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Abstract 

 

The fluorinated gases SF6, NF3 and CFC-115 are chemically inert with atmospheric 

lifetimes of many centuries which, combined with their strong absorption of 

infrared radiation, results in unusually high global warming potentials. Very long 

lifetimes imply that potential mesospheric sinks could make important 

contributions to their atmospheric removal. In order to investigate this, the 

reactions of each species with the neutral metal atoms Na, K, Mg and Fe, which are 

produced by meteoric ablation in the upper mesosphere, were therefore studied. 

The observed non-Arrhenius temperature dependences of the reactions are 

interpreted using quantum chemistry calculations of the relevant potential energy 

surfaces. The absorption cross-section at the prominent solar Lyman-α solar 

emission line (121.6 nm) was also determined.  

In the second part of this study updated values for the infrared absorption cross-

sections of SF6, NF3 and CFC-115 were experimentally determined and used in two 

radiative transfer models in order to determine radiative forcing and efficiency 

values. These were carried out with thorough sensitivity analysis and included the 

effect of clouds and stratospheric adjustment. A three-dimensional chemistry-

climate model was used separately to determine updated atmospheric lifetimes of 

each species. Finally, we combined our results to determine updated global 

warming potentials over a 20, 100 and 500 year time period. 
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Chapter 1: Introduction 

 

Atmospheric chemistry concerns the reactions and transport of various gases and 

aerosols, primarily across the troposphere, stratosphere and mesosphere. From 

understanding these reactions the atmospheric lifetimes and consequently, global 

warming potentials of any chemical species can be evaluated.  

The aim of this work is to revaluate the global warming potentials of the very long 

lived greenhouse gases SF6, NF3 and CFC-115 (C2F5Cl). This will be done through 

consideration of their radiative forcings and their atmospheric lifetimes. For species 

with long lifetimes such as these, removal processes in the mesosphere can 

become rate determining. Consequently the relevance of different mesospheric 

removal processes is central to this research. Some discussion of these processes 

relative to SF5CF3 is also provided. 

This chapter will outline the basic structure of the atmosphere followed by a 

description of the origin and role of meteoric metals in the upper atmosphere. 

Discussion of atmospheric lifetimes, radiative forcings and global warming 

potentials will then be described, along with a discussion of the specific species 

studied here.  

 

1.1 Atmospheric Composition and the Greenhouse Effect 

Atmospheric chemistry concerns the reactions and transport of various gases and 

aerosols, primarily across the troposphere, stratosphere and mesosphere. Heat 

radiation is provided by the sun and is subject to fluctuations including diurnal, 

seasonal and longer term variations in which different locations experience a 

significant variation in radiation input. This not only changes the total energy but 

affects the rate of some reaction cycles, shifting equilibria so that alternative 
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gaseous species become energetically favourable, altering the atmospheric 

composition and consequently, the greenhouse effect (1). 

The composition of various planetary atmospheres can be identified via their 

transmitted infrared (IR) emission patterns through space. Earth’s atmosphere is 

composed of several strongly IR absorbing gases such as CO2 and H2O. As a result 

there is a significant ‘greenhouse effect’ when compared with other planets within 

our solar system, specifically those more lacking in atmosphere such as Mercury 

and Mars. Mars, like Mercury, experiences almost no greenhouse effect and 

possesses a surface temperature of approximately 220 K. Nights on Mercury can 

reach as low as 100 K despite it being significantly closer to the Sun than Earth (1, 

2). Conversely, planets such as Venus or, Saturn’s moon Titan, exhibit a significant 

greenhouse effect. The surface temperature on Venus can reach as high as 750 K 

due to a high density atmosphere consisting 95 % of the infrared absorbing gas 

CO2. The surface temperature on Titan is approximately 94 K, which is significant 

considering that Titan’s solar input is only 1 % of the Earth. The relatively high 

temperature on Titan is caused almost solely by the presence of 1.6 % methane in 

its atmosphere (2). 

The greenhouse effect can be quantified to some extent by applying the Stefan-

Boltzmann law: 

Teq = ((
rE

r
)
2

 
FE(1−A)

4εσ
)
1

4     (E1.1) 

where Teq is the predicted average planetary surface temperature, A is the albedo, 

FE the solar flux at Earth’s surface, rE is distance of Earth to Sun, r is distance of 

planet to Sun, ε is emissivity and σ is Stefan’s constant (5.67 x 10-8 Wm-2 K-4).  

E1.1 predicts Teq for Mars, Venus and Earth as 212, 220 and 255 K where the actual 

observed temperatures are 218, 733 and 288 K. This provides discrepancies of 6 K 

for Mars, 33 K for Earth and over 500 K for Venus (3). Atmospheric composition and 

therefore global warming effects, are not accounted for in the equation. The huge 

difference in predicted and observed temperatures for Venus are consequently 



  

Chapter 1: Introduction 3 

 
attributed to global warming, an effect observed to a lesser degree for the Earth’s 

temperature.  

The Stefan-Boltzmann law gives a very accurate prediction for the temperature on 

Mars where almost no greenhouse effect is observed (1, 2). Conversely, the 

predicted temperature for Venus is hugely underestimated. This is because the 

planet exhibits a significant greenhouse effect despite it having the same 

atmospheric composition as Mars. The atmospheres of both planets are comprised 

of 95 % CO2, however the surface pressure of Venus is over 90 bar, 150 times that 

of Mars. This effect is summarised below in Table 1.1. 

 

Planet 

Surface 
Temppredicted 

/K 

Surface 
Tempobserved 

/K 

Surface 
Pressure /bar 

Atmospheric 
Composition 

Mercury 437 440 ~10-14 

 

Trace amounts of 
H2, He and O2 

 

Venus 220 733 > 90 

95% CO2 

4% N2 

 

Earth 255 288 1 

78% N2 

21% O2 

 

Mars 212 218 6 x10-3 

95% CO2 

3% N2 

2% Ar 

 

 

Table 1.1 Stefan-Boltzmann predicted surface temperatures of the terrestrial 
planets compared against their observed surface temperatures, surface 
pressures and atmospheric compositions (1). 
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1.2  Structure of the Atmosphere 

The atmosphere is separated into several layers defined by alternating positive and 

negative temperature gradients. These layers are depicted in Figure 1.1 and, are 

termed in order of increasing altitude, the troposphere, stratosphere, mesosphere 

and thermosphere. The mesosphere, occurring between ~ 50 – 85 km, is the 

predominant region of interest for this study.  

 

 

 

Figure 1.1. The vertical structure of the atmosphere as characterized by 
temperature/ pressure change with increasing altitude. Where in the above 
figure, temperature is represented by the solid line and pressure by the 
dashed line. Also defined are the most abundant chemical species at each 
atmospheric layer and approximate wavelength range of penetrating solar 
radiation. Reproduced from Christian Baresel (4). 
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The major constituents of the Earth’s atmosphere are N2 (~ 78 %), O2 (~ 21 %) and ~ 

1 % various trace species (including water vapour, CO2 and Ar). Due to turbulent 

mixing, the atmospheric composition of unreactive species is fairly uniform below 

95 km. Below this altitude, gravitational effects are responsible for the greater 

density of gas closer to Earth’s surface. Atmospheric pressure decreases 

approximately exponentially with altitude so that almost half the total mass of the 

atmosphere exists below 5.5 km and 99 % below 30 km.  

The boundaries, termed by the suffix “pause” of each atmospheric layer are not 

constant and are subject to variation according to changes in season and, at 

different latitudes. The troposphere is the oxygen-rich region in which all living 

organisms exist. With pressure being highest in the troposphere,  the abundance of 

many key greenhouse gases is also greatest. This means radiative trapping effects 

are larger here due to the repeated absorption and re-emission of longwave 

radiation which causes local heating, falling with altitude as density decreases. The 

troposphere is consequently characterised by a steady decline of approximately 80 

K in temperature with altitude, reaching around 200 K between 10 and 12 km at 

the tropopause (5).  

In the stratosphere, the exothermic recombination of O2 and O to form ozone 

dominates the region. Recombination occurs at such a rate that, along with the 

absorption of UV radiation by ozone, causes local heating resulting in a 

temperature profile which is related to the ozone concentration profile. Convection 

causes lighter, warmer gases to rise above the heavier, cooler gases, initiating 

temperature increase and the suppression of vertical mixing leading to a local 

temperature maximum of around 270 K at the stratopause (1).  

The mesosphere exists between approximately 50 and 80 km. Due to pressures in 

this region reaching as low as falling as low as 10-5 bar at around 80 km, the region 

experiences decreased solar heating and increased radiative emission. The 

pressure dependant recombination of ozone is very slow in this area. Temperatures 

in the mesosphere fall as low as 100 K, making it the coldest region on the planet 

(6). As altitude increases, mesospheric temperature falls due to the absorption of 

high energy radiation in the thermosphere above and in conjunction with the 
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increased infrared radiative effect of greenhouse gases present (7). This is 

discussed in greater detail in Section 1.2.2. 

The thermosphere is a layer of extremely low pressure and high temperature. The 

high temperature is caused by the absorption of extreme UV and x-ray (<200 nm) 

radiation by residual levels of O2. As most of this high energy radiation is absorbed 

in the thermosphere, it does not penetrate to lower levels. The low pressure means 

that the mean free path is such that gaseous collisions become so infrequent that 

molecules are unable to achieve local thermodynamic equilibrium and lose energy 

through radiative transfer. In particular, translational temperatures may become 

much higher than vibrational or rotational temperatures leading to inefficient 

cooling through infrared emission. A significant temperature increase with altitude 

is observed where temperatures become extremely high, culminating at around 

2000 K during extreme solar events (5). Again, this is discussed in greater detail in 

Section 1.2.2. 

 

1.2.1 Ozone 

As discussed in the preceding section, the temperature profile of the stratosphere 

is largely dictated by the local concentration of ozone. In the stratosphere (and 

mesosphere), solar energy is primarily absorbed by O3 and consequently liberated 

as heat. The decreasing efficiency of ozone formation with altitude largely accounts 

for simultaneously declining temperature.  

Daily global ozone production results in the generation of around 400 million 

metric tons, mainly produced around the tropical upper stratosphere and 

mesosphere. The photochemical mechanism of ozone production was first 

proposed by Chapman et al. (8) who hypothesised that atomic oxygen was formed 

through the dissociation of O2 by UV photons above around 20 km through the 

reaction: 
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O2+ ℎ𝑣 → O + O       (R1.1) 

where ℎ is Planck’s constant (6.626 × 10-34 Js) and 𝑣 is the frequency of the photon 

in s-1. The lifetime of the atomic oxygen formed in R1.1 is less than one second. This 

indicates that the following reaction occurs very quickly: 

O + O2 +  M →O3 +  M                (R1.2) 

where atmospherically, M is likely to be either N2 or O2 which comprise 99 % of the 

atmosphere. An approximation to the potential energy curve along the O + O2 

reaction coordinate is given below in Figure 1.2. 

 

 

 

Figure 1.2. Potential energy curves for the formation of ozone. 

 

Without the third body M, R1.2 would be unlikely to occur. Because a bond is being 

formed, the reaction is exothermic. In order to obey the law of conservation of 

energy, the total kinetic energy possessed by the O3 product must equal the sum of 

the reaction exothermicity and the kinetic energies of the reactants. Conservation 

of momentum requires the molecule to be stationary and so this excess kinetic 

energy is translated into vibrational motion of the O3 molecule. Highly excited 

species such as this are extremely unstable and can decompose very rapidly. For the 

ozone molecule to survive, it transfers this excess energy through collision with a 
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third body, M. This is either translated into internal excitation of the M body or into 

kinetic energy causing the two molecules to fly away from each other (1). 

Cycling between R1.1 and R2.2 causes local heating and above 60 km the pressure 

becomes too low for R1.2 to compete with R1.1 and atomic oxygen becomes the 

dominant form of oxygen. 

Ozone has a large absorption cross section at 253.6 nm of 1.15 × 10−17 cm2 

molecule−1. This means that nearly all photons at this wavelength are absorbed by 

ozone and consequently never reach Earth’s surface. This absorption leads to its 

dissociation by the reaction: 

O3+ ℎ𝑣 → O2 + O       (R1.3) 

and the consequent rapid recombination by R1.2, converting the energy of the 

photons at these wavelengths to thermal energy through the third body, M.  

However, the effect of these reactions alone would result in concentrations of 

ozone far greater than those observed. Consequently, it was deduced that ozone 

must be lost through reaction with odd oxygen: 

O3 + O → O2 + O2    (R1.4) 

Above 60 km as pressure decreases, R1.2 becomes significantly slower. Odd oxygen 

in the mesosphere/ lower thermosphere (MLT) is removed by the following 

sequence of reactions: 

 H+  O3 → OH + O2           (R1.5) 

O + OH → H + O2       (R1.6) 

O2 + H (+ M) → HO2(+M)    (R1.7) 

HO2 + O → OH + O2         (R1.8) 



  

Chapter 1: Introduction 9 

 
In the MLT lifetimes of atomic O and H reach in excess of 12 hours. This is because 

low pressures reduce the rates of R1.2 and R1.7 significantly. This reduction in k1.2 

and k1.7 results in high concentrations of atomic O and H, even during night-time. A 

sharp increase in atomic oxygen observed between 75 and 85 km is known as the 

atomic oxygen shelf. Odd hydrogen species (HOx) involved in R1.5 – R1.8 result 

from the transport and photolysis of CH4, H2O vapour and H2 from the lower 

atmosphere. 

 

1.2.2 The Mesosphere/ Lower Thermosphere 

The MLT occurs between approximately 75 and 110 km. As well as chemical and 

radiative processes, a number of physical and dynamic processes govern the 

unusual energy balance and temperature profile of the MLT.  

The mesosphere begins at around 50 km and has a negative temperature gradient 

leading to a minimum at the mesopause at approximately 80 km. Cooling in the 

mesosphere occurs as heating by absorption of UV by ozone drops off with 

decreased O3 concentration with altitude. A further cooling process is the infrared 

emission by CO2. In the troposphere infrared radiation is absorbed by the Earth and 

reradiated as heat. In the mesosphere infrared radiation is radiated back into space 

(9).  

Atmospheric heating processes include the continuous absorption and emission of 

infrared radiation by greenhouse gases. This results in these greenhouse gases 

retaining  an excess of kinetic energy which leads to energy exchange through 

collisions, heating the gases. However, infrared absorption does not make a 

significant contribution to temperature in the mesosphere because pressures are 

so low (~ 10-5 - 10-6 bar at the mesopause) (6). Above the mesosphere, the 

thermosphere experiences a steeply positive temperature gradient, opposite to 

that of the mesosphere (9).  

Gravity waves are vertical oscillations with relatively short horizontal wavelengths 

(10 – 1000 km) produced by orographic forcing (air flow over mountains), 

thunderstorms or frontal systems (9). As gravity waves propagate upwards through 
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the atmosphere, they become unstable and break. These breaking waves deposit 

energy and momentum, providing a major source of dynamical variability in the 

mesosphere. Propagation of gravity waves through the atmosphere varies with 

season and is dependent on thermal structure and wind distribution. As waves 

propagate upwards, their amplitude grows exponentially with increasing altitude, 

due to decreased atmospheric density. At a critical altitude the wave becomes 

unstable and breaks, creating a drive of residual circulation from the summer to 

the winter hemisphere (2). 

The meridional wind travels from the summer to the winter pole as shown in Figure 

1.3. This circulation gives rise to very low temperatures in the summer pole due to 

cooling by adiabatic expansion of upwelling air.  

 

 

 

Figure 1.3. Meridonal wind vectors as a function of altitude and latitude. 
Reproduced from Plane (2003). 

 



  

Chapter 1: Introduction 11 

 
Chemical species are transported throughout the atmosphere on several scales. 

Advection is a large scale process which occurs as the movement of molecules in 

response to a concentration gradient. Eddy diffusion, where species are mixed as a 

result of turbulence, takes place on a smaller temporal and spatial scale (1). At 

approximately 105 km in the turbopause, the pressure is too low for bulk motion of 

air to occur and there is a steady state between gravitational sedimentation and 

molecular diffusion. This means that above this height, air is not well mixed and 

molecules are separated by mass so that only H, H2 and He are present in the 

highest regions (1). 

 

1.2.3 The Ionosphere  

The ionosphere begins at approximately 60 km, overlapping with the MLT. It 

describes a layer of the atmosphere in which a large concentration of ions exist. In 

this region absorbing species become ionised through the absorption of high 

energy solar radiation (< 200 nm) and (potentially) interaction with cosmic rays or 

precipitating energetic particles. Furthermore, in some cases, the energy absorbed 

may be sufficient to cause both dissociation and ionisation of the dissociation 

products.  
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Figure 1.4. The day and night structures of the terrestrial ionosphere. 

 

As shown on Figure 1.4, the ionosphere is divided into three regions, D, E and F. 

These boundaries are dictated by the dominant species present and relative 

electron density. The lowest region between 70 – 95 km is the D region. This 

experiences the most complicated chemistry in the ionosphere due to the relatively 

high pressures (~5 x 10-5 – 3 x 10-7 bar) and large quantities of trace species, 

primarily proton hydrates (i.e. H+(H2O)n where n ≥ 1) and other smaller quantities 

of cluster ions such as O4
+, NO+(H2O) and NO+(CO2) . Ionisation in the D region is 

caused primarily through the absorption of Lyman-α radiation (λ = 121.6 nm) (1). 

Between 70 – 80 km negative ions exist produced initially through electron 

attachment to O2: 

     O2 + e
− (+M) →  O2

− (+M)    (R1.9) 

which then undergoes reaction with other species leading to the generation of 

negative ions such as NO3
- and CO3

-. At higher altitudes these negative species are 

rapidly destroyed through photo-detachment: 
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    O2

− + ℎ𝑣 →   O2  +  e
−   (R1.10) 

and through associative attachment with O: 

O2
− + O →  O3  + e

−    (R1.11) 

O2
+ and N2

+ are major ions in the E-region which exists between 95 – 170 km. O2
+ 

and N2
+ are formed by photoionisation of O2 and N2 by Lyman-β radiation (λ = 

102.6 nm) and x-rays. However NO+, along with O2
+, are the dominant ions in the E-

region and are formed through the following sequence of reactions: 

N2
+ + O → N∗ + NO    (R1.12) 

N2
+ + O2 → N2 + O2

+    (R1.13) 

O2
+ + NO → O2 + NO

+   (R1.14) 

The F-region then lies between 170 – 500 km. In this region N+ and O+ are the 

dominant ions and are formed from the absorption of EUV radiation by O and N2. 

The F-region can be further divided into the F1 and F2 sub-regions  (Figure 1.4), so 

characterised as two peaks in electron density may sometimes be observed. The 

maximum electron density reaches a concentration of around 106 cm-3 in this 

region and decreases rapidly beyond this maximum. Above 500km He+ and H2
+ 

become the dominant ions (10). 

 

1.3 Meteoric Metals 

Metallic layers exist in the atmosphere between 75 and 110 km in the MLT (7). The 

source of these metals is ablation from the influx of particles of extra-terrestrial 

dust, known as meteoroids. These particles originate from the asteroid belt beyond 

Mars and from the dust trails of comets. Meteor showers occur as Earth passes 

through these dust trails (11). Meteoric ablation is considered to be the major 

source of metals in the MLT due to the correlation between the elemental 

abundances and direct observations of metals in meteor trails (12). 
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1.3.1 Observations and Instruments 

 

1.3.1.1 Meteoric Input 

Early efforts to quantify the average daily input of interplanetary dust into Earth’s 

atmosphere were conducted in 1978 by Hughes (13). Data were gathered from 

ground based meteor radar and optical observations and in-situ satellite 

measurements resulting in an estimated value of 44 t d-1 (13). This value is widely 

used, although it has been subject to criticism as the estimate was derived by 

disregarding radar data which disagreed with the satellite data (14).  

 

1.3.1.2 Metal Layers 

Rocket-borne mass spectrometry, lidars, large aperture radars and satellite remote 

sensing are used to estimate the presence and densities of metallic layers which 

exist in the atmosphere between 75 and 110 km in the MLT (7). Such techniques 

are employed in this region as an alternative to aircraft or balloon measurements 

whose operating ranges are up to approximately 20 and 40 km respectively. 

The first observations of metal atoms in the MLT were made in the early 1950s 

using ground based photometers. These instruments measured the resonance 

fluorescence of spectroscopic transitions caused by the excitation of atmospheric 

metals (such as Na, K, Fe and Ca) by solar radiation (15).  

Tuneable lasers were invented some twenty years later in the 1970s, and with 

them ground based laser radar (lidar). Lidar is a hugely significant technique and is 

still used for taking measurements in the MLT (7, 16). The technique involves the 

transmission of a pulsed beam tuned to a strongly allowed spectroscopic transition 

wavelength through the atmosphere. The pulse is then resonantly scattered by 

metal atoms in the mesosphere. A fraction of this scattered light returns to the 

ground where it collected by a telescope. It can then be analysed by time-resolved 

photon counting to establish the height of the scattering layer where the metal 
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density is determined from comparison with a Rayleigh-scattered signal at a lower 

altitude of known atmospheric temperature and density (7).  Lidar has been used 

to successfully observe K, Li, Na, Fe and Ca. Ions are not usually observable by lidar 

as their resonance transitions are usually in the UV and therefore absorbed by 

stratospheric ozone, Ca+ however is the only ion observable by this method. The 

lidar technique has been developed and has advanced to the stage where layers 

can be so accurately defined that they are now used as tracers for dynamical 

processes (17). Lidars have also been employed to make more general 

measurements in the MLT. For example, temperature measurements have been 

made with Na, K and Fe lidars (18) and Na lidars used to measure wind profiles 

(19). 

Metallic ion concentrations have also been observed in-situ by rocket-borne mass 

spectrometry. Istomin (20) made the first measurements of metal ions in a layer 

near 95 km. A database of published sounding rocket ion density altitude profiles 

has been compiled by Grebowsky and Aikin (21) who have made a comprehensive 

review of in situ measurements of meteoric ions.  

Satellite-borne limb-scanning spectrometers which detect resonant scattering of 

sunlight, have also been used to observe neutral metal atoms and determine their 

vertical profiles. Several different satellite programs have been used to obtain 

column densities of various metals (22). These satellites include Odin which 

incorporates the Optical Spectrograph and Infra-Red Imager System (OSIRIS) 

spectrometer which measures Na (23) and K (24) and Envisat with the Scanning 

Imaging  Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) for 

Mg and Mg+ (25) and the Global Ozone Measurement by Occultation of Stars 

(GOMOS) spectrometer for Na (26). Unlike ground-based lidars which only operate 

locally, satellites are capable of obtaining global coverage. Both OSIRIS and 

SCIAMACHY are in sun-synchronous polar orbits which have therefore provided 

near-global coverage (82° S to 82° N and 82° S to 78° N respectively).  The 

disadvantage with a sun-synchronous orbit however,  is a limited ability to study 

diurnal variation. 
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Initial theories of the origin of metallic layers in the atmosphere speculated that a 

dust layer originating from volcanoes and oceanic aerosols existed at 90 km, from 

which metallic species would evaporate throughout the day (7). It is now widely 

accepted that these layers result from the ablation of 20 – 100 tonnes (27) of 

cosmic dust from meteor shower trails and meteoroids originating in the asteroid 

belt, both entering the atmosphere daily (17, 28). Currently, it is not possible to 

obtain accurate projections of the mass of material entering from space because 

instrumentation capabilities are insufficient (27).  

The most abundant atmospheric metals are Fe, Na and Mg with peak 

concentrations of approximately 10,000, 5000 and 3000 cm-3 respectively (29). The 

most abundant species in meteors is Si, accounting for approximately 20 % of their 

mass on average. Mg is the most abundant metal accounting for 12.5 % by mass 

(16). The Mg concentration in the MLT is lower than that of Na, despite the latter 

having a relative abundance of 0.6 % by mass in meteoroids. This observation is 

explained by the relatively higher volatility of Na (17). Unlike the other metals, the 

ratio of concentration of the neutral and ionised species Mg+ and Mg is rather 

large, between 1.5 and 10 compared to ~ 0.2 – 2 for other metals. The reasons for 

this are unclear. 

Accurate determination of the ratios of metals present in both meteorites and the 

atmosphere is amongst the best evidence for meteoric ablation (17) and these 

theories are wholly supported by CABMOD, the meteor ablation model designed by 

Vondrak et al. (30). The model not only supports the theory but explains anomalies 

such as the low relative atmospheric abundance of Ca in terms of Ca ablation’s 

heavy dependence on meteor entrance velocity (30). Si, Mg and Fe ablated from 

meteors react quickly with atmospheric species, particularly O3, H2O and CO2. They 

are then likely to recondense to form meteoric smoke particles (MSPs), nanometre 

sized particles which probably act as ice nuclei in the formation of noctilucent 

clouds in the summer polar mesosphere or condensation nuclei for sulphate 

particles in the lower stratosphere (31).  

Observations show significant seasonal variation in the concentration and thickness 

of these metallic layers (Figure 1.5) (7, 17, 32). Lidar and satellite observations have 
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been made for periods greater than a year, and the layers have been found to 

exhibit seasonal variation (33, 34). The Fe and Na layers show an early winter 

maximum and a mid-summer minimum in concentration whereas the K and Ca 

layers show a semi-annual variation with a second maximum in mid-summer. 

Reservoir species (such as NaHCO3, FeOH and FeO3) account for the summertime 

minima of the Na and Fe layers through recycling back to their atomic metal by 

reactions with a positive temperature dependence. Consequently, they are 

recycled less efficiently during summer (7). 

 

 

 

Figure 1.5. Three-dimensional mesh plots of the seasonal variation of the Fe, Ca, K 
and Na layers as measured by lidar at mid-latitudes. Reproduced from Plane 
(2003). 
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1.3.2 Ablation Theory and Modelling 

The major metallic constituents of cosmic dust particles by elemental atomic 

abundance are: Mg (14.4 %), Si (13.6 %), Fe (12.1 %), Al (1.2 %), Ca (0.82 %) and Na 

(0.80 %) (35). These cosmic dust particles typically have a mass between 5 and 50 

μg (density of 2000 kg m-3) (27) however, the total range of meteoric mass spans 

over 30 orders of magnitude. No instrument currently exists which is capable of 

observing particles over the entire mass range (12). This contributes to the 

significant uncertainty in the range of the average daily input of cosmic dust into 

Earth’s atmosphere.  

Ablation theory describes the process through which particles entering the 

atmosphere at high velocity are subject to frictional heating resulting in the 

sublimation of metallic species from that species surface. Upon entering the MLT at 

high velocity, meteoric species consisting of micron-sized particles undergo rapid 

frictional heating upon collision with air molecules  (36). This raises their 

temperatures to over 1800 K, at which point they melt. This causes ablation and 

the constituent elements are deposited in the MLT. The unablated particles fall to 

the ground as micrometeorites (7, 16, 30). 

Meteoroids have a mean entry velocity of about 20 km s-1. Entry velocities range 

from 11.5 to 72 km s-1 for particles in prograde and retrograde Earth orbits, 

respectively (37).  

Meteoroids are currently assumed to have the same composition as ordinary 

chondrites, although it may be the case that meteoroids which ablate in the upper 

atmosphere are of different composition to those which survive transit to the 

Earth’s surface (38). Differential ablation infers that different metals are released at 

different times along the meteor’s path through the atmosphere and also accounts 

for the different abundances of metals in the atmosphere compared with their 

abundances in meteorites.  

Differential ablation occurs because different metals have varying volatilities (7). 

More volatile metals such as Na and K are more likely to ablate sooner in the 

meteor’s flight than the less volatile Mg, Fe and particularly Ca (30). The correlation 
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between the abundances of metallic species in meteors and those observed in the 

atmosphere and during meteor showers largely supports this theory. In the 

atmosphere Ca is depleted in comparison with Na, despite the two metals having a 

similar abundance in meteorites (16, 17). A differential ablation model based on 

fractation has been reasonably able to explain the depletion of Ca to Na observed 

in meteor trails (30). The Chemical Ablation Model (CABMOD) developed by 

Vondrak et al. (27) describes: sputtering by inelastic collisions with air molecules 

before the meteoroid melts; evaporation  of atoms and oxides from the molten 

particle (assuming thermodynamic equilibrium between the molten meteoroid and  

the vapour phase); diffusion controlled migration of volatile constituents; and 

impact ionisation of ablated fragments by hyperthermal collisions with air 

molecules (27).  

 

1.3.3 Atmospheric Phenomena Involving Meteoric Metals 

 

1.3.3.1 Sporadic Layers 

Some metallic ions, primarily Mg+ and Fe+, form sporadic E layers which are thin 

layers of concentrated plasma between 1 and 3 km thick occurring at altitudes 

between 85 and 140 km (17),  in the ionosphere. Metal ions have long lifetimes at 

these altitudes as they are monoatomic and hence dielectric recombination is slow. 

This allows sustained Es layers to form which are noted as being responsible for 

phenomena such as severe interference to short wave radio waves, obscuring 

space to ground communication (17).  

Sporadic neutral metal (Ns ) layers are highly concentrated thin layers of neutral 

metal atoms. Ns layers have been observed in Na, Fe and Ca and are usually < 2km 

thick, most commonly occurring at altitudes between 90 and 100 km.  Ns layers are 

roughly Gaussian in shape and are superimposed over a background layer of the 

same metal at a concentration 2 – 20 times greater (39).  One proposed theory on 

the formation mechanism of these layers suggests they are formed by the 

neutralisation of metallic ions in descending Es layers (40). The rate of 
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neutralisation of these ions is very slow; however, they can also undergo 

dissociative electron recombination with cluster and molecular ions which is a 

much faster process.  

 

1.3.3.2 Airglow and Aurorae 

The airglow is an atmospheric phenomenon in which a faint continuous glow 

consisting of atomic and molecular emission lines and bands from species above 80 

km observable at all latitudes. Aurorae are a similar phenomena occurring at 

similar altitudes. Unlike the airglow however, aurorae can be very bright and 

predominantly only occur at high altitudes (41).  

Airglow is generated through a chain of events which begins with the dissociation 

of molecules by daytime solar UV radiation (41) followed by chemical reactions 

that produce excited states of atmospheric species (usually oxygen) resulting in the 

emission of a photon. Spectrally, airglow gives a weak continuum in the blue and 

the green from the O2 Herzberg bands and NO2 emissions respectively. Additional 

stronger emissions arise predominantly from neutral atomic oxygen and hydroxyl 

radicals (42). The sodium D-line of the airglow is of particular interest due to the 

unexpected D2/D1 ratio which has also been observed in persistent meteor trains 

(7). 

Auroral excitation however, results from molecular collisions with energetic 

particles (predominantly electrons) which originate from the solar wind and have 

been directed along the Earth’s magnetic field lines. Like airglow, these collisions 

result in a host of emission lines. Emission in the blue region results from collisions 

with molecular nitrogen molecules, exciting them to N2
+. While in the green region, 

the brightest emission originates from atomic oxygen. This occurs from the 

transition from the O(1S) state to O(1D). Finally, the red line is occasionally visible in 

the upper border of strong auroral arcs. Again, this is emitted by atomic oxygen 

although this time from the transition from O(1D) to O(3P2) (42). 
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1.3.3.3 Meteoric Smoke 

It is estimated that approximately 70 % of incoming meteoric material ablates 

between 70 and 110 km. This ablation produces vapour which condenses to form 

meteoric smoke particles (MSPs). MSPs generally have a radius between ~0.2 and 

1.0 nm and are likely to consist of metallic species polymerised with silicon oxides.  

Following their formation the particles settle downwards in the atmosphere, 

residing in the stratosphere and mesosphere (43). MSPs have been directly 

observed in the atmosphere above 70 km using rocket-borne particle detectors 

(44).  

Whole atmosphere circulation models predict that below 80 km, MSPs get caught 

in the mean meridonal circulation in the mesosphere and are transported to the 

winter pole before travelling to the polar vortex and being  transported downwards 

to the lower stratosphere (45). This causes a strong seasonal pattern in MSP 

concentration where no particles are observed at the summer pole. Recent 

airborne measurements have revealed a 3-fold increase of the meteoritic content 

of stratospheric sulphate aerosol inside the winter Arctic vortex (46). During the 

months which MSPs spend in the mesosphere and upper stratosphere, the 

particles are likely to grow by agglomerative coagulation. This  can be very rapid 

because of the long-range magnetic dipole forces between the Fe-containing 

particles (45). Furthermore, model predictions suggest that  that the particles could 

grow to around 40 nm in radius by the time they reach the middle stratosphere 

around 30 km (46). 

A laboratory study conducted by Saunders et al. (45) showed that amorphous Fe-

Mg-silicate particles dissolve in concentrated H2SO4 solutions at temperatures 

around 230 K (typical lower stratospheric temperatures) on a time scale of less 

than a week. Consequently, an observed decrease in the concentration of H2SO4 in 

the upper stratosphere could potentially be attributed to removal by reaction with 

metal rich MSPs. Solid particles such as MSPs act as efficient heterogeneous nuclei. 

Additionally, the surface recombination of H2 and O on MSPs is thought to be 

responsible for an enhanced H2O vapour layer at around 70 km (47).  
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1.3.3.4 Noctilucent Clouds 

MSPs that have a radius > 1 nm may act as ice nucleation species (47). This process 

of the nucleation of ice particles results in the formation of noctilucent clouds 

(NLCs). NLCs are ice clouds which exit in the mesosphere between ~80 – 86 km.  

This is a relatively recently discovered phenomenon having first been reported in 

1885. Because NLCs are relatively thin clouds they are usually only observable at 

high latitudes during twilight hours where the observer is in darkness but the 

clouds are sunlit. NLCs resemble high cirrus clouds and are commonly observed as 

pale blue, because of absorption by ozone in the path of sunlight forward scattered 

from the cloud. 

Infrared measurements show the main component of NLCs to be water ice. 

Understanding the nature of the ice nuclei is an important uncertainty when 

studying NLCs. This is because changes to the dominant meridional circulation in 

the mesosphere may affect the concentration of these nuclei, which in turn could 

affect the frequency and brightness of the clouds (45). NLCs require a stringent set 

of conditions to facilitate their formation. The nucleation species must be present 

at very cold temperatures and then fall into contact with water vapour (which is 

only present in a few ppm in the region). NLCs most commonly form in the summer 

months when the mesosphere is coldest in the polar regions (47). Because the 

mesosphere is dry, very low temperatures are required for the water frost point to 

be reached. The mesospheric meridional circulation results in upwelling air during 

the summer, which cools adiabatically leading to low temperatures. This transport 

effect also results in an increase in water vapour concentration (45).  

Electronic structure calculations have been used to demonstrate that the smallest 

MSPs which should act as ice nuclei are the metal silicate molecules FeSiO3 and 

MgSiO3. This is because MgSiO3 and FeSiO3 have extremely large electric dipole 

moments so that H2O molecules bind to them with large negative free energies. 

The hydration thermodynamics indicate that ice nucleation should occur at a 
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temperature around 140 K for a H2O mixing ratio of 4 ppm, typical of the polar 

summer mesosphere where NLCs form (48). 

NLCs are thought to be indicative of climate change.  Since their initial observation 

the clouds have been observed to be increasing in brightness and spreading to 

lower latitudes. Occurrences of NLCs have recently been shown to be increasing in 

frequency (49), something which had previously been contested (50). Increased 

greenhouse emissions lead to mesospheric cooling, which may be a cause of this 

(49). It has also been suggested that increased sightings of NLCs suggest a higher 

presence of water in the upper atmosphere. This may be due to methane being 

driven higher into the mesosphere where it is photolysed and reacts to form water 

(50). 

 

1.4 Long-Lived Fluorinated Gases in the Atmosphere 

The Pauling periodic scale of electronegativity places fluorine as the most 

electronegative element in existence with a score of 3.98. Because of this, it is not 

commonly found in its pure, gaseous form and when it is broken down it reacts 

very quickly to form new, very stable compounds (51).  

Fluorine accounts for 0.65 % of the Earth’s crust making it the 12th most abundant 

element. In the atmosphere it is found in the form of natural or man-made, organic 

and inorganic compounds. Prior to the 1960s, fluorinated gases were only known 

to be organic and originate from natural sources. These gases are broken down in 

the atmosphere into fluoride radicals which then react to form inorganic fluorides. 

(51). 

 

1.4.1 Introduction of SF6, NF3, CFC-115 and SF5CF3 

Species which are released into the atmosphere naturally undergo processes which 

remove or convert them into other products. This typically occurs by oxidation or 

photolysis reactions (52). The potentially devastating effect of species such as 

hydrofluorocarbons (HFCs), chlorofluorocarbons (CFCs) and perfluorocarbons 
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(PFCs) in the atmosphere has long been documented, leading to many species 

being inventoried through acts such as the Kyoto and Montreal Protocols (53). The 

Kyoto Protocol to the United Nations Framework Convention on Climate Change 

(UNFCCC) outlined an international agreement on emission reductions based on 

scientific research conducted by the Intergovernmental Panel on Climate Change 

(IPCC). Plans to reduce known natural greenhouse gases were introduced and, for 

the first time, several synthetic halogenated gases including CFCs and PFCs were 

acknowledged and prohibited (53, 54). Not included in the list was NF3 and as such 

it has experienced an increased usage. This being due to it being implemented in 

several of the processes previously requiring the banned gases (54). The species 

outlined here provide a major environmental concern not only due to their 

greenhouse effect but, in the case of CFCs, their powerful effect on stratospheric 

ozone. 

Although these gases are usually considered to be entirely anthropogenic in origin, 

research has suggested that there may be natural, primarily volcanic sources of 

several halogenated greenhouse gases (55). Experimentation carried out by Jordan 

et. al (55) has indicated that the upper limit for the atmospheric concentration of 

such fluorinated gases from volcanic sources is negligible when compared to a 

typical ambient air concentrations (55, 56).  

Table 1.2 below summarises some of the fundamental physical properties of SF6, 

NF3 and CFC-115. Understanding these properties can in some cases  provide clues 

to likely and relative behaviour in the atmosphere. For example, the NF2-F bond in 

nitrogen trifluoride is relatively weak at approximately 139 kJ mol-1  (57). This is 

significantly lower than other similar fluorine compounds, including SF6 which has a 

bond energy of 389 kJ mol-1 (57). This may consequently indicate that NF3 may be 

potentially more reactive and prone to dissociation or photolysis.  
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Molecule 

Melting 
point 

/K 

Boiling 
point 

/K 

Liquid 
density / g 

mL-1 

Heat of 
Formation 
/ kJ mol-1 

Dipole 
moment 
/ Debye 

Bond 
energy 
/ XFa-F 
kJ mol-1 

SF6

 

 

222 

 

480 

 

1.33 

 

-1220 

 

0 

 

387 

NF3  

 

66 143 1.53 -131 0.23 139 

CFC-115

 

174 233 1.22 -1114 0.52 109a 

a XFa-Cl bond energy 

Table 1.2 comparison of the physiochemical properties of SF6, NF3 and CFC-115 
(57). 

 

Industrial deposition processes such as chemical vapour deposition (CVD) and 

physical vapour deposition (PVD) have become increasingly common over the last 

few decades due to the rise of the semi-conductor and photovoltaic industries. This 

rise is attributed to an increased demand for integrated circuits and thin film 

transistor displays (82). The manufacturing process of these items require cleaning 

of their reactor chambers so that the purity of the deposited product can be 

maintained. Previously, this was done through manual scrubbing and dry etching 

by use of PFCs. F radicals resulting from thermal decomposition of the PFCs would 

react with deposited Si residues left by the processes to form gaseous SiF4 which 

can then be vented: 

Cl       F
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Si(s) + 4F

∙
(g) → SiF4(g)    (R1.15) 

With increasing demand from industry and the implementation of the Kyoto 

Protocol, principal etchers were switched from PFCs (including SF6), to NF3 which 

dissociates more easily and thus makes for a more efficient etchant with lower 

emissions. NF3, despite being a significant global warming agent itself, has 

consequently become the principal chemical cleaner in the last 15 years (58-60). 

There are several reasons why the atmospheric impact of NF3 may have been 

overlooked in making these decisions: a lack of research specific to NF3; and the 

industrial convenience of the species outweighing the likely problems, leading to a 

consequent reluctance to research into them. 

CFC-115 was the first species studied here to be banned. It was controlled under 

the 1997 Montreal protocol due to its ozone depleting potential. Prior to this, it 

had been used as a commercial refrigerant and foam blower (61).  

Since 2007, SF6 has been banned as a chemical etchant and in all other applications 

with the exception of high-voltage switchgears under the 2007 Montreal protocol. 

Attempts to control emissions in such industrial processes include means such as 

process gas recycling. Employment of remote plasma sources to dissociate gases 

prior to entering the reaction chamber have also reportedly contributed to the 

decline as well as smaller scale efforts such as cylinder refill leakage and venting 

capture (59). General efforts to repair leaks at the Princeton Plasma Physics 

Laboratory where SF6 is used as a high voltage insulator, have reportedly achieved 

a reduction in total annual emissions of approximately 65 % (62).  

 85 % of industrial processes using NF3 release < 2 % of their emissions into the 

atmosphere. The remaining 15 % of processes release 30 %, where this latter value 

largely represents processes being phased out (63). Although production of NF3 is 

rising by a dramatic 41 % per year, its emissions have only increased by around 11 

% (64). Consequently, expressing NF3 concentration in the atmosphere as a 

function of global production shows a decline in emission factor. Following reports 

of a decline in emissions from major manufacturers it has been suggested that this 
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decrease is due to the increased efficiency of NF3 destruction in industrial 

processes, and the phasing out of higher emission applications (59).  

 

1.4.2 Observations in the Atmosphere 

The method by which a trace gas can be detected and measured in the atmosphere 

is somewhat dependent on its atmospheric burden and the sensitivity of potential 

instruments. The measurement of trace gases requires direct measuring by either 

in-situ or remote sensing methods. Many of these species, including the PFCs 

studied here, have strong absorption in the near to mid infrared (IR) region. This 

means that changes in their concentration affects the absorption and re-radiation 

of long wave terrestrial radiation: a feature which could potentially lead to 

significant climatological problems, but can also be used to detect their presence in 

the atmosphere (65).  

The majority of passive trace gas remote sensing uses moderate to high spectral 

resolution (< 0.1 - ~ 1 nm) instruments such as SCIAMACHY described in Section 

1.3.1.2 (25, 66). This allows gas identification via their spectral fingerprints, 

minimising water vapour and aerosol interference  compared to lower resolution 

instruments. 

The IR absorption lines of the PFCs in this study can be probed by narrow spectral 

laser radiation using light detection and ranging (lidar) instrumentation. This allows 

for accurate remote measurements of concentrations within ranges of several 

meters to tens of kilometres (67). The primary type of lidar employed for making 

atmospheric measurements is inelastic scattering Raman lidar although elastic 

scattering differential absorption lidar is often employed.  Raman lidar involves 

detecting transmitted laser radiation which has been shifted in wavelength due to 

interaction with scattering molecule. This is known as the Stokes shift and is equal 

in energy to a vibrational-rotational or rotational transition.  This shifted signal has 

backscattered power proportional to the concentration of the scattering molecule. 

This means that an advantage of the technique is that it offers a direct 

measurement of the species concentration however, the Raman backscattering 
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signal is relatively weak and elastic backscattering signal may be as much as three 

orders of magnitude stronger . 

Additional methods of detection may involve either obtaining air samples at 

various locations and analysing them later, or analysing stored historic samples in a 

lab. Techniques used to test for the presence of these gases in samples include 

infrared spectroscopy as described in Chapter 2, and gas chromatography where 

gases can be identified by a specific peak or residence time. Gas chromatography 

techniques can incorporate various detection methods such as mass spectrometry 

(GC-MS) (65).  

Atmospheric SF6 measurements have been obtained by Krieg et al. at three 

Northern hemisphere locations: Ålesund in Norway at 79° N; the Jungfraujoch 

observatory in Switzerland at 47° N and the Kitt Peak observatory in Arizona at 32° 

N: between 1993 and 2002 (31). The infrared solar absorption spectra from all 

three stations were recorded with similar Michelson-type FTIR spectrometers. The 

averaged measurements from the three locations indicated a 2002 global mean 

tropospheric mixing ratio in the region of 2.80 ppt, increasing by approximately 

0.22 ppt yr¯¹ (31).  

As discussed in the previous section, global production of NF3 is thought to have 

grown by an average of 41% a year since 1995, reaching 2,300 tonnes in 2006 and 

7,200 tons in 2008 (63). For the period 1953 – 1994, estimates of these values were 

based on annual industrial production and release estimates which were converted 

to concentrations by scaling cumulative release quantities for each year to modern 

measurements. The atmospheric concentration prior to 1953 was assumed to be 

zero (55). Measurements conducted by Ehhalt et al. in 2001 found the estimated 

concentration of NF3 in the troposphere to be 0.45 pptv (65).  Field measurements 

of NF3 have also been obtained at two NH locations,  between 1998 and 2008 at 

Trinidad Head in Northern California (41° N), and between 1978 and 1991 at La 

Jolla in Southern California (33° N). The locations were chosen due to the high 

integrity of previous measurement of similar gases modelled against known trends 

and were measured by gas chromatograph/ mass spectrometer. The data showed a 

quasi-exponential growth over the measured time period and yielded a July 1 2008 
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mean global tropospheric concentration of 0.45 ppt (5,380 tons) increasing at a 

rate of 0.053 ppt yr¯¹ or, 11% annually (31, 63). 

CFC-115 measurements were gathered by Reimann et al. (68) at the Jungfraujoch 

observatory in Switzerland. Measurements were obtained quasi-continuously by 

GC-MS since early 2000. The background concentration of CFC-115 was determined 

to be 8.0 ppt with no observable change in concentration over the measured 

period. Since CFC-115 was banned in January 1996, its emissions have fallen 

drastically, although no downward trend in concentration has yet been observed. 

This is due to the very long atmospheric lifetime of CFC-115, estimated to be 1,700 

years (68). 

An often over-looked consideration is the fate of the by-products from the 

decomposition of halogenated species in industrial processes. It is speculated that 

such reactive radicals may react again to form new species such as SF5CF3. 

Increasing parallel trends with the suspected source gases are the strongest 

indicator of such secondary reactions (69). The trends of SF6 and SF5CF3 have 

tracked each other very closely between the late 1960s until around the year 2000. 

This is demonstrated in Figure 1.6. SF5CF3 is not present in pure samples of SF6 and 

consequently it has been speculated to originate as a by-product of SF6 

manufacture (70). Another theory is that electrical breakdown in the high-voltage 

equipment where SF6 and fluoropolymers are used forms SF5 and CF3 radicals which 

recombine via the following reaction: 

SF5 + CF3  →  SF5CF3     (R1.16) 

The estimated ratio of SF5CF3 to SF6 is 1:32, indicating a low overall atmospheric 

concentration (70). 
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Figure 1.6: Graph representing growth trends of both SF6 (circles) and SF5CF3 
(triangles) where measurements in air were extracted from firn at Dome 
Concordia, Antarctica, in January 1999 and firn modelling (SF5CF3, thick solid 
line; SF6, thin solid line) of expected depth profiles based on the atmospheric 
scenarios shown in the inset. The dotted lines shown for SF5CF3 denote 
concentrations that are ± 10 % of the modelled line. Reproduced from 
Sturges et al. (70). 

 

Despite the rate of increasing background concentration of both SF6 and SF5CF3 

being almost identical until around the year 2000, more recent measurements have 

shown that whilst the trend in increasing mixing ratio of SF5CF3 has halted, SF6 

continues to rise. The mixing ratio of ~ 0.14 ppt obtained in 2012 falls short of the 

model projected 2012 value based on the rate of increase measured in 2000 of ~ 

0.16 ppt (71). Instead, SF5CF3 was determined to be generated as a by-product of 

fluoro surfactant manufacture. Model runs determined that in order to reach the 

rapid decline in atmospheric growth rate observed, emissions would have had to 

halted abruptly between 2000 and 2003, which coincides with the phase out of this 

industry (71). 
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1.5 Atmospheric Lifetimes 

A complex series of reactions occur throughout the atmosphere. These are defined 

by the surrounding physical and chemical conditions which govern each layer. An 

accurate quantification of the lifetime of long-lived ( > ~5 years) anthropogenic 

gases emitted into the atmosphere is essential for assessing their ozone depletion 

and climate impacts. Lifetimes are also necessary prior knowledge for quantifying 

top-down emission estimates. In calculating the projected lifetime of an 

atmospheric species we consider its sources and sinks. A source is defined as a 

species’ method of input into the atmosphere either by natural or man-made 

ground sources or, secondarily as a by-product of another reaction. A sink is 

defined as a permanent removal mechanism.  

The atmospheric lifetime () of a long-lived trace gas can be defined as the ratio of 

its global atmospheric burden to its annually averaged global loss rate. Loss 

processes vary at each level of the atmosphere but usually include reactions with 

various oxygen-bearing gases, hydrogen, electrons, thermolysis and photolysis, 

primarily by Lyman-α radiation. Some fractions are also removed by other 

processes such as high temperature combustors at ground level, lightning, and by 

uptake by plants, soil and oceans (52).  

The various sinks dominating species in each region of the atmosphere are 

summarised below in Figure 1.7. 
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Figure 1.7. Summary of the rate determining loss processes affecting major 
greenhouse gases at each level of the atmosphere. Reproduced from IPCC 4th 
Assessment (72).  

 

The concentration of a greenhouse gas in the atmosphere depends on the rates of 

the emission of that gas into the atmosphere, and the rates of its sink processes. 

For example, the sources and sinks affecting carbon dioxide are well understood. 

CO2 is exchanged between the atmosphere, the ocean and the land through 

systems such as atmosphere-ocean gas transfer as well as chemical (e.g., 

weathering) and biological (e.g. photosynthesis) processes. Currently, about 57 % 

of human-emitted CO2 is removed from the atmosphere within a century while 

around 20 % remains in the atmosphere for several millennia (73). Because the 

rates of its relative sinks are comparatively slow, atmospheric CO2 will continue to 

increase in the long term even if its emission is substantially reduced from present 

levels. The adjustment of species concentrations in the atmosphere to reductions 
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in emissions depends on the chemical and physical processes that remove each gas 

from the atmosphere.  

Atmospheric methane is removed by chemical reactions, primarily reaction with 

hydroxyl radicals in the troposphere and stratosphere (74). Atmospheric nitrous 

oxide and some chemically stable halogenated compounds like CFC-115 or NF3 are 

assumed to be destroyed in the mesosphere/ upper atmosphere by energetic solar 

radiation. These processes operate at different timescales ranging from years to 

millennia.  

The calculated lifetime of a gas can vary significantly depending on the 

identification of the dominant removal process. For example, in the case of SF6, 

photo-dissociation by UV radiation at λ < 240 nm, was assumed to be the species’ 

dominant removal process in the mesosphere. This gives a calculated atmospheric 

lifetime between 1000 and 13,500 years. However, when electron attachment 

reactions were considered as the dominant removal process, this lifetime range fell 

to between 800 and 4200 years (75). 

 

1.5.1 Mesospheric Sinks 

Most chemicals released into the atmosphere react with oxidants or are 

photolysed by radiation at wavelengths (λ > 190 nm) in the troposphere and 

stratosphere. However, due to the high stability and consequent long-lifetimes of 

PFCs, their chemistry in the lower atmosphere is assumed to be insignificant (52). 

When lifetimes of species approach ~ 300 years  loss processes in the mesosphere 

and thermosphere start to become rate determining, with their concentrations 

becoming increasingly sparse with altitude as chemical destruction through 

mesospheric sinks increases (52). This is the case for the PFCs studied here. For 

example, age-of-air studies of SF6 in the winter polar vortex show that it 

experiences significant removal in the mesosphere (56). However, because the 

mass of the mesosphere is a small fraction (< 10-3) of the whole atmosphere, the 

efficiency of mesospheric removal depends on the turnover time of air in the 

mesosphere through residual circulation along with turbulent vertical diffusion of 
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the trace species. A 1D model designed by Plane (7) describing the effects of 

vertical transport characterised by an eddy diffusion coefficient (ranging from 4000 

cm2 s-1 in the lower stratosphere to 2 x 105 cm2 s-1 at 85 km) indicates that a 

compound which is removed rapidly above ~70 km will have a lifetime approaching 

400 years. 

The major sinks in the MLT include photolysis by solar Lyman-α radiation  at λ = 

121.6 nm, reactions with O(1D), OH and H or destruction by electron attachment 

(52, 76). Where mesospheric sinks dominate, atmospheric lifetime is dependent on 

photochemistry and transport processes because these control the transfer rate to 

the mesospheric loss region. Atmospheric models have found the net reduction in  

the mixing ratios of several long lived gases to be < 5% when accounting for major 

reactions and loss routes across the stratosphere, mesosphere and lower 

thermosphere (52). Additionally, in the case of SF6, mesospheric loss processes 

when unaccounted for can lead to an overestimation of lifetime by as much as 65% 

at subarctic latitudes (77).  

Photolysis by solar Lyman-α radiation is a dominant loss process in the 

mesosphere. Radiation penetrates below 80 km due to a “hole” in the absorption 

spectrum of the Schumann-Runge continuum of O2, whereas other wavelengths ≤ 

180 nm are severely attenuated (53).  

 



  

Chapter 1: Introduction 35 

 

 

Figure 1.8. Absorption spectrum of molecular oxygen. The Lyman- α line is visible at 
121 nm over the hole in the spectrum. Reproduced from Brasseur and 
Solomon (9). 

 

Electron attachment plays a significant role on the lifetime of SF6. This involves the 

attachment of an electron to SF6, leaving it in the excited state, (SF6
-)*. This process, 

along with the other sinks of SF6 as summated by Reddmann et al. (82) are shown 

in the scheme below: 

  

         SF6      
   𝑒− 

↔         (SF6
−)∗       →      SF6

−      
H,HCl
→        HF + SF5

−       

     ℎ𝑣 ↓          ↘ 𝑒
−                                  ↓ ℎ𝑣, charge transfer 

   SF5 + F      SF5
− + F                           SF6 + 𝑒

−               

 

As the electron density in the upper mesosphere is significant, electron attachment 

to SF6 is thought to dominate and has been considered rate-determining. However, 

removal by other species may dominate in the lower mesosphere where the 

electron density is less (75). This makes accurate determination of atmospheric 

electron density measurements a further consideration when calculating 
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atmospheric lifetime. In contrast, this sink is insignificant for NF3 and its rate is 

slow, approximately 4.10 × 10-13  cm3 molecule-1 s-1 (78). 

One mesospheric process which does not appear to have been considered 

previously is removal by the metallic atoms deposited by meteoric ablation (7). The 

three most abundant metals are Fe, Na and Mg, which occur in layers between ~75 

and 105 km. The peak concentrations of Fe, Na and Mg are ~10,000, 5,000 and 

3,000 cm-3, respectively, and the layers exhibit little diurnal variation. However, in 

order to compete with Lyman- photolysis (a daytime only process), the rate 

coefficients would need to be greater than ~5 × 10-12 cm3 molecule-1 s-1.  

 

1.6 Radiative Forcing and Global Warming Potentials 

The long atmospheric lifetimes of fluorinated gases means that it is important to 

assess the potential impact of accumulative and future emissions which are 

calculated by radiative forcing (RF), a measure of externally imposed perturbations 

to the radiation budget within the atmosphere induced by changes in 

concentrations of greenhouse gases and aerosols, solar energy and the albedo (60, 

79). In this study, radiative forcing refers to a perturbation of modern day 

concentration of the PFC against its pre-industrial concentration and is given in 

units of Wm-2. Radiative efficiency refers to a perturbation of 0 – 1 ppb and is given 

in units of Wm-2 ppbv-1. 

The understanding of anthropogenic warming and cooling influences on climate 

has improved in recent years and the IPCC report that the effect of human activities 

since 1750 has resulted in a net positive forcing between +0.6 and +2.4 Wm–2 (72). 

The effect on this range of individual forcing agents is shown below in Figure 1.9. Of 

this, very long-lived greenhouse gases, such as those explored in this study, 

account for a positive net forcing range of +2.63 ± 0.26 Wm–2, which is the 

dominant radiative forcing term and has the highest level of scientific 

understanding. In contrast, the total direct aerosol, cloud albedo and surface 

albedo effects that contribute negative forcings are less well understood and have 
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larger uncertainties. The range in the net estimate is increased by the negative 

forcing terms, which have larger uncertainties than the positive terms.  

 

 

Figure 1.9. Global mean RFs and their 90% confidence intervals in 2005 for various 
agents and mechanisms. The net anthropogenic radiative forcing and its 
range are also shown. Volcanic aerosols contribute an additional form of 
natural forcing but are not included due to their episodic nature. Reproduced 
from the IPCC (72). 

 

International agreements on greenhouse gases such as the Kyoto protocol employ 

metrics to compare different gases and place them on an equivalent footing. The 

100-year Global Warming Potential (GWP) is generally used as the primary metric, 

although 20 and 500 year GWPs are also commonly used. GWP is a useful metric 

for comparing the potential climate impact of the emissions of different long-lived 

greenhouse gases. GWPs compare the integrated radiative forcing over the 

specified period from a unit mass pulse emission and are a way of comparing the 

potential climate change associated with emissions of different greenhouse gases. 
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There are well-documented shortcomings of the GWP concept, particularly in using 

it to assess the impact of short-lived species. Further definition and detail for RFs 

and GWPs are discussed in Chapter 4. 

 

1.7  Motivations for Research 

The long lived PFCs discussed in this chapter are all potent greenhouse gases. For 

these gases mesospheric loss processes, which are usually ignored or treated very 

crudely, could significantly reduce their atmospheric lifetimes, thereby decreasing 

their estimated climate impact. The reactions of these gases with metallic atoms 

(Fe, Na, K and Mg) in the upper mesosphere could be an important additional sink. 

In order to ascertain whether these reactions compete with Lyman- photolysis, 

these cross-sections are also measured here.  

In summary, the main questions addressed in this study are: 

• What are the current best estimates of atmospheric lifetimes and GWPs for 

SF6, NF3 and CFC-115? 

• For these very long lived species, will the newly determined rates of 

mesospheric sinks decrease their lifetimes and hence GWPs? 

 

1.8  Thesis Structure 

Chapter 2 describes the experimental techniques used to study the reactions of the 

metal speciesː Na, K, Fe and Mg with the perfluorinated species SF6, NF3 and CFC-

115.  The specific reactions are described within the chapter.  

Chapter 2 also describes the methods used to measure the Lyman-α and infrared 

absorption cross-sections of the greenhouse gases SF6, NF3 and CFC-115. 

The kinetics of each of the reactions measured are explored through electronic 

structure calculations and are presented alongside their experimental results in 
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Chapter 3. These results are also discussed in terms of their relevance to the 

mesosphere.   

Chapter 4 outlines the various models and methods used to determine 

atmospheric lifetimes, radiative forcings and global warming potentials from the 

experimental results discussed in the previous chapter. The atmospheric 

implications of these findings are discussed in Chapter 5. 

Finally, conclusions, a brief summation and discussion of future work are given in 

Chapter 6. 
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Chapter 2: Experimental  

The first section of this chapter aims to introduce the experimental techniques 

used for studying the kinetics of gas-phase reactions between a neutral metal atom 

and a perfluorinated compound (PFC). Several examples relating to similar 

reactions are explored. Background and principles as well as the advantages and 

disadvantages of these techniques will be discussed, and a description of the 

experimental systems used in this study will also be provided. The final section will 

provide a brief discussion on the techniques used to obtain infrared and Lyman–α 

cross sections. The preparation of gas mixtures and the gas handling vacuum 

systems are also described. 

 

2.1 Experimental Techniques for Kinetic Studies of Gas–phase Metal 
Reactions  

An early method of measuring rate coefficients is the crossed molecular beam 

technique developed in the 1950s. The apparatus consists of a collimated beam of 

gas phase reactant atoms or molecules which travel through an evacuated 

chamber where it intersects a second stream of atoms/molecules. The direction 

and velocity of the resulting scattered product molecules are measured and 

typically coupled with mass spectrometric data. This allows information on the 

distribution of energy among the translational, rotational and vibrational modes of 

the product species to be obtained (1). Molecular beam systems have been 

employed by Duren et al. and Riley et al. to obtain cross sections for the reactions 

of SF6 with Na and K, respectively (2, 3). 

Shock tubes are an example of a homogeneous reactor. The apparatus comprises 

of a tube several meters in length partitioned by a diaphragm. The first section of 

the tube contains a low-pressure mixture of reactant gas species and the second 

section contains a non-reacting gas. The pressure within the latter section is 

increased until the diaphragm bursts, forming a shock wave which propagates 
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down the tube causing the rapid compression and temperature increase of the 

reactant gas mixture. This results in the dissociation of reactants and subsequent 

generation of highly reactive species. The changing composition within the second 

section of the tube is usually monitored in situ using a spectroscopic technique (4). 

Shock tube experiments are generally performed at temperatures > 800 K which 

means extrapolation to temperatures relevant to atmospheric temperatures 

results in significant uncertainties.  

Similarly, rate coefficients determined through flame studies are restricted to 

higher temperatures (> 1500 K). In these experiments measurements are obtained 

through modelling the change in chemistry of a flame following the injection of a 

trace amount of metal (1). A further limitation of flame studies arises from the 

potential heterogeneous chemistry which can occur on soot particles. 

The flow tube and flash photolysis systems are the most prolific experimental 

techniques used in the study of gas phase reactions (5, 6). Both techniques have 

been used in previous studies to examine the neutral and ion-molecule reactions of 

various gas–phase metals (7). 

Flow tube experiments involve the addition of a flow of gaseous reactants at one 

end of a tube which become mixed and travel downstream. Where flow velocity is 

known, the position along the tube corresponds to a relative concentration of 

reactant at different times following the initiation of the reaction. A sliding injector 

can be incorporated in the system to allow reactants to be introduced at various 

points relative to the detector (5, 6). The stopped flow technique is a variation of 

this system and can be used when large quantities of reactant are not available. 

This involves injecting a fixed volume of reactant into a reaction chamber and 

monitoring the change in composition using a time-resolved optical technique (1). 

Flash photolysis experiments are initiated by a pulse of light which dissociate a 

reactant-containing precursor resulting in the generation of the reactive species. 

The rate coefficient is determined by monitoring the concentration of this reactive 

species as a function of time. The time scale of photolysis systems is in part 

determined by the duration of the initiating light pulse. Where early systems 
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incorporated a discharge lamp to produce a pulse with a duration in the 

microsecond range, modern systems may incorporate lasers capable of generating 

significantly shorter pulses (10-12 – 10-9 s), allowing much faster reactions to be 

measured (8). 

2.1.1 Detection methods 

Reaction kinetics may be ascertained through the determination of the decay rate 

of a reactive species over time.  The relative concentration of the metal can be 

monitored by a time–resolved optical technique such as resonance absorption, 

chemiluminescence or laser induced fluorescence (LIF).   

Chemiluminescence occurs when a reaction is exothermic enough to generate a 

product in its excited state. This excited state undergoes radiative decay to its 

ground state, emitting a photon. Resonance absorption uses a monochromatic light 

source, usually a tuneable laser, which corresponds to a specific transition within a 

species, to pass through a reaction mixture; the relative change in transmitted light 

is observed over time. This is related to concentration of a species through the 

Beer–Lambert law (1). 

A species electronically excited by the absorption of a photon may decay to its 

ground state either through the emission of a photon of light (fluorescence) or non-

radiatively through collisions with other molecules (quenching). In order to 

generate photons at a specific wavelength for this kind of analysis, a laser 

excitation source is required along with a detection method, typically incorporating 

a photomultiplier tube (PMT). This is a type of vacuum tube containing a 

photocathode which converts emitted photons into electrons. These are multiplied 

by an electron multiplier and detected as an electric signal, the magnitude of which 

is proportional to the concentration of fluorescing material.  

The types of resonance generally used when detecting species by fluorescence are 

resonant and off–resonant detection. The former results from the absorption of a 

photon of a specific wavelength corresponding to that of an electronic transition, 

promoting an electron into a higher energy level. This results in the formation of an 

electronically excited species, which then relaxes back to its former state through 
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the emission of another photon with the same wavelength as the exciting photon. 

Off–resonance occurs where the excited electron relaxes to a different level than 

that of its initial state by the emission of a photon at a different wavelength to the 

exciting photon (9, 10). Both fluorescence schemes are illustrated in Figure 2.1. 

Because an excited species is generally more likely to relax to its initial state, non-

resonant fluorescence is expected to be weaker and potentially more difficult to 

observe than resonant. It is consequently preferential in most cases to devise a 

resonant scheme for monitoring metals, although there may be cases where off - 

resonance is advantageous, such as where saturation or ‘blinding’ of a PMT from 

strong signal is an issue (11, 12). 

 

 

 

Figure 2.1.  Schematic representation of an energy diagram showing the difference 
in resonant and off – resonant florescence of a hypothetical species. 

 

The laser induced fluorescence (LIF) technique is a highly sensitive electronic 

spectroscopy method with several applications. LIF can be used to produce strong 
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resonant and non-resonant signals variable with temperature or concentration but 

is limited to single species detection due to the specificity of electronic transitions 

(13). 

In order for a laser to generate light, the species examined must be capable of 

achieving a population inversion. This is achieved by exciting the species, typically 

using an additional laser through a process known as pumping, into a metastable 

excited state with a lifetime sufficient to enable stimulated emission to occur. The 

population of this excited state must be greater than the ground state so that when 

the transition terminates, a net emission of radiation occurs.  

In selecting a transition to monitor, it has to be ascertained that the photon emitted 

is within a reasonable detection range for LIF. For example, the sodium spectrum 

gives rise to a doublet known as the sodium D lines which occur at 589.0 and 589.6 

nm: 𝑆2
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2
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↖

𝑃2
3

2
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, the resonant 3p →3s transition. Furthermore, one of the secondary 

emission photons from excitation to the 3p level, back to the ground state (3 2P3/2 → 

32s) occurs at 589.2 nm. This is within the resonant doublet range with the two 

absorptions where each is known to be easily detectable (14). 

The pulse-probe technique incorporates LIF and is used within flash photolysis 

systems to monitor the decay rate of a reactant generated in situ within the 

reaction chamber using flash photolysis. This photolysis product, in these 

experiments a metal atom, is probed and the fluorescence decay monitored using a 

dye laser, intersecting the photolysis beam at an increasing time delay (15). Gated 

detection is often implemented when using LIF in order to improve sensitivity by 

eliminating background noise, or to avoid temporary blinding of the PMT by 

intense laser scattered light. This is achieved by specifying a set timespan over 

which observation can occur, e.g. the duration of the laser pulse. 

Further detection methods such as mass spectrometry and ultra-violet or infrared 

spectrometers can be employed to monitor gas exiting the reacting system in order 

to observe the presence and relative concentrations of additional products and 

excess reagents (15).  
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2.1.2 Flash Photolysis and the Fast Flow Tube 

The flash photolysis and fast flow tube systems were selected for use in this study. 

The majority of measurements are taken using the photolysis system due to its 

efficiency, suitability over a large temperature range and ease of use. Results were 

corroborated using the flow tube system.  

In the flash photolysis technique, the reactive species (in this case the neutral 

metal atom) is generated by exposing a photolytic metal-containing precursor to a 

short (10-6 – 10-8 s) pulse of light. This would typically be generated using a 

discharge lamp or laser (16). Photolysis occurs within a flow of an inert bath gas 

such as N2 or He. This serves the dual purpose of maintaining thermal stability and 

entraining and transporting the precursor into a central chamber where it can be 

mixed with other reactants. The photolytic pulse generated initiates the reaction 

allowing the subsequent decay in concentration of the reactive species to be 

monitored by means of a time–resolved optical technique.  

In fast flow tube (FFT) experiments, the reactive species may be generated 

continuously throughout the reaction, often by thermolysis, or, by photolysis 

methods similar to those described above. The species are then entrained within a 

high velocity flow (> 5 m s-1) of an inert bath gas. The gas enters the tube upstream 

of the precursor, carrying the vapour downstream, where the reactant gases enter 

through side ports and mix. The reaction time can be altered by changing the 

concentration of the reactant gas or by varying the distance species have to travel, 

for example by means of a sliding injector. One or more of the reactants or 

products are observed further downstream. 

 

2.1.2.1  Advantages and Disadvantages of the Flash Photolysis and Flow Tube 

Techniques 

The techniques described above are complementary and are both used to obtain 

rate constants in this study. Each has various advantages and disadvantages which 

have been discussed in detail previously (5, 8). 
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Table 2.1  Major factors to be considered when evaluating kinetic techniques 
(adapted from Howard (1978) (5)). 

 

 

 
Flash photolysis Fast flow tube 

Temperature range 100 – 1100 K 200 – 1000 K 

Pressure range 
1 Torr – several 

atmospheres 
1 – 10 Torr 

Rate constant range 
(10-10 – 10-18) cm3 

molecule-1 s-1 

(10-10 – 10-16) cm3 

molecule-1 s-1 

Detection versatility Requires fast detector Excellent 

Reactant versatility Limited Excellent 

Heterogeneous reactions None Can be serious 

Expense Moderate Low 

 

The useable temperature range of the two techniques is similar. The upper limit of 

temperature range is dictated by factors such as the thermal stability of the 

reactants and the materials from which the equipment is made. The higher 

probability of heterogeneous chemistry occurring in the flow tube is potentially 

limiting at lower temperatures, meaning the photolysis technique may be 

preferable for low temperature reactions (5). This possibility of heterogeneous 

chemistry is a major disadvantage of flow tube systems; however, the effect can be 

limited somewhat through use of non-reactive coatings on the inside of the tube. 

Heterogeneous chemistry does not occur with flash photolysis because the 

reaction can only occur within the volume defined by the intersection of the 

photolysis and probe beams. Therefore, diffusion to the walls does not occur on 

the timescale of the reaction. Furthermore the reactor surface typically possesses a 
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high deactivation efficiency which is potentially problematic when studying excited 

species (5). 

The flow tube is generally limited to use as a low-pressure technique and is more 

suitable for measuring larger rate coefficients due to lower reactant 

concentrations. The photolysis technique is generally capable of operating under 

higher pressures with the upper limit being dictated by the method available for 

detection of reactants or fluorescence quenching by the bath gas at high pressures. 

The lower limit may be determined by reactant concentrations below the limit of 

detection at low pressures (10). This means that photolysis systems are generally 

superior in studying slow and termolecular reactions as higher pressures allow for 

larger concentrations of reactants to be used and much smaller rate coefficients to 

be measured. A large useable pressure range is further advantageous as it allows a 

greater range for pressure dependant studies to be carried out (5, 17). Flow tubes 

however, require correction for transport effects and surface effects. These include 

axial diffusion which is the diffusion of the reactant downstream, and radial 

diffusion, where the reactant species is lost to the walls resulting in signal loss.  

Where flow within the tube is laminar, the radial flow profile within the flow tube is 

described as parabolic. This is where the gas in the centre of the tube travels at a 

greater velocity than that at the sides. The treatment of these effects is discussed 

in greater deal in Chapter 3. At higher flow rates, flow becomes turbulent and is no 

longer parabolic.  

A major advantage of the flash photolysis technique is that it allows reactions to be 

measured in real time with a resolution in the femtosecond range. Where 

photolysis systems are restricted to fast detection methods, flow tubes allow a 

large range of compatible detection and precursor generation techniques to be 

implemented. This is because a steady-state environment exists within the flow 

tube so that along any given point of the tube, a different stage in the reaction is 

represented (5, 18). Because concentrations are essentially frozen at this point, 

there are no constraints on detector speed (5). This also allows further reactants to 

be added at any stage via side ports so that complex molecules may be formed, 

making the flow tube more versatile for reactants (7). Furthermore, where LIF is 
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used, the species for detection in photolysis systems must possess a discrete 

spectrum so that a laser can be tuned to a specific wavelength range to probe. 

Photolysis systems are more restrictive for compatible reactants as reactive species 

formed via photolysis are highly excited and far more likely to react. This is 

potentially problematic because the likelihood of secondary chemistry is greatly 

increased (6, 21). It is also difficult to identify potential photolytic precursors which 

will undergo photolysis without producing unwanted by-products, potentially 

resulting in secondary chemistry. 

 

2.1.3 Apparatus and Methodology 

 

2.1.3.1  Pulsed Laser Photolysis – Laser Induced Fluorescence 

The pulsed laser photolysis – laser induced fluorescence system apparatus 

employed for this study was first used by Plane (19) to study reactions between 

lithium and N2O. For this study, it has been modified in the way described below in 

order to examine the reactions of the meteoric metals Na, K, Fe and Mg with the 

long-lived greenhouse gases SF6, NF3, CFC-115 and SF5CF3.  

The apparatus, shown in Figure 2.2, consisted of a cylindrical stainless-steel 

reaction cell, designed to facilitate high temperatures and act as an inert surface. 

The chamber has four orthogonal horizontal arms and a fifth vertical side arm 

(radius=3 cm, length=8 cm). Different metal-atom precursors were placed in a 

temperature-controlled stainless-steel boat located in one of the horizontal side 

arms and heated. The resulting vapour was entrained into a carrier gas flow (N2) 

passing over the boat and transported into the reaction chamber where it was 

mixed with larger flows of the perfluorinated compound (PFC) of interest in N2. 

Brewster-angled quartz windows were fitted to the ends of the other three 

horizontal arms in order to admit the laser beams into the centre of the chamber 

for photolysis and optical detection. The vertical side arm provided coupling to the 

PMT monitoring the LIF signal. 
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The reactor of the photolysis system was placed within a thermally insulated 

container surrounded by a furnace which could heat the chamber to 1100 K. A 

permanently inserted chromel-alumel thermocouple monitored the temperature ~ 

1 cm away from photolysis region attached to a temperature controller (Omega 

Eng. Model 670). Space surrounding the reactor could be packed with dry ice chips 

for low temperature measurements (~ 190 K). Temperatures lower than that of the 

equilibrium sublimation temperature of CO2 were achievable (195 K at 1 atm) as an 

increased rate of evaporation of CO2 was attained through exposure to a 

continuous source of compressed air.  

The reactor pressure was maintained between 5 and 15 Torr and measured with 

calibrated capacitance manometers (MKS Baratron, Model 226A, 10 and 1000 Torr) 

and controlled by a valve on the exit line to the pump, with fine control given 

through a needle valve as part of the main valve. The total gas flow rates were 

varied between 250 and 350 sccm, where the reactant mix was kept at ~100 sccm.  

The flow rate was controlled by electronic mass flow controllers (MKS Instruments, 

Models 1259C and 1179A). 

Reactions were initiated by multi-photon photolysis of the corresponding metal-

atom precursor at 193 nm using a loosely focused excimer laser beam (Lambda-

Physik, Model Compex 102, pulse energy 28 – 60 mJ, pulse width 15 ns, repetition 

rate 5 Hz, ~ 3 – 6 x 1016 photons) passing through a quartz window (f = 45 cm). For 

the study of sodium reactions, sodium iodide (NaI) was placed in the side arm and 

heated independently using cartridge heaters to a temperature of 560 ± 5 K. A flow 

of N2 (150- 250 sccm) carried the vapour into the cell. For reactions of potassium, 

potassium iodide (KI) was heated in the side arm to 530 ± 2 K, and for reactions of 

magnesium acetylacetonate (Mg(C5H7O2)2 or MgAcAc) was heated to between 403 

and 453 K and maintained to within 5 K throughout the experiment. These 

temperatures were monitored using a permanently inserted chromel –alumel 

thermocouple and a temperature controller (Omega, Model 6100). 

For reactions of these metals, counter-propagating excimer and dye laser beams 

were employed, as shown in Figure 2.2 below.  
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Figure 2.2. Schematic diagram of the pulsed laser photolysis-laser induced 
fluorescence apparatus employed to study the reactions of Na, K and Mg with 
SF6, NF3, SF5CF3 and CFC-115. Details of the LIF scheme are given in Table 2.2, 
where the wavelength of light generated from the excimer laser is 193 nm. 

 

In contrast, for reactions involving Fe, the dye and excimer laser beams were 

arranged orthogonally. Powdered ferrocene (Fe (C5H5)2) was placed in a sealed 

round bottomed flask kept at 295 K giving an equilibrium vapour pressure of 0.006 

Torr. A small N2 flow (50 – 150 sccm) passed through the flask, carrying the 

ferrocene vapour into the stainless-steel reaction chamber. The schematic for this 

set-up is shown below in Figure 2.3. 
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Figure 2.3. Schematic diagram of the pulsed laser photolysis-laser induced 
fluorescence apparatus employed to study the reactions of Fe with SF6, NF3, 
SF5CF3 and CFC-115. Details of the LIF scheme are given in Table 2.2, where 
the wavelength of light generated from the excimer laser is 193 nm. 

 

The metal atoms were probed by the dye laser beam (Continuum Minilite II Nd:YAG 

pumped Sirah CBR-G-30 dye laser) using the LIF detection schemes in Table 2.2. Nd: 

YAG (neodymium-doped yttrium aluminium garnet; Nd:Y3Al5O12) is a crystal used as 

a lasing medium for solid state lasers emitting light with a wavelength of 1064 nm, 

in the infrared. This was frequency doubled or tripled to generate light in the 

second and third harmonics at 532 or 355 nm. The aperture of the Nd: YAG laser 

was aligned with the aperture of the dye laser so that the generated radiation 

pulse travelled into the dye laser, initiating fluorescence of the dye. The dye laser 

beam then travels through the reactor, and in turn induces fluorescence from the 

target atomic species. The resulting LIF signal was measured by a photomultiplier 

tube (Hamamatsu, Model HC120-OS) after passing through an interference filter 
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centred at the wavelength indicated in Table 2.2, and recorded using a digital 

oscilloscope (LeCroy, LT262).  

The transient LIF signal from the metal atom was monitored as a function of time 

by varying the delay between the excimer and the probing laser pulse. This was 

achieved using a delay generator (BNC, Model 555) controlled by a customisable 

LabView program. The excimer laser was triggered by a pulse from the delay 

generator at 50 µs and a second trigger to the Nd: YAG laser and Q switch at 50.15 

µs. A typical time-resolved LIF profile consisted of 100 delay steps and resulted 

from the average of 5 individual delay scans, in all of which the signal for a 

particular delay was the average of 3 laser shots. 

 

Table 2.2  LIF schemes used for the detection of Na, K, Fe and Mg. 

Metal 

atom 

λ 

Nd:YAG  

/nm a 

Laser dye 
λpeak filter 

/nm b 

λ transition 

/nm 
Transition 

Na 532 
Rhodamine 

610 
589 (5) 589.0 32P3/2 - 32S1/2 

K 355 Exalite 404 765 (6) 766.5 42P3/2 - 42S1/2
c 

Mg 532 
Rhodamine 

610 
285 (5) 285.2 d 31P1 - 31S0 

Fe 355 
Coumarin 

503 
250 (5) 248.3 d x5F0

5 - a5D4 

aDye laser pump wavelength. 

 bInterference filter peak transmission; fwhm is in parentheses.  

c K(52P3/2 - 42S1/2) transition pumped at 404.4 nm and observed non-resonantly at 
766.5 nm.  

d Frequency–doubling crystal employed. 
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Figure 2.4 Decay profile of sodium at ~ 770 K without the presence of reactant. 

 

A typical time-resolved LIF profile such as that in Figure 2.4 displays the relative 

intensity of the reactant metal (Na) from accumulation of data. This was generated 

from 100 delay steps resulting from the average of three laser shots and averaged 

for five scans. This allowed a good signal to noise ratio, obtained within a suitable 

time frame.   

Data points before time zero correspond to negative delays where the Nd:YAG 

laser has fired prior to the excimer and so represent the background noise level, 

providing a baseline to check for convergence of the decay (Figure 2.4). The first 

point is measured 150 ns after the excimer and subsequent measurements at a 150 

ns delay. The decay rate, in the absence of reactant and assuming no secondary 

chemistry, is consequently a representation of the rate of diffusion of the metal 

species out of the field of view of the PMT. Further detail and full treatment of 

results is provided in Chapter 3. 
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2.1.3.2 Fast Flow Tube 

The FFT apparatus used to study the reactions of sodium with NF3 and SF6. The 

apparatus consisted of a 37.5 mm internal diameter (ID), 1 m long stainless steel 

tube made up of cross-pieces and nipple sections connected by ConFlat flanges and 

sealed with copper gaskets. The tube also contained optical windows which 

allowed the LIF technique to be used as a detection method. Figure 2.5 provides a 

schematic diagram of the flow tube set up used to study these reactions.  

Flow tube measurements were predominantly carried out at room temperature; 

low temperatures were achieved by surrounding the walls of the tube with solid 

CO2 chips. These were housed within a polystyrene box encompassing the reaction 

zone. Temperature was measured using a removable chromel-alumel 

thermocouple inserted through a side port of the tube, ~ 5 cm downstream of the 

reactant entry point, taking care not to touch the sides. This was attached to a 

temperature controller (Omega Eng. Model 670).  

The pressure of the flow tube was controlled by a throttle valve before the rotary-

backed booster pump. Manometers were positioned near mid-point along the tube 

(Figure, 2.4). The total gas flow rates were varied between 2500 and 3500 sccm, 

controlled by electronic mass flow controllers (MKS Instruments, Models 1259C 

and 1179A) at total pressures between 1.2 and 4.0 Torr which were measured 

using a capacitance manometer (MKS Baratron, Model 226A) and controlled by a 

throttle valve attached to a booster pump (Edwards, Model EH500A) backed by a 

rotary pump (Edwards, Model E2M80).  

An aluminium oxide crucible housed within a tungsten basket heater containing 

pure sodium chips was located within the flow tube, downstream of the bath gas 

inlet, and was heated to approximately 500 K. The resulting Na vapour was then 

entrained in the flow of carrier gas N2 and carried downstream where it mixed with 

varying ratios of the fluorinated gas and N2. Flow velocities were maintained 

between 0.7 and 31 m s-1 and Reynold’s numbers < 2000, ensuring laminar flow 

conditions.  The Reynold’s number was calculated according to the formula: 

𝑅𝑒 =  
𝛾𝑑𝜌

𝜇
      (E2.1) 
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where γ is the velocity of the bath gas (m s-1), d is the diameter of the flow tube 

(m),  ρ is the density of the bath gas (kg m-3) and μ is the dynamic viscosity of the 

bath gas (kg m-1 s-1), calculated according to the formula: 

       𝜇 =  √
𝑘𝐵𝑇𝑚𝜇

𝜋3𝑑4                                                                          (E2.2) 

where kB is the Boltzmann constant (m2 kg s-2 K-1), T is the temperature, mμ is the 

molecular mass and d is the average collision diameter of the molecule in air (m). 

Flow is said to be laminar when Re < 2000 (15). 

The sodium atoms were then probed by a Nd:YAG pumped dye laser (Sirah CBR-G-

30 pulse energy 5 – 10 mJ, pulse length 25 ns, repetition rate 5 Hz) at 589.0 nm 

(see Table 2.2). The subsequent fluorescence was measured at right angles by a 

photomultiplier tube (Hamamatsu, Model HC120-OS) after passing through an 

interference filter centred at 589 nm, and collected and averaged with a gated 

integrator (Stanford Research Systems, SR250). A photodiode placed near the dye 

laser beam, detected when the pulse had been fired and relayed to the boxcar 

integrator which allowed the gate delay to be set accordingly (~ 20 ns). The pulse 

and gate were displayed on the oscilloscope. 
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Figure 2.5. Schematic diagram of the fast flow tube apparatus employed to study 
the reactions of Na with SF6 and NF3. 

 

Sodium atoms travelling down the flow tube are subject to parabolic flow and 

undergo significant axial and radial diffusion which, if left unaccounted for, could 

result in a significant overestimation of rate coefficient. A full treatment of these 

effects, the kinetics and calculation of rate coefficients is discussed in Chapter 3.  
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Figure 2.6. Room temperature sodium profile over the course of a flow tube 
experiment at 2 Torr. 

 

Figure 2.6 represents the relative intensity of sodium measured over a fast flow 

tube experiment. Sodium was produced continuously from a thermal source. Each 

recorded point is the average of 100 measurements recorded one second apart. 

The signal at the beginning of the experiment is significantly greater than that 

towards the end. This is primarily due to depletion of the metal source over time. 

To account for this, reference measurements without reactant gas present were 

taken before and after each point. These were used to correct for changes in 

intensity. Taking reference measurements in this way also eliminates the need to 

account for diffusion effects. Full treatment of results is discussed in Chapter 3. 
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2.2 Measurement of the Lyman–α Absorption Cross Section 

 

2.2.1   Apparatus and Methodology 

A schematic of the apparatus used by Dr Tamás Kovács (University of Leeds) and 

employed for measuring the PFC absorption cross section at Lyman-α (121.6 nm) is 

shown in Figure 2.7.  The apparatus consists of a radio discharge lamp connected to 

a 7 cm long cell containing O2, in turn connected to the sample gas absorption cell 

(optical path length = 12.4 cm). The O2 cell was separated from the discharge lamp 

and the absorption cell by MgF2 windows (1 mm thickness). Lyman-α radiation was 

generated by radio-frequency discharge of a flowing H2:He mixture (1:20) at a 

pressure of 7 Torr. Other VUV wavelengths emitted by the plasma were filtered out 

by the O2 filter, created by flowing an O2:N2 mixture (1:9) through the O2 cell at a 

pressure of 760 Torr (20). Different mixtures of the fluorinated species in He were 

admitted to the absorption cell to sample a range of concentrations with the 

Lyman-α radiation passing through it. Care was taken to remain in the low 

absorption regime (optical density well below 1), ensuring validity of the Beer-

Lambert law, equation E2.3. The attenuated radiation was measured by a solar 

blind photomultiplier via an interference filter with peak transmission at 121.6 nm 

and 20 nm FWHM (Princeton Research, type 122-N). Experiments were carried out 

at room temperature (295 ± 2 K). 

The intensity (I) of the filtered 121.6 nm radiation emitted by the radio-frequency 

discharge and transmitted through the absorption cell in the presence of varying 

amounts of PFC was recorded and averaged. The signal for zero absorption in the 

absence of PFC (I0) was recorded before and after each concentration of the PFC 

was admitted to the absorption cell. The noise relative to the absolute signal was in 

the order of 1:100.  Experiments for concentration were repeated four times and 

the individual absorbance values averaged. The Lyman-α absorption cross section 

of the PFC, σ, was determined by applying the Beer-Lambert equation: 

ln (
𝐼0

𝐼
) = σ(121.6 𝑛𝑚) 𝐿 [PFC]    (E2.3) 
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where I0 and I are respectively the light intensity transmitted through the 

absorption cell in the absence and presence of PFC, and L is the optical path length. 

  

 

 

Figure 2.7. Schematic diagram of the experimental set-up for Lyman-α absorption 
measurements for NF3, adapted for other PFCs. 

 

2.3 Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) has a number of applications in 

analysis, namely the study of inorganic and organic chemical species, incorporating 

practical applications such as polymer degradation and blood alcohol analysis in 

forensic science.  FTIR was introduced as a replacement for traditional dispersive IR 

spectroscopy, making the overall process significantly faster, but also improving 

wavelength precision and decreasing sensitivity to scattered light. The key 

differences and benefits are summarised in Table 2.3. These improvements have 

meant that new applications such as gas-chromatography-infrared spectrometry; 

thermogravity-infrared spectrometry and emission spectra have also evolved (21). 
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Table 2.3  Summarised comparison between the traditional dispersive infrared 
technique and modern Fourier transform infrared technique (22). 

 

 

 
Dispersive IR FTIR 

Speed 

 

Slow, intensities 
measured at each 

frequency - spectrum 
obtainable in order of 

minutes. 

Very fast, measurements 
at each frequency taken 
simultaneously (Felgett 
Advantage) - spectrum 
obtainable in seconds 

Sensitivity Restricted due to slits in 
aperture. 

Higher optical throughput 
(Jacquinot Advantage) 

and sensitivity on 
detectors combined with 
increased speed allows 

signal averaging to occur 
resulting in significantly 

better signal to noise 
ratio. 

Accuracy and Precision 

Requires external 
calibration standards, 

instrumental unknowns 
can affect reliability of 

data and reproducibility 
between scans. 

Self – calibrating (Connes 
Advantage). A helium 

neon (He Ne) laser is used 
for precision timing and 
to control the velocity of 
the moving mirror as well 

as internal wavelength 
calibration. 

 

 

FTIR operates as light from an infrared source is collimated and directed through a 

beam-splitter which divides the incoming radiation into two beams, one of which is 

directed towards a fixed mirror and the other towards a mirror attached to a 

mechanism which allows it to move away from, or towards, the beam splitter. The 

beams are then reflected and recombine at the beam splitter before being focused 

and passing through the sample and onto the detector. The difference in path 
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length and relative intensities of the two signals is measured and recorded as an 

interferogram (23) to which a Fourier transform is applied to convert the 

interferogram into a spectrum. 

 

 

 

 

 

Figure 2.8.  Schematic diagram depicting the layout of a typical Fourier transform 
infrared spectrometer. 

 

 

2.3.1   Apparatus and Methodology 

The infrared range used for experiments was selected based on the known 

positions of the main bands of interest which were known to occur within the 

atmospheric infrared window. This is a dynamic property of the Earth’s 
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atmosphere, describing gaps which exist within its overall infrared spectrum where 

main constituents do not absorb. Species which absorb strongly in this region have 

a pronounced radiative effect as they absorb blackbody radiation emitted from the 

earth’s surface which would otherwise escape to space. This effect is summarised 

in Figure 2.9 and discussed in greater detail in Chapter 4.  

 

 

Figure 2.9.  A representation of the position of the main bands of SF6, NF3, SF5CF3 
and CFC-115 relative to the atmospheric window. Background radiance is 
comprised of the primary absorbing constituents of the atmosphere, namely 
CO2, H2O, O3 and CH4. Spectral data for the fluorinated species was obtained 
through the GEISA online database (24). 

 

Measurements were taken using an experimental configuration consisting of a 

Bruker spectrometer (Model IFS/ 66) which was fitted with a mid-infrared (MIR) 

source used to generate radiation which passed through a removable, evacuable 

15.9 cm gas cell. The cell was fitted with KBr windows which allow excellent 

transmission between 400 and 40000 cm-1. The choice of source and window were 
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selected so as to admit radiation across the mid IR range where bands of interest 

were known to occur. Room temperature (296 ± 2 K) measurements were carried 

out between 400 and 2000 cm-1 at a spectral resolution of 0.1 cm-1 and compiled 

from the averaged total of 128 scans to 32 background scans at a scanner velocity 

of 1.6 kHz.  

Gas mixtures were made using between 12 and 307 Torr of NF3, 8 and 675 Torr of 

SF6, 6 and 77 Torr of CFC-115 and 2 and 460 Torr diluted up to an atmosphere using 

nitrogen. Multiple mixtures were made up so that cross sections could be obtained 

at selected wavelengths by taking the slope of the linear regression of the 

corresponding peak absorbances against concentration according to the Beer – 

Lambert equation as adapted from E2.3:  

A = σl𝑐      (E2.4) 

where A is the absorbance, σ is absorption cross section in cm-2, c is concentration 

in molecule cm-3 and l is path length in cm. The expression is accurate for values of 

A < 1. Concentrations were determined using the peak cross sections of each 

species and the Beer - Lambert law. Saturation of peaks, (occurring where A > 1) 

was monitored according to the expression E2.4 as deviation from linearity. 

 

2.4 Vacuum System and Gas-Handling  

The gas–handling set-up consisted of a system of glass tubing maintained to < 10-3 

Torr by a diffusion pump (Edwards, Model Diffstack MK2 63) backed by a rotary 

pump (Edwards, Model E2M80). High vacuum ‘O’ ring taps connected to the 

system allowed for the passage of pure gases and mixtures in and out of the 

system.   

The gas mixtures required for each experiment were made up using such a vacuum 

line and stored in 10 litre glass bulbs attached to the system. Where further 

purification was required, freeze pump thaw was performed on gas samples stored 

in additional, smaller bulbs on the lower tier of the line. 
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2.5 Materials 

For all experiments reactant gas mixtures were prepared on the all-glass vacuum 

lines: the gases N2 (99.9999 %, BOC), NF3 (99.99 %, BOC), SF6 (99.99 %, BOC) and He 

(99.9999 %, BOC) were used without further purification. Samples of CFC-115 and 

SF5CF3 were provided by Professor William Sturges (University of East Anglia). 

These were purified by freeze−thaw distillation on a glass vacuum line and the 

purity confirmed by IR spectroscopy. 

The metal-atom precursors used sodium (98% Sigma-Aldrich), sodium iodide 

(Sigma-Aldrich 98%), potassium iodide (Sigma-Aldrich 99%), magnesium acetyl 

acetonate (Sigma- Aldrich 98%) and ferrocene (Sigma-Aldrich 98 %), were purified 

under vacuum (heating where appropriate) for at least an hour before kinetic 

experiments commenced. 
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Chapter 3: Chemistry of SF6, NF3, SF5CF3 and CFC-115 in the 

Mesosphere  

 

The perfluorinated compounds (PFCS), SF6, NF3, SF5CF3 and CFC-115 (CF3CF2Cl) are 

characterised by extremely long atmospheric lifetimes (τ). This is primarily due to 

their chemical inertness, meaning they do not undergo destructive processes in the 

lower atmosphere and that loss processes in the mesosphere become rate 

determining. The processes studied in this chapter are presented as potential sinks 

affecting the studied PFCs (SF6, NF3, SF5CF3 and CF3CF2Cl) in the mesosphere.  

 

3.1 Previous Measurements 

The chemical and photochemical processes discussed in this chapter were studied 

with the purpose of refining the atmospheric lifetimes (τ) and consequent global 

warming impact of NF3, SF6, SF5CF3 and CFC-115. τ is derived from inputting 

experimentally determined unknowns into a chemical transport model using the 

methods described in Chapter 4. 

For the aforementioned PFCs, photolysis by UV radiation, reactions with O(1D) and 

electron attachment are currently acknowledged to be effective processes of 

destruction in the upper atmosphere (1, 2). In this study, we firstly consider the 

potential removal of PFCs through reaction with metal atoms which exist in 

significant quantities in the upper atmosphere as a result of the ablation of 

incoming cosmic dust (3), a process which is discussed in greater detail in Chapter 

1. Secondly some discussion on removal photolysis by Lyman- photons (121.6 nm) 

is provided. 

Atmospheric removal of very long lived species by reaction with meteoric metals 

has never previously been considered. Determination of the relative importance of 

such processes should consequently be established as their omission could 
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potentially result in an overestimation of atmospheric lifetimes. The atmospheric 

implications of this chapter’s findings will be discussed in Chapter 5. 

Each reaction listed in Table 3.1 has been explored experimentally in this chapter 

and the atmospheric implications of these results discussed in Chapter 5. Previous 

measurements, where they exist, are presented in Table 3.1 along with reaction 

enthalpies calculated from tabulated bond strengths obtained from the 

Computational Chemistry Comparison and Benchmark Database (4). 

 

Table 3.1  A list of the PFC – metal reactions to be studied in this chapter. Where 
available, previously published measurements are stated, including reaction 
enthalpies which have been calculated from tabulated bond strengths (5). 

 

No. Reaction k/ cm3 molecule-1 s-1 
ΔHr (298 K)/ 

kJ mol-1 

R3.1 Na + NF3   NaF + NF2  -223 

R3.2 K + NF3  KF + NF2  -235 

R3.3 Fe + NF3  FeF + NF2  -209 

R3.4 Mg + NF3  MgF + NF2  -193 

R3.5 Na + SF6 → NaF + SF5 
k(280 K) = 1.2 x 10-12 a 

k(610-870 K) = (1.3 – 71.2) x 10-11 b 
-80.4 

R3.6 K + SF6 → KF + SF5 
k(691-810 K) = 

(9.9 – 13.5) x 10-11 c 
-74.9 

R3.7 Fe + SF6 → FeF + SF5  -202.7 

R3.8 Mg + SF6 → MgF + SF5  -198.2 

R3.9 Na + SF5CF3→NaF + SF4CF3  -75.9 

R3.10 
Na + CF3CF2Cl → NaCl + 

CF3CF2 
 -25.0 
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R3.11 
K + CF3CF2Cl → KCl + 

CF3CF2 
 -46.0 

No. PFC + Lyman- (121.6 nm) σ/ cm2 

R3.12 NF3  

R3.13 SF6 
1.8 x 10-18 d 

1.2 x 10-18 (121 nm) e 

R3.14 CFC-115 4.6 x 10-18 d 

a Talcott et al., 1986 (6)    b Husain and Marshall, 1985 (7) 

c Husain and Lee, 1987 (8)        d  Ravishankara et al., 1993 (9) 

e Zetzsch, 1989 (10) 

 

3.2  Ab. initio Quantum Calculations  

In order to ascertain the viability of the PFC + metal reactions and fully interpret 

their kinetics, a new set of quantum calculations were performed by J. M. C. Plane 

(Per. Comm., University of Leeds) (11). These were obtained with the Gaussian 09 

suite of programs (12) using the very accurate CBS–QB3 level of theory.  

rH(298 K) was calculated to be -217,-234,-199 and-214 kJ mol-1 for the reactions of 

Mg, Fe, Na and K with NF3, respectively.  Comparison with the experimental values 

listed in Table 3.1 shows satisfactory agreement (within 9 kJ mol-1) for R3.1, R3.2 

and R3.4. The experimental Hr(298 K) for R3.3 is 21 kJ mol-1 larger, which implies 

that the FeF bond strength is closer to approximately Do(298 K) = 460 kJ mol-1, 

compared with the tabulated value of 477 kJ mol-1 (5). 

Theoretical enthalpies were obtained as the sum of vibrational zero point and 

electronic energies obtained from frequency and single point energy calculations 

respectively. Molecular geometries were first optimised and checked for wave 

function stability before their respective vibrational frequencies were calculated. 

For reactions of NF3 and SF6, the potential energy surfaces (PES) were also obtained 

supplied by J. M. C. Plane (Per. Comm., University of Leeds), to gain a deeper 
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understanding of the reaction kinetics of R3.1 – R3.8. The PESs for R3.1 –R3.8 were 

calculated at the MP2/6-311+g(2d,p) level of theory, where the Møller-Plesset 

correlation energy correction is used to take account for the switch from the 

covalent nature of the surface in the entrance channel to the ionic exit channel 

when the metal fluoride has formed. At this level of theory, the calculated reaction 

enthalpy changes (including a counterpoise correction for basis set superposition 

error) agree well with the literature values for R3.5, R3.6 and R3.8 (5); rHo(Na + 

SF6) =-90 (-85); rHo(K + SF6) =-98 (-97); rHo(Mg + SF6) =-74 (-71) kJ mol-1.  At each 

point on the PES a new initial guess for the Hartree-Fock wave function was 

generated.  The geometry of the SF5/ NF2 moiety on the x axis was kept frozen for 

simplicity. The potential energy surfaces are illustrated later in the chapter. 

 

3.3   Kinetics of Reactions of PFCs with Meteoric Metals 

A full description of both systems and the experimental schemes used for each 

reaction is given in Chapter 2. 

Reactions R3.1 – R3.11 were studied using a pulsed laser photolysis – laser induced 

fluorescence (PLP – LIF) system.  This technique measures rate coefficients by 

monitoring the decay of a metal species generated through the photolysis of an 

organometallic precursor by an excimer laser. The metal species was then probed 

using a dye laser and the resulting fluorescence measured by a photomultiplier 

tube (PMT).  

Reactions R3.1 and R3.5 were also studied using a fast flow tube (FFT) system in 

which sodium atoms are generated through the thermolysis of a solid sodium 

sample, contained within an aluminium oxide crucible, in a side arm of the flow 

tube. The atoms are entrained in a flow of N2 bath gas and transported down the 

tube where they mix with reactant gases added downstream via side-ports. As with 

the PLP-LIF system, the sodium atoms are detected using laser induced 

fluorescence (LIF).  
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3.3.1 Analysis of Experimental Results 

 

3.3.1.1 Pulsed Laser Photolysis – Laser Induced Fluorescence  

In order to extrapolate rate coefficients down to mesospheric temperatures (~ 140 

– 280 K), the temperature dependencies of the reactions must be known. In this 

study, the PLP-LIF system was used to study the reactions R3.1 – R3.11 because this 

technique enables rate coefficients to be measured over a suitably large 

temperature range. 

The metal species of interest was monitored using the set–up and LIF conditions 

described in the previous chapter. The loss of this metal through reaction  with the 

PFC can be described by a pseudo first – order decay rate 𝑘′, as the concentration 

of the PFC was kept in excess of that of the metal. Decay profiles were generated 

by increasing the delay between the excimer and dye lasers, resulting in the LIF 

signal decaying exponentially with time giving: 

         
[X]𝑡

[X]0
=

𝑆𝑡

𝑆0
= exp(−k ′ 𝑡)     (E3.1) 

where [X]t and [X]0 are the concentrations of metal atom X (X=Na, K, Mg or Fe), 

with corresponding LIF signals St and S0,  at the delays t and 0 respectively. 
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Figure 3.1  Time-resolved LIF signals corresponding to the decay of K probed non – 

resonantly at 404.4 nm K(52P3/2-42S1/2) in the presence of 3.9  1013 molecule 

cm-3 (circles) and 1.2  1014 molecule cm-3 (squares) of NF3 at 400 K. The solid 
lines show the fits to the exponential form Ae-k’t and the different timescales 
of the reaction are apparent.  

 

Figure 3.1 shows typical examples of the exponentially decaying time-resolved LIF 

signals representing loss of the studied metal through removal by a reaction with a 

PFC. Because the reaction was carried out under pseudo first order conditions, the 

second order rate coefficient k, can be obtained using the expression:  

𝑘′ =  𝑘′diff,M +  𝑘[PFC]        (E3.2) 

where the decay rates 𝑘′ are previously obtained by fitting the decays of the LIF 

signals such as those shown in Figure 3.1 to the simple exponential form Ae-k’t. 

Some jitter in the initial few points of the decay was occasionally observed. This can 

be caused by error within the delay system of the experimental set – up, where the 

initial timings between the excimer and dye lasers firing are not properly 

controlled. It may also be due to temporary ‘blinding’ of the PMT caused by the 
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formation of electronically excited Na, potentially resulting in a short lived flash of 

light. The effect of the latter is more apparent on the shorter lived decays. 

Consequently, excluding the initial LIF decay points from the fittings meant this 

jitter did not contribute to the uncertainty.  

𝑘′diff,M describes the rate of diffusion of the metal atom, M, out of the volume 

defined by the intersection of the dye and excimer beams and within the field of 

view of the PMT (13). The measured 𝑘′diff,M term for the PLP – LIF reactions studied 

here typically fell within the range ~ 400-15000 s-1.  The different experimental 

conditions used accounts for some of this variation; however, loss of the metal due 

to reactions with the precursor or its photolysis products makes a more significant 

contribution. As a result we include the term, 𝑘′loss. This indicates that Na is being 

removed by a process independent of R3.1, occurring at a rate faster than that of 

diffusion. Larger values of 𝑘′diff,M  +  𝑘′loss  are obtained at lower temperatures 

where formation of a smoke through polymerisation of the NaI precursor is known 

to occur readily (14). This NaI smoke is potentially reactive with Na. 
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Figure 3.2.  Bimolecular plots showing k’ versus [NF3] for the reaction between Na 
and NF3 at 359 K (open squares), 430 K (filled squaress) and 622 K (filled 
circles). The solid lines are weighted linear regressions applied to the 
experimental data and a significantly larger intercept is observed on the 430 K 
data. 

 

From E3.2, a plot of k’ against [PFC] yields a line with slope k and intercept 

𝑘′diff,M  +  𝑘′loss. A typical example of these plots is shown in Figure 3.2. These 

bimolecular plots show results for R3.1 at three temperatures (359, 430 and 622 K) 

where error in k was propagated from the weighted linear regression of k and the 

determined uncertainty in [PFC].  

 

3.3.1.2 Fast Flow Tube 

Reactions R3.1 and R3.5 were also studied using the fast flow tube. This alternative 

methodology was used to test agreement between the two techniques. Due to the 

constraints of the apparatus measurements were only carried out over the range 

197 – 296 K. 
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Each set of flow tube experiments was conducted by recording the Na LIF signal as 

a function of the concentration of the PFC at a fixed reaction time. As with the PLP 

– LIF experiments, loss of Na can be described by the pseudo first order rate 

coefficient, k’, as the concentrations of SF6 and NF3 were kept in excess of the Na 

concentration:   

𝑘′𝑡 =  −ln (
     [Na]PFC

𝑡

[Na]0
𝑡 ) =  −ln (

     SPFC
𝑡

S 0
𝑡 )   (E3.3) 

where k’ is the pseudo first order loss rate, t is the reaction time, and [Na]PFC
𝑡  and 

[Na]0
𝑡  are respectively the Na concentrations with and without any PFC present at 

time t. SPFC
𝑡  and S0

𝑡  are the LIF signals proportional to these concentrations. 

Depletion of the sodium precursor over the duration of experiments results in the 

exponential decay of the Na LIF signal over time. In order to minimise the impact of 

this effect on uncertainty, every measurement of SPFC
𝑡  for a particular PFC 

concentration was carried out between two measurements of 𝑆0
𝑡, in such a way 

that that the value of 𝑆0
𝑡 corresponding to SPFC

𝑡  in equation E3.3 could be 

interpolated from the adjacent values. 

To ensure the applicability of the above expression, a laminar flow profile within 

the flow tube was maintained. This was achieved by keeping velocity between 14 

and 45 m s-1 so that Reynold’s number, Re, was kept within the laminar region (< 

2300). Re is defined by: 

Re =  
ρvDH

μ
     (E3.4) 

where ρ and μ are the gas density and dynamic viscosity (approximated here for 

nitrogen as 1.25 kg m-3 and 1.7 x 107 kg m-1 s-1  respectively). DH is the hydraulic 

diameter of the pipe and ν is the velocity. 

The reaction time t, is determined from the calculated flow velocity down the tube, 

over the distance between the reactant gas point of entry to the Na point of 

detection. As a result of laminar flow conditions (see Chapter 2 and Figure 3.3), a 

parabolic velocity flow profile exists within the flow tube and the calculated flow 

velocity is only achieved along the centre axis, while velocity at the walls is zero.  
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This effect can accurately be accounted for through application of the centroid 

correction coefficient (0.63) (15). An additional uncertainty in t arises from the 

reactant mixing time, tmix. This is defined as the amount of time required for the 

PFC to radially diffuse from its point of injection at the wall of the tube into the 

main bath flow. It can be estimated using the following expression for 3-

dimensional diffusion: 

𝑡mix =  
𝑥2

6D
     (E3.5) 

where 𝑥 is the radial distance of the flow tube; this value was taken to be 2.5 cm, 

equivalent to two – thirds of the tube diameter, in order to ensure complete mixing 

(16). D is the diffusion coefficient of the PFC in the bath gas N2 (approximated here 

as the diffusion coefficient of CO2 in N2, 0.16 cm2 s-1 at 1 bar) (5). Mixing time was 

derived as a percentage of t across all measurements over the range of pressures 

and flows used and determined to be approximately 5% of t on average. A 

corresponding correction factor of 0.95 was subsequently applied. 

 

 

Figure 3.3 Depiction of the differences between laminar and turbulent flows as 
applied to a flow tube (17). 
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Metal uptake on the flow tube walls is an extremely efficient process and therefore 

source of loss. Assuming an uptake coefficient on the walls close to unity, the loss 

rate is diffusion controlled and can be calculated using the following equation: 

𝐷Na−N2
= 𝑘diff,Na𝑃

𝑟2

5.81
     (E3.6) 

where P is the total pressure and r is the flow tube radius. Unlike the pseudo first 

order rate 

 expression E3.2, the kdiff term does not feature in E3.3 which has been derived by 

subtracting the integral of the Na loss rate in the absence of reactant from the Na 

loss rate in the presence of reactant. Thus, loss of Na due to diffusion and reaction 

with precursor is cancelled out (18), so that: 

k’ = k [PFC]     (E3.7) 

Consequently, a plot of the observed quantity ln( SPFC
𝑡 /S0

𝑡 ) versus [PFC] produces a 

straight line of slope kt, as illustrated in Figure 3.4. The values of k at 297, 222 and 

197 K are listed in Table 3.2. 
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Figure 3.4.  Plots of observed change in SNF3

𝑡 /S0
𝑡  with [NF3] for the reaction of Na 

with NF3 at the reaction times t = 0.018 s (triangles), t = 0.015 s (filled circles) 
and t = 0.026 s (filled squares). SNF3

𝑡  refers to the Na LIF signal in the presence 

of NF3, and S0
𝑡  refers to the Na LIF signal in the absence of NF3. The solid lines 

are weighted linear regressions to experimental data. 

 

 

3.3.1.3 Comparison of Techniques 

The temperature dependencies of reactions R3.1 – R3.11 were studied over the 

largest achievable temperature range. Measurements were primarily gathered 

using the PLP-LIF system which, unlike the fast flow tube has a self-contained 

furnace enabling rate coefficients to be measured over a substantial temperature 

range.  

Measureable temperature limits are dictated by many factors, most of which are 

discussed in the previous chapter and include safety, coolant used, heat capacity of 

the apparatus and so forth. Further restrictive factors were encountered 
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was found to  3ghout the duration of experiments. The reaction of K with NFthrou

decrease markedly at temperatures above about 650 K. This appeared to be due to 

 2produces N which ,process . Thison the hot reactor walls 3the thermolysis of NF

and known to occur rapidly at temperatures > 600 ) 17(mented is well docu ,2and F

K on metal/oxide surfaces. An observable but less pronounced effect was noted for 

the reaction with Na. We attribute this significant difference in the thermolysis 

This can  to the varying wall characteristics within the reactor. 3efficiencies of NF

occur through deposition of the precursor onto the reactor walls, meaning that 

there may be significant variation of destruction efficiency depending on whether 

relative to a  3efficiency of NF reactor walls. ThermolysisKI or NaI is coating the 

variety of metals has been studied previously, producing widely varying results 

(19). 

For Mg and Fe + NF3, the experimental temperature range was restricted to < 700 K 

because the MgAcAc and ferrocene precursors were found to rapidly decompose at 

higher temperatures. These reactions are both much slower than those with Na 

and K; since reliable rate coefficients smaller than ~10-15 cm3 molecule-1 s-1 could 

not be measured with the present technique, this constrained the measurements 

of k3 and k4 to temperatures above ~290 K. 

For R3.1, R3.2, R3.4 – R3.6 and R3.8 – R3.11, the residence time within the reaction 

chamber was sustained between around 0.2 and 0.5 seconds. This proved to be an 

optimal timescale for maintaining a metal LIF signal. Loss of the metal precursor 

vapour by deposition to the reactor walls became too significant at longer times, 

determining 0.5 seconds to be the upper limit for residence time. However, for 

R3.3 and R3.7, residence times were significantly longer, ranging from 2.8 to 6.3 

seconds.  This was because ferrocene possesses a vapour pressure significantly 

higher than the other precursors. 

Second order kinetics for R3.1 and R3.2 were confirmed through the execution of 

pressure dependant studies between 268-348 K and 255 – 560 K for R3.1 and R3.2 

respectively. The results obtained from this study are presented in Table 3.2 and 

demonstrate that there was no significant change in rate coefficient when the 
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reaction pressure was varied by up to a factor of three. All remaining reactions 

were consequently assumed not to be pressure dependant. 

 

Table 3.2  Experimental determination of rate coefficients for the reactions of NF3 
with Na as a function of pressure and temperature where quoted 
uncertainties are derived as a combination of error from the weighted linear 
regressions in kinetic plots and that calculated from concentration. 

 

P/ Torr 

k/ 10-12 cm3 molecule-1 s-1 

T/ K 268 348 338 

20 3.98 ± 0.58 6.28 ± 0.47 4.05 ± 0.60 

25 4.05 ± 0.38 6.72 ± 0.29 4.23 ± 0.36 

 

Table 3.3  Experimental determination of rate coefficients for the reactions of NF3 
with K as a function of pressure and temperature where quoted uncertainties 
are derived as a combination of error from the weighted linear regressions in 
kinetic plots and that calculated from concentration. 

 

P/ Torr 

k/ 10-11 cm3 molecule-1 s-1 

T/ K 255 420 560 

5 0.46 ±0.07 2.34 ± 0.38 5.28 ± 0.72 

15 0.48 ±0.06 2.08 ±0.25 4.74 ±0.60 
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3.3.2 Summary of Results: Reactions of Metals with Fluorinated Species 

Reactions R3.1 and R3.5 were studied using both the PLP-LIF apparatus and the fast 

flow tube. The temperature dependence was explored with experiments carried 

out over a temperature range of 197 – 879 K. The measured rate coefficients are 

presented in Tables 3.4 – 3.14 as a function of temperature, where the given 

uncertainty encompasses the error of the weighted least-square linear fits to the 

kinetic plots (e.g. Figure 3.2) and the uncertainty derived from the concentrations 

of gas mixtures to a 95% confidence level.  

 

Table 3.4  Experimental determination of the second order rate coefficient for the 
reactions of NF3 with Na as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-11 cm3 molecule-1 s-1 

197 0.14 ± 0.04a 

214 0.12 ± 0.01 

222 0.23 ± 0.09a 

248 0.27 ± 0.02 

297 0.30 ± 0.08a 

325 0.37 ± 0.03 

359 0.55 ± 0.06 

430 0.95 ± 0.08 

506 2.38 ± 0.20 

622 3.38 ± 0.30 

a Rate coefficients measured with the fast flow tube. All other measurements were obtained using 

the PLP-LIF technique. 
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Table 3.5  Experimental determination of the second order rate coefficient for the 
reactions of NF3 with K as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-11 cm3 molecule-1 s-1 

210 0.22 ± 0.03 

252 0.46 ± 0.07 

285 0.64 ± 0.10 

388 1.91 ± 0.29 

421 2.43 ± 0.38 

483 3.74 ± 0.57 

528 5.03 ± 0.77 

560 5.28 ± 0.72 

626 7.25 ± 0.12 
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Table 3.6  Experimental determination of the second order rate coefficient for the 
reactions of NF3 with Fe as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-14 cm3 molecule-1 s-1 

298 0.36 ± 0.05 

353 0.70 ± 0.08 

412 1.46 ± 0.15 

428 2.09 ± 0.12 

453 3.37 ± 0.87 

531 5.31 ± 1.02 

592 16.1 ± 1.2 

 

Table 3.7  Experimental determination of the second order rate coefficient for the 
reactions of NF3 with Mg as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k/ 10-15 cm3 molecule-1 s-1 

312 0.37 ± 0.07 

349 1.3 ± 0.2 

423 8.2 ± 1.2 

562 87 ± 14 

622 185 ± 30 

693 332 ± 51 
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Table 3.8  Experimental determination of the second order rate coefficient for the 
reactions of SF6 with Na as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-12 cm3 molecule-1 s-1 

212 0.10 ± 0.01 

248 0.40 ± 0.04 

290 0.98 ± 0.06a 

327 1.86 ± 0.15 

396 4.63 ± 0.44 

418 4.53 ± 0.34 

429 6.31 ± 0.29 

539 15.81 ± 1.27 

585 32.76 ± 1.30 

637 59.72 ± 8.18 

717 68.52 ± 5.67 

771 32.76 ± 1.30 

879 87.89 ± 0.49 
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Table 3.9  Experimental determination of the second order rate coefficient for the 
reactions of SF6 with K as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-11 cm3 molecule-1 s-1 

207 1.21 ± 0.11 

248 2.07 ± 0.22 

320 3.16 ± 0.28 

340 3.49 ± 0.32 

388 7.13 ± 0.62 

450 9.16 ± 0.78 

486 10.96 ± 0.94 

522 11.73 ± 0.10 

566 15.49 ± 1.43 

687 25.39 ± 2.15 

817 28.39 ± 2.57 
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Table 3.10  Experimental determination of the second order rate coefficient for the 
reactions of SF6 with Fe as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-15 cm3 molecule-1 s-1 

350 0.92 ± 0.30 

396 2.18 ± 0.33 

429 3.53 ± 0.38 

461 4.06 ± 0.73 

486 7.40 ± 1.12 

583 21.31 ± 4.35 

 

Table 3.11  Experimental determination of the second order rate coefficient for the 
reactions of SF6 with Mg as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-14 cm3 molecule-1 s-1 

449 0.23 ± 0.09 

568 1.11 ± 0.39 

631 2.54 ± 0.65 

738 9.38 ± 1.52 

792 23.60 ± 4.26 
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Table 3.12  Experimental determination of the second order rate coefficient for the 

reactions of SF5CF3 with Na as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-12 cm3 molecule-1 s-1 

327 2.50 ± 0.07 

373 4.40 ± 0.32 

417 7.84 ± 0.86 

588 30.08 ± 1.29 

630 51.56 ± 8.31 

714 67.93 ± 5.12 

 

Table 3.13  Experimental determination of the second order rate coefficient for the 
reactions of CF3CF2Cl with Na as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-13 cm3 molecule-1 s-1 

248 0.04 ± 0.01 

342 0.41 ± 0.07 

416 1.18 ± 0.11 

477 2.88 ± 0.26 

573 9.29 ± 0.82 

685 22.77 ± 2.14 

868 50.92 ± 6.90 
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Table 3.14  Experimental determination of the second order rate coefficient for the 

reactions of CF3CF2Cl with K as a function of temperature, where quoted 
uncertainties are derived as a combination of systematic experimental error 
and from kinetic plots. 

 

T/ K k / 10-12 cm3 molecule-1 s-1 

350 0.81 ± 0.16 

372 1.00 ± 0.20 

423 1.65 ± 0.34 

468 3.15 ± 0.34 

515 4.15 ± 0.71 

586 7.08 ± 1.24 

710 18.23 ± 2.74 

851 19.60 ± 2.21 

 

 

3.3.3 Temperature Dependence of the Reaction Rate Coefficients 

With the exception of R3.5 and R3.6, the rate coefficients studied here have not 

been measured previously. However in this study of R3.1 good agreement is 

observed in our measurements between the FFT and PLP-LIF measurements 

between 190 and 300 K (Tables 3.4 and 3.8). It was not possible to obtain a room 

temperature measurement using the PLP-LIF apparatus. This was due to the high 

temperatures within the side arm housing the precursor. 

The temperature dependencies of R3.1 – R3.4 are presented in the Arrhenius plots 

in Figure 3.5. R3.5 – R3.9 are presented in Figure 3.6 and R3.10 – R3.11 in Figure 

3.7. For all eleven reactions standard Arrhenius behaviour is observed at 

temperatures < 500 K. At higher temperatures however, R3.1, R3.2, R3.5, R3.6 and 

R3.10 exhibit clear curvature. Their rate coefficients were therefore expressed as 
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the sum of two Arrhenius terms showing the high and low temperature 

dependence of each coefficient. 

The experimental data of R3.3, R3.4, R3.7, R3.8, R3.9 and R3,11 were fitted with 

the standard single-term Arrhenius expression:  

k3.3(Mg + NF3, 312 - 693 K) = 

         (9.2 ± 0.5) × 10-10 exp(-(32.5 ± 0.4)/ RT) cm3molecule-1s-1 

 

k3.4(Fe + NF3, 298 - 531 K) =  

                                             (7.8 ± 0.5) × 10-12 exp(-(20.5 ± 2.2)/ RT) cm3molecule-1s-1 

 

k3.7(Fe + SF6, 350 - 583 K) =  

                                          (1.90 ± 1.01) × 10-12 exp(-(22.5 ± 1.9)/ RT) cm3molecule-1s-1 

 

k3.8(Mg + SF6, 449 - 792 K) =   

                                             (1.15 ± 1.10) × 10-10 exp(-(42.6 ± 5.5)/ RT) cm3molecule-1s-1 

 

k3.9(Na + SF5CF3, 327 - 875 K) =  

                                             (6.61 ± 0.78) × 10-10 exp(-(15.2 ± 0.4)/ RT) cm3molecule-1s-1 

 

k3.11(K + C2F5Cl, 350 - 851 K) =  

                                             (1.86 ± 0.40) × 10-10 exp(-(16.0 ± 0.8)/ RT) cm3molecule-1s-1 

 

In order to model the non-Arrhenius behaviour observed at higher temperatures of 

R3.1, R3.2, R3.5, R3.6 and R3.10, an additional term was added to the standard 

Arrhenius expression giving k=A.exp(-B/T)+ C.exp(-D/T) and allowing the rate 

coefficient to be expressed in terms of its high and low temperature dependence. 

These four parameter Arrhenius expressions were obtained by fitting the low-

temperature rate coefficients (T < 500 K) to a single Arrhenius term, and then 

fitting the residual (i.e. high-temperature component) to a second Arrhenius term. 

The single Arrhenius term was assigned by systematically incorporating data points 

across the low temperature range and performing an iterative calculation to assign 

the residual, obtaining the second term. Values reported here are representative of 
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lower temperature terms which fall within the linear regime, allowing the high 

temperature term to converge to a  meaningful parameter within an acceptable 

level of uncertainty. This outcome is not achievable by applying the fit to the four 

parameters simultaneously, because the number of unknowns is then a significant 

fraction of the number of experimental points,  and so this method produces 

physically unreasonable pre-exponential factors with very large uncertainties. The 

separation of these terms yields some physical insight into the cause of the non-

Arrhenius behaviour. This is discussed later in the chapter. 

 

k3.1(Na + NF3, 197-622 K) = (6.0 ± 4.1) × 10-10 exp(-(18.6 ± 3.8)/ RT) +  

             (2.3 ± 1.4) × 10-11 exp(-(4.9 ± 1.2)/ RT) cm3 molecule-1 s-1 

 

k3.2(K + NF3, 210-626 K) = (16.0 ± 5.4) × 10-10 exp(-(19.1 ± 1.5)/ RT) +   

             (1.3 ± 0.3) × 10-11 exp(-(7.2 ± 0.5)/ RT) cm3 molecule-1 s-1 

 

k3.5(Na + SF6, 212-879 K) = (19.0 ± 17.2) × 10-10 exp(-(28.7 ± 6.7)/ RT) +  

      (3.58 ± 0.08) × 10-10 exp(-(14.3 ± 0.5)/ RT) cm3 molecule-1 s-1 

 

k3.6(K + SF6, 207-817 K) = (27.7 ± 9.6) × 10-10 exp(-(16.8 ± 1.7)/ RT) +   

              (1.79 ± 0.20) × 10-10 exp(-(4.44 ± 0.25)/ RT) cm3 molecule-1 s-1 

 

k3.10(Na + C2F5Cl, 248-868 K) = (5.92 ± 3.45) × 10-10 exp(-(35.4 ± 3.2)/ RT) +  

                  (1.84 ± 0.14) × 10-11 exp(-(17.4 ± 0.3)/ RT) cm3 molecule-1 s-1 
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Figure 3.5  Arrhenius plots for the reactions of NF3 with Na (diamonds), K (filled 
squares), Mg (filled triangles) and Fe (circles) are shown. The measurements 
of R3.1(Na + NF3) with the fast flow are indicated with a cross through the 
diamond. Uncertainty is shown as error in k and the standard deviation in 
temperature throughout the experiment. 
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Figure 3.6.  Arrhenius plots for the reactions of SF6 with Na (circles), K (filled 
squares), Mg (upside down triangles) and Fe (filled diamonds) are shown. The 
measurements of R3.5(Na + SF6) with the fast flow tube are indicated with a 
filled circle. Previous measurements of R3.5 obtained by Talcott et al. (6) and 
Husain et al. (7) are shown with filled triangles and open diamonds 
respectively.  R3.9 (Na +  SF5CF3) measurements are displayed with crosses. 
Uncertainty is shown as error in k and the standard deviation in temperature 
throughout the experiment. 
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Figure 3.7.  Arrhenius plots for the reactions of CFC-115 with Na (circles) and K 
(filled squares). Uncertainty is shown as error in k and the standard deviation 
in temperature throughout the experiment. 

 

In the present study of R3.5 (Na + SF6), a good agreement between the 290 K FFT 

and the PLP-LIF measurements were achieved (Table 3.8).  R3.5 has been studied 

previously by Talcott et al. (20) in a flow tube study at 281 K, and by Husain and 

Marshall(7) in a flash photolysis/resonance absorption study over the temperature 

range 644 – 918 K. Figure 3.6 shows that our results are in very good agreement 

with both previous studies. R3.5 has also been studied in a diffusion flame, from 

which a rate constant of k1(523 K) = 3.6 × 10-11 cm3 molecule-1 s-1 was obtained (see 

Table 1 in Gislason and Kwei (21)), which is a factor of 2.3 larger than in the present 

study. Düren et al. (22) measured a reaction cross section  = 46 Å2 at a collision 

velocity v = 3.1 × 105 cm s-1 (which corresponds to a kinetic temperature of 8670 K). 

Expressing the rate constant as the product .v yields k(8670 K) ~ 1.4 × 10-9 cm3 

Na 

K 
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molecule-1 s-1, which is in surprisingly good agreement with a value of 1.6 × 10-9 cm3 

molecule-1 s-1 extrapolated using the  Arrhenius fit described above. 

The reaction kinetics of R3.6 (K + SF6) have also been studied previously by Husain 

et al. (8) over the temperature range 691 – 810 K. Figure 3.6 shows that although 

the activation energy at high temperature is similar to that from the present study, 

the rate constants are approximately 2.3 times smaller. The reason for this 

significant difference is unclear, particularly given the good agreement for R3.5 

between the two techniques. The reaction cross section for R3.6 has also been 

measured in two molecular beam studies. Airey et al. (23) measured  = 60 Å2 at a 

collision velocity v = 6.8 × 104 cm s-1, equivalent to k4(677 K) ~ 4.1 × 10-10 cm3 

molecule-1 s-1 which is a factor of 1.9 times larger than measured in the present 

study. Sloane et al. (24) obtained  = 55 Å2 at a collision velocity v = 6.9 × 104 cm s-

1, equivalent to k4(687 K) ~ 3.8 × 10-10 cm3 molecule-1 s-1, which is a factor of 1.7 

times larger than the present measurements.  The agreement is therefore quite 

satisfactory. Sloane et al. showed in their beam-gas experiment that the reaction 

cross section increased by a factor of 1.5 when the SF6 temperature was increased 

from 300 to 580 K, from which they concluded that excitation of the stretching 

modes of SF6 enhanced its reactivity towards K. Riley and Herschbach (25) showed 

that the differential cross sections exhibit roughly symmetrical forward and 

backward scattering, indicating that the reaction proceeds via a collision complex 

which persists for at least several rotational periods. 

Inspection of Figures 3.5 to 3.7 show that the rate coefficients for Na and K with 

each species decrease in the order NF3 > SF6 > CFC-115. Reactions with NF3 proceed 

approximately 3 times faster than those with SF6 and between ~ 2 and 10 times 

faster with K than Na overall. However, both metals react significantly faster with 

SF6 than C2F5Cl, and the K reactions are ~5-120 times faster than the corresponding 

Na reactions at the same temperature. The rate constants for Na + SF6 and Na + 

SF5CF3 are almost identical (Figure 3.6).  Figures 3.5 and 3.6 show that Mg and Fe 

are comparatively unreactive compared to the Group 1 metal atoms.  
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3.3.3.1   Electronic Structure Calculations and Potential Energy Surfaces 

Figures 3.5 to 3.7 also show that the rate coefficients for the metal atom + PFC 

reactions decrease in the order K > Na > Mg > Fe, which is the inverse order of the 

metal atom ionization potentials K (4.34 eV) < Na (5.14 eV) < Mg (7.64 eV) < Fe 

(7.90 eV). At first glance this might suggest that a classic electron transfer 

(“harpoon”) mechanism governs these reactions. Furthermore, electronic structure 

calculations were unable to identify stable transition states for the reactions of Na 

with SF6 or NF3. 

The harpoon mechanism applies to reactions where one species possesses a low 

ionisation potential and the other, a high electron affinity. When the species pass 

within a critical distance, an electron ‘jump’ occurs as the energy required for an 

electron transfer is balanced by the Coloumbic attraction which occurs between 

the resulting ions. Reactions proceeding via the harpoon mechanism usually 

possess rate coefficients which are much larger than predicted by collision theory. 

This is due to the reaction cross sections being greater than their geometrically 

calculated values. 

To further explore the kinetics of R3.1 – R3.11, electronic structure calculations 

were performed as described earlier in the chapter, which indicate the reactions to 

be highly exothermic. Their collision frequencies were also then approximated 

according to the formula: 

      𝑍M ,PFC =  σM PFC√
8 𝑘𝐵𝑇

𝜋𝜇
    (E3.8) 

where σM PFC is the collisional cross section of the two reactants, and 𝜇, their 

reduced mass. Taking a typical hard sphere value for σM PFC of  ~ 1 x 10-15 cm2 

yielded collision frequencies for the example reaction (R3.5) at 300 K in the region 

of ~ 2 x 10-10 cm3 molecules-1 s-1, at least two orders of magnitude faster than the 

rate coefficients measured.   

A detailed exploration into the significant relationship between the geometry and 

electron affinity of NF3 has been published recently by Matsuura et al. (26) in a 

study of the reaction of NF3 with metastable Kr atoms. The significant steric 
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constraint of R3.1 – R3.4 were then explored through the characterisation of the 

potential energy curves of NF3 and NF3
- as a function of the NF2-F distance (Figure 

3.8). The potential energy surface of a reaction shows the potential energy as a 

function of the relative position of involved atoms. These curves were provided by 

J. M. C. Plane (Per. Comm., University of Leeds) to aid in interpreting the results 

and were calculated at the B3LYP/6-311+G(2d,p) level of theory as described 

earlier in Section 3.2.  

  

 

 

Figure 3.8.   Potential energy curves for NF3 and NF3
-as a function of NF2 – F 

distance, calculated at the B3LYP/6-311+g(2d)level of theory. The neutral NF2 
– F curve (solid line) and ionic NF2 – F- curve (short dashed line) are relaxed 
scans along the reaction coordinate, i.e., the minimum energy paths of the 
respective potential energy surfaces. The points on the ionic NF2 – F-curve 
(long dashed line) are calculated at the geometry of the neutral NF2 – F curve, 
thus providing the vertical electron affinity. 
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The curve for neutral NF2-F (solid line) is a relaxed scan along the minimum path of 

the potential energy surface (PES). The ionic NF2-F-curve (long dashed line) is 

calculated at the corresponding neutral geometry so that the vertical separation 

between these curves is the vertical electron affinity at each N-F separation. In 

contrast, the NF2-F-curve (short dashed line) is a relaxed scan along the reaction co-

ordinate, which shows that the adiabatic electron affinity (EA) is positive. The 

vertical EA is significantly negative, -2.1 eV at the equilibrium geometry of NF3. This 

means that electron transfer is extremely unlikely to occur in this state, providing 

some explanation of why the measured rate coefficients are significantly slower 

than the calculated collision theories. However, as Figure 3.8 shows, EA does 

becomes favourable (i.e. positive) when the NF2-F bond has stretched from its 

equilibrium length of 1.38 Å in neutral to NF3, to more than 1.6 Å. 

Figure 3.8 shows that the neutral and ionic curves cross about 0.2 eV above the 

minimum of neutral NF3, so this amount of internal excitation should result in 

dissociative electron attachment leading to NF2 + F-.  
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Figure 3.9.  Potential energy surfaces for the reactions of Na, K, Mg, and Fe with 
NF3, calculated at the MP2/ 6-311+g(2d) level of theory. The contour labels 
indicate the energy in kilojoules per mole. These surfaces are for the case 
where the metal atom attack is collinear with one of the N−F bonds. The scan 
is therefore along the N−F−M (M = metal atom) linear coordinate, where rN−F 
and rM−F are varied. Note that the geometry of the NF2 moiety is frozen, 
which means that the surface does not represent the lowest possible energy 
path from reactants to products. 

 

The surfaces above are representative of the reaction, they do not, however, present 

the lowest possible energy pathway from reactants to products. The scan is along 

the N-F-M (M = metal atom) linear co-ordinate, where rN-F and rM-F are varied, 

illustrating a mechanism where the metal atom attack is collinear with one of the N-
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F bonds. Each of the potential energy surfaces presented here shows that at the start 

of the interaction the metal – F bond length is effectively infinite and the PFC – F 

bond is at its equilibrium length. Following a successful reaction, the metal – F bond 

is at its equilibrium length and the PFC – F bond length  becomes infinite. 

The four PESs exhibit late barriers in their exit channels. The barriers increase in the 

order K (15 kJ mol-1), Na (20 kJ mol-1), Mg (35 kJ mol-1) and Fe (36 kJ mol-1), which is 

the same order in which the rate coefficients decrease (Figure 3.5).  
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Figure 3.10.  Potential energy surfaces for the reactions of Na, K, and Mg with SF6 
calculated at the MP2(FULL)/6-311+g(2d,p) level of theory. These surfaces are 
for the case where the metal atom attack is collinear with one of the S−F 
bonds. The scan is therefore along the S−F−M(metal atom) linear coordinate, 
where r(S−F) and r(M−F) are varied. Note that the geometry of the SF5 moiety 
is frozen, which means that the surface does not represent the lowest 
possible energy path from reactants to products. 
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Figure 3.10 shows PESs for R3.5 -3.8. These surfaces illustrate the case where the 

metal atom attack is collinear with one of the S-F bonds.  The scan is therefore 

along the S-F-M (M = metal atom) linear co-ordinate, where rS-F and rM-F are varied. 

Since the geometry of the SF5 moiety is frozen in these scans, the surface does not 

represent the lowest possible energy path from reactants to products. However, 

the SF5 geometry does not change significantly between SF5-F and SF5 + F, so that 

the energy of the frozen SF5 geometry is only 12 kJ mol-1 above that of the 

optimized geometry.  

Reactions with late barriers tend to be activated by vibrational excitation in a 

reactant bond corresponding to the reaction co-ordinate (27). Inspection of the two 

Arrhenius terms in the expressions for k3.1 and k3.2 listed on page 99 shows that the 

difference between the activation energies in the two terms is (13.7  5.0) kJ mol-1 

for k3.1, and (11.9  2.0) kJ mol-1 for k3.2. These differences correspond (within error) 

to one 3 quantum (10.8 kJ mol-1), suggesting the first term contains the probability 

of 3 excitation. 3 refers to the asymmetric stretch of NF3, as shown in Figure 3.8, 

sufficient excitation of this NF2-F stretching mode (3 = 907 cm-1) (28) will make the 

electron affinity positive and allow the reaction to proceed via the longer range 

harpoon mechanism (15) and resulting in the large pre-exponential factors observed. 

Finally, the Boltzmann population of NF3 (3>0) at 300 K is in the low region of around 

1.3 %, increasing hugely at 700 K, to 15.5% 

Similarly, the three PESs for R3.5, R3.6 and R3.8 exhibit late barriers in their exit 

channels, particularly Mg + SF6 (Figure 3.9(c)). The barriers increase in the order K 

(13 kJ mol-1), Na (22 kJ mol-1) and Mg (51 kJ mol-1), which is the same order in which 

the rate constants decrease (Figure 3.6).  Reactions with late barriers tend to be 

activated by vibrational excitation in a reactant bond corresponding to the reaction 

co-ordinate(27). The Arrhenius expressions for k3.5 and k3.6 (see above) exhibit an 

increase in activation energy between the low and high temperature terms: the 

change in activation energy is (14.4 ± 7.2) and (12.4 ± 2.0) kJ mol-1, respectively. 

These differences correspond (within error) to one quantum of the 3 S-F stretching 

mode of SF6 (940 cm-1,(15) or 11.2 kJ mol-1). This is consistent with the first term in 

each Arrhenius expression containing the probability of 3 excitation: for example, 
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the Boltzmann population of SF6 (3 > 0) increases from only 3.3 % at 300 K to 37.5 

% at 700 K. The large pre-exponential factor of the first terms in both expressions is 

indicative of a long–range electron transfer.  

 

3.4  Lyman-α Absorption Cross Sections 

Lyman-α absorption cross sections for NF3, SF6 and CFC-115 were determined 

experimentally by T. Kovacs (Per. Comm., University of Leeds) using the method 

described in detail in the previous chapter. Briefly, a radiofrequency discharge was 

used to generate radiation which was optically filtered at 121.6 nm and transmitted 

through an absorption cell containing varying concentrations of the studied PFC. 

The corresponding change in signal intensity was recorded and averaged. The 

Lyman-α absorption cross section, σ, was then determined by applying the Beer-

Lambert equation: 

ln (
𝐼0

𝐼
) = σ(121.6 nm) 𝐿 [PFC]    (E3.9) 

where I0 and I are respectively the light intensity transmitted through the absorption 

cell in the absence and presence of the PFC, and L is the optical path length. 
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 Figure 3.11  Beer–Lambert plot of Lyman-α absorbance against NF3 
concentration where absorbance is determined as the natural log of the ratio 
of the measured signal, with and without NF3 present. 

 

Figure 3.11 shows an example of the experimentally obtained absorbance 

measurements as a function of NF3 concentration. Absorbance measurements were 

recorded relative to a background signal, in the form, ln(I0/I). The measured 

uncertainty is within the 95 % confidence level.  

 

3.4.1 Summary of Results: Lyman-α Absorption Cross Sections 

Discussion of Lyman- α absorption cross sections is provided in Chapter 4. In the 

case of NF3 Figure 3.11 shows the average absorbance (defined here as ln(I0/I)) 

versus [NF3]. Linear regression yields σ(121.6 nm) = (1.59 ± 0.10) × 10−18 cm2 

molecule−1 at 300 K, where the stated uncertainty is at the 95% confidence level.  
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Similarly, the cross section of SF6 was also measured yielding: σ(SF6, 121.6 nm) = 

(1.37 ± 0.12) ×10-18 cm2. Results obtained are in good agreement to previous 

literature results within error (9). Previous measurements of the SF6 cross sections 

over the 116−180 nm and 121−125 nm ranges were reported by Pradayrol et al. 

(29) and Zetzsch (10), respectively.  

 

Finally, the cross sections of CFC-115 were also measured giving: 

σ(CFC-115, 121.6 nm) = (4.27 ± 0.35) ×10-18 cm2. The UV cross sections for each PFC 

are shown in Chapter 4. 
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Chapter 4: Calculation of the Global Warming Potentials of SF6, NF3 

and CFC-115 

 

Perfluorinated compounds (PFCs) such as those studied here potentially play a very 

significant role in global warming. The atmospheric concentrations of such species 

have rapidly increased in recent decades due to increased demand from the 

relatively modern processes for which they have been introduced. This has led to 

increased interest from the scientific community as many of these species have not 

been detected in the atmosphere prior to the advent of their related industries. 

This chapter aims to outline the process of calculating the global warming 

potentials of SF6, NF3 and CFC-115. This begins with some brief background on the 

derivation of their atmospheric lifetimes based on experimental results given in 

Chapter 3, to discussion of the infrared spectra obtained based on techniques 

outlined in Chapter 2 and how these cross sections are used to calculate radiative 

forcings which are used in conjunction with the atmospheric lifetimes to give 

GWPs. Results for these processes are given in Chapter 5. 

 

4.1    Atmospheric Lifetimes 

The rate-determining sinks for the PFCs in this study are thought to be photolysis, 

reaction with O(1D) and/or electron attachment in the mesosphere (1, 2). 

Bimolecular loss rate constants are reported for removal by O(1D) (3) and 

measured for mesospheric metals in Chapter 3. Other removal processes include 

photolysis and electron attachment.  
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4.1.1  Loss Rates 

To assess the impact of our experimentally determined results on the lifetimes of 

the PFCs described in the atmosphere, the removal rates of each PFC through the 

reaction with metal atoms and by Lyman-α photolysis as measured in this study are 

compared with previous work on removal of these species by O(1D), electron 

attachment and photolysis at longer wavelengths. 

 

4.1.1.1 VUV Photolysis 

A predominant focus of this study is species removal through photolysis by Lyman-

α photons (121.6 nm) (4). However, In order to properly assess the role of 

photolysis in the atmosphere, the absorption cross sections over the VUV spectral 

range are required. As stated in the previous chapter, measurements of these cross 

sections for SF6 have been reported over the 116 – 180 nm and 121 – 125 nm 

ranges by Pradarol et al. (5) and by Zetzch (6) respectively. The Lyman-α absorption 

cross sections for SF6 were measured and found to be in generally good agreement 

with the more recent studies (1, 6). The Lyman-α absorption cross section of SF6 

from the present study is: 

σ( SF6, 121.6 nm) = (1.37 ± 0.12) x  10−18 cm2              

and previous measurements in chronological order are 2.74 x 10-18 cm2 by Bastien 

et al. (7), (1.76 ± 0.13) x 10-18 cm2 by Ravishankara et al. (1), 1.83 x 10-18 cm2 by 

Pradarol et al. (5) and 1.20 x 10-18 cm2 by Zetzch (6). The earliest measurement by 

Bastien et al. appears to be an outlier with the other values varying by about 50 %. 

Our value is reasonably close to the average of 1.5 x 10-18 cm2. 

Polynomial expressions were derived describing the cross sections as a function of 

wavelength from composite data sets containing the cross sections obtained in this 

research by Dr Tamás Kovács at 121.6 nm and the literature values described above 

at longer UV wavelengths. Figure 4.1 shows the resulting cross sections as a 

function of wavelength, together with the solar irradiance, which emphasises the 

importance of the Lyman-α line in the solar spectrum. 
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Figure 4.1. SF6 absorption cross sections (left-hand ordinate): present study (121.6 

nm, ★); fit to Zetzch et al. (6) (115 – 125 nm, ■); fits to Pradayrol et al. (5) 
(125 – 155 nm, ○; 155 – 160 nm, ◆; 160 – 175 nm, ▲; 175 – 180 nm, △, see 
text for further details). The solid line is the solar spectral irradiance (right-
hand ordinate).     

 

The solar photon flux as a function of wavelength (i.e. the actinic flux) is taken from 

a box model version of the three dimensional chemical transport model SLIMCAT 

(8, 9). The photolysis rate J(SF6) is calculated using a scheme (10) which employs a 

four-dimensional look-up table as a function of pressure from the surface to 10-5 

hPa, temperature, column ozone and zenith angle. This same method is used to 

calculate J(NF3) and J(CFC-115). 

Similarly, photolysis by Lyman-α photons (121.6 nm) is examined here as a major 

loss process for NF3. This does not appear to have been studied previously. The 

experimental cross sections illustrated below in Figure 4.2 were therefore used 
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with the following linear interpolation between 121.6 and 126.6 nm where there is 

no experimental data: 

σ(NF3 121.6 − 126.6 nm) = 5.22 x 10−19λ + 6.18 10−17 cm2 molecule−1 

 

 

Figure 4.2. NF3 absorption cross section (left-hand ordinate) between 121.6 and 
200 nm: Lyman-α from the present study (●), extrapolation (○), La Paglia and 
Duncan (11) (■), and Papadimitriou et al. (12) (□). The solid line is the solar 
spectral irradiance (right-hand ordinate). Note the intense Lyman-α emission 
line at 121.6 nm. 

 

The Lyman-α absorption cross sections for CFC-115 were measured and found to 

be in generally good agreement with the more recent studies (1, 6). The absorption 

cross section for CFC-115 from the present study is: 

σ(CFC − 115, 121.6 nm) = (4.27 ± 0.35)x 10−18cm2        

This is significantly smaller than a very old measurement of 1.76 x 10-17 cm2 by 

Doucet et al. (13) but in excellent agreement with a value of (4.57 ± 0.37) x 10-18 
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cm2 measured by Ravishankara et al. (1). In order to assess the role of photolysis in 

the atmosphere, absorption cross sections over the VUV spectral range are 

required. The only reported measurements between 122 and 172 nm are by 

Doucet et al. (13). As noted above, their measurement at 121.6 nm is 4 times larger 

than the present study. In contrast, at 172 nm, Doucet et al. (13) are in good 

agreement with the recent JPL recommendation (14) (which extends to 230 nm). 

Since the cross sections between 122 and 170 nm (i.e. not including Lyman-α) do 

not make a significant contribution to the photodissociation rate of CFC-115 (Figure 

4.3), therefore the Doucet et al. (13) results are used over this range without 

scaling them downward to match the Lyman-α measurements from the present 

study and that of Ravishankara et al. (1). 
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Figure 4.3. CFC-115 absorption cross section (left hand ordinate): present study 

(121.6 nm, ★); fits to Doucet et al. (13) (121.6 – 127 nm), ○; 127 – 142 nm, 

●; 146 – 172 nm, ▲, ◊ and ■); JPL recommendation (14) (172 – 230 nm, □

). The solid line is the solar spectral irradiance (right-hand ordinate).  

 

VUV photolysis is the major loss process for CFC-115 above 60 km, but the removal 

of this species by reaction with O(1D) dominates in the stratosphere and hence, 

controls its lifetime. 

 

4.1.1.2 Electron Attachment 

Low energy electrons are in thermal equilibrium with the surrounding gas in the 

upper mesosphere and lower thermosphere (15). Below 80 km electrons are 

mostly attached to molecules in the form of negative ions, such as HCO3
- and NO3

-. 

Because the electron detachment energies from these ions are larger than the 

electron affinity of SF6, only direct attachment of free electrons will lead to the 

potential destruction of SF6 via two pathways: associative attachment to form the 
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SF6

- anion, which can then either undergo photodetachment or react with various 

compounds; and dissociative attachment to form SF5
- + F (16).  

Both associative and dissociative electron attachment have been treated in detail 

in a series of papers by Troe et al. (17). The net associative rate coefficient, kat, at 

an atmospheric density [N2 + O2] and temperature T is given by the following 

expression (17) which neglects radiative stabilisation (since this is only important at 

much lower pressures) and assumes that O2 has a similar efficiency to N2: 

kat =  
𝑥

1+𝑥 
F𝑐

[1+ log10(
x

N
)

2
]−1

          (E4.1) 

 

In this expression x is the ratio of the low to the high pressure limiting rate 

coefficients (i.e. x = kat,0 / kat,∞ ) where: 

𝑘at,0 = [N2 +  O2]2.5 x 10−18 exp (
−T

80 K
) x [1 + 3.5 x 10−22 (

T

K
)

7

]      

 
cm3 molecule−1 s−1 (E4.2) 

 

And: 

𝑘at,∞ = 2.2 x 10−7 (
T

500 K
)

−0.35

cm3 molecule−1 s−1      (E4.3) 

 

The temperature dependence of the broadening factor Fc is given by: 

𝐹c = exp (
− T

520 K
)                                  

          
      (E4.4) 

and the parameter N is given by: 

N = 0.75 − 1.27 log10 (Fc)        (E4.5) 

 

Chemical removal of SF6
- can either recycle or remove SF6. The removal reactions 

are: 
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SF6

− + H → products            

𝑘R5.1 = 2.1 x 10−10cm3 molecule−1 s−1   (R4.1) 

SF6
− + HCl → products                 

𝑘𝑅5.2 = 1.5 x 10−9cm3 molecule−1 s−1 (16)              (R4.2) 

 

While the recycling channels are: 

SF6
− + O3 → SF6 +  O3

−                 

𝑘𝑅5.3 = 1.2 x 10−9cm3 molecule−1 s−1 (16)              (R4.3) 

SF6
− + O → SF6 + O−                 

𝑘R5.4 = 1.4 x 10−10 cm3 molecule−1 s−1 (16)              (R4.4) 

 

The photodetachment coefficient for SF6
- (JPD) can be estimated by integrating the 

product of the electron photodetachment cross section and the extra-terrestrial 

solar irradiance from 280 to 700 nm (18), assuming a quantum yield of unity. The 

cross section  was calculated by combining the recent theoretical spectrum of 

Eisfeld (19) with absolute experimental values reported by Bopp et al. (20) 

Christophorou and Olthoff (21) and Datskos et al. (22). This gives a midday value of 

1.1 s-1 at 85 km. Assuming that SF6
-
 is in steady state, the permanent removal rate 

of SF6 by associative electron attachment becomes kEA [SF6][e-], where: 

 

 

𝑘EA =  𝑘at 
𝑘4.1[H]+ 𝑘4.2[HCl]

𝐽PD+ 𝑘4.1[H]+ 𝑘4.2[HCl]+ 𝑘4.3[O3]+ 𝑘4.4[O]
                        (E4.6) 

 

Secondly, we consider the dissociative channel. At pressures above 10-4 Torr, the 

branching ratio β(P,T) for the dissociative thermal electron attachment channel for 

SF6 is very small (~0.001) (2, 23, 24). Figure 4.4 reproduced from Troe et al.  shows 

the more significant branching ratios and that at a pressure of 10-2 Torr 

(corresponding to an altitude of ~80 km), the fraction that dissociates is less than 
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10-4. The dissociative electron attachment removal rate as a function of 

temperature can be obtained by fitting an Arrhenius expression to the 10-2 Torr line 

in Figure 4.4, over the temperature range 200 – 320 K where an Arrhenius plot is 

reasonably linear. 

 

 

Figure 4.4. Reproduced from Troe et al. (25) shows the modelled temperature 
dependences of branching fractions RSF5

- as a function of bath gas pressure, 
P. 

 

This results in the following expression: 

𝛽(10−2 Torr, T) =  𝑒(− 
4587

𝑇+7.74
)                         (E4.7) 

 

The pressure-dependent results at 300 K from Troe et al. (25) can then be 

combined with the data point from Foster and Beauchamp (26) at 1.5 x 10-7 Torr to 

yield a pressure dependant expression for β at 300 K: 
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log10[𝛽(P, 300 K)] = 

 −4.362 − 0.582 log10 (
𝑃

𝑇𝑜𝑟𝑟
) − 0.0203 [log10 (

𝑃

𝑇𝑜𝑟𝑟
)]2                (E4.8) 

Troe et al. (25) have shown that the pressure dependence of β is very similar over a 

range of temperatures between 200 and 300 K. Therefore, E5.8 can be used to 

scale E5.7 by normalising to β(10-2 Torr, 300 K) = 5.26 x 10-4, producing an 

expression for β as a function of both T and P: 

𝛽(P, T) =  𝑒(− 
4587

𝑇+7.74
) x 10

4.362−0.582 log10(
𝑃

𝑡𝑜𝑟𝑟
)−

0.0203[log10(
𝑃

𝑡𝑜𝑟𝑟
)]

2

5.26 x 10−4     (E4.9) 

Finally, 

𝛽(P, T) =  
𝑘dis

𝑘dis+ 𝑘at
       (E4.10) 

 

so that kdis can be calculated from kat (E4.1). Figure 4.5 illustrates the variation of β 

with altitude and also shows the atmospheric temperature profile (a global average 

for January 2010, see below).  is at a minimum around the tropopause, where the 

relatively low temperature and high pressure causes associative attachment to 

dominate. In contrast, at the high temperatures and low pressures of the lower 

thermosphere (above 115 km), dissociative attachment dominates and  

approaches unity. In the mesosphere between 50 and 100 km,  is approximately 

constant because the effect of decreasing temperature is offset by the decreasing 

pressure. 
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Figure 4.5. SF5
-/ SF6

- branching ratio for thermal electron attachment to SF6. The 
vertical profiles of electron density and temperature are global averages are 
obtained from the Whole Atmosphere Community Climate Model (WACCM). 

 

Unlike SF6, electron attachment of thermal electrons to NF3 above 50 km should be 

a negligible process. This is due to the negative vertical electron affinity of NF3, 

shown in Figure 4.6. 
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Figure 4.6. Potential energy curves for NF3 and NF3
- as a function of NF2 – F 

distance, calculated at the B3LYP/ 6-311 + g(2d) level by Prof. John Plane (27). 
The neutral NF2 – F curve (solid line) and ionic NF2 – F curve (short dashed 
line) are relaxed scans along the reaction coordinate, i.e. the minimum energy 
paths of the respective potential energy surfaces. The points on the ionic NF2 
– F curve (long dashed line) are calculated at the geometry of the neutral NF2 
– F curve, thus providing the vertical electron affinity. 

 

Similarly, the vertical electron affinity of CFC-115 is -1.3 eV (calculated  at the 

B3LYP/ 6-311+g(2d) level by J. M. C. Plane (27) using the method described in 

Chapter 2), so that thermal electron attachment to CFC-115, like NF3, was found 

not to be significant. Because of this, loss rates of these species with respect to 

electron attachment were not explored further. 
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4.1.1.3 O(1D) 

O(1D) profiles for all studies are taken from the Whole Atmosphere Community 

Climate Model (WACCM) (28). The rate constant for the reaction of O(1D) with SF6 

has an upper limit of 1.8 x 10-14 cm3 s-1 (14), which is consistent with an 

endothermicity of 39 kJ mol-1 (29). This low value suggests the reaction is likely to 

occur too slowly to be of atmospheric significance and is therefore not considered 

further. 

For the reaction of NF3 and O(1D), the reactive channels, rather than quenching, 

account for most of the loss by O(1D) with branching ratios between (0.83 ± 0.25) 

(30) and (0.99 ± 0.01) (31).  Zhao et al. (31) observed a very weak negative 

temperature dependence (5.68 x 10-11 exp (5/ T) cm3 molecule-1 s-1 ), whereas 

Dillon et al. (32) reported a temperature independent value of (2.0 ± 0.3) x 10-11 

cm3 molecule-1 s-1. When these two data sets are compared, there is little evidence 

of temperature dependence between 199 – 356 K. We therefore use here the 

result from Dillon et al. (32) and assume 100 % reactive loss of NF3. 

Removal of NF3 by O(1D) is nearly as important as photolysis in the stratosphere 

where the concentration of O(1D) is relatively high because of the ozone layer.  

The reaction of CFC-115 with O(1D) was also investigated as part of this study: 

C2F5Cl + O(1D)  → ClO +  CF           (R4.5) 

R4.5 is fast with an overall (i.e. quenching + reaction) rate constant of k(217 – 373 

K) = 6.5 x 10-11 exp (+30/T) cm3 molecule-1 s-1 and a reactive yield of 0.72 (3). This 

reaction is important in the stratosphere where photolysis of O3 leads to a 

relatively high concentrations of O(1D).  
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4.1.1.4 Metal Reactions 

The Na profiles used in the modelling aspect of the study are extracted from a 

recent implementation of Na chemistry in WACCM (28), and the profile of atomic K 

was measured at the representative latitude of 54 °N (33).  

Apart from the reactions of SF6 with K and Na (although with apparent significant 

disagreement in the case of the SF6 + Na reaction) (34-36), the rate coefficients of 

the other metal - PFC reactions do not appear to have been measured previously.  

Na and K reactions are not competitive in the removal of SF6. This is true even 

where metal atom concentrations peak (~ 90 km). At this altitude, associative 

electron attachment occurs at a rate three orders of magnitude faster than 

removal by Na or K. Removal of SF6 by both metals occurs at a similar rate. We do 

not further consider the reactions of Mg and Fe with any PFC because their rate 

coefficients will be very slow at a typical temperature of 180 K in the upper 

mesosphere.   

Although dominant in the stratosphere, NF3 removal by O(1D) becomes less 

important in the mesosphere and is overtaken by Na removal above 80 km. The 

metals clearly play a secondary role in this model scenario. However, the Na and K 

reactions will be the only removal processes at high latitudes during winter when 

photolysis rates become very small (note the metal atom concentrations are 

highest in the winter mesosphere during polar night) (28). Whether this impacts on 

the overall atmospheric lifetime of NF3 depends on the circulation of NF3 from the 

tropical tropopause where it will enter the stratosphere, to the upper mesosphere 

(37). Nevertheless, at the low temperatures of the mesosphere, reactions with the 

metal atoms are not important routes for NF3 removal.  

Na reaction rates peak with the metal atom concentration at ~ 90 km but still are 

unable to compete with photolysis or O(1D) in the removal of CFC-115. At this 

altitude, removal by Na occurs at a rate ~ 3 orders of magnitude greater than 

removal by K.  
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4.1.1.5 Total Loss 

The loss rates of SF6 and CFC-115 as a function of altitude, due to the various 

processes discussed above, are illustrated in Figures 4.7 – 4.9.  

In order to assess the impact of our new results on the atmospheric lifetimes of SF6, 

the loss rates of the metal atom reactions and VUV photolysis were then compared 

with the loss rates due to associative and dissociative attachment of electrons to 

SF6  (17, 25). 

 

 

Figure 4.7.First-order removal rates of SF6 by photolysis (dash-dot line), associative 
electron attachment (solid line), dissociative electron attachment (dashed 
line), reaction with Na (short dash – dot line) and reaction with K (dotted 
line). 
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Figure 4.7 shows that associative electron attachment is the dominant removal 

process for SF6 throughout the atmosphere up to 100 km; at higher altitudes, 

photolysis dominates. Nevertheless, the absolute loss rate by electron attachment 

only becomes significant in the mesosphere where the removal rate exceeds 10-9 s-

1 (e folding lifetime < 30 years). Combining this slow rate of removal with the time 

taken to transport SF6 above 60 km (~10 years) (2) explains the exceptionally long 

atmospheric lifetime of SF6.  

The NF3 removal rates are plotted as a function of altitude in Figure 4.8 below, for 

the conditions of noon at 40 °N latitude in January (50 ° solar zenith angle). The 

photolysis rates for solar radiation over the complete spectral range, and for the 

Lyman-α line only, are both illustrated in Figure 4.8. This shows photolysis by 

Lyman-α is negligible below 50 km but becomes dominant above 66 km and 

contributes 75 % of the total photolysis rate in the upper mesosphere ( 80 – 90 

km). Photolysis is the dominant removal process throughout the stratosphere and 

mesosphere. 
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Figure 4.8. First-order removal rates of NF3 by different processes (solid line, full 
spectral range; solid line with symbols, Lyman-α only; short dash-dot, reaction with 
O(1D); dashed line, reaction with Na; dashed-dotted line, reaction with K). 

 

Finally, In order to assess the impacts of these new results on the atmospheric 

lifetimes of CFC-115, the loss rates of the metal atom reactions and VUV photolysis 

were then compared with the reaction of O(1D) atoms with CFC-115 (3). The loss 

rates of CFC-115 according to these processes are shown below in Figure 4.9. 
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Figure 4.9. First order removal rates of CFC-115 by photolysis (dash – dot line) and 
reaction with O(1D) (solid line), Na (short dash – dot line) and K (dotted line). 

 

Figure 4.9 shows that the reaction with O(1D) is the major removal process, up to 

50 km. This process peaks in the upper stratosphere around 40 km; this is where 

there is a maximum in O(1D) because the O3 concentration on the topside of the O3 

layer is still high enough for relatively rapid photochemical production of O(1D), but 

the total atmospheric density is low enough that electronic quenching of O(1D) is 

comparatively slow (15).  

 

4.1.1.6 Additional Removal Processes 

In the middle and upper mesosphere there are significant concentrations of O(3P) 

and H (15), so the reaction enthalpies and transition state energies for the 
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following reactions were calculated by J. M. C. Plane (27) using the accurate CBS-

QB3 level of theory (38): 

SF6 + O(3P,1 D)  → FO +  SF5      ∆Hr(298 K) = +228, 38 kJ mol−1 (R4.6) 

SF6 + H → HF +  SF5           ∆Hr(298 K) = −125 kJ mol−1  (R4.7) 

Although R4.7 is exothermic, it has a significant calculated transition state energy 

(including zero-point energy) of 103 kJ mol-1, and so would not be important at 

atmospheric temperatures. R4.6 is too endothermic even for the reaction of SF6 

with O(1D), which is 190 kJ mol-1 above the ground state, to be possible. 

In the mesosphere above 80 km, NF3 will encounter relatively high concentrations 

of O(3P) and H atoms (37). Although the reaction with H is thermodynamically 

favourable:  

NF3 + H → HF + NF2      ∆Hr(298 K) = −326 kJ mol−1  (R4.8) 

this reaction (29) has an energy barrier of 59 kJ mol-1 at the CBS-QB3 level of theory 

and so will be too slow at mesospheric temperatures to affect the NF3 lifetime. 

Similarly, the reaction (29): 

NF3 + O → FO +  NF2      ∆Hr(298 K) = 29 kJ mol−1  (R4.9) 

has a barrier of 148 kJ mol-1 (CBS-QB3 level), and so can be discounted. 

The Lyman-α absorption cross section of NF3 was also measured, and this is 

revealed as the dominant removal process for the gas if it survives long enough to 

reach altitudes above 60 km. 

WACCM was also used to provide vertical profiles of H, HCl, O3, O(1D) and electron 

density. For illustrative purposes, we have taken the global averages of these 

parameters for January 2010. 

Additionally, in the middle and upper mesosphere there are significant 

concentrations of O(3P) and H (15), so the reaction enthalpies and transition state 

energies for the following reactions were calculated by J. M. C. Plane (27) using the 

accurate CBS-QB3 level of theory (38): 
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C2F5Cl + O(3P)  → ClO +  C2F5    ∆Hr(298 K) = +103 kJ mol−1 (R4.10) 

C2F5Cl + H → HCl +  C2F5    ∆Hr(298 K) = −67 kJ mol−1      (R4.11) 

Although reaction R4.11 is exothermic, it has a significant calculated transition 

state energy (including zero-point energy) of 44 kJ mol-1, and so would not be 

important at atmospheric temperatures.  

 

4.1.2 Atmospheric Lifetime - Models and Methodology 

Atmospheric lifetimes have been determined for each PFC by 3-D model simulation 

using the Whole Atmosphere Community Climate Model (WACCM) (39) where all 

work relating to lifetimes was conducted by Dr Tamás Kovács. 

WACCM is a coupled chemistry-climate numerical model extending vertically from 

the ground up to the lower thermosphere (~140 km). Although a simple 1-D model 

may be relatively accurate for local concentrations, it would not be capable of 

simulating the large scale horizontal distribution of mesospheric species. These are 

affected by several mesospheric processes, including meteoric ablation.  

Calculations were carried out on WACCM 4 which has 88 pressure levels from the 

surface to 5.96 × 10-6 Pa and a horizontal resolution of 1.9o × 2.5o (latitude × 

longitude). The model contains a detailed treatment of middle atmosphere 

chemistry including interactive treatments of Na and K. The SD (specified dynamic) 

version of the model was used as it allowed for comparison with observations.  

The model does not include any negative ion reactions. In order to use a realistic 

electron concentration, the role of negative ions in the D region was considered 

through a scaling factor. This was introduced to convert the standard WACCM 

electron concentrations, which are calculated from charge balance with the five 

major positive E region ions (N+, N2
+, O+, O2

+ and NO+), to more realistic electron 

concentrations.  The latitude and altitude dependent scaling factors were then built 

into the SF6 model and the model run used them in situ.  
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All possible loss channels were identified, including reactions with mesospheric 

metals (Na, K), O(1D) radicals, background electrons and UV photolysis. All the 

necessary concentrations (Na, K, electron, O(1D)) needed to determine the loss rates 

were directly simulated in the WACCM runs and the WACCM simulation for each PFC 

included different tracers (including a passive tracer) for each loss process as well as 

a ‘total reactive’ tracer so that the importance of each sink could be quantified. The 

rate constants for the metal reactions were measured  under mesospheric 

conditions for the first time (Chapter 3), while the values for the reactions with O(1D) 

were adopted from Baasandorj et al. (3). Emission data for NF3 and CFC-115 were 

input from mean surface concentrations of each species for averaged monthly 

concentrations across 2010. Emissions of SF6 were included in the model from IPCC 

daily emission data up to 2010.  

The model was run for the period of 18 years (January 1990 – December 2007) for 

SF6, and for 13 years for CFC-115 and NF3 in order to allow enough time for the 

lifetime to reach a steady state. The first five years in the SF6 model run (1990-

1994) were used to spin the model up.  

 

4.2 Infrared Absorption Cross Sections 

PFCs are very potent global warming agents, not only because of the very long 

lifetimes discussed above, but also because they absorb infrared radiation strongly 

between 800 and 1200 cm-1. This region of the electromagnetic spectrum, known 

as the ‘atmospheric window’ occurs where atmospheric absorption from H2O, CO2 

and O3 is at a minimum. Furthermore, it overlaps with the peak in the terrestrial 

infrared spectrum (500 - 1500 cm-1) making it a particularly important region (40).  

Quantitative absorption spectra of SF6 across the main band are available from the 

GEISA: Spectroscopic database (41) and the HITRAN 2012 Molecular Spectroscopic 

Database (42). Similarly, previous spectra of NF3 have been measured by Robson 

et. al (43) and Molina et. al (44), and CFC-115 by McDaniel et. al (45).  
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There is some deviation across existing literature cross sections and few 

quantitative full spectra measurements are available. This work was consequently 

carried out in order to provide a more complete set of measurements and reduce 

uncertainty in published data. 

 

4.2.1     Theory  

Before experimental infrared cross sections were obtained, theoretical frequency 

calculations were performed to predict and understand the spectra of each species. 

These were calculated using the Gaussian suite of programs (46) described in 

Chapter 3. 

Previous studies (47-49)  indicate that it is possible to calculate infrared spectra 

using density functional theory (DFT) or ab initio methods with useful accuracy. 

Computed vibrational frequencies predict fundamental frequencies for molecules 

to which an empirical scaling factor (between 0.8 and 1) is commonly applied as a 

means of accounting for errors due to the approximate nature of the electronic 

structure calculation which are predominantly associated with calculations of force 

constants. Another consideration is anharmonicity effects which, when not 

accounted for, mean calculated frequencies can exceed observed frequencies by as 

much as 12%. For calculations of this nature it is assumed the potential energy 

surface is harmonic, however, the Morse potential (Figure 4.10) provides a much 

better description (11). 
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Figure 4.10. Comparison of the harmonic and Morse potentials where E is the 
potential energy and x is the equilibrium internuclear distance. Reproduced 
from Martin et al. (50). 

 

The Morse potential can be described by:  

𝐸(𝑥) =  𝐷(1 − 𝑒(−𝛽(𝑥−𝑥0)))2    (E4.8) 

where D, β and x0 are constants, E is the potential energy and x is the internuclear 

distance. The harmonic potential is described by: 

𝐸(𝑥) =  𝑘𝑥2     (E4.9) 

where E(x) is the potential energy, k is the bond force constant and x the 

internuclear distance.  

The harmonic potential is only ever used as an approximation. This is because it is 

unrealistic as a bond within a diatomic molecule obeying the harmonic potential 

cannot dissociate whereas the Morse potential allows for dissociation of the bond 

(50). 
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The vibrational frequency is predicted by calculating the second derivative of the 

potential energy surface with respect to the nuclear coordinates of the molecule. 

This is demonstrated as the curve minima shown on Figure 4.10 where for each 

well the minimum is the same and the effects of anharmonicity can be seen as 

smaller spacing between the vibrational energy levels.  

The application of a scaling factor means that it can be assumed anharmonicity 

effects are accounted for. There have been many studies which attempt to 

ascertain the scaling factor for calculations at various theory level/ basis set 

combinations. The standard formula for calculating these is: 

𝑠𝑓 =  
∑ 𝑣𝑖𝑤𝑖

∑ 𝑤𝑖
2

        (E4.10) 

The largest source for computational values is the computational chemistry 

benchmark database (CCCBD) (50) containing data on over a million calculated 

vibrational frequencies with their experimentally determined values and scaling 

factors for given quantum chemistry models (50). 

As stated, the Gaussian 09 software package was used to perform theoretical 

calculations where the choice of theory level and basis set are critical to obtaining 

accurate results. Ab. initio techniques such as Hartree-Fock (HF), DFT and Møller-

Plesset 2 (MP2) are combined with different basis sets to obtain infrared 

wavenumbers and intensities with varying degrees of accuracy. Computational  

techniques have previously been to demonstrate that inclusion of electronic 

correlation is important to obtain accurate infrared intensities for small (< 6 atoms) 

molecules (51). Papasavva et al. studied CF using semi-empirical Austin-Model 1 

(AM1) and Parameterised Model 3 (PM3) methods and HF and MP2 with a wide 

range of basis sets. The best agreement was obtained using the MP2/ 6-31G** 

level of theory where deviations were systematic and could be corrected using a 

scaling factor. Furthermore, theoretical intensities were generally consistent with 

experiments. In a similar study, Halls and Schlegel (52) found that DFT methods 

produced a good prediction of infrared wavenumbers and intensities for a selection 

of small molecules. A review by Bravo et al. (48) suggested that DFT methods could 
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be more accurate than both MP2 and HF in carrying out frequency calculations on 

small molecules than some higher theory levels when combined with a large basis 

set containing polarised functions. The successful deployment of the DFT- B3LYP/ 

6-31G** theory level and basis set in obtaining accurate spectra was demonstrated 

even for larger molecules (48). It was also shown that increased basis set size and 

functions resulted in reduced scaling factors and consequently, increased accuracy 

(53, 54). 

 

4.2.2 Infrared Absorption Cross Sections 

Tables 4.1 – 4.3 present the experimentally determined infrared band frequencies 

for SF6, NF3 and CFC-115 respectively. These values are compared to previous 

studies and theoretically determined values.  
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Table 4.1. Comparison of experimentally determined infrared bands for SF6 against 

their theoretically derived counterparts. Two theory levels are used, DFT 
B3LYP/6-311**G and MP2/6 – 31 G, in order to demonstrate the accuracy of 
DFT theory level with polarised basis set against the higher, MP2 theory level. 
Wavenumbers from Varanasi et al. (41) are also provided and the symmetry 
assignment of each band.  

 

a where scaling factor is equal to 0.9668 

b where scaling factor is equal to 0.9568 

 

For the above scenario, the scaled DFT B3LYP 6-311**G SF6 spectrum is plotted 

against our experimentally determined result. The agreement between the two 

spectra over the main bands is presented below in Figure 4.11.  

 

Theoretical Frequency 

Following Application of 

Relevant Scaling Factor Experimental 

Wavenumber 

(cm-1) 

Band Assignment 

DFT B3LYP 

6-311**Ga (cm-1) 

MP2 

6 – 31Gb 

(cm-1) 

Literature 

wavenumber 

(41) (cm-1) 

Symmetry 

313 327 - 347 3 x T2u 

502 489 - 525 3 x T2g 

595 576 616 616 3 x T1u 

608 670 - 642 2 x Eg
 

745 756 - 774 A1g 

919 998 947 948 3 x T1u 
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Figure 4.11 Comparison of experimentally determined infrared spectra for SF6 

(black line) between 500 and 1200 cm-1 against the theoretically derived 
equivalent (red line). The theoretical spectra was calculated using the DFT 
B3LYP/6-311**G level of theory. 
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Table 4.2. Comparison of experimentally determined infrared bands for NF3 against 

their theoretically derived counterparts. Two theory levels are used, DFT 
B3LYP/6-311**G and MP2/6 – 31 G, in order to demonstrate the accuracy of 
DFT theory level with polarised basis set against the higher, MP2 theory level. 
Wavenumbers from Wilson et al. (55) are also provided and the symmetry 
assignment of each band. Scaling factors are taken from Irikura et al. (56). 

 

a where scaling factor is equal to 0.9668 

b where scaling factor is equal to 0.9568 

 

 

 

 

 

 

 

 

Theoretical Frequency 

Following Application of 

Relevant Scaling Factor 
Experimental 

Wavenumber 

(cm-1) 

Band Assignment 

DFT B3LYP 

6-311**Ga 

MP2 

6 – 31Gb 

Literature 

wavenumber 

(cm-1) 

Symmetry 

471 381 490 492 E 

626 519 647 647 A1 

864 765 909 907 E 

1011 828 1032 1032  A1
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Table 4.3. Comparison of experimentally determined infrared bands for CFC-115 

against their theoretically derived counterparts. Two theory levels are used, 
DFT/B3LYP 6-311**G and MP2/6 – 31 G, in order to demonstrate the 
accuracy of DFT theory level with polarised basis set against the higher, MP2 
theory level. Wavenumbers from Wilson et al. (55) are also provided and the 
symmetry assignment of each band.  

a where scaling factor is equal to 0.9668 

b where scaling factor is equal to 0.9568 

Theoretical Frequency 

Following Application of 

Relevant Scaling Factor 
Experimental 

Wavenumber 

(cm-1) 

Band Assignment 

DFT B3LYP 

6-311G**Ga 

MP2 

6 – 31Gb 

Literature 

wavenumber 

(cm-1) 

Symmetry 

56 65 - - A’’ 

175 171 - - A’ 

209 205 - - A’’ 

301 292 - - A’ 

319 301 - - A’’ 

328 330 - - A’ 

413 390 - - A’ 

432 399 - - A’’ 

529 484 - - A’ 

569 538 - - A’’ 

622 563 560 558 A’ 

728 664 648 644 A’ 

925 901 762 762 A’ 

1081 1040 983 978 A’ 

1140 1111 1132 1130 A’’ 

1177 1157 1184 1182 A’ 

1191 1167 1241 1242 A’’ 

1285 1274 1350 1346 A’ 
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Tables 4.1 – 4.3 show our results have good agreement with previous 

measurements in terms of band frequency position. Furthermore, they support the 

proposition made by Bravo et al. (48) that a DFT level calculation combined with 

polarised basis sets provides better agreement with experimental results than 

calculations at the higher, MP2 level of theory. 

The integrated infrared absorption cross-sections measured here are listed in Tables 

4.4 – 4.6 and the full spectra shown in Figures 4.12 – 4.14. The integrated cross-

sections for SF6 from the GEISA: 2011 Spectroscopic Database (57) and the HITRAN 

2012 Molecular Spectroscopic Database (42) are presented in Table 4.4 for 

comparison with the experimentally determined values from the present study. The 

spectrometer error is given as ± 1% for all experiments and uncertainty in the sample 

concentrations of SF6  were calculated to be 0.7%. Spectral noise was averaged at ± 

5 x 10-21 cm2 molecule-1 per 1 cm-1 band. However at wavenumbers < 550 cm-1, 

towards the edge of the mid infrared where opacity of the KBr filter was increased, 

this value was 1 x 10-20 cm2 molecule-1 per 1 cm-1 band. The error from determining 

the scaling cross-section was 5 %. This results in an average overall spectral error of 

± 5 %. 
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Figure 4.12 Infrared absorption spectrum of SF6 at ~295 K on (a) a logarithmic y axis 
and (b) a linear y axis. A logarithmic scale is used for panel a) in order to 
demonstrate the relative positions of the minor bands.  

 

Table 4.4. Integrated absorption cross-sections for SF6 measured in present work 
and compared with those obtained by Hurley (58), Varanasi (59) and HITRAN 
(42). 

 

Molecule 

Band 
Limits, 

cm-1 

Integrated 
Cross-

section, 

10-16 cm2 
molec-1 cm-1 

Ratio of 
Integrated 

Cross-
section in 
Present 
Work to 
Hurley 

Ratio of 
Integrated 

Cross-
section in 
Present 
Work to 
Varanasi 

Ratio of 
Integrated 

Cross-
section in 
Present 
Work to 
HITRAN 

SF6 
925 - 955 2.02 1.07 1.01 0.99 

600 - 2000 2.40 - 1.09 - 
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The intensities of the main absorption band  (925-955 cm-1) of SF6 measured in the 

present work and shown in Table 4.4, is 7 % greater than those reported Hurley (58), 

1 % greater than Varanasi (59) and 1 % lower than those given in HITRAN (42). 

Comparison against Varanasi (59) between 650 and 2000 cm-1 gives an agreement 

within 9 %. All differences reported are within the combined error of both 

experiments. 

Table 4.5 lists the integrated cross-sections of the new set of spectra for NF3 as 

shown in Figure 4.13. Similarly, Table 4.6 lists the integrated cross-sections for the 

new CFC-115 spectra displayed in Figure 4.14. In Tables 4.5 and 4.6 the relevant 

integrated cross-sections from literature are also given for comparison. 

Experimental and noise uncertainties were the same as for SF6 and sample 

concentrations of NF3 and CFC-115 were calculated to be ± 0.8 and 0.7%, 

respectively. Error in scaling cross section for NF3 and CFC-115 were ± 5 and 6 % 

respectively (error in pressure dependence). This results in an average overall 

spectral error of ± 6 % in both cases. 
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Figure 4.13. Infrared absorption spectrum of NF3 at ~295 K on (a) a logarithmic y 
axis and (b) a linear y axis. A logarithmic scale is used for panel a) in order to 
demonstrate the relative positions of the minor bands.  
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Table 4.5. Integrated absorption cross-sections for NF3 measured in present work 
and compared with those obtained by Robson et al. (43) and Molina et. al (44). 

 

Molecule 

Band 
Limits, 

cm-1 

Integrated 
Cross-section, 

10-18 cm2 
molec-1 cm-1 

Ratio of 
Integrated 

Cross-section 
in Present 
Work to 

Robson et al. 

Ratio of 
Integrated 

Cross-section 
in Present 
Work to 

Molina et al. 

NF3 

600-700 0.41 0.94 0.83 

840-960 65.03 0.97 0.56 

970-1085 5.88 0.89 0.72 

1085-1200 0.10 1.52 1.46 

1330-1440 0.08 0.23 0.21 

1460-1580 0.21 0.65 0.63 

1720-1870 0.71 1.03 0.92 

1890-1970 0.65 0.99 0.94 

600-1970 73.50 0.96 0.58 

 

Panel b) of Figure 4.13 gives the spectrum in a logarithmic scale to show the 

positions of the minor and combination bands. The intensities of the two main 

absorptions bands (840-960 and 970-1085 cm-1) of NF3 measured in the present 

work and shown in Table 4.6, are 44 % and 28 % greater than those reported by 

Molina et al. (44). The integrated cross sections of the minor bands calculated by 

Molina et al. (44)display an average deviation of 32 % from our current results 

whereas the integrated cross-sections across the entire spectrum is 42 % greater 

than that of Molina et al. (44). All differences are greater than the combined error 

from both experiments and some explanation for this is provided by Robson et 

al.(43). In contrast, the intensities of the two main absorption bands are only 3 % 

and 11 % greater than those reported by Robson et al. with an average deviation of 
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29 % over the minor bands and merely 4 % across the entire spectrum. All 

differences excluding the minor bands in the region between 1085 and 1580 cm-1 

are comfortably within the combined error of both experiments.  

 

 

Figure 4.14. Infrared absorption spectrum of CFC-115 at ~295 K on (a) a logarithmic 
y axis and (b) a linear y axis. A logarithmic scale is used for panel a) in order to 
demonstrate the relative positions of the minor bands.  

 

The intensity of the main absorption band for CFC-115 (1212-1265 cm-1) as 

measured in the present work and shown in Table 4.6, is 94 % of that reported by 

McDaniel et al. (45). Three other main bands occurring at 946-1020, 1105-1150 and 

1160-1212 cm-1 show agreement with McDaniel et al. (45) of 90 %, 94 % and 95 % 

respectively. The small band occurring between 1326-1368 cm-1 has an agreement 

of 97 %. These results are well within the combined error of both experiments. 
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Table 4.6. Integrated absorption cross-sections for CFC-115 measured in present 

work and compared with those obtained by McDaniel et. al (45).  

 

Molecule 
Band Limits, 

cm-1 

Integrated cross 
section, 

10-17 cm2 molec-1 
cm-1 

Ratio of 
integrated cross 

section in 
Present Work to 
McDaniel et. al 

CFC-115 

946-1020 2.546 1.10 

1105-1150 2.015 1.06 

1160-1212 1.370 1.05 

1212-1265 5.381 1.06 

1326-1368 0.620 1.03 

 

 

4.3 Radiative Forcings and Efficiencies  

The infrared absorption cross-sections as obtained in the previous section were 

input into the Reference Forward Model (RFM) (60) and Library for Radiative 

Transfer (libRadtran) (61), two radiative transfer models used to obtain radiative 

forcings and efficiencies. Here, radiative forcing refers to the perturbation of the 

modern day concentration of the PFC against its pre-industrial concentration and is 

given in units of Wm-2. Radiative efficiency refers to a perturbation of 0 – 1 ppb and 

is given in units of Wm-2 ppbv-1. 

It is difficult to quantify surface temperature changes resulting from small 

perturbations due to climate variability and large uncertainties in climate feedback 

mechanisms (40). The historic effects of various drivers of climate change are 

typically specified and compared in terms of their radiative forcings, a measure of 

the perturbation to the Earth’s energy budget. Various types of radiative forcing 

exist (62). The effective radiative forcing (ERF) measures the top of atmosphere 

energy budget changes following adjustments to the vertical temperature profile, 
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clouds and land-surface temperatures. The stratospherically adjusted radiative 

forcing (RF) is typically defined as ‘the change in net (down minus up) irradiance 

(solar plus longwave; in Wm–2) at the tropopause after allowing for stratospheric 

temperatures to readjust to radiative equilibrium, but with surface and 

tropospheric temperatures and state held fixed at the unperturbed values (63).  

The instantaneous radiative forcing (IRF) can be obtained by not applying the 

stratospheric adjustment. Although ERF estimates are more representative of 

temperature changes they are more uncertain as they rely on climate model 

estimates of cloud response (64). Further, climate model radiation codes do not 

typically represent minor GHGs, therefore it is not currently possible to estimate 

the ERF for the species considered here. We therefore estimate RF and IRF using 

the line-by-line Reference Forward Model (RFM). As the RFM only accounts for 

absorption, the extension to clouds and scattering processes was performed by a 

secondary radiative transfer model (libRadtran) using atmospheric optical depth 

profiles generated by the RFM. 

From the absorption cross section spectrum the radiative efficiency can be 

approximated through the following equation developed by Pinnock et al. (40): 

RE =  ∑ ℓ𝜎𝑖(𝑣𝑖)𝐹𝑖(𝑣𝑖)
250
𝑖=1    (E4.11) 

where ℓ is the wavelength range over which measurements are taken; σ is the 

averaged absorption cross-section around the wavenumber, νi, and 𝐹𝑖(𝑣𝑖) is 

adjusted cloudy sky radiative forcing per unit cross section (cm2 molecule-1 cm-1)-1 

(40). 

 

4.3.1 Models and Methodology 

Radiative forcing calculations were made using the RFM (60). The RFM is a line-by-

line radiative transfer model based on the previous GENLN2 model (65), and 

includes absorption cross sections for multiple background species extracted from 

the HITRAN database. Alongside providing upwelling and downwelling longwave 

fluxes for calculating clear-sky forcing, the RFM was used to generate optical depth 
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profiles at a resolution of 1cm-1 for input into the DISORT radiative transfer solver 

(66) as implemented in the libRadtran (Library for Radiative Transfer) package (61). 

The clear-sky fluxes obtained from the RFM were validated against results from 

libRadtran for the cloudless, non-scattering case. Unlike the RFM, libRadtran 

includes scattering processes and provides a natural interface for including clouds, 

so the all-sky forcing is calculated in libRadtran. 

Calculations to obtain the IRF and RF were performed using the flux form of the 

RFM at a spectral resolution of 0.1 cm-1, determined by the resolution of the 

infrared spectra measured in this study. The radiative transfer calculation was 

performed on each spectral band between 550 – 2000 cm-1 and irradiance flux 

integrated over wavelength to obtain the net irradiance at each level in the model 

atmosphere. For these calculations integration over the zenith angle was 

performed via a first moment double-Gauss procedure with 8 streams where the 

Planck function was set to vary linearly with optical depth. For the stratospheric 

adjustment, the stratosphere temperatures are adjusted using an iterative process 

based on heating rate changes that after 100 days have changed the stratospheric 

temperatures and returned them to radiative equilibrium as a result of the 

introduction of the PFC. For these PFCs, temperature change at the tropopause is 

of the order of ~ 1.5 x 10-5 K for a perturbation of 1 x 10-3 ppm (average 

tropospheric volume mixing ratio) and ~0.01 K for a perturbation of 1 ppb. 

The model atmospheres were obtained from WACCM and consisted of vertical 

profiles at 66 levels from sea level up to 140 km. These consisted of temperature, 

pressure and mixing ratios of the major atmospheric constituents CO2, H2O, CH4, 

N2O, O3 as well as the PFC trace species for evaluation. The mixing ratio was 

assumed to vary linearly between atmospheric levels. Zonal mean profiles were 

obtained from the 15th year of output by globally averaging over longitude.  

A compilation of line data for background species was obtained from HITRAN 2012 

(42) and absorption cross sections for the PFCs were taken from spectra carried out 

in this work. The temperature dependence of background species absorption is 

automatically interpolated from HITRAN data. However this was not considered for 
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the experimentally determined absorption cross-sections as the IRFs calculated 

using HITRAN cross-sections were in good agreement (5 – 10 %) with those from 

this study.  

 

4.3.1.1 Model Comparison 

Line-by-line calculations, where each local transition has its strength and linewidth 

adjusted for local conditions, and the contributions summed at each spectral grid 

point, are more accurate but computationally expensive. Results were used to 

calibrate experiments by obtaining IRF values from the RFM and repeating them in 

libRadtran.   

The effect of seasonal and geographical variations on factors influencing radiative 

forcing means that multiple averaged local radiative forcings calculated across the 

location - time grid will give the best indication of global forcing. The instantaneous 

and adjusted radiative forcings and efficiencies were first calculated in the RFM for 

each month between -90° and 90° at a 9° resolution. This resolution is shown to be 

accurate to within 1% of a grid with 1.5° spacing in Section 4.3.2.1.  From these 

results averaging three latitudes (representing the tropics and the mid and high 

latitudes) for each month yields a forcing value within 1 – 2 % of that obtained 

from the grid. When comparing this method to using a global annual mean profile 

Freckleton et al. (67) demonstrated this method to be more accurate by 5 – 10% 

than using the global annual mean profile. Explanations for this difference in 

accuracy will be discussed later in this chapter. The profiles representing the three 

latitudes for each month were used to calculate radiative forcings and efficiencies 

in libRadtran. This yielded an average agreement of approximately 97% for IRFs 

calculated using the RFM and libRadtran. 

 

4.3.1.2 Impact of Cloud 

Because clouds absorb across the same spectral region as PFCs, their presence will 

cause a reduction in radiative forcing. Consideration of cloud coverage is therefore 
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crucial to forcing calculations. The treatment of clouds involves determination of 

cloud band transmittance from user specified liquid water path, effective radius 

and cloud fraction at each altitude level. Up to three cloud layers were included 

with data obtained as monthly means from the International Satellite Cloud 

Climatology Project (ISCCP) D2 dataset averaged from between 1983 and 2008. 

This data was averaged to obtain the zonal mean coverage for a given latitudinal 

band. Results were calculated from different, weighted combinations of clear sky 

plus various configurations of cloud coverage using the independent pixel 

approximation (IPA) in libRadtran. 

 

4.3.2 Analysis 

Full results and final values for IRFs, RFs and their corresponding radiative 

efficiencies are presented in Chapter 5.  In the following section the impact of 

tropopause height and grid resolution is explored. 

 

4.3.2.1 Tropopause 

The definition of radiative forcing incorporating the tropopause suggests a 

relationship between tropopause height and radiative forcing.  The tropopause is 

known as the boundary between the troposphere and the stratosphere but there 

are several ways we can determine where this is located. The most commonly used 

definitions are: 

- The thermal tropopause, defined by WMO (68) as the lowest level at which the 

temperature lapse rate between this and all higher levels within 2 km falls below 

2 K km-1. 

- The temperature minimum, the base of the stratospheric temperature 

inversion. However this definition is problematic as the temperature inversion 

can be caused through the efficacy with which ozone absorbs UV radiation.  
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- A proxy for the top of the convective level defined by Forster et al. (69) as the 

altitude at which a significant change in stability is observed below the thermal 

tropopause.  

 

Forster et al. (69) identified the latter as the most appropriate for radiative forcing 

calculations at high horizontal resolution. However, the thermal tropopause (ThT) 

used in this study was found to be accurate to within 0.5% (67). At higher 

horizontal resolution this uncertainty is greater. 

Temperature profile and thus tropopause height vary significantly spatially and are 

affected by profile averaging. This adds additional inaccuracies when using a global 

annual mean profile which does not account for variation in tropopause height. 

This effect was explored with respect to the instantaneous radiative forcing of NF3. 

Figure 4.15 shows the latitudinal variation in tropopause when using the ThT, 

temperature minimum (TMT) and globally averaged tropopauses. 

The globally averaged thermal tropopause was found to be 12.8 km. When this 

spatially varying thermal tropopause was applied to the forcing calculations it 

yielded an average instantaneous radiative forcing 10 % lower than that employing 

the ThT. The globally averaged TMT was found to be 14.9 km. When this was 

applied it resulted in an average instantaneous radiative forcing 5 % higher than 

the ThT.  where the spatially averaged TMT was used, forcings were found to be 3 

% higher on average.   
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Figure 4.15. Variation of instantaneous radiative forcing for NF3 (Wm-2) with 
tropopause height for four profiles: thermal tropopause (red solid line), 
average thermal tropopause (black dashed line), temperature minimum 
tropopause (dash dot magenta line) and average temperature minimum 
tropopause (blue dotted line). 

 

The global mean TMT gives a significant overestimation of radiative forcing from a 

high, non-representative tropopause of 14.9 km caused by temperature variations 

being smoothed out through averaging. Additionally, the averaging procedure 

affects the parameters such as water vapour and ozone profiles meaning that 

averaging monthly profiles over latitudes representing the topics and mid-latitudes 

(rather than globally) gives a better representation of these variables. Because both 

NF3 and CFC-115 are well mixed in the stratosphere they are potentially less 

affected by tropopause height than species which decay strongly in the lower 

stratosphere (70). Consequently, the spatially averaged ThT was selected for 

subsequent calculations. 
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4.3.2.2 Seasonal – Latitudinal Variation 

Figure 4.16 shows the difference in seasonal-latitudinal variation for the 

instantaneous clear sky radiative forcing for SF6 on two different resolution grids. 

Panel a) shows this high resolution, 1.5° spaced grid and panel b) the lower, 9° 

resolution. Averaging radiative forcings over the lower resolution grid gives an 

average forcing within 1% of the higher resolution grid.  

Many forcing calculations calculate their findings using a single global mean 

atmospheric profile for variables including cloud cover, ozone or water vapour 

concentration and temperature. Since atmospheric transmittance is strongly 

affected by the spatial variation of these factors, differences in global mean 

radiative forcing and radiative forcings calculated using a global mean profile may 

be significant. Similarly, our calculations are based on monthly averaged profiles, 

whereas other methods may use an annually averaged profile. When comparing 

this method to using a global annual mean profile, Freckleton et al. (67) 

demonstrated this method to be more accurate by 5 – 10 %. For SF6, we compared 

instantaneous radiative forcing values determined using the lower resolution grid 

described above against a  global- annually averaged profile and obtained a result 

10 % lower than that of the average profile from Figure 4.16 a), in line with the 

finding of Freckleton et al. (67). 
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Figure 4.16. Contour plots for radiative forcing (Wm-2) by latitude and month for a) 
high resolution (1.5°spacing) instantaneous radiative forcing of SF6, b) low 
resolution (9° spacing) instantaneous radiative forcing of SF6. 

 

Figure  4.17 shows the large seasonal-latitudinal impact on variation in the 

instantaneous and adjusted radiative forcing of NF3 and CFC-115 in clear skies. 

Variation in latitudinal forcings for a single month can be as large as a factor of 8; 

variation in monthly forcing for a single latitude is much smaller, approximately a 

factor of 2 on average. The lack of uniformity across this grid demonstrates the 

requirement for higher resolution calculations.  

 

 



 
  

Chapter 4: Calculation of GWPs 165 

 

 

 

Figure 4.17. Contour plots for clear sky radiative forcing (Wm-2) by latitude and 
month for a) instantaneous radiative forcing of NF3, b) stratospheric adjusted 
radiative forcing of NF3 c) instantaneous radiative forcing of CFC-115 and d) 
stratospheric adjusted radiative forcing of CFC-115. 

 

The variation of radiative forcing and efficiency as a function of latitude is primarily 

due to local changes in the Planck function. This is the variation in the Earth’s 

surface temperature with latitude and consequently, it’s radiative heat loss. 

Equatorial latitudes receiving higher solar will radiate more terrestrial infrared 

radiation. A perturbation of any greenhouse gas in this region will subsequently 

have a higher probability of absorbing and re-emitting, an infrared photon, causing 

warming and resulting in a larger radiative forcing value. 

Latitudinal variations in cloudiness and water density levels also contribute to 

variation in radiative forcings with further variation in the PFC VMRs and local 

temperatures and pressures also playing a role. Results averaged from across the 
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southern hemisphere were approximately 25 % lower than those averaged across 

the northern hemisphere where the majority of emissions occur (71).  

The lowest radiative forcings for each month are observed at the South Pole with 

negative forcings occurring at the winter Antarctic polar vortex.  The Antarctic polar 

vortex is a dynamical structure in which stratospheric air develops a cyclonic 

circulation around the pole. They typically form in the winter when warmer air 

cools and descends against the westerly wind circulation. The temperature within 

the vortex is so cold that it allows polar stratospheric clouds to form. These clouds 

contain ozone depleting substances and as a result, cause ozone depletion over the 

pole. A PFC molecule in the Antarctic polar vortex may therefore  be more likely to 

absorb a shortwave photon, resulting in negative forcing.  

 

4.4 Global Warming Potentials 

The purpose of this work is to determine new, accurate values of global warming 

potentials (GWPs) for SF6, NF3 and CFC-115 based on their cloudy sky adjusted 

radiative efficiencies. GWP is defined by the expression: 

GWP =  
∫ aχ[χ(t)]dt

TH
0

∫ ar[r(t)]dt
TH

0

                                             (E4.12) 

where TH is the time horizon; aχ is radiative forcing due to a unit increase in 

atmospheric abundance of the PFC (Wm−2 ppbv−1); and [𝜒(t)] is its time-dependent 

decay in concentration following its instantaneous release at time t=0. The 

denominator contains the corresponding quantities for CO2 as a reference gas (72). 

GWP is the most common metric used by the WMO and IPCC to compare the 

potency of a greenhouse gas relative to an equivalent emission of CO2 over a set 

time period. GWP takes into account the species’ lifetime. This means a species 

with a very high radiative forcing may still have a low GWP if it also possesses a 

short lifetime.  

Note that GWP is only one of a range of possible metrics and is not necessarily 

representative of temperature changes or other climate impacts (62), and does not 

http://en.wikipedia.org/wiki/Radiative_efficiency
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account for factors such as changes in emission or the introduction of replacement 

species. Criticisms are discussed in greater detail by Myhre et al. (62). 

GWP is not a measure of absolute global warming impact as it does not account for 

current or future emissions. All GWPs presented are calculated from direct forcings 

however, in order to account for indirect effects it would be necessary to include 

(potentially very long lived) atmospheric degradation products in this study. The 

concept is further flawed in that by definition, two sets of emissions that are equal 

in terms of their total GWP-weighted emissions will not be equivalent in terms of 

the temporal evolution of climate response (73). GWP can therefore only produce 

identical changes in terms of integrated temperature change following emissions 

impulses under a rigid set of assumptions. In order to address some of these issues, 

the Global Temperature Potential (GTP) was proposed as an alternative to GWP by 

comparing the global mean temperature change at the end of a given time horizon. 

The GTP gives equivalent climate response at a chosen time, while putting less 

emphasis on near-term climate fluctuations caused by emissions of short-lived 

species. However, with the lack of a defined, widely accepted time horizon for 

evaluating anthropogenic interference in the climate system, the GWP concept is 

still valid. 
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Chapter 5: Atmospheric Implications 

The atmospheric implications of the kinetic studies described in Chapter 3 are 

explored in Chapter 4 and will be fully discussed in this Chapter. The ways in which 

these kinetics affect loss rates and consequently the atmospheric lifetimes of the 

species SF6, NF3 and CFC-115 will be also be discussed. New measurements of 

infrared absorption cross-section data collected in this study and their impact on 

radiative forcings calculations are also discussed here. These updated atmospheric 

lifetimes and radiative forcings are used to calculate new values for global warming 

potential. Both the results of this calculation and their implications are presented in 

the Chapter.  

 

5.1 Atmospheric Lifetimes and Loss Rates 

The definition of the atmospheric lifetime (τ) of a greenhouse gas is discussed in 

detail in Chapter 1. Atmospheric lifetime refers to the approximate amount of time 

required for an (often anthropogenic) increment of the species to be removed from 

the atmosphere. This may occur either through conversion to another species or 

through some alternative sink. The amount of time required for removal of the 

species may depend on the rate at which it is injected into the atmosphere, as well 

as its reactivity (1). Furthermore, and particularly relevant to this study, 

atmospheric lifetime may also be considered in conjunction with atmospheric 

mixing. This is because species which are very long lived (τ ≥ 400 years) (2) will mix 

throughout the atmosphere, predominately being removed in the upper 

atmosphere. 

The perfluorinated compounds (PFCs) explored in this study are SF6, NF3 and CFC-

115. Each of these species has an atmospheric lifetime of more than 400 years and 

they are consequently mostly removed in the mesosphere. The value of τ for SF6 as 

reported by the Intergovernmental Panel on Climate Change (IPCC) (1) and the 

World Meteorological Organisation (WMO) (3) is 3,200 years. This value was first 
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reported by Ravishankara et al. (4) who attributed a 0.24 fractional loss due to 

photolysis by Lyman-α radiation (λ = 121.6 nm) and the remainder from reaction 

with free electrons in the mesosphere. By using an assumed rate constant for total 

electron attachment of kEA=10-9 cm3 s-1 they derived a lower limit for τ of 580 years. 

Morris et al. (5) also investigated the effect of atmospheric electron attachment on 

the lifetime of SF6. They assumed that the associative electron attachment forming 

the SF6
- anion would not regenerate the parent molecule and determined τ = 800 

years as a lower limit.  

The most recent published WMO value of τ for NF3 is 569 years (3). This lifetime 

was derived through consideration of measured photolysis cross-sections across 

the UV at room temperature obtained by Molina et al. (6) (180 – 250 nm), Dillon et 

al. (7) (184 – 226 nm) and Papadimitriou et al. (8). Agreement across these spectra 

was within ~ 5% between the critical region (200 – 220 nm) and absorption cross-

sections obtained by Papadimitriou et al. (8)  were also measured at 212, 231, 253, 

273 and 296 K allowing temperature dependence parameterisation. The reported 

fractional loss of NF3 by photolysis is 0.70 – 0.75, with 0.29 being accounted for 

through reactive loss by  O(1D) (9). The room temperature rate coefficient for O(1D) 

+ NF3 has been reported by Dillon et al. (10), Baasandorj et al. (11), Sorokin et al. 

(12) and Zhao et al. (13). Rate coefficients range between (1.20 ± 0.25) and (2.55 ± 

0.38) x 10-11 cm3 molecule-1 s-1. 

The two dominant loss processes for NF3 described above are also the two 

dominant loss processes for CFC-115. CFC-115 has a most recent published 

atmospheric lifetime of 540 years (14). This was determined through consideration 

of new reaction rate data for CFC-115 + O(1D) measured by Baasandorj et al. (15). 

The fractional loss of CFC-115 through reaction with O(1D) is reported to be 0.63 

with the remainder being accounted for by photolysis (9).  

 

5.1.1 Loss Rates 

The loss processes for each PFC are described in detail in Chapter 4. 
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In summation, apart from the reactions of SF6 with K and Na, the kinetics of the 

other reactions of SF6 as well as those of NF3 and CFC-115 with metals do not 

appear to have been measured previously.   

In Chapter 4 it is demonstrated that the Na and K reactions are not competitive in 

the removal of each PFC. This is true even where metal removal rates peak (~ 90 

km). 

For SF6 where associative electron attachment occurs at a rate three orders of 

magnitude greater than removal by Na or K. Removal by both metals occurs at a 

similar rate. Electron attachment is the dominant removal process for SF6 

throughout the atmosphere up to 100 km; at higher altitudes, photolysis 

dominates. 

NF3 removal by O(1D) is dominant in the stratosphere but becomes less important 

in the mesosphere and is overtaken by removal by reaction with Na above 80 km. 

The Na and K reactions will be the only removal processes at high latitudes during 

winter when photolysis rates become very small (16). Whether this impacts on the 

overall atmospheric lifetime of NF3 depends on the circulation of NF3 from the 

tropical tropopause where it will enter the stratosphere, to the upper mesosphere 

(17). 

The Lyman-α absorption cross-section of NF3 was also measured, and this is 

revealed as the dominant removal process for the gas if it survives long enough to 

reach altitudes above 60 km.  

Photolysis and reaction with O(1D) dominate in the removal of CFC-115. At 

approximately 90 km where metal atom concentrations peak, removal by Na 

occurs at a rate ~ 3 orders of magnitude greater than removal by K.  

We do not further consider the reactions of Mg and Fe with any PFC because their 

rate coefficients will be very slow at a typical temperature of 180 K in the upper 

mesosphere.   
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5.1.2  Atmospheric Lifetimes 

Characterising the atmospheric lifetimes of the PFCs studied here is a crucial step in 

assessing their potential impact on global warming. These PFCs are potent 

greenhouse gases which possess large global warming potentials (GWPs) resulting 

from a combination of strong infrared absorptions in the atmospheric window and 

very long atmospheric lifetimes. A general circulation model is required to account 

for their transport into the upper stratosphere and mesosphere (18). 

As we broadly define the atmospheric lifetime as the ratio of the total atmospheric 

burden to the total loss rate, the mixing ratios and the loss rates were calculated in 

each grid box of the model. The loss rates derived are the products of the rate 

constants and the reactant concentration – or in the case of photolysis, the J 

photolysis rate.  

Total loss rates were obtained from the sum of the individual loss rates due to 

photolysis, electron attachment, reactions with mesospheric metals and with 

O(1D). In the case of SF6 it was determined that 95 % of its total loss rate was 

dominated by thermal electron attachment, with the remainder being accounted 

for by photolysis. In the case of NF3, photolysis is the dominant removal process 

accounting for 60 % of loss with 40 % being removed through reaction with O(1D). 

Finally, in the case of CFC-115, it was determined that 67 % was removed through 

reaction with O(1D) and the remaining third by photolysis. 

As discussed, in order to calculate the atmospheric lifetimes, the ratio of the 

atmospheric burden to the integrated loss rate, output was stored from the 

WACCM simulation. The total loss rates were obtained from the sum of the 

individual loss rates due to photolysis, reactions with mesospheric metals, 

electrons and with O(1D) (19, 20). The overall atmospheric lifetimes, and 

contributions from different processes, are summarised in Table 5.1. The total loss 

rates for each PFC in the atmosphere are plotted in Figure 5.1 which shows that in 

the stratosphere NF3 and CFC-115 are removed by up to two orders of magnitude 

faster than the SF6. This means that SF6 is more stable in this region. However, in 

the mesosphere, due to destructive electron attachment, SF6 is removed more 
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quickly than the two other components. The removal of SF6 is dominated by 

electron attachment, while for CFC-115 and NF3 removal is due to photolysis and 

reaction with O(1D). As discussed in Chapter 4, the electron attachment to SF6 has a 

major role in the atmospheric removal. As a result of this both dissociative and 

non-dissociative attachments have been considered. 

 

 

 

 

Figure 5.1. Globally averaged altitude dependant atmospheric loss rates for SF6, 
NF3 and CFC-115 obtained from the 3D model simulations.  

 

 

 

 

 



  

Chapter 5: Atmospheric Implications 184 

 

 

 

Table 5.1. Summary of contributions of the partial to the total atmospheric 
lifetimes determined in present study and previously reported in the 
literature (SPARC (9)) (in brackets), together with the determined net 
atmospheric lifetimes. 

 

 

Figures 5.2 a), c) and e) present the globally averaged profiles of the different 

model SF6, NF3 and CFC-115 tracers, showing the impact of different loss processes. 

The largest mixing ratio profile is shown by the passive tracers as they are not 

subject to the removal processes. Note that the decay of the passive tracer mixing 

ratios above about 80 km is due to the very long timescale for the tracers to mix 

vertically in this region. The length of the model run (13 years) is not long enough 

to allow this, but it is long enough for the tracers to mix in the region where the 

dominant loss processes occur. This is verified by the fact that modelled lifetimes 

have reached a steady state by the end of year 13 (Figure 5.3). 

Contribution to Atmospheric Loss  

Molecule Photolysis 

 

Electron 
attachment 

 

O(1D) Metals 

Total 
atmospheric 

lifetime / 
years 

SF6 

2.5 % 97.5 %  0 0 1221 

(2.6 %) (97.4 %)  0  (2,100) 

NF3 
59.6% 0  40.4% 0 594.0 

(71.3%) 0  (28.7%)  (569.2) 

CFC-115 
24.5% 0  75.5% 0 539.0 

(37.4%) 0  (62.6%)  (539.9) 



  

Chapter 5: Atmospheric Implications 185 

 

 

 

Figure 5.2. (a). Globally averaged SF6 volume mixing ratio in January at the 13th year 
of the WACCM simulation that includes the profiles of the individual tracers 
(passive, photolysis, metal reaction and reaction with O(1D)). (d). Zonal mean 
NF3 volume mixing ratio in January at the 13th year of the simulations. (c & e) 
As panel (c) but for NF3 and CFC-115. (d & f) As panel (d) but for NF3 and CFC-
115. 

 

Figure 5.2 a), c) and e) clearly show that the reactions with atmospheric metals do 

not contribute to the atmospheric removal of these gases (i.e. the metal loss 

tracers profiles are the same as the passive profiles) and hence their impact on the 

lifetimes is effectively zero (Table 5.1). In contrast, electron attachment (in the case 
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of SF6) and photolysis and the reactions with atmospheric O(1D) (in the cases of NF3 

and CFC-115) are the dominant removal processes.  

The model outputs were converted to zonal mean data and then the global 

atmospheric lifetimes were plotted as shown in Figure 5.3.  

 

 

 

Figure 5.3. Annually averaged atmospheric lifetimes for SF6 (solid line), NF3 
(dashed-dot line) and CFC-115 (dashed line) as a function of simulation time. 

 

Estimates of the atmospheric lifetimes of each PFC have recently been reported by 

SPARC (2013). For SF6 the reported value is 2,100 years based on 2-D model 

calculations, where 97.4 % removal was shown to be by electron attachment. 

Associative attachment leads to the regeneration of SF6 and by considering this, SF6 

lifetime will slightly increase. The dissociative and associative electron attachment 

rate constants were calculated from literature data. Note that this is the first time 

that Troe's theory (21-23) has been applied to the MLT region. Its initial step is the 
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formation of SF6
- molecular anion which can either lose an electron through 

photodetachment or react with neutral compounds. The photodetachment rate 

from SF6
- (JPD) is unknown but can be estimated from the NO2 photodissociation 

rate as JPD = X J(NO2), where the X ratio can be determined from the wavelength 

dependent photodetachment SF6 cross section and the WACCM value for J(NO2) at 

85 km altitude (5.3 × 10-2 s-1) (giving a value of 20.4). Since NO2 also dissociates 

mainly in the near UV, this is a good approximation.  

From the loss rates described, atmospheric lifetimes were determined according to 

the method outlined in Chapter 4. SPARC 2013 (24) provides a current lifetime for 

SF6 of 3,200 years. However, our lifetime estimation of 1221 years is explained by 

the detailed treatment of associative and dissociative electron attachment. 

Negative ions have a significant effect on the lifetime: the value drops to 776 years 

when negative ions are not treated in WACCM but all electrons are free to react 

with SF6. This lower limit is in accordance with Morris’s recommendation (25) 

which also reports the value obtained for the highest reactivity.   

Recent lifetime values of  NF3 and CFC-115 have been reported in SPARC 2013 (24) 

as 569 years and 540 years, respectively. The results from the present study are in 

good accord: NF3: 594 years, CFC-115: 539 years. Previous JPL recommendations 

(26) suggested respective lifetimes of 1,588 years for NF3 and 961 for CFC-115. 

However, that recommendation for NF3 is based only on removal by O(1D). The 

results obtained in this study suggest that the removal by photolysis is an 

important loss channel meaning that its exclusion would certainly lead to an 

overestimation of the lifetime. For CFC-115 the recommendation assumed a 

smaller reaction yield for reaction with O(1D) versus quenching. Our values should 

also be more accurate due to our use of a 3-D model, while SPARC data is based on 

a 2-D model. In the present results the contributions from photolysis are lower 

than in the SPARC Report. 3-D atmospheric transport was studied in the model run 

by defining individual tracers for different loss processes, as well as the non-

reactive tracer, which helped to identify the contributions of the different loss 

processes to the atmospheric lifetimes.       
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5.2 Radiative Forcings, Efficiencies and GWPs 

The PFCs examined in this study are very potent global warming agents. This is not 

only because of their long lifetimes determined in the previous section, but also 

because they absorb infrared radiation strongly within the atmospheric window 

region and with the peak in the terrestrial infrared spectrum (27). 

GWP is defined in the previous section as the metric used by the WMO and IPCC to 

compare the potency of a greenhouse gas relative to an equivalent emission of CO2 

over a set time period.  

 

5.2.1 Results 

 

5.2.1.1 Infrared Absorption Cross-Sections 

Infrared absorption cross-sections for each PFC were measured in this study and 

were input into radiative transfer models described in the previous chapter in 

order to obtain radiative forcings and efficiencies. Here, radiative efficiency refers 

to a perturbation of 0 – 1 ppb. The relative positions of these spectra to the 

atmospheric window is shown below in Figure 5.4: 

 



  

Chapter 5: Atmospheric Implications 189 

 

 

 

Figure 5.4. Infrared absorption cross-sections for SF6, NF3, CFC-115 and SF5CF3 
obtained in this study relative to the atmospheric window. 

 

The integrated infrared absorption cross-sections obtained in this study are 

described in detail in the previous chapter. They were generally found to be within 

the combined error of available quantitative literature studies. The intensities of 

the main absorptions band  (925-955 cm-1) of SF6 measured in the present work are 

7 % greater than those reported Hurley (28), 1 % greater than Varanasi (29) and 1 

% lower than those given in HITRAN (30). Comparison against Varanasi (29) 

between 650 and 2000 cm-1 gives an agreement within 9 %. The intensities of the 

two main absorptions bands (840-960 and 970-1085 cm-1) of NF3 measured in the 

present work are 3 % and 11 % greater than those reported by Robson et al. with 

an average deviation of 29 % over the minor bands and 4 % across the entire 

spectrum. Finally, the intensity of the main absorption band for CFC-115 (1212-

1265 cm-1) as measured in the present work is 94 % of that reported by McDaniel 

et al. Three other main bands occurring at 946-1020, 1105-1150 and 1160-1212  
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cm-1 show agreement with McDaniel et al. of 90 %, 94 % and 95 % respectively. The 

small band occurring between 1326-1368 cm-1 has an agreement of 97 %.  

 

5.2.1.2 Radiative Forcings and Efficiencies 

Our forcing calculations suggest that for each SF6, NF3 and CFC-115, the minor 

bands contribute < 5 % to the final value. This means that deviation between our 

experimentally determined spectra and those in literature may only result in a 

significant change to previously published radiative forcings / efficiencies where 

that deviation occurs over a major band. 

The IRFs and RFs in clear and all sky conditions for SF6, NF3 and CFC-115 are given in 

Table 5.2 . The relative radiative efficiencies are given in Table 5.3.  

 

Table 5.2. Instantaneous and stratospheric adjusted radiative forcings of SF6, NF3 
and CFC-115 in clear and cloudy sky conditions. 

 

Molecule 

Instantaneous Adjusted 

Clear, 

10-4 Wm-2 

Cloudy, 

10-4 Wm-2 

Clear, 

10-4 Wm-2 

Cloudy, 

10-4 Wm-2 

SF6 76.43 48.91 81.81 56.01 

NF3 3.30 2.08 3.53 2.79 

CFC–115 27.70 18.09 29.77 19.05 
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Table 5.3. Instantaneous and stratospheric adjusted radiative efficiencies of SF6, 
NF3 and CFC-115 in clear and cloudy sky conditions. 

 

Molecule 

Instantaneous Adjusted 

Clear, 

Wm-2 ppbv-1 

Cloudy, 

Wm-2 ppbv-1 

Clear, 

Wm-2 ppbv-1 

Cloudy, 

Wm-2 ppbv-1 

SF6 0.77 0.50 0.85 0.59 

NF3 0.35 0.22 0.40 0.25 

CFC–115 0.32 0.20 0.35 0.21 

 

 

Variation in the clear: cloudy sky radiative forcing ratios between the species can 

be explained by the variation in each species’ VMR. For example, SF6 has a longer 

lifetime and consequently a higher upper atmosphere concentration than CFC-115. 

This means that at higher altitudes less incoming solar radiation is reflected by 

clouds and is therefore able to be absorbed by a larger fraction of the molecule. 

This results in a larger fraction of the outwelling radiation is more likely to be 

reflected and no reabsorbed when compared to CFC-115. 

For a selection of experiments carried out over a range of months and latitudes, 

the average contribution from the main bands of each species were compared 

against the calculations presented here, incorporating the full measured spectrum. 

In the case of SF6, calculations performed over 580 – 640 and 925 – 955 cm-1 were 

found to contribute almost 99 % to the instantaneous radiative forcing. NF3 

instantaneous radiative forcings calculated between 750 – 1200 cm-1 were found to 

contribute over 97 % to the total value.  CFC-115 results calculated between 900 – 

1400 contributed 98 % of the final value. 

Uncertainties in the modelled values of lifetimes and radiative forcings cannot be 

accurately determined as model uncertainties are not known and physical 
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measurements cannot be taken. Therefore, to get a sense of the accuracy of the 

values presented her, it is necessary to compare to other results.  

The adjusted cloudy sky radiative efficiencies published by the Intergovernmental 

Panel on Climate Change and used to determine their values for GWPs are 0.52, 

0.21 and 0.18 Wm-2 ppbv-1 for SF6, NF3 and CFC-115, respectively. These compare 

to adjusted cloudy sky radiative efficiencies of the same species as determined in 

this study of 0.59, 0.25 and 0.21 Wm-2 ppbv-1. 

A review on radiative efficiencies and global warming potentials published by 

Hodnebrog et al. (31) provides a comprehensive list of all published values for 

these parameters for each species we investigate in this study. They establish the 

range of published radiative efficiencies  for SF6 to be 0.49 – 0.68 Wm-2 ppbv-1, with 

a mean value of 0.56 Wm-2 ppbv-1. This mean value for radiative efficiency is within 

95 % of the value determined in this study (0.59 0.56 Wm-2 ppbv-1). The Hodnebrog 

review used the same HITRAN (30) and GEISA (28, 29) used in the previous chapter 

to compare infrared data (Section 4.2), and obtained radiative efficiencies in the 

range 0.54 – 0.59 Wm-2 ppbv-1. Radiative efficiencies obtained from the same data 

in this study range from 0.5 – 0.57 Wm-2 ppbv-1 when using the same conditions. 

Hodnebrog et al. (31) quote the radiative efficiency of NF3 used by the IPCC and 

published by Robson et al. (32) as the only complete value in the literature. Using 

their infrared cross-section data, the review found a value for radiative efficiency of 

0.2 Wm-2 ppbv-1, within the quoted 5% uncertainty of the 0.21 Wm-2 ppbv-1 

published by Robson et al. (32). This is within 85 % of the value determined in this 

study of 0.25 Wm-2 ppbv-1. 

Finally, Hodnebrog et al. also quote the range of published radiative efficiencies for 

CFC-115 as 0.2 – 0.3 Wm-2 ppbv-1. The value of 0.18 Wm-2 ppbv-1 reported by the 

IPCC is outside this range as they quote the instantaneous radiative efficiency. The 

value of 0.21 Wm-2 ppbv-1 determined in this study however, is within the quoted 

range. 
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5.2.1.3 Global Warming Potentials 

Table 5.4  gives the 20, 100 and 500 year GWPs based on cloudy sky adjusted 

radiative efficiencies of SF6, NF3 and CFC – 115 compared with IPCC AR5 values (33). 

Forcing efficiencies determined in this study are somewhat higher than in 

literature, leading us to expect a higher value for GWP. However, where 

atmospheric lifetimes are smaller than IPCC AR5 values, larger values of GWP have 

been determined. The radiative efficiency effect is most obvious for the case of a 

20-year GWPs where, because the atmospheric lifetimes of SF6, NF3 and CFC-115 

are 1221, 594 and 539 years respectively, the species do not have time to deplete 

sufficiently to impact GWP. The 500 year GWP differences are more indicative of 

the impact of the change in calculated lifetimes.  

 

Table 5.4. Comparison of 20, 100 and 500-year global warming potentials for SF6 
NF3 and CFC-115 from this work with IPCC values.  

 

 This Work IPCC 

Molecule GWP20 GWP100 GWP500 GWP20 GWP100 GWP500 

SF6 18,900 22,800 27,400 16,300 a 21,650 a 32,600 a 

NF3 14,600 19,400 21,400 12,300b 17,200b 20,700b 

CFC-115 6,120 8,060 8,630 5,310c 7,370c 9,990c 

a based on an atmospheric lifetime of 3,200 years 

b based on an atmospheric lifetime of 740 years 

c based on an atmospheric lifetime of 1,700 years. 

 

The trade-off between these competing effects is demonstrated as an example for 

SF6 in Figure 5.5 and the values presented in Table 5.4 above, where each species 

exhibits 20-year GWPs significantly larger than their IPCC determined values. This 
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difference decreases for the 100 year GWPs and more so for the 500 year GWP. In 

the case of CFC-115, where the atmospheric lifetime used to define the GWP is 

1,700 years, over three times that of our value of 539 year, The 500 year GWP of 

9,990 quoted  in IPCC AR5 is actually greater than our value of 8,630. The effect is 

displayed in Figure 5.5 for SF6 where despite the larger radiative forcing value at 

t=0, our considerably lower value for τ of 1221 year (versus that determined by 

Ravishankara et al. of 3,200 years) results in dRF over 500 years being more rapid 

than current values. This equates to a GWP500  of 27,400 for experimental data, 15 

% lower than the literature GWP500 of 32,600. This is a more significant difference 

than the 5% determined for the GWP100. 

 

 

 

Figure 5.5. Simulation of change in SF6 radiative forcing determined in this study 
over a 500 year period compared against literature radiative forcing decays 
using published and e-folding lifetimes.  
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The 100 year global warming potentials published by the Intergovernmental Panel 

on Climate Change (IPCC) for SF6, NF3 and CFC-115 are 21,650, 17200 and 7,370 

respectively. The adjusted cloudy sky radiative efficiencies from which these values 

are derived  are 0.52, 0.21 and 0.18 Wm-2 ppbv-1 for SF6, NF3 and CFC-115 

respectively (1). 

The cloudy sky adjusted radiative efficiency of SF6 determined in this study is 0.59 

Wm-2 ppbv-1. This value is 14 % higher than that used by the IPCC. A comparison 

between our experimentally determined infrared cross-sections for SF6 and an 

identical set of experiments using infrared cross-section data from the HITRAN 

2012 Molecular Spectroscopic Database (30) outlined in Chapter 4, determined an 

agreement in average instantaneous radiative efficiency of within 4 %. This 

suggests other factors play a role in determining the differences between the 

radiative efficiency determined in this study and that used by the IPCC. Variation 

between models is < 5 % and so the remaining difference arises from the vertical 

profiles calculated by WACCM. Similarly, our cloudy sky adjusted radiative 

efficiencies for NF3 and CFC-115 are 0.25 and 0.21 Wm-2 ppbv-1; 16 and 14 % 

greater than their IPCC determined values respectively.  

Our 20, 100 and 500 year global warming potentials for SF6 are 18,900, 22,800 and 

27,400. These numbers are 16 % greater, 5 % greater and 16 % smaller than their 

IPCC counterparts. Despite the larger radiative forcing value at t=0, our 

considerably lower value for τ of 1221 year (compared with that determined by 

Ravishankara et al. of 3,200 years) results in the greater rapidity of dRF over 500 

years than indicated by current values. It also demonstrates that for these very 

long lived species, the 500 year GWP is a more suitable metric. 

Similarly, the 20, 100 and 500 year global warming potentials for NF3 are 14,600, 

19,400 and 21,400. These numbers are 18 %, 13 % and 3 % greater than their IPCC 

counterparts, while the 20, 100 and 500 year GWPs for CFC-115 are 6,120, 8,060 

and 8,630 making them 15 %, 9 % greater and 14 % smaller than the IPCC 

equivalents.  
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Our GWPs for each PFC suggest that in the case of very long lived species our 

revised values for radiative efficiency play a more significant role than our revised 

lifetimes in the global warming potential of each species over the first 100 years 

after their release. Our revised values of τ do not appear to play a significant role in 

this metric as 100 years is not a sufficient time period for significant atmospheric 

depletion of that species. Consequently, we determine that the 500 year GWP is a 

more appropriate metric for determining the long term impact of these agents. 

This is especially true in the case of SF6 which has a revised lifetime of 1,221 years, 

versus τ for NF3 and CFC-115 which are 594 and 539 years respectively. 
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Chapter 6: Conclusions 

This study has explored the impact of a number of processes which may be 

responsibe for the removal of the long-lived greenhouse gases SF6, NF3 and CFC-

115. The reactions of these PFCs with Na, K, Mg and Fe atoms, which occur in the 

mesosphere as a result ofmeteoric ablation, were studied over a range of 

temperatures. Despite the reactions of the meteoric metals with these of these 

PFCs being very exothermic, the reactions have substanital barriers on their 

respective potential energieswhich cause the reactions to be much slower than 

their collision frequencies (particularly the reactions of Mg and Fe). They were also 

found to be too slow at the temperatures of the upper mesosphere (< 230 K) to 

contribute significantly to the removal of the PFCs.  

In the case of the NF3 reactions, this appears to arise from the negative vertical 

electron affinity of NF3. Vibrational excitation along the F2N−F coordinate leads to 

a positive electron affinity, which may cause the observed non-Arrhenius behavior 

in the Na and K reactions at higher temperatures, and is consistent with the late 

barriers on the potential energy surfaces.  

Similarly, theoretical calulations with SF6 have indicated that the Na and K reactions 

may be activated by vibrational excitation of the F-SF6 (v3) asymmetric stretching 

mode. A limited set of measurements on Na + SF5CF3 have indicated that SF5CF3 

behaves much like SF6. 

The Lyman-α absorption cross sections for each PFC were also measured and found 

to be in generally good agreement with the more recent previous studies. Although 

VUV photolysis of SF6 is the major loss process above 105 km, below this height 

associative electron attachment dominates and so this is the process which 

controls the atmospheric lifetime of this PFC.  

In the case of NF3 photolysis turned out to be the dominant removal process for 

the gas if it survives long enough to reach altitudes above 60 km. In the case of 

CFC-115, VUV photolysis is the major loss process above 60 km, but the removal of 
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this species by reaction with O(1D) dominates in the stratosphere and hence 

controls its lifetime. 

We have also presented updated values for the atmospheric lifetimes and infrared 

absorption cross-sections as well radiative forcing efficiencies of SF6, NF3 and CFC-

115 taking into account stratospheric adjustment and cloudy skies to within a 10 – 

15 % uncertainty. These values have then been used to obtain updated values for 

the 20, 100 and 500 year GWPs of both species. A discussion of sensitivity analysis 

for forcing calculations relating to tropopause definition and grid resolution has 

also been provided. 

Our model results show that omitting stratospheric adjustment can result in an 

under estimation of around 10 – 15 % and omitting cloud can result in an 

overestimation of between 30 – 40 %. These differences are in line previous studies 

by Pinnock et al. (27) who found an overestimation of between ~25 – 50 % over 

several RF and IRF calculations for a range of hydrohalocarbons. Our results also 

show a strong variation of greenhouse gas forcings with season and latitude, 

varying as much as several orders of magnitude.  

Our infrared cross sections are in good agreement with previous measurements. 

The resulting radiative forcings and efficiencies are in reasonable agreement 

although somewhat larger than those reported previously.  

Atmospheric lifetimes have been determined for each PFC by 3D model simulation 

using the Whole Atmosphere Community Climate Model (WACCM) It was found 

that each gas has an exceptionally long atmospheric lifetime: SF6: 1221, NF3: 594 

years, CFC-115: 539 years. These results are very similar to the ones reported by 

SPARC Reports but the contribution from the loss via photolysis seems to be less 

significant in the present case. These lifetimes were used in conjunction with the 

above in order to determine updated global warming potentials (over a 500 year 

period) for SF6, NF3 and CFC-115 of 27,400, 21,400 and 8,630 respectively. 


