltage of 40 V and a capillary voltage of 3 kV). The  

system was piloted by MassLynx v. 4.1 software (Waters). 

 

 

 

 

 

 

 

 

 

2.12 Data preparation of MS data for statistical analysis.  

Raw files obtained from MassLynx, were converted into CDF format, using 

the Databridge function in MassLynx (v. 4.1). Subsequent alignment and 

integration of metabolic peaks were performed in R (v 3.1.2), using XCMS (Smith 

et al., 2006). Peaks were retained for analysis when present in all bio-replicates 

(k = 3 when used in Chapter 3 and k = 5 when used in Chapter 5), at a threshold 

intensity of 10 (I = 10) and at maximum resolution range of 20 ppm. Peak values 

from each run were normalised for total ion current (TIC). For each sample, 

normalised peak values were corrected for dry weight, generating separate 

datasets in ESI+ and in ESI- ionisation modes. 

 

Table 2.2 UPLC-Q-TOF-MS settings 

Setting ESI- ESI+ 

Capillary voltage (kV) - 3 + 3 

Sampling cone voltage (V) - 25 + 25 

Extraction cone voltage (V) 4.5 + 10 

Source Temperature (°C) 120 120 

Desolvation Temperature (°C) 350 350 

Desolvation gas flow (L h-1) 800 800 

Cone gas flow (L h-1) 60 60 
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2.13 Analysis of soil chemistry and statistical analysis of MS data. 

Unless stated otherwise, data from foliar material (Chapter 3) and from 

soil extracts (Chapter 5) were subjected to conceptually similar statistical 

workflows (Figs. 2.2 and 2.3, respectively). For both experiments, global 

differences in metabolic signals between treatment/point combinations was 

visualised for anions (ESI-) and cations (ESI+) separately by principal component 

analysis (PCA), using MetaboAnalyst online (v. 3.0; 

http://www.metaboanalyst.ca; Xia et al., 2015) on median-normalised, cube-root-

transformed and Pareto-scaled data.  

To select ions in foliar material (Chapter 3) that are either directly induced 

by saCO2, or primed by saCO2 for augmented induction following Hpa 

inoculation, ESI- and ESI+ datasets were analysed separately for statistically 

significant differences between all CO2/treatment/time-point combinations by 

one-way ANOVA (P < 0.01 + Benjamini-Hochberg false discovery rate correction, 

FDR; see Fig. S6), using MarVis (v. 1.0; http://marvis.gobics.de; Kaever et al., 

2012). From each ionization mode, 133 statistically significant markers were 

combined into one dataset of 266 markers for successive 2-way ANOVA (P < 

0.01), using MeV (v. 4.9.0; http://mev.tm4.org). Heatmaps project TIC-normalised 

ion current values (NIC), relative to the average and standard deviation of the 

NIC values across all samples: Value = (NIC – mean)/ SD. For each time-point 

(24 and 72 hpi), this analysis resulted in 3 subsets of markers, whose intensity 

was statistically influenced by CO2, Hpa, or for which the CO2 x Hpa interaction 

was statistically significant (See Chapter 3 for more details; Fig. 2.2). Hierarchal 

clustering (Pearson’s correlation; MeV) allowed visual selection of ion clusters 

that are induced directly by saCO2 or primed for augmented induction after Hpa 

inoculation. 

For quantification of the number of ions showing quantitative differences 

between rhizosphere and bulk soil (Chapter 5), volcano plots were created on 

median normalised, pareto-scaled and cube-root transformed data, with a cut-off 

value of > 2 fold-change (Log2 > 1) and a statistically significant threshold of P < 

0.05 (Welch’s t-test; MetaboAnalyst; Fig. 2.3). To study the composition of 

rhizosphere metabolites whose increased abundance in plant-containing soil 

http://www.metaboanalyst.ca/
http://marvis.gobics.de/
http://mev.tm4.org/
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depends on the atmospheric CO2 concentration, the combined set of ions 2,692 

anions (ESI-) and 5,578 cations (ESI+) were analysed by ANOVA (Benjamini-

Hochman false discovery rate (FDR) correction for multiple hypothesis testing 

(Hochberg and Benjamini, 1990); P < 0.05) for statistically significant differences 

between all CO2/soil combinations, using MarVis, 3.2 (Fig. 2.3). This filter 

selected 498 differentially abundant ions, which were then subjected to 2-way 

ANOVA to select 174 ions with a statistically significant CO2 x soil type interaction. 

(P < 0.05; see Chapter 5 for details). Subsequent Pearson correlation analysis 

(MeV software, v. 4.9) was used to select 59 marker ions that show enrichment 

in plant-containing soil that varies between CO2 conditions. To visualize the 

abundance patterns of this ion selection across all different CO2/soil type 

combinations, heatmaps were created to project the average TIC-normalised ion 

current values (NIC) values for each condition, relative to the average and 

UPLC-Q-TOF 

XCMS peak  
alignment 

ESI-: 4,479 ions ESI+: 5,683 ions 

ANOVA + FDR ANOVA + FDR 

266 ions (ESI- and ESI+)  

2-way ANOVA 
for 24 hpi 

Pearson’s correlation cluster analysis of ions that are  
statistically influenced by CO

2
, Hpa, or CO

2
 x Hpa 

2-way ANOVA 
for 72 hpi 

Selection of ion clusters that are induced or primed for  
Hpa-induced accumulation by saCO

2
  

Figure 2.2 Schematic pipeline of the selection procedure for ions induced or primed for Hpa-induced accumulation by saCO
2
. 
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standard deviation of the NIC values across all samples (Value = (NIC – mean)/ 

SD). Putative identities of the selected ion markers were based on m/z values at 

stringent accuracy (< 30 ppm), the using METLIN chemical database (Smith et 

al., 2005a; https://metlin.scripps.edu). PubChem was used to check the predicted 

pathway/class annotation (https://pubchem.ncbi.nlm.nih.gov/).  

 

 

Figure 2.3 Schematic of the statistical selection procedures to study quantitative and qualitative impacts of CO
2
 on rhizosphere 

chemistry. The approach involves various statistical filters to determine the numbers of rhizoshere ions that are statistically enriched in 

plant-containing soil (left; yellow) and to profile the composition of rhizosphere ions that vary between CO
2
 concentrations (right; blue).   
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2.15 Determining soil carbon (C) and nitrogen (N) concentrations. 

C and N concentrations in soil types (Chapter 4) were determined for both 

nutrient poor and rich soils in aCO2, using the complete combustion method 

followed by gas chromatography, using an ANCA GSL 20-20 Mass Spectrometer 

(Sercon PDZ Europa; Cheshire). 

2.13 Soil inoculation with Pseudomonas simiae WCS417 and Pseudomonas 

putida KT2440.  

To determine CO2 impacts on colonisation of rhizosphere bacteria, yellow 

fluorescent protein (YFP) labelled P. simiae WCS417 (Berendsen et al., 2012) 

was cultivated on solid Lysogeny broth (LB) with selective antibiotics, 5 µg mL-1 

tetracycline and 25 µg.mL-1 rifampicin. One fluorescent colony was selected for 

propagation in an overnight culture of liquid LB, containing the same selective 

concentrations of tetracycline and rifampicin. The medium was incubated in an 

orbital shaking incubator for 16 hours at 28 °C at 200 revolutions per minute 

(rpm). A similar method was employed for the cultivation of a green fluorescent 

protein (GFP)-tagged P. putida KT2440, which carries a stable chromosome-

inserted PA1/04/03-RBSII-gfpmut3*-T0-T1 transposon at a negligible metabolic 

cost (Dechesne and Bertolla, 2005). However, in this case, the bacteria were 

grown on minimal solid media (M9), after which one GFP-fluorescent colony was 

selected for propagation in LB liquid medium in the absence of selective 

antibiotics. Seeds were planted on bacterised soil. Soils were inoculated with 

either WCS417 or KT2240 by adding a bacterial suspension in 10 mM MgSO4 at 

5 X 107 CFU.g-1. Four weeks after germination, samples of rhizosphere/root 

adhering soil, or control soil (~2 g) were collected. These samples were serially 

diluted and stamp-plated, using a 96-well Replica plater (Sigma-Aldrich, R2383) 

onto LB agar containing selective tetracycline and rifampicin for WSC417, and 

M9 for KT2240. Fluorescent colonies were enumerated using a Dark 

Reader DR195M Transilluminator (Clare Chemical) and corrected for sample 

weight. A repeat of this experiment showed comparable results. 

Application of DC for belowground experiments (Chapter 4) was based on 

the same method as described above for the aboveground experiments (Chapter 

3), but the soil was inoculated with either WCS417 or KT2440 ten days prior to 
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sampling. Soil inoculation was performed by syringe injection of 6 mL 5 x 108 

CFU.mL-1 into 60 mL pots, resulting in a final soil density of 5 X 107 CFU.g-1, 

equivalent to the soil densities used for non-DC experiments. 

2.14 Induced systemic resistance assays. 

To establish the induced systemic resistance (ISR) ability of P. simiae 

WCS417, 5-week old plants, grown in ‘standard’ pots, using soil pre-inoculated 

with WC417 (as described in section 2.16), were challenged with Pc (as 

described in section 2.06). Lesion diameters were enumerated at 8 and 13 dpi 

and analysed using Student’s test (P < 0.05). 

2.15 Bacterial community profiling by terminal-restriction fragment length 

polymorphism analysis. 

Bacterial communities were profiled by terminal-restriction fragment length 

polymorphism (T-RFLP), which relies on the polymorphisms within variable 

regions of an otherwise highly-conserved sequences (Osborn et al., 2000). As 

such, digestion of these sequences by (a) restriction enzyme(s) results in 

discriminatory fragment sizes (terminal restriction fragments; T-RFs), which can 

be used as an indication of the composition of the bacterial community. DNA was 

extracted from 0.25 g of roots plus adhering rhizosphere soil (Arabidopsis-

rhizosphere samples) or 0.25 g of bulk soil (from control samples; n = 5), using a 

MoBio DNeasy PowerSoil extraction kit (Qiagen, UK), following the 

manufacturer’s instructions. DNA quality and quantity were assessed, using a 

Nanodrop ND-1000 spectrophotometer (Thermo Scientific, UK). PCR was used 

to amplify the V5-V6-V7 variable regions of the 16S rRNA gene, using primers 

799F (5’-AAC MGG ATT AGA TAC CCK G-3’) and 1193R (5’-ACG TCA TCC 

CCA CCT TCC- 3’). These primers had been designed to amplify a broad range 

of bacterial taxa and allow for the assessment and removal (if necessary) of co-

amplified plant plastid derived sequences (the bacterial amplicon is ~400 - 500bp; 

whereas the amplicon from mitochondria/chloroplasts is ~800bp; Chelius & 

Triplett, 2001; Bodenhausen et al., 2013). MyTaq DNA polymerase (Bioline, UK) 

was used to amplify 16s rRNA gene sequences by using 1 µl of template, 

following the manufacture’s details. An optimised PCR protocol of 30 cycles (30 

s denaturation at 94°C; 30 s hybridisation at 57.5°C; 45 s elongation at 72°C), 
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provided the strongest 16s amplification without visible amplification of plastid-

derived plant DNA. Gel electrophoresis of PCR amplicons was performed on 1% 

agarose (with Tris acetate EDTA, TAE, buffer) to verify the approximate band 

size and ascertain the absence of plastid-derived plant DNA. Subsequently, DNA 

samples were amplified, using the optimised PCR protocol with a 6-fluorescein 

amidite (6-FAM) labelled fluorescent probe (Sigma-Aldrich, UK) ligated to the 

aforementioned forward 799F primer in combination with an unlabelled 1193R 

primer. The resultant PCR amplicons were purified, using a QIAquick PCR 

purification kit (Qiagen, UK), after which 5 µL of purified amplicons were digested 

in a reaction mixture containing 1 U Alu-I, 1.5 µL of 1 x Buffer B, 0.2 µL of bovine 

serum albumin in a final volume of 10 µL. Restriction reactions were incubated 

for 2 hours at 37 °C. Aliquots of 5 µL from the purified digested product were 

desalted by ethanol precipitation, using 0.25 µL glycogen (20 mg.mL-1), 0.5 µL 

3M sodium acetate and 13 µL ice-cold 70% ethanol. After gentle mixing, the 

samples were centrifuged at 18,000 g for 20 minutes, at 4 °C. Subsequently, the 

supernatant was discarded and pellets were washed twice in 70% ethanol (18, 

000 g for 10 minutes). Finally, pellets were air-dried and re-suspended in 5µl of 

nuclease free water for T-RFLP analysis. Size and intensity of the T-RFs were 

quantified by capillary gel electrophoresis. To this end, 1 µL aliquots of digested 

and desalted samples were denatured in 10 µL hi-di formamide and spiked with 

GeneScan 500 ROX (ThermoScientific, UK) size standards. Samples were 

denatured at 94 °C for 5 minutes and cooled on ice prior to analysis on the ABI 

3730 PRISM capillary DNA analyser (Applied Biosystems), using a denaturing 

polymer at injection times of 10 and 20 seconds and a 2kV injection voltage.  

2.16 Community diversity and composition. 

The electrophenograms generated were analysed using Genemapper v.4 

(ThermoScientific, UK) to determine fragment sizes of T-RFs, relative to the ROX 

internal standards. To reduce noise, only peaks with a height greater than 50 

fluorescent units were analysed, whereas peaks corresponding to T-RFs smaller 

than 40 nucleotides (nt) were discarded. Relative abundances of T-RFs were 

assessed by peak areas and the profiles were aligned using T-align (Smith et al., 

2005b), a web-based alignment tool that expresses values as a proportion of the 
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total peak area, with a confidence interval of 0.5 nt. Any T-RF with a peak area 

less than 0.5% of the total peak area were excluded from analysis to eliminate 

noise. The software package PRIMER 6 (v6.1.13) was used to analyse the 

aligned T-RF profiles. Data were square-root transformed and Bray-Curtis 

similarity matrices were generated to allow similarity measures of the bacterial 

community structure. Metrics to assess diversity of microbial profiles were based 

on species richness (i.e. the number of T-RFs per sample) and the Shannon 

index. Samples were expressed as relative abundance, as discussed in 

Blackwood et al., 2007. To evaluate similarity between samples, non-parametric 

multi-dimensional scaling (nMDS) was used. Kruskal stress values (e; shown in 

the MDS plots) are indicative of how well the data are represented by this analysis 

with e ≤ 0.10 being a good fit, 0.20 > e > 0.10 urging caution and verify separation 

by alternative cluster analysis, and e ≥ 0.2 being a poor fit. With e stress values 

exceeding 0.1, differences were verified using hierarchical clustering analysis 

with SIMPROF evaluation. 

2.17 Analysis of dissimilarity in T-RFLP patterns between samples. 

Analysis of similarity (ANOSIM) was used to statistically evaluate the 

differences in microbial rhizosphere effects between CO2 conditions and over 3 

different time-points. The microbial rhizosphere effect was estimated by the 

difference in T-RFLP pattern between root plus rhizosphere samples and bulk 

soil samples. ANOSIM uses Bray-Curtis similarity measures to calculate a global 

R value, which indicates the difference between data groups (0 = no difference 

and 1 = totally different); the P value indicates if R is statistically significant. For 

each time-point, dissimilarity percentages between samples were calculated 

using SIMPER analysis, which uses Bray-Curtis distances to generate 

quantitative measures of similarity. This analysis also provided information on 

which T-RFs were most responsible for contributing to this dissimilarity, to a 

threshold set at an arbitrarily level of 60%. 

 

 

 

 



42 
 

 

 



  

43 
 

Chapter 3: Mechanisms of glacial-to-future atmospheric 

CO2 effects on plant immunity (adapted from Williams et al., 2018)* 

3.1 Abstract 

Impacts of rising atmospheric CO2 concentrations on plant disease have received 

much attention recently. Nonetheless, evidence regarding the direct mechanisms 

by which CO2 shapes plant immunity remains fragmented and controversial. 

Furthermore, the impact of sub-ambient CO2 concentrations, which plants have 

experienced consistently over the past 800,000 years, has been largely 

overlooked. Using a combination of gene expression analysis, phenotypic 

characterisation of mutants and mass spectrometry-based metabolic profiling, I 

investigated development-independent effects of sub-ambient CO2 (saCO2) and 

elevated CO2 (eCO2) on Arabidopsis immunity to two different pathogens. 

Resistance to the necrotrophic fungus Plectosphaerella cucumerina (Pc) was 

repressed at saCO2 and enhanced at eCO2. This CO2-dependent resistance was 

associated with priming of jasmonic acid (JA)-dependent gene expression and 

required intact JA biosynthesis and signalling. Resistance to the biotrophic 

oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO2 and 

saCO2. Although eCO2 primed salicylic acid (SA)-dependent gene expression, 

mutations affecting SA signalling only partially suppressed Hpa resistance at 

eCO2, suggesting additional mechanisms are involved. Induced production of 

intracellular reactive oxygen species (ROS) at saCO2 corresponded to a loss of 

resistance in glycolate oxidase (GOX) mutants and increased transcription of the 

peroxisomal catalase gene CAT2, unveiling a mechanism by which 

photorespiration-derived ROS determined Hpa resistance at saCO2. Separating 

indirect developmental impacts from direct immunological effects, facilitated the 

discovery of distinct mechanisms by which CO2 shapes plant immunity. Their 

evolutionary significance is discussed. 

 

 

 

*Williams, Alex, Pierre Pétriacq, Roland E. Schwarzenbacher, David J. Beerling, and Jurriaan Ton, 2018. 

“Mechanisms of Glacial-to-Future Atmospheric CO2 Effects on Plant Immunity.”  

New Phytologist 218 (2): 752–61. doi:10.1111/nph.15018. 
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3.2 Introduction  

Past and future changes in atmospheric CO2 directly impact plant 

metabolism (Temme et al., 2015), with feedbacks on a wide range of 

processes, including resistance to pests and diseases (Strengbom and Reich, 

2006; Lake and Wade, 2009; Vaughan et al., 2014; Váry et al., 2015; Zhang et 

al., 2015; Mhamdi and Noctor, 2016). Although numerous effects of elevated 

CO2 (eCO2) on disease resistance have been reported, there is little 

consistency between studies. While some studies report decreased disease 

resistance at eCO2 (Lake and Wade, 2009; Vaughan et al., 2014; Váry et al., 

2015), others report no, or stimulatory effects, of eCO2 on disease resistance 

(Strengbom and Reich, 2006; Riikonen et al., 2008; Pugliese et al., 2012; 

Zhang et al., 2015; Mhamdi and Noctor, 2016). These discrepancies may arise 

from differences in the eCO2 concentrations studied, the duration of eCO2 

exposure, the method of disease quantification, species-specific adaptations to 

CO2, or a combination of all these factors. Furthermore, biotrophic and 

necrotrophic pathogens are rarely compared within the same study, providing 

limited information on how distinct components of the plant immune system 

respond to eCO2.  

To date, various mechanisms by which CO2 alters disease resistance 

have been proposed, ranging from changes in leaf nutrition (Strengbom and 

Reich, 2006), stomatal density (Lake and Wade, 2009) and pathogen-specific 

adaptations to altered host metabolism (Váry et al., 2015). Recent evidence 

suggests a mechanism whereby eCO2 primes pathogen-induced production of 

defence regulatory hormones, such as salicylic acid (SA) and jasmonic acid 

(JA; Zhang et al., 2015; Mhamdi and Noctor, 2016), which control defences 

against biotrophic and necrotrophic pathogens, respectively (Thomma et al., 

1998). Surprisingly, however, most studies do not take into account the 

stimulatory effects of CO2 on plant development (Temme et al., 2015), despite 

evidence that the developmental stage can have a profound impact on SA-

dependent and ethylene-dependent defences (Kus et al., 2002; Shibata et al., 

2010). 
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Knowledge on the effects of saCO2 on plant immunity is limited and may 

offer valuable insights about the evolution of plant defence metabolism at 

typically low atmospheric CO2 (below 200 ppm) during glacial periods over the 

past 800,000 years (Temme et al., 2015; Galbraith and Eggleston, 2017). While 

stomatal immunity has been implicated in defence at saCO2 (Zhou et al., 2017), 

the contribution of saCO2 towards post-invasive plant defence has not yet been 

established. At saCO2, the net photosynthetic rate decreases as a 

consequence of photorespiration, along with increased stomatal conductance, 

increased foliar nitrogen and lower water use efficiency (Temme et al., 2013; 

Li et al., 2014c). Although it remains unclear whether these physiological 

changes influence disease resistance, a transcriptome study at saCO2 

revealed enhanced activity of peroxisomal processes, which correlated with 

changes in expression of defence-related genes (Li et al., 2014c). For instance, 

peroxisomal metabolism was stimulated at saCO2 (Li et al., 2014c), which can 

boost defence through changes in cellular redox homeostasis (Sørhagen et al., 

2013). The photorespiratory machinery is a major source of intracellular 

hydrogen peroxide (H2O2), which plays an important signalling role in plant 

defence (Chaouch et al., 2010). This is further highlighted by the CATALASE-

deficient cat2 mutant, which is impaired in scavenging of peroxisomal H2O2 and 

expresses a constitutive defence phenotype (Chaouch et al., 2010). Therefore, 

it is plausible that saCO2 influences plant resistance, but the extent, specificity, 

and regulatory mechanisms remain unknown.  

In this study, the direct impacts of saCO2 (200 ppm), aCO2 (400 ppm) 

and eCO2 (1200 ppm) on plant immunity were examined, by eliminating 

confounding effects of CO2 on plant development. Using a plant development 

correction, we show that CO2 has differential impacts on resistance against the 

biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) and the 

necrotrophic fungus Plectosphaerella cucumerina (Pc). Subsequent molecular 

and biochemical characterization of CO2-dependent resistance phenotypes 

uncovered differing mechanisms by which CO2 shapes the plant immune 

system. Apart from priming effects of eCO2 on hormone-dependent defences, 

we provide evidence for a critical role of photorespiration in plant defence at 

saCO2 and discuss possible evolutionary implications.  
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3.3 Results  

Plant development biases the assessment of CO2-dependent disease resistance.  

To determine the impacts of plant development on CO2-dependent resistance, 

the growth response of Arabidopsis to CO2 in different atmospheric CO2 

concentrations, ranging from 200 ppm (saCO2), 400 ppm (ambient CO2; aCO2) 

to 1200 ppm (eCO2), were characterised. Using the number of leaves as a 

marker for developmental stage (Boyes et al., 2001), both 3- and 4.5-week old 

plants showed enhanced development at eCO2, and reduced development at 

saCO2, compared to aCO2 (Fig. 3.1 a). To determine whether these 

developmental effects influence disease resistance, resistance phenotypes 
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Figure 3.1 Plant development correction (DC) separates immunological effects of CO
2
 from indirect developmental 

effects on Arabidopsis resistance. a. Effect of developmental correction (DC) on average leaf numbers in Arabidopsis 

(Col-0) at sub-ambient (saCO
2
; 200 ppm), ambient (aCO

2
; 400 ppm) and elevated CO

2
 (eCO

2
; 1200 ppm). DC for saCO

2
 

was performed by planting seeds 7 days earlier than at aCO
2
; DC for eCO

2
 was achieved by planting seeds 3 days later 

than at aCO
2
. Upper panel: leaf numbers of 3- (left) and 4.5- (right) week old plants without DC. Lower panel: leaf numbers 

after DC. Data represent mean leaf numbers (± SD, n = 10-18) and are representative of two independent experiments. 

n.s.: not significant. b. Effect of DC on basal resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa; left) 

and necrotrophic Plectosphaerella cucumerina (Pc; right). Shown are relative numbers of leaves (n > 50) in Hpa 

colonization classes of increasing severity (I–IV) at 6 days post inoculation (dpi), or average lesion diameters (± SD; n = 

8) by Pc at 13 dpi. Different letters indicate statistically significant differences (Fisher’s exact test; ANOVA with Tukey 

HSD post hoc analysis; P < 0.05). Pathogenicity assays with Col-0 were repeated several times with comparable 

outcomes. 
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against biotrophic Hpa and necrotrophic Pc, with and without correction for 

plant developmental stage, were compared. This development correction (DC) 

was achieved by delaying sowing at eCO2 by 3 days in comparison to plants at 

aCO2, while starting plant cultivation at saCO2 7 days earlier compared to 

plants at aCO2 (Fig. S3.1; see Chapter 2). DC resulted in equal numbers of 

leaves at all CO2 regimes at the time of pathogen inoculation (8-leaf stage for 

Hpa and 18-leaf stage for Pc; Fig. 3.1 a, bottom panel). Without DC, 3-week 

old plants showed increasing levels of Hpa resistance at rising CO2 

concentrations (Fig. 3.1 b, top left), whereas 4.5-week old plants showed 

enhanced Pc resistance at both eCO2 and saCO2 (Fig. 3.1 b). This pattern of 

CO2-dependent resistance phenotypes changed upon DC application. While 8-

leaf plants showed enhanced Hpa resistance at both saCO2 and eCO2 (Fig. 3.1 

b), 18-leaf plants showed increasing levels of Pc resistance with rising CO2 

concentrations (Fig. 3.1 b). To confirm the development-independent effects of 

CO2 on disease resistance, levels of Hpa and Pc colonization were quantified 

in an independent DC experiment by qPCR analysis of pathogen-specific DNA 

(Fig. S3.2). The impact of DC on resistance phenotypes at saCO2 and eCO2 

indicates that differences in plant development bias assessment of CO2-

dependent disease resistance against both biotrophic and necrotrophic 

pathogens. Accordingly, all subsequent experiments were conducted after 

application of DC. 

 

Development-independent effects of eCO2 on SA- and JA-dependent 

resistance.  

SA and JA play important roles in plant defence against biotrophic and 

necrotrophic pathogens, respectively (Thomma et al., 1998). To examine the 

direct (development-independent) effects of eCO2 on defence signalling 

hormones, ultra-performance liquid chromatography (UPLC) coupled to tandem 

mass spectrometry, was used to quantify SA and JA levels (Chapter 2). In 

comparison to plants at aCO2, plants at eCO2 showed a 69.3% and 69.4% 

increase in accumulation of SA and JA, respectively (Fig. 3.2 a). While increases 

in hormone levels were not sufficient to induce transcription of the SA-inducible 

marker gene PR1 and the JA-inducible marker gene VSP2 directly (Fig. 3.2 b), it  
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was sufficient to prime augmented induction of PR1 and VSP2 after exogenous 

application of 0.5 mM SA and 0.1 mM JA, respectively (Fig. 3.2 b). To determine 

the contribution of priming of SA-dependent defence to eCO2-induced resistance 

against Hpa, resistance phenotypes of Arabidopsis mutants impaired in SA 

production (sid2-1) or response (npr1-1) were analysed. Although less 

pronounced than in wild-type plants (Col-0), both sid2-1 and npr1-1 expressed 

statistically significant levels of eCO2-induced resistance against Hpa (Fig. 3.2 c). 

Hence, priming of SA-dependent defence is not solely responsible for eCO2-

induced resistance against Hpa. To determine the contribution of priming of JA-

dependent defence to eCO2-induced resistance against Pc, resistance 

phenotypes of mutants in JA production (aos1-1) or sensitivity (jar1-1) were 
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Fig. 3.2 Development-independent effects of eCO
2
 on SA- and 

JA-dependent defence. a. Accumulation of salicylic- (SA) and 

jasmonic- (JA) acids in plants (Col-0) of similar developmental 

stage (8-leaf) at aCO
2
 (400 ppm) and eCO

2
 (1200 ppm). Shown 

are box plots of replicated metabolite quantifications (n = 5; 

means are indicated by X, outliers outside the 2.5 - 97.5 

percentile interval are indicated by O). b. Responsiveness of 

SA- and JA-inducible genes (PR1 and VSP2, respectively) in 8-

leaf stage plants (Col-0) at aCO
2
 and eCO

2
. Shown are box 

plots of relative transcript levels at 8 and 24 hours after 

treatment (n = 3; X indicates means). c. Effects of eCO
2
 on Hpa 

resistance in Col-0, the SA synthesis mutant sid2-1 and the SA 

response mutant npr1-1 at the 8-leaf stage. Shown are relative 

numbers of leaves (n > 50) in Hpa colonization classes of 

increasing severity (I – IV) at 6 dpi. d. Effects of eCO
2
 on Pc 

resistance in Col-0, the JA production mutant aos1-1 and the 

jar1-1 response mutant at the 18-leaf stage. Shown are average 

lesion diameters per plant (± SD; n = 8) of Pc at 13 dpi. Asterisks 

- (a), Welch’s t-test; (c), Fisher’s exact test - or different letters 

– (b) & (d), ANOVA with Tukey HSD post hoc analysis - indicate 

significant differences between conditions (P < 0.05). 

Pathogenicity assays with sid2-1, npr1-1, aos1-1 and jar1-1 

were repeated once with similar results. 
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analysed. In contrast to Col-0, both aos1-1 and jar1-1 failed to express elevated 

Pc resistance at eCO2 (Fig. 3.2 d), indicating that priming of JA-inducible defence 

is critically important for eCO2-induced resistance against Pc. 

 

Development-independent resistance at saCO2 is dependent on 

photorespiration-derived ROS. 

Basal resistance against Hpa was enhanced at both eCO2 and saCO2 (Fig. 3.1 

c). This non-linear relationship between CO2 and Hpa resistance suggests 

involvement of different defence mechanisms at eCO2 and saCO2. Unlike eCO2 

(Fig. 3.2 b), saCO2 did not alter basal and SA-induced PR1 gene expression (Fig. 

S3.3 a). Moreover, despite the enhanced disease susceptibility phenotypes of the 

SA signalling mutants sid2-1 and nrp1-1 in comparison to the wild-type, both 

mutants displayed a statistically significant increase in Hpa resistance at saCO2 

compared to the same mutant background at aCO2 (Fig. S3.3 b). Hence, the SA-

dependent defence pathway does not have a critical contribution to saCO2-

induced resistance against Hpa. To search for alternative mechanisms, 

untargeted metabolite profiling of mock- and Hpa-inoculated plants at 24 and 72 

hours post inoculation (hpi), was performed using UPLC-Q-TOF mass 

spectrometry (Pétriacq et al., 2016b). Unsupervised principal component analysis 

displayed global metabolic responses, which were affected by both Hpa and CO2 

concentration (Fig. S3.4). To identify ion markers of saCO2-induced resistance, a 

stringent pipeline was applied (Chapter 2; Fig. 2.2) which selected for ions that 

were significantly influenced by CO2, Hpa, or the interaction thereof (Fig. S3.5). 

Subsequent hierarchical clustering identified ion clusters that were either induced 

by saCO2, or primed by saCO2 for augmented induction after subsequent Hpa 

inoculation (Fig. 3.3). Putative ion marker identification by accurate mass/charge 

(m/z) detection revealed enrichment of metabolites involved in cellular redox 

regulation (nicotinamide adenine dinucleotide – NAD - metabolism, secondary 

antioxidant metabolites) and/or defence (glucosinolates, flavonoids, coumarins, 

alkaloids; Table S3.1). The cluster containing saCO2-primed markers also 

included traces of oxidised amino acids (Stadtman and Levine, 2003). Together, 

these metabolic profiles suggest that plants at saCO2 are exposed to 
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2
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mode. Normalised ion intensities were filtered for statistically significant differences between treatments, using ANOVA 

(P < 0.01 + Benjamini-Hochberg false discovery rate correction), followed by 2-way ANOVA (P < 0.01) to select for ion 

markers that are significantly influenced by CO
2
, Hpa, or the interaction thereof, at 24 and 72 hpi. Selected markers 
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enhanced oxidative stress, potentially due to increased production of reactive 

oxygen species (ROS).  

As ROS is involved in defence signalling in plants (Torres et al., 2002), we 

next investigated a possible role for ROS in saCO2-induced resistance. To this 

end, mock- and Hpa-inoculated leaves were stained at 48 hpi with 3,3'-

diaminobenzidine (DAB), which predominantly marks extracellular ROS 

production, since most DAB substrate is immediately oxidized after leaf infiltration 

by apoplastic H2O2 and peroxidases (Daudi and O’Brien, 2012; Chapter 2). 

Although Hpa-inoculated leaves showed increased DAB staining intensity, there 

were differences observed in extracellular ROS intensities between saCO2 and 

aCO2 conditions (Fig. S3.6 a), which was further illustrated upon DAB 

quantification (Fig. S3.6 b). Furthermore, the respiratory burst oxidase (RBOH) 

double mutant rbohD/F, which is impaired in stress-induced production of 

extracellular ROS (Torres et al., 2002), was unaffected in saCO2-induced 

resistance (Fig. S3.6 c). Hence, extracellular ROS do not play a role in saCO2-

induced resistance. Subsequently, accumulation of intracellular ROS was tested 

by  staining mock- and Hpa-inoculated leaves with 2',7'-dichlorofluorescein 

diacetate (DCFH-DA), which is hydrolysed by intracellular esterases to generate 

DCF that reacts with intracellular ROS, generating a fluorescent signal (Sandalio 

et al., 2008). Although saCO2 did not increase intracellular ROS accumulation in 

mock-inoculated plants, Hpa-inoculated plants at saCO2 did show augmented 

ROS accumulation in comparison to Hpa-inoculated plants at aCO2 (Fig. 3.4 a). 

Thus, saCO2 primes pathogen-induced accumulation of intracellular ROS. 

A major source of intracellular ROS is photorespiration, which involves 

production of hydrogen peroxide from oxidation of glycolate by glycolate oxidases 

(GOX; Chaouch et al., 2010; Rojas et al., 2012). Loss-of-function mutations in 

photorespiration causes dramatic growth reduction or lethality at aCO2 conditions 

(Timm and Bauwe, 2013), making them unsuitable for evaluation of resistance 

phenotypes at aCO2 and saCO2. Therefore, single ‘knock-down’ mutants with T-

DNA insertions in the promotors of GOX or HAOX (gox1-2 and haox1-2, Fig. S3.7 

a), which have previously been implicated in Arabidopsis resistance (Rojas et al., 

2012), were selected. Despite the fact that these mutations reduced GOX1 and 
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HAOX1 expression by 42.6% and 75.4%, respectively (Fig. S3.7 b), gox1-2 and 

haox1-2 showed wild-type growth phenotypes at saCO2 (Fig. S3.7 c). However, 

unlike wild-type plants (Col-0), both mutants failed to express saCO2-induced 

resistance against Hpa (Fig. 3.4 b), indicating a critical role for ROS-generating 

GOX function. 

In un-stressed Arabidopsis plants, GOX-derived ROS are largely 

scavenged by the peroxisomal catalase enzyme CAT2 (Chaouch et al., 2010). 

To test whether the augmentation in Hpa-induced ROS production at saCO2 (Fig. 

3.4 a) is related to changes in CAT2 expression, CAT2 transcript accumulation 
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Figure 3.4 Role of photorespiration in saCO
2
-induced 

resistance against Hpa. a. Quantification of intracellular 

H
2
O

2
 by DCFH-DA staining in plants (Col-0) of similar 

developmental stage (8-leaf) at saCO
2
 (200 ppm) and 

aCO
2
 (400 ppm). Shown are mean values of the 

fluorescent proportion of the leaf area (± SD, n = 8-10) 

at 48 hpi with water mock or Hpa. Insets show 

representative staining intensities. b. Quantification of 

Hpa resistance at saCO
2
 and aCO

2
 in wild-type plants 

(Col-0) and glycolate oxidase knock-down mutants 

gox1-2 and haox1-2 at the 8-leaf stage. Shown are 

relative numbers of leaves (n > 50) in Hpa colonization 

classes of increasing severity (I–IV) at 7 dpi. The 

experiment was repeated with comparable results. c. 

Impacts of Hpa inoculation on CAT2 gene expression 

in 3-week old Col-0 at aCO
2
 (8-leaf stage). Shown are 

mean values of relative transcript abundance (± SD, n 

= 5) at different times post water or Hpa inoculation. 

Asterisks indicate statistically significant differences 

(Welch’s t-test; Fisher’s exact test; P < 0.05). The 

experiment was repeated at both saCO
2
 and aCO

2
, 

yielding comparable results (Fig. S3.8). d. Model 

explaining the role of photorespiration in priming of 

ROS-dependent defence at saCO
2
. Enhanced 

photorespiratory activity at saCO
2
 causes increased 

production of H
2
O

2
 by glycolate oxidase (GOX), which 

is scavenged by CAT2 and antioxidant metabolites in 

healthy plants. Hpa infection represses transcription of 

the CAT2 gene, causing augmented accumulation of 

GOX-derived H
2
O

2
 at saCO

2
. Impacts of 

photorespiration on intracellular H
2
O

2
 are indicated by 

black arrows. Impacts of Hpa on H
2
O

2
-dependent 

defence are indicated by red arrows. 
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was profiled at different time-points after mock and Hpa inoculation. At both 48 

and 72 hpi, Hpa-inoculated plants showed a statistically significant reduction in 

CAT2 expression (Fig. 3.4 c), which was apparent at both aCO2 and saCO2 

conditions (Fig. S3.8). Since saCO2 boosts photorespiration (Li et al., 2014c), 

these results indicate that Hpa-induced CAT2 repression triggers augmented 

accumulation of GOX-derived ROS during infection, which in turn results in 

enhanced resistance at saCO2 (Fig. 3.4 c).  

 

3.4 Discussion  

By eliminating bias from the indirect developmental effects of CO2 on 

disease resistance, we have identified distinct mechanisms by which CO2 shapes 

plant immunity. There is ample evidence that plant development influences 

immunity through age-related resistance (ARR; Kus et al., 2002). ARR in 

Arabidopsis is effective against (hemi)biotrophic pathogens, including 

Pseudomonas syringae pv. tomato (Pst) and Hpa (Kus et al., 2002; McDowell et 

al., 2005). When experiments were conducted without development correction 

(DC), Hpa resistance intensified with increasing CO2 concentrations (Fig. 3.1). 

DC changed this pattern, revealing that plants of a similar developmental stage 

expressed higher levels of Hpa resistance at both eCO2 and saCO2. These 

results suggest that, in the absence of DC, the resistance-enhancing effect of 

saCO2 against Hpa is masked by low ARR of under-developed plants. 

Interestingly, DC had an opposite effect on CO2-dependent resistance against 

Pc. Without DC, plants showed enhanced resistance at both saCO2 and eCO2, 

whereas plants of a similar developmental stage (i.e. after DC) displayed 

increasing levels of Pc resistance with rising CO2 concentrations. Thus, without 

DC, assessment of CO2-dependent resistance against Pc is biased by defence 

mechanisms that are more active at earlier developmental stages. Glucosinolates 

are known to accumulate to higher levels in younger plants (Petersen et al., 2002; 

Brown et al., 2003) and are effective against Pc (Frerigmann et al., 2016). 

Alternatively, age-dependent regulation of the JA response could play a role, 

which is primed in younger plants due to miR156-dependent repression of JAZ6-

stabilizing SPL protein (Mao et al., 2017). Taken together, the results suggest 
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that DC is an effective method to eliminate bias from developmental effects of 

CO2 on disease resistance, enabling a more accurate assessment of 

mechanisms by which CO2 shapes plant immunity.  

Previous studies have reported that eCO2 can enhance, or prime, 

phytohormone-dependent plant defence (Zhang et al., 2015; Mhamdi and Noctor, 

2016). However, none of these studies applied DC to eliminate bias from ARR. 

While some studies transferred plants of similar developmental age from aCO2 

to eCO2 before pathogen inoculation (Zhang et al., 2015), I opted against this 

method, given it can cause abrupt, and potentially confounding, changes in 

carbon flux. Furthermore, transferring plants from aCO2 to eCO2 before 

pathogen challenge may neglect the full extent by which eCO2 affects defence 

hormone production (Mhamdi and Noctor, 2016). Using DC, it was confirmed 

that eCO2 enhances basal production of SA and JA (Fig. 3.2 a), causing priming 

of JA- and SA-dependent gene expression, respectively (Fig. 3.2 b). The JA 

signalling mutants aos1-1 and jar1-1 were impaired in expression of eCO2-

induced resistance against Pc (Fig. 3.2 d), indicating a critical contribution of JA-

dependent defence signalling. Conversely, the SA signalling mutants sid2-1 and 

npr1-1 were only partially affected in eCO2-induced resistance against Hpa (Fig. 

3.2 c), indicating that priming of SA-dependent defence is not solely responsible 

for Hpa resistance at eCO2. This is consistent with previous conclusions 

regarding eCO2-induced resistance against hemi-biotrophic Pseudomonas 

syringae pv. tomato (Pst; Zhang et al., 2015; Mhamdi and Noctor, 2016). 

Furthermore, Mhamdi and Noctor reported that eCO2-induced resistance to Pst 

is associated with changes in primary metabolism and increased pools of total 

and oxidised glutathione, while Arabidopsis mutants in glutathione regulation and 

NADPH-generating enzymes were affected in Pst resistance at eCO2 (Mhamdi 

and Noctor, 2016). Although it is unclear whether these mutants were similarly 

affected in basal resistance at aCO2, the study concluded that oxidative pathways 

controlling primary metabolism played a role in eCO2-induced resistance. Since 

carbohydrate metabolism and signalling can boost SA-dependent and SA-

independent defence (Tauzin and Giardina, 2014) by augmenting redox 

signalling (Morkunas and Ratajczak, 2014), it is tempting to speculate that eCO2-
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induced resistance in Hpa resistance is a consequence of changes in 

carbohydrate metabolism. 

So far, the effects of saCO2 on plant disease resistance have received 

limited attention. The DC experiments presented in this chapter revealed that 

Arabidopsis expressed enhanced Hpa resistance at saCO2 (Fig. 3.1 b). 

Untargeted UPLC-Q-TOF analysis revealed that this saCO2-induced resistance 

was associated with ion clusters displaying constitutively enhanced accumulation 

and/or primed accumulation after subsequent Hpa infection at saCO2 (Fig. 3.3). 

As these ion clusters were enriched with putative metabolites involved in redox 

regulation, the importance of ROS in saCO2-induced resistance was explored. 

While a role for extracellular ROS was excluded (Fig. S3.6), plants at saCO2 

showed augmented production of intracellular ROS after Hpa inoculation (Fig. 3.4 

a). Glycolate oxidation by GOX is a major source of intracellular H2O2 (Chaouch 

et al., 2010), which likely increases at saCO2 due to enhanced photorespiration 

(Temme et al., 2013; Li et al., 2014c). Moreover, GOX-derived ROS have been 

linked to resistance against non-host pathogens in both Arabidopsis and 

Nicotiana benthamiana (Rojas et al., 2012). Indeed, knock-down mutants with 

reduced transcription of two separate GOX genes failed to express enhanced 

Hpa resistance at saCO2, indicating a crucial role for photorespiratory ROS. The 

peroxisomal catalase enzyme, CAT2, scavenges GOX-derived H2O2 to mitigate 

oxidative damage during photorespiration (Chaouch et al., 2010). Interestingly, 

transcriptional profiling of the CAT2 gene revealed that Arabidopsis reduced 

CAT2 expression after Hpa inoculation (Fig. 3.4 c; Fig. S3.8). Since CAT2 

suppresses plant defence (Polidoros et al., 2001; Chaouch et al., 2010), this 

pathogen-induced CAT2 repression likely reflects an innate immune response to 

generate defence-inducing ROS during infection. In this context, I propose that 

stimulation of photorespiration-related GOX activity at saCO2 primes pathogen-

induced accumulation of intracellular ROS. Subsequent repression of CAT2 

expression following Hpa attack results in augmented accumulation of 

intracellular ROS, which mediates an augmented SA-independent defence 

response in comparison to aCO2-exposed plants (Fig. 3.4 d).  
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It is plausible that photorespiration-derived ROS were key to survival when 

plants adapted to glacial periods with low atmospheric CO2. Reduced growth and 

plant fecundity at glacial CO2 conditions required longer life cycles to maintain 

reproductive fitness (Ward and Kelly, 2004). Additionally, reduced investment in 

foliar defence compounds at saCO2 would have consequently put plants at a 

higher risk of pathogen attack (Quirk et al., 2013), creating selective pressure for 

a primed immune system. Potentially, C3 plants benefitted from increased levels 

of photorespiration-derived ROS to prime their immune system. Along with 

limiting 2-PG toxicity, this hypothesis may explain why certain C4 plants (e.g. 

maize) have retained levels of photorespiration and GOX activity (Peterhansel 

and Maurino, 2011). This work has uncovered a specific link between saCO2, 

GOX-derived ROS and enhanced immunity. This evidence supports the notion 

that plants have utilised photorespiratory defence signalling over glacial periods 

to maintain elevated levels of adaptive broad-spectrum disease resistance. This 

may be especially pertinent to Arabidopsis which evolved under the CO2 limited 

atmosphere of the Miocene epoch (Beilstein et al., 2010). In this context, future 

initiatives to replace C3 metabolism with C4 metabolism in major food crops may 

require careful consideration of the contribution of photorespiration to plant 

defence. 
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3.5 Supporting figures

Figure S3.1 Effects of CO
2 

on plant development. Data 

represent average leaf numbers (± SE; n = 8) plotted against 

time (days) at ambient CO
2
 (aCO

2
; 400 ppm; dashed line), 

subambient CO
2
 (saCO

2
; 200 ppm; dotted line) and elevated 

CO
2
 (eCO

2
; 1200 ppm; straight line). Inserts show typical 

rosette sizes of 4.5-week old plants. Red and blue lines 

illustrate differences in absolute age at the 8- and 18-leaf 

stage, respectively. Shown are results from a representative 

experiment that was repeated twice.  

saCO
2 
 

aCO
2 
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2 
 

3 d 7 d 
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18 
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Figure S3.2 qPCR-based quantification of pathogen 

biomass to confirm the development-independent effects of 

CO
2
 on resistance against Hpa and Pc. a. Relative 

quantification of Hpa DNA was based on the Hpa actin gene 

(ID: 807716). b. Relative quantification of Pc DNA was based 

on the Pc β-tubulin gene. Data represent relative DNA 

quantities normalized to Arabidopsis ACT2 (At3g18780; ± 

SD, n = 4). Letters indicate statistical differences (ANOVA + 

Tukey post-hoc analysis; P < 0.05). For details about DC and 

timing of pathogen inoculation, see legend to Fig. 1.  
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Fig. S3.3 SA signalling in saCO
2
-

induced resistance against Hpa. 

a. Levels of SA-inducible PR1 

gene expression in 8-leaf Col-0 at 

saCO
2
 (200 ppm) and aCO

2
 (400 

ppm). Shown are box plots of 

relative transcript values (n = 3; X 

indicates means) at 24 hours 

after treatment. b. Quantification 

of Hpa resistance at saCO
2
 and 

aCO
2
 in Col-0, the SA insensitive 

npr1-1 mutant, and the SA 

production mutant sid2-1 at the 8-

leaf stage. Shown are relative 

numbers of leaves (n > 50) in Hpa 

colonization classes of 

increasing severity (I–IV) at 7 dpi. 

Letters - (a) ANOVA with Tukey 

HSD post hoc analysis - or 

asterisks - (b) Fisher’s exact test 

- indicate statistically significant 

differences between conditions 

(P < 0.05). The pathogenicity 

assays with sid2-1 and npr1-1 

were repeated with similar 

results. 
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Figure S3.4 Global metabolic signatures of mock- and Hpa-inoculated Arabidopsis (Col-0) at the 8-leaf growth stage 

at saCO
2
 (200 ppm) and aCO

2
 (400 ppm). Shown are principal component analysis (PCA) plots of negative (ESI

-
; 4497 

ions) and positive (ESI
+
; 5683 ions) ionizations, obtained by UPLC-Q-TOF analysis of methanol extracts from leaf tissue 

at 24 and 72 hpi. Samples from plants grown at saCO
2
 are indicated by circles; samples from plants at aCO

2
 are 

indicated by squares. Black/blue symbols indicate mock-inoculated plants; grey/ light blue symbols indicate samples 

from Hpa-inoculated plants.  
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Figure S3.5 Selection of ions that are induced or primed for Hpa-induced 

accumulation by saCO
2
. a. Hierarchical cluster analysis (Pearson’s correlation) of 

ions that are significantly influenced by CO
2
, Hpa or the interaction CO

2
 x Hpa. 

Highlighted are ion clusters showing direct induction (saCO
2
 - induced) or priming 

for Hpa-induced accumulation by saCO
2
 (saCO

2 
- primed). Values shown are 

normalised for the mean and standard deviation of the row and column. b. Numbers 

of statistically significant ions by 2-way ANOVA of the selection of 266 ions.  
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-0.6 -0.5 -0.7 -1.0 -0.4 -0.6 1.3 1.7 0.8 -0.4 0.4 -0.5

-0.8 -0.8 -0.3 -1.0 -0.5 -0.7 1.4 1.1 1.3 0.1 -0.4 -0.2

-0.4 -0.7 -0.3 -1.1 -0.6 -0.5 1.9 1.0 0.9 -0.1 -0.4 -0.2

-0.3 -0.2 -0.4 -1.1 -0.7 -0.5 1.4 1.2 1.3 -0.3 -0.4 -0.7

-0.2 -0.3 -0.6 -1.0 -0.6 -0.4 1.5 1.5 1.1 -0.3 -0.6 -0.7

-0.4 -0.4 -0.5 -1.0 -0.6 -0.4 1.3 1.7 1.0 -0.4 -0.6 -0.3

-0.7 -0.7 -0.4 -0.5 -1.3 -0.4 1.2 1.6 0.8 -0.4 -0.1 0.4

-0.8 -0.8 -0.3 -0.8 -1.1 -0.4 1.4 -0.3 1.4 -0.1 0.6 0.7

0.0 -0.8 -0.4 -0.4 -1.4 -0.8 1.3 0.2 1.5 0.4 -0.6 0.5

0.1 -0.9 -0.6 -0.5 -1.0 -2.0 0.4 0.9 1.2 0.9 0.6 0.4

-1.1 -0.4 -0.7 -1.3 -1.2 -0.5 0.7 0.9 1.1 0.9 -0.1 1.3

-0.7 -1.2 -0.5 -1.2 -0.9 -0.6 1.3 1.2 0.5 0.7 0.5 0.6

-0.9 -0.3 -0.6 -1.6 -0.7 -0.9 1.3 1.0 0.9 0.5 0.2 0.6

-1.1 -0.4 -0.8 -0.9 -1.2 -0.7 1.1 1.5 0.5 0.5 0.1 0.8

-0.8 -0.6 -0.9 -1.1 -0.8 -0.8 0.8 1.3 0.7 0.9 1.1 -0.3

-1.0 -0.5 -1.0 -1.1 -0.9 -0.9 0.4 1.4 0.8 1.4 0.5 0.3

-0.6 -0.7 -1.1 -1.2 -0.9 -0.6 0.5 1.2 1.0 0.7 1.0 0.3

-0.7 -0.6 -0.7 -1.3 -1.1 -0.9 1.1 1.0 0.8 0.6 0.9 0.3

-0.8 -0.7 -0.7 -1.3 -1.0 -0.8 0.7 1.3 1.0 0.6 0.6 0.5

-0.9 -0.7 -0.6 -1.4 -1.1 -0.7 1.0 1.3 0.7 0.9 0.5 0.5

-0.8 -0.6 -0.9 -1.3 -1.0 -0.7 1.1 1.3 0.7 0.7 0.4 0.7

-0.8 -0.4 -1.1 -1.3 -1.0 -0.5 0.8 1.3 0.8 0.6 0.5 0.7

-0.7 -0.9 -0.8 -1.1 -0.8 -0.7 0.0 0.5 1.2 0.8 0.9 1.5

-0.8 -0.7 -0.6 -1.3 -1.1 -0.8 0.7 0.7 1.0 0.8 1.1 0.8

-0.8 -0.6 -0.7 -1.4 -1.2 -0.8 0.7 0.7 0.9 1.1 1.0 0.7

-0.8 -0.7 -0.6 -1.3 -1.1 -0.7 1.4 0.4 0.9 0.5 1.1 0.4

-0.8 -0.6 -0.6 -1.3 -1.1 -0.7 0.9 0.4 1.0 0.6 1.3 0.6

-1.3 -0.8 -0.5 -1.3 -0.9 -0.7 0.9 0.5 0.8 0.8 0.9 1.3

-1.0 -0.4 -0.7 -1.1 -1.0 -1.0 0.7 0.5 0.6 0.2 1.7 1.3

0.9 0.2 -0.1 -1.2 -1.2 -1.3 -0.1 -0.5 -0.9 2.1 0.9 1.8

-0.7 -0.9 -1.0 -1.2 -0.6 -0.6 -0.1 0.5 0.0 1.5 1.7 1.5

-0.7 -0.9 -0.1 -1.0 -0.7 -0.6 -0.8 0.8 -0.2 2.2 1.7 0.5

-1.1 -0.4 -0.2 -1.4 -0.7 -0.4 -0.3 0.3 -0.4 2.3 1.6 0.9

-0.5 -0.3 -0.4 -0.8 -0.7 -0.6 -0.6 -0.4 -0.8 1.7 2.0 1.8

-0.8 -0.3 -0.4 -0.7 -1.2 -0.1 -0.7 0.1 -0.8 1.8 2.0 1.4

-0.8 -0.5 -0.3 -0.2 0.5 -0.8 -1.1 -0.8 -0.7 1.7 2.1 1.5

-0.4 -0.2 0.0 1.1 2.6 2.4 -1.2 -1.0 -1.0 -0.6 -0.9 0.2

1.4 2.1 -0.8 0.6 0.7 1.9 -1.0 -0.9 -0.9 -0.6 -0.9 -0.9

1.6 0.9 2.1 0.5 0.6 1.3 -1.0 -1.2 -1.1 -0.9 -1.0 -1.1

1.5 0.3 2.5 0.8 0.4 0.9 -1.1 -1.1 -0.9 -0.6 -0.9 -1.2

1.5 -0.6 2.1 1.1 1.2 1.4 -1.0 -0.9 -1.0 -0.8 -1.2 -0.9

1.3 1.9 1.5 -0.5 0.6 1.8 -1.1 -0.9 -1.0 -0.7 -1.1 -1.0

0.7 1.9 1.9 0.1 0.3 0.7 -0.9 -0.7 -1.0 -0.9 -1.1 -0.9

0.6 1.6 2.1 0.1 0.5 1.4 -1.2 -0.9 -1.0 -0.7 -0.8 -1.1

1.0 1.7 1.6 0.4 0.5 1.3 -1.1 -1.0 -1.0 -0.8 -1.1 -1.1

1.0 1.7 1.7 0.2 0.3 1.6 -1.2 -1.1 -0.8 -0.7 -1.1 -1.1

0.8 2.0 1.2 0.4 0.5 1.5 -1.0 -1.0 -1.0 -0.8 -1.0 -1.1

0.7 1.8 1.7 0.6 0.0 1.3 -1.1 -0.9 -1.0 -0.9 -1.1 -0.8

0.4 1.4 2.2 0.6 -0.2 1.1 -1.0 -0.7 -0.9 -0.7 -1.1 -0.9

3.2 1.2 1.4 0.2 0.1 1.0 -1.1 -1.1 -1.0 -0.6 -1.1 -1.0

2.0 2.0 1.5 -0.1 0.1 0.3 -0.8 -0.9 -0.9 -0.6 -0.9 -1.2

1.8 1.4 0.9 0.7 1.2 -0.5 -1.1 -0.9 -0.1 -1.4 -1.7 -0.2

-0.1 2.0 1.4 0.5 0.6 0.3 -0.6 -1.0 -0.4 -1.0 -1.3 -0.7

-0.3 1.5 2.1 0.8 0.5 -0.2 -1.1 -0.8 -0.5 -0.3 -1.1 -0.8

1.6 -0.3 0.7 1.0 2.3 0.6 0.2 -0.7 -1.7 -1.0 -0.3 -1.3

2.4 -0.1 1.3 0.8 1.6 0.3 -0.6 -1.2 -1.7 -0.3 0.5 -1.7
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-0.4 0.9 -0.2 1.6 1.4 2.7 -1.4 -0.3 -1.4 -0.6 0.1 -0.6

-0.7 -0.6 -0.3 2.1 1.9 2.6 -0.9 -0.5 -0.9 0.0 -0.4 -0.9

-0.6 -0.4 -0.4 2.0 1.9 2.7 -0.9 -0.4 -0.9 -0.1 -0.4 -0.9

-0.9 -0.2 -0.6 1.8 2.4 2.3 -0.8 -0.6 -0.7 0.0 -0.3 -0.9

0.2 0.1 0.8 2.3 1.0 2.2 -1.2 -0.9 -1.5 -0.6 -0.7 -0.4

0.4 0.2 0.3 2.4 0.9 2.2 -1.4 -0.6 -1.3 -0.6 -0.5 -0.6

0.9 0.6 1.0 1.9 1.3 1.3 -1.2 -1.0 -1.0 -0.6 -1.1 -0.8

0.3 0.2 -0.3 2.5 1.6 1.4 -0.7 -0.9 -0.6 -0.9 -0.1 -1.1

-0.8 -0.9 -1.4 0.2 0.9 -0.1 -1.7 -0.6 0.6 1.6 1.9 0.2

-0.9 -1.1 -0.9 1.3 1.4 1.0 -1.1 -0.8 -1.1 0.7 2.4 -0.2

-1.0 -0.9 -0.7 0.5 1.0 1.0 -1.2 -0.7 -1.5 0.8 1.5 1.2

-0.7 -1.5 -0.4 0.5 0.4 0.3 -0.9 -0.9 -1.4 1.6 1.4 1.3

-1.3 -1.5 -0.8 -0.1 -0.5 -0.4 0.5 0.0 -0.3 1.3 0.6 1.6

-1.4 -1.8 -0.9 0.7 -0.7 -0.7 0.1 0.0 -0.1 2.0 1.4 0.7

-0.6 -0.6 -0.3 -0.7 -0.8 -0.5 -0.8 -0.4 -0.8 1.1 1.8 1.8

-1.2 -0.8 -0.2 -0.5 -1.0 0.3 -0.6 -1.0 -0.2 2.1 1.0 1.4

-1.0 -0.7 -0.4 0.2 -0.4 -0.2 -1.1 -1.1 -0.5 2.5 1.0 1.0

-1.2 -0.8 -0.3 -0.2 -0.4 -0.8 -0.4 -0.6 -0.7 2.3 0.7 1.4

-1.0 -0.7 -0.8 -0.1 -1.0 -0.2 -0.4 -0.5 -0.5 2.5 0.7 1.3

-1.0 -0.6 -0.6 -0.2 -0.7 -0.5 -0.5 -0.8 -0.5 2.3 0.7 1.5

-1.1 -0.7 -0.6 -0.5 -0.7 -0.3 -0.8 -0.7 0.1 2.3 1.0 1.3

-0.9 -0.9 -0.8 -0.2 -0.9 -0.3 -0.7 -0.7 -0.1 2.2 1.0 1.3

-1.1 -0.3 -0.8 -0.8 -0.2 0.1 -0.3 -0.9 -0.9 1.8 1.0 1.6

-1.2 -0.7 -0.9 0.3 -0.2 0.3 -0.6 -0.5 -1.1 2.1 0.8 1.4

-1.3 -0.8 -0.6 -0.2 0.5 -0.4 -0.4 -1.1 -0.5 1.9 0.8 1.4

-1.4 -0.9 -1.2 -0.5 0.3 0.2 -0.4 -0.8 0.1 1.7 0.8 1.4

-1.4 -1.2 -0.7 -0.3 0.4 0.6 -0.6 -0.7 -0.2 1.7 0.5 1.5

-1.0 -0.8 -0.6 0.0 -0.2 -0.1 -1.3 -0.7 -0.2 1.4 1.1 1.7

-1.2 -0.9 -1.0 0.1 0.0 -0.3 -1.0 -0.4 0.0 1.4 1.2 1.6

-1.6 -0.7 -0.9 -0.2 -0.4 -0.1 -0.8 -0.5 0.5 1.6 1.4 1.2

-1.4 -1.2 -1.1 0.0 0.0 -0.3 -0.3 -0.7 0.0 1.4 1.3 1.4

-1.4 -0.9 -0.8 -0.4 0.4 -0.6 -0.3 -0.7 -0.2 1.6 1.3 1.4

-1.5 -0.8 -1.1 -0.2 0.2 -0.1 -0.2 -0.8 -0.2 1.6 1.2 1.3

-1.7 -0.6 -0.8 0.1 -0.2 -0.2 -0.3 -0.5 -0.5 1.6 1.3 1.4

-1.9 -0.8 -0.9 0.2 0.5 0.1 -0.5 -0.9 0.2 1.6 1.2 1.0

-1.5 -0.7 -1.0 -0.3 -0.2 0.2 -0.5 -1.0 0.1 1.6 1.5 1.2

-1.6 -0.9 -1.1 0.1 -0.1 0.4 -0.3 -0.9 -0.1 1.5 1.1 1.3

-1.5 0.1 -0.2 0.2 -0.3 -0.4 -1.0 -1.2 -0.5 1.6 1.7 1.3

-1.3 -0.9 -1.1 0.5 0.6 -0.6 -0.1 -0.9 -0.2 0.5 1.9 1.2

-1.3 -0.4 -1.2 0.6 0.2 -1.1 -0.3 -0.1 -0.8 0.7 1.5 1.6

-1.0 -0.7 -0.5 0.0 -0.1 0.4 0.2 -1.5 -0.8 1.1 0.6 1.7

-1.9 -0.4 -1.1 -0.3 0.4 0.4 0.5 -1.1 -0.3 1.3 1.2 1.0

-0.8 -1.2 -0.7 -0.1 0.8 0.1 -0.1 -2.0 0.2 1.0 1.3 1.1

1.5 0.9 0.6 -0.3 -1.0 -0.8 0.6 0.3 0.9 -0.2 -0.4 -2.0

2.4 0.8 0.4 -0.8 -1.2 -0.4 0.1 -0.3 0.1 -0.1 -0.6 -0.9

1.7 0.2 2.0 -0.8 -1.3 0.0 0.7 0.2 -0.7 -0.7 -0.7 -0.8

0.5 3.2 1.1 -1.1 -1.2 -1.0 -0.4 0.5 0.4 0.1 -0.7 -1.1

0.4 2.1 0.7 -1.0 -0.4 -0.3 -0.1 2.0 0.5 -0.7 -0.9 -1.5

1.8 2.0 1.6 -0.3 -1.2 -0.6 -1.0 -0.3 -0.3 -0.5 -0.5 -0.6

0.8 1.6 1.4 -1.9 -1.4 -0.7 0.4 0.1 0.2 -1.0 -0.3 0.2

0.8 1.6 0.8 -0.6 -1.1 -0.8 -0.4 0.8 1.0 -1.5 -0.5 -0.1

1.3 1.1 0.3 -2.1 -0.1 -1.5 1.1 0.9 -0.1 -0.1 -0.8 -0.7

0.8 1.5 -0.1 0.0 -0.5 -0.8 0.6 0.2 1.2 -0.8 -1.8 -0.3

0.9 1.3 0.1 0.3 -0.8 -1.0 0.9 0.7 0.7 -1.4 -0.6 -1.0

0.7 0.8 0.0 -0.6 0.4 -1.0 1.0 0.5 0.5 -1.3 -1.4 0.0

0.4 0.4 1.0 0.5 -1.7 -1.4 1.3 0.2 1.1 -0.7 0.0 -1.3

-0.4 -1.2 0.4 -0.1 -0.4 -0.4 1.9 1.3 0.8 -0.5 -0.8 -0.8

0.3 0.2 -0.4 -1.3 -1.3 -0.8 0.6 1.2 1.9 -0.4 -0.6 0.1

0.1 -0.3 -0.4 -1.5 -1.3 -1.4 0.1 1.3 2.2 -0.1 0.5 0.0

-0.7 -0.6 -0.3 -0.7 -0.9 -0.5 0.6 2.2 1.9 0.0 -0.4 -0.8

-0.3 -0.6 0.0 -1.0 -1.3 -0.7 0.7 1.4 2.3 -0.1 -0.2 -0.6

-0.8 -0.6 -0.1 -1.0 -1.1 -0.9 0.9 1.5 2.0 -0.2 -0.1 -0.2

-0.9 -0.6 -0.1 -0.9 -1.3 -0.6 0.9 1.5 2.1 0.0 0.3 -0.6

0.0 0.1 0.0 -0.5 -1.6 -1.9 1.5 1.8 0.2 0.1 -0.8 0.2

0.0 0.3 0.2 -0.7 -0.8 -1.8 1.3 0.1 1.2 -0.7 -0.6 0.7

-1.3 -0.7 -1.2 -0.4 0 0.2 1 1.5 1.3 -0.6 -0.1 0.2

-1 -0.5 -1.2 0.7 0.4 0 1.6 0.2 1.1 -0.8 -0.3 0

-1.6 0.3 -0.1 0.3 0.2 0.4 1.3 1.1 1.2 0 -0.8 -1.5

-0.4 -1.2 0.4 -0.1 -0.4 -0.4 1.9 1.3 0.8 -0.5 -0.8 -0.8

-0.8 -0.9 -0.6 0.5 0.4 -0.9 1.3 2.4 0.3 -0.2 -0.8 -0.7

-0.1 -1.8 -0.4 1.4 2.1 1.7 -0.3 0.5 -0.1 -0.9 -0.6 -0.5

0 -1.9 -0.5 1.2 2.4 1.4 -0.2 0.6 -0.3 -0.9 -0.4 -0.5

-0.3 -0.5 -0.1 1.6 1.8 2.6 -1.2 0.9 -0.8 -0.6 -0.7 -1

-0.7 -0.6 -0.3 2.1 1.9 2.6 -0.9 -0.5 -0.9 0 -0.4 -0.9

-0.6 -0.4 -0.4 2 1.9 2.7 -0.9 -0.4 -0.9 -0.1 -0.4 -0.9

-0.9 -0.2 -0.6 1.8 2.4 2.3 -0.8 -0.6 -0.7 0 -0.3 -0.9

0.3 0.2 -0.3 2.5 1.6 1.4 -0.7 -0.9 -0.6 -0.9 -0.1 -1.1

1.8 0.9 1.9 0.6 0.1 0 -1 -0.4 -1.3 -0.5 -0.6 -0.9

1.8 1.3 0.9 0.4 0.5 0.9 -1.5 -0.9 -1.2 -0.7 -0.2 -0.6

1.9 1.2 1 0.3 0.2 0.4 -1 -0.8 -2.1 -0.3 -0.1 -0.3

1.9 1.5 0.5 -0.5 -1.6 0 -1.6 -0.1 -1.4 0.3 0.8 -0.1

1.8 2 1.6 -0.3 -1.2 -0.6 -1 -0.3 -0.3 -0.5 -0.5 -0.6

0.8 1.6 1.4 -1.9 -1.4 -0.7 0.4 0.1 0.2 -1 -0.3 0.2

-0.6 -0.6 -0.3 -0.7 -0.8 -0.5 -0.8 -0.4 -0.8 1.1 1.8 1.8

-1.1 -0.3 -0.8 -0.8 -0.2 0.1 -0.3 -0.9 -0.9 1.8 1 1.6

-1 -0.8 -0.6 0 -0.2 -0.1 -1.3 -0.7 -0.2 1.4 1.1 1.7

-1 -0.6 -0.6 -0.2 -0.7 -0.5 -0.5 -0.8 -0.5 2.3 0.7 1.5

-0.9 -0.9 -0.8 -0.2 -0.9 -0.3 -0.7 -0.7 -0.1 2.2 1 1.3

-1.5 0.1 -0.2 0.2 -0.3 -0.4 -1 -1.2 -0.5 1.6 1.7 1.3

1.3 0.9 1.2 0.3 -0.3 1.7 -1.2 -1.6 0.5 -0.7 -0.9 -0.5

0.0 0.9 0.8 1.8 2.2 0.9 -1.1 -0.6 -1.0 -0.3 -0.6 -1.5

0.9 0.2 1.7 1.8 1.6 0.4 -1.2 -0.9 -1.4 -0.2 -0.8 -1.0

0.4 0.2 1.6 1.7 1.9 0.9 -1.1 -0.5 -1.2 -0.3 -0.9 -1.3

1.1 0.6 1.0 1.6 0.9 1.8 -1.2 -0.9 -1.3 -0.3 -0.8 -1.2

1.1 0.4 0.8 1.6 1.0 2.0 -1.2 -0.9 -1.2 -0.3 -0.8 -1.2

0.7 0.4 1.1 2.0 1.2 1.7 -1.1 -0.9 -1.3 -0.4 -0.9 -1.1

0.9 0.6 1.0 1.9 1.3 1.3 -1.2 -1.0 -1.0 -0.6 -1.1 -0.8

0.8 0.8 0.9 1.4 2.0 1.2 -1.2 -0.8 -1.2 -0.4 -0.9 -1.1

1.0 0.5 0.9 1.0 1.8 1.7 -1.2 -0.9 -1.3 -0.3 -0.8 -1.2

1.2 0.8 1.2 1.4 1.6 0.6 -1.3 -1.0 -1.3 -0.3 -0.8 -1.1

1.0 0.8 1.4 1.1 1.4 1.4 -1.2 -1.0 -1.3 -0.3 -0.8 -1.2

1.0 0.9 1.3 1.4 1.4 1.2 -1.3 -0.9 -1.4 -0.3 -0.8 -1.2

0.9 1.0 1.2 1.4 1.5 1.3 -1.3 -0.9 -1.3 -0.3 -0.8 -1.2

1.4 0.4 1.3 1.3 1.1 1.1 -1.0 -1.0 -1.3 -0.6 -0.7 -1.1

0.4 1.8 0.6 1.7 1.4 1.3 -1.3 -0.8 -1.4 -0.4 -0.7 -1.0

0.9 1.3 0.7 1.9 0.8 1.4 -1.2 -0.7 -1.5 -0.6 -0.8 -0.9

1.3 1.4 0.5 1.5 0.6 1.1 -0.8 -0.5 -0.9 -1.0 -1.0 -1.2

1.7 0.8 0.6 1.5 0.7 0.8 -1.3 -0.5 -1.2 -0.5 -0.9 -0.9

1.2 1.7 0.6 1.8 0.0 1.1 -1.3 -0.8 -0.8 -0.2 -0.7 -1.5

1.0 1.8 0.5 1.4 1.2 0.5 -1.2 -0.8 -0.5 -0.5 -0.5 -1.6

0.6 2.1 2.0 1.0 0.6 0.5 -1.2 -0.9 -1.3 -0.5 -0.8 -0.9
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Figure S3.6 Extracellular H
2
O

2 
in saCO

2
-induced resistance 

against Hpa. a. Visualization of extracellular H
2
O

2 

accumulation in leaves of Arabidopsis (Col-0) at aCO
2
 (400 

ppm) and saCO2 (200 ppm). Shown are 3,3′-

diaminobenzidine (DAB)-stained leaves at 48 hours after 

mock (water) or Hpa inoculation. Bar = 1 mm. b. 

Quantification of DAB staining signal by image analysis. 

Shown are mean values of the stained proportion of the leaf 

area (± SD, n = 5). c. Evaluation of Hpa resistance at aCO
2
 

and saCO
2
 in Col-0 and rbohD/F plants at the 8-leaf stage. 

The rbohD/F double mutant is impaired in production of 

extracellular H
2
O

2 
by NADP-dependent oxidase. Shown are 

relative numbers of leaves (n > 50) in Hpa colonization 

classes of increasing severity (I–IV) at 7 dpi. Asterisks 

indicate statistically significant differences between CO
2
 

conditions (Fisher’s exact test; P < 0.05). 
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Figure S3.7. Selection of gox1-2 (SALK_051930) and haox1-2 

(SALK_022285) knock-down mutants. a. PCR confirmation of 

homozygous T-DNA insertions. Gene models show locations of T-

DNA insertions in promoter regions of GOX1 and HAOX1. Images 

show PCR products from 1) mutant DNA with LP + RP primers (no 

band); 2) Col-0 DNA with LP + RP primers, and 3), mutant DNA 

with LBb1.3 + RP primers. b. Impacts of knock-down mutations on 

transcription of GOX1 and HAOX1 in gox1-2 and haox1-2 plants, 

respectively. Shown are mean values of relative transcript levels 

(± SD; n = 5) in shoot tissues of 3-week old plants. Asterisks 

indicate statistically significant reductions in relative transcript 

level compared to wild-type plants (Col-0; Student’s t-test, P < 

0.05). The experiment was repeated with similar results. c. Growth 

phenotypes of 3-week old Col-0, gox1-2 and haox1-2 at aCO
2
 and 

saCO
2
 conditions.  
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Fig. S3.8. Impacts of Hpa inoculation on CAT2 gene expression in 

8-leaf Col-0 plants at saCO
2
 (200 ppm) and aCO

2 
(400 ppm). 

Shown are mean values of relative transcript abundance (± SD, n = 

5) at different hours post mock (water) or Hpa inoculation.  
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Table S3.1 Putative identification of metabolic markers detected by UPLC-Q-TOF 
    

          

Treatment a P value b Detected m/z c RT (min) c  Adducts d Predicted mass d Error (ppm) d Putative compound d Predicted formula d Pathways e 

24 hours 

1.2E-03 351.992 4.4 [M+K]+ 313.021 19 Eudistomin H C15H12BrN3 Alkaloids 

6.0E-03 422.166 1.6 [M-H]- 423.168 13 N-Methyl-2,3,7,8-tetramethoxy-5,6-dihydrobenzophenathridine-6-ethanoic acid C24H25NO6 Alkaloids 

6.6E-03 482.067 1.8 [M+Cl]- 447.108 22 Pigment A aglycone C25H19O8 Anthocyanins 

1.0E-03 244.027 1.5 [M+K-2H]- 207.081 11 Anthocyanidins C15H11O Anthocyanins 

2.2E-04 933.074 1.1 [M-H]- 934.071 10 Vescalagin C41H26O26 Anthocyanins 

2.2E-04 391.066 1.1 [M+Na-2H]- 370.090 4 5-Hydroxy-6-methoxycoumarin 7-glucoside C16H18O10 Coumarin 

2.2E-04 457.133 2.9 [M-H]- 458.142 5 cis-p-Coumaric acid 4-[apiosyl-(1->2)-glucoside] C20H26O12 Coumarin 

5.3E-03 427.124 1.5 [M+Na]+ 404.126 20 Calomelanol C C24H20O6 Flavonoids 

1.3E-03 329.008 4.4 [M+2Na-H]+ 284.032 13 7,4\',5\'-Trihydroxy-5,2\'-oxido-4-phenylcoumarin C15H8O6 Flavonoids 

6.0E-03 639.161 3.0 [M-H]- 640.164 6 Laricitrin 3-rutinoside C28H32O17 Flavonoids 

9.0E-03 932.246 2.8 [M-H]- 933.266 14 
Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-
D-glucopyranoside] 5-O-b-D-glucopyranoside 

C43H49O23 Flavonoids 

2.5E-03 421.163 1.6 [M-H]- 422.173 6 Euchrenone b10 C25H26O6 Flavonoids 

5.6E-03 487.123 2.7 [M-H]- 488.132 3 Acacetin 7-(2\'\'-acetylglucoside) C24H24O11 Flavonoids 

1.4E-03 667.080 3.4 [M+2Na-H]+ 622.117 12 Apigenin 7-glucuronosyl-(1->2)-glucuronide C27H26O17 Flavonoids 

3.4E-03 603.292 1.6 [M-H]- 604.288 10 Cerbertin C32H44O11 Glucosides 

7.8E-04 199.097 2.5 [M-H]- 200.105 2 Decenedioic acid C10H16O4 Lipids 

8.2E-03 453.209 3.0 [M+Na-2H]- 432.236 2 Glucosyl (2E,6E,10x)-10,11-dihydroxy-2,6-farnesadienoate C21H36O9 Lipids 

8.4E-03 869.480 5.5 [M+Cl]- 833.521 20 PS (18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C46H76NO10P Lipids 

6.0E-03 603.289 1.6 [M+Cl]- 567.317 8 PS (10:0/10:0) C26H50NO10P Lipids 

4.2E-03 449.190 1.6 [M+K-2H]- 411.239 10 PC (O-8:0/2:0) C18H38NO7P Lipids 

8.3E-03 431.196 1.6 [M+Cl]- 397.223 7 PE (12:0/0:0) C17H36NO7P Lipids 

1.4E-03 251.003 4.4 [M+H]+ 250.000 18 Glycerate C6H10CaO8 Photorespiration 

3.9E-03 315.108 2.5 [M-H]- 316.116 3 Hydroxytyrosol 1-O-glucoside C14H20O8 Polyphenol 

2.7E-04 249.112 3.4 [M+H]+ 248.105 0 Prenyl caffeate C14H16O4 Polyphenol 

1.2E-04 350.988 4.4 [M+K]+ 312.022 7 Gamma-Glutamyl-Se-methylselenocysteine C9H16N2O5Se Redox 

4.4E-03 267.087 1.6 [M-H]- 268.088 21 Cysteinyl-Phenylalanine C12H16N2O3S Redox 

6.9E-04 665.080 3.3 [M+H]+ 664.093 30 Deamino-NAD+ C21H26N6O15P2 Redox 

1.1E-03 493.077 2.9 [M+Na]+ 470.088 0 Phe4Cl-Tyr-OH C23H19ClN2O7 Amino acids 

6.6E-03 423.159 1.6 [M+Na-2H]- 402.189 10 D-Linalool 3-(6''-malonylglucoside) C19H30O9 Terpenoids 

5.1E-04 467.166 2.1 [M-H]- 468.178 11 Dukunolide D C26H28O8 Terpenoids 

4.2E-03 431.192 1.6 [M-H]- 432.197 5 S-Furanopetasitin C24H32O5S Terpenoids 

1.1E-03 331.001 4.4      Unknown 

7.3E-03 330.987 4.4      Unknown 

1.1E-04 97.978 4.4      Unknown 

8.1E-03 330.957 4.4      Unknown 

3.0E-05 249.986 4.4      Unknown 

1.7E-03 997.443 2.9      Unknown 

7.4E-03 1001.458 2.8      Unknown 

8.2E-03 731.210 1.9      Unknown 

1.4E-03 1100.454 3.0      Unknown 

8.1E-03 1187.442 2.8           Unknown 

72 hours 

5.5E-03 634.415 6.2 [M+NH4]+ 616.378 5 Tabernamine C40H48N4O2 Alkaloids 

1.3E-03 329.008 4.4 [M+2Na-H]+ 284.032 13 7,4\',5\'-Trihydroxy-5,2\'-oxido-4-phenylcoumarin C15H8O6 Coumarin 

1.1E-03 493.077 2.9 [M+2Na-H]+ 448.101 10 1,2,6,8-Tetrahydroxy-3-methylanthraquinone 2-O-b-D-glucoside C21H20O11 Flavonoids 

2.2E-04 391.066 1.1 [M-H]- 392.074 2 5,7,3\',4\',5\'-Pentahydroxy-3,6,8-trimethoxyflavone C18H16O10 Flavonoids 

5.3E-03 427.124 1.5 [M+H-H2O]+ 444.121 13 Artomunoxanthentrione C26H20O7 Flavonoids 



 

2.5E-03 421.163 1.6 [M-H]- 422.173 6 Euchrenone b10 C25H26O6 Flavonoids 

8.1E-03 348.991 4.4 [M+2Na-H]+ 304.014 16 6-Chloroapigenin C15H9ClO5 Flavonoids 

8.2E-03 730.203 1.9 [M+NH4]+ 712.185 21 Syringetin 3-(,6\'\'\'-acetylglucosyl)(1->6)-galactoside C31H36O19 Flavonoids 

1.0E-03 244.027 1.5 [M+H+Na]2+ 464.056 1 4-Hydroxyglucobrassicin C16H20N2O10S2 Glucosinolate 

1.4E-03 664.066 3.4 [M+Na]+ 641.091 20 6-Sinapoylglucoraphenin C23H31NO14S3 Glucosinolate 

1.4E-03 251.003 4.4 [M+H]+ 250.000 18 Glycerate C6H10CaO8 Photorespiration 

7.4E-03 301.119 1.7 [M+Na-2H]- 280.142 5 Feruloyl-2-hydroxyputrescine C14H20N2O4 Polyamines 

1.2E-04 350.988 4.4 [M+K]+ 312.022 7 Gamma-Glutamyl-Se-methylselenocysteine C9H16N2O5Se Redox 

6.9E-04 664.071 3.3 [M+H]+ 663.109 68 NAD+ C21H27N7O14P2 Redox 

1.1E-03 331.001 4.4      Unknown 

7.3E-03 330.987 4.4      Unknown 

1.2E-03 327.999 4.4      Unknown 

1.1E-04 97.978 4.4      Unknown 

3.0E-05 249.986 4.4      Unknown 

2.0E-04 992.945 8.7      Unknown 

24 hours + 
Hpa 

9.95E-03 165.080 0.8 [M+H-2H2O]+ 
200.095 16 Harmalol C12H12N2O Alkaloids 

9.9E-03 882.307 3.0 [M-H]- 883.290 27 Wilfordine C43H49NO19 Alkaloids 

4.0E-05 293.100 1.3 [M-H]- 294.106 3 N-Glycosyl-L-asparagine C10H18N2O8 Amino acids 

1.6E-03 416.105 2.3 [M-H]- 417.117 11 Asn-TyrMe-OH C19H19N3O8 Amino acids 

5.3E-03 146.061 1.0 [M+H-2H2O]+ 181.074 1 L-Tyrosine C9H11NO3 Amino acids 

3.6E-03 778.169 2.3 [M+Na-2H]- 757.219 32 Pelargonidin 3-sophoroside 5-glucoside C33H41O20 Flavonoids 

1.0E-05 189.074 1.8 [M-H2O-H]- 208.089 17 Chalcone C15H12O Flavonoids 

1.1E-03 417.107 2.3 [M-H]- 418.126 29 4\'-Hydroxy-3,5,6,7,3\',5\'-hexamethoxyflavone C21H22O9 Flavonoids 

8.0E-03 557.298 2.9 [M-H]- 558.298 12 Denticulaflavonol C35H42O6 Flavonoids 

1.7E-03 454.203 3.0 [M-H]- 455.212 2 5-Ribosylparomamine C17H33N3O11 Glucosides 

6.4E-04 402.089 1.7 [M-H]- 403.097 1 3-Methylpentyl glucosinolate C13H25NO9S2 Glucosinolates 

5.4E-03 448.069 1.7 [M+2Na-H]+ 403.097 0 3-Methylpentyl glucosinolate C13H25NO9S2 Glucosinolates 

2.7E-04 249.112 3.4 [M+Na-2H]- 228.136 5 (-)-11-hydroxy-9,10-dihydrojasmonic acid C12H20O4 Phytohormones 

1.12E-03 119.074 0.8 [M+H-H2O]+ 
136.0749 15 Tetrahydropteridine C6H8N4 Redox 

3.6E-03 221.983 0.4 [M-H2O-H]- 241.008 29 3-Mercaptolactate-cysteine disulfide C6H11NO5S2 Thiols 

2.6E-04 1044.112 5.4           Unknown 

72 hours + 
Hpa 

7.4E-03 301.119 1.7 [M-H]- 302.115 36 2,4\'-Dihydroxy-4,6-dimethoxydihydrochalcone C17H18O5 Flavonoids 

8.3E-03 543.245 4.3 [M+Na-2H]- 522.268 4 7,8-Dihydro-3b,6a-dihydroxy-alpha-ionol 9-[apiosyl-(1->6)-glucoside] C24H42O12 Flavonoids 

5.4E-03 448.069 1.7 [M+2Na-H]+ 403.097 1 3-Methylpentyl glucosinolate C13H25NO9S2 Glucosides 

5.7E-03 525.353 5.8 [M+H]+ 524.348 3 PG (P-20:0/0:0) C26H53O8P Lipids 

1.5E-03 547.590 6.2      Unknown 

1.8E-03 518.763 5.6           Unknown 

a : conditions for which the metabolic markers showed a statistically significant accumulation between saCO2 and aCO2    

b : P values indicate levels of significance from FDR adjusted ANOVA and subsequent two-factor ANOVA (P < 0.01)    

c : accurate m/z values with their corresponding retention time (RT) detected by UPLC-qTOF-MS     

d : predicted parameters from the METLIN database using the detected accurate m/z. Adducts : type of ion generated by electrospray ionization; Δppm: difference between observed and theoretical monoisotopic masses.   

PC: Phosphatidylcholine; PE: Phosphatidylethanolamine; PG: Phosphoglycerol; PS: Phosphatidylserine.     

e : putative metabolites and their corresponding pathways were validated by information from the PubMed chemical database    
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Chapter 4: Impacts of glacial-to-future atmospheric CO2 

on bacterial rhizosphere colonisation in relation to plant 

growth and systemic resistance responses.  

 

4.1 Abstract 

Concern over rising atmospheric CO2 concentrations has led to growing interest 

in the effects of global change on plant-microbiome interactions. As a primary 

substrate of photosynthesis, atmospheric CO2 determines plant metabolism and 

influences root exudation chemistry. Accordingly, I predict that changes in 

atmospheric CO2 concentration affect rhizosphere signalling and colonisation by 

soil microbes. In this study, the effects of past-to-future CO2 concentrations on 

Arabidopsis rhizosphere colonisation by the rhizobacterial 

species Pseudomonas simiae WCS417, and the saprophytic bacterial 

species Pseudomonas putida KT2440, in nutrient-poor and nutrient-rich soils 

were examined. Rhizosphere colonisation by saprophytic KT2440 was not 

influenced by atmospheric CO2 in either soil substrate. Conversely, rhizosphere 

colonisation by the specialist WCS417 strain increased at rising CO2 

concentration, in nutrient-poor soil. Examination of host responses to WCS417 

colonisation revealed that plant growth and systemic resistance varied according 

to atmospheric CO2 concentration and soil type, ranging from growth promotion 

with induced susceptibility at sub-ambient CO2, to growth repression with induced 

resistance at elevated CO2. Collectively, these results demonstrate atmospheric 

CO2 and soil nutritional status can influence the nature of plant-rhizobacteria 

interactions. This outcome illustrates that plant responses to soil microbes should 

be taken into account for predictions of plant performance in response to changes 

in global climate and soil quality. 

 

4.2 Introduction 

Atmospheric CO2 influences microbial diversity and its biomass in the 

rhizosphere (Paterson et al., 1997). Soil CO2 concentrations are typically much 
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higher than atmospheric CO2 concentrations (ranging between 2000 and 38000 

ppm in soil pore spaces; Drigo et al., 2008), and even large increases in 

atmospheric CO2 are thought to have little direct impact on CO2 concentrations 

in soils. Indeed, effects of atmospheric CO2 on soil communities are much less 

apparent in the absence of plants (Wiemken et al., 2001; Montealegre et al., 

2002), indicating a dominant, plant-mediated mechanism. The most plausible 

factor driving root/ microbe associations is the exudation of photosynthates, 

which are estimated to range between 5 and 40% of fixed carbon (Lynch and 

Whipps, 1990; Hinsinger et al., 2006; Marschner, 2012). Rhizodeposition via 

carbon (C) exudation is enhanced under elevated CO2 (eCO2; Phillips et al., 

2009; Eisenhauer et al., 2012). As a result, rhizosphere colonisation by 

microfauna and microbes that rely on C from plant exudates will be influenced by 

atmospheric CO2 concentrations (Lipson and Wilson, 2005; Kassem et al., 2008; 

Eisenhauer et al., 2012). 

The extent to which elevated CO2 (eCO2) affects microbial interactions in 

the rhizosphere remains controversial. Using chloroform fumigation extraction 

(CFE) to estimate microbial biomass, studies have reported both positive and 

negative relationships with eCO2 (Rice et al., 1994; Ross et al., 1995; Kassem et 

al., 2008; Eisenhauer et al., 2012). It also remains contentious in how far eCO2 

induces shifts between fungal or bacterial communities (Ross et al., 1995; Lipson 

and Wilson, 2005; Drigo et al., 2008). Nevertheless, it is clear that CO2 alters 

overall microbial community composition across a range of different soil types 

(Montealegre et al., 2002; Janus et al., 2005). Relatively early studies, focusing 

on eCO2 stimulation of plant growth and rhizosphere microbial taxa, suggested a 

possible relationship between eCO2, plant growth and increases in plant growth-

promoting rhizobacteria (PGPR; O’Neill et al., 1987). PGPR are more closely 

associated with plant roots than generalist saprophytic soil colonisers and should, 

therefore, be more reliant on plant-derived C (Denef et al., 2007). Surprisingly, 

however, while there is extensive evidence that plant-rhizobia and plant-

mycorrhiza interactions change at eCO2 (e.g. Rogers et al., 2009; Mohan et al., 

2014), functional efficacy of PGPR in eCO2 is scarcely studied (Drigo et al., 2008). 

Considering that PGPR modulate a range of agronomically important plant traits, 

including plant growth, abiotic stress tolerance and resistance to pests and 
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diseases (Lugtenberg and Kamilova, 2009), this knowledge gap limits our ability 

to predict how man-made climate change will impact crop production and food 

security.  

Although eCO2 effects on the abundance of plant root-associated 

microbes are well studied, comparisons across a range of CO2 conditions, 

including sub-ambient CO2 (saCO2), are rare (Field et al., 2012). Furthermore, 

the effects of a range of CO2 concentrations on interactions with specific plant-

beneficial rhizobacteria and corresponding plant responses remain unknown. In 

a CO2 gradient study (200 ppm to 600 ppm), microbial mass and soil respiration 

from a grassland ecosystem failed to detect a clear relationship to CO2 

concentration (Gill et al., 2006). By contrast, analysis of fungal communities, 

using pyrosequencing of internal transcribed spacer (ITS) sequences, revealed 

a positive relationship between operational taxonomic unit (OTU) richness and 

CO2 concentration that was soil-type dependent (Procter et al., 2014). While 

these studies suggest that atmospheric CO2 impacts plant-beneficial bacteria and 

fungi in the rhizosphere, it remains difficult to ascertain the underpinning 

mechanisms, or predict outcomes of plant responses to altered colonisation by 

these microbes. Most studies regarding the effect of atmospheric CO2 gradients 

on rhizosphere microbes involved field experiments, which are prone to 

environmental variability, such as nutrient availability, soil moisture, temperature, 

soil pH, and plant species present (Freeman et al., 2004; Castro et al., 2010; 

Classen et al., 2015; Dam et al., 2017). 

In this chapter, I employed controlled environmental conditions to study 

impacts of saCO2 and eCO2 on rhizosphere colonisation by two well-

characterised soil bacteria: the generalist saprophytic soil coloniser P. putida 

KT2440 and the specialist rhizosphere coloniser P. simiae WCS417. Strains with 

distinctly different life-styles were selected to investigate how CO2 stimulates 

colonisation of the specialist rhizosphere strain in soil of relatively poor nutrient 

quality. My hypothesis was that the bacteria less associated with the plant roots, 

Kt2440, would be less affected by changing CO2 concentration. Furthermore, I 

hypothesised that the bacteria that forms a closer association with the root, 

WCS417, could be affected in its ability to promote growth and ISR when carbon 

input is altered. Interestingly, increased colonisation was associated with 
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contrasting growth and systemic resistance responses in the host plant, 

demonstrating that changes in atmospheric CO2 have profound and 

counterintuitive outcomes on plant production and resistance via indirect impacts 

on rhizosphere interactions. 

 

4.3 Results 

Impacts of atmospheric CO2 on rhizosphere colonisation by soil bacteria 

depends on soil quality and bacterial species.  

C and N content are markers for soil quality (Gil-Sotres et al., 2005), which 

directly alters the performance of PGPR (e.g. Egamberdiyeva, 2007; Agbodjato 

et al., 2015). To examine the importance of soil quality on rhizosphere 

colonisation by two well-studied soil bacteria, Arabidopsis was cultivated either in 

artificial nutrient-poor soil (1:9 sand:compost; v/v) with low C- and N-contents, or 

in nutrient-rich soil (2:3 sand:compost; v/v ) with relatively high C and N content 

(Table 4.1). Soils were inoculated with 5 x 107 CFU.g-1 soil of Pseudomonas 

simiae WCS417, a specialist rhizosphere coloniser (Rainey, 1999; Zamioudis et 

al., 2014), or Pseudomonas putida KT2 440, a more generalist saprophytic soil 

coloniser (Weinel et al., 2002). Plants, or non-planted control soil, were 

subsequently left for 4 weeks before sampling for bacterial colonisation through 

enumeration of CFUs on selective agar medium. As expected, the specialist 

rhizosphere coloniser WCS417 showed poor colonisation in bulk soil, but 

performed exceptionally well in rhizosphere soil, which was clear for both soil 

types (Fig. 4.1). By contrast, the generalist saprophytic coloniser KT2440 

colonised rhizosphere and bulk soil from both soil types with equal efficiencies, 

although its levels of 

rhizosphere colonisation 

remained orders of magnitude 

lower than that of WCS417.  

To examine if atmospheric CO2 alters rhizosphere colonisation by 

WCS417 and KT2440, Arabidopsis (accession Col-0) was cultivated for 4 weeks 

in both soil types at saCO2 (200 ppm), ambient CO2 (aCO2; 400 ppm) or eCO2 

(1200 ppm) before quantification of rhizosphere colonisation. Interestingly, in 

Table 4.1 Determination of C and N concentrations in nutrient 
rich and poor soil 

 
Carbon (C ) Nitrogen (N) C:N 

Nutrient poor 2.58% (0.15) 0.21% (0.01) 12.29 

Nutrient rich 18.78% (0.48) 0.37% (0.03) 51.02 
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nutrient-poor soil, the levels of rhizosphere colonisation by WCS417 were 

proportional to atmospheric CO2 (Fig. 4.2 a), whereas rhizosphere colonisation 

by KT2440 was not influenced by CO2 (Fig. 4.2 b). Furthermore, WCS417 

colonisation was not statistically significant between CO2 conditions for plants 

cultivated on nutrient-rich soil (Fig. 4.2 a). Hence, the stimulatory impacts of 

atmospheric CO2 on rhizosphere colonisation by soil bacteria depend on soil 

quality and bacterial species.  

Correction for CO2 root development does not influence CO2-dependent 

rhizosphere colonisation by P. simiae WCS417  

As described in Chapter 3, atmospheric CO2 directly influences plant 

development, which in turn influences aboveground interactions with microbes. 

Moreover, Staddon et al. (1998) reported that enhanced colonisation of Plantago 

lanceolata and eCO2 as confounded by larger root systems (Staddon et al., 

1998). To correct for possible confounding effects of root development on 

WCS417 rhizosphere colonisation, developmental correction was applied as 

described in Chapter 2 (Fig. 4.3 a), resulting in equal amounts of root dry weight 

at the time of sampling for nutrient-poor soils (Fig. 4.3 b). Furthermore, to prevent 

bias due to differences in colonisation time of WCS417, the bacteria were applied 

simultaneously at 10 days prior to sampling for all three CO2 conditions, which 

was achieved by injecting 6 mL of a bacterial suspension at 5 x 108 CFU.mL (10 

mM MgSO4) into the 60-mL pots. As had been observed in the absence of DC 

(Fig. 4.2 a), increasing concentrations of atmospheric CO2 stimulated WCS417 

colonisation of roots of equal size (Fig. 4.3 c). It can thus be concluded that the 

CO2-dependent colonisation pattern of WCS417 occurs independently of the 

developmental stage of the root systems. Accordingly, subsequent experiments 

Figure 4.1. Effects of soil nutritional status on 

colonisation by P. simiae WCS417 and P. putida 

KT2440. Bacteria were introduced into nutrient-poor 

soil or nutrient-rich soil at 5x10
7
 CFU.g-1. Colony 

forming units (CFU.g
-1
) of KT2400 (blue) and WCS417 

(green) were determined after 4 weeks. Samples were 

taken from root-associated rhizosphere soil 

(Rhizosphere), or bulk soil without plants (Soil). Data 

represent mean CFU.g
-1
 values (± SE, n = 8). N.D.: 

not detected. 
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to address plant responses to WCS417 under different CO2 regimes were 

conducted in the absence of DC.   

Atmospheric CO2 influences plant growth responses to P. simiae WCS417 

on nutrient-poor soil. 

To assess the influence of CO2 on plant growth responses to rhizobacteria, 

control- and WCS417-inoculated plants were examined for rosette areas after 5 

weeks of growth. In the absence of WCS417, plant growth was positively 

correlated with CO2 concentration in both nutrient poor and rich soil (Fig. 4.4 a). 

Application of WCS417 did not influence growth of plants on nutrient-rich soil. 

Conversely, on nutrient-poor soil, WCS417 had a stimulatory effect on average 

rosette area at saCO2 and aCO2, which was statistically significant at aCO2 (Fig. 

4.4 a). By contrast, WCS417 induced statistically significantly repression of mean 

rosette area at eCO2 (Fig. 4.4 a). Since PGPR have been reported to affect root 

and shoot growth differentially through impacts on auxin and cytokinin levels 

(Vacheron et al., 2013), root biomass was determined in plants grown on nutrient-

poor soil. As is shown in Fig. 4.4 b, root dry weights reflected aboveground growth 

patterns: apart from a positive effect of CO2 on root dry weight in the absence of 

WCS417, inoculation of nutrient-poor soil with WCS417 increased root dry 

weights at saCO2 and aCO2, while it repressed root dry weight at eCO2. Together, 

Figure 4.2. Impacts of atmospheric CO
2
 and soil type on Arabidopsis rhizosphere colonisation by P. simiae WCS417 (a) 

and P. putida KT2440 (b). Bacteria were introduced at 5x10
7
 CFU/g into nutrient-poor (left panels) or nutrient-rich (right 

panels) soil prior to planning Arabidopsis seeds. Rhizosphere colonisation was determined after 4 weeks of growth at 

sub-ambient CO
2
 (200 ppm), ambient CO

2
 (400 ppm), or elevated CO

2
 (1200 ppm).  Data shown represent mean CFU.g

-

1
 (± SE, n = 10). Letters indicate statistical differences (Student’s t-test and ANOVA with Tukey multiple comparison, 

respectively; P < 0.05). 
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these results suggest that WCS417 has a plant growth-promoting effect at saCO2 

and aCO2, but that it acts detrimentally to growth at eCO2.  

Atmospheric CO2 influences systemic resistance responses to P. simiae 

WCS417 on both nutrient-poor and nutrient-rich soil. 

Induced systemic resistance (ISR) occurs in the presence of WCS417 in 

Arabidopsis (Pieterse et al., 1996). As colonisation of WCS417 was CO2 

dependent, ISR responses were examined by challenging leaves of control- and 

WCS417-inoculated plants with the necrotrophic fungus Plectosphaerella 

cucumerina. Disease progression was examined at 8 and 13 days post 

inoculation (dpi).  As described in Chapter 3, plants (grown on both nutrient-poor 

and nutrient-rich types) generally showed enhanced levels of basal resistance to 

P. cucumerina at eCO2 (Fig. 4.5). Surprisingly, inoculation of nutrient-poor soil 

with WCS417 resulted in increased lesion diameters at saCO2. This induced 

systemic susceptibility at saCO2 was not present on nutrient-rich soil, where 

Figure 4.3. Developmental correction (DC) for CO
2
-

dependent differences in root growth do not affect CO
2
-

dependent colonisation by P. simiae WCS417. a. 

Schematic of germination offset to achieve DC at the 

time of sampling. Grey dashed vertical lines indicate 

time-points of bacterial inoculation and sampling. 

Inoculation was achieved by injecting 60-mL pots with 

6 mL bacterial suspension (5 x 10
8
 CFU/mL). WCS417 

colonisation was determined 10 days after inoculation 

by enumeration of CFU on selective agar plates. b. 

Effects of DC on Arabidopsis root biomass at the time 

of sampling. Data represent mean dry root weight 

values (± SE, n = 10). n.s.: not statistically significant. 

c. Effects of increasing atmospheric CO2 on WCS417 

rhizosphere colonisation from roots of similar 

developmental stage. Shown are Data shown represent 

mean CFU.g
-1
 (± SE, n = 10). Letters indicate statistical 

differences (Student’s t-test and ANOVA with Tukey 

multiple comparison, respectively; P < 0.05). 
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WCS417 inoculation failed to influence lesion development by P. cucumerina in 

the leaves (Fig. 4.5) Furthermore, WCS417 reduced lesion development in 

leaves at aCO2 and eCO2, which was statistically significant in both nutrient-poor 

and nutrient-rich soils at least at one time-point after inoculation (Fig. 4.5). Hence, 

WCS417 driven systemic responses against P. cucumerina vary from induced 

susceptibility to induced resistance, depending on atmospheric CO2 

concentration and soil nutritional status. 

  

4.4 Discussion 

In this study, two strains of Pseudomonas were compared for their ability 

to colonise the Arabidopsis rhizosphere in response to changes in atmospheric 

CO2. KT2440 is derived from a isolate that was extracted from benzene-

contaminated soils in Japan (Nakazawa and Yokota, 1973). Accordingly, it 

survives well in root-free bulk soils, but it can also colonise the rhizosphere of 

plants, in particular grasses (Molina et al., 2000). The capacity of KT2440 to 

metabolise aromatic compounds offers an explanation of its preference for the 

maize rhizosphere, which contains relatively high concentrations of aromatic 

Figure 4.4. Effects of atmospheric CO2 and 

soil nutritional status on plant growth 

responses to P. simiae WCS417. a. Effects of 

WCS417 on total leaf area of Arabidopsis at 

increased CO2 concentrations in nutrient-poor 

(left) and nutrient-rich (right) soils. WCS417 

bacteria were introduced into the soils prior to 

planting (5x107 CFU.g-1 soil). Leaf area was 

quantified by image analysis after 4 weeks of 

growth. Shown are mean leaf areas (± SE, n = 

10). Asterisks indicate statistically significant 

differences to mock-treated control soils 

(Student’s t-test; P < 0.05). b. Effects of 

WCS417 root biomass at increased CO2 

concentrations and in nutrient-poor soil. Data 

represent mean dry root weight values (± SE, 

n = 10).  
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benzoxazinoids (Neal et al., 

2012). It was shown that KT2440 

is highly tolerant to the 

antimicrobial activity of 

benzoxazinoids and that it 

responds to these compounds 

with positive chemotaxis (Neal et 

al., 2012). As demonstrated in 

Fig. 4.1, KT2440 did not show 

increased colonisation of the 

Arabidopsis rhizosphere in 

comparison to control soil, 

suggesting that KT2440 is not 

specifically attracted to 

semiochemicals in the 

rhizosphere of Arabidopsis. 

Conversely, WCS417 showed 

relatively high levels of 

colonisation in the Arabidopsis 

rhizosphere, but failed to sustain 

colonies in bulk soil (Fig. 4.1). This colonisation pattern is typical for specialist 

rhizosphere colonisers. Indeed, P. simiae WCS417 was originally isolated from 

the rhizosphere of wheat (Lamers et al., 1988) and has since been reported to 

colonise the rhizosphere of a wide range of plant species (Berendsen et al., 

2015). Whether this rhizosphere-specific colonisation is determined by selected 

semiochemicals, biocidal chemicals that recruit or select WCS417 bacteria, or 

whether this strain is better at competing for plant-derived C and/ or limiting 

rhizosphere nutrients, requires further investigation. 

 Although the effects of saCO2 on PGPR colonisation have not been 

studied previously, there is evidence that eCO2 increases bacterial biomass in 

the rhizosphere (Kassem et al., 2008). Proctor et al. (2014) reported an increase 

in fungal species richness and enhanced relative abundance of selected fungi 

with eCO2, which varied according to soil type (Procter et al., 2014). Furthermore, 

 Figure 4.5. Effects of atmospheric CO
2
 and soil nutritional status 

on systemic resistance responses of Arabidopsis to P. simiae 

WCS417. Bacteria were introduced into the soils prior to planting 

(5x10
7
 CFU.g-1 soil). To quantify systemic resistance effects, 4-

week-old plants were challenge-inoculated with P. cucumerina 

by applying 5-uL droplets of 5x10
6
 spores.mL-1 onto 4 fully 

expanded leaves per plant. Data shown are mean lesion 

diameters (± SE, n = 10) at 8 and 13 days post inoculation (dpi). 

Asterisks indicate statistical differences (Student’s t-test; P < 

0.05).  
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a grassland free air CO2 enrichment (FACE) experiment revealed that initial C 

accumulation occurred predominantly in arbuscular mycorrhizal fungi (AMF; 

Denef et al., 2007), which are specialist symbiotic fungi that rely on host-derived 

carbon (e.g. Lindahl et al., 2010). It is thus plausible that increased carbon 

deposition at eCO2 will be more significant in carbon-poor soil types, where 

specialist rhizosphere microbes rely more heavily on plant-derived carbon. 

Indeed, although the generalist KT2440 strain was unaffected by eCO2, the 

specialist rhizosphere strain WCS417 showed increasing levels of rhizosphere 

colonisation at rising CO2 concentrations, which was most pronounced in 

nutrient-poor soil (Fig. 4.2). Moreover, the differential effects of CO2 on KT2440 

and WCS417 indicate that atmospheric CO2 has profound repercussions on 

microbial composition in the rhizosphere. Accordingly, it is plausible that rising 

atmospheric CO2 may induce shifts in rhizosphere community structure, via 

changes in plant exudation and rhizosphere chemistry. Exactly what these 

community shifts are, and which changes in rhizosphere chemistry drive these 

changes, requires a novel approach to measure exuded chemicals in non-sterile 

rhizosphere soil (See Chapter 5). 

The plant-growth promoting ability of CO2 can have an indirect effect on 

plant-microbe interactions. It is conceivable that age-dependent root exudation 

chemistry alters interactions with belowground rhizosphere microbes. In support 

of this, growth stage has been shown to influence root exudation patterns (Calvo 

et al., 2017), which correlated with higher and lower abundances of 

Cyanobacteria and Acidobacteria, respectively (Chaparro et al., 2013). 

Furthermore, a study investigating the effects of eCO2 on colonisation of Plantago 

lanceolata and Trifolium repens by the AMF Glomus mosseae revealed that the 

level of AMF colonisation is confounded by larger root systems under eCO2 

conditions (Staddon et al., 1998). Nonetheless, correction for CO2-induced 

differences in root growth did not change the CO2-dependent colonisation by 

WCS417 bacteria (Fig. 4.3), indicating that this rhizosphere response is not 

majorly influenced by root development. It should be noted, however, that the 

developmental correction (DC) itself may have an influence on the outcome of 

the experiment. To avoid bias from differences in time of bacterial colonisation, 

the WCS417 bacteria were introduced through soil injection at a time window in 
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which the plant developmental stage is comparable between CO2 conditions 

(Chapter 3; Fig. S3.1). Application of such high bacterial titres to fully developed 

roots is artificial and could induce acute MAMP-triggered responses that would 

not occur during gradual colonisation from the onset of germination (Zamioudis 

and Pieterse, 2012). Furthermore, as shown in Fig. 4.4 b, WCS417 itself has a 

profound impact on root development, which in turn could interact with root 

growth responses to CO2. Therefore, to avoid potentially confounding effects of 

DC on the bioassay, subsequent analyses of plant responses to WCS417 were 

conducted in the absence of DC. 

Rhizosphere colonisation by PGPRs promotes shoot and root 

development through different mechanisms (Lugtenberg and Kamilova, 2009). 

For instance, Pseudomonas fluorescens WCS365 has been shown to convert 

exuded tryptophan into the plant growth hormone auxin (Kamilova et al., 2006). 

In nutrient-poor soil, growth promotion by WCS417 was apparent under both 

saCO2 and aCO2 (Fig. 4.4). However, WCS417 repressed plant growth at eCO2 

(Fig. 4.4), indicating potentially pathogenic activity. This hypothesis is supported 

by the colonisation data, which revealed >10 fold higher colonisation of WCS417 

at eCO2 compared to that at aCO2. It is tempting to speculate that such high 

densities at the root surface are perceived as hostile by the host immune system, 

triggering a growth-repressing immune response. The continuum between 

mutualism and pathogenic lifestyles is a recognised phenomenon for fungal 

endophytes (Schulz and Boyle, 2005) and other root colonisers (Bever et al., 

2012). Interestingly, this plasticity is partially driven by environmental factors, 

including CO2 (Anderson et al., 2004; Schulz and Boyle, 2005). Although the 

relationship between plant-microbial mutualism and environmental factors 

remains complex (Garrett et al., 2006; Johnson and Gehring, 2007; Garrett et al., 

2011), the conversion to plant growth-repression by WCS417 at eCO2 coincided 

with the relatively high levels of resistance against P. cucumerina (Fig. 4.5). While 

this disease protection appears to be an additive result of eCO2-induced 

resistance (Chapter 3; Fig. 3.1) and ISR, it is likely that these high levels of 

resistance come with costs to plant growth, which only become apparent under 

nutrient-limiting conditions. ISR has been associated with priming of JA and ET-

controlled defences (Pieterse et al., 2002). Even though priming is generally 
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considered to be a low-cost defence strategy (van Hulten et al., 2006), the 

additive effect of eCO2 and ISR may result in constitutive up-regulation of 

inducible defences that incur a detectable cost on plant growth under nutrient-

limiting conditions. This hypothesis gains support from the observation that 

WCS417 only represses growth at eCO2 in nutrient-poor soil (Fig. 4.4). 

The results presented in this Chapter show that two well-characterised soil 

bacteria display different rhizosphere behaviour in response to changes in 

atmospheric CO2. Moreover, the plant responses to colonisation by a specialist 

rhizobacterial strain revealed a range of outcomes growth and systemic 

resistance phenotypes, including growth repression and induced susceptibly. 

These findings demonstrate that predictions about impacts of climate change and 

soil quality on crop performance need to take into consideration the complex 

interactions taking place in the rhizosphere. This highlights the need for further 

research on the impacts of future climate change and soil processes on 

rhizosphere chemistry and microbial community structures.   
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Chapter 5: Impacts of glacial-to-future concentrations of 

atmospheric CO2 on the bacterial community structure 

and chemical profile of the Arabidopsis rhizosphere.  

 

5.1 Abstract 

The rhizosphere effect is defined as the change in microbial community structure 

resulting from the biochemical influence of plant roots. Over recent years, various 

studies have shown that elevated atmospheric CO2 concentrations affect 

rhizosphere microbial biomass and composition. However, the chemical signals 

mediating these CO2 impacts remain unknown, which is partially due to the lack 

of a suitable experimental system for global analysis of rhizosphere chemistry. In 

this Chapter, the impacts of sub-ambient CO2 (saCO2) and elevated CO2 (eCO2) 

on rhizosphere chemistry have been investigated in Arabidopsis, using an 

experimental approach that allows for untargeted metabolic profiling of non-

sterile rhizosphere soil (Appendix 1). First, the global effects of saCO2 and eCO2 

on soil bacterial communities were determined at different time-points of 

Arabidopsis development, using T-RFLP analysis. While CO2 had no significant 

impact on the bacterial community structure of plant-free soil, the diversity of the 

root-associated community increased with rising CO2 concentrations. Similarly, 

the difference in community structure between root-associated bacteria and soil-

based bacteria (i.e. the ‘microbial rhizosphere effect’) increased with rising CO2 

concentrations. Subsequent analysis of rhizosphere chemistry revealed that the 

impacts of CO2 on the rhizosphere bacteria correlated with both quantitative and 

qualitative differences in rhizosphere chemistry. Qualitative changes in 

rhizosphere chemistry at saCO2 were predominantly associated with increased 

(phospho)lipids. Conversely, the changes in rhizosphere chemistry at eCO2 were 

associated with a wider range of primary and secondary metabolites, including 

lipids, terpenoids, and phenolic compounds, such as flavonoids, coumarins and 

alkaloids. The results in this Chapter provide a first insight into the biochemical 

mechanisms by which changes in atmospheric CO2 concentration shape 

microbial rhizosphere communities.  
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5.2 Introduction 

CO2 has long been known to play an important role in shaping the microbial 

composition of the rhizosphere. Rhizosphere microbes largely rely on plant-

derived carbon as their primary food source (Drigo et al., 2008). Changes in 

atmospheric CO2 can change carbon allocation to roots and exert a selective 

pressure on rhizosphere-inhabiting micro-organisms (King, 2011). These CO2 

effects have been documented for soil-borne archaea, bacteria, fungi, and fauna 

(e.g. Coûteaux and Bolger, 2000; Hayden et al., 2012). Yet, the chemical signals 

that influence these processes remain poorly understood. This is mostly because 

the effects of CO2 on the composition of plant-exuded chemicals and the 

rhizosphere have received little attention (Calvo et al., 2017). While increasing 

concentrations of atmospheric CO2 have been shown to enhance rhizo-

deposition of plant-derived primary metabolites, such as sugars and amino acids 

(Drigo et al., 2009; Phillips et al., 2009; Fransson and Johansson, 2010; Li et al., 

2014a), comprehensive analyses of CO2-dependent changes in the chemical 

composition of root exudates or the rhizosphere soil remain rare (Jin et al., 2015).  

Primary metabolites in root exudates, such as sugars and organic acids, 

promote root colonisation by beneficial microorganisms. For instance, exudation 

of malic acid boosts colonisation of plant growth-promoting Pseudomonas 

fluorescens WCS365 and Bacillus subtilis in tomato and Arabidopsis, 

respectively (de Weert et al., 2002; Rudrappa et al., 2008). Since concentrations 

of primary metabolites in root exudates increase at eCO2 (Drigo et al., 2009), it is 

commonly assumed that the eCO2 has a stimulatory effect on the rhizosphere 

microbiome through increased deposition of primary metabolites. However, 

secondary metabolites in root exudates can have an equally important role in 

shaping rhizosphere communities (Badri et al., 2009; van Dam and 

Bouwmeester, 2016). The response of soil bacteria to these signalling 

compounds is complex and often involves direct biocidal activity (Buchan et al., 

2010).  For instance, the phenylpropanoid-derived compound rosmaric acid from 

basil (Bais et al., 2002), as well as the tryptophan-derived benzoxazinoid 2,4-

dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) from maize, can 

repress soil-based pathogens through their biocidal effects (Neal et al., 2012). 
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However, these chemicals can also serve as chemo-attractants to other 

rhizosphere microbes, such as plant-beneficial Pseudomonas putida KT2440 

(Neal et al., 2012). These examples highlight the multifaceted mode of action by 

plant-derived secondary metabolites in the rhizosphere.  

The study and identification of rhizosphere semiochemcials is complicated 

by a variety of factors. Firstly, the chemical composition of root exudates and the 

rhizosphere is constantly influenced by a range of fluctuating environmental 

factors, such as light intensity, humidity and temperature (Badri and Vivanco, 

2009; Classen et al., 2015). Secondly, the developmental stage of the plant can 

have a profound impact on root exudation chemistry. For instance, chemical 

exudation profiles of Arabidopsis are not only genotype-dependent (Micallef et 

al., 2009b), but they also often change throughout plant development (Micallef et 

al., 2009a; Chaparro et al., 2013). Since CO2 directly influences plant 

development (Mhamdi and Noctor, 2016; Chapter 3), effects of CO2 on 

rhizosphere chemistry and microbial rhizosphere composition may partially be 

caused by plant development-dependent changes in root exudation chemistry. 

Indeed, Staddon et al. (1998) showed that the CO2-dependent increases in root 

colonisation by Glomus mosseae in Plantago lanceolata and Trifolium repens are 

confounded by larger root systems under eCO2 conditions. On the other hand, 

developmental correction for root biomass did not alter the CO2-dependent 

pattern of colonization by Pseudomonas simiae WCS417 in Arabidopsis 

(Chapter 4).  

In addition to variation in environmental conditions and plant development, 

the identification of new rhizosphere signals has been complicated by the lack of 

an experimental system that allows comprehensive analysis of non-sterile 

rhizosphere soil. Historically, studies of root exudation chemistry rely on the use 

of sterile hydroponically grown roots (van Dam and Bouwmeester, 2016). While 

such systems allow for precise quantification of plant-derived exudates without 

bias from degradation by microbial activity (Kuijken et al., 2014; Strehmel et al., 

2014), hydroponic systems do not allow plant roots to develop naturally (Mattiello 

et al., 2010; Sgherri et al., 2010). Hydroponic systems can also introduce 

artificially high stress tolerance, as exemplified in hydroponically grown barley 
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whose salinity tolerance is greater than soil grown controls (Tavakkoli et al., 

2010). Moreover, microbial degradation products of root exudates, rather than 

root-exuded plant metabolites themselves, might act as rhizosphere signals. For 

instance, benzoxazinoids in root exudates from cereal roots can be converted 

into stable 2-aminophenoxazin-3-one, which displays strong antimicrobial and 

allelopathic activities (Atwal et al., 1992; Macías et al., 2005). Methods to collect 

root exudates from non-sterile roots often rely on physical extraction of roots from 

their natural growth substrate (e.g. Phillips et al., 2008), which can affect root 

integrity, induce stress responses and contaminate chemical profiles with cellular 

metabolites. To address these experimental shortcomings, a new collection 

system was developed (Appendix 1; Pétriacq et al., 2017), which relies on 

extraction buffers that collect polar and apolar chemicals without damaging root 

cells, hence preventing contamination of samples with cellular metabolites. Using 

untargeted mass spectrometry analysis (UPLC-Q-TOF) of extracts from plant-

free soil and plant-containing soil, followed by statistical analysis of the 

differences between these extracts, this method enables identification of 

chemicals that are statistically enriched in the rhizosphere. For two different plant 

species (Arabidopsis and Maize) and two different soil types (as used in Chapter 

4), this method allowed for the reconstruction of metabolic profiles that are 

enriched in non-sterile rhizosphere soil.  

In this Chapter, the experimental system developed by Pétriacq et al. 

(2017; Appendix 1) was exploited to study changes in rhizosphere biochemistry 

and related microbial communities by saCO2 and eCO2, at different stages of 

plant development. This chapter provides evidence that glacial-to-future CO2 

concentrations alter the diversity of rhizobacterial communities and increase the 

microbial rhizosphere effect at selected stages of plant development. These 

impacts of CO2 on rhizobacterial communities are associated with qualitative 

changes in the biochemical profiles of the rhizosphere.  

5.3 Results  

Impacts of CO2 on bacterial communities in the rhizosphere. Samples for 

analysis of bacterial communities were collected simultaneously with the samples 
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for analysis of rhizosphere chemistry from plant-containing and plant-free control 

tubes (Figs. 5.1 a and 5.1 b). Samples were collected at 24, 28 and 34 days after 
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Figure 5.1. Experimental approach for comprehensive profiling of the microbial communities and chemistry of non-sterile rhizosphere soil. 

a, 1) Samples from plant-free bulk soil and plant-containing soil were taken from collection tubes filled with a sand:compost mixture 9:1 

(v/v). 2) DNA extraction was performed on samples from bulk soil and roots plus adhering rhizosphere soil. Bacterial 16s sequences were 

obtained by PCR amplification with T-RFLP primers. 3) Amplified sequences were enzyme-digested and separated by electrophoresis, 

providing taxonomically variable community profiles. 4) Multi-variate statistical analysis was applied to visualise and quantify the 

differences in T-RFLP patterns between samples. b, 1) Samples were taken from the same experiment and experimental system as the 

samples for T-RFLP analysis. Five mL of extraction solution (50 : 49.99 : 0.01 Methanol : Water : formic acid) was applied on top of the 

collection tubes. 2) Samples were collected for 1 min, centrifuged and freeze-dried. 3) Concentrated samples were analysed by ultra- 

high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF). 4) Statistical filtering of ion 

intensities enabled detecting qualitative and quantitative differences between extracts from plant-free bulk soil and plant-containing soil 

and identifying putative metabolites that are enriched in the rhizosphere. c, Photographs of the experimental system. Top: tubes after 4.5 

weeks of growth. Bottom: tubes after 3 weeks of growth taped onto petri-dishes to prevent cross contamination of metabolites and 

microbes. d, Schematic of the timing of sampling. Samples were collected simultaneously in saCO
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2
 (blue line) and eCO

2
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planting to assess effects of growth stage on the microbial and chemical 

rhizosphere effects (Fig. 5.1 d).  Samples for profiling of root-associated bacterial 

communities were collected by gently removing plants from the growth substrate 

and shaking them to eliminate loosely associated soil; samples for profiling of 

soil-based communities were collected from the centre of plant-free tubes at the 

approximate average depth of Arabidopsis roots (~350 mm; Fig. 5.1 c). Extracted 

DNA was used as a template for PCR amplification of the V5-V6-V7 region of the 

bacterial 16S rRNA gene, using fluorescently labelled T-RFLP primers. 

Communities were profiled by terminal restriction fragment length polymorphism 

analysis (T-RFLP; Fig. 5.1a). Cluster analysis by Pearson correlation revealed a 

relatively high degree of variability between replicas for both the plant-associated 

Figure 5.2 Impact of CO
2
 on the T-RFLP community profiles of root (a) and soil-associated (b) bacterial communities. Samples were 

collected from plant-free and plant-containing tubes after 24 days, 28 days, and 35 days of growth under saCO
2
 aCO

2
 or saCO

2
 conditions. 

Dendrograms were obtained by Pearson correlation cluster analysis of 16S T-RFLP patterns. The obtained clusters were examined for 

statistical similarity by similarity profile analysis (SIMPROF). Red lines and bars indicate clusters that are statistically similar (P < 0.05).  
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communities and the soil-based communities (Fig. 5.2). Nonetheless, the plant-

associated communities showed a higher degree of clustering by atmospheric 

CO2 concentration than soil-based communities, particularly at the second time-

point after planting (28 days). Subsequent analysis of population diversity by 

species richness and Shannon index revealed that the root-associated 

communities at the second time-point displayed a statistically significant increase 

in diversity with rising CO2 concentrations (Fig. 5.3). Conversely, CO2 did not 

have an effect on species diversity metrics of soil-based bacterial communities at 

any of the three time-points analysed. Hence, atmospheric CO2 has a 

measurable and statistically significant impact on root-associated bacterial 

communities, but does not influence the composition and diversity of bacterial 

soil communities. 

To determine the impacts of CO2 on the bacterial rhizosphere effect, i.e. 

the difference in community structure between root-associated and soil-based 

bacterial communities, non-parametric multidimensional scaling (nMDS) analysis 

was employed (Fig. 5.4 a). Subsequent statistical analysis of similarity (ANOSIM) 

was used to determine in how far distinct clustering patterns between root- and 

soil-based communities were significant (Fig. 5.4 a). At saCO2, the only 
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in black; data from root-associated 

communities (rhizosphere) are shown in 

green. Letters indicate statistically 

significant differences (Student’s T-test P 

< 0.05). 
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statistically significant rhizosphere effect was apparent at the third time-point (P 

= 0.016), whereas the rhizosphere effect at aCO2 was statistically significant at 

all three time-points (P = 0.016, P = 0.008, P = 0.024, respectively). At eCO2, the 

rhizosphere effect was borderline statistically significant at the first time-point (P 

= 0.14) and fully significant at the second and third time-point (P = 0.043, P = 

0.008, respectively). The T-RFs that drive the top 60% of variation between these 

differences are summarised in Table S5.1. To determine the size of the microbial 

rhizosphere effect the percentage of dissimilarity was calculated by SIMPER 

(Primer software), which is based on the Bray-Curtis measure of similarity 

(Clarke, 1993). Root-and soil-associated communities showed an increased 

dissimilarity at rising CO2 levels at the first and second time-point (Fig. 5.4 b), 

indicating that increasing atmospheric CO2 enhance the microbial rhizosphere 

effect. At the final time-point, however, the level of dissimilarities converged to 

the same level for all CO2 concentrations (Fig. 5.4 b). Overall, these results 

support the notion that changes in atmospheric CO2 concentration have a 

quantitative and qualitative impact on microbial rhizosphere effect. These impacts 

likely involve changes in rhizosphere chemistry due to quantitative and qualitative 

changes in root exudation patterns. This hypothesis can be investigated by un-

targeted chemical profiling of the rhizosphere soil at glacial-to-future CO2 

concentrations. 

Impacts of CO2 on the biochemical profiles of the rhizosphere. To analyse 

the impacts of CO2 on rhizosphere chemistry, samples were extracted by flushing 

the tubes for 1 min. with 5 mL extraction solution, containing 50% methanol and 

0.05% formic acid (Fig. 5.1 b). This extraction method does not lead to detectable 

damage of root cells, nor does it affect the viability of soil-based bacteria 

(Appendix 2; Petriacq et al., 2017). Analysis was performed using UPLC-Q-TOF 

MS in both ESI- and ESI+ modes, after which all ions were combined to assess 

the quantitative impacts of CO2 on the chemical rhizosphere effect (i.e. the 

number of ions that are statistically enriched in plant-containing soil; Chapter 2, 

Fig. 2.2). To this end, volcano plots were generated for each time-point and CO2 

conditions (Fig. 5.5 a). These plots present statistical significance of each ion 
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marker as a function of their fold-change, thus visualising the quantitative 

differences in chemistry between soil from plant-free tubes and soil from plant-

containing tubes. Using a statistical threshold of P < 0.05 (Welch’s t-test) and a 

cut-off value of > 2 fold-change, the numbers of rhizosphere markers that were 

enriched in samples from plant-containing tubes varied between 148 (aCO2, 

second time-point) to 403 (eCO2 first time points; Fig. 5.5 b). At the first time-point 

(24 days), the numbers of statistically significant rhizosphere markers increased 
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Figure 5.4. Impacts of CO
2
 on the microbial rhizosphere effect. 

Rhizosphere effects were quantified as the difference in community 

profile between bulk soil from plant-free tubes (open symbols) and plant 

roots plus adhering rhizosphere soil (closed symbols). a. Non-

parametric multi-dimensional scaling (nMDS) analysis of bacterial 

community composition at saCO
2
 (Top row; blue), aCO

2
 (middle row; 

black) and eCO
2
 (bottom row; green) at 3 different time-points 

(columns). Two-dimensional Kruskal stress values (2D e) at the top of 

the plots indicate model fit. P values at the bottom of the plots indicate 

statistical significance of differences between sample types (ANOSIM). 

b. Dissimilarity analysis between bulk soil and rhizosphere samples at 

saCO
2
 (black), aCO

2
 (blue) and eCO

2
 (green). Analysis was performed 

using the SIMPER function (Primer 7 software), which is based on the 

Bray-Curtis measure of similarity, using the top 60% of the variation in 

the data set.  
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with rising CO2 concentrations. This relationship between the number of 

rhizosphere ions and CO2 concentration was absent at the second time-point of 

sampling (28 days) and showed a negative correlation at the third time-point (35 

days; Fig. 5.5 b). Thus, the quantitative impact of CO2 on the biochemical 

rhizosphere effect varies according to the time-point of sampling.  

To study the qualitative impacts of CO2 on rhizosphere chemistry, the 

2,692 anions (ESI-) and 5,578 cations (ESI+) of the entire dataset were re-

Figure 5.5. Quantitative impacts of CO
2
 on the biochemical 

rhizosphere effect. Rhizosphere effects were quantified as the 

number of ions (UPLC-Q-TOF) showing a statistically 

significant increase in soil from plant-containing tubes 

compared to soil from plant-free tubes (Welch’ T-test; P < 0.05; 

> 2-fold). a. Volcano plots expressing the statistical significance 

between samples as a function of fold-difference of average ion 

intensity at different time-points (columns) and atmospheric 

CO
2
 concentrations (rows). Plots show values for the combined 

set of ions (both ESI
+ 

and ESI
-
). Shown in pink are ions above 

the cut-off values (P < 0.05 and > 2-fold change). b. Numbers 

of ions enriched in plant-free bulk soil or plant-containing soil. 

Numbers are based on the statistical cut-off values of the 

volcano plots.  -400
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analysed for statistically significant differences between all CO2/soil 

combinations, using ANOVA with Benjamini Hochman false discovery rate (FDR) 

correction (Fig. S5.1). This filter resulted in a total of 498 differentially abundant 

ions between all conditions (Appendix 3). For each time-point, this set of 498 ions 

was subjected to 2-way ANOVA, to select a subset of 174 ions that show a 

statistically significant interaction between CO2 x soil type. Subsequent Pearson 

correlation analysis resulted in a final selection of 59 marker ions, which show 

enrichment in plant-containing soil that varies between CO2 conditions (Fig. 5.6). 

These ions represent rhizosphere markers that are statistically influenced by 

atmospheric CO2 concentration. Putative identification and allocation of these 

Figure 5.6. Qualitative impacts of CO2 on the biochemical rhizosphere effect. After 1-way ANOVA (P < 0.05 + FDR) to select 498 ions 

showing statistically significant differences in abundance between all CO
2
/time-point/soil-type combinations, 2-way ANOVA (P < 0.05) 

was performed to select 174 ions showing a statistically significant interaction between CO
2
 x soil-type for all time-points. This selection 

was subjected to cluster analysis (Pearson correlation), resulting in a final selection of 59 ions that vary in rhizosphere abundance between 

CO
2
 conditions. a, Heatmap projection of ion clusters showing statistically significant variation in rhizosphere abundance between saCO

2
, 

aCO
2
 or eCO

2
 conditions at the three different time-points. Projected ion intensities represent average expression values per CO

2
/soil-

type combination (n = 5), row-normalized to the average and standard deviation across all samples. b. Putative identification of CO
2
-

influenced rhizosphere ions and allocation to metabolite classes. Pie diagrams show distributions of selected ions over the different 

metabolite classes (right).  
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markers to metabolic classes revealed that CO2 alters the biochemical 

composition of the rhizosphere in a concentration-dependent manner (Fig. 5.6; 

Table S5.2). While saCO2 changed the rhizosphere chemistry by an increase in 

putative (phospho)lipids and terpenoids, the changes induced by aCO2 and eCO2 

involved enrichment with a wider range metabolite classes, including putative 

lipids, flavonoids, terpenoids, alkaloids, and coumarins (Fig. 5.5). These results 

indicate that increasing atmospheric CO2 concentrations enhance the 

biochemical diversity of the rhizosphere.  

5.4 Discussion 

Root exudation chemistry drives the microbial diversity and function of the 

rhizosphere (Badri et al., 2009). Changes in atmospheric CO2 can alter exudation 

chemistry, causing changes in rhizosphere chemistry and microbial communities 

(see Chapter 4 for discussion). Over 60% of carbon exuded from roots can be 

degraded within hours of release (Uselman et al., 2000), which presents a 

challenge in verifying the origin of plant-exuded metabolites in non-sterile 

systems. Therefore, most studies of plant exudation chemistry are based on 

sterile hydroponic methods that limit bias from microbial metabolism (Kuijken et 

al., 2014; van Dam and Bouwmeester, 2016). While this allows accurate 

identification of plant exuded chemicals (Strehmel et al., 2014), these techniques 

neglect the contribution of microbe-derived chemical intermediates, which may 

be key to understanding the communication network between plants and 

rhizosphere microbes.  

This chapter exploits a new experimental system developed to enable un-

targeted profiling of rhizosphere chemistry from different plant-soil combinations 

(Pétriacq et al., 2017; Appendix 1). This experimental system was further adapted 

to investigate the effects of CO2 on both chemical and microbial rhizosphere 

profiles in this study (Fig. 5.1). T-RFLP community profiling revealed that rising 

CO2 concentrations increase the diversity of plant-associated bacterial 

communities (Fig. 5.2). Moreover, rising CO2 increased the size of the bacterial 

rhizosphere effect, as quantified by the dissimilarity between root-associated and 

soil-based bacterial communities, which increased with rising CO2 concentrations 

(Fig. 5.4). Using samples from the same experiment and experimental design, 
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analysis of rhizosphere chemistry revealed mostly qualitative differences, 

indicating an overall increase in biochemical diversity at increasing CO2 

concentrations (Fig. 5.5). Upon subsequent analysis, the ions contributing to 

CO2-dependent changes in rhizosphere chemistry could putatively be identified 

and annotated to different metabolic classes, including alkaloids, flavonoids, 

coumarins, lipids and terpenoids. These types of metabolites are consistent with 

previously reported chemistry from Arabidopsis root exudates (Strehmel et al., 

2014; Appendix 1). Together, these results show that atmospheric CO2 

concentrations shape the rhizosphere community of Arabidopsis, which coincides 

with qualitative changes in the rhizosphere chemistry. 

The current study did not apply a developmental correction (DC), despite 

evidence that i) CO2 directly influences Arabidopsis development (Mhamdi and 

Noctor, 2016; Chapter 3) and ii) that the developmental stage of Arabidopsis has 

profound impacts on root exudation chemistry (Micallef et al., 2009a; Chaparro 

et al., 2013). Accordingly, the observed impacts of increasing CO2 concentrations 

on diversity of root-associated bacteria and the microbial rhizosphere effect, as 

well as the qualitative effects of CO2 on rhizosphere chemistry, may be a 

consequence of differences in root development. In theory, the current dataset 

allows for DC by comparing the effects of CO2 between time-point 1 (24 days) of 

the eCO2 samples, time-point 2 (28 days) of the aCO2 samples, and time-point 3 

(35 days) of the saCO2 samples. However, differences in the timing of soil 

sampling were found to have major confounding effects on soil chemistry and 

related microbial communities (data not shown), which is why DC was not applied 

in this experiment. Alternatively, one could apply DC by offsetting the timing of 

germination. However, this type DC would risk introducing variation by 

differences in microbial and chemical composition of the soils at the start the 

incubation. Furthermore, this alternative DC would still not prevent differences in 

amount of time by which heterotrophic soil microbes condition the soil. Either way, 

the variation introduced by DC has a major confounding impact on microbial soil 

communities, thereby masking the true effects of CO2 on the microbial and 

chemical composition of the rhizosphere. 
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The differential impact of saCO2 on rhizosphere chemistry could largely be 

attributed to (phosho)lipids. Exudation of fatty acids have been reported in maize 

roots (da Silva Lima et al., 2014) and Arabidopsis (Strehmel et al., 2014; Petriack 

et al. 2017; Appendix 1). The role of lipids in rhizosphere signalling is not fully 

understood. However, root-exuded phospholipid surfactants have been reported 

to benefit the plant by altering the physiochemical properties of the rhizosphere 

to increase soluble phosphorus (P) and retain water (Read et al., 2003). Lipid 

molecules have also been implicated in plant-rhizobia interactions. In Medicago 

truncatula lipid signalling are essential for the production of NOD factors by 

rhizobia and root nodule development (Franssen et al., 1992; Charron et al., 

2004). Lipid signals also play an important role during interactions with 

mycorrhizal fungi (Drissner et al., 2007; Wang et al., 2012). Although Arabidopsis 

does not associate with rhizobia nor mycorrhiza, plant-derived lipids in the 

Arabidopsis rhizosphere could promote other, undescribed, symbiotic 

relationships, the importance of which may be exaggerated in saCO2. While the 

bacterial rhizosphere effect was less pronounced at saCO2 (Fig. 5.3), the T-RFLP 

data are not sensitive enough to provide information as to how specific 

rhizobacteiral taxa responded. Another possibility is that these lipids are not 

directly plant derived. A recently discovered lipid uptake system, which depends 

on the action of the epidermal aminosphospholipid ATPase10 (ALA10), indicates 

that plants can recover soil lipids (Poulsen et al., 2015). Whether ALA10 

represents a mechanism to limit loss of energetically costly membrane lipids, or 

whether this uptake system enables plants to obtain C from rhizosphere lipids, is 

not known (Visser et al., 2010). As these lipids are rapidly metabolised, it is 

tempting to speculate that ALA10 in the roots recovers carbon from soil microbes 

under the carbon-limiting conditions of saCO2.  

The differential impact of eCO2 on rhizosphere chemistry involved a 

notable contribution of flavonoids (Fig. 5.5). An increase in flavonoid exudation 

has been reported previously under eCO2 conditions. Haase et al. (2007) 

reported a 167% increase in exudation of phenolic compounds (predominantly 

flavonoids) from Phaseolus vulgaris at eCO2 (Haase et al., 2007). Exuded 

flavonoids are best known for their chemotactic effects on beneficial rhizosphere-

inhabiting bacteria, such as Rhizobia (Sugiyama and Yazaki, 2014). However, 
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flavonoids have also been reported to attract soil-borne pathogens. A classic 

example comes the dual attraction of Rhizobia and pathogenic Phytophthora 

sojae to isoflavonoids in root exudates from soybean (Morris et al., 1998). 

Flavonoids, such as the phytoalexin precursor naringenin, can also alter spore 

germination of Fusarium, which can play different roles in the rhizosphere, 

ranging from mutualistic to plant-pathogenic (Ruan et al., 1995). Hence, plant-

derived flavonoids can act as powerful semio-chemicals in the rhizosphere. 

Flavonoids are often stored in plants as non-active glycosides in the vacuole of 

the plant cell (Aoki et al., 2000; Saito et al., 2013). Hydrolysation of glycosylated 

flavonoids often determines the fate and biological activity of the compound, 

which can occur pre- or post-exudation from roots through the action of plant or 

microbial beta-glycosidases, respectively (Shaw et al., 2006). Interestingly, the 

selection of CO2-dependent rhizosphere markers putatively identified both 

glycosylated and non-glycosylated forms of flavonoids, which were mostly 

associated with eCO2 (Table S5.2). Microbial conversion of plant-derived 

flavonoids and/or de novo synthesis of microbial flavonoids in the rhizosphere are 

considered to play an important role in soil ecology (Rao and Cooper, 1994). 

These dynamic processes may also explain why some rhizosphere-enriched 

flavonoids are not annotated as plant-derived (Table S5.2). Ultimately, 

differences in rhizo-deposition of flavonoids at eCO2 may not only alter the 

selection, recruitment and maintenance of specific rhizobacterial taxa, they may 

also influence the activity of specialist rhizosphere microbes and modify their 

effects on plants. Indeed, Chapter 4 of this thesis showed that Arabidopsis roots 

sustain higher levels of colonisation by the rhizobacterial strain Pseudomonas 

simae WCS417 at eCO2, which was associated with a mildly pathogenic effect 

on plant growth.  

While the T-RFLP profiling was sufficient to detect statistically significant 

changes in bacterial community structure by CO2 (Figs. 5.3 and 5.4), the 

technique is based on a relatively small number of detected T-RFs (Fig. 5.2; 

Table S5.2). Since one single T-RF may represent many microbial taxa, the 

technique has limited sensitivity for detection of changes in microbial diversity 

(Dickie and Fitzjohn, 2007). This is supported by the fact that Illumina sequencing 

of the same aCO2 samples from this experiment yielded over 3,800 bacterial 
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operational taxonomic units (Appendix 1; Petriacq et al. 2017). Moreover, the T-

RFLP analysis does not reveal the identification of the taxa contributing to the 

observed community shifts. A more comprehensive impression of the CO2-

dependent changes in rhizobacterial community structure would require next-

generation sequencing applications (Nesme et al., 2016). Apart from sequencing 

of 16S rRNA genes (Appendix 2; Petriacq et al., 2017), recent meta-genomic 

applications would not only enable in depth analysis of taxonomic communities, 

but also detect quantitative changes in specific microbial genes and related 

microbial functions (Nesme et al., 2016). Furthermore, additional chemical 

profiling of the samples could increase the reliability of compound identification. 

For instance, the use of tandem MS analysis would allow for fragmentation of 

ions and potentially provide more certainty about the putative identities of single 

compounds (Sawada et al., 2012). Additional use of nuclear magnetic resonance 

(NMR) would enable structural validation of putative compounds (Leiss et al., 

2011). Finally, metabolic flux analysis using carbon pulse labelling with 13CO2 

would enable inferring which rhizosphere compounds are derived from 

photosynthetic carbon (Allen, 2016). All these genomic and metabolomic 

techniques are compatible with the experimental design used on this study.  

In conclusion, this Chapter provides proof-of-concept that the employed 

experimental system enables the linking of CO2-induced changes in soil microbial 

community structure to changes in rhizosphere chemistry. Increasing the 

analytical power with the above-mentioned techniques could lead to the 

identification of novel semio-chemcials that drive these CO2-dependent impacts 

on microbial soil communities. 

 

 



  

 

Table S5.1 T-RF values that explain 60% of the dissimilarity between rhizosphere and control soil at a range of CO2 concentrations and time-points 

     

  24 days 28 days 35 days 

Enriched in 
rhizosphere 

saCO2 43.66, 285.05, 56.11, 412.6, 414.37, 51.34, 79.19 286.32, 75.59 73.84† 

aCO2 285.05, 79.19, 40.44†, 43.66, 412.6, 414.37, 409.27 61.64, 285.05, 414.37†, 73.84† 61.64†, 75.59, 279.38†, 77.86 

eCO2 76.49†, 79.19, 77.86, 285.05 286.32, 75.59, 61.64, 79.19, 283.24, 406.47, 56.11 414.37, 237.61†, 75.59, 287.83†, 286.32, 61.64† 

Enriched in soil 

saCO2 56.73* 61.64, 43.66, 79.19, 54.79, 283.24, 285.05, 56.11 79.19, 285.05, 286.32, 232.42*, 281.66, 283.24, 40.44, 412.6 

aCO2 73.84*, 286.32, 75.59 283.24*, 75.59, 56.11, 281.66, 54.79 281.66, 409.27, 40.44, 56.11, 412.6 

eCO2 72.74*, 75.59, 286.32, 73.84* 281.66, 285.05*, 76.49 285.05*, 412.6, 409.27, 40.44, 281.66, 56.11 

* TRF absent in rhizosphere 
† TRF absent in control soil 



 

Table S5.1 Putative identification of rhizosphere ion markers (m/z values; UPLC-Q-TOF) that are statstically influenced by atmospheric CO2  
  

          

Treatment a P value b 
Detected 

m/z c 
RT (min) c  Adducts d Predicted mass d Error (ppm) d Putative compound d Predicted formula d Pathways e 

  24 days         

saCO2  

1.7E-03 663.454 4.6 [M+H]+ 680.463 9 PG(12:0/17:0) C35H69O10P Lipid 

2.3E-04 648.551 3.8 [M+H]+ 647.562 27 DG(19:0/0:0/19:0) (d5) C41H75D5O5 Lipid 

2.7E-04 685.433 4.6 [M+H-H2O]+ 702.447 17 PG(13:0/18:3(6Z,9Z,12Z)) C37H67O10P Lipid 

0.0E+00 737.545 4.6 [M+H]+ 736.525 16 PG(14:0/19:0) C39H77O10P Lipid 

0.0E+00 736.542 4.6 [M+H]+ 735.541 9 PS(O-18:0/15:0) C39H78NO9P Lipid 

5.8E-04 764.522 4.6 [M+H]+ 763.515 1 PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C43H74NO8P Lipid 

2.5E-03 684.529 4.2 [M+H]+ 683.525 5 
1-tetradecanyl-2-(8-[3]-ladderane-octanyl)-sn-
glycerophosphoethanolamine 

C39H74NO6P Lipid 

4.5E-03 656.422 4.2 [M+H]+ 655.421 10 PE(12:0/18:4(6Z,9Z,12Z,15Z)) C35H62NO8P Lipid 

8.1E-04 706.496 4.6 [M+H]+ 705.495 8 PS(O-16:0/15:1(9Z)) C37H72NO9 Lipid 

1.7E-03 707.499 4.6 [M+H]+ 706.479 18 PG(17:0/14:1(9Z)) C37H71O10P Lipid 

4.2E-02 763.517 4.6 [M+H]+ 762.520 13 PE(19:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C44H75O8P Lipid 

2.6E-02 706.496 5.2 [M+H]+ 705.495 8 PS(O-16:0/15:1(9Z)) C37H72NO9 Lipid 

2.9E-02 466.274 2.6 [M+H-2H2O]+ 501.286 2 PE(20:4(5Z,8Z,11Z,14Z)/0:0) C25H44NO7P Lipid 

4.1E-03 765.560 5.2 [M+H]+ 764.557 4 PG(13:0/22:0) C41H81O10P Lipid 

3.2E-02 632.454 4.2 [M+H-2H2O]+ 667.455 19 PG(14:0/14:0) C34H68O10P Lipid 

2.9E-02 664.459 4.6 [M+H]+ 663.448 5 PS(P-16:0/12:0) C34H66NO9P Lipid 

3.1E-11 251.128 2.6 [M+H]+ 250.121 0 Ubiquinone-1 C14H18O4 Redox 

1.5E-03 565.216 2.2      Unknown 

3.2E-02 946.103 0.8      Unknown 

35 days         
8.6E-03 1016.212 1.0      Unknown 

4.9E-02 562.237 2.7      Unknown 

3.3E-02 922.407 2.4      Unknown 

  24 days                 

aCO2  

6.4E-06 325.186 4.4 [M-H]-     326.1882 15 AA861 C21H26O3 Quinone 

8.2E-04 333.157 5.2 [M+H]+ 332.149 2 Glutaminyl-Tryptophan C16H20N4O4 Amino acid 

4.2E-02 301.140 1.9 [M+H]+ 300.136 10 4'-Hydroxy-5,7-dimethoxy-8-methylflavan C18H20O4 Flavonoid 

7.4E-03 438.186 1.7 [M+H-H2O]+ 455.192 6 PS(6:0/6:0) C18H34NO10P Lipid 

1.6E-02 393.175 3.7 [M-H]- 394.184 5 cis-3-Hexenyl b-primeveroside C17H30O10 Lipid 

4.2E-02 326.189 4.4      Unknown 

28 days         
8.0E-03 499.242 1.2 [M-H]- 500.241 16 Tigloylgomicin H C28H36O8 Lignan 

2.0E-03 703.376 3.6 [M+Na]+ 680.398 16 Gingerglycolipid C C33H60O14 Lipid 

35 days         

6.6E-04 357.148 3.5 [M+H-2H2O]+ 392.162 4 
6-Butyryl-5,7-dihydroxy-8-(3',3'-dimethylallyl)-4-
phenylcoumarin 

C24H24O5 Coumarin 

  24 days                 

eCO2  

6.12E+02 612.387 3.7 [M+H]+ 611.3683 17 Zizyphine A C33H49N5O6 Alkaloid 

9.1E+02 906.230 1.8 [M-H]- 905.235 13 
Cyanidin 3-O-(2"-xylosyl-6"-(6"-caffeoyl-glucosyl)-
galactoside) 

C41H45O23 Flavonoid 

2.8E+02 275.150 1.8 [M-H]- 276.159 3 p-Coumaroylagmatine C14H20N4O2 Coumarin 

5.3E+02 534.292 2.3 [M+NH4]+ 516.257 2 Eriojaposide B C25H40O11 Terpenoid 

3.7E+02 371.157 3.8 [M-H]- 372.157 19 6,7-dihydroxy Bergamottin C21H24O6 Coumarin 

4.2E+02 421.264 3.2 [M+H]+ 818.531 12 PI(P-16:0/18:2(9Z,12Z)) C43H79O12P Lipid 

8.7E+02 873.303 2.5 [M-H2O-H]- 892.300 24 Sempervirenoside A C42H52O21 Flavonoid 

5.1E+02 514.220 2.1 [M+H]+ 513.207 11 trans-Zeatin-O-glucoside riboside C21H31N5O10 Terpenoid 

6.1E+02 612.915 3.7 [M+2H]2+ 1223.812 2 KDNalpha2-3Galbeta1-4Glcbeta-Cer(d18:1/24:0) C63H117NO21 Lipid 



  

 

2.9E+02 289.165 2.1 [M+Na-2H]- 268.183 25 4-[1-Ethyl-2-(4-methylphenyl)butyl]phenol C19H24O Polyketide 

9.7E+02 972.645 3.4 [M+H]+ 971.631 7 MIPC(d18:0/18:0) C48H94NO16P Lipid 

9.3E+02 928.623 3.4 [M+Na]+ 905.626 8 C24:1-OH Sulfatide C48H91NO12S Lipid 

4.9E+02 494.317 3.2 [M+H]+ 493.304 11 Zygadenine C27H43NO7 Alkaloid 

5.06E+02 506.319 3.1 [M+H]+ 505.3168 10 PC(17:2(9Z,12Z)/0:0) C25H48NO7P Lipid 

2.9E+02 285.168 4.0  [M+2Na+H]3+ 852.479 3 PI(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) C45H73O1 Lipid 

3.3E+02 331.250 3.3      Unknown 

3.3E+02 331.214 2.6      Unknown 

28 days         

3.3E-02 922.407 2.4 [M+H-H2O]+ 939.391 19 Lyciumin D C45H64CoN6O12 Lignan 

3.0E-02 202.181 0.6 [M+H]+ 201.173 1 11-amino-undecanoic acid C11H23NO2 Lipid 

3.9E-04 617.197 1.4 [M-H2O-H]- 636.205 15 Linoside B C30H36O15 Flavonoid 

9.3E-03 789.182 1.6 [M+CH3COO]- 730.175 8 Isorientin 4'-O-glucoside 2''-O-p-hydroxybenzoagte C34H34O18 Flavonoid 

4.2E-02 301.140 1.9 [M+H]+ 300.136 10 4'-Hydroxy-5,7-dimethoxy-8-methylflavan C18H20O4 Flavonoid 

2.9E-02 710.306 2.4 [M+2Na]2+ 1374.630 2 Agavoside G C62H102O33 Terpenoid 

35 days         

1.21E-02 287.062212 0.7 [M-H2O-H]- 306.074 23 (+)-Gallocatechin C15H14O7 Flavonoid 

1.63E-03 213.145422 2.1 [M+H]+ 212.1412 14 12-oxo-10E-dodecenoic acid C12H20O3 Lipid 

2.23E-02 657.28663 2.7 [M+H-H2O]+ 674.2938 6 Trichilin A C35H46O13 Terpenoid 

2.46E-02 970.209516 1.4           Unknown 

a : conditions for which the metabolic markers showed a statistically significant accumulation between saCO2 and aCO2    
b : P values indicate levels of significance from FDR adjusted ANOVA and subsequent two-factor ANOVA (P < 0.01)    
c : accurate m/z values with their corresponding retention time (RT) detected by UPLC-qTOF-MS     
d : predicted parameters from the METLIN database using the detected accurate m/z. Adducts : type of ion generated by electrospray ionization; Δppm: difference between observed and theoretical 
monoisotopic masses.  

 

e : putative metabolites and their corresponding pathways were validated by information from the PubMed chemical 
database 

   

 DG: Diradylglycerols; MIPC: mannosyl inositol phosphorylceramide; PC: Phosphatidylcholine; PE: Phosphatidylethanolamine; PG: Phosphoglycerol; PI: phosphatidylinositol; PS: 
Phosphatidylserine 
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Chapter 6: Final Discussion  

6.1 Summary of findings 

This thesis aimed to explore the extent to which CO2 concentration in the 

atmosphere influences the interactions of Arabidopsis with pathogenic and 

beneficial microbes. I have demonstrated that changes in atmospheric CO2 

concentration alter the defence-related metabolome in leaves and change the 

chemical profile of the rhizosphere. The impacts of these changes are 

summarised in Fig. 6.1, which integrates the results throughout this thesis to 

demonstrate the mechanisms by which microbial interactions are affected by CO2 

concentration.  

By monitoring growth of Arabidopsis at saCO2, aCO2 and eCO2, I was able 

to implement a plant developmental correction (DC), which eliminates the indirect 

effects of CO2 concentration on development that cause age-related resistance. 

Consequently, DC allowed me to address the direct effects of CO2 concentration 

on the immune system of Arabidopsis and subsequent resistance against 

pathogens with contrasting infection strategies. As described in Chapter 3, eCO2 

increased resistance to both biotrophic Hyaloperonospora arabidopsidis (Hpa) 

and necrotrophic Plectosphaerella cucumerina (Pc; Fig. 6.1 b). These resistance 

phenotypes were associated with an upregulation of the phytohormones SA and 

JA. Subsequent mutant analysis revealed that the eCO2-induced resistance to Pc 

is fully dependent on JA signalling, whereas eCO2-induced resistance to Hpa 

involves additional mechanisms than SA-dependent defences alone. Thus, after 

elimination of age-related resistance, eCO2 directly boosts phytohormonal-

dependent defence signalling, contributing to enhanced resistance against both 

necrotrophic and biotrophic pathogens. Further DC experiments in Chapter 3 

revealed that development-independent resistance to Hpa at saCO2 was not 

dependent on SA signalling, but associated with enhanced accumulation of 

metabolites that regulate cellular redox status. Subsequent experiments 

uncovered a role for intracellular ROS in saCO2-induced resistance to Hpa, which 

are derived from the photo-respiration enzyme glycolate oxidase (GOX). This 

study is one of the first of its kind. Critically, it is the only study that has removed 

bias from differences in plant developmental stage. This thesis has also provided 
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new insight into the mechanisms by which C3 plants at saCO2 glacial 

environments have responded to pathogen challenge. 

Chapter 4 explored the impacts of atmospheric CO2 on colonisation by 

two beneficial soil bacteria and corresponding plant responses. This study 

eCO
2
 

saCO
2
 

JA augmentation SA augmentation 

ISR ISR growth growth Exudation signals 

High PGPR recruitment  Low PGPR recruitment  
Coumarins 

Necrotroph Biotroph 

Lipids 

Defence Defence 

Necrotroph Biotroph 

Soil function Soil function 

Peroxisomal ROS 
increases 

? 

a 

b 

? 

Figure 6.1 Model of CO2-dependent plant-microbe interactions. a. saCO
2
 has differential impacts on plant defence, 

microbial interactions and changes in the function of soil microbes through changes in plant-mediated rhizosphere 

chemistry. These effects are illustrated with arrows and summarised in the figure. b. eCO
2
 enhances plant defence 

through changes in phytohormone physiology, changes in the function of soil microbes, and through altered plant-

mediated rhizosphere chemistry. Changing interactions are illustrated with arrows and summarised in the figure. Key; JA 

– jasmonic acid; SA – salicylic acid; ROS – reactive oxygen species; ISR – induced systemic resistance; PGPR – plant 

growth promoting rhizobacteria. 
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revealed that colonisation of the specialist rhizosphere coloniser Pseudomonas 

simiae WCS417 increased with rising CO2 concentrations, whereas rhizosphere 

colonization by the saprophytic Pseudomonas putida KT2440 strain was 

unaffected by saCO2 and eCO2. DC appeared to have no effect on the CO2-

depedendent colonization by WCS417 bacteria. Interestingly, depending on the 

nutritional status of the soil, the CO2-dependent colonisation by WCS417 was 

associated with changes in WCS417-induced growth and resistance responses. 

In combination, this study has shown that CO2 not only influences the colonisation 

of selected rhizobacteria, but also affects the host plant response to these 

bacteria (Fig. 6.1). 

Finally, Chapter 5 addressed the global impacts of CO2 on microbial and 

biochemical rhizosphere composition, using a novel experimental system, which 

I helped develop (Appendix 1; Pétriacq et al. 2017). The changes observed in 

chemical rhizosphere profiles at eCO2 was based on increased abundance of 

secondary metabolites, such as alkaloids, coumarins and flavonoids. Changes in 

bacterial community profiles at saCO2 were related to an increased presence of 

lipids and terpenoids in the rhizosphere. Together these results indicate clear 

impacts of CO2 on the microbial and biochemical rhizosphere effect (Fig. 6.1).  

While specific limitations of each approach have been considered in the 

discussion section of each experimental Chapter, a major outcome of this PhD 

study is the emerging need to address how distinct variables of global change, 

such as increased temperature and drought stress, may interact with the effects 

of eCO2 on plant-microbe interactions. Another important discussion point 

emerging from this PhD study is how CO2 influences the interaction between 

above- and below-ground plant responses to other organisms, including 

rhizosphere microbes, leaf pathogens, herbivorous arthropods and pollinators.  

 

6.1 Interactions between below- and above-ground plant defences 

In light of the data presented in this thesis, an emerging theory is that the 

modified immune status of above-ground tissues at eCO2 or saCO2 are in part 

due to the impacts of CO2 on ISR-eliciting rhizosphere microbes. It is evident that 
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eCO2 increases root colonisation by PGPR (as seen in Chapter 4). If certain 

native soil microbes respond to eCO2 by increased rhizosphere colonisation, this 

could result in increased levels of ISR, which may in turn explain the changes in 

responsiveness to JA and SA, that results in broad-spectrum resistance against 

necrotroph and biotrophic pathogens (Chapter 3). While P. simiae WCS417-

mediated ISR was still detectable at eCO2 against Pc (Figure 4.5), the relatively 

high basal resistance against Pc made it difficult to assess whether ISR was 

enhanced in comparison to aCO2. If the soil microbiome is responsible for 

enhanced Pc resistance at eCO2, this could explain possible disparities within the 

literature about the effects of CO2 on aboveground disease resistance (Chapter 

1). As was shown in Chapter 4 (Fig. 4.5), ISR not only depends on atmospheric 

CO2 concentration, but it also depends on the nutritional status of the soil. 

Furthermore, in studies where eCO2 repressed plant immunity, it is plausible that 

some normally commensal or beneficial rhizosphere microbes become 

detrimental to the host plant, weakening plant development and resistance 

against aboveground diseases. Indeed, under conditions of eCO2 and nutrient-

poor soil, P. simiae WS417 not only displayed strongly increased rhizosphere 

colonisation, but it also repressed plant growth (Chapter 4; Fig. 4.4). 

 Soil processes are rarely considered in studies regarding the impacts of 

eCO2 on above-ground disease resistance. Repeating the experiments described 

in Chapter 3 in a sterile growth system would help to address the contribution of 

the rhizosphere microbiome to eCO2-induced resistance in the leaves. This is 

relevant as functional changes in the soil will be dependent on other 

environmental factors, such as soil nutrient availability and other environmental 

stresses that are likely going to become more prevalent due to man-made global 

change (O3, temperature, drought, extreme weather events and nutrient 

limitations). Furthermore, some symbiotic relationships, such as plant-mycorrhiza 

interactions, are able to mitigate environmental plant stress (Rodriguez et al., 

2004). In that context, it is plausible that improved recruitment of beneficial soil 

microbes under eCO2 could enhance crop tolerance against climate change-

related environmental stresses and resist newly emerging diseases (Fig. 6.1 b). 

Plant responses to infection under saCO2 conditions are rarely studied. 

Interestingly, plants grown at saCO2 expressed increased resistance to the 
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biotrophic pathogen Hpa, while basal defence against the necrotrophic fungus Pc 

was greatly diminished (Chapter 3). Even more surprisingly, P. simiae WCS417 

induced susceptibility against Pc at saCO2 (Chapter 4). Resistance against Hpa 

was associated with increased peroxisomal ROS production, suggesting that 

photorespiration plays a major role in augmenting defence in a CO2-limited 

environment (Fig. 6.1 a). Transcription of photorespiration-related genes is 

increased at saCO2 (Li et al., 2014c), and photorespiration has been shown to 

play a role in non-host resistance at aCO2 (Rojas et al., 2012). Due to the 

repeated exposure of plants to saCO2 in recent evolutionary history, C4 

photosynthesis has developed as a strategy to maximise growth under CO2-

limited conditions (Edwards and Ogburn, 2012; Li et al., 2014c). Plants that did 

not develop C4 may have retained photorespiration to provide a competitive 

advantage in environments of high biotic stress. Indeed, investment in defence 

metabolites is higher in C3 plants at saCO2 (Forkelova et al., 2016; Huang et al., 

2017) and transcription of many defence-related genes is constitutively higher (Li 

et al., 2014c). This advantage would only manifest itself in certain habitats, where 

biotrophic but not necrotrophic pathogens are prevalent, for instance at moderate 

temperatures and relatively high humidity. The fact that plants at saCO2 were 

more susceptible to Pc (Chapter 3; Fig. 3.1) which became even more 

pronounced after root colonisation P. simiae (Chapter 4; Fig. 4.5), suggests that 

there was a cost to GOX-dependent saCO2-induced resistance. 

Communication with beneficial rhizobacteria requires targeted defence 

signalling (Zamioudis and Pieterse, 2012), as does defence against necrotrophic 

pathogens (Antico et al., 2012). In light of the results presented in Chapter 4, 

simultaneous management of both above- and below-ground interactions at 

saCO2 may be incompatible. In this respect, it would be useful to assess the 

impacts of saCO2 on plant interactions with PGPR and necrotrophic leaf 

pathogens, and assess whether the observed additive effects of saCO2 on 

Arabidopsis susceptibility to Pc are i) specific to P. simiae and ii) specific to Pc.  
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6.2 Impacts of interactions between eCO2 and other environmental 

variables on plant-microbe interactions. 

Generally, increases in atmospheric CO2 have positive impacts on plant 

development. However, abiotic stresses associated with global change, such as 

increases in temperature, ozone (O3) and drought stress tend to lessen the 

beneficial effects of eCO2 on plant growth (Shaw et al., 2002; Eastburn et al., 

2010, although see Tiedemann 2000). As many global change-associated factors 

occur concurrently, it is important to understand their interactions, particularly in 

relation to disease interactions. However, multi-factor studies increase the 

variability of already complicated datasets, making inference on interactive 

effects problematic. For instance, concurrent exposure to heat and drought stress 

profoundly changes the transcriptomic responses of plants to viral infection 

(Prasch and Sonnewald, 2013). This thesis has described and characterised 

several effects CO2 on the physiology of Arabidopsis, and the consequences 

thereof, on interactions with pathogens and rhizosphere microbes. Future 

research needs to focus on how these eCO2 responses manifest themselves in 

interaction with other climate change-related environmental stresses. 

6.2.1 Elevated Ozone 

Trophospheric Ozone (O3) concentration has risen from pre-industrial 

levels of 10 ppb to 40 ppb (Stevenson et al., 2006). Tropospheric O3 has a 

substantial contribution to global warming, both as a greenhouse gas (GHG) and 

a regulator of other GHGs (IPCC, 2013). O3 also causes oxidative damage in 

plants, reduces carbon assimilation and impairs RuBisCO activity (Iriti and Faoro, 

2008). The extent by which O3 damages plants depends on the plant species 

(Krupa et al., 2000; Tai et al., 2014), making it challenging to generalise impacts 

of O3 on global agricultural production. However, it has been estimated that O3 

pollution already causes substantial losses in major crop species, including winter 

wheat, rice, maize and soybean (Wang et al., 2007; Van Dingenen et al., 2009; 

Avnery et al., 2011). These adverse effects of O3 are  projected to get worse 

under future climate scenarios (Van Dingenen et al., 2009; Avnery et al., 2011).  

Like eCO2, O3 can have both positive and negative impacts on disease 

severity. This variability may be due to the fact that O3 is directly toxic to many 
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pathogens, such as fungal spores or bacteria (Hibben and Stotzky, 1969; 

Manning and v. Tiedemann, 1995; Paul et al., 2002). In addition, O3 affects 

plants, potentially altering their ability to resist pests and diseases (Krupa et al., 

2000). Furthermore, eO3 can reduce the CO2 fertilisation effect and lessen the 

defence-enhancing effects of eCO2 on plants (Eastburn et al., 2011). For 

example, in conjunction with eO3, the positive effects of eCO2 on spring wheat 

resistance to Puccinia recondita rust were reduced (Tiedemann and Firsching, 

2000). Enhanced resistance in potato against Phytophthora infestans at eCO2 

was also reversed by simultaneous exposure to eO3 (Plessl et al., 2007). In 

barley, positive effects of both eCO2 and eO3 on downy mildew resistance were 

lost when the two were combined (Mikkelsen et al., 2014), suggesting complex 

mechanistic interactions. Conversely, in soybean, the defence-enhancing effects 

of eCO2 against downy mildew remained unaffected by eO3, further highlighting 

the pathosystem-specific nature of these interactive effects (Eastburn et al., 

2010). While it should be noted that O3 is one of the more widely studied factors 

of global climate change, the exact mechanisms by which it influences disease 

resistance remain poorly understood. 

Belowground, eO3 has been reported to stimulate C rhizodeposition 

(McCrady and Andersen, 2000). As discussed in Chapters 4 and 5, 

rhizodeposition of C is increased at eCO2. While various studies have shown that 

eO3 has limited impacts on microbial soil communities (Dohrmann and Tebbe, 

2005; Dohrmann and Tebbe, 2006), effects on community structure and C 

utilisation by rhizosphere microbes have been recorded, such as in a rice paddy 

system (Chen et al., 2010). Furthermore, Li et al. (2013) failed to find changes in 

the microbial rhizosphere community of wheat at eO3, but they did find changes 

in the abundance of functional genes in the rhizosphere through transcriptomic 

analysis (Li et al., 2013), suggesting that the microbial soil function is not 

necessarily dependent on community structure alone. Indeed, early work on the 

effects of eO3 on soil microbes revealed that phosphatase activity of specialised 

bacteria is influenced by O3 concentration, while other bacteria remained largely 

unaffected (Shafer, 1988). O3 also changes microbial soil activities in conjunction 

with eCO2. For instance, in aspen and birch rhizospheres, enhanced microbial 

respiration at eCO2 was abolished by eO3 (Phillips et al., 2002). Similar effects 
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were reported for cellulose digesting activity (Larson et al., 2002). Clearly, more 

research is required to identify i) the role of plants in O3-induced effects on soil 

microbes and ii) the impacts of interactions between eCO2 and eO3 on the 

taxonomic structure and activity of the soil microbiome.  

6.2.2 Elevated temperature 

While moderate increases in temperature can change the developmental 

rate and seasonality of plants (Korner and Basler, 2010), extreme temperature 

events, which are predicted to occur more widely and frequently due to climate 

change (Luber and McGeehin, 2008), are almost always detrimental to plant 

production (Bauweraerts et al., 2013; Hatfield and Prueger, 2015). It is estimated 

that global crop production will decrease around 10% by 2050 due to global 

warming alone (Tai et al., 2014). Elevated temperature (eTemp) favours infection 

by fungal pathogens, such as Fusarium verticillioides (Murillo-Williams and 

Munkvold, 2008), although quantitative effects of eTemp on plant disease 

depends on the plant- pathogen interaction in question  (Luck et al., 2011). 

Increased temperatures may intensify disease pressure, (Sharma et al., 2007; 

Evans et al., 2008), and increase pathogen virulence (Laine, 2008). Host defence 

responses are attenuated at higher temperatures, resulting in greater disease 

symptoms (Wang et al., 2008), due to inhibited effector recognition by 

temperature-sensitive resistance (R) genes (Zhu et al., 2010). In contrast, some 

R genes, such as Xa7 in rice, are more effective at eTemp (Webb et al., 2010). 

Hence, eTemp can have wide-ranging impacts on plant diseases, which depends 

on the nature of the interaction (McElrone et al., 2010; Melloy et al., 2014), but 

the majority of studies points to an increase in disease severity by eTemp 

(Eastburn et al., 2010; Shin and Yun, 2010; Pugliese et al., 2012; Ferrocino et 

al., 2013; Mikkelsen et al., 2014). 

Although eCO2 alone can increase host-pathogen resistance (Chapter 3), 

this can be countered by eTemp. To date, most studies examining combined 

exposure to eCO2 and eTemp report contrasting impacts on plant disease. For 

instance, eCO2 was unable to mitigate eTemp-induced susceptibility to Fusarium 

wilt resistance in lettuce (Ferrocino et al., 2013), whereas eCO2 can mitigate the 

negative effects of eTemp on resistance of barley against spot blotch disease 
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(Mikkelsen et al., 2014). Furthermore, eCO2 and eTemp can have synergistic 

and/or additive effects on disease. For instance, combined exposure of zucchini 

to eTemp and eCO2 increased Podosphaera powdery mildew growth and 

virulence (Pugliese et al., 2012). On the other hand, synergic and/or additive 

effects of combined eCO2 and eTemp exposure on disease resistance have been 

recorded as well, as was the case for the tobacco - potato virus X interaction 

(Aguilar et al., 2015). In some cases, increased disease at eCO2 was mitigated 

by eTemp. For example,  eTemp countered eCO2 induced resistance against 

Fusarium crown rot in wheat, which was related to developmental plant stage 

(Melloy et al., 2014). A similar interaction has been reported between sweetgum 

and Cercospora (McElrone et al., 2010). Overall these data suggest a range of 

different effects with a range of different outcomes, depending on the host-

pathogen interaction. Clearly, further study regarding the interactive effects of 

eTemp and eCO2 is required to predict the combined impacts on agricultural 

systems and develop effective control strategies. In this context, it would help to 

study pathogens with different lifestyles, as is addressed in Chapters 3 and 4. 

Comparing pathogens of different lifestyles may help to increase our 

understanding of the mechanisms by which the plant immune system is affected 

by combined eTemp and eCO2 conditions. 

Temperature also influences microbial abundance and activity in 

rhizosphere soil. For instance, fungal abundance in a C3 grass dominated field 

system increased at eTemp, while bacterial abundance decreased under these 

circumstances (Castro et al., 2010). Interestingly, combined exposure to eCO2 

and eTemp resulted in increased bacterial abundance. In a different grassland 

ecosystem, similar patterns were observed where fungal communities were 

strongly impacted by eTemp, resulting in greater soil respiration and N 

mineralisation (Briones et al., 2009). Exposure to eTemp are predicted to result 

in greater soil respiration and soil organic matter decomposition (Zogg et al., 

1997), which may decrease the availability of soil organic C in the soil. 

Interestingly, this effect has been demonstrated to be greater in plant-free bulk 

soil than in rhizosphere soil (Hartley et al., 2007). Since eCO2 have qualitative 

and quantitative impacts on root exudates (Chapter 5), which largely determine 

organic matter in the rhizosphere (Zhu and Cheng, 2011), it is difficult to predict 
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the combined impacts of eTemp and CO2 on agricultural soils. Certainly, 

autotrophic (plant-related) and heterotrophic (soil organism-related)  CO2 effluxes 

are dependent on temperature (Schindlbacher et al., 2008). Together, these 

studies suggest C capture in soil could be reduced in warmer environments, 

turning soil from C sinks to C sources, and further increasing atmospheric CO2 

(Jones et al., 2003). Moreover, these processes are seasonally dependent, 

suggesting greater effects of warming on respiration outside of the growing 

season (Hartley et al., 2007; Suseela and Dukes, 2013). Soil respiration is likely 

to be dependent on soil moisture. For instance, respiration in grasslands was only 

increased by eTemp and eCO2 when water availability was high. At lower water 

availability, respiration was decreased during the growing season, but increased 

over winter (Wan et al., 2007). As CO2 enhances C rhizodeposition, eCO2 might 

offset the negative effects of eTemp on C capture. Equally, eCO2 might 

exacerbate C emissions through further stimulation of soil respiration (Pendall et 

al., 2004). However, the short-term nature of many of these studies may overstate 

potential C-cycle feedbacks as they ignore plant acclimation to warming (Luo et 

al., 2001). The method developed by Petriacq et al. (2017; Appendix 1), which 

allows for in situ profiling of rhizosphere chemistry in relation to microbial 

communities (Chapter 5), would be very suitable to determine the metabolic 

contents and fluxes into the rhizosphere under combined exposure to eTemp and 

eCO2. 

6.2.1 Increased drought 

Due to global warming, agriculture will experience increasing levels of 

drought stress (IPCC, 2013). Drought induces stomatal closure, which limits 

photosynthesis and antagonizes the growth-promoting effects of eCO2 (e.g. 

(Warren et al., 2017). At the same time, drought can increase pre-invasive 

resistance to leaf pathogens through reduced stomatal aperture (Liu et al., 2009) 

(Pennypacker et al., 1991; Melotto et al., 2008), but reduce post-invasive 

resistance through drought-induced ABA signalling that antagonises SA-

dependent and JA-disease resistance via repressive signalling cross-talk (Ton et 

al., 2009). Although the role of the defence regulatory phytohormones JA and SA 

in eCO2-induced disease resistance has been characterised in Chapter 3 of this 

thesis, the effects of eCO2 on ABA signalling remained unexplored. Recently, 
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however, it was reported that eCO2-induced susceptibility of Arabidopsis to 

Pseudomonas syringae pv. tomato (Pst) DC3000 involves ABA signalling (Zhou 

et al., 2017). Such studies suggest that enhanced ABA activity at eCO2 can 

indeed counter SA-dependent resistance. This repressive effect might become 

more prevalent under conditions of (mild) drought stress. Indeed, drought stress 

in a normally resistant cultivar of wheat has been reported to induce susceptibility 

to Fusarium at eCO2 (Melloy et al., 2010). Fungal pathogens are generally more 

tolerant to water deprivation than their hosts (Desprez-Loustau et al., 2006), 

explaining why some pathogens, such as Botrytis cinerea, have evolved the 

ability to produce ABA as a virulence factor (Siewers et al., 2006). Conversely, 

preventing drought stress at eCO2 by increased watering has been associated 

with increased susceptibility to downy mildew (Eastburn et al., 2010). Similar 

observations have been made for leaf spot in two Eucalyptus species (McElrone 

et al., 2010). To date, these are the only reports of interactive effects between 

water availability and eCO2. Again, more research is needed to obtain a better 

understanding of the mechanisms underpinning interactions between drought 

stress and eCO2, particularly in relation to stomatal development, stomatal 

aperture and defence signalling interactions between SA, JA (as performed in 

Chapter 3) and ABA.  

Drought is known to alter soil bacterial communities. Exposure of soil to 

drought has been shown to trigger tolerance-inducing activities in soil bacteria 

(Chen and Alexander, 1973; Evans and Wallenstein, 2014). Interestingly, some 

plant species increase drought tolerance in response to root treatment with PGPR 

or AMF (Kohler et al., 2009). Moreover, Timmusk et al. (2014) demonstrated that 

inoculation with bacteria that had been isolated from water-deprived soils induced 

drought tolerance (Timmusk et al., 2014). Although limited, these studies suggest 

that rhizosphere interactions could be exploited to mitigate drought stress in 

future climate scenarios. However, the mechanisms by which these rhizosphere 

interactions improve drought tolerance remains largely unknown, making it 

difficult to select for soil practices and/or crop varieties that allow for the 

establishment of drought-mitigating rhizosphere communities.  
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6.2.3 Changing Nutrient availability 

Soil nutrient concentrations are subject to anthropogenic change because 

of intensive agriculture, such as habitual and wide-scale application of N and P 

fertilisers to improve yield. N is arguably the nutrient that has the greatest 

influence on crop yield growth and is, therefore, most studied (Lawlor et al., 

2001). Importantly, nutrient availability is a key element in disease resistance 

(Dordas, 2008). Biochemically, many secondary defence metabolites contain N 

(alkaloids) and S (glucosinolates). Nutrition can also increase structural 

defences. For instance, K fertilisation has been demonstrated to improve plant 

resistance by promoting the formation of thick secondary cell walls (Dordas, 

2008). The effects of N limitation are more complex, resulting in either increased 

susceptibility or increased resistance, which in part depend on the nutritional 

requirements of the pathogen (Dordas, 2008). Since CO2 affects growth and 

nutrient uptake by the plant (Leakey et al., 2009), it can change the availability of 

soil nutrients. The nutritional status of the host plant, both in terms of macro- and 

micro elements, is critically important for pathogenic interactions (Divon and 

Fluhr, 2007). For example, Si has been shown to counter eCO2-induced 

susceptibility to herbivory by decreasing leaf palatability (Frew et al., 2017). 

Furthermore, N fertilisation reduces Fusarium infection in beech trees at eCO2 

(Fleischmann et al., 2010). In this thesis, the use of nutrient-poor soil in Chapter 

4  did not result in statistically significant changes in disease severity of Pc at 

eCO2 (Fig. 4.4) However, other studies have shown that leaf palatability 

decreases at eCO2 due to lower C:N (Mcelrone et al., 2005; Matros et al., 2006; 

Kretzschmar et al., 2009; Eastburn et al., 2010; Mathur et al., 2013; dos Santos 

et al., 2013; Ghini et al., 2014). Hence, N availability could make leaves more 

vulnerable for parasitism by pests and diseases, as was demonstrated in a grass 

FACE experiment, where fungal infection at eCO2 only increased when N was 

supplemented (Mitchell et al., 2003). To date, these are the only studies that have 

investigated the interactive effects of nutrient availability and eCO2 on disease 

resistance. Accordingly, there is a pressing need to study the impacts of other 

nutrients, such as P, K, Si and Fe, in interaction with eCO2.   

Nutrition is an important factor in the rhizosphere, where nutrient 

limitations can be decisive for the outcome of plant-microbe and microbe-microbe 
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interactions. Ample examples can be drawn from the impacts of P on plant-

mycorrhiza interactions, N acquisition by rhizobia, and the effects of Fe on 

microbial competition in the rhizosphere (Van Der Heijden et al., 2008; Berendsen 

et al., 2012). Plants are major players in nutritional homeostasis of the 

rhizosphere, where they exert particular influence over microbial biomass and 

metabolic rates of nutrient-poor soils (Hartman and Richardson, 2013). These 

impacts can be exaggerated under eCO2 (Jin et al., 2015), which in turn can have 

unexpected outcomes on the performance of the host plant. For instance, in 

nutrient poor soil, Chapter 4 revealed that increased colonisation by P. simiae 

WCS417 at eCO2 turns a normally growth-promoting interaction into a growth-

repressing interaction (Figs. 4.2 and 4.4). Conversely, sulphur acquisition by oak 

is significantly greater in mycorrhizal plants at eCO2, resulting in stronger growth-

promoting effects. Hence, eCO2 can increase the symbiotic benefits for plants 

(Seegmuller et al., 1996). Whether these interactive effects of eCO2 and soil 

nutrition result in positive or negative changes in soil function may depend on the 

nutrient that is limiting, the host plant in question, and the prevailing 

environmental conditions.  

6.2.4 Temporal considerations and growth-stage effects. 

Further to environmental factors, plant autonomous factors, such as plant 

development, may add to the effects of eCO2 on plant-microbe interactions. As 

discussed in Chapter 5,  root exudation patterns are highly dependent on the 

developmental stage of the plant (Calvo et al., 2017), which in turn can influence 

microbial community structures. For instance, higher and lower abundances of 

Cyanobacteria and Acidobacteria, respectively, have been reported as the host 

plant ages (Chaparro et al., 2013). Furthermore, as has been shown in Chapter 

3, CO2-dependent development has an impact on disease via age-related 

resistance (Kus et al., 2002). Controlling for developmental effects has been a 

concern in CO2 research for decades, but has rarely been addressed. The 

exception is Staddon et al. (1998), who applied a developmental correction (DC) 

to Plantago lanceolata and Trifolium repens to study CO2-dependent effects on 

colonisation by the arbuscular mycorrhizal fungus (AMF) Glomus mosseae. 

Revealingly, they demonstrated that AMF colonisation was strongly confounded 

by larger root systems in eCO2 (Staddon et al., 1998). Until this thesis, such 
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corrections have not been applied again. Clear differences in Arabidopsis 

disease were established when growth effects of CO2 were controlled for 

(Chapter 3). By contrast, these effects of plant development were less clear for 

the below-ground interactions – albeit these are arguably more difficult to 

measure. As CO2 has both direct and indirect effects on plant-microbe 

interactions, addressing the mechanisms by which CO2 influences plant immunity 

requires elimination of the indirect effects. However, from a more ecological point 

of view, this may be less informative or even impossible. For instance, the 

presence of beneficial rhizosphere microbes can stimulate plant development 

itself, which in turn effect the colonisation and behaviour of these microbes, as 

was essentially demonstrated in Chapter 4. Accordingly, controlling for 

differences in CO2-dependent plant development in the presence and absence 

of growth-promoting soil microbes is impractical. 

A final consideration for future work is the sensitivity of plant-rhizosphere 

systems to temporal factors. For instance, soil bacterial communities have 

repeatedly been found to show temporal plasticity in their response to CO2 (Zak 

et al., 2000; Dunbar et al., 2014). This PhD thesis describes relatively short-term 

studies over a single plant generation to investigate the impacts of CO2 on 

microbial interactions. Furthermore, this work was undertaken in a highly 

controlled environment, free of the influences of litter degradation and 

environmental fluctuations. Although single generation studies are sufficient to 

reveal effects of CO2 on below-ground microorganisms, these effects tend to 

lessen over time and are less apparent in field studies than controlled 

environments (Blankinship et al., 2011). This suggests that CEF and short-term 

experiments may over-estimate the effects of CO2 on rhizocommunity traits. For 

instance, the accumulated effects of altered rhizodeposition and litter degradation 

can only be postulated over years and multiple plant generations (Blankinship et 

al., 2011; Dunbar et al., 2014). However, short-term effects of CO2 are biologically 

relevant, especially in the context of agricultural practise, where crop systems are 

predominantly annual (e.g. cereals, pulses, root crops). It currently remains 

unclear how plant-PGPR interactions in the rhizosphere are affected over longer 

time scales and multiple plant generations.  
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Resistance responses to pathogens may trigger trans-generational 

adaptive responses in plants (Pieterse et al. 2012), for instance beech seedlings 

that survive severe Phytophthora infection at eCO2 are more resilient during 

subsequent infections (Fleischmann et al., 2010), which may translate to their 

progeny. Furthermore, the outcome of host/pathogen interactions are dynamic 

over generations, and virulence of pathogens, such as Fusarium, have been 

demonstrated to increase over generations at eCO2, even in the absence of a 

host (Váry et al., 2015). Such transgenerational variability is likely to increase 

further due to the interactive complexity between plant species, soil type, plant 

community diversity, other biotic interactions, prevailing climatic conditions, and 

potential agricultural inputs as well as the extent to which all of these factors are 

present within the system (Philippot et al., 2013). Exploring saCO2 in these 

contexts may help to tease apart the effects of CO2 from other interacting 

variables and add a further dimension to the findings summarised in Fig. 6.1.  

All of the factors and interactions discussed above indicate the importance 

of an integrated investigative approach to map out potential impacts of climate 

change on agricultural production systems. It is expected that these factors will 

impact many of the processes highlighted throughout this thesis. While some 

factors may play a greater role in shaping plant-microbe interactions than others, 

it is clear from this discussion that the interactive affects are important to consider. 

In many cases, CO2 is able to mitigate some of the damaging effects from eO3, 

temperature, drought and soil nutritional stress. Future analysis of the impacts of 

climate change on plant-microbe interactions should aim to consider all potential 

interactions, in order to develop appropriate disease management strategies.  

6.3 Outlook 

The interdiscipliniary research presented in this thesis has contributed to 

both molecular plant pathology and soil microbial ecology. This thesis provides 

novel insights into the physiological and chemical mechanisms behind the effects 

of CO2 concentration on plant-microbe interactions. The work presented in 

Chapter 3 may be important to make researchers aware of the importance of 

indirect developmental effects of CO2 on plant-microbe interactions. Coupled with 

knowledge about how plants in relatively recent geological pasts adapted to 
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saCO2, this study could help to inform potential agricultural policy concerning the 

future of farming in light of the ever increasing atmospheric concentrations of 

CO2. Furthermore, the findings in Chapters 4 and 5, concerning below-ground 

interactions, demonstrate that a better understanding of the chemical and 

microbial composition of the rhizosphere is essential to better predict the impacts 

of eCO2. Using novel analytical methods that allow for in situ profiling of 

rhizosphere chemistry in relation to microbial community structures (Appendix 1) 

will be essential to design novel soil management practices. Ultimately, this PhD 

thesis clearly demonstrates the need for future research to consider the impacts 

of interactions between eCO2 and other climate change factors, such as extreme 

weather events.  

Overall, this PhD thesis offers a better understanding of the impacts of 

atmospheric CO2 on plant immunity, rhizosphere biology and soil chemistry, and 

has shown that plant developmental stage is an important factor in determining 

some of these interactions. The knowledge generated may prove valuable for 

future management, or mitigation, of crop disease epidemics. In addition, this 

study could aid the development of protective soil management practices and 

direct breeding strategies for new crop varieties that produce greater amounts of 

rhizosphere-active root exudation chemistry. In practice, this knowledge may help 

to make global food production more resilient against the detrimental 

consequences of future climate change.  
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SUMMARY 

Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial 
products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile 
cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals 
and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling 
of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the 
collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing 
of 16S rRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. 
To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not 
cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular 
metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and 
multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-
containing soil, compared with control soil without roots. We show that the method is suitable for profiling 
the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to 
different plant–soil combinations. Our study provides a robust method for the comprehensive metabolite 
profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of 
causal relationships between the chemistry and microbial composition of the rhizosphere. 

 
Keywords: rhizosphere chemistry, rhizosphere microbiome, root exudates, metabolomics, Arabidopsis 
thaliana, maize, soil, benzoxazinoids, technical advance. 
 
INTRODUCTION 

Plant roots convert their associated soil into complex mesotrophic environments that support a 
highly diverse microbial community (Dessaux et al., 2016). This so-called rhizosphere effect is mediated by 
the exudation of plant metabolites from roots (Badri and Vivanco, 2009; van Dam and Bouwmeester, 2016; 
Oburger and Schmidt, 2016). The chemical composition of these root exudates and their microbial 
breakdown products plays a crucial role in rhizosphere interactions between plants and beneficial soil 
microbes (Oburger and Schmidt, 2016). Although developments in sequencing technology have 
revolutionized our ability to characterize rhizosphere microbial communities (van Dam and Bouwmeester, 
2016; Oburger and Schmidt, 2016), the chemical diversity of the rhizosphere remains largely unexplored. 
This knowledge gap mostly arises from a lack of suitable methods to collect and comprehensively analyse 
metabolites from non-sterile rhizosphere soil. 

It has been estimated that plants exude up to 21% of their carbon through their roots, where it is 
metabolized by the microbial community in the rhizosphere (Hinsinger et al., 2006; Badri and Vivanco, 2009; 
Neumann et al., 2009). Hence, plant roots drive multitrophic interactions in the rhizosphere via root exudation 
chemistry. Apart from serving as a primary carbon source for rhizosphere microbes, root exudates can 
influence rhizosphere interactions via selective biocidal and/or signalling activity (Berendsen et al., 2012). 
Both polar and apolar compounds have been reported to influence rhizosphere interactions. In addition to 
polar primary metabolites, such as organic and amino acids (Rudrappa et al., 2008; Ziegler et al., 2015; van 
Dam and Bouwmeester, 2016), more complex apolar secondary metabolites, like flavonoids, coumarins and 
benzoxazinoids (Hassan and Mathesius, 2012; Neal et al., 2012; Ziegler et al., 2015; Szoboszlay et al., 
2016), have been reported to play an important role in influencing rhizosphere microbes. For instance, the 
benzoxazinoid DIMBOA, which is exuded by roots of maize seedlings, has chemotactic properties on 
Pseudomonas putida KT2440 (Neal et al., 2012), a rhizobacterial strain that primes host defences against 
herbivores (Neal and Ton, 2013). Likewise, the release of malic acid from Arabidopsis thaliana (Arabidopsis) 
roots attracts the Gram-positive rhizobacteria Bacillus subtilis, which in turn induces disease resistance 
against Pseudomonas syringae pv. tomato (Rudrappa et al., 2008). Furthermore, it was shown recently that 
plantderived flavonoids have profound effects on the structure of soil bacterial communities (Szoboszlay et 
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al., 2016). Although these studies illustrate the importance of specific classes of root-derived chemicals in 
rhizosphere interactions, untargeted metabolome studies of root exudation products remain scarce, thereby 
limiting the scope for discoveries of important rhizosphere signals (Lakshmanan et al., 2012; Neal et al., 
2012). 

In addition to plant genotype and nutrition, various other factors can influence root exudation 
chemistry, such as plant developmental stage, temperature, humidity and physiochemical soil properties 
(Boyes et al., 2001; Uren, 2007; Badri and Vivanco, 2009; Zhang et al., 2016). The environmental effects of 
root exudation chemistry have been studied mostly in (semi)sterile hydroponic systems (Song et al., 2012; 
Vranova et al., 2013; da Silva Lima et al., 2014). An important justification for the use of such soil-free growth 
conditions is that they allow for the tight maintenance of environmental variables (Ziegler et al., 2015; 
Bowsher et al., 2016). In addition, hydroponic growth systems prevent sorption of metabolites to soil particles 
and microbial degradation. A recent study made a compelling case for the use of sterile root systems for 
studying root exudation chemistry by demonstrating that root exudates collected from non-sterile systems 
underestimated the quantity and diversity of carbon-containing metabolites resulting from microbial 
breakdown (Kuijken et al., 2014). Using hydroponically grown roots under sterile conditions, Strehmel et al. 
(2014) reported wide-ranging chemical diversity in root exudates of Arabidopsis, including mostly secondary 
metabolites such as (deoxy)nucleosides, anabolites and catabolites of glucosinolates, derivatives of 
phytohormones (e.g. salicylic acid, SA; jasmonic acid, JA; and oxylipins) and phenylpropanoids (e.g. 
coumarins and hydroxynammic acids). Nonetheless, there are disadvantages to hydroponically grown, 
sterile root systems. Hydroponically cultivated roots often develop root morphologies that differ from those 
of soil-grown roots, which probably reflects an underlying difference in physiology that may affect exudation 
chemistry (Sgherri et al., 2010; Tavakkoli et al., 2010). Furthermore, microbial degradation products of root 
exudates, rather than the root exuded plant metabolites themselves, might act as potent rhizosphere signals. 
For instance, benzoxazinoids exuded from cereal roots can be converted into stable 2-aminophenoxazin- 3-
one, which has strong antimicrobial and allelopathic activities (Atwal et al., 1992; Macıas et al., 2005). In 
addition, it is plausible that certain root exudation products stimulate the production of signalling and/or 
biocidal compounds by rhizosphere microbes (Cameron et al., 2013). Therefore, ignoring the rhizosphere 
microbiome by studying sterile root systems limits the identification of novel semiochemicals that can shape 
microbial communities and their activities in the rhizosphere (Prithiviraj et al., 2007). 

To date, various methods have been described to collect root exudates from non-sterile rhizosphere 
soil. These methods have been used mostly to determine total organic carbon and/or nitrogen content 
(Phillips et al., 2008; Yin et al., 2014), or to assay for biological response activity (Khan et al., 2002). Some 
of these studies revealed biological activities by amino acids, organic acids and other extractable elements 
(Haase et al., 2008; Chaignon et al., 2009; Bravin et al., 2010; Shi et al., 2011; Oburger et al., 2013); 
however, the lack of comprehensive metabolic analyses of non-sterile rhizosphere soil limits our ability to 
establish relationships between microbial community structure and rhizosphere chemistry. Here, we 
describe a method for untargeted metabolite profiling from non-sterile rhizosphere soil with high microbial 
diversity. We have developed methods for extraction of polar and apolar metabolites that do not cause 
detectable levels of damage to root cells, nor affect the viability of soil- and rhizosphere-inhabiting microbes. 
Using UPLC-Q-TOF mass spectrometry followed by uni- and multivariate statistical analyses, we 
demonstrate quantitative and qualitative differences in metabolite profiles between soil without plants and 
soil with plants, and putatively identify the rhizosphere metabolites that are enriched in extracts from soil 
hosting Arabidopsis and Zea mays (maize). We discuss the potential of this technique for discovering 
semiochemicals that shape microbial community structure and activity in the rhizosphere. 

 
RESULTS 

Development of a plant cultivation system for the extraction of rhizosphere chemicals We used the 
model plant species A. thaliana (Arabidopsis) to develop a plant cultivation system that is suitable for the 
extraction of rhizosphere chemicals. Individual plants were grown for 5 weeks in 30-ml plastic tubes with 
drainage holes in the bottom (Figure 1). As Arabidopsis naturally grows in sandy soils (Lev-Yadun and 
Berleth, 2009), the tubes contained a homogenous 1 : 9 (v/v) mixture of fresh M3 compost and sand. Control 
tubes without plants were included for the extraction of chemicals from control soil. All tubes were placed in 
individual trays, in order to prevent any cross-contamination of microbes and chemicals (Figure 1). Each 
tube was watered once per week (5 ml) from the base, with a final watering 3 days before sampling (relative 
water content after sampling of 88 _ 4.5% per g). This watering regime provided reproducible levels of 
relative water content at the time of sampling. Under these conditions, flushing the tubes with 5 ml of water 
or extraction solution (see below) consistently yielded 4.0–4.5 ml collected volume after 1 min of incubation. 

 

Microbial diversity of roots and rhizosphere soil, and rhizosphere effect 

Root-derived chemicals mediate the rhizosphere effect (Jones et al., 2009; Bakker et al., 2013). To 
verify whether plants in our cultivation system showed a rhizosphere effect, we extracted DNA from control 
soil (without plants) and Arabidopsis roots plus adhering rhizosphere soil. Thus, the ‘root plus rhizosphere’ 
samples capture the microbial diversity of the rhizosphere, the rhizoplane and the root cortex. Paired-end 
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250-bp MiSeq Illumina sequencing of amplified partial 16S rRNA genes was used to profile microbial 
communities. A total of 2 280 754 raw sequences were obtained with an average of 285 094 per sample. Of 
these, 1 693 274 reads passed quality controls, chimera removal and singleton removal. Operational 
taxonomic units (OTUs) were generated by clustering at 97% similarity, and were cross-referenced against 
the Greengenes 13.8 database (DeSantis et al., 2006), yielding a total of 3863 OTUs. Rarefaction analysis 
(Figure S1) indicated sufficient sequencing depth to capture the majority of OTUs. Dominant bacterial taxa 
at the phylum level were Actinobacteria (10.0% across all samples) and Proteobacteria (87.8%), mostly 
comprising a-, b- and c-proteobacteria (17.1, 44.8 and 25.3%, respectively), whereas at the family level we 
detected Burkholderiaceae (16.6% across all samples), Oxalobacteraceae (16.4%), Pseudomonadaceae 
(14.6%) and Xanthomonadaceae (10.3%; Figure S2). In addition, we detected ten families of the Rhizobiales 
(9.1%), including Bradyrhizobiaceae (3.4%) and Rhizobiaceae (1.6%). Many of these phyla and families 
have previously been reported to be associated with plant roots (Lundberg et al., 2012; Bulgarelli et al., 
2015), illustrating that the soil substrate of our cultivation system harbours a microbiome that is typical for 
microbe-rich soil. To investigate whether the growth system produced a rhizosphere effect by plant roots, 
we analysed samples for statistically significant differences in OTUs between ‘root plus rhizosphere’ samples 
and soil samples. To minimize confounding effects from low-abundance OTUs, data were filtered to include 
only sequences that appeared (i) more than five times across 30% of the samples, and (ii) more than 20 
times across all samples, resulting in a final selection of 662 OTUs. Principal coordinate analysis (PCoA) 
using Uni-Frac distances revealed a difference in phylogenetic similarity (Figure 2a) between the ‘root plus 
rhizosphere’ samples and the control soil samples, which was confirmed by PERMANOVA analysis (F1,6, P = 
0.023). A total of 178 OTUs were found to differ significantly in relative abundance between ‘root plus 
rhizosphere’ and control soil samples, including an increased abundance of 17 Rhizobiales OTUs in root 
samples (e.g. Rhizobiaceae, Methylobacteriaceae, Hyphomicrobiaceae, Phyllobacteriaceae and 
Bradyrhizobiaceae; Figure 2b). Although the mean Shannon diversity index did not differ between soil and 
‘root plus rhizosphere’ samples (3.58, SD = 0.001; 3.22, SD = 0.001, respectively; Student’s t-test, t(3) = 
0.92, P = 0.39), the mean OTU richness of ‘root plus rhizosphere’ samples (717, SD = 2.1) was significantly 
lower than that of control soil samples (1177, SD = 2.3; Student’s t-test, t (3) = 3.51, P = 0.04; Figure S1), 
showing an influence of roots on the microbial communities. Hence, the presence of plant roots in our 
experimental system produces a statistically significant rhizosphere effect. 

 
Selection of extraction solutions that do not cause detectable damage to root and microbial cells 

Plant-derived metabolites range from polar/hydrophilic (e.g. organic and amino acids, nucleotides) 
to apolar/hydrophobic (e.g. lipids and phenylpropanoids). Consequently, comprehensive metabolic profiling 
of rhizosphere soil requires extraction solutions of different polarities; however, the extraction solution should 
not damage cells from roots or soil microbes, which could contaminate the extract with cellular metabolites 

Figure 1. Experimental growth system and 
analytical approach for comprehensive chemical 
profiling of non-sterile rhizosphere soil. (a) 1. 
Collection tubes (30 mL) with holes in the bottom (7 
mm) covered by Miracloth were filled with a sand : 
compost mixture (9 : 1, v/v) and wrapped in 
aluminium foil to prevent excess algal growth. 
Individual Arabidopsis plants (Col-0) were grown for 
5 weeks in tubes. Additional tubes containing 
control soil without plants were maintained under 
similar conditions. 2. After the application of 5 mL of 
extraction solution, metabolite samples were 
collected for 1 min, centrifuged and freeze-dried. 3. 
Concentrated samples were analysed by ultra-high-
pressure liquid chromatography coupled with 
quadrupole time-of-flight mass spectrometry 
(UPLC-Q-TOF). 4. Multi- and univariate statistical 
methods were used to determine qualitative and 
quantitative differences between extracts from 
control soil and Arabidopsis soil. The selection of 
ions by statistical difference and fold-change 
between soil types enabled the putative 
identification of metabolites that were enriched in 
non-sterile rhizosphere soil. (b) Photographs of the 
experimental system. Top: tubes after 4.5 weeks of 
growth. Bottom: tubes after 3 weeks of growth taped 
onto Petri dishes to prevent any cross 
contamination of metabolites and microbes. 



The Plant Journal (2017) 92, 147–162 doi: 10.1111/tpj.13639 
 

142 
 

(for a conceptual model, see Figure S3). Although 
water-based solutions without organic solvents are 
unlikely to cause cellular damage, they are 
unsuitable for extracting apolar (hydrophobic) 
metabolites. Conversely, solutions containing 
organic solvents extract apolar compounds, but risk 
cell damage by destabilization of membrane lipids 
(Patra et al., 2006). With a polarity index of 5.1, 
methanol (MeOH) is capable of extracting polar and 
apolar metabolites (Figure S3). Accordingly, we 
selected MeOH as the organic solvent in our 
extraction solutions. 

To test whether exposure to the MeOH-
containing extraction solutions has a damaging effect 
on plant roots, we incubated intact roots of 
Arabidopsis for 1 min in acidified extraction solutions 
with different MeOH concentrations [0, 50 and 95% 
(v/v) MeOH + 0.05% (v/v) formic acid]. As a negative 
control, tissues were incubated for 1 min in water. To 
minimize root damage prior to treatment, roots were 
collected from agar-grown plants. As a positive 
control for cell damage, tissues were wounded 
before incubation. After incubation, tissues were 
transferred to sterile water for the quantification of 
electrolyte leakage, which is a sensitive method to 
quantify cell damage in Arabidopsis (Pétriacq et al., 
2016a). As shown in Figure 3a, none of the extraction 
solutions increased the level of electrolyte leakage in 
comparison with water-incubated roots (Figure 3a). 
Hence, 1-min exposure to the MeOH-containing 
solutions does not induce ion leakage from the root 
cells of Arabidopsis. 

To investigate further the potentially 
damaging effects of the MeOH-containing solutions 
on root cell integrity, we carried out microscopy 
studies. Based on the assumption that cell damage 
by MeOH would permeabilize root cells and cause 
the denaturation of cytoplasmic proteins, we used 
the fluorescence of a C-terminal fusion between the 
cytoplasmic aspartyl-tRNA synthetase IBI1 and YFP 
as a marker for root cell integrity (Luna et al., 2014). 
Roots of 2-week-old 35S::IBI1:YFP plants were 
carefully removed from MS agar medium, incubated 
for 1 min in extraction solutions or water (negative 
control), and analysed for YFP fluorescence (Figure 
S4). As a positive control for cell damage, 
35S::IBI1:YFP roots were incubated for 15 min in 
100% MeOH. YFP fluorescence in roots incubated in 
acidified 0% MeOH and 50% MeOH solutions was 
similar to roots incubated for 1 min in water (negative 
control). Some roots incubated in acidified 95% 
MeOH showed a weaker YFP signal, although this 
reduction was less severe than the near complete 
loss of YFP fluorescence in roots after incubation for 
15 min in 100% MeOH (positive control). Thus, 1-min 
exposure to the 0 and 50% MeOH solutions does not 
have detectable effects on root cell integrity, which is 
in line with our conductivity measurements (Figure 

3). 

To investigate whether the extraction solutions affect soil microbes, control and Arabidopsis soils 
were drenched for 1 min with the extraction solutions, and microbial viability was tested by dilution plating 
onto (non-)selective LB agar plates. The viability of culturable soil bacteria was quantified by colony counting 
on non-selective plates. To test impacts on specific rhizosphere-colonizing bacterial strains, the Gram-
negative Pseudomonas (P.) simiae WCS417r (formally known as P. fluorescens WCS417r; Berendsen et 
al., 2012) and the Gram-positive Bacillus (B.) subtilis 168 (Yi et al., 2016) were introduced into separate 

Figure 2. Rhizosphere effect of Arabidopsis in the 
cultivation system based on 16S rRNA gene sequencing 
Shown are comparisons of bacterial communities 
between samples from control soil (without roots) and 
root samples plus adhering rhizosphere soil. (a) Principal 
coordinate analysis of operational taxonomic units 
(OTUs) in root plus rhizosphere samples (red) and in 
control soil samples (green). Ordinations were performed 
using weighted UniFrac distances. PERMANOVA 
analysis showed that the root and control soil samples 
differed significantly (P = 0.023). (b) OTUs that differ in 
relative abundance between root plus rhizosphere 
samples and control soil samples. OTUs with positive 
fold changes are more abundant in the root plus 
rhizosphere samples than in the control samples. Results 
are plotted by family for OTUs that showed a significant 
difference in abundance as calculated using DESeq2, 
and corrected for false discovery. Only OTUs that have a 
mean count of ≥20 are shown for clarity. NA, taxonomy 
not available. 
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tubes 2 days prior to treatment with extraction solution, and plated onto selective agar plates after the 
application of extraction solution. The CFUs from solution-treated soils were compared with water-treated 
soils (1 min; negative control), as well as soils that had been treated for 45 min with 95% MeOH (positive 
control for microbial cell damage). Whereas the 45-min incubation with 95% MeOH reduced bacterial counts 
by 10- to 100-fold, none of the acidified MeOH solutions had a statistically significant effect on CFU counts 
from either soil type in comparison with water-treated soil (Figure 3b,c). 

In summary, our control experiments for cell damage show that 1-min extraction with the 0 and 
50% MeOH solutions does not have detectable impacts on root cell integrity and viability of soil bacteria. 
Direct exposure of roots to acidified 95% MeOH solution does have a minor effect on root cell integrity, 
however, as evidenced by the faint loss of YFP fluorescence (Figure S4). Accordingly, we cannot exclude 
the possibility that metabolic profiles obtained with the 95% MeOH solution are contaminated with cellular 
metabolites from damaged root cells.  

 
Untargeted metabolic profiling of control and Arabidopsis soil by UPLC-Q-TOF mass spectrometry  

Soil samples were extracted with the three acidified solutions (0.05% formic acid, v/v), containing 
increasing MeOH concentrations (0, 50 and 95% MeOH). Chemical profiles were obtained by untargeted 
UPLC-Q-TOF mass spectrometry (MS), using MSE profiling technology (Appendix S1), which enables the 
simultaneous acquisition of both intact parent ions and fragmented daughter ions (Glauser et al., 2013; 
Gamir et al., 2014a,b; Planchamp et al., 2014; Pétriacq et al., 2016a,b). Prior to statistical analysis, chemical 
profiles of ion intensity were aligned and integrated using XCMS (Smith et al., 2006; Pétriacq et al., 2016a,b). 
Similarities and differences in ion intensities from both positive (electrospray ionization source, ESI+, 17 518 
cations) and negative (ESI–, 19 488 anions) ionization modes were first examined by multivariate data 
analysis, using METABOANALYST 3.0 (Xia et al., 2015). Unsupervised three-dimensional principal component 
analysis (3D-PCA) separated samples from both soil types that had been extracted with the same solution 
(Figure 4a), indicating global metabolic differences between control and Arabidopsis soil. These differences 
were reproducible between three independent experiments (Figure S5). Extractions with the 95% MeOH 

Figure 3. Effects of methanol (MeOH)-
containing extraction solutions on electrolyte 
leakage from Arabidopsis roots (a) and 
viability of soil microbes (b, c). (a) 
Quantification of electrolyte leakage from 
Arabidopsis roots after incubation for 1 min 
in acidified extraction solutions containing 0, 
50 or 95% MeOH (v/v) and 0.05% formic 
acid (v/v). The negative control treatment (–
ctrl) refers to intact roots that had not been 
exposed to any extraction solution. As a 
positive control treatment for cell damage, 
wounding was inflicted prior to incubation by 
cutting roots with a razor blade. Shown are 
average levels of conductivity (n = 4, SEM), 
relative to the maximum level of conductivity 
after tissue lysis (set at 100%). Statistically 
significant differences between treatments 
were determined by a Welch’s F-test for 
ranked data (P values indicated in the upper 
left corner), followed by Games–Howell 
posthoc tests (P < 0.05; different letters 
indicate statistically significant differences). 
(b, c) Effects of MeOH-containing extraction 
solutions on viability of soil (b) and 
rhizosphere (c) microbes. Shown are 
average values of colony forming units 
(CFUs) per g of soil for culturable soil 
bacteria, Bacillus subtilis 168 and 
Pseudomonas simiae WCS417r, from 
extraction solution-treated soils (n = 3, 
SEM). Asterisks indicate statistically 
significant differences between negative 
control (water-flushed soil) and the 
corresponding treatment (P < 0.05, 
Student’s ttest). In all cases, only positive 
controls (i.e. incubation in 95% MeOH for 45 
min) showed statistically significant 
differences. 
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solution resulted in higher levels of variation than extractions with the 50% and 0% MeOH solutions (Figures 
4a and S5). Cluster analysis (Pearson’s correlation) revealed complete segregation between control soil 
samples and Arabidopsis soil samples analysed in positive ionization mode (ESI+), whereas samples 
analysed in negative ionization mode (ESI–) showed partial segregation between both these soil types. 
Although samples from the same extraction solution clustered relatively closely within the dendrogram, 
extracts from the 95% MeOH solution showed more variation than the other solutions (Figure 4b). Finally, 
we used supervised partial least squares discriminant analysis (PLS-DA) to compare metabolite profiles 

Figure 4. Global differences in metabolite profiles between extracts from control soil (‘soil’) and Arabidopsis soil (‘plant’). 
Shown are multivariate and hierarchical cluster analyses of mass spectrometry data from extracts with different extraction 
solutions (indicated by % MeOH). Ions (m/z values) were obtained by UPLC-Q-TOF analysis in both positive (ESI+) and 
negative (ESI–) ionization mode. Prior to analysis, data were median-normalized, cube root-transformed and Pareto-
scaled. (a) Unsupervised three-dimensional principal component analysis (3D-PCA). Shown in parentheses are the 
percentages of variation explained by each principal component (PC). (b) Cluster analysis (Pearson’s correlation). (c) 
Supervised partial least squares discriminant analysis (PLS-DA). R2 and Q2 values indicate the correlation and 
predictability values of PLS-DA models, respectively. 
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between samples from control soil and Arabidopsis soil (Figure 4c). Comprehensive analysis of all samples 
revealed a clear separation between all different soil/ solution combinations, in both the ESI+ and ESI– data. 
The corresponding PLS-DA models displayed high levels of correlation (R2 ESI+ = 0.998; R2 ESI– = 0.951) 
and predictability (Q2 ESI+ = 0.619; Q2 ESI– = 0.657). Binary comparisons between control and Arabidopsis 
soil for each extraction solution confirmed these differences, each with high levels of correlation (R2 > 0.94) 
and predictability (Q2 > 0.59) of the PLS-DA models (Figure S6). As was also clear from 3D-PCA and 
Pearson’s correlation analyses, however, samples extracted with the 95% MeOH solution were more 
variable than extracts obtained with the 0 and 50% MeOH solutions (Figure 4a–c). The enhanced variation 
between samples extracted with the 95% MeOH solution is consistent with our finding that direct exposure 
of roots to 95% MeOH solution causes minor cell damage (Figure S4). Together, our results show consistent 
differences in polar and apolar metabolite composition between control soil and Arabidopsis soil, indicating 
a global influence of roots on the chemical composition of the soil in our cultivation system. 

 
Quantitative differences in metabolites between extractions from the rhizosphere and from control 
soil 

Quantification of the total number of detected ions (m/z values) yielded marginally higher numbers 
from samples of control soil compared with that of Arabidopsis soil (Figure S7a). A substantial fraction could 
be detected in both soil types (66.9, 64.1 and 49.4% for the 0, 50 and 95% MeOH solutions, respectively; 
Figure S7a), indicating a large number of metabolites that were present in both rhizosphere and control soil. 
Ions that were uniquely present in one or more sample from Arabidopsis soil were most abundant in 
extractions with the 95% MeOH solution (6448), followed by the 50% MeOH solution (4362) and the 0% 
MeOH solution (3991; Figure S7a). To select for ions that were statistically over- or under-represented in 
Arabidopsis soil, we constructed volcano plots that expressed statistical significance of each ion (m/z value) 
against foldchange between both soil types (Figure 5a). Using a statistical threshold of P < 0.01 (Welch’s t-
test) and a cut-off value of greater than twofold change (Log2 > 1), the numbers of ions enriched in control 
soil were generally higher than those enriched in Arabidopsis soil (Figure 5a). Furthermore, there was 
relatively little overlap in differentially abundant ions between extraction solutions (P < 0.01, Welch’s t-test, 
Figures 5b and S7). This pattern was equally clear for ions that were specifically enriched in either soil type 
(P < 0.01, Welch’s t-test, greater than twofold change; Figures 5b and S7b, middle and right), illustrating the 
fact that the acidified solutions extracted different classes of metabolites. The 50% MeOH solution yielded 
the highest number of rhizosphere-enriched ions (178), followed by the 0% MeOH solution (115) and 95% 
MeOH solution (81). As the 50% MeOH solution also yielded relatively low levels of variability between 

Figure 5. Quantitative differences in metabolite 
abundance between extracts from control soil and 
Arabidopsis soil. (a) Volcano plots expressing 
statistical enrichment of ions (Welch’s t-test) as a 
function of fold difference in control soil (red; ‘soil’) 
and Arabidopsis soil (green; ‘rhizosphere’). Data 
shown represent positive (ESI+) and negative (ESI–
) ions from extractions with different solutions 
(indicated by % MeOH). Cut-off values were set at 
P < 0.01 (–Log10 = 2) and fold change > 2 (Log2 = 
1). (b) Venn diagrams showing overlap in ions 
(cations and anions combined) that significantly 
differ between control and Arabidopsis soil samples 
(left panel; P < 0.01, Welch’s t–test; without fold-
change threshold), enriched in extracts from 
Arabidopsis soil (middle panel; >2-fold enrichment 
to soil at P < 0.01, Welch’s t-test) and enriched in 
control soil (right panel; <2-fold enrichment to 
rhizosphere at P < 0.01, Welch’s t-test). 
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replicate samples (Figures 4 and S5), our results suggest that this solution is most suitable for the extraction 
of rhizosphere-enriched metabolites. 

Composition of rhizosphere- and control soil-enriched metabolites 

To study which metabolite classes drive the global differences between the rhizosphere and control 
soil (Figures 4 and 5), we pooled the top-20 ranking ions from each volcano plot, ranked by fold change and 
statistically significant difference between control and Arabidopsis soil, resulting in a total of 120 metabolic 
markers for each soil type. To enhance statistical stringency, ions were subsequently filtered by statistical 
significance between all soil/ solution combinations (ANOVA; P < 0.01), using a Benjamini–Hochberg 
correction for false-discovery rate (FDR). The final selection yielded a total of 76 rhizosphere enriched ions 
and 75 control soil-enriched ions. MARVIS (Kaever et al., 2012) was used to correct for adducts and/or C 
isotopes (tolerance: m/z = 0.1 Da and retention time = 10 sec), after which the predicted masses were used 
for putative identification (Table S1), using METLIN, PubChem, MassBank, Lipid Bank, ChemSpider, Kegg, 
AraCyc and MetaCyc databases (Kaever et al., 2009, 2012; Gamir et al., 2014a,b; Pastor et al., 2014; 
Pétriacq et al., 2016a,b). To obtain a global profile of soil- and rhizosphere-enriched chemistry, putative 
compounds were assigned to different metabolite classes (Figure 6). Putative chemicals that are unlikely to 
accumulate as natural produ  cts in (rhizosphere) soil, such as synthetic drugs or mammalian hormones, 
were excluded from these profiles (Table S1). In comparison with control soil, Arabidopsis soil was enriched 
with ions that putatively annotate to flavonoids (8 versus 2%), lipids (33 versus 6%) and alkaloids (5% in 
Arabidopsis soil only; Figures 6 and S8; Table S1), which supports the notion that rhizosphere soil is enriched 
with plant-derived metabolites. The global composition of control soil showed a higher fraction of metabolites 
that could not be annotated (Figures 6 and S8; Table S1), probably because of an under-representation of 
soil metabolites in publically available databases. 

 
Applicability of the method to maize in agricultural soil 

Having established that our method is suitable for detecting rhizosphere-enriched metabolites from 
Arabidopsis, we investigated whether the method could be applied to profile rhizosphere metabolites from a 
crop species (maize) in agricultural soil. To this end, the cultivation system was up-scaled to 50-ml tubes 
that were filled with a mixture of agricultural soil from arable farmland (Spen Farm, Leeds, UK) and perlite 
(75 : 25, v/v). The perlite was added to improve the drainage of the soil, which improved plant growth and 
ensured that sufficient solution was collected from the base of the tubes within 1 min of the application of 
extraction solution. Maize plants were grown for 17 days, and rhizosphere chemistry was extracted using 
the 50% MeOH solution (plus formic acid 0.05%, v/v). Further validation experiments showed that 1-min 
exposure of maize roots to this solution did not lead to increased electrolyte leakage (Figure 7a). 
Comparative analysis of metabolites by UPLC-Q-TOF identified a total of 6071 cations (ESI+) and 9006 
anions (ESI–). 3D-PCA showed complete separation between samples from control (red) and maize (green) 
soil (Figure 7b). Quantitative differences were determined by volcano plots (Welch’s t-test, P < 0.01: fold 
change > 2), revealing 287 cations (ESI+) and 197 anions (ESI–) that were statistically enriched in maize soil 
(Figure 7c). Cross-referencing the 100 most significant ions (top 50 anions plus top 50 cations) against public 

Figure 6. Composition of putative metabolites enriched in control soil (left) or Arabidopsis soil (right). Differentially 
abundant ions were selected from the top- 20 ranking ions of each volcano plot (Figure 5a) and filtered for statistical 
significance between all soil/extraction solution combinations (ANOVA with Benjamini–Hochberg FDR; P < 0.01). The 
resulting 76 rhizosphere-enriched ions and 75 control soil-enriched ions were corrected for adducts and/or C isotopes 
(tolerance: m/z = 0.1 Da and retention time = 10 sec), and cross-referenced against publicly available databases for 
putative identification. A comprehensive list of all rhizosphere- and soil-enriched markers is presented in Table S1. 
Multiple ions putatively annotating to the same metabolite were counted additively towards the metabolite classes in the 
pie charts. Putative metabolites that are unlikely to accumulate as natural products in (rhizosphere) soil (e.g. synthetic 
drugs or mammalian hormones) were not included in the final selection presented. Miscellaneous: putative metabolites 
that do not belong to any of the other metabolite classes listed. Unknown: ion markers that could not be assigned to any 
known compound. 
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databases indicated higher levels of chemical diversity in maize soil samples compared with control soil 

Figure 7. Applicability of the profiling method for maize in agricultural soil. The experimental system for extracting soil 
chemistry was based on 50-mL collection tubes filled with a mixture of agricultural soil from arable farmland and perlite 
(75 : 25, v/v). Samples were extracted with the 50% MeOH (v/v) solution 17 days after planting. (a) Quantification of maize 
root damage after direct exposure to the extraction solutions. Five-day-old maize roots were incubated for 1 min in acidified 
extraction solutions containing 0, 50 or 95% MeOH (v/v) and tested for electrolyte leakage by conductivity. For details, 
see the legend to Figure 3a. Shown are average levels of conductivity (n = 4, SEM), relative to the maximum level of 
conductivity after tissue lysis (set at 100%). Statistically significant differences between treatments were determined by a 
Welch’s F-test for ranked data (P values indicated in the upper left corner of each panel), followed by Games–Howell 
post-hoc tests (P < 0.05; different letters indicate statistically significant differences). (b) Unsupervised 3D-PCA, showing 
global differences in metabolic profiles between control soil (red) and maize soil (green). Shown are data from extracts 
with the 50% MeOH (v/v) extraction solution. For further details, see the legend to Figure 4. (c) Volcano plots expressing 
statistical enrichment of ions (Welch’s t-test) as a function of fold difference in control soil (red; ‘soil’) and maize soil (green; 
‘rhizosphere’). Cut-off values were set at P < 0.01 (–Log10 = 2) and fold change > 2 (Log2 = 1). (d) Relative composition 
of putative metabolite classes enriched in control soil (left) or maize soil (right). Differentially abundant metabolites were 
selected from the top-50 ranking ions of each volcano plot (ESI+ and ESI–; c), corrected for adducts and/or C isotopes 
(tolerance: m/z = 0.1 Da and retention time = 10 s), and cross-referenced against publicly available databases for putative 
identification. A comprehensive list of all rhizosphere- and soil-enriched markers is presented in Table S2. Putative 
metabolites that unlikely accumulate as natural products in (rhizosphere) soil (e.g. synthetic drugs or mammalian 
hormones) were not included in the final selection presented. For further details, see the legend to Figure 6. 
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samples. Most metabolic markers could be putatively identified (Table S2) and annotated to different 
metabolite classes (Figure 7d). As described for the profiling of the Arabidopsis rhizosphere (Figure 6), these 
final profiles did not include putative compounds that are unlikely to accumulate in (rhizosphere) soil, such 
as synthetic drugs (Table S2). Strikingly, a relatively large fraction of maize rhizosphere-enriched ions could 
be annotated to flavonoids (28%) and benzoxazinoids (21%), which mediate below-ground interactions 
(Neal et al., 2012; Robert et al., 2012; Neal and Ton, 2013) For instance, HBOA, DIBOA and HMBOA 
displayed strong rhizosphere enrichment in maize soil samples (Figure S8), and are known to be produced 
by maize roots (Marti et al., 2013). Thus, our profiling method is sufficiently robust and sensitive to profile 
plant-derived rhizosphere chemicals from a crop species in agricultural soil.  

Profiling chemistry in distal rhizosphere fractions 

The rhizosphere was defined by Lorenz Hiltner in 1904 as ‘the soil compartment influenced by the 
root’ (Smalla et al., 2006); however, many rhizosphere studies focus exclusively on soil that is closely 
associated with plant roots (after the removal of loosely associated soil), which may not encompass the total 
rhizosphere as more distal and loosely associated soil could still be influenced by root-derived chemistry. To 
investigate whether our profiling method detects chemical influences beyond soil that is closely associated 
with roots, we used an alternative growth system that separated roots from distal soil (Figure S9). Maize 
plants were grown in small, fine mesh bags within larger 150-ml tubes containing soil (see Appendix S1), 
which prevented outward root growth, yet allowed for the passage of root-derived chemicals and microbes 
into the distal soil. Similar plant-free tubes were constructed as no-plant controls. After 24 days of growth 
the mesh bags were carefully removed, and then metabolites were extracted from the remaining distal soil 
that had surrounded the mesh bags using the 50% MeOH extraction solution. As a control for whole-soil 
fractions, metabolites from empty and maize-containing tubes were extracted before removing the mesh bag 
from the tube, as described earlier. Thus, the experimental design allowed for comparison between four soil 
fractions: (i) distal soil surrounding mesh bags without roots; (ii) distal soil surrounding mesh bags with maize 
roots; (iii) whole soil from tubes containing mesh bags without roots; and (iv) whole soil from tubes containing 
mesh bags with maize roots. Extracts were analysed by UPLC-Q-TOF in ESI– (26 011 anions) and subjected 
to unsupervised PCA (Figure S9b). Comparison of whole-soil fractions confirmed a clear separation between 
plant-free and maize soil samples, illustrating the chemical rhizosphere effect of maize. Although less 
pronounced than the whole-soil fractions, PCA of the distal soil fractions still revealed separate clustering 
between plant-free and maize soil (Figure S9b), indicating that the chemical influence of the rhizosphere 
extended beyond the soil closely associated with roots. To verify this distant rhizosphere effect, we quantified 
levels of DIMBOA, which acts as a relatively stable rhizosphere semiochemical, influencing the behaviour of 
both rhizobacteria and arthropods (Neal et al., 2012; Robert et al., 2012). In comparison to both plant-free 
soil fractions, statistically higher quantities of DIMBOA were detected in both whole maize soil and distal 
maize soil (Figure S9c). Hence, DIMBOA acts as a mobile long-range rhizosphere signal that extends 
beyond soil that is closely associated with roots. Considering that maize roots contain high quantities of 
DIMBOA (Robert et al., 2012), and that the distal soil was separated from the roots prior to chemical 
extraction with the 50% MeOH solution, this result also confirms that the 50% MeOH extraction solution does 
not have a damaging effect on maize roots, as exemplified by similar DIMBOA levels in whole maize soil 
and distal maize soil (Figure S9c). 

 
DISCUSSION 

Rhizosphere chemistry is a complex mixture of root exudation chemicals, their microbial breakdown 
products and the microbial breakdown products of soil-specific chemicals. Although it is known that microbial 
diversity in the rhizosphere can influence plant growth and health (Berendsen et al., 2012), the chemical 
signals mediating these interactions remain poorly understood. The majority of root exudation studies are 
based on hydroponic and/or sterile growth systems Khorassani et al., 2011; Kuijken et al., 2014; Bowsher 
et al., 2016). Although sterile growth systems are appropriate for the exact quantification of root-exuded 
plant chemicals (Kuijken et al., 2014), these systems do not consider the importance of rhizosphere signals 
that are of microbial origin, such as microbial breakdown products of root exudates, or metabolites that are 
specifically produced by rhizosphere-inhabiting microbes. Consequently, linking rhizosphere chemistry with 
microbial communities and/or activities remains problematic when the biochemical diversity of the non-sterile 
rhizosphere is not considered (Oburger and Schmidt, 2016). Furthermore, although root exudation studies 
are increasingly relying on sensitive analytical methods (Khorassani et al., 2011; Ziegler et al., 2015; van 
Dam and Bouwmeester, 2016), the majority of these studies employ targeted analyses of specific 
compounds (e.g. organic and amino acids, coumarins) that do not address the biochemical diversity of 
rhizosphere soil. Recent advances in liquid chromatography, mass spectrometry, and uni- and multivariate 
data analysis have made it possible to conduct untargeted metabolic profiling of complex metabolite 
mixtures, such as root exudates and soil extracts (Khorassani et al., 2011; Strehmel et al., 2014; Swenson 
et al., 2015; Ziegler et al., 2015; van Dam and Bouwmeester, 2016). In this study, we employed untargeted 
UPLC-Q-TOF analysis of soil extracts, followed by uni- and multivariate data reduction to separate 
rhizosphere-specific chemistry from common soil chemistry. We show that this method is suitable to profile 
in situ rhizosphere chemistry from different plant species and soil types.  
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The microbial rhizosphere effect is driven by root exudation chemistry (Jones et al., 2009). 
Accordingly, we verified whether our cultivation system supported the generation of a difference in microbial 
communities between control soil samples (without plant roots) and root samples plus adhering rhizosphere 
soil, using 16S rRNA gene sequencing. This analysis identified a total number of 3863 OTUs, which by 
rarefaction analysis appeared to be sufficient to cover the majority of dominant OTUs (Figure S1). Many of 
the taxa detected in our samples (e.g. Oxalobacteraceae, Pseudomonadaceae, Xanthomonadaceae and 
the Rhizobiaceae) are commonly associated with soil and/or plant roots (Lundberg et al., 2012). Comparative 
analysis identified a range of OTUs with differential relative abundance between control soil and ‘root plus 
rhizosphere’ samples (Figure 2), which provided evidence for a rhizosphere effect in our experimental growth 
system. Many of the corresponding taxa have been linked to rhizosphere effects, such as an enhanced 
relative abundance of Oxalobacteraceae (Figures 2b and S2; Lundberg et al., 2012; Bulgarelli et al., 2015), 
as well as the Rhizobiales, which are commonly associated with plant roots (Hao et al., 2016). 

Our cultivation system was designed for the in situ extraction of chemicals from biologically complex 
nonsterile rhizosphere soils. The soil matrix for the Arabidopsis experiments consisted of a 9 : 1 (v/v) mixture 
of sand and compost, which is comparable with the sandy soil types of naturally occurring Arabidopsis 
accessions (Lev- Yadun and Berleth, 2009). This matrix also allowed relatively short collection times of the 
extracts (1 min), which was sufficient to recover 90% of the volume applied and prevents root damage 
through extended exposure to MeOH in the extraction solution. The soil matrix for the maize experiments 
contained agricultural soil from an arable farm field, which was supplemented with 25% (v/v) autoclaved 
perlite to prevent compaction, and allowed sufficient elution of metabolites over the 1-min extraction period. 
Using this system, we detected quantitative and qualitative differences in chemistry between extracts from 
control and maize soil (Figure 7), demonstrating that the method was applicable for the profiling of 
rhizosphere chemistry from a crop species in agricultural soil. 

A major challenge for the in situ profiling of rhizosphere chemistry is to prevent damage of root cells 
and microbes during the extraction procedure that could otherwise contaminate the extract with metabolites 
that are not exuded from intact roots. Whereas water-based extraction solutions are unlikely to cause cellular 
damage, they are less suitable for the extraction of apolar metabolites. Conversely, solutions containing 
organic solvents extract apolar metabolites, but can damage cell membranes. With our limited understanding 
of root exudation chemistry in natural soil types, it remains difficult to distinguish between naturally exuded 
metabolites and metabolites leaking from damaged root tissues or lysed microbial cells. Therefore, we 
carried out a range of experiments to investigate whether the MeOH-containing extraction solutions caused 
cell damage: (i) quantification of root electrolyte leakage (Figure 3a); (ii) epifluorescence microscopy, to 
assess root cell integrity (Figure S4); (iii) dilution plating, to assess the viability of soil- and rhizosphere-
colonising bacteria after incubation of the soil in extraction solutions (Figure 3b, c); and (iv) detection of plant-
derived chemicals in root-free soil fractions (Figure S9). Firstly, exposure of both Arabidopsis and maize 
roots to the MeOH-containing solutions did not increase electrolyte leakage for the duration of the extraction 
procedure (1 min; Figures 3 and 7). Secondly, microscopic analysis of root cells from YFP-expressing 
Arabidopsis roots did not reveal any loss of cell integrity after 1 min of exposure to 0 and 50% MeOH-
containing solutions (Figure S4). This assay did reveal a weak effect of the 95% MeOH solution, however, 
indicating that extraction of rhizosphere chemistry with this solution could affect root cell integrity. Thirdly, 
the extraction of control and Arabidopsis soil with the MeOH-containing extraction solutions did not reduce 
the viability of culturable soil microbes, nor did it affect the viability of the Gram-negative rhizobacterial strain 
P. simiae WCS417r and the Gram-positive rhizobacterial strain B. subtilis 168 (Figure 3b,c). Finally, using 
the 50% MeOH extraction solution and a compartmentalized growth system that separated maize roots from 
peripheral rhizosphere soil, we showed that the extraction of peripheral soil after the removal of maize roots 
yielded similar DIMBOA quantities as the extraction of soil containing maize roots (Figure S9c). As maize 
roots accumulate high quantities of DIMBOA (Robert et al., 2012), this result further confirms that the 50% 
MeOH extraction solution does not damage maize roots in the soil. Accordingly, we conclude that 1 min of 
exposure to 0 or 50% MeOH extraction solution does not cause detectable levels of cell damage to roots 
and soil microbes that could contaminate the chemical profiles from the soils with intracellular metabolites.  

Multivariate data analysis and clustering revealed that the variability between replicate extractions 
was lower for the 0 and 50% MeOH extraction solutions, compared with the 95% MeOH solution (Figure 4). 
This is consistent with our finding that direct exposure to this solution sometimes reduced YFP fluorescence 
in transgenic Arabidopsis roots (Figure S4). Data projection in volcano plots showed that extraction with the 
50% MeOH solution yielded the highest number of rhizosphere-enriched ions, in comparison with other 
extraction solutions (Figure 5a). Hence, the 50% MeOH extraction solution performs best in terms of 
variability between extractions and total numbers of differentially detected ions. Quantitative analysis of MS 
profiles revealed slightly lower numbers of rhizosphere-enriched ions than control soil-enriched ions, which 
was apparent for both Arabidopsis (Figures 5 and S7) and maize (Figure 7). It is possible that this difference 
arises from the rhizosphere effect, which reduces bacterial richness (Figures S1 and S2), resulting in lower 
biochemical diversity in the rhizosphere (Prithiviraj et al., 2007).  

The sets of ions enriched in control and plant-containing soil differed substantially in composition 
(Figures 6 and 7). Interestingly, the number of ions annotated to putative metabolites from publicly available 
databases was higher for rhizosphere selection (Tables S1 and S2). We attribute this difference to the fact 
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that plant-containing soil is enriched with plant-derived metabolites, which are better represented in publicly 
available databases than soil-specific metabolites (Strehmel et al., 2014; Swenson et al., 2015). Indeed, the 
selection of putative rhizosphere metabolites from Arabidopsis contained a relatively high fraction of 
flavonoids, lipids and other amino acid-derived secondary metabolites, such as alkaloids and 
phenylpropanoids (Figure 6; Table S1), whereas the set of putative rhizosphere metabolites from maize 
included relatively large fractions of flavonoids and benzoxazinoids (Figure 7; Table S2). It should be noted, 
however, that the analytical method used in this study is limited by the putative identification of single ions. 
Unless the identity of a single metabolite is confirmed by subsequent targeted analyses, such as specific 
chromatographic retention time, fragmentation or NMR patterns, its annotation remains putative (i.e. 
inconclusive). The novelty of our method does not come from the applied mass spectrometry detection 
method, however, but from the combined use of the experimental design, extraction methods, mass 
spectrometry profiling and statistical techniques to deconstruct rhizosphere chemistry. Once a wider profile 
of rhizosphere chemistry has been established, targeted techniques can be used to confirm metabolite 
identities. Furthermore, where multiple putative metabolites annotate to the same metabolite class, a more 
reliable conclusion can be drawn about the involvement of this metabolite class. In our case, multiple 
rhizosphere ions could be annotated to the same plant metabolic pathways, suggesting that the overall 
rhizosphere profile is influenced by these plant metabolite classes. In support of this, previous studies have 
reported the presence of the same secondary compounds in plant root exudates (Hassan and Mathesius, 
2012; Oburger et al., 2013; Oburger and Schmidt, 2016; Szoboszlay et al., 2016). Moreover, 
benzoxazinoids, such as DIMBOA, have previously been implicated to act as below-ground semiochemicals 
during maize–biotic interactions (Neal et al., 2012; Robert et al., 2012; Marti et al., 2013). Hence, our method 
provides a new tool to explore rhizosphere semiochemicals for different plant species and soils. 

Relatively few rhizosphere-enriched ions could be annotated to primary plant metabolites, such as 
proteinogenic amino acids or organic acids (Figures 6 and 7). Although these compounds are exuded in 
high quantities by roots (Rudrappa et al., 2008; Ziegler et al., 2015; van Dam and Bouwmeester, 2016), the 
microbial activity in the rhizosphere will quickly metabolize them, and the C18-UPLC separation is not 
optimal for the separation of (often very polar) primary metabolites. Above all, we stress that our method is 
not suitable for quantitative analysis of primary and secondary root exudates, for which sterile root cultivation 
systems are more appropriate (Kuijken et al., 2014; Strehmel et al., 2014). Our method should only be used 
for the profiling, identification and/or quantification of rhizosphere chemicals. These compounds can be 
microbial breakdown products of secondary metabolites in root exudates, but could equally well newly 
synthesized by rhizosphere-specific bacterial and fungal microbes. Using the experimental pipeline detailed 
in this paper, stable isotope labelling of plant root exudates via leaf exposure to 13CO2 can potentially 
differentiate between these classes of rhizosphere metabolites, where plant-derived breakdown products 
are likely to retain higher levels of 13C than newly synthesized microbial products. Furthermore, as is 
illustrated by our study, the method allows for the simultaneous assessment of rhizosphere chemistry and 
microbial composition, which can be used for genetic strategies that aim to establish a causal relationship 
between plant genotype, rhizosphere chemistry and microbial composition (Oburger and Schmidt, 2016). 
Such an approach would also advance studies on the effects of above-ground stimuli [such as light, 
atmospheric CO2 and above-ground (a) biotic stresses] on below-ground plant–microbe interactions. 

In summary, our study presents a straightforward method to obtain profiles of rhizosphere chemistry 
in nonsterile rhizosphere soil. The method is applicable to both model systems and soil-grown crops in 
agricultural soil. Considering that the microbial interactions in the rhizosphere can have both beneficial and 
detrimental effects on plant performance (Berendsen et al., 2012; Cameron et al., 2013), our method 
provides a powerful tool to advance rhizosphere biology and to decipher the chemistry driving plant–microbe 
interaction in complex non-sterile soils. 

 
EXPERIMENTAL PROCEDURES 
 
Chemicals and reagents All chemicals and solvents used for metabolomics were of mass spectrometry grade (Sigma-

Aldrich, https://www.sigmaaldrich.c om). Other solvents were of analytical grade. 

Experimental set-up of growth system Collection tubes for the Arabidopsis experiments were constructed by 

melting 7-mm holes in the base of 30-ml plastic tubes (Sterilin 128A; ThermoFisher Scientific, https://www.thermofishe 

r.com), using a soldering iron (Figure 1). The drainage hole was covered with 4-cm2 pieces of Millipore miracloth (pore 
size, 22–25 lm, VWR, https://uk.vwr.com) to avoid any loss of soil and to prevent outgrowth by roots. Tubes were filled 
with ~45 g of soil matrix, consisting of a homogenous 9 : 1 (v/v) mixture of sand (silica CH52) and dry compost (Levington 
M3), which is comparable with the sandy soil types of naturally occurring A. thaliana (Arabidopsis) accessions (Lev-Yadun 
and Berleth, 2009). To prevent cross contamination of rhizosphere microbes and chemicals between samples, each 
collection tube was placed onto an individual Petri dish (NunclonTM Delta, 8.8 cm2; ThermoFisher Scientific; Figure 1). 
Collection tubes were wrapped in aluminium foil to limit algal growth in the soil matrix. Seeds of Arabidopsis accession 
Columbia (Col-0) were stratified for 2 days in the dark in autoclaved water at 4°C. Three or four seeds were pipetted onto 
individual tubes and placed into a growth cabinet (Fitotron; SANYO, http://sanyo-av.com) with the following growth 
conditions: 8.5 h light/15.5 h dark at 21/19°C, with an average of 120 lmol m_2 s_1 photons at the top of the collection tubes 
and a relative humidity of 70%. Four days later seedlings were removed to leave one seedling per pot, which was grown 
for 5 weeks until sampling. All pots were watered twice per week by applying 5 ml of autoclaved distilled water to the Petri 
dishes, using a 5-ml pipette (Starlab, https://www.starlabgroup.com).  The final watering date was set at 3 days before 

https://www.thermofishe/
https://www.starlabgroup.com/
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sampling, which resulted in consistent soil water contents at the time of sampling. The relative water content (RWC) was 
determined by the ratio of soil weight (W) minus soil dry weight (DW), divided by water-saturated soil weight (SW) minus 
soil dry weight: RWC = (W ± DW)/ (SW ± DW). 

The watering regime applied provided reproducible RWC values at the time of sampling (88 ± 4.5%). Although 
the RWC during the cultivation of plants was frequently lower, the relatively high RWC value at the time of sampling 
allowed for constant and relatively high recovery volumes (4–4.5 ml) from the soil matrix. 

Collection tubes for the maize experiments were constructed by melting 7-mm holes in the base of 50-ml plastic 
tubes. Tubes were fitted with Miracloth at the bottom and filled with a water-saturated mixture of agricultural soil/autoclaved 
perlite (75 : 25; v/ v), in order to allow for a sufficient collection volume 1 min after the application of extraction solutions 
(see below). Soil was collected from an arable field (Spen Farm, Leeds, UK), air-dried, sieved to a maximum particle size 
of 4.75 mm and homogenized using a mixer. Maize seeds (Z. mays variety W22) were surface sterilized for 3 h by placing 
them in Petri dishes in an airtight container with 100 ml of bleach, to which 5 ml of concentrated HCl had been added. 
Seeds were imbibed overnight in autoclaved, sterile water before placing on Petri dishes containing sterile, damp filter 
paper in the dark at 23°C for 2 days. Germinated seeds were planted in filled collection tubes, 1.5 cm from the soil surface. 
Collection tubes were wrapped in foil, covered with black plastic beads and placed in a growth chamber with the following 
conditions: 12 h light/12 h dark at 25/20°C. The additional maize experiment to profile distal rhizosphere chemistry is 
described in Appendix S1. 

Profiling of root associated microbial communities Details about DNA extraction, 16S rRNA gene sequencing 

and analysis of root-associated prokaryotic OTUs are presented in Appendix S1. 

Metabolite extraction from control and Arabidopsis/maize soil Plant soil samples were collected from tubes 

containing one 5-week-old Arabidopsis plant or one 17-day-old maize plant. Plant soil chemistry was analysed from five 
replicated samples, whereas control soil chemistry was analysed from three replicated samples. All samples were 
collected at the same time. For the Arabidopsis system, cold extraction solution (5 ml) containing 0, 50 or 95% methanol 
(v/v) with 0.05% formic acid (v/v) was applied to the top of the tubes. After 1 min, 4.0–4.5 ml was collected from the 
drainage hole in 5-ml centrifuge tubes (Starlab). For the maize system, 15 ml of the 50% methanol solution (0.05% formic 
acid, v/v) was applied and flushed through the soil by applying pressure to the top of the pot, using a modified lid containing 
a syringe. After 1 min, 10 ml was collected in centrifuge tubes. For both cultivation systems, extracts were centrifuged to 
pellet soil residues (5 min, 3500 g), after which 4 ml of  supernatant was transferred into a new centrifuge tube and flash-
frozen in liquid nitrogen, freeze-dried for 48 h until complete dryness (Modulyo benchtop freeze dryer; Edwards, 
https://www.edwardsvacuum.com), and stored at -80°C. Dried aliquots were re-suspended in 100 ll of methanol : water : 

formic acid (50 : 49.9 : 0.1, v/v), sonicated at 4°C for 20 min, and vortexed and centrifuged (15 min, 14 000 g, 4°C) to 
remove potential particles that could block the UPLC column. Final supernatants (80 ll) were transferred into glass vials 
containing a glass insert prior to UPLC-Q-TOF analysis. 

Assessment of cell damage by extraction solutions The effects of acidified extraction solutions on the integrity 

of root cells were determined by conductivity measurement from electrolyte leakage and epifluorescence microscopy of 
transgenic YFP-expressing roots, as detailed in Appendix S1. The effects of extraction solutions on culturable soil bacteria 
and introduced soil- and rhizosphere-colonising bacteria were determined by dilution plating, as described in Appendix 
S1. 

UPLC-Q-TOF analysis of soil chemistry Details of the UPLC-Q-TOF analysis, including the targeted detection of 

DIMBOA, and uni- and multivariate data analyses to deconstruct rhizosphere chemistry, are presented in Appendix S1. 
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