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Abstract 

 

Rice, as a major staple crop, is one of the most important targets for plant breeders in an 

attempt to secure enough food for a growing world population. Producing nutrient efficient 

crops has become essential not only to attempt securing enough food for the growing 

population, but also to eliminate environmental consequences of using fertilizers. Nitrogen 

(N), phosphorus (P) and potassium (K) are major macronutrients that are rate limiting for 

plant growth and crop productivity. The aims of this project were to explore the genetic 

diversity of rice to identify genotypes with high efficiency under N, P and K deficient 

conditions, to identify chromosomal loci linked to NPK use efficiency using Genome Wide 

Association Studies (GWAS), and to manipulate a proton pump using CRISPR/Cas9 

system with the aim of improving mycorrhiza-dependent nutrient uptake. Biomass and 

elemental analyses revealed considerable variations among 294 rice genotypes, and a subset 

of genotypes was identified that were relatively tolerant to NPK nutrient limitation. GWAS 

study revealed novel and previously known QTLs and genes with potential importance to 

the use efficiency of N, P and K. Alongside with N and K transporters and regulatory 

proteins, unexpectedly several genes involved in Na transport were identified as candidates. 

The CRISPR/Cas9 system was successfully applied to manipulate several candidate genes 

identified from GWAS, in addition to the rice H+-ATPase (OsHA1). Overall, the findings 

from this study can be used as a basis to conduct similar studies in other crops, which can 

all contribute to improve crop production, sustainable agriculture and food security. 
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Chapter 1: Introduction 
 

1.1 Crop production and food security 
 

By the middle of this century, it is estimated that the world population will be around 9 

billion (Godfray et al., 2010). Increasing crop production is important to secure enough 

food for the growing population, but this is challenged by the decline in land and water 

resources (Godfray et al., 2010), biotic stress factors such as diseases, weeds, pests and 

pathogens (Atkinson and Urwin, 2012; Hammond-Kosack and Jones, 2000), abiotic 

stresses including climate change and extreme temperatures, drought and salinity, flooding, 

nutrient stresses or toxicities (Atkinson and Urwin, 2012; Chapman et al., 2012). One of the 

most important aspects that affect plant growth is providing sufficient amounts of mineral 

nutrients. Mineral nutrient deficiencies have an effect on plant growth and root morphology 

(Baligar et al., 1998) which subsequently influence the ability of the plant to take up and 

make use of these nutrients to fulfil the plant’s needs (Fageria, 2012). It has been proposed 

that abiotic stresses account for more than 50% reduction in average crop yields (Wang et 

al., 2003). 

 

1.2 Plant requirements for mineral nutrients 
 

Plant roots take up mineral nutrients from the soil solution in inorganic form, as ions. 

Nutrients are classified as macronutrients and micronutrients based on the amount required 

by the plant (Maathuis, 2009). Six out of 14 vital nutrients are considered as macronutrients 

due to the large amounts they are needed in, while the others are known as micronutrients 

since they are needed in smaller amounts. Nitrogen (N), phosphorus (P), potassium (K), 

magnesium (Mg), calcium (Ca) and sulfur (S) are macronutrients, micronutrients include: 

Zinc (Zn), manganese (Mn), molybdenum (Mo), chloride (Cl), cobalt (Co), copper (Cu), 

iron (Fe) and nickel (Ni). Sodium (Na) and silicon (Si) are included in the micronutrient list 

by some authors (Maathuis, 2013). Beside mineral nutrients, three non-mineral elements 

are also required which are carbon (C), oxygen (O) and hydrogen (H). 
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1.2.1 Importance of nitrogen, phosphorus and potassium for 

plants 
 

N, P and K are classified as macronutrients because of the large amounts of these nutrients 

that are needed by plants. They are building blocks of life that are required for healthy and 

optimum growth. Nitrogen plays central roles in providing amino groups in amino acids, 

photosynthesis, plant metabolism, building purine and pyrimidine bases, protein synthesis 

and non-protein compounds like coenzymes (Maathuis, 2013; Maathuis, 2009). Other than 

that, N nutrition is interlinked with that of potassium and carbon specifically. One of the 

most important roles of potassium is its ability to activate enzymes, providing electro-

neutrality during NO3
- transport, water homeostasis, cell turgor and movement of cells and 

organs in plants, cell expansion and the growth of plants, enhancing the size, shape, colour 

and taste of the plants (Maathuis, 2013; Nath and Tuteja, 2016). Reduced turgor pressure is 

observed in plants lacking K, causing reductions in growth rates (Maathuis, 2013), 

reductions in crop yield and also in plant health (Maathuis and Podar, 2011). Phosphorus is 

a component of sugar phosphate, nucleic acids and phospholipids (Taiz and Zeiger, 2010). 

It is important due to its role in the transfer of energy, protein metabolism, plant growth and 

health, root development and crop yield improvement (Fageria and Press, 2009). It is used 

in the build-up of DNA and is required during cell division and in the development of new 

tissues (Nath and Tuteja, 2016).  

 

1.2.2 Interactions between N, P, K and other nutrients 
 

Nutrient interaction in crop plants is measured in terms of uptake or yield level. Nutrient 

interactions may be positive (when application of a particular nutrient increases uptake of 

other essential plant nutrients), negative (when application of a particular nutrient decreases 

uptake of other essential plant nutrients), or neutral (when application of a particular 

nutrient has no effect on uptake of other essential plant nutrients). These interactions are 

also called synergistic, antagonistic or neutral, respectively (Aulakh and Malhi, 2005; 

Fageria, 2008; Malvi, 2011). Generally, nutrient concentration depends on the part of the 
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plant being analysed, plant age, plant species or genotype within species, and other factors 

(Fageria et al., 2005; Fageria, 1992; Fageria et al., 2006). 

 

Positive interactions of K with N and P have been reported. Optimum supply of N ensures 

optimum uptake of K and P (Malvi, 2011). Often, yield response to K fertilizer is observed 

only when the supplies of other nutrients, especially N and P, are sufficient. Vice versa, a 

higher amount of K in the soil is needed with the application of N and P to increase crop 

yield (Dibb and Thompson Jr, 1985). Additionally, grain yield increased in response to 

NPK fertilization in upland rice (Fageria and Baligar, 2005). A study comparing the effect 

of fertilizing rice using N only, N with P, and N with P and K, revealed that grain yield 

increased up to 81.6% when P was added, and up to 9.8% with NPK compared to NP 

(Duan et al., 2014). Furthermore, P and PK addition has led to significant decrease in N 

loss to the environment (via leaching, denitrification and volatilization) when compared to 

the use of sole N (Duan et al., 2014). 

 

Wilkinson et al. (2000) reported that P, K, S, Ca, and Mg uptake increased in response to N 

application, as long as these nutrients were present in adequate quantities in the growth 

medium. On the other hand, N addition can have negative interactions with micronutrients.  

For example, zinc deficiency was observed in upland rice and corn as a result of N 

application which led to higher demand for micronutrients and hence to micronutrient 

deficiencies (Fageria and Gheyi, 1999). Negative interactions between K and Mg and Ca 

uptake have been reported, which might be an effect of competition between these ions as 

their physiological properties are quite similar (Dibb and Thompson Jr, 1985; Fageria, 

1983; Johansen et al., 1968). In crop plants, high levels of K decreased B uptake and 

increased B deficiency (Hill and Morrill, 1975). In contrast, addition of K improved Cu, 

Mn and Zn uptake (Dibb and Thompson Jr, 1985). Generally, P has positive interaction 

with N, K, and Mg. Conversely, P and Zn show antagonistic interaction (Wilkinson et al., 

2000). 
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1.2.3 Uptake and distribution of N, P, K in plants 

 

The movement of solutes and metabolites into and out of cells is ultimately facilitated by 

electrochemical H+ gradients which are created by the activity of plasma membrane H+-

ATPases (Sondergaard et al., 2004).The plasma membrane in plants separates the cells 

from the surrounding environment. While it regulates the transport of molecules and ions 

into and out of the cells, internal membranes regulate solute transport within each cell. If 

the movement is from areas of higher (electro) chemical potential to lower chemical 

potential areas, the process is called passive transport (diffusion) as it occurs without the 

direct need for energy and is mediated by channels and uniporters. Active transport is the 

movement of substances against the (electro) chemical-potential gradient and it requires 

energy which is often provided by the hydrolysis of ATP. Primary active transport is 

against the direction of electrochemical gradient and the energy here is often derived 

directly from the breakdown of ATP, this type of transport is mediated by pumps. 

Secondary active transport is also against the direction of electrochemical gradient, but the 

energy here is derived secondarily from a stored free energy in the form of the H+ gradient 

known as proton motive force (PMF), and is mediated by symporters and antiporters. 

 

1.2.3.1 Nitrogen uptake and distribution 
 

Plants utilize nitrogen in the form of ammonium (NH4
+) and nitrate (NO3

-) (Malvi, 2011). 

N is taken up through root specific high (HATs) and low (LATs)- affinity transporters for 

both ammonium and nitrate. HATs mediate the uptake in low N concentrations while LATs 

mediate under high concentrations (Huang et al., 2018). Genes encoding NH4
+ and NO3

– 

transporters in different plant cell compartments are shown in Figure 1.1.  

Uptake and translocation of nitrate in rice is mediated by four protein families: chloride 

channel family (CLC), slow anion channel-associated homologues (SLAC/SLAH) (Krapp 

et al., 2014), and the NPF nitrate transporter 1/peptide transporter family (also known as the 

NRT1/PTR family) which in rice comprises at least 80 proteins. Of the latter, most are 

involved in low affinity transport of nitrate except OsNPF6.5 (NRT1.1b) which has dual 

affinity (Bin et al., 2015; Tsay et al., 2007). Lastly, the fourth family is the nitrate 
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transporter 2 family NRT2 which consists of five members, including OsNRT2.1, 

OsNRT2.2, OsNRT2.3a, OsNRT2.3b, and OsNRT2.4, and the NAR2 family which 

includes two members (OsNAR2.1, OsNAR2.2) (Araki and Hasegawa, 2006; Fan et al., 

2016; Feng et al., 2011; Hu et al., 2015; Tang et al., 2012; Yan et al., 2011; Yang et al., 

2017b). High affinity transport systems (HATS) in rice consist of two gene families: NRT2 

and NAR2. All three OsNRT2.1/2.2/2:3a transporters require OsNAR2.1 as a partner to 

mediate nitrate transport. Moreover,  knockdown of OsNAR2.1 resulted in supressed 

expression in OsNRT2.1, OsNRT2.2 and OsNRT2.3 transporters (Yan et al., 2011).  

OsNRT2.1 and 2.2 are believed to have a key role in nitrate uptake (Araki and Hasegawa, 

2006). OsNRT2.3 has two mRNA splice variants: OsNRT2.3a and OsNRT2.3b. It has been 

observed that OsNRT2.3a plays a major part in long distance nitrate transport from root to 

shoot specifically under low nitrate (Tang et al., 2012).  

 

In rice, there are four AMT families that mediate ammonium transport. Family 1, 2 and 3 

have 3 members in each whereas the AMT4 family has only one member. AMT1 members 

are  considered to be high affinity transporters, the other 3 families are characterized as low 

affinity transporters (Bao et al., 2015; Gaur et al., 2012; Li et al., 2012; Li and Shi, 2006; 

Loqué, 2004; Ranathunge et al., 2014; Sonoda et al., 2003a; Sonoda et al., 2003b; Suenaga 

et al., 2003). 
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Figure 1. 1: The genes encoding NH4
+ and NO3

- transporters in different plant cell compartments 

including root, xylem, phloem, shoot and seed. 

 

1.2.3.2 Phosphorous uptake and distribution 
 

P is taken up in the form of inorganic orthophosphate (Pi, HPO4
2-, H2PO4

-) (Malvi, 2011). 

Various phosphate ion transport systems are taking part in the assimilation of Pi (Nath and 

Tuteja, 2016). Direct uptake from soil takes place through Pi:2H+ cotransporters (Nath and 

Tuteja, 2016). Phosphate transporters (PHT) play pivotal roles in the uptake of inorganic 

phosphate from the soil (Maruyama and Wasaki, 2018). Genes encoding inorganic 

phosphate (H2PO4
-) transporters in different plant cell compartments are shown in Figure 

1.2. High affinity symporters belonging to the PHT1 family comprise a total of 13 members 

that are located in the plasma membrane and take part in Pi uptake from the soil and 

translocation and root-shoot mobilization (Ai et al., 2009; Jeong et al., 2015; Jia et al., 

2017; Kobae and Hata, 2010; Lin et al., 2009; Paszkowski et al., 2002; Smith et al., 2011; 
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Sun et al., 2012; Wang et al., 2014b; Ye et al., 2015a; Zhang et al., 2015a). PHT2 is located 

in the chloroplast, PHT3 in the mitochondria and PHT4 in the Golgi apparatus and non-

photosynthetic plastids (Nath and Tuteja, 2016).  

 

PHT activity is regulated by the phosphate starvation response 1 (PHR1) transcription 

factor. AtPHR1 in rice regulates the activity of PHT (Chiou and Lin, 2011). High and low-

affinity transporters are used to maintain Pi homeostasis under stress conditions in plants. 

Also, the plasma membrane Pi transporter and phosphate transporter traffic facilitator 1 

(PHF1) maintains Pi homeostasis. In low P conditions, Pi high affinity transporters are 

expressed in roots (Nath and Tuteja, 2016). Further proteins that may be involved in 

phosphate homeostasis are found in the PHR (Guo et al., 2015; Ruan et al., 2017; Wu and 

Wang, 2008), PHO (Secco et al., 2010; Secco et al., 2012a) and SPX domain-containing 

protein families (Chen et al., 2011; Liu et al., 2010b; Secco et al., 2012b; Wang et al., 2012; 

Wang et al., 2017; Wang et al., 2009).  
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Figure 1. 2: The genes encoding inorganic phosphate (H2PO4
-) transporters in different 

plant cell compartments including: root, xylem, phloem, shoot and seed. 

 

1.2.3.3 Potassium uptake and distribution 
 

Potassium is taken up in its ionic form (K+) (Malvi, 2011). Uptake of potassium ions from 

the soil is against the K+ concentration gradient and is powered by the membrane potential 

and maintained by the H+-ATPase (Nath and Tuteja, 2016). Genes encoding potassium (K+) 

transporters in different plant cell compartments are shown in Figure 1.3. Various gene 

families including KT/HAK/KUP, HKT, NHX and CHX are involved in K+ transport in 

plants (Chen et al., 2015a; Chen et al., 2015b; Fukuda et al., 2004; Yang et al., 2014a). 

High-affinity potassium transporter family (HKTs) consists of 2 classes: Class 1 includes 4 

members and mediates Na transport only, while class 2 can transport both K and Na and 

consists of 4 members (Garciadeblás et al., 2003; Horie et al., 2011b; Lan et al., 2010a; 
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Suzuki et al., 2016; Waters et al., 2013; Yao et al., 2010). In rice, 27 genes belonging to the 

KT/HAK/KUP potassium transporter family are distributed among 8 chromosomes and 

they cluster in four major groups based on their amino acid sequences (Chen et al., 2015a; 

Chen et al., 2015b; Gupta et al., 2008; Yang et al., 2014a). Functions of HAK cluster III 

and IV members are less well understood compared to cluster I and II members (Grabov, 

2007). In general, the majority of cluster I members in plants tends to have a role in high 

affinity K uptake, and cluster II members are likely to function as low affinity K 

transporters (Okada et al., 2008). However, physiological functions of these transporters 

not only differ between plant species but also between members of the same cluster within 

the same species (Li et al., 2017).   

 

To release K+ from the vacuole rice has two-pore potassium channels (OsTPKa and 

OsTPKb) that are highly similar in their protein sequences and function as they both play 

an important role in K homeostasis. However, they are different in their location. While 

OsTPKa is located in the tonoplast of the large lytic vacuole (LV), OsTPKb is located in 

smaller protein storage vacuoles (PSVs) (Isayenkov et al., 2011). Outward-rectifying 

shaker-like potassium channels include OsSKOR and OsSGOR. SKOR channels are 

important for K distribution in tissues and cells through its secretion from the root cortical 

cells to the xylem (Jarzyniak and Jasiński, 2014; Kim et al., 2015; Nguyen et al., 2017). 

Inward rectifying potassium channels include OsAKT1 and OsAKT2 (Ahmad et al., 2016b; 

Deeken et al., 2002; Li et al., 2014; Obata et al., 2007). The AKT2 channel takes part in the 

loading and unloading of K in the phloem (Gajdanowicz et al., 2011). Inward rectifying 

shaker-like potassium channels include OsKAT1, OsKAT2, and OsKAT3 (Hwang et al., 

2013; Obata et al., 2007).  
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Figure 1. 3: The genes encoding potassium (K+) transporters in different plant cell 

compartments including root, xylem, phloem, shoot and seed. 

 

1.3 Nutrient deficiency and the use of fertilizers 

 

Nitrogen, phosphorus and potassium are the most common nutrients that are considered as 

rate limiting for plant growth and crop productivity (Taiz and Zeiger, 2010). Despite the 

abundance of inorganic, organic and atmospheric N, large amounts of N fertilizers are 

applied in agricultural areas. Also, K deficiency is becoming increasingly common and 

potash fertilizers are widely used to get the best plant production. In addition, P fertilizers 

are applied as more than 90% of the phosphorus in the soil is tightly fixed in minerals and 

not available for plants to take up.  

 

Many world soils have deficiencies in several essential nutrients. Application of fertilizers 

in agricultural soils is needed to provide adequate supply of essential nutrients in case of 
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deficiency in one or more of these nutrients. During the 20th century, around 50% of the 

increase in global crop production was due to the application of chemical fertilizers 

(Borlaug, 1994). Over the past five decades, a 20-fold increase in the use of N fertilizers 

worldwide positively affected crop production (Glass, 2003). Currently, the world uses 

around 105 million tons of N, 20 million tons of P, and 23 million tons of K fertilizers for 

crop production (FAO, 2013). However, the overall uptake efficiency of applied fertilizer is 

about or lower than 50 % for N (Raun and Johnson, 1999) , less than 10 % for P and about 

40 % for K (Baligar and Bennett, 1986a, b). The demand for N, P, and K fertilizers is 

estimated to increase by 1.5%, 2.2%, and 2.4%, respectively, per annum from 2015 to 2020 

(FAO, 2017). A further disadvantage of low uptake efficiency is the risk of minerals to 

either leach into groundwater or  to increase air pollution (Taiz and Zeiger, 2010). Over 

60% of soil N is being leached, volatilized, consumed by microbes, surface run off or lost 

by denitrification (Kant et al., 2011). In rice, it is estimated that 10% of N fertilizer is lost 

as a result of denitrification (De Datta et al., 1991).  In addition, fertilizer production is 

costly, especially for N as it requires a large amount of energy to produce (Rothstein, 2007; 

Sanyal et al., 2015). The price of nitrogen, phosphorus and potassium fertilizers 

dramatically increased by ~60%, 360%, and 170% respectively, between mid-2007 and 

2008 (Huang, 2009). Therefore, to respond to limitations in fertilizer supply and to reduce 

environmental impact, there is scope for increasing nutrient use efficiency in crop plants. 

 

1.3.1 The use of NPK fertilizers in the rice production  
 

Rice can grow in both dry and wet environments under varying climatic and soil 

conditions, but mainly grown in the humid tropics. More than 90% of the total rice 

production is harvested from irrigated and rainfed lowland rice systems (Dobermann, 

2000). NPK fertilizer for rice production accounted for 14.3 % of the global fertilizer 

consumption during 2010/11, and percentages of NPK were 15.4, 12.8, and 12.6, 

respectively (Heffer, 2013). Application of N fertilizer is usually split into at least two 

doses per growing season, where the first application (basal dose) represents up to 75% of 

the total plant requirement (Chauhan et al., 2017). For the basal dose and at planting stage, 

NH4+ based fertilizers should be applied, but during panicle initiation stage the preferred 
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nitrogen source is NO3- (Wilson et al., 1994). Due to variability in soil fertility, different N 

management practices are recommended for different soil conditions, also optimum levels 

of NPK fertilizers for different countries have been proposed considering the variation of 

different field conditions (Halliday and Trenkel, 1992). To reach optimum rice yields, 

balanced fertilization is required together with the right source, rate, place and time of 

application. Balanced fertilization of N with appropriate amounts of P and K is required to 

achieve optimal yield. A study on rice-wheat cropping system with variable NPK rates 

revealed that the lowest yield obtained was under sole N fertilization, while the highest 

yield obtained when NPK fertilizer was applied at a rate of 40, 35, and 33kg ha−1, 

respectively (Kumar and Yadav, 2001). Application of P fertilizer is normally as early as 

planting stage due to its importance in root elongation, however, late applications might be 

provided before tillering stage (De Datta, 1981). Most, if not all, of the total amount of the 

required K fertilizer is generally applied at or around seeding/transplanting stage, but split 

doses are applied sometimes (Jian-chang, 2004). For rice production, the most commonly 

used N fertilizers are ammonium sulfate, urea and diammonium phosphate. To supply K to 

rice, potassium chloride or potassium sulfate are usually applied. As P source, di- or mono- 

ammonium phosphate fertilizers, or single and triple super phosphates are applied 

(Chauhan et al., 2017).  

  

1.4 The role of mycorrhizal symbiosis in nutrient acquisition 
 

In addition to the application of nutrient fertilizers, symbiotic relations between plants and 

soil microorganisms may enhance nutrient acquisition. Around 80% of monocots and  

dicots form mycorrhizal symbiotic relations (Taiz and Zeiger, 2010). Arbuscular 

mycorrhiza (AM) is a symbiotic relationship between plants and a phylum of soil fungi 

known as Glomeromycota (Parniske, 2008). Mycorrhizal fungi are present widely under 

natural conditions. They consist of thin, tube-shaped filaments known as hyphae and the 

hyphal network, or mycelium, forms the fungal body. The name arbuscular comes from the 

arbuscules, which are distinctive structures resembling branches or tunnels, formed within 

the cortical cells of plant roots colonized by mycorrhizal fungi. Storage vesicles are other 

distinctive structures that indicate establishment of mycorrhizal symbiosis in addition to the 
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formation of intracellular coils of hyphae (Smith and Read, 2008). Mycorrhizal fungi 

associate with the plant root system forming a symbiotic relationship to improve the ability 

of the plant to acquire nutrients such as phosphorus, zinc and copper as the fine hyphae 

have the ability to reach the surrounding soil areas which plant roots cannot reach because 

hyphae are much thinner. These areas are farther away from the roots than depletion zones 

(Taiz and Zeiger, 2010). The key advantage of AM symbiosis is its ability to enhance 

phosphate uptake of the plants (Leon, 2012). In rice, 70% of total phosphorus uptake owed 

to AM symbiosis (Yang et al., 2012). Mycorrhizal symbioses also help the plant to become 

more tolerant to biotic and a biotic stresses (Wang et al., 2014a) and more resistant to 

pathogens, drought and salinity (Bhattacharjee and Sharma, 2011). Thus, the arbuscular 

mycorrhizal symbiosis (AM) has the potential to contribute significantly to crop yield and 

worldwide food security (Bethlenfalvay, 1992; Hu et al., 2009). Under AM colonization, 

proton pumps (H+-ATPases) work as energizers for the peri-arbuscular membrane to 

facilitate nutrient exchange between the plant acquiring mineral nutrients and the fungus 

acquiring fixed carbon by creating a H+ gradient (Krajinski et al., 2014; Wang et al., 

2014a). 

 

1.5 Nutrient use efficiency 
 

Nutrient use efficiency (UE) generally is the maximum yield or dry matter produced per 

nutrient uptake (Baligar et al., 2001). (Gourley et al., 1994) defined nutrient efficient plants 

as “germplasm that requires fewer nutrients than an insufficient one for normal metabolic 

processes”. More recently, (Fageria et al., 2008) defined efficient plant as one “that 

produces higher economic yield with a determined quantity of applied or absorbed nutrient 

compared to other or a standard plant under similar growing conditions”. Nutrient use 

efficiency is based on three factors: uptake efficiency, incorporation efficiency and 

utilization efficiency (Baligar et al., 2001). Uptake efficiency is based mainly on root 

parameters including the ability to acquire nutrients from soil, influx level and transport in 

roots. Incorporation efficiency is based on shoot parameters including transfer of nutrients 

to shoot and leaves. Finally, utilization efficiency is based on both shoot and root 

parameters including remobilization from older to younger leaves and from vegetative to 



29 
 

reproductive tissues and ability to utilize the absorbed nutrients in grain or dry matter 

production (Baligar et al., 2001).  

 

Producing plants with high nutrient use efficiency (UE) under varying environmental 

circumstances, especially in crop plants, is highly important not only as an attempt to 

increase food production but also to reduce the use of fertilizers, reduce losses of nutrients 

(Baligar et al., 2001), reduce environmental pollution and cost of production (Fageria et al., 

2013b). For example, a 1% increase in nitrogen use efficiency is estimated to result in an 

annual saving of around $1.1 billion (Kant et al., 2011). 

 

1.6 Approaches to improve crop yields 
 

Crop yield can be increased either by improving nutrient use efficiency or fertilizer use 

efficiency through the development of varieties that produce high yields with less fertilizer 

inputs. This can be achieved by exploiting genetic variation between genotypes to identify 

superior genotypes, and/or genes that might play a role in nutrient use efficiency. Mapping 

approaches such as quantitative trait loci (QTL) and genome wide association studies 

(GWAS) can be exploited to identify regions in the genome that can be targeted to improve 

desirable traits in crops (Spindel and McCouch, 2016). Following gene identification 

through mapping approaches, functional analysis using forward and reverse genetics, and 

transgenic approaches can also be employed to improve crop yield (Wan et al., 2017). 

 

As plants vary in their ability to take up and utilize nutrients, improving nutrient use 

efficiency can be achieved by using genotypes that have higher levels of tolerance to biotic 

and abiotic stresses. Using more efficient genotypes in absorbing nutrients at higher rate at 

low nutrient conditions leads to the achievement of maximum crop yield and better quality 

food material (Baligar et al., 2001; Fageria et al., 2008). Using improved cultivars together 

with applying best management practices for different soil types would also reduce cost of 

production and increase nutrient use efficiency (Baligar et al., 2001; Clark and Baligar, 

2000). Enhanced fertilizer use efficiency can be achieved by increasing the uptake capacity 

of the roots, for example, by overexpressing the genes that relate to the absorption and 
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transport of the nutrients (Huang et al., 2018). Another way to improve fertilizer recovery 

efficiency is using appropriate types of fertilizers, e.g. single- or multi-nutrient slow release 

fertilizers (SRF) and controlled release fertilizers (CRF) which allow stable and continuous 

provision of nutrients throughout the whole growth period (Baligar et al., 2001). 

 

1.6.1 Transgenic approaches to improve crop yield 

 

Nutrient use efficiency can be improved by engineering root growth to enhance the 

response of the roots to nutrient availability (Wan et al., 2017). For example, 

overexpressing OsTOND1 in rice enhanced the primary root length and nitrogen uptake as 

well as the nitrogen shoot concentration, leading to an increase of grain yield (Zhang et al., 

2015b). The manipulation of different genes that code for transporters in plants enhanced 

roots ability to grow and absorb ions from low macronutrient conditions. For example, 

overexpression of the transporter genes such as OsNRT2.3b and OsNAR2 in rice increased 

grain harvest under standard and low nitrogen conditions (Fan et al., 2016). The ammonium 

transporter OsAMT1 can be used to modify nitrogen use efficiency in rice, a species that 

utilizes ammonium as the major N resource in paddy fields (Ranathunge et al., 2014). 

Under phosphorous deficiency, the activation of the expression of PHT1 genes increased 

the capability of the roots to obtain the macronutrient from the soil (Raghothama and 

Karthikeyan, 2005). Also, P transporters can be enhanced by overexpressing their genes 

such as OsPHT1.1 in roots and shoots to increase their activity. Overexpression of 

OsPHT1.4 increased Pi accumulation in roots while OsPHT1.6 increased the uptake rate 

and accumulation of Pi (Wan et al., 2017).  

 

The utilization of potassium can be enhanced by its translocation into different organs and 

enhanced ability to substitute Na for K (White, 2013). Manipulation of the expression of 

potassium channels and transporters such as KUP/HAK/KT using transcription factors 

improved the use efficiency of the macronutrient and increased stress tolerance in 

Arabidopsis thaliana (Nieves - Cordones et al., 2010). Overexpression of OsHAK5 in rice 

increased the net K influx rate in roots and the transport to distant parts (Nath and Tuteja, 

2016). Furthermore, nutrient use efficiency can be improved by engineering transcription 
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factors (TFs) and regulatory proteins. For example, overexpression of transcription factors 

such as DDF2, TFIIA and bHLH121 enhanced the growth of roots under low potassium 

conditions in Arabidopsis thaliana (Hong et al., 2013). Rice plants under high nitrate 

showed increased root length, shoot biomass, shoot N accumulation and the expression 

level of nitrate transporters when OsMAD25 transcription factor was overexpressed (Yu et 

al., 2015). It has been shown in rice that the expression of the majority of genes that are 

induced by P starvation are controlled by OsPHR1, OsPHR2 and OsPHR3 transcription 

factors. Moreover, overexpression of OsPHR3 led to enhanced tolerance of rice plants 

under P deficiency (Guo et al., 2015). 

  

1.7 Importance of rice and rice as a model of choice 
 

Rice is a staple food for over half of the world’s population (Nguyen, 2002), and it is the 

main source of nutrition in developing countries (Toriyama, 2005). It is estimated that in 

order to meet the world’s demand, 60 million tons of rice should be added to the current 

production every year (Muthayya et al., 2014). Rice is a monocotyledonous plant belonging 

to the grass family (Poaceae) with other grasses such as wheat, maize and barley. Two out 

of 22 recognized species of Oryza genus are known to be cultivated, the Asian rice Oryza 

sativa, and the African rice Oryza glaberrima, the rest are wild species (Vaughan et al., 

2003). Cultivated Asian rice O. sativa is divided into two major groups each of which is 

divided into well differentiated sub-populations. Indica includes indica and australis, and 

japonica includes the tropical japonica, temperate japonica and aromatic (Glaszmann, 

1987).  

 

Rice was chosen as a model in this project because of the small size of its genome (430 

Mb) which has been fully sequenced, self-fertilization, ease of cultivation and ease of 

transformation by Agrobacterium. These factors contribute to the significance of the 

research of the cultivation of rice and ways that can increase its production. Research done 

on rice has led to the production of varieties with desirable traits and  it contributed to 

increased rice production globally from 260 to 700 million tons during the past 5 decade 

(Maclean et al., 2013). Additionally, information gained from studies on rice allow us to 
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study other grasses and cereal crops that are shown to have a monophyletic origin (Itoh et 

al., 2005) and plentiful of genomic resources (Wang et al., 2013). 

 

1.8 Aims 
 

The overall aim of this project was to contribute to improving crop production by 

producing nutrient efficient crop that can produce high yield with less fertilizer inputs. The 

first research chapter aimed to test if genetic diversity among rice genotypes would enhance 

nutrient use efficiency by identifying high performing genotypes under stress conditions 

where major multiple elements (N, P and K) are limiting. The second research chapter 

aimed to link differences in phenotypes with genotypes using genome wide association 

studies (GWAS) to identify markers linked to the use efficiency of N, P and K. For the 

third research chapter, the aim was to test if increasing the activity of the rice H+-ATPase 

(OsHA1) by manipulating the regulatory domain using one of the latest genome editing 

tools (CRISPR/Cas9 system), would improve P uptake and growth under mycorrhizal 

colonization. 
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Chapter 2: Characterisation of rice cultivars 

under Nitrogen, Potassium and Phosphorus 

deficiency 
 

2.1 Introduction 
  

Abiotic stresses including extreme temperatures, drought, salinity and nutrient stresses 

account for more than 50% reduction in average crop yields (Wang et al., 2003). Change in 

physiological, developmental and morphological characteristics are observed in plants in 

response to nutrient supply. On a morphological basis, nutrient deficiency symptoms can be 

visually analysed by monitoring changes in plant size, leaf colour and root architecture. For 

example, P deficient rice plants are short, have  narrow dark green erect leaves and thin 

stems (Fageria et al., 2013b). In rice, chlorosis is observed in K deficient plants with brown 

leaf margins, while leaves of N deficient plants are yellowish (Chen et al., 2014; Taiz and 

Zeiger, 2010). Changes in root growth and architecture in O. sativa are found to be an 

adaptive trait in response to nutrient deficiencies (Sales et al., 2011) together with other 

adaptive mechanisms that occur in plants in general such as changes in expression patterns 

of ion transporters (Ashley et al., 2006) or soil acidification for nutrient mobilization (Ryan 

et al., 2001). Biomass analysis is an indicator to determine the efficiency of using 

(absorbing, translocating, and utilizing) nutrients under different conditions. It has been 

shown that plants generally allocate more biomass in roots as a response to nutrient 

shortage, and macronutrient deficiencies lead to variations in the shoot to root ratio 

(Hermans et al., 2006). Plant growth is greatly influenced by nutrient uptake (Sinclair, 

1992) and reduction of growth was observed under P, K and N deficiency in Arabidopsis 

thaliana, sorghum and other plants (Ashley et al., 2006; Lopez-Bucio et al., 2005; Poirier 

and Bucher, 2002; Zhao et al., 2005).  

 

Observation of deficiency symptoms only is not a sufficient method of diagnosis for 

nutrient disorders, since deficiency symptoms of one nutrient can be confused with other 

nutrients. In addition, ionomic traits would provide better understanding of plant growth as 

better distribution of nutrients in parts of the plant (root, shoot and grain) reflects their use 
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efficiency. A study on  Arabidopsis thaliana plants grown under different supplies of P and 

K revealed that 85% of the growth variations were explained by variation in ion content 

(Prinzenberg et al., 2010). Generally, nutrient concentration depends on the part of the plant 

being analysed, plant age, plant species or genotype within species, and other factors 

(Fageria et al., 2005; Fageria, 1992; Fageria et al., 2006). A study on N concentrations in 

rice revealed that  N uptake in the shoot as well as in the grain was significantly related to 

shoot dry weight and grain yield (Fageria, 2003).  

 

Nutrient use efficiency can be defined and measured in various ways (Baligar et al., 2001), 

but overall it reflects the ability of the plant to use the available nutrients sufficiently in 

producing maximum yield or dry matter. There is an urgent need to increase crop yield in 

order to meet the world demand of food. Taking into consideration the drawbacks of the 

increased fertilizer application, the development of varieties that produce high yields with 

less fertilizer input is important for improving crop yield and sustainable agriculture. One 

of the reasons behind the differences in the use efficiency of nutrients is genetic variability 

between genotypes. These differences can be based on  differences in nutrient uptake, 

translocation, dry matter production/unit nutrient absorbed and plant ecological interactions 

(Baligar et al., 2001). Better performance of some genotypes may be associated with better 

root geometry, ability of plants to take up sufficient nutrients from lower subsoil 

concentrations, better transport or distribution and utilization within plants (Fageria et al., 

2008). Genetic variation among rice cultivars has been reported for nitrogen (Ju et al., 

2006; Namai et al., 2009; Samonte et al., 2006), potassium (Fageria et al., 2013c; Liu et al., 

2009; Yang et al., 2003) and phosphorus (Fageria and Baligar, 1997; Fageria et al., 2013a, 

2014; Wissuwa and Ae, 2001).  

 

Rice cultivation is the largest use of land for food production, with over 144 million farms 

around the world (Maclean et al., 2013). Most of these farms are in low-income developing 

countries where significant fertilizer inputs are not affordable by farmers. Even if fertilizers 

are applied, the use efficiency of these fertilizers is less than 50% for N (Raun and Johnson, 

1999), less than 10 % for P and about 40 % for K (Baligar and Bennett, 1986a, b). 

Although previous studies in rice were conducted to evaluate different varieties and 
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improve use efficiency for nitrogen, phosphorus and potassium separately, no previous 

studies focused on identifying efficient genotypes when multiple elements (NPK) are 

reduced in parallel. This study was conducted to identify rice genotypes that are more 

efficient to grow under low supply of NPK. The diverse genotypes used from the Rice 

Diversity Panel 1 (RDP1) represent all five sub-populations of rice (Oryza sativa L.) 

including indica, australis, temperate japonica, tropical japonica and aromatic,  and this 

panel have been selected from different geographical regions around the world (Zhao et al., 

2011). Due to the positive interactions between N, P and K and the critical roles they play 

in terms of plant growth and yield, identifying varieties that are able to grow well and 

produce yield with a minimum amount of these nutrients would enormously contribute to 

increasing crop production while reducing fertilizer inputs and their consequences. Even if 

these varieties would show lower yield compared to standard varieties under optimal 

conditions, a small growth advantage under nutrient limiting conditions would have a great 

impact. For example, a 1% increase in nitrogen use efficiency is estimated to result in an 

annual saving of around $1.1 billion (Kant et al., 2011).  

 

2.2 Materials and methods 
 

2.2.1 Growth conditions and biomass analysis 
 

A total of 317 rice accessions were examined to find out which lines are more tolerant to 

low nutrient conditions (reduced N, P, and K concentrations). These lines are from the rice 

diversity panel 1 (RDP1) which encompasses accessions representing all subpopulations of 

rice (Table 2.1). The seed stock was obtained from The National Rice Research Centre 

(https://www.ars.usda.gov/southeast-area/stuttgart-ar/dale-bumpers-national-rice-research-

center/docs/genetic-stocks-oryza-gsor-collection-home/). A minimum of 3 seeds from each 

accession was placed in one compartment in P40 trays filled with sand (obtained from 

https://www.aggregate.com) for germination. Two weeks after sowing, initial fresh weight 

was measured, then seedlings were transferred to hydroponics (9L boxes with 54 places 

each) where two test conditions were applied for 3 weeks. Plants were either grown in full 

strength modified Yoshida medium (Yoshida et al., 1976) or in the same nutrient solution 

except that the concentration of N, P, K was reduced to 1/10. One plant from each 

https://www.ars.usda.gov/southeast-area/stuttgart-ar/dale-bumpers-national-rice-research-center/docs/genetic-stocks-oryza-gsor-collection-home/
https://www.ars.usda.gov/southeast-area/stuttgart-ar/dale-bumpers-national-rice-research-center/docs/genetic-stocks-oryza-gsor-collection-home/
https://www.aggregate.com/
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accession was grown under each condition. Medium was replaced once a week and the pH 

of the medium was set at 5.5 and was not adjusted during the week. In the glasshouse, 

plants were supplemented with light to provide a minimum of 12 h daylight; minimum 28 

°C day, minimum 24 °C night temperature. 

 

The accessions were divided into two batches: the first batch included 204 accessions and 

the second batch had around 113 accessions. As some accessions failed to germinate and 

some had less than 3 replicates, we ended up with a total of 294 accessions. Each batch was 

repeated 4 times, with randomizing the accessions each time. Three Nipponbare plants in 

each box were used as a reference. The first batch was grown during Aug, Sep and Oct 

2014, and the second batch during Nov, Dec 2014 and Jan 2015.  

 

Plants were kept in test conditions for 3 weeks, then fresh weight, dry weight and relative 

growth rate were measured. The relative growth rate was calculated using the formula: 

RGR = (ln W2 - ln W1)/(t2-t1), where: ln = natural logarithm, t1 = time one (in days), t2 = 

time two (in days), W1 = Fresh weight of plant at time one (in grams), W2 = Fresh weight 

of plant at time two (in grams) (Hoffmann and Poorter, 2002). 

 

Table 2. 1: Rice diversity population used in this study and the number of accessions in each 

subpopulation of rice. 

Subpopulation Number of accessions 

Indica 55 

Australis 46 

Tropical japonica 82 

Temprate japonica 65 

Aromatic 10 

Admixed 6 

Admixed-indica 4 

Admixed-japonica 26 
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2.2.1.1 Yoshida medium preparation 
 

The original recipe of Yoshida medium  (Yoshida et al., 1976) was modified by replacing 

some salts in the original recipe with others in order to keep the concentrations of the other 

elements the same while reducing N, P, K concentrations to 1/10 (Table 2.2). In brief, the 

following macronutrients were modified: potassium sulfate (K2SO4) was replaced with 

potassium chloride (KCl). In full strength medium (1 NPK) the total concentrations of N, P 

and K were: 2.86 mM, 0.32 mM and 1.02 mM respectively. In 1/10 medium (0.1 NPK), the 

total concentration of N was 0.29 mM, P was 0.03 mM and K was 0.10 mM. The total 

sodium concentration was about 0.59 mM and 0.059 mM, under 1 NPK and 0.1 NPK, 

respectively. 

 

Table 2. 2: Components and concentrations of elements in 1 NPK Yoshida medium used in 

hydroponics. 

 Component Element Element concentration (mM) 

M
ac

ro
n
u
tr

ie

n
t 

NH4NO3 N 2.86 

NaH2PO4 P 0.32 

KCl K 1.02 

CaCl2 Ca 1.00 

MgSO4·7 H2O Mg 1.64 

M
ic

ro
n
u
tr

ie
n
t 

CuSO4 Cu 0.00016 

ZnSO4 Zn 0.00038 

MnSO4 Mn 0.0018 

H3BO3 B 0.045 

(NH4)6Mo7O24 Mo 0.00002 

NaFeEDTA Fe 0.04358 

(Na2O3Si) Silica 0.02 

 

 

 

2.2.1.2 Testing growth reductions for a subset of accessions 

under low NPK condition 
 

Based on relative growth rate reduction (RGRRED) results from the growth experiment 

which included 294 genotypes (I will refer to as 1st experiment from here onwards), a 

number of candidate genotypes was selected for re-testing as follows: 22 genotypes were 

selected as they appeared to have less reduction in growth rates (tolerant) compared to 
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others and 19 genotypes with large reductions (sensitive). Seeds were germinated in sand 

for 2 weeks then transferred to test conditions for 3 weeks. Three seedlings from each 

genotype were transferred to 0.1 NPK condition for retesting. Three seedlings were also 

transferred to 0.01 NPK condition to test their performance under more severe nutrient 

stress. RGR of these genotypes under 1 NPK condition from the 1st experiment was used to 

calculate RGRRED when re-testing. Ion data was from plants in the 1st experiment, not 

from re-tested plants. Data from genotypes with fewer than 3 replicates were excluded from 

the experiment. At the end, 15 tolerant and 11 sensitive genotypes were tested. 

 

2.2.2 Elemental analysis 
 

Due to the large number of plants used in this experiment, analysing content of elements in 

each replicate and accession was not feasible. In total, 294 pooled samples from each 

condition (control and 0.1 NPK) were processed. The entire dry shoot was milled using a 

robot that is custom-made by (https://www.labmanautomation.com) to grind plant biomass 

and dispense specified amounts of material into the corresponding tubes. Equal amounts 

from each plant in each replicate were measured and then pooled to have a total of 80 mg (4 

replicates: 20 mg each, 3 replicates: 26.7 mg each). For inductively coupled plasma optical 

emission spectrometry (ICP-OES) analysis, around 20 mg were weighed out from each 

pooled sample into 2 ml Eppendorf tubes and 1 ml of concentrated nitric acid was added. 

The tubes were placed in a heating block and left overnight at 70 °C to digest. Digests were 

diluted by adding 19 ml of deionised water to a final concentration of 5% HNO3. Elements 

were measured using ICP-OES at wavelengths (nm) and plasma view as follows: P 

(177.495, Axial), K (766.490, Radial), Na (589.592, Radial), Mg (279.553, Radial), Ca 

(396.847, Radial), Zn (213.856, Axial), Fe (259.940, Axial) and B (249.773, Axial). A 

commercial ICP multi element standard solution IV (1000 mg/l) was used to make a 

working stock of 100 mg/l which was used then to make a range of calibration standards: 

0.1, 0.2, 0.3, 0.5, 1, 2.5, 5, and 10 mg/l to cover both trace and macro elements. Calibration 

standard for phosphorus was prepared separately using KH2PO4, as P was not included in 

the multi element solution. All the calibration standards were made with 5% HNO3. Merck 

ICP standard IV from (https://uk.vwr.com) was used as Certified Reference Material 

https://www.labmanautomation.com/
https://uk.vwr.com/
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(CRM) for accuracy and precision. Combustion analysis using a CN elemental analyser 

was used to measure total N and C. For the CN analyser, around 20 mg tissue was weighed 

out into tin capsules and folded. The same amount of glutamic acid was weighed out to be 

used as calibrating standard, and of birch leaf organic analytical standard (OAS) obtained 

from (http://www.elementalmicroanalysis.com) as CRM. Then, average shoot element 

concentration relative to dry weight and fresh weight was calculated for the whole set of 

accessions. In order to assess the nutrient use efficiency of different genotypes, nutrient 

efficiency ratio or nutrient utilization ratio (NER= mg shoot dry weight/mg element in 

shoot) was calculated (Baligar et al., 2001). 

 

Although pooling samples gives more robust data it does not provide information on the 

variation between replicates. Therefore, Nipponbare plants were analysed individually to 

obtain an estimate of plant-to-plant variability and also to get an indication of element 

concentrations in root tissues. The 3 reference Nipponbare plants (shoot, root) in each box 

were milled and equal amounts were weighed out to make 1 pooled sample (10 mg) 

representing each box. As each replicate had 4 boxes in the 1st batch and 3 boxes in the 2nd 

batch for each condition, a total of 16 Nipponbare plants from the 1st batch and 12 plants 

from 2nd batch were tested. The types of phenotypic data collected from control and low 

NPK treatments are summarised in Table 2.3. 

 

 

Table 2. 3: Summary of the types of phenotypic data collected from growth and elemental analysis. 

Abbreviations are as follows: CT for control treatment (1 NPK), LT for low treatment (0.1 NPK). 

 Trait Abbreviation Calculation Unit 

G
ro

w
th

 

Initial weight IW - g 

Total final fresh weight FW - g 

Total dry weight DW - g 

Relative growth rate RGR (ln(FW)-ln(IW))/21 d-1 

RGR  reduction RGRRED (1-(RGRLT/RGRCT))x100 % 

Shoot fresh weight SFW - g 

Root fresh weight RFW - g 

Fresh weight shoot to 

root ratio 
FWSR shoot FW/root FW - 

Shoot dry weight SDW - g 

Root dry weight RDW - g 

Dry weight shoot to 

root ratio 
DWSR shoot DW / root DW - 

http://www.elementalmicroanalysis.com/
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Fresh weight reduction FWRED (1-(FWLT/FWCT))x100 % 

Dry weight reduction DWRED (1-(DWLT/DWCT))x100 % 

Shoot fresh weight 

reduction 
SFWRED (1-(SFWLT/SFWCT))x100 % 

Root fresh weight 

reduction 
RFWRED (1-(RFWLT/RFWCT))x100 % 

Fresh weight shoot to 

root ratio reduction 
FWSRRED (1-(FWSRLT/FWSRCT))x100 % 

Shoot dry weight 

reduction 
SDWRED (1-(S DWLT/S DWCT))x100 % 

Root dry weight 

reduction 
RDWRED (1-(R DWLT/R DWCT))x100 % 

Dry weight shoot to 

root ratio reduction 
DWSRRED (1-( DWSRLT/ DWSRCT))x100 % 

E
le

m
en

t 
co

n
te

n
t-

 D
W

 b
as

is
 

Zn Zn(DW) - (µmol/g DW) 

K K(DW) - (µmol/g DW) 

Mg Mg(DW) - (µmol/g DW) 

Ca Ca(DW) - (µmol/g DW) 

Fe Fe(DW) - (µmol/g DW) 

B B(DW) - (µmol/g DW) 

Na Na(DW) - (µmol/g DW) 

P P(DW) - (µmol/g DW) 

N N(DW) - (µmol/g DW) 

C C(DW) - (µmol/g DW) 

Zn reduction Zn(DW)RED (1-(Zn(DW)LT/ (Zn(DW)CT))x100 % 

K reduction K(DW)RED (1-(K(DW)LT/ (K(DW)CT))x100 % 

Mg reduction Mg(DW)RED 
(1-(Mg(DW)LT/ 

(Mg(DW)CT))x100 
% 

Ca reduction Ca(DW)RED (1-(Ca(DW)LT/ (Ca(DW)CT))x100 % 

Fe reduction Fe(DW)RED (1-(Fe(DW)LT/ (Fe(DW)CT))x100 % 

B reduction B(DW)RED (1-(B(DW)LT/ (B(DW)CT))x100 % 

Na reduction Na(DW)RED (1-(Na(DW)LT/ (Na(DW)CT))x100 % 

P reduction P(DW)RED (1-(P(DW)LT/ (P(DW)CT))x100 % 

N reduction N(DW)RED (1-(N(DW)LT/ (N(DW)CT))x100 % 

C reduction C(DW)RED (1-(C(DW)LT/ (C(DW)CT))x100 % 

Zn/RGR Zn(DW)/RGR - - 

K/RGR K(DW)/RGR - - 

Mg/RGR Mg(DW)/RGR - - 

Ca/RGR Ca(DW)/RGR - - 

Fe/RGR Fe(DW)/RGR - - 

B/RGR B(DW)/RGR - - 

Na/RGR Na(DW)/RGR - - 

P/RGR P(DW)/RGR - - 

N/RGR N(DW)/RGR - - 

C/RGR C(DW)/RGR - - 

 

Zn Zn(FW) - (µmol/g FW) 

K K(FW) - (µmol/g FW) 
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Mg Mg(FW) - (µmol/g FW) 

Ca Ca(FW) - (µmol/g FW) 

Fe Fe(FW) - (µmol/g FW) 

B B(FW) - (µmol/g FW) 

Na Na(FW) - (µmol/g FW) 

P P(FW) - (µmol/g FW) 

N N(FW) - (µmol/g FW) 

C C(FW) - (µmol/g FW) 

Zn reduction Zn(FW)RED (1-(Zn(FW)LT/ (Zn(FW)CT))x100 % 

K reduction K(FW)RED (1-(K(FW)LT/ (K(FW)CT))x100 % 

Mg reduction Mg(FW)RED (1-(Mg(FW)LT/ (Mg(FW)CT))x100 % 

Ca reduction Ca(FW)RED (1-(Ca(FW)LT/ (Ca(FW)CT))x100 % 

Fe reduction Fe(FW)RED (1-(Fe(FW)LT/ (Fe(FW)CT))x100 % 

E
le

m
en

t 
co

n
te

n
t-

 F
W

 b
as

is
 B reduction B(FW)RED (1-(B(FW)LT/ (B(FW)CT))x100 % 

Na reduction Na(FW)RED (1-(Na(FW)LT/ (Na(FW)CT))x100 % 

P reduction P(FW)RED (1-(P(FW)LT/ (P(FW)CT))x100 % 

N reduction N(FW)RED (1-(N(FW)LT/ (N(FW)CT))x100 % 

C reduction C(FW)RED (1-(C(FW)LT/ (C(FW)CT))x100 % 

Zn/RGR Zn(FW)/RGR - - 

K/RGR K(FW)/RGR - - 

Mg/RGR Mg(FW)/RGR - - 

Ca/RGR Ca(FW)/RGR - - 

Fe/RGR Fe(FW)/RGR - - 

B/RGR B(FW)/RGR - - 

Na/RGR Na(FW)/RGR - - 

P/RGR P(FW)/RGR - - 

N/RGR N(FW)/RGR - - 

C/RGR C(FW)/RGR - - 

N
u

tr
ie

n
t 

u
se

 E
ff

ic
ie

n
cy

 (
U

E
) 

Zn ZnUE 1/ZnLT - 

K KUE 1/KLT - 

Mg MgUE 1/MgLT - 

Ca CaUE 1/CaLT - 

Fe FeUE 1/FeLT - 

B BUE 1/BLT - 

Na NaUE 1/NaLT - 

P PUE 1/PLT - 

N NUE 1/NLT - 

C CUE 1/CLT - 

 

2.2.3 Testing the response of rice genotypes to single and 

multiple element deficiencies  
 

This experiment was carried out to check which element was the most limiting among the 

three under 0.1 NPK condition by reducing one element, N, P, or K, at a time and multiple 
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elements (NPK) at the same time. NPK concentration was further reduced to 0.01 to check 

the response of plants under more severe nutrient stress. In this experiment Nipponbare and 

a subset of 7 tolerant and 6 sensitive lines were used. In 0.01 NPK condition, the total 

concentration of N was 0.029 mM, P was 0.003 mM and K was 0.01 mM. Three seedlings 

from each genotype were transferred to hydroponics after 2 weeks germination in sand. 

Plants were kept in test conditions for 3 weeks. Then fresh weight (total, shoot, root), RGR 

and RGRRED were measured. 

 

2.2.4 Statistical Analyses  
 

To reduce seasonal variation, data were normalized for effects of replicates and seasonal 

variability by using a linear mixed effect package (LME4) in R software (Bates et al., 

2014). R software (version 3.1.3), SAS statistical analysis system (SAS, version 9.4) and 

SPSS Statistics software package (version 24.0.0.1) were used to carry out statistical tests 

including: Two-tailed t-test to compare means of phenotypic traits (growth and ion 

parameters, table 2.3) between different treatments, and to compare means of tolerant and 

sensitive genotypes under low treatment, one-way ANOVA to check the association 

between phenotypic traits and genotypes or sub-populations, post-hoc test using Tukey’s 

honest significant test (Tukey HSD; P<0.05) to determine significant differences between 

means produced from ANOVA. Correlation matrices were generated using corrplot library 

in R software (version 3.1.3). Correlations were declared statistically significant if P value 

was < 1%. A cut-off value of at least 0.5 was considered for pairwise Pearson's correlation 

coefficients (> 0.5 for positive correlations and < –0.5 for negative correlations). 

 

2.3 Results 
 

2.3.1 Morphological differences between plants in low and 

adequate supply of NPK 
 

A total of 294 rice accessions was examined to find out which lines are more efficient when 

grown in low nutrient conditions (0.1x NPK concentrations). It was expected to see 

differences in terms of the observable characteristics between plants in different treatments 
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and between accessions in each treatment in response to the reduction in NPK 

concentrations. Overall, accessions grown in low N, P, K conditions were shorter, leaves 

had pale green colour, and stems were thinner compared to the ones grown in adequate N, 

P, K supply. On the other hand, roots of plants grown in 0.1x NPK supply were longer and 

thinner than those of plants grown in 1 NPK supply.  However, differences between 

accessions varied.  Figure 2.1 shows an example of the observed morphological 

differences. 

 

 

Figure 2.1: Morphological differences between plants grown for 3 weeks under adequate and low 

supply of NPK.  

 

2.3.2 Growth and biomass analysis 
 

The average of 4 replicates for the whole set of accessions was calculated for each of these 

variables (initial weight, final weight, dry weight, relative growth rate (RGR) and RGR 

reduction) in both conditions (1 NPK and 0.1 NPK). Average initial weight before 

transferring to hydroponics varied between 0.08 and 0.28 g, which is a 3.5 fold difference 

between the extremes. The bulk of the plants was between 0.12 and 0.22 g. The average 

final total fresh weight and shoot fresh weight of plants in control condition was 

significantly higher than that in 0.1 NPK (Two-tailed t-test, P < .0001). The latter showed 

almost 2 fold decrease in average total weight, shoot fresh weight and shoot to root ratios 
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compared to control plants. However, average fresh root weight was almost the same and 

not significantly different between treatments (Figure 2.2). Distribution of fresh weight 

parameters in control plants was shifted to the higher end, except for root fresh weight 

where the two treatments mostly overlapped. Using two-tailed t-test, all growth parameters 

were statistically significantly different between control and 0.1 NPK treatments (P<0.05), 

except for average initial weight and fresh root weight. 

  

The same trend as seen with fresh weight was observed for all dry weight parameters, 

except for root dry weight where the difference was significant between the two treatments 

(Two-tailed t-test, P < .0001) and roots had relatively higher weight in low NPK plants 

(Supplementary Figure 2.1). The average relative growth rate was significantly greater in 1 

NPK plants (Two-tailed t-test, P < .0001), within the range of 0.070 and 0.140 (g g-1 d-1), 

than in 0.1 NPK plants, where it was between 0.056 and 0.106 (g g-1 d-1) (Supplementary 

Figure 2.2). To check which lines were more efficient to grow in the low nutrient supply, 

RGR reduction was calculated. Growth reductions varied between 6% and 40%. The lowest 

values indicate that these accessions were more tolerant to grow under low N, P, K supply 

(Supplementary Figure 2.2).  
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Figure 2.2: Average final fresh weight distribution among 294 accessions grown in 1 and 0.1 NPK 

conditions. Total FW (A), shoot FW (B) and shoot to root FW ratio (C) were  significantly different 

in the two treatments.  Root FW (D) was not significantly different in the two treatments. The 

significance was identified by two-tailed t-test (P < 0.05). The transparent colour indicates overlaps 

between the two treatments.  
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2.3.2.1 Genotypic variation on sub-population level in rice 

under low NPK based on growth parameters 
 

Based on growth parameters (materials and methods, table 2.3), variations were observed 

not only between different genotypes, but also between sub-populations. Under 0.1 NPK, 

the sub-population factor was statistically significantly associated with almost all growth 

parameters except total fresh weight and shoot fresh weight (one-way ANOVA; P<0.05).  

For example, means of RGR under 0.1 NPK condition were significantly different between 

admixed indica and temperate japonica sub-populations. Admixed indica showed 

significantly higher growth rates compared to temperate japonica (Tukey’s honest 

significant test HSD, P<0.05; Figure 2.3). Means of RGR under control conditions did not 

show significant differences between subpopulations. Also, admixed indica sub-population 

showed significantly lower RGRRED compared to indica, temperate japonica, australis and 

admixed (Figure 2.3). To conclude, admixed indica cultivars on average were more tolerant 

to grow under low NPK supply.  
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Figure 2. 3: Means for: A) Relative growth rate; B) Reduction in relative growth rate for each rice 

sub-population under 0.1 NPK condition. Letters above boxplots denote statistically significant 

differences between sub-populations (Tukey’s honest significant test HSD, P<0.05). Sub-population 

abbreviations are as follows: ADM for admixed, AUS for Australis, IND for Indica, ADI for 

Admixed Indica, ARO for Aromatic, TEJ for Temperate Japonica, TRJ for Tropical Japonica, and 

ADJ for Admixed Japonica.  

         AB                   A                   AB                  AB               AB                     AB                 B                      AB 

         A                    B                    AB                  AB                 A                       A                    A                    AB 
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2.3.2.2 Differences in growth reductions for a subset of 

accessions under low NPK condition 

A total of 15 tolerant and 11 sensitive genotypes (Table 2.4) was re-tested under 0.1 NPK 

condition to confirm their level of tolerance. They were also tested under 0.01 NPK 

condition to check their performance under more severe nutrient stress. Percentages of 

reduction in growth rates were compared for tolerant and sensitive genotypes between the 

1st experiment and the re-test. In general, plants grew better in the retest. However, average 

reduction in growth rates in sensitive genotypes was 4 times bigger than for tolerant 

genotypes and this difference was significant (Two-tailed t-test, P <0.05; Figure 2.4). 

RGRRED for the subset of lines ranged between 6 and 10% for tolerant lines and between 

24 and 34% for sensitive ones, which is comparable to RGRRED for the whole set of lines 

which ranged between 6 and 40%. For the subset, tolerant lines had growth reductions 

closer to the lower end of the whole set of lines, while sensitive lines had values closer to 

the higher end. There was still genotype to genotype variation. 

 

Under more severe nutrient stress (0.01 NPK), average RGRRED was around 60 % which 

was bigger than that under 0.1 NPK. Although the difference between tolerant and sensitive 

genotypes was small (1.2 fold), it was statistically significant (Two-tailed t-test, P <0.05; 

Supplementary Figure 2.3). Although identifying tolerant and sensitive genotypes using 

different parameters like RGRRED and use efficiency (UE) is expected to give different 

outputs, it was interesting to test if there is an overlap between the top 10 tolerant and 

sensitive genotypes identified using these two parameters. The results showed that the 

tolerant genotype (301158) based on RGRRED showed high use efficiency for K. 

Interestingly, a tolerant genotype (301100) was considered as inefficient for using P, while 

a sensitive genotype (301199) was having high efficiency for P. Another sensitive genotype 

based on RGRRED (301072) showed high efficiency for N. Suggesting that efficient 

genotypes in using one element don’t necessarily have low RGRRED, and vice versa.  
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Table 2. 4: List of candidate tolerant and sensitive genotypes based on reduction in relative growth 

rate. Abbreviations are as follows: IND for Indica, Aus for australis, TEJ for Temperate Japonica, 

TRJ for Tropical Japonica. 

 

Tolerant-

GSORID 
Sub-population 

Sensitive-

GSORID 
Sub-population 

301325 Admixed-jap 301224 Ind 

301100 Trj 301199 Ind 

301405 Trj 301052 Tej 

301227 Admixed-jap 301241 Trj 

301259 Ind 301169 Aus 

301345 Aus 301256 Admixed-jap 

301158 Trj 301265 Tej 

301214 Trj 301273 Tej 

301374 Trj 301167 Trj 

301341 Aus 301177 Tej 

301141 Trj 301072 Tej 

301299 Trj - - 

301209 Admixed-jap - - 

301171 Tej - - 

301310 Aus - - 

 

 

Figure 2. 4: Average reduction in growth rates in tolerant lines was smaller than for sensitive lines 

under 0.1 NPK (Two-tailed t-test, P = 0.001). Mean ± SE (n = 45 tolerant, 33 sensitive).  
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2.3.3 Elemental analysis 
 

2.3.3.1 Shoot concentration of elements on dry and fresh 

weight basis        
 

The average shoot content of elements was calculated for the whole set of accessions. 

Shoot N, P and K content was reduced to nearly half when plants were grown under 0.1 

NPK condition (Figure 2.5). Distribution of N, P and K concentrations between the two 

treatments was split into two distinguishable clusters where control plants shifted to the 

higher end.  

 

Other nutrients were also measured because nutrient interactions can have positive or 

negative effects on the uptake of others. Under 0.1 NPK condition, a slight increase in Ca, 

Na and Fe shoot concentrations was found (18 %, 16% and 14%, respectively) (Figure 2.6). 

The increase was bigger in Mg and Zn concentrations (29 % and 50%, respectively). On the 

other hand, B and C concentrations in 0.1 NPK plants were reduced by 14% and 3%, 

respectively (Figure 2.6). Although the distribution of some elements was almost 

completely overlapping between the two treatments, the difference was significant. On 

fresh weight basis, the general trends for most of the shoot elements were the same as on 

dry weight basis, except B and C concentrations in 0.1 NPK plants where there was a slight 

increase (Supplementary Figure 2.4 and 2.5). All ion concentrations significantly differed 

between treatments based on two-tailed t-test (<0.05). 
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Figure 2. 5: Shoot concentration of elements based on dry weight in 0.1 NPK plants compared to 1 

NPK plants. Significant reduction in: (A) average N concentration; (B) average P concentration; (C) 

average K concentration. The significance was identified by two-tailed t-test (P < 0.05). The 

transparent colour indicates overlaps between the two treatments. 

A 

B 

C 
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Figure 2. 6: Shoot concentration of elements based on dry weight in 0.1 NPK plants compared to 1 

NPK plants. Significant increase in the average concentration of: (A) Ca, (B) Na, (C) Fe, (D) Mg, 

(E) Zn. Significant decrease compared to 1 NPK plants in the concentration of: (F) B; (G) C. The 

significance was identified by two-tailed t-test (P < 0.05). The transparent colour indicates overlaps 

between the two treatments. 
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2.3.3.2 Shoot and root element concentrations in reference 

Nipponbare plants 
 

Due to time and material limitation for some genotypes, root samples of the 294 accessions 

were not analysed for ion content. Also, sample pooling does not allow an estimation of the 

variation between replicates. For these reasons, the average element concentration in dry 

shoot and root tissues was calculated for a total of 28 reference Nipponbare plants.  

  

The general trends of element contents in Nipponbare shoots agree with those observed for 

the whole set of accessions. When comparing Nipponbare root and shoot, N, P, K, Ca, Mg 

and B concentration was relatively higher in shoots than in the root in both conditions. In 

contrast, Fe concentration was much higher in the root compared to the shoot in both 

conditions. The same was true for Na but only under low NPK. Zn concentration in the root 

of 1 NPK plants was higher than the in the shoot and the opposite was true for 0.1 NPK 

plants. 

 

In 0.1 NPK plants, root N, P, K was reduced to nearly half compared to 1 NPK plants 

which agrees with the shoot trend (Figure 2.7). As in shoots, the concentration of Ca, Mg, 

Zn, Fe and B did not vary much between the treatments (Figure 2.8). There was, however, a 

more than two-fold increase in Na concentration in the roots of 0.1 NPK plants, which 

contrasts with little change in the shoot. 

 

Since average shoot concentrations in Nipponbare were relatively similar to that of all 

genotypes, it is possible to assume that using Nipponbare reference plants was a good way 

to get an indication of root ion concentrations. Furthermore, these differences in ion 

distribution between shoot and root under different treatments might explain the different 

mechanisms in response to low supply of nutrients. The increased concentration of Na in 

roots under limited nutrient supply might compensate for reduced K uptake. 
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Figure 2. 7: Root N, P and K concentration in 0.1 NPK and 1 NPK Nipponbare plants. Mean ± SE 

(n = 28). 

 

 

Figure 2. 8: Root Ca, Mg, Na, Zn, Fe and B concentration in 0.1 NPK and 1 NPK Nipponbare 

plants. Mean ± SE (n = 28). 
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2.3.3.3 Differences in nutrient use efficiencies under low 

NPK condition  
 

To be able to evaluate the performance of the genotypes and identify those that were more 

efficient in nutrient use under low NPK treatment, nutrient use efficiency was calculated 

using shoot dry weight of plants. Since shoot tissues from 4 replicates were pooled prior to 

performing the elemental analysis, no replicate data were available and hence no standard 

errors. Use efficiency values for N, P and K were higher under low treatment compared to 

high treatment (Figure 2.9), which is explained by the higher tissue concentration of 

elements under 1 NPK. Differences in use efficiency for N, P and K were observed among 

the accessions in both treatments. Pearson’s pairwise correlation was performed. Moderate 

positive correlation between high and low treatment was observed for nitrogen use 

efficiency (NUE, r =0.48), strong positive correlation for PUE (r =0.72) and weak positive 

correlation for KUE (r =0.2). This suggests that different genotypes have variable use 

efficiency for different elements, and some might be efficient for one element but not the 

other. Also, the strong positive correlation between PUE under both treatments suggests 

that same genotypes that were efficient in using P under high treatment were also efficient 

under low treatment. Alternatively, it could mean that P was not limiting. 

 

Under 0.1 NPK, genotypes with high and low efficiency in using N, P, K were identified. 

Genotypes with higher efficiency had the ability to grow better with a smaller amount of 

nutrients. There was about two-fold difference in use efficiency of N between the most 

efficient and inefficient genotypes. The difference was around 7 and 3 fold, for P and K, 

respectively.  The top 10 accessions for highest and lowest use efficiency for N, P and K 

under low treatment are summarised in Supplementary Table 2.1. Of the top 10 genotypes 

with lowest P efficiency, 6 overlapped between high and low treatment, and 3 out of 10 

genotypes with highest P use efficiencies overlapped between high and low treatments. 

This might explain the strong correlation between both treatments. However, 3 out of 10 

genotypes with lowest K use efficiency overlapped between high and low treatments, 

although the correlation was very weak. No genotypes overlapped for NUE. Genotypes that 

overlapped between the two treatments are highlighted in Supplementary Table 2.1. 
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Figure 2. 9: Distribution of use efficiency in control treatment (red line) and low treatment (blue 

line) for: A) nitrogen (NUE); B) phosphorus (PUE); C) potassium (KUE). The values were ordered 

from lowest to highest for each treatment separately, genotypes at either ends do not correspond to 

each other. 
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2.3.3.4 Genotypic variation on sub-population level in rice 

under low NPK based on tissue element concentration 
 

Under 0.1 NPK, the sub-population factor was statistically significantly associated with 

almost all parameters related to shoot element content (materials and methods, Table 2.3) 

except: Fe content on dry weight basis, C content on dry weight basis, N content on fresh 

weight basis, K content on fresh weight basis, Fe content on fresh weight basis, Fe use 

efficiency and C use efficiency (One-way ANOVA; P<0.05).  

 

Regarding element concentrations, as N and K were not significantly associated with sup-

population factor, only P is presented. Under 0.1 NPK, means for P concentration in dry, 

and fresh shoot tissue showed that Aromatic accumulated the highest P concentration 

among all sub-populations. Aromatic had the lowest P use efficiency that was significant 

compared to Indica which showed the highest P use efficiency (Figure 2.10).  Interestingly, 

Aromatic was significantly associated with P under control as well (Supplementary Figure 

2.6).   

 

To conclude, variations were observed not only between genotypes but also between sub-

populations. As P content in low and control treatment correlated significantly positive, it 

was interesting to find that the same subpopulation had accumulated more P in both 

conditions. This might also suggest that P was not limiting under low supply.  
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Figure 2. 10: Means under 0.1 NPK condition for: A) P concentration on DW basis; B) P 

concentration on FW basis; C) P use efficiency for each rice sub-population. Letters above boxplots 

denote statistically significant differences between sub-populations (Tukey’s honest significant test 

HSD, P<0.05). Sub-population abbreviations are as follows: ADM for admixed, AUS for australis, 

IND for Indica, ADI for Admixed Indica, ARO for Aromatic, TEJ for Temperate Japonica, TRJ for 

Tropical Japonica, and ADJ for Admixed Japonica. 
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2.3.4 Correlation between phenotypes of plants grown in low 

and adequate NPK supply  
 

2.3.4.1 Growth parameters 
 

The correlation between the different growth parameters was tested. The correlation tests 

were based on an average of 4 replicates. Overall, there were significant positive 

correlations between initial weight, fresh weight (total, shoot, root) and dry weight (total, 

shoot, root) in both control and 0.1 NPK conditions (Figure 2.11).  

 

One might expect that plants that have grown better during the first two weeks, hence have 

higher RGR during that time, would also grow faster later in hydroponics. However, there 

was only a very weak positive correlation between the initial fresh weight of plants and the 

relative growth rate in control (r=0.18) and low treatment (r=0.17) (Figure 2.11). There 

was a significant positive correlation between relative growth rates of plants in control and 

low conditions (Figure 2.11). This suggests that the accessions whose relative growth rates 

were highest in 1 NPK condition have relative growth rates that are less depressed in the 

low NPK condition. However, though this assumption might be true as an overall trend, 

there were still variations between individuals.  Five accessions with highest relative 

growth rates were selected from the control condition and compared to their relative growth 

rates in 0.1 NPK condition. As shown in Figure 2.12, accessions that have grown better 

under adequate supply of nutrients have not always done better under low NPK supply. 

Overall, growth parameters correlated fairly well within and between treatments. Under 0.1 

NPK only, shoot to root ratio was significantly and negatively correlated with root weight, 

suggesting that as the ratio was decreasing, root weight increased, and that was true for 

both FW and DW (Figure 2.11). 

 

 

 

 

 

 



60 
 

  

 

Figure 2. 11: Correlation matrix between growth parameters. Positive and negative correlations are 

displayed in blue and red respectively. Correlations with p-value > 0.01 are crossed. Abbreviations 

are as follows: CT for control treatment (1 NPK), LT for low treatment (0.1 NPK), IW for initial 

weight, FW for fresh weight, SFW for shoot fresh weight, RFW for root fresh weight, FWSR for 

fresh weight shoot to root ratio, DW for dry weight, SDW for shoot dry weight, RDW for root dry 

weight, FWDR for dry weight shoot to root ratio, RGR for relative growth rate and RGRRED for 

relative growth rate reduction. 
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Figure 2. 12: Relative growth rates of the same accessions in different conditions: control and 0.1 

NPK. Numbers represent the top 5 accessions with highest RGR values in control condition and 

their corresponding positions in 0.1 NPK treatment.  

 

2.3.4.2 Shoot element concentrations 
 

P concentration based on dry weight was strongly positive and significantly correlated 

between control and 0.1 NPK treatment (r = 0.85), suggesting that plants having high P 

concentration in control also have high P under low treatment (Supplementary Figure 2.7). 

The same was true for P concentration on fresh weight basis (Supplementary Figure 2.8) 

and for P use efficiency (Supplementary Figure 2.10). This suggests that P was not limiting 

under 0.1 NPK condition. This finding was confirmed by another experiment where N, P 

and K were reduced separately. Plants under 0.1 P showed lowest reduction in growth 

compared to 0.1 N or 0.1 K. Also, Ca concentration based on dry weight, fresh weight and 

Ca use efficiency correlated positively and significantly between control and 0.1 NPK 

treatment (Supplementary Figure 2.7, 2.8 and 2.9). Although Ca was not limiting this might 

suggest that it was a useful element under low NPK.  

 

Under 0.1 NPK, a positive correlation was observed between shoot N and Ca on dry weight 

basis (Supplementary Figure 2.7), fresh weight basis (Supplementary Figure 2.8) and use 

efficiency (Supplementary Figure 2.9), suggesting that plants having high N concentration 
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also had high Ca content (Supplementary Figure 2.7, 2.8 and 2.9). Under 0.1 NPK, positive 

correlation was observed between N concentration based on fresh weight and other 

elements including K and C (Supplementary Figure 2.8). Not only under 0.1 NPK, N based 

on FW correlated significantly and positively with C, but it did also under control condition 

(Supplementary Figure 2.8). Under control, Mg correlated positively with Ca, Na and C 

(Supplementary Figure 2.8). Under control only, it has been shown that plant having high N 

efficiency were also having high C efficiency (Supplementary Figure 2.9). 

      

2.3.4.3 Growth and shoot ion concentration  
 

Correlations analysis between growth parameters and shoot ions on DW basis did not 

reveal any significant correlations. The same was true for correlations between growth 

parameters and nutrient use efficiencies. This might be explained by the different 

efficiencies of different genotypes in using nutrients under the same condition. On fresh 

weight basis, shoot C correlated negatively and significantly with fresh weight under low 

treatment only (r = -0.57). This might be related to N as C:N ratio can be an indicator for N 

deficiency. 

   

2.3.4.4 Correlation between RGRRED and ion concentration 

in a subset of accessions  
 

To test if growth reduction was influenced by the concentrations of any of the shoot 

elements in dry weight under low NPK, correlation analyses were carried out. Correlations 

were deemed statistically significant if the P value was < 1%. A cut-off value of at least 0.5 

was considered for pairwise Pearson's correlation coefficients (> 0.5 for positive 

correlations and < –0.5 for negative correlations).  

 

Results revealed that there was no significant correlation between RGRRED with any of 

the shoot ions either in tolerant (Supplementary Figure 2.10) or in sensitive lines 

(Supplementary Figure 2.11). This is in agreement with the overall trend in the whole set of 

accessions which did not reveal any significant correlations between growth and element 

parameters. However, in tolerant lines, there was significant positive correlation between 
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shoot N and Ca concentrations, K with Mg and B, Ca and Mg, and finally Mg and B 

(Supplementary Figure 2.10). Correlations between shoot ions were different for sensitive 

lines, P correlated positively with Zn, while B correlated negatively with B (Supplementary 

Figure 2.11).   

 

In general, tolerant lines had relatively higher shoot N, P, K, Ca and Mg concentrations 

compared to sensitive ones. Shoot Na, Zn, B concentrations were comparable in tolerant 

and sensitive lines. In contrast, shoot Fe was higher in sensitive lines. The difference was 

only significant in shoot N, K, Ca, Mg and Fe concentrations between tolerant and sensitive 

lines (Two-tailed t-test, P < 0.05). Taking into account these differences in growth 

reductions and their correlation with shoot ions in tolerant and sensitive lines might 

possibly explain the differences in tolerance. For example, the accumulation, distribution 

and interactions between elements for tolerant lines might explain their better performance 

under nutrient stress. In this case, maybe by allocating more macronutrients in shoots. 

  

2.3.5 Response of rice genotypes to single and multiple element 

deficiencies 
 

For the whole set of accessions, deficiency symptoms were observed on morphological 

basis, growth and element concentrations in shoot tissues under 0.1 NPK condition. Now 

the question is whether this response was to all three elements (NPK) or whether one of 

them contributed the most to the observed phenotypes.   

 

To test which element was the most limiting among the three under 0.1 NPK condition, one 

element, N, P, or K, was reduced at a time and tests were conducted using Nipponbare.  

NPK concentration was further reduced to 0.01 to check the response of the plant to more 

stressed conditions and these tests included Nipponbare and a subset of 7 tolerant and 6 

sensitive lines. To see the treatment effect, the average of all plants was calculated 

regardless their tolerance. Then the average of Nip, tolerant and sensitive genotypes was 

compared.   

 



64 
 

On morphological basis, when single elements were further reduced to 0.01, deficiency 

symptoms became stronger and more distinguishable.  Low N plants had very pale green 

colour, while low K plants started to show brown leaf margins and bending, low P plants 

were less affected compared to N and K (Figure 2.13). Differences in the size of plants in 

response to different treatments including control (1 NPK), 0.01 NPK, 0.01 N, 0.01 P and 

0.01 K are presented in figure 2.14. Plants in control were much bigger than the ones grown 

under deficient conditions in either single or multiple elements. Plants deficient for 3 

elements were smaller than the ones with single element deficiencies, however, size of 

plants under low N were slightly bigger than the low NPK ones, followed by low K plants 

which were bigger and then low P plants. 

 

 

Figure 2. 13: Morphological differences between plants grown under 0.01 reduction of N, P 

and K.  

0.01 K 0.01 P 0.01 N 
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Figure 2. 14: Differences in plant sizes in response to different treatments: control (1 NPK), 

parallel reduction of NPK (0.01 NPK), and individual reduction of N, P and K.  

 

2.3.5.1 Relative growth rate 
 

Based on the average of all plants (Nipponbare, tolerant and sensitive), RGR was 

significantly different between 1 NPK and both 0.1 and 0.01 NPK. The difference was also 

significant between 0.1 NPK and 0.01 NPK (Figure 2.15). When comparing single and 

multiple elements, difference in average RGR between 0.1 NPK and 0.1 of separate 

elements was roughly the same but slightly higher for 0.1 P. Difference was only 

significant between 0.1 NPK and 0.1 P, meaning that when either N or K was reduced, 

RGR of plants was affected roughly to the same level as when all together were reduced. 

This suggests that N and K were more dominant to affect growth compared to P. On the 

other hand, under more stress (0.01 NPK), the difference in RGR between single and 

multiple elements was only significant under 0.01 P and 0.01 K (Supplementary data 2.13), 

meaning that growth rates of plants under reduced N only are comparable to those when 

multiple elements are reduced. This indicates that N is the most limiting factor for growth 

1 NPK    0.01 NPK        0.01 N        0.01 P         0.01 K 
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under more severe stress. When comparing single elements, the difference in RGR was 

significant between 0.1N and 0.01 N, and between 0.1 K and 0.01 K, meaning that further 

reduction of N and K had great impact on growth. However, the difference was not 

significant between 0.1 and 0.01 P, suggesting that further reduction of P didn’t have an 

impact on growth (Figure 2.15). The overall trend of fresh weight was similar to that of 

relative growth rate (not shown). Significance was identified using Tukey’s honest 

significant test HSD (P<0.05). 

 

2.3.5.2 RGR reduction 
 

Compared to 1 NPK, there was around 15% and 58% reduction in average growth rates of 

plants under 0.1 NPK and 0.01 NPK, respectively and this difference was significant 

(Tukey’s honest significant test HSD, P<0.05; Figure 2.16). As expected, reduction in 

growth rates of plants exposed to reduced NPK together were relatively larger than those 

when only a single element was reduced. When reduced to 1/10, there was 10%, 1% and 

12% reduction in average plants’ growth rate for N, P and K respectively, compared to 1 

NPK. However, the difference was only significant between 0.1 NPK and 0.1 P (Tukey’s 

honest significant test HSD, P<0.05; Figure 2.16). RGRRED of plants under 0.1 N and 0.1 

K was nearly similar to that of 0.1 NPK and the difference was not significant. On the other 

hand, under more stress, the RGR reduction under 0.01 N was highest (52%) and nearly as 

much as for 0.01 NPK, whereas for K and P RGR was reduced to a much lesser extent 

(35% and 11%, respectively). This suggests that reducing only N was sufficient to result in 

growth reductions similar to those where all elements were limiting and that N is the most 

limiting factor for growth under more stress. When comparing single elements, the 

difference in RGRRED was significant between 0.1 and 0.01 N (10% and 52%, 

respectively), and between 0.1 and 0.01 K (12% and 35%, respectively), meaning that 

further reduction of N and K had great impact on growth. However, the difference was not 

significant between 0.1 and 0.01 P (1% and 11%, respectively), suggesting that further 

reduction of P did not have a great impact on growth (Figure 2.16). 
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To conclude, when NPK were individually reduced to 1/10, N and K seem to contribute 

equally to the reduction in growth rates. On the other hand, under more severe stress (0.01 

condition), N was the most limiting factor, followed by K. In all cases, P was the least 

limiting factor.  

 

2.3.5.3 Comparison between tolerant and sensitive lines 

based on RGR and RGRRED 
 

The overall trend for the 3 genotype groups (Nipponbare, tolerant and sensitive) was 

similar to that of the average of all genotypes. There was a significant difference in RGR 

between tolerant and sensitive genotypes under 0.01 NPK and 0.01 N (Supplementary 

Figure 2.12). Since N was the most limiting factor, this suggests that the tolerance to low 

NPK was because these genotypes were tolerant to N. Also, the difference in RGR between 

tolerant and sensitive genotypes under 0.1 P and 0.01 P conditions was significant 

(Supplementary Figure 2.12). Nipponbare was used as a reference, but based on RGRRED, 

it turned out to be more sensitive than the average of sensitive lines (Supplementary Figure 

2.13). However, the difference was not significant.   

 

 

Figure 2. 15: Average RGR of plants under varying NPK treatments. Mean ± SE (n = 42). 
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Figure 2. 16: Percentage of growth reduction of plants under varying NPK treatments compared to 

control (1 NPK) treatment. Mean ± SE (n = 42).  

 

 

2.4 Discussion 
 

2.4.1 Morphological differences between plants in low and 

adequate supply of NPK 
 

Growing plants in hydroponics where a nutrient solution with adjustable elemental 

composition is used, has been widely used in research for the ease of achieving the required 

experimental conditions (Gericke, 1937; Taiz and Zeiger, 2010). A large number of diverse 

rice accessions was examined to find out which lines are more efficient to use the available 

nutrients and grow under low nutrient supply (0.1 NPK). On a morphological basis, it was 

observed that plants grown in full strength medium are much bigger than the ones with 

reduced amounts of N, P, and K. According to (Fageria et al., 2013b), plants lacking 

phosphorus have narrow erect leaves, fine stems, and are short in height. Stunted growth in 

young plants and delay in maturation might be observed as well (Taiz and Zeiger, 2010). 

Potassium deficient plants show chlorosis which might develop later to necrosis, have dark 

green colour with yellowish brown leaf margins or dark brown necrotic spots, stems are 

weak and thin, leaves may curl and the plant might bend to the ground. Also nitrogen 

deficiency in plants would inhibit growth and lead to chlorosis (yellowing of the leaves), 
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formation of thin and woody stems, leaves are narrow, short and erect (Taiz and Zeiger, 

2010). Morphological traits of plants in this experiment were as expected. Plants have pale 

green colour (yellowish), finer and weaker stems, small and erect leaves, also they are 

shorter compared to the ones with higher N, P, and K concentrations. The lack of N might 

have been the cause of the observed chlorosis, due to loss of chlorophyll. Longer treatments 

would probably have led to further deficiency symptoms but since deficiency symptoms are 

quite similar, it is hard to tell which nutrient was the most limiting for these plants. Since N 

and K turned out to be equally limiting under 0.1 condition, this might suggest that, the 

morphological differences observed when reducing NPK to 0.1 was a result of a combined 

effect of N and K, but not P which was the least limiting factor. Another possibility is that 

P was limiting to some extent under 0.1 NPK and reducing single elements did not reflect 

what was happening when all three were reduced as that might result in nutrient imbalance 

and it is known that nutrient ratio and balancing is more important than the concentration of 

each nutrient (Malvi, 2011).  Therefore, reducing NPK to levels where deficiency for each 

individual element is reached rather than reducing them by the same proportion relative to 

controls might have shown a different response as some elements are needed in larger 

amounts. Also, reducing multiple elements at a time introduces complexity and 

confounding variables not only on morphological basis but also based on the response of 

genotypes as some might be tolerant to one or two elements but not to all together. This 

was evident when tolerant lines differed significantly from the sensitive ones only under 

low P. When single elements were reduced 100-fold, deficiency symptoms became stronger 

and more distinguishable, and they were as expected. Low N plants had very pale green 

colour, while low N plants started to show brown leaf margins. Comparing ion content for 

the plants that are deficient in one or multiple elements would be useful. 

  

2.4.2 Correlation between phenotypes of plants grown in low 

and adequate NPK supply 
 

There was a weak correlation between the initial fresh weight of plants and the relative 

growth rate in both conditions. This suggests that the initial weight had only a minor effect 

on relative growth rates. During the two weeks before treatment, larger plants did not 
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necessarily have larger RGR as it was not the only contributor to plant size during that 

time. Other factors such as seed reserves and germination speed might have contributed as 

well. On the other hand, the positive correlation between relative growth rates in both 

conditions and total final plant weights indicates that plants with higher relative growth 

rates have subsequently larger final fresh weights. Also, the initial weight was positively 

correlated with final fresh weight. To summarize, final weight was positively correlated 

with initial weight and RGR, meaning that to end up with larger final weight plants have 

had either larger initial weight, or larger relative growth rate, or both. Initial weight had 

only a minor effect on RGR, and the differences in plant size during the first two weeks 

might be a result of varying germination times and seed reserves.   

 

Although the overall correlation (based on average of 4 replicates) was positive between 

relative growth rate in full and 0.1 NPK supply, individual accessions responded differently 

to adequate and limited supply of NPK. One reason for that might be the genetic variation 

between these accessions which makes them have different tolerance abilities to limited 

supply of nutrients. Moreover, plants grown under NPK deficient conditions might have 

different mechanisms and different genes regulated in response to stress compared to plants 

that have adequate supply of nutrients. Also tolerant (efficient) genotypes may employ 

different sets of genes compared to sensitive ones. 

 

High levels of variation observed among the phenotypes tested in this study at both 

genotype and subpopulation level, might be partially explained by the large and diverse set 

of rice accessions used. Variation in growth rates might be an important indicator for the 

efficiency of some genotypes in using the nutrients supplied for growth and biomass 

production. Therefore, fast growing genotypes that showed improved performance 

compared to others under low nutrient conditions could possibly have a positive impact on 

crop development when exploited in breeding programs. Furthermore, a particular sub-

population with higher growth rates (e.g. admixed indica in my study) can be further 

analysed to check for differences within rather than between subpopulations as differences 

within subpopulations have been reported in rice for many agricultural traits (Samuel et al., 

2016; Zhao et al., 2011). Identifying more efficient genotypes in using the nutrients 



71 
 

sufficiently to grow under low NPK conditions would have a great impact in reducing 

inputs and cost of production once introduced to breeding programs either by selecting 

these cultivars for propagation or crossing with the better performing cultivars. Since the 

tolerant cultivars in this study haven’t been tested for yield, it would be beneficial to test 

them for grain yield production. If they turned out to be low yield cultivars, they can be 

crossed with other cultivars known for high yields, or they can be genetically manipulated. 

Combining genetic engineering techniques with conventional breeding programmes would 

allow the introgressssion of the desirable traits into commercial crops, however, extensive 

testing is required for the improved varieties before they can be used. The large variation in 

performance among genotypes under low NPK condition might be a result of superior 

alleles controlling the genes involved in uptake and transport of these nutrients. For 

example, the rice sodium transporter OsHKT1;1 was found to be important in accumulating 

more sodium in the roots of genotypes belonging to indica group compared to japonica 

genotypes under salt stress (Campbell et al., 2017). Therefore, allelic variations of the 

genes identified to be involved in nutrient use efficiency or other important traits, should be 

utilized in breeding programs. 

 

2.4.3 Root architecture modifications in response to low NPK 

supply  
 

Root growth and root system architecture (RSA) are affected by water and nutrient 

provision (Chapman et al., 2012). In order to increase access of roots to nutrients, changes 

in the architecture occur as an adaptive trait in response to less nutrient supply (Sales et al., 

2011). In my experiments, roots of plants grown in 0.1 NPK supply were longer and 

thinner than those of plants grown in full supply. Also, the shoot-to-root ratio was smaller 

in 0.1 NPK plants. That might be either an effect of low P, as plants usually develop 

modifications to root morphology in response to low P availability (Faye et al., 2006; He et 

al., 2003; Lynch and Brown, 2001). Also, (Clark, 1982) stated that roots of plants lacking 

phosphorus were long and spindly, with little fibrousness. 
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In addition, the observed change in RSA could be the result of K deficiency. A study by Jia 

et al. (2008) on 6 rice genotypes with variable K efficiencies grown in hydroponics, showed 

a reduction in root growth under low K level (5 mg/L, which is similar to the 0.1x 

concentration that I used) for all genotypes, while moderate K deficiency (10 mg/L) led to 

an increase in root length of the efficient genotypes. Additionally, all the efficient 

genotypes in their study formed more fine roots than the inefficient ones under low and 

moderate K supply and also had higher K concentrations in shoots, suggesting that root 

morphology parameters are important for K uptake by roots and in the translocation of K 

up to shoots. Root modifications can also be caused by N deficiency which has previously 

been shown to make radical changes to root architecture, to increase the root biomass 

leading to decrease of the shoot-to-root ratio (Hermans et al., 2006; Krapp et al., 2011; 

Scheible et al., 1997). Since all three, N, P and K are reduced in my study, it is not 

surprising to find a reduced shoot-to-root ratio. It has been found that N and P deficient 

plants have increased root to shoot ratio, while in K deficient plants that was rarely 

observed (Hermans et al., 2006), suggesting that N being the cause of allocating more 

biomass to the root is a more sensible scenario, since P did not appear limiting in my 

experiments.  

 

2.4.4 Nutrient accumulation in tissues as an indicator for 

nutrient use efficiency 
 

In general, better distribution of nutrients in parts of the plant (root, shoot and grain) 

reflects their use efficiency. A study on upland rice revealed that accumulation of K was the 

highest compared to other nutrients. Results have shown that total K accumulation was 206 

kg ha–1, total N accumulation was 126 kg ha–1 and total P accumulation was 13 kg ha–1. K 

accumulation was higher in the shoot, whereas N and P accumulation was higher in the 

grain. Also, to produce 1 metric ton of grain of upland rice, the requirement for K was the 

highest among the nutrients with 40 kg, while N requirement was 28 kg and P was 3 kg 

(Fageria et al., 2004). It has been reported that uptake of K is higher than N uptake in 

lowland and upland rice (Fageria and Baligar, 2001; Fageria et al., 2003; Fageria et al., 

2010). These reported amounts of mineral nutrient requirement relate to molecular ratios 
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(N/P/K) of about 1.7 / 0.08 / 1.0. The ratio of N/P/K in Yoshida medium was 2.9 / 0.3 / 1.0, 

while in shoot tissues were as follows: 3.4 / 0.3/ 1 (in 1 NPK) and 3.5 /0.4 / 1 (in 0.1 NPK). 

This indicates that the ratios of the elements are more like in the medium, not as reported in 

the literature field-grown plants. Also, the ratio does not dramatically change when NPK is 

reduced 10-fold. Therefore, when reducing all 3 elements to 1/10, P is far less limiting 

when comparing to what is actually needed: 0.03 compared to 0.08. Hence, this perfectly 

agrees with the observations of P being the least limiting element. This is under the 

assumption that the ratios matter.  

 

On the other hand, my results showed that both N and K were limiting to the same extent as 

they equally affected FW, RGR and RGRRED, while under more stress (0.01 condition), N 

was the most limiting factor among the three. This could explain why genes related to N 

and K deficiency show up as best candidates in GWA analysis (chapter 3). In this context, 

it is interesting to note that a parallel GWA study in the lab (Hartley, 2018) that tested the 

same rice lines under conditions where only K was reduced to 1/10, did not produce the 

SNPs that showed up as significant in my analysis. This suggests that N and P limitation 

influence the way how K deficiency is perceived by the plant. 

 

2.4.5 Ion analysis and interaction between nutrients  

 

In my experiment, low supply of K (under 0.1 NPK) might be the cause of the increase in 

Mg and Ca. The antagonistic relationship between K with Mg and Ca was reported 

previously (Malvi, 2011). Under low NPK supply, although shoot and root Na was 

expected to be much higher than that in 1 NPK condition, only a slight increase in shoot Na 

occurred. The increase in root Na (from Nipponbare data) was much higher. Usually, when 

K is deficient, plants take up Na to compensate for K (Malvi, 2011). Although under 0.1 

NPK external Na concentration was higher than K in the medium (0.29 mM and 0.1 mM, 

respectively), the increase of Na in shoot was not significant. The parallel study by Hartley 

(2018) where K alone was reduced to 0.1 mM, shoot Na was 7.1 times higher compared to 

control. However, external Na in his case was around 0.7 mM under control and low K 

supply, which can explain the comparatively higher Na uptake. Increase of Na and the other 
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elements was much higher when ions were measured on a fresh weight basis. Boron under 

low NPK supply was slightly decreased, which might be a response to low K as their 

relationship is synergistic (Malvi, 2011). Under 0.1 NPK condition, the increase in Zn 

might be a result of N decrease as they have negative relation (Malvi, 2011). In rice, as N 

supply increased, Zn deficiency became more severe (Singh and Singh, 1985). Calculating 

ion content on dry weight basis does not consider water status in tissues which is an 

important influencer on transport and biochemical processes. Therefore ion concentration 

was calculated on fresh weight basis as well. 

 

A study on N concentrations in rice revealed that N uptake in the shoot as well as in the 

grain was significantly related to shoot dry weight and grain yield (Fageria, 2003). The 

difference in uptake and utilization of nutrients may be associated with better root 

geometry, ability of plants to take up sufficient nutrients from lower or subsoil 

concentrations, better transport or distribution and utilization within plants (Fageria et al., 

2008). This indicates that plants grown in adequate supply of nutrients and having high 

biomass and high ion content in shoot tissues, must have utilized the acquired nutrients 

sufficiently for dry matter production. On the other hand, if plants have low dry weight but 

high accumulation of nutrients the utilisation efficiency is low. However, correlation 

between growth and ion parameters in my study was not significant which suggests that 

nutrient accumulation in the shoot did not explain the higher relative growth rates under 

low NPK. Analysing the effect of reducing three elements in parallel is more complicated, 

because some interactions are contradicting between each element and between high and 

low supply. 

   

To conclude, studying the effect of reducing NPK in parallel was done for the first time on 

large number of rice genotypes. Efficient genotypes that showed smaller reduction in 

growth rates compared to those under optimal nutrient supply were identified which can be 

of potential importance to crop improvement and reducing the use of fertilizers. Also, 

among the three elements reduced, some were more limiting than others under different 

degrees of nutrient stress. 
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Chapter 3: Genetic diversity of rice under low 

nitrogen, phosphorus and potassium 
 

3.1 Introduction 

 
With rice being a staple food for many people, an important goal for rice breeding 

programs is to develop rice varieties that produce high yields with less fertilizer inputs. The 

emergence of contemporary sequencing technologies has built an opportunity to improve 

genetic approaches for enhancing production in crops. Ways to improve the soil culture, 

nutrient use efficiency, pest and disease resistance, have been developed through gene 

identification and mapping (Spindel and McCouch, 2016).  

There are many genetic approaches that have been exploited to create a link between 

genotype and phenotype, either by identifying genes or analyzing gene functions, such as 

microarray analysis, mutant analysis using forward and reverse genetics methods, 

quantitative trait locus (QTL) mapping and genome wide association studies. These 

approaches have contributed enormously in improving nutrient use efficiency and other 

desirable traits in plants.   

 

3.1.1 Transcriptomics studies 
 

Studies on the transcriptome and differences in expression patterns of genes in response to 

environmental stimuli such as nutrient deficiencies have been conducted. For example Fan 

et al. (2016) reported that when the high-affinity nitrate transporter NRT2;3b was 

overexpressed, there was a 40% increase in nitrogen use efficiency (NUE) in rice upon 

fertilizer application in the range of 0 to 300 kg N ha–1. In the rice Kaybonnet cultivar, 

overexpression of the ammonium transporter gene OsAMT1.1 has resulted in an increase in 

N uptake and accumulation in shoot and root under adequate supply of N (Ranathunge et 

al., 2014). It has been reported that up-regulation of high affinity Pi transporters has led to 

increased root Pi uptake (Raghothama and Karthikeyan, 2005). Transgenic lines 

overexpressing the phosphate transporter gene OsPht1;6 gene have shown an increased P 

uptake and accumulation (Zhang et al., 2014a). Overexpression of OsPHT1;2 and 
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OsPHT1;4 has increased Pi accumulation in shoot and root, respectively (Liu et al., 2010a; 

Ye et al., 2015b). Under K deficiency, overexpression of OsHAK5 potassium transporter 

resulted in improved K influx rate in rice roots (Yang et al., 2014b). When KUP3 

potassium transporter of Alternanthera philoxeroides was overexpressed in rice, improved 

growth and K uptake was observed under different levels of K (Song et al., 2014).  

Overexpression of the potassium channel TPKb, improved growth and increased K uptake 

and concentration in rice shoots and roots under low K supply (Ahmad et al., 2016a). 

 

3.1.2 Quantitative Trait Loci (QTL) mapping 

 
Quantitative Trait Locus ( QTL) analysis is a statistical method that joins two types of 

information; genotype information (mainly molecular markers) and phenotype data (trait 

measurements), with the aim of explaining the reasons for the genetic variation involving 

complex traits (Samuel et al., 2016). In rice, QTLs for several agronomically important 

traits have been identified such as biomass yield (Matsubara et al., 2016), initial growth rate 

(Sun et al., 2014), growth and grain yield  (Hittalmani et al., 2003; Venuprasad et al., 

2012), nutrient deficiency tolerance and use efficiency for nitrogen (Wei et al., 2012), 

potassium (Miyamoto et al., 2012), and phosphorus (Nishida et al., 2017). For example, for 

nitrogen deficiency tolerance traits, a total of 14 QTLs has been identified for relative shoot 

and root weight and relative plant height (Lian et al., 2005), and 7 QTLs for relative 

biomass yield, relative plant height, relative root length and relative chlorophyll content 

(Feng et al., 2010). A QTL in chromosome 6 was found to be associated with nitrogen use 

efficiency (Shan et al., 2005). Under low N supply, one main-effect QTL on chromosome 9 

was also linked to NUE (Cho et al., 2007). Related to low phosphorus tolerance, a QTL in 

chromosome 12 was detected (Nishida et al., 2017). Under control and low K treatments, 

30 QTLs have been identified for total biomass, shoot and root dry weight, shoot height and 

root length, and 52 QTLs for shoot and root Na, K, Ca and Mg concentrations (Fang et al., 

2015). 
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3.1.3 Genome-wide association studies 
 

Genome-wide association study (GWAS) has recently become the method of choice for 

linking genetic markers with phenotypes and is widely used in the identification of QTLs 

that underlie the quantitative traits. GWAS is a mapping approach used to identify genetic 

variants or single nucleotide polymorphisms (SNPs) in the genome which are associated 

with a particular phenotype or a trait. The association between each genotyped marker and 

a certain phenotype is evaluated by GWAS (Korte and Farlow, 2013). In the DNA 

sequence, common single base-pair changes are known as SNPs. They are a form of genetic 

variation used as markers of a genomic region (Bush and Moore, 2012). GWAS can be 

conducted to spot causative factors for a trait of interest and also to find out aspects of a 

trait’s genetic architecture, for example how many loci contribute to the phenotype. 

Linkage Disequilibrium (LD) can be explained as a non-random association of alleles 

between genetic loci or at linked loci (Yu and Buckler, 2006). LD between functional sites 

and markers is the key to association mapping. The density of marker coverage required 

depends on how rapid the LD decays over physical distance, the more rapid the LD decays, 

the higher the needed marker density. In rice, the estimated window of linkage 

disequilibrium (LD) decay is between 50 and 500 kb (Mather et al., 2007; McNally et al., 

2009; Rakshit et al., 2007). The LD decay in Arabidopsis thaliana is estimated to range 

between 10 and 250 kb (Magnus et al., 2002; Sung et al., 2007). In other crops such as 

spring barley, the extent of LD is approximately 10 centimorgan (Kraakman et al., 2004), 

while in bread wheat and durum wheat it is estimated to extend to 41.2 and 25.5 

centimorgan, respectively (Somers et al., 2007). The distance of LD decay was smaller as 

in commercial maize is estimated to range between 1 and 10 kb (Inghelandt et al., 2011).   

It is possible to use GWAS to investigate genetic and phenotypic variations related to 

different complex traits in a large number of rice cultivars, whereby the genetic data of the 

characterized lines can be used again and again to test many phenotypes (Zhao et al., 2011). 

Results from GWAS can be compared with earlier studies such as quantitative trait loci 

(QTLs) and mutant analysis (Zhao et al., 2011).  
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The production of rice across the globe has been boosted by the genome-wide association 

studies using diversity panels encompassing hundreds of inbred rice accessions where 

associations are established for important complex traits such as grain length and size, and 

resistance to prevailing grain diseases and resilience to abiotic stress among other important 

traits (McCouch et al., 2016; Zhao et al., 2011). The rice diversity panel 1 (RDP 1) was 

phenotyped in previous GWAS studies for more than 34 traits related to stress tolerance 

such as blast resistance; morphological traits such as leaf length and width; yield 

components including plant height and panicle length; and developmental traits such as 

flowering time (Zhao et al., 2011). Other GWAS studies conducted in rice included a 

variety of important traits such as tolerance to salinity (Kumar et al., 2015), drought 

(Xuehui et al., 2010), Root traits (Ristova and Busch, 2014; Wissuwa et al., 2016), yield 

(Liang et al., 2016). Candidate genes for other important traits were revealed using GWAS 

on other crops such as grain yield, nitrogen use efficiency, plant height, biomass, flowering 

time and grain yield in wheat (Cormier et al., 2014; Neumann et al., 2011; Sukumaran et 

al., 2015), plant height, heading date, grain weight, protein and starch content in spring 

barley (Pasam et al., 2012), disease resistance, leaf architecture and oil biosynthesis in 

maize (Hui et al., 2012; Kristen et al., 2011; Tian et al., 2011) 

 

3.1.4 Genome editing using CRISPR/Cas9 system 
 

Genetic manipulation is one of the approaches used to analyze gene function. The 

CRISPR/Cas9 system is a genome editing tool that enables alteration of the genomic DNA 

by using customizable single guide RNA to specifically target a nucleic acid sequence. 

(Belhaj et al., 2013; Bortesi and Fischer, 2015). Cas9 is a protein complex that has a 

nuclease activity for the cleaving of double-stranded DNA. The enzyme cleaves the 

complementary strand by following the guide RNA for complementary target site 

recognition in the DNA sequence, which introduces double strand breaks (DSB) into the 

target region. These can cause gene modifications by DNA repair mechanisms such as non-

homologous end joining (NHEJ) and homology- directed repair (HDR) (Belhaj et al., 

2013). NHEJ utilizes DNA ligase IV to rejoin the broken ends, while HDR uses template 

strands for the repair (Belhaj et al., 2015). Repair by NHEJ may lead to frame shift 
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mutations by the introduction of insertions or deletions, altering the functioning of genes 

(Song et al., 2016). Chromosomal deletions can be obtained when the NHEJ mechanism is 

combined with multiple gRNAs targeting the region. Similarly, HDR mechanisms can lead 

to the creation of insertions, base substitutions or deletions (Belhaj et al., 2015). The NHEJ 

repair mechanism might be preferred in plant genome editing (Belhaj et al., 2013). 

 

3.1.5 Rice diversity panel  
 

Rice has been a favourite to GWAS mainly because of its broad history of domestication 

and evolution (Halewood et al., 2018; Zhao et al., 2011). Two out of 22 recognized species 

of the Oryza genus are known to be cultivated, the Asian rice Oryza sativa, and the African 

rice Oryza glaberrima, the rest are wild species (Vaughan et al., 2003). Cultivated Asian 

rice O. sativa is divided into two major groups each of which is divided into well 

differentiated sub-populations. Indica includes indica and aus, and japonica includes the 

tropical japonica, temperate japonica and aromatic cultivars (Glaszmann, 1987). Since the 

rice genome has been fully sequenced (Itoh et al., 2005) and genotypes of around 400 O. 

sativa accessions are accessible (Zhao et al., 2011), in this study we took the opportunity to 

make use of these accessions to explore the links between genotype and phenotype using 

GWAS. The rice diversity panel 1 (RDP1) encompasses 400 O. sativa accessions which 

have been selected from different geographical regions around the world, representing all 

five sub-populations of rice (Zhao et al., 2011). Also, the panel has shown variability in 

several important traits such as resistance to diseases and insects, tolerance to drought, low 

mineral nutrition, high salt concentrations and flooding, and other less important traits such 

as cooking quality, grain colors, lengths and textures (Zhao et al., 2011). In this study, 

GWAS was used to identify chromosomal loci linked to nitrogen, phosphorus and 

potassium use efficiency in rice using RDP1. By doing so, novel associations were 

identified in addition to those that overlapped with previous QTL studies. Also, some genes 

within QTLs that were previously known to be involved in nutrient uptake, transport and 

use efficiency were detected, together with other candidates with potential importance in 

improving NPK use efficiency. Some of the candidate genes identified were further 

analysed using the CRISPR/Cas9 system. 
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3.2 Materials and methods 
 

3.2.1 Phenotypic data  
 

Phenotypic data were obtained from 294 diverse accessions from the rice diversity panel 1 

(RDP1) (Zhao et al., 2011) grown for 3 weeks under adequate (1 NPK) and low supply of 

nutrients (0.1 NPK), and included growth traits and element concentrations. For plant 

growth conditions and elemental analysis see (Chapter 2, methods). Details of all the 

phenotypic traits included in GWAS analysis are summarised in Chapter 2 (Table 2.3). 

 

3.2.2 Genome Wide Association Studies 
 

GWAS analysis was performed on trait data using mean values of four replicates. Genome 

wide associations between genotypes and phenotypes were performed in R software 

(version 3.1.3) using GenABEL package (Aulchenko et al., 2007). All the GWAS analysis 

was done using the high density rice array (HDRA) which includes information for 700,000 

SNPs and provides a better resolution compared to the previous 44,000 SNP chip, with 

higher SNP density of around 1 SNP per 0.54 kb within the rice genome (McCouch et al., 

2016). To reduce seasonal variation, data were normalized for effects of replicates and 

seasonal variability by using a linear mixed effect package (LME4) (Bates et al., 2014).  

GenABEL package can run GWAS with different models including: Naïve, FASTA 

(Family-Based Score Test for Association) and EIGENSTRAT (Chen and Abecasis, 2007; 

Price et al., 2006). The FASTA model was used for data analysis because it applies mixed 

linear model (MLM) to control false positives in GWAS (Yu et al., 2006) such as those 

derived from spurious genetic associations produced by population structure (Shin and Lee, 

2015). Also, it accounts for both within and between family structures (Li and Zhu, 2013). 

In contrast, software like EIGENSTRAT does not model family structure which may lead 

to inflation in test statistics (Price et al., 2010) and similarly Naive does not account for 

population structure.  

 

The genomic control λ (λGC) measures the departure of the median p-value from its 

expected position. The inflation rate  λ <1.03-1.05 is believed to sufficiently explain the  
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relatedness between individuals (Li and Zhu, 2013), although it is related to sample size 

(Price et al., 2010). Another reason for using FASTA is that the genomic control λGC 

obtained from this model were around 1 unlike other approaches which yielded much 

higher values. Four principal components were included in all GWAS analyses. A false 

discovery rate (FDR) of 10% was applied as a threshold criterion to correct for multiple 

tests conducted by GWAS (Benjamini and Hochberg, 1995). Associations between SNPs 

and phenotypic traits were defined as significant if they exceeded the FDR threshold. 

 

3.2.3 Quantitative trait loci and candidate gene identification 
 

A total of 89 individual and combined traits was analysed for associations (see chapter 2, 

table 2.3). Traits without significant association signals were excluded from further 

analysis. Signals that contained at least 3 significant SNPs not farther than 20 kb away from 

each other, were deemed genuine QTLs while signals based on single significant SNP were 

ignored for down-stream analysis. Major peaks were divided into minor regions after 

zooming-in the genomic region surrounding the peak. If two or more QTLs overlapped 

fully or partially between several traits, they were grouped into a single QTL. Each QTL 

was given a number to differentiate between QTLs in the same chromosome. 

Within QTLs, genes were identified by interrogating a genomic area of 100 kb on either 

side of the most significant SNP. The 200 kb interval was chosen to fall within the 

estimated window of linkage disequilibrium (LD) decay in rice which is between 50 and 

500 kb (Mather et al., 2007; McNally et al., 2009; Rakshit et al., 2007) though it has to be 

noted that LD is subpopulations dependent (e.g. ~100 kb for indica, ~200 kb for aus and 

temperate japonica, and ~300 kb for tropical japonica; (Zhao et al., 2011). Genes were 

obtained by using the Rice Genome Annotation Project 

(http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/ps

eudomolecules/version_7.0/) browser. The genes that were duplicated or have an 

annotation of retrotransposons, or expressed proteins with no additional information were 

excluded. AgriGO gene ontology analysis tool 

(http://bioinfo.cau.edu.cn/agriGO/analysis.php) was used to perform GO singular 

enrichment analysis for the whole set of genes to get an indication of which functional 

http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/
http://bioinfo.cau.edu.cn/agriGO/analysis.php
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classes were overrepresented in this study. Genes were also checked for the presence of 

non-synonymous SNPs (nsSNPs) significantly associated with a trait using the Rice 

Diversity Allele Finder: (http://rs-bt-mccouch4.biotech.cornell.edu/AF/). Comparison of 

the QTLs identified from GWAS with previous QTL studies was performed. 

 

3.2.4 Evaluation of candidate genes using mutational analysis  
 

3.2.4.1 Using loss of function (knockout) mutants 
 

Among the candidates identified by GWAS two HKT transporters were selected for further 

evaluation. Rice functional genomic database (http://signal.salk.edu/cgi-bin/RiceGE) was 

checked for available mutant lines. One mutant line (T34523T) was found for OsHKT1;1 

(LOC_Os04g51820) but not for OsHKT1;4 (LOC_Os04g51830). A retrotransposon 

(Tos17) insertion mutant of OsHKT1;1 (line NF7030) was obtained from (Wang et al., 

2015). The Tos17 retrotransposon insertion resided within the first intron region of 

OsHKT1;1.  

 

To identify homozygous mutants, plants were genotyped for the insertion. Leaf tissues were 

frozen in liquid nitrogen, then ground with plastic mortar before adding 400 µl of extraction 

buffer (200 mM Tris pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) (Edwards et al., 

1991). PCR with Phire Hot Start II DNA Polymerase contained: 10 μl Phire reaction buffer 

(5x), 1 μl dNTP mix (10 mM), 2.5 μl forward primer (10 μM), 2.5 μl reverse primer (10 

μM), 25 ng DNA template, 1 μl Phire Hot Start II DNA Polymerase (Thermo Scientific), 

nuclease-free water to a total of 50 μl. PCR was performed using primers to the right and 

left of the insertion in OsHKT1;1 gene as described in (Wang et al., 2015). The expected 

product size was 1080 bp. Rice actin primers were used for control reactions (expected 

product size was 409 bp). The PCR program used was: 98°C 30 sec, 35 cycles of: 98°C; 5 

sec, 50°C 5 sec, 72°C 15 sec; 72°C 1 min. Primer sequences used are presented in 

Supplementary Table 3.1. PCR products were run in 1.2% agarose gels and 100bp 

Generuler DNA ladder was used. 

 

 

http://rs-bt-mccouch4.biotech.cornell.edu/AF/
http://signal.salk.edu/cgi-bin/RiceGE
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3.2.4.2 Phenotypic characterisation of putative KO lines 
 

Seeds of HKT1;1 mutant plants and wild type (Nipponbare) were germinated for 2 weeks 

in sand. A total of 9 mutant and 5 Nipponbare seedlings was grown for 3 weeks under 1 

NPK and 0.1 NPK conditions (for medium preparation, see methods in chapter 2). Fresh 

weight, dry weight and relative growth rate were measured.  

 

3.2.4.3 Generating loss of function mutation using 

CRISPR/Cas9 
 

Using Knock-Out feature in DESKGEN software (https://www.deskgen.com), suitable 

gRNA sequences (20 nt) were designed to target the HKT1;1 and HKT1;4 genes 

(Supplementary Table 3.2). Guides with highest possible on-target and off-target scores 

were selected as described (Doench et al., 2014). Two guides for the 1st exon of HKT1;4 

were picked for single knockout. Multiple gRNAs were used to increase the chance of 

obtaining a deletion. To produce a double knockout, one guide targeting the 1st exon of 

HKT1;4 and one targeting the 2nd exon of HKT1;1 were picked to simultaneously disrupt 

these two genes through introducing a large deletion.  

 

3.2.5 Assembly of CRISPR/Cas9 constructs using Golden Gate 

cloning 
 

Components of the Golden Gate MoClo plant parts kit (Addgene #1000000047) and 

MoClo toolkit (Addgene #1000000044)  (Engler et al., 2008; Engler et al., 2014) were used 

to assemble plasmid constructs. Plasmids containing components of the CRISPR/Cas9 

system were kindly provided by Nicola Patron (The Sainsbury Laboratory, Norwich). See 

Supplementary Table 3.3 for details of plasmids. DNA fragments were cloned to level 1 

then Level M acceptors via one step restriction/ligation with type II restriction enzymes, 

BsaI and BpiI , respectively. To make level 1 plasmids (transcriptional units), promoter, 

coding sequence and terminator were cloned from donor plasmids into level 1 acceptor. 

Based on their position in level M constructs, appropriate acceptors were chosen from the 

kit. Transcriptional units were assembled in the following order: selection cassette in 

https://www.deskgen.com/
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position 1, Cas9 cassette in position 2, gRNA1 cassette in position 3, gRNA2 cassette in 

position 4, and finally a suitable end-linker. In order to knock out genes, level M plasmids 

containing gRNAs were assembled to target a specific sequence at genes of interest. 

SnapGene (www.snapgene.com) was used for the in silico assembly of the constructs. 

 

3.2.5.1 Level 1 constructs  
 

To assemble level 1 fragments, PCR was performed first to join the 20 bp gRNA sequence 

to the gRNA scaffold contained within pICSL90010. Primers used are listed in 

Supplementary Table 3.4. PCR reactions contained: 10 μl Q5 reaction buffer (5x), 1 μl 

dNTP mix (10mM), 2.5 μl forward primer (10 μM), 2.5 μl reverse primer (10 μM), 25 ng 

template (pICSL90010), 0.5 μl Q5 DNA polymerase (New England Biolabs), nuclease-free 

water to a total of 50 μl. The PCR program used was: 98°C 30 sec; 30 cycles of  98°C 10 

sec, 72°C 30 sec; 72°C 2 min. 5 μl of each reaction were analysed on 2% agarose gel 

containing 2 μl SYBR Safe DNA Gel Stain. The remaining 45 μl were purified using 

MinElute PCR purification Kit (Qiagen) and the concentration was measured using 

Nanodrop spectrophotometer. Constructs were assembled with Triticum aestivum U6 

promoter (TaU6) from plasmid pICSL90003. One step digestion/ligation reaction was 

performed following the long protocol in ligase buffer from the Golden Gate assembly 

manual (Engler et al., 2014). Two hundred ng of acceptor plasmid were mixed with the 

inserts to a 2:1 molar ratio of insert(s): acceptor. Then, 1.5 μl T4 ligase buffer, 1.5 μl 

Bovine Serum Albumin (10x), 200 units T4 DNA ligase (0.5 μl of 400 U/μl), 5 units BsaI 

(0.5 μl of 10U/μl) were added and the volume was made up to 20 μl with nuclease free 

water. The program used was: 37 °C 20 sec; 26 cycles of 37 °C 3 min, 16°C 4 min; 50°C 5 

min; 80°C 5 min. 2 µl of the reactions were transformed into competent E.coli, plating 150 

µl of bacterial suspension on X-gal (40 μg/ml)/ IPTG (0.1 mM) containing LB agar plates 

with carbencillin (50 μg/ml). White colonies containing the ligated plasmid were streaked 

to new LB agar plates with the appropriate antibiotic and incubated overnight at 37 °C. 

Plasmid DNA was extracted from 2 ml bacterial culture using Macherey-Nagel’s 

NucleoSpin Plasmid kit. Plasmid concentrations were measured with Nanodrop 

photometer. Constructs were validated using restriction digests and sequencing. Each 
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purified plasmid (500 ng) was digested with 1 µl of one or a combination of restriction 

enzymes and run on 1% agarose gel with 1 kb DNA ladder (Invitrogen).  

 

3.2.5.2 Level M constructs  
 

The same steps were followed to assemble level M constructs except for using BpiI instead 

of BsaI in the digestion/ligation reaction and using spectinomycin instead of carbencillin 

for selection. Three level M constructs were assembled to target HKT1;1, HKT1;4, and 

both. Diagnostic digestion with SacI and with a combination of NcoI + SacI and BamHI + 

NcoI was performed. 

  

3.2.5.3 Rice transformation 
 

Constructs were introduced into japonica Nipponbare using A tumefaciens strain AGL1 

transformation following the protocol of  (Nishimura et al., 2006). Briefly, around 100 

seeds per batch were de-husked and placed on a suitable medium to produce calli. Around 1 

month later, the calli were infected with the Agrobacterium carrying the vector of interest. 

Three days post-infection, calli were transferred to a selection medium for 4 weeks and 

then to a medium for shoot regeneration for 4-6 weeks. After that, shoots were placed into 

glass jars for a few days, then rooted seedlings were placed to soil pots and left to grow.  

  

3.2.5.4 Identification of mutations in T0 plants 

 

Tissues were collected randomly from multiple leaves of the same regenerated T0 plant. 

Leaf tissues were frozen in liquid nitrogen, then ground with mortar and pestle before DNA 

was extracted using the Macherey-Nagel NucleoSpinTM Plant II kit. PCR was used to check 

for possible insertions or deletions in the targeted region. PCR reaction contained: 10 μl Q5 

reaction buffer (5x), 1 μl dNTP mix (10 mM), 2.5 μl forward primer (10 μM), 2.5 μl 

reverse primer (10 μM), 100 ng template DNA , 0.5 μl Q5 High-Fidelity DNA Polymerase 

(New England Biolabs), nuclease-free water to a total of 50 μl. The PCR program used 

was: 98°C 30 sec; 40 cycles of: 98°C 5 sec, 50°C (for HKT1;1 primers) or 68°C (for 
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HKT1;4 primers) 5 sec, 72°C 20 sec; 72°C 2 min. Primers used are listed in Supplementary 

Table 3.5. PCR products were run in 2% agarose gel and 100 bp Generuler DNA ladder 

was used. PCR products were purified using MinElute PCR purification Kit (Qiagen). 3'A 

overhangs were added to PCR products using the following reaction mix: 1–4 µl of the 

purified PCR product, 2 µl of  GoTaq Reaction Buffer (5x) (Promega), 2 µl of dATP (1 

mM), 1 µl GoTaq Flexi DNA Polymerase (5 u/µl), 0.6 µl of  MgCl2 (25 mM), and 

nuclease-free water to a final volume of 10 µl. The mixture was incubated at 70°C for 30 

minutes in a thermal cycler.  

 

The PCR products were then ligated into the pGEM-T Easy Vector I (Promega) using T4 

DNA ligase. After incubation at 4 °C overnight, ligated product was used to transform 

E.coli (DH5α) mix and go cells prepared by using the transformation buffer set (T3002) 

from Zymo Research Corp. The mixture was plated on LB/ampicillin/IPTG/X-Gal plates 

and incubated overnight at 37 °C. Plasmid DNA was extracted from 5 colonies for each 

cloned PCR product using Macherey-Nagel’s NucleoSpin Plasmid kit. Plasmids were then 

analysed using restriction digests and Sanger sequencing. Each purified plasmid (500 ng) 

was digested with 1 µl of one or a combination of restriction enzymes and run on 1% 

agarose gel with 1 kb DNA ladder (Invitrogen). Sequencing was done using GATC Bitech 

barcode service (www.gatc-biotech.com). Snapgene software was used to align sequence 

traces with unmodified DNA. 

 

3.3 Results 

 

3.3.1 GWAS on growth and ion content parameters  
 

A 700k SNP-chip (McCouch et al., 2016) was used to analyse phenotypic data. After 

applying genotypic quality controls using GenABEL package, 598,678 (85.5%) markers 

were used since those with call rates < 80% (n=7017) and/or a minor allele frequency of 

<1% (n=94325) were excluded. GWAS was performed on all the phenotypic data 

summarized in Chapter 2 (Table 2.3). GWAS results on all phenotypes under 0.1 NPK 

condition are summarized in Table 3.1.  Manhattan plots and quantile-quantile plots for all 
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phenotypes analysed by GWAS are summarized in the supplementary figures 3.1 to 3.87. 

Information on one growth parameter is provided as an example.  

 

Table 3. 1: Summary of GWAS results of all phenotypic traits under 0.1 NPK condition. Trait name 

is followed by chromosome number and the number of significant SNP positions.  

 

Trait Chromosome 

Significant peaks (SNP 

positions) 

Peak 1 Peak 2 

G
ro

w
th

 

Total final fresh weight 

4 31184058 - 

6 21820752 24975205 

8 3002115 - 

10 17129594 - 

Relative growth rate 

4 30464183 30772771 

10 20556687 - 

12 21660849 - 

Shoot fresh weight 

3 16552163 - 

5 8401535 - 

6 25006916 - 

8 3002115 - 

10 16525036 - 

Root fresh weight 

4 31184058 - 

7 28318143 - 

10 17129594 - 

Fresh weight shoot to root 

ratio 

6 10018271 - 

10 2120093 - 

Fresh weight reduction 1 43115311 - 

Shoot fresh weight reduction 
1 42369736 - 

5 645981 - 

Fresh weight shoot to root 

ratio reduction 
6 11010207 - 

E
le

m
en

t 
C

o
n

te
n

t-
 D

W
 b

as
is

 

Mg 
4 21426950 - 

12 6942014 - 

Na 

1 11054118 22203914 

6 22223580 29540591 

8 9206953 27088677  

10 21526441 - 

P 

2 5383487 - 

4 13866768 - 

8 10364518 - 

10 16298434 - 

K reduction 
1 29231879 29309405 

7 23344427 - 
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8 3776462 - 

12 24274703 - 

K/RGR 
2 20631168 - 

10 88521 - 

Na/RGR 

1 11054118 - 

6 29540591 - 

8 9206953 27088677  

P/RGR 

4 13866768 - 

8 10364518 - 

10 16298434 - 

N/RGR 

2 683345 8905285 

3 31210808 - 

5 1407184 - 

C/RGR 

2 21792130 29300008 

4 30482186 - 

5 16088422 23793160 

6 28554495 - 

7 1050153 - 

8 9591468 - 

9 19188564 - 

E
le

m
en

t 
C

o
n

te
n

t-
 F

W
 b

as
is

 

K 2 20631168 - 

Mg 
1 24957110 - 

4 21426950 - 

Fe 12 21104861 - 

Na 

1 11054118 22203914 

6 29476763 - 

8 9206953 27088677  

9 7472543 - 

P 

2 5383487 - 

4 13866768 - 

8 10364518 - 

10 15637076 - 

N 

2 8548363 - 

3 31006533 - 

10 7819452 - 

11 17671985 - 

C 

2 21123989 - 

4 12818578 14706057 

5 8297036 - 

12 21103899 - 

K reduction 1 29231879 - 

Mg reduction 
4 31184058 - 

8 7615516 - 
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11 2032303 - 

Na reduction 8 3457036 17430264 

N reduction 3 31006533 - 

Zn/RGR 6 13341013 - 

K/RGR 

2 20631168 - 

6 28079760 - 

7 1050153 - 

8 9591468 - 

9 10349285 - 

11 23911043 - 

Na/RGR 

1 11054118 - 

2 22853692 - 

6 10281351 6719213 

8 27088677 9176203 

P/RGR 

1 37710728 - 

4 13865907 - 

5 26598956 - 

8 10364518 - 

10 15637076 - 

N/RGR 

2 8548363 - 

3 31006533 - 

5 23793160 - 

C/RGR 8 9591468 - 

N
u

tr
ie

n
t 

u
se

 E
ff

ic
ie

n
cy

  Fe 
3 31674182 - 

6 15982420 - 

B 

6 27129592 - 

8 5258341 - 

12 26075612 22029281 

Na 

1 11336511 - 

6 29461156 - 

8 8609327 - 

N 10 13257618 - 

 

 

3.3.1.1 Relative growth rate (RGR) 
 

As an example of the analysis pipeline, Figure 3.1 shows the Q-Q plot and Manhattan plot 

from the mixed linear model using relative growth rates of plants grown in 0.1 NPK as 

phenotypic data. SNPs above the threshold line are significant at using a 10% FDR rate. In 

quantile-quantile plots, the line produced based on observed P-values should lie along the 
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diagonal line of the expected P-values for most SNPs. The Q-Q plot value of around one 

suggests that no confounders (population structure, or family relatedness) occurred in the 

GWAS. Based on RGR data, a number of QTLs was identified in different chromosomes 

(Figure 3.1). The QTL in chromosome 4 included around 20 significant SNPs distributed 

among ~1Mb genomic region. Zooming into this region (Figure 3.2) shows a complex QTL 

which encompasses a total of 45 unique genes after removing transposons, expressed 

proteins and duplicates. For a peak to be considered a QTL, it has to encompass a minimum 

of 3 significant SNPs not farther than 20 kb away from each other. Two minor peaks only 

fulfilled this criterion, and genes within 200 kb from the top SNP in each minor peak were 

identified.  Candidate genes identified in the QTL in chromosome 4 are summarized in 

table 3.2.  

 

From this collection, candidate genes that might play a role in nutrient transport and use 

efficiency were identified, for example, cation transporters OsHKT1;4 (LOC_Os04g51830) 

and OsHKT1;1 (LOC_Os04g51820). These HKTs are permeable to Na only (Jabnoune et 

al., 2009; Su et al., 2015; Suzuki et al., 2016) and may be involved in regulation of K/Na 

homeostasis. OsHKT1;1 seems to act as a low-affinity sodium transporter (Garciadeblas et 

al., 2003) and it is highly expressed in the shoot while its expression in the root is induced 

by potassium starvation (Garciadeblas et al., 2003). Wang et al. (2015) reported that 

OsHKT1;1 in rice has an important role in salt tolerance by reducing Na concentration in 

shoots and preventing sodium toxicity in leaf blades as it is probably involved in the control 

of Na concentrations in the phloem and xylem sap under salt stress. The Oshkt1;1 mutant 

plants displayed hypersensitivity to salt stress, they contained less Na in the phloem sap and 

accumulated more Na in the xylem compared with the wild type. HKT1;1 is expressed 

mainly in the phloem of leaf blades and it is regulated by the OsMYBc transcription factor 

(Wang et al., 2015). HKT1;4 is highly expressed in leaf sheaths (Suzuki et al., 2016) and it 

controls leaf sheath-to-blade Na transfer under salt stress (Cotsaftis et al., 2012). A recent 

study on rice revealed that OsHKT1;4 has a function in limiting Na accumulation 

particularly in leaf blades under salt stress in reproductive growth stage (Suzuki et al., 

2016). 
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Na is known to have a positive influence on plant growth under limited K supply (Flowers 

and Lauchli, 1983; Takahashi and Maejima, 1998; Takahashi et al., 1997) as it can replace 

K to some extent, in carrying out some functions due to similar chemical properties 

between them (Wakeel et al., 2011). A study on rice plants revealed that shoot Na 

accumulation had increased under K deficient conditions but differed among cultivars 

(Akai et al., 2012). Additionally, it has been proven that Na improved the growth of rice 

plants under K deficiency and another HKT family member, OsHKT2;1, had a role in 

uptake and allocation of Na as a useful element in K deficient rice root (Horie et al., 2007). 

This gene was identified from GWAS analysis on another trait. The HKT genes were 

chosen as best candidates among others to potentially have a role in the transport and use 

efficiency of K.  

Transcription factors are known to regulate cellular processes and some TFs were found 

such as WRKY transcription factor 68 and MYB protein. Other genes such as calcium-

transporting ATPase which is a Mg-ATP dependent enzyme that catalyses the transport of 

calcium (Bañuelos et al., 2002; Yang et al., 2009). Similar analyses were carried out for all 

other traits listed in (Table 2.3, Chapter 2) and the full list of genes is in (Supplementary 

Table 3.7).  

  

Figure 3. 1:  A) Genome-wide P-values from the mixed model method based on relative growth rate 

in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of 

the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). Circles indicate peaks that fulfilled the criteria for QTL definition. B) A Q-

Q plot for relative growth rate in 0.1 NPK plants shows the distribution of the observed P-values 

alongside their expected values. Genomic control λGC= 1.056436. 

A B 
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Figure 3. 2: A) Chromosomal view showing the peak in chromosome 4 identified from RGR in 0.1 

NPK plants. B) Zoom-in of around 2 Mb covering the peak in chromosome 4. Blue and yellow 

shading indicate 200 kb interval of the two peaks analysed.  
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Table 3. 2:  Summary of the candidate genes identified in the QTL in chromosome 4 associated 

with RGR.  

Locus ID Gene  

LOC_Os04g51240 EF hand family protein, putative, expressed 

LOC_Os04g51270 vacuolar ATPase G subunit, putative, expressed 

LOC_Os04g51280 DAG protein, chloroplast precursor, putative, expressed 

LOC_Os04g51300 peroxidase precursor, putative, expressed 

LOC_Os04g51310 putrescine-binding periplasmic protein-related, putative, expressed 

LOC_Os04g51320 transcription factor TF2, putative, expressed 

LOC_Os04g51330 maltose excess protein 1-like, chloroplast precursor, putative, expressed 

LOC_Os04g51340 pectinacetylesterase domain containing protein, expressed 

LOC_Os04g51350 pentatricopeptide, putative, expressed 

LOC_Os04g51360 oxidoreductase, 2OG-Fe oxygenase family protein, putative, expressed 

LOC_Os04g51370 protein kinase, putative, expressed 

LOC_Os04g51380 protein-S-isoprenylcysteine O-methyltransferase. tax, putative, expressed 

LOC_Os04g51390 aldose 1-epimerase, putative, expressed 

LOC_Os04g51400 zinc finger, C3HC4 type domain containing protein, expressed 

LOC_Os04g51440 villin protein, putative, expressed 

LOC_Os04g51450 glycosyl hydrolases family 16, putative, expressed 

LOC_Os04g51460 glycosyl hydrolases family 16, putative, expressed 

LOC_Os04g51510 glycosyl hydrolases family 16, putative, expressed 

LOC_Os04g51520 glycosyl hydrolases family 16, putative, expressed 

LOC_Os04g51560 WRKY68, expressed 

LOC_Os04g51570 tyrosine phosphatase, putative, expressed 

LOC_Os04g51580 leucine rich repeat containing protein, expressed 

LOC_Os04g51610 calcium-transporting ATPase, plasma membrane-type, putative, expressed 

LOC_Os04g51630 60S ribosomal protein L7, putative, expressed 

LOC_Os04g51660 transferase family protein, putative, expressed 

LOC_Os04g51690 glycosyl hydrolase family 47 domain contain protein, expressed 

LOC_Os04g51700 DNA ligase I, ATP-dependent family protein, expressed 

LOC_Os04g51786 containing DUF163, putative, expressed 

LOC_Os04g51792 PAP fibrillin family domain containing protein, expressed 

LOC_Os04g51794 DNA binding protein, putative, expressed 

LOC_Os04g51796 DNA repair ATPase-related, putative, expressed 
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LOC_Os04g51800 MYB protein, putative, expressed 

LOC_Os04g51820 OsHKT1;1 - Na+ transporter, expressed 

LOC_Os04g51830 OsHKT1;4 - Na+ transporter, expressed 

LOC_Os04g51880 GHMP kinases ATP-binding protein, putative, expressed 

LOC_Os04g51890 OsSAUR20 - Auxin-responsive SAUR gene family member, expressed 

LOC_Os04g51910 proteasome/cyclosome repeat containing protein, expressed 

LOC_Os04g51920 protein disulfide isomerase, putative, expressed 

LOC_Os04g51940 YT521-B, putative, expressed 

LOC_Os04g51950 serine/threonine-protein kinase HT1, putative, expressed 

LOC_Os04g51970 synaptic vesicle 2-related protein, putative, expressed 

LOC_Os04g51980 transferase family domain containing protein, expressed 

LOC_Os04g51990 transferase family domain containing protein, expressed 

LOC_Os04g52000 protein phosphatase 2C, putative, expressed 

LOC_Os04g52020 PHD-finger domain containing protein, putative, expressed 

 

 

3.3.2 Quantitative trait loci linked to NPK nutrition in rice 
 

Based on GWAS analyses carried out on all traits a total of 84 QTLs was detected which 

covered a total of 3540 genes (Supplementary Table 3.6). After removal of duplications and 

of genes that were annotated as (retro)transposons, or as expressed proteins with no 

additional information, a total of 1462 unique genes remained (Supplementary Table 3.7). 

Some of the 84 QTLs identified in this analysis overlapped with previously identified QTLs 

(Figure 3.3). In total, 16 QTLs from this GWAS analysis were found to be localized within 

previously identified genomic regions. These were 10 QTLs associated with K deficiency 

tolerance in rice in all chromosomes except for 2, 3, 5, 6, 9 and 10 (Fang et al., 2015), three  

known QTLs for N deficiency tolerance and use efficiency in chromosome 4 and 9 (Wei et 

al., 2012), and three QTLs in chromosome 6, 10 and 12 linked to P deficiency tolerance 

(Nishida et al., 2017; Shimizu et al., 2008; Wissuwa et al., 2002; Wissuwa et al., 1998). 

Novel QTLs linked to NPK use efficiency were found in other parts of the genome across 

almost all the chromosomes.  
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Figure 3. 3: Summary of QTLs identified in this study. SNP positions are shown using red triangles 

to the left of grey bars which represent rice chromosomes. Coloured rectangles represent QTLs 

identified in previous studies in rice. 

 

3.3.3 Genes within Quantitative Trait Loci 
 

3.3.3.1 General classification of genes 
 

AgriGO gene ontology analysis tool (http://bioinfo.cau.edu.cn/agriGO/analysis.php) was 

used to perform GO singular enrichment analysis for the curated list of 1462 genes (Du et 

al., 2010). A total of 109 GO terms was statistically significantly (FDR <5%) enriched 

relative to their background abundance in the rice genome, these included secondary level 

terms of the parent ones under 3 categories: biological process, molecular function and 

cellular component.  Significance was calculated using Fisher's exact test with a Yekutieli 

adjustment for multiple testing. Considering only parent terms within the 3 categories, we 

ended up with a total of 13 significant overrepresented Go terms (7 in biological process 

category, 4 in molecular function and 2 in cellular components categories). 

Overrepresented GO terms in all 3 categories are summarized in figure 3.4. To conclude, 

metabolic and cellular processes together with response to stimulus related terms are 

http://bioinfo.cau.edu.cn/agriGO/analysis.php
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overrepresented in biological process category. Based on molecular function, catalytic 

activity and binding related terms are overrepresented. This suggests that genes with 

regulatory roles, such as kinases and transcription factors, might be potentially important to 

the use efficiency of NPK. However, these categories encompass hundreds of genes which 

will need further evaluation. In the molecular function category, transporter activity GO 

terms were also overrepresented. This is not surprising since many transporters have been 

previously identified to be involved in improving the use efficiency of nutrients (N, P and 

K) (Teng et al., 2017).  

 

Figure 3. 4: Summary of overrepresented GO terms in the curated list of genes. 

 

3.3.3.2 SNPs associated with traits and within genes 
 

Candidates were checked for the presence of non-synonymous SNPs (nsSNPs) using the 

Rice Diversity Allele Finder: (http://rs-bt-mccouch4.biotech.cornell.edu/AF/). Within the 

peaks included and amongst the SNPs that were significantly associated with any of the 

traits, 176 SNPs were found to be within genes. Of these, 36 nonsynonymous SNPs were 

found within 32 different genes as listed in Table 3.3 with two nonsense mutations in 

OsWAK35a - OsWAK short gene (LOC_Os04g24300) and in OsWAK126 - OsWAK 

receptor-like protein kinase (LOC_Os12g42040). Two nsSNPs were found within the 

cation transporter OsHKT2;4 (LOC_Os06g48800). 

http://rs-bt-mccouch4.biotech.cornell.edu/AF/
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Table 3. 3: Non-synonymous single nucleotide polymorphisms (SNPs) identified using GWAS.  

Gene Chr SNP 

position 

(bp) 

Amino acid 

change 

LOC_Os01g19548: pentatricopeptide, putative, 

expressed 

chr1 11090319 Thr->Ser 

LOC_Os02g34490: Leucine Rich Repeat family protein, 

expressed 

chr2 20668145 Leu->Ser 

LOC_Os03g54084: phytochrome C, putative, expressed chr3 31006533 Cys->Tyr 

LOC_Os03g54780: 

STE_PAK_Ste20_KHSh_GCKh_HPKh.1 - STE kinases 

include homologs to sterile 7, sterile 11 and sterile 20 

from yeast, expressed 

chr3 31147642 Met->Ile 

LOC_Os04g24220: OsWAK32 - OsWAK receptor-like 

protein kinase, expressed 

chr4 13866768 Glu->Asp 

LOC_Os04g35250: MONOCULM 1, putative, expressed chr4 21425711 Lys->Thr 

LOC_Os04g24220: OsWAK32 - OsWAK receptor-like 

protein kinase, expressed 

chr4 13865907 Ala->Ser 

LOC_Os04g24300: OsWAK35a - OsWAK short gene, 

expressed 

chr4 13924025 Arg->Stop 

LOC_Os05g40520: OsFBT8 - F-box and tubby domain 

containing protein, expressed 

chr5 23793160 Thr->Lys 

LOC_Os06g37540: hypothetical protein chr6 22223580 Arg->Cys 

LOC_Os06g48800: OsHKT2;4 - Na+ transporter, 

expressed 

chr6 29535779 Leu->Phe 

LOC_Os06g48800: OsHKT2;4 - Na+ transporter, 

expressed 

chr6 29536340 Ile->Val 

LOC_Os06g48870: methyl-binding domain protein 

MBD, putative, expressed 

chr6 29593765 Ala->Thr 

LOC_Os06g12390: galactosyltransferase family protein, 

putative, expressed 

chr6 6719213 Gln->Lys 

LOC_Os06g48860: OsSAUR28 - Auxin-responsive 

SAUR gene family member, expressed 

chr6 29580806 Asp->Glu 

LOC_Os06g48650: OsSub52 - Putative Subtilisin 

homologue, expressed 

chr6 29435494 Ala->Val 

LOC_Os06g44880: type II intron maturase protein, 

putative, expressed 

chr6 27129592 Ala->Ser 

LOC_Os06g47210: oligopeptidase, putative, expressed chr6 28623106 Asp->Asn 

LOC_Os08g05600: aquaporin protein, putative, 

expressed 

chr8 2997985 Phe->Val 

LOC_Os08g42840: leucine rich repeat protein, putative, 

expressed 

chr8 27088677 Val->Gly 

LOC_Os08g43010: disease resistance RPP13-like protein 

1, putative, expressed 

chr8 27184186 Glu->Asp 

LOC_Os08g43000: CC-NBS-LRR, putative, expressed chr8 27178314 Gln->Arg 

LOC_Os08g42840: leucine rich repeat protein, putative, 

expressed 

chr8 27088956 Tyr->Phe 

LOC_Os08g15149: oxidoreductase, 2OG-Fe oxygenase 

family protein, expressed 

chr8 9167154 Ala->Val 
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LOC_Os08g43000: CC-NBS-LRR, putative, expressed chr8 27178176 Leu->Arg 

LOC_Os08g15180: 60S acidic ribosomal protein, 

putative, expressed 

chr8 9181356 Ile->Val 

LOC_Os08g09030: hypothetical protein chr8 5250384 Ile->Asn 

LOC_Os08g28830: pentatricopeptide, putative, 

expressed 

chr8 17630078 Lys->Met 

LOC_Os08g09020: Cupin domain containing protein, 

expressed 

chr8 5249103 Val->Ile 

LOC_Os08g08990: Cupin domain containing protein, 

expressed 

chr8 5234303 Gly->Ser 

LOC_Os10g31510: glycine-rich cell wall structural 

protein 2 precursor, putative, expressed 

chr10 16508164 Ala->Val 

LOC_Os10g31620: glycine-rich cell wall structural 

protein 2 precursor, putative, expressed 

chr10 16567557 Ala->Val 

LOC_Os10g25670: hypothetical protein chr10 13288466 Phe->Leu 

LOC_Os11g40090: A49-like RNA polymerase I 

associated factor family protein, expressed 

chr11 23912892 Arg->His 

LOC_Os11g40080: lipin, N-terminal conserved region 

family protein, expressed 

chr11 23904581 Ser->Phe 

LOC_Os12g42040: OsWAK126 - OsWAK receptor-like 

protein kinase, expressed 

chr12 26075612 Ser->Stop 

 

 

3.3.3.3 Novel candidate genes with potential importance for 

NPK use efficiency 
 

Among the 1462 genes, 6 genes were identified to potentially be involved directly in the 

use efficiency of NPK. These genes included: 1 ammonium transporter, 3 nitrate 

transporters and 2 potassium transporters. Unexpectedly, several Na transporters were 

identified that might be potentially important in the use efficiency of K. Other genes that 

might be potentially important are regulatory genes and transcription factors.  Associated 

traits and putative roles in PKN nutrition of the most promising candidate genes are briefly 

discussed in the next section. 

 

The low affinity ammonium transporter AMT3;1 (LOC_Os01g65000) was associated with 

P(FW)/RGRLT and it is expressed more in shoots than roots (Gaur et al., 2012). Two high-

affinity nitrate transporters OsNRT2.1 (LOC_Os02g02170) and OsNRT2.2 

(LOC_Os02g02190) were associated with N(FW)/RGRLT. OsNRT2.1 and 2.2 are believed 

to have a key role in nitrate uptake (Araki and Hasegawa, 2006). Under  low nitrate, 
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enhanced growth was observed in rice plants when OsNRT2.1 was overexpressed 

(Katayama et al., 2009). OsNRT2.1/2.2 are mainly and abundantly expressed in most cell 

types of the roots (primary and lateral) but also expressed in the leaves (Feng et al., 2011). 

The High-affinity nitrate transporter 2.3 (NRT2.3) (LOC_Os01g50820) was associated 

with K(DW)REDLT and K(FW)REDLT. OsNRT2.3 have two mRNA splice variants: 

OsNRT2.3a and OsNRT2.3b. It has been observed that OsNRT2.3a plays a major part in 

long distance nitrate transport from root to shoot specifically under low nitrate, 

additionally, knockdown of this gene led to impairment in xylem loading of nitrate and 

reduction in growth at under low nitrate (Tang et al., 2012). OsNRT2.3 is expressed in the 

stelar cells of both primary and lateral roots (Feng et al., 2011; Tang et al., 2012). All the 

three OsNRT2.1/2.2/2:3a genes require OsNAR2.1 as a partner to mediate nitrate transport, 

moreover  knockdown of OsNAR2.1 resulted in supressed expression in all of the above 

mentioned OsNRT2 transporters (Yan et al., 2011).  

  

Linked to RGR, two sodium transporters were identified, OsHKT1;1 (LOC_Os04g51820) 

and OsHKT1;4 (LOC_Os04g51830) as mentioned previously. Linked to the same trait, the 

high affinity potassium transporter 14 (HAK14) was identified (LOC_Os07g32530). From 

the same family, another transporter HAK11 (LOC_Os04g52390) was found to be 

associated with FW and with Mg(FW)REDLT. In rice, 27 genes belonging to the 

KT/HAK/KUP potassium transporter family are distributed among 8 chromosomes and 

they  cluster in four major groups based on their amino acid sequences (Gupta et al., 2008). 

Although both OsHAK11 and OsHAK14 belong to cluster III, they are subdivided into 

cluster IIIA and B respectively. However, functions of cluster III and IV members are less 

understood compared to cluster I and II members (Grabov, 2007). Cluster III genes are not 

highly expressed in roots, but OsHAK11 expression in the root was found to be induced by 

salt stress (Okada et al., 2008). In general, the majority of cluster I members in plants tends 

to have a role in high affinity K uptake, and cluster II members are likely to function as low 

affinity K transporters (Okada et al., 2008). However, physiological functions of these 

transporters not only differ between plant species but also between members of the same 

cluster within the same species (Li et al., 2017). 
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Two Na transporters were found to be related to many traits including: Na(DW)LT, 

Na(DW)/RGRLT and NaUELT. These are: OsHKT2;1 (LOC_Os06g48810) and 

OsHKT2;4 (LOC_Os06g48800). OsHKT2;1 is a high affinity Na transporter which has a 

role in uptake and allocation of Na in rice roots under K deficiency (Garciadeblás et al., 

2003; Horie et al., 2007) and the expression in roots is induced by K starvation 

(Garciadeblás et al., 2003; Horie et al., 2001). Under low K provision, OsHKT2;1 

expression was up-regulated (Ma et al., 2012; Takehisa et al., 2013) and shoot Na 

accumulation increased when OsHKT2;1 was overexpressed (Miyamoto et al., 2015). 

Furthermore, OsHKT2;4 selectively transports K under low external Na concentration , but 

mediates Na transport when Na concentration is high (>10 mM). Its K selectivity is 

dominant   over Na (Sassi et al., 2012) and other divalent cations such as Mg and Ca (Horie 

et al., 2011a; Lan et al., 2010b). Expression of OsHKT2;4 was down-regulated under K 

deficiency (Shankar et al., 2013) and it is expressed more in shoots than roots (Miyamoto et 

al., 2015) . 

 

The Na transporter OsHKT1;5 (LOC_Os01g20160) was associated with NaUELT. 

OsHKT1;5 is a selective sodium transporter and it has been shown that a loss of function of  

this gene has led to higher Na accumulation in shoots under salt stress as it has a role in 

recirculating Na from shoots to roots by excluding Na in the phloem (Kobayashi et al., 

2017; Mekawy et al., 2015) and also in retrieving Na from the xylem to reduce the 

accumulation in shoots (Zhong-Hai et al., 2005).  

3.3.4 Evaluation of candidate genes using available mutants 

 

Among the candidates identified by GWAS two HKT transporters were selected for further 

evaluation as they might have a role in K use efficiency.  A mutant of OsHKT1;1 (line 

NF7030) obtained from (Wang et al., 2015) had the Tos17 retrotransposon insertion within 

the first intron of OsHKT1;1. Published data confirmed that this insertion  had an effect on 

gene function and showed that the plants had a phenotype when tested under salinity stress 

(Wang et al., 2015). The seed stock obtained was homozygous for the insertion 

(Figure.3.5). 
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Although HKT1;1 is highly expressed in the shoot (leaf blade specifically), the expression 

in the root is induced by potassium starvation (Garciadeblás et al., 2003) suggesting that 

this gene might have a role in transport of Na to compensate for K under K deficiency. In 

this case, by disrupting HKT1;1 gene function, it was expected that the knockout lines 

would be limited in their Na transport/uptake, assuming there is little or no redundancy. 

Therefore, under low NPK, plants would perform less well since K cannot be efficiently 

replaced by Na. In standard NPK conditions, it was expected that there is no difference 

between wild type and mutant. On the other hand, HKT1;1 plays a role in reducing Na 

accumulation in the shoot under salt stress (Wang et al., 2015), meaning that this gene 

would act negatively under normal conditions by limiting Na transport to the shoot. In this 

case, disrupting the gene function would be expected to have a positive effect. Mutant 

plants would not reduce Na accumulation in the shoot and therefore plants would still 

benefit from Na as a useful element under K deficiency. However, testing mutant HKT1;1 

seeds together with Nipponbare under 1 NPK and 0.1 NPK condition revealed that mutant 

plants had lower final fresh weights and relative growth rates (Figures 3.6 and 3.7) in both 

conditions which does not confirm the first assumption we had. Moreover, RGR reduction 

showed no difference between wild-type and mutant plants (Figure 3.8), meaning that 

knocking out HKT1;1 did not reveal any effect. This is possibly due to redundancy and 

more than one gene contributing to give a phenotype, or this gene might act differently 

under different conditions. 
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Figure 3.5: PCR product after amplification with OsHKT1;1 F and R primers shows a wild-type 

band at the expected size of 1080 bp for Nipponbare and not for plants with Tos17 insertion (Top). 

Using rice actin primers, bands at size of 409 bp were observed in both wild type and mutant plants 

confirming a successful PCR (Bottom).  L: 100bp DNA ladder, lane 1: Nipponbare, 1-18: HKT1;1 

mutant plants.  
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Figure 3. 6: Average fresh weight of HKT1;1 mutant plants was smaller than Nipponbare plants 

under 1 NPK and 0.1 NPK conditions. Error bars: SE (n=9 HKT1;1 mutant, n=5 Nip). 

 

Figure 3. 7: Relative growth rates of mutant plants were lower than Nipponbare plants under 1 NPK 

and 0.1 NPK conditions. Error bars: SE (n=9 HKT1;1 mutant, n=5 Nip). 
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Figure 3. 8: RGR reduction shows no difference between Nipponbare and mutant plants. 

 

 

3.3.5 Evaluation of candidate genes using CRISPR/Cas9 system  
 

Two guides on the 1st exon of HKT1;4 were chosen for generating single knockout 

mutants, through small indels at either target site or by deleting the segment in between the 

targets. To produce a double knockout, 1 guide targeting the 1st exon of HKT1;4 and one 

targeting the 2nd exon of HKT1;1 were designed to simultaneously disrupt these two genes 

by deleting the region in between the targeted sites (Fig 3.9).  

To make level 1 constructs, gRNA scaffolds were amplified and the expected sizes of 140 

bp or 141 bp depending on the gRNA length were observed (Figure 3.10a). Level 1 

constructs were tested by diagnostic digestions and bands of correct sizes were observed 

(Figure 3.10b). Level M constructs were also confirmed by diagnostic restriction digests 

(Figure 3.11). The structure of the final construct is shown in Figure 3.12. 
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Figure 3. 9: Graphical overview illustrating the exon-intron structure of A) HKT1;4, B) HKT1;1. 

Red and grey bars in (A) indicate target sites for HKT1;4. Blue bar in (B) indicates the target site of 

HKT1:1 when simultaneously targeted with HKT1;4. C) The location of the gRNAs used for 

double targeting within the 1st exon of HKT1;4 and 2nd exon of HKT1;1.  

 

 

 

 

 

 

C) 

B) 

A) 
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Figure 3. 10: (A) PCR products after scaffold amplification at expected size. From the left: (L) 100 

bp DNA ladder, (1) TaU6-gRNA1-HKT1;1, (2) TaU6-gRNA2-HKT1;1, (3) TaU6-gRNA1- 

HKT1;4, (4) TaU6-gRNA2-HKT1;4. (B) Restriction digests for level 1 plasmids with NcoI + SacI 

shows bands at expected sizes. (L) 1 kb DNA ladder, (1) gRNA1 cassette-HKT1;1, (2) gRNA2 

cassette-HKT1;1, (3) gRNA1 cassette-HKT1;4, (4) gRNA2 cassette-HKT1;4.  

 

 

Figure 3. 11: Diagnostic restriction digests to confirm level M consctructs. Bands were observed at 

the expected sizes after digestion with a combination of NcoI + SacI (1-4) and BamHI + NcoI (5-8). 

(L) 1 kb DNA ladder. Level M constructs: (1 and 5) HKT1;1, (2 and 6) HKT1;4, (3 and 7, 4 and 8) 

HKT1;1 and HKT1;4.  

 

 

A) B) 
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Figure 3. 12: Map of level M constructs. Abbreviations are as follows: RB for right border, spec for 

spectinomycin resistance, Ori for origin of replication, LB for left border, ZmUbi for Zea mays 

Ubiquitin promoter, Hyg for hygromycin phosphotransferase resistance, CAMV35S for Cauliflower 

mosaic virus 35S terminator, OsAct for Oryza sativa Actin promoter, Atnop for Arabidopsis 

thaliana nopaline synthase terminator, TaU6 for Triticum aestivum U6 promoter. Sites of NcoI, 

SacI and BamHI enzymes used for diagnostic digests. 
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3.3.5.1 Rice transformation  
 

All steps to regenerate transgenic plants following the (Nishimura et al., 2006) protocol 

were successfully accomplished  (Figure 3.13 ). 

 

Figure 3. 13: Rice transformation and production of transgenic plants. A) Induction of calli from 

placing de-husked seeds (left) to calli formation (right) takes 4 weeks; B) Pre-culture of calli with 

Agrobacterium (3 days), inoculation of Agrobacterium and co-cultivation (3 days); C) Selection of 

transformed cells (4 weeks) and regeneration of shoot (4-6 weeks); D) Growth of transgenic plants 

in soil pots. 

 

3.3.5.2 Identifying mutations in the T0 plants 
 

For each construct 7 to 18 plants were regenerated (Table 3.4). Some of these were 

obtained from the same callus and could therefore originate from a single transformation 

event. 7 to 10 plants for each construct were tested by PCR and sequencing of cloned PCR 

products to identify mutations. In some lines, large deletions were detected by PCR. These 

are plants 7, 9 and 10 from construct OsHKT1;4 (Figure 3.14) and plant 3 from construct 

OsHKT1;1+OsHKT1;4 (Figure 3.16a). These deletions were confirmed by sequencing. 

Also, sequencing revealed a high rate of success in generating small deletions or insertions 

(Figures 3.15, 3.17, 3.18; Table 3.4). Sequencing results for the 2nd target site of OsHKT1;4 

A) B) 

C) 

D) 
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were not obtained, as this region was downstream the amplified region using PCR. Hence, 

mutation types for this plants are not confirmed before sequencing the 2nd target. Many of 

the sequenced cloned represented failed insertions of the PCR fragment into the plasmid. 

Therefore, there is often only one sequence trace available. Hence, in most cases it is not 

yet possible to tell whether a plant was homozygous or biallelic. However, wt sequences 

were recovered only in 4 out 19 plants, whereas mutant sequences were detected in 16 

plants. Hence, the success rate of mutagenesis was about 80%. The biallelic cases are the 

most likely not to contain wt sequence. For others, more sequencing data are needed before 

testing plants for phenotypes. In the case of targeting OsHKT1;1 and OsHKT1;4 together, 

so far only plants 3, 4 and 5 carry mutant alleles in both genes. Unfortunately, the 

mutations found in OsHKT1;4 in these three plants result in the deletion of a single amino 

acid. This is unlikely a knockout mutation. However, it is worth sequencing more clones 

from these plants and from plants 2 and 6 to see if additional mutant alleles can be found.  

 

 

Figure 3. 14: PCR products for construct HKT1;4. (L): 100 bp DNA ladder. Numbers above lanes 

indicate plant IDs. The expected PCR product size for unmodified HKT1;4 was 650 bp. The 

expected deletion size from cuts at both target sites for HKT1;4 is 474 bp. Additional band in 

sample 7, 8 and 10 indicate deletion of 277 bp.  
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wt   gaGAACACCTCCATCTCG^ACGGTGGacatgct 

 

 1   gaGAACACCTCCATCTCG^ACGGTGGacatgct    wt    (2)  

     

 2   gaGAACACCTCCATCTC-^-CGGTGGacatgct    -2    (1) 

 

 3   gaGAACACCTCCATCTCG^-CGGTGGacatgct    -1    (1) 

      

 5   gaGAACACCTCCATCTCGTACGGTGGacatgct    +1    (1) 

 

 7   ------------------^-CGGTGGacatgct    -277  (3) 

     gaGAACACCTCCAT----^------------ct    -16   (2) 

        

 8   gaGA--------------^-------acatgct    -21   (2) 

 

 9   ------------------^-CGGTGGacatgct    -277  (1) 

     gaGAACACCTCCAT----^------------ct    -16   (1) 

         

 10  ------------------^-CGGTGGacatgct    -277  (2) 

 

Figure 3. 15: Mutations in the1st target site of HKT1;4 in T0 generation. Sequence corresponding to 

the gRNA is shown in blue, PAM sequence in bold and underlined. Grey highlighted circumflex 

accents added to wild-type sequence indicate insertions occurred in these sites. Deletions and 

insertions are indicated by red dashes and red letters, respectively. Numbers on the left side indicate 

plant ID. Numbers on the right side indicate types of mutation and numbers of nucleotides involved, 

followed by number of sequence traces in brackets. Plants generated from the same callus are 7, 9 

and 10. Plant 4 and 6 were excluded due to cloning artefact. 
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Figure 3. 16: PCR products for construct HKT1;1 and HKT1;4 using : A) HKT1;1 primers, B) 

HKT1;4 primers. (L): 100 bp DNA ladder, Numbers above lanes indicate plant IDs. The expected 

PCR product size for unmodified HKT1;4 was 650 bp. A) Additional band in sample 3 indicate 

deletion of around 830 bp.  

 

 

 

 

 

 

 

 

 

A 

B 
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  wt   aaACTCGATTAGCAGAGCA^CTGTGGaggaatt 

 

   1   aaACTCGATTAGCAGAGCA^CTGTGGaggaatt    wt       (3) 

 

   2   aaACTCGATTAGCAGAGCAACTGTGGaggaatt    +1       (3) 

       aaACTCGATTAGCAGAGCA^CTGTGGaggaatt    wt       (1) 

 

   3   -------------------^-------------    -847/+17 (5) 

 

   4   aaACTCGATTAGCA-----^-------------    -47      (2) 

       aaACTCGATTAGCAGAGCAACTGTGGaggaatt    +1       (2) 

 

   5   aaACTCGATTAGCA-----^-------------    -47      (2) 

       aaACTCGATTAGCAGAGCAACTGTGGaggaatt    +1       (2) 

 

   6   aaACTCGATTAGCA-----^-------------    -47      (2) 

       aaACTCGATTAGCAGAGCAACTGTGGaggaatt    +1       (1) 

 

   7   aaACTCGATTAGCAGAGCA^CTGTGGaggaatt    wt       (4) 

 

Figure 3. 17: Mutations in T0 generation of HKT1;1 gene simultaneously targeted with HKT1;4. 

Sequence corresponding to the gRNA is shown in blue, PAM sequence in bold and underlined. 

Grey highlighted circumflex accents added to wild-type sequence indicate insertions occurred in 

these sites. Deletions and insertions are indicated by red dashes and red letters, respectively. 

Numbers on the left side indicate plant ID. Numbers on the right side indicate types of mutation and 

numbers of nucleotides involved, followed by number of sequence traces in brackets. Plants 

generated from the same callus are 4 and 5.   
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wt   gaGAACACCTCCATCTCG^ACGGTGGacatgct 

 

 3   gaGAACACCTCCATCT--^-CGGTGGacatgct    -3  (1) 

 

 4   gaGAACACCTCCATCT--^-CGGTGGacatgct    -3  (2)             

 

 5   gaGAACACCTCCATCT--^-CGGTGGacatgct    -3  (1) 

      

 7   gaGAACACCTCCATCTCGAACGGTGGacatgct    +1  (1)       

 

Figure 3. 18: Mutations in T0 generation of HKT1;4 gene simultaneously targeted with HKT1;4. 

Sequence corresponding to the gRNA is shown in blue, PAM sequence in bold and underlined. 

Grey highlighted circumflex accents added to wild-type sequence indicate insertions occurred in 

these sites. Deletions and insertions are indicated by red dashes and red letters, respectively. 

Numbers on the left side indicate plant ID. Numbers on the right side indicate types of mutation and 

numbers of nucleotides involved, followed by number of sequence traces in brackets. Plants 

generated from the same callus are 4 and 5. Plant 1, 2 and 6 were excluded due to cloning artefact.  
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Table 3. 4: Summary of HKT1;4 and HKT1;1+HKT1;4 mutants in the T0 generation. Number of 

plants generated for each construct, mutations in each target site and the overall mutant type. Small 

letters indicate plants generated from the same callus. (+) and (–) indicate insertions and deletions, 

respectively. Abbreviations are as follows: wt for wild type, bi for bi-allelic mutant, hom for 

homozygous mutants, het for heterozygous plants for wt/mutant, na for plants excluded due to 

cloning artefact. Question marks indicate uncertainty due to limited number of available sequences.  

Construct Plant Callus Site 1 overall 

HKT1;4 

1  wt wt? 

2  -2 ? 

3  -1 ? 

4  na  

5  +1 ? 

6  na  

7 a -277, -16 bi 

8  -21 ? 

9 a -277, -16 bi 

10 a -277 ? 
     

HKT1;1 double 

targeting 

1  wt wt 

2  +1, wt het 

3  -847, +17 (= -830) bi 

4 b -47, +1 bi 

5 b -47, +1 bi 

6  -47, +1 bi 

7  wt wt 
     

HKT1;4 double 

targeting 

1  na  

2  na  

3  -3 ? 

4 b -3 ? 

5 b -3 ? 

6  na  

7  +1 ? 
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3.4 Discussion 
 

The physiological and genetic response of 294 rice varieties to low supply of multiple 

elements (NPK) in parallel was studied for the first time. In this GWAS study, a total of 84 

QTLs was found to be associated with different traits under low NPK. Different GWAS 

outputs were observed among treatments and traits, with some overlapping. The vast 

majority of QTLs presented for low NPK traits was absent in the same traits under control 

condition, suggesting that these genetic variations were treatment specific. An important 

goal for crop breeders is to develop varieties that produce high yields with less fertilizer 

input. Identifying genes that are responsible for the differences in use efficiency of nutrients 

therefore has a potential to be exploited for crop improvement.  

 

Of the 84 QTLs from the GWAS analysis, 16 SNPs were found to overlap with known 

QTLs related to N, P and K deficiency. Other SNPs from GWAS overlapped with QTLs 

related to other traits. These findings suggest that co-localisation between GWAS outputs 

and previous QTL studies serves as a good complementary approach, and they both can be 

exploited to improve desirable traits in crops. Furthermore, QTLs appearing in more than 

one trait and overlapping in different studies might indicate their potential importance as a 

target to for crop improvement.  

 

Gene ontology enrichment analysis on the curated list of 1324 genes, revealed 109 GO 

terms that were statistically significantly overrepresented relative to their background 

abundance in the rice genome. Such a large number of overrepresented GO terms makes it 

inconvenient to identify genes as candidates based on their GO terms. Another issue is that 

results generated from different GO analysis tools could be incompatible and slightly 

different conclusions can be drawn by using different tools. Thus, GO analysis at best 

provides a complementary analysis to other analyses such as comparison of QTL overlap.  

Non-synonymous SNPs are found to cause alteration in amino acid sequences which can 

lead to phenotypic differences (Ramensky et al., 2002). Two nsSNPs were found within 

Wall-Associated Kinase OsWAK32 - OsWAK receptor-like protein kinase 

(LOC_Os04g24220). Wall-Associated Kinases (WAK) generally have a role in signal 

reception and sensing the extracellular environment while triggering intracellular signals 
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(de Oliveira et al., 2014). This might indicate the importance of these kinases as they might 

work as sensors for nutrient stress. Possibly, these kinases are disabled in some genotypes 

making them sensitive and less efficient to grow under low NPK. It was interesting to see 

that a good number of the genes containing nsSNPs encodes proteins with regulatory 

functions, such as OsWAK receptor-like protein kinase, OsFBT8 - F-box and tubby domain 

containing protein, OsSAUR28 - Auxin-responsive SAUR gene family member, which 

might explain the overrepresentation of GO terms of these categories. This could possibly 

indicate the importance of these genes as targets for crop improvement.    

 

Two nsSNPs were found within the cation transporter OsHKT2;4. OsHKT2;4 selectively 

transports K under low external Na concentration , and its selectivity is dominant  for K 

over Na (Sassi et al., 2012).  Expression of OsHKT2;4 was down-regulated under K 

deficiency (Shankar et al., 2013) and it is expressed more in shoots than roots (Miyamoto et 

al., 2015) . A nearby gene, OsHKT2;1 has a role in uptake and allocation of Na in rice roots 

under K deficiency (Garciadeblás et al., 2003; Horie et al., 2007) and the expression in 

roots is induced by K starvation (Garciadeblás et al., 2003; Horie et al., 2001). Under low K 

provision, OsHKT2;1 expression was up-regulated (Ma et al., 2012; Takehisa et al., 2013) 

and shoot Na accumulation increased when OsHKT2;1 was overexpressed . Interestingly, 

these two Na transporters, OsHKT2;1 and OsHKT2;4, appeared as candidate genes in 

another GWAS study done by my colleague (Hartley, 2018), where only K was limiting. 

This supports the finding that K was a limiting factor when N, P and K were reduced in 

parallel. This might point to the importance of these two candidates in K use efficiency.  

 

Since N and K were limiting in the growth experiment, identifying genes with roles in 

transport of N and K would be expected. The lack of P transporters in the candidate genes 

might be explained by the notion that P was not limiting in this study. On the other hand, 

the abundance of HKT transporters might be owed to K stress leading to the replacement of 

K with Na as useful element (Gattward et al., 2012; Subbarao et al., 1999), or might be due 

to K and N interaction. Na could stimulate taking up nitrate as it has been found that nitrate 

uptake is stimulated by cations with positive correlation between nitrate and cation uptake 

rates(Ivashikina and Feyziev, 1998). A study on wheat revealed that nitrate uptake was 
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similar with either Na or K as the only cation in the medium. However, accumulation of N 

in leaves was reduced by 75% with almost no Na accumulated when Na was the only ion in 

the medium (Barneix and Breteler, 1985).  

 

A couple of candidate genes identified by GWAS were successfully manipulated using 

CRISPR/Cas9 system, and the success rate of mutagenesis was about 80%. Single 

knockout for HKT1;4 was successfully obtained. However, more genotyping is required to 

confirm the achievement of double knockouts for OsHKT1;1 and OsHKT1;4. Since more 

genes from the same family were identified later, simultaneous knock out can be performed 

using CRISPR/Cas9.  Previous studies confirmed the efficiency of the system in producing 

simultaneous knockouts for multiple genes in rice and Arabidopsis (Ma et al., 2015). 

Transgenic plants produced in this study can be phenotyped to check their performance 

under low NPK conditions. As both genes play a role in reducing Na accumulation in the 

shoot under salt stress (Suzuki et al., 2016; Wang et al., 2015), knocking out these genes 

would be expected to have a positive effect by transporting Na to the shoot which can be 

used to replace K under K deficiency. If these plants showed better growth compared to wt 

plants, that might indicate their potential role in K use efficiency under low K conditions. 

Also, the produced seeds can be made available for researchers, which would be beneficial 

due to the lengthy process of producing these lines. 

 

In conclusion, the GWAS study revealed QTLs linked to use efficiency of NPK for the first 

time. Some of these QTLs were novel and others overlapped with previously known QTLs 

for the use efficiency of N, P and K separately. Candidate genes that might be directly 

involved in the use efficiency of NPK such as N and K transporters were identified. 

Unexpectedly, several candidate genes identified were found to be involved in Na transport. 

Other genes not directly linked to NPK transport and distribution were also identified such 

as transcription factors and regulatory proteins involved in metabolic processes. This serves 

as a base for further characterisation of these genes which can then be targeted to improve 

crops under low NPK stress. A couple of candidate genes were successfully manipulated 

using the CRISPR/Cas9 system and mutant seed stock is now ready for testing. 
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Chapter 4: Towards improving mycorrhiza-

dependent nutrient uptake by engineering the 

rice H+-ATPase (OsHA1) 

  
4.1 Introduction 
 

Genome editing techniques have been widely used lately to enhance desirable traits in 

plants and in crop production, and they have been gradually replacing the classical breeding 

methods which are lengthy and complicated (Sharma et al., 2017).  There are several 

genome editing techniques that are used in the genetic manipulation of plants. These 

techniques vary in efficiency as different studies indicate. Zinc Finger Nucleases (ZFN) 

were the first generation editing tools, and they use chimerically engineered nucleases 

(Kamburova et al., 2017). Another technique is Transcription Activator-like Effector 

Nucleases (TALENs) which are used for selective and effective modification of target 

genomic DNA (Kamburova et al., 2017). Oligonucleotide-Directed Mutagenesis (ODM) 

uses an oligonucleotide that is similar to the target sequence although it has a single base 

pair change to achieve gene editing (Sauer et al., 2016). In early 2013, genome editing 

using CRISPR/Cas 9 system was first reported (Cong et al., 2013). According to (Song et 

al., 2016),the  CRISPR/Cas 9 system is superior to the other genome editing technologies 

such as ZFNs and TALENs, mainly for the ease of construct design. CRISPR/Cas 9 has 

been successfully applied in different plants such as Arabidopsis, tobacco and wheat (Feng 

et al., 2014; Jian-Feng et al., 2013; Jin et al., 2013; Qiwei et al., 2013; Xie and Yang, 

2013). 

  

One of the strategies plants adapted to nutrient limiting conditions is the creation of 

symbiotic relationships with microbes such as Arbuscular mycorrhizal (AM) fungi and 

rhizobia (Marschner and Dell, 1994; Smith and Read, 2010). AM symbiosis is known for 

enhancing the supply of not just water but also nutrients like nitrogen and phosphorus to the 

plant (Fellbaum et al., 2012; Leon, 2012). A large interphase between fungus and plant is 
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provided within root cells by the highly branched arbuscules, which are surounded by the 

periarbuscular membrane (PAM). This membrane separates arbuscules from the cytoplasm 

of the plant cells. P transport from the fungus to the plant is believed to be dependent on the 

proton gradient across the PAM (Krajinski et al., 2014). In rice, 70% of total phosphorus 

uptake owed to AM symbiosis (Yang et al., 2012), suggesting that AM has the potential to 

contribute significantly to crop yield and worldwide food security (Bethlenfalvay, 1992; Hu 

et al., 2009).  

 

The superfamily of P-type ATPases plays a role in transporting ions and possibly 

phospholipids coupled with the breakdown of ATP (Baxter et al., 2003). They are named so 

because of the formation of phosphorylated intermediate by the enzyme during the catalytic 

cycle (Baxter et al., 2003; Morsomme and Boutry, 2000). In the rice genome there are 43 P-

type ATPase genes belonging to 5 major groups (Baxter et al., 2003). H+-ATPases are a 

subfamily of the P-type ATPase large family. These proton pumps  drive the movement of 

ions and metabolites into and out of cells by creating an electrochemical H+ gradient which 

is used to drive secondary transport  (Morsomme and Boutry, 2000; Sondergaard et al., 

2004). In addition to nutrient transport, they are found to be involved in stomatal opening, 

regulating biotic and abiotic stress responses, and growth (Duby and Boutry, 2009; Gong et 

al., 2010; Janicka-Russak et al., 2013; Schaller and Oecking, 1999; Zhao et al., 2000).  

 

The stretched C-terminal region is a characteristic of H+-ATPases compared to the other P-

type ATPase groups (Duby and Boutry, 2009). A regulatory domain of 100 residues is 

located on the C-terminus and it has a role in regulating pump function and inhibiting 

enzyme activity (Duby and Boutry, 2009; Falhof et al., 2016). The general structure of H+-

ATPase in plants and fungi is shown in Figure 4.1. There are two activity states: inactive or 

also known as auto-inhibited state when the regulatory domain (R) is bound to the 

inhibitory domain in the membrane, and the active state when R domain is bound to a 

regulatory 14-3-3 protein and ATP degradation is tightly linked with proton pumping 

(Falhof et al., 2016; Werner, 2004). In plants, several phosphorylatable residues are known 

by which H+-ATPases are regulated (Falhof et al., 2016). The phosphorylation of the 

penultimate residue, threonine (Thr), activates the binding of 14-3-3 regulatory proteins, 
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which results in a stable active state (Jahn et al., 1997). The binding of 14-3-3 protein 

prevents de-phosphorylation of the Thr residue leading to pump activation (Duby and 

Boutry, 2009; Falhof et al., 2016; Werner, 2004).  

 

OsHA1 is a member of the rice plasma membrane H+-ATPase gene family comprising 7 

other members (Wang et al., 2014a). This gene is highly induced by mycorrhizal 

colonization and is expressed specifically in arbusculated root cells, serving as an energizer 

for the plant periarbuscular membrane by generating a proton gradient to support nutrient 

exchange between the plant and the fungus by secondary transporters (Gianinazzi-Pearson 

et al., 2000; Krajinski et al., 2002; Wang et al., 2014a). Under low P supply, overexpression 

of OsHA1 in Medicago truncatula resulted in improved plasma membrane potential, 

increased  phosphate uptake and shoot P content (Wang et al., 2014a). M. truncatula 

ha1mutated plants were impaired in building the proton gradient and hence showed reduced 

uptake of phosphate. Moreover, under conditions of low P supply, the growth of the mutant 

plants was not enhanced by AM fungi (Krajinski et al., 2014).  
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Figure 4. 1: General structure of H+-ATPase showing two activity states modified after (Fuglsang et 

al., 2011). The phosphorylation domain (P) is shown in red, the nucleotide binding domain (N) in 

yellow, the actuator domain (A) in light green, the membrane spanning domains (M) in grey and the 

regulatory (R) domain in black. Of critical interest to this project is a) the inactive state when the R 

domain is linked to the membrane domain; b) the active state achieved when R domain is truncated, 

or when untruncated R domain is bound to a regulatory 14-3-3 protein. Red lines indicate cut sites 

to produce truncations. 

 

Modification of pumping activity by truncating the C-terminal regulatory domain was 

reported in previous studies (Baunsgaard et al., 1996; Gévaudant et al., 2007; Regenberg et 

al., 1995; Speth et al., 2010). For example, transgenic Nicotiana tabacum plants lacking the 

regulatory domain (ΔPMA4) showed increased tolerance to salt stress and better root 

growth compared to wild type under saline conditions  (Gévaudant et al., 2007). In another 

study, C-terminal deletions of Arabidopsis thaliana AHA1 and AHA2 genes expressed in 

yeast led to constitutive pumping activity, higher ATP affinity state and increased enzyme 

activity (Baunsgaard et al., 1996; Regenberg et al., 1995). A series of C-terminal deletions 

a) Inactive state 

b) Active state 

M 

M 
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in AHA2 ranging from 38 to 104 amino acids were produced and introduced to yeast where 

the orthologous gene PMA1 was knocked out. Truncated AHA2 of the sizes Δ66 to Δ92 

amino acids resulted in optimal growth of yeast comparable to that when PMA1 was 

functional. Although lacking 38 amino acids did not affect the growth positively it was able 

to create a high affinity state of the enzyme. Compared to that, truncations of Δ50 amino 

acids and more significantly increased the enzyme activity (Regenberg et al., 1995). 

Conversely, yeast was not able to grow when transformed with the wild type AHA2 as yeast 

lacks the regulatory 14-3-3 protein (Regenberg et al., 1995). To conclude, it was 

demonstrated that truncations in the regulatory domain of the C-terminus resulted in the 

active state of the enzyme and different sizes of deletions had variable effects on enzyme 

activity and growth of complemented cells. 

  

The H+-ATPase OsHA1 has been shown to be important for nutrient transfer in 

mycorrhizal symbioses (Wang et al., 2014a). However, when rice is inoculated with AM 

fungi under low P supply plants do not have a growth benefit compared to un-inoculated 

plants (Wang et al., 2014a). This is unlike M.  truncatula where a significant increase in P 

uptake and shoot mass was observed (Krajinski et al., 2014; Wang et al., 2014a).  By 

applying the same principle of introducing truncations to the C-terminus from previous 

studies, it might be that increasing OsHA1 activity could increase the proton gradient 

across the PAM, further increase the P uptake via arbuscules and therefore increase growth. 

This would then be directly relevant to farming in low-input agriculture. In this study, 

OsHA1 was manipulated using the CRISPR/Cas-9 system to manipulate the regulatory 

domain on the C-terminus to produce a constitutive pumping activity Considering the 

variable effects on pumping activity resulting from different sizes of truncations in previous 

studies, (Regenberg et al., 1995),  three different sites upstream of the stop codon were 

targeted. By doing so, a series of transgenic plants differing in the length of the C-terminal 

truncation were generated. In many cases, the primary transformants showed mutation of 

both OsHA1 alleles, i.e. were either biallelic or homozygous mutant. These plants are now 

ready for testing. It is expected that they show constitutive H+ pumping activity across the 

periarbuscular membrane, enhanced phosphorus uptake and possibly increased growth in 

response to AM fungi. 
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4.2 Materials and methods 
 

Using the CRISPR/Cas9 system, gRNAs were designed to target three regions within the 

C-terminus of the OsHA1 gene. The three regions were at 64, 80 and 94 codons upstream of 

the stop codon. Codons 64 and 80 are in exon 19, whereas codon 94 is in exon 18. A total 

of four level M constructs were assembled to target OsHA1 as follows (target site between 

brackets): construct OsHA1(94), OsHA1(80), OsHA1(64) and OsHA1(94)+(64), the latter 

with two target sites to increase the targeting efficiency. Detailed methods for construct 

assembly using Golden Gate cloning, rice transformation, and testing the T0 generation of 

mutant plants are explained in chapter 3 methods. Sequences of gRNAs used to target 

OsHA1 (Supplementary Table 3.2). Details of plasmids used for construction of level 1 and 

level M plasmids (Supplementary Table 3.3). Primers used for gRNA scaffold 

amplification and for diagnostic PCR (Supplementary Table 3.4 and 3.5). For all 

constructs, the initial number of colonies sequenced from each plant was five. Ten colonies 

were tested for plant sample 1 and 2 only from each construct. However, some were 

excluded due to poor sequence quality. 

  

4.2.1 Inoculation assays 
 

Three OsHA1-truncated T0 plants were selected from each of the four constructs. As 

control, two plants carrying the construct but showing wild-type sequence in the T0 

generation were chosen alongside with Nipponbare. Seeds from each T0 and control plant 

were germinated in sand for one week before 10 seedlings from each were transferred to a 

1:1 mixture of sand and Terragreen (obtained from: http://oil-dri.co.uk). Under low P 

supply, half of the seedlings were inoculated with Rhizophagus irregularis (harvested from 

leek and chive co-cultures) and half without AM inoculation. In the glasshouse, plants were 

supplemented with light to provide a minimum of 12 h daylight; minimum 28 °C day, 

minimum 24 °C night temperature. A total of 30 OsHA1 truncated plants and 15 control 

plants were grown under each condition (+/– AM inoculation). These plants will be tested 

for constitutive pumping activity upon mychorrhizal colonisation, and for a positive effect 

on P uptake and growth.  

http://oil-dri.co.uk/
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4.3 Results 
 

4.3.1 Construct assembly using Golden Gate cloning 
 

The CRISPR/Cas9 system was used to create double stranded DNA breaks targeted to the 

region encoding the regulatory C-terminus of OsHA1. This aimed to introduce deletions or 

indel-based frame shift mutations resulting in the removal of a variable number of amino 

acids from the C-terminus of the protein. Three different sites upstream of the stop codon in 

the C-terminus were targeted in order to disrupt the regulatory domain which comprises the 

100 amino acid from the end. Different target sites were selected to possibly result in 

variable effects on pumping activity as shown in previous studies where it was 

demonstrated that at least 50 amino acids should be truncated in order to see significant 

effects on the enzyme activity (Regenberg et al., 1995). The target sites in this study were 

approximate to the ones in the previous study.  The three target sites were at -94, -80 and -

64 codons upstream of the stop codon (Figure 4.2). In addition, simultaneous targeting at 

sites -94 and -64 was done to introduce a deletion of about 30 amino acids or simply 

increase the likelihood of successfully affecting at least one of the target sites (Figure 4.2). 

Successful cloning of level 1 and M constructs was verified by restriction digests (Figures 

4.3 and 4.4). For plasmid map of level M construct see Chapter 3 (Figure 3.12). 

 

Figure 4. 2: Graphical overview illustrating the location of the gRNAs within the region of the 

OsHA1 gene encoding the C-terminus of the protein and their corresponding PAM sequences. 

Double targeting was done using both target sites 94 and 64.  
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Figure 4.3: (A) PCR products after scaffold amplification at expected size. (L) 100 bp DNA ladder, 

(1) TaU6-gRNA1- OsHA1(94), (2) TaU6 -gRNA1-OsHA1(80), (3) TaU6-gRNA1- OsHA1(64). (B) 

Restriction digests with SacI + NdeI for level 1 plasmids show bands at expected sizes. (L) 1 kb 

DNA ladder, (1) gRNA1 cassette-OsHA1(94), (2) gRNA1 cassette-OsHA1(80), (3) gRNA1 

cassette-OsHA1(64).   

 

Figure 4.4: Diagnostic restriction digests to confirm level M constructs. Bands were observed at the 

expected sizes after digestion with a combination of NcoI + SacI. (L) 1 kb DNA ladder. Level M 

constructs: (1) OsHA1(94); (2) OsHA1(80); (3) OsHA1(64); (4) OsHA1(94)+(64). 

 

 

 

 

 

 

 

 

 

  

 

A) B) 
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4.3.2 Identifying indel mutations in the T0 plants  

 

For each construct 10 to 30 plants were regenerated (Table 4.1). Some of these were 

obtained from the same callus and could therefore originate from a single transformation 

event. 10 to 12 plants for each construct were tested by PCR and sequencing of cloned PCR 

products to identify mutations. In only one of the lines a deletion large enough to be 

detected by PCR was found (Figure 4.5 and 4.6). However, sequencing revealed a high rate 

of success in generating small deletions or insertions (Figures 4.7 to 4.11; Table 4.1). 

About 80% of the plants did no longer carry the wt allele of OsHA1. Out of 42 plants tested 

a total of 33 appeared either homozygous or biallelic mutant. Targeting two sites 

simultaneously did not lead to a further increase in efficiency. Also, there was no obvious 

difference in the targeting efficiency or the type of mutation at the three sites. Most 

frequent were single base insertions or deletions (Table 4.1). Two plants appeared to be 

chimeric, i.e. more than two alleles were isolated.  

 

Figure 4.5: PCR products for construct OsHA1(94)+(64). (L) 100 bp DNA ladder. Numbers above 

lanes indicate plant IDs. Samples of plants 1 and 2 (not shown) gave the same result. The expected 

PCR product size for unmodified OsHA1 was 521 bp. Additional slower moving bands in samples 

7, 8 and 10 are most likely due to heteroduplex formation when single stranded PCR products of 

different sizes reannealed. 
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Figure 4.6: PCR products for construct: A) OsHA1(94); B) OsHA1(80); C) OsHA1(64). (L): 100 bp 

DNA ladder. Numbers above lanes indicate plant IDs. Samples of plants 1 and 2 (not shown) gave 

the same result. The expected PCR product size for unmodified OsHA1 was 521 bp. C) The 

additional band in sample 10 represents a 54 bp deletion as confirmed by sequencing. 

 

 

 

 

A) 

B) 

C) 
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wt   acTAACCTTGTTATCAAT^G^^^^^^^ACAAGGttccagg 

 

 1   acTAACCTTGTTATCAAT^GA^^^^^^ACAAGGttccagg   +1  (2) 

     acTAACCTTGTTATCAAT^GT^^^^^^ACAAGGttccagg   +1  (5) 

  

 2   acTAACCTTGTTATCAAT^G^^^^^^^ACAAGGttccagg   wt  (10) 

 

 3   acTAACCTTGTTATCAAT^G^^^^^^^ACAAGGttccagg   wt  (3) 

 

 4   acTAACCTTGTTATCAAT^G^^^^^^^ACAAGGttccagg   wt  (5) 

 

 5   acTAACCTTGTTATCAAT^GT^^^^^^ACAAGGttccagg   +1 (4)  

 

 6   acTAACCTTGTTATCAAT^GT^^^^^^ACAAGGttccagg   +1  (4) 

 

 7   acTAACCTTGTTATCAAT^GT^^^^^^ACAAGGttccagg   +1  (2) 

     acTAACCTTGTTAT----^-^^^^^^^-CAAGGttccagg   -6  (2) 

 

 8   acTAACCTTGTTAT----^-^^^^^^^-CAAGGttccagg   -6  (3) 

 

 9   acTAACCTTGTTATCAAT^GT^^^^^^ACAAGGttccagg   +1  (2)  

     acTAACCTTGTTATCAATCG^^^^^^^ACAAGGttccagg   +1  (2) 

 

10   acTAACCTTGTTAT----^-^^^^^^^-CAAGGttccagg   -6  (1) 

     acTAACCTTGTTATCAAT^G^^^^^^^ACAAGGttccagg   wt  (4)       

 

11   acTAACCTTGT-------^-ACTTAGTACAAGGttccagg   +7/-8 (3) 

  

12   acTAACCTTGTTATCAAT^GA^^^^^^ACAAGGttccagg   +1  (4) 

     acTAACCTTGT-------^-ACTAAGTACAAGGttccagg   +7/-8 (1)  

 

 

Figure 4.7: Mutations at the 1st target site of OsHA1(94)+(64) in the T0 generation. Sequence 

corresponding to the gRNA is shown in blue, PAM sequence in bold and underlined. Grey 

highlighted circumflex accents added to wild-type sequence indicate insertions occurred in these 

sites. Deletions and insertions are indicated by red dashes and red letters, respectively. Numbers on 

the left side indicate plant ID. Numbers on the right side indicate types of mutation and numbers of 

nucleotides involved, followed by number of sequence traces in brackets. Plants generated from the 

same callus are 2 and 3; 5 and 6; 7, 8 and 10.  
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wt   acACGAGCAGCGCACACTA^CACGGGctgcagt    

 

 1   acACGAGCAGCGCACACTATCACGGGctgcagt   +1 (2) 

     acACGAGCAGC--------^----------agt   -18 (5)  

 

 2   acACGAGCAGCGCACACTA^CACGGGctgcagt   wt  (10) 

   

 3   acACGAGCAGCGCACACTA^CACGGGctgcagt   wt  (3) 

  

 4   acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (4) 

     acACGAGCAGCGCACACTAACACGGGctgcagt   +1  (1) 

 

 5   acACGAGCAGCGCACACT-^CACGGGctgcagt   -1  (4) 

 

 6   acACGAGCAGCGCACACT-^CACGGGctgcagt   -1  (4) 

 

 7   acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (4) 

  

 8   acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (2) 

     acACGAGCAG---------^----GGctgcagt   -13 (1) 

    

 9   acACGAGCAGCGCACACTAACACGGGctgcagt   +1 (4) 

 

 10  acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (2) 

     acACGAGCAGCGCACACTA^CACGGGctgcagt   wt  (3) 

 

 11  acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (3) 

 

 12  acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (4) 

     acACGAGCAGCGCACACTA^CACGGGctgcagt   wt  (1) 

 

 

Figure 4.8: Mutations at the 2nd target site of HA1(94)+(64) in the T0 generation. Sequence 

corresponding to the gRNA is shown in blue, PAM sequence in bold and underlined. Grey 

highlighted circumflex accents added to wild-type sequence indicate insertions occurred in these 

sites. Deletions and insertions are indicated by red dashes and red letters, respectively. Numbers on 

the left side indicate plant ID. Numbers on the right side indicate types of mutation and numbers of 

nucleotides involved, followed by number of sequence traces in brackets. Plants generated from the 

same callus are 2 and 3; 5 and 6; 7, 8 and 10.  
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wt   acTAACCTTGTTATCAAT^G^^^ACAAGGttccagg 

 

1 acTAACCTTGTTATCAAT^G^^^ACAAGGttccagg   wt     (5) 

  

2 acTAACCTTGTTATCAAT^G^^^ACAAGGttccagg   wt     (5) 

 

3 acTAACCTTGTTATCAAT^G^^^ACAAGGttccagg   wt     (5) 

 

 4   acTAACCTTGTTATCAAT^GA^^ACAAGGttccagg   +1     (1) 

     acTAACCTTGTT------^-^^^ACAAGGttccagg   -7     (2) 

 

 5   acTAACCTTGTTATCAAT^GA^^ACAAGGttccagg   +1     (2) 

     acTAACCTTGTTATCAATCG^^^ACAAGGttccagg   +1     (3) 

 

 6   acTAACCTTGTTATCAAT^GA^^ACAAGGttccagg   +1     (2) 

     acTAACCTTGTTATCAAT^-^^^ACAAGGttccagg   -1     (2) 

 

 7   acTAACCTTGTTATCAAT^GT^^ACAAGGttccagg   +1     (2) 

     acTAACCTTGTTATC-AT^G^^^ACAAGGttccagg   -1     (3) 

 

 8   acTAACCTTGTTATCAAT^GA^^ACAAGGttccagg   +1     (4) 

 

 9   acTAACCTTGTTATCAAT^GT^^ACAAGGttccagg   +1     (2) 

     acTAA-------------^-^CAACAAGGttccagg   +2/-14 (3) 

  

10   acTAACCTTGTTATCAAT^GT^^ACAAGGttccagg   +1     (4) 

     acTAACCTTGTTATCAAT^-^^^ACAAGGttccagg   -1     (1) 

       
Figure 4.9: Mutations in the T0 generation of HA1(94). Sequence corresponding to the gRNA is 

shown in blue, PAM sequence in bold and underlined. Grey highlighted circumflex accents added 

to wild-type sequence indicate insertions occurred in these sites. Deletions and insertions are 

indicated by red dashes and red letters, respectively. Numbers on the left side indicate plant ID. 

Numbers on the right side indicate types of mutation and numbers of nucleotides involved, followed 

by number of sequence traces in brackets. Plants 1 and 2 were generated from the same callus. 
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wt   acAAACCGGAAAGATTTC^^G^GAAGGGaagctcg     

 

 1   acAAACCGGAAAG-----^^-^GAAGGGaagctcg   -6     (6)   

     acAAACCGGAAAGAA---^^-^----------tcg   +1/-15 (2) 

  

 2   acAAACCGGAAAG-----^^-^GAAGGGaagctcg   -6     (4) 

     acAAACCGGAAAGAA---^^-^----------tcg   +1/-15 (2) 

     acAAACCGGAAAGATTTC^^G^GAAGGGaagctcg   wt     (2)  

   

 3   acAAACCGGAAAGATTTCTTG-------------g   +2/-13 (4) 

     acAAACCGGAAAGAT---^^G^GAAGGGaagctcg   -3     (1) 

 

 4   acAAACCGGAAAGATTT-^^-^GAAGGGaagctcg   -2     (4) 

     acAAACCGGAAAGA----^^-^GAAGGGaagctcg   -5     (1) 

 

 5   acAAACCGGAAAGATTTCTTG-------------g   +2/-13 (3) 

     acAAACCGGAAAGAT---^-G^GAAGGGaagctcg   -3     (2) 

 

 6   acAAACCGGAAAGATTTC^^GTGAAGGGaagctcg   +1     (4) 

     acAAACCGGAAAGA----^^-^GAAGGGaagctcg   -5     (1) 

 

 7   acAAACCGGAAAGATTTC^^GTGAAGGGaagctcg   +1     (3) 

 

 8   acAAACCGGAAAGATTTC^^GAGAAGGGaagctcg   +1     (4) 

 

 9   acAAACCGGAAAGATTT-^^-^GAAGGGaagctcg   -2     (4) 

     acAAACCGGAAAGATTTC^^G^-AAGGGaagctcg   -1     (1) 

 

10   acAAACCGGAAAGATTTC^^G^GAAGGGaagctcg   wt     (5) 

 

Figure 4. 10: Mutations in T0 generation of HA1(80). Sequence corresponding to the gRNA is 

shown in blue, PAM sequence in bold and underlined. Grey highlighted circumflex accents added 

to wild-type sequence indicate insertions occurred in these sites. Deletions and insertions are 

indicated by red dashes and red letters, respectively. Numbers on the left side indicate plant ID. 

Numbers on the right side indicate types of mutation and numbers of nucleotides involved, followed 

by number of sequence traces in brackets. Plants generated from the same callus are 1 and 2; 3 and 

5. The presence of more than two alleles in plant 2 indicate that it is chimeric. 
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wt   acACGAGCAGCGCACACTA^CACGGGctgcagt    

 

 1   acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (5) 

 

 2   acACGAGCAGCGCACACTATCACGGGctgcagt   +1   (5) 

   

 3   acACGAGCAGCGCACACTAACACGGGctgcagt   +1  (3)  

     acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (2) 

  

 4   acACGAGCAGCGCACACTA^CACGGGctgcagt   wt  (5) 

 

 5   acACGAGCAGCGCACAC--^CACGGGctgcagt   -2  (5) 

 

 6   acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (3) 

     acACGAGCAGCGCACACT-^CACGGGctgcagt   -1  (1) 

 

 7   acACGAGCAGCGCACACTAACACGGGctgcagt   +1  (5) 

  

 8   acACGAGCAGCGCACACT-^CACGGGctgcagt   -1  (3) 

     acACGAGCAG---------^----GGctgcagt   -13 (1) 

    

 9   acACGAGCAGCGCACACTATCACGGGctgcagt   +1  (5) 

 

 10  acACG--------------^----GGctgcagt   -18 (2) 

     -------------------^--CGGGctgcagt   -54 (3) 

 

Figure 4. 11: Mutations in T0 generation of HA1 (64). Sequence corresponding to the gRNA is 

shown in blue, PAM sequence in bold and underlined. Grey highlighted circumflex accents added 

to wild-type sequence indicate insertions occurred in these sites. Deletions and insertions are 

indicated by red dashes and capital letters, respectively. Numbers on the left side indicate plant ID. 

Numbers on the right side indicate types of mutation and numbers of nucleotides involved, followed 

by number of sequence traces in brackets. Plants generated from the same callus are 1 and 2.  
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Table 4. 1: Summary of OsHA1 mutants in T0 generation. Number of plants generated for each 

construct, mutations in each target site and the overall mutant type. Small letters indicate callus with 

more than one plant generated from. (+) and (–) indicate insertions and deletions, respectively. 

Abbreviations are as follows: wt for wild type, bi for bi-allelic mutant, hom for homozygous 

mutants, chim for chimeric plants. Question marks indicate uncertainty due to limited number of 

available sequences.  

Construct Plant Callus Site 1 Site 2 overall 

94+64 

1  +1, +1 +1, -18 bi 

2 a wt wt wt 

3 a wt wt wt 

4  wt +1, +1 bi 

5 b +1 -1 hom? 

6 b +1 -1 hom? 

7 c +1, -6 +1 bi 

8 c -6 +1, -13 bi 

9  +1, +1 +1 bi 

10 c -6, wt +1, wt chim 

11  -1 (=7-8) +1 hom? 

12  +1, -1 (=7-8) +1, wt bi 

      

94 

1 d wt  wt 

2 d wt  wt 

3  wt  wt 

4  +1, -7  bi 

5  +1, +1  bi 

6  +1, -1  bi 

7  +1, -1  bi 

8  +1  homo 

9  +1, -12 (=2-14)  bi 

10  +1, -1  bi 

      

80 

1 e -6, -14 (=1-15)  bi 

2 e -6, -14 (=1-15), wt  chim 

3 f -3, -11 (=2-13)  bi 

4  -2, -5  bi 

5 f -3, -11 (=2-13)  bi 

6  +1, -5  bi 

7  +1  hom? 

8  +1  hom 

9  -2, -1  bi 

10  wt  wt 

      

64 

1 g +1  hom 

2 g +1  hom 

3  +1, +1  bi 

4  wt  wt 

5  -2  hom 
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6  +1, -1  bi 

7  +1  hom 

8  -1, -13  bi 

9  +1  hom 

10  -18, -54  bi 

 

 

4.3.3 Protein truncations 
 

The introduction of insertions and deletions in the mutant plants resulted in premature stop 

codons and thereby different degrees of truncation at the C-terminus of the protein (Figure 

4.12). These range from 32 to 92 amino acids lost. In some cases only minor changes are 

produced, e.g. loss of two amino acids due to the deletion of 6 bp. Three plants from each 

construct with different truncation sizes were selected for phenotyping (highlighted in 

yellow in figure 4.12). As control, two plants carrying the construct but showing wild-type 

sequence in the T0 generation were chosen alongside with Nipponbare. Seeds from T0 

plants were obtained. A total of 30 OsHA1 truncated plants and 15 control plants were 

grown under each condition: (-/+AM inoculation) with low P supply. Total number of 

plants used in both conditions including control and truncated plants is 90. These plants 

will be tested for constitutive pumping activity upon mychorrhizal colonisation under low P 

conditions, and for the positive effect on P uptake and growth (plant mass).  
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Figure 4. 12: C-terminal truncations expected in the different mutant lines. Numbers between 

brackets indicate construct name, followed by plant ID and numbers of amino acids deleted from 

the original sequence of OsHA1. Small a and b letters correspond to different protein truncations in 

the same plant in a biallelic situation. The numbers on the right end of each line indicate the length 

of the predicted protein, including C-terminal variation caused by reading frame shift. Grey 

highlight indicates amino acids identical to the original sequence. Plants lines labelled in red were 

selected for phenotyping.   
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4.4 Discussion 
 

In my study, about 80% of the plants did no longer carry the wt allele of OsHA1. Out of 42 

plants tested a total of 33 appeared either homozygous or biallelic mutant. This is in an 

agreement with other studies where the high efficiency of the CRISPR/Cas 9 system was 

reported. A mutation rate of 85.4% with biallelic and homozygous mutations was obtained 

when CRISPR/Cas9 with optimised components was used in rice (Ma et al., 2015). 

Furthermore, the CRISPR/Cas9 system was efficient to produce simultaneous knockouts 

for multiple genes in rice and Arabidopsis (Ma et al., 2015). This system was also efficient 

to produce large deletions in rice chromosomes up to 245 Kb (Zhou et al., 2014). 

CRISPR/Cas9 targeting 11 rice genes revealed that it is specific, efficient and produces 

heritable mutations  (Zhang et al., 2014b). The genotypes obtained in T0 generation 

indicated that the CRISPR/Cas9 system was effective as editing occurred even before the 

first cell division in more than half of cells. Also homozygous mutants were obtained in the 

T0 generation and stably inherited to the next generation following  Mendelian genetics 

(Zhang et al., 2014b). Another study on rice demonstrated the high efficiency of 

CRISPR/Cas9 system when targeting two genes, CAO1 and LAZY1, where the efficiency 

of producing mutants in the T1 generation was 83.3 % and 91.6%, respectively, whereby 

13.3% and 50% were bi-allelic mutants, respectively (Jin et al., 2013). Mutation frequency 

produced by CRISPR/Cas9 system on rice and Arabidopsis varied between 28 and 84 % 

(Feng et al., 2013). Also mutation frequencies in T0 wheat plants were about 65%, where 

48.2% of all mutants (either homozygous, bi-allelic, or heterozygous mutants) were stably 

transmitted to the T1 generation with no additional mutations (Yang et al., 2017a). 

  

Once the desired mutations are obtained in the transgenic plants it is desirable to eliminate 

the inserted CRISPR/Cas9 cassette by segregation in the following generation (T1). 

Continued presence of CRISPR/Cas9 would increase the likelihood of Cas9 cutting the 

genome at off-target sites, hence leading to unwanted mutations. It is expected that T0 

plants are heterozygous for T-DNA insertion(s). Hence, upon selfing 25% of the T1 

generation plants are expected to be transgene free (in case of single locus insertion of the 

T-DNA). 
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Another problem that we might encounter with the strategy to introduce frameshift 

mutations into the OsHA1 gene is the potential degradation of mRNA by the nonsense 

mediated decay pathway. This may result from premature stop codons that are not in the 

last exon (Amrani et al., 2006; Stephanie and Allan, 2012). Therefore, it is vital to test the 

expression level of truncated OsHA1 upon AM inoculation.  

 

A question that remains to be answered is whether constitutive activation of the H+-ATPase 

would be detrimental to cell function. However, given OsHA1 in specifically expressed 

only in arbuscule-containing cells in the root cortex, we consider any negative effects on 

general plant health much less likely than in the case of a proton pump expressed 

throughout the plant. As different truncation sizes of the OsHA1 protein were produced in 

my experiment, they are expected to differently affect the enzyme activity. Therefore, there 

is the potential for some of the mutant lines performing better than others. 

In conclusion, a large proportion of the T0 plants were successfully mutated using 

CRISPR/Cas9 technique resulting in different sizes of truncations which are believed to 

result in constitutive pumping activity, and in increased P uptake and potentially plant 

growth. If plants with truncated OsHA1 showed significant growth benefits this would be a 

novel achievement and could be exploited in low-input farming where nutrients, especially 

phosphorus, are not supplied in sufficient amounts.  
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Chapter 5: General Discussion 

 

Producing nutrient efficient crops has become essential for food security. Efficient 

genotypes that perform well under nutrient stress of single elements have been identified in 

the past. However, in terms of observing morphological deficiency symptoms and 

interpreting the interaction between nutrients without confusion, reducing N, P and K in 

parallel rather than single elements provides a short cut to isolate efficient genotypes with 

direct relevance to reducing NPK fertilizer input. Although deficiency in all three elements 

does not resemble the conditions in agricultural fields and it might be that it is not very 

common to find one field that suffers from NPK stress, NPK fertilizers are heavily applied 

for optimum growth and yield. It should be noticed that reducing the three elements to the 

same level regardless the amount required by plants for each element is not ideal, as P was 

far less limiting than N and K in the initial growth medium used in this study. Therefore, it 

is fair to say that the genotypes identified here are more related to tolerance in low N and K 

conditions rather P limitation. In future studies one might reduce the different elements in 

parallel but to different extents taking into account the amount required by plants and the 

concentrations that are considered limiting for each element. It would be interesting to test 

these genotypes for yield and grain production, or other desirable traits. Information 

obtained from this study can be used to conduct similar studies in other crops that share a 

monophyletic origin with rice (Itoh et al., 2005).  

 

Since other macro- and micro-elements were included in this study beside NPK, 

researchers interested in studying other elements and interaction between elements could 

use these results as a basis for future studies. Also, differences in shoot content of different 

elements between genotypes, could be potentially important not only to improve nutrient 

use efficiency and nutrient deficiency tolerance, but also to improve other important traits. 

For example, due to the role of K in response to biotic and abiotic stress, high K genotypes 

identified in this study could be tested for pest and disease resistance in rice and other crops 

(Amtmann et al., 2008; Wang et al., 2013). Also, these genotypes can be tested for drought 

and salinity tolerance as positive effect of K under salt stress has been reported (Cheng et 
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al., 2015; Gazipur, 2004; Sun et al., 2015). High N genotypes might be exploited to 

improve water use efficiency and tolerance to osmotic stress (Brueck, 2008; Brueck and 

Senbayram, 2009; Guo et al., 2008; Ren et al., 2015).  

 

Identification of NPK efficient genotypes has a great potential to increase crop productivity 

with less input and to achieve sustainable agriculture. Previous work has explored nitrogen, 

potassium and phosphorus use efficiency in rice (Aluwihare et al., 2016; Duan et al., 2007; 

Yang et al., 2003), but the novelty of this study involves studying the effect of reducing 

NPK in parallel and identifying efficient genotypes for 3 major elements at the same time. 

Also, this study was done for the first time on diverse and large number of rice genotypes. 

The better performing genotypes identified under low NPK in this study are of breeders’ 

interest due to their potential in reducing NPK fertilizer inputs and hence the cost of 

production. Also, can be tested under other conditions such as single or combined nutrient 

deficiencies, salt, drought and water stress conditions. Researchers might use these lines to 

apply genetic studies, and try to understand the physiological and molecular mechanisms 

behind the tolerance of these varieties under such conditions. These genotypes can be 

introduced to breeding programs as parental genotypes to generate more efficient lines 

under varying conditions. Genetic variation among rice cultivars has been reported for 

nitrogen (Ju et al., 2006; Namai et al., 2009; Samonte et al., 2006), potassium (Fageria et 

al., 2013b; Liu et al., 2009; Yang et al., 2003) and phosphorus (Fageria and Baligar, 1997; 

Fageria et al., 2013a, 2014; Wissuwa and Ae, 2001), and high levels of variation between 

inefficient and efficient cultivars have been reported. Such a diversity could be exploited in 

breeding programs to improve the use efficiency of crops. This can be achieved by 

selecting elite cultivars owing desirable traits for propagation, or producing new varieties 

by crossing. Additionally, identifying molecular markers through genome mapping 

techniques and testing a subset of lines for the allelic effect on genes controlling a 

particular trait can be used in marker assisted breeding to improve nutrient use efficiency 

and other traits. Plant breeding is important to ensure food security through the production 

of tolerant crops under varying environmental stresses. Rice with over 127,000 diverse 

accessions, has a great potential to be exploited by researchers and breeders to achieve 

sustainable agriculture and increase food security. 
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This GWAS study revealed novel and previously known QTLs for the use efficiency of N, 

P and K. Complex gene networks are controlling the use efficiency of NPK, starting from 

genes in the root responsible for efficient nutrient uptake, to genes responsible for the 

translocation of these nutrients from root to shoot, and the genes involved in the re-

mobilization of the nutrients, and finally transcription factors and regulatory genes 

modulating cellular processes. As any of these genes can be potentially important, it is 

difficult to determine which genes are more likely to be responsible for the efficiency. 

 

Therefore, genes identified from GWAS can be further characterised. Evaluating candidate 

genes from GWAS by producing knock out mutants is one of the approaches to 

functionally analyse genes. In some cases, where the presence of nsSNPs within the gene 

led to a premature stop codon and hence loss of function, this can resemble the approach of 

producing KO mutants. However, knock outs do not replace allelic variance. Another way 

to test candidates is by comparing a number of tolerant and sensitive genotypes to check if 

a certain allele is dominant. This can be done by using available databases for genomic 

variation such as rice variation map database (http://ricevarmap.ncpgr.cn). However, 

information is limited to a certain number of genotypes and information on a large number 

of the genotypes from RDP1 was not found. Alternatively, genes from high and low 

tolerance plants can be sequenced to check for allele differences. If variation were found, 

the interesting loci from one cultivar can be introduced to another cultivar by different 

approaches. However, validation of any QTL identified by GWAS is required before it is 

allowed to be used for marker-aided selection (MAS) which is applied in breeding 

programs (Collard and Mackill, 2008). Another approach is by direct allele swapping of 

small pieces using the CRISPR/Cas9 system combined with homology directed repair using 

variant alleles as template. Alternatively, novel techniques based on fusion of Cas9 with 

base editing enzymes open the possibility to introduce sequence variants more directly and 

without the need of homologous recombination, which is relatively inefficient in plants 

(Andrew, 2017). 

 

Tolerant and sensitive lines rice accessions may differ in the level of expression of genes 

within the QTLs rather than amino acid sequence variation within the encoded proteins. 

http://ricevarmap.ncpgr.cn/
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Therefore, future experiments should systematically analyse the expression level of the 

genes by QPCR, both under high and low nutrient supply and between tolerant and 

sensitive lines. 

  

GWAS has contributed in increasing crop production by establishing associations with the 

aim of finding the genetic factors underlying important phenotypic traits such as grain yield 

and resistance to biotic and abiotic stresses. It also contributed in improving rice by 

increasing its nutrient efficiency, tolerance to nutrients deficiency and enhancing its 

adaptability to different environmental conditions (McCouch et al., 2016; Teng et al., 2017; 

Zhao et al., 2011). The GWAS of complex rice traits has improved over time due to the 

advancement of sequencing technologies which have utilized all the available SNP data to 

identifying genes. GWAS provides a high resolution as it is usually conducted in diverse 

panels, and results in narrower QTLs encompassing fewer genes compared to QTL 

mapping. This gives GWAS an advantage especially in the identification of novel QTLs as 

well as genes of potential importance. Overlap between QTLs and genes identified from 

GWAS with previous studies gives confidence and suggests the effectiveness of this 

method. Previous GWAS studies on different phenotypes revealed associations that were 

sub-species specific (Zhao et al., 2011), suggesting that it is important to re-run the GWAS 

based on sup-species and sub-population level, taking in account the population structure of 

Oryza sativa and the divergence between groups (Garris et al., 2005). 

 

The CRISPR/Cas9 system was successfully applied to manipulate a couple of candidate 

genes identified by GWAS. Single knockout for HKT1;4 was successfully obtained. 

However, more genotyping is required to confirm the achievement of double knockouts for 

OsHKT1;1 and OsHKT1;4. Transgenic plants can be phenotyped under low NPK 

conditions. Since more genes from the same family were identified later, simultaneous 

knock out can be performed using CRISPR/Cas9. In addition, truncated OsHA1 with 

variable deletion sizes was obtained. These plants are now being tested for the benefit of P 

uptake and growth under AM colonisation. Overall, a high mutant frequency of around 

80% was obtained using the CRISPR/Cas9 system on all three targets, OsHKT1;1, 

OsHKT1;4 and OsHA1. It is interesting to note the mutation efficiency was very high even 
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though Cas9 was not codon-optimised for rice and the gRNAs were expressed from a wheat 

U6 promoter. Although obtaining large deletions using the CRISPR/Cas system was 

reported (Zhou et al., 2014), smaller indels are more frequent as reported in some studies 

where deletions ranging from 1-51 bp, and insertions of 1-5 bp with some point mutations 

were obtained (Feng et al., 2013; Jiang et al., 2013). In some cases, insertions and deletions 

occurred at the same time (Jiang et al., 2013). This might suggest that Cas9 does not cut 

simultaneously at both cut sites. A CRISPR study on Petunia showed that the frequency of 

obtaining deletions between the two cut sites of Cas9 was very low (Zhang et al., 2016). 

Therefore, the pattern of mutants obtained in my study are in general agreement with 

those reported by others. Considering the efficiency of the system, a smaller number of 

plants can be generated in future experiments. If plants with truncated OsHA1 showed 

significant growth benefits this would be a novel achievement and could be exploited in 

low-input farming where nutrients, especially phosphorus, are not supplied in sufficient 

amounts. 
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Appendix 

 

Supplementary Figure 2. 1: Average final dry weight distribution among 294 accessions grown in 1 

and 0.1 NPK conditions. Total DW (A), shoot DW (B), shoot to root DW ratio (C) and Root DW 

(D) were significantly different in the two treatments.  The significance was identified by two-tailed 

t-test (P < 0.05). The transparent colour indicates overlaps between the two treatments. 

 

 

A B 

C D 
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Supplementary Figure 2. 2: (A) Average relative growth rate distribution was significantly different 

in 1 and 0.1 NPK conditions (two-tailed t-test; P < 0.05). The transparent colour indicate overlaps 

between the two treatments. (B) Percentage of growth reductions in 0.1 NPK plants relative to 

control plants. 

 

Supplementary Figure 2. 3: Average reduction in growth rates in tolerant lines was significantly 

smaller than sensitive lines under 0.01 NPK condition (Two-tailed t-test, P <0.05). Mean ± SE (n = 

45 tolerant, 33 sensitive). 
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Supplementary Figure 2. 4: Shoot concentration of elements based on fresh weight in 0.1 NPK 

plants compared to 1 NPK plants. Significant reduction in: (A) average N concentration; (B) 

average P concentration; (C) average K concentration. The significance was identified by two-tailed 

t-test (P < 0.05). The transparent colour indicates overlaps between the two treatments. 

  

A B 

C 
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Supplementary Figure 2. 5: Shoot concentration of elements based on fresh weight in 0.1 NPK 

plants compared to 1 NPK plants. Significant increase in the average concentration of: (A) Ca, (B) 

Na, (C) Fe, (D) Mg, (E) Zn, (F) B, (G) C. The significance was identified by two-tailed t-test (P < 

0.05). The transparent colour indicates overlaps between the two treatments. 
Supplementary Table 2. 1: Top ten accessions for highest and lowest use efficiency for N, P and K 

under low treatment. Genotypes underlined overlapped between high and low treatment for low 

A B 

C D 

E F 

G 
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PUE. Genotypes in italic overlapped between high and low treatment for high PUE. Genotypes in 

bold overlapped between high and low treatment for low KUE.   

Efficiency NUE 
Genotype 

GSOR ID 
PUE 

Genotype 

GSOR ID 
KUE 

Genotype 

GSOR ID 

High 

70 301175 463 301163 110 301157 

67 301059 344 301180 109 301163 

64 301064 330 301414 100 301160 

62 301075 308 301157 96 301158 

62 301015 296 301199 89 301047 

62 301006 292 301225 84 301266 

62 301069 291 301160 80 301219 

62 301072 282 301067 80 301191 

61 301076 279 301266 80 301050 

61 301001 275 301213 78 301109 

Low 

36 301406 74 301210 42 301343 

36 301418 73 301205 42 301318 

36 301336 73 301179 42 301370 

36 301316 73 301189 41 301353 

35 301420 73 301212 41 301321 

35 301409 72 301005 40 301350 

34 301079 67 301079 39 301361 

34 301342 66 301206 39 301359 

33 301317 65 301138 39 301369 

32 301416 64 301100 36 301360 
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Supplementary Figure 2. 6: Means under control condition for: A) P concentration on DW basis; B) 

P concentration on FW basis; C) P use efficiency for each rice sub-population. Letters above 

boxplots denote statistically significant differences between sub-populations (Tukey’s honest 

significant test HSD, P<0.05). Sub-population abbreviations are as follows: ADM for admixed, 

AUS for Australis, IND for Indica, ADI for Admixed Indica, ARO for Aromatic, TEJ for 

Temperate Japonica, TRJ for Tropical Japonica, and ADJ for Admixed Japonica. 
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Supplementary Figure 2. 7: Correlation matrix summarising relationships between element 

concentrations on dry weight basis under 1 NPK and 0.1 NPK condition. Correlations with p-value 

> 0.01 are crossed. Abbreviations are as follows: CT for control treatment (1 NPK), LT for low 

treatment (0.1 NPK), N for nitrogen, P for phosphorus, K for potassium, Ca for calcium, Na for 

sodium, Mg for magnesium, Zn for zinc, Fe for iron, B for boron and C for carbon.  
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Supplementary Figure 2. 8: Correlation matrix summarising relationships between ion 

concentrations on fresh weight basis under 1 NPK and 0.1 NPK condition. Correlations with p-

value > 0.01 are crossed. Abbreviations are as follows: CT for control treatment (1 NPK), LT for 

low treatment (0.1 NPK), N for nitrogen, P for phosphorus, K for potassium, Ca for calcium, Na for 

sodium, Mg for magnesium, Zn for zinc, Fe for iron, B for boron and C for carbon. 
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Supplementary Figure 2. 9: Correlation matrix summarising relationships between nutrient 

efficiency ratios under 1 NPK and 0.1 NPK condition. Correlations with p-value > 0.01 are crossed. 

Abbreviations are as follows: CT for control treatment (1 NPK), LT for low treatment (0.1 NPK), 

UE for nutrient use efficiency, N for nitrogen, P for phosphorus, K for potassium, Ca for calcium, 

Na for sodium, Mg for magnesium, Zn for zinc, Fe for iron, B for boron and C for carbon. 
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Supplementary Figure 2. 10: Correlation matrix summarising relationships between shoot element 

content and growth reduction for tolerant lines under 0.1 NPK condition. Correlations with p-value 

> 0.01 are crossed. Abbreviations are as follows: LT for low treatment (0.1 NPK), RGRRED for 

relative growth rate reduction, N for nitrogen, P for phosphorus, K for potassium, Ca for calcium, 

Na for sodium, Mg for magnesium, Zn for zinc, Fe for iron, B for boron and C for carbon. 
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Supplementary Figure 2. 11: Correlation matrix summarising relationships between ion content and 

growth reduction for sensitive lines under 0.1 NPK condition. Correlations with p-value > 0.01 are 

crossed. Abbreviations are as follows: LT for low treatment (0.1 NPK), RGRRED for relative 

growth rate reduction, N for nitrogen, P for phosphorus, K for potassium, Ca for calcium, Na for 

sodium, Mg for magnesium, Zn for zinc, Fe for iron, B for boron and C for carbon. 
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Supplementary Figure 2. 12: Average RGR based on genotype under varying NPK treatments. 

Mean ± SE (n = 3 Nip, 21 tolerant, 18 sensitive). Significance based on (Tukey’s honest significant 

test HSD, P<0.05). The total number of plants in each treatment was 42 with 3 plants for each 

genotype (including 3 Nip, 7 tolerant and 6 sensitive). 

 

Supplementary Figure 2. 13: Percentage of growth reduction based on genotype under varying NPK 

treatments. Mean ± SE (n = 3 Nip, 21 tolerant, 18 sensitive). Significance based on (Tukey’s honest 

significant test HSD, P<0.05). The total number of plants in each treatment was 42 with 3 plants for 

each genotype (including 3 Nip, 7 tolerant and 6 sensitive). 

Supplementary Table 3. 1: Primers used for genotyping mutant HKT1;1. 

Primer name Primer sequence（5’-3’） 

OsHKT1;1-F GATCCCGCAGATTCTAGCAG 
OsHKT1;1-R GGCAATTCGGATTTTCAGTG 
Rice Actin1-F TATCCTCCGGTTGGATCTTG 
Rice Actin1-R AGCAATTCCAGGAAACATGG 
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Supplementary Table 3. 2: Sequences of the (20 nt) gRNAs for each target gene and their 

corresponding (PAM) sequence.  

Target gRNA 1 PAM gRNA 2 PAM 

HKT1;4 
GAACACCTCCATCTCGACGG 

 
TGG 

GCCGACGAACGAGAACATGG 

 
TGG 

HKT1;1 and 

HKT1;4 

ACTCGATTAGCAGAGCACTG 

(HKT1;1) 
TGG   

HKT1;1 and 

HKT1;4 

GAACACCTCCATCTCGACGG 

(HKT1;4) 
TGG   

OsHA1(97)+(65) TAACCTTGTTATCAATGACA AGG ACGAGCAGCGCACACTACAC GGG 

OsHA1 (97) TAACCTTGTTATCAATGACA AGG   

OsHA1 (80) AAACCGGAAAGATTTCGGAA GGG   

OsHA1 (65) ACGAGCAGCGCACACTACAC GGG   

 

Supplementary Table 3. 3: Plasmids from the Golden Gate cloning toolbox for plants used in 

plasmid construction. P with a number indicates the position of level 1 plasmids in the final level M 

construct. Abbreviations are as follows: UTR for untranslated region, Os for Oryza sativa, At for 

Arabidopsis thaliana, Zm for Zea mays, Ta for Triticum aestivum. Sp for Streptococcus pyogenes, 

CAMV = Cauliflower mosaic virus. 

Plasmid Produced Acceptor Donor Plasmids (promoter, coding sequence, terminator) 

HptII Level 1(P1) pICH47732 
pICSL12009 

Zm Ubiquitin + 5'UTR 

pICSL80036 

Hygromycin 

phosphotransferase 

pICH41414 

CAMV35S + 

3'UTR 

Cas9 Level 1(P2) pICH47742 
pICSL12014 

Os Actin + 5'UTR 

pICSL90004 

Sp Cas9 + nuclear 

localisation signal 

pICH41421 

At nopaline 

synthase + 

3'UTR 

gRNA1 Level 1 

(P3) 
pICH47751 

pICSL90003 

TaU6 

pICSL90010 

gRNA sequence 
- 

gRNA2 Level 1 

(P4) 
pICH47761 

pICSL90003 

TaU6 

pICSL90010 

gRNA sequence 
-  

Level M pAGM8031 Level 1(P1- P4) and pICH50900 End linker 
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Supplementary Table 3. 4: Primers used for gRNA scaffold amplification and the expected resulting 

amplicon. Starting with forward primer containing a unique transcription start site for TaU6 

promoter (underlined), followed by 20 bp sgRNA sequence indicated in red, gRNA scaffold is 

highlighted in grey, ending with complementary sequence for the reverse primer. BsaI restriction 

sites in blue.  

Primer name Primer sequence（5’-3’） 

OsHKT1;1-F 
TGTGGTCTCACTT(G)ACTCGATTAGCAGAGCACTGGTTTAAGAGCT

ATGCTGGAAACAG 

OsHKT1;4-F- 1 
TGTGGTCTCACTTGAACACCTCCATCTCGACGGGTTTAAGAGCTAT

GCTGGAAACAG 

OsHKT1;4-F- 2 
TGTGGTCTCACTTGCCGACGAACGAGAACATGGGTTTAAGAGCTA

TGCTGGAAACAG 

OsHA1(94)-F 
TGTGGTCTCACTT(G)TAACCTTGTTATCAATGACAGTTTAAGAGCT

ATGCTGGAAACAG 

OsHA1(80)-F 
TGTGGTCTCACTT(G)AAACCGGAAAGATTTCGGAAGTTTAAGAGC

TATGCTGGAAACAG 

OsHA1(65)-F 
TGTGGTCTCACTT(G)ACGAGCAGCGCACACTACACGTTTAAGAGC

TATGCTGGAAACAG 
Scaffold-

Reverse 
TGTGGTCTCTAGCGAAAAAAAGCACCGACTCGGTGCCAC 

 

Supplementary Table 3. 5: Primers used to amplify targeted region in T0 plants.  

Primer name Primer sequence（5’-3’） 

OsHKT1;1- F GATCCCGCAGATTCTAGCAG 

OsHKT1;1- R GGCAATTCGGATTTTCAGTG 

OsHKT1;4- F TGCGTGCTCCAATATGCCC 

OsHKT1;4- R AGTTGGAGAACGTCGACACC 

OsHA1- F  GTGTTAGCTGCCATTGCCAC  

OsHA1- R TTCGTGAGCAGCAGATCGAG 

T7 universal primer for sequencing TAATACGACTCACTATAGGG 
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Supplementary Table 3. 6: Summary of quantitative trait loci (QTLs) identified in this study using 

GWAS of rice under 0.1 NPK condition. The table shows: the number of QTLs identified in each 

chromosome, QTL coordinates, and the traits associated with that QTL. Multiple traits indicate 

overlapping between QTLs. Abbreviations are as follows: CT for control treatment (1 NPK), LT for 

low treatment (0.1 NPK), FW for fresh weight, SFW for shoot fresh weight, RFW for root fresh 

weight, FWSR for fresh weight shoot to root ratio, DW for dry weight, SDW for shoot dry weight, 

RDW for root dry weight, FWDR for dry weight shoot to root ratio, RGR for relative growth rate 

and RGRRED for relative growth rate reduction, RED for reduction, N for nitrogen, P for 

phosphorus, K for potassium, Ca for calcium, Na for sodium, Mg for magnesium, Zn for zinc, Fe 

for iron, B for boron and C for carbon, UE for use efficiency. Further information on traits are listed 

in (Chapter 2, table 2.3). 

Chr QTL No. Start (bp) End (bp) Traits 
Chr 1 1 10934895 11163946 Na(DW)LT, Na(FW)LT, Na(DW)/RGRLT, 

Na(FW)/RGRLT 
2 11211845 11463442 NaUELT 
3 22091548 22307857 Na(DW)LT , Na(FW)LT 
4 24843730 25058195 Mg(FW)LT 
5 29119761 29411376 K(DW)REDLT, K(FW)REDLT 
6 37595071 37816775 P(FW)/RGRLT 
7 42265021 42471850 SFWREDLT 
8 42893220 43217883 FWLTRED 

Chr 2 1 573100 785217 N(DW)/RGRLT, N(FW)/RGRLT 
2 5270236 5489303 P(DW)LT, P(FW)LT 
3 8446601 8652677 N(FW)LT 
4 8801325 9007486 N(DW)/RGRLT 
5 20529472 20737331 K(FW)LT, K(DW)/RGRLT, K(FW)/RGRLT 
6 21014447 21228732 C(FW)LT 
7 21676343 21906350 C(DW)/RGRLT 
8 22741363 22962964 Na(FW)/RGRLT 
9 29190864 29401373 C(DW)/RGRLT 

Chr 3 1 16449347 16658820 SFWLT 
2 30711515 31318395 N(DW)REDLT, N(FW)LT, N(FW)REDLT, 

N(FW)/RGRLT, N(DW)/RGRLT 
3 31566050 31781418 FeUELT 

Chr 4 1 12707862 12924649 C(FW)LT 
2 13760606 13980162 P(DW)LT, P(FW)LT, P(DW)/RGRLT, P(FW)/RGRLT 
3 14605163 15008150 C(FW)LT 
4 21319617 21543010 Mg(DW)LT, Mg(FW)LT 
5 30361878 30584308 RGRLT, C(DW)/RGRLT 
6 30594184 30797525 RGRLT 
7 31078200 31290910 FWLT, Mg(FW)REDLT 

Chr 5 1 542156 750554 SFWREDLT 
2 1306921 1511375 N(DW)/RGRLT 
3 8195720 8509519 C(FW)LT, SFWLT 
4 15985378 16203195 C(DW)/RGRLT 
5 23688669 23896522 C(DW)/RGRLT, N(FW)/RGRLT 
6 26485812 26704758 P(FW)/RGRLT 
7 27886608 28105340 K(DW)REDLT 
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Chr 6 1 6605479 6832750 Na(FW)/RGRLT 
2 9916482 10124422 FWSRLT 
3 10168713 10399253 Na(FW)/RGRLT 
4 10900608 11111357 FWSRREDLT 
5 13230119 13444616 Zn(FW)/RGRLT 
6 15877891 16092042 FeUELT 
7 21708951 21922891 FWLT 
8 22119339 22328915 Na(DW)LT, Na(DW)/RGRLT 
9 24866897 25081930 FWLT 
10 27003385 27247638 BUELT 
11 27962690 28181494 K(FW)/RGRLT 
12 28448779 28667855 C(DW)/RGRLT 
13 29347847 29667372 Na(FW)LT, NaUELT, Na(DW)LT, Na(DW)/RGRLT, 

Na(FW)/RGRLT 
Chr 7 1 945207 1152196 C(DW)/RGRLT, K(FW)/RGRLT 

2 19210632 19413252 RGRLT 
3 23235649 23457800 K(DW)REDLT 

Chr 8 1 2895035 3105447 FWLT, SFWLT 
2 3337751 3576347 Na(FW)REDLT 
3 3657275 3880233 K(DW)REDLT 
4 5145632 5366503 BUELT 
5 7102049 7313705 Na(FW)LT, Na(FW)/RGRLT 
6 7488653 7719211 Mg(FW)REDLT 
7 8497671 8715936 NaUELT 
8 9069082 9333729 Na(DW)LT, Na(DW)/RGRLT, Na(FW)/RGRLT, 

Na(FW)LT 
9 9493241 9692541 RGRLT, K(FW)/RGRLT, C(FW)/RGRLT, 

C(DW)/RGRLT 
10 10227523 10473165 P(FW)LT, P(DW)LT, P(FW)/RGRLT, P(DW)/RGRLT 
11 17320537 17678691 Na(FW)REDLT 

 12 26968542 27200388 Na(DW)LT, Na(FW)LT, Na(DW)/RGRLT, 

Na(FW)/RGRLT 
Chr 9 1 7370444 7574210 Na(FW)LT 

2 10246899 10560001 K(FW)/RGRLT 
3 19074054 19296109 C(DW)/RGRLT 

Chr 10 1 3710 192593 K(DW)/RGRLT 
2 2018955 2224867 FWSRLT 
3 7712328 7930183 N(FW)LT 

4 13142398 13362322 NUELT 

5 15531669 15742308 P(FW)LT, P(FW)/RGRLT 

6 16192110 16408077 P(DW)LT, P(DW)/RGRLT 

7 16426002 16626573 SFWLT 

8 17018922 17237006 FWLT, RFWLT 

9 20449092 20654875 RGRLT 

10 21406868 21636806 Na(DW)LT 

Chr 11 1 1931410 2141398 Mg(FW)REDLT 

2 17561346 17774719 N(FW)LT 

3 23806463 24013588 K(FW)/RGRLT 

Chr 12 1 19338780 19637985 Mg(DW)LT 
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2 21020481 21210286 Fe(FW)LT, C(FW)LT 

3 21557424 21766337 RGRLT 

4 21889585 22133896 BUELT 

5 24163373 24391419 K(DW)REDLT 

6 25953540 26184989 BUELT 

 

  

Supplementary Figure 3. 19: Genome-wide P-values from the mixed model method based on total final fresh 

weight in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes of 

the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 

  

Supplementary Figure 3. 2: Genome-wide P-values from the mixed model method based on shoot fresh 

weight in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes of 

the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 3: Genome-wide P-values from the mixed model method based on root fresh weight 

in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes of the 

rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the association 

between SNPs and traits. The horizontal line indicates the genome-wide significance threshold (FDR <10%). 

To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-values alongside 

their expected values. 

  

Supplementary Figure 3. 4: Genome-wide P-values from the mixed model method based on fresh weight 

shoot-to-root ratio in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 
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Supplementary Figure 3. 5: Genome-wide P-values from the mixed model method based on dry weight in 0.1 

NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes of the rice 

genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the association 

between SNPs and traits. The horizontal line indicates the genome-wide significance threshold (FDR <10%). 

To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-values alongside 

their expected values. 

  

Supplementary Figure 3. 6: Genome-wide P-values from the mixed model method based on shoot dry weight 

in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes of the 

rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the association 

between SNPs and traits. The horizontal line indicates the genome-wide significance threshold (FDR <10%). 

To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-values alongside 

their expected values. 

 

 

 



162 
 

  

Supplementary Figure 3. 7: Genome-wide P-values from the mixed model method based on root dry weight in 

0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes of the rice 

genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the association 

between SNPs and traits. The horizontal line indicates the genome-wide significance threshold (FDR <10%). 

To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-values alongside 

their expected values. 

  

Supplementary Figure 3. 8: Genome-wide P-values from the mixed model method based on dry weight shoot-

to-root ratio in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 
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Supplementary Figure 3. 9: Genome-wide P-values from the mixed model method based on relative growth 

rate reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 

  

Supplementary Figure 3. 10: Genome-wide P-values from the mixed model method based on shoot nitrogen 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 11: Genome-wide P-values from the mixed model method based on shoot 

phosphorus content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 12: Genome-wide P-values from the mixed model method based on shoot potassium 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 13: Genome-wide P-values from the mixed model method based on shoot sodium 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 14: Genome-wide P-values from the mixed model method based on shoot zinc 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 15: Genome-wide P-values from the mixed model method based on shoot iron 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 16: Genome-wide P-values from the mixed model method based on shoot boron 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 17: Genome-wide P-values from the mixed model method based on shoot carbon 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 18: Genome-wide P-values from the mixed model method based on shoot 

magnesium content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 19: Genome-wide P-values from the mixed model method based on shoot calcium 

content on dry weight basis (µmoles/gDW) in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 20: Genome-wide P-values from the mixed model method based on shoot nitrogen 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 21: Genome-wide P-values from the mixed model method based on shoot 

phosphorus content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 22: Genome-wide P-values from the mixed model method based on shoot potassium 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  



170 
 

  

Supplementary Figure 3. 23: Genome-wide P-values from the mixed model method based on shoot sodium 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 24: Genome-wide P-values from the mixed model method based on shoot zinc 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 25: Genome-wide P-values from the mixed model method based on shoot iron 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 26: Genome-wide P-values from the mixed model method based on shoot boron 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 27: Genome-wide P-values from the mixed model method based on shoot carbon 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 28: Genome-wide P-values from the mixed model method based on shoot 

magnesium content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 29: Genome-wide P-values from the mixed model method based on shoot calcium 

content on fresh weight basis (µmoles/gFW) in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 30: Genome-wide P-values from the mixed model method based on shoot nitrogen 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 31: Genome-wide P-values from the mixed model method based on shoot 

phosphorus content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 32: Genome-wide P-values from the mixed model method based on shoot potassium 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 33: Genome-wide P-values from the mixed model method based on shoot sodium 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 34: Genome-wide P-values from the mixed model method based on shoot zinc 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 35: Genome-wide P-values from the mixed model method based on shoot iron 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 36: Genome-wide P-values from the mixed model method based on shoot boron 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 37: Genome-wide P-values from the mixed model method based on shoot carbon 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 38: Genome-wide P-values from the mixed model method based on shoot 

magnesium content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 39: Genome-wide P-values from the mixed model method based on shoot calcium 

content (µmoles/gDW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 40: Genome-wide P-values from the mixed model method based on shoot nitrogen 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 41: Genome-wide P-values from the mixed model method based on shoot 

phosphorus content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 42: Genome-wide P-values from the mixed model method based on shoot potassium 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 43: Genome-wide P-values from the mixed model method based on shoot sodium 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 44: Genome-wide P-values from the mixed model method based on shoot zinc 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 45: Genome-wide P-values from the mixed model method based on shoot iron 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 46: Genome-wide P-values from the mixed model method based on shoot boron 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 47: Genome-wide P-values from the mixed model method based on shoot carbon 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 48: Genome-wide P-values from the mixed model method based on shoot 

magnesium content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified 

SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which 

determines the significance of the association between SNPs and traits. The horizontal line indicates the 

genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows 

the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 49: Genome-wide P-values from the mixed model method based on shoot calcium 

content (µmoles/gFW)/RGR in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 50: Genome-wide P-values from the mixed model method based on total final fresh 

weight reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 
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Supplementary Figure 3. 51: Genome-wide P-values from the mixed model method based on shoot fresh 

weight reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 

  

Supplementary Figure 3. 52: Genome-wide P-values from the mixed model method based on root fresh 

weight reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 
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Supplementary Figure 3. 53: Genome-wide P-values from the mixed model method based on fresh weight 

shoot-to-root ratio reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

  

Supplementary Figure 3. 54: Genome-wide P-values from the mixed model method based on dry weight 

reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 55: Genome-wide P-values from the mixed model method based on shoot dry 

weight reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 

chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance 

of the association between SNPs and traits. The horizontal line indicates the genome-wide significance 

threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the 

observed P-values alongside their expected values. 

 

Supplementary Figure 3. 56: Genome-wide P-values from the mixed model method based on root dry weight 

reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 57: Genome-wide P-values from the mixed model method based on dry weight 

shoot-to-root ratio reduction in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along 

the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the 

significance of the association between SNPs and traits. The horizontal line indicates the genome-wide 

significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution 

of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 58: Genome-wide P-values from the mixed model method based on shoot nitrogen 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 59: Genome-wide P-values from the mixed model method based on shoot 

phosphorus content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the 

location of the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 

(P-value) which determines the significance of the association between SNPs and traits. The horizontal line 

indicates the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding 

trait shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 60: Genome-wide P-values from the mixed model method based on shoot potassium 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 61: Genome-wide P-values from the mixed model method based on shoot sodium 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 62: Genome-wide P-values from the mixed model method based on shoot zinc 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 63: Genome-wide P-values from the mixed model method based on shoot iron 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 64: Genome-wide P-values from the mixed model method based on shoot boron 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

  



191 
 

 

Supplementary Figure 3. 65: Genome-wide P-values from the mixed model method based on shoot carbon 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 66: Genome-wide P-values from the mixed model method based on shoot 

magnesium content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the 

location of the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 

(P-value) which determines the significance of the association between SNPs and traits. The horizontal line 

indicates the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding 

trait shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 67: Genome-wide P-values from the mixed model method based on shoot calcium 

content on dry weight basis (µmoles/gDW) reduction in 0.1 NPK plants. The X-axis shows the location of the 

identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 68: Genome-wide P-values from the mixed model method based on shoot nitrogen 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 69: Genome-wide P-values from the mixed model method based on shoot 

phosphorus content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the 

location of the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 

(P-value) which determines the significance of the association between SNPs and traits. The horizontal line 

indicates the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding 

trait shows the distribution of the observed P-values alongside their expected values.  

 

Supplementary Figure 3. 70: Genome-wide P-values from the mixed model method based on shoot potassium 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 71: Genome-wide P-values from the mixed model method based on shoot sodium 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 72: Genome-wide P-values from the mixed model method based on shoot zinc 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 73: Genome-wide P-values from the mixed model method based on shoot iron 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 74: Genome-wide P-values from the mixed model method based on shoot boron 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 75: Genome-wide P-values from the mixed model method based on shoot carbon 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 76: Genome-wide P-values from the mixed model method based on shoot 

magnesium content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the 

location of the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 

(P-value) which determines the significance of the association between SNPs and traits. The horizontal line 

indicates the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding 

trait shows the distribution of the observed P-values alongside their expected values. 
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Supplementary Figure 3. 77: Genome-wide P-values from the mixed model method based on shoot calcium 

content on fresh weight basis (µmoles/gFW) reduction in 0.1 NPK plants. The X-axis shows the location of 

the identified SNPs along the 12 chromosomes of the rice genome, the Y-axis indicates the -log10 (P-value) 

which determines the significance of the association between SNPs and traits. The horizontal line indicates 

the genome-wide significance threshold (FDR <10%). To the right, Q-Q plot for the corresponding trait 

shows the distribution of the observed P-values alongside their expected values. 

 

Supplementary Figure 3. 78: Genome-wide P-values from the mixed model method based on nitrogen use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 79: Genome-wide P-values from the mixed model method based on phosphorus use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 

 

Supplementary Figure 3. 80: Genome-wide P-values from the mixed model method based on potassium use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 81: Genome-wide P-values from the mixed model method based on sodium use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 

 

Supplementary Figure 3. 82: Genome-wide P-values from the mixed model method based on zinc use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 83: Genome-wide P-values from the mixed model method based on iron use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 

 

Supplementary Figure 3. 84: Genome-wide P-values from the mixed model method based on boron use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Supplementary Figure 3. 85: Genome-wide P-values from the mixed model method based on carbon use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 

 

 

Supplementary Figure 3. 86: Genome-wide P-values from the mixed model method based on magnesium use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values.  
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Supplementary Figure 3. 87: Genome-wide P-values from the mixed model method based on calcium use 

efficiency in 0.1 NPK plants. The X-axis shows the location of the identified SNPs along the 12 chromosomes 

of the rice genome, the Y-axis indicates the -log10 (P-value) which determines the significance of the 

association between SNPs and traits. The horizontal line indicates the genome-wide significance threshold 

(FDR <10%). To the right, Q-Q plot for the corresponding trait shows the distribution of the observed P-

values alongside their expected values. 
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Abbreviations 

 

ADI: admixed indica 

ADJ: admixed japonica 

ADM: admixed 

ANOVA: analysis of variance 

ARO: aromatic 

bp: base pairs 

BUE: boron use efficiency  

CaUE: calcium use efficiency  

Chr.: chromosome 

CRISPR clustered regularly interspaced short palindromic repeats 

CRM: certified reference material 

CT: control treatment 

CUE: carbon use efficiency 

DW: total dry weight 

DWSR: dry weight shoot to root ratio 

FAO: Food and Agricultural Organization of the United Nations 

FASTA: Family-Based Score Test for Association 

FeUE: iron use efficiency  

FW: total final fresh weight 

FWSR: fresh weight shoot to root ratio 

GO: gene ontology 
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gRNA: guide RNA 

GWAS: genome-wide association study 

HDRA: high density rice array  

ICP-OES: inductively coupled plasma optical emission spectrometry  

IND: indica 

IW: initial weight 

KUE: potassium use efficiency  

LMM: linear mixed model 

LT: low treatment 

MgUE: magnesium use efficiency  

NaUE: sodium use efficiency  

nm: nanometer 

nsSNPs: Nonsynonymous SNPs 

NUE: nitrogen use efficiency  

PC: principal component 

PCA: principal component analysis 

PUE: phosphorususe efficiency  

QQ: Quantile-quantile 

QTL: Quantitative trait loci 

RDP1: rice diversity panel 1 

RDP2: rice diversity panel 2 

RDW: root dry weight 

RED:  reduction 
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RFW: root fresh weight 

RGR: relative growth rate 

RGRRED: relative growth rate reduction 

SDW: shoot dry weight 

SFW: shoot fresh weight 

SNP: single nucleotide polymorphism 

TEJ: temperate japonica 

TRJ: tropical japonica 

UE: nutrient use efficiency 

ZnUE: zinc use efficiency 
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