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ABSTRACT

We study the modules V(r) ® A(s) for the group SLgo(k), where % is an algebraically closed field
of characteristic p > 0. We are primarily concerned with the decomposition of such modules into
indecomposable summands, and construct a method which allows one to give the decomposition
for any such module in any characteristic. We also develop a variety of other techniques to give
the decomposition in particular cases. Furthermore, we give a complete account of exactly when
such a module is a tilting module for all primes p, and give a number of results in a more general
setting.
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CHAPTER

INTRODUCTION

In this thesis we investigate the modules V(r) ® A(s) for the algebraic group SLo(k), where £ is
an algebraically closed field of prime characteristic, and r,s € N. Our primary goal is to solve
a classic representation theory problem; to decompose each tensor product into a direct sum of

indecomposable submodules.

Over a field of characteristic zero, the corresponding problem is well known and given by the

celebrated Clebsch-Gordan equation,

Vir)eV(s)= éV(r +s—21).
1=0

The elegance of this solution however, belies the complexity found over a field of prime charac-
teristic. We will see very quickly though, that thanks to a result in [27], the Clebsch-Gordan

coefficients (the integers r + s — 2i) still have a crucial role to play.

In Chapter 2, we give all the necessary preliminary definitions and results for the later chapters.
The subjects of algebraic groups and representation theory are both deep and wide ranging. In
most cases we will give as general a result as possible, and refer the reader to the essential
literature for further reading. In some cases it will be convenient to just give the results for
G = SLy(k), in order to avoid the unnecessary complexity of the general result (in fact, this can
already be seen in our use of natural numbers r and s as parameters). Since we will always
be working over an algebraically closed field, we will not use the language of group schemes,
however many results will be cited from Jantzen’s book "Representations of Algebraic Groups"

[21], which is given in this framework.
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CHAPTER 1. INTRODUCTION

For an arbitrary reductive algebraic group G, very little is known about the modules V(1) or A(u)
for dominant weights A and y, let alone the modules V(1) ® A(u). For the case where G = SLa(k)
however, one can use the realisation of V(r) as the ! symmetric power of the natural module
E to give a vector space basis to work with. Once we have our hands on such a basis, we can
start to consider generating elements and begin to construct explicit maps. This is the approach
taken in chapters 3 and 4, where we describe the endomorphism algebra of V(r)® A(s) in a num-

ber of cases.

Recent work by Stephen Doty and Anne Henke gives the result to an analogous problem; to
decompose the tensor product of two simple modules for SLo(%). In their paper "Decomposition
of tensor products of modular irreducibles for SLy" [13], Doty and Henke give the tensor prod-
uct L(r) ® L(s) as a direct sum of twisted tensor products of tilting modules, using the Steinberg
tensor product formula. This work relies on the fact that for SLo, the indecomposable tilting
modules are known and can be computed inductively (see [9]). In Chapter 5, we also utilise the
powerful theory of tilting modules, and describe exactly when the module V(r) ® A(s) is a tilting
module. In general (and even just for SL3), the indecomposable tilting modules are unknown.
However, we hope that the methods developed in this chapter will generalise to give at least a

partial result in some further cases, which may illuminate the general theory.

In 2012, as part of his Masters thesis [4], Mikaél Cavallin investigated the tensor product of
two induced modules for SLg, again over an algebraically closed field of positive characteristic.
Using the duality between polynomial GL-modules and modules for the Schur algebra, Cavallin

was able to decompose V(r)® V(s) as a direct sum of injective polynomial G Lg-modules.

The two cases described above are both variants of the problem we study in this thesis, and
in fact, using that the simple module L(ap™ — 1) is equal to both V(ap™ —1) and A(ap™ — 1), there
is some overlap between all of these problems. In the final chapter, we give a general method
to decompose any module V(r) ® A(s) for a given characteristic p. More specifically, the method
gives the good or Weyl filtration of each indecomposable summand. The ability to do this relies
wholly on the known characters of the tilting modules for SLg and a result in [27] which gives
sufficient conditions for V(r) ® A(s) to be a tilting module. We then abstract the requirements

necessary to do this, by introducing the notion of a Clebsch-Gordan module.

18



CHAPTER

PRELIMINARIES

In this chapter we will introduce all the objects of study, and give the underlying theory upon
which this thesis is based. None of the work presented here is new, and references are given
where appropriate. For brevity, we will work in the context of affine algebraic groups, rather
than the more general framework of group schemes. Whilst the theory of group schemes is im-
mensely powerful, since we will only be considering algebraically closed fields, it’s not necessary

here. Some results, however, will be referenced in the context of group schemes.

In the main body of this thesis, we will be working primarily with the group SLg(%), for which
many simplifications can be made. In this chapter though, we attempt to give a more general
introduction to the theory we use, whilst giving explicitly those results for SLy(%k) which will be

essential.

2.1 Algebraic Groups

First we will introduce the main object of the theory, the algebraic group G. A first treatment
of algebraic groups would not be complete without first doing some algebraic geometry, so we

begin with varieties.

Since in this thesis it’s sufficient to consider affine varieties, we will introduce only these here.
For a more general treatment of varieties the reader is referred to [19, Chapter I, or the classic
text by Robin Hartshorne [17].

19



CHAPTER 2. PRELIMINARIES

2.1.1 Affine Varieties

This section follows lecture notes supplied by Stephen Donkin [11]. The intrinsic notion of an
affine variety given, and the results that follow, can be found in the first chapter of [30]. We also
take some results from the first chapter of [19].

First we must fix an algebraically closed field k. By affine n-space, denoted A", we mean the set
of all n-tuples, where each entry is an element of the field £. The first objects we will discuss are
affine varieties. Intuitively, these can be thought of as subsets of affine n-space which consist of
the solutions to some set of polynomial equations in n independent variables. For example, in
A? we have the line given by the equation y = x, and the circle given by the equation x2 + y2 = 1;
these are both affine varieties. With this in mind, we will give a slightly more abstract defini-

tion, which has the advantage of being coordinate free.

For any set V, denote by Map(V,k) the set of all maps from V to k. We can regard this
as an algebra via pointwise operations. For each x € V, denote the evaluation map at x by
£y : Map(V,k) — k, given by £,(f) = f(x) for all f € Map(V,k). Note that we will often restrict ¢,
to some subalgebra of Map(V, k) without changing notation.

Definition 2.1.1. An affine variety over k is a pair (V,A) where V is a set and A is a finitely
generated k-subalgebra of Map(V, k) such that the map

V — Homyaig(A, k)

X— &y
is a bijection.

Usually, if the pair (V,A) is an affine variety, we will simply say that V is an affine variety and
denote A by £[V]. We will call £[V] the coordinate algebra of V.

For example, take V = A" and A = k[T1,...,T,], the polynomial algebra in n independent vari-
ables. The set A is made a subalgebra of Map(V , k) by defining T';(x) = x;, where x is the n-tuple
(x1,...,x,) € A", It’s certainly true that A is finitely generated, so it remains to check that the
map x — & is bijective. Injectivity is clear; if £, = £, then for each i = 1,...,n we have that
x; = €x(T;) = €,(T;) = y;, so x = y. To show surjectivity, suppose that 0 € Homj,_a5(A,k). Let x€ V
be given by x; = 6(T;), then since A is generated by the T}, it’s clear that 8 = ¢,. Hence the pair
(A™ k[T1,...,T,] is an affine variety.

Next we will explore the rich structure of affine varieties by introducing the Zariski topology
on them. Throughout, we will denote the complement of a subset W <V by W€, and the closure
by W. Let (V,A) be an affine variety, and let S be a subset of A. Define

20



2.1. ALGEBRAIC GROUPS

Y(S)={xeV : fx)=0VfeS}.

The sets 7'(S), for arbitrary S € A, are the closed sets of V. One can quickly show that, given

some collection S; of subsets of A, with i € I, we have that

Y(JSH=7(S,

iel iel
hence the intersection of closed sets is also closed. Given two subsets of A, say S; and S we

define their product by

8182 :={8182 : 81€Sl,82€82 }CA.

We have then, that ¥ (S1)uU ¥ (S2) = 7 (S1S2), so that finite unions of closed sets are closed.
Finally we have that ¥ ({0}) =V, where 0 denotes the 0 map, and for any other constant a € k&,
we have that ¥ ({a}) = . Hence the sets 7(S) define a topology on V, which is intrinsically

linked to its structure as an affine variety. Indeed, we have the following.

Lemma 2.1.2. Let V be an affine variety, and suppose that W 'V is a closed subset. Then W is
an affine variety, and k[W1]is given by

KIW1={ flw : f €kIV1}.

Proof. Let W be given by 7'(S) for some S c £[V]. Denote by B the set { flw : f €k[V]}, and
let 7 : k[V]— B be the restriction map. Since V is an affine variety and B = 7(k[V']) we have that
B is finitely generated subalgebra of Map(W, k).

Let €/, : B — k denote evaluation at x € W, and €, : k/[V] — k evaluation at x € V. Then €, om = ¢,,

so if €, = ¢/, for some elements x,y € W then &, = ¢, and thus x = y.

Next suppose that 0 € Homj,_44(B, k) so that 0 o € Homy_44(k[V],k) and thus O on = &, for
some x € V. Let f €S, then ,(f) =0on(f)=0 since f|w =0, so in fact x € W. Now let g € B so
that g = 7(f) for some f € k[V]. Then

0(g) =00m(f) =ex(f) = f(x) = g(x) = £,(g).
Hence we have that 6 = ¢/, for some x € W, so (W,B) is an affine variety. O

This lemma shows us that the examples given at the beginning of this section are indeed affine

varieties.

Definition 2.1.3. Let V and W be affine varieties. A map ¢:V — W is called a morphism of
affine varieties if for every f € k[W] we have that the composition f o ¢ is an element of 2[V]. In
this case the map £[W] — k[V] given by f — f o¢ is called the comorphism of ¢, and denoted ¢*.
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CHAPTER 2. PRELIMINARIES

One can show that morphisms of varieties are continuous with respect to the Zariski topology.
Furthermore, it’s clear that an inverse morphism exists precisely when the comorphism is an
isomorphism of k-algebras. In this case we say that the morphism is an isomorphism of vari-
eties. Notice that if a morphism of varieties is bijective then it is not necessarily an isomorphism

of varieties.

For our first example of a morphism, let Chark = p > 0. We define the Frobenius morphism
by

F:A" — A"
(X1, .0, Xp) — (af .., ).

Since % is algebraically closed, it’s clear that this is a bijective morphism of varieties, but the

inverse map is not a morphism.

Lemma 2.1.4. Let ¢ : V — W be a morphism of affine varieties, and suppose that ¢* : F[W] — E[V]
is surjective. Then the image of ¢ is closed in W and the restriction of ¢ to its image is an

isomorphism.
Proof. See [30, Lemma 1.5] for a proof. O

Now suppose that V is an affine variety, with £[V] generated by the elements fi,...,f,. Define
the map ¢ by

¢: V— A",
x— (f1(x),..., fn(x)).

Note that we have the composition T;0¢ = f;, so Tjo¢ € k[V]. Since k[A"] is generated by the
T;, we have that ¢ is a morphism of affine varieties. Furthermore, since 2[V] is generated by
the f; = ¢*(T;) we have that the comorphism ¢* is surjective, so we can apply Lemma 2.1.4 to
get that V is isomorphic to a closed set in A®. Hence we may think of affine varieties as the

closed sets of affine n-space.

We would like to have the notion of a product of affine varieties, agreeing with the categori-
cal notion of a product. We can consider the cartesian product of two affine varieties V and W as
a set, but we must give some thought as to what the coordinate algebra [V x W] should be. We
observe that we have a k-algebra homomorphism, say @ : k[V]® k[W] — Map(V x W, k), given
by

O(f ® g)v,w) = fv)g(w),

for all v € V and w € W. Furthermore, this map is injective (this can be seen by considering
a k-basis for either 2[V] or £[W]), so in fact we may identify £[V]® k[W] with a subalgebra of
Map(V x W, k).

22



2.1. ALGEBRAIC GROUPS

Lemma 2.1.5. Let (V,k[V]) and (W,k[W]) be affine varieties, then the pair (V x W k[V]1® E[W])

is also an affine variety.

Proof. It’s clear that the algebra k[V]® k[W] is finitely generated, so we only need to show that
the map (v,w) — €@ 1) is bijective, for all v € V, w € W. First suppose that &, 1,) = €@wq.w,) fOr
some pairs (v1,w1),(v2,we) € V x W. Then for all f € k[V] we have that £, ,)(f ®1) = f(v1) =

f(v2) = £@ywq)(f ®1), so that v1 = ve. Similarly we have that w1 = w2 so (v1,w1) = (v2,w2).

To show surjectivity suppose that 6 : k[V]® k[W]— & is a k-algebra homomorphism. Restricting

6 to k[V] and k[W] gives us two more algebra homomorphisms, i.e.
Oy :k[V]— &,
f—0o(fel),
and
Ow :kRIW]—F,
g—0(1eg).

Since both V and W are affine varieties we get that 6y = ¢, for some v € V and 0w = ¢, for some
w € W. Then it’s clear that

O(f ®g)=0(f ®1)0(1® g) =0y (f)Ow(g) = €,(ew(g) = €w w)(f ® ),

for all f € kR[V], g € k[W]. Since k[V]®k[W]is spanned by the pure tensors f ® g, we have proved
the result. O

This definition of the product of affine varieties is indeed the categorical product in the category
of affine varieties (see [19, Proposition 2.4] for more on the categorical notion of products applied

to varieties).
Next let V be an affine variety and consider the set

Vi={xeV : fx)#0},

where f € kE[V]. The sets V¢ are called the principal open sets and form a basis of open sets for V'
under the Zariski topology [19, Section 1.5]. It’s clear that the complement V}f is given by 7 (f),

so V¢ is indeed an open set.

Lemma 2.1.6. Let V be an affine variety. For every f € k[V], the principal open set V is an affine
variety, with coordinate algebra given by the localisation of k[V]at f. Explicitly,

k[Vf]=k[V]f={ % : g€ k[V], re Nu{0} }

23



CHAPTER 2. PRELIMINARIES

Proof. See [19, Section 1.5] for an idea of the proof. ]

Note that we can identify £[V']; as a subalgebra of Map(Vy, k) by defining

g, 8k
F (x) - fr(x) ’
since for all x € V; we have that f(x) # 0 by definition.

We have now given the geometry of our affine varieties using the algebra, so a natural ques-
tion is to ask whether we can give the algebra from the geometry. It turns out that we can, with

some minor adjustments.
Let V be an affine variety, and consider a subset W c V. Define .# (W) by

FW)={feklV]: fw)=0VYweW }.

Note in particular, that .#(W) is an ideal of £[V]. We have that if W; and Wy are two subsets
of V, then F(W1uUWs3) = Z(W1)n F(Wsy), and if W1 € Wy then (W) ¢ .£(W7). Furthermore
we have that W = ¥(.#(W)), and for an ideal I < £[V] we have that I < .#(¥(I)). Whilst this
relationship is not quite one to one, we do have the following well known theorem. First recall

the definition of the radical of an ideal I of a commutative ring R, denoted /1.
VI={reR : r"el forsomeneN}.

Theorem 2.1.7 (Hilbert’s Nullstellensatz). Let V be an affine variety and I an ideal of k[V].
Then (¥ (D) = VI.

Proof. See [19, Theorem 1.1] for an elementary proof. ]

Note that if W is a closed set of an affine variety V, with .#(W) = I for some ideal I of £[V], then
we have, by Lemma 2.1.2, that

EIW1={ flw : f€kIV1}.

Since for all f €I and v € W we have that f(v) =0, we may identify 2Z[W] with the quotient,

kRIW1=FE[V]/ 1.

Recall that a topological space is called irreducible if it cannot be written as union of two proper
closed subsets, or equivalently if every non-empty open set is dense (i.e. if W c V is open then

W =V). We remark that affine n-space is irreducible under the Zariski topology.

Lemma 2.1.8. Let V be an affine variety, and suppose that the subset W is closed. Then W is
irreducible if and only if the ideal ¥ (W) c k[V1is a prime ideal.

24



2.1. ALGEBRAIC GROUPS

Proof. First suppose that W is irreducible, and let f = gh € I = Z(W). Then W c Y ({f}) =
Y {ghu?({h}). But then W = (W n ¥ ({g}) Uu(W n ¥ ({h})), a union of two closed sets. Hence we
have that either W  ¥'({g}), in which case g € I, or W c ¥/ ({h}), where h € I, and so I is prime.

Conversely, let I be a prime ideal, and suppose that W = W; UWy. Then I = (Wi UWy) =
F(W1)n £ (Wy), so we must have that either .#(Wy) ¢ £ (Wy) or £ (Wy) c #(W71), and hence
chwl OI‘W1CW2. O

Definition 2.1.9. A topological space V is called Noetherian if it satisfies the descending chain

condition for closed subsets. That is, if for any sequence
Wia2We2oW32...
of closed subsets W; c V, there exists an integer n such that for all m > n we have W,, =W,,.

As an example of a Noetherian topological space, we have that A" is Noetherian under the
Zariski topology. This is clear since if the sets W; form a descending chain in A", we obtain an
ascending chain of ideals . (W;) in k[T'1,...,T,]. Since this is a Noetherian ring, such a chain of
ideals terminates. But 7' (. (W;)) = W; for each i (since W; is closed), so the chain {W;} must also

terminate. This example shows that every affine variety is a Noetherian space.

Lemma 2.1.10. Every non-empty, closed subset W of a Noetherian space V can be expressed as

a finite union of closed irreducible subsets, i.e.
W=WiuWeu---uW,,,

for some m e N. If W; Q W; for all i and j, then the W; are uniquely determined, and called the

irreducible components of W.
Proof. This can be found in [17, Proposition 1.5]. Il

The following definition plays an important role in the next section.

Definition 2.1.11. A variety V is called complete if for all varieties W, the projection map
e VxW—W,

sends closed sets to closed sets.

For example, all projective varieties are complete. A number of important properties of complete

varieties are given in [19, Proposition 6.1].
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CHAPTER 2. PRELIMINARIES

2.1.2 Affine Algebraic Groups

In this section we will give the first definitions and results for affine algebraic groups. This will

largely follow [19], but one may also consult the classic textbooks by Borel [3], and Springer [28].

Let G be a group. Then the group axioms give us maps p and t, where

u:GxG@—G
(g,h)— gh

is given by group multiplication, and

1:G—G
-1
g§—8
is given by inversion.

Definition 2.1.12. Let G be a group and %k an algebraically closed field. We say that G is an
affine algebraic group over k if it is also an affine variety over k, and the maps y and ¢ are

morphisms of varieties.

The first examples of algebraic groups are G, and G,,. The group G, is the additive group Z,
given the structure of variety as Al, so that its coordinate algebra is £[T']. The group G,, is the
multiplicative group k*, given the structure of variety as the principal open set (Al)7, hence its
coordinate algebra is given by £[T']7, which is isomorphic to the algebra of Laurent polynomials
k[T, %]. One can check that the multiplication and inversion maps are indeed morphisms of

varieties. Furthermore, both of these groups are irreducible as varieties [19, Section 7.1].

Next we remark that any subgroup of an algebraic group that is also a closed subset is also
an algebraic group. The direct product of any two algebraic groups is also an algebraic group,

with variety structure that given in Lemma 2.1.5.

Definition 2.1.13. Let G and H be algebraic groups over the field k. A map ¢:G — H is a

morphism of algebraic groups if it is both a group homomorphism and a morphism of varieties.

As in Definition 2.1.3, an isomorphism of algebraic groups is a morphism of algebraic groups
whose inverse exists and is also a morphism of algebraic groups. Note that a group isomor-

phism may fail to be an isomorphism of algebraic groups. We will see an example of this shortly.

As a second example of an algebraic group, we remark that, for all n € N, the group GL,(k)

is an affine algebraic group, given the structure of an affine variety as the principal open set
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2.1. ALGEBRAIC GROUPS

(A" )det- Note in particular that the map det: A" — k, taking a matrix to its determinant, is an
element of £[T;;:1<1i,j <nl, so that we have k[GL, (k)] =k[T;;:1<1i,j < nlget. Furthermore,
one can check that matrix multiplication and inversion are morphisms of varieties. This exam-
ple plays a central role in algebraic group theory, since all affine algebraic groups are isomorphic

to a closed subgroup of GL,(k), for some n € N [19, Theorem 8.6].

Notice that if we restrict the map det to GL (k) we obtain a morphism of algebraic groups,

det:GL, (k) — G,,,
M — det(M),
with comorphism given on the generators of k[G,,] = k[T,1/T1 as det*(T) = det and det*(1/T) =

1/det, both of which are elements of k[G L, (k)].

For the main example in this thesis, consider the group SLo(k). It’s clear already that SLo(k) is
a closed subgroup of GLy(%), so it’s an algebraic group in its own right. However, we will show
that it’s an affine algebraic group explicitly. We may think of the elements of SLa(%) as the set
of points in A% that satisfy the equation x11x99 —x12x21 = 1, so that SLy(%) is an affine variety

with coordinate algebra given by

E[SLo(k) = k[T11,T12,T21,T22] /{T11To2 — T12T21 — 1).
Furthermore, the maps u and ¢ are morphisms of varieties, since
/.t*(Tij) = Til ® le + Tig ® ng € k[SLQ(k)] ® k[SLz(k)],
and for 1 we have

(T11) =T, " (T12)=-T1a,
1"(To1)=-Ta1,  1"(Te2) =T,

all of which are in E[SLgy(k)], so that SLo(k) is an affine algebraic group.
Recall from Section 2.1.1, that when the characteristic of 2 is p we have the Frobenius mor-
phism F : A" — A”. Identifying an affine algebraic group G as a closed subgroup of GL (k) for

some n € N, which itself we can think of as being embedded in A”Z, we can restrict the Frobenius

morphism to

F:G—QG.

This map is also a group homomorphism, essentially because we have (x + y)? = x? + y? for any

x,y € k. As such we have that the Frobenius map is a morphism of algebraic groups. We can
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extend this definition to the Frobenius morphism on a group scheme, where its kernel gives us
a normal subgroup functor, denoted G;. For the k-algebra &, this allows us to define the first
Frobenius kernel G of the group G (see [21, Chapter 1.9] for further details). We use this con-

struction in Chapter 5.

Next we give an important class of morphisms of an algebraic group.

Definition 2.1.14. A morphism of algebraic groups y : G — G,, is called a character of G.
Pointwise multiplication of characters (i.e. (yw)(x) = y(x)y(x)) makes the set of characters an

Abelian group, denoted X(G). The operation in this group is often denoted with a +.

Note that the character group for G may be trivial (e.g. in the case that G = (G,G), since then if
g =xyx 1y~! then y(g) = 1). However, for a certain class of subgroup, the character group will

be indispensable.

Dual to characters, we have the notion of cocharacters.

Definition 2.1.15. A morphism of algebraic groups A : G,, — G is called a cocharacter of G. As

before, the set of cocharacters forms an Abelian group, denoted Y (G).

A cocharacter of G is sometimes called a one parameter multiplicative subgroup, or 1-psg. Notice
that we may compose a character with a cocharacter to obtain a morphism G,, — G,,. Since the

group of such morphisms is isomorphic to Z, we obtain a map

() X(@)xY(G)—Z,
() — (A

As noticed in Lemma 2.1.10, an affine variety is a finite union of irreducible closed subsets,
known as the irreducible components. In the case that G is an affine algebraic group, we can

say a little more.

Lemma 2.1.16 ([19, Proposition 7.3]). Let G be an affine algebraic group, then G can be written

as a finite and disjoint union of irreducible subsets say,
G=G1uGaoU...UuG,.

Denote by G° the unique component containing the identity element 1g. Then G° is a closed
normal subgroup of finite index in G, whose cosets are the other irreducible components. Further-

more, each closed subgroup of finite index in G contains G°. O

We say that an affine algebraic group G is connected if G = G°. For example, the group SL, (k)

is a connected algebraic group [19, Section 7.5].

28



2.1. ALGEBRAIC GROUPS

In this thesis we will be interested in algebraic groups acting on a particular set. We will study
this in the context of ZG-modules (to be defined later), but first we give a formal definition for a

group action.

Definition 2.1.17. We say a group G acts on a set X if there exists a map ¢: G x X — X, where
¢(g,x) is usually denoted g - x, subject to the following conditions:

1. g1-(g2-x)=(g182)'x V g1,82€G, xeX,

2. 1g-x=x VxelX.

For example, the group G acts on itself by right multiplication (g-k = hg), and left inverse multi-
plication (g-h = g~'h). In fact, these maps are morphisms of the variety G, whose comorphisms

are particularly useful. Define the actions of G on k[G] by

(Agf)(h) = (g~ h),
(pgf)h) = f(hg)

where f € k[G], and g,h € G. These maps are often called left and right translation of functions.

Next we will give some important examples of subgroups of GL (k). First we denote the group of
all diagonal matrices in GL (k) as D, (k). Notice that this subgroup is isomorphic to G,,, x- - - xG,,,
the direct product of G,, with itself n times. Denote by T',(k) the group of upper triangular ma-
trices, containing D, (%), and finally by U, (k) we denote the group of upper unipotent matrices,
that is, those upper triangular matrices with 1’s along the diagonal. These subgroups play a

fundamental role in the theory of algebraic groups.

Definition 2.1.18. A torus T of an algebraic group G is a closed subgroup isomorphic to D, (k)
for some n € N. We say that a closed subgroup of G is diagonalizable if it is isomorphic to a closed

subgroup of D, (k).

Note that the character group X(D,(%)) is isomorphic to the free Abelian group of rank n, 7",
where a basis is given by the characters y;(diag(¢1,...,t,)) = t;. Later in this subsection, we
will be interested in maximal tori (i.e. those that are not properly contained in any other). For
the following definition, we will use [19, Theorem 8.6] to identify the algebraic group G as a
subgroup of GL (%), for some n € N.

Definition 2.1.19. A subgroup of an algebraic group G is called unipotent if all of its elements
are unipotent; that is, they are the sum of the identity and a nilpotent element, or equivalently,

their only eigenvalue is 1.
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For example, the group U,(%k) is a unipotent subgroup of the algebraic group GL,(k), and in
fact, it can be shown that all unipotent subgroups are conjugate to a subgroup of U, (%), for some
n €N [19, Corollary 17.5].

Recall the derived series of a group G, given inductively by 2°(G) = G and

2 NG) = (24@), Z(G)), where the product indicates the group commutator. We say that G
is solvable if its derived series terminates. The notion of solvability is particularly well suited
to algebraic groups, since each derived group Z*(G) is a closed normal subgroup of G, and is
connected if G is [19, Section 17.3]. For example, a torus T of an algebraic group G is solvable.

Since it’s abelian, its first derived subgroup ZX(T) is equal to {1}.

Akin to the derived series, we have the descending central series. This series is also given
inductively, by €%G) = G and €"*1(G) = (G,€*(G)). Again, each subgroup €*(G) is closed, and
connected if G is. We will call an algebraic group G nilpotent if "(G) is the trivial group for

some n € N.

The radical of an algebraic group G, is defined to be the unique maximal, connected, normal,
solvable subgroup of G, and will be denoted R(G). The unipotent radical of G is the unique max-
imal, connected, normal unipotent subgroup of G, and will be denoted R,(G). The unipotent

radical consists of the unipotent elements of R(G).

Definition 2.1.20. An algebraic group G is called semisimple if its radical R(G) is trivial, and

it is called reductive if its unipotent radical R,(G) is trivial.

Note that since both R(G) and R, (G) are normal subgroups, for any algebraic group G we can
construct a reductive or semisimple algebraic group by quotienting by the appropriate radi-
cal. It’s clear that a semisimple group is reductive. Our group of primary interest, SLgo(k), is

semisimple (see Section 2.1.5).
Next we give one of the central theorems of the theory of algebraic groups, which allows us
to describe their structure in great detail.

Theorem 2.1.21 (Borel’s Fixed Point Theorem). Let G be a connected, solvable algebraic group,
and X a non-empty, complete variety on which G acts. Then G has a fixed point in X.

Proof. See [19, Theorem 21.2] for a proof. O

Definition 2.1.22. A Borel subgroup B of an algebraic group G is a maximal, closed, connected
solvable subgroup.

By maximal, we mean one that is not properly contained in any other. The study of connected,

solvable algebraic groups can, in some senses, be reduced to the study of Borel subgroups. In
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particular we have that the maximal tori and maximal connected unipotent subgroups of G are
those of the Borel subgroups of G [19, Corollary 21.3A], and the following theorem:

Theorem 2.1.23. The Borel subgroups B of G are all conjugate, and their union is the whole
group G. Furthermore, the maximal tori T of G are also all conjugate, and their union gives all

the semisimple elements of G.

Proof. This is a mixture of [19, Theorem 21.3, Corollary 21.3A, Theorem 22.2], where the proofs

can be found. O

Since each maximal torus of G is conjugate to every other, their dimensions are equal. We
call this dimension, the rank of G. The study of Borel subgroups leads to many remarkable
properties of algebraic groups, and a much fuller account can be found in [19, Chapter IIX].
Here, however, we give one more result before moving on to the theory of root systems, which
ultimately allows us to classify the simple algebraic groups, and plays a fundamental role in the

representation theory.

Definition 2.1.24. A closed subgroup P of G is called parabolic if the quotient variety G/P is

projective.

It can be shown that P is parabolic if and only if P contains a Borel subgroup B [19, Corol-
lary 21.3B]. In particular, Borel subgroups are parabolic. Parabolic subgroups have the nice

property that they can be decomposed in the following way.

Theorem 2.1.25 ([19, Theorem 30.2]). A parabolic subgroup P of G can be decomposed as a
semi-direct product P = LU, where U = R,(P) and L is reductive. The subgroup L is called a

Levi factor, and any two Levi factors are conjugate by an element in U. O

2.1.3 The Lie Algebra

For an algebraic group G, we may consider the set derivations of £[G], that is, linear maps J :
k[G] — E[G] that satisfy the Leibniz condition 6(fg) = 6(f)g + f6(g). Such a space is naturally
a Lie algebra by defining the bracket to be [§,y] = 6y —yd. We will define the Lie algebra of
the algebraic group G to be the space of left-invariant derivations of £[G], i.e. those for which
O0Ag = Ag6 for all g € G. It turns out that such a space can be identified with the tangent space
of G at the identity element (where the tangent space of an affine variety is defined in [19,
Section 1.5]). As a finite dimensional vector space, the tangent space is also an affine variety.
More details on the Lie algebra of an algebraic group can be found in [19, Chapter III]. It will

suffice for our purposes to say that such an object exists.
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2.1.4 Root Systems

We now make a brief digression to take a look at abstract root systems, where we will, for the
most part, follow [18, Chapter III]. Everything that appears in this subsection takes place inside
a Euclidean space E; that is a finite dimensional R-vector space with a positive definite, symmet-
ric bilinear form, denoted (, ). Such a form allows us to talk about angles between vectors (and
indeed, to perform Euclidean geometry), which allows us to draw root systems, in 2 dimensions

at least.

For any a € E, define by P, the orthogonal hyperplane to a,

Py={BeE : (B,a)=0}.

We can then define the reflection in this hyperplane, denoted o,. For any § € E this is given by

2(B,a)
(a,a) *

Ua(ﬂ):ﬁ_

The coefficient 2((053—0?)) is often abbreviated to {8, a), and the dual element (0%;'6‘() to . Note that the

product (,) is linear in only the first position.

Definition 2.1.26. A subset ® of a Euclidean space E is called a root system in E if it satisfies
the following.

1. The subset @ is finite, spans E, and does not contain the vector 0.

2. For every element a € ©, the elements +a are the only multiples of a in ®.
3. For every element a € @, the reflection o, leaves ® invariant.

4. For all a, f € ® the quantity (8, a) is an integer.

The elements a € E are called the roots of ®. Denote by 7 the subgroup of GL(E) generated by
all the reflections o, for @ € ®. Since each reflection leaves ® invariant, we may associate #

with a subgroup of the symmetric group on ®. In particular, we have that 7 is a finite group.
We call # the Weyl group of ®.

Definition 2.1.27. A subset A c @ is called a base of @ if the following conditions hold.
1. Ais a basis of E as an R-vector space.

2. For each € ® we can write f =Y ,ecakq@, for some k, € Z where either all the &, are

non-negative or non-positive.
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If A is a base of @, then the elements of A are called the simple roots. The cardinality of such a

base, which is equal to dim E, is called the rank of the root system ®.

The second condition above allows us to describe roots as being either positive or negative,
where e.g. B is positive if £, = 0 for all the &, in the expression for §. In this case we write § > 0.
This allows us to define a partial ordering on the root system by saying that A < u if and only if

1 —Ais a positive root.

The collection of positive roots is denoted ®*, and the collection of negative roots ®~. Note
that we have ®~ = —®* and ® = ®* U®~. Such a description, of course, depends on the base
chosen, should it be possible to choose one at all. It is a theorem however, that a base always
exists ([18, Theorem 10.1]), and that, up to transformation by elements in %, all the possible
bases are the same ([18, Theorem 10.3]).

One can show that the Weyl group # is generated by those o, for a € A, for some chosen base
A [18, Theorem 10.3]. In fact, it’s clear that 7 is a finite Coxeter group, and as such contains a

longest element, which we will denote wy.

B

AN
~
S}

Figure 2.1: The root system Ag

For example, the figure above shows the root system Ag. A base is given by the roots {«a, f},
which gives us @ ={a,,a + }. We have that a <a +f and f < a + f.

Definition 2.1.28. A root system ® is called irreducible if it cannot be partitioned into the
disjoint union of two proper subsets such that each root in one set is orthogonal to each root in
the other.

For a root system @, we define the set of weights A < E to be the set of 1 € E such that (1,a)e Z
for all @ € ®. It’s clear that A is a subgroup of E that contains ®. For a fixed base A of ®, we will
say that a weight 1 is dominant if the integer (A, a) is non-negative, for each a € A. The set of

dominant weights is denoted A™*.
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Suppose now that A = {a1,...,a;}, so that the set {d1,...,d;} is also a basis of E. Let A; be

the dual to ; with respect to the form on E, i.e. such that

2(Ai, ay)

Ai,aj)= (aj,a;)

= (Ai,a;) =06j.

Such A; are clearly dominant, and are called the fundamental dominant weights, with respect
to A. One can show that, for any A € A we have that 1 = Zizomi/li for some m; € Z, and so in
fact, A is a lattice in E. Furthermore, we have that A € A" if and only if m; = 0 for all the m; in

the expression for A.

Note that the partial order on ® can be extended to A by pu < A if and only if A — 1 is a dom-

inant weight.

Definition 2.1.29. We will call a subset IT of A* saturated of highest weight A if we have that II
consists only of the weight A and all dominant weights u € A* with the property that u < A.

Note that this definition differs slightly from that given in [18]. Here we only want to consider
dominant weights when talking about saturated subsets. Next we define the weight p, the half

sum of positive roots, given as

aed*
One can easily show that p is a dominant weight, and is also equal to the sum of the fundamen-
tal dominant weights ([18, Lemma 13.3A]).

We now return to the theory of algebraic groups to show that, for a semisimple algebraic group
G, one can construct a root system. First, denote by g the Lie algebra of G, and recall that, for
x € G, the map Adx : g — g is an automorphism of g, and that the map Ad : G — Aut(g) which
takes x to Adx is a morphism of algebraic groups. As such, the image of a maximal torus 7" of G

is diagonalizable in GL(g). Thus we may write the Lie algebra g as
g=g'e D oo
aed®(G,T)

where gT is the space of fixed points of g under T', and ®(G,T) is the subset of X(T') consisting

of those a for which the space

Ja :={v€g : Adx(v)=a(x)vi€T}

is non-zero. Next denote by W(G,T) the quotient group given by Ng(T)/Cq(T), and call this
the Weyl group of G relative to T'. Since we have Ng(T)° = Cg(T)° [19, Corollary 16.3] and
Cqg(T) is connected [19, Theorem 22.3], this group is a finite group. The Weyl group acts on
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the character y € X(T') in the following way; if 0 € W(G,T) is represented by n € Ng(T'), then
we have oy(t) = y(n"'tn). Similarly, for a cocharacter A € Y(T) we have the action given by

oMx) =nAMx)n~L. Under such actions we have that (ox,oL) ={x, ).

With somewhat more work, we have the following theorem

Theorem 2.1.30. [19, Theorem 27.1] Let G be semisimple, and define E = R®z X (T) for a maxi-
mal torus T of G. Then ®(G,T) is an abstract root system in E, whose rank is rank G, and whose

Weyl group W is isomorphic to W(G,T). O

From the above statement, it would seem that the root system of G as given depends on the
choice of maximal torus T'. Of course, such a choice is largely irrelevant, as the resulting struc-
tures are all isomorphic (for example, the Weyl group of G relative to T is isomorphic for all

maximal tori T'). The inner product on E is given by the pairing ¢, ) on X(T) x Y (T).

We note that the group of characters X(7T'), under the above correspondence, is a subgroup of the
weight lattice A [19, Section 31.1]. This allows us to make the following definition.

Definition 2.1.31. Let G be a semisimple group as above. We call the quotient group A/X(T)
the fundamental group of G. If this is trivial, then we say that G is simply connected.

As above, all choices of a maximal torus T are consistent. After a little bit more work, one finds
that the simply connected algebraic groups correspond one to one with the irreducible root sys-
tems, and that the irreducible root systems may be classified (using Dynkin diagrams, see [18,
Section 11]). From here, one is able to obtain a classification of simple algebraic groups (or to
simple Lie algebras). The reader may consult [19, Chapter XI] for more details (or [18, Chap-
ter IV.14] for the Lie algebra case).

Denote by X (T') the intersection of X(T') and the positive weights A*. As an element of the

weight lattice A, for each character y we may write y as sum of fundamental weights, say

with m; € Z. When working over a field of positive characteristic p, we will write

X (T)={yeX*(T) : mj<p fori=1,..,1}.

The set of weights in X{(T') are often called the p-restricted weights, and play an important role

in the representation theory of algebraic groups.
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2.1.5 The Group SLs

As shown in Section 2.1.2, the group SLo(k), where k =k is an algebraically closed field, is an
algebraic group. In this thesis we will be primarily concerned with rational representations of

SLga(k), so in this section we exhibit the particulars of the group.

As mentioned in the previous section, all maximal tori and Borel subgroups are conjugate. As
one would hope, a particular choice of such groups does not affect the theory (up to isomor-
phisms). We pick the following subgroups explicitly, for ease of calculation. First let’s choose the

maximal torus 7" of SLy(k), given by

t 0
T=<h;:= ltek”},

and the Borel subgroup B, containing T', given by

t
B:{( xl)ltek*,xek}.
0 ¢t

We have that the character group X(T'), that is, the group of algebraic group homomorphisms

from T to G,,, is given by the elements

Yr: T — Gy,
ht'—>tr,

for all r € Z. Hence we may (and henceforth, will) associate X(T') with the abelian group Z. In

particular we will use additive notation when describing this group.

As mentioned in Section 2.1.2, the group SL, (k) is a connected algebraic group. For the case of

SLgy(k), we have that the group is generated by the unipotent subgroups

e o)
{9 ver |

One can then use [19, Proposition 7.5] to show that SLg(%) is connected. Furthermore, we have

and

that since SLo(k) is equal to its own derived subgroup, it is neither solvable nor nilpotent, and

in fact, since SLo(%) is simple [19, 27.5], its radical is trivial, and it is thus semisimple.

Recall that the Lie algebra sla(%) has a basis given by
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f:(o ﬂ’h:(l 0)’ezv 1}
10 0 -1 0 0

and that the morphism Ad : SLo(k) — GL(sl3(k)) is simply given by conjugation by x € SLo(k)
[19, Proposition 10.3]. As such we can compute the action of T' via Ad on sly(%) directly.

-1
el
0

w

Similarly we have that Adh;(e) = t2e and that Adh;(h) = h. Hence if a € X(T') is the character

t — t2 (which corresponds to the integer 2, as above), then we may write

t

0 ¢
0
t—2

_2]“.

g=0" ®9,®0-a;

where g7 is the k-span of &, g, is the k-span of e, and g_, is the k-span of f. As such the root
system ®(G,T) is given by the set {a,—a}. This root system is called A;, and has rank 1.

< ® > a

Figure 2.2: The root system A;

A base A is given by the element a, and the Weyl group # is generated by the reflection o, and
is thus the group consisting of two elements, {1, 0}, where in this case, the longest element w is

given by o.

Since this root system has rank one, we find that the dual basis {1} has to satisfy only the

equation

_20ha)

A, a)= @

b

and so is given by 1 = @/2. Hence we see that the weight lattice A is given by the integer
multiples of a/2. Associating a with the integer 2, we have that 1 =1, and the weights are given
by the set Z, which coincides exactly with X(T'), so SLo(k) is simply connected. Furthermore, it’s
clear that the partial ordering on A is given by the regular ordering of integers, so the dominant
weights AT are given by the non-negative integers. The saturated subset of highest weight r € N

is given by the set of integers {0,1,...,r}.
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2.2 Representation Theory

In this section we will begin to look at the representation theory of algebraic groups, particularly
over an algebraically closed field of positive characteristic. For a comprehensive account of this
subject area, the reader should consult [21]. Mostly we will work within the framework of
modules for the group algebra £G, for the moment however, we will give some general definitions

for modules of a k-algebra A. All modules will be left modules, unless otherwise stated.

Definition 2.2.1. An A-module V is called simple if V has no submodules except 0 and V. If a

module can be written as a direct sum of simple modules, it is called semisimple.

Simple modules play a central role in representation theory, particularly for finite groups over
a field of characteristic 0, where Maschke’s theorem says that all modules are semisimple. Next

we give the classical Schur’s lemma.

Lemma 2.2.2 (Schur’s Lemma). Let V be a finite dimensional, simple A-module. Then End (V) =
kly.

Proof. Let p be an endomorphism of V, with eigenvalue A € & (such an eigenvalue exists, since
k is algebraically closed). Then the endomorphism p — A1y is singular, so the image (p —A11y)V
is a submodule properly contained in V. Since V is simple, it must be 0, so p — A1y =0, thus
o =Aly. O

Definition 2.2.3. For an A-module V, we define the socle of V, denoted socV, to be the sum of
all the simple submodules of V. Similarly, we define the radical of V, denoted radV, to be the

smallest submodule of V with semisimple quotient. We call this quotient the head of V.

For more details on the socle and radical, the reader may consult [1, Chapter I].

Now we introduce the group algebra kG, which is the k-algebra consisting of sums of the form
Y gcG Ag8, where all but finitely many of the A1, € k are non-zero. Multiplication is given by
that in the group G and extending linearly. It is well known that every #G-module affords a
representation

p: G— GLy(k),

for some n € N, and vice-versa.

Definition 2.2.4. We call a 2G-module rational if it is the union of finite dimensional submod-

ules such that for each submodule W the map G — GL(W) is a morphism of algebraic groups.

From here on in, when we refer to a #G-module, we will mean a rational 2G-module, unless

otherwise stated.
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We will usually be interested in finite dimensional rational modules, in which case we can talk
about the corresponding representation p : G — GL (k) for some n € N. In this case, the defini-
tion is equivalent to saying that for each i, ;j we have that the coefficient function p;; : G — k is

in the coordinate algebra k[G].

Recall that every finite dimensional rational #G-module V has a composition series (not nec-

essarily unique) [21, 1.2.14(5)], that is, a series of submodules

0:V0<V]_<---<Vn—1<Vn:V’

where each quotient V;/V;_1 is isomorphic to a simple module L. In such a case, L is called a
composition factor of V, and the number of composition factors isomorphic to L is called the
multiplicity of L in V, denoted [V : L].

2.2.1 Canonical Constructions

In this subsection, we give some canonical ways of constructing rational 2G-modules.

Given any two rational 2G-modules, say V1 and Vy, we can construct other rational 2ZG-modules
as follows. First we will introduce the direct sum, notated V16 Vs. As a vector space, this is equal
to the direct sum of the vector spaces V1 and Vy, so every element v € V; @ Vo can be written as
v =v1+vg for vy € V7 and vg € Vy, and the intersection of the two subspaces V; and V3 is 0. A
basis is given by the union of a basis for V1 and a basis for V3. The action of G is simply given

byg-v=g-vi+g-ve.

Next we introduce the tensor product of two modules V; ® Vs. Recall that if the set {v1,...,v,} is
a basis of V1, and {w1,...,wy,} is a basis of Vy, then a basis of V1 ® Vs is given by the ordered pairs
{ vi®w; :i=1,.,n, j=1,...m }

We can turn this into a £#G-module by defining the group action g-(v®w) =(g-v)®(g-w) and
extending linearly for all g € G, v € V1 and w € V. As a rational £G-module, the tensor product
V1® V5 has the same universal property as the vector space, but with linear maps replaced with

module homomorphisms.

Let V be a rational £#G-module. As a k-vector space, we can consider the dual vector space,

consisting of linear maps from V to &,

V*={a:V—Fk : aislinear}.
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Recall that if V is finite dimensional, with basis v1,...,v,, then we can give V* the dual basis
@1,...,0&,, Where a;(v;) = 6;;. The space V* can be made into a rational 2G-module by simply

defining the G action by

g alw)=alg™ ! v).

One can check that all the required properties for a group action hold.

For each finite dimensional submodule W of a rational £G-module V, denote by pw the map
G — GL(W). We will denote by V¥ the Frobenius twist of V. As an Abelian group, this is equal
to V, but for each finite dimensional submodule W we have the map G — GL(WF) is given by
the composition F'opw, where F is the Frobenius morphism as defined in Section 2.1.2. It’s clear
then, that V¥ is also a rational £G-module. (See [21, 1.9.10] for more details on the Frobenius

twist.)

2.2.2 Projective and Injective Modules

For the following definitions, we let A be a k-algebra.

Definition 2.2.5. An A-module P is called projective if for any A-modules V and W with sur-
jective morphism 0:V — W, and a map ¢ : P — W, there exists another map v : P — V such
that

Ooy = ¢.

This property can be summarised with the following commutative diagram.

Definition 2.2.6. An A-module I is called injective if for any A-modules V and W with injective
morphism 6:V — W, and a map ¢: V — I, there exists another map v : W — I such that

Yol =d.

This property can be summarised with the following commutative diagram.
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By an injective resolution of a module W we mean an exact sequence

0—W—1°"—1"—1%— .
where each I" is injective.

For any two £G-modules V and W, we will denote the set of module homomorphisms between
them as Homg(V,W) (recall that a linear map ¢ : V — W is a kG-module homomorphism if
for all x € kG and v € V we have ¢(xv) = x¢p(v)). Notice that, under pointwise addition, the set
Homg(V,W) is an Abelian group.

Now suppose that W' is another 2ZG-module, and let 8 : W — W’ be a module homomorphism.
Then for any ¢ € Homg(V,W), we can obtain an element of Homg(V,W’) by composing with 6.
After checking the appropriate conditions, we find that we have a functor Homg(V,-) from the
category of kG-modules to the category of Abelian groups. Furthermore, this functor is left exact
[21, 1.4.2].

Since the Abelian category of rational £G-modules has enough injectives (i.e. each rational
kG-module can be embedded in an injective module) [21, 1.4.2], for any rational 2G-module W

we may construct an injective resolution, denoted I, as

0—W—1°—1t—712— .

Next we apply the left exact functor Homg(V,-), for some fixed 2G-module V, to obtain the

complex

0 — Homg(V, 1% — Homg(V,IY) — Homg(V,1%) — ...

which we denote Homg(V,I). Then we can define, for any n € N the nth right derived functor of
Homg(V,W), denoted R"Homg(V, W), as the n'" homology group H*(Homg(V,I)) of the above
complex. This is abbreviated to Ext;(V,W). Note that this definition would appear to depend
on the injective resolution chosen for W, however, for any two injective resolutions of W there
is a homomorphism between them, and any two such homomorphisms are homotopic (see [23,

Section XX.6] for more details). In this manner, we can define the functor Extg(V, 2.

The groups Extg(V, W) can be identified as equivalence classes of exact sequences of ZG-modules.
In particular, for n = 1 we get the equivalence classes of short exact sequences of the form [21,
11.2.12]

0—W—M-—V—0.
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Lemma 2.2.7. For each n € N and kG-modules V,W and W', we have natural isomorphisms
Ext;(V,We W= Ext;(V,W)eExt;(V, w).

Proof. This follows from the identity Homg(V,W & W') = Homg(V,W) @ Homg(V,W’), which is

clear. O

This result allows us to define an inner product on rational 2G-modules V and W by

(V, W)=Y (-1)'dimExt},(V, W).

=0
2.2.3 Weights

Let T be a maximal torus of G, so that the character group X(T') is a subgroup of the weight
lattice (as in the previous section). For any ZG-module V and any 1 € X(T') we have the 1 weight
space of V, given by

VA={veV:tv=AMtforallteT}.

Thus as a T-module we may decompose V into a sum of weight spaces

V= @ Vv,

AeX(T)

where if V is finite dimensional, then only finitely many of the V* are non-zero. We say that A
is a weight of V if the weight space V* is non-zero, and we say that v € V* is a weight vector of
weight 1. Note that this generalises the decomposition of g given in Section 2.1.4, and we may

think of the roots as being the weights of the adjoint representation Ad.

Next we introduce the character of a module, as an element of the ring ZX(T'). In order to distin-
guish the two commutative operations (recall that (X(T'), +) is an Abelian group), we give ZX(T)
the Z-basis of formal exponentials x* for A € X(T'). We then give multiplication by x*x# = x**#,

Note that the action of the Weyl group W on X (T') gives us a Z-linear action of W on ZX(T).

For the case of SLy, we have only one non-identity element in W, and the action of this ele-

ment is given by the mapping x" — x™".

Definition 2.2.8. Let V be a rational 2G-module. The character of V is given by

Chv= Y (@dimV*)
AeX(T)

We have the following results on the character.
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Lemma 2.2.9. Let V1, Vo and W be rational kG-modules, such that we have a short exact se-

quence

0—Vi—W-—Vy—0.

Then ChW =ChV; +ChVa.

Lemma 2.2.10. For any two rational kG-modules V1 and Vo we have that ChV1®Vy = (ChV1)(Ch V).
Proof. These can be shown directly. O

From this one can easily show that the character gives an isomorphism between the Grothendieck

ring of finite dimensional 2G-modules and the ring of W invariants ZX(T).

For a reductive algebraic group, the simple modules can be characterized by highest weight.

Theorem 2.2.11. For each dominant weight A € X(T)?, there exists, up to isomorphism, a unique
simple module of highest weight A, denoted L(A).

Proof. See [21, Proposition I1.2.4a], where the simple module L(A) is described as the socle of
the induced module H%(1) (defined in Section 2.2.5 as V(1)). O

Now suppose that the subset 7 <« X(T')* is a saturated set of weights. We may consider the
subcategory €6 () of kG-modules M whose composition factors have the form L(u) with y e .
Such a subcategory is closed under taking quotients, extensions and sums. In particular, a kG-
module M belongs to € () if and only if each dominant weight of M belongs to 7 [21, II.A.2(1)].
Denote by O,(M) the sum of all submodules of M that belong to €(r), i.e.

0.(M)= Y N.

N<M
Neb(r)

Clearly O,(M) € €6(r), and furthermore, it is the unique, largest submodule of M with this
property. From this, for any saturated set of weights 7, we obtain a functor
O, : {rational kG-modules} — €(n),

called the truncated functor associated to . It’s clear that for simple modules L(1) we have that
O,(L(A)) = L(A) if A € 7, and 0 otherwise. We have also that the functor O, is left exact [21,
II.A.1(2)].
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2.2.4 Induction and Restriction

As in the case for finite groups, we may restrict representations of the algebraic group G to its

subgroups, and induce representations of a subgroup H to representations of G.

First, let H be a closed subgroup of the algebraic group G, and suppose that V is a rational
kG-module. The module V restricted to H, denoted V' |z is a kH-module, isomorphic to V as a

vector space, where H acts as it does on V.

For a rational module V we denote by Map(G,V) the set of maps f : G — V such that the image
(@) lies in a finite dimensional subspace W of V, and the induced map f : G — W is a morphism
of varieties. We can give Map((G, V) the structure of a rational 2G-module by defining xf :G -V
as xf(y) = f(yx), for all f € Map(G,V) and x,y € G.

Next, for a closed subgroup H, we define the subset
Mapy(G,V)={ f e Map(G,V) : f(hx)=hf(x)forall he H,x€G }.

This is in fact a submodule of Map(G, V) called the induced module. From now on we will write
this module as Indg,V.

Suppose now that we have two rational £H-modules, say W; and W, and let ¢ be a 2H-module
homomorphism between them. Define the map Indggb : Indil — IndiQ by Indggb(f )=¢of.
It’s clear that Indg(/)( f) commutes with the action of G, so we have that Indfl is a functor from
rational 2H-modules to rational £G-modules. Furthermore, one can show that this functor is
left exact (see [21, Proposition 1.3.3]).

Just as we did in the construction of the functor Ext;(V,-), for a rational £H-module W we

may construct an injective resolution

0—W—1"—J'—712 .

Applying the functor Indg to this resolution we obtain a complex

0 — d%1° — md%1' — md%12 — ...

We may then consider the n'® homology of this complex, which we denote R”IndgV. As before,
this definition does not depend on the injective resolution chosen. In this way, we define the
functor R”Indg.
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Theorem 2.2.12 (The Tensor Identity). Let H be a closed subgroup of G, V a kG-module and W
a kH-module. For all n =0 we have that

R"Ind$(V e W) =V ® R"Ind%(W).

Proof. For a proof (in the more general framework of group schemes), see [21, Proposition 1.3.6].
O

2.2,5 The Induced and Weyl Modules

Let G be an arbitrary reductive algebraic group over an algebraically closed field of positive
characteristic p. Choose a Borel subgroup B containing the maximal torus T so that we have
the Levi decomposition B = TU, where U is the unipotent radical R,(B) [19, Corollary 26.2C].
Let A € X(T') be a character and define the one dimensional £B-module %, by the action which
is given trivially by U, and given by the character A for T'. i.e. if v € k; then

v 1 geU,
g.u=
Mg :geT.

Definition 2.2.13. For 1 € X(T') we define the induced module V(1) by
V(A):=Ind$k,.
Let wg be the longest element of the Weyl group W. We define the Weyl module by
A(A) := V(—woL)*,
where the star indicates the usual dual module, as defined in Section 2.2.1.

The module A(1) has the universal property that, for any other rational 2G-module W generated
by a highest weight vector w, of weight A, there exists a unique 2G-module homomorphism
¢ : A(A) — W such that ¢(my) = w,, where my € A(1) is a highest weight vector of weight A.
In fact, A(A) is generated by a B-stable line, of weight A, and so any other such £G-module is a
homomorphic image of A(1) [21, Lemma I1.2.13b].

Theorem 2.2.14. For all A € X(T)* we have that the socle of V(A) is equal to L(A), the simple
module of highest weight A. Furthermore the head of A(A) is also equal to L(A). In particular
both V(1) and A(A) are indecomposable.

Proof. A proofofthis theorem can be found from [21, Corollary I1.2.3] and [21, Proposition I1.2.4b].
O

Now suppose that 7 < X(T)* is a saturated set of dominant weights, and recall the definition of

the functor O, as given in Section 2.2.3. We have
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Lemma 2.2.15 ([21, I1.A.2(2)]).

V(A) : Aem,
0,(V(L) = {
0 tAdm.

Definition 2.2.16. Let A € X(T'), and define

A=Y sgn(w)x“t e ZX(T).
weWw

It follows that A(A + p) is divisible by A(p) in ZX(T), so we define

YD) = A+ p)/Alp) € ZX(T)V,

where ZX(T)V denotes the elements of ZX(T) that are invariant under the action of W. For
dominant A, the element y(A) will be of fundamental importance throughout this thesis, as it is
the character of both the induced and Weyl module of highest weight 1. We prove this explicitly
for SLo(k) in Section 2.2.7. We have the following result of Brauer, as given in [8, 2.2.3].

Theorem 2.2.17 (Brauer’s Character Formula). For A € X(T), and v = Yayxt € ZX (MW we

have

XDy =) aux(A+ p).
I

2.2.6 Steinberg’s Tensor Product Theorem

Here we present the well known Steinberg Tensor Product theorem, which gives us a description
of each simple module of highest weight 1 in terms of the simple modules whose highest weight
is p-restricted. Originally proved by Steinberg in [29], a much shorter proof was given by Cline,
Parshall and Scott later in [6].

Theorem 2.2.18 (Steinberg’s Tensor Product Theorem). Let G be a reductive algebraic group,
and A€ X(T) such that A = Z?zopiAi for some A; € X1(T). Then we have

L) =QLA) .
1=0

2.2.7 Representations of SL,

In this subsection we describe explicitly some representations for the group SLa(k). These are
the objects that will be studied in this thesis.
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Let E be the natural 2-dimensional module for SLy(k) (isomorphic to 22 as a vector space).

We will give E the basis {x1,x2} so that the action of SLo(%) is given by

@ b + a b bxy+d
X1 =axi+cxg, x9 = bx X2,
Cdl 1 2 ch 1 2

and E is evidently rational. With this notation, for any r € N, the r*! symmetric power of E,
denoted S”E, has basis given by { xllxé : i+ j =r}. This vector space becomes a £SLy(k)-
module with the action of g € SLo(k) given by g(x‘ixé) = (gx1)"(gx2), with usual polynomial
multiplication, so that S”E is a rational £SLy(k)-module. In particular, in S"E we have that

(a Z)(xixé)=(ax1+cx2)i(bx1+dx2)J=(Z( ) keizk k . k)(Z( )b @ l ] l),

c

where in the second equality we use the binomial expansion.
For ¢t € k*, denote by &; the diagonal matrix diag(¢,t”1) in SLa(%). Then we have that

h(xhg) = ()t ocg) = 177 (),

where i + j =r. Hence the weights of S"E are the integers r—2j for j =0,1,...,r, and each has a

one dimensional weight space, i.e.

(S"EY % = k-span{ «} /x] }.

It’s easy to show that over a field of characteristic 0, the module S"E is a simple module with
highest weight r. Hence the symmetric powers of E give us a complete set of simple modules.

If the field % has positive characteristic however, this is not the case, as we will now demonstrate.

Let chark = p > 0 and consider the module SPE. As above we can write down the action of

SLy(k) on each basis vector. In particular we have

a b pl ;

Dy _ lpllpl_ p.,P p.,.P

(c )( )= Z;)(i)ac xjxy  =alx] +cPxy,
1=

b o (p)
(Z )( p)—Z(?)bldp_’xllxg "= bPxl +dPxb,

1=0

where, using Lucas’ Theorem (Theorem A.3.1), we have that for all i =1,...,p — 1 the binomial
coefficient ( ) in £ is equal to 0. Hence we see that the subspace given by k- span{x1 , x2} is in

fact a submodule, so that SPE is not simple.
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For G = SLo(k) and r € N we have the well known equality V(r) = S"E (see, for example [21,
I1.2.16]). Furthermore, since the root system of SLo(%) is given by {a,—a}, we have that A(r) =
V(r)*.

It’s clear then, that dimV(r) = r + 1, and, using the weight space calculations above, we can

quickly write down the character of V(r) as

Chv(r)=Y x" 2,
1=0

where we are using the association of X (7T") with Z.

Lemma 2.2.19. For r € X(T)* we have the equality y(r) = ChV(r).

Proof. First we note that under the association of X(T') with Z we have that p = 1. Hence,
by definition we have that y(r) = A(r + 1)/A(1). Since the Weyl group of SLy consists of two
elements, we have

Al)=xt—x7t

and

Ar+D =21 x 7 1=l D"+ 2+ +x77).

Hence we have that y(r) = ChV(r). O

From the action on the dual space, defined in Section 2.2.1, we see that the weight of a dual

vector is the negative of that of the vector. i.e., if v € V* has dual vector @, and ¢ € T, then
[t-al() = at™-v) = a(AME M) = a(A L)) = A B aw).

From this, and the symmetry of y(r), we have that Ch A(r) = ChV(r) = x(r).
In many cases we will find that we have, for a module M, a short exact sequence of the form

0— V(mi)— M — V(mg) — 0,

for some m; and mg € N. When this sequence is not known to be split, we will often write

_ V(mg)

= Yomp)’
The first extension groups are given in [14] (in their dual form for Weyl modules), and then all
others are given in [27]. We will use the facts that, in such a sequence as above we must have
that mg > m1 and m1 = mo(mod2) [14, Remark 3.1], and that the extension groups are either
k or 0 [14, Proposition 3.3, Proposition 3.4], so up to scalars, there exists at most one non-split

extension.
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2.2.8 Tilting Modules

In the later chapters of this thesis we will use the theory of tilting modules for algebraic groups,
developed by Donkin, to give results about the modules V(r) ® A(s). As we will shortly see, the
ideas of tilting modules are closely related to the modules we study, so it is natural that we in-
vestigate the link between them. Furthermore, the classification of tilting modules into modules
of highest weight allows us to quickly give results for G = SLy(k); for example, we can decom-

pose a tilting module into indecomposable summands using only the character.

For the following definitions, G may be an arbitrary reductive algebraic group, over an alge-

braically closed field of positive characteristic.

Definition 2.2.20. Let M be a kG-module. We say that M has a good filtration (or V-filtration)

if there exists a sequence of submodules
0=M0<M1<...<Mn_1<Mn=M

such that for each i = 1,...,n the quotient module M;/M;_1 is isomorphic to V(A1) for some A €
X(T)*. For such modules we write M € % (V). For a given A, the number of times V(1) appears in
such a filtration will be denoted (M : V(1)), and is called the multiplicity of A in M. This number
is also the coefficient of y(1) in Ch M, and so is independent of the filtration chosen.

Definition 2.2.21. Let N be a kG-module. We say that N has a Weyl filtration (or A-filtration)

if there exists a sequence of submodules
0=Nog<N;<...<N,_1<N,=N

such that for each i = 1,...,n the quotient module N;/N;_1 is isomorphic to A(A) for some A €
X(T)". For such modules we write N € #(A). For a given A, the number of times A(A) appears
in such a filtration will be denoted (N : A(1)), and is called the multiplicity of A in M. As before,

this number is the coefficient of y(1) in Ch N, and so is independent of the filtration chosen.

Notice that if the module M has a good filtration, then the dual module M* has a Weyl filtration,

and vice-versa.

Lemma 2.2.22 ([21, Proposition I1.4.16b]). A kG-module V has a good filtration if and only if
we have Extf,(A(1),V) =0 for all 1€ X(T)". O

Suppose that such a V can be decomposed into a direct sum V =V; @ V. We obtain then, using
Lemma 2.2.7, that

Extg (A1), V) = Ext; (A1), Vi) @ Extf (A1), Vo),

for all A € X(T)". From the above lemma, we obtain the following corollary.
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Corollary 2.2.23. If a kG-module V has a good filtration, then each summand of V has a good
filtration. O

Next we give a useful character result for rational £#G-modules M € % (V) and N € &% (A), where
ChM =3 apx(1) and ChN =3} b, (1) for integers a; and b,. Note that for such modules we
have that, since (V(1),A(w)) =1 if A = u, and 0 otherwise [21, Proposition 11.4.13], the inner
product (M,N) is equal to Y ab,.

Now, it follows from [21, Proposition I1.4.16] that

dimHomg(M,N)= )" (M : V(L)XN : AA)).
AeA

This quantity is equal to }_ a,b), so we have the following lemma.

Lemma 2.2.24. For rational kG-modules M and N as above, we have that dimHomg(M,N) =
(M,N). O

Following [9], we make the following definition.
Definition 2.2.25. A kG-module M is a tilting module if M belongs to both (V) and % (A).

Using the observation following Definition 2.2.21, we may also say that M is tilting if both M
and M* belong to either Z (V) or % (A). Next we give the main theorem on tilting modules.

Theorem 2.2.26 ([9, Theorem 1.1]). For each A € X(T)* there exists a unique indecomposable
tilting module T(M), of highest weight A. Furthermore, the weight A occurs with multiplicity 1 in
TA). O

Theorem 2.2.27. Every short exact sequence of tilting modules is split.

Proof. We have that for any A, u € X(T)* [21, Proposition 11.4.13],

Extg(V(1), M) = 0.

It follows then, that if M € (V) and N € &(A) we have Exté(M ,IN) = 0. Hence, for any tilting
modules T and T we have Extg,(T1,T2) = 0. O

Every tilting module can be written uniquely, up to isomorphism and ordering, as a sum of these
indecomposable tilting modules, so the above theorems give a complete classification of tilting
modules (much like the case for semisimple modules). In general, it’s not known what these
indecomposable tilting modules look like. However, for SLo, we have the following theorem, due

to Donkin [9] (although we quote the closed formula given by Erdmann and Henke).
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Theorem 2.2.28 ([15, Lemma 5]). Let u € NU{0}. Then u can be written uniquely in the form
uzzg’iouipi where p—1<u;<2p-2foralli<mand 0<u,, <p-1. Then

T(uw)=QTw)" .

i=0
This result allows us to compute the character of the indecomposable tilting modules for SLg in
a given characteristic. Then, for any tilting module for which we know the character, we may
decompose it into indecomposable summands. This is because such a module must be a direct
sum of the indecomposable tilting modules (in view of Theorem 2.2.27), and these are classified

by highest weight. This procedure will be essential to the main result of this thesis.

2.2.9 Blocks

In this subsection we briefly introduce the idea of a block, following [21, Section II.7]. For a
reductive algebraic group G, we can define an equivalence relation on the set of simple mod-
ules by saying that two simple modules L and L' are equivalent whenever Exté(L,L’ ) #0. The
equivalence classes given by this relation are called the blocks of G. Using the bijective mapping
A— L(A) for A € X(T)*, we may regard the blocks as a partition of X(T)".

Now by [21, Remark I1.7.1.2], we have that for any indecomposable £G-module M, there ex-
ists a unique block £ containing all the composition factors of M. We say M belongs to %. For
A,u€ X(T)", consider the indecomposable modules V(1) and V(u). It’s clear that if A and u are
in different blocks, then Ext%;(V(/l), V(w)) = 0; if not, then there exists a non-split sequence

0— V() — M — V(1) — 0

for some indecomposable module M. Then M belongs to some block 4, but then A and u also

belong to 4, a contradiction.

For a semisimple algebraic group, a full description of the blocks can be found in [7, Theo-
rem 5.8]. In the case of SLa(%k) we obtain the following.

Lemma 2.2.29. For a €N, the block containing a is given by the set

B(a) = {w ca+2np™ @ i pez we W07,

where the - action of # is given by 1-a =a and 0-a = —a —2; and r(a) is defined to be the

non-negative integer satisfying a + 1€ p" @7\ p"®D*17. In particular, we have

Ba)c{w-a+2np : neZ,weW'}.

In some cases we can use this result to show that a short exact sequence must be split.
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2.3 The Universal Enveloping Algebra

Before discussing the universal enveloping algebra of a Lie algebra, we give some elementary
results for abstract Lie algebras in order to establish some notation, and refer the reader to [18,

Chapter I] for all the basic definitions that we don’t give here.

In analogy to the case for algebraic groups, we can define the derived series for a Lie alge-
bra g, given inductively as g{® = g and g® =[g(~D,g~P]. We will say that g is solvable if the
derived series terminates. Furthermore, each Lie algebra contains a maximal solvable ideal [18,
Proposition 3.1c], called the radical of g and denoted rad g. A Lie algebra g is called semisimple

if its radical, rad g is 0.

For any Lie algebra g we can define the Killing form, given as x(x,y) = Tr(ad,ad,). This is a
symmetric, bilinear and associative (with respect to the Lie bracket) form on g. When working
over a field of characteristic 0, the Killing form is non-degenerate if and only if g is a semisimple
Lie algebra [18, Theorem 5.1].

For the remainder of this subsection, we will assume that g is a semisimple Lie algebra over

a field of characteristic 0. Firstly, we have the root space decomposition given by

gzh@(@ga),

acd

where § is a maximal toral subalgebra, @ is the root system (as in the algebraic group case) and

gq is the one-dimensional subspace given by

go={xeg : [h,x]l=a(h)x Vheh}.

We will often denote by x, a basis vector for g,. In the case of sl3(C), since the root system is
given by the set ® = {a,—a}, we have that e = x,, f = x_, and a maximal toral subalgebra b is

given by the span of A.

A semisimple Lie algebra g is built up from copies of slg (this is the subject of [18, Chap-
ter II]). In particular we have that for x, € g4, there exists y, € g_, such that the elements
Xa,Yasha = [xa,Yq] span a three dimensional subalgebra of g, isomorphic to sly [18, Proposi-
tion 8.3].

Note that we have reused the symbol ®@ here; this is no coincidence, as the root system corre-
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sponding to this decomposition is identical to that in Section 2.1.4. This is because the morphism

ad:g— gl(g)

x+— ad,,

where ad,(y) =[x, y], is the differential of the morphism Ad: G — GL(g) [19, Theorem 10.4].

2.3.1 The Tensor Algebra

Let g be a Lie algebra over the field 2. For any n € N we can construct the vector space of n-fold
tensor products, denoted by g®". This is the vector space consisting of all sums of tensors of the
form X; ® X2 ®...8 X,,, where each X; € g. If the set {X1,...,X,} is a basis of g, then a basis of g®”

is given by

{X;®..8X; :ij=1,..,r foreachj},

and so the dimension of g®” is r". By convention we consider g®° to be the ground field .

Next we construct an infinite dimensional vector space, given as the direct sum of all the vector

spaces of n-fold tensor products

Tw@= P ¢*"

neNu{0}

We can make this into a k-algebra by defining the multiplication

Y19..0Y,) (Z1®..82,)=Y1®..0Y,8218®..8Z,, € g®(n+m).

This algebra is called the tensor algebra of g. Often we will write .7"(g) for g®", particularly
when we want to emphasize that we are thinking about this vector space as a subspace of the

tensor algebra.

Definition 2.3.1. The Universal Enveloping Algebra of a Lie algebra g, denoted U(g), is the
quotient of the tensor algebra .7 (g) by the ideal generated by the elements XY -Y X —-[X,Y],
for all X,Y € g, i.e.

U=/ (XeY-YeoX-[X,Y]).

We could, in fact, introduce the universal enveloping algebra abstractly by describing the uni-
versal property it satisfies. For an arbitrary Lie algebra g we can define the universal enveloping
algebra as the unique pair (U(g), i), where U(g) is an associative k-algebra with identity, and i

is a linear map i : g — U(g) that satisfies
i([x, yD) = i(x)i(y) — i(y)ix),
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for all x,y € g, such that the following condition holds: For any associative k-algebra A with
identity and a linear map j : g — A satisfying the above relation, there exists a unique k-algebra
homomorphism ¢ : U(g) — A such that ¢oi = j. This can be summarised by the following com-

mutative diagram.

g —i> U(g)

Wb

A

Of course, such a statement must be proved, and a proof can be found in [18, Section 17.2]. This
universal property allows us to make a bijective map between modules for the Lie algebra g and
modules for U(g). For a g-module V, letting A = Endy(V) in the diagram, we have that each
g-module can be extended to a U(g)-module, and of course, each U(g)-module can be restricted
to a g-module. In fact, more is true, and, for a semisimple, simply connected algebraic group G
over a field of characteristic 0, we have an equivalence of categories between finite dimensional
U(g) modules and finite dimensional, rational 2G-modules. This equivalence is given naturally

by considering the differential d¢, of the representation

¢: G — GL(V),

for a kG-module V.

Next we will give an essential theorem on the universal enveloping algebra. First let’s define

the map

n:7(g) — Uly),

Y1® .. ® Y — Y1...Vn
as the canonical quotient map from .7 (g) to U(g).

Theorem 2.3.2 (Poincaré-Birkhoff-Witt Theorem). Let the set {x1,x2,...} be a countable ordered
basis of the Lie algebra g. Then the elements 13, and x;(1)..-Xi(m) = 7(xi(1) ® ... ® Xi(m)) for all m €N
such that i(1) < i(2) < ... < i(m), form a basis of U(g).

Proof. See [18, Section 17.4] for a proof. [l

This theorem (often abbreviated to the PBW theorem) allows us to quickly give a basis for U(g),
in the case that g has countable dimension. Of course, we are only interested in a particular

finite dimensional case, and for sla(k) we can give this basis as the set of elements of the form
fin"el,
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where i, j,n e NU{0}, and by e’ we mean the image of i tensor products e ® - -- ® e under 7.

Finally, we will look at a construction which will be used later in Chapter 4. For a Lie alge-

bra g over C, with the notation as above, we can define

Un(g):=C-span {X;,...X;, :m=n, X; €g},

m

i.e., all those elements of U(g) with degree less than or equal to n. It’s clear that U,(g)U,(g)
U,+s(g). As such, we find that U(g) has a filtration given by

C= U()(g) C Ul(g) C Ug(g)c

From this we can form the graded ring, given as

grU(g) := PUg)U,-1(g),
r=0

where multiplication is defined in the obvious way. This ring is generated by the subset g =

{X +Up(g) : X €g}. Using this, we see that gr(U(g)) is in fact, commutative, as follows.

(X +Uo(g)Y +Up(g)) = XY +Ui1(g)
=YX +I[X,Y]+Ui(g)
=YX +Ui(g)
=Y +Uo(@N(X +Uo(g).

As such, we may identify gr(U(g)) with the symmetric algebra on g, denoted S(g).

2.3.2 Kostant Z-forms

We begin this subsection with a defintion.

Definition 2.3.3. Let R be a subring of a field F, such that R is a principal ideal domain, and F
is the field of fractions of R. An R-form of an [ vector space V is the R-span of an [F-basis of V.

In what follows, we will exclusively have F=Q and R = Z.

In analogy with Chevalley algebras, we can construct the hyperalgebra for a field of prime char-

acteristic. The remainder of this section largely follows that in [18].

For Lie algebras, the idea is to construct a lattice inside the Lie algebra, denoted gz, by finding
a suitable Z-basis, called a Chevalley basis, which has the property that the structure constants
are integral, so the lattice is itself a Lie algebra. Tensoring over Z with the field [, of p ele-

ments, g, := gz ®z[Fp, one obtains a Lie algebra over [,. Then, for any field extension & of [,
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we can construct a Lie algebra over & by defining g, = gr, ®r, k. The Lie algebra gy, is called a
Chevalley algebra.

Let g be a semisimple Lie algebra with root system @, fix the ordering ®* = {ay,...a,,}, and

denote h; = hy, =[xq;,%a ;]

Definition 2.3.4. A Chevalley basis of g is a basis {xq : a € D}U{h; : 1<1i <1} such that the

following two conditions hold for all @ and 8 € ®:
1. [xg,x—ql=hq,
2. If a,B,a+ € ® with [xq,xp] = capxa+p, then cop=—c_qp.

Theorem 2.3.5 (Chevalley). Let the set {x, : a € ®}Ulh; : 1<i<l} bea Chevalley basis of g.

Then the structure constants Cap Qre integers. O

In fact, Chevalley’s theorem tells us even more about the structure constants. For more details

and a proof, see [18, Theorem 25.2].

Next we introduce some notation. For any commutative, associative F-algebra A with 1 (where

F is a field of characteristic 0), we can define the binomial element

(h) _hh-D.(h-ntD

A,

n n!

where h € A and n € Z. We interpret (g) to be 1, and for all negative n we have that (Z )=0.

Denote by A the m-tuple of integers given by (a1,as,...,a), and similarly for B and C. De-

fine the following elements of the universal enveloping algebra U(g).

a a
P _ X-g,  X-g,
A= g
1! m'
h1 h;
hp = ,
b1 b;
. Xgh X
c=—7r...—.
c1!  cp!

Notice, in particular, that from the PBW theorem we have that the elements of the form f4shpec
form a basis of U(g).

The following theorem, due to Kostant, describes what we will call the Kostant Z-form, to be
denoted U(g)z, or just Uz when the Lie algebra is clear.

Theorem 2.3.6 (Kostant). The subring of U(g) generated by all x!,/t! for a € ® and t €N, is equal
to the Z-span of all elements of the form fahpec.
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Proof. A proof of this theorem (and a much more detailed exposition) can be found in [18,
Section 26]. g

For the Lie algebra slg, the Kostant Z-form can be given as the Z-span of the elements
fi(h)el
il\n) 1’

for i,j,n e NU{0}.

2.3.3 The Hyperalgebra

We begin this subsection by giving the definition of the hyperalgebra, sometimes known also as
the algebra of distributions (see [21, Section 1.1.12] for further details).

Definition 2.3.7. For a field £ and Lie algebra g, the Ayperalgebra, denoted U(g); (or just Up
when the Lie algebra is clear) is given by the k-algebra

Uk =ko®zUy.

In the case g = sly, we will use the following notation

fi
fi :=1k ® —,
l:
h
h,:=1; ®( ),
n
ej
ej:=1® 7

It follows then, from Theorem 2.3.6, that a k-basis for U(sls);, is given by elements of the form
fihnej,
for i,j,n e NU{0}.

Our motivation for defining the hyperalgebra comes from Verma’s conjecture, proved by Cline,
Parshall and Scott in [5].

Theorem 2.3.8 (Verma’s Conjecture). For a field k of prime characteristic, and a semisimple,
simply connected algebraic group G with corresponding Lie algebra g, there is an equivalence
of categories between finite dimensional, rational kG-modules and finite dimensional U(g)g-

modules.
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Recall from Section 2.2.5 that the Weyl module A(s) has the universal property that it is gener-
ated by an element m , of weight s. When considered as a module for the hyperalgebra then, we

can obtain a k-basis for A(s) by considering the elements

{fimy :i=0,1,...,s },

where f; € U(g), as above for each i. This follows by considering the character of A(s), and the
fact that f;m , has weight s — 2i.
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THE ENDOMORPHISM ALGEBRA

In this chapter we begin to develop the theory of the modules V(r) ® A(s) for SLo(k) by looking
at their endomorphism algebras. The results we obtain here will be essential for later chapters.

At the end of this chapter we will give some explicit results for when p = 2.

3.1 Characteristic 0

First we will examine the case where the characteristic of the field is 0. It will be sufficient, for
the most part, to use the field Q, so we let G = SL2(Q). As mentioned in the previous chapter,
we have that V(r) = A(r) = V(r) is the unique simple module of highest weight r. In this case,

the decomposition of the tensor product is given by the well known Clebsch-Gordan formula

S
V(r)eV(s)=@PV(r+s-2i),
i=0
where we are assuming r = s. Our aim is to be able to describe the endomorphism algebra
Endg(V(r)® V(s)) in such a way that allows us to describe the endomorphism algebra

Endy, (V(r) ® A(s)) in positive characteristic.

Before doing this however, we show that the modules V(r)® V(s) are generated by a single
element. This will greatly simplify our description of the endomorphism algebra in the next
part. It turns out that this result holds not just for SLg, but for an arbitrary reductive algebraic
group, over an algebraically closed field of characteristic 0. The proof given here was supplied
by Stephen Donkin.

Lemma 3.1.1. Let G be a reductive algebraic group over K, an algebraically closed field of
characteristic 0. For A and pu € X* denote the simple modules M = V(A), N = V(u), and let
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m. € M* be a highest weight vector, and n_ € N°* o lowest weight vector. Then the module

M ® N is generated by m, ®n_ as a KG-module.

Proof. To prove this statement, we will use the equivalence of categories outlined in Section 2.3
and consider M and N as modules for the universal enveloping algebra U(g). Denote by Z the

module U(g)(m,®n_).

Let the positive roots be given by ®* = {aq,...,an}, and A € ZN be (aq,...,an). Following the

notation of Section 2.3.2 we have that

famy®n_)=fam,®n_cZ.

If we denote by M’ the set {meM : m®n_€ Z}, then since M = U(g)m, (because M is simple),
and m, has highest weight, it’s clear that M’ = M.

Now suppose that M ® N # Z, and let v be a minimal weight of N such that M ® NV ¢ Z. Next,

consider the weight v —wou and write

N
SZ{BZ(bl,...,bN)EZN : biai:v—wou}.
i=0

It’s clear then that the weight space NV is equal to

NV = EB kegn_,
BeS

since N is a simple module. However, we have that, for any m e M, eg(m®n_)=m®epn_+v

where

ve@PMeNT

<v
is a sum of elements of lower weight. It’s clear that eg(m ® n_) € Z, and since v was chosen
minimal, we have that v € Z. Hence we must have that m®epn_€Z. But m®egpn_e M N",

so we obtain a contradiction and no such v exists. Thus we have that Z=M @ N. O

3.1.1 The Endomorphism Algebra

Using the Clebsch-Gordan formula above, and since V (r) is a simple module so that Endg(V(r)) =
Q [21, Proposition I1.2.8], we can quickly give that
S

Endg(V(r)eVi(s)) = @Endg(V(r +5—21))
1=0

=Pa.
i=0
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Hence the dimension of the endomorphism algebra of V(r)® V(s) is s + 1. Furthermore we can
immediately see that this algebra is commutative. Next we will exhibit a basis for the algebra
Endg(V(r)e V(s)).

As a module in characteristic 0, we may consider V(r) as a module for the universal enveloping
algebra U(sl2(Q)) (or just Ug for short), as discussed in Section 2.3. For the remainder of this
section we will do this, without changing our notation for V(). Recall that by the PBW theorem,
a basis of Ug is given by the elements

el bk £

iR
where i, j,k € Ny. For brevity we will write e?/i! = e® and f//j! = £, and simply e for eV, f for
f(l). Pick non-zero m , € V(r) of highest weight r, so that hm, =rm, and eDm,=0forallieN.
Similarly pick a non-zero lowest weight vector n_ € V(s), so that An_ = —sn_ and f@n_ =0 for

all i € N. Then, using Lemma 3.1.1 above, we have that V(r) ® V(s) is generated by m, ®n_,
which has weight r —s.

Now, given any endomorphism ¢ € Endy,(V(r)®V (s)), it follows that ¢ is completely determined
by the image of m ®n_. Furthermore, since ¢ is an endomorphism, it commutes with the action
of h, so the image of m, ® n_ must have the same weight as m, ® n_. Since this weight is r —s,
we must have

Ppmien_)e(V(r)eV(s)

where, assuming r = s, we have

(V(r)&V(s)) ™ = Q-span{m.®n_,fm.®en_,...,f"m, ®e*n_}.
Hence we obtain a linear isomorphism
Endy, (V(r) e V(s)) — (V(r) e V(s))

¢— Pp(m+®n_).

We can then give EndU@(V(r)®V(s)) the basis {¢g, ¢1,...,¢s} where p;(m,.®n_)= f(i)m+ ®e(i)n_,
and ¢ is the identity endomorphism. We summarise the results of this section in the following

lemma.

Lemma 3.1.2. Let G =SLo(Q) and r =s. Let m, be a highest weight vector in V(r) and n_ a

lowest weight vector in V(s). Then we have the following:
1. V(r)®V(s) is generated by m ® n_ as a Ug-module.

2. The endomorphism algebra Endy,(V(r)®V(s)) is commutative and has basis {¢o, P1, ..., Ps}h,

where the ¢; are as above.
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3.1.2 Actions of the Universal Enveloping Algebra

We will now give some explicit results on the action of the universal enveloping algebra, which
will make our calculations in the later sections significantly easier. Some general results on the
relations between elements of the universal enveloping algebra can be found in [18, 26.2], how-
ever we will be mostly interested in the actions of e® and £, particularly on highest weight

vectors.

First we give the action of £ and e on arbitrary tensor products. Let M and N be U(g)-
modules with m € M and n € N. Since the Lie algebra acts as derivations on tensor products (i.e.

fmen)=fmen+me fn), we have the following

f(k)(m®n)= Z f(i)m®f(j)n,

i+j=k

ePimen)= Y ePmaefin.
i+j=k

Next, we recall the action on the symmetric algebra of E, denoted S(E), which we will consider

as the algebra of polynomials over @ in the two variables x; and xo. We have

. a\ ai bei
f(J)(x‘fxg)z (J)xc{ Jx2+.l

and the weight of fU )(x‘fxg )is a — b —2j. Similarly we have

. A
e(l)(xcltxg) — (i)x‘fﬂxlﬁ i

and the weight of e(i)(x‘fxé’) is @ — b +2i. In particular we can think of the action of /) on S(E)

as x20,, and of the action of e

that both e and f® preserve the Z-form S”E7, given by the Z-span of the set {x‘fxlz’ ca+b=r}.

as x10y,. Furthermore it’s clear that for each i and r € N we have

Lemma 3.1.3. Let V be a module for Ug with highest weight m, and let v, be a highest weight
vector. Then for all i,j € N such that j =i,

, , m—(i—1 ..
é”f“%g_:( 21 jfg—wv+,
with weight m — j+1i. If i > j then we have
eDFy. =0,
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Proof. The second statement is clear, since v, has highest weight m, and if i > j then the weight
of e fWy, is greater than m. The first statement is proved by two inductions. First, we will
show, by induction on j that ef Vv, = (m—j+1)fYVv,. Afterwards, we will prove the result by

induction on i.

First then, let’s take j = 1 and consider efv,. Since we have ef — fe = h by the commutator
relations in slg, we may write efv, = (fe + h)v;. Furthermore, v, is a highest weight vector, so

evy = 0. Thus we have

efvy =hvy =muv,,

giving us the base case. For the inductive step, let’s assume that efPv, = (m —j+ 1)V Do,

Then we have

G0y, = ¢ ey,
ef U+ J+1f
fe+h
j+1

fopy, + f(n
1 J+

f(J)

f FUD P 0y,

= +1
=(m-—j ) i1

where for the first expression we have used the induction hypothesis, and in the second that the
vector v, has weight m —2j, and & has the effect of multiplying by the weight. Next, using
that ££V=0 = jfY) we obtain

m2]

efUt Dy, :J(m_—j+1)f(j)v++ 2 0,
j+1
Jj+1
_(j+1)(m_j) ()
e E A
=(m-NfPv,,

so the first result holds.

Next, we show the result by induction on i. Note that the previous induction gives us the base
case [ = 1. Before tackling the inductive step, we first note that we can rewrite the binomial

coefficient so that the result becomes

N 1, 4 s
e(”f(])er=;(H(m—1+z))f0 Dy,

i=1
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Using this as our induction hypothesis, we calculate

. . e . .
e(l+1)f(J)v+ = - (e(l)f(J)v+)
i+1

e 1, /2 o »
= rega (om0,
Pist
1 i . .
- i+11(1_[(m_j+i))€f(]_1)v+
Pzt
1 i "
= i+1Y( (m—j+i))(m—(j—i)+1)f(J—z— v,
Pict
1 i .
= 5 ([1on=j+D)m=j+G+ )7 o,
Pzt
1 i+1 i)
N i+1Y(H(m_j+i))fJ_l_ vy
Pzt

3.2 Moving to Positive Characteristic

In this section we will give a central result which allows us to begin to understand the endomor-
phism algebra of V(r) ® A(s) over &, a field of positive characteristic p. First we will introduce

some notation.

Over a field of characteristic 0, when considering elements of V(r)® V(s), we will use the natural
basis of V(r) for V(r) (as given in Section 2.2.5), and the basis {f(i)m+ :1=0,...,s} of A(s) for
V(s), for a highest weight vector m, € A(s). This will correspond with the bases in the positive

characteristic case. We define the following Z-forms inside V(r) and V (s) respectively,

J

V(r)z :Z-span{xix : i+j:r},

and

A(s)z = Z-span{f(i)mJr = O,...,s},
where m, € V(s) is a highest weight vector of weight s.
The result we prove is that we can construct all endomorphisms in positive characteristic from
those in characteristic 0 that preserve the Z-form V(r)z ®z A(s)z. First however, we will give the

dimension of the endomorphism algebra of V(r) ® A(s). This result uses the ideas of polynomial

GL,(k)-modules, as introduced in Section A.1, as well as ideas introduced in Section A.2.
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Lemma 3.2.1. Let r,s € Nwith r = s. Then the dimension of the algebra Endgr,,)(V(r)® A(s)) is
equal to s+ 1.

Proof. First we note that

Endsr,x)(V(r) ® A(s)) = Homg,z)(V(r) ® A(s), V(r) ® A(s))
=Homgy,,)(V(r), V(r) @ A(s) ® A(s)™)
=Homgz,)(V(r) @ A(s)*,V(r) & A(s)*)
=Homgy,,2)(V(r)® V(s), V(r) ® V(s)).

Now consider the GL9(k)-module S”E. When we restrict this module to SLo(k), we obtain V(r).

Hence, for the purpose of finding the dimension, we may instead consider

Homgr,)(S"E®S°E,S"E ® S°E),

using Lemma A.1.4, since S"E ® S°E is a homogeneous polynomial GLy(%k) module. As in Sec-
tion A.2, we write S"E for S"E ® S°E.

Now, for any polynomial GL2(k)-module X and weight @ we have Homgr,,)(X°,S?E) = X¢
(Lemma A.2.3), where X° is the contravariant dual (as described in Section A.2). Since the

weight spaces of X and X° have the same dimension, we obtain that

HomGLz(k)(S(r’s)E, S(r’s)E) = (S(r,s)E)(r,s) .

We can calculate the (r,s) weight space of S™9E as follows. We have that

diag(ty, ta)x] ‘ah @y Iyl =t bl Txb @ ey y]

_ g rrs=(+)) i+ r—i i s=j.J
=t ty %1 X®y7 "3,

for any i =0,...,r and j =0,...,s. Hence the basis vector x;_‘x; ®y‘;_Jy2 is in STETS if and
only if i + j =s. Since r = s we have exactly s+ 1 ways to do this, taking j=0,...,sand i =s—.
We obtain that

dim Homgr,,)(S™E,S"E) = s +1,

and hence

dimEndSLz(k)(V(r) ®A(s))=s+1.
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In particular, we notice that this dimension is equal to that in the characteristic O case. In the
case r < s we have that V(r)® A(s) = (V(s) ® A(r))*, and since these modules are of finite dimen-

sion, we can use the above result to get that dim(Endgz,,)(V(r)® A(s))) =r+ 1.

Next we will give a more general result, which enables us to construct endomorphisms in prime

characteristic from those in characteristic 0. We define Ur, =Fp®zUz.

Lemma 3.2.2. Let M and N be two Uz modules that are both finitely generated and torsion free
over Z. Then the map
[Fp ® HOIIIUZ(M,N) — HomUle (M[Fp ,N[Fp)

is injective.
Proof. Consider the short exact sequence of Z-modules
0 — Homy,(M,N) — Homz(M,N) — Q — 0,

where we consider @ as the quotient module in the usual way. Since both M and N are finitely
generated and torsion free, it’s clear that the first two modules are also torsion free. We will
show that the module @ is also torsion free. Consider the element ¢ =6 + Homy,(M,N) €, and
suppose that for some non-zero r € Z we have rq =0 (i.e. that r € Homy,(M,N)). Then for any
u €Uz and m € M we have

(ré)(um) =urf(m),

or in other words
r(@(um)—ub(m))=0.

Now N is torsion free, so we must have 0(um)—u0(m) = 0, and hence 0 € Homy, (M,N) and so

q=0.

Since @ is torsion free, and hence flat, we may tensor this sequence with the field F, whilst

maintaining exactness, to obtain the exact sequence

0 — F, ® Homy,(M,N) — F, @ Homz(M,N) — F, ® Q@ — 0.

Hence we see that [, ® Homy,(M,N) embeds into [, ® Homz(M,N). Next we use the fact that
we have an isomorphism

Fp ® Homz(M,N) = Hom[Fp (M[Fp ,N[Fp),
so that we obtain the embedding
[Fp ® HOInUZ(M,N) — HOIII[FP (M[Fp ,N[Fp).
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Now since the image, under the above map, of each ¢ is in fact a U,-module homomorphism, and

we can identify HomU,Fp (Mp,,Nf,) as a subalgebra of Homg, (Mf,,Nf,), we have the embedding
[Fp ® HOl’nUZ(M,N) S HomU[Fp (M[Fp ,N[Fp)-

O

Now let’s consider the case M = N = V(r)z ®z A(s)z. It’s clear that Homy,(M,N) embeds into
Homy, (M, N), and since the latter is commutative, so is the former. Furthermore we have that
Homy,(M,N) is a Z-form of Homy,(Mq,Ng), so that the Z-rank of Homy,(M,N) is equal to
the Q-dimension of Homy,(Mq,Ng), which, as discussed above, is s+ 1. Hence the image of
Fp ® Homy,(M,N) in HomUle (Mg,,Nr,) has dimension s+ 1. However, we know already, from
Lemma 3.2.1, that dimHomU,FP (Mp,,Nr,) = s+ 1, so this is in fact an isomorphism. We sum-

marise the result in a lemma.
Lemma 3.2.3. The map
Fp ®z Endy, (V(r)z @ A(s)z) — Endy, (V(r) ® A(s))
is an isomorphism. In particular, EndU,Fp (V(r) ® A(s)) is commutative. O

We can construct endomorphisms of V(r) ® A(s) by extending k-linearly endomorphisms in
EndU[Fp (V(r)® A(s)), where we are viewing Uf, as a subalgebra of U, so we may naturally con-
sider V(r) and A(s) as Up,-modules. The lemma shows us that we may construct elements
of EndU[Fp(V(r) ® A(s)) by considering endomorphisms of V(r) ® V(s) that preserve the Z-form
V(r)z ®7 A(s)z. We will call this process ‘base change ’.

The module V(r) ® A(s) is, in general, not generated by the single element xg ® m,, so when
looking for endomorphisms that preserve the Z-form we must consider the image under the

endomorphism on a generating set of V(r) ® A(s). For this it is certainly sufficient to take the set
{xlafom, :ivj=rl.

Lemma 3.2.4. The set S = { x‘lxé ®m, :i+j=r }genemtes V(r)® A(s) as a Up-module.

Proof. The proof of this is identical to the second part of the proof of Lemma 3.1.1, with V(r) =

M, A(s) = N and letting n_ be a non-zero lowest weight element of A(s). The statement of

the lemma allows us to assume that we already have V(r)® n_ c Z, where Z is the submodule

generated by S. Note that we are utilising the fact that whilst A(s) is not necessarily simple, it

is nonetheless generated as a Up-module by the lowest weight element 7 _. O
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Now suppose that ¢ € Endgy,q)(V(r)® V(s)) is an endomorphism preserving the Z-form
V(r)z ®z A(s)z. We will denote by ¥ the endomorphism,

y=1,07vlz,

in the algebra Endy, (V(r) ® A(s)), where vz denotes the restriction of y to the Z-form

V(r)z ®7 A(s)z. Since we know that the dimensions of the endomorphism algebras in both char-
acteristic 0 and p are equal, we would like to find a basis of Endgyz,,q)(V(r) ® V(s)) where each
element preserves the Z-form V(r)z ®7 A(s)z. Unfortunately, the basis given by the ¢; in the
previous section does not, in general, do this, so we will need to take linear combinations of the

elements ¢);.

Supposing we have found such a basis of Endgyz,,q)(V(r) ® V(s)), one further problem arises.
This is that the set of endomorphisms given by the process of base change may no longer be
linearly independent. In fact, certain endomorphisms may be 0 after the base change process,

so we must pick our basis of Endgy,,(q)(V(r) ® V(s)) with this in mind.

3.3 Filtrations

The following theorem, known as Kempf’s vanishing theorem, allows us to give an essential
structure to the modules V(r)® A(s). Despite the name, the statement for a field of characteristic
0 had been known for some time. In 1976 Kempf’s proof for a field of prime characteristic was
published in [22].

Theorem 3.3.1 (Kempf’s Vanishing Theorem). Let G be a reductive algebraic group, B a Borel
subgroup. Then for all A€ X* and i > 0 we have RiIndg(k,l) =0. O

The next result and its derivation are taken from [27, Lemma 3.3], and are central to the
results of this thesis. First, pick the maximal torus 7" and Borel subgroup B of SL2(k) as in
Section 2.1.5, and associate X(T') with Z. Note that the module A(s), for s € N has a B-module
composition series with factors given by k_gs,k_s+2,...,ks—2,ks; this follows by looking at the
character y(s), and noticing that under the action of B the weight of a weight vector in A(s)

cannot go up. Next suppose that r =s—1, and consider V(r) ® A(s). Then

V(r)® A(s) = (Ind§ k) ® As) = Ind$ (k, ® A(s),

where the second equality is by the tensor identity (Theorem 2.2.12). Now k, ® A(s) has a B-
module composition of k,_g,kr—s+2,...,kr+s, 50 We obtain for each a short exact sequence, given
inductively by

0—Fkrs—kr9A(s)— Myg— 0,
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and
0—krsi2i—M;—1— M; —0,

for i =1,...,s. Applying the functor of induction to these sequences, and noting that all the terms
with the derived functor vanish thanks to Kempf’s vanishing theorem, we obtain the short exact
sequences

0— V(r—-s)— V(r)e A(s) — Ny — 0,

and
0—V(r-s+2i)— N;_1— N; —0,

for i = 1,...,s. Hence we have shown that the module V(r) ® A(s) has a good filtration, with sec-
tions given by the Clebsch-Gordan coefficients. This is in direct analogy with the characteristic
0 case. Furthermore, by taking the dual we obtain that if r < s, the module V(r) ® A(s) has a

Weyl filtration, with the same coefficients. In summary,

Theorem 3.3.2 ([27, Lemma 3.3]). Let G = SLo(k), for an algebraically closed field k of char-
acteristic p, and suppose r =s—1 for r,s € N. Then the module V(r)® A(s) has a good filtration
with sections V(r +s),V(r+s—2),...,V(r—s); and the module V(s) ® A(r) has a Weyl filtration with
sections A(r +s),A(r+s—2),...,A(r —s). O

As an immediate corollary we notice that if |[r —s| < 1 then the module V(r) ® A(s) is a tilting

module. We will investigate this further in Chapter 5.

It’s clear from Theorem 3.3.2 that the module V(r) ® A(s) can have at most s + 1 indecompos-
able summands, since every summand must also have a good (or, in the case r < s, Weyl) filtra-
tion (note that this agrees with Lemma 3.2.1). We remark now that our primary goal in this
thesis, is to describe V(r) ® A(s) in terms of either the good filtrations or Weyl filtrations of its
indecomposable summands. In the next section we give some examples of this in characteristic
2.

3.4 Finding Endomorphisms

In Section 3.1.1 we gave the dimension of the endomorphism algebra of V(r)® A(s), which turned
out to be independent of the characteristic of the field. Furthermore, we showed that in all cases
this algebra is also commutative. In this section, we will use these results to help us under-
stand some particular cases when the characteristic of the field % is 2. The idea will be to write
the identity endomorphism as a sum of centrally primitive idempotents. Each such idempotent
must correspond to a projection onto an indecomposable summand, so there is a one to one cor-
respondence between the primitive idempotents in Endg(V(r) ® A(s)) and the indecomposable

summands. We will briefly outline these ideas now, remarking that, by definition, there is a one
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to one correspondence between the idempotents of an endomorphism algebra and the projections

in that algebra. For more details on idempotents, see [12, Section 41].

For the following, £ may be any field. Let M be a finite dimensional module for a k-algebra
A, and write the identity element in Ends (M) as the sum of pairwise orthogonal primitive

idempotents

1M:el+e2+---+en.

Then we have

1y(M) =M =e1(M)+ea(M)+--- +en(M).

Furthermore, such a sum is direct since if m =e;(m;) and m = e j(m;) then

m=e?(m;)=e;e;(m;)=0,

since the e; are orthogonal. Writing M; = e;(M), we have the decomposition

M=MeMo®---oM,.

Suppose that for some i the summand M; can be written as a direct sum M;, ® M;, of submod-
ules. Then we can write e; = e;, +e;,, Where e;, is the restriction of e; to M;,, and is thus also
an idempotent, and similarly for e;,. However, such idempotents are orthogonal, contradicting

the fact that e; is primitive. Hence the M; are indecomposable.

Now consider End4 (M;). Since M; is indecomposable, we have that End 4 (M;) is a local ring ([23,
Proposition X.7.4]) so that dimEnd4 (M;) = 1+dimRad(End4 (M,)), where the radical Rad(End4 (M;))
is equal to the set of the nilpotent elements of End 4 (M;). Since

n
Enda(M)= @ Homu(M;, M),
1,j=0

we have that the number of centrally primitive idempotents of End4 (M) is equal to the dimen-

sion of End4 (M) minus the span of all of its nilpotent elements.

341 r=2

We will look at the modules V(2) ® A(s), for arbitrary s, when & is an algebraically closed field of
characteristic 2. By Theorem 3.3.2 we have that V(2) ® A(s) has a Weyl filtration with sections
A(s—2), A(s), and A(s+2). By Section 2.2.7, we have that there are the following possibilities for
the decomposition of V(2) ® A(s), for s = 2. These are given by
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A(s—2) A(s—2) A(s)
AG) & A(s+2), AG+2) ®A(s), A(s—-2)o AG12)’

and the possibility that V(2) ® A(s) is indecomposable, where we are using the notation

As=2)d A(s)® A(s+2),

M

N
to denote a non-split extension between modules M and N. We note that the final possibility

can only happen when s —2,s and s +2 are in the same block. For p = 2, this can only happen

when s is even, where the non-negative even numbers form a block.

To determine which of these decompositions occurs, we first note that in V(2) ® V(s) we have
that e(x% ®my)=2x1x9®m,. Hence in V(2) ® A(s) we have that e(xg ®@my)=0, so x1x9®m, is
not in the module generated by x% ® m.. However, we do have that ez(x% ®my)= x% ®m4, so by
Lemma 3.2.4 we have that V(2) ® A(s) is generated by the set

{ x% ®m+, X1X9 ®m+ }.

When constructing endomorphisms then, we will need to consider the images of these two ele-

ments in characteristic 0.

Now, by Section 3.2, we obtain from the characteristic 0 case that the algebra
Endy, (V(2) ® A(s)) is commutative, and has dimension 3. Furthermore, in characteristic 0 we
have that Endy,(V(2) ® V(s)) has basis {¢o,$1,P2}, where ¢; is given by

pix3em,)=e@3) e fOm.,).

We give in Table 3.1 the images of the endomorphisms over @, where in order to compute

¢i(x1x2 ® m ) we use that x1xp®m = %(x% ®@m.) so that ¢;(x1x9®@m ) = %Qbi(xg ®m,).

Q x§®m+ X1X9®@ m 4

$o x§®m+ X1X2 ®m 4

¢1 | 2x1x2® fmy x%@fm++sx1x2®m+

-1
b2 x?@f‘z)er ('ST)x%@fer

Table 3.1: The endomorphisms ¢; on V(2) @ V(s)

From this table it’s clear that if s is even, then the endomorphism ¢o does not preserve the
Z-form V(2)z ®7 A(s)z. Furthermore, by simply clearing the denominators and considering 2¢2
we find that after base change we have 2¢9 = ;. We will, for the minute, ignore this case and

consider the case when s is odd.
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3.4.2 The Odd Case

Let s e N be odd, say s =2u + 1 for some u € N. Here we have not only that each ¢; preserves the
Z-form V(2)7 ® 7 A(s)z, but the endomorphisms remain linearly independent when taken modulo
2. Table 3.2 shows this, where we have used u to denote the image of u € Z under the map
7 — 7127 — k.

k x§®m+ X1X2 @ M 4
bo x%®m+ X1X2 @M
(E 0 x%@fm++x1x2®m+
(E x?®f2m+ ﬁx%@fm+

Table 3.2: The endomorphisms ¢; on V(2) ® A(s)

Next we would like to discern the number of linearly independent idempotents of
Endy, (V(2)® A(s)), since this will correspond to the number of indecomposable summands. To do
this, we first, rather optimistically, compute (Ez. It’s clear that (Ez(xg ®m,)=0= (E(xg emy),

so we calculate (EQ(xlxg ®m). Using that x% ®fm, = egf(xg ® m,) we obtain

P12 (x1xa®m.) = P1(af ® fmy)+P1(x1xe ®@my)
= p1leaf (x5 ®my) + Pr(x1x2 @ M)
= ezfﬂ(x% ®@m.)+p1(x1x3®m,)
=eaf(0)+p1(x1x3® M)

= p1(x1x2 8 m).

Hence we see that ¢12 = ¢1, so ¢; is an idempotent. Now we turn to ¢z, where will have to

consider both cases for u.

Once again, we want to compute ¢2> of our generating elements. To do this it will be neces-

sary to write the image under @ in terms of the generating elements. First we notice that

2 2 = 2
x1® fom, =eg(x;® fom ) +uxy®my,

so that we may write

x% ® fom, = leg(xg ®my)+ ﬁx% ®my.
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Here we have used that egfom . =um., since by Lemma 3.1.3 we have

S
e(2)f(2)m+ — (2)m+,

and we may compute the binomial coefficient as

=u(2u +1)=u(mod 2),

s| Qu +1)! _(2u+1)(2u)
2] 21Qu-1) 2

so that in £ we have @ = u. This allows us to calculate @Q(xg ®m,) as (u+ ezfz)(x% ® fom )

since

P22 (xZem ) = Pal(eafe + Wx2@m ) = (W +eaf2)pa(xi @my) = (T +eafo)(x2 ® fam ).

Following this calculation through, using both Lemma 3.1.3 and that faf2 = 6f4, we obtain
(3.1) P2(xEemy) =@+ 12 e famy )+ u(x2®m.).

Supposing that z = 0(mod 2) so that u = 0z, we have that @2(3% ®my) = x% ®fom, = (E(x% ®m.y).

Furthermore, we have that (E(xlxz ®m,)=0 so that (EQ = (p_z This gives us our first result.

Lemma 3.4.1. Let k be an algebraically closed field of characteristic 2, and G = SLo(k). Let
s=4v+1 for some v € N. Then the module V(2) ® A(s) is a direct sum of Weyl modules, with
highest weights given by the Clebsch-Gordan coefficients. Explicitly,

V2)RAB)=A(s+2)d A(s)® A(s —2).

Proof. The calculations above show that the basis of Endy, (V(2) ® A(s)) given by ¢o,¢1 and
¢2 consists only of idempotents. Hence we can write the identity endomorphism as a sum of
three linearly independent idempotents, each corresponding to an indecomposable summand of
V(2) ® A(s). Since each summand must have a Weyl filtration, using Theorem 3.3.2 we obtain

that the only possibility is the one given. O

Now we continue our previous calculations. It remains to compute gb_22(x1x2 ®m,)=

ﬁ@(x? ® fm). Noticing that x% ®fm, = fe(x1x2 ® m,) we may write

P2(x1xe@my) = Ufeda(x1xa®m)
= L_t2fe(x% ®fmy)
=u?f(x®ef(m,))
=u%5f(x3 ®m,)

=2-,.2
=u“sx{®fmy,.
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k x§®m+ X1X2 @ M 4

(E) x%®m+ X1X2 ®m 4

1 0 2O fmy +x1%2®

1 1 + 1X2 @ m 4
Nk 0 2® +
b1 x7®fmy+x1020m,
b2 x§®f2m+ ﬁx%@fer
G2 | @+ D2 fom ) +u(xZom,) ux’ef

2 1 om 4 u x2 m 4 uxl m4

Table 3.3: The endomorphisms ¢; and their squares on V(2) ® A(2u + 1).

We summarise all the previous calculations in Table 3.3.

Now in the case that u = 1(mod 2) we can simplify these expressions to
PP (x1x3®my) = x5 ® fm,

and

—92, 9 2
P (xz®@m ) =x50m,.

Hence we see that ¢22 = ¢g + ¢1. Using this we notice that the endomorphism ¢z + 1 + ¢g is

nilpotent:

($2% +P1+P0)” = P2” + P1” + do” = b1+ Po + P1 +Po = 0.
We have found then, that the dimension of the span of nilpotent elements is equal to 1, so the

number of summands of V(2) ® A(s) when s =2u + 1 and u = 1(mod 2) is equal to two. Next we

will examine the Weyl filtrations of these summands.

There are three possibilities for the filtrations of our indecomposable summands. These are

A(s —2) A(s —2) A(s)
®A(s+2 oA A(s—-2)® .
A TAETD. [Ty OAE, AmRe T

We remark here that we may rule out the first possibility by showing that s and s —2 are in

different blocks as follows. First we note that by Lemma 2.2.29 we have that

AB(s)c{s+4n :neZ}u{-s—-2+4n :ncZ}.

Now, if s — 2 € Z4(s), then we must have that s —2 = —s —2 + 4n for some n € Z. However, this

implies that 2s = 4n, or, in other words, 2|s, contradicting the fact that s = 2u + 1.
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Similarly, we can show that s and s +2 are in different blocks, and so we are left with only

the second possibility.

In the spirit of this section, however, we will also determine which of these filtrations is cor-
rect by determining which summand splits. First we notice that ¢g = 1= (1—¢1)+ ¢, and we
will write ¥ = 1 - ¢y.

k x§®m+ X1X2 @ m 4
(E 0 x%@fm++x1x2®m+
% x§®m+ x%@fer

Table 3.4: The endomorphisms (E and ¥ on V(2) ® A(s)
We will denote by X; the image of ¥ and by X3 the image of ¢; so that

V(2)® A(s) = X1 & Xo.

Our plan is to consider the highest weight vectors and the dimensions of each individual weight
space. The summand consisting of the split Weyl module will have a one dimensional space for

each weight. First we consider the highest weight vector x% ®my = ez(xg ® m). We have that

P1(x7 @ m.) = eap1(xy ®@m,) =0,

— . 9 — 9 2
yxi®my)=ey(xg®m,)=x7®m,.

Next we look at x1x9 ® m, € V(2) ® A(s)°. We can read directly from the table that

— 2
P1(x1xe®@my)=x7® fm, +x1x2®m,

W(x1xg®m,) = x? ®fmy.

These calculations show us that X; has highest weight s + 2 and X9 has highest weight s. It
remains then, to place A(s —2), which we will do by looking at the s — 2 weight space of each
summand. Consider first, the image of x% ® m., which again we can read straight from the
table.

P1(x5®m,) =0,

] 2
Y(xg®@mi)=x50m,.
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Next, writing x1x2® fm, = f(x1x2 @ m ) +x§ ® m, we have that

P1(x122® fmy) = fd1(x122 @ my) +d1(x2 @m.y)
=fE®fm, +x1x2®m.)
=x2®@my +x1%2® [y,

Y(x1x9® fmy) = fylxixg®my) +P(x2@m,)
:f(x§®fm+)+x§®m+

:x§®m+.

Finally, we calculate the image of x% ® fomy = fzez(xg ®m.)+ x% QM.

P1(x7® fom ) = faeapr(xy @ m )+ Pr(x @ my)
=0,
Y] ® fam,) = faeap(aj @ my) + P(x3 @my)
= fzeg(xg ® m+)+x§ ®my,
= x% ® fom,.

Hence we have that dim (X i_z) =2 so that X is a non-split extension of A(s+2) and A(s—2). We

obtain the following result.

Lemma 3.4.2. Let k be an algebraically closed field of characteristic 2, and G = SLa(k). Let
s =2u+1 where u = 1(mod 2). Then the decomposition of V(2)® A(s) into indecomposables is

given by
A(s —2)
—— dA(s),
As+2) A
where the first summand is a non-split extension. O

3.4.3 The Even Case

We look now at the case where s is even, let’s say s = 2u for some u € N. Recall that Table 3.1
showed us that the endomorphism ¢2 did not preserve the Z-form, and by simply clearing the
denominators we ended up with linearly dependent endomorphisms after base change. Instead,
we should consider the endomorphism v = ¢po + %(/)1. This gives us the following table, where the
endomorphisms are over Q.

After the process of base change, we end up with the following linearly independent endomor-
phisms on V(2) ® A(2u). Once again we can see that these depend on whether u is odd or even.
As before, we would like to determine the idempotent and nilpotent elements of this algebra.

First we will compute ¢12. Note that
2 a2 _ 2
xi®fmi=fxi®m,)=fes(xz®m,),
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Q x§®m+ X1X2 ® M,

ON) xg ®m, X1X2 @ m 4

b1 2x1x9® fm x%@fm++sx1x2®m+
2 (2) ( 2 )

Y| x7®fmytxixe®@fmy | wxi®fmy +x1000m;

Table 3.5: The endomorphisms ¢y, ¢1 and ¥ on V(2)® V(s)

k x§®m+ X1X2 @M 4
(E) x§®m+ X1X2®@m 4
o1 0 x%@fer
% x%®f2m+ +x1x9® fm ﬁ(x%@fer +Xx1xX2®@m,)

Table 3.6: The endomorphisms ¢, ¢1 and ¥ on V(2) ® A(s)

so that gb_lz(xlxz ®my)= fez(E(xg ®m,) =0, and hence (Ez =0 and gb_l is nilpotent.

Next we compute 2. First we give the elements in Table 3.6 in terms of the generators X3 ®my

and x1x9 ® m .. We have that

2 2 2
x] ® fom, = foea(xg®@m ) +x50m.,
2
x1x2® fmy = f(x1x20@my)+x580m,,
2 2
xi®fmy=fea(xz®m,).

This allows us to write

(2 2 2 2 2
Yxagemy)=frealxz@my)+x50m, +f(x1xg@mi) +x3@my = faea(xz ®@m )+ f(x1xg @ m),

hence we have

VixEem,) = faeaW(xs @ my)+ fP(x1xa®m)
= erz(x% ® fom, +x1x9® fmy)+ ﬁf(x% Qfm;+x1x29my)

2 2 -
= fo(x]®egfom +xi®efm)+ulxg®m, +x1x2® fm ).
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Now by Lemma 3.1.3 we have that efm, =sm, =0 since 2 divides s, and that

e@ D, - (s)m+
2
B 2u!
BTCIED) Tk
B u2u —1)!
T (Qu-2)!

u2u—-1)m,

my

hence in £ we have that easfom = um,. Continuing we have

2/ .2 - 2 -
ye(xgomy) = fo(uxi®@mi )+ u(xg®@my +x1x02® fmy)
=ﬁ(x%®m++x%®f2m++x§®m++x1x2®fm+)
- 2
=u(x]® fom, +x1x2® fm )

=upxa®m,).

In the case that u is even we immediately obtain that 2 = 0. Since ¢ is also nilpotent, we have
that the identity is the only idempotent and the module V(2) ® A(s) is indecomposable. Next we

turn to ¥2(x1x2 ® m ). We have

Tyz(xlxg em.)= L_MT/(.?C% ®fmy+x1x30my)
= u(fesip(xy@m )+ Plx1xa@m,))
= ﬁ(fez(x% ®fomy+x1x2® fmy)+ l_t(x% ®fmi+x1x2®9my)
= L_L(f(l_tx% ®fm,i)+ ﬁ(x? Qfmi+x1x29my)
= ﬁ(x%@fer +x§ ®fms +x1x2®9my)

=Uuxixo®ms,,

where we have used that, since % has characteristic 2, z? = . Using Table 3.6 we can see that
¥2 = u(y + ¢1). In the case that u is odd we have

V=T YL+ o1y + 17 =+ 1P =

so that 17/2 is idempotent. Hence we can give Endy, (V(2) ® A(s)) the basis {gb_o, gb_l, v+ (E}, and
write ¢g = ¥ + 1 + (Po + ¥ + P1).

It remains to determine the Weyl filtration in the case that u is odd. The primitive idempo-
tents are given in Table 3.8.

By looking at the image of the highest weight vector x% ®m, = e(x1x9 ® m,) we can see that
A(s +2), the module generated by x% ® m, belongs to the summand corresponding to ¥ + ¢;.

Next, since f (x% ®m,)= x% ® fm, and the weight space V(2)® A(s)® has dimension 2, the element
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W+ d1 x?®f2m+ +x122® fm 4

k x§®m+ X1X2 @M 4
(% x%®m+ X1X2®@m4
s 2

o1 0 x1®fm+

(u+ l)x% Qfmy+uxixo®my

Table 3.7: The endomorphisms ¢, ¢1 and ¥ + ¢1 on V(2) ® A(s)

k x§®m+ X1X2 @M 4
1T/+<E x%®f2m+ +x1X2® fm 4 X1X9 ® M 4
Po+Y+d1 | 2@ fami+x1028 fmy +xEOmy 0

Table 3.8: The primitive idempotents when « is odd.

x1x2 ® m generates A(s). Since this also belongs to the summand corresponding to v + <E we

can write the following decomposition.

V(2)® A(s) =

A(s)

A(s+2)

We summarise the results obtained for V(2) ® A(s).

& A(s —2).

Theorem 3.4.3. Let k be an algebraically closed field of characteristic 2, and G = SLo(k). For

seN, the module V(2) ® A(s) decomposes into indecomposable summands in the following ways:

s =0(mod 4)
s =1(mod 4)
s =2(mod 4)
s =3(mod 4)

indecomposable,

As+2)eA(s)e A(s—2),

A(s)
A(s+2)
A(s—2)

As+2)
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CHAPTER

CASIMIR OPERATOR

In this chapter we will use a universal Casimir operator to define an endomorphism from which
we can make some useful results. As in the previous chapter, we will first work over a field of
characteristic 0. This time however, we will work over the p-adic numbers, @, (see Section A.4

for a brief introduction to p-adic numbers). The result we prove is as follows:

Theorem 4.0.1. Let k be an algebraically closed field of characteristic p, and G = SLo(k). Let
r = s, and denote by A; the Clebsch-Gordan coefficients in ascending order, so that A; =r — s+ 2i.
Let z; = )L? +21; and let

Zi = H (zi _zm)

0sms=s
m#i

fori=0,...,s. If p does not divide |Z;| for i =0,...,s then

V(r)® A(s) =P V(Ay).

1=0

This theorem immediately shows us that for any given r and s there are only a handful of charac-
teristics (finitely many) for which the module V(r) ® A(s) is not a direct sum of induced modules,
which can be seen as a direct analogy to the characteristic 0 case. We also find that there are
more primes for which the module is a direct sum of induced modules, than just those that are

‘sufficiently large’, where we have V(r) = L(r).

We note that since

AZ =12 +5% —2rs +4ir—4is +4i%,
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we have that

zi—zj=A = A2 +2(; - 1))
=4r(i—j)+4s(i — j) +4i% — 452 + 2(2G - j))
=4((r+s+1+i+j)i—j).

It’s clear then, that 2 divides all the Z;, so for the case p =2, the result doesn’t tell us anything.
However, in proving the theorem, to which most of this chapter is devoted, we will still find some

useful results for all primes.

4.1 Characteristic 0

In examining the algebra Endg(V(r)®A(s)), we will initially work in characteristic 0, for which it
will be sufficient to take the field Q. Our aim will be to find the centrally primitive idempotents
that will correspond to the known decomposition in characteristic 0. Then, since there is a one
to one correspondence between the idempotents in characteristic p and those over the p-adic
integers in characteristic 0 (see [12, Theorem 44.3]), if we can say which idempotents preserve
the lattice in V(r) ® A(s) with p-adic integer coefficients, we will be able to say how many inde-

composable summands the decomposition in characteristic p has.

As in the previous chapter, we will denote by V(¢) the simple module of highest weight ¢ over a
field of characteristic 0. We recall also that we may consider any QG-module as a module for the

universal enveloping algebra Ug, and that when r > s we have dim @EndU@(V(r) ®V(s)=s+1.

4.1.1 The Casimir Operator

In this subsection we will derive the universal Casimir operator of the universal enveloping al-
gebra U(slo(C)), with respect to the Killing form x. A detailed description of this topic can be
found in [18, Section 22.1], but here we exhibit a quick way to derive it for sl3(C).

We know that, for a semisimple Lie algebra g over C, the linear map induced from the Killing

form, given as

x:S%(g) —C
K: XY —«x(X,Y)

is G-equivariant (where G acts via the adjoint action), which makes it a G-invariant in S(g)*.

Using the isomorphisms of G-modules

S2(g)* =~ S%(g*) = S%(g) = Ua(g)/U1(g),
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we obtain a G-invariant in Us(g) (using the notation defined in Section 2.3). This invariant is
the universal Casimir operator. Such an element must be invariant under the action of a maxi-
mal torus in G, so must have weight 0. Furthermore, since the differential of Ad is ad, we have
that our universal Casimir operator commutes with all elements of g, and thus lies in the centre
Z(U(g)).

For the case sl2(C), using the PBW theorem we can write this element in the form

c=afe+yh?+6h,

for some a,v,6 € k. Now using the fact that ¢ € Z(U(s(2(C))) we may find the coefficients as fol-

lows.
We have

fe=afle+yfh2+6fh,

and that this must equal cf, given by

cf =afef +yh*f +6hf
= a(fh+f2e)+y(hfh—2hf)+5(fh—2f)
=a(fh+[2e)+y(fh® —Afh +4f)+6(fh—2f),

where we have made repeated use of the commutator relations to describe cf in terms of the

PBW basis. Equating these two expressions we see that we must have

afh+4y(f —fh)—-25f =0.
This tells us that we must have @ =4y and 6 = 2y. Up to scalars, this is enough information to
define ¢, so we pick y =1 and obtain
c=4fe+h*+2h.

As a quick check, we calculate ec as

ec=4efe+eh2+2eh
=4he+4fe>—2eh +heh —4e +2he
=4he+4fe’+4e—2he—2he +h’e—4e+2he
=2he +4fe® +he,
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which does indeed equal ce. As a final remark, we note that, using the identity [e, /1= A, we can
rewrite this as
c :h2+2ef+2fe.

Whilst this does not express ¢ in our chosen PBW basis, it does exhibit it as a quadratic element
of U(sla(0)).

Since ¢ € Z(Ug), given any Ug-module M, we can consider multiplication by ¢ as an endomor-
phism of M. We will define the endomorphism vy : M — M by yy(m) = cm for all m € M. When

it’s clear which module we are acting on we will denote this endomorphism by .

Let’s now consider the action of yy(; on the simple module V(¢) of highest weight ¢, with highest
weight vector denoted m .. Since V(¢) is a simple module, Schur’s lemma (Lemma 2.2.2) says
that y acts as a constant, so it’s sufficient to look only at the effect of y on the vector m,. We

obtain

y(my)=4fem, +(h®+2h)m, = (h® +2h)m .,

where we are using that since m has highest weight, we have em, = 0. Thus y(m) = 2 +

2t)m, so y acts as multiplication by the constant t24+2t€Z on V(2).

Using the Clebsch Gordan decomposition of V(r) ® V(s) given in Section 3.1, it’s clear that the
matrix of yv(r)sv(s) is a block diagonal matrix with each block given by the diagonal matrix of
size dimV(r +s —2i) =r +s—2i + 1, and with all diagonal entries (r + s — 202 +2(r +s—2i) =: z;.

Furthermore we have that the minimal polynomial of yy eV (s) is given by

my (D=1 =2

In particular, the ring Q[y] has dimension s +1 over Q). Since y is an element of the algebra
Endy,(V(r)®V(s)), it’s clear that Q[y] < Endy,(V(r)®V(s)), but as the dimensions are the same

they are in fact equal.

4.1.2 Idempotents

Given a commutative ring R and an R-module M =M, &---® M,, we may write 1 € Endg(M)
uniquely as

l=e1+-+ep

where each ¢; is a primitive idempotent and M; are all indecomposable (as in the beginning
of Section 3.4). In the case we are looking at, since we know V(r)® V(s) = fZOV()Li), we

would like to write the s+ 1 centrally primitive idempotents in terms of the basis {1,y,...y*}
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of Endy, (V(r)® V(s)).

Now, for a moment, let A be a commutative, semisimple % algebra, where % is an algebraically
closed field. As described above, we may write 14 = €1 +---+&,. Consider X(A), the set of all %
algebra homomorphisms A — k. For 0 € X(A) we have 1, =0(e1) +--- +0(g,). Since

0(:)* = 0(c7) = 0(e;)

and % is a field (containing only the idempotents 0, and 1), we must have 0(¢;) = 1;, for some
unique i and 6(¢;) = 0, for all j # i. Using this, we can easily describe X(Q[y]), since if 6 € X(Q[y])

we must have

so 0(y) = z; for some i =0,...,s. Since the action of 6 on y completely describes 6 we obtain a
basis of X(Q[y]) consisting of the s + 1 elements 6;, where 8;(y) = z; for i =0,...,s. Hence we
have dim ¢ X (Q[y]) =s +1.

Next, continuing the previous notation, given a basis {b1,...,b,} of A we can write each cen-

trally primitive idempotent £; of A as

n
£ :lzajlbl
=1

for some fixed j and some aj; € k. Given a basis {01,...,0,} of X(A) such that 0;(¢;) = §,;, applying

0;, we obtain

n
6ij=0i(e))=)_a;0;(by).
=1
This can be written as the matrix equation 1,, = av where v;; = 0;(b;) and the matrix a consists

of the coefficients a ;.

Reverting to our particular case, we would like to find the coefficients a;; so that we can de-
scribe each idempotent €; as a polynomial in y. We have the basis b; of Q[y] given by {1,y,...,7°}
and 0;(y/) = 0;(yy = z{ where j runs from 0 to s. This means that v is given by the (s+1) x(s+1)

matrix
1 2z zg e 25
1 2z z% e 25
1 zg 22 z5



CHAPTER 4. CASIMIR OPERATOR

Since this is a Vandermonde matrix, its inverse w is known and given as [25, Section 4]

Z Zmy---@mgi1
0smq <...<ms+1_i.Ss
(_1)s+1—i M1, Msi1-i 2] Cl<i<s+1
[T (zj-2m)
0Osm=<s
wij =4 mE
1 .
1=s+1
[T (z-2m)
Osm=<s
m#j
and thus £; = Y571 w; ;¥ ~!. Defining

Zj:= H (zj—zm),

O=ms=<s
m#j

we can take out the factor of Z% =ws1,; and we are left with

1 s+1 i1
_ ! 1—
€= Z(Z a;y )
J i=1
where
+1-i . .
—15T > Zmy-Bmgy; | l<i<s+1

0<mi<... <Mg1-i <8
M1,y Msi1-i 7]

1 c1=s+1

/— .. . —
a;=w;jZ;=

This gives us a complete set of centrally primitive idempotents in Endy,(V(r)® V(s)) expressed
as polynomials in y. Since the z; are integers we have that Z; is an integer and it’s clear from

the above formula that a’i are integers for i = 1,...,s + 1.

4.2 Moving to Prime Characteristic

As in Section 3.2, we would like to move from the well understood characteristic O case, to the
characteristic p case. The idea here is exactly the same as in the previous chapter, except, since
we are this time working over Q,, we will want to look for those endomorphisms that preserve
the lattice V(r)zp ®z, A(s)zp, where Z,, is the valuation ring on , with respect to the p-adic
norm (as defined in Section A.4). Barring this slight change, all of the theory developed in the
previous chapter goes through here too. In fact it will be sufficient to work inside Q, and to just

look at the valuation ring on Q, given as

-
Zpy:=QNnZp=A{ S | r,s€Z, ged(r,s)=1, pts}.
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In contrast to the previous chapter however, rather than finding endomorphisms that preserve
V(r)z, ®z, A(s)z, for a particular prime p, our aim this time will be to give sufficient con-
ditions for p so that each idempotent obtained in the previous section preserves the lattice
V(r)z, ®z, A(s)z,.

First, we give a helpful lemma.
Lemma 4.2.1. The endomorphism 7y preserves the lattice V(r)z ®z A(s)z.
Asin Section 3.2, we have V(r)z = Z-span{x‘lxé ti+j=r }, and A(s)z = Z-span{f(i)m+ :1=0,...,s}.

Proof. y is given by the action of 4fe+h2+2h. Since multiplication by % brings out the weight of
a weight vector (all of which are integers), it’s clear that acting with 42 + 2k preserves V(r)z ®z
A(s)z, so it remains to check that acting with 4fe does too. We can check this explicitly by
looking at the basis element x;_ixé 8 fPm, eVr)aV(s).

4fe(x]” lxé f(j)er):élf(e(ocr_ixé)@]"(J)mJr +a]” ‘x’ oefVm,)
=4f(ix]" iy ‘ le fPm, +(s— —Jj+ D" Lxé ® 5 Vm,)
=4[i[(r—i+1)x; b fPmy+(+ Day el e fU m ]

+(s—j+ D=l e fUV 4 il o fOm ]]
Each coefficient is in Z, proving the result. 0

Since y preserves the lattice V(r)z ®z A(s)z, it’s clear that any polynomial in y with integer
coefficients does too. Furthermore, as the above result shows that applying y only produces
integer coefficients, y also preserves V(r)z, ®z, A(s)z,. When acting on V(r)z, ®z, A(s)z, with
the idempotents ¢; from the previous section, we can see that after expanding all terms out,
the only new denominators will be Z;. So if p does not divide Z; for each j, then each ¢; will
preserve V(r)z, ®z, A(s)z, and give a centrally primitive idempotent in Endy, (V(r) ® A(s)) (as
in [12, Theorem 44.3]). Since all such idempotents are gotten this way, the module V(r) ® A(s),
over the field %, can be decomposed into s+ 1 indecomposable summands. Since every summand
must have a good filtration (Corollary 2.2.23), and we know that the good filtration of the whole

module has exactly s + 1 sections, the decomposition must be
S
V(r)® A(s) = @V(Ai).
1=0
This is the proof of Theorem 4.0.1.
As an aside, it’s clear that the condition p f Z; for j =0,...,s, is equivalent to the condition

that p Y Z := detV where
detV = H (zj—2;,)

0<i<j<s
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since the factors of the product of the Z;’s and Z are identical. Furthermore, as mentioned at
the start of this chapter, it’s clear that the prime 2 always divides Z, so the theorem does not tell
us about the decomposition in this case. In fact, in the case p =2 we can find a counter example

to the converse statement, which we do in the next section.

4.3 Further Applications

In proving the theorem above, we found an explicit form for each centrally primitive idempotent
in characteristic 0. One might notice that instead of giving the explicit formula for the inverse
of the Vandermonde matrix V we might very well have appealed to Cramers rule for inverting a
matrix and said that we can take a factor of detV ! out and all the matrix entries would lie in
Z. Then we would have reached same conclusion using the equivalent condition on p mentioned
above (and arguably got there quicker). There are however, some uses in writing explicitly the

centrally primitive idempotents, of which we now exhibit one.

Lemma 4.3.1. Let k be an algebraically closed field of characteristic p >0, and let r e N. Then

Vir+1eVr-1) : p)fr+1)

V(ir)® A(1) =
V(ir+1)

V(ir-1)

pl(r+1).

In particular we notice that when p = 2 there exist modules for which the decomposition is a
direct sum of induced modules. We should point out at this stage, that this result can be gotten

by already known methods, one of which we outline in the next chapter.

Proof. Firstly we notice that the module V(r)® A(1) has a good filtration with only two sections,
so the decompositions given are the only possible ones. In order to decide when each decom-
position occurs, we look at when either of the two centrally primitive idempotents preserve the
lattice V(r)zp ®z, A(l)zp, and give a non-trivial idempotent in Endy, (A(r) ® V(1)). In the case
that either idempotent (and thus both) does, there are two summands. In the case that neither

does, there is one summand.

Using the same notation as in Theorem 4.0.1, we have Ao =r—1and A; =r+1 giving 29 =r2 -1

and z1 = r2 + 4r + 3. The Vandermonde matrix V is given by

1
v=|" *°
1 21

with determinant z; —zg = 4(r + 1). Its inverse matrix is then given by
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so that

€1= (z1-7), &€= (=zo+7).

21— 20 21—%20
From here we can use the theorem to get the result for when p # 2. In order to complete the
result, we must check explicitly whether either idempotent preserves V(r)z, ®z, V(1)z,. Fortu-
nately, the module V(r)® V(1) is generated by the single vector x] ® fm, (Lemma 3.1.1), which

has weight r — 1 = A9, so it is sufficient to check for this vector only. We calculate

Y& ® fmy) = (4fe+h*+2R)(x] ® fm.)
=4fe(x] ® fm.)+(A] +240)(x] & fm.)
=4fe(x]®fmi)+zox]®fm,
=4f(x]®m,)+2z0x]® fm,

= 4rx;_1x2 emy+(“4+2z0)x]®fm,.
Hence we obtain

e1(x1®fmy) = (z1x7® fmy —y(x]® fm.))

_1
(z1-20)

= — )(zlx§®fm+—4rx§_1x2®m+—(4+zo)x§®fm+)
120

1 _
= m((zl —zo—4)x]® fm, —4rx] lyg@my)

r
-1
= m(x{@fnu—x; Xo®my)
r r r—1
= r+1(x1®fm+—x1 Xo®m.),

where we have used that z; — zg = 4(r + 1). Similarly, we obtain for &9,

ea(x]®fmy)= (—20x]® fmy +y(x] ® fm,))

_ 1
(z1-20)

= m(—zoxi ®fmy +4rx§_1x2 emy+(@d+zo)x]®fmy)
1—<0

= m(ﬁlx; ®fm, +4rx;_1x2 ®m.y)
1—<0

(x]®fm,+ rxi_lxz ®my),

+1
so it’s clear, by looking at the denominators, that £; and €2 only preserve V(r)z, ®z, A(1)z, when
2 does not divide r + 1. O

In particular, for p = 2 we have exhibited a case where V(r) ® A(s) is a direct sum of induced
modules, but 2 still divides the quantity Z, disproving the converse statement of Theorem 4.0.1.
Finally, we remark that it would be interesting to discern whether this is the only prime where
the converse fails, and whether we would be able to have the converse statement by simply

dividing y by some scalar.
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TILTING MODULES

In this chapter, we move away from the ideas of the previous two chapters, and investigate
which of the modules V(r) ® A(s) are tilting. Whilst this question is of interest in its own right,
we note that if we know such a module is a tilting module, then we can quickly decompose it into
a direct sum of indecomposable modules using the character. Some examples of this are given
at the end of the chapter. Throughout, unless otherwise stated, £ will be an algebraically closed
field of characteristic p, and G will be the group SLo(k).

5.1 Preliminary Results

First, we will give several useful results which will be used in the next few sections. In par-
ticular we will make extensive use of the following well known result, which is a rewording of

Lemma 4.3.1. As promised, we outline an alternative proof here.
Theorem 5.1.1. There exists a short exact sequence given by
0—V(r-1)—V(@r)eE—V(r+1)—0,

and this is split if and only if p does not divide r + 1.

Proof. That the sequence exists is clear by considering the V-filtration of V(r)® E = V(r) ® A(1).
If p does not divide r + 1, the result follows by considering the blocks for SLo(%), as follows. We
have, using Lemma 2.2.29, that

Brr+1l)c{r+1+2pn : neZ}u{-r—-3+2pn : neZ}.
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Now, if r—1€ A(r+1), we must have that r—1=-r—3+2pn for some n € Z, so that 2r+2=2pn

and r +1 = pn, a contradiction.

On the other hand, if p does divide r + 1, then the module E ® V(r) is projective as a G1-module,

while neither V(r —1) nor V(r + 1) are, so the sequence cannot be split. O

The next result extends Theorem 3.3.2.

Lemma 5.1.2. If r,se{np—1, np, np+1,..., (n+1)p — 1} for some fixed n €N, then V(r)® A(s)
is tilting.

Proof. Suppose, for a contradiction, that we have V(r) ® A(s) is not tilting for some r,s € {np —
1,np,np+1,...,np+p—1}, choosing r and s so that r + s is minimal. If r ¢ {np — 1,np} then by

Theorem 5.1.1 we have

Vir—-1)9EA(s) =V(r) A(s)® V(r —2) ® A(s).

Since r and s were chosen so that r + s was minimal, we have that V(r — 1) ® A(s) is tilting, so
that each summand on the right hand side is tilting, giving a contradiction. We may suppose
then that r € {np — 1,np}, and similarly, that s € {np —1,np}. But then we have that |[r—s| <1, so

by Theorem 3.3.2 we have V(r) ® A(s) is tilting, contradicting our initial assumption. O

This result shows us that there are more tilting modules of the form V(r)® A(s) than those given
in Theorem 3.3.2 for every characteristic p. Before we delve further into this investigation, we

prove a couple of useful lemmas concerning tilting modules.

Lemma 5.1.3. Let G be a semisimple, simply connected algebraic group, over an algebraically
closed field k, of prime characteristic, and let T1 and T be tilting modules where T is projective
as a Gi-module. Then the tensor product T ® Tg is also a tilting module.

Proof. First, since each tilting module has a unique decomposition (up to isomorphism) into
indecomposable tilting modules, it’s sufficient to prove the lemma in the case that 7' is inde-
composable. Now, let p be the half sum of all positive roots, and take 71 to be the Steinberg
module V((p —1)p) = St. In this case the result holds by [9, Proposition 2.1].

Next let A € X* be such that T'(1) is projective as a G1-module, so that (1,d) = p — 1 for all
simple roots a [9, Proposition 2.4]. Then, since (1 —(p — 1)p, &) = 0 for all simple roots @, we may
write A =(p —1)p + u for some p € X*. It follows that the tilting module St ® T'(u) has highest
weight A, and so T'(1) is a summand of this module. Then T'(1) ® Tg is a summand of the tilting
module (Ste® Tg )® T'(u), and is thus tilting itself. O
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We will use this lemma throughout the chapter in the case G = SLy(%), and in conjunction with
the facts that V(p — 1) = A(p — 1) is a projective G1-module [21, Proposition I1.10.1], and that the

tensor product of a projective G1-module with another G1-module is again projective.

Lemma 5.1.4. Let G = SLo(k), let V be a tilting module, and define the module W by H%G.,V)=
WF. Then W is a tilting module.

Proof. First we remark that, since the action of G1 on the £G-module H%(G1,V) is trivial, there
does indeed exist a kG-module W such that H%(G1,V) = W¥ (see [20, Section 2.1]).

As in Lemma 5.1.3, it suffices to prove this for V = T'(m) for some m € N. We can split this
into three separate cases, the first of which deals with 0 < m < p —1. For such m we have
T(m)=L(m) and so
LO) :m=0
H%G1,T(m)) =
0 lsm=<sp-1.
Next we consider the case m=p—-1+t¢for 1<t < p—1. Here T(m), considered as a G1-module,
is the injective envelope of L(p — 1 —1t) [9, Example 2.2.1]. In particular L(p —1—t¢) is the socle of
T(p—1+t) soif HY(G1,T(p—1+¢)) #0 then H*(G1,L(p—1-1¢)) # 0. Considering the case t = p—1
separately we get
0 l<t=p-2.
H%(G1,T(m)) =
L) :t=p-1.
For the remaining cases we will use induction by writing m = p —1+ ¢+ pn for some n € N and

0 <¢<p-1 so that we can write T(m) = T(p — 1+ t)® T(n)F . Taking the G fixed points we get
H%G1,T(m)) = H%G1,T(p - 1+t)® T(n) which by the previous case gives us

0 :0<st=<p-2
H%(G1,T(m)) =
T :t=p-1.

so that

and is thus tilting. Il
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5.1.1 Main Theorem

Before stating the main theorem of this chapter, we will introduce some notation. Let r € N and

p a prime. We can write the base p expansion of r as

n .
Y rip',
i=0
where each r; €{0,...,p—1}, r, # 0 and for all j > n we have r; = 0. We will say that r has
p-length n (or just length n if the prime is clear), and write
len,(r)=n.

We define len,(0) = —1. Now given any pair (r,s) € N2 with r # s, we can write

n ) n .
r=) rip', s=) sip'
=0 i=0

where n = max(len,(r),len,(s)) so that at least one of , and s, is non zero. Now let m be the

largest integer such that r,, #s,, and let

so that if » > s we have r,, > s,, and 7 > §. Using this notation we may write

r=f+ Z ript, s=§8+ Z s;ipt=§+ Z rip.
i=m+

i=m+1 i 1 i=m+1

Notice in particular that r —7 = s — § and denote this quantity by ¢,(r,s) so that p™*1 divides
ep(r,s). We will call the pair (7,5) the primitive of (r,s), and say that (r,s) is a primitive pair if

(r,s)=(#,3). In the case r = s we define 7 =§ =0, and we have ¢,(r,s)=r =s.

Theorem 5.1.5. Let G = SLo(k), where k is an algebraically closed field of characteristic p, and
for r,s €N let the pair (#,5) be the primitive of (r,s). The module V(r) ® A(s) is a tilting module if
and only if one of the following holds

1. F=ap™+p"—1forsomeaci0,...,p—2}, neN, and § < p"*1,
2. §=bp"+p"—1forsomebel0,....p—2}, neN, and F < p™*l.

We briefly note that in order to give uniqueness to the expressions of 7# and § we only allow a

and b up to p — 2. (If, for example, @ = p — 1 we would have #=(p —1)p" +p*-1=p**1-1))

Figure 5.1 illustrates which of the modules V(r) ® A(s) are tilting for r,s <31 and p = 2.
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Vi(r)

0 1, 2 3 4 5 & 7 8 910111213 14 15 16/17 1819 20 21/22 23 24 25 26 27 28 29 30 31

Tilting
Mot tilting

A

Figure 5.1: The modules V(r) ® A(s) when char(k) = 2.

5.2 Lemmas

In order to prove Theorem 5.1.5, we gather some elementary results on the modules V(r) ® A(s).

First we make an important observation.

Remark 5.2.1. Since the dual of a tilting module is also a tilting module, and we have the relation
(V(r)® A(s))* = V(s)® A(r), it’s clear that V(s) ® A(r) is tilting if and only if V(r) ® A(s) is tilting.

Hence, for many of the results in this section, it’s only necessary to prove the result for r = s.

Lemma 5.2.2. Let t,u € N. The module V(p — 1+ pt)® A(p — 1+ pu) is tilting if and only if the
module V(t)® A(u) is tilting.

Proof. Firstrecall the identities V(p—1+pt) = V(p—1)aV()F and A(p—1+pu) = A(p—-1)eAw)F,
found in [21, Proposition 11.3.19]. Using these we may rewrite V(p — 1+ pt) ® A(p — 1 + pu) as
Vip-1)® A(p —1)® (V(t)® A(w))F.
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Using Lemma 5.1.4 we easily obtain the forward implication. The reverse implication is also
clear since V(p—1)®A(p—1) is tilting and projective as a G1-module, so we can apply Lemma 5.1.3
O

Lemma 5.2.3. Let r=ro+pt, s=p—1+pu for some 0<ro<p—-2and t,u eN. Then V(r)® A(s)
is tilting if and only if both V(t)® A(u) and V(¢ — 1) ® A(u) are tilting.

Proof. First we assume that both V(¢)® A(z) and V(¢ —1)® A(u) are tilting, and show that V(r)®
A(s) is tilting. We will use the identity A(s) = A(p —1)® Aw)F as above, and the short exact

sequence

(5.1) 0— V(ro)® V() — V(r) — V(p-2-ro)®V(t-1)F — 0,

which can be found in [20, Satz 3.8, Bemerkung 2], in its dual form for Weyl modules. Tensoring

sequence (5.1) with A(s) gives the following short exact sequence

0 — V(ro)®A(p — 1)@ (V(t) ® Aw))F — V(r)® A(s)
(5.2) —V(p-2-rg)®A(p —1)®(V(t-1) e Aw)f — 0.

Now, for 0<rg<p—2, both V(rg)® A(p — 1) and V(p —2 —rg) ® A(p — 1) are tilting and projective
as G1-modules, so if both V() ® A(u) and V(¢ —1)® A(u) are also tilting then by Lemma 5.1.3 both
the second and fourth terms in sequence (5.2) are tilting. Hence we have that V(r) ® A(s) is an
extension of tilting modules. The only such extensions are split (e.g. by [21, Proposition I1.4.16]),

so we obtain V(r) ® A(s) as a direct sum of two tilting modules, and hence is tilting itself.

For the converse statement, if V(r)® A(s) = V(rg + pt) ® A(s) is tilting for some r¢ €{0,1,...,p —2},
then each module V(v + pt)® A(s) for v € {-1,0,1,..., p — 1} is tilting, so in particular the modules
Vp—-1+p(t-1))®A(s) and V(p —1+ pt)® A(s) are tilting. This follows by induction, taking v = r¢

for the base case and using Theorem 5.1.1 for the induction step we obtain

V(v +pt)o E® A(s) = (V(v +1+pt)® A(s)) & (V(v -1+ptH)® A(s)),
so that both V(v +1+ pt) ® A(s) and V(v — 1 + pt) ® A(s) are tilting. The result now follows from
Lemma 5.2.2 applied to V(p — 1+ p(t — 1)) ® A(s) and V(p — 1 + pt) ® A(s). O

Remark 5.2.4. Note that by duality we obtain the corresponding result for when r = p — 1+ pt¢
and s =sg+ pu for some 0 < sy < p—2, and #,u € N. In this case we have that V(r) ® A(s) is tilting
if and only if both V(¢) ® A(u) and V(¢) ® A(u — 1) are tilting.

It remains to determine which of the modules V(r) ® A(s) are tilting when neither r nor s is

congruent to p —1 modulo p. It turns out that this only occurs in the cases given in Lemma 5.1.2.
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Lemma 5.2.5. Let G be a semisimple, simply connected algebraic group over k, and let T be a

G-module that is projective as a G1-module. Then y((p —1)p) divides ChT.

Proof. This follows immediately from [10, 1.2(2)], since T' must also be a projective B; module.
O

We now revert to the case G = SLy(k) and obtain the following corollary.

Corollary 5.2.6. For all r = p — 1, the character of the Steinberg module V(p — 1) divides that of
the indecomposable tilting module T(r) of highest weight r.

Proof. By [9, Proposition 2.4] we have that for all r = p — 1, the module T'(r) is a projective
G1-module. ]

Recall that ChV(r) = y(r) (Lemma 2.2.19), and that this character is an element of Z[x,x"1]. We
have that

x(P) =" +x 2 x0T

1 _

= —r(x2r+x2r Zi.40)
x

x2r+2_1

1
=)

so the roots of this equation are the (2r + 2)™ roots of unity, except +1. If y(p — 1) divides y(r)
then, we must have that the 2p* roots of unity are also (2r + 2)! roots of unity, which would

imply that p divides r +1, i.e. that r is congruent to p — 1 modulo p.

Hence we have shown that if both » and s are not congruent to p — 1 modulo p, the charac-
ter y(p — 1) does not divide Ch(V(r) ® A(s)) = x(r)x(s). Now suppose that V(r) ® A(s) is tilting,
and that |r —s| > p — 1. By considering its good filtration (given in Theorem 3.3.2), we see that
the decomposition of V(r)® A(s) into indecomposable tilting modules cannot contain any 7'(j) for
J=0,...,p—1. By Corollary 5.2.6 its character is divisible by y(p —1) but the above calculation

contradicts this. In summary:

Lemma 5.2.7. For r and s both not congruent to p —1 modulo p, and |r —s| > p —1, the module
V(r)® A(s) is not tilting. O

There are now only a few more cases which we have not considered, which we deal with in the

following lemma.

Lemma 5.2.8. Let r = rog+ pt and s = sg+ pu with ro,so € {0,1,...,p —2}. Then V(r)® A(s) is
tilting if and only if t = u.
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Proof. Assume that V(r)® A(s) is tilting, and suppose for a contradiction that ¢ # u with r and

s chosen so that r + s is minimal. Since s # p — 1(mod p) we have, by Theorem 5.1.1
VIr)eE®A(S)=V(r)eA(s—1)e V(r)® A(s+1)

is tilting, and so the module V(r) ® A(s — 1) is tilting. Now, if sg # 0 then s—1=s9— 1+ pu with
so—1=0. Since r and s were chosen so that r + s was minimal we must have that ¢# = u, contra-

dicting our initial assumption.

Similarly, if ro # 0, we obtain a contradiction. Now if sg = rg = 0, then since ¢ # u we must

have |r —s| = p, so by Lemma 5.2.7 we obtain a contradiction.

For the converse, we assume ¢ = u, so that we have r,s € {np,np+1,...,np + p — 1} for some
n €N. Then by Lemma 5.1.2 the module V(r) ® A(s) is tilting. O

Remark 5.2.9. Note that Lemma 5.2.8 shows us that if V(r) ® A(s) is a tilting module, then we
must have either at least one of r and s congruent to p — 1 modulo p, or both r and s lie in the

set {np,np+1,...,np+ p—2} for some n € N.

We are now in a position where, given any r and s we could determine whether V(r)® A(s) is

tilting by using the previous lemmas and induction. Figure 5.2 illustrates this for p = 3.

5.3 Proof of Theorem 5.2

In this section we prove Theorem 5.1.5 in two steps. The first is to show that for a primitive
pair (#,5), we have that V(#) ® A($) is a tilting module if and only if # and § are as described in
the statement of the theorem. The second step is to show that for any pair (r,s) with primitive
pair (#,8), we have that V(r) ® A(s) is tilting if and only if V(#) ® A(S) is tilting. By the duality

argument in Remark 5.2.1, we may assume that r = s throughout.

Proposition 5.3.1. Let (r,s) be a primitive pair. Then the module V(r)® A(s) is tilting if and only
if

r=p"—1+ap”, s<p™*!,

or

s=p"—1+bp"®, r<p™l,

for some neNand a,b €{0,...,p -2}

Proof. (=) We assume that for a primitive pair (r,s), we have that V(r) ® A(s) is tilting, and

proceed by induction on len,(r) = N. For N =0 we have that r<p-1andsor= ap™ +p" -1 for
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V(r)

0 1 2 3 4 5 & 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31

Tilting
Mot tilting

Figure 5.2: The modules V(r) ® A(s) when char(k) = 3.

a=0,...,p—2, orin the case r = p— 1 we have r = pV*1 - 1. In each case we have that r is of the
desired form, and s <r < pV*+1,

Next let’s write r = ro + pt and s = so + pu, where len,(#) = len,(r) — 1, and len,(u) = len,(s) — 1.
Since V(r)®A(s) is tilting, by Remark 5.2.9 we must have that either rg or sg is equal to p—1, or r
and s both lie in the set {np,np+1,...,np+ p —2}. However, since we are assuming that the pair
(r,s) is primitive, we cannot have the second case. Hence either ro = p —1 so that r = p — 1+ pt,
or so=p-—1sothat s=p—-1+pu. Let’s assume rg = p — 1, and note that the case s =p—11is

proved similarly.

Now we have two further cases to consider, the first is that so = p — 1, and the second that

soZp—1.

i.) Let’s suppose that sg = p — 1, then by Lemma 5.2.2 we have that V(¢) ® A(u) is tilting. By
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induction we must have that ¢ and u are of the form given in the statement of the theorem. If

t=pN1-1+ap"~!for someac{0,...,p—2}, and u < p" —1, then

r=p(pN_1—1+apN_1)+p—1=pN—1+apN,

and s < p"v — p + sg, which is strictly less than pV*! since s¢ < p. If we have that u = pV 1 -1+

ap™ ! and t < pY -1, then we obtain, in a similar manner, s = p¥ —1+ap® and r < pV*1.

ii.) For the second case, we suppose that sg # p — 1, so that by Lemma 5.2.3 we have that
V(t)® A(u) and V(#) ® A(u — 1) are tilting. By induction we have that the pairs (¢,u) and (¢,u — 1)
are both of the form in the theorem. Since we cannot have that both u and u — 1 are of the form

N-1 N_1q
b

p —1+ap™~1, we must have that ¢ is of this form and u < p so we complete the proof

as above.

(<) Now we prove the converse statement, that is, for a primitive pair (r,s), if r = p* —1+ap”
for some a €{0,...,p -2}, n €N, and s < p"*!, then V(r) ® A(s) is tilting. Once again, we
use induction on n, with the case n = 0 being clear. For the inductive step, we have that if
r=pt—1+ap”=p-1+ptands=so+pu<p”!for some ¢ and u, then t=p" 1 —1+ap™ ! and
u < p". By induction the modules V(#) ® A(z) and V(¢) ® A(u — 1) are tilting, so by Lemma 5.2.3
(or Lemma 5.2.2 if sg = p — 1) we have that V(r)® A(s) is tilting too. The case s=p" -1+bp™ and

r < p™*1 is obtained similarly. O

Proposition 5.3.2. Let (#,3) be the primitive of (r,s). Then V(r)® A(s) is tilting if and only if
V(#) ® A($) is tilting.

Proof. Following Remark 5.2.9, we will first look at the case where at least one of r and s (and
hence 7 and $) is congruent to p — 1. Note that if r = s, then we have (#,5) = (0,0), so in this
case the result holds. Let’s suppose then, that r = p — 1+ pt and s = sg + pu, so that we have
7=p-1+ptand §=so+pit. We remark that the other case, when s = p—1+ pu and r = r¢ + pt,

is obtained in an identical manner.

As before, there are two cases to consider: so = p—1 and sg # p — 1. In both cases we will proceed
by induction on len,(r). Let’s first consider the case so = p — 1, where, when len, (r) = 0, we have
that » = s = p — 1 which we have already covered. Now by Lemma 5.2.2 we have V(r)® A(s) is
tilting if and only if V(¢) ® A(u) is tilting. By induction then we have that this is tilting if and
only if V(#) ® A(#) is tilting. Applying Lemma 5.2.2 again we find that V(#) ® A(%) is tilting if and
only if V(#) ® A(8) is tilting.

Next, we consider the case sg # p —1, where we may assume r > s. Again, the base case is

easily obtained since this time the pair (p —1,s¢) is primitive. For the inductive step, we will
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consider separately the cases u #0 mod p and u =0 mod p. If u #0 mod p then, since ¢ > u it’s
clear that the pair (f,u — 1) is equal to the pair (£,4 —1). We then have that V(r)® A(s) is tilting if
and only if V(#)® A(u) and V(¢) ® A(u — 1) are tilting by Lemma 5.2.3. By induction, these are tilt-
ing if and only if both V(})® A(2) and V()® A(u — 1) are tilting. Now V()@ A(u — 1) = V(D®AG-1),
so we apply Lemma 5.2.3 again to obtain that these are tilting if and only if V(#) ® A($) is tilting.

For the case u =0 mod p, we treat each direction separately. If V(r)® A(s) is tilting, then by
Lemma 5.2.3 we have that V(¢) ® A(u) is tilting, and by induction we have that V(f) ® A(2) is
tilting. Now & =0 mod p, so by Theorem 5.1.1 we obtain

VHRE®AG)=VEH @ADL +1) e V() e Al - 1).

The module on the left hand side is a tilting module, so V(#) ® A(Z — 1) is also a tilting module.
We apply Lemma 5.2.3 again to obtain that V(#) ® A(S) is tilting. For the reverse direction we
have that if V(#) ® A($) is tilting, then V() ® A(2) is tilting, so by induction V() ® A(u) is also
tilting. Now, as above, since u =0 mod p we have that V(¢) ® A(u — 1) is also tilting, so we apply
Lemma 5.2.3 to obtain that V(r) ® A(s) is tilting.

What remains is to prove the result when both r and s lie in the set {np,np+1,...,(n+1)p — 2}
for some n € N. From Lemma 5.1.2 we know already that for such r and s the module V(r)® A(s)
is tilting, so it’s sufficient to show that V(#) ® A(3) is tilting. However, it’s clear that in this case
7 and § lie in the set {0,...,p — 2}, and so V(#) ® A($) is tilting. Il

5.4 Example Decompositions

In this section we give some examples of decompositions of tilting modules, using the character.
In order to do this, we will exploit the fact that every tilting module is uniquely determined by
its character, and for the case G = SLg, we can calculate the character of each indecomposable
tilting module using Theorem 2.2.28 and Brauer’s character formula (Theorem 2.2.17). The

following characters, for the case p = 2, were calculated in this way.

101



CHAPTER 5. TILTING MODULES

ChT(0) = x(0) ChT(9) = x(9)+ x(5)

ChT(1) = x(1) ChT(10) = x(10) + x(8) + x(6) + x(4)

ChT(2) = x(2)+ x(0) ChT(11)=x(11)+ x(3)

ChT(3)=x(3) ChT(12) = y(12) + x(10) + x(4) + x(2)

ChT(4) = x(4)+x(2) ChT(13)= y(13)+ x(9) + x(5) + (1)

ChT(5) = x(5)+ x(1) ChT(14) = y(14) + y(12) + x(10) + x(8) + x(6) + x(4) + x(2) + x(0)
ChT(6) = x(6)+ y(4) + y(2)+ x(0) ChT(15) = y(15)

ChT(7)=x(7) ChT(16) = y(16) + y(14)

ChT(8) = x(8)+ x(6) ChT(17) = y(17) + y(13).

First, take V(15) ® A(2), with character y(17)+ y(15) + y(13). Since such a tilting module must
contain T'(17), we have that

ChV(15)® A(2)-ChT(17) = y(15) = Ch T(15),

hence we obtain V(15)® A(2) = T(17) & T'(15).
Next we look at V(7)® A(7), with character equal to that of T'(14), so we have V(7)® A(7) = T'(14).

Consider now V(5) ® A(4), with character y(9) + y(7) + x(5) + x(3) + x(1). Taking away ChT(9)
we are left with y(7)+ y(3)+ y(1). Next we take away Ch T'(7) to obtain y(3)+ x(1), which is equal
to the character of T'(3) @ T'(1). Hence we have

VB)eAM4)=T)eT(NaeT3)eT().

Finally let’s consider V(9) ® A(8). The character is given by
8
ChV(9)®A(8) = )_ x(17—2i).
i=0

Taking away the character of the tilting module of highest weight each time, as before, we obtain
VOAB) =TA7eTA5)eTAeT9)e T(THeT().

We will see in the next chapter that the ability to decompose these modules like this is central
to the final result.
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FINAL RESULTS

In the final chapter, we give some further results derived from those of the previous chapter.
First, we take another look at the pair (#,$), when V(r) ® A(s) is a tilting module. Next, we
give an explicit surjective module homomorphism from V(ap™ — 1) ® A(s) to V(ap™) ® A(s — 1) for
some fixed s < ap™ — 1. Inspired by this, we then construct a more general surjective module
homomorphism from V(r) ® A(s) to V(r — 1) ® A(s + 1). After some further investigation, we find
that this is enough to allow us to calculate the good filtration of the indecomposable summands
of arbitrary V(r)® A(s), where r = s. Finally, we formalise these results, and give some corollaries

and examples.

6.1 Primitive Pairs

Firstly, using the notation from the previous chapter, we give the following lemma for all primes

p.
Lemma 6.1.1. Suppose that V(r)® A(s) is a tilting module, where r = pt+p—1and s =up +v for
some t,u e Nand v e€{0,...,p — 1}. Then we have the following decomposition for V(r)® A(s).

V(r) e As)=V(p-1)eA(p-2-v)a(V(t)e Alw—1) e V(p - 1)® A(v) ® (V(£) ® A(w))F .

Proof. The proof follows that in Lemma 5.2.3, whereby we obtain the following short exact

sequence.
0— V(p-1)8A(p-2-0)8 (V)@ Al —1)f — V(r)®Als) — V(p—1)® AW)® (V) Aw))f — 0.

By Lemma 5.2.3 we have that, since V(r) ® A(s) is tilting, both V(#) ® A(x) and V(¢) ® A(u — 1) are

tilting, so, using Lemma 5.1.3, we find that the second and fourth modules in the sequence are
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tilting. Hence the sequence must be split (Theorem 2.2.27), and V(r) ® A(s) decomposes as the

given direct sum. O

Note that, since in the above case V(r) ® A(s) is a tilting module, we can decompose it into its
indecomposable summands. Such a decomposition would be at least as fine as the one just given,

but we will make particular use of this one in the next lemma.

Recall that we say the pair (r,s) is a tilting pair if the module V(r) ® A(s) is a tilting module.
By theorem 5.1.5 we have that each primitive tilting pair (r,s) has the form given in the above

lemma, so it holds for all primitive tilting pairs. Next we give the main result of this section.

Lemma 6.1.2. Let (r,s) be a tilting pair. Then the module V(#)®A(S) is a submodule of V(r)®A(s).

Proof. First we remark that when the pair (r,s) is a primitive tilting pair, we have that (#,$) =
(r,s), so the result is trivial. To prove the non-trivial case, we first note that, as before, we can
assume without loss of generality that » = s by duality. Furthermore, it’s sufficient to show
that if the pair (r,s) is a primitive tilting pair, then we have V(r) ® A(s) is a submodule of
V(r+a,p")®A(s +a,p") for any a, € {0,1,...,p — 1} and n >len,(r). Then we can apply this

result to every power of p appearing in €,(r,s). We will prove this by induction on len,(r).

For the base case let us consider V(0) ® A(0) = k£, where len,(0) = —1. Since both V(0) ® A(0) and
Via,p™)® Ala,p™) are tilting modules, the dimension of Homg(V(0) ® A(0),V(a,p™) ® Ala,p™))
is equal to the inner product (V(0) ® A(0),V(a,p™)® Ala,p™)) (Lemma 2.2.24). The character of
V(0) ® A(0) is x(0), so clearly this inner product is 1. Hence there exists a non-zero homomor-
phism from V(0)®A(0) to V(a,p")®A(a,p™). The kernel of such a homomorphism is a submodule
of &, but since the homomorphism is non-zero we must have that it is injective, so we can embed
V(0) ® A(0) as a submodule of V(a,p™) ® Ala,p™).

For the inductive step, let (r,s) be a primitive tilting pair, so that, by Proposition 5.3.1, we can
assume r = pt+p — 1 for some ¢ € N and len,(r) < n (the case s = pu + p — 1 is obtained likewise).
Write s = pu + v for some u e N and v € {0,...,p — 1}, and let

rr=r+ap”=pt+ap™+p-1, s'=s+ap” =pu+ap™)+v,

then we have (by Lemma 6.1.1) that

V(e As)=V(p-1)8A(p-2-v)& (V(t+ap™ ® Au +ap™ — 1)
eV(p-1eAWL)®(V(t+ap™) ® Alu+ap™)r.
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By induction we have that V(¢)® A(x—1) is a submodule of V(¢+ap™)®A(u+ap™—1) and V(£)@A(u)

is a submodule of V(¢ + ap™) ® A(u + ap™). Hence we obtain injections

Vip-1eAp-2-v)e(VH)eAu-1) - V(p-1)8 A(p—2-0v)&(V(t+ap™)® A(u +ap™)F
V(p—1)®A(v)®(V(t)®A(u))FHV(p—1)®A(v)®(V(t+ap”)®A(u+apn))F.

But by Lemma 6.1.1 we have that

V()@ A(s)=V(p-1)A(p—-2—-v)e(V(t) @ Alu — )Fe
V(p-1)eAw) 8 (V1) e Aw)F,

and so V(r) ® A(s) — V(') ® A(s"). O

It follows that as a submodule of V(r) ® A(s), the module V() ® A(S) is equal to O,(V(r) ® A(s)),
where 7 is the saturated set of weights with highest weight # + .

6.2 Short Exact Sequences

In this section we will exhibit a particular surjective module homomorphism between
V(ap™ - 1)® A(s) and V(ap™)® A(s — 1), where we assume that s<ap™—-1,and a € {1,...,p — 1}.

As in previous chapters, we consider £G-modules as modules for the hyperalgebra Uj,.

Lemma 6.2.1. The map ¢:V(ap" —1)® A(s) — V(ap™)® A(s — 1) taking the element xgpn_l ®my

to xlxgp e L+ defines a surjective module homomorphism, where m . is a highest weight vector
of A(s), and . is a highest weight vector of A(s—1).

Proof. There are a number of statements in the above lemma that need proving, not least
of which that ¢ exists and actually gives a module homomorphism. To this end, we recall
Lemma 3.2.4 and remark that the module V(ap™ — 1) ® A(s) is in fact generated as a module
by xgpn_l ® m 4 (this follows from the fact that V(ap™ — 1) = A(ap™ — 1) = L(ap™ — 1)). Hence, in

order to give a homomorphism explicitly, it’s sufficient to just give the image of this element.

Next we show that the map given above exists. Since V(ap”™ — 1) ® A(s) is generated by the
element xgp lg m . of weight s+ 1—ap”, if we can show that
dim Homg, (V(ap™ - 1)® A(s), V(ap™) & A(s — 1)) = dim(V(ap™) ® A(s — 1)1 797",

then we will have a linear isomorphism between the left and right sides. Hence we can give a
basis of Homg, (V(ap™-1)®A(s), V(ap™)® A(s—1)) by the elements ¢;, where gbi(xgpn_1®m+) =v;,

and the elements v; give a basis for (V(ap™)® A(s — 1))**17%P" (as in Section 3.1).
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To this end, we notice that a basis for (V(ap™) ® A(s — 1))*+17%" is given by the set

{ x%”xgpn_l_i ®fily) :1=0,...,s—-1 },

. . .. . . . n_q
so that its dimension is s. Furthermore this basis contains the element xlxgp ®l,. Next we

calculate the dimension of Homg;, (V(ap™ —1) ® A(s), V(ap™) ® A(s — 1)) by using that
Homy, (V(ap™ - 1)® A(s),V(ap™) ® A(s — 1)) = Homy, (V(ap™ — 1) @ Alap™),V(s) ® A(s — 1)).

On the right hand side, we have that both modules are tilting modules by Theorem 3.3.2, so
the dimension of the space of homomorphisms between them is given by their inner product
(Lemma 2.2.24). Now

ap™-1
ChV(ap"-1)® Alap™) = Z 12ap™ —1-2i)
1=0

and
s—1

ChV(s)®A(s—1)= ¥ 4(2s—1-2i),
1=0

by the Clebsch-Gordan formula. Since both 2s—1 and 2ap™ — 1 are odd and s <ap™—1, it’s clear
that the inner product is s. We have shown now that our homomorphisms exists and is well
defined, so it remains to prove surjectivity. To do this, we will show that the image of ¢ contains

a generating set of V(ap™) ® A(s — 1).

By Lemma 3.2.4, we have that the set
S—{xapn_ixi®l :1=0,1 "}
=1% 9®ly 1 1=0,1,...,ap

certainly generates V(ap™) ® A(s —1). Since (p(xgpn_l ®my) = xlxgpn_l ®l, €S, we have that
ei(xlxgp e [+) € Im¢ for each i from 0 to ap™ — 1. Next, since [, is a highest weight vector of
A(s—1), we have that

n
ap"-1 ap"~1 ap” =1\ 14i ap"-1-i
ei(x1x2p ®l+):ei(x1x2p )®l+:( ; x] ‘x2p ®l,,

fori=1,...ap™ — 1. By Lucas’ Theorem (Theorem A.3.1) we have that each binomial coefficient

y n—. . . . .
is non zero, so each element x‘lxgp "®1, lies in Im¢ for i = 1,...,ap™. Finally, we have that

fapr @ ®1,) € Im¢p, and
ap” T 4 an" P ap™) apej
fapn(xl ®l+)= ij(xl )®fap"—jl+= Z J xl x2®fap”—jl+-
J=0 Jj=0

Once again we apply Lucas’ theorem, but this time we get that (‘“;n) =0 for all j except ap™ and
0. However, when i = 0 we have that f,,»/, =0 since [, € A(s—1) and s—1<ap”. Hence we
obtain that fapn(x‘fp "® ly)= xgp "® [+. Now we have that S c Im(¢), so ¢ is surjective. O
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The proposition shows us that we have a short exact sequence of the form
0—K—Vap"-1)9A(s) — Viap™")®A(s—1) — 0,

for some module K. By looking at the character of each module in the sequence we deduce that

the character of K is given by

ChK =ChV(ap" -1)® A(s)—ChV(ap™)® A(s —1)

s s—1

=) xlap"—1-s+2i)— ) xlap™+1-s+2i)
1=0 1=0

=ylap" —-1-ys).

By taking the left exact functor O, (see Section 2.2.3), where 7 is the saturated set of weights
with highest weight ap™ — 1 —s, we must have that

K=0,K)=0,(Vap"-1)®A(s)) =V(ap™" —1-5).

We can summarise with the following corollary.

Corollary 6.2.2. Let s<ap™—1forneNand ae{l,...,p—1}. The module V(iap™)® A(s—1) is
given by the quotient of V(ap™ — 1) ® A(s) with the bottom induced module, V(ap™ —1—s), from its
good filtration. O

Next we are able to generalise the above result, by exhibiting a surjective module homomor-
phism
v V) A(s) — V(r+ 1)@ A(s—1),

for r,s € N with r = s. Furthermore, this homomorphism will be independent of the characteris-
tic of k.

First recall that we have the module homomorphism given by multiplication,

¢r:STE®E — S™ME,
x%x8 ® 11— 29148,
x9x8 ® xg — x%a5t,
for all @ and b € N such that a+b =r. Since S"E = V(r) and V(r)* = A(r) we can consider the

dual homomorphism

¢y A(r+1)— E e A(r).

If we let m, € A(r+1) be a highest weight vector, and [, a highest weight vector in A(r), then we
must have that ¢;(m,)=x; ®l,. From here we can compute the image of each basis element of
A(r+1) by
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‘P;k(fim+) = fi¢:(m+)
=filx1®1)
=) filx)® fi_jls
j=0

=x1®fil s +txe®fi-1l4,

foralli=1,...,r. For i =r+1 we have that ¢ (f,-1m+) =x2® f;1 since [, € A(r), so fr+1l+ =0.

Having defined these maps we may now give ¥ as the composition

v = (¢pr ®idas-1)) 0 (dy(r) ® ;7).
This is more easily visualised by the following commutative diagram.

V(r) ® Als) id

> V(r+1)oA(s—1)

idy(®p;_; ¢r®idacs-1)

V(r)® E®A(s—1)

Next we would like to show that the map v is surjective. Using the explicit maps above, we can

calculate the image of ¥ on the following basis.

y(xixg @m,) = (r @idae-1)afxl @x1©1,)
(6.1) =24l wl,,
W(x$ad ® fimy) = (¢ ®idpgs-1)@5x5 ® 21 ® fil ¢ + 1328 @22 ® fi_114)

1 1
(6.2) =x$ Ml @ fily + 2528 @ fials,
fori=1,...,s—1. For i =s we have

Y(x§xd @ fom) = (¢ ®idage—1)(x x5 @02 ® fo_1)

(6.3) =x9x5 @ foo1ls.

In particular, we notice from the first line that x‘f”xlz’ ®l, € Imy, for all a and b such that

a+b =r. We claim also that x£+1 ® [, € Imy. Consider the image

8_1 . . .
1//( (_l)l—lx:ll—lxg—1+1 ®fim+) —

s
=1 i

Z i-1, r-i+1

-1 )
Dyl e fimy),
=1

which by eq. (6.2) is equal to
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s—1 . . . . .
Y D akah e fily A xR £ 1),
=1

Now note that this sum is telescopic, so we are left only with the terms x£+1®l ++(=1)° ‘2x§_1x§‘s 2
fs—1l+. But by eq. (6.3) we have

-1, r—-s+1 -1, r-s+2
pei e e fomy) = 25 2 e fal,

so we obtain that x;” ®l; € Imy. Hence we have that V(r+1)®[, c Imy, and since this subset

generates the module V(r + 1) ® A(s — 1), we have that y is surjective.
Hence this map induces a short exact sequence

0—K—V(reAs) —Vir+1)eA(s—-1) —0,

where K can be seen as the kernel of v, a submodule of V(r)®A(s). Furthermore we can calculate
the character of K as y(r —s). Now, consider the saturated subset m of X(7T') consisting of those
weights less than or equal to r —s. As before, applying the left exact functor O, to the short

exact sequence above gives us

0— O0x(K)— O,(V(r)®A(s)) — O(V(r+1)® A(s - 1)) — ...

However, since the lowest Clebsch-Gordan coefficient of V(r+1)® A(s—1) is r —s + 2 we have that
0,(V(r+1)® A(s—1)) = 0. Furthermore, we have that K = O;(K) since its character is y(r—s), so

we obtain that

K=0,(V(r)®A(s)) =V(r—s).

Theorem 6.2.3. There exists a short exact sequence

0—V(ir—-s)— V()8 A(s) — V(r+1)®A(s—1) — 0,

for all r,s e Nwhere r =s. O

We remark that for any r,s € N we can find some ¢ and b in N such thata+b=r+s,a = b and
la —b| < 1. By Theorem 3.3.2 we have that the module V(a) ® A(d) is tilting, and so using the
character we can decompose it into its indecomposable tilting summands for a particular prime
p, as in Section 5.4. Since each Clebsch-Gordan coefficient a + b —2i only occurs once in the good
filtration of V(a) ® A(b), there exists exactly one indecomposable summand for which V(a — b)

occurs as a submodule. Let’s say

V(@) Ab)=T(c1)eT(c2)e...0T(cy),
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and we may as well assume that V(a — b) appears in the good filtration of T'(c1). Then by Theo-

rem 6.2.3 we have that

T(cy1)
V(a—b)
There is however, one caveat. This is that an indecomposable tilting module, like T(c1), may

Vie+1)®Ab-1)=

@T(co)®...eT(cy).

not remain indecomposable under the quotient of the lowest submodule of its good filtration. It
turns out however, that it does remain indecomposable, as we will shortly see. Not only this,
but further quotients remain indecomposable. Assuming this, we can repeat the above proce-
dure, taking the quotient of the lowest weight induced submodule. Each time this gives us the
decomposition for V(a +i)® A(b —1i) for i =1,2,...,b. Hence, in principle, we may obtain the de-
composition, in any characteristic, for the module V(r) ® A(s), which was the original aim of this

thesis.

I am thankful to Stephen Donkin for supplying the proof of the following proposition, which
shows us that the indecomposable tilting modules remain indecomposable under taking multi-

ple quotients.

Proposition 6.2.4. For G = SLy(k), every indecomposable tilting module has simple socle and
simple head.

Proof. First we remark that since the indecomposable tilting modules 7'(r) are all self dual, it’s
sufficient to prove only that they have simple socle. For r < p — 1 we have that T'(r) = L(r) and so
the result is true. Next we consider r in the range p <r <2p -2, so that we can write r =p—-1+t¢
for some ¢ < p — 1. In this case we have that the G1-socle of T'(r) is L(p — 1 —t) (as in the proof of

Lemma 5.1.4), so it follows that its G-socle is simple too.

Next we consider the case r > 2p — 2, where we will write r = s+ pt with p-1<s<2p -2,
and s =p—-1+u with 0 <u < p—1. Then we have T(r) = T(s) ® T(#)F, so that the G1-socle of
T(r)is L(p —1—-u)® T(t)F. Suppose then, that for some v = 0 we have Homg(L(v), T(r)) # 0,
then we must also have that Homg, (L(v), T(r)) = Homg, (L(v),L(p —1—-u) ® T@®)F) #0, so that

v=p-1-—u+pw for some w € N.

We have then, that

Homg(L(v), T(r)) =Homg(L(p —1-u)® L)’ ,L(p -1 -uw) e T®)F)
=H%G,L(p-1-u)* ®L(p-1-u)&(Lw)* & T(1)F)
=H%G/G1,H%G1,L(p-1-u)* @ L(p — 1 —u) & (L(w)* ® T(t))F)
= HY(G/G1,(L(w)* ® T(1)F)
= Homg (L(w), T'(¢)),
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where we are using that for any module V we have H(G1,V¥) = V¥, By induction we have that
this is equal to % if L(w) is the G-socle of T'(¢), and 0 otherwise. Hence we have that

Socg T(r) = L(w) ® (Socg T(1))F

which by Steinberg’s tensor product theorem (Theorem 2.2.18), is simple. Il

6.3 Clebsch Gordan Modules

In this section, we formalise the ideas of the previous section, and introduce some notation.
Let T'(r) be the indecomposable tilting module of highest weight r, and suppose it has the good
filtration given by

0=Vo<Vi<Vo<...<V;_1 <V, =T(r),

where each quotient V;/V;_1 is isomorphic to V(r;) for some r; € N. Define T'(r); = T'(r)/V;_1 for
i=1,...,t,and T'(r)g = T'(r).

Lemma 6.3.1. For all r,s =0 we have that (T'(r):V(s)) is either 1 or 0.

Proof. We may write r as r =2m + 1 or r = 2m for some m € N. Then T'(r) is a direct summand
of the module V(m + 1) ® A(m) or V(m)® A(m). In either case, the Clebsch-Gordan formula for
the character shows us that (T'(r): V(s)) < 1. O

Definition 6.3.2. We will call a G-module V a Clebsch-Gordan module (or CG-module for short)
if the following two properties hold:

1. V is a direct sum of modules of the form T'(r);.
2. The composition factor (V : V(m)) is either 1 or O for all m e N.
Lemma 6.3.3. If'V is a Clebsch-Gordan module and m is the minimal element of the set
{i : (V:V(i)#O},

then V contains a unique submodule Vy isomorphic to V(m), and the quotient module V/Vy is

also a Clebsch-Gordan module.

Proof. Let 7 denote the saturated set of weights corresponding to the set {i e NU{0} : i <m }.
Since m was minimal we have that Vy = O,(V) = V(m). Since V is a Clebsch-Gordan module, it

has decomposition

V=Vie...eV;,
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where each V; = T(r;),, for some r; and g; € NU{0}. Hence we must have that

Vo=0x(Vi)®...® 0(V;) =V(m).

Since V(m) is indecomposable, we must have that Vy = O,(V,) for some u < ¢. Therefore the

quotient can be written

VIiVo=V,/Vy EB@VL‘.
iAu
Finally we note that V,,/Vy = T'(r,)4,+1, so we have that

V/V() = T(ru)qu+1 5] @T(ri)qi.
1Zu
In particular we have that for each j # m the composition factor (V/Vy : V(j)) is equal to (V : V(})),

and
V/IVy:V(im))=(V :V(m))—1=0.

Hence the quotient V/Vj is a Clebsch-Gordan module. Il
Corollary 6.3.4. For r = s we have that the module V(r)® A(s) is a Clebsch-Gordan module.

Proof. First we consider the case |r —s| < 1, for which we have that V(r) ® A(s) is tilting, and
thus a Clebsch-Gordan module. For all other such r and s we have the short exact sequence
from Theorem 6.2.3

0—V(ir-s-2)—Vir-1)®A(s+1)— V(r)® A(s) — 0.

Using Lemma 6.3.3 and induction (with the case |[r —s| < 1 as the base case), we obtain that
V(r)® A(s) is a Clebsch-Gordan module. O

As a Clebsch-Gordan module, the indecomposable summands of V(r) ® A(s) are all of the form
T(t);, and these can be found from the known decomposition of the unique tilting module
V(a) ® A(b) where a+b =r+s and |a — b| < 1, by taking successive quotients. In particular

we have that for all » € N, the induced module V(r) is a Clebsch-Gordan module.

We can in fact, take such successive quotients in one go, and we summarise the above proce-

dure in the following result.

Corollary 6.3.5. Let r,s,t,u e Nsuch thatr=s,t=zu, r+s=t+uand r—s<t—u. Let i be the
saturated set of weights consisting of those less than t—u. Then we have the following short exact

sequence

0— 0,(V(r)® A(s)) — V(r)® A(s) — V() ® A(u) — 0. O

112



6.3. CLEBSCH GORDAN MODULES

Recall that Lemma 6.1.2 told us that if V(r) ® A(s) was a tilting module, then V(#) ® A($) was a
submodule. As mentioned above, it’s clear that if 7 is the saturated set of weights consisting of

those less than or equal to 7 + §, then we have the equality
V(#) @ A($) = 0,(V(r) ® A(s)).
In light of the above result, we obtain the following corollary.

Corollary 6.3.6. Let V(r)® A(s) be a tilting module with r = s. Then there exists the following

short exact sequence.
00— V@#) @A) — V(r)® A(s) — V(F + 8+ 1+¢£,(r,s)) ® Alep(r,s)—1) — 0,
where the notation follows that in Section 5.1.1.

Proof. All that remains to be proven are the parameters for the third module in the sequence,
since we know that this module is of the form V(¢)® A(u) for some ¢ and u in N, by Corollary 6.3.5.

By considering the character we obtain the following two equations

t+tu=r+s,

t—u=r+8+2,
the first of which we may rewrite as
t+u=7r+8+2¢p(r,s).

By solving these equations we obtain that t =7 +38+1+¢,(r,s) and u = £,(r,s) - 1. O

6.3.1 Example Decompositions

Following Section 5.4, we give some example decompositions when the prime p is equal to 2.

First let’s consider V(16) ® A(1). We have the short exact sequence

0 — V(13) — V(15)® A(2) — V(16) ® A(1) — 0.

Using the known decomposition of V(15) ® A(2) from Section 5.4, we have that

V(16)® A(1)=T(17)/V(13)e T'(15) = V(17) & V(15),

which agrees with Lemma 4.3.1.

Next we consider V(7)® A(7). We noticed in Section 5.4 that this module was indecomposable. It

follows then that when r + s = 14 we have that V(r) ® A(s) is indecomposable. For example,
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V(8)® A(6) = T'(14)/V(0).

Finally, from the known decomposition of V(9) @ A(8) =T(17)e T(15)e T(11)o T(9) e T(7) & T(1),

we give the following

V10) e A(T)=T(17) e T(15)e T(11) e T(9) & T(7),
V(11)® A6)=T(17) e T(15) & (T(11)/V(3)) & T(9) & T(7),

V(12)® A(5) = T(17) & T(15) ® (T(11)/V(3)) & (T(9)/V(5)) & T(7),
V(13)® A(4) = T(17) & T(15) & (T(11)/V(3)) @ (T(9)/V(5)),
V(14) 8 A3) = T(17) & T(15) & (T(11)/V(3)),

V(15)® A(2) =T(17) & T(15),
V(16)® A(1) = (T(17)/V(13)) @ T(15)
V(17)=T(17)/V(13).
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A.1 Polynomial GL,(k)-Modules

In Lemma 3.2.1 we use the notion of polynomial GL,(k)-modules. In this section, we will briefly
introduce them, and the main results we use concerning them. For further details the reader
may consult [16]. Throughout this section, £ is an infinite field of arbitrary characteristic, and
G =GL (k).

First recall that for each i,7 =1,...,n, we have the function T';; € Map(G, k), given by T'; j(g) = g},
the ij-entry of the matrix g. These functions generate a k-subalgebra of Map(G, k), which we

denote Az (n). We will often refer to elements of A,(n) as polynomial functions on G.

Let V be a kG-module with corresponding representation p. Fix a basis {v1,...,vy} for V, then

we have maps p;; : G — k given by

m

p(gvj=>_ pij(gh;,
i=1
for all g € G. These maps are called the coefficient functions of p, and their k-span is called
the coefficient space, a subspace of Map(G,k) often denoted cf(V). It is easy to show that the

coefficient space is independent of the basis chosen.

Definition A.1.1. A GL,(k)-module V, with corresponding representation p, is called a polyno-
mial module if for every i,j we have that the coefficient function p;; is a polynomial function on

G, i.e. p;j € Ap(n), or equivalently, that cf(V) c Ap(n).
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It’s clear from the remark following Definition 2.2.4, that every polynomial module is also a ra-

tional module.

Recall that a polynomial is called homogeneous of degree r if it is expressible as a sum of mono-
mials, each of degree r. The finite-dimensional space of homogeneous polynomials of degree r

inside Az(n) is denoted A(n,r). This allows us to give the grading,

Ap(n)=PArn,r).

r=0
Definition A.1.2. Let V be a polynomial GL,(k)-module. If ¢cf(V) c Ap(n,r) then V is called a

homogeneous polynomial GL(k)-module of degree r.
The central result concerning homogeneous polynomial GL ,(k)-modules is the following.

Theorem A.1.3 ([16, Theorem 2.2c]). Every polynomial GL ,(k)-module V has a decomposition
given by

V=V,

r=0
where for each r we have that V, is a submodule of V such that V, is a homogeneous polynomial
GL,(k)-module of degree r. O

We give the following result, used in Lemma 3.2.1.
Lemma A.1.4. Let V and W be two homogeneous polynomial GL,(k)-modules of some fixed
degree d € N. Then we have an isomorphism of vector spaces

Homgy,, z)(V,W) = Homgy,, ) (V, W).

Proof. First, it’s clear that we may restrict a GL, (k) homomorphism to an SL,(%2) homomor-
phism, and that restriction is linear. It remains to show then, that in this case restriction is also

bijective.
Let Z be the center of GL,(k), given by

Z ={diag(t,....0) : tek’},

and recall that we may write GL,(k) as the product ZSL,(k). Write g€ GL (k) as zgog for z€ Z
and go € SL,(k). We may write z as ¢1,, so that z acts on V and W by multiplication by ¢%.
Hence we have, for any ¢ € Homgyz, ) (V,W)and veV,

P(gv) = Plzgov) = Pp(t% gov) = t2P(gov) = ¢ gop(v) = 20 (V) = gh(v),

so ¢ is a GL (k) homomorphism. O
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A.2 Results on SL,(k)-Modules

For the reader’s convenience, we give the following results and proofs taken directly from [4].

These are used in Section 3.2.

Lemma A.2.1 ([4, Lemma 5.0.3]). Let V be an indecomposable GL,(k)-module, and W a sub-
space of V. Then W is a kGL,(k)-submodule of V if and only if it is a kSL,(k)-submodule of
V.

Proof. Let Z denote the center of GL, (%) and let z € Z be fixed. As a vector space, we can write
V as

V=@V

Aek

where VA ={veV : zv=Av}. Nowlet A€k, ve V" and g € GL,(k). Then we have z(gv) =
(zg)v = (gz)v = Agv, and so in fact, the above decomposition is a decomposition as kGL,(%k)-
modules. Since V is indecomposable, we must have that V = V* for some A € k, hence z acts by
scalar multiplication. Finally, using the fact that GL,(k)=Z-SL,(k) we get the result. O

Lemma A.2.2 ([4, Lemma 5.3.8]). Let A be a finite dimensional algebra over k, V an A-module,
and e = e € A with e #0. Then the k-vector spaces Homy(Ae,V) and eV are isomorphic.

Proof. Consider the linear map ¢ : Homs(Ae,V) — eV sending 0 to 6(e), which is well defined
since B(e) = B(e)? = ef(e) € eV. It’s clear that ¢(0) = 0 if and only if 8(Ae) = 0 so ¢ is injective.
Furthermore, for every ev € eV the map 0 : se — sev is a well defined morphism of A-modules

and so ¢ is surjective. U

For the final lemma we will introduce some notation, and refer the reader to [16] and [26] for
further details. Let G = GL, (k) and recall the definition of A, (n,r) from Section A.1. We denote
the Schur algebra by Sj(n,r); this is the linear dual of Ay(n,r), with algebra structure given
by the natural bialgebra structure on Az(n). It’s well known that the category of homogeneous
polynomial GL,(k)-modules of degree r is equivalent to the category of S;(n,r) modules [26,
Theorem 2.2.7].

Let A = (A4,...,A,) € A(n,r) be an n-composition (i.e. a sequence of n non-negative numbers
summing to r). We will denote by S*E the polynomial 2G-module given by S’llE ® ---®S£E ,
where S™E is the usual " symmetric power of the natural #G-module E. We have the following

grading for the £G-module A(n,r),

Ayin,r)= @ S'E.
AeN(n,r)
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It’s known that for an n-composition a € A(n,r), there exists an idempotent ¢, € Si(n,r) such
that V¥ = ¢,V [26, Theorem 2.2.10].

For a polynomial GL,(k)-module V, we denote by V° the contravariant dual of V. As a vec-

tor space this is equal to the linear dual, but the action is given as

g-a)=a(g'v),

for all g € GL,(k), @ € V° and v € V. The symbol gt denotes the transpose of the matrix g. In
particular then, since the transpose of an element in a torus T is equal to itself, the weights of
V° are equal to those of V. Furthermore, it’s clear that if v € V* and v has dual element a, then

a € (V°)}. The reader may consult [16, Section 2.7] for more on the contravariant dual.

Lemma A.2.3 ([4, Lemma 5.3.9]). For an Sy(n,r)-module V, the k-vector spaces Homg,(, »(V°,S*E)

and V% are isomorphic.

Proof. By Lemma A.2.2 with A = Sy(n,r) and e = ¢, the k-vector spaces Homg,(, »)(Sr(n,7){q, V)

and V% are isomorphic. Then using the fact that, for any finite-dimensional k-algebra A we have

Homx (V,W) = Homy (W°,V°),

for A-modules V and W, we obtain that

HomSk(n,r)(Vo, Ap(n,r)éy) = Ve,

Finally, we have that A,(n,r){, = S®E, giving the result. |

A.3 Lucas’ Theorem

In many cases in this thesis it will be extremely useful to give a binomial coefficient modulo p

in terms of the parameters. Fortunately, Lucas’ theorem tells us exactly how to do that.

Theorem A.3.1. Let r,s € N with p-adic expansions given by

n ) n ]
r=Y rip,, s=) sp.
i i0

(r) = - (ri) (mod p).
§) i=0\Si
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The proof can be found in [24].
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A4 p-adic Numbers

In Chapter 4 we worked over the field of p-adic numbers Q,, for which we give a brief introduc-

tion here. We will follow loosely [2], to which we refer the reader for a more in-depth account.

Throughout we will fix a field %, and a prime number p. First we give a definition.

Definition A.4.1. A valuation of rank 1 of a field & is a mapping |- | : & — R that satisfies the

following properties for all a and b € k:
1. |a| =0 and |a| = 0 if and only if ¢ = 0.
2. labl| =lallb|.
3. la+b|<|al+]b].
If in addition we have that |a + b| < max(|al,|b|) then |-| is called a non-archimedean valuation.

It’s clear that taking the absolute value of a rational number gives a valuation of Q. We are
interested however, in the following alternative. First, fix a real number c € (0,1) (c=1/p is a
common choice). Next, for any x € ), we can factorize x as

a

x=p%—

b
for some a,a,b € Z such that p fa and p fb. Now define

|'|p:@_’[R

x—c?.

One can then show, that this is a non-archimedean valuation (see [2, Section I.1]). For a non-

archimedean valuation |- |, the subset V c k& given by

V={ack :la|<1},

forms a ring, called the valuation ring. Furthermore, its subset P consisting of those a such that
la] < 1 is the unique maximal ideal of V, and is prime. Hence the quotient V/P is a field, called

the associated residue class field [2, Theorem 1.2.3].

A field £ with valuation |-| is called complete if every Cauchy sequence in 2 has a limit in
k. Through a process detailed in [2, Section II.1], one can uniquely complete a field £ with re-
spect to a valuation on that field. We will denote the resulting field as 2. Furthermore, the
characteristic of % is equal to that of k. For example, the real numbers R is the completion of Q
with respect to the usual absolute value. We remark that for a non-archimedean valuation | - |
we have |k| = |k| (where |k| is the image of £ in R under |-|), and that for any Cauchy sequence

{a,} with limit a there exists an n € N such that |a,| = |a| [2, Theorem II.1.4].
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Definition A.4.2. The field of p-adic numbers, denoted Q,, is the completion of Q with respect

to the valuation |- |,.
Notice that the image of Q, under the valuation |- |, is given by the set

{|p|; : neZ}.

For a p-adic number a € Q,, we can write a as

o0 .

_ i

a= § a;p,
i=n

for some a; € Z and n is such that |a|, = |p] g. Note that this expression is not unique, however,
there exists a unique expression with the a; in the range 0,1,---,p — 1, called the canonical
expansion. Those elements for which there exists an expansion with n = 0 will be called p-adic
integers, the set of which will be denoted Z,. Notice that we have Z,, = Vp, the valuation ring on

Qp with respect to |-|,. This is given by the completion of the set

Z(p)z{pa%EQ) : 0620}.
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