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Abstract

This PhD thesis provides new research results in the area of using 3D features for steganalysis.

The research study presented in the thesis proposes new sets of 3D features, greatly extending

the previously proposed features. The proposed steganlytic feature set includes features

representing the vertex normal, curvature ratio, Gaussian curvature, the edge and vertex

position of the 3D objects in the spherical coordinate system. Through a second contribution,

this thesis presents a 3D wavelet multiresolution analysis-based steganalytic method. The

proposed method extracts the 3D steganalytic features from meshes of different resolutions.

The third contribution proposes a robustness and relevance-based feature selection method

for solving the cover-source mismatch problem in 3D steganalysis. This method selects

those 3D features that are robust to the variation of the cover source, while preserving

the relevance of such features to the class label. All the proposed methods are applied for

identifying stego-meshes produced by several steganographic algorithms.
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Chapter 1

Introduction

Each day, billions of digital images, video, audio or 3D objects are shared through the

Internet. Based on these digital files, some secret messages can be hidden in plain sight

using the technique known as “information hiding”. Information hiding is the practice of

concealing information within media data, whilst causing no perceptible effect on the given

object, so that no one would suspect there is a hidden message in the object. An object

which has been embedded with hidden information is called stego-object, while the original

object, i.e. without any information embedded in, is called cover-object. Research in 3D

steganography started more than 17 years ago, shortly after research in image watermarking

developed. Nowadays, there are several 3D steganographic approaches.

The word steganography originates from two Greek words, steganos (στεγαυóς) and

graphein (γράϕειυ), meaning “covered or concealed” and “writing”, respectively. Steganog-

raphy hides the information into the innocuous cover-objects, obtaining the stego-objects

with hidden messages. One of the famous example of the steganography in the real life is

using an invisible ink to write on the paper. The message will disappear after the paper is

dry and appear once the paper is close to the heat. Whilst the modern steganography usually

uses the digital files to hide the secret messages and send through the Internet. Compared to

cryptography, steganography is concerned with concealing the fact that a secret message is

being sent, whereas cryptography is about protecting the contents of a message. While cryp-

tography changes completely the data, by encoding it according to a code, steganography

does not apparently alter the cover-data, but aims to hide the information unnoticed.

1



2 CHAPTER 1. INTRODUCTION

Digital watermarking technique is similar to the steganography, which can hide a certain

amount of information through a code, called watermark, in the digital files. There are two

kinds of digital watermarking algorithms, robust watermarking and fragile watermarking.

The goal of robust watermarking is to make the watermark robust against attacks, such as

denoising, compression and remodulation, so the watermark can then be used as evidence for

copyright protection. Since the focus of robust watermarking is on the robustness, the em-

bedding capacity would be rather low, because we are restricted when embedding additional

bits of information by the requirement for robustness. Meanwhile, the fragile watermarking is

considered for the authentication applications, in another word, it is used to identify whether

the object has been tampered with or not. So the fragile watermark has to be sensitive to

any modifications of the stego-objects. In term of the capacity, some fragile watermarking

algorithms have an embedding capacity as high as the steganography.

Since steganography can provide a covert communication channel for two parties, it can

be used maliciously by unlawful organisations, becoming a threat to the modern society.

For example, steganography was utilized by the terrorists to communicate, according to a

report published by BBC in 2013 [Gardner, 2013]. Only recently, steganography is started

being used by malware operators to develop covert communication channels between infected

computers and their command and control servers, as reported in the Black Hat Europe 2015

[Bureau and Dietrich, 2015]. The modifications on the objects produced by the information

hiding algorithms are too small to be noticed with the naked eye. Nevertheless, through a

technique, called steganalysis we can identify whether a message was embedded or not in a

given media object.

Steganalysis represents the method for identifying whether a message was hidden in a

certain media, using steganography or not. Steganalysis becomes a more and more impor-

tant research topic, because the potential threat of steganography being used for malicious

purposes is on the increase under the current security threats. Steganalysis employs feature

extraction algorithms from a specific media, which are then used for training a classifier in

order to distinguish cover-objects from stego-objects.

Following the development of steganography, in diverse media such as audio signals,

images and video, steganalytic algorithms have been developed for these media as well.
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Steganalysis for detecting the hidden information in images was studied in [Ker, 2005, Chen

and Shi, 2008, Fridrich and Kodovský, 2012], in audio [Liu et al., 2009, Ren et al., 2017] and

in video [Cao et al., 2012, Wang et al., 2014]. Unlike in the case of images or video, which

contain information structured on regular lattices, 3D objects are defined by their geometry.

In this thesis we consider mesh based representations or 3-D objects, encoding the geometry

of their surfaces. Such representations correspond to meshes, where vertices are connected

through edges and polygons.

Despite the development of new 3D information hiding algorithms during the past two

decades, 3D steganalysis received little interest from the research community. The first

paper about the 3D steganalysis was published in 2014 [Yang and Ivrissimtzis, 2014]. The

3D steganalytic approach proposed in [Yang and Ivrissimtzis, 2014] uses a 208-dimensional

feature set, YANG208, and quadratic classifier to detect the stego-objects embedded by six

information hiding algorithms. However, the performance of the steganalyzers trained in

[Yang and Ivrissimtzis, 2014] still needs further improvement.

The Cover Source Mismatch (CSM) problem is a barrier when attempting to apply the

steganalytic approaches in the real world, and this is represented by the scenario that the

objects used for training the steganalyzer may be originated from a different cover source

than the one used for hiding the information [Ker et al., 2013] by the steganographier.

In our study, we would like to concentrate on improving the performance of 3D steganal-

ysis in order to be used in a practical situation.

In 3D steganalysis, specific features are extracted from the surface of the 3D object, and

their characteristic statistical parameters are then fed into a classifier in order to distinguish

cover-objects from stego-objects. In 3D steganalysis, geometric features of stego-objects and

cover-objects are modelled statistically. The geometric features locally capture the shape

of the object, such as the vertex position, the face normal, the dihedral angle between two

adjacent faces, and so on. Based on this idea, we propose a more comprehensive local

feature set, considering some new geometric features, for instance, the vertex normal, the

Gaussian curvature, the curvature ratio, and features from the spherical coordinates of the

vertex, for steganalysis. The new local features would more effectively capture the slight

distortions caused by the information embedding, thus increasing the detection accuracy of
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the steganalyzer.

The 3D wavelet transforms provide a set of tools for the multi-scale analysis of mesh-

based representations of surfaces. Some steganographic methods have been proposed for

hiding information in the 3D wavelet domain and such information is hardly detectable by

the existing 3D steganalyzers.

In this study we propose to extract a set of 3D wavelet features from the initial resolution

triangle mesh, the lower resolution one and the higher resolution one. During the experi-

ments, we compare the proposed wavelet feature set with other steganalytic features when

detecting the stego-objects embedded by various information hiding algorithms.

When the steganalyzer is applied in the real world, it has to address the CSM problem,

which is due to the fact that the cover source used for the training of the steganalyzer is

different from the data used in the testing. This is a challenging problem, which greatly

restricts the applications on steganalyzers in the real situations.

After analyzing the techniques used to mitigate the CSM problem in the image steganal-

ysis, we propose to select those features which are robust to the variation of the cover source

but sensitive to the embedding changes. So we propose a feature selection algorithm consid-

ering both the feature’s robustness to the variation of the cover source and their relevance

to the class label.

The remainder of the thesis is organized as follows: Chapter 2 gives a detailed review

of the research literature related to the work presented in this thesis. Chapter 3 presents

the proposed the local feature set used for 3D steganalysis and provides experimental re-

sults when detecting information hidden by six different steganographic algorithms. Then,

Chapter 4 presents the 3D wavelet analysis-based feature set for the steganalysis of the 3D

triangle meshes and evaluates the results of the proposed methodology in the context of

information hidden by several steganographic algorithms. Furthermore, Chapter 5 describes

the robustness and relevance-based feature selection algorithm for solving the cover source

mismatch problem in 3D steganalysis. Chapter 6 concludes this thesis and points to several

problems that deserve further research.



Chapter 2

Literature Review

Steganography and steganalysis have been considered for many types of data, including

audio, images and video. In this thesis we consider the steganalysis of 3D graphical objects

and models. Firstly, we outline the main approaches in 3D steganography and information

hiding. Then existing steganalytic algorithms for digital images, video and 3D meshes are

introduced. Finally, the research studies about the cover source mismatch problem in image

steganalysis are discussed as well.

2.1 3D information hiding methods

The 3D information hiding methods are classified into three categories: embedding in the

spatial domain, those embedding in a transform domain, and those algorithms embedding

in the vertex ordering in the mesh representation. In the following, we first discuss the

requirements for information hiding and then introduce the 3D embedding methods for each

category.

2.1.1 Requirements for information hiding

Embedding information in media has several requirements, including the imperceptibility of

changes produced, security, high bit capacity and robustness. The most important is that the

embedded information should not produce visible changes. The security of the embedded

information is also a very important issue. The use of information hiding should not be

5
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easily detected by steganalysis and the embedded messages should be extracted only by the

owners of a secret key, in the case of private communication channels, or by using a public

key otherwise. The bit capacity is also an important feature, representing the amount of bits

embedded in a certain media. Another requirement is that of robustness, which measures

how well the embedded messages can survive attacks, such as media compression, cropping,

smoothing, noise addition, vertex reordering and so on.

In fact, the steganographiers have to find a balance between these factors. Higher capacity

usually means more modifications, which will affect the invisibility and security negatively.

Meanwhile, while aiming to increase the robustness to various attacks, the information hid-

ing may produce visible changes in the media, while the data capacity may suffer as well.

Additionally, seeking to increase the security will influence all the other factors, because

security changes require additional data modifications.

2.1.2 Embedding information into spatial domain

Ohbuchi et al. [Ohbuchi et al., 1997] published the first paper on 3D information hiding

describing two methods. The two methods use different geometrical primitives for embed-

ding: Triangle Similarity Quadruple (TSQ) and Tetrahedral Volume Ratio (TVR). The TSQ

algorithm first finds a macro embedding unit in a triangle mesh which consists of four neigh-

boring triangles with one triangle surrounded by the other three. During the procedure, it

avoids the triangles already used for embedding. Then, for each embedding unit, a quadruple

{subscript,mark, data1, data2} is embedded into the four triangles by displacing vertices by

small amount. It repeats these steps until the entire message is embedded. Meanwhile, the

TVR algorithm finds a sequence of triangles based on the spanning tree of vertices on the

triangular mesh. Then, a sequence of tetrahedrons which are subtended by two triangles

adjacent to the same edge is generated. The tetrahedron with the largest volume is selected

as the first one in the sequence while its volume is considered as the common denominator.

While the volumes of other tetrahedrons are used for numerators. The message is embedded

by changing the ratio of the volumes for the tetrahedrons, after displacing the vertices which

are contained in those selected for the numerator.

Cayre and Macq [Cayre and Macq, 2003] proposed an information hiding algorithm which
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includes two steps: firstly it selectes a list of triangles from the mesh that contains the payload

driven by the secret key; then, each so-called admissible triangle in the list is modified or or is

left unchanged according to the binary symbol it conveys, which is called a Macro Embedding

Procedure (MEP). In the first step, the list of triangles starts with the triangle determined on

the basis of a specific geometric characteristic, such as the triangle area or the intersections

of the principal axes by considering the Principal Component Analysis (PCA) of the mesh.

The next triangle in the list is either the first or the second neighbored triangle in clockwise

order, depending on the key. The edge of the triangle which is shared with its predecessor is

named the entry edge. The entry edge is divided into two subsets of intervals, for embedding

either the symbol 0 or 1, and this decomposition is an application of Quantization Index

Modulation (QIM) [Chen and Wornell, 2001] to 3D meshes. Then, the vertex opposite to

the entry edge is used to embed information by displacing it such that the vertex’s projection

on the entry edge is located within a certain interval in order to embed the hidden bit. Wang

and Cheng [Wang and Cheng, 2005] modified the method of Cayre and Macq and proposed

a Multi-Level Embedding Procedure (MLEP) to embed information by sliding, extending or

rotating the triangle. The sliding method is very similar to the method proposed in [Cayre

and Macq, 2003]. In the extending approach, QIM is applied by displacing a vertex of the

triangle so that the height of the triangle is located within a certain interval according to

the message’s bit. Finally, they apply the same concept to the rotating level by embeding

messages in the degree of the dihedral angle.

Chao et al. [Chao et al., 2009] proposed a Multi-Layer Steganography (MLS) for 3D

objects. Firstly, this method defines a vertex embedding order by traversing the triangles

in the mesh using the same method as in [Cayre and Macq, 2003]. When considering a

single layer, this method applies PCA on the 3D object and finds the two extreme vertices

according to their locations with respect to the first principal axis. Then they cut this axis

into two-state region sets, used to embed the message bit of 0 or 1. Next, it projects the

x-coordinates of all the vertices onto this axis. The location of a vertex is changed or not,

defining a certain projection on the principal axis of the object, according to the bit to be

embedded. This method can be easily extended to multiple layers. When implementing this

method, we found that not all the bits embedded by this method are retrievable and some
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are lost.

Figure 2.1: Using the Hamiltonian path for ordering the vertices from the mesh surface. The
vertices and edges in red are covered in the constructed path, the green edges are compared
in order to find the next vertex in the path. This figure was reproduced after Figure 2 (b)
from [Itier and Puech, 2017]

The 3D steganographic algorithm, Hamiltonian Path Quantization (HPQ), proposed in

[Itier and Puech, 2017] utilizes a synchronization technique to guarantee that the order of

the embedded data is the same during the embedding and extraction stages. It builds a

Hamiltonian path over the complete graph of the vertices in the 3D object without using

the connectivity information. The Hamiltonian path is an approach for ordering all the

vertices from the 3D object, starting from a specific vertex, chosen by a secret key. For

each step, as illustrated in Figure 2.1, the algorithm chooses the nearest neighbor vi+1 of the

current vertex vi. The message is embedded by changing the relative position of a vertex

vi+1 with respect to its predecessor vi once the vertex vi+1 is added to the Hamiltonian

path Pn. In order to embed a large bit capacity, the vertex vi+1 is displaced along three

coordinates in the Spherical Coordinate System (SCS) which originates in the location of the

previously chosen vertex. The algorithm applies QIM by splitting each section of the path

into intervals, controlled by the quantization parameter ∆. A given interval is subdivided

into s sub-intervals which correspond to different embedded bits. The vertex is then moved

to a specific location within the interval, according to the embedded information. The

new position of the vertex is converted back to the Cartesian coordinate system after the

embedding.

A recent study [Li et al., 2017] shows that a variation of the HPQ algorithm, named HPQ-

R, which changes the vertex only in the radial distance coordinate of the SCS can increase

its resistance to steganalysis to a large extent. The study from [Li et al., 2017] analyses the
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influence of the parameter ∆ and shows that a smaller value for this parameter leads to a

smaller distortion in the 3D stego-shapes. By increasing the resistance to steganalysis we

increase the protection of the information stored into the 3D objects.

Watermarking algorithms have better robustness but lower embedding capacity than the

steganographic algorithms mentioned above. For example, two watermarking algorithms

proposed in [Cho et al., 2007] are based on modifying the Mean or the Variance of the

distribution of the vertices’ Radial distance coordinates in the Spherical coordinate system,

named MRS and VRS. Both algorithms transform the meshes from the Cartesian coordinate

system to spherical coordinate system. Then they divide the radial distances coordinates of

the vertices into a set of histogram bins according to their values. The mean or variance

of the elements in each bin is adjusted to a certain range, which indicates the embedded

watermark bit, by modifying the radial distance coordinates of the vertices. During the

extraction stage, for each bin, extracted following the same procedure as for the embedding,

if the mean or variance of the bin’s elements is larger than the preset threshold, then the

embedded bit is ‘1’, but otherwise it is ‘0’.

Based on a similar idea used in [Cho et al., 2007], Yang et al. [Yang et al., 2017b]

proposed a Steganalysis-Resistant Watermarking (SRW) algorithm. It also uses the spherical

coordinate system to represent the positions of the vertices. In the SRW algorithm, the

heights of the histogram bins containing the vertices’ radial distance coordinates are changed

so that certain information is embedded. For instance, after the displacement of the vertices

belonging to the related bins, the height of the (k+1)th bin should be higher than that of the

kth bin, so that bit ‘0’ is embedded. The stego-meshes watermarked by the SRW algorithm

are harder to be identified by the steganalyzer, when compared to those watermarked by the

MRS or VRS algorithms.

2.1.3 Embedding information into transform domain

There are a number of information hiding methods in one of the transform domains of 3D

meshes. Ohbuchi et al. [Ohbuchi et al., 2001] proposed the first 3D watermarking method

in the spectral domain of 3D meshes in 2001. Firstly, spectral analysis is applied to the

mesh in order to obtain the spectral coefficients of the mesh. Then, it repeatedly embeds
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the same information a certain number of times in order to increase the resistance of the

watermark against additive random noise. The information is embedded by altering the

spectral coefficients based on a known stego-key and the modulation amplitude parameter.

After embedding the messages, an inverse transformation converts the watermarked spectral

coefficients back into the original mesh. Nevertheless, this is a non-blind watermarking

algorithm, which means it needs both the cover mesh and the watermarked one during the

watermark extraction. Moreover, some of the bits embedded by this method are lost during

the extraction.

Luo and Bors [Luo and Bors, 2008] proposed a blind watermarking method using spectral

coefficients. It is known that the low frequency spectral coefficients correspond to large scale

features and the high frequency ones correspond to the detailed information [Karni and

Gotsman, 2000]. To avoid the visible changes, their approach embeds the watermark into

the middle and high frequency range of the spectral coefficients. This method firstly splits

the coefficients of the upper 85% of the coefficients into a number of bins. Each set of

coefficients forms a point cloud whose shape is analyzed by using PCA. Then the cloud of

3D points is “squashed” when embedding a bit of 1 and “inflated” to a well defined sphere for

a bit of 0. This watermarking approach is blind so that it is able to retrieve the watermark

without the cover mesh. During the extraction, the spectral coefficients are extracted and

grouped into sets in the same way used during the embedding. Finally, the information is

retrieved by calculating the ratio between the largest variance and the smallest variance of

the point cloud formed by the watermarked coefficients.

3D wavelet multiresolution analysis, introduced in [Lounsbery et al., 1997], allows the

mesh to be represented at various resolutions. 3D wavelet analysis leads to various ap-

plications, including filtering [Abdul-Rahman et al., 2013], mesh compression [Payan and

Antonini, 2006, Kammoun et al., 2012], subdivision [Shao et al., 2014], as well as informa-

tion hiding [Date et al., 1999, Uccheddu et al., 2004, Kim et al., 2005, Kim et al., 2006, Wang

et al., 2008, Zaid et al., 2015].

In the following we outline the 3D wavelet decomposition. Figure 2.2 illustrates one it-

eration of the lazy wavelet decomposition, proposed in [Lounsbery et al., 1997], as a simple

implementation of the 3D wavelet decomposition. The decomposition is applied on meshes
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Figure 2.2: The illustration of one iteration of the lazy wavelet decomposition on the triangle
meshes.

consisting of triangles. In the following for illustrative purposes we consider four triangles,

including one triangle in the centre surrounded by the other three triangles, as shown in

Figure 2.2. During the 3D wavelet decomposition, the three vertices, defining the central

triangle, are removed, while the remaining three vertices would form a new triangle. Conse-

quently, following the 3D wavelet decomposition, the four original triangles are transformed

into a single triangle, part of a coarser mesh. At the same time, three Wavelet Coefficient

Vectors (WCVs) are obtained as the vectors from the midpoints of the new edges to the

vanished vertices. The new edges in the larger triangle are called the support edges for the

WCVs. The new larger triangle preserves the basic shape formed by the former four triangles

and the WCVs encode the local details of the 3D shape. This decomposition propagates on

the whole mesh generating a coarser mesh together with a number of WCVs. This decompo-

sition can then continue recursively. The limitation of this wavelet decomposition approach

is that it requires the high resolution mesh to be a semi-regular mesh. The mathematical

formulation defining the 3D wavelet decomposition can be found in [Lounsbery et al., 1997].

A 3D wavelet-based watermarking algorithm was proposed by Kanai et al. [Date et al.,

1999], which modifies the ratio between the norm of a WCV and the length of its support

edge. However, this 3D watermarking method is non-blind, which significantly reduces its

potential for application. Uccheddu et al. [Uccheddu et al., 2004] proposed a blind 3D

wavelet-based watermarking algorithm that embeds information by changing the position of

the WCV’s terminal point, according to a watermarking map generated by a secret key. Kim

et al. [Kim et al., 2005] proposed a robust watermarking algorithm which hides information

by changing the WCVs’ norms. Another 3D wavelet-based robust watermarking algorithm
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was also proposed by Kim et al. [Kim et al., 2006], which applies a technique similar to the

one used in [Cho et al., 2007] in order to embed information into the histogram of WCVs’

norms.

Figure 2.3: The illustration of the hierarchical watermarking framework proposed in [Wang
et al., 2008]. This figure corresponds to Figure 2 from [Wang et al., 2008]

Multiple iterations of 3D wavelet decomposition of the triangle mesh is the foundation of

the hierarchical watermarking method. At each iteration of the 3D wavelet decomposition,

the mesh is decomposed into a coarser mesh representation and a set of WCVs. The 3D

wavelet decomposition continues recursively, until the mesh obtained cannot be decomposed

any further. A hierarchical 3D watermarking methodology based on the wavelet transform

was developed by Wang et al. [Wang et al., 2008], which includes three different algorithms,

each one enforcing one of the following requirements: robustness, high-capacity and fragility

for authentication. The framework of this method is illustrated in Figure 2.3. A robust

watermark is embedded by modifying the norms of the WCVs associated with the lowest

resolution level of the mesh. Then, a denser mesh is reconstructed based on the lowest

resolution mesh and its corresponding watermarked WCVs. In order to embed a high bit

capacity watermark code, at each iteration, the WCVs are indexed according to the lengths

of their support edges for synchronization. A controlling parameter is defined as p = lav/εhc,

where lav is the average length of the WCVs’ support edges, and εhc is a specific constant.

The watermark is embedded by adjusting the residuals of the WCVs’ norms divided by the

parameter p, into a certain sequence. Finally, the fragile watermark is embedded before
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the last iteration of the mesh reconstruction. In the case of fragile watermark embedding,

an identical symbol is embedded by two different embedding approaches. One approach is

based on the quantization of the angle between the WCV and its support edge using the

M-symbol scalar Costa scheme [Eggers et al., 2003], which depends on a quantization step

∆θ. In the second embedding approach, the symbol is embedded by adjusting the norm-

length ratio of the WCV and its support edge. Finally, the hierarchically watermarked mesh

is reconstructed to the size of the cover-object.

2.1.4 Embedding through changing the ordering of the vertices

Changing the ordering of vertices in the mesh representation, using permutations, has been

used for 3D steganography in certain approaches. In this case by the mesh representation

we mean the order or list in which the vertices and faces are stored in the files representing

the 3D object.

In [Cheng and Wang, 2006], Cheng and Wang used the vertex representation order,

face representation order and the face index order, with respect to a conventionally defined

vertex or face ordering, in order to embed secret information. The algorithm firstly produces

a specific ordering of the vertices which is geometrical invariant and which is then used as

a reference order for embedding. The vertex ordering in the sequence is used to embed the

information. A similar embedding idea is applied to the face representation order. When

embedding information by modifying the face index, a triangular face is corresponding to one

of three states according to the type of face index order. The algorithm uses two triangles as

a unit for embedding, resulting into nine states, which can embed three bits of information.

A high capacity steganographic method, proposed in [Bogomjakov et al., 2008], also

embeds information by modifying the order of the vertex. It firstly computes a reference

ordering of faces and vertices, as in the Edgebreaker mesh compression algorithm [Rossignac,

1999]. In the second stage, the message is encoded as a permutation of the mesh vertices

and faces relative to their reference order. During the extraction, the message is decoded by

comparing the representation order to the reference one. During the following year, Huang et

al. [Huang et al., 2009] improved the embedding capacity of the permutation steganography

proposed in [Bogomjakov et al., 2008].
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As for the advantages of the steganographic methods in the representation domain, first of

all, they would not cause any distortions, because they do not actually change the coordinates

of the vertices at all. Moreover, the embedding capacity of these methods is very high,

resulting into more than 10 Bits Per Vertex (BPV). However, some fatal flaws limit the

application of these steganographic methods. The third party can obtain the embedded

messages if they find the reference order which is generated by public algorithms. In addition,

these methods are fragile to the vertex reordering attack. If the order of the vertices is

changed, the recipient can no longer extract the message correctly.

There are a few 3D steganographic algorithms using the connectivity of the mesh as the

carrier, for instance, the algorithm proposed in [Amat et al., 2010]. These algorithms do not

change the geometry of the mesh surface, so no distortion is produced to the 3D objects.

Nevertheless, their weakness consists in the fact that they are vulnerable to the remeshing

attack.

2.2 Image and video steganalysis

In the following we discuss some approaches adopted for image and video steganalysis. Im-

age steganalysis has received significant attention from the academic community since 1998

[Johnson and Jajodia, 1998]. The early steganalytic approaches for digital images usually

would just detect the changes produced by a particular information hiding algorithm by

considering some flaws of the embedding algorithm. For example, Westfeld and Pfitzmann

[Westfeld and Pfitzmann, 1999] presented a chi-square test to detect the changes of the Dis-

crete Cosine Transform (DCT) coefficients caused by the JSteg [Upham, 1997] embedding

algorithm. Fridrich et al. [Fridrich et al., 2000] proposed a steganalytic approach based on

the observation that the Least Significant Bit (LSB) encoding would increase the number of

unique colors in the true-color images.

A concept of calibration was introduced in [Fridrich et al., 2002a] as a method of us-

ing a reference image in order to improve features’ sensitivity to embedding changes while

reducing image-to-image variations. Based on the histograms of low frequency DCT coef-

ficients of the original image and those of the reference image, the steganalytic approach
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proposed in [Fridrich et al., 2002a] can estimate the length of the secret message embedded

by the steganographic algorithm F5 [Westfeld, 2001]. Later, some higher-order features for

Joint Photographic Experts Group (JPEG) image steganalysis were proposed in [Fridrich,

2004] which considers the absolute differences between the statistics that extracted from the

original images and those of the reference image as the steganalytic features. Image cali-

bration was used in image steganalysis in many approaches[Ker, 2005, Pevný and Fridrich,

2007, Kodovskỳ and Fridrich, 2012].

A Markov process-based steganalytic approach used to identify the changes produced by

the JPEG steganography was proposed in [Shi et al., 2006]. In this approach, differences

between 2-D arrays of JPEG coefficients corresponding to horizontal, vertical and oblique

directions between the cover-images and stego-images, are modelled as a Markov process.

The elements from the transition probability matrices are then considered as features in

the classifier used as steganalyzer. A truncation technique is used to limit the range of

the elements in the transition probability matrix in order to reduce the dimensionality of

the feature vectors. In another approach [Chen and Shi, 2008], the interblock correlation

among the JPEG coefficients are used to improve the steganalysis performance. The idea

of modelling the differences between pixels by higher-order Markov chains was proposed in

[Pevny et al., 2010]. This approach calculates the difference between the adjacent pixels along

different directions and obtains the difference arrays. Then, it models the difference arrays

by both first-order and second-order Markov processes. The elements in the corresponding

transition probability matrices are considered as a 686-dimensional feature set, called the

Subtractive Pixel Adjacency Model (SPAM).

Many high-dimensional features are proposed for image steganalysis in the case of adap-

tive steganographic algorithms, such as Highly Undetectable steGO (HUGO) [Pevnỳ et al.,

2010], Wavelet Obtained Weights (WOW) [Holub and Fridrich, 2012], Uniform Embedding

Distortion (UED) [Guo et al., 2012], UNIversal WAvelet Relative Distortion (UNIWARD)

[Holub and Fridrich, 2013]. For example, the steganalytic approach proposed in [Kodovskỳ

and Fridrich, 2011] considers using the co-occurrence matrices of selected DCT coefficient

pairs, together with the features proposed in [Chen and Shi, 2008] and [Pevný and Fridrich,

2007], as a 48,600-dimensional feature set. Another high-dimensional feature set, Spatial
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Rich Models (SRM) [Fridrich and Kodovský, 2012], is based on the co-occurrence matrices

of neighboring samples from the truncated and quantized noise residuals of the image ob-

tained by using linear and non-linear high-pass filters. Some stgeanalytic approaches such

as [Tang et al., 2014, Denemark et al., 2014] improved the SRM features by considering

the knowledge of the embedding change probabilities, according to the distortion functions

used by the adaptive steganographic algorithms. Song et al. [Song et al., 2015] proposed a

steganalytic approach for JPEG compressed images which extracts the histogram features

from the residuals of the image obtained by using the 2D Gabor filters with different scales

and orientations.

Machine learning tools used for image steganalysis are also very important for the perfor-

mance of the steganalyzer. Fisher Linear Discriminant (FLD) and Support Vector Machine

(SVM) were among the machine learning methods used in the early studies of image ste-

ganalysis [Farid, 2002, Lyu and Farid, 2002, Pevný and Fridrich, 2007]. However, because

the dimensionality of the steganalytic feature set has significantly increased, the curse of

dimensionality led to a high complexity of training and the degradation of the generalisation

ability of the steganalyzer. In order to solve this problem, the framework of using an ensem-

ble of base FLD classifier for image steganalysis was proposed in [Kodovskỳ and Fridrich,

2011, Kodovskỳ et al., 2012]. During the training of this framework, multiple base classifiers

as FLDs are trained over various subsets of the feature set. Then, the base classifiers are

combined by taking a majority vote of their decisions, which means that, for each instance,

the class chosen by most number of base classifier is the ensemble decision. Since the di-

mensionality of the feature subset is much lower than that of the whole set, the complexity

of training a base classifier is much lower. Furthermore, the combination of multiple base

classifiers can produce a stronger classifier ensemble with better generalization ability. Con-

sequently, the FLD ensemble has been the most popular machine learning tool used in the

area of image steganalysis [Fridrich and Kodovský, 2012, Tang et al., 2014, Denemark et al.,

2014, Song et al., 2015].

Deep learning methods have recently been applied to image steganalysis [Tan and Li,

2014, Qian et al., 2015, Xu et al., 2016, Yang et al., 2017a, Ye et al., 2017, Wu et al., 2017]

and some deep learning approaches achieved better performance than other steganalytic
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approaches. It is noted that the structure of the Convolutional Neural Network (CNN) used

for steganalysis is quite different from that of the CNN used in the computer vision tasks,

such as image recognition and classification. For instance, the weights in the first layer of

the CNN proposed in [Ye et al., 2017] are initialized with the high-pass filter set used in

SRM, which aims to suppress the image content. Meanwhile, the output of the first layer of

the CNN is processed by a new activation function called the Truncated Linear Unit (TLU),

which truncates the output to a fixed range. Furthermore, the knowledge of the selection

channel is exploited to boost the steganalysis performance for the adaptive steganographic

algorithms. The CNN-based steganalytic approach, proposed in [Ye et al., 2017], provides

better performance than SRM [Fridrich and Kodovský, 2012], maxSRM [Denemark et al.,

2014] and FLD ensemble classifier when detecting the stego-images embedded by certain

adaptive steganography.

Most of the video steganalytic approaches aim to detect the motion vector modification

produced by the video steganographic methods. The motion vectors are the results of block-

based motion estimation during video coding, which are commonly exploited by the video

steganography. Su et al. [Su et al., 2011] proposed a video steganalytic method based on the

statistical analysis of the neighboring motion vectors in both spatial and temporal domain.

Later, Cao et al. [Cao et al., 2012] applied the calibration technique to video steganalysis and

proposed the features characterizing the changes of the motion vectors during recompression

in order to differentiate the stego-video from the cover-video.

The works from [Wang et al., 2014] and [Ren et al., 2014] pointed out that the modifica-

tions of the motion vectors may destroy the local optimality which is the aim of the motion

estimation in video compression. Following the same framework proposed in [Wang et al.,

2014], Zhang et al. [Zhang et al., 2017] improved the method of checking the local optimality

of motion vectors by considering both distortion and bit estimation associated with motion

vectors.

While 3D objects can be represented in various ways, their most usual data representation

is by means of meshes. Such irregular representations, modelling complex 3D objects, are

very different from the regular structural arrays representing digital images or video signals.

Consequently, the existing image and video steganalytic algorithms cannot be successfully
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applied to 3D objects. In the following, we would introduce the approaches adopted for 3D

steganalysis so far.

2.3 3D steganalysis

There are much fewer steganalytic approaches for 3D objects than for images and video

signals. The first steganalytic algorithm for 3D meshes was proposed in [Yang and Ivris-

simtzis, 2014]. This 3D steganalytic algorithm is based on the features of 3D meshes and

by using machine learning, for distinguishing stego-objects from cover-objects. During 3D

steganalysis, both cover- and stego-objects are smoothed using one Laplacian smoothing

iteration. Then, the geometric features such as the vertex position and norm in Cartesian

and Laplacian coordinate systems [Yang and Ivrissimtzis, 2010], the dihedral angle of edges

and face normals, are extracted from the original mesh and the smoothed one. It calculates

the absolute differences between the features from the original mesh and those from the

smoothed mesh. The feature vectors used for steganalysis are the four statistical moments

of the logarithm of the absolute differences between the object and its smoothed counter-

part. Meanwhile, the histograms of the differences between the features corresponding to

the original objects and their smoothed counterparts are formed and used for extracting

the steganalytic features. Finally, this steganalytic approach uses quadratic discriminate

analysis to train the classifiers for separating the stego-objects, produced by several stegano-

graphic algorithms from their corresponding cover-objects. The experimental results show

that the steganalyzers trained as quadratic classifiers achieve high detection rates for certain

3D information hiding algorithms.

More recently, Yang et al. [Yang et al., 2014, Yang et al., 2017b] proposed a new ste-

ganalytic algorithm, specifically designed for the robust 3D watermarking algorithm, MRS,

proposed in [Cho et al., 2007]. During steganalysis, the number of bins, K, used in the

watermarking algorithm is estimated using exhaustive search. For each K, the steganalytic

algorithm classifies the bins into two clusters using a standard clustering algorithm fitting

the data with a mixture of two Gaussian distributions. The estimate of K corresponds to

that which maximizes the Bhattacharyya distance between the two clusters. Then it uses
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a normality test to decide if the bins of the mesh can be modeled by a single Gaussian, in

which case the mesh would not contain any hidden information. Otherwise, the distribution

is bimodal and consequently the mesh is watermarked. The limitation of this algorithm is

that it is only effective for the information embedded by the MRS algorithm and would not

be useful when the mesh is embedded by other information hiding algorithms than MRS.

Kim et al. [Kim et al., 2017] extended the approach from [Li and Bors, 2016], which is

presented in this thesis in Chapter 3, and proposed to use some additional features such as the

edge normal, mean curvature and total curvature as supplement to LFS52 and formed LFS64

for 3D steganalysis. The improvement shown for LFS64 with respect to LFS52 is limited to

the steganalysis of the information embedded by certain information hiding algorithms and

the associated experiments are explained in the experimental part of Chapter 4.

2.4 The cover source mismatch problem

The Cover Source Mismatch (CSM) problem consists of the realistic scenario that the ob-

jects used for training a steganalyzer may be originated in a cover source that is different

from those which the steganographier actually used for hiding information [Ker et al., 2013].

A thorough study of the implications for the CSM paradigm in image steganalysis was ad-

dressed during the “Break Our Steganographic System” (BOSS) contest [Bas et al., 2011].

The mismatch between the training set and testing set caused many difficulties to the partic-

ipants in this contest [Bas et al., 2011, Fridrich et al., 2011, Gul and Kurugollu, 2011]. In the

machine learning community, the methods of domain adaptation [Patel et al., 2015, Long

et al., 2015] and transfer learning [Pan and Yang, 2010, Long et al., 2014] were studied

in order to learn a target classifier using labeled data from a different distribution. More

specifically, in image steganalysis, the CSM problem was addressed by considering the fol-

lowing aspects: the training sets, the feature set and the machine learning methods used for

steganalysis.

In principle, in order to increase the generalisation ability of the steganalyzer we have to

increase the diversity of the training set. In the case of digital images, the study [Kodovsky

et al., 2014] mitigated the CSM’s impact by training the steganalyzers over a mixture of
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images taken by different cameras and by using a diversity of JPEG compression quality

factors. Xu et al. [Xu et al., 2015] constructed an image set for training steganalyzer by

selecting the samples from a large data set of images taken from various sources from the

Internet. Meanwhile, they removed repetitions of images in order to reduce the redundancy

of the training set.

The feature space is also a factor related to the impact of CSM paradigm. Gul and Kuru-

gollu [Gul and Kurugollu, 2011] proposed a feature selection algorithm, in the context of the

BOSS contest, which calculates the correlation between a feature vector and the embedding

rate as the criterion for selecting the features. Pasquet et al. [Pasquet et al., 2014] proposed

to use the ensemble classifier enabled with a feature selection mechanism in order to address

the CSM problem. The feature selection was considered by evaluating the importance of

each feature in the learning process in [Chaumont and Kouider, 2012]. A feature condensing

method, called Calibrated Least Squares (CLS) was proposed in [Pevnỳ and Ker, 2013] to

make the high dimensional feature sets compatible with the anomaly detector employed for

steganalysis. A method to mitigate the CSM due to changes in the features of the cover

image was presented in [Ker and Pevny, 2014]. This approach normalizes the cover features

for all steganographiers by subtracting the centroid of their joint distribution.

Other research studies addressing the CSM problem in images aim to find a classifier

that would be robust to the variation between training and testing data. In [Lubenko and

Ker, 2012] it was shown that simple classifiers, such as the FLD ensemble and the Online

Ensemble Average Perceptron (OEAP) had better performances than other more complex

classifiers, when faced with the cover source mismatch problem. To mitigate the mismatch

due to various changes in steganalytic features, Ker and Pevnỳ [Ker and Pevny, 2014] used

an ensemble of classifiers which gave more weight to those classifiers that were robust to the

changes in the steganalytic features. A similar weighting strategy for improving the FLD

ensemble’s performance in the CSM paradigm was presented in [Xu et al., 2015].
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2.5 Summary

In this chapter, we revised the main 3D information hiding algorithms, the various approaches

adopted for image and video steganalysis, the 3D steganalytic methods and the studies on

solving the cover source mismatch problem in steganalysis. The 3D information hiding

algorithms are categorized into three groups according to the domain they embed message

in, namely, the spatial domain, the transform one and the vertex ordering domain. The

basic ideas and the encoding procedure of the 3D embedding algorithms are introduced.

Afterwards, the research studies on image and video steganalysis are briefly reviewed from

two aspects, the statistical features and the machine learning tools used for steganalysis.

The 3D steganography has received a significant attention during the last 20 years, almost

similar to the one received by image and video steganography. Nevertheless, while there are

several studies of image and video steganalysis, 3D steganalysis is still in its infancy. The

cover source mismatch problem has recently been studied in the case of image steganalysis

but not for 3D object steganalysis. This PhD thesis includes research studies for proposing

new feature sets for 3D steganalysis. Moreover, it analyses for the first time, the efficiency

of 3D steganalysis under the cover source mismatch paradigm.





Chapter 3

Local Geometry-Based Feature Set

for 3D Steganalysis

3.1 Introduction

From the literature review about the 3D steganalysis, it is clear that the research field of

3D steganalysis is still in its infancy. 208 features have been proposed for 3D steganalysis

in [Yang and Ivrissimtzis, 2014]. In this chapter, we propose to use, a new set of features

derived from the local geometry of the 3D surface, for 3D steganalysis. The proposed features

are used in combination with some of the features proposed in [Yang and Ivrissimtzis, 2014],

while other features proposed before are dropped. We propose to use the statistics of the

Gaussian curvature and the curvature ratio in order to capture the changes of the surface’s

curvatures. Furthermore, the vertex normal is also considered for finding the changes in the

orientation of polygon faces containing a certain vertex. We also propose to use the statistics

of spherical coordinates, and the length of the edge defined in spherical coordinates, for 3D

steganalysis. The spherical coordinate system is often used for hiding information in 3D

objects, but it has not been previously used in 3D steganalysis. The statistics of sets of

3D features are then fed into machine learning algorithms, for example, the Fisher Linear

Discriminant (FLD) ensemble [Kodovskỳ et al., 2012], which was successfully used for image

steganalysis.

In the experimental part, we consider 354 3D objects from the Princeton Mesh Seg-

23
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mentation project [Chen et al., 2009] database for training and testing the proposed 3D

steganalyzer. This database contains a large variety of shapes, covering the human pos-

tures, animals, tools and so on. The stego-objects are generated by applying six different

embedding algorithms, which embed information into spatial or transform domain of the 3D

objects.

With the aim of evaluating the proposed 3D steganalytic features, we use the proposed

steganalytic features extracted from 260 pairs of cover- and stego-objects, produced by a

certain information hiding algorithm, in order to train a steganalyzer. Then, we test the

performance of the trained steganalyzer when identifying the stego-objects from the other

94 pairs of cover- and stego-objects.

This chapter was published in [Li and Bors, 2017]. The rest of this chapter is organized

as follows: The description of the 3D steganalysis framework formulated in this study is

provided in Section 3.2. The 3D feature set, used by the steganalyzer is presented in detail

in Section 3.3. The experimental results are provided in Section 3.4, while the summary of

this chapter are outlined in Section 3.5.

3.2 3D steganalysis framework

In this section, we provide a brief introduction of the 3D steganalysis framework. The ste-

ganalysis framework is treated as a machine learning problem, consisting of training and

testing stages. The training of the steganalyzer has the following processing steps: prepro-

cessing, feature extraction and learning, as illustrated in Figure 3.1. The result of these

processing steps consists of a parameter set discriminating between the 3D objects carrying

hidden information and those that are not. The testing stage includes the same preprocess-

ing and feature extraction steps as the training stage, while applying the parameters learnt

during the training on the features extracted from various sets of test objects.

Firstly, during the preprocessing stage, Laplacian smoothing is applied on all the graph-

ical objects. The idea of 3D object smoothing was borrowed from image steganalysis, where

it was observed that the difference between the stego-image and its smoothed version is more

significant than the difference between the cover-image and its corresponding smoothed ver-
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Figure 3.1: The 3D steganalysis framework based on learning from statistics of the local
feature sets and classification by means of machine learning methods.

sion [Fridrich et al., 2002b, Kodovsky and Fridrich, 2009]. Similarly, it is expected that the

difference between a mesh and its smoothed version is larger for a stego mesh than for a

cover mesh. In most 3D watermarking algorithms, the changes produced to the stego-object,

following the watermark embedding, can be associated to noise-like changes. Consequently,

when smoothing a cover mesh, the resulting modifications will be smaller than those ob-

tained when smoothing its corresponding stego mesh. We consider Laplacian smoothing for

the object O, resulting in its smoothed version O′. Then the rotation and scaling are used

to normalize the objects such that their size is constrained within a cube with sides of one,

in order to eliminate the perturbation on the features, caused by the variation of the size in

the objects from the training set.

Features, characterizing the local geometry of 3D objects are extracted after the prepro-

cessing stage. In Section 3.3 we propose to use a new set of 3D features for steganalysis.

Then, Φ represents the absolute difference between the geometric feature extracted from

the object O and its smoothed version O′. In order to statistically model the difference, we

consider the first four statistical moments, representing the mean, variance, skewness and

kurtosis, of the logarithm of Φ as the feature vector X, which is then used as an input to a

machine learning algorithm along with the class label y for the object O.

In the supervised learning phase, a classifier is trained over the extracted feature vectors

and the corresponding class labels of the objects. The classifier, which is also known as the
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steganalyzer, separates the feature space defining the stego-objects from that of the cover-

objects. In this research study we propose to use the FLD ensemble [Kodovskỳ et al., 2012]

for training the steganalyzer.

3.3 Local geometry-based feature set

3D watermarking and steganographic methods are specifically designed to embed information

in a way that does not visibly alter the surface of the objects [Luo and Bors, 2011, Bors

and Luo, 2013]. 3D steganalysis aims to find computationally such changes, separating

the stego-objects from the cover-objects. Depending on the specific algorithm used, such

changes could be randomly distributed on the surface of the 3D mesh [Bors, 2006] or they

could be specifically located in certain regions of the object [Alface et al., 2007]. Artefacts

produced in objects, following the information hiding embeddings, could be assimilated to

low level protuberances on mesh surfaces and consequently could be identified by feature

detection algorithms. In the following we outline some 3D local features which can be used

for identifying whether objects have been watermarked or not. Such feature detectors range

from very simple vertex displacement measurements to algorithms that take into account

the local neighbourhoods and measure specific shape characteristics.

Let us assume that we have the shape of a 3D object, considered as a cover mesh O =

{V,F,E}, containing the vertex set V = {vi|i = 1, 2, . . . , |V |}, where |V | represents the

number of vertices in the object O, its face set F, and its edge set E, respectively. We define

the neighbourhood N (vi) of a vertex vi as {vj ∈ N (vi)|e(i,j) ∈ E}, where e(i,j) is the edge

connecting vertices vi and vj .

3.3.1 Preprocessing

As already mentioned in Section 3.2, the preprocessing of the 3D objects is an essential phase

for extracting the steganalytic features. One iteration Laplacian smoothing is firstly applied

to the 3D object O, which updates the vertex vi into v′i as follows, [Taubin, 1995]:

v′i ← vi +
λ∑

vj∈N (vi)
wij

∑
vj∈N (vi)

wij(vj − vi), (3.1)
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where λ is a scale factor and wij are the weights defined as:

wij =


1 if vj ∈ N (vi)

0 otherwise

(3.2)

.

The value of λ is found empirically, such that the object is appropriately smoothed. The

object is afterwards aligned according to its first and second principal axes, given by the

Principal Component Analysis (PCA). Afterwards, the object is scaled to fit inside a cube

of sides equal to 1.

3.3.2 The YANG40 features

The 40-dimensional feature vector YANG40 contains the most effective features from YANG208,

used in [Yang and Ivrissimtzis, 2014], which correspond to the statistics of features evaluated

from the vertices, edges and faces that make up the given meshes. For YANG40 we remove

certain features, which provide lower performance, from YANG208 and abandon the strategy

used in [Yang and Ivrissimtzis, 2014] which treats the vertices with valence less, equal, or

greater than six separately for the sake of reducing the dimensionality.

Let us denote by Φ, the feature set representing differences between the object O and

its smoothed version O′. The first six components of Φ represent the absolute distance,

measured along each coordinate axis x, y, z between the locations of vertices of the meshes O

and O′ after being normalized and aligned, in both the Cartesian and Laplacian coordinate

systems [Yang and Ivrissimtzis, 2010]:

φ1(i) = |vx,c(i)− v′x,c(i)|,

φ2(i) = |vy,c(i)− v′y,c(i)|,

φ3(i) = |vz,c(i)− v′z,c(i)|,

(3.3)



28 CHAPTER 3. LFS FEATURE SET FOR 3D STEGANALYSIS

φ4(i) = |vx,l(i)− v′x,l(i)|,

φ5(i) = |vy,l(i)− v′y,l(i)|,

φ6(i) = |vz,l(i)− v′z,l(i)|,

(3.4)

where vx,c(i) and vx,l(i) represent the x-coordinate of vi in Cartesian and Laplacian coor-

dinate systems, respectively, i = 1, 2, . . . , |V |. The Laplacian coordinates of the object are

the results of the Cartesian coordinates multiplied by the Kirchhoff matrix [Bollobás, 2013]

of the object. Next, we evaluate the changes produced in the Euclidean distance between

vertex locations and the centre of the object, representing the vertex norms. The absolute

differences between the vertex norms of pairs of corresponding vertices in the meshes O and

O′ are calculated as:

φ7(i) = |‖vc(i)‖ − ‖v′c(i)‖| (3.5)

φ8(i) = |‖vl(i)‖ − ‖v′l(i)‖| (3.6)

where ‖vc(i)‖, ‖vl(i)‖, represent the vector norms of vi in Cartesian and Laplacian coordi-

nates, respectively, for i = 1, 2, . . . , |V |.

Another feature evaluates the local mesh surface variation by calculating the changes

in the orientations of faces adjacent to the same edge. This is measured by the absolute

differences between the dihedral angles of neighbouring faces, calculated in the plane per-

pendicular on the common edge {ei ∈ E|i = 1, 2, . . . , |E|}, where |E| represents the number

of edges of the object O :

φ9(i) = |θei − θ′ei |, (3.7)

where the calculation of the dihedral angle θe(i) is illustrated in Figure 3.2.

Changes in the local surface orientation are measured by calculating the angle between

the surface normals ~Nfi , fi ∈ F , of the faces from the object O, and their correspondents

~Nf ′i
, f ′i ∈ F ′, from the smoothed object O′:

φ10(i) = arccos
~Nfi · ~Nf ′i∥∥∥ ~Nfi

∥∥∥ · ∥∥∥ ~Nf ′i

∥∥∥ (3.8)

where i = 1, 2, . . . , |F |. The 40-dimensional feature vector YANG40 represents the first four
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statistical moments, representing the mean, variance, skewness and kurtosis of the logarithm

of the ten vectors {φi|i = 1, 2, . . . , 10}, described above.

4v
2v

3v
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3e

2e

1fN

2fN

3fN

1e
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2vN 1v

Figure 3.2: Dihedral angles and vertex-based normals for representing local geometry prop-
erties of the surface.

3.3.3 The vertex normal and curvature features

In the following we propose to use some additional 3D features. These features model

localized geometrical properties of the 3D shapes, and following extensive experimentation,

they have shown to be efficient for steganalysis. The vertex normal is the weighted sum of

the normals of all faces that contain the vertex [Max, 1999]. A vertex normal is illustrated

in Figure 3.2 and is computed as:

~Nvi =
∑
fj

A(fj) · ~Nfj

‖e(vi,1)‖2 · ‖e(vi,2)‖2
(3.9)

where fj represents the jth face that contains the vertex vi, A(fj) represents its area, e(vi,1)

and e(vi,2) are the two edges containing vi in the face fj . The weighting scheme used here was

proposed in [Max, 1999], which produces more accurate vertex normal estimates than other

weighting approaches. The equal weighted approach is not the most appropriate when the

faces surrounding a vertex vary significantly in size. Some other approaches for estimating

surface normal are described in [Jin et al., 2005].

The change between two vertex normals is calculated as a dot product:

φ11(i) = arccos
~Nvi · ~Nv′i∥∥∥ ~Nvi

∥∥∥ · ∥∥∥ ~Nv′i

∥∥∥ (3.10)
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where ~Nv′i
is the normal for a vertex from the smoothed object {v′i ∈ O′|i = 1, 2, . . . , |V |}.

Next we consider the local shape curvatures, calculated according to the Gaussian curva-

ture and the curvature ratio formula used in [Rugis and Klette, 2006]. Most natural objects

have shapes with many curvatures all over their surface. Steganographic algorithms would

tend to embed changes that may influence the local curvatures. In differential geometry,

the two principal curvatures of a surface are provided by the eigenvalues of the shape oper-

ator, calculated at the location of a vertex using the vertices from its first neighbourhood.

Such curvatures measure how the local surface bends by different amounts in the orthogonal

directions at that point. The Gaussian curvature is defined as:

KG = K1K2, (3.11)

where K1 is the minimum principal curvature and K2 is the maximum principal curvature at

a given point [Rusinkiewicz, 2004]. A special case is that of singularity in the shape operator,

when we have a linear dependency in one direction or in both. In this case we have locally

a planar region, which is characterized by a linear relationship among its coordinates and

consequently by zero curvature. In our study we found that the curvature ratio proposed in

[Rugis and Klette, 2006], defined as

Kr =
min(|K1|, |K2|)
max(|K1|, |K2|)

, (3.12)

is effective to be used as a feature when training steganalyzers. The Gaussian curvature from

equation (3.11) and the curvature ratio from equation (3.12) have been shown to be sensitive

to very small mesh modifications and have been used to model 3D shape characteristics in

various applications [Tombari et al., 2013, Vieira et al., 2016]. The two principal curvatures

are evaluated at the location of each vertex in the object v(i) ∈ O and for its corresponding

vertex from the smoothed object v′(i) ∈ O′. Their absolute differences represent the features

φ12 and φ13 used in the proposed set of features:

φ12(i) = |KG(vi)−KG(v′i)|, (3.13)
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Figure 3.3: The spherical coordinate system, where R is the radial distance of vertex vi, θ
and ϕ are its azimuth angle and elevation angle, respectively.

φ13(i) = |Kr(vi)−Kr(v
′
i)|, (3.14)

for i = 1, 2, . . . , |V |.

3.3.4 The spherical coordinates features

Spherical coordinates provide a straight forward representation for most graphical objects

in characterizing the distance from the centre and the location of each vertex on a sphere.

Certain 3D watermarking methods, such as those from [Cho et al., 2007, Yang et al., 2017b],

specifically embed changes into spherical coordinates. We convert the 3D objects from the

Cartesian coordinate system to the spherical coordinate system, considering the centre of

the object as its reference.

The spherical coordinate system specifies a point in the 3D space by a radius and two

angles and the link to the Cartesian coordinate system is given by:

vx = R cos(ϕ) cos(θ)

vy = R cos(ϕ) sin(θ)

vz = R sin(ϕ)

(3.15)

where v = (vx, vy, vz) represents the Cartesian coordinates of the vertex, and (R, θ, ϕ) its

spherical coordinates, representing R, the Euclidean norm from a fixed origin, θ, the azimuth
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angle, while ϕ is the elevation angle, as illustrated in Figure 3.3. We compute the absolute

differences of the spherical coordinates of all vertices, {(R(i), θ(i), ϕ(i)) between the original

object O and the smoothed object O′ in the spherical coordinate system:

φ14(i) = |θ(i)− θ′(i)|,

φ15(i) = |ϕ(i)− ϕ′(i)|,

φ16(i) = |R(i)−R′(i)|

(3.16)

where i = 1, 2, . . . , |V |. The centre of the spherical coordinate system is O, representing the

centre of the 3D object calculated by averaging all the vertices in the object, as shown in

Figure 3.3.

We also use the statistics of the edges, defined in the spherical coordinate system. In

this case, the lengths of the edges are defined by the differences in the spherical coordinates

of the two vertices that define the edge ends:

Kθ(e(i,j)) = |θ(i)− θ(j)|,

Kϕ(e(i,j)) = |ϕ(i)− ϕ(j)|,

KR(e(i,j)) = |R(i)−R(j)|

(3.17)

where e(i,j) is the edge connecting vertices vi and vj , and e(i,j) ∈ E. The corresponding

features extracted from both the original object and its smoothed version are

φ17(i) = |Kθ(i)−K ′θ(i)|,

φ18(i) = |Kϕ(i)−K ′ϕ(i)|,

φ19(i) = |KR(i)−K ′R(i)|

(3.18)

where, for example, Kθ(i) is obtained from the ith edge of the original object, while K ′θ(i)

from its corresponding edge in the smoothed object, for i = 1, 2, . . . , |E|, |E| is the total

number of edges in object O.

It was observed that most histograms of the features, such as those mentioned above,

are highly skewed towards smaller values, resulting in an almost exponential distribution.
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It is known that by using the log transform we can transform such distributions in order

to make them more symmetric. In order to introduce evenness in the distribution of the

features, we apply the logarithm for all features. Then, we consider the first four statistical

moments, representing the mean, variance, skewness and kurtosis, of the logarithm of all

vertex normals, Gaussian curvatures, curvature ratios, and the spherical coordinate features

calculated as indicated above, as it was done in the case of the feature set YANG40, presented

in Section 3.3.2. Another option for modelling the features’ distribution is by fitting the

distribution with a function defined by certain parameters. However, there is no a priori

justification for selecting a particular distribution for modelling such features.

In this way we define a vector X of 19 × 4 = 76 dimensions, which we call LFS76. The

first four moments capture almost entirely the statistical characteristics of the distribution of

the features, representing their centre and the deviation from the centre, as indicated by the

mean and variance, respectively. The degree of symmetry in the logarithm of feature values

is indicated by the skewness, while the level of peakedness and the presence of specific values

in the statistical distribution is indicated by the kurtosis, representing the fourth statistical

moment.

A subset of the proposed feature set, LFS52, was used in [Li and Bors, 2016]. That feature

set did not include the 24-dimensional feature vector extracted in the spherical coordinate

system of 3D objects. A higher dimensional feature set, used in [Yang and Ivrissimtzis,

2014], is represented by the 208-dimensional vector defined as YANG208. This feature set

considers separately the statistics of the first eight features described above, distinctly on

vertex sets with valences less, equal, or greater than six. Moreover, YANG208 feature set

considers the histogram differences of the ten features defined in Section 3.3.2, as well. The

features described in this section are mainly local and are centred on either the vertices or

the edges or the faces forming the 3D meshes of the objects. During the experimental study

we have tested other features, such as the Heat Kernel Signature (HKS) [Sun et al., 2009],

representing larger regions of 3D objects. We obtained 400-dimensional steganalytic features

based on HKS of the object by using the first four statistical moments to model the first 100

frequencies of the HKS. The detection errors of the FLD ensemble classifiers trained over

the HKS-based features for three information hiding algorithms are shown in Table 3.1. The



34 CHAPTER 3. LFS FEATURE SET FOR 3D STEGANALYSIS

training of the steganalyzer and parameters for the embedding are identical to the settings

given in Section 3.4.5. It is shown that the HKS-based feature is not suitable for steganalysis

according to the poor results from Table 3.1. This is because the information embedding

only produces slight distortions locally, rather than changing the global shape of the object,

so the HKS-based feature cannot capture such changes.

Table 3.1: Median values and the standard deviations of the detection errors for the steganal-
ysis results of three information hiding algorithms when using the FLD ensemble classifier
trained over the HKS-based features for 30 different splits of the training/testing sets.

Feature set
Information hiding methods

SRW MRS WHC

HKS 0.5000(±0.0061) 0.5000(±0.0065) 0.5000(±0.0056)

The feature set described in this section is used as an input to a machine learning classifier.

The machine learning classifier has two stages. During the first stage, it learns the feature

spaces characterizing the stego-objects and the cover-objects respectively, and estimates the

boundary between the two classes. Then, during a test stage, the parameters, learnt during

the initial stage, are used for identifying new stego-objects, which have not been used during

the training stage. A machine learning classifier is expected to provide a good generalization.

For this study we are using the Fisher Linear Discriminant (FLD) ensamble, and Quadratic

Discriminant Analyser (QDA), as classifiers for 3D steganalysis. The quadratic discriminant

fits multivariate normal densities with covariance estimates [Krzanowski, 2000] and was

used for 3D steganalysis in [Yang and Ivrissimtzis, 2014]. The FLD ensemble classifier was

successfully used in image steganalysis [Denemark et al., 2016, Kodovskỳ et al., 2012, Yu

et al., 2016].

3.4 Experimental results

In the following we provide the experimental results for the proposed 3D steganalytic method-

ology, when detecting the stego-objects obtained by six different information hiding methods.

For the experimental data set we consider 354 3D objects represented as meshes which are

part of the Princeton Mesh Segmentation project [Chen et al., 2009] database, which is a
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combination of the databases of AIM@SHAPE1, FOCUS K3D2 projects and shapes from

the Watertight Models Track of the SHape REtrieval Contest 2007 [Giorgi et al., 2007]. The

shapes of ten objects from this database are shown in Figure 3.4.
 

 

Figure 3.4: 3D objects used in the steganalytic tests.

3.4.1 The 3D information hiding methods and their parameter settings

During the tests we consider detecting the 3D stego-objects obtained by hiding information

using six different embedding algorithms: the Steganalysis-Resistant Watermarking (SRW)

method proposed in [Yang et al., 2017b]; the two blind robust watermarking algorithms based

on modifying the Mean or the Variance of the distribution of the vertices’ Radial distance

coordinates in the Spherical coordinate system, denoted as MRS and VRS, from [Cho et al.,

2007]; the Wavelet-based High Capacity (WHC) watermarking method and Wavelet-based

FRagile (WFR) watermarking method proposed in [Wang et al., 2008]; the Multi-Layer

Steganography (MLS) provided in [Chao et al., 2009]. The embedded information is a

pseudorandom bit stream which simulates the secret messages or watermarks hidden by the

steganographier.

During the generation of the stego-objects using SRW method from [Yang et al., 2017b],

we consider multiple values for the parameter K which determines the number of bins for the

histogram of the radial distances for all vertices. According to [Yang et al., 2017b], the upper

bound of the embedding capacity is b(K − 2)/2c. In our experiments we set the parameter

K ∈ {32, 64, 96, 128} and thus obtain multiple sets of stego-objects. Another parameter in

1http://cordis.europa.eu/ist/kct/aimatshape synopsis.htm
2http://cordis.europa.eu/fp7/ict/content-knowledge/projects-focus-k3d en.html
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the watermarking method from [Yang et al., 2017b] is nthr which controls the robustness

of the embedding method. In order to keep the distortion of the embedding to a relatively

low level, we set the parameter nthr as 20. If the smallest number of the elements in the

bins from the objects is less than 20, we would choose nthr equal to the smallest nonzero

number of the elements in the bins. Examples of stego-objects obtained using SRW method

are shown in Figure 3.7(a) and Figure 3.8(a), where K = 128.

For MRS and VRS watermarking methods from [Cho et al., 2007], we consider various

values for the watermark strength, such as α ∈ {0.02, 0.04, 0.06, 0.08, 0.1}, while fixing the

incremental step size to ∆k = 0.001 and the message payload as 64 bits. Larger values

of strength can increase the robustness of the watermark, but also enlarge the extent of

the embedding modifications. An example of a stego-object obtained using MRS method is

shown in Figure 3.7(f), where the watermark strength factor is set as α = 0.04.

In both WHC and WFR watermarking methods, proposed in [Wang et al., 2008], the

information is embedded in the wavelet coefficient vectors obtained just after one wavelet

decomposition of the original mesh, but the modifications are made in different ways for each

of these algorithms. During the watermark embedding by WHC, the wavelet coefficient vec-

tors’ norms are firstly divided by the parameter p. Then the resulting residues, representing

the differences from the rounding error, are changed accordingly in order to generate a par-

ticular permutation which carries the watermark. The parameter p is obtained by dividing

the average edge length for the entire object by the control parameter εhc, which is set to the

values from the set {50, 100, 500, 1000}. When using WFR to embed information, the angle

between the wavelet coefficient vector and its associated edge is changed, where ∆θ is the

quantization step used to establish the codebook. To investigate the influence of parameter

∆θ on the steganalysis results, we set it to the values from the set {π/6, π/4, π/3, π/2}. The

other parameters involved in WHC and WFR are all exactly set to the values suggested in

[Wang et al., 2008].

When using MLS method from [Chao et al., 2009], we increase the number of layers from

2 to 10, with a step of 2, and we consider the number of intervals as 10000. Increasing the

number of embedding layers in this steganographic method corresponds to increasing the

payload capacity. During the embedding, all the vertices in the mesh are used as payload
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carriers, except for three vertices which are used as references for the extraction process. A

stego-object obtained using MLS method is shown in Figure 3.7(k), where the number of

layers is 10.

3.4.2 Feature extraction

The steganalytic features are extracted from the cover-objects and the corresponding stego-

objects obtained after embedding the information by using the six steganographic algorithms

mentioned above. During the preprocessing, we first apply one iteration of Laplacian smooth-

ing on both cover-objects and stego-objects, by setting the scale factor λ = 0.2. We consider

the proposed feature set LFS76, discussed in Section 3.3 and compare their results against

YANG208, proposed in [Yang and Ivrissimtzis, 2014], its simplified version, called YANG40,

and the feature set LFS52, which was proposed in our previous work [Li and Bors, 2016]. We

also consider the feature sets combining LFS52 and the features defining the Vertices’ Spher-

ical coordinates, VS12, representing the mean, variance, skewness and kurtosis of φ14, φ15

and φ16 from equation (3.16), the combination of LFS52 and the features defining the Edge

length in the Spherical coordinate system, ES12, representing the mean, variance, skewness

and kurtosis of φ17, φ18 and φ19 from equation (3.18).

Figures 3.5(a) and (b) show the histograms of the dihedral angle feature φ9, calculated

according to equation (3.7), for the cover-object and stego-object, respectively, for the object

“Head statue”, shown in Figure 3.7(f). The histograms of the logarithm of φ9 are shown in

Figures 3.5(c) and (d), for the cover-object and stego-object, respectively. Figures 3.6(a) and

(b) show the histograms of the vertex normal feature φ11 calculated according to equation

(3.10), while Figures 3.6(c) and (d) show the corresponding histogram of logarithms for the

cover-object “Horse” shown in Figure 3.4, and its corresponding stego-object embedded by

MRS method from [Cho et al., 2007]. From these figures, we can observe that following the

application of the logarithm, the distributions of feature components φ9 and φ11 become

similar to normal distributions, where it is easier to model the differences between the geo-

metric feature of the cover-object and stego-object using the first four statistical moments

of mean, variance, skewness and kurtosis.

Figures 3.7(a) (f) and (k) show the stego-objects embedded by the information hiding
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Figure 3.5: Histograms of dihedral angles feature φ9 and its logarithm of the cover, in (a)
and (c), and stego versions, in (b) and (d), of the “Head statue” object from the database
from [Chen et al., 2009].
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Figure 3.6: Histograms of vertex normal feature φ11 and its logarithm of the cover, in (a)
and (c), and stego versions, in (b) and (d), of the “Horse” object from the database from
[Chen et al., 2009].
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methods, SRW [Yang et al., 2017b], MRS [Cho et al., 2007] and MLS [Chao et al., 2009],

respectively. Figure 3.8(a) represents the stego-object obtained by using SRW method. From

the second to the fifth columns of Figures 3.7 and 3.8 illustrate the absolute differences of the

features between the cover-object and its corresponding stego-object, namely, vertex normals

φ11, the curvature ratios φ13, the azimuth angles φ14 and the radial distances φ16, depicted on

the stego-objects. From these figures it can be observed that each feature identifies specific

differences between the cover-object and stego-object, which usually does not overlap with

those identified by the others.

3.4.3 Training the steganalyzers

The steganalyzers are trained as binary classifiers implemented using two methods: the

Quadratic Discriminant Analysis (QDA) and the Fisher Linear Discriminant (FLD) ensem-

ble. The FLD ensemble consists of a set of base learners trained uniformly on a randomly

selected feature subset of the whole training data. The dimensionality of the random sub-

space and the number of base learners are found by minimizing the Out-Of-Bag (OOB) error,

representing an estimate of the testing error calculated on bootstrap samples of the training

set, [Duda et al., 2012]. Compared to the SVM classifier, the FLD ensemble can provide

a comparable high accuracy, but with a relatively low computational cost. On the other

hand, in the case of FLD ensemble, it is much easier to find the optimal tuning parameters.

For more technical details of the FLD ensemble, we refer to the literature [Cogranne and

Fridrich, 2015, Kodovskỳ et al., 2012]

For each steganalyzer, we split the 354 pairs of cover-object and stego-object into 260

pairs, used for training, and 94 pairs for testing. We consider 30 different splits of the

given 3D object database, into the training and testing data sets. Two different assessment

measures are used: the first one is the median value of the detection errors which are the

sums of false negatives (missed detections) and false positives (false alarms) from all 30

trials, while the other one is the median value of the area under the Receiver Operating

Characteristic (ROC) curves of the detection results, evaluated over the 30 splits of the data

into training and testing sets.
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Figure 3.7: Stego-objects and the visualization of differences in the detection of features used
for steganalysis. (a), (f) and (k) are the stego-objects obtained after using the information
hiding algorithms, SRW [Yang et al., 2017b], MRS [Cho et al., 2007] and MLS [Chao et al.,
2009], respectively; (b), (g) and (l) show the absolute differences of vertex normals φ11
between those stego-objects and their corresponding cover-object, respectively; (c), (h) and
(m) for the curvature ratios φ13; (d), (i) and (n) for the azimuth angle φ14; (e), (j) and (o)
for the radial distance φ16.
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(a) (b) (c) (d) (e)

Figure 3.8: Stego-object and the visualization of differences in the detection of features used
for steganalysis. (a) The stego-object obtained after using SRW algorithms described in
[Yang et al., 2017b]; (b) The absolute differences of vertex normals φ11 between the stego-
objects and their corresponding cover-object; The absolute differences in (c) for the curvature
ratios φ13; (d) for the azimuth angle φ14; (e) for the radial distance φ16.

3.4.4 Statistical steganalysis study

In the following we test the FLD ensemble and QDA steganalyzers on 3D objects with

information embedded by six different information hiding algorithms. Figure 3.9 shows the

detection errors for the six information hiding methods, SRW [Yang et al., 2017b], MRS

[Cho et al., 2007], VRS [Cho et al., 2007], WHC [Wang et al., 2008], WFR [Wang et al.,

2008] and MLS [Chao et al., 2009], using the FLD ensemble classifier, trained with the six

combinations of feature sets, formed as mentioned above. It can be seen from Figure 3.9

that the LFS76 shows best performance among the six combinations for most of the cases.

The improvement of the efficiency of LFS76, compared to YANG208, is quite evident for all

the six embedding algorithms. The advantage of LFS76 over LFS52 is more obvious when

detecting the watermarks embedded by SRW, MRS and VRS methods, than when detecting

those embedded by WHC, WFR and MLS methods. This is because WHC, WFR and MLS

methods do not produce changes in the spherical coordinate system, and consequently the

feature sets VS12 and ES12 are less useful. When considering the feature sets VS12 and

ES12, it appears that the combination of LFS52 and ES12 achieves better performance than

that of LFS52 and VS12, considered individually, which means that the ES12 features are

more efficient than VS12.

We can observe from Figure 3.9(a) that as the value of K increases, the detection error

for SRW [Yang et al., 2017b] tends to increase as well. This happens because a larger K will

lead to a smaller range size of each bin of the radial coordinate histogram. Consequently, if

some vertices need to be changed in order to embed the information, the displacement of each
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vertex will be smaller due to the smaller range size of each bin. So even when the embedding

capacity of the SRW is higher when K is larger, the distortion of the 3D surface caused by

the embedding is less significant, resulting in a higher detection error of the steganalyzer.

From Figures 3.9(b) and (c) we can observe that as the watermarking strength of MRS and

VRS [Cho et al., 2007] increases, all steganalyzers provide better detection accuracy. This is

due to the fact that more significant changes are produced in the 3D object surface, which

is caused by watermarks that have stronger embedding parameters. For WHC [Wang et al.,

2008] method, the detection error shown in Figure 3.9(d) increases slightly when εhc ranges

from 50 to 100, but remains stable afterwards. In Figure 3.9(e), the detection error for

WFR [Wang et al., 2008] method does not have obvious changes when the parameter ∆θ

varies, which indicates that the parameter ∆θ does not influence significantly the embedding

distortion of the object. It can be observed from Figure 3.9(f) that the detection error for

MLS [Chao et al., 2009] does not decline when the embedding capacity increases. The reason

for this is that, according to the multi-layer embedding framework applied in [Chao et al.,

2009], the distortions produced to the objects are well controlled during the embedding.

Figure 3.10 shows the detection errors for the six information hiding methods, using the

QDA classifier, trained with the various feature sets. The trends of the detection errors for

the six embedding algorithms depicted in Figure 3.10 are similar to those shown in Figure 3.9,

but the performance of the QDA classifier is not as good as the FLD ensemble classifier in

general.

In the following, we discuss the detectability of the watermarks embedded by the six

information hiding algorithms by the steganalyzers trained with the LFS76 feature set. When

K = 128, the payload of SRW is close to 64 bits, which is the payload of MRS and VRS as well

in our experiments. From Figures 3.9(a)-(c) we can see that SRW has a lower detectability

than those of MRS and VRS, which was reported in [Yang et al., 2017b] as well. Since the

procedure and embedding domains of MRS and VRS are very similar, it is not surprising

that their watermark detectability is close to each other. WHC and WFR also have quite

similar watermark detectability ratios, but which are lower than those of the other four

information hiding algorithms considered during the experiments. This is because LFS76

does not include the features from the wavelet domain, in which modifications of 3D objects
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Figure 3.9: Median value of detection errors of the steganalyzers trained as FLD ensemble
classifiers on the testing set over 30 independent splits for the six information hiding methods
with different values for the embedding parameters.
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Figure 3.10: Median value of detection errors of the steganalyzers trained as QDA classifiers
on the testing set over 30 independent splits for the six information hiding methods with
different values for the embedding parameters.
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are made by WHC and WFR. The detectability of changes embedded by MLS algorithm

is moderate among the six information hiding methods, according to the Figure 3.9, but

the payload of MLS can be much higher than the other methods, equal to approximately

10 times the number of vertices in the object. If the payload of MLS information hiding

algorithm is decreased to 64 bits per object, the stego-objects embedded by MLS would be

much harder to detect.

It can be observed that the issue of robustness against malicious attacks aiming to remove

the watermark is not taken into account here. However, the developers of steganographic

schemes ideally would like that their scheme to be robust not only against steganalytic

detection, but perhaps equally importantly against malicious attacks for watermark removal.

The study of improving the robustness of the steganography is important.

3.4.5 Analysing the efficiency of features for steganalysis

In order to investigate the contribution of different categories of features from the set LFS76

to the steganalysis, we use the relevance between the feature vectors and the class label in

order to assess each feature’s efficiency. The measurement of the relevance is addressed by

using the Pearson correlation coefficient,

ρ(xi, y) =
cov(xi, y)

σxiσy
(3.19)

where xi is the ith feature of a given feature set, X = {xi|i = 1, 2, . . . , N}, and N is

the dimensionality of the input feature, y is the class label indicating whether the class

corresponds to a cover-object or a stego-object, cov represents the covariance and σxi is the

standard deviation of xi. The Pearson correlation coefficient is well known as a measure of

the linear dependence between two variables [Hall, 1999]. Then we set |ρ(xi, y)| for assessing

the relevance, where |ρ(xi, y)| = 1 indicates a highly linear relationship between the feature

and the class label, corresponding to a better discriminant ability of that feature.

The analysis is conducted on the features extracted from the 354 cover-objects used

above and for the six sets of corresponding stego-objects which are produced by the six

watermarking and steganographic algorithms, SRW, MRS, VRS, WHC, WFR and MLS,
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respectively. We set the parameter K in SRW algorithm from [Yang et al., 2017b] as 128.

For the two watermarking methods, MRS and VRS, from [Cho et al., 2007], in order to find

a balance between the watermarking strength and its detectability, we set the watermarking

strength as 0.04 and embed a payload of 64 bits. For WHC and WFR methods, we set the

parameters as εhc = 100 and ∆θ = π/3, which are the same as the settings in [Wang et al.,

2008]. In the case when using MLS method from [Chao et al., 2009], we consider ten layers

of embedding.

We split the features from the set LFS76 into 10 categories according to their represen-

tations of the local shape geometry: 1, the vertex coordinates in the Cartesian coordinate

system (φ1, φ2 and φ3); 2, the vertex norm in the Cartesian coordinate system (φ7); 3, the

vertex coordinates in the Laplacian coordinate system (φ4, φ5 and φ6); 4, the vertex norm in

Laplacian coordinate system (φ8); 5, the face normal (φ10); 6, the dihedral angle (φ9); 7, the

vertex normal (φ11); 8, the curvature (φ12 and φ13); 9, the vertex coordinates in the spherical

coordinate system (φ14, φ15 and φ16); 10, the edge length in the spherical coordinate system

(φ17, φ18 and φ19).

The relevance for all features from LFS76, is calculated according to equation (5.1), and

the averaged relevances of the features in each category are shown in Figure 3.11. From

Figure 3.11 we can observe that the new proposed features, represented by labels 7, 8 and

10, have relatively high relevance to the class label. More specifically, in Figure 3.11(a),

the features characterizing the local curvature (label 8) achieve the highest relevance. The

relevance of the proposed ES12 feature, represented by label 10, is higher than that of the

proposed VS12 represented by label 9. This implies that the efficiency of ES12 is higher

than that of VS12, which is also reflected in the results shown in the Figures 3.9 and 3.10.

Comparing the formulation of VS12 and ES12, it is noted that two adjacent vertices are

taken into account when extracting the ES12 features. However, the vertices in the object

are considered individually in the case of VS12. So ES12 is better able of capturing the

distortion in the local region caused by the embedding modifications than VS12. However,

the VS12 probably detects hidden information in the 3D object, which ES12 cannot identify,

resulting in better performance of LFS76 than the combination of LFS52 and ES12 as shown

in Figures 3.9 and 3.10. Meanwhile, in Figure 3.11, the vertex normal feature (label 7) and
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the face normal feature (label 5) have a similar level of relevance, which is because the vertex

normal is dependent on face normal in equation (3.9).

It is interesting that the relevance of the dihedral angle feature (label 6) shows a high

relevance to the class label in the cases of MRS, VRS and MLS, but shows much lower

relevance when the stego-objects are generated by SRW, WHC and WFR methods. This

happens because almost all vertices from a mesh are only slightly changed by MRS, VRS

and MLS methods, while such changes are scattered among the vertices in the case of SRW

method from [Yang et al., 2017b], as it can be observed from Figures 3.7(b) (g) and (l).

Similarly, when considering WHC and WFR, the modifications are made after only one

wavelet decomposition, so only half of the vertices are likely to be modified, preserving

the dihedral angles to some extent. It is noticed that the features representing the vertex

coordinates and the norm in the Laplacian coordinate system (labels 3 and 4) have much

higher relevance than those representing the vertex coordinates and the norm in the Cartesian

coordinate system (labels 1 and 2). This is because, according to [Yang and Ivrissimtzis,

2010], the Laplacian coordinates of a vertex are calculated from the position of the vertex

and its adjacent vertices, which capture the geometrical information of a larger region than

the Cartesian coordinates for each vertex.

In the following, we increase gradually the feature set used for training the steganalyzer,

from YANG40 to LFS52, by adding either VS12 or ES12 to LFS52, and eventually to the

LFS76 feature set, and then compare with YANG208 feature set. YANG40 includes the

features represented by labels 1-6 in Figure 3.11. Features represented by labels 1-8 form

LFS52 , while labels 1-10 correspond to LFS76. VS12 and ES12 are represented by labels

9 and 10, respectively. We employed the FLD ensemble and QDA as the machine learning

algorithms to train the steganalyzers when the information was hidden into 3D objects by

the six information hiding methods mentioned above. The performance of the feature sets

are evaluated by the area under the ROC curves of the corresponding steganalyzers. A larger

area under the ROC curve means that the classifier has a better detection accuracy.

Tables 3.2 and 3.3 provide the median values of the area under the ROC curves for the

steganalytic methods when using six combinations of feature sets for 30 independent splits

of the training/testing set. It can be seen from Table 3.2 that the areas under the ROC



3.4. EXPERIMENTAL RESULTS 49

Feature categories
1 2 3 4 5 6 7 8 9 10

R
el

ev
an

ce

0

0.05

0.1

0.15

(a) SRW [Yang et al., 2017b]

Feature categories
1 2 3 4 5 6 7 8 9 10

R
el

ev
an

ce

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) MRS [Cho et al., 2007]

Feature categories
1 2 3 4 5 6 7 8 9 10

R
el

ev
an

ce

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) VRS [Cho et al., 2007]

Feature categories
1 2 3 4 5 6 7 8 9 10

R
el

ev
an

ce

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) WHC [Wang et al., 2008]

Feature categories
1 2 3 4 5 6 7 8 9 10

R
el

ev
an

ce

0

0.05

0.1

0.15

0.2

0.25

0.3

(e) WFR [Wang et al., 2008]

Feature categories
1 2 3 4 5 6 7 8 9 10

R
el

ev
an

ce

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(f) MLS [Chao et al., 2009]

Figure 3.11: The relevance between the features and the class label, for cover-objects (0) or
stego-objects (1), where the stego-objects are generated by the six information hiding meth-
ods, SRW, MRS, VRS, WHC, WFR and MLS, respectively. The meaning of the category
labels are: 1, the vertex coordinates in Cartesian coordinate system; 2, the vertex norm in
Cartesian coordinate system; 3, the vertex coordinates in Laplacian coordinate system; 4,
the vertex norm in Laplacian coordinate system; 5, the face normal; 6, the dihedral angle;
7, the vertex normal; 8; the curvature; 9, the vertex coordinates in spherical coordinates
system; 10, the edge length in spherical coordinate system.

Table 3.2: Median values of the area under the ROC curves for the steganalysis results of the
six information hiding algorithms when using the FLD ensemble classifier. The best results
are shown in bold.

Feature sets
Information hiding methods

SRW MRS VRS WHC WFR MLS

YANG208 0.8781 0.8745 0.8748 0.7403 0.7320 0.9138

YANG40 0.7782 0.8167 0.8076 0.7048 0.7233 0.9207

LFS52 0.8621 0.8857 0.8902 0.7633 0.7732 0.9254

LFS52+VS12 0.8617 0.8999 0.9037 0.7676 0.7845 0.9297

LFS52+ES12 0.9064 0.9496 0.9414 0.7770 0.7905 0.9184

LFS76 0.9032 0.9544 0.9466 0.7858 0.7963 0.9269
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Table 3.3: Median values of the area under the ROC curves for the steganalysis results of
the six information hiding algorithms when using the QDA classifier. The best results are
shown in bold.

Feature sets
Information hiding methods

SRW MRS VRS WHC WFR MLS

YANG208 0.8035 0.7871 0.7888 0.6651 0.6730 0.8482

YANG40 0.7485 0.8573 0.8395 0.7118 0.7285 0.8834

LFS52 0.8228 0.8770 0.8518 0.7600 0.7394 0.8697

LFS52+VS12 0.8351 0.8886 0.8721 0.7467 0.7530 0.8697

LFS52+ES12 0.8702 0.8797 0.8829 0.7551 0.7594 0.8909

LFS76 0.8871 0.8907 0.8895 0.7610 0.7590 0.8692

curves of the steganalyzers increase with the addition of new features, such as the vertex

normal and the curvature features, to the YANG40 feature set. After adding VS12 and ES12

to LFS52 feature set, the LFS76 feature set achieves the best performance in most cases.

For SRW and MLS, the combination of LFS52 and ES12 and that of LFS52 and VS12 give

the best performance, respectively, which also justifies the importance of VS12 and ES12

features. But in general, the combination of LFS52 and ES12 has a better performance than

that of LFS52 and VS12, indicating the higher efficiency of ES12 when compared to that of

VS12, consistently reflected in the results provided in Figure 3.11. The upward trend in the

area under the ROC curves along with the addition of new features can be identified in the

results provided in Table 3.3 as well. According to these results, the FLD ensemble classifier

provides better results than the QDA, used in [Yang and Ivrissimtzis, 2014].

3.5 Conclusion

In this chapter, we propose to use the statistics of a new set of shape features as inputs for

3D steganalyzers. The features proposed in this chapter are used in combination with some

of the features proposed in [Yang and Ivrissimtzis, 2014]. We analyse various combinations

of local features used for 3D steganalysis by evaluating their relevance to the class label and

by testing their performance in 3D steganalysis. The first four statistical moments of 3D

feature sets are used for training steganalyzers by two machine learning methods, namely,

the Quadratic Discriminant Analysis (QDA) and the Fisher Linear Discriminant (FLD)
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ensemble. Afterwards, the steganalyzers based on the parameters learned during the training,

are used for differentiating the stego-objects from the cover-objects. The experimental results

show that the proposed 3D feature set provides the best results for the steganalysis when the

information is hidden in 3D objects by six different 3D information hiding algorithms. The

detection errors for the 3D wavelet-based information embedding algorithms, such as WHC

and WFR, are higher than those for the other embedding algorithms. In the next chapter

we use the multi-scale analysis of 3D wavelets for estimating a new set of 3D features, in

order to improve the 3D steganalysis results.





Chapter 4

3D Wavelet Multiresolution

Analysis-Based Features for

Steganalysis

4.1 Introduction

While the experimental results from Chapter 3 have improved the 3D steganalysis results in

detecting the embedding changes made by various steganographic methods, those embedded

by some other methods are hard to identify. The changes embedded by 3D wavelet-based

steganographic methods are not well detected by the existing 3D steganalysis features, dis-

cussed in Chapter 3. In this chapter we use 3D Wavelet Multiresolution Analysis (WMA)

in order to propose a new set of features for steganalysis.

Inspired by the way how the information is embedded into the 3D wavelet domain of

meshes, we propose a 3D steganalytic approach based on the 3D wavelet multiresolution

analysis. 3D wavelet analysis provides a decomposition of the given mesh surface into a

mesh of lower resolution and a set of 3D Wavelet Coefficient Vectors (WCVs). Moreover, a

mesh subdivision is considered to the given mesh, producing a mesh of higher resolution and

a set of 3D WCVs. The features described in this chapter are derived from the relationships

between consecutive resolution representations of the mesh. Such features depend on the

53
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geometrical properties of the initial mesh, those of the lower resolution mesh and the higher

resolution mesh, as well as of the WCVs relating the three meshes.

The rest of this chapter is organized in the following way. Section 4.2 presents the details

of how to extract the 3D wavelet feature set based on multiresolution meshes. Section 4.3

provides the experimental results of the proposed feature set, as well as comparisons of the

efficiency of the proposed feature set with other steganalytic features. The summary of this

chapter is given in Section 4.4.

4.2 Multiresolution analysis of meshes using 3D wavelets

Wavelet coefficient 

vectors
Wavelet coefficient 

vectors

Geometric features

Lower resolution Initial resolution Higher resolution

3D wavelet 

decomposition

Butterfly

subdivision

Figure 4.1: Generating the multiresolution meshes using 3D wavelet decomposition and
Butterfly subdivision.

In this section we provide a short outline of 3D wavelet analysis methodology and how

this can be applied for extracting features useful for steganalysis. In the area of 3D signal

processing, the multiresolution analysis of 3D meshes usually works in two ways: (i) the

wavelet coefficient vectors are also encoded as part of the mesh representation and thus,

from the coarse mesh one can retrieve the exact original. (ii) the wavelet coefficient vectors

are not encoded as part of the mesh. Our study considers the case (ii), which means that

we assume that we do not have the knowledge of the wavelet coefficient vector as part of the

given mesh at the start of the multiresolution analysis.

Figure 4.1 illustrates how the original objectO is decomposed into a lower resolution mesh

Ol, shown to left, using the 3D lazy wavelet decomposition [Lounsbery et al., 1997], and a
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set of Wavelet Coefficient Vectors (WCVs). The same mesh is subdivided, as shown in the

right side of Figure 4.1, into a higher resolution mesh Oh and the WCVs using the Butterfly

scheme [Dyn et al., 1990]. Geometric features are generated using the initial resolution

mesh, the lower resolution mesh, the higher resolution mesh, and the corresponding WCVs,

resulting from the processes of downscaling or upscaling the 3D object through the 3D

wavelet mesh analysis. The same processing steps, such as decomposition, subdivision and

calculation of the geometric features, are applied to the smoothed mesh O′ produced during

the preprocessing stage. Then, the differences between the geometric features extracted from

the original mesh O and the smoothed mesh O′ are represented by the vector Φ. Finally, the

first four statistical moments of the logarithm of Φ are used as a feature vector for training

the 3D steganalyzers in order to detect the 3D stego-meshes. In the following we explain in

more detail how to extract features for steganalysis using 3D wavelet analysis.

4.2.1 Extracting the features using edge flipping

The first two geometric features, extracted from the initial mesh, are the edge vector and

flipped edge vector. The edge vectors {e(i,j)} represent the vectors from the vertex vi to the

vertex vj , where vi and vj are adjacent in the initial resolution mesh. An example of edge

vector is illustrated in Figure 4.2 as e(2,3). Each flipped edge vector {e∗(i,j)} is connecting the

opposite vertices, from the triangles which are sharing the associated edge vector {e(i,j)}.

For example, the vector e∗(2,3) from Figure 4.2, connecting two vertices v1 and v4, is the

flipped edge vector of the edge vector e(2,3). The direction of the flipped edge vector is from

the vertex with a lower index to the one with a higher index as shown in Figure 4.2.

4.2.2 Geometric features extracted from the lower resolution mesh

The lower resolution mesh is obtained after one iteration of the 3D lazy wavelet decomposi-

tion, which is illustrated in Figure 4.3. In this figure, four triangles4v4v5v6,4v4v6v8,4v6v7v8

and4v4v8v9 from the initial resolution mesh are merged into a single larger triangle4v5v7v9

as a part of a coarser mesh. The vertices, v4, v6 and v8 in Figure 4.3, are removed in the

process of downscaling the mesh, and they correspond to the terminal points for the three

WCVs, wl
(5,9), wl

(5,7) and wl
(7,9). The subscripts of wl

(i,j) represent the two vertices vi and vj
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Figure 4.2: Extracting the edge vectors and their flipped counterparts from the mesh of
initial resolution.
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Figure 4.3: The illustration of the 3D wavelet decomposition for a mesh from its initial
resolution to a lower resolution.
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of the WCV’s support edge el(i,j) from the lower resolution mesh. Meanwhile, the initial point

of the WCV, wl
(5,9), is the midpoint of its support edge el(5,9) in the lower resolution mesh.

So each edge vector in the lower resolution mesh is associated with one WCV. The WCV,

wl
(i,j), and the edge vector, el(i,j), in the lower resolution mesh are considered as components

of the proposed 3D wavelet feature vector used for steganalysis.

Two other features are considered from the lower resolution mesh. One is the angle

between the WCV and its support edge vector in the lower resolution mesh, defined as

α(i,j) = arccos
wl

(i,j) · e
l
(i,j)∥∥∥wl

(i,j)

∥∥∥ · ∥∥∥el(i,j)∥∥∥ , (4.1)

where i and j are the indexes of two adjacent vertices in the lower resolution mesh. For

example, as illustrated in Figure 4.3, α(5,7) is the angle between the WCV, wl
(5,7), and its

support edge vector, el(5,7). The other one is the ratio between the Euclidean norm of the

WCV and that of its support edge vector in the lower resolution mesh, defined as

ρl(i,j) =

∥∥∥wl
(i,j)

∥∥∥∥∥∥el(i,j)∥∥∥ . (4.2)

Since these two geometric features are used to carry information payloads by various 3D

wavelet watermarking methods such as those proposed in [Wang et al., 2008, Kanai et al.,

1998], it is straight forward to use them as geometric features for steganalysis.

One important issue about the 3D wavelet decomposition is that the steganalyst lacks the

knowledge of how the steganographier groups the triangle faces when embedding the informa-

tion into the 3D shape. In fact, the grouping of the triangle faces determines the generation

of the WCVs. For instance, in Figure 4.3, if the four triangles 4v2v3v4,4v3v4v9,4v4v8v9

and 4v3v9v10 would merge into a larger triangle 4v2v8v10 in the lower resolution mesh, we

would actually not obtain WCVs such as wl
(5,9) and wl

(7,9). By not knowing this information,

we can have a mismatch of the 3D wavelet decompositions which would degrade the per-

formance of the steganalysis. In order to avoid this problem in 3D wavelet decomposition,

we apply all the possible grouping options for the triangle faces in the given neighbourhood,

generating all the possible WCVs together with their support edge vectors in the lower res-
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olution meshes, as well as the other geometric features. When calculating the geometric

features from the lower resolution meshes, we find all the groups of four neighboring tri-

angles, including one triangle in the centre, surrounded by the other three triangles, that

can be merged into a larger triangle during the wavelet decomposition. Since each triangle

from a fully connected mesh can be the central triangle used in 3D wavelet decomposition,

we can obtain |F| different groups of four neighboring triangles, where |F| is the number

of the triangles from the initial resolution mesh. For each of these groups, we apply the

wavelet decomposition and calculate the geometric features presented above in this section.

Meanwhile, we remove the duplicated geometric features, such as WCVs and edge vectors.

Finally, the obtained features, considering all the possible grouping options in the wavelet

decomposition, form the geometric features from the lower resolution mesh.

4.2.3 Geometric features extracted from the higher resolution mesh

When transforming the given mesh into a higher resolution mesh, each triangle from the

initial resolution mesh is subdivided into four smaller triangles by inserting three vertices,

each corresponding to one of the edges of the initial resolution triangle. In the higher

resolution mesh, each newly inserted vertex is adjacent to the two ends of the support edge

of the initial resolution triangle, and it is also adjacent to the other newly inserted vertices.

As illustrated in Figure 4.4, the vertices, v11, v12, v13, v14 and v15 are added to the local mesh

in order to produce the higher resolution mesh following the 3D wavelet transformation.

Since the subdivision is based on the Butterfly scheme [Dyn et al., 1990], the position of the

newly added vertex is computed from eight vertices which define a neighbourhood resembling

the shape of a butterfly. For example, the position of the vertex v13 associated to edge vector

e(3,4) in Figure 4.4 is given by

v13 =
1

2
(v3 + v4) +

1

4
(v2 + v9)−

1

8
(v1 + v5 + v8 + v10). (4.3)

The WCV from the higher resolution mesh, denoted as wh
(i,j), is the vector from the

midpoint of the support edge e(i,j) in the initial resolution mesh to the newly added vertex.

For example, as shown in Figure 4.4, the WCVs, wh
(2,3), wh

(2,4) and wh
(3,4), are associated to
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Figure 4.4: The illustration of the 3D wavelet subdivision for the mesh from the initial
resolution to a higher resolution.

the support edge vectors, e(2,3), e(2,4) and e(3,4), from the initial resolution mesh. We use the

WCVs from the higher resolution mesh as one of the geometric features for 3D steganalysis.

Consistent with the rules of extracting geometric features from the initial and lower

resolution meshes, the edge vector in the higher resolution mesh, eh(i,j) , is also considered as

a geometric feature. The edge vector, eh(9,15), illustrated in Figure 4.4, is an example of the

edge vector in the higher resolution mesh.

Two geometric features, β(i,j) and ρh(i,j), which are similar to α(i,j) and ρl(i,j) from the lower

resolution mesh, are obtained from the higher resolution mesh. β(i,j) is the angle between

the WCV wh
(i,j) , and its support edge vector, e(i,j), in the initial resolution mesh, which is

calculated in a similar way by equation (4.1). For instance, β(3,9) shown in Figure 4.4 is the

angle between wh
(3,9) and e(3,9). ρ

h
(i,j) represents the ratio between the Euclidean norm of the

WCV, wh
(i,j), and that of its support edge vector, e(i,j), from the initial resolution mesh.

In order to capture the relationship between each WCV and its neighboring WCVs,

we consider the average of the neighbouring WCVs for each given WCV from the higher

resolution mesh. We define that two WCVs are neighbors only when their terminal points

are adjacent in the higher resolution mesh. The set of the neighboring WCVs of WCV,

wh
(i,j), is denoted as N (wh

(i,j)). Then the average neighboring WCVs of wh
(i,j) is calculated



60 CHAPTER 4. 3D WMA-BASED FEATURES FOR STEGANALYSIS

as,

w̄h
(i,j) =

1

|N (wh
(i,j))|

∑
wh

(k,l)
∈N (wh

(i,j)
)

wh
(k,l). (4.4)

In Figure 4.4, w̄h
(3,4) is the averaged neighboring WCV for wh

(3,4). The vector of the difference

between the WCV and its averaged neighboring WCV is considered as a geometric feature,

wh
(i,j)

′
= wh

(i,j) − w̄h
(i,j). (4.5)

Meanwhile, another geometric feature is the angle between the WCV and its averaged neigh-

boring WCV,

θ(i,j) = arccos
wh

(i,j) · w̄
h
(i,j)∥∥∥wh

(i,j)

∥∥∥ · ∥∥∥w̄h
(i,j)

∥∥∥ . (4.6)

For each WCV in the higher resolution mesh, we consider the mean and variance of the

angles between the WCV and its neighboring WCVs as geometric features, which are given

by

µM(i,j) =
1

|N (wh
(i,j))|

∑
wh

(k,l)
∈N (wh

(i,j)
)

δ(k,l), (4.7)

µV(i,j) =
1

|N (wh
(i,j))|

∑
wh

(k,l)
∈N (wh

(i,j)
)

(
δ(k,l) − µM(i,j)

)2
. (4.8)

where δk,l is the angle between wh
(i,j) and its neighboring WCV, wh

(k,l),

δ(k,l) = arccos
wh

(i,j) ·w
h
(k,l)∥∥∥wh

(i,j)

∥∥∥ · ∥∥∥wh
(k,l)

∥∥∥ (4.9)

With respect to the WCV and its neighboring WCVs, we also consider the mean and

variance of the absolute differences between the Euclidean norms of WCV and its neighboring
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WCVs, namely,

κM(i,j) =
1

|N (wh
(i,j))|

∑
wh

(k,l)
∈N (wh

(i,j)
)

∣∣∣‖wh
(i,j)‖ − ‖w

h
(k,l)‖

∣∣∣ , (4.10)

κV(i,j) =
1

|N (wh
(i,j))|

∑
wh

(k,l)
∈N (wh

(i,j)
)

(
‖wh

(k,l)‖ − κ
M
(i,j)

)2
. (4.11)

4.2.4 From the geometric features to the feature vectors

Table 4.1: A list of the proposed geometric features based on the 3D wavelet multiresolution
analysis.

Notation Geometrical representation Type Resolution

1 e(i,j) Edge vector Vector Initial

2 e∗(i,j) Flipped edge vector Vector Initial

3 wl
(i,j) WCV Vector Lower

4 el(i,j) Edge vector Vector Lower

5 α(i,j) Angle between wl
(i,j) and el(i,j) Scalar Lower

6 ρl(i,j) Ratio between ‖wl
(i,j)‖ and ‖el(i,j)‖ Scalar Lower

7 wh
(i,j) WCV Vector Higher

8 eh(i,j) Edge vector Vector Higher

9 β(i,j) Angle between wh
(i,j) and e(i,j) Scalar Higher

10 ρh(i,j) Ratio between ‖wh
(i,j)‖ and ‖e(i,j)‖ Scalar Higher

11 w̄h
(i,j) Averaged neighboring WCV Vector Higher

12 wh
(i,j)

′
Difference between wh

(i,j) and w̄h
(i,j) Vector Higher

13 θ(i,j) Angle between wh
(i,j) and w̄h

(i,j) Scalar Higher

14 µM(i,j)
Mean of the angles between WCV

Scalar Higher
and its neighboring WCVs

15 µV(i,j)
Variance of the angles between WCV

Scalar Higher
and its neighboring WCVs

16 κM(i,j)
Mean of the differences between the

Scalar Higher
norms of WCV and its neighboring WCVs

17 κV(i,j)
Variance of the differences between the

Scalar Higher
norms of WCV and its neighboring WCVs

All the proposed features derived based on the 3D wavelet transformation are listed in

Table 4.1, where their notations are indicated as well as their geometrical representation and

the mesh resolution level used for their calculation. The geometric features of the original
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mesh and the smoothed one are extracted simultaneously and subtracted from each others.

For the scalar geometric features, the differences between the geometric feature from the

original mesh, denoted as gt, and that from the smoothed mesh, g′t, is given by their absolute

differences

φt = |gt − g′t|. (4.12)

where t is the index of the geometric feature.

Meanwhile, the difference between the vectorial geometric features from the original

mesh, gt, and from the smoothed mesh, g′t are calculated in four different ways. Firstly, the

absolute differences are calculated for features defined in the Cartesian coordinate system,

such as

φt1 = |gt,x − g′t,x|,

φt2 = |gt,y − g′t,y|,

φt3 = |gt,z − g′t,z|,

(4.13)

where gt,x represents the x-component of the vector gt in the Cartesian coordinate system.

Secondly, the norm of the difference between vectors gt and g′t is calculated as

φt4 =
∥∥gt − g′t

∥∥ , (4.14)

and we consider the absolute differences between the norms of the two vectors, namely,

φt5 = | ‖gt‖ −
∥∥g′t∥∥ |. (4.15)

Finally the angle between the two vectors, gt and g′t is considered as well,

φt6 = arccos
gt · g′t
‖gt‖ · ‖g′t‖

. (4.16)

It can be observed in Table 4.1 that 8 of the proposed geometric features are vectors

while the other 9 are scalars. The differences between the geometric features from the

original mesh and those of the smoothed one are summarized into a set of 8 × 6 + 9 = 57
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elements, Φ = {φt|t = 1, 2, .., 57}. Then, the logarithm is used to transform each entry

of Φ in order to enforce the evenness of the feature distributions and we make up the

corresponding empirical probability density functions. Finally, we consider the first four

statistical moments, representing the mean, variance, skewness and kurtosis, of {lg (φt)|φt ∈

Φ} as the 57×4 = 228 dimensional feature vector X. The feature vector X = [x1, x2, ..., x228]

and the class label y, corresponding to the mesh O, are used as the inputs to a machine

learning algorithm to train the 3D steganalyzer. The proposed 228-dimensional 3D Wavelet

Feature Set is labeled as WFS228.

It can be observed from the Table 4.1 that more features are extracted from the higher

resolution mesh than those from the lower resolution mesh. This happens because the

uncertainty of the grouping of the triangles, during the implementation of the 3D wavelet

decomposition, makes it difficult to find the neighboring WCVs of a certain WCV in the lower

mesh. Then, the geometric features that would represent the information of the neighboring

WCVs, listed as 11-17 in Table 4.1, are not possible to be extracted from the lower resolution

mesh. Besides, the features extracted from the higher resolution mesh may have linear

dependencies to some extent, because the location of the vertex in the higher resolution

mesh is based on a linear combination of the vertices in the Butterfly neighborhood in the

original resolution mesh.

4.3 Experimental results

In the following experiments we evaluate the performance of the proposed WFS228 feature

set by detecting the information embedded by eight 3D information hiding algorithms, while

providing comparisons with the performance provided by four other 3D steganalytic feature

sets. The 354 cover-meshes used during the experiments are from the Princeton Mesh Seg-

mentation project [Chen et al., 2009] database, which include various shapes representing

human forms, animals, statues, tools and so on.

The proposed feature set WFS228 is extracted from the cover-meshes and the corre-

sponding stego-meshes when embedded with information by various 3D embedding algo-

rithms. The embedded information is a pseudorandom bit stream which simulates the secret
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messages or watermarks hidden by the steganographier. During the preprocessing stage, we

firstly apply one iteration of Laplacian smoothing on both cover-meshes and stego-meshes, by

setting the scale factor as λ = 5. The 3D steganalytic features are extracted as described in

Section 4.2. We consider the proposed feature set WFS228, and compare its results against

other existing 3D steganalytic feature sets such as, YANG208 [Yang and Ivrissimtzis, 2014],

LFS52 [Li and Bors, 2016], LFS64 [Kim et al., 2017] and LFS76 [Li and Bors, 2017]. We

also consider the feature set combining LFS76 and the proposed WFS228. The parameters

used for the calculation of YANG208, LFS52, LFS64 and LFS76 are identical to those used

in Chapter 3.

The steganalyzers are trained using the Fisher Linear Discriminant (FLD) ensemble

which is broadly used for image steganalysis [Denemark et al., 2016, Kodovskỳ et al., 2012,

Pevnỳ and Ker, 2015, Yu et al., 2016, Tang et al., 2016, Tan et al., 2017]. The FLD ensemble

includes a number of base learners trained uniformly on the randomly selected feature subsets

of the whole training data. The FLD ensemble uses the majority voting to combine the results

of all base learners, but achieves much higher accuracy than any individual base learner. For

more details of the FLD ensemble, we refer to the literature [Kodovskỳ et al., 2012, Cogranne

and Fridrich, 2015]. The contribution of this study consists in identifying the appropriate

feature set for 3D steganalysis and for this reason we do not test other machine learning

algorithms for discriminating the stego-objects from the cover-objects.

For each steganalyzer, we split the 354 pairs of cover-mesh and stego-mesh into 260 pairs

for training and 94 pairs for testing. The steganalysis results are assessed by calculating

two measurements: one is the median value of the areas under the Receiver Operating

Characteristic (ROC) curves of the testing results, the other is the median value of the

detection errors, both evaluated over 30 different splits of the data into training and testing

sets. The ROC curve is created by plotting the true positive rate against the false positive

rate at various threshold settings. The larger area under the ROC curve represents higher

accuracy of the testing results. The detection error is the sum of false negatives (missed

detections) and false positives (false alarms).



4.3. EXPERIMENTAL RESULTS 65

4.3.1 Steganalysis of two wavelet-based information hiding algorithms

We first test the steganalytic features’ performance when detecting the secret information

embedded by the Wavelet-based High Capacity (WHC) watermarking method and Wavelet-

based FRagile (WFR) watermarking method proposed in [Wang et al., 2008]. In order to

compare the distortion produced by these two embedding algorithms, the information is

hidden into the meshes after one iteration of 3D wavelet decomposition during the imple-

mentation of both algorithms, individually, rather than hierarchically as in [Wang et al.,

2008]. Besides, aiming to investigate the influence of parameters on the steganalysis results,

the control parameter εhc in WHC is set to the values {50, 100, 500, 1000}. When using

WFR to embed information, the quantization step ∆θ is set to the values {π/6, π/4, π/3,

π/2}. The other parameters involved in WHC and WFR are all identical to the values from

[Wang et al., 2008].

Figure 4.5 provides the ROC curves for the 3D steganalysis results when the information

was embedded by WHC (εhc = 100) and WFR (∆θ = π/3) for one trial when using the FLD

ensembles trained on various 3D steganalytic feature sets. Instead of presenting many ROC

curves, Figure 4.6 gives the median value of the area under the ROC curves of the detection

for the stego-meshes carrying the information hidden by WHC and WFR, when varying the

values of the parameters, εhc and ∆θ in 30 trials.

It is obviously from both Figure 4.5 and 4.6 that the proposed feature set, WFS228,

and the combination of LFS76 and WFS228 have better performance than the other 3D

steganalytic feature sets. Among the existing feature sets, LFS76 shows relatively better

performance than YANG208, LFS52 and LFS64, but not as good as WFS228. It is deduced

that the 24-dimensional features extracted from spherical coordinate of the mesh contribute

to the positive result provided by LFS76 when compared to LFS52. It is noted that, although

LFS64 also includes LFS52 as a subset, its performance is usually worse than the latter,

except in the case of WHC with εhc = 50. It implies that the additional features in LFS64,

such as the edge normal, mean curvature and total curvature are more efficient, when the

targeted information hiding algorithms introduce higher distortions on the shape, because

the setting of εhc = 50 for WHC leads to higher distortions than the other values.
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Figure 4.5: ROC curves of the steganalysis of WHC (εhc = 100) and WFR (∆θ = π/3) for
one trial using the FLD ensembles trained on various 3D steganalytic feature sets.

When considering the influence of the parameter εhc on WHC, it is shown that when εhc

increases, the accuracies of the steganalyzers trained using the feature set WFS228 and the

combination of LFS76 and WFS228, would decline. This happens because the increase of

εhc leads to a smaller quantization step during embedding, and subsequently a lower level

of embedding distortion. However, given the results from Figure 4.6(b), the parameter ∆θ
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Figure 4.6: Median values of the area under the ROC curves of the detection results of
the steganalyzers on the testing set over 30 independent splits for WHC and WFR when
considering various values of the parameters.

does not affect the embedding distortion of WFR. When considering the resistance to 3D

steganalysis, WFR is slightly better than WHC when the parameter εhc is low.

Figure 4.7 presents the median value of the detection errors of the stego-meshes embedded

by WHC and WFR in 30 trials. The results are similar to the ones presented in Figure 4.6,

which also indicates that proposed feature set, WFS228, and the combination of LFS76 and
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Figure 4.7: Median values of the detection errors of the steganalyzers on the testing set over
30 independent splits for WHC and WFR when considering various values of the parameters.

WFS228 achieve the best performance among various feature sets.

4.3.2 Steganalysis of six 3D embedding algorithms

In the following we consider identifying the 3D stego-meshes produced by hiding information

using six different embedding algorithms: the 3D steganography from [Itier and Puech, 2017]
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Figure 4.8: Box plots showing the confidence intervals for the area under the ROC curves
of the detection results of steganalyzers trained when testing over 30 independent splits for
the six 3D information embedding algorithms.



70 CHAPTER 4. 3D WMA-BASED FEATURES FOR STEGANALYSIS

Feature sets
YANG208 LFS52 LFS64 LFS76 WFS228 LFS76+WFS228

E
rr

or

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(a) HPQ [Itier and Puech, 2017]

Feature sets
YANG208 LFS52 LFS64 LFS76 WFS228 LFS76+WFS228

E
rr

or

0.2

0.25

0.3

0.35

0.4

(b) HPQ-R [Li et al., 2017]

Feature sets
YANG208 LFS52 LFS64 LFS76 WFS228 LFS76+WFS228

E
rr

or

0.1

0.15

0.2

0.25

(c) MLS [Chao et al., 2009]

Feature sets
YANG208 LFS52 LFS64 LFS76 WFS228 LFS76+WFS228

E
rr

or

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(d) MRS [Cho et al., 2007]

Feature sets
YANG208 LFS52 LFS64 LFS76 WFS228 LFS76+WFS228

E
rr

or

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

(e) VRS [Cho et al., 2007]

Feature sets
YANG208 LFS52 LFS64 LFS76 WFS228 LFS76+WFS228

E
rr

or

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(f) SRW [Yang et al., 2017b]

Figure 4.9: Box plots showing the confidence intervals for the detection errors of stegana-
lyzers trained when testing over 30 independent splits for the six 3D information embedding
algorithms.
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based on the Hamiltonian Path Quantization (HPQ) and its improved version having a high

resistance to steganalysis, HPQ-R [Li et al., 2017]; the Multi-Layer Steganography (MLS)

provided in [Chao et al., 2009]; two blind robust watermarking algorithms based on modifying

the Mean or the Variance of the distribution of the vertices’ Radial distances in the Spherical

coordinate system, denoted as MRS and VRS, from [Cho et al., 2007] and the Steganalysis-

Resistant Watermarking (SRW) method proposed in [Yang et al., 2017b].

For both 3D steganographic algorithms, HPQ and HPQ-R, the interval parameter is set

as ∆ = 1× 10−7 and the relative payload is 24 Bits Per Vertex (BPV), which was suggested

in [Li et al., 2017]. When using MLS method from [Chao et al., 2009], we set the number

of layers to 10, and consider the number of intervals as 10000. During the information

embedding, all the vertices in the mesh are used as payload carriers, except for three vertices

which are used as references for the extraction process. So the relative payload embedded

by MLS is 10 BPV.

For MRS and VRS watermarking methods from [Cho et al., 2007], we consider α = 0.04

for the watermark strength, while fixing the incremental step size to ∆k = 0.001 and the

message payload as 64 bits. During the generation of the stego-meshes using the SRW

method from [Yang et al., 2017b], we set the parameter K = 128 which determines the

number of bins in the histogram of the radial distances for all vertices. According to [Yang

et al., 2017b], the upper bound of the embedding capacity is b(K−2)/2c bits. The parameter

that controls the watermarking robustness of SRW is nthr, which is set at 20. If the smallest

number of elements in the bins from the objects is less than 20, we would choose the smallest

nonzero number of elements in the bins as nthr.

Figure 4.8 provides the box plots with the results for the area under the ROC curves of

the detection results for the steganalyzers when testing over 30 independent data set splits

when considering the information embedded by the above-mentioned six 3D embedding

algorithms. Moreover, the corresponding detection errors for the steganalyzers are shown in

the box plots in Figure 4.9. We can observe from Figures 4.8 and 4.9 that the combination of

LFS76 and WFS228 achieves the best performance for the steganalysis of the stego-meshes

embedded by these six 3D information hiding algorithms. It is important that in the context

of the newly proposed HPQ-R, WFS228 shows much better performance than other existing
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3D steganalytic feature sets. This happens because the WFS228 feature set can capture the

displacement of the vertices made by HPQ-R particularly along the direction of the mesh

edges, while the other steganalytic features fail to capture such changes. When aiming to

identify the stego-meshes produced by HPQ, MRS, VRS and SRW, WFS228 feature set

does not indicate a better performance than LFS76. Nevertheless, the WFS228 feature

set extracts supplementary information about the existence of hidden information into 3D

objects, when compared to LFS76, resulting in a better performance for the combination of

LFS76 and WFS228 feature sets when compared to using just LFS76.

We can observe that LFS64 provides slightly worse performance than LFS52 with respect

to the steganalysis of the stego-meshes embedded by HPQ, HPQ-R and MLS, but better

performance in the cases of MRS, VRS and SRW. We infer that the additional 12-dimensional

features in LFS64 proposed in [Kim et al., 2017] are more effective when detecting the

higher level embedding distortions, because MRS, VRS and SRW are robust watermarking

algorithms and usually produce higher distortions than the 3D steganographic algorithms,

such as HPQ, HPQ-R and MLS. This also explains why LFS64 has better performance than

LFS52 when detecting the stego-object embedded by WHC with εhc = 50.

4.3.3 Efficiency analysis of the proposed features

In the following we provide the efficiency analysis of the proposed features when they are

grouped in various categories according to the type of geometric features that they are

characterizing. The efficiency of the features is assessed by the relevance between the feature

vectors and the class label, which is calculated as the Pearson correlation coefficient

ρ(xi, y) =
cov(xi, y)

σxiσy
(4.17)

where xi is the ith feature of a given feature set, and y is the class label indicating whether

the mesh is a cover-mesh or a stego-mesh, cov represents the covariance and σxi is the

standard deviation of xi. The Pearson correlation coefficient is a measure of the linear

dependence between two variables [Hall, 1999], and it is often used in order to assess the

feature’s efficiency in the classic feature selection algorithms [Guyon and Elisseeff, 2003, Yu
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and Liu, 2004]. The assumption made is that a higher linear dependence, or a higher

relevance, between the feature and the class label can result in a better discriminant ability

of that feature. So the relevance ρ(xi, y) is an estimation of the ith feature’s efficiency for

3D steganalysis.

We split the features from the set WFS228 into 17 categories according to their repre-

sentations of the geometric features listed in Table 4.1. Firstly, the relevance of each feature

from the set WFS228 is calculated according to equation (5.1). Then, the relevance of each

category is obtained by averaging the relevances for the features belonging to that category.

The analysis is based on the features from the 354 cover-meshes and their corresponding

stego-meshes obtained by embedding information when using the eight information hiding

algorithms mentioned previously in this section. With respect to the setting of the pa-

rameters of the 3D watermarking algorithms, we set the parameters in WHC and WFR

as εhc = 100 and ∆θ = π/3. The parameters in the other six algorithms, HPQ, HPQ-R,

MLS, MRS, VRS and SRW, are the same with the ones used in the previous experiments.

Since various embedding algorithms produce different kinds of distortions, the relevance of

the feature may vary when the stego-meshes are produced by different information hiding

algorithms.

The relevance of different categories of features in WFS228 are shown in Figure 4.10.

The index of the categories correspond to the index of the geometric features from Table 4.1.

It can be observed from Figure 4.10 that the features from categories 5, 6, 9, 10, 13, 14 and

15 have relatively higher relevance with the class label. These features are all characterizing

the relationships between the WCV and its support edge or the relationships between the

WCV and its neighbouring WCVs in the higher resolution mesh. Besides, the features from

categories 3 and 7, characterizing the geometry of the WCVs, show a stable relevance with

the class label among all eight cases. However, the features from categories 1, 2, 4 and 8,

representing the edge vectors or flipped edge vectors of meshes in three resolution levels, show

a lower relevance than the average. We infer that this is happening because the modifications

made by the embedding algorithms are not changing directly the edges in different resolution

meshes, so the corresponding features are not so efficient for steganalysis as the others.

However, when we train the steganalyzers without the features from categories 1, 2, 4 and
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Feature categories
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
el

ev
an

ce

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(e) MLS [Chao et al., 2009]
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Figure 4.10: The relevance between the features and the class label, where the stego-meshes
are obtained using eight information hiding methods, WHC, WFR, HPQ, HPQ-R, MLS,
MRS, VRS and SRW, respectively. The category labels correspond with the index of the
geometric features from Table 4.1.
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8, the steganalysis results degrade to some extent, which means that all these features are

contributing to the 3D steganalysis as well. When we categorize the features according to

the four statistical moments that they represent, the features that represent higher order

moments, such as skewness and kurtosis, have higher relevance than those representing the

mean and variance. However, the features representing skewness and kurtosis are not robust

to the variation of the cover source, which is going to be discussed in Chapter 5.

4.4 Conclusion

In this research chapter, we propose a steganalytic approach for triangle meshes based on

the 3D wavelet multiresolution analysis. A number of geometric features are extracted from

the original mesh and its smoothed counterpart, by considering three levels of resolution

including the given resolution, one lower level of resolution and another of higher resolution.

Characteristic geometric features are extracted from the original mesh and its smoothed ver-

sion by taking into account the 3D wavelet decompositions and subdivisions. We consider

both lower and high resolution scales obtained from their corresponding 3D wavelet decom-

positions and subdivisions. The first four moments of the distributions of the logarithms

for the differences between the geometric features from the original mesh and those from its

smoothed version are then used to form the proposed 228-dimensional steganalytic feature

set, WFS228. Furthermore, the combination of LFS76 and the proposed WFS228 achieves

better performance than other existing 3D steganalytic features when analyzing eight 3D

embedding algorithms. An analysis of the efficiency for various feature categories, each

grouping 3D wavelet features based on their geometry modeling properties, is undertaken as

well, in this research study.





Chapter 5

Solving the Cover Source Mismatch

Problem in 3D Steganalysis

5.1 Introduction

The feature sets proposed in Chapters 3 and 4 have shown good results in the 3D steganalysis

experiments, when detecting embedding changes by several 3D steganographic algorithms.

The previous experiments are carried out under the assumption that the cover source of the

training data and the testing data are the same, however, this assumption is rarely true in

the real world. Since it is very difficult to have the knowledge of the cover source used by the

steganographiers, in the real world, the pre-trained steganalyzers are faced with the Cover

Source Mismatch (CSM) problem, resulting in very poor detection accuracies in practice.

Firstly we discuss why the CSM would lead to poor detection accuracies of the steganalyz-

ers. This happens because the steganalytic features are sensitive to the changes of the local

geometrical and topological properties of mesh representations for the 3D objects. So the

separation boundary for the classification of cover-objects and stego-objects, calculated for a

specific set of cover-objects, may not be optimal for the objects from other cover sources, re-

sulting in a poor classification accuracy for the steganalyzer. For example, the CSM problem

in image steganalysis is caused by the fact that different brands or types of digital cameras

may produce the images with different kinds of ISO noise, which would influence in a spe-

cific way the features used for training the image steganalyzer. So the hyperplane for the

77
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classification of cover-images and stego-images trained over a certain cover source dataset

may not be the optimal for the other cover sources, resulting in poor detection accuracies of

the steganalyzers.

The steganalytic features are designed to be sensitive to the embedding changes which are

rather small in order to be invisible, but non-sensitive to the global shapes of the objects.

This is because the 3D steganographic algorithms embed unobservable changes into 3D

objects, which are rather local in nature.

In order to solve the CSM problem, we need to find the features that are sensitive to

the embedding changes, but robust to the variation of the cover sources. However, we are

faced with a dilemma that the steganalytic features that are sensitive to the embedding

changes are usually also sensitive to the variation of the cover sources, because the variation

of the cover sources may lead to different types of local properties of the objects which are

used for extracting the steganalytic features. The solution is to find a trade-off between the

features’ sensitivity to the embedding changes and their robustness to the variation of the

cover sources. We propose to use the feature selection to achieve this trade-off.

The existing feature selection techniques used in pattern recognition applications can

be grouped into three categories: wrapper methods, embedded methods and filter methods

[Brown et al., 2012]. The wrapper methods use the training or validation error of a classifier

to evaluate the utility of the candidate features, and an example is represented by the

sequential feature selection algorithm [Pudil et al., 1994]. The embedded feature selection

methods are based on properties specific to certain classification algorithms. For example,

the method proposed in [Weston et al., 2001] selects the features that minimize bounds on

the cross-validation error of the support vector machines. The filter methods define a scoring

criterion to rank and select the features. The filter methods are independent of the classifier,

so they are less likely to overfit than the wrapper or embedded feature selection methods

which are classifier-dependent. Since the overfitting may cause more serious problem under

the CSM scenarios, we choose to use a filter method to select the features to obtain a

steganalyzer with better generalization ability.

In this chapter, we propose a feature selection algorithm that considers both the features’

robustness to the variation of the cover source and their relevance to the class label, in
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order to address the CSM problem in 3D steganalysis. Either the Pearson Correlation

Coefficient (PCC) or Mutual Information Criterion (MIC) is used for measuring the feature’s

relevance to the class label in the algorithm. Meanwhile, the PCC is used for assessing the

feature’s robustness to the variation of the cover source. The 3D steganalysis framework

which addresses the CSM problem is outlined in the diagram from Figure 5.1.

Testing stage

Training stage

Training

objects

Testing

objects

Preprocessing

Preprocessing

Feature

extraction

Feature extraction

Feature

selection

Steganalyzer
Information

embedded?

Machine

learning

Yes

No

Figure 5.1: The 3D steganalysis framework based on statistical feature extraction and selec-
tion and machine learning methods.

The rest of this chapter is organized as follows: The definition of the features’ robustness

and relevance is presented in Section 5.2. The robustness and relevance-based feature selec-

tion algorithm and its pseudocode are presented in Section 5.3. The experiments that show

the performance of the proposed method on solving the CSM problem in 3D steganalysis are

provided in Section 5.4. The research proposed in this chapter is summarized in Section 5.5.

5.2 Definition of features’ robustness and relevance

In the following we consider that we have a set of 3D objects O, used as cover sources for

training a steganalyzer. We use a data hiding algorithm for embedding information into

the surface of these 3D objects, producing a set of stego-objects. A set of features is then

extracted from both cover-set and stego-set of objects and the parameters characterizing

their statistics are then used as inputs in a machine learning classifier to distinguish between

the two classes of objects. The research studies from [Yang and Ivrissimtzis, 2014, Li and

Bors, 2016] and [Li and Bors, 2017] have found several 3D features as being useful for 3D

steganalysis. However, the sensitivity of these 3D features to the variation in the shape of

the objects being analyzed varies from feature to feature. The steganalytic features that

are more sensitive to the embedding changes contribute more to the performance of the ste-
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ganalyzer. Nevertheless, these features would have a significant variation, outstripping their

characteristic estimated distributions, when diversifying the cover source shapes. This ulti-

mately leads to the degradation of the steganalyzer’s performance under the CSM scenario.

The solution of this dilemma in the CSM scenarios would be to find a trade-off between the

features’ sensitivity to the embedding changes and their robustness to the variation of the

cover source. This is the motivation of the following feature selection method addressing the

CSM problem in 3D steganalysis.

The proposed feature selection algorithm, called Robustness and Relevance-based Feature

Selection (RRFS), presents a mechanism for choosing the features which will guarantee the

steganalysis performance in the CSM scenarios. The key idea of the proposed algorithm is to

find the features that are more robust to the variation of the cover source, while preserving a

relatively high sensitivity to the embedding changes which is evaluated by their relevance to

the class label. Naturally, two criteria are considered during the selection: the relevance of

the features to the class label, and the robustness of the selected feature set to the variation

of the cover source.

The feature selection algorithm proposed in this study belongs to the filter methods

[Chandrashekar and Sahin, 2014], shown to be efficient when used for selecting input features

in various machine learning algorithms. The filter methods are suitable to be applied in the

cover source mismatch situations, because they can avoid the overfitting to the training data

whilst being characterized by a better generalization during the testing stage [Guyon and

Elisseeff, 2003].

In the proposed algorithm, the relevance of the features to the class label is estimated

by using the Pearson Correlation Coefficient (PCC), calculated between the distribution of

each feature and the corresponding objects’ classes:

ρ(xi, y) =
cov(xi, y)

σxiσy
, (5.1)

where xi is the ith feature of a given feature set, X = {xi|i = 1, 2, . . . , N}, where N is the

dimensionality of the input feature, y is the class label indicating whether the class corre-

sponds to that of either being a cover-object or a stego-object, cov represents the covariance
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and σxi is the standard deviation of xi. The Pearson correlation coefficient can capture the

linear dependency between features and the label, with |ρ(xi, y)| = 1 indicating a high degree

of linearity while ρ(xi, y) = 0 indicates a scattered dependency [Hall, 1999]. All features are

ranked according to their relevance to the class label, calculated using equation (5.1), in

descending order as:

|ρ(xi1 , y)| > |ρ(xi2 , y)| > . . . > |ρ(xiN , y)|, (5.2)

where I = {i1, i2, ...iN} is the feature index set.

In the following we also consider the Mutual Information Criterion (MIC) as a statistical

measure of the relevance between each feature and the class label. MIC is known as a

statistical measure of dependency between two variables. The mutual information between

the ith feature, xi, and the class label, y, is given by:

MI(xi; y) =
∑
xi,y

p(xi, y)log

(
p(xi, y)

p(xi)p(y)

)
, (5.3)

where p(xi, y) is the joint probability distribution function of xi and y, and p(xi) and p(y)

are the marginal probability distribution functions of xi and y, respectively. Compared to

the correlation coefficient, the mutual information is considered to be better in measuring

the non-linear dependency between the variables [Li, 1990]. MIC was used in some classic

feature selection methods, such as [Battiti, 1994, Fleuret, 2004, Lewis, 1992, Peng et al.,

2005].

Features’ robustness to the variation of the cover source is related to solving the CSM

problem. Ideally, robust features should model the statistical characteristics that distinguish

cover-objects and stego-objects even when these are different from those used during the

training. In this study we assume that the testing dataset is different from the training

one through some transformations which are controlled in the experimental setting of this

study. If objects’ features do not change much after applying various transformations to

the cover-objects, they would be expected to provide similar steganalysis results to those

achieved for the original cover-objects and stego-objects. Such features would have a strong

robustness in the context of steganalyzers. In the following we consider certain changes to

the surface of the objects and compare the features extracted before and after such changes.
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The changes considered in this study are produced by mesh simplification and by adding

noise to the mesh surface by significantly decreasing or increasing the local surface variation.

Such changes can alter significantly the shape of 3D objects. We do not consider the mesh

enhancement operations, such as remeshing and fairing, because these operations can make

the mesh surface smoothed and the subsequent embedding modifications will be more easily

detected. Then the Pearson correlation coefficient of the feature sets extracted before and

after applying the changes to the 3D objects is calculated as:

ρ(xi, xi,j) =
cov(xi, xi,j)

σxiσxi,j
, (5.4)

where xi and xi,j represent the ith feature extracted from the original set of cover-objects

O, used for training the steganalyzer, and from the objects obtained after applying specific

transformations to the same cover source, j = 1, 2, . . . ,M , where M represents the number

of transformations applied to the original set of cover-objects O. This formula indicates

how well correlated are the initial 3D features with those that are extracted after certain

transformations. We normalize |ρ(xi, xi,j)| to the interval [0, 1]. The robustness is indicated

by the average of the absolute values of the Pearson correlation coefficients obtained above,

calculated for a specific feature i, for all j = 1, ...,M transformations:

ri =
1

M

M∑
j=1

|ρ(xi, xi,j)|, (5.5)

where i = 1, 2, . . . , N .

5.3 Robustness and relevance-based feature selection algo-

rithm

The Robustness and Relevance-based Feature Selection (RRFS) algorithm starts with a

preset number of N features as input. These N features, consist of several features that

have been proposed for 3D steganalysis in previous studies [Yang and Ivrissimtzis, 2014, Li

and Bors, 2016, Li and Bors, 2017]. The RRFS algorithm aims to find the most N ′ relevant
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features which have relatively strong robustness to be used for a steganalyzer that addresses

the CSM problem. N ′ features are selected after multiple passes through the features ranked

according to their relevance, calculated using either equation (5.1) for PCC or (5.3) for MIC.

During each pass, a subset of features F ′ with highest relevance is selected subject to the

following conditions:

F ′|{ri > θq, |F ′| < N ′} (5.6)

where θq represents the threshold for the correlation corresponding to the q-th percentile

of set {ri|i = 1, 2, . . . , N}, evaluating the robustness of the features. The features that

are not robust enough are removed, and the RRFS algorithm reiterates, with considering

the subset F ′ instead of N’. The trade-off between the robustness and the relevance of the

features is controlled by a parameter τ . Initially, q is set as 100 − τ . After each iteration,

if the cardinality of selected features |F ′| < N ′, then we reduce the threshold to a value

corresponding to a percentile of q− τ , and repeat the feature selection by considering a new

threshold θq−τ instead of θq. When the parameter τ is closer to 0, the feature selection

algorithm tends to select the more robust features. If τ increases, the features with higher

relevance to the class label will be more probably selected by the proposed algorithm. The

setting of the parameter τ is investigated in Section 5.4.2.

In this way with each iteration we add additional features to the set of selected features

such that whilst increasing the feature set we preserve the generalization capability of the

steganalyzer. Since the features are ranked according to their relevance in descending order,

the features with higher relevance are first selected if their robustness is above the threshold

θq. After each iteration, the threshold θq is gradually reduced, considering lower percentiles

q − τ in stead of q , until the dimensionality of the selected features becomes equal to N ′.

These N ′ selected features are robust enough to the variation of cover source whilst having a

relatively high relevance to the class label at the same time. The RRFS algorithm that uses

PCC as the measure of the features’ relevance to the class label is named RRFS-PCC and

its pseudocode is provided in Algorithm 1. Instead of using PCC, the RRFS-MIC algorithm

uses MIC to calculate the features’ relevance as defined in equation (5.3). The description

of RRFS-MIC is similar to that of Algorithm 1.



84 CHAPTER 5. SOLVING THE CSM PROBLEM IN 3D STEGANALYSIS

Algorithm 1: RRFS-PCC algorithm

Input:
Features extracted from the cover-objects and stego-objects used for training
X = {xi|i = 1, 2, ..., N};
Features extracted from other cover sources and corresponding stego-objects
Xj = {xi,j |i = 1, 2, ..., N, j = 1, 2, ...,M};
Class label y;
Step size parameter τ ;
Dimensionality of the selected feature N ′.
Output: Index of the selected feature subset F ′.

1 Compute the relevance of the features to the class label, ρ(xi, y) = cov(xi,y)
σxiσy

;

2 Compute the Pearson correlation coefficient of two feature sets,

ρ(xi, xi,j) =
cov(xi,xi,j)
σxiσxi,j

;

3 Normalize |ρ(xi, xi,j)| to [0,1];
4 Compute the robustness of the features to the variation of the cover source,

ri = 1
M

∑M
j=1 |ρ(xi, xi,j)|;

5 Sort the features by relevance |ρ(xi, y)| in the descending order and get the index
I = {i1, i2, ...iN};

6 Initialize q ← 100− τ and θq ← percentile({ri|i = 1, 2, ...N}, q);
7 while |F ′| < N ′ do
8 for k ← i1 to iN do
9 if (k /∈ F ′) ∧ (rk > θq) ∧ (|F ′| < N ′) then

10 Add k to F ′;
11 end
12 q ← q − τ ;
13 θq = percentile({ri|i = 1, 2, ...N}, q);
14 end

15 end
16 Return F ′;
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5.4 Experimental results

During the experimental results, we analyze the effect of the cover source mismatch in 3D

steganalysis. We apply the RRFS algorithm to select a feature subset from a given larger

feature set, when analyzing a large set of stego- and cover-objects, and test the performance

of the selected feature subset within the context of CSM scenarios.

For the experimental data set we consider 354 3D objects represented as meshes which

are part of the Princeton Mesh Segmentation project [Chen et al., 2009] database, which is

also used in the experiments of Chapter 3 and Chapter 4. This database contains a large

variety of shapes, representing the human body under a variety of postures, statues, animals,

toys, tools and so on.

The stego-objects are generated by applying four information hiding algorithms: the

3D Multi-Layers Steganography (MLS) proposed in [Chao et al., 2009], the blind robust

watermarking algorithms based on modifying the Mean of the distribution of the vertices’

Radial distance coordinates in the Spherical coordinate system, denoted as MRS, from [Cho

et al., 2007], the Steganalysis-Resistant Watermarking (SRW) method proposed in [Yang

et al., 2017b] and the Wavelet-based High Capacity (WHC) [Wang et al., 2008] watermarking

method. The embedded information is a pseudorandom bit stream which simulates the secret

messages or watermarks hidden by the steganographier. In the case of MLS [Chao et al.,

2009], the number of embedding layers is considered as 10 and the number of intervals is

chosen as 10000. The relative payload ratio of each layer is nearly 1, except for three vertices

used for extracting the code, which are not modified at all. The payload embedded by MRS

from [Cho et al., 2007] is 64 bits and the watermarking strength is 0.04. We set the parameter

K = 128 in SRW proposed in [Yang et al., 2017b] and the algorithm’s upper bound of the

embedding capacity is b(K − 2)/2c. The control parameter for WHC is εhc = 100 and the

other parameters are identical to the suggested values given in [Wang et al., 2008].

Similarly to the approach from [Li and Bors, 2016] we consider FLD ensembles [Cogranne

and Fridrich, 2015, Kodovskỳ et al., 2012] as the machine learning based steganalyzer. The

parameters for the FLD ensembles, such as the number of the base learner and the subspace

dimensionality, are chosen as in [Kodovskỳ et al., 2012]. The classifiers’ performance is
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WAL304

LFS76 WFS228

LFS52 VS12 ES12 WFS-I WFS-L WFS-H

YANG40 VF4 CF8

Figure 5.2: The feature sets that included in WAL304.

measured by the detection errors which are the sums of false negatives (missed detections)

and false positives (false alarms).

The feature set, used as a base for selecting the most robust and relevant subset of features

for steganalysis, is a 304-dimensional feature set, called WAL304, generated by combining

two feature sets used for 3D steganalysis, LFS76 [Li and Bors, 2017] and WFS228 proposed

in previous Chapters 3 and 4, respectively. The feature sets that included in WAL304 are

illustrated in Figure 5.2 as a tree graph. The VF4 and CF8 are representing the 4-dimensional

vertex formal features and 8-dimensional curvature feature in LFS52 [Li and Bors, 2016],

respectively. The VS12 and ES12 are the spherical coordinate features added to LFS52,

forming the LFS76. Meanwhile, WFS228 is the combination of Wavelet Feature Set from

the Initial resolution mesh (WFS-I), Wavelet Feature Set from the Lower resolution mesh

(WFS-L) and Wavelet Feature Set from the Higher resolution mesh (WFS-H).

We consider the initial objects of the database as cover-objects and after watermarking

these we obtain the stego-objects. In the experiments, the feature set WAL304, is initially

extracted from the cover-objects and stego-objects. Then, in order to simulate the effect of

CSM problem, we apply certain transformations, such as by adding noise or by mesh simplifi-

cation, to the original cover-objects and we consider the transformed objects as cover-objects

for information hiding. Feature sets are extracted from these transformed cover-objects and

their corresponding stego-objects. For each kind of transformation, we assume four different

levels of transformations going from superficial changes to more dramatic modifications ap-
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plied to the surfaces of the objects, by either increasing the level of noise, through β, or the

mesh simplification factor λ. Thus, during the calculation of the robustness, we have a set

of M = 8 transformations applied to the original objects. In order to test the performance

of the selected features in the context of the CSM scenario, we randomly select 260 cover-

objects from the original cover source and the corresponding stego-objects for training the

steganalyzer. The steganalyzers are trained over the feature subsets selected by the RRFS

algorithm. Then we test the steganalyzer on the other 94 pairs of cover-objects and stego-

objects originated from the transformed cover sources, which have not been used during the

training.

5.4.1 The CSM problem

In the following, we analyze the steganalysis capability, when hiding information by means

of four different information hiding algorithms. We consider both cases of 3D steganalysis

under the CSM scenario and without it. In the case when testing the steganalytic algorithm,

without considering the object transformations for the CSM paradigm, we utilize the whole

WAL304 feature set from the 260 pairs of cover-objects and stego-objects for training the

steganalyzer, while using the other 94 pairs of objects from the database for testing. The

experiment is repeated 10 times with independent splits for the training and testing sets.

In order to generate multiple cover sources, we distort the original objects of the database

by considering two different transformations to various extents: mesh simplification and noise

addition. While the first transformation changes the local topology of the mesh, the latter one

alters the roughness of the surface. These transformations can simulate the distortions of the

meshes caused by using different 3D scanners when scanning the same object, because the 3D

scanners may have different accuracies and precisions, and they may use different algorithms

to create the 3D meshes. The likelihood of such mesh variations would increase even more

in the case when scanning objects produced by 3D printers, because of the roughness of the

surface in such objects. When creating new shapes by considering additive noise to the mesh

surface of an original objects, we actually create a challenging problem for a 3D steganalyzer,

because such distortions resemble those produced to the mesh when hiding information. Thus

we would actually increase the uncertainty in separating the cover-objects from stego-objects.
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(a) Cover-object. (b) Stego-object after mesh simplification
with ξ = 0.8.

Figure 5.3: Example when using surface simplification on the cover-object to test the cover-
source mismatch paradigm in 3D steganalyzers

The mesh simplification is performed using the MATLAB function reducepatch1 which

reduces the number of faces, while aiming to preserve the overall shape of the 3D object.

The level of the simplification is controlled by the parameter ξ ∈ {0.98, 0.95, 0.9, 0.8} which

is interpreted as a fraction of the original number of faces. For example, if ξ = 0.8, then the

number of the faces is reduced to 80% of their count from the original mesh. The close-up de-

tail of one of the original 3D objects used in the experiments is shown in Figure 5.3(a), while

its corresponding stego-object obtained by using MLS embedding algorithm after mesh sim-

plification by a factor of ξ = 0.8, is shown in Figure 5.3(b). If we would have chosen smaller

ξ values, the resulting meshes would have been dramatically changed, while addressing CSM

problem in 3D steganalysis is about localized changes in the mesh surface. Besides, the mesh

simplification algorithm used by reducepatch may produce particular artifacts, for example,

it may result in the effect that the sizes of the triangles on the flat part of the simplified mesh

would vary dramatically. When considering uniform noise addition, the amplitude of noise is

1http://uk.mathworks.com/help/matlab/ref/reducepatch.html
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(a) Results for MLS [Chao et al., 2009]
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(b) Results for WHC [Wang et al., 2008]
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(c) Results for MRS [Cho et al., 2007]
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(d) Results for SRW [Yang et al., 2017b]

Figure 5.4: Box plots showing the steganalysis detection errors for the information hiding
methods proposed in [Chao et al., 2009, Wang et al., 2008, Cho et al., 2007, Yang et al.,
2017b] when considering and without addressing the CSM challenge due to different 3D
shape modifications. Label 1 represents the results without considering the CSM challenge
during the training and testing. Labels 2 to 5 represent the results with the CSM due to
additive noise at the levels of β ∈ {1 ·10−5, 2 ·10−5, 3 ·10−5, 5 ·10−5}. Labels 6 to 9 represent
the results with the CSM due to mesh simplification at the level of ξ ∈ {0.98, 0.95, 0.9, 0.8}.
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modulated by the parameter βD, with β ∈ {1 · 10−5, 2 · 10−5, 3 · 10−5, 5 · 10−5}, and D is the

maximum distance between the projections of any two vertices on the first principal axis,

obtained by applying the Principal Component Analysis (PCA) on the original 3D object.

Since the size of the objects in the database may correspond to different scales, by using

the parameter βD to control the amplitude of the noise we can obtain relative consistent

effects by the additive noise on the original shapes. With the application of various levels of

mesh simplification and noise addition, we can observe the performance of the steganalytic

approaches under different levels of CSM scenarios.

Figure 5.4 depicts the box plots for the detection errors, indicating their variation from

the mean, for the four information hiding algorithms without CSM (Label 1) and with CSM

for labels 2-9, where the diversity of objects for testing the CSM problem is produced by

shape transformations through adding noise, or by mesh simplification, each by considering

4 levels of induced distortions to the original shapes. We remark that in the case without

CSM (Label 1), the training set did not contain the noisy or the simplified meshes. From

Figures 5.4 (a) and (b) it can be observed that the CSM paradigm poses more challenges to

steganalysis in the case of the changes embedded by the MLS [Chao et al., 2009] and WHC

[Wang et al., 2008] steganographic algorithms than in the cases of the MRS [Cho et al.,

2007] and SRW[Yang et al., 2017b], whose results are provided in Figures 5.4 (c) and (d),

respectively. With respect to MRS and SRW, the CSM challenge due to the diversification

of shapes through mesh simplification leads to the dampening of the hidden information

detection accuracy. However, from these results, it can be observed that the CSM challenge

due to the diversification of shapes through additive noise does not have much influence

on the detection results. This happens because the added noise to the cover-object surface

is actually smaller than the changes produced to the surface of 3D objects by the two

watermarking algorithms.

5.4.2 The analysis for selecting the parameter τ in RRFS algorithm

The parameter τ controls the trade-off between the robustness and the relevance of the

features during selection, as explained in the first paragraph from Section 5.3 and in the

Algorithm 1. In the following experiment, we consider the steganalysis of stego-objects with
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information embedded by the MLS algorithm, proposed in [Chao et al., 2009], whose ste-

ganalysis results were the poorest when considering the CSM assumptions according to the

results provided in the previous section. The feature selection and training of the stegana-

lyzer are following the same rules as described before. More specifically, during the feature

selection stage, we set τ ∈ {2, 10, 20, 30, 40, 50}, when using the RRFS-PCC algorithm.

When τ is small, the algorithm gives more consideration to the robustness of the features to

the variation of the cover source, while when τ is larger it gives more consideration to the

feature’s relevance to the class label. Because we consider that the robustness of the feature

is very important for addressing the CSM problem, we tend to set a small value for τ . We

consider increasing the number of selected features N ′ from 10 to 300, with steps of 10 at

each iteration.
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Figure 5.5: The variation for the threshold of the features’ robustness θq when using the
RRFS-PCC algorithm with ∆ ∈ {2, 10, 20, 30, 40, 50} in order to select N ′ features over one
split of data into training/testing sets.

In Figure 5.5, we present the variation of the threshold of the features’ robustness θq,

when using the RRFS-PCC algorithm with τ ∈ {2, 10, 20, 30, 40, 50} in order to select N ′

features over one split of data into training/testing sets. It shows that the threshold θq

decreases according to the variation of the parameter τ , which controls the trade-off between

the robustness and relevance. A larger area under the plot of the threshold of robustness θq
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means more consideration is given to the features’ robustness. So when τ = 2, the selection

of the features is mostly based on their robustness to the variation of the cover source.

The testing of the steganalyzers is carried out by considering four 3D shape transforma-

tions, for testing the CSM scenario. The shape transformations are produced by additive

noise with amplitude defined by β ∈ {1 · 10−5, 3 · 10−5 5 · 10−5}, and mesh simplification at

the level of ξ ∈ {0.98, 0.9, 0.8}. The results are shown in Figure 5.6. From the plots in Figure

5.6 it can be observed that in the case of CSM due to noise addition, smaller values, such as

τ ∈ {2, 10, 20} lead to a better performance of the steganalyzer. Since we have to consider

the CSM scenarios due to both noise addition and mesh simplifications, we set τ = 10 as a

trade-off solution in the following experiments.

5.4.3 Comparison with other approaches

In the following, we compare the proposed feature selection algorithms for steganalysis,

RRFS-PCC and RRFS-MIC, with filter feature selection algorithms used in pattern recog-

nition, such as min-Redundancy and Max-Relevancy (mRMR) [Peng et al., 2005], Double

Input Symmetrical Relevance (DISR) [Meyer and Bontempi, 2006], Conditional Mutual In-

formation Maximization (CMIM) [Fleuret, 2004], Infinite Feature Selection (Inf-FS) [Roffo

et al., 2015] and Infinite Latent Feature Selection (ILFS) [Roffo et al., 2017], which have

shown very good generalization ability in a wide range of applications [Brown et al., 2012].

In addition, we also compare with a simplified version of our algorithm, Relevance based

Feature Selection (RFS), which selects the features with higher relevance to the class label,

measured by PCC, but without considering the robustness to the variation of cover source.

We repeat the steganalysis experiments, using FLD ensembles for 10 different splits of data

sets and then consider the median of the resulting errors as the final test results.

Figures 5.7, 5.8, 5.9 and 5.10 show the test results when using features selected by

the proposed RRFS-PCC and RRFS-MIC algorithms compared with the other six feature

selection algorithms. These results are obtained when considering the initial set of features as

WAL304 for steganalysis under the CSM assumption, by considering the distortions caused

by mesh simplification and uniform additive noise as in the previous section.

Figures 5.7 and 5.8 show the detection errors for the MLS and WHC algorithms, proposed



5.4. EXPERIMENTAL RESULTS 93

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.25

0.3

0.35

0.4

0.45

0.5

==2
==10
==20
==30
==40
==50

(a) Noise Level β = 1 · 10−5
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(b) Noise Level β = 3 · 10−5
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(c) Noise Level β = 5 · 10−5
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(d) Simplification Level ξ = 0.98
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(e) Simplification Level ξ = 0.9
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(f) Simplification Level ξ = 0.8

Figure 5.6: Median values of the detection errors for MLS [Chao et al., 2009] when the
steganalyzers are trained over the feature subsets selected by the RRFS-PCC with τ ∈
{2, 10, 20, 30, 40, 50} in the CSM scenarios over 10 different splits of the training/testing set.
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(a) Noise Level β = 1 · 10−5
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(h) Simplification Level ξ = 0.8

Figure 5.7: Median values of the detection errors when the information was hidden in 3D
objects by the MLS algorithm, proposed in [Chao et al., 2009], using the steganalyzers
trained over the feature subsets selected by different feature selection algorithms, where the
results are calculated over 10 different splits of the training/testing sets.
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Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.35

0.4

0.45

0.5

mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(c) Noise Level β = 3 · 10−5

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.35

0.4

0.45

0.5

mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(d) Noise Level β = 5 · 10−5

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5 mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(e) Simplification Level ξ = 0.98

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(f) Simplification Level ξ = 0.95
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(g) Simplification Level ξ = 0.9
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(h) Simplification Level ξ = 0.8

Figure 5.8: Median values of the detection errors when the information was hidden in 3D
objects by the WHC algorithm, proposed in [Wang et al., 2008], using the steganalyzers
trained over the feature subsets selected by different feature selection algorithms, where the
results are calculated over 10 different splits of the training/testing sets.
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(a) Noise Level β = 1 · 10−5
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Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(c) Noise Level β = 3 · 10−5

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(d) Noise Level β = 5 · 10−5

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(e) Simplification Level ξ = 0.98

Dimensionality of Selected Features N'
0 50 100 150 200 250 300

E
rr

or

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
mRMR
CMIM
DISR
Inf-FS
ILFS
RFS
RRFS-PCC
RRFS-MIC

(f) Simplification Level ξ = 0.95
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(g) Simplification Level ξ = 0.9
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(h) Simplification Level ξ = 0.8

Figure 5.9: Median values of the detection errors when the information was hidden in 3D
objects by the MRS algorithm, proposed in [Cho et al., 2007], using the steganalyzers trained
over the feature subsets selected by different feature selection algorithms, where the results
are calculated over 10 different splits of the training/testing sets.
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(a) Noise Level β = 1 · 10−5
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(h) Simplification Level ξ = 0.8

Figure 5.10: Median values of the detection errors when the information was hidden in 3D
objects by the SRW algorithm, proposed in [Yang et al., 2017b], using the steganalyzers
trained over the feature subsets selected by different feature selection algorithms, where the
results are calculated over 10 different splits of the training/testing sets.
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in [Chao et al., 2009] and [Wang et al., 2008], respectively, under the CSM paradigm. As

it can be observed from these figures, the RRFS-PCC and RRFS-MIC algorithms achieve

rather similar results, which indicates that the dependence between the 3D features and

the class label is relatively linear. The detection error of the steganalyzer using RRFS-

PCC or RRFS-MIC usually decreases first and then increases as the dimensionality of the

feature subset N ′ grows. This is because the earlier selected features have relatively strong

robustness and high relevance, but the later selected ones are not that robust to the variation

of the cover source. Meanwhile, when compared to the other feature selection algorithms,

the RRFS-PCC and RRFS-MIC show better performance in most of the cases because lower

minimum errors are achieved by using them during feature selection. The advantage of the

RRFS-PCC and RRFS-MIC algorithms over other feature selection algorithms are larger

when the CSM is due to lower levels of additive noise and mesh simplification. However,

the optimal dimensionality of the feature subset is not consistent in all CSM cases. When

addressing the CSM paradigm by assuming the same type of transformation, but of various

levels of intensity, the optimal values of the feature subsets’ dimensionality are rather close.

For example, in the steganalysis of MLS under the CSM paradigm due to additive noise, the

minimum errors are often obtained when the dimensionality of the selected feature subset

is between 50 and 80. Nevertheless, as shown in Figure 5.7, when the CSM is due to mesh

simplification, the optimal value of N ′ is usually around 100.

Figures 5.9 and 5.10 illustrate the steganalysis results when considering the watermarking

methods, MRS and SRW, proposed in [Cho et al., 2007] and [Yang et al., 2017b], respec-

tively, under the CSM paradigm. When considering the CSM due to additive noise, most

of the feature selection algorithms show similar performance. As the dimensionality of the

selected feature increases, the detection error decreases until it eventually becomes stable.

This happens because the steganalyzers are not seriously influenced by the CSM due to ad-

ditive noise when identifying stego-objects produced by MRS and SRW, which is validated

in Figures 5.4(c) and (d). The RRFS-PCC and RRFS-MIC algorithms show better per-

formance than the other algorithms under the CSM paradigm due to mesh simplification.

In Figures 5.9(e)-(h), the detection errors using RRFS-PCC and RRFS-MIC are relatively

constant, when the dimensionality of the feature subset N ′ is in the range between 80 and
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150. However, in Figures 5.10(e)-(h), the detection errors using RRFS-PCC and RRFS-MIC

achieve the minimum when the dimensionality of the selected feature subset is between 160

and 200.

According to the Figure 5.7, 5.8, 5.9 and 5.10, the better results achieved by the RRFS

algorithm when compared to the RFS indicates that considering the robustness of the fea-

tures to the variation of cover source is essential when addressing the generalization of the

steganalyzer under the CSM paradigm.

In the following we provide the Receiver Operating Characteristic (ROC) curves for the

steganalysis results in the CSM scenarios after applying the feature selection algorithms

or without considering Feature Selection (FS), in Figures 5.11, 5.12, 5.13 and 5.14. We

consider detecting the stego-objects produced by MLS and WHC in the CSM by considering

generating new cover-objects through additive noise with amplitude defined by β ∈ {1 ·

10−5, 3 · 10−5} and mesh simplification at the level of ξ ∈ {0.98, 0.9}. Since the steganalysis

results of MRS and SRW tend to be rather poor under the CSM due to mesh simplification,

we consider the CSM scenarios due to mesh simplification at the level of ξ ∈ {0.98, 0.9} when

detecting the stego-objects produced by MRS and SRW. When the steganalysis is carried out

without feature selection, the whole feature set, WAL304, is used to train the steganalyzers.

In this case we consider various feature selection algorithms, such as DISR, Inf-FS and ILFS,

which have shown relatively good performance. In terms of the dimensionality of the selected

feature subset, N ′, for all the feature selection algorithms, we set N ′ as 90, 130, 100 and 170,

when detecting the stego-objects produced by MLS, WHC, MRS and SRW, respectively.

The value of N ′ is decided according to the overall performance of the proposed feature

selection algorithms in all CSM scenarios shown in Figures 5.7, 5.8, 5.9 and 5.10.

When detecting the stego-objects produced by the information hiding algorithms, in each

case considered for the analysis under the CSM paradigm, the steganalysis results after using

different feature selection algorithms or without FS are calculated based on one identical split

of training/testing set. It can be observed from Figures 5.11, 5.12, 5.13 and 5.14 that the

proposed RRFS-PCC and RRFS-MIC algorithms show better performance than the other

feature selection algorithms in most of the case. Moreover, the proposed algorithms show

improvement in the 3D steganalysis results, in the context of CSM problem, when compared
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to using the whole feature set. However, the advantage of using feature selection over without

using it is not very clear in the results shown in Figures 5.12 (d) and 5.14 (d).
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Figure 5.11: ROC curves for the steganalysis results when the information is hidden in 3D
objects by the MLS under the CSM paradigm after applying the feature selection algorithms
or without the Feature Selection.

5.4.4 Analyzing the selection of various categories of 3D features

In the following, we analyze the contribution of various categories of features that are selected

by the proposed RRFS-PCC algorithm in the CSM scenarios of 3D steganalysis. Firstly,

we categorize the steganalytic features according to their characteristics, as being either
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(c) Simplification Level ξ = 0.98
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Figure 5.12: ROC curves for the steganalysis results when the information is hidden in 3D
objects by the WHC under the CSM paradigm after applying the feature selection algorithms
or without the Feature Selection.
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(b) Simplification Level ξ = 0.9

Figure 5.13: ROC curves for the steganalysis results when the information is hidden in 3D
objects by the MRS under the CSM paradigm after applying the feature selection algorithms
or without the Feature Selection.
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(b) Simplification Level ξ = 0.9

Figure 5.14: ROC curves for the steganalysis results when the information is hidden in 3D
objects by the SRW under the CSM paradigm after applying the feature selection algorithms
or without the Feature Selection.
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statistic or geometrical in nature. Inside the former group of feature we define the features,

according to the statistical moment they represent, as: mean, variance, skewness or kurtosis.

In the latter group, we categorize the features by considering what kind of local geometry

characteristic they reveal: LFS76 proposed in Chapter 3, and three subsets of WFS228

proposed in Chapter 4, which are Wavelet Feature Set from the Initial resolution mesh (WFS-

I), Wavelet Feature Set from the Lower resolution mesh (WFS-L) and Wavelet Feature Set

from the Higher resolution mesh (WFS-H). For each of these feature categories we calculate

the percentage of the features being selected by the RRFS-PCC from the given pool of

features when training the steganalyzers aiming to find the information hidden in 3D objects

by the algorithms, MLS [Chao et al., 2009], WHC [Wang et al., 2008], MRS [Cho et al., 2007],

and SRW [Yang et al., 2017b], under the CSM paradigm due to the additive noise and mesh

simplification. The final selection ratio of every feature category is calculated as the average

of 10 independent splits of the training/testing data.

Figures 5.15 and 5.16 depict the selection ratios of all feature categories when the di-

mensionality of the feature subset selected by RRFS-PCC algorithm varies from 10 to 300

with a step of 10, in the context of mitigating the CSM problem. As it can be observed from

Figure 5.15 when N ′ is small, that the first order moments (means) of features are much

more likely to be selected than their second order moments (variances), or other higher

order moments of the features, such as their skewness and kurtosis. Then, the differences

between the selection ratios of different feature categories declines as the N ′ increases. This

result indicates that the mean-originated features are the most robust statistical feature, fol-

lowed by the variance-originated ones, when considering the context of the CSM paradigm.

The higher-order moments of the 3D shape data are more dramatically changed than the

lower-order ones under the transformations considered for testing the CSM problem.

The selection ratios of the features of 4 geometrical categories are shown in Figure 5.16.

It can be observed from Figure 5.16 that the RRFS-PCC algorithm most likely would select

the WFS-H features when N ′ is ranged from 10 to 30, which implies that they have the

strongest robustness. This is because the WFS-H features are extracted from the higher

resolution mesh, where the influence of the transformation applied on the initial resolution

meshes is weakened. The WFS-L features that extracted from the lower resolution mesh are
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(a) MLS
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(b) WHC
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(c) MRS
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(d) SRW

Figure 5.15: The accumulated selection ratios of the features, as being discriminative be-
tween the stego-objects, created by using the embedding methods, MLS [Chao et al., 2009],
WHC [Wang et al., 2008], MRS [Cho et al., 2007] and SRW [Yang et al., 2017b] and their
corresponding cover-objects, by using RRFS-PCC, under the specific CSM scenarios. The
features correspond to the moments of the shape data they characterize, such as the mean,
variance, skewness, kurtosis.
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(b) WHC
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(c) MRS
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Figure 5.16: The accumulated selection ratios of the features, as being discriminative be-
tween the stego-objects, created by using the embedding methods, MLS [Chao et al., 2009],
WHC [Wang et al., 2008], MRS [Cho et al., 2007] and SRW [Yang et al., 2017b] and their
corresponding cover-objects, by using RRFS-PCC, under the specific CSM scenarios. The
features correspond to the subsets of WAL304, such as LFS76, WFS-I, WFS-L, and WFS-H.
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not selected until N ′ reaches 40. The lower resolution mesh consists of much less vertices

and edges, which makes the WFS-L features more sensitive to the distortions on the mesh

shape caused by the additive noise and simplification. The selection ratio of the LFS76

features increases fast when N ′ is 50 and 60, but then increases at a low speed. We believe

it is because only a small number of the features in LFS76 are of enough robustness to be

selected in the early selection stage. The selection ratio of the WFS-I features extracted

from the initial resolution mesh rockets up since N ′ reaches 70 and becomes the highest one

among the four when N ′ is between 100 and 200. It is because a larger population of the

WFS-I features are of a moderate level of robustness than the other three groups of features.

5.5 Conclusion

This chapter proposes a solution for the cover source mismatch problem in the context of

3D steganalysis. According to the CSM paradigm, we consider that the objects investigated

during the testing stage are significantly different from those used during the training. A

feature selection algorithm, called the robustness and relevance-based feature selection, is

proposed in this chapter. The proposed algorithm employs either the Pearson correlation

coefficient or the Mutual Information Criterion in order to define the relevance of each

feature to the class label. The robustness of the feature to the variations of the cover source

is evaluated at the same time, leading to the selection of a robust feature subset. In this

study we consider mesh simplification and additive noise for transforming the cover objects

when testing the steganalyzer under the CSM paradigm. During the experimental analysis

we consider four different information hiding methods, including a high capacity embedding

method and a very recent method which embeds watermarks that cannot be detected through

usual steganalytic methods. The proposed methodology is shown to choose a better feature

set, than those considered by other studies, when addressing the CSM problem. In future

research, it is necessary to improve the way of evaluating the features’ robustness, avoiding

the requirement of the pairwise relationship between the objects when calculating the Pearson

correlation coefficient, in order to make the proposed feature selection algorithm suitable in

a more universal CSM paradigm.



Chapter 6

Conclusion

This chapter summarizes the main contributions of this thesis, as well as its limitations and

possible directions for future research.

6.1 Contributions

The research work reported in this thesis, extends the set of features used for 3D stegalysis.

The new feature set, called LFS76, which is more discriminative and of lower dimensionality

than an existing feature set for 3D steganalysis. Then, we proposed the 3D wavelet-based

feature set, WFS228, in order to improve the steganalysis results for the 3D wavelet-based

information hiding algorithms. Furthermore, we proposed a feature selection algorithm,

considering both the features’ relevance and robustness, in order to mitigate the negative

effect of the cover source mismatch on the performance of the 3D steganalytic approaches.

In the following we briefly outline the contributions presented in each chapter.

In Chapter 3, we presented a new 76-dimensional localised feature set, called LFS76,

for 3D steganalysis. We reduced the dimensionality of the existing 3D steganalytic features,

YANG208, from 208 to 40, obtaining the YANG40 features. In addition to these features, we

proposed to consider the vertex normal, Gaussian curvature and curvature ratio as geometric

features for 3D steganalysis. Moreover, the geometric features such as the vertex position

and edge vectors represented in the spherical coordinate system are included in the LFS76

feature set. We tested the performance of the proposed LFS76 feature set by detecting
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the stego-objects generated by six information hiding algorithms when the steganalyzers

were trained using FLD ensemble or QDA classifiers. The experimental results show that

the LFS76 was more discriminative than YANG208. We also analyzed the efficiency of the

components of LFS76 using the measurement of the Pearson correlation coefficient between

the feature vector and the class label in order to have a deeper understanding of the features

used in 3D steganalysis.

In Chapter 4, we introduced the 228-dimensional 3D wavelet-based feature set, WFS228,

for 3D steganalysis. We use the 3D wavelet multiresolution analysis on mesh representations

of objects, producing a higher and a lower resolution mesh, respectively. A set of vectors

relate each of these meshes with their higher resolution mesh, respectively. The proposed

3D wavelet features are extracted from the vectors modeling the transitions between the

given mesh and its higher and lower resolution counterparts, respectively. Furthermore, we

provided the way of deriving the steganalytic feature vectors from the geometric features.

Consequently, we propose the WFS228 feature set which shows better performance than the

existing steganalytic feature sets for the steganalysis of two 3D wavelet-based embedding

algorithms. WFS228 also contributed to the improvement of the steganalysis for other

six information hiding algorithms when training the steganalyzer over the combination of

WFS228 and LFS76.

In Chapter 5, we presented the robust and relevance-based feature selection algorithm in

order to address the cover source mismatch problem in 3D steganalysis. During the feature

selection stage, we consider both the features’ robustness to the variation of the cover source

as well as the features’ relevance to the class label. We also analyzed the trade-off between the

features’ robustness and relevance during selection. The variation of the shapes is produced

by adding noise to the mesh and by mesh simplification. In addition, the proposed RRFS

algorithm shows better performance than other feature selection algorithms when considering

the CSM paradigm in 3D steganalysis. We have also studied the robustness and relevance

of groups of features, with each group defined by a specific geometric property.
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6.2 Limitations and future work

In this section, we discuss the limitations of the proposed methodology and provide some

ideas for future work.

One limitation lies in the way how we model statistically the feature vectors. In this

study, the steganalytic feature vectors are considered as the four statistical moments of the

logarithms of the differences between the geometric features of the original mesh and its

smoothed version. Nevertheless, the first four statistical moments do not contain the whole

information contained in the data and a better statistical representation may be used.

Despite the good results achieved in 3D steganalysis, further improvement is necessary.

It is shown in Chapter 4 that, although the proposed WFS228 feature set achieve better

performance than the existing feature sets when detecting the embedding changes produced

by the two 3D wavelet-based embedding algorithms, most of the detection errors for the two

3D wavelet-based embedding algorithms are still above 20%, which would require further

improvements. Given the promising results obtained by using the deep learning methods in

the image steganalysis, a 3D steganalytic approach based on the deep learning framework

may provide a better performance. Nevertheless, there are challenges when using the deep

learning for steganalysis. Deep learning would require a huge training set (of millions of

training examples) and significantly more computation power.

In Chapter 5, the features’ robustness to the variation of cover source is derived from the

Pearson correlation coefficient between the features from the original cover source and those

from the transformed cover source. The proposed approach requires a pairwise relationship

between the objects in the original cover source and their transformation versions in the

other cover source. However, if this kind of pairwise relationship does not exist between

two completely different cover sources, the proposed method of calculating the features’

robustness cannot be properly implemented. In order to improve over this limitation, a more

universal method of statistical comparison could be developed with the aim of measuring

the features’ robustness to the variation of the cover source.
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