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Abstract 

Air pollution and greenhouse gas emissions affect health, climate and agriculture. In sub-

Saharan Africa (SSA) air quality monitoring is underdeveloped which leads to uncertainty 

in the understanding of air pollution concentrations. However, studies that have been 

conducted in SSA show that ambient air pollution generally exceeds World Health 

Organization (WHO) guidelines. These studies show particularly high concentrations in 

urban areas such as Nairobi, Kenya. One of the key reasons is due to emissions from 

transport. Therefore, the main objective of this thesis is to quantify transport related 

emissions, set within the context of emissions from other sectors, using Nairobi, Kenya 

as a case study. Thus, this thesis has developed a methodology and framework at 

different scales (individual vehicle, city and national) to improve our understanding of 

transport-related emissions of air pollutants and greenhouse gas (GHG) to help guide 

policy making on future mitigation plans. 

Road transport emissions were investigated at multiple scales; at the finest scale, 

particulate matter (PM) emissions from the tailpipe were measured for a few vehicles 

using a novel multiplexed portable measurement system. At the urban scale, a model for 

fuel economy was constructed for a fleet from data collected in the field. Finally, at the 

national scale, available data gathered on fuel economy, vehicle activity and emissions 

were integrated to provide a country-level assessment of air pollution and GHG 

emissions from road transport, including evaluation of transport policies to reduce air 

pollution and GHGs.  
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1 Introduction 

 
Air pollutants ground level ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2), 

carbon monoxide (CO), particulate matter (PM), and lead (Pb) are designated as criteria 

pollutants as they are harmful to human health and environment (Suh et al., 2000; WHO, 

2006). In sub-Saharan Africa (SSA), exposure to particulate matter (PM) in ambient air is 

responsible for over 330 000 premature deaths annually (GBD, 2015; Forouzanfar et al., 

2016). The total cost of these deaths is estimated to be ~$215 billion (Roy, 2016). 

Greenhouse gas (GHG) emissions, CO2, methane (CH4) and ozone (O3) and air 

pollutants such as black carbon (BC) also influence both global and regional climate 

(UNEP, 2011; Shindell, 2012; Klimont et al., 2017). For Africa as a whole, the potential 

benefit by 2030 of implementing BC mitigation measures across all sectors has been 

estimated at 250 000 deaths avoided annually (UNEP, 2011; Shindell et al., 2012).  

The main cause of outdoor air pollution in SSA is emissions from combustion of fossil 

fuels used in industry, power generation, transport and domestic sectors (Schwela, 

2012). Furthermore, emissions from burning of biomass fuel, waste open-burning and re-

suspended dust from unpaved roads contribute significantly to air pollution in SSA 

(Liousse et al., 2014; Lacey and Henze, 2015; Amegah and Agyei-Mensah, 2016; Marais 

and Wiedinmyer, 2016). 

Few countries in SSA have the capacity and resources to establish and maintain long 

term ambient air quality monitoring (Odhiambo et al., 2010; Schwela, 2012; Petkova et 

al., 2013; Gaita et al., 2014; Amegah and Agyei-Mensah, 2016; WHO, 2016), making 

SSA one of the least studied regions in terms of air quality (Doumbia et al., 2012; 

Lourens, 2012). In addition there are limited epidemiological studies on impact of air 

pollution from Africa (Amegah and Agyei-Mensah, 2016). This leads to uncertainty in the 

understanding of air pollution concentrations in SSA.  
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However where studies have been conducted in SSA they have shown ambient air 

quality exceeds WHO guidelines for ambient PM (Petkova et al., 2013). These studies 

conducted show particularly high pollution concentrations in urban areas such as 

Nairobi, Kenya. The evidence demonstrates that urban air pollution levels in SSA cities 

often exceed World Health Organization (WHO) annual guidelines of 10 µg/m3 for 

particles of diameter less than 2.5 microns (PM2.5), and 20 µg/m3 for particles of diameter 

less than 10 microns (PM10). A summary of these measured values for SSA cities are 

shown in Figure 1.1 and the ambient air quality standards are shown in Table 1.1. 

 

Figure 1-1: Measured PM10 and PM2.5 for African cities, red line is the PM2.5 annual mean 

WHO guideline for ambient air quality, (10µg/m3). Source (WHO, 2015, 2016). 
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The ambient air quality monitoring studies summarised in Figure 1 come from a single 

station per city for periodic studies with the exception of those conducted in South Africa 

where a network of continuous monitoring sites exist (WHO, 2016). Therefore, most of 

SSA ambient air monitoring comprises short term measurements; this limits our 

understanding of the seasonal variation in pollution concentrations and only provides low 

density data that is inadequate for comprehensively evaluating air pollution models 

(Petkova et al., 2013). The limited long-term systematic monitoring of ambient air quality 

in SSA results in poor support for policy formulation for air quality management which 

could aid in the reduction of air pollution levels and associated impacts (Schwela, 2012). 

The number of deaths from PM air pollution in Africa has grown as the size of the urban 

population increases (Roy, 2016). This burden of air pollution will grow in the next 15 

years as African cities are projected to account for up to 85% of the population (Kumar 

and Barrett, 2008; Ncube, 2012; UN-DESA, 2014). The majority of the urban poor in 

SSA dwell in informal settlements with poor living and environmental conditions, further 

worsened by air pollution which previous studies have shown to be higher in lower socio-

economic status communities (Dionisio et al., 2010; Volavka-Close and Sclar, 2010; 

Smitk and Akbar, 2012; Clark et al., 2017). 

Urban air pollution in SSA is on the rise, one of the key reasons is due to transport 

emissions (Doumbia et al., 2012; Schwela, 2012; Petkova et al., 2013; Liousse et al., 

2014; Marais and Wiedinmyer, 2016). The growth of SSA cities attributable to population 

growth and inward migration from rural to urban areas is increasing the demand for 

transport (Pirie, 2013). SSA cities are beset with urban sprawl that cause stress to an 

outdated and overburdened transport system that is under strain of congestion (Olvera et 

al., 2013). Public transportation, shown to ease congestion and pollution in cities, is in a 

poor state in SSA because of inadequate investment, poor planning and deregulation 

(Kumar and Barrett, 2008; Assamoi and Liousse, 2010; Kinney et al., 2011; Petkova et 

al., 2013; Marais and Wiedinmyer, 2016; Behrens et al., 2017). Public transport in SSA is 



 

5 
 

mostly informal, made up of minibuses, vans, three-wheelers and motorcycles (Cervero 

and Golub, 2007; Assamoi and Liousse, 2010). Vehicle ownership in SSA is low 

compared to developed countries where motorization may have reached saturation 

levels (Dargay and Gately, 1999; Dargay et al., 2007). However, vehicle ownership is 

increasing in SSA as those with disposable income import second-hand private cars and 

the use of motorcycles for public transport proliferates (Kumar and Barrett, 2008; 

Assamoi and Liousse, 2010; Marais and Wiedinmyer, 2016) 

The increase in vehicle emissions because of rapid motorization in SSA, is exacerbated 

by an old vehicle fleet, high proportion of second-hand vehicle imports, poor 

maintenance, lack of regulation and/or implementation of vehicle and fuel standards, 

poor fuel quality and/or adulterated fuel, and poorly maintained and/or unpaved roads 

(Assamoi and Liousse, 2010; Kinney et al., 2011; Petkova et al., 2013; Liousse et al., 

2014; Marais and Wiedinmyer, 2016). Understanding the contribution each emission 

sector (including transport) makes to the pollution load is an important step towards 

developing urban air quality management plans. Unfortunately, the  lack of data in SSA 

has made it extremely difficult to quantify the contribution of the transport sector to air 

pollution (Schwela, 2012; Petkova et al., 2013). Kenya is one such country in SSA facing 

challenges of urban air pollution due to a rapidly growing vehicle fleet whose emission 

potential is largely unknown. 

A review of published studies to ascertain the state of Kenya’s air quality is summarised 

in Figure 1.2; sample averaging time of the measurements of PM2.5, PM10 and BC are 

grouped by periods of less than 24 hours, 24 hours and annually. The air pollution 

measurements in Kenya highlight 4 key findings: the measurement studies carried out in 

Nairobi are predominantly short term studies with the exception of one annual study, PM 

concentrations regularly exceed WHO air quality guidelines (WHO, 2006), studies also 

highlight the concentrations are particularly high at roadsides and near roadways and 

mostly attributable to vehicle emissions (Gitari, 2000; Gatari et al., 2005, 2013; van Vliet 



 

6 
 

and Kinney, 2007; Odhiambo et al., 2010; Kinney et al., 2011; Gaita et al., 2014; Shilenje 

et al., 2016).  

 

Figure 1-2: A summary of literature reported PM2.5, PM10 and BC for Kenya for studies 

from 2000 to 2017. The red line is WHO guideline for PM2.5 and PM10 annual and 24 hour 

limits in ambient air. The green bar represents the lower and upper range of PM2.5, PM10 

and BC concentrations in µg/m3. 

The highest PM values were measured at a roadside and registered a value of 239±126 

µg/m3  for PM10 
 as an 8 hour average (Odhiambo et al., 2010). Similar results were 

found for PM2.5  having a 22% higher 11 hour average concentration than sites located in 

the  central business district (CBD) (Kinney et al., 2011); the BC in PM2.5 samples from 

roadside measurements was over 32 µg/m3. Such concentration levels are in the range 

of values  often found in megacities (with populations in excess of 10 million) 
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emphasising the high pollution levels in Nairobi whose population is only between 3 to 4 

million (Gatari et al., 2013). Only one study (see Figure 2) found PM values to be less 

than the recommended WHO guidelines (Shilenje et al., 2016). A long term study 

conducted for 33 months at two sites: an urban background site and a residential site, 

apportioned 39% of PM2.5  sources as being traffic related  (Gaita et al., 2014). Based on 

the limited number of source apportionment studies, a tentative conclusion can be drawn 

that transport is a major source of PM2.5 in Kenya (Gaita et al., 2014). Therefore this 

thesis using Kenya as a case study will focus on quantifying transport emissions by 

developing new methodologies and insights that can be used to improve our 

understanding of transport related pollution and to guide policy making in future emission 

mitigation plans. 

The framework developed for air quality management quantifies emissions using tools; 

emission inventories, dispersion models and exposure-effect relation models, to assess 

the impact of air pollutant concentrations and implement policy to reduce emissions 

(Schwela, 2012). In the framework, in order to mitigate air pollution impact on human 

health and environment, policies in the form of control measures legislation: air quality, 

emission standards are implemented (Schwela, 2012). In the transport sector these 

policies may include implementing better vehicle and fuel standards, increasing 

renewable energy use, investment in public transport to reduce number of vehicles 

(Bakker et al., 2017). To assess the efficacy of implemented or proposed policy, 

scenarios are created against a reference to project plausible future considering 

observable present day conditions(Carter et al., 2001). In this thesis, to understand the 

vehicle fleet and associated emissions in SSA, a review comparing the current 

international standards to SSA; ambient air quality standards, vehicle emission and fuel 

standards is presented. 
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1.1 Ambient air quality regulation and standards 

World Health Organization (WHO) provides a set of guidelines for criteria pollutants for 

ambient air: PM, O3, carbon monoxide (CO), sulphur dioxide (SO2), nitrogen dioxide 

(NO2) and lead (Pb) (WHO, 2006). A few SSA countries have adopted standards and 

regulations for these species in their outdoor air quality legislation (Lourens, 2012; 

Schwela, 2012; Shilenje et al., 2016; Akinola et al., 2017). Table 1.1, shows ambient air 

quality standards for South Africa (Department of Environmental Affairs, 2009, 2012) , 

Kenya (NEMA, 2014) and  WHO guidelines (WHO, 2006). 

Table 1-1: Ambient air quality standards for Kenya, South Africa and WHO ambient air 

quality guidelines (µg/m3) 

Pollutant 

Time 

Average 

Kenya 

South 

Africa WHO Industrial 

Residential, 

rural & other 

Controlled 

Areas 

SPM Annual 360 140 70   

PM10 

Annual 70 50 50 40 20 

24 hours 150 100 75 75 50 

PM2.5 

Annual 35   25 10 

24 hours 75   65 25 

NO2 

Annual 150   40 40 

24 hours 100   200 (1 hr) 200 (1 hr) 

Pb Annual 1 0.75 0.5 0.5 0.5 

SO2 Annual 80 60 15 50 20 (24 hr) 

 

Outdoor air quality standards in Kenya have higher limits compared to WHO and South 

Africa. They are grouped into three areas: industrial, residential and rural and controlled 

areas with the strictest standards been applied to the controlled areas followed by 
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residential areas.  Controlled areas are hospitals, national parks, reserves, sanctuaries 

and central business districts (CBD). For industries in designated residential areas, the 

stricter residential standards will apply, but for residential premises in designated 

industrial areas, the residential standards do not apply. However, the responsible 

authority can designate any area as controlled.  

1.2 Vehicle emission and fuel standards 

Road transport sector (passenger cars, light commercial, buses, heavy duty vehicles, 

motorcycles and three-wheelers) emissions due to fossil fuels burned (diesel and petrol) 

include sulphur dioxide (SO2), nitrogen oxides (NOX), carbon dioxide (CO2), carbon 

dioxide (CO), methane (CH4), non-methane volatile organic compound (NMVOC), PM, 

BC, organic carbon (OC) and ammonia (NH3). In addition to health effects of PM (GBD, 

2015; Forouzanfar et al., 2016), primary pollutants, NOX and NMVOC react in the 

atmosphere to form O3, a secondary pollutant affecting human health and vegetation and 

crop yield (Van Dingenen et al., 2009; Lim et al., 2012). BC and CH4 from road transport 

and O3, are projected to have a significant impact on climate change in the next 20-40 

years (UNEP, 2011).  Therefore, mitigation measures combining CO2, BC and CH4 

reduction will greatly improve the chances of keeping the earth’s temperature to below 2 

°C (Shindell et al., 2011; UNEP, 2011). A substantial part of PM is made of BC and OC 

(UNEP, 2011) and in urban areas in SSA, traffic can responsible for up to 88% of BC 

(Doumbia et al., 2012). Table 2 shows the type of pollutants from road transport. 
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Table 1-2:  Type of vehicle pollutants (Faiz et al., 1996; Ntziachristos et al., 2013). 

Class of pollutants Name of Pollutants 

Ozone (O3) precursors CO, NOX, NMVOC, CH4 

Greenhouse gases CO2, CH4, nitrous dioxide (N2O) 

Short Lived Climate Pollutants (SLCP) Black carbon (BC), CH4 

Acidifying substances NH3, SO2, NO2 

Particulate matter PM10,  PM2.5 

Carcinogenic species Polycyclic aromatic hydrocarbons (PAHs) 

Benzene (C6H6) 

Toxic substances dioxins and furans 

Heavy metal lead, arsenic, cadmium, copper, chromium, 

mercury, nickel, selenium and zinc 

 

Vehicle standards cannot be decoupled from fuel standards (Walsh, 2014), as certain 

vehicle technologies require a specific fuel quality standard. This is exemplified in Figure 

1.3, where fuel quality (shown here as diesel sulphur content) is matched to the 

European vehicle emission standard (Euro1 to Euro 6) and the vehicle emission 

reduction technology. 

Stringent vehicle emission standards are considered an effective instrument to achieve 

reductions in emissions in two ways: i) the automotive industry develops new 

technologies to meet the standards ii) refineries improve fuel standards to meet the 

automotive sector demand. Vehicles in developed countries have advanced vehicle 

technology and high fuel quality. The turnover of the  vehicle fleet in developed countries 

is high with many of the obsolete vehicles being exported to developing countries; 

accordingly, the health effects associated vehicle emissions have shifted to developing 

countries (Chambliss et al., 2013; Klimont et al., 2017).  
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Figure 1-3: Fuel quality for diesel light duty vehicles (LDV) and heavy duty (HDV), 

vehicle emission reduction technology and PM emissions adapted from (Chambliss et 

al., 2013). DOC: Diesel oxidation catalyst, ECU: Engine Control Unit, EGR: Exhaust Gas 

Recirculation, TWC: Two-way catalytic converter, DPF: Diesel Particulate Filter, LNT: 

Lean NOX traps, SCR: Selective Catalytic Reduction. 

Low sulphur content ensures vehicles with emission control devices operate optimally 

reducing PM emissions in addition to reducing SO2 emissions. Emission reduction 
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technologies, combined with ultra-low sulphur diesel or petrol can reduce PM emissions 

by up to 99% (Chambliss et al., 2013) (see Figure 1.3). In developed countries over 25 

years, sulphur in fuel dropped from 2000 ppm to 10 ppm sulphur in diesel, at the same 

time emission reduction technologies such as diesel oxidation catalyst (DOC), diesel 

particulate filters (DPF), exhaust gas recirculation (EGR), selective catalytic reduction 

(SCR) and lean NOX traps to reduce the air pollutants (CO, NOX, PM), GHG (CO2) and 

BC were installed in vehicles. DPF and gasoline particulate filters (GPF) introduced post 

2000, together with SCR reduced 75% of fine PM (Mamakos et al., 2014). 

In SSA, some countries have low sulphur limits for diesel fuel quality, represented in 

green in Figure 1.4. The trading region of East Africa Community (EAC) and Southern 

Africa Developing Cooperation (SADC) each has between 50 and 500 ppm sulphur limits 

for diesel fuel. The East African region harmonised their fuel quality, giving a sulphur limit 

for petrol of 150 ppm, and for diesel of 50 ppm (KEBS, 2007, 2010, EAC, 2011a, 2011b). 

This was implemented in 2016, and resulted in a 10-fold improvement on previous fuel 

quality standards. 

By contrast to fuel quality regulations, there are only very few vehicle emission regulation 

and limits in SSA. A few countries rely on limiting the age of the vehicle (year of 

manufacture) on vehicle  importation (UNEP-PCFV, 2014; Lacey et al., 2017). In addition 

to the penetration of low sulphur diesel, Figure 4 also shows vehicle standards for light 

duty vehicles for various African countries. 

The lack of domestic automotive manufacturing capacity is linked to the large scale 

import of second-hand vehicles in SSA. For example, only South Africa has a significant 

automotive sector in SSA (Holmes, 2013; IEA, 2017). As shown in Figure 4, South Africa 

is also one of the SSA countries with strict vehicle regulations as they have mandatory 

standards for new vehicles. South Africa introduced emission specifications for all new 

vehicle models in 2005-2006, and as of 2008, all new vehicles sold need to comply with 
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the modified Euro 2 emissions specifications (SAPIA, 2008). In East Africa, almost all 

vehicles are imported second-hand from Japan through the gulf states (Kumar and 

Barrett, 2008; ERC, 2015b). The minibuses and buses (matatus in Kenya) are imported 

as light to medium truck chassis, with the body of the vehicle being locally constructed 

and mounted (Kumar and Barrett, 2008).  
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Figure 1-4: Map of Africa with fuel and vehicle standards adapted from (UNEP, 2015) 

However, in SSA, there is a lag and thus a mismatch between available fuels, (i.e. 

unleaded and with low sulphur content) and vehicle standards. In Figure 1.4, East Africa 

has fuel standards to meet Euro 4/IV vehicle standards but  there exists minimal vehicle 

standards (pre-Euro standards), for Kenya there is at least an age limit cap of 8 years on 

vehicle imports (ERC, 2015b), which means imported vehicles should be at least Euro 

IV/4 equivalent . South Africa is set to introduce Euro 5, however the date is not yet set 

(Venter, 2008; Droppa, 2012; Anderson, 2013). Nigeria has Euro II mandatory vehicle 

standards, a regulation introduced in implemented in 1996, and they are looking to 

introduce Euro 3 standards in January, 2015 (Loveday, 2011), however the fuel 

standards do not match this standard. Other SSA countries in general have import 

restrictions for used vehicles based on age, technology and mileage of the vehicle, but 

these are few as the majority of SSA countries do not have mandatory vehicle standards 

and even less have vehicle emission limits for vehicles (Schwela, 2012; UNEP-PCFV, 

2014). 

Rapid increase in SSA countries of unregulated import and use of motorcycles (called 

bodaboda in East Africa) and 3-wheelers (called tuk-tuk in East Africa) for public 

transport is affecting health in two ways, increased motorcycles related accidents  

(WHO, 2013) and heavy pollution (Assamoi and Liousse, 2010). Motorcycles are major 

sources of particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO) and other 

hazardous emissions resulting from the release of burned and unburned lubrication oils 

(USAID, 2000). In a previous study in Egypt it was shown PM emissions of a single two-

stroke motorcycle were equivalent to one diesel-powered bus or truck; the HC emissions 

were equivalent to 10 petrol vehicles. By contrast, four-stroke motorcycles (which are 

more common in developed countries), emit only slightly more pollutants than small 

petrol vehicles (USAID, 2000). 
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Fuel economy standards decrease emissions by reducing fuel consumption per vehicle 

mileage (Plotkin, 2016) i.e. the volume of fuel consumed per km is reduced. Most of SSA 

countries do not have fuel economy standards, apart from South Africa’s carbon tax on 

newly registered light duty passenger vehicles that are above 120 g CO2/km (5.2 l/100 

km) (IEA, 2017). However, the benefits of this carbon tax in South Africa are likely offset 

by the large percentage of a fleet that is old (Letshwiti et al., 2003; Merven et al., 2012), 

and whose fuel economy is poor. Kenya does not have fuel economy standards, a 

previous study on fuel economy standards for light duty vehicles showed a worsening 

fleet fuel economy for the new fleet even though the average age was only about 8 years 

old (ERC, 2015b). This was possibly due to the increasing number of sport utility 

vehicles (SUVs) imported from 2010 to 2011. However, this study had limitations as it 

was confined to newly registered light duty vehicles (2010 to 2012), and in the absence 

of Kenyan fleet fuel economy data, EU and USA fleet fuel economy values were used. 

Vehicle emission standards governing limits, inspection and maintenance (I/M)  for 

vehicles are extremely rare in SSA (Schwela, 2012). For Kenya, even though vehicle 

emission standards are specified in KS1515 (KEBS, 2014), (see Table 1.3), they are not 

enforced (Cameron et al., 2012; ERC, 2015b).  According to the Kenyan ambient air 

quality standards, priority pollutants from mobile sources (including vehicles) are HC, 

VOC, SOX, PM and CO (NEMA, 2014). Under KS1515, vehicle emission inspection 

should be undertaken for all commercial and public vehicles annually and for every 

private vehicle more than 5 years old biennially. The environment agency or motor 

vehicle inspection unit (MVIU) may order any vehicle with visible exhaust emissions to 

be inspected. On the other hand, Rwanda for example has implemented vehicle 

emission limits and enforced inspection since 2015 (Government of Rwanda, 2014). 

Commercial vehicles undergo inspection biannually and private cars annually. South 

Africa has implemented Euro 2 standards for new vehicle models since 2006 (Delphi, 

2017), however inspection limits and inspection of in-use vehicles is carried out at the 
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municipal level and therefore under municipal air quality by-laws. For example, the City 

of Cape Town has limits for diesel vehicles,  56 Hartridge smoke units (HSU) or 1.61m -1 

for turbocharged engine (City of Capetown, 2010), this is lower than Kenya’s limit for a 

similar engine (see Table 3). 

Table 1-3: Vehicle emission exhaust limits for Kenya from KS1515 standard  

Petrol vehicles 

Year of 

manufacture 

CO standard 

(%) 

HC 

standard 

(ppm) 

 lambda 

(λ) 
Type of test 

  1986-1992 3.5 1200   Idle 

1992-1994 3.5 1200   Idle 

>1995 3.5 1200   Idle 

>1992 0.5 
  

1±0.03 
2 speed idle 

(>2500rpm) 

Diesel vehicles 

Year of 

manufacture Turbocharged 

Naturally 

aspirant Test of test 

< 1979     Visual 

> 1980 3.0 m -1 2.5 m -1 free acceleration 

National emission inventories are compiled using emission models which require 

emission activity of the different sectors and emission factors for the different pollutants 

(Kousoulidou et al., 2013). For the road transport sector, vehicle emission factors are 

determined through tailpipe emissions, these are influenced by a variety of factors which 

include fuel quality and technology (shown in Figure 1.3), vehicle type, fuel type, size of 

engine, road grade, transport infrastructure, weather conditions and traffic conditions 

(Zhang, 2006; Chambliss et al., 2013; Franco et al., 2013). Emission factors may be 
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measured in the laboratory on a chassis dynamometer over a driving cycle (Frey et al., 

2003; Zhang, 2006; Franco et al., 2013; Kousoulidou et al., 2013), by remote sensing, 

where pollutants in a real-world vehicles emission plume is determined through 

spectroscopy (Jiménez-Palacios, 1999; Carslaw and Rhys-Tyler, 2013; Carslaw et al., 

2013) and by on-road emissions testing using portable emission monitoring systems 

(PEMs) (Frey et al., 2003; Weiss et al., 2011, 2012; Huang et al., 2013), to measure for 

exhaust gases and particulates. Of these different methods, the dynamometer tests do 

not reflect real-world conditions (Zhang, 2006; Weiss et al., 2011, 2012; Franco et al., 

2014; Thompson et al., 2014; Kuranc, 2015; Degraeuwe and Weiss, 2016).  

Remote sensing is a rapid way to measure exhaust emissions for large number of 

vehicles, and can be especially useful in detecting a small percentage of heavy polluters 

that are problematic contributors to pollution in developed countries (Jiménez-Palacios, 

1999),  It’s applicability in SSA is as yet untried. Ultimately, very few tailpipe emission 

measurements are carried out in SSA because of a lack of resources and technical 

capability, yet the higher pollutant emissions likely to be associated with typical SSA 

vehicle fleets increases the need for tail-pipe emissions measurement to be carried out 

under real-world conditions in SSA. 

1.3 Problem statement 

Lack of emission data has made it extremely difficult to quantify the contribution of the 

road transport sector to air pollution. Transport emission inventories compile data on 

vehicle fleet and associated emission factors to estimate the air pollution contribution. 

Emission inventories have been identified as one of the tools required for air quality 

management as they permit implementation and enforcement of air quality measures 

which are lacking in SSA (Schwela, 2012).  

Transport emission estimates have large uncertainties in SSA as they lack adequate 

data essential to build accurate inventories (Assamoi and Liousse, 2010; Liousse et al., 
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2014; Marais and Wiedinmyer, 2016). These data  need to be disaggregated to different 

vehicle types includes; total number of vehicles, activity data such as fuel consumption 

and vehicle mileage, fuel share and region specific emission factors. Poor record 

keeping reduces the accuracy of the number of in-use vehicles for particular vehicle 

types such as motorcycles (Assamoi and Liousse, 2010; Kumar, 2011), minibuses 

(Graeff, 2008). Traffic and travel surveys which provide activity data and vehicle 

characteristics are also lacking in SSA (Cameron et al., 2012; Salon and Aligula, 2012; 

Venter and Mohammed, 2013; Liousse et al., 2014). There are also limited field 

measurements to determine emission factors for on-road vehicles (Lents et al., 2004; 

Goyns, 2008; Liousse et al., 2014). Furthermore, country level data when available, is 

based on limited studies which are extrapolated to the rest of the country or in some 

cases the continent (Marais and Wiedinmyer, 2016). In addition, further uncertainties are 

introduced due lack of data on the location of paved and unpaved roads to estimate road 

dust emissions from the transport sector (Marais and Wiedinmyer, 2016). 

The International Vehicle Emission (IVE) model funded by US Environmental Protection 

Agency (EPA) developed for estimating emissions in developing countries was 

previously used to estimate tail-pipe vehicle emissions in Nairobi in 2002 (UC Riverside, 

2002; Lents et al., 2004, 2005). This 2002 study consisted of a video survey and parking 

lot survey (UC Riverside, 2002). The video survey was conducted to determine vehicle 

count per day on different roads, where it was determined that passenger vehicles 

accounted for over 80% of the vehicle fleet. Parking lot surveys were also conducted to 

gather information on parked vehicles including licence plate, odometer readings, 

transmission type and vehicle condition. On-road estimation of emission factors using 

PEMs equipment was carried out in Nairobi for passenger vehicles (Lents et al., 2005), 

based on the recommendations of an initial estimate of vehicle emission rates for Nairobi 

and other cities (Lents et al., 2004). However, there were limitations with this approach. 

Firstly, most of the vehicle information obtained through the parking lot survey was 
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subjective, for example, a judgement call was made on the condition of the vehicle, fuel 

type and the technology of the vehicle. Secondly, other critical information was not 

available, for example, odometer readings were not available for vehicles models 

manufactured post 2001 (these odometers are digital and only display if the vehicle is 

switched on). Thirdly, license plates were recorded and used as proxy for age of the 

vehicle, this is unlikely to be accurate for most of SSA where vehicles are second-hand 

when sold or imported already in a reconditioned state. Furthermore, in Kenya, the 

licence plate number is allocated on registration possibly on importation, so newer plates 

are not always indicative of new vehicles. Finally, although the IVE model is specifically 

designed for developing countries, it is still quite complex and requires high density input 

data (Nagpure and Gurjar, 2012), data that countries in SSA are lacking.  

A limited number of SSA countries have detailed national transport inventories. A 

previous study in Kumasi, Ghana, showed an increase of GHGs, PM and NMVOC 

between 2000 and 2005 from vehicles, using the COPERT III model (Agyemang-Bonsu 

et al., 2010) . COPERT is an emission model developed for the European Environment 

Agency (EEA) and used widely in Europe and non-European countries to quantify road 

transport emissions (Kholod et al., 2016). In South Africa, a detailed energy transport 

inventory showed energy demand and CO2 emissions doubling in a business as usual 

scenario by 2050 (Merven et al., 2012). Both of these models require high emission and 

activity data which other SSA countries may find difficult to access. It is also valuable to 

evaluate the accuracy of these models compared to actual emission measurement (Guo 

et al., 2007). 

The transport sector in Kenya at present lacks a detailed national transport emission 

inventory for all pollutants and thus cannot evaluate the impact of different policies to 

reduce emissions. This thesis’s contribution and novelty is the filling of these transport 

emission data gaps with an approach that is less demanding with respect to data 

requirements; developing novel methodologies to collect the data, creating predictive 
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models using the data collected, building a framework in which this data can be used for 

an assessment of how transport emissions can be reduced and demonstrates its 

effectiveness in transference to other SSA countries facing similar challenges.  

1.4 Research objectives 

The work of this thesis aims to overcome these data limitations with a view to improving 

the quantification of the contribution of transport emissions to air pollution in SSA. The 

thesis will focus on Kenya, developing and testing methodology, collecting and analysing 

data describing vehicle fleet at different scales. At the macro-scale level, national level 

emissions are estimated using aggregated activity data for vehicle fleets such as vehicle 

kilometres travelled (VKT) and emission factors. At the meso-scale, urban emissions are 

estimated using aggregated activity data but with a higher resolution than macro-scale. 

Finally , at the micro-scale individual tail-pipe emissions are estimated with high temporal 

and spatial resolution (Zhang, 2006). The following main objectives are defined: 

 Demonstrate a simple protocol for an inexpensive portable emission monitoring 

system (PEMS) measurement system that can be rapidly deployed to determine 

tail-pipe emissions at the micro-scale in a real-world challenging environment. 

 Develop capabilities for measuring, estimating and modelling for in-use urban 

fleet vehicle activity and fuel economy for Nairobi. 

 Develop a national emissions inventory for Kenya to estimate the transport 

contribution to total emissions in the context of emissions from other sectors. 

 Combine the output from the first three objectives to estimate the road transport 

sector contribution to total emissions and evaluate the impact of different policies 

to reduce emissions at the national level. 

 Develop a framework in which the emissions data from the four objectives can be 

used for an assessment of how road transport air pollution and GHGs can be 

reduced in Kenya. 
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1.5 Organization of the thesis 

This dissertation consists of five chapters with the main body comprised of 3 journal 

papers in Chapter 2, 3, and 4. One of the manuscripts has been submitted (chapter 3) 

and the other two are ready to be submitted. There is a combined reference list at the 

end and for each chapter of the dissertation, there is separate supporting information. 

This Chapter 1 describes the background of the thesis. Here the status and potential 

consequences of ambient air quality in SSA, with a focus on Nairobi, are described. Also 

described are the policy tools that try to improve air quality across  SSA; specifically the 

standards and regulations governing ambient air quality and the vehicle emissions and 

fuel standards that influence pollutant emissions from the transport sector. The rationale 

for the research conducted in this thesis is then laid out as a problem statement, the 

research objectives are stated followed by this description of the organization of the 

thesis. 

Chapter 2 presents a detailed description of the instrumentation, experimental design 

and statistical analysis for the estimation of real-world measurement of tail-pipe 

emissions of vehicles in Nairobi, Kenya. The paper in chapter 2 is titled, “Evaluating real-

world vehicle particulate matter emissions using a novel multiplexed portable instrument 

in a challenging African urban environment”.  

Chapter 3 is the development of a methodology to collect vehicle activity (mileage, fuel 

consumption) and vehicle characteristics (age, weight , engine size) that tests the 

applicability in a data-poor environment, the outputs of these data collected is used to 

estimate fuel economy and vehicle activity data. The paper in chapter 3 is titled, 

“Estimating vehicle fuel economy in Africa: A case study based on an urban transport 

survey”. 
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Chapter 4 is the compilation of a national emissions inventory and evaluation of the 

contribution of road transport emissions to Kenya’s air pollution and GHG emissions. The 

paper in chapter 4 is titled, “Assessment of the impact of road transport policies on air 

pollution and greenhouse gas emissions in Kenya”. 

Chapter 5 is a synthesis of the thesis showing how the research of each chapter comes 

together to form a coherent body of knowledge. 

This chapter gives an overview including the background on the thesis, summarises the 

justification and rationale for undertaking the thesis and then states the objectives and 

research questions and finally lists the organization of the thesis. 
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Chapter 2 

The work outlined in this chapter has been adapted from a research paper prepared for 

publication. Dr Karl Ropkins and Dr Martin Weiss contributed to the formulation of the 

methodology. I undertook all data analysis, but Dr Chris Malley helped to write the 

algorithm for calculations of the vehicle emissions variables. Dr Martin Weiss, Dr Chris 

Malley, Dr Karl Ropkins and my supervisors, Dr Lisa Emberson, Dr Harry Vallack and Dr 

Dietrich Schwela following an initial draft, made valuable contribution to the 

methodology, presentation of results and discussions through consultations and 

manuscript editing. 
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Abstract 

In African cities road transport is a major contributor to air pollution. Although part of the 

fine particulate matter (PM2.5) concentrations in urban areas can be attributed to diesel 

vehicles, there is still a lack of measurements that assess PM on-road emissions and 

operating pattern of vehicles in these environments. This paper details a simplified 

methodology for the evaluation of a real-world tail-pipe PM emissions measurement 

system in an urban environment. The focus is on light-duty diesel passenger vehicles 

which were equipped with a prototype multiplexed Portable Emissions Measurement 

system (parSYNC®-PEMS) comprising of three sensors (ionization, opacity and 

scattering) in combination with standard analytical equipment. Tests were performed on 

a 52 km test route around Nairobi (Kenya) covering urban, highway and peri-urban 

roads.  We find that for 75% of the time, parSYNC®-PEMS had a higher voltage for all 

sensors during acceleration as compared with idling and deceleration. At 91-94% of the 

time, the tested vehicles were operated in a vehicle specific power (VSP) of between -

15.2 and 17.7 kW ton-1, which is typical for heavily congested traffic at high altitude with 

steep roads. The results show a clear relationship between sensor voltage and VSP.  
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Turbocharging was found to dramatically increase the sensor output voltage. Although 

preliminary, it may be possible to implement this method to monitor emission trends 

using multiple sensor voltage which is indicative of PM emissions. This will aid to 

quantify real-world emissions of various fleets in a challenging African urban 

environment. However, additional evaluation of this instrument is necessary since the 

protocol did not include calibration with a reference instrument or collection of data from 

more vehicles for statistically sufficient data. 

Keywords 

Transport, Africa, Diesel, Particulate Matter (PM), Real-world, In-use, Air Pollution, 

PEMS, VSP
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2.1 Introduction  

Particulate matter (PM) is a major cause of ill health and premature deaths around the 

world; it is also a contributor to regional and global climate change (Anenberg et al., 

2012). In Africa, outdoor air pollution is estimated to cause over 330,500 premature 

deaths each year (Forouzanfar et al., 2016). In urban areas, road traffic contributes 

substantially to PM in the particle size range of less than 2.5 µm (PM2.5) (Pant and 

Harrison, 2013); yet only a few studies apportion the contribution of  emissions from 

vehicles to PM2.5  air pollution in Africa.  

Where such studies have been conducted they have found contributions of 42% by 

diesel vehicles  in Cape Town and 39% by overall traffic in Nairobi (Wicking-Baird et al., 

1997; Gaita et al., 2014). Developing accurate vehicle emissions inventories plays, 

therefore, an important role for air quality management (Zhang, 2006; Goyns, 2008; 

Schwela, 2012; Kousoulidou et al., 2013). A key requirement of such inventories are 

vehicle emission factors (EF); these tend to vary with, e.g., fuel and vehicle type, engine 

size, weight, vehicle age and technology (specifically after-treatment technology), driving 

pattern, road gradient, and  general maintenance (Zhang, 2006; Chambliss et al., 2013; 

Franco et al., 2013; Choudhary and Gokhale, 2016). 

Emission factors can be derived using two approaches. First, vehicles can be driven over 

pre-defined cycles on a dynamometer in the laboratory (Frey et al., 2003; Zhang, 2006; 

Kousoulidou et al., 2013; Kuranc, 2015). These laboratory tests are expensive (Goyns, 

2008; Posada and German, 2013), and results obtained have been shown not to reflect 

real-world condition (Zhang, 2006; Weiss et al., 2011, 2012; Franco et al., 2014; Garcia, 

2014; Pillot et al., 2014; Thompson et al., 2014; Kuranc, 2015; Degraeuwe and Weiss, 

2016; FIA, 2017). Laboratory tests are also vulnerable to manipulation by defeat 

strategies (Thompson et al., 2014; Degraeuwe and Weiss, 2016) as demonstrated by the 

Volkswagen ‘dieselgate’ (US-EPA, 2015a, 2015b; FIA, 2017; Skeete, 2017). Second, 

emission factors can be derived from real-world on-road emission testing. On-road 
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testing, referred to as the Real-Driving Emissions (RDE) test procedure, has recently 

been introduced in the European Union (EU) to complement laboratory tests for the type-

approval of light-duty vehicles (European Commission, 2016). RDE tests use expensive 

type-approval PEMS equipment (Frey et al., 2003; Kuranc, 2015), Africa lacks technical 

and financial resources; on-road emission measurements of the vehicle fleet are scarce 

to non-existent (Goyns, 2008). Only a limited number of studies have been conducted in 

the laboratory or on-road, in either case only gaseous emissions have been investigated: 

 Lents et al., (2005) explored the on-road measurement of exhaust gases in 

Kenya. 

 Aduagba et al., (2013) investigated idle mode testing for exhaust gases in 

Nigeria.  

 Forbes and Labuschagne (2004)  tested idle and accelerated modes and 

associated exhaust gases in South Africa.  

Hence to date there has not been an estimate of the PM emission factors for vehicles in 

the African fleet during real-world driving conditions.  Following Goyns (2008), we see a 

need to develop cost effective methods to determine the real-world gaseous and 

particulate emissions of vehicles in Africa.  

The development of portable PM measurement equipment is particularly challenging. To 

date, the vast majority of real-world vehicle exhaust measurement systems are 

extremely costly (Miller et al., 2007). Despite strict PM limits in the EU (European 

Commission, 2016), PEMS prototypes for on-road PM testing were only recently 

developed and evaluated  (Mamakos et al., 2013). The slow development and thus the 

lag in PM PEMS application may partly be explained by the complexity of the PM which 

alters state as exhaust conditions change making it difficult to measure (Mamakos et al., 

2013; Giechaskiel et al., 2014). Gravimetric filter methods were applied to measure PM 

but this method is unsuitable for instantaneous PM measurements (Mamakos et al., 

2013); it lacks spatial resolution needed to characterize localized pollution hotspots. 
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Likewise, opacity measurements used for roadworthiness tests (Giechaskiel et al., 2014) 

is unsuitable for deducting PM emission factors as only a poor correlation existed 

between opacity and PM concentration (Yanowitz et al., 1999; Anyon P et al., 2000; 

Bond et al., 2004). In Africa, few countries have vehicle emission standards and 

regulations (UNEP, 2015), and those that do typically use opacity tests for in-use diesel 

vehicles to identify the most polluting vehicles (Walsh, 2014). 

To address persisting knowledge shortfalls, we apply established methods for on-road 

emissions testing (Frey et al., 2003; Zhang, 2006; Boroujeni and Christopher Frey, 2014; 

Kuranc, 2015) to evaluate a PM measurement emissions system on light-duty vehicles in 

Nairobi (Kenya). We deployed for the first time a low-cost multiplexed prototype 

parSYNC® sensor unit, referred to here as-parSYNC®-PEMS. The objective was to 

document the deployment of the prototype and critically assess the usability in obtaining 

variability in on-road PM emissions. A key hypothesis of this study is that synchronized 

on-road data collection using the three sensors of the parSYNC®-PEMS (namely 

ionization, scattering and opacity), allows an assessment of the different particle size 

ranges emitted from the vehicle exhaust. The real-world PM emissions described as a 

relative scale of multiple sensor voltage were related to driving pattern and vehicle 

operating conditions.  

We expect that this study can be a proof of concept and demonstrate the collection, 

screening, processing and analysis of data from the three sensors of the parSYNC®-

PEMS.  The results can help to develop a protocol for the deployment of a rapid PM 

measurement system in a challenging urban environment.  
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2.2 Methodology 

This study deployed a prototype parSYNC®-PEMS. Data from each test was collected, 

screened, processed and analyzed according to established protocols (Frey et al., 2003; 

Zhang, 2006; Boroujeni and Christopher Frey, 2014; Kuranc, 2015),, with context-

specific adjustments described in Sections 2.2.1-2.2.5. 

2.2.1 Instrumentation 

The prototype parSYNC®-PEMS used here is manufactured by 3DATX (3DATX, 2015). 

This instrument comprises of three sensors:  ionization, opacity and light scattering. 

Individually each of these sensors gives a voltage reading for particles; the sensors 

combined signals give a voltage reading that has been shown in previous studies to be 

proportional to  the magnitude of PM emissions (Ropkins et al., 2016).Therefore, it is 

expected later development of parSYNC®-PEMS will give a combined PM reading from 

the sensor voltages. However, this development was beyond the scope of this study, 

thus sensor voltages were considered separately. 

A wireless laptop was used to operate the equipment, graph the acquired data in real-

time and save the voltage readings from the three sensors. The parSYNC®-PEMS 

(width = 22 cm, height = 27 cm, depth = 13 cm, weight = 2.6 kg) was installed in the boot 

of the vehicle; this typically took half an hour (see Figure 2.1). 



 

30 
 

 

Figure 2-1: Stylized methodology layout for the installation of the parSYNC®- PEMS, the 

reading of engine data obtained through the ECU interface using the on-board diagnostic 

(OBD) scanner and the integration of the different data. 

A sample of the exhaust was obtained using a Bureau of Automotive Repair (BAR) 97 

sample probe. A low-cost generic Bluetooth engine scanner (ELM 327 mini) was 

connected to the OBD II interface to record the following engine parameters from the 

engine control unit (ECU): intake mass air flow rate, vehicle speed, engine rotation per 
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minute (RPM), intake air temperature, and intake manifold pressure. We downloaded the 

TorquePro application from the Google play store to a smartphone to upload engine data 

from the OBD scanner at 1 Hz resolution. OruxMaps (version 5.0.2), an application from 

Google play store, was downloaded on a smart phone to acquire vehicle GPS 

coordinates, at 1 Hz. Before and after on-road data collection, the parSYNC®-PEMS 

was zeroed using ambient air to reduce drift. 

2.2.2 Route choice and test conditions 

The test route comprised a distance of 52 km and captured the typical driving conditions 

in Nairobi on urban roads, highways, and peri-urban roads (Figure 2.2). The vehicle load 

comprised the driver, a witness of the test and the test equipment, accounting together 

for some 170 kg. Tests were carried out in 2015 May at an average altitude of 1798 m, 

during moderate temperature conditions of 20-30 oC. The tests were conducted on 

tarmac (paved) roads outside of rush hours during work days and weekend between 

10:00-15:00. 

The vehicle operation was compatible with real-world consumer driving in Kenya. The 

urban part of the route comprised vehicle speeds of up to 50 km/h, including stop-and-go 

driving; the highway and rural parts were characterized by speeds between 50-100 km/h 

and 50-90 km/h, respectively. Vehicle specifications, driver identity, weather conditions, 

start time, end time, and each significant traffic event, including stops, were recorded for 

each trip in addition to the data described in Section 2.2.1. 
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Figure 2-2: Test route in and around Nairobi (Kenya); Source: Google Earth 

2.2.3 Vehicle selection, recruitment and operation 

From a pool of vehicles, ten vehicles were selected that represented a range of 

attributes: fuel type, engine size, weight, utility, age, and technology. A test run was 

carried out to determine the viability of: (i) mounting the parSYNC®-PEMS unit and (ii) 

establishing engine interface with the vehicle-specific OBD scanner. Full listing of these 

tests is provided in, Table S1. 

Two light-duty diesel vehicles with similar characteristics were selected for tests based 

on complete data from OBD, GPS and parSYNC®-PEMS). This resulted in four 

complete tests hereto labelled as Tests 8, 9, 10 and 11 (Table 2.1). These two vehicles 

were used to investigate the PM emissions and determine if it was possible to obtain 

meaningful sensor voltage readings. In addition, the turbocharge mode of the Mercedes 

Diesel was manually activated in Test 10 to investigate the response of the parSYNC® 
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sensors to a change in vehicle activity, keeping other variables such as route, driver 

constant. 

Table 2-1: Vehicle specifications and summarised journey descriptions of Test 8, 9, 10 

and 11. Odometer readings: *miles **km  

 Test 8 Test 9 Test 10 Test 11 

Diameter of exhaust (cm) 4.8 4.8 5.3 5.3 

Fuel Diesel Diesel Diesel Diesel 

Manufacturer MITSUBISHI MITSUBISHI MERCEDES MERCEDES 

Model of vehicle SHOGUN  SHOGUN  ML270 CDI ML270 CDI 

Transmission AUTOMATIC AUTOMATIC MANUAL MANUAL 

Engine Size (cc) 3200 3200 2700 2700 

Gross Value Weight (KG) 2255 2255 2870 2870 

Fuel Tank Volume (L) 80 80 80 80 

Year of Manufacture 2007 2007 2002 2002 

Odometer reading (initial) 94117* 94150* 143045** 143100** 

Odometer reading (Final)  94150* 94182* 143099** 143152** 

Initial time 11:33 14:07 13:08 16:01 

Final Time 13:18 15:39 14:59 18:22 

Fuel top up (L) Full tank 5.30 Full tank 6.31 

Route Predefined  Predefined Predefined  Predefined  

OBD scanner YES YES YES YES 

Before the start of the test, vehicles were fueled to full capacity and the odometer 

reading recorded, at the end of the test vehicles were refueled to full capacity and 

odometer reading recorded again. This allowed estimating the fuel consumption of 

vehicles. For each test, complementary data were recorded including: driver’s name, 

number plate of vehicle, type of vehicle, diameter of exhaust, fuel type, manufacturer, 
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model of vehicle, transmission, engine size, gross value weight (GVW), volume of fuel 

tank, year of manufacture, odometer reading (start/end of test ran) and the start/end time 

of the test. We abstained from preconditioning the vehicles. All measurements started 

with engine-on and include the cold-start phase. 

For each test run, data from the three parSYNC® sensors were collected. The combined 

dataset for each test comprised: I) parSYNC® data with time stamps and 3 sensors 

voltage readings; II) Engine data with time stamps i.e.  vehicle speed (m/s), GPS-

longitude, latitude, altitude (m), engine RPM, intake air temperature (oC), intake manifold 

pressure (kPa), torque (Nm), intake mass airflow rate (g/s) and III) Journey narrative i.e. 

driver details, vehicle specifications, weather conditions, journey details. Vehicle activity 

(speed, gradient, RPM, torque, intake manifold pressure and intake air flow rate) 

captured through the ECU interface, evaluated the relative importance of each driving 

mode to emissions change.  

The test vehicle used in Tests 8 and 9 was a Mitsubishi Shogun; the vehicle used in 

Tests 10 and 11 was a Mercedes ML270 (Table 1). The Mitsubishi Shogun was 

manufactured in 2007, equipped with an automatic transmission and imported from the 

UK. The Mercedes ML270 was manufactured in 2002, equipped with a manual 

transmission an imported from Germany. In terms of Euro standards the Mercedes was 

equivalent to Euro III standards while the Mitsubishi was equivalent to Euro IV standards. 

2.2.4 Data post-processing and analysis 

The data post-processing (Figure 2.3) closely followed  Frey et al., (2003). In a first step, 

the collected datasets were combined and manually screened for errors, including 

indications that there was:  

 Failure for Bluetooth connectivity between the parSYNC® unit and laptop, phone 

and OBD scanner. 
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 Disconnection between the tail-pipe and parSYNC© probe causing leakage 

during a test run. 

 Failure of the GPS data to log to the phone. 

 

 

 

Figure 2-3: Collection, screening, processing of data obtained from the parSYNC®-

PEMS, ECU and GPS. 



 

36 
 

The combined datasets of each test were converted to a tab-delimited format and stored 

in one folder. All data analysis and visualization, unless otherwise stated, was carried out 

using R (R core team, 2016).  

Data synchronization 

The individual datasets were imported into R and combined by timestamp to create a 

single dataset with the value of each variable at 1 second resolution using R package 

‘Stringi’ (Gagolewski and Tartanus, 2016) and ‘Lubridate’ (Grolemund and Wickham, 

2011). The voltage reading of the parSYNC® ionization and opacity sensors was then 

reversed as it was easier to work with PM events as peaks rather than troughs. 

Baseline corrections 

As the parSYNC®-PEMS was operated without an in-situ zero correction during this 

study, an offline correction was applied to the dataset generated by the parSYNC® 

sensors prior to the comparison with the engine data. The baseline correction was 

applied using a ‘rolling ball’ algorithm to the time aligned output voltage of the opacity, 

light scattering and ionization sensors, using the classic local window method (Kneen 

and Annegarn, 1996) and  the R package ‘baseline’ (Liland and Mevik, 2015) to correct 

the non-zero flat line. The optimal baseline for each test were selected by visual 

inspection of the effect on the peaks of sensor voltage output by varying window length 

from 50 s to 1000 s (Liland et al., 2011). A sample of the outcome of these baseline 

corrections are shown in Figure 2.5, showing the best fit selected through the variation of 

window length. 

Vehicle specific power (VSP) 

Vehicle fuel use and thus emissions depend on engine load, which has been quantified 

using vehicle specific power (VSP) (Jiménez-Palacios, 1999). VSP depends on vehicle 

speed, acceleration and road grade (Jiménez-Palacios, 1999; Zhang and Frey, 2005; 

Frey and Rouphail, 2008; Yao et al., 2013; Boroujeni and Christopher Frey, 2014; 
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Rodríguez et al., 2016). Assuming certain parameters are typical for light duty vehicles:  

m (mass of vehicle) = 1200 kg, A (vehicle frontal area) = 2 m2,  CD (aerodynamic drag 

coefficient)= 0.3, VSP was calculated using Equation 1 (Zhang and Frey, 2005; Yao et 

al., 2013; Rodríguez et al., 2016). Vehicle speed and altitude were measured directly 

and used to determine road grade, velocity and acceleration, and combined to calculate 

VSP using Equation 2 (Boroujeni et al., 2013; Boroujeni and Christopher Frey, 2014). 

      [                ( )        

                                  

v: velocity of vehicle (m/s) 

a: acceleration of vehicle (m/s2) 

grade: vertical rise/slope length 

To evaluate the sensitivity of the parSYNC® sensor voltage to VSP, values of VSP at 

each time step were categorized into 19 bins, bins 0-10 represented acceleration, bin 11 

for idling, bin 12-19 for decelerations/breaking, following the model presented previously 

(Lents et al., 2005; Rodríguez et al., 2016). Relating the driving mode (idle, acceleration, 

deceleration) to VSP, the real-world relationship between driving patterns and vehicle 

emissions was established (Rodríguez et al., 2016). 

Alignment of sensor voltage with VSP 

Further synchronization of  data took into consideration that there is a time lag between 

changes in engine parameters, the composition of the exhaust at the tailpipe, and the 

response of the parSYNC® sensor voltage  Because the time difference between events 

such as the rise in RPM, increase in speed, or acceleration should coincide with the 

increase in pollution concentration (Sandhu and Frey, 2013), alignment was applied on 

the peaks of sensor voltages and these rises, using the ‘pems.utils’ R package (Ropkins, 
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2016). Here, the alignment used adjusted the time of the sensor voltage reading to 

maximize the correlation between sensor voltage reading, and VSP. 

 

2.3 Results 

The initial recruitment of 10 vehicles resulted in 15 tests, summarized in Table S1. For 

Tests 8, 9, 10 and 11, we had collected a complete data set from the parSYNC®-PEMS, 

the OBD scanner and the GPS. These test results were therefore further analyzed and 

the results of these tests are presented here.  

2.3.1 Real-world activity data 

For all tests, speed, altitude, RPM and torque were similar as shown in Figure 2.4, 

although Test 10 had a slight variation on the chosen route. The test durations and 

average speeds range between 94 min for Test 8 and 9, 110 min for Test 10 and 139 min 

for Test 11. Approximately 40% to 60% of the test distance was driven at vehicle speeds 

of less than 5 m/s; the maximum speed peaked at 30 m/s; idling accounted for 

approximately 43% of the test duration. The vehicle speed is non-normally distributed 

and positively skewed. Some 46% (with a deviation of 4%) of the test distance was 

driven at an altitude of 1650-1700 m. Engine RPM between 1500-1000 accounted for 

some 46% to 48% 69% of the test duration. Engine torque of less than 200 Nm was 

observed for 53% to 64% of test time. Speed, altitude, RPM and torque for all test runs 

followed a similar pattern of distribution. Intake manifold pressure and intake mass air 

flow rate for Test 8, 9, and 11 followed a similar distribution with the highest frequencies 

of: (i) 77% to 99% of intake manifold pressure at 80-100 kpa, (ii) highest distribution 34% 

to 49% of intake mass air flow rate at less than 20 g/s. However, for Test 10 intake 

manifold pressure and intake mass air flow rate distribution was different from other test 

runs, the highest frequency of 81% of intake manifold pressure was between 20-40 kPa, 

while the highest frequency of intake mass air flow rate (58%) was between 280-340 g/s. 
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Thus the mean intake manifold pressure for Test 10 decreased by an order of magnitude 

~4 ( 21.5± 0.03 kPa) and increased by the same for intake mass air flow rate (234.9 

±1.33 g/s) when compared to the other test runs.  

 

Figure 2-4: Frequency distribution of vehicle speed, altitude, RPM, engine torque, intake 
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manifold pressure and intake mass air flow rate of Tests 8, 9, 10, and 11. 

2.3.2 Data alignment and baseline corrections 

The raw output from the scattering, ionization and opacity sensors for Test 11 (Mitsubishi 

Shogun) is shown as an example in Figure 2.5, alongside the baseline corrected voltage 

signals. Visual inspection of the voltage signals shows a similar pattern of peaks in the 

scattering and ionization sensors, where 15 distinct peaks are identifiable. However, the 

opacity sensor shows a different pattern with less than 5 distinct peaks identifiable. 

Corresponding figures for the other three tests are shown in Figure S7-S10. A similar 

pattern of distinct peaks was observed in Test 8, in all three sensors at 12:09, 12:26 and 

12:52, Test 9, at 14:25 15:12. For Test 8 and 9 these peaks were at nearly identical 

place in the journey, at 82 minutes and 64 minutes. The sensor voltage from Test 10 had 

numerous peaks and troughs (>20), here scattering and opacity had a similar pattern of 

distinct peaks. 
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Figure 2-5: Plot of uncorrected data (raw signal in orange) from Test 11 and baseline 

corrected data (corrected signal in blue) of the opacity, light scattering, and ionization 

sensors of the parSYNC®-PEMS. 
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2.3.3 Spatial map of sensor voltage  

An example of the variation in the sensor voltage output, time traces  and vehicle 

position and sensor voltage is shown in Figure 2.5 for Test 11. The spatial and temporal 

map shows how a measured value, ionization sensor voltage in this case, correlates with 

time and position of the moving vehicle. 

 

Figure 2-6: Voltage of the ionization sensor from the parSYNC®-PEMS  in Test 11 

conducted with the Mitsubishi Shogun, superimposed on the route map (map data 

©2017 Google); plot established by using R package ggmap , ggplot2 and openair 

(Carslaw and Ropkins, 2012; Kahle and Wickham, 2013; Carslaw, 2015). 
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Most voltage peaks (red color on the map in Figure 2.6)  tended to coincide with 

acceleration events (for the other tests see Figure S51 to Figure S62). There were  

incidences of  high spike in voltage, for example in Test  8 and 9  that occured at  12:52 

and 15:12, this coincided with a diversion on the road (noted on the journey narative), so 

the test vehicle was momentarily on a unpaved road from a tarmacked road. However, 

this same spikes are not apparent in Test 10 and Test 11, instead there are a series of 

peaks and troughs. 

2.3.4 Data alignment and baseline correction 

The raw output from the scattering, ionization and opacity sensors for Test 11 (Mitsubishi 

Shogun) is shown as an example in Figure 2.6, alongside the baseline corrected voltage 

signals. Corresponding figures for the other three tests are shown in supplementary 

section Figure S7-S10. Visual inspection of the voltage signals shows a similar pattern of 

peaks in the scattering and ionization sensors. However, the opacity sensor shows a 

different pattern. A similar pattern was observed in Test 8, in all three sensors at 12:50 

and Test 9, at 15:10. For Test 8 and 9 these peaks were at nearly identical place in the 

journey, at 77 minutes and 60 minutes.  

2.3.5 Multiplex correlation of the sensors 

A best linear regression of the three sensor voltage output in pairs (scattering/ionization, 

scattering/opacity, ionization/opacity) was examined and the visualization of the three 

sensor relationship (ionization, opacity, scattering) plotted. An example plot of Test 11 is 

presented in Figure 2.7.  A visual inspection of the 3D plots from Test 8, 9, 10 and 11 

found Test 10 to be the best fit as there was a close correspondence in the voltage 

output of the three sensors.  
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Figure 2-7: Scatter plot (3D) sensor voltage of Test 11, three sensors (opacity, light 

scattering ionization) from the parSYNC®-PEMS. A linear regression line of three 

sensors is shown as the blue grid. The color pallet represents sensor voltage relation to 

the y-coordinate (ionization voltage). 

A statistically significant relationship between opacity, scattering and ionization sensor 

voltage was found in Test 8, 9, 10 and 11 with P< 0.001, this is presented in Table 2.2. 

Test 10 and Test 11 had a strong correlation between ionization, opacity and scattering 

sensor voltage with R2 = 0.93 for Test 10 and R2 = 0.76 for Test 11, while Test 8 and 9 

had a weaker correlation between the sensors with Test 8, R2 = 0.23) and even less with 

Test 9, R2 = 0.08. 

Table 2-2: Table of statistics parameters of the relationship between the sensors voltage 
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(ionization, opacity, scattering) of the test runs (Test 8, Test 9, Test 10, Test 11). 

Test Parameter Scattering/ 

Ionization 

Scattering/ 

Opacity 

Ionization/ 

Opacity 

3 Sensors interaction 

Test 8 Equation Y1 = 3.34*10-

3X1
 +5.59*10-

5 

Y1 = 0.13*10-

3X1
 - 2.0*10-4 

Y1=12.67X1
 + 

0.30 

Y1 = 1.10*10-1X1 + 

2.20*10-3X2
 - 4.50*10-4            

Y1:scattering X1: opacity X2: ionization 

R2 0.23 0.31 0.4 0.4 

P value P<0.001 P<0.001 P<0.001 P<0.001 

Test 9 Equation Y1 = 1.60*10-

4X1
 + 1.90*10-

4 

Y1 = -2.50*10-

3X1
 + 2.27*10-4 

Y1 = 0.22X1
 + 

0.07 

Y1 = 1.65*10-4X1 - 

2.54*10-3X2
 + 2.16*10-4  

Y1:scattering X1: ionization X2: Opacity 

R2 0.03 0.05 4.0*10-4 0.08 

P value P<0.001 P<0.001 P = 0.14 P<0.001 

Test 10 Equation Y1=8.08*10-

2X1
 + 9.53*10-

3 

Y1=0.40X1
 + 

1.00*10-3 

Y1=1.20X1
 + 

0.39 

Y1 = 1.27*10-2X1 + 2.27X2
 

+ 1.93*10-3                          

Y1:Opacity X1: ionization X2: 

Scattering 

R2 0.22 0.93 0.23 0.93 

P value P<0.001 P<0.001 P<0.001 P<0.001 

Test 11 Equation Y1 = 6.13*10-

3X1
 + 

4.16*10-4 

Y1 = 6.13*10-

3X1
 + 4.16*10-4 

Y1 = 0.63X1
 + 

3.85*10-2 

Y1 = 1.04*10-2X1 - 

3.96*10-4X2
 + 1.73*10-5  

Y1:scattering X1: ionization X2: Opacity 

R2 0.76 6.19*10-3 9.23*10-3 0.76 

P value P<0.001 P<0.001 P<0.001 P<0.001 

2.3.6 Relationship between vehicle activity and sensor output 

Despite the significant uncertainties obtained from the calculations of the voltage means, 

in general, there was an increase between VSP bins 12 -18 for all sensors voltages and 
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a decrease between VSP bins 0-10. These VSP bin results can be viewed in detail in the 

supplementary section of the paper. Figure 2.8 shows acceleration mode was highest in 

Test 8 all sensors, Test 9 (ionization, opacity), Test 11 (ionization, scattering). Test 10 all 

sensors, deceleration was highest, followed by idle and then acceleration. Test 10  as 

shown in Figure 2.8, was observed for example to have a magnitude of 13, 33, and 121 

times the sensor voltage for ionization, opacity and scattering respectively when 

compared to the means of the other test runs, for example in Test 11. It was also 

observed that when the engine parameters were compared to the other test runs, the 

intake air flow rate of Test 10 quadrupled while intake manifold pressure reduced by a 

quarter over the same period. This was due to the driver of the vehicle engaging the 

vehicle’s manual turbocharge system within the first ~20 minutes of the journey and for 

the remainder of the journey.  

A welch’s t-test comparing the  average voltages from the different sensors for 

acceleration, idle and deceleration found them to be statistically significantly different 

from each other. Out of the 36 pairwise tests representing 4 test runs, and three sensor 

voltage, 75% are statistically significant means from each other, one pairwise test from 

Test 9 comparing idle mode and deceleration of the scattering sensor is borderline (p 

=0.05). It should be noted that in examining all the insignificant cases, the 95% 

confidence interval which indicates the likelihood the means of the compared modes 

would fall between certain intervals, the lower end was always a negative voltage. 96% 

of pairwise (idle-to-acceleration) and (deceleration-to-idle) mode was statistically 

significant, hence the majority of the statistically insignificant cases occurred with the 

pairwise acceleration-to-deceleration cases.  
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Figure 2-8: A panel of boxplots with different driving modes (deceleration, idle and 

acceleration) for ionization, opacity and opacity sensor voltage for Test 8 (at the top of 

the panel) Test 9 (2nd from the top), Test 10 (3rd from the top), Test 11 (bottom of the 

panel).  The box and whisker plot represents the central 50% of the data (median). The 

lower edge of the box plot is the first 25th percentile and the upper edge of the box plot is 

the 75th percentile. The black dots represent the mean. 

2.4 Discussion 

This paper describes a protocol for the deployment and analysis of data retrieved from a 

parSYNC®-PEMS prototype in Nairobi (Kenya) in the critical evaluation of a novel 

emission measurement system. In the context of conducting real world emission testing 
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in Nairobi, as compared to a North American or European city, there are two challenges 

that increase the difficulty of obtaining reliable estimates of real world emissions. The 

first are environmental or practical challenges, and include the condition of the roads 

(potholes, unpaved roads etc.), traffic congestion, lack of immediate technical support 

and a lack of data to characterize each vehicle comprehensively. The second set of 

challenges relate to the ability to characterize emissions across a representative set of 

vehicles, which is made more difficult in Nairobi through a lack of vehicle emission 

standards, unreliable I/M of vehicles, unreliable and variable fuel quality, and the age of 

vehicles. This analysis details the experimental procedure that was used to overcome 

these challenges using data from two vehicles over four test runs. Although these tests 

are preliminary this could, in the future, be used to undertake a more comprehensive 

analysis of a larger number of vehicles in Nairobi and other African cities. This will aid in 

the cost effective implementation of a more robust inspection and maintenance program, 

in the development of PM emission factors and characterization of real world emissions 

in this region. However, additional evaluation of the parSYNC®-PEMS is necessary 

since the protocol did not include calibration with a reference instrument. 

It has been demonstrated previously that real-world gaseous measurements are up to 10 

times more during the acceleration compared to idle mode (Frey et al., 2003). It has also 

been shown that VSP bins with acceleration mode contribute the most to total gaseous 

and particulate  real-world emissions (Frey et al., 2003; Huang et al., 2013; Zheng et al., 

2015; Choudhary and Gokhale, 2016; Rodríguez et al., 2016). Test 8, 9 and 11 as 

shown in Figure 2.8, show a similar result, with acceleration mode (when paired with idle 

and deceleration), having a higher sensor voltage 75% of the time, for the ionization, 

opacity and scattering sensors. A previous study has shown stronger dependence of PM 

emissions to VSP in light duty petrol cars compared to diesel cars, where particle 

number emissions increased by a magnitude of 3 from idling to highest VSP (Huang et 

al., 2013). Measured in the aforementioned study was a light duty diesel, Euro 3 
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emission standard vehicle manufactured in 2010 with 1.9 L engine, therefore smaller, 

newer and better technology than this study’s test vehicles. But even with these 

differences, similar to present study, PM emissions rate for diesel vehicle was found to 

peak in the highest VSP and speed bin greater than that at idling (Huang et al., 2013). 

Various studies have confirmed VSP as an appropriate metric to obtain correlations 

between driving patterns and vehicle emissions: gaseous pollutants and black carbon 

(Frey et al., 2003; Zhang, 2006; Carslaw et al., 2013; Ježek et al., 2015; Zheng et al., 

2015; Rodríguez et al., 2016). The VSP profile for the vehicles tested in Nairobi showed 

a similar profile to vehicles tested in Bogota, 91-94% of the time vehicles tested in Test 

8-11 operated in a VSP between -15.2 and 17.7 kW ton -1, while in Bogota 95% of the 

time vehicles tested operated in the same range (Rodríguez et al., 2016). Such VSP 

values in Nairobi reflect real-world driving conditions in the city on an urban road such as 

downtown Nairobi, highways such as Thika highway, and peri-urban road such as Gigiri 

road, which were part of the selected test route. These conditions, similar to those  like in 

Bogota, are characterized by heavy traffic congestion with stop-and-go, low speeds, 

many stops and idling (Rodríguez et al., 2016). Furthermore, European derived driving 

cycle have been shown to be poor representation of typical driving patterns in urban 

areas in Africa due to high proportion of idling, different driving styles and atmospheric 

conditions (temperature, humidity, altitude)  (Goyns, 2008). In this study, Nairobi VSP 

profile was found to be similar to Bogota’s and a better fit than the European driving 

cycle. 

Previous studies have demonstrated that turbocharging in diesel vehicles under higher 

engine loads could double NOX to CO2 emissions ratio for newer model cars compared 

to old ones (Carslaw et al., 2011). This could explain the increase in the sensor voltage 

for Test 10, compared to the other tests as turbocharge of the engine was manually 

engaged. It was also most likely the reason why Test 10 showed a reversal in pattern 

from other tests as acceleration mode in this test was not the highest sensor voltage. 



 

50 
 

Given the principal of operation for turbocharge engines, where engine power output is 

increased through increased compressed air flow (North, 2007), applying ideal gas law, 

the pressure and volume change for Test 10 was accounted for. The decrease in sensor 

voltage for acceleration mode, in Test 10 with maximum power load would also be 

accounted for by the increased air flow rate. Therefore whilst turbocharging has 

decreased CO2 emissions, and increased NOX emissions, additional evaluation is 

needed on the effects of turbocharging on PM emissions. Especially in the aftermath of 

dieselgate where the vehicles tested and found to exceed NOX emissions by a factor of 

15 to 35, were turbocharged light duty passenger vehicles (Thompson et al., 2014), 

these were similar in weight and engine size to those tested in Kenya. Although the 

vehicles tested in Kenya are older, fuel quality is poorer than those tested in USA, these 

fleets from developed countries will most likely be imported to developing markets 

regions in Africa in the future. 

A multiplex instrument using three sensors is novel as is the study of the correlation of 

the three sensors for PM measurement. There are real-world PM studies that have 

assessed the correlation of these sensors to PM but only using sensors deployed 

separately, i.e. opacity tests (Anyon P et al., 2000; Giechaskiel et al., 2014), and light 

scattering tests (Anyon P et al., 2000; Miller et al., 2007; Khan et al., 2012; Giechaskiel 

et al., 2014). Light scattering had a high correlation between reference instruments (R2 

=0.92), while opacity had low correlation (R2=0.12), so opacity was found to be a poor 

surrogate for fine particulate matter (Anyon P et al., 2000). In this study a correlation 

between the three sensors, ionization, opacity and scattering sensor output voltage was 

explored. Correlation was highest (R2= 0.93), in Test 10, which also was found to exhibit 

the highest individual voltages of all three sensors (see Table 2.2). Viewing the statistics 

parameters in Table 2.2, it was concluded that the voltage relation between all three 

sensors was best for the older vehicle (Mercedes Benz) vehicle. In a previous study, 

best data correlations were achieved when correction factors were applied to account for 
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the ultrafine particles undetected by the scattering sensors and to correct for humidity 

(Miller et al., 2007). The three sensors in the parSYNC®-PEMS detect different particle 

ranges from the exhaust, as opacity is reported to have a detection limit of up to 15 

mg/km while light scattering detection limit 0.5 mg/km (Giechaskiel et al., 2014), whilst 

the ionization sensor detects the ultrafine particles. Petrol cars and diesel vehicle 

exhaust particles mainly correspond  to nucleation-mode and accumulation mode 

respectively (Huang et al., 2013). Therefore, since the best voltage relation between 

sensors was from the older vehicle, and the test vehicles were diesel then the 

parSYNC®-PEMS performed best for the accumulation mode. Thus the combined 

parSYNC®-PEMS voltage when calibrated will at the very least give an instantaneous 

second-by-second PM concentration and at most on-road PM particle and size 

composition changes.  In this study, the parSYNC®-PEMS prototype was kindly released 

by the manufacturer to accommodate our research desire and due to time and budget 

constraints calibration was not possible with a reference instrument. 

The OBD ports and scanners were difficult to work with, Alessandrini et al., (2012) 

reported on the rarity of acquiring engine parameters such as intake air flow and air to 

fuel ratio. Rule of thumb on OBD scanners has been for European and Asian vehicle 

imports to use ISO 9141 supported protocol scanners while GM and ford use SAE J1850 

supported protocol scanners (Lee et al., 2011). Vehicles in Kenya are often 

reconditioned second-hand imports from Japan (ERC, 2015b), so even though the OBD 

scanner used was ISO 9141, Test 1-7 and Test 11-14 were not successful in obtaining 

engine data from the ECU. In fact this particular scanner only worked on the vehicles 

imported directly from Europe (Test 8, 9, 10 and 11) or in Test 15, USA, even though 

Test 8 and 9 vehicle was of Japanese make. The scanner did not work on vehicles of 

Japanese make imported from Japan to Kenya. This was unexpected as all vehicles post 

year 2000 are meant to be OBD II compliant (Alessandrini et al., 2012; Kuranc, 2015). A 

similar make of the OBD scanner was successfully used to in Korea for what is 
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presumably a Korean passenger vehicle (Baek and Jang, 2015). So even though OBD 

data loggers have made collection of real-world vehicle activity viable, more investigation 

ought to be carried out on how accessible these data is especially in developing 

countries fleets. 

In processing the data from the parSYNC® sensor array, the ‘rolling ball’ baseline 

corrections were applied as shown in Figure 2.5. ‘Rolling ball’ baseline corrections have 

been applied before on spectra peaks to identify and correct baseline by using visual 

inspection and statistical analysis to select best fit (Liland et al., 2011).  In the present 

study, the window in the baseline correction best fit was window length 250 for all tests 

and all sensors except opacity, and then best fit was window length 50.  In general,  the 

baseline corrections were robust except for when sensor voltage readings suddenly 

shifted, examples of which can be seen for all sensors, in Test 11 for example at  a peak 

at 17:00 for both scattering and ionization sensor. A similar pattern was noticeably 

observed in Test 8, in all three sensors at 12:52 and Test 9, at 15:12. For Test 11, this 

pattern was observed in scattering sensor and ionization sesor at 18:08. In Test 8 and 9, 

11 this coincided with a diversion on the road (noted on the journey narrative), so the test 

vehicle was momentarily on a dirt road from a tarmacked road. Surprisingly, no sudden 

shifts were detected in Test 10. Such sudden shifts called ‘artefact jumps’, have been 

noted in other instrumentation (for ambient PM measurement) due to incorrect 

instrument offset or factory calibration being in-adequate for these PM concentrations 

(Rivas et al., 2017). It was recommended in Rivas et al (2017) to handle PM data with 

care and to automate zeroing of the instrument. In baseline correction, a potential 

challenge arising from applying the incorrect algorithm, is the baseline cuts above the 

lower parts of the peaks (Liland et al., 2011). In this study, this happens in places with 

the sudden jumps where the baseline cuts the base of the peak resulting in negative 

voltage values, in Test 8, at 12:52, Test 9 at 15:12. However due to the aggressive drift 
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noted, and limited number of tests, we did not obtain an optimal algorithm. Further tests 

will need to be conducted for an optimal algorithm for baseline correction. 

A PEMS should respond instantaneously to input changes otherwise given the high 

temporal resolution of measurements, this could introduce error and uncertainty (Zhang, 

2006).  In reality it does not because of the time the exhaust takes to travel from the 

engine to the detection by the instrument. In this study, we adjusted for the lag by 

visually inspecting the time stamp and synchronizing the different data streams. In a 

previous study, laboratory tests and numerical simulations were used to quantify 

response times and rectify its effect on emissions (Zhang, 2006). Using gas PEMS, 

response time was found to vary to up to 10 s and the difference between 

measurements not corrected for different response times could be as large as a 2.5  

times (Zhang, 2006). OBD data loggers were also found to have a time drift of up to 3 

seconds (Goyns, 2008), the time lag in this case was corrected for manually by visually 

comparing OBD engine speed and GPS speed profiles and adding a correction factor.  

In this study, there were uncertainties introduced due to the correlation lag detected on 

the different sensors. The aim of the synchronization and correlation alignment 

(explained in 2.2.4) was to adjust the voltage readings for the time lag between changes 

in engine data and changes in the composition of the exhaust. An example of the 

correlation alignment for Test 11 is shown in Figure 2.9. The correlation was based on 

the calculated VSP and sensor voltage for scattering, ionization and opacity sensors. 

The lag adjustment of VSP for the ionization sensor was (-36), opacity (-27), scattering (-

33). Hence the optimum adjustments suggested for each of the three sensors were 

different, and for all three sensors there were multiple adjustments that had very similar 

improvements in alignment. Given these discrepancies, the remaining results were not 

correlation aligned, even though visual inspection synchronization was initially applied to 

the data set. Improper synchronization between VSP and modal emissions rates have 

been shown to decrease variability between the lowest and highest average modal 
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emission rate (Sandhu and Frey, 2013), this may explain the 25% of the time (see Figure 

2.8), when the mean parSYNC® sensor voltage between different modes was found to 

be statistically insignificant .Further work is needed to identify the optimum adjustment of 

the parSYNC® PEMS voltage output to account for this time lag.  

 

 

 

Figure 2-9: An example plot of correlation alignment using pems.utils with VSP from 

engine data and sensor voltage from (ionization, opacity and scattering) for Test 11 from 

parSYNC®-PEMS. 
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Advancement of vehicle emission reduction technology can yield up to a 95% reduction 

of PM from the exhaust of the vehicle (Chambliss et al., 2013; Mamakos et al., 2014). 

Particle filters are not present in most vehicles used in Africa as these fleets comprise of 

old vehicles and second-hand imports (Doumbia et al., 2012; Liousse et al., 2014; 

Marais and Wiedinmyer, 2016). Furthermore, lack of inspection and maintenance (I/M) 

programs would render these emission reduction technologies ineffective (Pillot et al., 

2014), in addition poor fuel quality also restricts the effectiveness of these measures. 

The roads in African cities is often inadequate and in poor condition; few paved roads 

mostly in poor condition and the rest of the roads are unpaved (Kumar and Barrett, 2008; 

Olvera et al., 2013; UN-Habitat, 2013). The test vehicles’ age and technology have a 

similar profile of vehicle fleet in Nairobi according to a recent survey which found 

average age of this vehicle class i.e. passenger cars to be 11.1±0.57 years (Mbandi et 

al., in preparation). These passenger cars, classified as AfritypeM1D (engine size >2000 

cc), were also shown in this study to have the poorest fuel economy among the 

passenger cars. 
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2.5 Conclusion 

The critical evaluation of the protocol and deployment of parSYNC®-PEMS yields robust 

real-world PM emissions data presented as multiple sensor voltages related to vehicle 

operating condition and driving pattern. The methodology and results obtained here give 

an insight of the relative emission profile of vehicles on a typical route in Nairobi (Kenya). 

The parSYNC®-PEMS responded to changing vehicle operating condition ( 

turbocharged) and the driving mode (idling, acceleration and deceleration) characterized 

by the changing VSP. The high resolution data of a few tests confirm the usefulness of 

parSYNC® in obtaining much needed temporal and spatial tail-pipe PM emission data to 

characterize the real-world emissions of vehicles. When calibrated with a reference 

instrument, parSYNC®-PEMS may be used to indicate the relative total PM emissions 

[mg/km] of different vehicles and determine relative PM emissions during different driving 

modes. However, the parSYNC®-PEMS sensor voltage relation between all three 

sensors best worked for the older vehicle (Mercedes Benz) vehicle, which indicates 

presence of accumulation exhaust particles. Therefore, for diesel vehicles with older 

technology and under load, this parSYNC®-PEMS would yield most accurate results. 

This is most useful In Africa, as older diesel fleets are prevalent and are attributable to 

high PM emissions especially in urban areas. The VSP profile for the vehicles tested in 

Nairobi was for a profile typical for a heavily congested city with high altitude and steep 

roads; this increases the pollution load from the vehicle fleet. 

A cost effective solution is needed by authorities and governments to tackle the 

measurement of emissions in Africa vehicle fleets. The high temporal and spatial 

characterization of emissions exhaust is useful for identifying pollution ‘hotspots’ useful 

for planning authorities and governments. The insights gained from this study could aid 

the generation of PM emission factors for an African urban fleet which in turn can 

support the design of environmental and transport policy aimed at decreasing on-road 

PM pollution and improving urban air quality (Zhang, 2006).  However, there are a 
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number of caveats that need to be addressed before a wide range of parSYNC®-PEMS 

applications. Firstly, a larger sample of vehicles, routes and loads need to sampled, 

secondly, the prototype needs to be calibrated with a reference instrument, thirdly, an 

assured cost-effective surrogate method to determine exhaust flow rate needs to be 

developed and lastly,  the best fit algorithm for baseline corrections and alignment should 

be developed for when drifts occur. 

 On-going or future works include sensor module validation through calibration with a 

reference instrument to determine the best fit of the combined sensor voltage to the 

three sensor’s voltage readings. The best fit strategy for the parSYNC® PM fit is under 

development to be possibly based on General Additive Model (GAM) and spline fit 

model, utilizing a statistical noise reduction method in the R package “mgcv”  (Wood, 

2017). 
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2.6 Supplementary 

2.6.1 SECTION A: Vehicle specifications and journey narrative during 

testing  

 

Table S 1: Initial pool of vehicles mounted with parSYNC, OBD scanner and GPS 
system from which the test vehicles were selected 

Number 
of Test 

Date 
Test 
Sheet 

Vehicle Type 
parSYNC 

GPS OBD 

Test 1 04/05/2015  ToyotaRav4   χ 
Test 2 04/05/2015  Mercedes Diesel  χ  
Test 3 05/05/2015  Toyota Fielder  χ χ 
Test 4 05/05/2015  Toyota Landcruiser  χ χ 
Test 5 06/05/2015  Toyota Fielder NZE  χ  
Test 6 11/05/2015  Isuzu Matatu 51   χ 
Test 7 11/05/2015  Isuzu Matatu 33  χ χ 
Test 8 13/05/2015  Mitsubishi Shogun    
Test 9 13/05/2015  Mitsubishi Shogun    
Test 10 16/05/2015  Mercedes Diesel    
Test 11 16/05/2015  Mercedes Diesel    
Test 12 18/05/2015  Isuzu Matatu 29   χ 
Test 13 18/05/2015  Isuzu Matatu 29   χ 
Test 14 18/05/2015  Isuzu Matatu 29   χ 
Test 15 21/05/2015  Ford Focus    
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Table S 2: VEHICLE SPECIFICATIONS AND JOURNEY NARRATIVE Test 8, 9, 10, 11 

 Test 8 Test 9 

Type of vehicle Private Private 

Diameter of exhaust (CM) 4.8 4.8 

Fuel Diesel Diesel 

Manufacturer MITSUBISHI MITSUBISHI 

Model of vehicle SHOGUN  SHOGUN 

Transmission AUTOMATIC AUTOMATIC 

Engine Size (cc) 3200 3200 

Gross Value Weight (KG) 2255 2255 

Fuel Tank Volume (L) 80 80 

Year of Manufacture 2007 2007 

Odometer reading (initial) miles 94117 94150 

Odometer reading (Final) miles 94150 94182 

Initial time 11:33 14:07 

Final Time 13:18 15:39 

Fuel top up (L) Tankful 5.30 

Route Predefined route Predefined route 

OBD scanner YES YES 

 

 Test 10 Test 11 

Type of vehicle Private Private 

Diameter of exhaust (CM) 5.3 5.3 

Fuel Diesel Diesel 

Manufacturer MERCEDES MERCEDES 

Model of vehicle ML270 CDI ML270 CDI 

Transmission MANUAL MANUAL 

Engine Size (cc) 2700 2700 

Gross Value Weight (KG) 2870 2870 

Fuel Tank Volume (L) 80 80 

Year of Manufacture 2002 2002 

Odometer reading (initial) 

(km) 143045 143100 

Odometer reading (Final) 

(km) 143099 143152 

Initial time 13:08 16:01 

Final Time 14:59 18:22 

Fuel top up (L) FULL TANK 6.31 

Route Predefined route Predefined route 

OBD scanner YES YES 

 

2.6.2 SECTION B: Supplementary results 
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“ROLLING BAL”CORRECTION FOR ALL SENSOR VOLTAGE WITH DIFFERENT 

WINDOW LENGTH 

 

 
Figure S 3: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for ‘rolling ball’ window length 50 and 250 for Test 8. 
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Figure S 4: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for ‘rolling ball’ window length 50 and 250 for Test 9. 
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Figure S 5: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for ‘rolling ball’ window length 50 and 250 for Test 10. 
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Figure S 6: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for ‘rolling ball’ window length 50 and 250 for Test  

 

 

SENSOR VOLTAGE TIME ALIGNMENT AND BASELINE CORRECTION RESULTS 
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Figure S 7: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for Test 8 



 

65 
 

 
Figure S 8: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for Test 9 
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Figure S 9: Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization for Test 10 
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Figure S 10:  Raw signal compared to the baseline corrected signal for scattering, opacity and 

ionization sensor for Test 11 

 

 

 

SENSOR VOLTAGE VSP CORRELATION ALIGNMNENT RESULTS 
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Figure S 11: plot of  correlation alignment using pems.utils with VSP from engine data and 

sensor voltage from (ionization, opacity and scattering) for Test 8 from parSYNC®. 
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Figure S 12:  Plot of  correlation alignment using pems.utils with VSP from engine data and 

sensor voltage from (ionization, opacity and scattering) for Test 9 from parSYNC®. 
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Figure S 13:  Plot of  correlation alignment using pems.utils with VSP from engine data and 

sensor voltage from (ionization, opacity and scattering) for Test 10 from parSYNC®. 
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Figure S 14: Plot of  correlation alignment using pems.utils with VSP from engine data and 

sensor voltage from (ionization, opacity and scattering) for Test 11 from parSYNC®. 

 

 

 

 

 

VEHICLE ACTIVITY DATA DISTRIBUTION AND TIME SERIES 
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Figure S 15:  Distrubution of select engine parameters from Test 8 
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Figure S 16: Distribution of select engine parameters from Test 9 
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Figure S 17: Distribution of select engine parameters from Test 10 
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Figure S 18: Distribution of select engine parameters from Test 11 
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Figure S 19: Select time series of engine parameters for Test 8 
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Figure S 20: Select time series of engine parameters for Test 9 
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Figure S 21: Select time series of engine parameters for Test 10 
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Figure S 22: Select time series of engine parameters for Test 11 

 

 

 

SPEED AND ALTITUDE COMPARED TO SENSOR VOLTAGE 
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Figure S 23: Speed and altitude compared to sensor voltage (scattering, opacity and ionization) 

for Test 8 
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Figure S 24: Speed and altitude compared to sensor voltage (scattering, opacity and ionization) 

for Test 9 
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Figure S 25: Speed and altitude compared to sensor voltage (scattering, opacity and ionization) 

for Test 10 
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Figure S 26: Speed and altitude compared to sensor voltage (scattering, opacity and ionization) 

for Test 11 

 

 

 

 

DISTRIBUTION OF VSP AND VARIABLES DETERMINING VSP 
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Figure S 27: Distribution of variables determining VSP and VSP for Test 8 
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Figure S 28: Distribution of variables determining VSP and VSP for Test 9 



 

86 
 

 
Figure S 29: Distribution of variables determining VSP and VSP for Test 10 
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Figure S 30: Distribution of variables determining VSP and VSP for Test 11 

 

 

 

 

 

 

VSP COMPARED TO SENSOR VOLTAGE BEFORE CORRELATION ALIGNMENT 
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Figure S 31: VSP compared to sensor voltage (scattering, oinization, opacity) for Test 8 
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Figure S 32: VSP compared to sensor voltage (scattering, oinization, opacity) for Test 9 
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Figure S 33:  VSP compared to sensor voltage (scattering, oinization, opacity) for Test 10 
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Figure S 34: VSP compared to sensor voltage (scattering, oinization, opacity) for Test 11 

 

 

 

 

VSP BINS AND SENSOR VOLTAGE 
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Figure S 35: VSP bins and baseline corrected ionization sensor voltage for Test 8 
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Figure S 36: VSP bins and baseline corrected opacity sensor voltage for Test 8 
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Figure S 37: VSP bins and baseline corrected scattering sensor voltage for Test 8 
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Figure S 38: VSP bins and baseline corrected ionization sensor voltage for Test 9 
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Figure S 39: VSP bins and baseline corrected opacity sensor voltage for Test 9 
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Figure S 40 : VSP bins and baseline corrected scattering sensor voltage for Test 9 
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Figure S 41: VSP bins and baseline corrected ionization sensor voltage for Test 10 
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Figure S 42: VSP bins and baseline corrected opacity sensor voltage for Test 10 
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S 43 : VSP bins and baseline corrected scattering sensor voltage for Test 10 
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Figure S 44: VSP bins and baseline corrected ionization sensor voltage for Test 11 
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Figure S 45 : VSP bins and baseline corrected opacity sensor voltage for Test 11 
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Figure S 46:  VSP bins and baseline corrected scattering  sensor voltage for Test 11 

 

 

 

3D SCATTER PLOT AND PARAMETERS 
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Figure S 47: 3D scatter plot of the three sensors (opacity, scattering and ionization)  sensor 

voltage with a linear regression plane for Test 8 

 
Figure S 48: 3D scatter plot of the three sensors (opacity, scattering and ionization)  sensor 

voltage with a linear  regression plane for Test  9 
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Figure S 49: 3D scatter plot of the three sensors (opacity, scattering and ionization)  sensor 

voltage with a linear  regression plane for Test 10 

 
Figure S 50: 3D scatter plot of the three sensors (opacity, scattering and ionization)  sensor 

voltage with a linear  regression plane for Test 11 
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TEMPORAL AND SPATIAL MAPS OF SENSOR VOLTAGE 

 

 
Figure S 51:Temporal and spatial map of ionization sensor voltage for Test 8 
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Figure S 52:Temporal and spatial map of opacity sensor voltage for Test 8 
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Figure S 53: Temporal and spatial map of scattering sensor voltage for Test 8 
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Figure S 54: Temporal and spatial map of ionization sensor voltage for Test 9 
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FigureS 55: Temporal and spatial map of opacity sensor voltage for Test 9 
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Figure S 56: Temporal and spatial map of scattering sensor voltage for Test 9 
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Figure S 57: Temporal and spatial map of ionization sensor voltage for Test 10 
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Figure S 58: Temporal and spatial map of opacity sensor voltage for Test 10 
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Figure S 59: Temporal and spatial map of  scattering sensor voltage for Test 10 

 



 

115 
 

 
Figure S 60: Temporal and spatial map for ionization sensor for Test 11 
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Figure S 61: Temporal and spatial map for opacity sensor for Test 11 
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Figure S 62: Temporal and spatial map for scattering sensor for Test 11 
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Chapter 3 

The work outlined in this chapter has been adapted from a research paper prepared for 

publication. I undertook all data analysis, but Dr Jan R. Böhnke helped to write the 

algorithm for the fuel economy modelling. Professor Mike R. Ashmore, Dr Jan R. Böhnke 

and my supervisors, Dr Lisa Emberson, Dr Harry Vallack and Dr Dietrich Schwela 

following an initial draft, made valuable contribution to the methodology, presentation of 

results, discussion through their inputs and manuscript editing. Their editing of the article 

upon which this chapter is based improved the clarity with which the fuel economy 

modelling framework and its rationale were presented. 
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Abstract 

In sub-Saharan African (SSA) cities like Nairobi, the lack of vehicle-related data is a 

major challenge when developing environmental policies for the transport sector. In such 

cities, policies to improve vehicle fuel economy could help to reduce greenhouse gas 

emissions and improve air quality. We present a methodology for estimating fuel 

economy within developing countries using questionnaire surveys. Vehicle 

characteristics and activity data, for both the formal fleet (private cars, motorcycles, light 

and heavy trucks) and informal fleet (minibuses (matatus), three-wheelers (tuktuks), 

goods vehicles (AskforTransport) and two-wheelers (bodabodas)), were collected and 

used to estimate fuel economy using both general linear modelling (GLM) and artificial 

neural network (ANN) approaches.  

Fuel economy for bodabodas (4.6±0.4 L/100 km), tuktuks (8.7±4.6 L/100 km), passenger 

cars (22.8±3.0 L/100 km), and matatus (33.1±2.5 L/100 km) was found to be 2-3 times 

worse than in the countries these vehicles are imported from, partly reflecting their 

relatively high age. Of the two models investigated, the GLM approach provided the 

better estimate of predicted fuel economy. Here we provide a methodology and statistical 

analysis of survey data, for both informal and formal urban fleet, to help meet the 

challenge of a lack of availability of detailed vehicle data in SSA cities.    
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Highlights 

 Vehicle fleet characteristic and activity data collected with questionnaire survey. 

 Key missing data not collected in the survey estimated using multiple imputations. 

 General Linear Model predicted in-use fuel economy from survey data. 

 Kenya-specific vehicle types, Matatus and Bodabodas, have poor fuel economy. 

 Fuel economy is 2-3 times worse in Nairobi compared to developed countries. 
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3.1 Introduction 

One approach to mitigating the impacts of air pollution on human health, and impacts of 

greenhouse gases (GHGs) on climate is to reduce the growth of vehicle fuel 

consumption by improving fuel economy (Ribeiro et al., 2007; IEA, 2011, 2012a; 

Schipper, 2011; Bandivadekar et al., 2016; Plotkin, 2016). Since fuel economy is a good 

indicator of GHG emissions it has become an important metric to assess trends and 

allow comparisons in GHG emissions between different vehicles as well as between 

vehicle fleets from different world regions. It is also a key indicator by which vehicle 

manufacturers assess compliance with GHG emission targets. As such, making reliable 

assessments of fuel economy for in-use vehicle fleets is an important policy tool for 

helping to target emission reduction policy (Plotkin, 2016).  

To estimate in-use fuel economy of a vehicle fleet in a typical sub-Saharan African (SSA) 

city such as Nairobi, one needs data to describe the fleet composition, characteristics 

and activity for in-use vehicles. Moreover, these data need to include the total number of 

vehicles disaggregated by vehicle type, fuel type, age, emission technology and annual 

mileage (i.e. vehicle kilometres travelled (VKT) per year (Goel et al., 2014, 2015; Kholod 

et al., 2016).These data may be found in vehicle registries but these are often 

incomplete, inaccurate, inconsistent and outdated in developing countries (Agyemang-

Bonsu et al., 2010; Goel et al., 2014; Kholod et al., 2016). Often national vehicle 

registries do not portray actual vehicle distribution on city roads, for example, vehicles 

registered in Nairobi may be in circulation elsewhere (Kholod et al., 2016). A particular 

challenge arises from the growing use of informal transport in SSA such as the use of 

matatus (Venter and Mohammed, 2013; Ommeh et al., 2015; Behrens et al., 2017), 

bodabodas (Kumar and Barrett, 2008; Kumar, 2011) and tuktuks (Cervero and Golub, 

2007) . These vehicles tend to be unregistered (making it difficult to use standard fleet 

inventory methods to capture their contribution to urban traffic) as well as being old, 

poorly maintained and overloaded during use; all factors that will increase tail-pipe 
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emissions resulting in enhanced air pollution (Cervero and Golub, 2007; Assamoi and 

Liousse, 2010). Thus developing methodologies that can capture this unique but 

important component of the vehicle fleet in SSA cities is crucial for the development of 

representative assessments of the contribution of the transport sector to the atmospheric 

pollution burden. To address these data shortages, traffic video and parking lot surveys 

are often conducted and these data used as input for traffic models (Lents et al., 2005; 

Goel et al., 2014, 2015; Kholod et al., 2016). These types of survey however, face 

various challenges, for example, in determining VKT, type of vehicle, age and emission 

technologies on the vehicle (UC Riverside, 2002; Lents et al., 2004, 2005). To overcome 

some of these challenges, previous studies in Nairobi, have made certain assumptions 

which no longer hold, such as, the licence plate data standing as a proxy for the age and 

mileage of the vehicle (Lents et al., 2004).  

Globally, governments have developed and implemented fuel economy policy and 

standards that specifically target fuel consumption to reduce GHGs. Such policies and 

standards, have been implemented in four of the largest vehicle  markets: USA, China, 

EU, and Japan (Plotkin, 2004, 2016; Ribeiro et al., 2007; Tietge et al., 2017). Policies 

and standards in other major global markets (Australia, Brazil, India, Mexico and South 

Korea) tend to harmonize with these larger markets (Plotkin, 2016). Vehicle fuel 

economy and consumption are terms that are often used interchangeably in the literature 

(Huo et al., 2012; Slavin et al., 2013; TÜV Nord, 2013; Ntziachristos et al., 2014; 

Bandivadekar et al., 2016; Hao et al., 2016; Haq and Weiss, 2016; Plotkin, 2016; Tietge 

et al., 2017). Within this study, fuel economy will refer to volume of fuel consumed per 

distance (L/100km) and fuel consumption will refer to volume of fuel consumed over time 

(L/day). Kenya does not have fuel economy standards (Cameron et al., 2012). A  

previous study estimated Kenyan  fuel economy to be near equivalent to European and 

Japanese standards lagged by 8 years(ERC, 2015b). In that study an assumption was 

made in the absence for in-use vehicle activity data for the Kenyan fuel economy fleet to 
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be equivalent to European fleets of the same year of manufacture; in addition the study 

only covered newly registered vehicles light-duty vehicles and not vehicles in circulation. 

Vehicle manufactures declare fuel economy for new vehicles determined by chassis 

dynamometer testing of representative vehicles under laboratory conditions (Posada and 

German, 2013; Tietge et al., 2017). However,  there is usually a discrepancy between 

laboratory tests and on-road values as laboratory conditions cannot reflect real-world 

driving conditions in a vehicle’s lifetime (Weiss et al., 2011; Posada and German, 2013; 

Pandey and Venkataraman, 2014; Zhang, Wu, Liu, Huang, et al., 2014; Tiege et al., 

2015; Plotkin, 2016; Tietge et al., 2017). Furthermore the underestimation of actual fuel 

economy in laboratory type-approval testing directly affects achievable GHGs reductions 

(Ntziachristos et al., 2014).  Measuring on-road fuel economy has been undertaken 

using portable measuring monitoring systems (PEMS), but this is expensive and time 

consuming as measurements are only provided for a single vehicle over a short time 

period (Posada and German, 2013). Therefore, real-world fuel efficiency emission data 

are often lacking especially in developing countries (Weiss et al., 2011; Hu et al., 2012).  

Estimating fleet  fuel economy of in-use vehicles is difficult as it varies with a number of 

other factors such as: the number of vehicles, fleet composition, vehicle characteristics, 

vehicle activities, fuel type and quality, congestion, driving style, road type, inspection 

and maintenance and degradation (Smit et al., 2008; Zhang, Wu, Liu, Ruikun, et al., 

2014). Prior studies have noted the importance of determining in-use fleet fuel economy 

especially with vehicles with accumulated mileage over 500 000 km (Boulter et al., 2009; 

Pillot et al., 2014). USA and European environmental agencies factor in deterioration 

rates for vehicles under this mileage, but engines now last over 800 000 km before 

requiring the first rebuild of the engine (Pillot et al., 2014). These very high mileages are 

typical in vehicle fleets in SSA, and the costliness of studies and limited resources are 

even more of a hindrance when determining in-use fuel economy. Where these data are 

available, they can be used to estimate current GHG emissions, establish baseline 
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emissions and explore future emission scenarios for a changing vehicle fleet. As such, 

knowledge of current emissions is crucial to the development and implementation of 

emission reduction policy measures which are currently lacking in SSA (Schwela, 2012) . 

In addition, lack of vehicle activity data in formulating  Intended Nationally Determined 

Contribution (INDC) for the transport sector  (Cameron et al., 2012), as set out by United 

Nations Framework Convention on Climate Change mitigation (United Nations, 1992), 

has been identified by national governments in SSA as a major challenge in determining 

priorities in transport mitigation options.  

Mathematical models for predicting fuel economy have been developed using vehicle 

physical characteristics such as engine size, maximum vehicle power, vehicle torque, 

vehicle weight, wheelbase and cross-sectional area (Cappiello et al., 2002; Slavin et al., 

2013; Oh et al., 2014). The development of one such model required a large detailed 

historical dataset of new light duty vehicles, n = 6 246, with highway fuel economy data 

and corresponding vehicle characteristics (Slavin et al., 2013). In that study, the fuel 

economy was assumed to be as declared by the manufacturers as per corporate 

average fuel economy (CAFÉ) standards. This level of quality and quantity of data is 

rarely available, especially for developing countries (Ibarra-espinosa et al., 2017). 

Furthermore, the fuel economy declared for new vehicles is extremely unlikely to be 

transferable to the majority of the in-use, often old and second-hand, vehicle fleet in 

developing countries (Goyns, 2008). 

The overall objective of this paper is to develop a vehicle fleet questionnaire survey and 

associated procedure whose applicability is demonstrated for Nairobi Metropolitan 

Region (NMR), Kenya, allowing for  the collection of primary data that includes 

characteristics such as engine size, weight of vehicle, mileage, money spend on fuel, 

transmission, age of vehicle, fuel type and vehicle utility. These primary data (mileage 

and the money spend on fuel) are used to calculate fuel economy. We also use a 

statistical method, multiple imputation, to deal with missing data (Honaker et al., 2011), a 
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common problem with surveys. To the authors’ knowledge, this approach for dealing with 

missing data has not previously been applied in vehicle survey data. The secondary 

data, obtained from existing literature, are used to determine the total number and 

composition of vehicles as well as to verify primary data describing vehicle 

characteristics. These verified primary data, when used in conjunction with secondary 

data, give a baseline of real-world vehicle characteristics and activity for in-use vehicles. 

Further, this paper demonstrates how to use previously applied methodologies to build 

mathematical models to predict fuel economy; here we use and compare generalized 

linear models (GLM) and artificial neural networks (ANNs) (Slavin et al., 2013; Alice, 

2015). These methods have the potential to be rapidly deployed in other SSA cities and 

regions which suffer from similar data limitations and resources and importantly are able 

to capture the variability in the vehicle activity and emission data that exists both in the 

formal and informal vehicle fleets. 
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3.2 Methodology 

Nairobi and the larger Nairobi metropolitan region (NMR) was chosen as the site of the 

study as Nairobi is a typical SSA city in terms of socioeconomic status , size and 

population growth (UN-HABITAT, 2014). The total population of the NMR is 6.7 million 

people as of 2009 (KNBS, 2013a). Nairobi is the largest city in Kenya and the 14th largest 

in Africa with a population of 3.9 million people. 

Figure 3.1 describes the data combinations required to develop the NMR vehicle fleet 

dataset and how this is then used to estimate fuel economy using the three different 

modelling approaches: calculated fuel economy, GLM and ANN. The modelling 

approaches used to estimate in-use fuel economy (FE) for the on-road vehicle fleet in 

Nairobi require data describing vehicle characteristics and vehicle activity as listed in 

Figure 3.1. Primary data were collected using a questionnaire survey (see 

supplementary information, S1). Secondary data were used to determine the total 

number of vehicles and fleet composition as well as to verify the fleet compositions and 

characteristics derived from the questionnaire survey primary data collection (i.e. vehicle 

characteristics: vehicle weight, engine size). 

3.2.1 Secondary databases 

The total number of vehicles and fleet composition for vehicles in Kenya were obtained 

from the Kenya National Bureau of Statistics (KNBS) (KNBS, 2014b) . The composition 

of the vehicles in NMR were obtained from a transport feasibility surveys (JICA, 2006, 

2014).  Vehicle registration data for all light duty vehicles in Kenya from 2010-2012 were 

obtained from a global fuel economy initiative (GFEI) between the Partnership for Clean 

Fuels and Vehicles (PCFV) of United Nations Environment Program (UNEP) and the 

Energy Regulatory Commission of Kenya (ERC) (ERC, 2015b). Data describing the total 

number of vehicles was used to determine the sample size required for the questionnaire 
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survey. The NMR fleet composition was used to determine the sample weighting of the 

different vehicle categories for the field survey. 

 

 

Figure 3-1: The data combinations required to develop the NMR vehicle fleet dataset 
and estimate fuel economy using the three different modelling approaches: calculated 
fuel economy, GLM and ANN.  

3.2.2 Questionnaire survey 

A questionnaire-based quantitative vehicle fleet survey was developed to collect data for 

the 18 variables describing vehicle characteristics and vehicle activity and trialled in 

Nairobi (see Table 3.1). These variables provided information on fleet composition, fuel 
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consumption, technology, age of the vehicle, VKT, occupancy, and passenger load from 

data gathered from pedestrians and drivers.  

Table 3-1: 18 variables identified from questionnaire survey data divided into two 

categories: numerical data and categorical data. 

  Numerical Data Categorical data 

Unique vehicle identifier code Type of vehicle 

Engine size (cc)  Fuel type  

Gross vehicle weight (kg)  Manufacturer  

Odometer reading  Model  

Year of vehicle manufacture Transmission 

Day per week the vehicle travels (days/week) Vehicle ownership (owns or drives vehicle) 

Average distance vehicle travels a day 

(km/day) 

Condition (new/used)in which vehicle was 

bought 

Year(s) ago vehicle was bought (Years)    

Average money spend on fuel per vehicle 

(Ksh/month) 

  

Number of seats in a vehicle   

Litres of fuel used per vehicle (L/month)   

 

The face-to-face questionnaire survey interviews were conducted from December, 2014 

to January, 2015. Interviews were conducted by two trained interviewers between 10:00 

-17:00 hrs at 15 sites across NMR. These sites were selected for their high vehicle 

density and pedestrian populations and included sites in parking lots, shopping centres, 

markets, matatu stops, matatu and bus terminals, city centre, and residential areas. The 

location of the NMR field sites are shown in Figure 3.2. To ensure the survey responses 

were as representative as possible, sites were also selected to include high, medium and 

low income groups; with a stratified sample of vehicle users from different socio-

economic classes being  interviewed as they arrived randomly. 
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Figure 3-2: A Map of the 15 field sites where the questionnaire survey interviews were 

conducted in NMR. The map was created using GRASS software (GRASS Development 

Team, 2015). 

The secondary data describing the population of registered cars in Kenya (KNBS, 

2014b) was used to estimate that 67% of vehicles are located in the NMR (Gachanja, 

2012), this amounts to 1.35 million vehicles. Following the procedure (Van Dessel, 2013) 

a target sample size of n=1 284 for the questionnaire survey was required to obtain a 

95% confidence interval with a  ±5% margin of error assuming a conservative estimate of 

mail survey response rate of 30% (Fincham, 2008). Out of the 836 persons invited to 
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participate in the survey, 824 responded (98.6% response rate), this surpassed the 

response rate and the sample size was deemed to be sufficient. 

Table 3.1 summarises the 18 data variables the survey was designed to collect, divided 

into continuous data (with numerical specifications) and categorical data (with qualitative 

attributes). The questionnaire response was split by vehicle types as follows: passenger 

cars comprising private cars, company cars and taxis (243), matatus (250), bodabodas 

(233), motorcycles for personal use (11), tuktuks (16), light goods vehicles (58), and 

heavy goods vehicles (13). The descriptions of these vehicle types are found in Table 

3.2. 

3.2.3 Verification of vehicle characteristics 
Secondary data from various second-hand sales websites (Japan Car Direct, 2015; Be 

Foward Co, 2017; Cheki Inc., 2017; PigiaMe, 2017) and information from vehicle 

manufacturers (Isuzu Kenya, 2014; Toyota Kenya, 2014, 2017; Nissan Kenya, 2017; 

Toyota, 2017) were used to verify and adjust: weight, engine size and year of 

manufacture for the vehicles in the survey sample. The questionnaire responses relating 

to the manufacturer and model type were adjusted according to the information available 

on the manufacturers’ and second-hand sales websites, in order to reduce 

inconsistencies in the data. For instance, certain vehicle makes and models are 

manufactured for a specific year or period and these websites have the vehicle 

specifications for the vehicles on sale such as weight, engine size, transmission, these 

data were used to ensure survey responses were correct for those categories that could 

be verified.  

3.2.4 Statistical descriptive analysis by vehicle class  

To help describe, summarize and compare the different vehicle types the questionnaire 

survey data were divided into subsets split by Kenyan vehicle class.  This was achieved 

by allocating the Kenyan vehicle classes to EU vehicle classes according to the 

EMEP/EEA classification (Kouridis et al., 2014). These EU classes were used since EU 



 

132 
 

classifications are frequently employed to categorise default emission factors in emission 

inventories. The use/utility of the vehicles in Kenya are typically different from the EU, for 

example, 8 passenger vans are converted to 14 seater matatus and motorcycles 

(bodaboda) are used for public transportation. In these instances we kept certain unique 

Kenyan vehicle classes that represent the informal vehicle fleet (e.g.  matatus, 

bodabodas, tuktuks, Askfortransport) but related these to an equivalent EU emission 

class. 

Descriptive analyses were conducted to determine statistical parameters of the primary 

data from the questionnaire field survey using R (R core team, 2016). The statistical 

parameters: mean, median and standard error with 95% confidence interval were 

calculated for all numerical data.  

3.2.5 Estimated fuel economy determined using fuel consumption and 

mileage 

Three variables from the descriptive analysis: average days per week a vehicle travels 

(days/week), average distance vehicle travels per day (km/day) and average money 

spent on fuel per vehicle (Ksh/month), were used to determine fuel consumption (FC) 

and mileage (VKT), which was in turn was used to calculate fuel economy, denoted as 

FE’. FC (L/day) was calculated using the amount of money spent on fuel/month per 

vehicle  using  a baseline price for 15/November/2015  at  the average fuel pump price of  

Ksh. 84.23 per litre of diesel and Ksh. 93.29 per litre  of petrol  assuming 30 calendar 

days per month (ERC, 2015a). FE’ is calculated from the fuel consumption per day 

(L/day) and the average distance travelled using equation 3.1 and equation 3.2.  

Fuel consumption per day (L/day): 
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Fuel economy (L/100 km): 
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)  
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3.2.6 Identify and screen for implausible questionnaire survey data 

Implausible vehicle activity data were identified, screened and excluded based on data in 

the literature. FE for the most and least advanced internal combustion vehicle technology 

and fuels available in the world was used as a boundary limit (Bandivadekar et al., 

2016). This was based on the assumption that the best internal combustion technologies 

can only perform to a certain maximum efficiency giving an upper and lower limit for fuel 

economy for each vehicle.  The lowest and highest fuel economy baseline and cut off 

was set for passenger vehicles at 5 L/100km and 100 L/100km (Bandivadekar et al., 

2016); and for 2-wheelers for the best and poorest fuel economy to be greater than 1 

L/100km and less than 10 L/100km (Total Motorcycle, 2017). Using these criteria, 19 

vehicles whose estimated fuel economy fell outside these acceptable ranges were 

identified and excluded from the passenger car and 2-wheeler categories. Detailed data 

of the excluded vehicles is shown in the supplementary section, Table S1. 

3.2.7 Fuel Economy (FE’’) modelled using a general linear model (GLM) 

and Artificial Neural Network (ANN) 
Here we build on and extend a methodology used for light duty vehicles in the USA 

(Slavin et al., 2013). The authors predicted FE using a detailed historical data set of n = 

6 246 vehicles. Their dataset contained fuel economy data allowing evaluation of a 

model that estimated FE” from corresponding vehicle characteristics: engine size, engine 

power, torque, vehicle weight, wheel base and cross sectional area. A least squares 

regression model and an ANN model was then applied to create a more accurate 

predictive FE’’ model. In the absence of fuel economy data per vehicle category in 

secondary data in Kenya, equation 3.1 and 3.2 were used together with primary data 

from the questionnaire to calculate FE’, ANN and GLM was then applied to create a 
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model that is capable of more accurate prediction of FE according to vehicle 

characteristics.  

Our vehicle fleet questionnaire data collected in NMR was dissimilar in that it was a 

smaller data set n= 824 and it missed some of the vehicle physical parameters unlike a 

dataset from vehicle manufacturer such as the case with the CAFÉ standards (NHTSA, 

2014).These data collected in NMR (shown in Table 3.1) included vehicle characteristics 

and activity data for in-use fleet: light duty vehicles, heavy duty vehicles, motorcycles 

and mopeds. Given the differences in data, the Slavin et al., (2013) methodology was 

altered to first calculate fuel economy using equation 1 and 2 and then a general linear 

model (GLM) used to create a predictive fuel economy model (Alice, 2015). The 

accuracy of the GLM model was compared to ANN model.  

The equation relating fuel economy in Slavin et al., (2013) to vehicle physical parameters 

was adjusted to incorporate 11 variables to explore variable importance in determining 

key drivers influencing FE’’; the general relation is shown in equation 3. 

   

  (                                       )                                                

 Modelled Fuel Economy (FE”) 

 Vehicle type and utility (VTU) 

 Fuel type (FT) 

 Transmission Type (TT) 

 Engine size (CC) 

 Gross value weight (GVW) 

 Mileage on the car from cumulated odometer reading (MIL) 

 Age of vehicle as a proxy for technology (Age) 

 Days per week vehicle used (DPW) 

 Vehicle turnover from years since vehicle bought by current owner (YBT) 

 Condition in which the vehicle was originally purchased (NU) 

 Number of seats on vehicle (NOS) 

Vehicle type and utility (VTU) were re-coded into three dummy variables representing 3 

broad classes: passenger cars, 2-wheelers and 3-wheelers and light commercial 
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vehicles. Heavy duty vehicles were used as a reference category. Fuel type (FT), 

transmission (TT), and condition of the vehicle when it was originally purchased (NU) 

were similarly recoded. In recoding the NU variable, vehicles bought new (NN) were 

used as a reference category. The dependent variables were then transformed using 

natural logarithm. 

While a GLM fits only linear and direct associations between the set of predictor 

variables and the dependent variables, ANNs are more flexible and deal with non-

linearity more accurately (Nagendra and Khare, 2005) . An ANN proposes an input as 

well as an output layer of information, the input being our set of predictor variables and 

the output being FE” as outlined in Equation 3.3. The network then further assumes that 

a number of layers exist that transform the input optimally to predict the output. Such 

transformations could be equivalent of a GLM (no layers between input and output, only 

direct associations between the two layers), but usually at least one layer is assumed 

that consists of so called "nodes" where the input from several variables is combined to 

produce a new output (see arrows in graphical abstract). The input from such a layer of 

nodes could again be combined by a new layer of nodes etc. This way, neural networks 

are very flexible in modelling linear and non-linear interaction terms between input 

variables. The whole network is optimised to maximise predictive power for the output 

layer (which can in principle consist of more than one variable). The final model depends 

on trying a range of different network configurations and comparing their predictive 

power, therefore the whole process depends on guarding against over-fitting, which will 

be described in the following section. 

When fitting the GLM and ANN models (see Slavin et al., 2013 and Alice et al., 2015 for 

further details) the analyses needed to account for two specific problems. First, missing 

data needed to be dealt with in a manner that is statistically appropriate and that takes 

sampling variance into account. Second, we need to guard against over fitting our FE" 
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model based on just a single sample. The following steps (a) to (f) were taken to address 

these problems: 

a) Multiple imputation of missing data 

Multiple imputation of incomplete multivariate data, a well-established methodology for 

dealing with missing data (Horton and Lipsitz, 2001; Kenward and Carpenter, 2007; Azur 

et al., 2011) was applied to the dataset using R statistical package AMELIA (Honaker et 

al., 2011). Imputation has previously been applied to medical and psychiatric research 

(Burton et al., 2007; Kenward and Carpenter, 2007; Azur et al., 2011; Biering et al., 

2015). Before the main analysis, 20 imputations were run to examine the accuracy of 

imputation and to check how close the imputed density distributions and bivariate 

distributions were to the original values.  

b) Split imputed dataset into estimation and valuation data 

After imputation, the dataset was randomly split into a training dataset constituting 75% 

of the imputed dataset and 25% of the remainder was used as a test dataset. 

c) Fit general linear regression model and compute mean square error (MSE) 

A general linear model (GLM) regression was fit to the training split of the imputed 

dataset and mean square error (MSE) was computed on the test split of the data. 

d) Neural network model-exploratory phase 

A neural network model was applied to the imputed dataset using Levenberg-Marquardt 

back-propagation algorithm. This was created using a neuralnet package (Fritsch et al., 

2016) and closely followed existing methodology (Alice, 2015). The architecture had one 

or two hidden layers with various configurations which were determined experimentally. 

MSE, Bayesian information criterion (BIC) and Akaike information criterion (AIC) values 

for each of these models were calculated to evaluate model fit (MSE: how close the 

predictive fuel economy values were to the calculated fuel economy values; AIC/ BIC: 

how parsimonious the model fit was compared to the number of parameters needed to 
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estimate the model). A selection of the top competing neural network (ANN) models 

based on the lowest MSE, AIC, and BIC numbers was identified to be included in the 

cross validation step alongside the GLM.  

e) Cross validation 

Cross validation was used in this step to measure the predictive performance of the 

models, to guard against over-fitting of the ANN, and to allow for model selection (Arlot 

and Celisse, 2010). Three competing ANNs had been selected from step d) based on 

the lowest AIC and BIC values as well as MSEs of comparable size to the GLM. An 

iterative bootstrap process was then used to estimate the predictive performance of all 

four models (Arlot and Celisse, 2010). At first a single imputation of the dataset was 

done and then the sample was randomly partitioned into a training set, 75% and a test 

set used as a validation sample, 25%. A GLM was then fitted to the training set and the 

MSE from predictions in the test set was saved. In the next step the three selected ANN 

structures were fit to this training data set, saving AIC and BIC values as well as their 

respective MSEs from their predictions in the test dataset. The cross validation process 

was iterated 1000 times with missing data imputation and randomised partitioning of the 

train-test dataset in each of the runs. For each iteration a comparative statistical analysis 

on MSE, AIC and BIC numbers was carried out to confirm best model estimate, thereby 

producing bootstrap distributions of the model fit criteria.  
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3.3 Results 

3.3.1 Vehicle class, type and attributes 

Using the EMEP/EEA classification (Kouridis et al., 2014), 16 segment Kenyan vehicle 

classes were developed using the sample data based on vehicle weight, engine size and 

utility shown in Table 3.2. The distribution of the questionnaire data to these broad 

vehicle categories is also shown in Table 3.2. The category that had the largest number 

of questionnaire returns was matatu, followed by bodaboda and then private cars 

comprising of 250, 233 and 194 vehicle specific questionnaire response, respectively. 

In developing the segments from the NMR fleet, special attention was paid to classify the 

informal portion of the fleet. Tuktuk and bodaboda had equivalent EMEP/EEA, L2e and 

L3e respectively. But the utility of the L3e in Kenya were different, both for private and 

public transport use. Thus L3e were further re-classified, motorcycles were those used 

for private transport and bodaboda were those used for public transport. Matatu were 

challenging to classify especially the 14 seater as these were imported as 9 passenger 

vehicles but refitted to seat 14 passengers. Hence, in EMEP/EEA classification, a 14 

seater matatu would be a light duty vehicle (based on GVW less than 3500 kg), but we 

re-classified the 14 seater matatu to a heavy duty vehicles based on the number of 

passengers (greater than 8). The rest of the matatus (26, 29, 33, 51, 62, 67 seaters) 

were also classified as heavy duty passenger vehicles with sub-classes based on the 

number of passenger seats. The AskforTransport were classified as EMEP/EEA N1, N2 

or N3 as they were either light duty commercial vans or trucks or heavy duty trucks. Light 

duty passenger vehicles included private cars, taxis, and company cars and were 

classified as EMEP/EEA M1, based on number of passengers (less than 8).  

 

 

Table 3-2: Vehicle classification and categories for Kenyan vehicle fleet based on 

vehicle weight, engine size and utility of the vehicle. Bodaboda: two-wheeler used to 
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ferry passengers and goods, matatu: minibus/bus taxi used to ferry passengers, tuktuk: 

three-wheeler used to ferry passengers and goods, AskforTransport: informal vans and 

truck for hire. Vehicle categories that often include informal transport types are identified 

in bold type. 

 

3.3.2 Vehicle characteristics 

A portion of the descriptive statistics for the vehicle characteristics (before imputation) is 

shown in Figure 3.3. The vehicle characteristics presented are gross vehicle weight 

Kenyan 

Class

Sample 

(Total) Description General

AfritypeM1 243 Passenger 

cars <8

AfritypeM1A 0

small car 

engine 

size<800cc

AfritypeM1B 21

medium car 

engine size 

800-1400cc

AfritypeM1C 152

medium car 

engine size 

1400-2000cc

AfritypeM1D 63

large car 

engine size 

>2000cc

Light goods 

vehicles
N1 AfritypeN1 51 GVW≤3500kg

Pickups, small 

trucks, 

AskforTransport

M2 AfritypeM2 84
1250kg<GVW

<3500kg
Matatu 14 seater

AfritypeM3A 22
3500kg<GVW

<6000kg

Matatu  >14 

seater-26 seater

AfritypeM3B 137
6000kg<GVW

<8000kg

Matatu 29 seater-

33 seater

AfritypeM3C 7
8000kg<GVW

<12000kg

Matatu >33 

seater-51 seater

AfritypeM3D 0 GVW>12000kg
Matatu 62-67 

seater

N2 AfritypeN2 9
3500kg≤GVW≤

12000kg

Trucks, 

AskforTransport

N3 AfritypeN3 1 GVW>12000kg
Trucks, 

AskforTransport

Two-wheel L1e AfritypeL1e 0
Engine size 

<50cc

Motorbikes and 

bodaboda

Three-wheel L2e AfritypeL2e 16 GVW>270kg Tuktuk

Two-wheel L3e AfritypeL3e 244
Engine size 

>50cc

Motorbikes and 

bodaboda

Includes private 

cars, company 

cars and taxis 

formal/informal

Passenger 

vehicle: <8 seats

Passenger 

vehicles >8 seats
M3

M1

Heavy Goods 

vehicle

Light Duty Vehicle

Heavy Duty 

Vehicle

Motorcyle and 

Moped

EMEP/EEA Classification
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(GVW) (kg), engine size (cc) and vehicle age (years) which is determined from the year 

the vehicle was manufactured. These data are shown for 11 of the 16 segments defined 

in Table 3.3 since there was insufficient data from the questionnaire data for the 

remaining 4 segments; engine size and weight were also missing for some of the vehicle 

categories. 

The oldest vehicle age is for the type AfritypeM2 (14 seater matatus) at 16.9±0.2 years, 

and the lowest age is AfritypeLe (3 wheeler tuktuks) at 2.2±0.8 years, although 

AfritypeL3e (2 wheeler bodabodas and private motorbikes) are also relatively new with 

an average age of 2.7±0.4 years. Highest variability in the different vehicle classes in 

age was AfritypeM3C (33-51 seater matatus). 
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Figure 3-3: Vehicle characteristics from questionnaire data, mean with 95% confidence 
interval for vehicle age, engine size, and weight.  

Engine size and vehicle weight are key vehicle characteristics in determining vehicle 

class together with the utility of the vehicle. Vehicle weight and engine size are 

predetermined from manufacture and grouped according to the Kenyan classes shown in 

Table 3.2. The heaviest vehicle weight and biggest engine size is for the type 

AfritypeM2C (33-51 seater matatus) and the least weight and engine size were the 

AfritypeL23e, the bodabodas and private motorbikes. Highest variability for weight was 

AfritypeN2 (heavy duty trucks) and for engine size was AfritypeM3C (33-51 seater 

matatus). 
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3.3.3 Vehicle activity 

A portion of descriptive statistics for vehicle activity is shown in Figure 3.4. The vehicle 

activities shown are daily mileage calculated as vehicle kilometres travelled (VKT) per 

day (km), fuel consumption per vehicle (L/day), and the fuel economy (L/100km), for 11 

of the 16 segments. The highest mean VKT (215.7 ± 60.5 km/day) and highest fuel 

consumption (63.2 ± 9.9 L/day) were both recorded for AfritypeM3C (33-51 seater 

matatu). The highest mean FE’ was found for AfritypeM3A (37.4 ± 5.4 L/100km), 14-26 

seater matatu. The highest variability among the vehicle classes for fuel consumption 

and fuel economy was AfritypeN2 (heavy duty trucks) while highest variability for VKT 

was AfritypeM3C (33-51 seater matatu). 
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Figure 3-4: Vehicle activity from questionnaire data, mean and 95% confidence interval 

about the mean of the vehicle kilometres travelled (VKT), fuel consumption (FC) and 

Fuel Economy (FE’) for Kenyan classes.  

The differences in FE’ between the vehicle classes as presented in Figure 4, were tested 

for statistical significance using Analysis of Variance (ANOVA). The variables compared 

in the test were the Afritype classification and the default classes from the 

questionnaires. FE’ was found to be statistically highly significant P <2.2e-16 for N = 707, 

the table of results of the P-values resulting from this comparison is presented in 

supplementary section, Table S2.  

3.3.4 Fuel economy model 

3.3.4.1 Imputation  

The data set before imputation is presented in Figure 3.5 which shows the map of 

missing values. The first 8 variables shown in columns in Figure 4 correspond with 

variables from equation 3 as follows: Age, MIL, YBT, GVW, DPW, CC, TT, FT. The first 

three: Age, MIL and YBT have the most missing variables. Before imputation only 36% 

of the dataset had a value for every variable, this improved to 89% after imputation with 

fuel economy not being imputed (which accounted for the remaining  11%).  
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Figure 3-5: A map of missing values. The variables in columns correspond with those 
from equation 3 as follows: Age (Age of vehicle as proxy for technology), MIL (mileage 
on the car from cumulated odometer reading), YBT (vehicle turnover from years since 
vehicle bought by current owner), GVW (gross value weight), DPW (days per week 
vehicle used), CC (Engine size), TT (transmission type), FT (fuel type), NOS (number of 
seats on vehicle). The Y-axis presents the count of the different variables. 

A plot of the diagnostics for the imputation is presented in Figure 3.6; the performance of 

the prediction algorithm is compared with that based only on the observed data. The dots 

in Figure 3.6 each represent an observed data point in our dataset, but they provide the 

mean imputed value that we would use in our analysis if this value had been a missing 

value. The x-axis orders these points according to their observed value while the y-axis 

presents this mean imputed value. The 90% confidence intervals around the means are 

based on 20 'overimputations' (Honaker et al., 2011). The line in each plot presents the 

line of agreement, i.e. with perfect information all points would lie on this line 

(equivalence of observation and imputation) and we would expect 90% of dots to show 

an overlapping confidence interval with that line in each panel of the figure. The colours 

code the fraction of the missing values on the other covariates for that specific observed 

value. The results in Figure 3.6 show overall that the imputation worked reasonably for 
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most variables with Engine Size (CC) and weight (GVW) being better imputed than Days 

per Week (DPW), which tend to be overestimated for the relatively few respondents who 

use their cars on four days or less. It is also worth noting that DPW had more missing 

values than CC. 

 

 

Figure 3-6: Diagnostic graph of observed variables plotted against the imputed values 

3.3.4.2 ANN exploratory phase 

A range of different ANN model configurations was explored in the training data set (a 

random 75% split of the data). The networks were confined to two layers because 

increasing the number of layers or the number of neurons did not improve the 

information criteria or MSE values. The top panel of Figure 7 depicts AIC and BIC values 

for the tested two-layer architecture, lower values indicating better fit.  As the number of 

nodes in the first and second layer decreased the AIC and BIC numbers decreased. The 
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minimal value was reached for both criteria at a NN4.1, indicating that this was the model 

with the lowest number of parameters while showing the highest likelihood based on the 

test data. Comparing the MSE values of the ANN and GLM model, the GLM model 

generally performed better. 

The ANN models to be tested in the validation step were determined to be NN4.1 (lowest 

AIC, BIC and MSE in test data), NN4 (testing whether the layer with one node is needed) 

and NN3.1 (testing whether four nodes are needed). 

Figure 3.7 shows the predictions made based on the GLM and the NN4.1 in the test data 

(random complementary 25% split of the data set). As the figure shows, both models 

identified the general distribution of the observed fuel economy data fairly well. This is 

also mirrored by the correlations between the observed data and the predicted values 

from the GLM (r =  0.77, p < 0.001), the respective correlation between observed and 

predicted for the ANN (r = 0.73, p < .001) and finally the correlation between the 

predicted values from both models (r = 0.92, p < 0.001). 



 

148 
 

 

Figure 3-7: A comparison of GLM and various configurations ANN model and then the 
best NN model (2 layers, 4 and 1 neuron) is compared to the GLM model. NNij denotes 
the network configuration of the neural network with i, the number of nodes in the first 
layer and j the number of nodes in the second layer. All the values in these plots are log-
normal transformed. 

3.3.4.3 Cross validation 

The results of the cross validation from the iterative bootstrap of all four models is shown 

in Figure 3.8. In Figure 3.8 (I-IV) shows the difference in AIC and BIC values of the 
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originally best fitting model (NN4.1) compared to its two closest competitors (NN4, 

NN3.1). Positive differences in each panel indicate that NN4.1 had a worse fit in a cross-

validation run (i.e. larger values than the competitor), negative differences indicate 

evidence against the competitor model. We can see that for both information criteria and 

both comparison models the overwhelming majority of differences indicates that the 

simpler model shows a better fit to the data than NN4.1 (NN3.1: AIC 99.7% BIC 100%; 

NN4: AIC 62.7% BIC 92.2%).  

 

Figure 3-8 : Plot of the comparative statistics of the bootstrap. AIC, BIC, MSE of the 
three top ANN models (NN4.1, NN3.1, NN4) and the GLM model.  I, II, III, IV comprises 
of AIC and BIC comparisons of ANN and V, VI, VII comprises of MSE comparisons of 
GLM and ANN. 
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 V-VII of Figure 3.8 shows the difference in MSE values between the GLM predictions in 

training/test data splits and the three network models. Negative differences indicating 

that the GLM was performing better than an ANN (larger MSE for ANN and vice versa for 

negative ones). The GLM consistently performed better than ANN for all the models as 

the difference between MSE GLM values and ANN MSE values was again negative for 

the overwhelming majority validation runs (NN4.1 worse MSE in 99.0%; NN4 in 99.1%; 

NN3.1 in 98.3% of cross validation runs).  

3.3.4.4 Interpretation of the GLM 

Fitting the GLM to the whole data set results in a significant omnibus test statistic 

(Deviance=376.42, df=15, p < 0 .001), indicating that the chosen predictors together 

inform fuel economy statements given by the respondents. Table 3.3 presents the 

estimated coefficients. Engine size is the only coefficient that is deemed significant 

based on the conventional nominal alpha level of p <0 .05: per standard deviation 

increase in engine size, the fuel consumption of a vehicle is increased by 0.48 standard 

deviations of  L/100km. Three variables showed marginally significant relationships with 

fuel consumption, which were the weight of the vehicle (GVW), whether the vehicle was 

bought in Kenya (UK) and whether it was used overseas (UO), the latter two indicating 

that these cars consumed more fuel than the newly bought cars. 
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Table 3-3: Unstandardized regression coefficients of the GLM fitted to the 75% and 

imputed data set  

Variable Estimate Standard Error tvalue Pr(>|t|) 

(Intercept) 0.01 0.03 0.54 0.59 

CC 0.48 0.20 2.43 0.02* 

GVW 0.22 0.13 1.74 0.08. 

MIL -0.03 0.04 -0.95 0.34 

Age -0.05 0.05 -0.95 0.34 

DPW 0.00 0.03 -0.10 0.92 

YBT -0.01 0.04 -0.29 0.77 

NOS 0.00 0.06 -0.08 0.94 

AfritypeL2e/L3e -0.12 0.16 -0.76 0.45 

AfritypeN1 -0.03 0.04 -0.67 0.50 

passenger -0.07 0.08 -0.87 0.39 

FT -0.06 0.07 -0.95 0.34 

TT 0.02 0.06 0.32 0.75 

NN (Missing) 0.00 0.04 0.10 0.92 

UK 0.07 0.04 1.85 0.06. 

UO 0.07 0.04 1.67 0.09. 

 

The model reveals that CC (engine size of the vehicle) is the only significant predictor of 

fuel economy. The coefficient of [0.48] means that by increasing the engine size of a 

vehicle by one standard deviation (i.e. x cc), the fuel economy is increased by 0.48 SD 

(i.e. y L/100km). To test for collinearity amongst the predictor variables, variance inflation 

factors (VIF) were calculated and found to be between 5 and 10, showing high 

correlation between the predictor variables.  CC and GVW, were in turn removed from 

the model and their effect analysed. Collinearity was not resolved by dropping GVW, 

(VIF was found to remain between 5 and 10), and it emerged on dropping GVW, FE’ 

may also depend on AfritypeL2e/3e, fuel type (FT) and the state the vehicle was bought 

if new or old (NN), as the p-value <0.05. Dropping engine size (CC) increases collinearity 

(VIF>10), it emerged FE’ may also depend on AfritypeL2e/3e and the state the vehicle 

was bought if new or old (NN). Complete tables of results are in the supplementary 

section S4 and S5.   
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3.4 Discussion 

This study has shown that for cities such as Nairobi, with limited or low quality data and a 

large informal transport component (tuktuk, matatu, bodaboda, Askfortransport); 

questionnaire survey data can be reliably used to determine fuel economy of an urban 

fleet. Fuel economy models were presented; first data multiple imputations were 

successfully used to fill in missing data, then modelling performance of different ANN 

models was compared to a GLM model,  where GLM model consistently performed 

better. In analysing the significance of the predictor variables, engine size was found to 

be most significant and three other variables showed significant relationships with fuel 

economy:  weight of the vehicle (GVW), whether the vehicle was bought in Kenya (UK) 

and whether it was used overseas (UO). There were however constraints due to the 

sample size in two ways: firstly, the total sample disaggregated to vehicle categories for 

heavy goods vehicles (HGVs) for example reduced the sample to N=10 (see table 2), 

affecting the level of confidence of the results in this category. This is because the trucks 

and lorries are kept out of the city centre and replaced with smaller trucks, hence their 

sample was much smaller than that for the passenger vehicles. Secondly, there was the 

problem of collinearity detected amongst the predictor variables, for example between 

weight of the vehicle and engine size. However, removing these highly correlated 

variables from the model did not show improvement in the collinearity. Given the 

constraints on the sample size resulting from disaggregation and the missing variables in 

the sample, elimination of those variables which may have reduced collinearity would 

have resulted in a much smaller sample size and so this was not carried out. However 

even with this limitations, we can conclude fuel economy and vehicle activity developed 

for formal transport in developed countries sectors do not map the complexity of the  

informal sector in developing countries due to differences in vehicle types and utility of 

the vehicles. 
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3.4.1 Comparison with previous studies 

Major vehicle manufacturers (Japan, USA, EU and China) have fuel economy policies  

(Plotkin, 2016). Figure 3.9 compares the various studies conducted to estimate vehicle 

fleet fuel economy compared to the current fuel economy values of this study. The 

Kenyan passenger cars have 3 times poorer/lower fuel economy compared to the 

Japanese, EU and Indian fleets and 2 times lower than the South Africa, Chinese and 

USA fleets. For the Kenyan light duty commercial vehicles, fuel economy was up to 3 

times poorer compared to the Japanese fleet or targets. Fuel economy of the two-

wheelers and three-wheelers of the Kenyan fleet (named bodaboda and tuktuk 

respectively) were two times poorer than the Indian Fleet. The matatu 14 seater was 

determined to be the equivalent to the Japanese small bus (vehicle designed to carry 11 

or more passengers and with GVW up to 3500 kg) and the South African minibus taxi. In 

this category the Japanese fleet was 2 times and South Africa fleet was 1.7 times more 

fuel economic than the matatu 14 seater. 
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Figure 3-9:  Fuel economies for different countries from various sources: India (Goel et 
al., 2015), Kenya (current study), South Africa (Venter and Mohammed, 2013), China 
(Huo et al., 2012), Japan (JAMA, 2016), EU (Law et al., 2011; Ntziachristos et al., 2014), 
USA (Law et al., 2011; EPA, 2014). 

In Kenya, 90% all imported and registered light duty vehicles between 2010-2012 were 

from Japan and Europe (ERC, 2015b). Japan has very stringent fuel economy standards 

to meet their 2015 targets (JAMA, 2016) , yet when the Kenyan fleet is compared to the 

Japan in-use vehicle fleet in 2004, overall fleet fuel economy was 2 to 3 times worse.  

The comparison in Figure 3.9 is made on the assumption that other studies have similar 

or smaller confidence intervals. The confidence interval for the Kenyan study (see Figure 

3.4), ranges from 7-54% with an average of 24%. 
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The passenger fuel economy for USA includes light duty trucks (EPA, 2014), while for 

other countries light duty trucks were a separate category. This may contribute to the 

seemingly poor fleet fuel economy for passenger cars in the USA, even when the 

technology and fuels meet the latest equivalent current European and Japanese 

standards.  

The light duty commercial fleet in-use in Nairobi was typically AskforTransport  vans and 

trucks, an informal van and truck hire within the city and in residential areas. This 

category had the second highest age, as “retired” older vehicles are not scrapped but are 

repurposed. The fuel economy of this category is better than USA fuel economy for the 

same category, but USA fleet for this category is heavier (weight of this category in USA 

includes trucks up to 3 800 kg, whilst the other fleets are less than 3 500 kg) and bigger 

engines (EPA, 2014; Plotkin, 2016). 

Bodabodas and tuktuks are mainly imported from Asia: India, Indonesia, Thailand, and 

China as they are cheaper compared to European imports (Assamoi and Liousse, 2010; 

Kumar, 2011). Motorcycles are used as public transport in India and Vietnam as they are 

in Kenya,  but they have twice the average mileage compared to Kenya, 79.7± 4.3 

km/day (Oanh et al., 2012; Goel et al., 2015) . In Asian cities they have a lower daily 

mileage because they represent a larger share of the urban vehicle fleet, the reason 

being that motorcycles are often used in cities to avoid congestion,  for instance 

motorcycles represent 90% of the vehicle fleet in Hanoi (Oanh et al., 2012).  Kenyan 

motorcycles were in this study (see Figure 3) found to be mainly 150cc engine and 4-

stroke engine compared to motorcycles in West Africa that are 50cc engines and two 

stroke (Assamoi and Liousse, 2010). Given the trend in increasing numbers of 

motorcycles in SSA (Assamoi and Liousse, 2010; Kumar, 2011), the average daily 

mileage for motorcycles may also decrease. The study also highlighted high intensity 

vehicle usage, indicated by an average vehicle mileage, VKT, for other vehicle types 

such as passenger cars (61.04±7.18 km/day), and matatu 151.55±10.42 km/day. 
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South Africa has a strong domestic vehicle manufacturing industry and restricts imports 

of second-hand cars (UNEP, 2015) and is therefore unlike Kenya where 99% of vehicles 

are second-hand (ERC, 2015b). Their vehicles perform better than Kenya’s, though 

reliable minibus taxi data (equivalent to matatu) is often not available (Behrens et al., 

2017). Kenyan matatu 14 seaters are old (16.9±0.2 years)  and are originally 9 seater 

vans being converted into 14 seater; overloading and aged component of the fleet; this 

likely accounts for the poorer fuel economy compared to South Africa. The bigger 

matatus, equivalent to urban buses, are relatively new and have a better fuel economy 

comparable to the Chinese fleet. However with expected vehicle technology deterioration 

(Chiang et al., 2008) further aggravated by poor road conditions, low fuel quality and lack 

of inspection and maintenance (I/M) programmes this advantage in fuel economy may 

not be maintained. 

The age of the vehicle is normally an indicator of the emission control technology and 

hence emissions from the vehicle  (Zachariadis et al., 2001; Goel et al., 2015). This may 

hold true for countries that enforce emission compliance checks when importing vehicles 

and have regular I/M programs (Pillot et al., 2014). Imported vehicles with emissions 

control technology often have these removed or they malfunction without an enforceable 

I/M program (Pillot et al., 2014). The vehicle fleet average age is often high in Kenya: 

bodaboda 2.69±0.38 years, passenger cars 11.1±0.57 years, matatu 8.80±1.24 years. 

However, age may not to be a good indicator for emission technology on light duty 

vehicles in Kenya as a previous study (Lents et al., 2004) has shown. This is because in 

Lents et al., (2004), the vehicles had the required technology but the fuel quality 

(unleaded petrol) required did not meet standards for emission reduction devices 

(catalytic converters) to function. Age is also not a good indicator for the technology of 

emission reduction on HDVs as the original equipment manufacturers (OEMs) are not 

responsible for the final vehicle configuration other than the powertrain, chassis and cab 

(Hill et al., 2011). This is supported by the findings of this study of a significant variance 
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in the age of HDV (75%), shown in Figure 3.3: AfritypeM3C and AfritypeN2 differ by 

118% and 105 % respectively. In Kenya most HDV, such as trucks, are imported as 

engine chassis and cab and built in the country for various uses: matatus, buses and 

heavy commercial trucks. However the sample size for the HDVs for this study was 

limited, this is because HDVs (trucks and lorries) have limited geographical areas of 

circulation in Nairobi. Thus the HDV variance should be viewed cautiously until further 

studies are conducted with a bigger sample size. 

Comparing FE values from different parts of the world is rather uncertain. The studies 

from which data were compared had both diesel and petrol vehicles of similar capacity, 

mass and power specifications. However, identical average properties were not possible 

for some countries (for example the USA) due to different categories for vehicle weight 

and engine size. Even when vehicles had identical properties to fleets in other parts of 

the world, their utility especially those of the informal sector were different. To overcome 

this challenge, developing country fleets (India, South Africa and Thailand) were sought 

for comparison as their fleets included an informal sector and had similarity in utility. The 

informal transport sector in SSA is usually poor organization and the industry is often 

deregulated unlike Asia (Assamoi and Liousse, 2010; Kumar, 2011; Goel et al., 2015). 

The methods to measure FE also differed; real-world exhaust measurement were sought 

as these were deemed to be most accurate (Huo et al., 2011; Franco et al., 2013; EPA, 

2014; JAMA, 2016) but few such studies are undertaken, thus other in-use vehicle 

studies were also included (Law et al., 2011; Venter and Mohammed, 2013; Goel et al., 

2015). The year the study was undertaken may also have contributed to the uncertainty 

as that may change the technology the vehicles may have and the fuel quality. To 

reduce this effect, the comparator studies were limited to years between 2010-2015. 

Furthermore, fuel consumption becomes extremely high under traffic congestion (Wang 

et al., 2008; Zhang, Wu, Liu, Ruikun, et al., 2014) which is a severe and worsening 

reality in Nairobi, like in most developing cities (Gyimesi et al., 2011; Kinney et al., 2011; 
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Salon and Aligula, 2012; Petkova et al., 2013; UN-HABITAT, 2014). Therefore traffic 

congestion ought to be factored into FE studies, often this is not the case (Smit et al., 

2008). However even with these limitations, we can conclude vehicle activity and thus 

fuel economy developed for formal transport sectors does not map the complexity of the 

informal sector due to different vehicle types and utility of the vehicles. 

3.4.2 Imputation 

Multiple imputation of incomplete multivariate data was successfully applied to the 

vehicle fleet data. The diagnostics of the imputation in Figure 3.6 shows around 90% of 

the confidence intervals for the variables CC, GVW, Age, MIL, DPW, YBT, TT, FT and 

NOS contain the y = x line, which means that the true observed value falls within this 

range, and therefore the imputation was effective in predicting the missing values. The 

result of the imputation is a bigger data complement than if only those observations for 

which every variable measured were to be included. The imputation for Engine Size (CC) 

was a better imputation than Days per Week (DPW). Engine size of the vehicle was 

verifiable through second-hand vehicle websites and linked to other variables such as 

GVW, transmission, type of fuel and number of seats. Also the number of times a vehicle 

is driven per week (DPW) may be strongly linked to variables not sought after in the 

questionnaire such as type of job, distance from home or work, fuel price change.  

The map of the missing values in Figure 3.5 shows the variable Age has the most 

missing values. This is because during the interviews, if the driver of the vehicle was not 

the owner, they often did not have the vehicle logbook, thus the age of vehicle, when the 

vehicle was bought, engine size and weight was not verifiable on site. Secondary data 

from vehicle sales website were used to verify and supplement this information where 

possible. A previous traffic survey in Nairobi was not able to directly ascertain the age of 

the vehicle and relied on odometer readings as a proxy for the age of vehicles the  (UC 

Riverside, 2002). This is because at the time vehicle imports were restricted to new 

vehicles so this proxy worked, in 2015, 99% of vehicles imported are second-hand (ERC, 
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2015b).  MIL, which is the odometer reading, had the second highest missing values. 

Drivers of bodabodas, tuktuks, matatus and taxis openly admitted to tampering with the 

odometers, this finding was supported by a previous study which had very low mileage 

from a multiple regression methodology to determine average mileage, and concluded 

that tampering had occurred (UC Riverside, 2002). Engine size (CC) and GVW were still 

verifiable via websites thus the missing values were less in the original dataset before 

the imputation.  

3.4.3 Fuel Economy Model 

In assessing the comparative statistics in Figure 8, the GLM model consistently 

performed better than ANN model, engine size was deemed to be most significant in 

predicting FE. 

We chose a cross-validation approach to guard our predictor selection approach against 

over-fitting (Arlot and Celisse, 2010; Slavin et al., 2013; Alice, 2015). The cross-

validation procedure supports our analysis with regards to this goal in three ways. First, 

the use of information criteria (AIC, BIC) uses indices that provide a numerical summary 

that takes into account both the fit to the observed data as well as the number of 

parameters (here layers of the ANN). Unduly complex models were therefore penalised 

and less likely to end up in our final set of potential models (NN4, NN4.1, NN3.1). 

Secondly, the use of the MSE in a test sample ensures that if a model is prone to over-

fitting the training dataset it will produce worse MSEs in this sample and would again be 

less likely to be selected. Thirdly, running this analysis as a bootstrap (included repeated 

multiple imputation of missing data adding further robustness) allows us to compare the 

potential for over/fitting as well as adequate fit in one go. Figure 3.7 shows that the 

overwhelming majority of the bootstrap runs actually support the fit of simpler neural 

networks than NN4.1 (NN3.1: AIC in 99.7% and BIC in 100% of runs; NN4: AIC 62.7% 

BIC 92.2%, respectively) and the MSE supported the GLM consistently (NN4.1 worse 

than MSE in 99.0%; NN4 in 99.1%; NN3.1 in 98.3% of cross validation runs). The 
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modelling performance and prediction of the GLM achieved higher accuracy, this finding 

is contrary to a fuel economy study that compared regression models to ANN, ANN 

model achieved higher accuracy (Slavin et al., 2013). This may be because the success 

of the ANN relies on reliable input and output data to train the algorithm and bigger 

datasets are better for ANN model precision in prediction for instance Slavin et al., 

(2013) and Alice et al., (2015). Limited and incomplete vehicle fleet data is often a 

challenge in SSA , so while ANN is a powerful tool in modelling complex relations and 

systems (Goh, 1995; Slavin et al., 2013; Molaie et al., 2014), due to the smaller dataset it 

was not the better predictive model when compared to GLM model. 

Engine size was deemed to be most significant although three other variables also 

showed significant relationships with fuel economy:  weight of the vehicle (GVW), 

whether the vehicle was bought in Kenya (UK) and whether it was used overseas (UO), 

the latter two indicating that these cars consumed more fuel than the newly bought cars. 

Thus the study was able to identify aspects of the vehicle fleet character (especially 

engine size and weight of the vehicle) are key to predicting fuel economy changes, thus 

providing a focus on those parameters that are vital to obtain while conducting 

questionnaire surveys in order to derive an accurate estimate of fleet fuel economy.  
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3.5 Conclusion 

This paper presents a novel methodology that develops a questionnaire and uses the 

survey data from the questionnaire to develop models to estimate in-use vehicle fleet 

fuel economy for cities with limited or low quality data, and that have a large informal 

transport fleet, such as Nairobi. The vehicle fleets FE in NMR was determined to be 2-3 

times worse compared with Japan, Europe, India and China, for example, for the Kenyan 

passenger vehicles to meet the Japanese fuel economy targets of 5.95 L/100km would 

require almost a 4-fold improvement in the Kenyan FE. FE models were presented that 

were based on survey questionnaire data; first data multiple imputations were 

successfully used to fill in missing data, then modelling performance of different ANN 

models were compared to a GLM model.  The GLM model consistently performed better 

than the ANN model. Engine size was deemed to be most significant factor in predicting 

FE. 

In cities such as Nairobi that are experiencing a rapid growth in transport emissions, 

predicting fuel economy changes in response to changes in vehicle characteristics and 

activity can help inform effective transport policies that rely on the availability of robust 

data and the application of sound assessment methods. A baseline measure of fuel 

economy for both the formal and informal vehicle fleet in NMR has now been established 

for 2015. This identifies the substantial contribution the informal vehicle fleet is currently 

making to the air pollution and GHG burden. This is particularly important given the 

trends in this fleet component which suggest a continued increase in size of this informal 

transport sector with no new regulations. Application of these methods can help identify 

the rise of informal transport as a particularly polluting component of the transport sector 

and help target fuel economy improvements in changing vehicle fleets in the future. It 

also identifies the need to take further action to address informal transport from an air 

quality management and GHG emission perspective. Furthermore, vehicle activity data 

presented here would improve the Kenya’s NDC formulation for the transport sector. 
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Ultimately, this will aid sustainable road transport policy implementation, which will lead 

to a reduction in fuel consumption and improvement of FE, leading tor reductions in 

GHGs emissions and improvements in air quality.  
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3.7 Supplementary 

 

Figure S 1: A sample questionnaire for use in the field survey in Nairobi 
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Table S 1: A table of the implausible data excluded following the data screening and 
verification step in 2.6 
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NZE AUTOMATIC 1300 1200 78502 2006 9 YES 4 150 NA UO 12000 5 128.631 4.2877 0.0286 2.858 AfritypeM1B

TOYOTAE110MANUAL 2000 1095 202957 2002 13 YES 7 10 1 UK 60000 5 643.156 21.439 2.1439 214.4 AfritypeM1C

CARIB AUTOMATIC 1600 1100 180000 1997 18 YES 4 350 2 UK 9000 5 96.4734 3.2158 0.0092 0.919 AfritypeM1C

VOXY AUTOMATIC 2000 1580 96430 2005 10 YES 7 300 2 UO 10800 5 115.768 3.8589 0.0129 1.286 AfritypeM1C

VOXY AUTOMATIC 2000 1500 NA 2006 9 YES 7 7 5 UO 30000 5 321.578 10.719 1.5313 153.1 AfritypeM1C

LANDCRUISERAUTOMATIC 4500 2600 92282 2000 15 YES 7 10 1 NN 112000 5 1200.56 40.019 4.0019 400.2 AfritypeM1D

KLUGER V24GAUTOMATIC 2400 1716 84000 2005 10 YES 7 10 2 UO 30000 5 321.578 10.719 1.0719 107.2 AfritypeM1D

RANGER MANUAL 3200 1900 20430 2013 2 YES 2 300 1 NN 9000 5 109.184 3.6395 0.0121 1.213 AfritypeM1D

PICKUP MANUAL NA NA NA NA NA YES 7 30 NA 120000 2 1455.78 48.526 1.6175 161.8 AfritypeN1

QD MANUAL 2200 1650 54100 NA NA YES 7 550 NA 75000 14 909.863 30.329 0.0551 5.514 AfriypeM2

 CARAVAN QD32MANUAL 1600 2660 322940 1998 17 YES 7 14 NA UO 56000 14 679.364 22.645 1.6175 161.8 AfritypeM2

TD-27 MANUAL 2500 1650 NA 1989 26 YES 7 15 2 UK 63000 14 764.285 25.476 1.6984 169.8 AfritypeM2

TIGER MANUAL 150 175 65123 2014 1 YES 6 400 1 NN 10400 2 111.48 3.716 0.0093 0.929 AfritypeL3e

TVS-ES MANUAL 100 120 74640 2011 4 YES 6 100 3 NN 60000 2 643.156 21.439 0.2144 21.44 AfritypeL3e

BOXER MANUAL 100 109 NA NA NA YES 6 500 4 NN 6000 2 64.3156 2.1439 0.0043 0.429 AfritypeL3e

PATHFINDERAUTOMATIC 3000 2700 15004 2013 2 YES 7 4 1.5 NN 27200 5 329.977 10.999 2.7498 275 AfritypeM1D

PRADO TX AUTOMATIC 3000 2025 83527 2004 11 YES 5 5 1 NN 25000 5 267.982 8.9327 1.7865 178.7 AfritypeM1D

TOYOTA GX8AUTOMATIC 2500 1575 200648 YES 7 10 7 UO 30000 5 363.945 12.132 1.2132 121.3 AfritypeM1D

SURF MANUAL 2400 1890 238742 1998 17 YES 7 10 11 NN 30000 5 363.945 12.132 1.2132 121.3 AfritypeM1D
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Table S2: A table of Afritype vehicle classes tests on significant differences between the 
means of the calculated fuel economy (FE’) before imputation of the dataset. P <2.2e-16 
for N = 707. 

Variable 
Estimate 

Standard 
Error t stat P value 

(Intercept) 8.73 4.61 1.90 0.06 

AfritypeL3e -4.18 4.75 -0.88 0.38 

AfritypeM1C 10.08 4.85 2.08 0.04 

AfritypeM1D 31.91 5.17 6.17 < 0.001 

AfritypeM2 14.47 5.06 2.86  < 0.001 

AfritypeM3A 28.66 5.89 4.86  < 0.001 

AfritypeM3B 27.29 4.87 5.60 < 0.001 

AfritypeM3C 23.75 7.98 2.98  < 0.001 

AfritypeN1 13.00 5.35 2.43 0.02 

AfritypeN2 18.33 6.14 2.98 < 0.001 

AfriypeM1B 7.26 6.01 1.21 0.23 

 

Variable 
Estimate 

Standard 
Error t stat P value 

(Intercept) 30.11 3.92 7.69 < 0.001 

ASKP -9.58 4.49 -2.13 0.03 

BOD -25.55 4.02 -6.35 < 0.001 

CCAR -19.24 5.54 -3.47 < 0.001 

MAT 1.88 4.03 0.47 0.64 

MBK -26.04 5.98 -4.35 < 0.001 

PKP -14.63 6.45 -2.27 0.02 

PRIV -5.49 4.06 -1.35 0.18 

TAXI -20.13 4.68 -4.30 < 0.001 

TUK -21.38 5.34 -4.01 < 0.001 
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Table S3: A table of GLM model results with GVW dropped from the data set to test for 
collinearity effect 

Variable 
Coefficent 

Standard 
Error tstat Pvalue 

(Intercept) 1.03 0.19 5.48 < 0.001 

CC 0.10 0.05 2.16 0.03 

MIL -0.02 0.04 -0.36 0.72 

Age 0.00 0.01 -0.04 0.97 

DPW 0.03 0.03 1.17 0.24 

YBT -0.03 0.03 -1.05 0.29 

NOS 0.14 0.06 2.51 0.01 

AfritypeL2e/3e -0.99 0.19 -5.14 < 0.001 

AfritypeN1 -0.14 0.17 -0.81 0.42 

passenger -0.03 0.19 -0.15 0.88 

FT -0.38 0.12 -3.18 < 0.001 

TT -0.38 0.15 -2.48 0.01 

NN (missing) 0.58 0.12 4.71 < 0.001 

UK 0.08 0.08 0.95 0.34 

UO -0.26 0.11 -2.29 0.02 

 

Variable Coefficent Standard Error tstat Pvalue 

(Intercept) 0.94 0.20 4.67 < 0.001 

GVW 0.29 0.13 2.26 0.02 

MIL 0.00 0.01 -0.05 0.96 

Age 0.00 0.01 0.19 0.85 

DPW 0.04 0.03 1.33 0.18 

YBT -0.02 0.03 -0.83 0.41 

NOS 0.05 0.07 0.62 0.53 

AfritypeL2e/3e -0.78 0.23 -3.40 0.00 

AfritypeN1 -0.11 0.16 -0.68 0.49 

passenger -0.06 0.20 -0.32 0.75 

FT -0.32 0.13 -2.46 0.01 

TT -0.39 0.16 -2.51 0.01 

NN (missing) 0.59 0.12 4.86 < 0.001 

UK 0.10 0.08 1.15 0.25 

UO -0.25 0.11 -2.20 0.03 
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Chapter 4 

The work outlined in this chapter has been adapted from a research paper prepared for 

publication. I undertook all data analysis, but Dr Harry Vallack and Dr Chris Malley 

provided insight into the calculation of the inventories for non-transport sector emissions. 

Professor Mike R. Ashmore, Dr Chris Malley and my supervisors, Dr Lisa Emberson, Dr 

Harry Vallack and Dr Dietrich Schwela following an initial draft, made valuable 

contribution to the presentation of results through discussions and manuscript editing. 

Their editing of the article upon which this chapter is based improved the accurateness 

of the inventories and the policy relevance of this work. 
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Abstract 

Reducing emissions to the atmosphere of air pollutants, and greenhouse gases (GHGs) 

in sub-Saharan African (SSA) countries could substantially benefit human health, and 

reduce the contribution of SSA countries to climate change. The contribution of road 

transport to air pollution and GHG emissions is growing substantially across SSA. 

However, lack of regulation in many SSA countries means that the magnitude of current 

road transport emissions are poorly estimated, and the potential emission reductions and 

associated benefits from the implementation of mitigation strategies have not been 

extensively explored. Kenya is an example of one such country where the options for 

reducing road transport emissions are not well understood. The aim of this work is 

therefore to i) estimate air pollutant and GHG emissions from the road transport sector 

between 2010 and 2050, projected based on estimated changes in the vehicle fleet 

across Kenya, ii) place current (i.e. 2010) road transport emissions in the context of 

emissions from all other major source sectors in Kenya, and iii) estimate the road 

transport emission reductions that could result from the implementation of different 

mitigation strategies.  We therefore compiled a detailed ‘bottom up’ transport emission 

inventory for Kenya for 11 air pollutants and greenhouse gases. In 2010, road transport 

emissions accounted for 61% of total nitrogen oxides (NOX) emissions in Kenya, 39% of 

fine particulate matter (PM2.5), 20% of carbon dioxide (CO2), 19% of non-methane 

volatile organic compounds (NMVOC) and 7% of black carbon (BC) emissions. In the 
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business as usual (BAU) scenario road transport emissions increases from 4 to 31-fold 

by 2050, motorcycles account for nearly all pollutants.  Improved vehicle emission and 

fuel economy standards, fuel shift to CNG and investment in public transport are all 

shown to be effective road transport mitigation options that would support Kenya’s 

climate change goals with the additional benefits of better air quality and improved 

health. For example, full implementation of vehicle emissions standards equivalent to 

Euro IV standards and attainment of Japanese 2015 fuel economy standards by 2050 in 

Kenya was estimated to reduce road transport CO2 emissions by 61%, 93% for BC and 

65% for NOX.  

Keywords: 

Vehicle, Emissions, GHG, Transport, SLCP, SSA, inventories, air pollution  
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4.1 Introduction 

The road transport sector is a major contributor to outdoor air pollution, including 

elevated concentrations of ground-level ozone (O3), fine particulate matter (PM2.5) 

including black carbon (BC), and nitrogen oxides (NOX)  and to greenhouse gas (GHG) 

emissions, thereby affecting human health, agricultural productivity and climate (Van 

Dingenen et al., 2009; Shindell et al., 2011; Stohl et al., 2015; Li et al., 2016; Klimont et 

al., 2017; Susan C. Anenberg et al., 2017).  Globally, the road transport sector is a major 

emission source of NOX, and primary PM2.5 emissions (Bond et al., 2004; Streets et al., 

2004; Shindell et al., 2011, 2012; UNEP, 2011).  Vehicles also contribute to other 

gaseous and particulate emissions including carbon monoxide (CO), sulphur dioxide 

(SO2), non-methane volatile organic compounds (NMVOCs), ammonia (NH3), black 

carbon (BC), organic carbon (OC), and greenhouse gases (GHGs) such as carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O) (Goel and Guttikunda, 2015; 

Kishimoto et al., 2017). These emissions contribute to secondary formation of ground-

level ozone (NOX, NMVOC, CH4 and CO), and secondary PM2.5 (NOX, SO2 and NH3), 

with resulting impacts on  human health and climate (Shindell et al., 2011).   

For Africa, previous emission estimates have identified transport as an important source 

of NOX, CO, BC and NMVOC emissions (Assamoi and Liousse, 2010; Liousse et al., 

2014; Marais and Wiedinmyer, 2016). These regional emission inventories highlight 

historical increase in road transport emissions across Africa, as well as the potential for 

substantially larger increases in the future, which is projected to increase air pollution 

health burdens in this region (Assamoi and Liousse, 2010; Doumbia et al., 2012; Liousse 

et al., 2014; Mapako et al., 2015; Marais and Wiedinmyer, 2016; Lacey et al., 2017). For 

example, in SSA in 2030 it is estimated that over 20 000 deaths attributable to air 

pollution from road transport emissions will occur in the scenario without future vehicle 

emissions control (Shindell et al., 2011). However, while these estimates have been 

conducted at the continental scale, there is a lack of analyses at the national level that 
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evaluate the current state of road transport emissions, projected changes into the future 

and the likely effective of mitigation measures in individual African countries.  

In sub-Saharan Africa (SSA), vehicle ownership, especially in cities, has increased 

because of rapid economic growth, collapse of formal public transport, and increasing 

urbanization coupled with increase in gross domestic product (GDP) per capita (Assamoi 

and Liousse, 2010; Pirie, 2013). In addition to the increasing number of vehicles, 

emissions from road transport are exacerbated by:  the high average age of the fleet 

which is mainly composed of imported second-hand vehicles (accounting for ~90% of 

vehicles in SSA (Assamoi and Liousse, 2010; Odhiambo et al., 2010; Kumar, 2011; 

Gaita et al., 2014; Liousse et al., 2014)), poor fuel quality, poorly maintained roads, lack 

of vehicle emission regulations and inadequate implementation of vehicle inspection and 

maintenance programmes (Zachariadis et al., 2001; Lents et al., 2004; van Vliet and 

Kinney, 2007; Schwela, 2012; Pirie, 2013; Randu, 2013; Marais and Wiedinmyer, 2016). 

There has also been a rapid increase in the use of informal public transport vehicles 

(Behrens et al., 2017), for which emissions have not been quantified (Aduagba et al., 

2013; Liousse et al., 2014). Combined with often inconsistent vehicle registration, there 

is currently a large knowledge gap when attempting to quantify air pollution and 

greenhouse gas emissions (Assamoi and Liousse, 2010; Liousse et al., 2014). Therefore 

national transport emission inventories are needed to design and evaluate suitable 

policies to mitigate air pollution, that take account of the specific social and policy 

contexts for road transport within each country (Ramachandra and Shwetmala, 2009). 

This study will therefore focus on Kenya’s road transport sector, where many of the 

factors described above also affect the road transport fleet, and associated air pollution 

and climate change-relevant emissions.   

In Kenya, road transport is the dominant mode of transport and carries 93% of all freight 

and passenger traffic (Gachanja, 2012). Public transport is dominated by matatus 

(minibus shared taxis) and Bodaboda (motorcycles)  (Ministry of Transport Kenya, 2011; 
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Gachanja, 2012; Ommeh et al., 2015; Behrens et al., 2017) and freight is dominated by 

heavy duty trucks which also serve neighbouring landlocked countries (Government of 

Kenya, 2012). The total number of vehicles has increased nearly four-fold since 1998 

(KNBS, 2013b, 2014b). The vehicle fleet in-use is poorly serviced and old (Kinney et al., 

2011), and the share of second-hand imported vehicles has grown to ~99% of all vehicle 

imports  (Lents et al., 2005; ERC, 2015b). The majority of the vehicles are imported from 

Japan, for example, 87% of light duty vehicles between 2010-2012 were imported from 

Japan (ERC, 2015b) with Kenya having an 8 year age limit for vehicle importation (Gaita 

et al., 2014; KEBS, 2014). Kenya has vehicle emission limits stipulated in the standard 

KS1515 (KEBS, 2014), but these are not implemented or enforced as the motor vehicle 

inspection unit (MVIU), the institution mandated to do so, lacks the capacity and 

resources (Cameron et al., 2012). 

Transport is one of the key sectors for GHG mitigation identified by the United Nations 

Framework Convention on Climate Change (UNFCCC) (United Nations, 1992). In 2015, 

Kenya submitted its first Intended Nationally Determined Contribution (INDC) with the 

aim of reducing GHGs emissions (Ministry of Environment and Natural Resources, 

2015). This was informed by a top-down GHG inventory using fuel consumption as a 

measure of activity within the road transport sector. This inventory identified the transport 

sector as emitting 10% of Kenya’s GHG emissions (Cameron et al., 2012; Ministry of 

Environment and Natural Resources, 2015). However, this top-down assessment of 

mitigation options was only conducted for long-lived GHGs i.e. CO2, CH4 and N2O. A 

bottom-up approach to assessing emissions of both air pollutants and GHGs in the road 

transport sector would therefore provide a more detailed basis to assess the likely 

effectiveness of different mitigation strategies.  Furthermore, transport policy making is 

difficult if the emissions of the various measures are not properly quantified as planning 

relies on both a baseline assessment and an analysis of the likely benefits of appropriate 

mitigation measures (Ou et al., 2010). Limited data availability was identified as a hurdle 
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in identifying mitigation scenarios in the transport sector to meet Kenya’s 2030 targets 

(Cameron et al., 2012). Therefore, more analysis is necessary to build an accurate and 

robust “bottom up” transport emissions inventory to support appropriate emission 

reduction strategies in relation to other emission sources.  

This paper presents the first ‘bottom-up’ Kenyan transport emission inventory for 

emissions of SO2, NOX, CO2, CO, CH4, NMVOC, PM10, PM2.5, BC, OC and NH3. Air 

pollution and GHG emissions for the base year, 2010, were estimated for road transport 

as well as emissions from all other major source sectors in Kenya to set transport within 

the context of the overall national inventory for Kenya. Road transport emissions were 

projected to 2050 based on historic trends in vehicle numbers as a function of gross 

domestic product (GDP) per capita. Mitigation scenarios were then compared to the 

BAU. The mitigation scenarios considered implementation of i) improved vehicle 

emission and fuel economy standards ii) improved public transport system, and iii) fuel 

share shift to more renewable energy sources. The implications of these changes for 

Kenya’s GHG, air pollution and SLCP-relevant emissions were estimated.   
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4.2 Methodology 

To analyse the current and future trends in vehicle emissions from Kenya’s road 

transport sector, a detailed (bottom-up) road transport inventory model was created in 

which important economic and demographic drivers and historical data were used to 

project future emissions up to 2050. Additionally, to show the relative importance of the 

road transport sector, a simple inventory (top-down) was also created for the other 

emission source sectors.  The overall methodology is shown in Figure 4.1. The data 

used to construct this inventory are summarised in Table 4.1, and described in detail in 

supplementary information. The inventory was constructed using the Long-range Energy 

Alternatives Planning system (LEAP) software (Heaps, 2016).  
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Figure 4-1: Methodology for estimating transport emissions. 

The emissions for the non-transport energy sectors were quantified by using the IPCC 

methodology based in the top-down quantification of energy consumption (IPCC, 2006). 

The data for all non-transport fuel combustion sectors for Kenya were obtained from the 

International Energy Agency (IEA) for 2010 (IEA, 2012b) and emission factors were 

mainly derived from the EMEP/EEA guidebook  (EMEP/EEA, 2013) and the IPCC (2006) 

guidelines. For non-energy sectors, such as agriculture and agricultural related activities, 

emissions were quantified using data from FAOSTAT on agricultural productivity (FAO, 

2017). Further details of the quantification of the non-transport sectors are in the 

supplementary section. 
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Five scenarios were modelled based on previous studies that explore transport 

emissions mitigation in developing countries (Ou et al., 2010; Aggarwal and Jain, 2014), 

in Africa (Shindell et al., 2011; Lacey et al., 2017) and in Kenya (Cameron et al., 2012). 

4.2.1 Transport Inventory for Kenya 

To quantify emissions from the road transport sector in 2010, the number of vehicles of 

different categories, fuel use, and emission standards were compiled, along with 

distance travelled and emission factors for each type of vehicle, as shown in Table 4.1.  

There were 1.34 million vehicles in registered Kenya in 2010 (KNBS, 2013b), and, in the 

absence of data for vehicles in circulation (in-use vehicle), it was assumed the registered 

vehicles represent the number of in-use vehicles. The vehicle categories considered are 

passenger vehicles (private cars, taxis), light duty commercial vehicles (vans, pickups, 

and small trucks), heavy duty commercial vehicles (lorries and trucks), urban buses 

(matatus and bus coaches), motorcycles (bodaboda) and three-wheelers (tuktuk), and 

the proportion of vehicles in each category are shown in Table 4.2.   
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Table 4-1: Data for estimating emissions using a detailed vehicle emissions inventory.  
Numbers in the first column on the left of the table correspond to sections in this paper. 

No. Inputs Units Description Source of 

information 

S5.1 Number of vehicles 

in-use 

Category of vehicle 

 

Vehicle legislation 

and technology 

- (N): Total number of vehicles in-use 

Passenger (M1), light commercial  

(N1), urban bus (M2), heavy duty  

(N2, N3, M3), motorcycles (L3e) 3-

wheelers (L2e) 

Conventional (pre-euro), Euro 1, Euro 

2, Euro 3, Euro 4, Euro 5, Euro 6 

(KNBS, 2013b, 

2014b) 

 

 

(Mbandi et al., 

submitted) 

S5.2 Fuel use 

 

Fuel specifications 

- Type of fuel in use: petrol, diesel 

 

Fuel specifications: density and 

sulphur content 

(KNBS, 2013b, 

2014b; ERC, 

2015b) 

(KEBS, 2007, 

2010) 

S5.3 Average distance 

travelled per vehicle 

  

    
 

(M) :Average vehicle mileage also 

referred to as Vehicle Kilometres 

Travelled (VKT) per vehicle category 

(Mbandi et al., 

submitted) 

S5.4 Average Fuel 

Economy (FE) 

 

  
 Average fuel consumption per vehicle 

category 

(Mbandi et al., 

submitted) 

S5.5 Distance travelled 

on unpaved roads 

as a percentage of 

total 

% Average distance travelled on 

unpaved roads that would contribute 

to dust particles 

(Ong’uti, 2015) 

S5.6 Precipitation 

average per year               

% % of dry days considered to be < 0.25 

mm precipitation per day  

(BBC, 2015) 

S5.7 Emission factors: 

NOX, CO, NMVOC, 

Exhaust PM10 & 

PM2.5, unpaved dust 

PM10, &PM2.5, CO2, 

BC, OC, SO2 

 

  
 (EF) Default emission factors are 

shown in Table S9 in supplementary 

(Ntziachristos et 

al., 2013; 

Kouridis et al., 

2014) 
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The proportion of vehicles using different types of fuel (diesel, petrol, hybrid) for Kenya 

(Table 4.2) was determined from ERC (2015) for light duty vehicles, and multiple 

previous studies for heavy duty vehicles (JICA, 2006, 2014; Ministry of Transport Kenya, 

2011; Behrens et al., 2017). 

The emission reduction technology for new vehicles was determined by the prevailing 

emission standards in the year and country of manufacture, the quality of the available 

fuel, and other vehicle parameters (e.g. type of fuel, cylinder displacement). Imported 

vehicles manufactured in any particular year would normally comply with an existing 

standard, or a version of the standard of that year, from the relevant major world vehicle 

manufacturers in the EU, USA and Japan  (Plotkin, 2016; Toubeau, 2016). However, the 

emission reduction capability of the technology for in-use vehicles can only be 

maintained if an effective I/M programme is enforced (Walsh, 2014). In Kenya, the 

absence of enforceable vehicle and fuel economy standards or an effective I/M program 

meant that the emission standard of all vehicles in Kenya were assumed to be equivalent 

to pre-Euro standards, even though the vehicles were manufactured to a higher standard 

initially. 

Table 4-2: Number and type of fuel for each vehicle category. Data sources (Ministry of 

Transport Kenya, 2011; KNBS, 2013b, 2014b; ERC, 2015b). 

Vehicle category No. of vehicles Diesel Hybrid Petrol 

Passenger Vehicle 553,397 16% 0.01% 84% 

Light Duty Commercial 226,876 12% 0.34% 87% 

Heavy Duty Commercial 96,355 100% 0% 0% 

Urban Buses (Matatu and 

Coach) 89,708 46% 0% 54% 

Motorcycles (bodaboda) 371,747 0% 0% 100% 

Three-wheelers (tuktuk) 2,152 68% 0% 32% 
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In the absence of recent national vehicle activity studies for Kenya as a whole for in-use 

vehicle fleet, we used data from a vehicle activity study conducted in the Nairobi 

Metropolitan region (NMR) (Mbandi et al., submitted) (Figures S4 and S5). An 

assumption was made that the vehicle kilometres travelled (VKT) and fuel economy (FE) 

for NMR is equivalent to national VKT and FE.  

The exhaust emissions (g/km) were calculated by multiplying activity data (VKT per year) 

by the emission factors as shown in equation 4.1: 

    ∑ (                 )
 

                     

where, 

       total annual distance driven by all vehicles of category j and technology k (km/yr), 

         technology specific emission factor of pollutant i for vehicle category j and 

technology k (g/km), 

      average annual distance driven by per vehicle category j and technology k 

(km/yr), 

      number of vehicles in nation’s fleet category j and technology k. 

In the absence of national vehicle emission factors, default emission factors derived from 

the Tier 2 factors given in the European Monitoring and Evaluation Programme / 

European Economic Area (EMEP/EEA) emissions guidebook (Ntziachristos et al., 2013; 

Kouridis et al., 2014) for all vehicle categories except three-wheelers and motorcycles for 

which Indian emission factors were used (ARAI, 2008). The emission factors used for 

each vehicle, disaggregated by vehicle category, fuel type and technology are shown in 

Table S8.  
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To determine the emissions contributions to PM10 and PM2.5 from re-suspended dust 

from unpaved roads, we determined the percentage of travel on unpaved roads and the 

percentage of dry days. Kenya, like most SSA countries, has a large number of unpaved 

roads estimated at 93% of all roads (Ong’uti, 2015; Fukubayashi et al., 2016), while 15% 

in the NMR are unpaved (Gachanja, 2012). However, 67% of the vehicles in circulation 

are to be found in NMR (Gachanja, 2012), this resulted in an estimated 41% of national 

travel being on unpaved roads (supplementary, Table S6).  Dry days were defined as 

those with equal or less than 0.1 mm precipitation per day, and the percentage of such 

days was calculated from historic meteorology data for Kenya per year (BBC, 2015) 

(Tables S6 and S7). Equation 4.2 was then used  to calculate emission factors for PM10 

which were converted to PM2.5 factors assuming PM2.5 is 10% of PM10 from unpaved road 

dust (Gillies et al., 2005; EPA, 2006). 

     (                
 

  
)                                   

S: Average speed in km/hr (assume 30 km/hr) 

W: Average vehicle weight in tonnes (assumed to be 0.4 t for 2-wheelers, 1 t for 3-

wheelers, 1.4 t for passenger cars, 2.5 t for light commercial vehicles and 5 t for heavy 

duty vehicles (trucks and buses)). 

For the other transport sectors (rail, domestic shipping and domestic aviation), emissions 

were determined through a top-down inventory based on fuel consumption data (IEA, 

2012b). 

 

4.2.2 Assessment of uncertainties in the road transport emission inventory 

Uncertainties have been estimated by combining individual uncertainties from emission 

factors, fuel characterization and activity data (Bond et al., 2004). To estimate the 

uncertainty of road transport emission estimates for Kenya two sources of errors were 
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considered; emission factors and input activity data. The activity data for Kenya together 

with the uncertainty information was available from a previous study (Mbandi et al., 

submitted). Uncertainty for EMEP/EEA emission factors has been quoted to be between 

50-200% as they are  estimated from emission measurements of a small number of 

representative vehicles in European driving conditions  (Ntziachristos et al., 2013). In 

addition, systematic uncertainty may also result from the application of these European-

derived emission factors to Kenya, as Kenya driving conditions are dissimilar to 

European driving conditions. Kenya’s driving condition are characterised by heavy traffic 

congestion in urban areas, poorly maintained roads (Kinney et al., 2011; Gachanja, 

2012) which are mostly unpaved, and even those that are paved often have potholes. 

We account for the emission factor error by assuming 75% uncertainty, but we do not 

have enough data to account for the magnitude of systematic bias. However, we do 

assume a lower emission standard for the Kenyan fleet even when the newly registered 

vehicles are less than 8 years old. 

In line with the recommendation for EMEP/EEA (2016) for uncertainty calculations we 

combined the random uncertainty of the emission factors and activity data using  

Equation 3 (Kouridis et al., 2009, 2017; Ntziachristos et al., 2013) .  

       √  
     

    
 
  
                       

 where 

U1-3: are the percentage uncertainties (half the 95% confidence interval) associated with, 

vehicle kilometres travelled (VKT) (U1), Fuel Economy (FE) (U2) for Kenyan fleet and 

emission factors (U3). 

Utotal: is the percentage uncertainty in the product of the quantities (half the 95% 

confidence interval divided by the total and expressed as a percentage). 
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4.2.3 Baseline construction of business as usual scenario 

The baseline ‘Business as usual’ (BAU) scenario was used to project vehicle number 

from 2010 to 2050 based on  the linear relationship between vehicle number, 

disaggregated by vehicle type and GDP per capita between 1998 and 2013 (Figure 

S11). 

In the BAU scenario, vehicle emission standards, fuel economy standards and fuel share 

were kept constant between 2010 and 2050. This is because the BAU scenario accounts 

only for current transport sector policy, legislation, regulations, and standards that have 

been implemented and enforced in Kenya. Here a clear distinction is made for 

‘implementation’, where a relevant plan or system is starting to be used and 

‘enforcement’ where laws/regulations were applied and supported by the legislative arm 

of the country.  For example, fuel quality improved in 2016 (KEBS, 2007, 2010; ERC, 

2015b), this was implemented and enforced thus in the BAU scenario this fuel quality 

improvement is included (see the Figure 4.5), however vehicle emission and fuel 

economy standards were not enforced, thus in BAU they were kept constant to 2050. 

Vehicle mileage and fuel share is kept constant from 2010 for all vehicles. 

4.2.4 Transport mitigation scenarios 

The Kenyan government has made a commitment to reduce approximately 3.5 Mt CO2 

equivalents from the transport sector and 30% GHG from all sectors compared to a 

business as usual scenario (BAU) by 2030 (Cameron et al., 2012; Government of Kenya, 

2013; Ministry of Environment and Natural Resources, 2015). The transport mitigation 

actions previously identified were to improve vehicle fuel efficiency, fuel use shift to 

biofuels, improvement of public transport through implementing light rail transport (LRT) 

and bus rapid transit (BRT) and shift freight from road to rail (Cameron et al., 2012; 

Government of Kenya, 2013) . Therefore, this study builds on the strategy (shown in 

Table 4.3) adopted by the government of Kenya and a proposed alternate policy to 

biofuel use; here we proposed to consider increased market penetration of compressed 
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natural gas (CNG) use in urban buses and use of electric motorcycles. In addition, we 

assess the policy interventions of strict vehicle emissions standards targeting vehicle 

technology and fuel quality to further mitigate the emissions from transport sector. 

Five mitigation scenarios were modelled to estimate changes in emissions from different 

changes to the transport fleet in Kenya. These scenarios are summarised in Table 4.3. 

Vehicle emission standards in Africa are based on restriction of vehicle age on 

importation (Lacey et al., 2017), for Kenya that is 8 years (Cameron et al., 2012; Gaita et 

al., 2014; ERC, 2015b). The Motor Vehicle Inspection Unit (MVIU), under the National 

Transport and Safety Authority (NTSA) agency, in the Ministry of Transport, have the 

mandate to enforce Kenya’s code of practice for inspection of road vehicles which 

includes vehicle emissions tests and limits (KEBS, 2014), although they have limited 

capacity and resources. Hence in mitigation Scenario 1 we assume that by 2050, Kenya 

has fully implemented better vehicle standards and fuel quality (Euro IV or equivalent) 

(Shindell et al., 2011; Lacey et al., 2017) and has an enforced I/M program (see Table 

3). For the mitigation scenarios, improved fuel standards mean that sulphur content for 

diesel reduces from 500 ppm to 50 ppm from 2016 onwards. By 2050, Fuel Economy 

(FE) in all vehicles for Scenario 1, will equal Japanese FE Targets for 2015 (JAMA, 

2016): Passenger (44 g/km), Light duty commercial (48.2 g/km), Heavy Duty commercial 

(122.3 g/km), Urban buses (124.6 g/km) and Indian in-use FE in 2015 (Goel et al., 2015)  

(Three wheelers (26.9 g/km), Motorcycles (16.2 g/km). Future vehicle Emission 

standards for Scenario 1: Passenger: Euro IV, Light duty commercial: Euro IV, Heavy 

Duty: Euro 4, Urban buses: Euro 4, Three wheelers: 4 stroke Euro II, Motorcycles: 4 

stroke Euro II.  
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Table 4-3: Scenario generation for emissions reduction from the road transport sector in 
Kenya 

Kenya GHG 

scenario 

Description of Kenya GHG 

scenario 

This Scenario 

Improve fuel 

economy 

(passenger 

vehicles) 

Scrap old cars and restrict 

imports 

7% fuel economy 

improvement by 2030 

Scenario 1: SC1_FEVES 

Improve vehicle emission standards and fuel 

economy standards to meet future emission 

Strategy (% of fleet to meet new standards) 

2010 (0%), 2020 (5%), 2030 (50%), 2050 (100%) Improve fuel 

economy 

(heavy duty 

vehicles) 

Improved efficiency 

systems in the trucking 

sector, 2020 (3%), 2030 

(10%) 

Fuel shift: 

Bio-ethanol 

10% fuel shift to bio-ethanol 

from 2015 and onwards to 

2030 

Scenario 2: SC2_CNG 

Fuel shift share from Diesel to CNG Euro III by 

2050 

(Goel et al., 2015) 

Strategy: public service vehicles (PSV) buses  

2010 (0%), 2020(5%), 2030 (50%), 2050(100%) 

 

Scenario 2: SC3_Electric 

(Ou et al., 2010) 

Strategy:  (% of  electric motorcycle fleet) 

2010(0%), 2020 (1%), 2030 (2.5%), 2040 (5%), 

2050 (10%) 

Fuel shift: 

Bio-diesel 

2% fuel shift to bio-diesel 

from 2015, 10% in 2020 

and onwards to 2030 

Improve 

public 

transport by 

introducing 

LRT & BRT 

in NMR 

5% of public transport 

demand to be met by BRT 

and LRT by 2030 

Scenario 4: SC4_BRT 

(Cameron et al., 2012) 

% of public transport to be met by BRT  

2010 (0%), 2030 (5%), 2050 (10%) 

Assumptions 

 270 BRT buses, 29 km fully implemented in 2030 

assumed to pull 100% (11 000) from 14-seat 

matatus in Nairobi 

Strategy 

Add 270 buses Euro III in 2030 with FE  124.6 

g/km, remove 11 000 matatus 
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  Scenario 5: SC5_DIES 

Change light duty passenger vehicles to 55% 

diesel Euro IV  by 2050 
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4.3 Results 

4.3.1 Emissions for the base year (2010) 

4.3.1.1 Estimate of emissions from all sectors for base year 

The emission shares of 11 pollutants for 2010 by major source sector are shown in 

Figure 4.2. Transport (road and other forms of transport) dominated the emissions of 

NOx and PM10, was the major fraction of PM2.5 emissions, and made smaller, but not 

insubstantial contributions to CO2, NMVOC, CO, BC and OC emissions. The dominant 

contribution of transport emissions to PM10 reflects the larger emissions of road dust in 

the coarse fraction of particulate matter, while NOx emissions from transport derive from 

tailpipe emissions. Hence road transport emissions make a substantial contribution to 

Kenya’a air pollutant and greenhouse gas emissions. However, the base year emission 

inventory emphasises that reducing road transport is just one of a number of source 

sectors that must be focussed on to comprehensively reduce air pollution and GHG 

emissions. Other source sectors which made substantial contributions to pollutant 

emissions in Kenya in 2010 include the residential sector, which contributed the major 

fraction of BC, OC and CO2 emissions, cottage industries, which dominated NMVOC and 

CO emissions, and agriculture, from which the major fractions of NH3 and CH4 emissions 

originate.   

 



 

188 
 

 

Figure 4-2: The 2010 fractional sectorial contribution by emitted species.  

The contribution of Kenya’s transport sector emissions from road transport, domestic 

shipping, railway and domestic aviation for 2010, are shown in Figure 4.3. International 

shipping and international flights were not accounted for in the national emissions 

inventories because they occur in international territories. Road transport dominates 

emissions of all pollutant across the transport sector (Figure 4.3). However, the 

contribution of different modes of road transport varies for the different pollutants. Heavy 

duty vehicles together with urban buses contribute an estimated 62% of NOX and 49% of 

BC emissions. Motorcycles make the dominant contributions of NMVOC, OC, CO and 

PM2.5, while passenger cars make the dominant contributions to NH3, CH4, and CO2.  
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Figure 4-3:  Base year emission concentrations proportion for transport sector in 2010 

 

4.3.2 Future trends 

Emission inventory projections were created for the BAU scenario. Different mitigation 

scenarios, described in Table 4.3, were also constructed and the results are discussed in 

the sections that follow. 

4.3.2.1 BAU  

The vehicle population growth projection for the BAU scenario is shown in Figure 4.4. In 

2010, 1.4 million vehicles were registered in Kenya, 40% are passenger vehicles, 27% 

motorcycles, 16% light commercial, 7% heavy duty, 6% urban buses and 4% three 

wheeler. By 2030, the vehicle population is projected to increase to 5.7 million vehicles 

with motorycles becoming the largest proportion of the vehicle fleet (56%), followed by 

passenger vehicles (28%). In 2050, Kenya’s total vehicle fleet is projected to be 21.6 
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million vehicles and the motorization rate increases to 226 vehicles per 1000 people, the 

largest proportion being motorcycles (63%). 

 

Figure 4-4: The historic trend (1998-2010) and future projection (2010 to 2050) of the 

total number of vehicles together with motorization rates (number of vehicles per 1000 

people) Source data (KNBS, 2013b; World Bank, 2014). 

The effect of these changes in the number of vehicles of each type on pollutant 

emissions is shown in Figure 4.5.  Emissions for different species from Kenya road 

transport sector up to 2050, in the BAU, are projected to increase approximately   4-fold 

for SO2, 9-fold for NOX, 11-fold for CO2, 23-fold for CO, 13-fold for CH4, 31-fold for 

NMVOC, 19-fold for PM2.5 , 11-fold BC, 28-fold for OC and 10-fold for NH3. 

By 2050, motorcycles make the dominant contribution to all pollutants except for NOX 

and NH3, contributing 95% of OC and NMVOC, 83% of CO, 81% of PM2.5, 56% of BC, 

47% of CH4, 42% of SO2 and 36% of CO2 (Figure 4.5 and Figure S12), driven by the 

disproportionate increase in the motorcycle fleet compared to other vehicles. Heavy duty 



 

191 
 

vehicles make the dominant contributions to NOX by 2050 (34%), followed by passenger 

cars (22%) and then motorcycles (21%), whilst passenger cars make the dominant 

contributions to NH3 (87%). 

4.3.2.2 Effect of mitigation scenarios on road transport emissions 

The projections of Kenya’s vehicle emissions for select pollutants in the mitigation 

scenarios from 2010 to 2050 are shown in Figure 4.5, and for all pollutants in Figures 

S7.11-S7.22.  

The most effective scenario for reducing emissions for all pollutants was SC1_FEVES 

except in reduction of NH3, for which the most effective scenario was SC5_DIES. 

SC5_DIES was the second most effective scenario in reducing total SO2, NOX, CO2, CO, 

CH4 but showed increases in total PM2.5, BC and OC. The second most effective 

scenario after SC1_FEVES in reduction of NMVOC, OC and PM2.5 was SC3_ELEC, and 

for BC was SC2_CNG. However, the SC2_CNG scenario showed an increase in total 

CH4 emissions, whilst showing substantial emission reductions in NOX emissions. 

SO2 in all the scenarios initially increased up to 2016, and then decreased to 2020 before 

increasing again to 2050. However, when compared to the BAU, the SC5_DIES scenario 

emissions of SO2 are 4% higher in 2015 then decrease by 11% and 29% of BAU 

emissions by 2030 and 2050 respectively. Reductions of SO2 emissions were somewhat 

larger in the SC1_FEVES scenario with decreases of 17% by 2030 and 62% by 2050 

relative the BAU. Emission of SO2 for the other three mitigation scenarios did not differ 

significantly from the BAU scenario. Emission reduction of CO2 and CH4 follow a similar 

trajectory, whereby SC1_FEVES show the biggest reductions in 2030, 17% for both CO2 

and CH4, and in 2050, 61% for CO2 and 63% for CH4. Emissions from five species; BC, 

OC, NMVOC, PM2.5 have 93%-98% reduction in the 2050 SC1_FEVES scenario. 
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Figure 4-5: Total select emissions from Kenya’s road transport sector in different 

scenarios, 2010-2050. 

The reduction potential of the mitigation scenarios from BAU for different vehicle types 

for Kenya from 2010 to 2050, are presented in Figure 4.6. All scenarios were calculated 
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for all pollutant species, the full set of results can be found in S7.23 - S7.34, Figure 4.6 

presents results for selected pollutants. 

For NOX, all scenarios in general show a decreasing trend from 2010 to 2050 when 

compared to the BAU scenario (Figure 4.6, top left). In scenario SC1_FEVES, NOX 

emissions from light commercial vehicles and passenger cars show the largest 

reductions (>90%) followed by urban buses (73%) and heavy duty vehicles (70%). The 

SC5_DIES scenario shows the second largest NOx emission reductions in 2050 for both 

passenger cars (81%) and light commercial vehicles (23%) with the SC2_CNG scenario 

showing the second largest reduction (16%) for urban buses. SC5_Electric and 

SC4_BRT show modest reductions, less than 10% by 2050. 

Carbon dioxide emissions from light commercial vehicles and passenger cars in scenario 

SC1_FEVES had the largest estimated reductions (>70%) compared to BAU in 2050, 

whilst motorcycles and three wheelers show over 55% reduction in 2050. The SC5_DIES 

scenario CO2 emission reduction for passenger cars was almost as large as for the 

SC1_FEVES whilst light commercial vehicles showed a slight (1%) increase. For urban 

buses, the SC2_CNG scenario was the second most effective for CO2 emission 

reduction, with a 30% reduction by 2050. SC3_Electric and SC4_BRT show modest CO2 

reductions (<10%) for motorcycles and urban buses respectively by 2050.  

The SC1_FEVES scenario generally produced the highest reductions in NMVOC 

emissions, compared to BAU in 2050, for all vehicles types: 63% for three-wheelers and 

>93% for the remaining categories (Figure 4.6). However, the SC5_DIES scenario 

NMVOC emissions reductions for passenger cars (98% by 2050) were higher than in all 

other scenarios although for light commercial vehicles, the 2050 reduction (47%) was 

less than half that for SC1_FEVES. For urban buses, the SC2_CNG scenario shows the 

second largest NMVOC emission reduction by 2050 (32%) after SC1_FEVES and the 
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SC3_Electric scenario show the second highest reduction (~10%) for motorcycles by 

2050. 

The PM2.5 emissions reductions, compared to BAU in 2050, are generally highest in 

SC1_FEVES at >90% for heavy duty vehicles, motorcycles and urban buses and >80% 

for all other vehicle categories (Figure 4.6, bottom right). However, for urban buses, the 

highest emission reduction (99% in 2050) was shown in the SC2_CNG scenario. For the 

SC5_DIES scenario, passenger cars and light commercial vehicles initially show a PM2.5 

emission increase of 50% and 77% respectively by 2020, but this reduces rapidly to 

2050 by which time there is a reduction of over 50% compared with the BAU. The 

SC3_Electric and SC4_BRT scenarios show modest reductions in PM2.5 emissions from 

motorcycles and urban buses respectively, both less than 15% by 2050. 
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Figure 4-6: Select emission reduction in percentage from BAU of the different vehicle 

types in different scenarios 2010-2050. 
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4.4 Discussion 

4.4.1 Transport policy implications for Kenya 

Road transport in Kenya is characterised as being heavily congested along the main 

arterials, having inadequate transport infrastructure, poor safety, poor access, ill 

maintained and old vehicle fleet, poor fuel quality, absence of (or poor) regulations and 

lacking the resources to implement existing policy (Aligula et al., 2005; Salon and 

Aligula, 2012).  Increasing vehicle growth in the current situation will increase demand on 

fossil fuels in Kenya, increasing GHG and air pollutant vehicle emissions (Cameron et 

al., 2012; Government of Kenya, 2013). Kenya made a commitment to reduce 

approximately 3.5 Mt CO2 equivalents from the transport sector and 30% GHG from all 

sectors compared to the business as usual scenario (BAU) by 2030 (Cameron et al., 

2012; Government of Kenya, 2013; Ministry of Environment and Natural Resources, 

2015). The transport mitigation actions identified were to implement a mass transit 

system for Nairobi and surrounding areas, comprising light rail and bus rapid transit 

(BRT) (Cameron et al., 2012; Government of Kenya, 2013). However, lack of data on 

vehicle mileage/activity (VKT), type of fuel used per vehicle type, fuel economy for the 

different vehicle types were identified as key challenges in creating a GHG inventory and 

a reference case for projecting to 2030, as Kenya lacks a comprehensive detailed 

transport emissions inventory (Cameron et al., 2012). This study estimated that a 

substantial fraction of total national CO2 emissions (20%) came from road transport in 

2010, and these emissions were projected to increase substantially into the future. 

Hence, to achieve the stated goals of Kenya’s INDC, controlling emissions from transport 

will be important. This study shows that the implementation of a BRT system may not be 

sufficient to achieve necessary GHG emission reductions, and that focussing on 

improving vehicle emissions standards, and fuel economy across the Kenyan vehicle 

fleet may be more effective in achieving this. Carbon dioxide is the main long-lived GHG 
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that transport contributes to, and therefore other sectors should be focussed on reducing 

emissions of other GHGs, such as CH4, which derive predominantly from agriculture.   

In addition to climate impacts, increased motorization in Kenya has also led to increased 

congestion, road accidents and air pollution especially in urban areas (Aligula et al., 

2005; Odhiambo et al., 2010; Kinney et al., 2011; Cameron et al., 2012; Gachanja, 2012; 

Shilenje et al., 2016). An outdoor ambient air apportionment study conducted in Nairobi 

in 2009, found vehicle emissions contribute 39% of PM2.5 (Gaita et al., 2014). Prior 

studies have noted the absence of rigorous new action by government results in 

increasing air pollution emissions from transport. Road transport contributes a 

substantial fraction to emissions of those pollutants which degrade air quality, in 

particular to NOx emissions (Shindell et al., 2011; Klimont et al., 2017; Susan C. 

Anenberg et al., 2017). Emissions of NOx contribute to the formation of ground-level 

ozone and secondary PM, both of which impact on human health, and ozone also 

damages crops leading to reduced crop yields, as well as harming natural vegetation. 

Hence reducing NOx emission, in particular from road transport, could yield multiple 

benefits through reducing air pollution health, crop and climate impacts.  

Kenya’s government efforts to reduce road transport pollution through national regulation 

and standards align with their international commitments and Kenya’s ‘vision 2030’ policy 

(Cameron et al., 2012; Government of Kenya, 2013). To curb vehicle emissions the 

government has used a vehicle and fuel standards approach: firstly, introducing a vehicle 

age limit for importation to 8 years and harmonizing fuel quality standards together with 

the other East African communities to achieve 50 ppm sulphur content for diesel and 150 

ppm for petrol (ERC, 2015). Legislation for vehicle emission limits and inspection exists 

(KEBS, 2014), however government inspectorate lacks resources and capacity, 

therefore it is poorly implemented. Furthermore, without inspection and maintenance 

(I/M) programs in Kenya, newer fleet (less than 8 years) emissions also increase 

significantly (Pillot et al., 2014; Walsh, 2014). This study shows that the effective 
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enforcement of vehicle and fuel economy standards on imported vehicles, to achieve the 

Euro IV standards to which the vehicles currently imported into Kenya are manufactured, 

would be the most effective action to reduce air pollutant and GHG emissions from the 

road transport sector. Implementation of the SC1_FEVES, SC2_CNG, SC4_BRT and 

SC5_DIES scenarios require strict vehicle emission standards up to Euro IV to be 

implemented and enforced by 2020 so that the fleet’s standards start to improve 

gradually. These standards go hand in hand with better fuel standards and 

implementation of an I/M program for all vehicles in Kenya. Under the KS1515:2000 

standard, commercial and public vehicles should undergo annual tests and private 

vehicles should have bi-annual tests if they are 5 years or older upon registration. These 

emission standards resemble the UK Ministry of Transport (MOT) vehicle tests and limits 

and are therefore are I/M tests.  However at present, these tests are neither 

implemented nor enforced in Kenya. Furthermore, these tests have been found to be 

inadequate elsewhere as they have limited effectiveness (Ropkins et al., 2009). 

Fuel economy standards are often decoupled from vehicle emissions standards (Plotkin, 

2016). However, Kenya has an opportunity to implement these standards concurrently 

given its improved fuel quality and vehicle imports from countries with Euro IV standards 

or higher. In Kenya, a recent study in NMR estimated in-use vehicle fleet economy 

characterised by vehicle category (Mbandi et al., submitted). Assuming the Kenya’s fleet 

fuel economy is similar to NMR for 2010, then for the SC1_FEVES scenario it was 

assumed  Kenya’s vehicle fleet will have an average annual improvement rate until the 

Kenyan fleet will reach the present Japanese fuel economy targets (JAMA, 2016) by 

2050. SC1_FEVES required these improved FE standards to be implemented by 2020, 

so that the fleet FE gradually changes. However, the annual FE improvement estimated 

for this scenario  (5-100%, by 2050) was higher than some previous studies: a 1% 

annual improvement of fuel economy for the South African fleet (Merven et al., 2012), 

and 0.3-1.3% for Chinese fleet (Ou et al., 2010). Both of these countries unlike Kenya 
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have a large automotive manufacturing sector and have existing vehicle emission and 

fuel economy standards (Goyns, 2008; Ou et al., 2010), whilst Kenya’s projected 

improvement would be from non-existent standards, therefore this difference was 

deemed to be justifiable in the Kenyan context.  

Prior studies have shown increasing the share of compressed natural gas (CNG) in 

buses and hybrid electric vehicles decreases vehicle emissions (Ou et al., 2010; Merven 

et al., 2012; Aggarwal and Jain, 2014; Goel and Guttikunda, 2015). China and India are 

global leaders in use of CNG, and in both countries, there are deliberate government 

efforts to build infrastructure to support CNG use through tax incentives and subsidies in 

addition to domestic availability of CNG (Wainberg et al., 2017). In the current study’s 

SC2_CNG scenario, a widespread adoption of CNG urban buses was envisaged by 

2050, contributing to reductions of PM2.5, CO2, NMVOC, BC and NOX (see Figure 5 & 6). 

The reductions of PM2.5 in SC2_CNG  is similar to India’s significant reduction on initial 

introduction of CNG for buses and three-wheelers in the past decade (Goel and 

Guttikunda, 2015). Kenya, however does not have a domestic supply of CNG, but 

neighbouring Tanzania has abundant CNG reserves and is utilizing it for transport, 

targeting nearly 500,000 conversions by 2040 (United Republic of Tanzania, 2016). 

Therefore, Kenya could import CNG from Tanzania and CNG-fuelled buses from China 

or India, countries that are already Kenya’s trading partners. Furthermore, government 

commitment would also be needed to build required infrastructure for CNG use such as 

filling stations (United Republic of Tanzania, 2016; Wainberg et al., 2017). The Kenyan 

government  now has a tax exemption for hybrid electric vehicle imports (Cameron et al., 

2012), therefore it is likely the percentage (~0.34%) of hybrid vehicles (see Table 2), will 

grow by 2050. However, in this study, we did not explore the hybrid vehicle scenario 

because emission factors for hybrid vehicles are scarce. 

BRT has been successfully implemented in over 200 cities worldwide (Venter et al., 

2017) as it has advantages in increasing access to safe, convenient and affordable 
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public transport (Matata et al., 2017) while reducing intensive use of private cars thus 

decreasing vehicle emissions. In SSA, BRT has been implemented in Nigeria (Kolawole, 

2010), South Africa (Merven et al., 2012; Allen, 2013) and recently in Tanzania (Matata 

et al., 2017). BRT systems are often complementary to existing informal transport 

systems in Africa (Venter et al., 2017).  Kenya is in the process of implementing BRT 

systems in Nairobi (Cameron et al., 2012), although there have been delays. The current 

study, explored the implementation of the proposed BRT for Kenya in the SC4_BRT 

scenario. We assumed 11,000 (14 seater matatu) would be scrapped (ICCT, 2012). This 

was feasible based on the data from a BRT system in Tanzania that carries 120,000 

passengers using a 21 km road with 177 buses (Mchomvu, 2016). The results showed 

emission reduction for PM2.5 and BC and modest reductions for other emissions 

compared to SC1_FEVES (see Figure 5 and 6). Greater emission reductions could be 

achieved for Kenya from BRT by increasing the scope of the proposed project whereby 

Kenya would start to see benefits in reducing vehicle ownership, decreasing vehicle 

mileage which in turn reduces vehicle emissions and provides sustainable transport. 

4.4.2 Comparison of emissions with previous estimates 

In 2010, in Kenya, the transport sector in Kenya alone accounted for more than 61% of 

total NOX, 20% of total CO2, 19% of total NMVOC, 39% of total PM2.5 and 84% of total 

PM10. This indicates that transport should be a key sector for mitigation actions to reduce 

both air pollutant and GHG emissions. Transport does not account for a big proportion of 

BC (7%) and OC (2%), when compared to the residential sector and cottage industry 

that together contributes nearly 80% of BC or OC. The substantial contribution to OC 

and BC  from the residential sector is due to use of fuel wood, charcoal and paraffin 

(kerosene) for fuel for lighting, cooking and heating, (Marais and Wiedinmyer, 2016). 

Charcoal production in Kenya accounted for the high BC and OC from the cottage 

industry sector. However, we need to account for BC and OC from the transport sector 

because, as certain vehicle types such as motorcycles increase (Figure 4.4), OC and BC 
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emissions will increase nearly 11-fold and nearly 30-fold by 2050 respectively under the 

BAU scenario. Thus, motorcycles will account for 56% of BC emissions from road 

transport in 2050 and 95% for OC in this scenario.  Post 2050, the number of vehicles 

may increase even further because, compared to other countries (Wu et al., 2014), 

Kenya has not reached saturation in vehicle ownership. Therefore, impacts of these 

emissions to climate from transport sector are set to grow (see Figure 4.7 and 4.8). 

The emission dataset developed for this study was compared to a global inventory 

compiled using ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived 

Pollutants) dataset  (IIASA, 2016) created using GAINS (Greenhouse-Air Pollution 

Interaction and Synergies) model (Stohl et al., 2015), for Kenya (See Figure 4.2 and 

Figure S11). The residential sector in ECLIPSE accounts for the majority of emissions for 

almost all pollutants except CH4 and NH3, then major emissions from these two species 

are from the agriculture sector, for SO2, major emissions are from Industry. This study’s 

total emissions for Kenya, for all sectors for each species are higher than ECLIPSE 

emissions, except for BC (27% lower). The difference between these previous estimates 

and our work for total SO2 and NOX was over 40%, PM2.5 and CO over 30%, CH4 and 

OC over 20%, NH3 over 10%, NMVOC difference was 58%, and the highest was PM10 

with 83%. Differences in emissions in the transport sector accounted for the differences 

in emissions estimates between the two inventories. In this study, PM10 and PM2.5 

emission included re-suspended dust from unpaved roads in addition to tail-pipe 

emissions, and it was estimated that road dust accounts for 96% of PM2.5 and 100% of 

PM10 emissions across the transport sector in 2010. This is due to the high fraction of 

unpaved roads in Kenya (Gachanja, 2012; Ong’uti, 2015; Fukubayashi et al., 2016). 

ECLIPSE datasets do not estimate unpaved road dust (Klimont et al., 2017), or other 

sectors such as savannah and grassland burning, which may account for lower 

emissions of  OC, CO, PM10 and PM2.5 in the ECLIPSE inventory.  
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In 2010, road transport was by far the major emissions contributor in the transport sector, 

as shown in Figure 4.3. This is consistent with previous studies where road transport in 

Kenya (when compared to rail and water) was identified as contributing 99% of transport 

GHG emissions in Kenya (Cameron et al., 2012). In an inventory for Africa, over 90% of 

CO and NOX emissions from total transport was from road transport (Marais and 

Wiedinmyer, 2016).   We did not include other forms of transport in the mitigation 

scenarios because we had limited data especially on rail transport which is set to grow in 

Kenya. However, emissions from other forms of transport may also increase in 

importance into the future. Rail emissions are set to increase because, as part of 

Kenya’s vision 2030, there is planned expansion of current rail infrastructure to include 

light rail transport in the NMR and expand passenger and freight transport country wide 

(Cameron et al., 2012). This could potentially reduce the demand for heavy duty vehicles 

to transport freight across Kenya, but this element of the future transport landscape in 

Kenya has not been evaluated in this study.  

In a previous inventory for Africa, the transport sector was shown to emit 27% of total CO 

and 25% of NOX (Marais and Wiedinmyer, 2016). In a follow up study of Africa’s 

emissions contribution to OC from residential, industry, energy and transport sector, 

estimated that 7.5 kt were from transport sector representing 13% of total OC emissions 

in Kenya (Lacey et al., 2017).  The OC emissions from the transport sector in that study 

were thus an increase  compared to a previous global study that had estimated OC from 

the transport sector in East Africa to be 4 kt in 1996, less than 1% of the total which 

included residential, industry and biomass burning (Streets et al., 2004). In this study and 

ECLIPSE estimation, OC emissions were both ~2%, although NOX emissions were 44% 

from transport for ECLIPSE, lower than this study’s estimation, 61%. Therefore Lacey et 

al (2017) estimation of OC from transport was greater than this study’s estimate whist 

ECLIPSE estimate for NOX emissions from transport was less than this study’s estimate.  
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The ECLIPSE data set, using the GAINS model, made three assumptions for high 

emitting vehicles which would be disparate for the Kenyan vehicle fleets, the first is the 

assumption that high emitters comprise of 20% of the fleet, in Kenya even though few 

tests emissions have been conducted, a previous study found 70% of vehicles failing 

emission standards for Kenya (Cameron et al., 2012).  The second assumption is that 

durability of emission controls has increased, this would not be the case for fleets that do 

not have the emission control as they are often removed or tampered with, furthermore 

in the absence of I/M as is the case in Kenya, these controls will malfunction (Pillot et al., 

2014). We do not have enough data to ascertain what fraction of emission controls are 

removed or tampered with in Kenya,  IM240 dynamometer test for an I/M program in the 

USA found 35% of the fleet tested to have tampered with emission controls (Bishop et 

al., 1996). The third assumption is amplification of emissions for high emitting vehicles 

(presumably with malfunctioning technology) to be a factor of 3-10 for all vehicle 

technologies, real-world emissions testing has proven vehicles with up to Euro V tested 

on the road instead of a laboratory have sometimes up to 300% higher emissions (Weiss 

et al., 2012; Thompson et al., 2014; Degraeuwe and Weiss, 2016).The fleets in 

developed countries are newer with the best technology, the Kenyan fleets in contrast 

are older and imported second-hand with poor I/M, thus the emissions differences will be 

higher and even greater discrepancy between real-world and laboratory testing. The 

DICE-Africa model from which Lacey et al (2017) based their estimation for Kenya’s  

transport inventory assumed a ratio of motorcycles to cars to be 2.6 i.e. 49 motorcycles 

per 1000 people from an earlier study (Marais and Wiedinmyer, 2016). This estimate is 

greater  than the number of motorcycles registered in Kenya in 2013, 18 motorcycles per 

1000 people (KNBS, 2013b). This discrepancy may account for the higher OC emissions 

for Kenya in the transport sector from Lacey et al. (2017) compared to the present study. 

Kenya’s GHG inventory estimates 10% CO2 equivalent to be from the transport sector 

(Cameron et al., 2012) compared with this study’s estimate for CO2 of 20% from the 
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transport sector. In Cameron et al. (2012), a top-down inventory was used to estimate 

GHGs from the transport sector, but this method lacked end-user fuel split for the 

vehicles and activity data, they made an assumption on activity and fuel share which 

may have introduced a significant error in the estimate. 

In 2010, motorcycles had the largest contribution of NMVOC, OC, PM2.5 and CO 

emissions; passenger cars have the largest contribution of CH4, NH3 and CO2 emissions; 

and heavy duty vehicles have the largest contribution of BC, NOX and SO2. The findings 

for motorcycles can be compared to a study conducted in West Africa, which looked at 

BC and OC emitted from motorcycles in 15 countries in 2002 (Assamoi and Liousse, 

2010), where motorcycles’ contribution of OC and BC were significantly higher compared 

to four-wheel vehicles (Assamoi and Liousse, 2010). However, Kenyan motorcycles are 

predominantly 4-stroke (Mbandi et al., submitted), and not mainly 2-stroke (more 

polluting) as in West Africa.  Looking at the ratio of motorcycles to four wheel vehicles 

assumed to be a 40-60% ratio (Assamoi and Liousse, 2010), this is also comparable to 

vehicle statistics of Kenya for 2013 (KNBS, 2013b). The proportion of the motorcycles, 

39%, of the registered vehicles in 2013 surpassed the share of private cars, 37% (KNBS, 

2013b). The increase in motorcycle numbers (mainly imported from Asia) in Kenya was 

spurred on by a tax waiver in 2011, but this incentive was scrapped in 2015 and an 

excise duty was introduced (KRA, 2016). 

In comparison to available previous studies, the projected increase in emissions was 

higher for some pollutants. For example the BC emissions from road transport increases 

by a factor of 3 and OC by a factor of 7 to 2030 in the BAU scenario. This increase is 

higher than the 4-old, and 3-fold increase in BC and OC emissions across Africa 

projected by Liousse et al. 2014, where a similar BAU scenario was constructed i.e. 

present emission values are static in the absence of emission regulations. 
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The SC5_Electric scenario assumed a small percentage (10%) fleet of electric 

motorcycles in Kenya, but because by 2050 in the BAU, motorcycles will be 13.5 million 

representing 63% of the Kenyan vehicle fleet, this scenario showed significant emission 

reductions for SO2, NOX, CO2, CH4, CO and NH3. For motorcycles, in the BAU we 

assumed uncontrolled (pre Euro) and then in SC1_FEVES we assumed Euro III and 

used Indian emission factors (Bharat III) instead of European emission factors. This is 

because the motorcycles in Kenya are imported from India and China; the engine is 

smaller compared to European, 150 cc and four-stroke engine, mostly used for public 

transport similar to India. By 2050, the results show that the motorcycles are responsible 

for the bulk of vehicle exhaust emissions for all species except NOX, then heavy duty 

vehicles and NH3, passenger cars are responsible. This is comparable to results from a 

previous study in Ho Chi Minh City, Vietnam where motorcycles comprised 87% of the 

vehicle fleet,  responsible for the majority of vehicle emissions contributing 94% of CO, 

68% of NMVOC, 61% (Ho and Clappier, 2011). China is the largest manufacturer of 

electric motorcycles (Fu, 2013) and they have opened various motorcycle plants in 

Africa, thus this offers a viable scenario whereby Kenya could reduce emissions from 

motorcycles. 

In previous studies, the key source of PM emissions in the transport sector has been 

light and heavy duty trucks with diesel engines (Klimont et al., 2017), especially in 

Europe where there is a large share of diesel fleets (Cames and Helmers, 2013; 

Toubeau, 2016; Klimont et al., 2017). However, for Kenya in 2010, we found motorcycles 

were a key source of PM, followed by heavy duty and then urban buses (Figure 4.3). 

Heavy duty vehicles make the largest contribution to emissions of BC, NOX and SO2, 

these emissions’ most effective reductions occur in scenario SC1_FEVES as shown in 

Figure 4.6. In Kenya, heavy duty vehicles and urban buses were considered to be 

uncontrolled using basic injection technology (UC Riverside, 2002). Kenya’s fuel quality 

sulphur content in diesel (500 parts per million) improved ten-fold from 2010 to 2015, 
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(specifications are shown in the supplementary section, Table S3)  (KEBS, 2007, 2010), 

therefore there is a SO2 reduction over this historical period in all scenarios. Diesel 

vehicles are responsible for the majority of the NOX emissions which are key secondary 

PM2.5 and O3 precursors (Susan C. Anenberg et al., 2017), therefore heavy duty vehicles 

with 100% diesel in Kenya, have the highest contribution of NOX. Urban buses (matatus) 

in Kenya in 2010, comprised 46% diesel, a lower than expected proportion as there is a 

high importation of petrol-driven smaller vans, pickups and station wagon  (ERC, 2015b) 

converted to matatus  (Ommeh et al., 2015; Behrens et al., 2017), mostly circulating in 

rural areas. Even with this relatively low diesel proportion, urban buses are the second 

highest contributors of NOX, BC and SO2 after heavy duty vehicles. In addition to the 

scenario SC1_FEVES for maximum emission reduction, SC2_CNG shows significant 

reductions for BC and SC4_BRT has modest reductions for urban buses.  

The rise of the European diesel light passenger vehicles appears to be waning (Schipper 

and Fulton, 2009; Cames and Helmers, 2013; Helmers, 2016), as some European cities 

have recently announced diesel vehicle bans by 2040 (Tietge and Diaz, 2017). 

Therefore, SC5_DIES scenario demonstrates the possibility of increasing diesel fleets as 

these second-hand vehicles are likely to become available for a market such as Kenya. 

This scenario, as shown in Figure 4.6, had an initial increase in 2020 for PM2.5 emissions 

from light commercial vehicles and passenger cars compared to the BAU even though 

there was a gradual improvement in emission standards from ‘uncontrolled’ for 

passenger cars and ‘conventional’ for light commercial vehicles to Euro IV standard. This 

was due to changing the fuel share gradually for both types of vehicles, to have a higher 

diesel share for light duty vehicles similar to European share. This initial increase then 

gradually decreases to 2050 as the Kenyan fleet improves the share of Euro IV fleet.  

4.4.3 Uncertainties and limitations 

We considered uncertainties in vehicle usage, that is  vehicle kilometres travelled (VKT), 

fuel economy (FE) and emission factors per vehicle category and per emission species, 
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and Table 4.4 represents the combined uncertainties. In the projection we assume the 

percentage uncertainties in the base year emissions estimates will propagate over 

subsequent years, therefore uncertainties will tend to be correlated over time (Abel et al., 

2001). 

Emission factors that over or under estimate emissions in the base year will probably do 

so in the subsequent years, therefore uncertainties due to emission factors will tend to 

be correlated over time. 

Table 4-4: Table of individual uncertainties for vehicle mileage (VKT) fuel economy (FE) 

emission factors (EF) and the resultant combined uncertainties around pollutant 

emissions estimates. 

  

VKT 

(km/year) 

Kenya 

2015 

VKT 

CI % 

FE 

(g/km) 

Kenya 

2015 

FE 

CI % 

Combined 

uncertainty* 

(NOX, CO, 

NMVOC, PM2.5, 

BC, OC) 

Combined 

uncertainty** 

(SO2, CO2, CH4, 

NH3) 

Passenger 

Vehicle  22454.8 12% 161.1 12% 71% 71% 

Light Duty 

Commercial  14764.3 13% 159.2 25% 71% 74% 

Heavy Duty 

Commercial  38284.9 42% 234.6 50% 82% 86% 

Urban 

buses  55315.8 7% 259.7 8% 70% 70% 

Three 

Wheeler  41715.9 40% 62.5 54% 81% 88% 

Motorcycle  29083.2 5% 37.3 8% 70% 70% 

*70% Emission Factor uncertainty assumed, from a lower and upper bound estimate in 

uncertainty assessment of EMEP/EEA Tier 1 methodology (Ntziachristos et al., 2013; 

Kouridis et al., 2017). *Calculated from square root of % uncertainty VKT2 and % 

uncertainty EF2. **Calculated from square root of % uncertainty FE2 and % uncertainty 

VKT2. 
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There was uncertainty from predicting vehicle ownership increase because as income 

per capita increases  the number of vehicles per 1000 people (motorization) increases, 

until a saturation point is reached (Dargay and Gately, 1999; Dargay et al., 2007; 

Sillaparcharn, 2007; Merven et al., 2012; Wu et al., 2014). The Gompertz function 

(Dargay and Gately, 1999; Dargay et al., 2007) has been used to model this relation and 

accounts for saturation levels, and parameters which determine the model curvature 

calculated from historic data. However this equation and parameters have been derived 

for developed countries  with high income ($19,000-$46,0000) GDP per capita, and 

countries with middle income ($4,000-$9,6000) per GDP capita, and their motorization 

rates are well above Kenya’s 44 vehicles per 1000 people and GDP per capita $1,400. 

Therefore, we considered that Kenya is far from reaching saturations levels; and 

assumed a linear relationship between the GDP per capita and the number of vehicles 

based on historical data for Kenya. Thus the  BAU scenario for the road transport sector 

was created using available data (KNBS, 2013b, 2014b; World Bank, 2014) for two 

variables: GDP per capita and the number of vehicles in the individual vehicle categories 

from 1998-2013. These predictive relations are presented in supplementary section, 

S7.9. We  also did not consider the rate at which a vehicle is scrapped  (Merven et al., 

2012), as a function of the vehicle age being the probability of the vehicle remaining 

operational. With limited data for Kenya, we could not determine the parameters needed 

to either calculate the scrappage rate or determine the decay of mileage both of which 

would affect road transport emissions estimation for the fleet. 

Dry days were defined as those with less than or equal to 0.1 mm rainfall per day, this is 

lower threshold  than that assumed in Gillies et al. (2005), 0.25mm. Hence, the PM 

estimates from road dust in the present study are conservative, most likely an under-

estimate. However, in the estimate of the proportion travelled on paved or unpaved 

roads, it was assumed that the VKT travelled on the paved/unpaved roads was a 

function of the road length. This is likely an over-estimate, as more vehicles will travel on 
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the bigger paved roads. Thus in our estimation, these two factors would tend to balance 

out the uncertainty associated with the estimation of PM from road dust. 

The activity data for vehicle VKT and FE was based on a previous study conducted in 

NMR which was assumed in this study to be representative of the whole country. This 

assumption may be reasonable for two reasons, one which may result in an over-

estimate and the other an under-estimate. The first, since it is estimated 67% of all 

vehicles in Kenya circulate in NMR (Gachanja, 2012), two thirds of the activity data for 

NMR is representative for the country, the second, whilst the vehicles outside of Nairobi 

may circulate for longer distances (higher VKT), for example intra-country buses and 

trucks, these vehicles have better FE per km. However, further work needs to be done to 

establish the activity for vehicles outside of NMR as previous studies have shown 

circulation of vehicles in urban areas is often not the same as rural areas (Kholod et al., 

2016).  
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4.5 Conclusion  

A detailed model has been developed to estimate the current and projected future trends 

of air pollutant and GHG emissions from Kenya’s road transport sector between 2010 

and 2050. An inventory was compiled of all major source sectors so that transport 

emissions could be set within the context of total national emissions. Five scenarios 

(SC1_FEVES, SC2_CNG, SC3_ELEC, SC4_BRT and SC5_5) were designed to project 

road transport emissions into the future, and the climate benefits of the implementation 

of these scenarios were assessed. The BAU scenario was used as a baseline reference 

scenario in which government is assumed to do nothing additional to influence the long 

term trends of road transport in Kenya. 

It was found that in 2010, the transport sector emitted 15.95 Mt of CO2, 115 kt of NOX 

and 249 kt of NMVOC with road transport contributing nearly 97% of these emissions. 

Emissions for different species from Kenya’s road transport sector up to 2050, in the 

BAU, were projected to increase 9-fold for NOX, 11-fold for CO2, 31-fold for NMVOC, 19-

fold for PM, 11-fold for BC, 28-fold for OC. It was found that the mitigation scenario 

combining better fuel economy with improved emissions standards (SC1_FEVES) was 

the most effective reduction scenario for all species apart from NH3 for which the most 

effective reduction scenario was the increased diesel usage (Euro IV standard) in light 

duty passenger vehicles (SC5_DIES). All mitigation scenarios generally showed 

reductions for all vehicle types for all emitted species apart from CH4 in SC2_CNG 

(because of use of CNG-fuelled urban buses) and NH3 in SC1_FEVES (because of NH3 

emitted from vehicles equipped with urea-based catalytic converters). 

These results suggest comprehensive implementation of improvements in both fuel 

economy and vehicle standards in Kenya will have the most benefits for improving air 

quality and reducing Kenya’s contribution to short and long-term climate warming, 

although a fuel shift to CNG or electric-powered vehicles, as well as investment in public 

transport, would also provide substantial benefits. 
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4.6 Supplementary 

4.6.1 Section A: Data inputs for the inventory 

Section details the input and sources of data needed for a detailed road transport 

inventory and a simple inventory for non-transport sector  

S7.1 Number of vehicles in-use disaggregated by vehicle category 

The historical data set of the cumulative number of vehicles registered from 1998-2013 

in Kenya is shown in Figure S1, disaggregated into vehicle categories. 

 

Figure S1: Historical data from 1998-2013 for the registered number of vehicles in 
Kenya excluding trailers. Source data: (KNBS, 2013b, 2014a). 
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S7.2 Vehicles in-use disaggregated by type of fuel used 

The fuel use for the different vehicle categories for 2010 is shown in Figure S2.  The 

categories in Kenya National Bureau of Statistics (KNBS) are adjusted in accordance 

with the classification shown in Table 1. 

 

Figure S2: Fuel use for the different vehicle categories adjusted in accordance with 
vehicle classification used in this study for the year 2010. Source data: (Ministry of 
Transport Kenya, 2011; KNBS, 2013b, 2014b; ERC, 2015b). 

 

 

In addition fuel quality and density for 2010 is shown in Table S3: 

Table S 3: Fuel specifications in Kenya in 2010. Source data: (KEBS, 2007, 2010) 

Fuel Specifications Petrol Diesel 

Sulphur content (2010) 150 ppm 500 ppm 

Density 716 kg/m3 867 kg/m3 
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S7.3 Activity Data 

Average distance travelled per vehicle category is shown in Figure S3, this is calculated 

from an average daily mileage (Mbandi et al., in preparation) assuming 365 days a year. 

 

Figure S4: Vehicle activity for different categories in km/year with 95% confidence 
interval. Data source: (Mbandi et al., in preparation). 

S7.4 Fuel Economy 

The fuel economy, expressed as grams of fuel consumed for each km travelled, from 

each vehicle category is calculated from the density of the fuel (either petrol or diesel) 

together with the fuel economy (L/100 km) using the formula below and is presented in 

Figure S3: 
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Figure S5: Fuel Economy for each vehicle category in g/km with 95% confidence interval 
calculated from (Mbandi et al., in preparation) and Equation shown above. 

 

S7.5 Average distance travelled on unpaved roads as a percentage of the total 

The average distance travelled on the unpaved roads is shown in Figure S6, the data for 

the paved and unpaved roads in the Nairobi Metropolitan Region (NMR) is sourced from 

Gachanja (2012), while nationwide data for similar is sourced from Ong’uti (2015) and 

Fukubayashi et al., (2016). Since 67% of registered vehicles are in-use in the NMR 

(Gachanja, 2012), the weighting of the roads from NMR are duly considered.  
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Table S6: Kenya's road network in kilometres paved and unpaved roads. Data source: 

(Gachanja, 2012; Ong’uti, 2015; Fukubayashi et al., 2016) 

  
Paved 
(km) 

Unpaved 
(km) 

% 
unpaved 

% of 
vehicles 

Weighted 
% 
unpaved 

Nairobi Metropolitan Region 
(NMR) 972 178 15.5% 67% 10% 

Kenya (ex. NMR) 10218 149511 93.6% 33% 31% 

Kenya (Total) 11190 149689 93.0% 100% 41% 

. 

 

S7.6 Precipitation average for Kenya 

The percentage of dry days, defined as less than 0.1 mm per day, is shown in Figure S6, 

the average for the year is 67.9% dry days. 

Table S7: Precipitation average for the Kenya, by month for 2015. Wet days are days 
with greater than 0.1 mm rainfall per day and dry days are with less than 0.1 mm rainfall 
per day. Data source:  (BBC, 2015). 

Month 

Wet days 
(>0.1mm) per 
month 

How many 
days in 
month 

% Dry days 
(<0.1mm) per 
month 

Average 
precipitation 
(mm) per 
month 

January 5 31 83.9% 38 

February 6 28 78.6% 64 

March 11 31 64.5% 125 

April 16 30 46.7% 211 

May 17 31 45.2% 158 

June 9 30 70.0% 46 

July 6 31 80.7% 15 

August 7 31 77.4% 23 

September 6 30 80.0% 31 

October 8 31 75.0% 53 

November 15 30 50.0% 109 

December 11 31 64.5% 86 

Average  10 30 68.0% 80 
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S7.7 Vehicle Emission factors 

Table S8: Vehicle emission factors by vehicle category, fuel type and vehicle technology 
used for the BAU scenario. Data source: (ARAI, 2008; Ntziachristos et al., 2013; Kouridis 
et al., 2014). Reproduced with permission (SEI, 2015) 

 

Mobile emissions from on-road vehicles (Detailed method).

Vehicle class 

Fuel

(For definition of EMEP/EEA vehicled 

classes see Table 2.1 at bottom of this 

worksheet) Default* Default* Default* Default* Default* Default*
 l

Default
 m

Default 
n

Default
 o

Default
 o

Gasoline Passenger cars (Uncontrolled) 
a

2.09
a

18.9
a

2.41
a

0.10
a

0.0029
a

0.0029
a

126 19 2 37.7

Gasoline Passenger cars (Moderate control) 
d

1.29 6.49 0.29 0.002 0.0022 0.0022 126 19 30 1.79

Gasoline Passenger cars (Euro I) 
e

0.53 3.92 0.53 0.0922 0.0022 0.0022 126 19 25 1.92

Gasoline Passenger cars (Euro 2) 
e

0.255 2.04 0.251 0.1043 0.0022 0.0022 126 19 25 1.92

Gasoline Passenger cars (Euro 3) 
e

0.119 1.82 0.119 0.0342 0.0011 0.0011 126 19 15 2.31

Gasoline Passenger cars (Euro 4) 
e

0.065 0.62 0.065 0.0342 0.0011 0.0011 126 19 15 2.31

Gasoline Passenger cars (Euro 5) 
e

0.065 0.62 0.065 0.0123 0.0014 0.0014 126 19 15 2.31

Gasoline Passenger cars (Euro 6) 
e

0.065 0.62 0.065 0.0123 0.0014 0.0014 126 19 15 2.31

Gasoline Light-commercial vehicles (Conventional) 
i

3.09 25.5 3.44 0.0025 0.0023 0.0023 225 34 30 1.79

Gasoline Light-commercial vehicles (Euro 1) i 0.563 8.82 0.614 0.0758 0.0023 0.0023 225 34 25 1.92

Gasoline Light-commercial vehicles (Euro 2) i 0.23 5.89 0.304 0.091 0.0023 0.0023 225 34 25 1.92

Gasoline Light-commercial vehicles (Euro 3) i 0.129 5.05 0.189 0.0302 0.0011 0.0011 225 34 15 2.31

Gasoline Light-commercial vehicles (Euro 4) i 0.064 2.01 0.128 0.0302 0.0011 0.0011 225 34 15 2.31

Gasoline Light-commercial vehicles (Euro 5) i 0.064 1.30 0.096 0.0123 0.0014 0.0014 225 34 15 2.31

Gasoline Light-commercial vehicles (Euro 6) i 0.064 1.30 0.096 0.0123 0.0012 0.0012 225 34 15 2.31

Gasoline Heavy duty (Conventional) 
c

6.6 59.5 5.25 0.0019 0.0023 0.0023 450 68 30 
H

1.79
 H

Gasoline Motorcycles  (2-stroke) (Uncontrolled)
a

0.375
a

23.2
a

12.8
a

0.0023
a

0.21
a

0.21
a

36 5 10 6.90

Gasoline Motorcycles  (2-stroke) (Moderate control) 
f 

0.067 24.3 9.97 0.0019 0.16 0.16 36 5 10 6.90

Gasoline Motorcycles  (2-stroke) (Mot-Euro 1) 0.028 16.3 5.82 0.0019 0.064 0.064 36 5 20 3.08

Gasoline Motorcycles  (2-stroke) (Mot-Euro 2) 0.104 11.2 1.84 0.0019 0.032 0.032 36 5 20 3.08

Gasoline Motorcycles  (2-stroke) (Mot-Euro 3) 0.280 2.73 0.806 0.0019 0.0096 0.0096 36 5 20 3.08

Gasoline Motorcycles (4-stroke) (Uncontrolled)
a

0.375
a

23.2
a

12.8
a

0.0023
a

0.21
a

0.21
a

36 5 15 4.30

Gasoline Motorcycles (4-stroke) (Moderate control) 
g

0.233 25.7 1.68 0.0019 0.014 0.014 36 5 15 4.30

Gasoline Motorcycles  (4-stroke) (Mot-Euro 1) 0.477 13.8 1.19 0.0019 0.014 0.014 36 5 25 2.31

Gasoline Motorcycles  (4-stroke) (Mot-Euro 2) 0.317 7.17 0.918 0.0019 0.0035 0.0035 36 5 25 2.31

Gasoline Motorcycles  (4-stroke) (Mot-Euro 3) 0.194 3.03 0.541 0.0019 0.0035 0.0035 36 5 25 1.92

Gasoline 3-Wheelers (2-stroke) (uncontrolled) 0.375
b

23.2
b

12.8
b

0.0023
b

0.21
b

0.21
b

90 14 10 6.90

Gasoline 3-Wheelers (2-stroke) (Medium control) 0.30
 A

3.15
 A

6.04
 A

0.0023
a

0.11
A

0.11
A

90 14 10 6.90

Gasoline 3-Wheelers (2-stroke) (Bharat 1 = Euro 1) 0.20 
B

1.37 
B

2.53 
B

0.0023
a

0.045 
B

0.045 
B

90 14 20 3.08

Gasoline 3-Wheelers (2-stroke) (Bharat 2 = Euro 2) 0.16 
C

1.15 
C

1.63 
C

0.0023
a

0.043 
C

0.043 
C

90 14 20 3.08

Gasoline 3-Wheelers (4-stroke) (Bharat 1 = Euro 1) 0.61
 B

4.47
 B

1.57
 B

0.0023
a

0.011
B

0.011
B

90 14 25 2.31

Gasoline 3-Wheelers (4-stroke) (Bharat 2 = Euro 2) 0.53
 C

2.29
 C

0.77
 C

0.0023
a

0.015 
C

0.015 
C

90 14 25 2.31

Gasoline Total for gasoline

Diesel 3-Wheelers (Moderate control) 0.93
 A

9.16
 A

0.63
 A

0.001 0.782 
A

0.782 
A

90 14 55 0.54

Diesel 3-Wheelers  (Bharat 1 = Euro 1) 0.69 
B

2.09 
B

0.16 
B

0.001 0.347 
B

0.347 
B

90 14 70 0.31

Diesel 3-Wheelers (Bharat 2 = Euro 2) 0.51 
C

0.41 
C

0.14
 C

0.001 0.091 
C

0.091 
C

90 14 80 0.18

Diesel Passenger cars (Conventional) 
h

0.546 0.688 0.159 0.001 0.2209 0.2209 126 19 55 0.54

Diesel Passenger cars (Euro 1) 
h

0.690 0.414 0.047 0.001 0.0842 0.0842 126 19 70 0.31

Diesel Passenger cars (Euro 2) 
h

0.716 0.296 0.035 0.001 0.0548 0.0548 126 19 80 0.18

Diesel Passenger cars (Euro 3) 
h

0.773 0.089 0.02 0.001 0.0391 0.0391 126 19 85 0.12

Diesel Passenger cars (Euro 4) 
h

0.58 0.092 0.014 0.001 0.0314 0.0314 126 19 87 0.1

Diesel Passenger cars (Euro 5) 
h

0.61 0.04 0.008 0.0019 0.0021 0.0021 126 19 10 3.85

Diesel Passenger cars (Euro 6) 
h

0.21 0.049 0.008 0.0019 0.0015 0.0015 126 19 20 1.54

Diesel Light-commercial vehicles (Conventional) i 1.66 1.34 0.133 0.0012 0.356 0.356 225 34 55 0.54

Diesel Light-commercial vehicles (Euro 1) i 1.22 0.577 0.141 0.0012 0.117 0.117 225 34 70 0.31

Diesel Light-commercial vehicles (Euro 2) i 1.22 0.577 0.149 0.0012 0.117 0.117 225 34 80 0.18

Diesel Light-commercial vehicles (Euro 3) i 1.03 0.473 0.094 0.0012 0.0783 0.0783 225 34 85 0.12

Diesel Light-commercial vehicles (Euro 4) i 0.831 0.375 0.035 0.0012 0.0409 0.0409 225 34 87 0.1

Diesel Light-commercial vehicles (Euro 5) i 0.622 0.075 0.035 0.0019 0.001 0.001 225 34 10 3.85

Diesel Light-commercial vehicles (Euro 6) i 0.221 0.075 0.035 0.0019 0.0009 0.0009 225 34 20 1.54

Diesel Heavy-duty vehicles (Conventional) 
j

8.92 2.13 0.776 0.0029 0.333 0.333 450 68 50 0.154

Diesel Heavy-duty vehicles (HD Euro I) 
j

5.31 1.020 0.326 0.0029 0.129 0.129 450 68 65 0.154

Diesel Heavy-duty vehicles (HD Euro II) 
j

5.5 0.902 0.207 0.0029 0.061 0.061 450 68 65 0.154

Diesel Heavy-duty vehicles (HD Euro III) 
j

4.3 0.972 0.189 0.0029 0.0566 0.0566 450 68 70 0.154

Diesel Heavy-duty vehicles (HD Euro IV) 
j

2.65 0.071 0.008 0.0029 0.0106 0.0106 450 68 75 0.154

Diesel Heavy-duty vehicles (HD Euro V) 
j

1.51 0.071 0.008 0.011 0.0106 0.0106 450 68 75 0.154

Diesel Heavy-duty vehicles (HD Euro VI) 
j

0.291 0.071 0.008 0.011 0.0005 0.0005 450 68 15 2.31

Diesel Urban Buses (Conventional) 
j

16.5 5.710 1.990 0.0029 0.909 0.909 450 68 50 0.154

Diesel Urban buses (HD Euro I) 
k

10.1 2.710 0.706 0.0029 0.479 0.479 450 68 65 0.154

Diesel Urban buses (HD Euro II) 
k

10.7 2.440 0.463 0.0029 0.22 0.22 450 68 65 0.154

Diesel Urban buses (HD Euro III) 
k

9.38 2.670 0.409 0.0029 0.207 0.207 450 68 70 0.154

Diesel Urban buses (HD Euro IV) 
k

5.42 0.223 0.220 0.0029 0.0462 0.0462 450 68 75 0.154

Diesel Urban buses (HD Euro V) 
k

3.09 0.223 0.220 0.0029 0.0462 0.0462 450 68 75 0.154

Diesel Urban buses (HD Euro VI) 
k

0.597 0.223 0.220 0.0029 0.0023 0.0023 450 68 15 0.231

NOX 

emission 

CO 

emission NMVOC  

NH3 

emission 

Exhaust 

PM10 

emission 

factor 

(g/km) 

BC emission 

factor                    

(% of PM2.5)

OC emission 

factor                    

(OC/BC ratio)

factor 

(g/km)

factor 

(g/km)

emission 

factor 

(g/km)

factor 

(g/km)

 (Assume 

= PM10 

emission 

factors)

Exhaust 

PM2.5 

emission 

factor 

(g/km) 

 Unpaved 

road dust 

(PM10) 

emission 

factor in dry 

weather 

(g/km)

Unpaved 

road 

(PM2.5) 

emissions 

factor 

(g/km)
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S7.8 Other sectors simple (top down) inventory  

The general overview of the methods, data and data sources from the other sectors is 

described in the table below and the divisions follow the 2006 IPCC guidelines (IPCC, 

CNG 3-wheeler (Bharat 1 = Euro 1) 0.50 
B

1.00 
B

0.26 
B

0.034 0.015 
B

0.015 
B

90 14

CNG 3-wheeler Retrofit (Bharat 1 = Euro 1) 0.19 
B

0.69 
B

2.06 
B

0.034 0.118 
B

0.118 
B

90 14

CNG Passenger car retrofit (moderate control) 0.53 
A

0.85 
A

0.79 
A

0.034 0.001 
A

0.001 
A

126 19

CNG Passenger car retrofit (Bharat 1 = Euro 1) 0.01 
B

0.60 
B

0.36 
B

0.034 0.002 
B

0.002 
B

126 19

CNG Passenger car (Euro 4 and later) 0.056 0.616 0.035 0.034 0.0011 0.0011 126 19

CNG Urban Bus (HD Euro I) 16.5 8.4 0.371 n.a. 0.02 0.02 450 68

CNG Urban Bus (HD Euro II) 15 2.7 0.313 n.a. 0.01 0.01 450 68

CNG Urban Bus (HD Euro III) 10 1 0.052 n.a. 0.01 0.01 450 68

CNG Total for CNG

LPG 3-wheeler Retrofit (Moderate control)
 A

0.05 
A

7.2 
A

5.08 
A

0.002 
E

0.171 
A

0.171 
A

90 14

LPG 3-wheeler Retrofit (Bharat 1 = Euro 1) 0.04 
B

1.70 
B

1.03 
B

0.088 
E

0.130 
B

0.130 
B

90 14

LPG Passenger cars (Conventional) 2.36 6.832 1.05 0.0020 0.0022 0.0022 126 19

LPG Passenger cars (Euro 1) 0.414 3.57 0.723 0.0880 0.0022 0.0022 126 19

LPG Passenger cars (Euro 2) 0.18 2.48 0.342 0.1007 0.0022 0.0022 126 19

LPG Passenger cars (Euro 3) 0.09 1.79 0.120 0.0338 0.0011 0.0011 126 19

LPG Passenger cars (Euro 4) 0.056 0.62 0.100 0.0338 0.0011 0.0011 126 19

LPG Passenger cars (Euro 5) 0.056 0.62 0.100 0.0338 0.0011 0.0011 126 19

LPG Passenger cars (Euro 6) 0.056 0.62 0.100 0.0338 0.0011 0.0011 126 19

LPG Light-duty vehicles (Uncontrolled) 2.1 
F

8.0 
F

3.5 
F

0.002 
E

0.0022 
E

0.0022 
E

225 34

LPG Light-duty vehicles (Good control - Euro-I) 0.05 
F

0.3 
F

0.25 
F

0.088 
E

0.0022 
E

0.0022 
E

225 34

LPG Heavy-duty vehicles (Uncontrolled) 5.7 
G

24 
G

 8 
G

0.004 
E

0.0044 
E

0.0044 
E

450 68

LPG Heavy-duty vehicles (Good contro) 2.6 
G

1.0 
G

0.7 
G

0.176 
E

0.0044 
E

0.0044 
E

450 68

LPG Total for LPG

Total

a 
Uncontrolled EFs =

 
Tier 1 maximum value from EMEP/EEA (2013) converted assuming fuel economy from Table 3-14, EMEP/EEA, 2013

b
 Assume = Motorcycle 2-stroke (uncontrolled)

c 
Heavy duty vehicle, Gasoline, >3.5 t weight. 

d
  Emission factors for Gasoline passenger cars (1.4 - 2.0 L engine capacity), Open loop  technology (from EMEP/EEA (2013), Tables 3-16 and 3-17)

e
 Emission factors for Gasoline passenger cars (1.4 - 2.0 L engine capacity) from EMEP/EEA (2013) Tier 2 exhaust emission factors, Tables 3-16 and 3-17.

f
 Emission factors for 2-stroke motorcycles (>50 cm

3
), 'Conventional'  technology (from EMEP/EEA (2013), Tables 3-24 and 3-25) 

g
 Emission factors for 4-stroke motorcycles (250 - 750 cm

3
), 'Conventional'  technology (from EMEP/EEA (2013), Tables 3-24 and 3-25)

h
 Emission factors for Diesel passenger cars (1.4 - 2.0 L engine capacity) from EMEP/EEA (2013) Tier 2 exhaust emission factors, Tables 3-16 and 3-17.

i
 Emission factors for Light Commercial Vehicles (<3.5 t weight) from EMEP/EEA (2013) Tier 2 exhaust emission factors, Tables 3-18 and 3-19.
j
 Emission factors for Heavy Duty Vehicles (7.5 - 16 t weight) from EMEP/EEA (2013) Tier 2 exhaust emission factors, Tables 3-20 and 3-21
k 

Urban buses standard - vehicles used for the carriage of passengers and comprising more than eight seats in addition to the driver's seat
l 
Assume PM2.5 EF = PM10 EF

o 
EMEP/EEA (2013) Tier 3 fraction BC (%) and Organic matter (OM) to BC ratio (Table 3-114) assuming OM = 1.3xOC  

A 
ARAI (2008) value for Indian fleet 1996-2000

B 
ARAI (2008) value for Indian fleet post 2000 (Bharat 1 = Euro 1)

C 
ARAI (2008) value for Indian fleet post 2005 (Bharat 2 = Euro 2)

E 
Assume LDV = passenger car; HDV = 2 x passenger car

F 
 IPCC (1996) default  EF for US LPG passenger cars 

G 
IPCC (1996) default  EF for US LPG uncontrolled heavy duty vehicles with stoichiometric engine

H  
Assume = LCV (Conventional) 

* Emission factors are Tier 2 exhaust emission factors from EMEP/EEA (2013), Tables 3-16 to 3-25, unless otherwise indicated. 

m 
Derived from Gillies et.al. (2005) for unpaved rural roads in dry weather 

n 
Assume PM2.5  factor is 15% of PM10 factor (USEPA, 1995)
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2006). To account for emissions from all sectors data input is divided into demand, 

transformation and non-energy sectors.  

The demand sector includes fuel combustion activities from ‘own use’ in the energy 

industries (e.g. refinery gas in oil refineries), manufacturing and construction, commercial 

and public services, residential and agriculture/forestry/fishing.  Data for the demand 

category for Kenya in 2010 was obtained from the International Energy Agency (IEA) 

database (IEA, 2012b), the unit was energy released from the combustion of the various 

fuels consumed in kilotonnes of oil equivalent for  (ktoe)The agriculture subsector data 

were obtained from the UN Food and Agriculture Organization (FAO): animal numbers, 

area harvested, crops processed, crops harvested, fertilizer consumption and 

production, forestry production and savannah fires (FAO, 2017). 

 

Figure S9: Structure of the non-transport sector emissions divided into key assumptions, 

transformation, demand and non-energy sectors. 

The transformation sector generates energy-carriers that are then consumed by the 

demand sectors above. This includes electricity generation and charcoal production, 

data sources (IEA, 2012b). 

Non-Energy sector emissions are from activities that are not fuel combustion related. 

These include industrial and manufacturing processes such as cement manufacture,  

fugitive emissions from coke production, oil and gas exploration and production, non-
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methane volatile organic compounds (NMVOCs) from distribution and handling of fuel in 

refinery dispatch stations, deports and service station as well as from gas distribution, 

and methane from coal mining and fugitive emissions from industrial processes. These 

fugitive emissions differ from process emissions for example accounted for in the 

demand sector under manufacturing, because they are emissions outside of the 

manufacturing process such as chemical reaction or combustion. Also, included in the 

non-energy sectors are emissions from agricultural processes such as open-burning of 

crop residues, and methane from cultivation of rice and from enteric fermentation in 

livestock. Methane from municipal solid waste land-fill and methane and ammonia 

emissions from human waste as well as emissions from waste incineration emissions are 

included as well. Savannah fires were also a considered as they are an important 

component of emissions load for Kenya. 
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4.6.2 Section B: Building a Business as Usual (BAU) scenario  
 

S7.9 Baseline setting BAU scenario for transport sector 

Using data available (KNBS, 2013b, 2014b; World Bank, 2014) two variables: GDP per 

capita and the total number of vehicles from 1998-2013 was plotted against each other 

to determine the relation between these two variables for the purpose of predicting total 

number of vehicles for each vehicle category. 

 

Figure S10: Relation between GDP per capita in US dollars ($) for Kenya between 1998-
2013 data source (KNBS, 2013b, 2014b; World Bank, 2014) 

 

4.6.3 Section C: Supplementary Results  
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S7.10 Emissions from all sectors 

 

 

Figure S11: Emissions for all species from all sectors from ECLIPSE (IIASA, 2016) 

 

 

 

 

 

 

S7.11 Emissions of road transport from BAU scenario 
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Figure S12: Road transport for BAU for all species 

 

S7.12 Emissions of road transport from all the different scenarios 
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Figure S13: Road Transport SO2 (kt) emissions from all scenarios 
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Figure S14: Road transport NOX emissions from all scenarios 
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Figure S15: Road Transport CO2 (mt) emissions from all scenarios 
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Figure S 16: Road Transport CO emissions (mt) from all scenarios 
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Figure S 17: Road Transport CH4 (kt) emissions from all scenarios 
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Figure S 18: Road Transport NMVOC (Mt) emissions from all scenarios 
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Figure S 19: Road Transport emissions PM2.5(kt)  from all scenarios 
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Figure S 20: Road Transport emissions BC (kt) from all scenarios 
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Figure S 21: Road Transport emissions OC (kt) from all scenarios 
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Figure S 22: Road Transport emissions NH3 (kt) from all scenarios 

 

 

 

 

 

 

 

 

 

 

S7.13 Effect of emissions of vehicle types from different scenarios 
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Figure S 23: SO2 emission reductions compared to BAU for different vehicle types 
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Figure S 24: NOX  emission reductions compared to BAU for different vehicle types 
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Figure S 25: CO2 emission reductions compared to BAU for different vehicle types 
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Figure S 26: CO emission reductions compared to BAU for different vehicle types 
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Figure S 27: CH4 emission reductions compared to BAU for different vehicle types 
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Figure S 28:  NMVOC emission reductions compared to BAU for different vehicle types 
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Figure S 29: PM2.5 emission reductions compared to BAU for different vehicle types 
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Figure S 30: BC emission reductions compared to BAU for different vehicle types 
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Figure S 31: OC emission reductions compared to BAU for different vehicle types 
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Figure S 32: NH3 emission reductions compared to BAU for different vehicle types 
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CHAPTER 5 
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5 Synthesis 

Kenya, like most of sub-Saharan African (SSA) countries, is particularly vulnerable to 

climate, agriculture and health impacts from air pollution concentrations of vehicle 

emissions (Shindell et al., 2011). Road transport emissions are significant contributors to 

air pollution and GHGs, and their contribution is likely to increase substantially across 

SSA as population and income increases and as a more polluting vehicle fleet becomes 

part the SSA transport fleet. In a global context, SSA will bear a disproportionate burden 

of the effects of air pollution (Schwela, 2012), but despite this, at present there is a lack 

of reliable data in SSA to effectively evaluate the environmental and human health 

impacts of air pollution, and the potential benefits from implementing strategies to 

mitigate them. For example, emissions inventories, essential tools of air quality 

management, rely on regionally or continentally derived data in SSA. Little is known in 

SSA of the on-road tail-pipe emissions, activity and characteristics of the vehicle fleets, 

therefore compiling a detailed, accurate, transparent, verifiable and replicable national 

emissions inventory is often challenging. This in turn limits the assessment of the 

efficacy of proposed or even implemented national road transport policies aimed at 

mitigating the impacts of air pollution in SSA countries. Amegah et al., (2016) identified 

several road transport policy initiatives and the provision of adequate data for 

policymakers to support implementation of policies and evaluate progress as part of an 

integrated solution to air pollution reduction in SSA. These data needs to be provided 

timeously with limited resource, therefore innovative solutions that can be deliver 

credible local data and is replicable in several SSA countries is needed. This study set 

out to fill in this data gaps and provide a crucial link between micro-scale tailpipe 

emissions, to an urban vehicle fleet fuel economy, to a national level impact of various 

road transport policies on air pollution and greenhouse gases. 

The aim of this thesis was therefore to design, and demonstrate a practical application of 

a framework that can be used to investigate road transport contributions to air pollution in 
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SSA countries at the individual vehicle, city, and national levels. Therefore in this thesis, 

road transport emissions were investigated at multiple scales. At the finest scale, PM 

emissions from the tailpipe of the vehicle were measured for a few vehicles using a novel 

multiplexed portable measurement system. At the urban scale a model for fuel economy 

was constructed for a fleet from data collected. Finally at the national scale, available 

data gathered on fuel economy, and vehicle activity and emissions were integrated to 

provide a country level assessment of air pollution and GHG emissions from road 

transport, including evaluation of transport policies to reduce air pollution and GHGs 

were assessed.  

5.1 Developing a framework for multi-scale road transport emission 

analysis 

The research presented in this thesis across three different scales of analysis (vehicle, 

city, and national-scale) can be brought together within the European Environment  

Agency (EEA)  Drivers-Pressures-State-Impact-Responses (DPSIR) framework for 

transport (EEA, 1999), see Figure 5.1. In Figure 5.1, the impact of air pollution on human 

health and the environment is determined by air pollution concentrations, which are in 

turn determined by pressures such as vehicle emissions, and emissions from other 

sources. The extent to which a particular source sector emits pollutants or greenhouse 

gases is determined by a set of drivers, and efforts to abate the impacts through 

emission reductions require a response that changes the extent to which a driver 

produces the emissions profile of the transportation sector.  

In this work, the proposed entry point for assessment of the extent of the impact of 

emissions on human health, climate and the environment, and the effectiveness of 

particular responses at reducing the road transport contribution to the impact is a 

national scale road transport emission inventory (denoted as macro-scale analysis in 

Figure 5.1). The rationale behind a national road transport emission inventory, 
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specifically in Kenya, is that the national government in Kenya is best placed to 

implement policies that can result in changes to the vehicle fleet, and hence emissions 

from the road transport sector. However, as outlined, the data required to develop such 

an inventory is scarce in SSA countries. Hence two additional analyses, at finer scales 

were developed to demonstrate how they could be applied to generate data that could 

feed into and improve a national scale assessment of road transport emissions. 

Specifically, an emission inventory requires information on the activity from a particular 

sector, and emission factors for that activity. Therefore, the urban, meso-scale study 

conducted in this work was designed to improve understanding of the vehicle fleet in a 

large SSA city (in this case NMR). Finally, the third, finest scale study conducted in this 

framework assessed PM emissions from vehicles during real world driving conditions.  In 

this thesis, these studies are presented in order of increasing scale, i.e. from micro, to 

meso, to macro level.  
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Figure 5-1: The Drivers-Pressure-State-Impact-Response (DPSIR) framework for road 

transport air pollution. Adapted (EEA, 1999). 

Emission factors are ordinarily determined at the micro-level whereby a small 

representative group of cars undergo on-road emission testing in addition to the 

laboratory testing. In Chapter 2, micro-scale tail pipe emission measurements were 

carried out using a PM PEMS measurement system. The data obtained was at a high 

spatial and temporal resolution and could be used to determine changes in PM 

emissions under a range of driving modes. The emissions data collected from application 

of this methodology that used the prototype could potentially be used in the future to 

measure PM emission factors for fleets in SSA which have not previously been 

measured. In addition to the Drivers for increasing vehicle emissions in SSA, old 
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vehicles, poor or absent vehicle emission regulation and enforcement, roads in bad 

condition and poor fuel quality means that the vehicle fleets in SSA are highly polluting 

and therefore their emission factors need to be measured rather than using emission 

factors determined for fleets in developed countries. But these present a challenge in 

tailpipe emission measurement in a number of ways: the initial cost of instrumentations is 

high therefore beyond the  reach for most of  SSA institutions, increasingly these 

instruments are made for “cleaner” vehicles in developed countries (unlike the SSA 

fleet), therefore, they are likely to malfunction in SSA, after-sale support is non-existent 

as instruments and spare parts are available outside of Africa, complex on-road testing 

procedures and data analysis  necessitates a high level of technical competency also 

lacking in SSA as they is a shortage of training facilities and trained personnel.   

In Chapter 3, at the meso-scale level, data were collected to define characteristics and 

vehicle activity for the urban fleet; according to different types of in-use vehicles. Whilst 

micro-scale predictions are suitable for evaluating driving styles, traffic design and 

performance and can be used to generate emission factors (Zhang, 2006), these were 

unavailable for Kenya.  It was deemed not viable in Kenya to estimate vehicle activity at 

the micro-scale, but rather at a meso-scale (for an urban fleet) because on-road 

emission testing is expensive and time consuming  especially on many different vehicles 

needed for an adequate sample and the different routes to test on, so as to have a 

representative sample for a city (Lents et al., 2004; Goyns, 2008). An alternative 

approach is to collect data through questionnaire surveys from which estimates of the 

likely emission rates of a representative vehicle fleet can be made. This approach was 

used in this study with 826 questionnaires used to collect in-use vehicle activity data and 

characteristics at city scale in Kenya. 

The vehicle activity and characteristics of the vehicle fleet in NMR was used in Chapter 

4 as input to compile a national transport emission inventory for Kenya. This therefore 

sees the compilation of emissions inventory data at the macro-scale for the transport 
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sector. This emissions inventory would allow estimates of emissions of a number of key 

pollutants: SO2, NOX, CO2, CO, CH4, NMVOC, PM10, PM2.5, BC, OC and NH3. Road 

transport emissions significance was put in context by compiling emissions from all other 

sectors in Kenya and comparing these sectors to road transport emissions. The efficacy 

of the current and future response to reduce air pollution from the road transport sector 

through a variety of different policies: e.g. introduction of vehicle emissions and fuel 

economy standards, fuel share shifts to more renewable energy sources, investment in a 

better public transport among other policies were assessed at various stages through 

various scenarios from 2010 to 2050. 

5.2 Key research findings 

In Chapter 2, on-road data PM measurement were conducted on light duty diesel 

vehicles, on a selected route using a PM PEMS prototype with three sensors operating 

in tandem and a measurement system to determine vehicle activity. Examples were 

presented of ionization, opacity and scattering sensor voltage measurements from the 

PM PEMS aligned with VSP for each journey of the vehicles tested, this were indicative 

of exhaust PM emissions. This study established that for the majority (75%) of the time, 

all sensors during acceleration compared to idling and acceleration driving modes had a 

higher sensor voltage. Therefore, it was shown VSP correlates well to sensor voltage. 

More insight was gained on the effect of increase of power of the vehicles tested through 

turbo-charging; it was shown this increased the sensor voltage. Sensor voltage was 

therefore sensitive engine load and to the intensity of acceleration, idle and deceleration 

driving modes and that the parSYNC® prototype used in the measurements was found 

to be fit for purpose for identifying on-road diesel vehicles with high PM emissions and 

possible PM pollution hot-spots in an urban area. Furthermore, VSP profile of a vehicle 

in a typical route in Nairobi was shown to be similar to a vehicle in a congested city with 

high altitude such as Bogota (Rodríguez et al., 2016). A previous study  noted the lack of 

driving cycles which account for local urban driving conditions and styles in African urban 
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environment  (Goyns, 2008), this study and  Rodriguez et al., (2016) proposed vehicle 

emissions inventory could be improved by considering the high proportion of idling. 

Furthermore, mean VSP for passenger vehicles for a remote sensing survey in Europe 

(8.9 kW t -1)(Carslaw and Rhys-Tyler, 2013), was nearly 5 times more than the present 

study, further demonstrating the need for the differences in driving conditions urban 

areas in SSA. Therefore, in SSA appropriate vehicle emissions tests and instrumentation 

to identify high PM polluters together with relevant policy, needs to be in place to reduce 

emissions especially in residential areas with high idling incidences. 

In Chapter 3, a questionnaire survey was developed to collect data describing vehicle 

activity data and characteristics. These data were analyzed and collated leading to the 

development of a fuel economy model for a fleet in NMR for both formal and informal 

vehicle fleets. Formal fleets were identified as private cars, motorcycles light and heavy 

duty trucks while informal fleets were identified as minibuses (matatus), three-wheelers 

(tuktuks), goods vehicles (AskforTransport) and two-wheelers (bodabodas). The 

application of this type of questionnaire survey for data collection is necessary due to the 

lack of official statistics describing urban/national vehicle fleets (e.g. mileage and age of 

the vehicles in-use), particularly in developing countries. A key vehicle activity is fuel 

economy as this determines energy consumption of the transport sector and the 

associated GHGs emissions, globally, transport sector accounts for a nearly a quarter of 

fossil fuel GHG emissions (IEA, 2015).In the present study, the results show that fuel 

economy for bodabodas 4.55 ±0.38 L/100 km, tuktuks 8.73 ±4.68 L/100 km, passenger 

cars 22.77 ±3.00 L/100 km, and matatus 33.09 ±2.49 L/100 km was 2-3 times worse 

when compared to fuel economy reported for Japan, Europe, India and China, from 

where these vehicles are imported. The vehicle fleet average ages were relatively high: 

bodaboda 2.69±0.38 years, passenger cars 11.1±0.57 years, matatu 8.80±1.24 years. 

The study also highlighted high intensity vehicle usage with an average mileage for 

bodabodas 79.7 ±4.3 km/day, tuktuks 114.29 ±45.6 km/day, passenger cars 61.04 ±7.18 
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km/day, and matatus 151.55 ±10.42 km/day. The high mileage and poor fuel economy 

results in a substantial contribution to GHGs and air pollution from the informal transport 

sector, but given the higher number of passengers per vehicle for these vehicles (26 ± 9 

passengers) found in this study, then per person contribution is lower than private 

vehicles, often with an average of one passenger (ICCT, 2012). The optimal fuel 

economy model (GLM model) created from the present study (correlation between 

observed and predicted values, r 2 = 0.60, P < 0.001), identified engine size, weight of 

vehicle and the condition the vehicle as key variables with a significant relation to the 

calculated fuel economy. Therefore, in designing a questionnaire to obtain vehicle fleet 

characteristics and activity, these variables ought to be prioritized. 

In Chapter 4, the contribution of road transport emissions to total pollution for key air 

pollutants and GHGs was investigated with a detailed, ‘bottom up’ inventory using own 

vehicle activity and characteristics data from the study in Chapter 3. All emissions from 

the other sectors were also quantified; this placed current road transport emissions in 

context. This found that in 2010, for the 11 air pollutants and GHGs, road transport 

emissions accounted for 61% NOX, 39% PM2.5, 20% CO2, 19% NMVOC and 7% BC but 

in the BAU scenario these emissions were estimated to increase from 4-fold to nearly 

31-fold by 2050. In this scenario, by 2050, motorcycles account for nearly all pollutants 

except NOX, as they come to dominate the vehicle fleet. However, implementation of 

policies to ensure that all fleet vehicles have vehicle emissions standards equivalent to 

Euro IV standards and meet Japanese fuel economy standards for 2015 by 2050 in 

Kenya, will reduce emissions of CO2  by 61%,  BC by 93% and 65% for NOX. In addition, 

we show road transport as an important sector where control of emissions can lead to 

large reductions in both air pollutants and GHGs.  Vehicle emissions standards, fuel 

economy standards, fuel shift to CNG and electricity together with investment in public 

transport are shown to be a highly effective transport policies that support Kenya’s 

climate change mitigation goals with a benefit of better air quality and improved health.  
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These studies strengthens the link between road transport emissions, tail-pipe 

measurements, fleet models, national inventories and relevant policy by assessing 

options available to policy makers and quantifying how ultimately this would lead to real-

world reductions of vehicle emissions for a country such as Kenya facing air pollution 

challenge but with limited data.  

5.3  Novelty of the research and implications 

To the author’s knowledge, only one real world PEMS study has been conducted in 

Kenya (Lents et al., 2005). In this, study second-by-second tailpipe conducted in Nairobi 

gaseous emissions for CO, CO2, NOx and total hydrocarbons (THC) were measured for 

113 petrol passenger vehicles for thirty minutes. Vehicle speed was estimated by an 

attached GPS unit and flow rates measured with a pitot flow measurement device. In 

data analysis, time alignment between the flow measurements, speed and emissions 

were further refined using VSP determined from the GPS unit. In this study there were 

clear trends of reduced emissions for newer cars in Nairobi, increased CO2 emissions for 

larger vehicles , for CO, NOX and THC, vehicles with the least technology (non-catalysts) 

were most polluting; this were the majority of the vehicle sampled vehicle fleet in Nairobi. 

This study is however outdated in the fast changing SSA urban environment because, 

vehicle fleets (age, technology, fuel share, fuel quality), vehicle types and driving 

patterns can change rapidly in SSA given the rapid increase in vehicle numbers. Goyns 

(2008) discussed the significant changes in driving conditions in South Africa in 22 years 

due to vehicle population growth. Lents et al., (2005) also focused on petrol  light duty  

passenger vehicles, because a previous survey had identified 80% of Nairobi’s vehicle 

fleet to be passenger vehicles, this has changed as motorcycles there are now more 

than registered cars in Kenya (KNBS, 2013b, 2014b). Furthermore, fuel quality has 

improved such that we do not have unleaded fuel in Kenya.  

In Chapter 2, to the author’s knowledge, the first real-world tailpipe measurement of PM 

in Kenya using a prototype PEMS was conducted for light duty diesel vehicles. The novel 
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approach developed in this study was to employ a criterion in the methodology to select 

a portable, accurate, inexpensive and easy to deploy PM PEMS that would circumvent 

the need for expensive type-approval instrument as most SSA governments tasked with 

enforcement of vehicle emissions limits have limited resources and capacity. Since a 

prototype was deployed, data cleaning and processing framework was adopted and 

developed to calculate VSP from engine data (speed, position) and align it to the 3 

PEMS sensor voltage (scattering, ionization and opacity)  data and subsequently 

analyse the data. The micro-scale measurement provided high density spatial temporal 

pollution and activity data and developed a data quality assurance framework for the PM 

prototype used for the first time in a challenging environment. The environment for 

measurement was challenging because of the state of the typical fleet in Kenya, the 

traffic congestion in NMR and the state of the roads. Most roads in NMR  are heavily 

congested (Gachanja, 2012), particularly between 07:00-10:00 and 16:00-19:00, 

therefore a strict protocol was applied to ensure the journey was representative and of 

diverse speed profile of real driving with portions of the journey including urban, peri-

urban and rural driving. The road network in Kenya is under developed it is therefore in 

poor condition with potholes and mostly unpaved in parts (Ministry of Transport Kenya, 

2011; Gachanja, 2012). In the present study, PM sensor voltage indicative of tailpipe 

emissions for the diesel vehicles tested was found to be highest in acceleration mode 

compared to idling and deceleration, these results are similar to another study conducted 

in  China, for diesel cars light duty and heavy duty, tailpipe particle number (PN) was 

found to be highest  in the highest acceleration (Huang et al., 2013). The spatial 

resolution in the present study, by mapping the data (position and sensor voltage), 

characterizes localized pollution tailpipe hotspots in NMR roads. Insights gained from the 

on-road testing in NMR using the PM PEMS prototype, methodology tested for the rapid 

deployment and data presented could be used to supplement traditional tail-pipe 

measurements which are expensive and limiting especially for SSA where there is lack 
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of region specific emission factors for fleets which are considered dissimilar to fleets in 

developed countries where previous tailpipe measurements have been carried out. This 

in turn will support the improvement of transport policy, effective reduction of on-road PM 

pollution and improvement of air quality for African cities. 

Improving fuel economy reduces consumption of fossil fuels from the transport sector; 

this reduces GHGs and its impacts on the climate (Bandivadekar et al., 2016; Plotkin, 

2016).  A  previous study estimated Kenyan fuel economy to be near equivalent to 

European and Japanese standards but with a time lag of 8 years(ERC, 2015b). This 

study was possibly an under-estimate of the fuel economy of the Kenyan fleet, this is 

because in the absence of vehicle activity data it was assumed that the fuel economy of 

the Kenyan fleet was equivalent to European fleets of the same year of manufacture; in 

addition the study only assessed newly registered vehicles and of these only light-duty 

vehicles and not vehicles in circulation. The newly registered vehicles (2010-2012) were 

all less than 8 years old, as there is an 8 year age limit for vehicles imported into Kenya.  

Fuel economy deteriorates as vehicle age increases, but the studies to understand how 

emissions and fuel economy change with age are conducted in developed countries 

where they factor deterioration for vehicles under 500 000 km mileage   (Boulter et al., 

2009; Pillot et al., 2014). The typical vehicle fleets in SSA are made up of reconditioned 

or rebuilt vehicles whose mileage is likely to be between 800, 000 to 1, 600, 000 km 

therefore the declared fuel economy for developed countries will not be similar for 

vehicles in Kenya. In Chapter 3, a fuel economy model was built from questionnaire 

data for the in-use NMR fleet; this includes both informal and formal transport types that 

are prevalent in Kenya. Fuel economy was estimated directly from the questionnaire 

data describing vehicle activity (i.e. as a function of fuel use and vehicle mileage 

travelled). This estimate was then used to assess the reliability of more complex fuel 

economy models which aimed to account for particular aspects of vehicle characteristics 

and driving conditions. Two modelling approaches were used:  a General Linear Model 
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(GLM) and an Artificial Neural Network (ANN) model. Both models were built using 

vehicle characteristics ( age, engine size, vehicle weight, condition in which vehicle was 

bought, number of seats) and compared to the fuel economy calculated from vehicle 

activity, the results showed that the GLM model performed better than the ANN model at 

predicting fuel economy. In addition, the fuel economy of this fleet was compared with 

other fleets of developed cities.  

The estimates for GHGs from the transport sector underpinning the policy to reduce 30% 

of GHG from energy sector identified a lack of official statistics for fuel economy and in-

use vehicle activity in Kenya (Cameron et al., 2012) . This study provides a methodology 

that allows the estimation of fuel economy for regions where data are lacking and 

specifically to allow the collection of data describing age and mileage of the in-use 

vehicle fleet; key variables that would reduce the uncertainty in estimating emissions 

from the transport sector to aid in both air quality management and to target GHG 

emission reduction more effectively. Furthermore, this study has been able to establish a 

fuel economy baseline for the NMR fleet to be 2 to 3 times poorer than developed 

countries, which can be measured against when fuel economy policies are implemented. 

Air pollution from the transport sector is often under estimated in global inventories but it 

is increasing in Africa mainly in urban areas where the vehicle fleet size is also 

increasing (Assamoi and Liousse, 2010; Liousse et al., 2014). This is because there is 

often a lack of vehicle activity data, fuel share knowledge, region specific emission 

factors and poor registration of vehicles from which these factors could be estimated for 

the fleet; particularly for certain transport types such as motorcycles and  shared taxis. In 

Kenya, global inventories have estimated emissions from several sectors using top-down 

methods with international data (GBD, 2015; Marais and Wiedinmyer, 2016; Susan C 

Anenberg et al., 2017). These assessments have explored emissions impact on human 

health in Kenya and found that 6 508 premature deaths per year are caused by ambient 

PM pollution (GBD, 2015). This was estimated to cost Kenya $2 244 million per year 
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(Roy, 2016).  A  national inventory for GHGs that focused on the transport sector found 

37% of CO2 equivalent GHG emissions could be reduced from the BAU scenario with the 

implementation of various low-carbon options for transport (Cameron et al., 2012). These 

studies used top-down data fuel consumption data and lacked local activity data; vehicle 

mileage, fuel and technology split disaggregated by vehicle types. In Chapter 4, a 

detailed “bottom-up” transport sector emission inventory was compiled as well as an 

emission inventory for other sectors using top-down methods for the following pollutant 

species: SO2, NOX, CO2, CO, CH4, NMVOC, PM2.5, PM10, BC, OC and NH3. Future 

trends of emissions were analysed for Kenya’s road transport sector to demonstrate the 

effectiveness of possible reduction measures. These focussed on policies that would:  i) 

see the implementation of stricter vehicle emission and fuel economy standards; ii) 

cleaner fuels and; iii) investment in better public transport in urban areas. There would 

be multiple benefits for human health, agriculture and climate (from the reduction in 

emissions of particular pollutant species (i.e. PM and ozone pre-cursors) , these have 

been extensively explored in other studies (Shindell et al., 2011; GBD, 2015; 

Forouzanfar et al., 2016; Lacey et al., 2017) ; quantifying the impacts of air pollution 

concentration is beyond the scope of the present study and to be explored in future work. 

5.4 Policy implications 

The thesis analysis of the different scales air pollution from the micro, meso and macro 

level similarly brings about policy implications at these same levels. In chapter 2, the 

PEMS prototype deployed if developed further could bring about access to a more 

simple, light, cost-effective and robust solution to measure real world exhaust emissions 

for a vehicle pollute that is highly polluting. The high temporal and spatial data would be 

useful to key stakeholders in two ways: generation of PM emissions factors and 

identifying ‘hotspots’ of pollution. Accurate PM emissions factors are important for 

improved emission inventories and identifying hotspot, this is increasingly used for 

prediction and modeling purposes as well as planning to reduce the contribution of 
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transport emissions to air pollution. The cost-effective portable emission measurement 

system could also be used by governments for a more accurate enforcement and 

compliance measurements in the inspection and maintenance programs. 

In chapter 3, at the meso-scale, estimating the fuel economy of vehicles in-use in Africa 

is a challenge as the vehicle activity and characteristics data is often not recorded or 

available. The development of a methodology for estimating urban fleet fuel economy for 

a country with limited data and resources bridges the gap identified. The fuel economy 

baseline values for Nairobi, could aid in the development of a clear-cut fuel economy 

policy to reduce GHGs and air pollution, underpinned by accurate data and a model that 

could support prediction and thus planning for the growing vehicle fleet in a city like 

Nairobi. 

In Chapter 4, at the macro-level, estimating GHGs and air pollution from all sectors using 

local and international data supports the progress of nationally determined contributions 

plans for Kenya as well as air quality management, both of which are under 

development. It also accurately portrays the contribution of the transport sector for each 

pollutant, this supports formulation of national policy to mitigate the impacts of pollution 

to climate, health and agriculture. 

5.5 Limitations and future work 

The limitations of each study in this research have been described in in detail in each 

chapter. In Chapter 2, deployment of a PEMS prototype for the first time in Nairobi to 

measure real world tailpipe PM emissions brought about challenges compared to 

deploying and testing in a developed country; environmental or practical challenges, and 

sample vehicle representativeness. Environment challenges included the conditions of 

the roads in Nairobi, a lot of roads were unpaved and or with potholes, this caused a 

particular sensitivity to the instrument which was identified as voltage ‘jumps’ when the 

vehicle was momentarily on the unpaved or porthole part of the road. In addition, traffic 
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congestion was also of particular concern, if the tests were conducted when traffic was 

gridlocked , this would extend the test time and the instruments charge (laptop, phone) 

would dissipate to a point where results were no longer uploaded, this happened for 

some test runs which were no longer viable. There were also frequent instrument 

malfunction, made all the more challenging by a lack of technical support in the 

immediate vicinity (manufacturers were based in North America). Because vehicle 

emission standards and I/M programs are not enforced in Kenya, it was challenging to 

characterize vehicles technology (emission reduction devices) using the year of 

manufacture and reliable fuel quality, apart from issue of fuel adulteration which is 

rampant in Kenya, fuel quality standards because have also changed in the last 5 years. 

Therefore, the experimental procedure and the data analysis from this work, was 

designed to overcome this challenges, in addition to ensuring a cost effective way to 

undertake in future a comprehensive analysis of a larger set of vehicles to develop PM 

emission factors in a SSA urban setting. The study did not lead to the development of 

emission factors; therefore this scale this did not feed into other scales. Future work 

would be to repeat the real-world tailpipe measurement using the prototype and a 

reference instrument for a bigger sample size, more routes and vehicle categories to 

determine PM emission factors for a Kenyan fleet. 

There are numerous challenges arising from firstly, using questionnaires as a survey 

instrument in transport with personal interviews, they are costly sometimes limiting 

sample size, time consuming,  interactions bring about a question of neutrality and  

distortions may occur  (Richardson et al., 1995). Survey instruments have been used in 

SSA cities extensively and recommendations were previously made to address 

challenges; survey preparedness (inform relevant authorities of survey beforehand and 

obtain necessary permits), pilot tests and pre-testing of the survey, selecting and training 

interviewers, use pre-existing data to bolster the depth of the survey and determine 

sample size (Behrens et al., 2006). In Chapter 3, a quantitative questionnaire vehicle 
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fleet survey was developed to overcome these challenges and collect data describing 

vehicle characteristics and activity, these data were then used to develop a fuel economy 

model for a NMR vehicle fleet.  However, there were other unforeseen limitations, firstly, 

the sample size was deemed adequate for the NMR vehicle population, but overall 

sample size per vehicle category was not adequate  for example for heavy duty 

commercial vehicles, mainly because  these types of vehicles not circulating in the city 

roads. Secondly, there was missing data in the questionnaire especially in the cases 

where the driver of the vehicle was not the owner of the vehicle. In this cases a statistical 

method, multiple imputations was used to deal with the missing data, this method to 

author’s knowledge had not been used in transport survey. Thirdly, inaccurate data, 

vehicle sales website and manufactures website were used to verify vehicle weight and 

engine size given the manufacturers name, brand or make of vehicle, year of 

manufacture and other characteristics obtained from the questionnaire information. 

Finally, there was collinearity of the variables in determining the significance of the 

relation between calculated fuel economy and the predicted fuel economy from vehicle 

characteristics such as engine size, weight, odometer reading, age of vehicle, number of 

seats. To resolve the effect of collinearity, different variables were alternatively 

suppressed and the fuel economy model was re-assessed. In the end, it was determined 

for this course of action to be a success a bigger sample size was required, which 

reduced because of the missing data. Therefore future work would be one that expanded 

the sample size to ensure more representative fleet, to include heavy duty vehicles and 

counter the missing data increase the sample size. A new survey should also be 

undertaken at a national scale rather than an urban scale and replicated in other SSA 

countries. 

Good practice of compiling emission inventories is one where uncertainties are reduced 

as far as it is practicable so as to neither have over nor under estimates of emissions 

and GHGs (Penman et al., 2006). In chapter 4, firstly, in estimating Kenya’s emissions 
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and GHGs uncertainties for input data were estimated for emission factors, vehicle 

mileage (VKT) and fuel economy. The combined uncertainty for these input data for the 

vehicle emissions inventory was found to range from 70% to 86% for different pollutants 

per vehicle category. Even though the fuel economy and mileage was estimated with 

own data (from Chapter 3),   with uncertainty ranging from 5% to 54%, a larger 

uncertainty, 70%, was assumed for the emission factors. The uncertainty for emission 

factors was derived from Tier 1 upper bound estimate in uncertainty assessment of 

EMEP/EEA methodology (Ntziachristos et al., 2013; Kouridis et al., 2017). The emission 

factors used in the inventory were derived for European fleets and driving cycle, this is a 

limitation that was mitigated in using these emission factors for the Kenyan fleet by 

assuming the least technology for the Kenyan fleet. Furthermore, the activity data for fuel 

economy and mileage used was based on a previous study conducted in NMR, which 

was assumed to be representative of the whole country; this assumption was made in 

the absence of any other activity data. Therefore future work would be to determine real 

world local emission factors for all pollutants for all sectors and collect activity data for 

the whole country. 

The findings for this thesis even with the given limitations and challenges, make a strong 

case for the research to continue to refine the grasp of the distintive air pollution  

challenges SSA faces and identify opportunities for SSA countries to adopt technologies 

and develop expertize in the transport sector to the particular needs and priorities of 

these countries. 
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