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Abstract

Network-on-Chip (NoC) is an alternative on-chip interconnection paradigm to

replace existing ones such as Point-to-Point and shared bus. NoCs designed for

hard real-time systems need to guarantee the system timing performance, even

in the worst-case scenario. A carefully planned task mapping which indicates

how tasks are distributed on a NoC platform can improve or guarantee

their timing performance. While existing offline mapping optimisations can

satisfy timing requirements, this is obtained by sacrificing the flexibility of the

system. In addition, the design exploration process will be prolonged with the

continuous enlargement of the design space. Online mapping optimisations,

by contrast, are affected by low success rates for remapping or a lack of

guarantee of systems timing performance after remapping, especially in hard

real-time systems. The existing limitations therefore motivate this research to

concentrate on the mapping optimisation of real-time NoCs, and specifically

dynamic task allocation in hard real-time systems.

Four techniques and implementations are proposed to address this issue.

The first enhances the evaluation efficiency of a hard real-time evaluation

method from a theoretical point of view. The second technique addresses

the evaluation efficiency from a practical point of view to enable online

hard real-time timing analysis. The third technique advocates a dynamic

mapper to enhance the remapping success rate with the accelerated model

and architecture. The final technique yields a dynamic mapping algorithm

that can search schedulable task allocation for hard real-time NoCs at run

time, while simultaneously reducing the task migration cost after remapping.
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Chapter 1

Introduction

1.1 Background

Continuous development of technologies in the manufacture of semiconductors

has led to significant shrinkage in the physical size of transistors in the

deep sub-micron domain [121]. Billions of transistors can be placed on a

single chip, thus allowing more powerful processing. An example of this

is the Haswell, which is Intel’s fourth generation processor, implemented

on its 22nm trigate process technology [70]. Current CMOS technologies

already support a Multi-Processor System on Chip (MPSoC) implementation

integrating hundreds of cores [121]. This has made the current means of

on-chip interconnections (shared buses or point-to-point) impractical due to a

lack of scalability, predictability and reusability. In addition, the International

Roadmap for Semiconductors (ITRS) forecasts that nodes implemented with

5nm technology will be achieved around 2019 [27]. This will enhance the

need for an alternative on-chip interconnection paradigm. Consequently,

Network on Chips (NoCs), which is inspired by general computer networks,

has been proposed as an alternative on-chip interconnection architecture and

attracted more and more attention from both academia and industry, for

example Arteris and Sonics, two major vendors of NoC solutions (FlexNoC

19



and SonicsGN).

1.2 Timing Performance

As an alternative interconnection paradigm for MPSoCs, NoCs need to have

the ability to support the concurrent execution of multiple IP (Intellectual

Property) cores and the message exchange between them through the underly-

ing communication infrastructure (shown in Figure 1.1). In real-time systems

not only do the messages need to be generated and transferred correctly,

but the message computation and communication also need to be finished

within a given time bound (normally before a predefined deadline). This

requirement is common in safety critical systems, such as the engine control

of a vehicle and the fly control unit of a plane, because any message error

or timing violation could cause the response time of one or more system

functions to exceed the stipulated time period and further result in incorrect

or late responses in practice. For example, if the reaction of the brake function

in a car system is delayed, the braking distance could be longer than the

predicted range and may cause an accident. This requirement is also known

as the timing performance of NoCs and is used as an evaluation criterion.

A

IP(0) IP(3)

G

IP(6)

B

IP(1)

E

IP(4)

H

IP(7)

C

IP(2)

F

IP(5)

I

IP(8)

E

Network 
Interface

Router

Link

Figure 1.1: NoC Architecture Example.
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1.2.1 NoC Design Flow

The timing performance of NoCs can be guaranteed by deploying tasks

(sub-programs of application) to IPs with a carefully planned task allocation,

which is a one-to-one, multiple-to-one or multiple-to-multiple mapping relation

between tasks and IPs. A suitable mapping can be obtained through an

optimisation loop that involves applications, predictable NoC architectures

and performance evaluation methods (shown in Figure 1.2).

Application 
Model

Predictable 
Architecture 

Model

Performance 
Evaluation 

Mapping

Remapping

Feedback

Feedback

Implementation

Figure 1.2: NoC Design Flow.

An optimisation loop starts with an initial attempt at task distribution.

Thereafter, the performance estimation of the attempt will be compared

with the design requirements. Iterative modifications will be made to the

mapping, or even the application model and architecture model, until the

design requirements can be satisfied.

1.3 Motivation and Goal

Through the optimisation loop, it can be seen that for a given architecture

and application the real-time timing performance of a NoC can be affected

by task allocation. This can be understood from two points of view.

First, task allocation can determine which IP a task can be executed on. The
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order in which tasks are executed on an IP follows a priority ordering of

tasks, and lower priority tasks could be disrupted by higher priority tasks.

A compact task allocation will intensify the competition for occupying IPs

among tasks and result in the response time for lower priority tasks on IPs

increasing. Second, communication between tasks could also be affected by

task allocation. This happens not only with respect to the length of the

communication, but also in the competition to control the communication

path on the physical layer. For example, if two related tasks are allocated

at a distance from one another, communication length will be increased

and cause a long communication response time. It can be seen that the

original communication path in Figure 1.3a has been significantly reduced

with a better mapping in Figure 1.3b. In addition, when a large number

of tasks try to communicate with each other tasks using the same physical

communication path (in other words, in a compact task allocation), the

lower priority communications are paused by the higher ones, causing the

lower priority communications to be delayed. This can be seen from the

communication competition in the left end column in Figure 1.3a. Therefore,

a carefully planned task allocation can reduce both the task computation

time and the communication time.
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Figure 1.3: Example of Influence from Mapping: (a) compact task allocation,
(b) suitable task allocation.

A NoC based real-time task mapping can be explored via either offline or online

approaches. Offline (or static) algorithms can guarantee the system real-time
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timing performance by obtaining a suitable mapping at design time, even for

hard real-time systems in which there is no tolerance for timing violations

in either task computation or communication. However, system flexibility

is low and design exploration takes a long time. This phenomenon becomes

even worse with an increase in the complexity of application or extension in

architecture or both. In contrast, online (or dynamic) algorithms can provide

high system flexibility and adaptability. However, the timing performance is

not good. This can be understood as follows.

First, the focus of the state-of-the-art has primarily been on reducing the

remapping overhead (the time taken to finish one remapping), with less

attention paid to the system timing constrains. This is evidenced by the fact

that there is no timing performance evaluation in a number of the existing

algorithms (for example, Random Mapping (RM)), in soft real-time systems; a

few timing violations can be allowed as long as the overall system performance

requirements can be satisfied.

Second, some of the existing online methods can remap hard real-time NoCs,

but they either do not take communication timing cost into account, for

example, the deadline distribution strategy (reviewed in Section 2.3) or have

low system flexibility and suffer a high remapping overhead at run time,

or have a long design exploration time at design time. Therefore, in both

static and dynamic approaches, a fast mapping algorithm that can guarantee

NoCs real-time timing performance is necessary, especially for hard real-time

systems.

In addition, the existing dynamic mappers are also limited by low success in

the remapping rate. This can be explained by the following two points.

First, to achieve a lower remapping overhead, the existing mappers focus

mainly on how to allocate a new task to a running NoC, without considering

moving the tasks that are already on the NoC. For example, a task with

a utilisation of 80% is waiting to be added onto a running homogeneous

NoC, whose use of each IP has been illustrated in Figure 1.4a, (with just the

23



computation cost on IPs). It can be seen that none of the IPs can provide

enough computational resources to accept the new task, if there is no task

migration among the tasks already running on the NoC. However, if the tasks

originally allocated on IP 2 can be moved to IP 6, a free IP (IP 2) can easily

accept the new task, as shown in Figure 1.4b. Thus, a global remapping

could increase the possibility of achieving a successful dynamic mapping for a

real-time NoC.

Figure 1.4: Existing Mapper vs Global Remapping Mapper

Second, research such as DSM [78] considers running task reallocation. Their

mapping solutions are constructed using a fixed, predefined criterion. Al-

though this measure could significantly reduce the search space and accelerate

the remapping, it also imposes restrictions on the ability to generate good

candidate task allocations and further results in a decrease in the remapping

success rate.

Therefore, all of above existing limitations motivate this research to concen-

trate on the mapping optimisation of real-time NoCs, in particular dynamic

task allocation in hard real-time systems. The research problem focused on in
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this thesis is whether a schedulable task allocation can be found that is able

dynamically and efficiently to meet the application’s hard real-time timing

requirements in an NoC based MPSoC, even in the worst-case scenario.

1.4 Novel Contributions

This thesis will achieve the above stated aims through a series of studies:

1. End-to-End Response Time Analysis (E2ERTA) can be used to evaluate

whether a given task allocation can satisfy system hard real-time timing

constraints on a specified priority pre-emptive arbitration NoC. However,

calculation complexity is a barrier that prevents it from being applied

in complex applications or large NoCs evaluation, in both static and

dynamic mapping problems. The proposed Inexact E2ERTA can reduce

this calculation complexity and improve evaluation efficiency.

2. Hardware accelerated Inexact E2ERTA (Inexact HW-E2ERTA) can

further enhance the evaluation efficiency of E2ERTA. It can be used as a

fast evaluation component to provide feedback to a given task allocation

in mapping algorithms to facilitate the exploration of a large design

space. It can also be applied as a fast and guaranteed deterministic

admission controller to decide whether a given task can be added to a

running system.

3. Parallel search is one advantage of search-based algorithms, such as

Genetic Algorithm (GA). The proposed accelerated parallel GA can

accelerate the search speed. It enhances the possibility for producing

global task reallocation at run time on an NoC platform. In addition,

the two accelerated GA operators in the proposed parallel GA can be

extracted and applied in other architectures, since they are not mutually

dependent on the proposed architecture.
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4. The proposed dynamic mapping algorithm can be used in both static

and dynamic mapping problems for fast search and evaluation task

allocation for NoC-based MPSoCs. For static systems, it can facilitate

optimisation over larger NoCs or more complex applications, or both.

For dynamic systems, it can guarantee the system hard real-time timing

requirements after remapping, while simultaneously reducing the task

migration cost. It can reduce the resource cost, improve the system

flexibility and enhance fault tolerance. In addition, by introducing more

features, such as power, this dynamic mapping algorithm can easily be

extended to consider and optimise more objectives simultaneously, in

order to provide a comprehensive system optimisation.

1.5 Thesis Structure

The remaining chapters of this thesis are organised as follows:

• Chapter 2 reviews the state-of-the-art related to this research problem.

• Chapter 3 proposes a system model for this research problem and

formulates the research hypothesis through an analysis of the problem.

In addition, a problem breakdown is provided, which is used to guide

the research direction.

• Chapter 4 analyses the factors that can affect the evaluation efficiency

of End-to-End Response Time Analysis from a theoretical point of view

and proposes an inexact analysis method to accelerate its evaluation

efficiency.

• Chapter 5 analyses the efficiency of End-to-End Response Time Analysis

from a practical point of view and suggests an implementation with

inexact accelerated components to enhance its evaluation efficiency.

• Chapter 6 explores the search efficiency from the perspective of the

searching algorithm and indicates which type of algorithm is most
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suitable in this research. In addition, a modified architecture with

accelerated components is also introduced.

• Chapter 7 combines the improvements achieved in Chapters 4, 5 and 6

to solve the research problem.

• Chapter 8 summarises the achievements of the research and identifies

directions for future work.
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Chapter 2

Literature Review

Dynamic mapping for hard real-time NoC based MPSoC is the topic considered

in this research. This chapter will review the state-of-the-art related to this

topic in the following order:

1. Section 2.1, gives an overview of NoC discussing the basic components

of NoC and examples of predictable NoC architecture;

2. How the NoCs timing performance is evaluated based on these pre-

dictable architectures is reviewed in Section 2.2;

3. Recent NoC mapping algorithms are reviewed in Section 2.3;

4. Evolutionary algorithms, which can be used in NoC mapping problems,

will be discussed in Section 2.4.

2.1 Network-on-Chip

The NoC architecture consists of three basic components (link, network

interface and router). An example of NoC architecture with 3*3 topology
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is shown in Figure 1.1. It can be seen that communication between IPs are

completed by a set of routers which are linked together through physical

links. The connections between IPs and routers are executed through Network

Interfaces (NIs). These basic components will be reviewed in this section,

followed by examples of predictable NoC architecture.

2.1.1 Links

In NoC, a link denotes the physical interconnection between two routers, and

can be classified into one or more logical or physical channels, with each

channel consisting of a set of wires [11]. The messages which need to be

transmitted throughout the NoC are partitioned into fixed-length packets

which are in turn separated into basic datagrams (or basic transfer units)

called flits. A packet will be transferred in flit-by-flit style [35]. In most

cases, a flit matches for a phit (physical unit refers to the minimum amount

of data that can be transmitted in one link transaction). Moreover, the

implementation of synchronization strategy of links can be accomplished by

either a synchronization protocol, which can be implemented by dedicated

wires or mixed-time FIFO [17] or globally asynchronous locally synchronous

(GALS) [69] with local handshake protocols being assumed.

2.1.2 Network Interfaces

The Network Interface (NI) is set between the router and the local IP. It

converts the IP views of communication to the router view. An example

is shown in Figure 2.1. This conversion can be treated as a high level

communication service which packetises the low level data to the high level

packets used for transmission on the network at the originator end, and

depacketises the packets back to data at the receiver end [11]. This function

can be accomplished by various interface services, since disparate IPs may

have different interface protocols. By providing these interface services, cores
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can be integrated seamlessly with the NoC platform. In addition, this property

also reduces the interdependence between IPs and the network, and offers

abundant reusable IP blocks when doing SoC implementations.

Router Network SlaveNI

Request

Response

NIMaster

Request

Response

Figure 2.1: Network Interface Example Modified from [90].

2.1.3 Routers

The main component in a NoC architecture is the router (an example architec-

ture in a mesh-based NoC is depicted in Figure 2.2). It is the medium which

connects the local port to other neighbour routers. The router is responsible

for switching the correct message from its input ports to the correct output

ports at the correct time according to the message routing path, with the

support of routing, switching, virtual channel and flow control, which are

reviewed in this subsection.
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Figure 2.2: NoC Router Architecture.
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Routing

Routing determines the path for each packet, from its initiator to its destina-

tion. It decides which output port channel/s the packet upon arrived will be

forwarded to, within each intermediate router. Its algorithms can be classified

using several criteria, such as where/when and adaptivity.

Where/When

Where/When refers to where or when a routing decision is made. On this

basis, routing algorithms can be categorised into centralised routing, source

routing, and distributed routing. Centralised routing can provide a better

routing path, since the information considered includes not only the address

of source and destination, but also the working situation of the current

system. However, considerable computation time and power consumption

will be required by introducing one extra control component. In contrast,

in distributed routing, the routing decision is determined at each router,

which only knows its neighbourhood as packets travel across the network.

A header containing only the destination address is used to select output

channel/s. Source routing algorithms will predetermine complete routing

paths as a header on source nodes before injecting packets into the network.

The switches of routers along a path will be configured accordingly by the

header.

Adaptivity

Adaptivity of routing algorithms refers to whether information other than

the address will be considered during the routing decision making. Routing

algorithms can be classified into deterministic routing and adaptive routing.

Deterministic routing is also known as static routing, because the same routing

path will always be generated for a given pair of source and destination address.

In source routing, a unique path will be produced without considering any

system traffic situation. In distributed routing, a unique configuration will be

produced in each intermediate router. Taking XY routing as an example, a
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packet will first travel along the X axis (the row) until it reaches the node

which is the perpendicular crosspoint of the source row and the destination

column. It will then move forward to the column until it arrives at the receiver

node. Deterministic routing is currently widely used on NoCs, because it is

simple, fast, and easy to analyse. By contrast, although adaptive routing

can provide flexible routing decision based on system working situation, it

also has some disadvantages, for example, it is resource hungry, there are

difficulties in implementation and analysis and it is slow in making decisions.

Switching

The switching strategy determines how a path will be built for packet propa-

gation. One of its taxonomies can be seen in Figure 2.3.

Switching Techniques

Circuit Switching Packet Switching

Wormhole Switching
Store & Forward 

Switching
Virtual Cut Through 

Switching
Time Division 
Multiplexing

Figure 2.3: Taxonomy of Switching Techniques.

Circuit switching provides an end-to-end path which is reserved on each

intermediate router prior to the data transition by injecting a routing probe

and released by the destination or the last bits of data. Messages of any

length can be propagated to the destination without interruption, after an

acknowledged flit has been returned to sender. To enhance this technique,

[62] advocated a new circuit switching mechanism with separated control and

data transmission network, in order to reduce the average latency of circuit

establishment.

Packet switching, however, does not reserve the entire channel. Packet switch-
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ing can be classified as Store & Forward (SF), Virtual Cut Through (VCT)

and Wormhole Switching (WH). SF [35], which is suitable for integrally

transferring short and frequent packets, requires a buffer from both input

and output to store an entire packet. Routing decisions are made on each

intermediate router, as long as the whole packet has been buffered completely.

The header flit cannot be forwarded to the next router if either the routing

decision has not been made or the available buffer space in the downstream

router is insufficient to store an entire packet. By contrast, instead of wait-

ing for the whole packet, VCT allows the header flit to cut-through into

the following router as soon as the routing decision has been made, and

the remaining flits follow the same output channel as their predecessors to

the destination. Transmission of different packets cannot be interleaved or

multiplexed over one physical channel. It will store the entire packet on an

intermediate router buffer and behave the same as SF if the next router is

occupied. In WH, a header will be used to build a path for the following flits

(belonging to the same packet) to snake with it to their destination in pipeline

style, possibly spanning a number of routers. If the header cannot proceed,

the wormhole chain will be stalled, occupying flit buffers in each router on

the path constructed so far and possibly blocking other communications, or

even creating a chain-blocking. This could result in a packet experiencing

multi-blocking during its journey and cause a difficulty in analysing the timing

behaviour [110]. WH offers low network latency and buffer cost. However, its

level of congestion is high and very deadlock-prone without special measures

such as Virtual Channel, which will be reviewed next.

Time Division Multiplexing (TDM) could be treated as an alternative switch-

ing method to pure circuit-switching with higher resource utilization [79].

TDM allocates the resources according to timetables which consist of a given

number of time slots. Each slot is reserved for a special connection. The

tables in all routers are synchronized by a global TDM schedule to guarantee

virtual circuits for connection free scheme. Thus, some in-router components

such as arbitration, and flow control can be removed. A summary of the

comparison of these techniques is given in Table 2.1.
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Table 2.1: Switching Technique Comparison.

Switching
Communication

Entity
Path

Reservation
Buffer
Size

Resource
Utilization

Comments

Circuit Switching Flit Yes Small Low
Requires setup,

Acknowledgement
and path tear down phases

Store & Forward Packet No Large High
Header must wait

for entire packet before
processing to next roter

Virtual Cut Through Packet No Large High
Header can be forwarded
to next router before tail
arrives at current node

Wormhole Flit Yes Small Moderate
Header blocking reduces

efficiency of
link bandwidth

Virtual Channel

A Virtual Channel (VC) [29] is used to enhance the network throughput by

applying a number of shallow buffers to decouple the network resources, which

substitute for the implementation of a single deep buffer at input/output

ports. It is able to produce enhancements of between 20% and 50% [28].

An example is shown in Figure 2.4. On NoCs without VC, a packet has

to be stalled and stored in local buffers if the target router it is trying to

access is already occupied by other packets. In addition, this phenomenon

can be worse if an NoC is under heavy traffic flow, especially in wormhole

switching based NoCs, because of the block chain. In contrast, by introducing

a VC the other unblocked packets held in the VC can virtually bypass the

blocked one and access the next router. Which packet gets to use the physical

channels is decided by a priority competition according to the arbitration

policy. That is why a higher priority packet would take precedence over a

lower priority packet in a priority pre-emptive arbitration NoC. The higher

network throughput and use of physical channel bandwidth are the advantages

provided by a VC. In addition, combining a VC with wormhole switching

offers several benefits, such as being deadlock free, making more efficient use

of network channels and supporting different service levels [12]. Although

the switching complexity remains moderate, this combination has became

prevalent and is advocated by several NoC architectures [64], [94].
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Figure 2.4: Virtual Channel Example.

Flow Control

Flow Control (FC) refers to the allocation of network resources to a packet

traversing NoCs, such as buffer capacity, control state and channel bandwidth.

A taxonomy of current popular FC techniques is shown in Figure 2.5. Buffer-

less flow control is mainly used for circuit switched networks, and provides

a dedicated end-to-end transmission path. However, buffered flow control

focuses on packet switched networks.

Flow Control

Bufferless Flow Control Buffered Flow Control

Credit Based Flow 
Control

Handshaking Signals ACK/NACK Flow Control

Figure 2.5: Flow Control Taxonomy [1].

Handshake is accomplished by using a valid signal, which is sent whenever a

sender transmits any flit, and an acknowledge (ACK) signal which is returned

by the receiver when the validation has been successfully acquired. Low cost

implementation and low link utilisation are its advantage and disadvantage.

Examples of NoCs using handshake as flow control can be seen in [127] and

[105]. ACK/NACK requires to copy a data flit in current router until an

ACK signal has been received. Otherwise, if a NACK signal has been detected,

the flit will be retransmitted. An example can be seen in [7]. Credit based

Flow Control requires the upstream router to keep counting the available
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space in the downstream router as credits which will be decreased if a flit

is sent and increased if the flit is accepted by the receiver. The integrity of

the packet can be guaranteed. Examples of NoCs which are based on this

technique include Ætheral [46], [89], [34], SPIN [49], QNoC [13] and [42].

2.1.4 Predictable NoC Architecture

By applying the techniques reviewed in previous subsections, a predictable

NoC architecture, which is the basis for predicting or evaluating NoC perfor-

mance with a given application, can be provided. According to its customisa-

tion and parametrisation capabilities, the NoC can generally be classified into

heterogeneous architecture and homogeneous architecture. Heterogeneous

NoCs can provide more efficient design compared with homogeneous ones in

terms of area, power and timing performance, since its architectures can be

customised following any application requirements. An example can be seen

in XPIPES [7] and [8]. However, these advantages also make these kind of

NoCs as application oriented architectures. Homogeneous NoCs, in contrast,

can reduce the development time, by using a generic architecture. Their

instantiation space is depicted in Figure 2.6, according to their customis-

ability and granularity, which refers to the level at which the NoC or NoC

components are described.

According to the switching technique applied, predictable NoC architectures

can be classified in to circuit switching, packet switching with priorities

(PSwPri), TDM and hybrid. SoCBUS [122] is the first circuit-switched NoC.

Its hard real-time system requirements can be fitted by applying a pre-runtime

static scheduling phase. However, its inefficient use of resources, the cost of

non-scalability and the delay for setting pathes mean that neither it and its

improved versions such as [75] are not selected as the main approach.

The techniques applied by most existing real-time NoC architecture are

dominated by two branches, PSwPri and TDM. PSwPri NoCs such as [104],

[13] and [112] allow some contentions happen in both computation and
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Figure 2.6: NoC Instantiation Space [11].

communication, but using various priority-arbitration policies and schedule

strategies to ensure some tasks to be served first (normally higher priority

ones), at the same time taking care of the others (normally lower priority

ones) and guarantee all tasks are finished within their deadlines. Thus,

they are also known as connectionless NoCs. The high throughput and low

buffering requirements, compared with circuit switching NoCs, are provided

by applying wormhole-switching with credit-based flow-control and virtual

channels. Meanwhile, some real-time evaluation methods such as [58] also

increase the confidence of researchers in using this kind of NoCs as the

solutions.

By contrast, all contentions are avoided by applying resource reservation in

TDM switched NoCs. Once packets are injected into the network, they will be

transfered through dedicated channels which are reserved by their associated

time slots to their destination, without any interrupt. Although, TDM

NoCs are challenged by the complex time slot generation process and global

synchronization among all TDM slot tables, they still attract considerable

attention from both researches and engineers as their simple and efficiency

routers. Æthereal [46] and Nostrum [82] are two pioneering NoC examples

based on TDM. In addition, there are improved versions based on TDM such

as Argo [39] and dÆlite [88].
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The last category is hybrid NoCs which focus on improving the resources

utilization by combing TDM and PSwPri. A typical example can be seen in

MANGO NoC [12], in which the GS router and BE router are integrated. The

BE router supports connectionless communication by applying the packet

switching technique, while the GS router is used to enhance the connection

free communication. A comparable architecture can be seen in [50] using a

dynamic time slots reservation technique.

Among the existing real-time architectures, it could be seen that homogeneous

NoC should be selected for general application research. Moreover, the TDM

and PSwPri NoCs are two main solution branches which should be considered.

Æthereal NoC and priority pre-emptive arbitration based NoC are two pioneers

in these two branches. Although some successes have been reported in higher

performance by adjusting some techniques [39], [88], these two NoCs still can

be used as the typical examples to represent these two branches.

Ætheral NoC

The Ætheral NoC [46] applies the techniques of pipelined Time-Division-

Multiplexed circuit switching (TDM) and packet switching techniques to

enhance the system Quality of Service (QoS), for example, hard real-time

and soft real-time, which are supported by Guaranteed Services (GS) and

Best-Effort services (BE) respectively. The architecture of Ætheral NoC can

be categorised into router and NI, with multiple links between them.

Router

The router in Æthereal NoC takes the responsibility of contention-free routing

and transferring flits to their destinations by placing two routers (a contention-

free GS router and a BE router) in parallel to support GS and BE services

separately. The review of Ætheral router will start with contention-free

routing, and followed by the router architectures of each individual service.
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Contention-Free Routing is accomplished by using a slot table mechanism

which uses a slot table stored in each router to configure the cross bar at

each time slot. An example is shown in Figure 2.7. The column of the slot

table represents the configuration of each output and the row indicates the

configuration at each time slot. The data flits can be transferred to their

destination with SF switching in pipeline style. This mechanism requires a

global synchronisation of the whole system, which can be implemented in two

ways. One way is using a combination of a single, centralised synchronous

clock line and various techniques such as waterfall clock distribution and

synchronous latency insensitive design. The other is a distributed approach

with a Synchronous-Data-Flow (SDF) model. The NoC can be synchronised

by forcing each router to synchronise with its neighbours, although, this

will result in the whole system only running as fast as its slowest router.

This mechanism can entirely avoid network contention and guarantee the

performance of GS service. However, the large slot table is resource hungry

and its size will be increased along with the complexity of applications.

Router 1

Slot Table 1

Router 2 Router 3

Slot Table 2 Slot Table 3

Figure 2.7: Æthereal Contention-Free Routing modified from [46].

GS and BE Router GS and BE routers in Ætheral are in charge of data

channelling by using the slot table to configure their cross bar. GS router is

relatively simple compared with BE router. Its architecture consists of a set of

queues used to temporarily store data flits, simple connections between queues,

and a reconfigurable switch. The flow control for GS router can be removed,

since GS block will be served at the next clock cycle [46]. The BE router,
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in contrast, cannot guarantee the best-effort block served at the next clock

cycle. A credit based flow control mechanism should be introduced to ensure

that no flit is transferred beyond the receiver’s capacity. In addition, it also

introduces wormhole switching, source routing and round-robin arbitration,

since best-effort services have equal priority.

Network Interface

The NI of Ætheral NoC can generally be divided into NI shell and NI kernel.

The NI shell is responsible for offering various communication protocols

such as AXI and OCP to fill the gap between NoCs and IPs [89]. NI kernel

communicates with the NI shell through point-to-point ports which are also

buffered with FIFO (First-In-First-Out) for supporting clock domain crossing.

It packetises the packet received from NI shell and schedules them to the

router according to priority and packet type (GS packet can cut-through

directly, BE packet will be scheduled by round-robin arbitration).

Dynamic Reconfiguration on Ætheral NoC

The dynamic reconfiguration of Ætheral NoC refers to BE services, since

GS services are predefined at design time [46]. It can be achieved by both

centralised and distributed models. The configuration of both is accomplished

by reconfiguring the slot tables in each router. The centralised model can

modify the slot tables through GS packets along their route to the destination,

which guarantees the reconfiguration. However, the distributed model uses

BE packets (setup, teardown and acksetup packets) to program the resources

along the routing path with a source routing strategy. An acksetup packet will

be returned to sender when the setup packet has arrives at the destination.

Otherwise, a teardown packet will be received and the pre-build path will be

released. This reconfiguration is not guaranteed and is highly depended on

the traffic load on the NoC.
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Priority Pre-Emptive Arbitration Based NoC

The priority pre-emptive arbitration based NoC is widely researched in aca-

demic contexts. Its architecture (shown in Figure 2.8) is based on mesh

topology NoCs and offers bidirectional links with uniform bandwidth between

two routers. In this NoC, priority based wormhole switching is adopted with

the XY routing protocol. In addition, credit based flow control technique is

also introduced to ensure no more flits are transferred than the receiver can

accept. Furthermore, in order to overcome the deadlock problem of wormhole

switching, a virtual channel mechanism is added and implemented. When

a communication flow arrives at a router, it will be served according to its

priority level, which is inherited from the task that initiates the flow, and

the flows that have been received so far by the router. The path which the

observed flow should be forwarded to is determined by XY routing instead of

being predefined in Ætheral NoC. Although its router area is big, because of

its complex scheduler, its behaviour is much more flexible than Ætheral NoC.
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Figure 2.8: Priority Pre-Emptive Arbitration Based NoC Architecture.
*The numbers on black arrow are the index of links.
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Comparison

The Æthereal NoC and the Priority Pre-Emptive Arbitration Based NoC are

pioneers of two most popular solution branches (TDM and packet switching)

respectively. Æthereal can reduce the area of routers, simplify the scheduler

and provide strong predictability for guaranteed services. However, it increases

the implementation complexity of NI. Guaranteed services may be over-

reserved and lead to lower resource use. Although the BE services are

introduced to improve the average performance, the worst-case performance

is difficult to estimate. In addition, the dynamic reconfiguration speed is

low, since all slot tables need to be modified, and the reconfiguration cannot

be guaranteed by applying a distributed model. This may impose costs of

both resources and time. By contrast, the Priority Pre-Emptive Arbitration

Based NoC can provide guaranteed timing performance with a careful task

allocation and system evaluation. Although, its router is big because of its

complex scheduler, its dynamic reconfiguration is simple and fast, as it can

be simply finished by moving tasks to other IPs, rather than requiring the

configuring of slot tables. A table of comparisons is listed in Table 2.2 to

show the difference between them, and this is used in the section 3.1.2 of the

following chapter for NoC platform selection.

Table 2.2: Æthereal vs Priority Pre-Emptive Arbitration Based NoC.

NoC Architecture Ætheral NoC Priority Pre-Emptive Arbitration Based NoC
Router area small large
NI area large small
Routing slot table, contention free deadlock free, XY routing
Comfigure speed low high
Configure cost cost low
Felxiablity low high
Timing guarantee high high
Switching SF for GS, Wormhole BE Wormhole
Complex applications larger slot table no change
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2.2 NoC Performance Evaluation

Exploring or evaluating the performance of an NoC implementation is an

indispensable step in achieving the design goal, which can be either minimum

level of performance with lowest cost or highest performance with a given

cost [65]. The tools used in performance evaluation can be categorised as

simulation models and analytical models.

Simulation models provide flexible and accurate methods for researchers

to tackle performance estimation. However, when the targets are complex

MPSoCs, what can reasonably be simulated, and how to select the hardware

for the NoC or how to program it according to the simulation results, is

restricted [66]. Moreover, the difficulty of predicting a finite set of test

scenarios and the slow simulation speed with high computation costs are

also barriers to the application of fast evaluation, especially in dynamic

optimisation problem.

However, formal mathematical analytical models are popular since they can

provide not only a fast performance analysis of the worst-case scenario at an

early design phase, but also be invoked as feedback in any NoC optimisation

process. Therefore, an analytical model, such as Synchronous Data Flow

Analysis (SDF) [71], End-to-End Response Time Analysis (E2ERTA) [100]

and Queueing Theory (QT) [67], could be suitable for this research, which

explores dynamic mapping problems. SDF and E2ERTA will be reviewed

in this section, as examples to support the two predictable architectures

reviewed in Section 2.1.4.

2.2.1 Synchronous Data Flow Analysis

Synchronous Data Flow (SDF) is a special case of data flow [71]. It restricts

the general data flow graph in order to test efficiently whether or not a

finite static schedule exists in a given set of nodes, and if so, to find it. The
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assumption made in SDF is that the number of tokens consumed or produced

at each node is fixed and known in advance [71]. A synchronous data flow

(SDF) graph is illustrated in Figure 2.9. The number on each arrow (not

in square) describes the number of tokens consumed or produced at each

node. Any node can fire (execute) whenever the input data are available on

its incoming ports. A node which has no incoming arrows can fire at any

time. As a result, many nodes can fire concurrently.

2

3

1 2

2

2

1 1

1 1

3

1

Figure 2.9: A Synchronous Data Flow Graph [71].

The process of finding a finite static schedule for a given graph can be divided

into the necessary test and sufficient test. To find the schedule for the example

in Figure 2.9, the graph can be abstracted as a topology matrix as shown in

Equation 2.1 by numbering each node and arrow (the index number is the

box) and setting a row to each arrow and a column to each node. For example,

the left column in Equation 2.1 is [1 2 0] representing the relationship in

producing or consuming tokens between node 1 and the three arrows. Node 1

produces one and two tokens to arrow 1 and 2 respectively, but is not related

with arrow 3. After abstracting the topology matrix, the necessary test can

be used and may further lead to the sufficient test, if the necessary condition

(the rank of this matrix should be equal to the number of nodes minus one)

has been satisfied. Otherwise, a fine static scheduling does not exist.

Γ = rank(

1 −1 0

2 0 −1

0 2 −1

) = number of nodes− 1 (2.1)

The sufficient test can be undertaken by Equation 2.2, where J is any positive
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integer and q describes the number of times each node should be invoked in

one cycle of a periodic schedule. Each row of the q refers to a node.

Γq = 0 =⇒

1 −1 0

2 0 −1

0 2 −1

 q = 0 =⇒ q = J

1

1

2

 (2.2)

2.2.2 End-to-End Response Time Analysis

End-to-End Response Time Analysis (E2ERTA) [58] is a formal mathematical

evaluation model used to explore the timing performance of a hard real-time

system on priority pre-emptive arbitration based NoC (an example is shown

in Figure 2.8). Its results can indicate the value of the end-to-end response

time of a task which starts at the time point the task is released on the initial

IP, and lasts until the last flit of the packet (the task generated) is received by

the destination IP under the worst-case scenario. Thus, it can be affected by

the response time of both task computation and flow communication. This

phenomenon can be seen in Figure 2.10 which follows the example of Figure

2.8 and considers the deadlines of all tasks as being same and equal to period.

Task 1

Task 2

Task 3

Task 4

Task Released Task Deadline

Task Computation 
Time

Flow Computation 
Time

Computation 
Interference

Communication 
Interference

Communication 
Interference

Communication 
Interference

Priority

H

Figure 2.10: E2ERTA Example.

On each IP, the tasks are released by priority order. Hence, higher priority

tasks can easily preempt lower priority tasks. Task3 and Task4 are released

at the same time on IP(8). However, as Task3 has higher priority than Task4,

it can directly take the node and preempt the release of Task4. Similarly,
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communication interference also exists, since it is undertaken by physical

channels (such as routers and links) which are shared by multiple flows. It can

be seen from that Flow2 (initiated by Task2) is directly interrupted by Flow1

(initiated by Task1). Therefore, to calculate the E2ERTA, the response time

of both tasks and flows need to be computed.

Response Time Analysis for Tasks

In order to know whether a given task set can be scheduled on a single IP,

Liu and Layland [74] define the Rate Monotonic approach with static priority

pre-emptive scheduler. Audsley et al. [4] then extended the response time

analysis to include release jitter. Using response time analysis, the times

that the higher priority tasks will be released can be calculated, during the

response time of the lower priority task under the worst-case situation. At

the same time, the exact worst-case response time of the lower priority tasks

can also be obtained. The result can be calculated by Equation 2.3, where

ri, ci, Bi, ti and hp(i) represent the response time, worst-case computation

time, blocking time, period of taski and the set of tasks with higher priority

than taski respectively. The calculation can be terminated by either ri > di

(di is the deadline of taski) or rn+1
i = rni (the response time of taski is not

increased and the r0i = ci).

rn+1
i = ci +Bi +

∑
∀j∈hp(i)

dr
n
i

tj
ecj (2.3)

Response Time Analysis for Flows

In [104], the authors models the links and flows as shared processors and

tasks respectively and extended the response time analysis to obtain the

communication delay of each flow. Different from the relationship among

tasks on a single IP, the relationship among flows is complex. A lower priority
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flow (Flowi) may suffer both direct and indirect interference from higher

priority flows which are from its direct interference set (Sid) and indirect

interference set (Sii) respectively (formal defination can be seen in Chapter

3). The flows in these two sets can affect the worst-case response time of

Flowi by pausing the communication of Flowi. Their definitions are based

on the relationship between Flowi and higher priority flows and are listed as

follow:

• The flows in the direct interference set:

– having higher priority than Flowi;

– sharing at least one link with Flowi.

• The flows in the indirect interference set:

– having higher priority than Flowi;

– having no shared link with Flowi;

– interfering with the flows in the direct interference set of Flowi.

Figure 2.8 shows an example of a traffic flows relationship, where the priority

of flows follows the increase of the index number of flows, a lower number

refers to a higher priority. In this example, the Task3 and Task4 are allocated

on IP(8); Task2 and Task1 are allocated on IP(5) and IP(2) respectively.

The direct interference set and indirect interference set for each Flowi are

listed in Table 2.3.

Table 2.3: Traffic Flow Example

Flowi Direct interference set Indirect interference set

Flow1 {φ} {φ}
Flow2 {Flow1} {φ}
Flow3 {Flow2} {Flow1}
Flow4 {Flow3} {Flow2}
*The flows follow the examples in Figure 2.8.
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By considering the relationships among flows, the communication performance

of an NoC can be explored. The response time of flows can be calculated

using Equations 2.4a and 2.4b, where Ri, Ci and Ti are used to represent the

response time, basic latency, and period of Flowi; J
R
j and J I

j indicate the

release jitter and interference jitter of Flowj ; Sid shows the direct interference

set of Flowi.

Rn+1
i = Ci +

∑
∀j∈Sid

d
Rn

i + JR
j + J I

j

Tj
eCj (2.4a)

J I
j = Rj − Cj (2.4b)

R0
i = Ci (2.4c)

However, this is only the response time of the communication part. The

computation part is not included in Equation 2.4a. Therefore, [58] assumes

that the release jitter of a traffic flow can be replaced by the worst-case

response time of the initial task of the flow (that is, JR
i = ri) and rewrote the

Equation 2.4a to Equation 2.5 to provide the end-to-end response time for

a flow, where the equation determins when either Rn+1
i = Rn

i or Rn+1
i > Di

(deadline of Flowi).

Rn+1
i = Ci +

∑
∀j∈Sid

d
Rn

i + rj + J I
j

Tj
eCj (2.5)
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Accelerated Methods for Response Time Analysis

From Equations 2.3, 2.4a and 2.5, it can be seen that the calculation of

response time analysis is based on an iterative calculation. Since this iterative

calculation needs an indefinite number of iterations to compute the final

results, the response time analysis is inefficient. In addition, it will also be

affected by increases in the complexity of applications and the size of NoC.

Therefore, it is worth consideriong the efficiency improvement of response

time analysis.

Bini and Baruah [10] present an upper bound estimation mechanism by

analysing the workload to find the upper bound of the task response time,

in order to avoid the need for exact result computation. This is shown in

Equation 2.6, where rupi is response time up bound of Taski and hp(i) is the

set of tasks with higher priority than Taski. However, it can only be used as

a sufficient test, since it cannot guarantee the final result.

rubi =
ci +

∑
∀j∈hp(i) cj(1− uj)

1−
∑
∀j∈hp(i) uj

(2.6)

[31], explores this problem from a different view, pointing out a lower bound

of response time of a task. This lower bound can be found by using Equations

2.7a, 2.7b and 2.7c. The Ij(ri−1) denotes the worst-case interference due to

Taskj ∈ hp(i) occurring during the response time of Taski−1, Bi and ui are

the maximum block time and utilisation ( ci
ti

) of Taski, Ji and rlbi indicate the

release jitter and lower bound of response time of Taski respectively. Their

results suggest that by applying this technique, the number of iterations

needed when executing the worst-case response time analysis can be reduced

up to 33.3% (average number of celling operations). Although these two

techniques are primarily proposed to improve tasks response time analysis on

single IP, they could still be applied in the response time analysis of flows on

NoCs, since flows analysis is inherited from tasks analysis. Moreover, they
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could also benefit the E2ERTA.

Ij(r(i−1)) =

⌈
r(i−1) + Jj

tj

⌉
cj (2.7a)

rlbi (k) =
Bi + ci +

∑
∀j∈lep(k)∩hp(i) Ij(ri−1)

1−
∑
∀j∈hp(k) uj

+

∑
∀j∈hp(k) Jjuj

1−
∑
∀j∈hp(k) uj

(2.7b)

rlbi = max
∀k=1...i

rlbi (k) (2.7c)

2.2.3 Summary

In this section, NoC performance evaluation methods were reviewed. From

the perspective of running time system state estimation and simulation speed,

simulation models are difficult and slow. This results in simulation models

being unsuitable for fast performance evaluation, especially for dynamic

optimisation problems. Two examples of analytical models were also reviewed.

End-to-End Response Time Analysis (E2ERTA) may be able to undertake

fast optimisations, although the existing E2ERTA cannot be used as a solution

directly, since it may cause low evaluation efficiency. However, it has the

potential to demonstrate a suitable performance and can be used as a feedback

function in a fast optimisation loop with modification.
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2.3 Application Mapping Algorithm

For a given NoC architecture and application, the performance of a NoC

can be improved by an optimised task allocation, since different mapping

can directly affect not only the task computation time on IPs, but also the

flows communication time with various level of network congestion. The

state-of-the-art mapping methods can generally be classified into static map-

ping and dynamic mapping, according to when a mapping decision is made.

A static/offline mapping is predefined at design time. It is only used for

deployment at the beginning and remains thereafter. Normally, it has enough

time and resources to process design space exploration and thus the best

performance with a given resource can be obtained. To achieve this, it re-

quires the system information (application and working environment) can

be fully known at design time and guaranteed not to change at run time.

Dynamic/online mapping, in contrast, distributes tasks to NoC along with

the application execution. Since a system working situation is considered, dy-

namic mapping can provide a better solution if an NoC working environment

has dynamic behaviours (such as battery management, fault tolerance and

user behaviours). Thus, at design time the information required about the

application or working environment is less than that for static mapping, but

a remapping overhead (time used to finish one remapping) will be involved

whenever the existing task allocation is changed. Modified from the taxonomy

in [92] and [107], the classification of each type of mapping algorithm can

be further divided into several sub-categories as shown in Figure 2.11. This

section will start with a review of static mapping and then move to dynamic

mapping.

2.3.1 Static Mapping Strategy

The static mapping strategy can broadly be divided into exact mapping and

search-based mapping, according to how a mapping solution is generated.
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Figure 2.11: Mapping Taxonomy modified from [92] and [107].

Exact Mapping Algorithm

The algorithms in the exact mapping category adopt mathematical program-

ming, for example Integer Linear Programming to optimise the performance

of NoC in respect of factors like execution of processors, communication cost

[5], architecture [83], Symmetric Multi-Processing (SMP) [85], power [111],

[86], and contention [20]. Although the optimal solution can be provided after

these optimisations, the complex calculation and the long computation time

in mathematical programming are the main drawbacks. In addition, these

become worse with increases in the complexity of application and the size of

NoC.

Search-Based Mapping Algorithm

Following the taxonomy in Figure 2.11, the search-based mapping algorithms

can be further sub-categorised into deterministic search and heuristic search.
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Deterministic Search

The deterministic search, which mainly use the Branch-and-Branch (BB)

approach, is an exhaustive search. It can systematically explore the search

area with a tree topology and find a mapping solution by searching each tree

branch while at the same time bounding inadmissible solutions [92]. [56] and

[57] optimised the energy performance of a tile-based regular NoC through

BB search, but some hotspots are generated. To overcome hotspots, [73]

introduced the traffic balanced IP mapping (TBMAP) criterion; however,

this results in some irregular routers, various network interfaces (such as

single-router to single-IP, single-router to multiple-IP, double-router to single-

IP) and some long data paths. To some extent, the deterministic mapping

algorithm can find the suitable solution, but the high memory depth demand

and long computation time are the main drawbacks. The search time will

increase along with increases in the search space. This limits the BB searching

algorithm application to small problems, since more complex problems mean

larger design area.

Heuristic Search

According to whether an optimisation starts from existing mapping/s, the

heuristic search can be divided into transformative heuristics and constructive

heuristics.

Transformative Heuristics obtain better solution from improving existing

mapping/s, by applying search-based algorithms. [124] compares various

search-based algorithms and finds that Evolutionary Algorithms (EA)s show

the better performance than others in solving search problems. Therefore,

here we mainly review the research using EAs such as Genetic Algorithm

(GA), Particle Swarm Optimisation (PSO), Ant Colony Optimisation (ACO)

and so on, for mapping searching of NoCs.

GA based transformative heuristics

GA is a search-based algorithm. It can be used to explore the near-optimal

or good-enough solution for complex optimisation problems which have a
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large searching space and cannot adequately be addressed by mathematical

analysis or exhaustive search. Details will be reviewed in Section 2.4.

The work in [72] (two-step optimisation) and [128] tries to minimise the overall

system delay on homogeneous NoC architectures by using single objective GA.

An architecture aware analytic mapping algorithm (A3MAP) in [60] can be

used for both homogeneous and heterogeneous cores on regular and irregular

mesh or custom based NoCs to reduce the amount of traffic. The task graph

and NoC architecture topology are abstracted as two characteristic matrices

as inputs for Mixed Integer Quadratic Programming (MIQP) to generate

the initial population of the following GA optimisation loop. In addition,

[24] and [25] are also proposed for customised NoC in power consumption

optimisation.

Apart from single objective GA, Multi-Objective GAs (MOGAs), such as

NSGA-ii (an improved version of Non-Dominating Sorting Algorithm) [32],

which is a fast and elitist multi-objective GA using pareto optimal as selection

criteria to generate offspring population, are also adopted in NoC mapping

problems. The research in [61] which is a two-step optimisation with NSGA-ii

is used to minimise the energy consumption for both computational and

communicational areas, while also reducing the maximum link bandwidth.

After evolving a task graph to core communication graph (CCG), the elitism

set is used as the initial population of the second step optimisation for mapping

CCGs to NoC. [9] also focuses on reducing the energy and bandwidth by using

NSGA-ii. In addition to these methods, researchers also combine the GA

with biology conspectus such as Multi-objective Adaptive Immune Algorithm

(MAIA) [99], to optimise the system energy.

PSO and ACO based transformative heuristics

Particle Swarm Optimisation (PSO) [87] is a population based stochastic

search technique which is inspired by simplified social behaviours such as bird

flocking and fish schooling. The candidate solutions in PSO could be affected

by the experience of other candidates. The local best and global best solution

can guide the evolution of the next generation. Work using PSO to improve
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the NoC performance can be seen in [120] and [118], which are both two-step

algorithms focusing on power consumption and latency respectively. In [6],

a hybrid multi-objective PSO with pareto selection strategy is presented to

enhance both the execution time and energy. The comparison of results in [6]

show that the genetic approach is better than the PSO approach in terms of

efficiency and accuracy.

Ant Colony Optimisation (ACO) [26] is inspired by the biological behaviour

of ants searching for a path between their colony and the source of food. The

results shown in [117] suggest that ACO is better than a random mapping

in NoC optimisation. The main drawback of ACO is the uncertain time to

convergence, but theoretical analysis for ACO is also difficult [97].

Constructive Heuristics provide a mapping solution through step-by-step

distribution of tasks to IPs according to predefined criteria [92]. They can be

divided into two groups by considering whether an improvement step follows.

In Without iterative improvement, [91] presents an improvement of the

execution time and communication energy by mapping in a spiral style from

centre to boundaries. [102], iteratively pairs the two most communicated

IPs together using IP ranking, merging IP set and refreshing IP set, in

order to reduce the cost of hardware of the NoC. IP ranking calculates the

communication bandwidth (sum of the bandwidth from it to other IPs and

form other IPs to it) for each IP, and then sorts them. The merging IP process

merges the most communicated IP sets with two-by-two style, iteratively,

according to the IP ranking. Thereafter, the merged IP sets are refreshed by

treating as an individual IP. A tree model IP grouping is introduced in [125].

In contrast, with iterative improvement, the final mapping solution can

be improved. An example is [84] which maps a core graph to mesh based NoC

with three steps. Step one uses a predefined criteria to construct an initial

mapping, allocating the core with maximum communication demand to the

node with maximum neighbours; then find the core with most communication

demand with the cores already mapped, and allocating it to a node with min-

imum communication cost (hop-count bandwidth) with the mapped cores. In
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the second step, a minimum path will be calculate with respecting bandwidth

constraints. Then, final step improves the initial mapping iteratively by pair-

wise swapping of mapped cores according to the second step. Obviously, the

performance of these kinds of methods are fully dependent on the predefined

criteria, for example, core selection, node selection and swapping strategy.

The system performance cannot be guaranteed if the criteria have limitations,

since a suitable criterion is hard to define for a complex system.

Summary

In this subsection, the static mapping algorithms are reviewed. They require

the application information and system working environment to be known in

advance and maintained during the application execution. They have enough

time and resources to compute an optimised mapping solution at design time.

However, this requirement may not always be satisfied in light of increasing

complexity of application or increasingly variable working environment (such

as considering user behaviours). In addition, the conflict between extended

design space and limited resources will directly prolong the optimisation

execution time. Thus, it is worth considering either moving to dynamic task

allocation or introducing some accelerators for a fast optimisation.

2.3.2 Dynamic Mapping Strategy

Different from the static mapping strategy, which requires task allocation to

be adjusted at design stage, the dynamic mapping strategy can assign tasks

to an NoC at run time. It can improve the system adaptability to enhance

performance in variable working environments. A taxonomy modified from

the classification in [107] is presented and shown in Figure2.11.
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Soft Real-Time Dynamic Mapping

The dynamic mapping algorithms used in soft real-time systems can place

tasks onto a NoC with predefined criteria to improve the system performance.

Unlike hard real-time systems, there is no hard deadline for task execution.

Thus, the design aim is mainly focused on how to improve the throughput

and reduce the remapping overhead, rather than guaranteeing the system

performance. According to the aspects focused on, the algorithms in this

category can be divided into several groups shown in Figure 2.11.

Power Consumption

Power consumption seems like the most popular topic in soft real-time dynamic

mapping problems. [14] and [16] focus on heterogeneous NoCs. They apply

First Free (FF), Nearest Neighbour (NN), Minimum Maximum Channel Load

(MMC), Minimum Average Channel Load (MAC), and Path Load (PL) as the

mapping algorithms. Similar work can be seen in [123]. [19] and [23] provide

dynamic mapping for NoC architecture which supports multiple voltage levels.

They both introduced a region selection step before task allocation. In [23],

the task allocation is undertaken by one of the following methods, Best Case

(BC), Worst Case (WC), Euclidean Minimum (EM), Fixed Centre (FC),

Random Frontier (RF) and Neighbour-aware Frontier (NF). BC refers to the

optimal solution. It is a kind of exhaustive search. Thus, it is only suitable

for small problems. [21] and [22] consider the influence from user behaviours.

[77] and [76] try to find suitable allocation using NN in a spiral route from

centre to boundaries. In addition, the work in [78] also improves the energy

performance by searching mapping in a spiral route, but it also considers the

execution time.

Execution Time

In addition to power consumption, [78] has taken execution time into account

by reducing the mapping time, reconfiguration time and task migration time.

Its mapping solution is searched with a spiral route (from centre to boundaries)
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by placing two communicated tasks close to each other. The work in [116] and

[18] propose two mapping algorithms which are modified from GA to find an

appropriate approach to trigger task migration and reduce the migration cost.

They claim that triggering based on packets sent by a single node performs

well. Beyond that, [33] attempts to use Integer Linear Programming (ILP)

to improve the execution time and communication cost. However, the high

complexity with ILP restricts it to application as a small problem optimisation

tool.

Communication Work Load

Communication work load is another aspect that has occupied the interest

of researchers. In [15], the authors select the method used in [14] and [16]

to reduce the channel load, congestion and packet latency. In [41], [108] and

[109], an agent-based mapping algorithm is proposed. It has Global Agents

and Cluster Agents to handle dynamic mapping hierarchically. In [63], the

most communicated task will be first packeted into a single IP according

to the task graph to reduce the communication overhead. Thereafter, the

requested IP will be mapped to the NoC by considering the minimum route

distance with its master.

Work-Stealing

As well as direct mapping task to cores, dynamic mapping can also be

achieved by scheduling among multiple cores for soft real-time tasks such

as Work-Stealing (WS). A classical WS scheduler requires each core have a

double-ended queue to store tasks and dequeue a task from the head of this

queue, execute it and continue with the next task with in Late-In-First-Out,

unless the queue is empty. Whenever a core finds its double-ended queue is

empty, it attempts to randomly select a victim core to steal a task from the

tail of the victim’s queue. Another victim will be selected if the queue of the

current victim is empty as well. This process may repeat forever or terminate

when all cores have been checked. It can be seen that the computation

workload can be balanced by WS, however, the stealing operation may cause

58



difficulty for the victim core to track back its lost task, if there is data

tacking between the victim core and its lost task. At the same time, frequent

stealing operations increase the task migration which will affect the network

communication workload. Moreover, the WS may not always improve the

stealing tasks response time, since the response time will be added by both

stealing process and task migration. Therefore, only few research, such as

[81] and [45] selected as the solution for NoC dynamic mapping.

Hard Real-Time Dynamic Mapping

The dynamic mapping algorithms used in hard real-time systems can be

treated as the task admission controller. It decides whether a task can be

allocated on a working NoC, taking into consideration the timing performance

for both the new added task and existing tasks on NoC after remapping.

Once permission has been obtained, an allocation will be processed. Other-

wise, the task will be rejected. According to whether the response time of

communication (traffic flows) on NoC can be guaranteed, these algorithms

can be grouped into two sub-groups.

Considering Communication Cost

Based on when the performance analysis is addressed, this group can be

further divided into online analysis and offline check online call. Examples

of Online analysis can be seen in [80] and [37]. They attempt to use

schedulability analysis as the performance inspector, to check whether a task

can be allocated on a multi-core or many-core system such as avionics and

medical devices. The results show that the systems hard real-time performance

can be guaranteed if a successful task allocation can be made; however, the

new task will suffer a relatively long admission time. The authors in [107]

claimed that even if a joining request of a task has been rejected, the time

used to manage this request is not wasted, and the lack of admittance can

be used as feedback to make alternative operations. But the low passing

rate may decrease resource utilisation, since only tasks which meet both the
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computation and communication requirements can be allocated. In addition,

the time-consuming evaluation method restricts these methods to only being

suitable for small task sets. The offline check online call, by contrast,

will have small dynamic remapping overhead. This is because, according to

working requirements, a system will be divided into several states which will

be well optimised by a static mapping strategy at design time and stored in

the system at run time. The system can change its mode and load a suitable

state according to its working environment. Thus, only a lightweight dynamic

remapping strategy will be required. Recent work in this vein can be seen from

both [36] and [106]. These methods can guarantee the system performance

with a small remapping overhead. However, the predefined system stages

reduce the system flexibility, as the information used to predefine the system

working environment cannot always be obtained, especially if user behaviours

are considered.

Without Considering Communication Cost

The methods in this subgroup mainly consider deadline distribution. The

deadline of an application is distributed as the local deadline of each task.

The resource manager will allocate these tasks at run time and ensure that

their deadlines are satisfied. These methods can be seen in [54]. However,

the communication among tasks, which is common in complex applications,

is not considered.

2.3.3 Summary

In this section, the current mapping algorithms have been classified and

reviewed. Although the static mapping strategy can guarantee system per-

formance, its requirements may not always be satisfied, especially for some

complex applications or dynamic working environments such as user be-

haviours. In addition, the conflict between extended design space and limited

resources will result in a long optimisation time. The dynamic mapping
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strategy can improve system flexibility with less a priori knowledge of system

working environment and application by allocating tasks at run time. However

the state-of-the-art cannot guarantee the system performance for soft real-

time mapping problems, since they either do not have performance feedback

or the feedback does not cover the worst-case scenario. In addition, although

a global remapping strategy has been considered, the search area is limited,

since the mapping construction has to follow a predefined criteria. For hard

real-time dynamic problems, the existing algorithms will either be affected

by long evaluation period (online or offline) or fail to consider the feedback

on communications response time. These can result in a high remapping

overhead, lack of flexibility or unpredictable communication timing perfor-

mance. Therefore, the current challenge for hard real-time dynamic mapping

problems is how to find a mapping to satisfy end-to-end timing performance

(include both computation and communication part) with reduced mapping

overhead.

Moreover, from the mapping method point of view, there are various current

dynamic mapping methods. There is no one class which can be considered as

popular, due to disadvantages such as lacking of feedback and low mapping

constructive ability. By contrast, the static mapping methods are dominated

by search-based algorithms which are further categorized into heuristic and

constructive. Between them, the heuristic ones (one representative of which is

GA, which is one sub class of Evolutionary Algorithms) are more attractive,

since they are user-friendly and have strong search ability. That shows the EA

is a good method for solving static mapping problem and may be considered

for extension to dynamic mapping problem field. Therefore, in the following

section, we will focus on the review of Evolutionary Algorithms.

2.4 Evolutionary Computing

Evolutionary Computing (EC) is also defined as a set of Evolutionary Algo-

rithms (EAs) which are Evolutionary Programming [43], Genetic Algorithms
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(GAs) [52], Evolution Strategy (ES) [115] and Genetic Programming (GP)

[68]. It is a kind of heuristic search-based algorithm and can be considered as

automatic problem solver or optimisation methods for complex problems [48],

such as NoC mapping optimisation with both static and dynamic strategies

(seen in Section 2.3). In this section the EA will be reviewed through with

basic EA concepts, then GA and finally GA improvement.

2.4.1 EA Basic

The inspiration of EAs comes from the theory of Darwinian evolution [30].

EAs can solve or optimise problems by imitating the process of natural

evolution. A population concept has been introduced in these algorithms.

It consists of a number of individuals which represent potential solutions

to a target problem. The living environment is imitated by a cost function

which is used to indicate how well an individual can fit the environment by a

numerical value. At the same time, it also represents the fitness of a potential

solution to the target problem. In the natural environment, individuals breed

and produce offspring, involving variations which are carried out by genetic

operators such as mutation and recommendation (crossover). During the

evolution, individuals with high fitness value will survive; others will die out.

A generic flow of EAs is presented in Figure 2.12.

No

Parent 

Population

Fitness 

Function

Parents  

Selection

Variation 

Operation

Fitness 

Function

Survivor 

Selection

Offspring 

Population

Population Creation

Terminate?Solution Found

Yes

Figure 2.12: Generic Flow of EAs Modified From [119].

EAs start from an initial population generation, which normally follows a
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random strategy and passes the environment/fitness evaluation. Thereafter,

in the evolutionary iterations, suitable individuals will be selected as parents

to breed offspring through variation operations. A fitness value will also

be assigned to each offspring. The new generation involved in the next

evolutionary loop, is generated by selecting the highly fitted individuals and

eliminating others with a survivor selection mechanism which imitates natural

selection. The evolution will be stopped with the fittest individuals whenever

the termination condition has been met. These individuals can be treated as

the ‘near-optimal’ or ‘good-enough’ solutions to the target problem. Several

concepts or components used in this evolutionary loop will be reviewed as

follows.

Representation

To apply EAs to solve or optimise an actual problem, a method is necessary to

abstract a problem as a special data structure used in EAs. This abstracting

and its inverting process are defined as representation and translation respec-

tively. Normally, a solution is abstracted as a chromosome/s in an individual.

Each chromosome consists of a number of genes which reflects the parameters

of the problem. How a problem will be represented in EAs is determined

by the problem characteristic and genetic variations strategy. The common

representation methods are binary strings, integers, real numbers, graphs or

hybrids. An example can be seen in Figure 2.13, which shows how the NoC

mapping problem is represented in GA. The gene index and gene value of a

chromosome can be treated as the task index and IP index respectively to

indicate which IP a task will be allocated to.

Genetic Variation

Genetic variation can be understood as recombination (crossover) and mu-

tation. These processes create offspring by applying small random changes
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1

Gene Value

4 3 2

28 8 5

Gene Index

Task Index

IP Index

Figure 2.13: NoC Mpping Problem Representation in GA.

Note: Follows the example in Figure. 2.8.

on existing individuals. They are the primary power that makes EAs evolve

towards the optimal.

1. Crossover

Crossover produces offspring by recombining (partial swapping) the

chromosomes from parents following a predefined crossover strategy such

as single-point, two-point and uniform crossover [113]. The number

of times the crossover can happen in a generation is indicated by

a predefined probability which is also known as the crossover rate.

Whenever this probability is satisfied, the selected segment or gene will

be swapped between parents. An example can be seen in Figure 2.14.

1

Chromosome 1

4 3 2

28 8 5

Gene Index

Task Index

1

4 3

3

1

8 8

2

1

4 3

3

1

8 8

2

Single-Point Crossover Mutation

Chromosome 2 17 5 3 257 5 257 9

IP Index

Figure 2.14: Crossover and Mutation Example.

Note: Flows the example in Figure. 2.13.

2. Mutation

Mutation is another operation to provide genetic variation during evo-

lution iterations. It generates the new gene value for each gene of a

chromosome and replaces the old one if a mutation probability has
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been satisfied (in a manner similar to crossover rate). One example is

illustrated in Figure 2.14.

Evaluation

In the EA evolution process, how well an individual behaves in the living

environment is evaluated as a numerical score by a cost function or functions

in multi-objective optimisation. The score/s indicate how close the potential

solution represented by an individual is to the optimal solution of the target

problem. These results are used as guidances to lead the evolution towards

the optimum by applying a selection strategy which imitates natural selection

to distinguish which one survives and produces offspring in next generation

(as discussed below).

Selection

The imitation of natural selection is undertaken by selection strategies in

EAs. Selection exploits the potential solutions explored by crossover and/or

mutation and extracts elites to force the EAs to search in a relatively small but

effective search area, while at the same time continuously driving the search

area towards an optimal solution. The commonly used selection strategies

are uniform, fitness proportionate, fitness ranking and tournament selections.

By applying a selection mechanism, EAs can achieve a rapid convergence to

the optimal solution of a target problem.

Termination Condition

When and how an EA evolution should be terminated can be indicated by

some commonly used criteria:

1. low convergence: if the obtained solutions cannot be further improved
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within a number of generations;

2. number of generations: if a predefined number of generations has been

achieved;

3. good-enough result: if a good-enough solution has been found, it may

not be the optimal one;

4. optimal result: if the known best solution has been found.

2.4.2 Genetic Algorithm with NoC Mapping Problem

As mentioned at the beginning of this section (2.4), EC is a set that contains

a series of evolutionary algorithms. One of these is the Genetic Algorithm

(GA). GA is a robust problem solving and optimisation search tool proposed

in [53]. One of its outstanding advantages is that its framework is sectional.

It can be benefited by selecting various representation, crossover, mutation

and selection strategies. Thus, almost all of the components and features of

EAs which have been discussed above can be reflected onto GA. Because of

this, it is popular in many complex problem solving or optimisation contexts.

One of these is the NoC mapping problem.

Figure 2.15: NoC’s Mapping Problem with GA.
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The popularity of the GA is in NoC mapping problems can be seen from

the research in both static mapping and dynamic mapping that have been

reviewed in Section 2.3. Similar to the generic flow of EAs (in Figure 2.12), a

possible GA optimisation pipeline (shown in Figure 2.15) also starts from the

creation of an initial parent population which contains a number of randomly

generated chromosomes (i.e. randomly selecting the value of each gene of

each chromosome). Its offspring population is bred by operating over the

parent population with mutations and crossovers. How well the candidate

solutions fit the problem to be solved is evaluated by a fitness function.

In a case of hard real-time timing performance optimisation, it will cover

both tasks computation time on IPs and flows communication time on an

NoC. The example in this figure adopted the E2ERTA. The fitness value is

how many tasks and flows cannot be scheduled based on current candidate

mapping. The values will be further used to rank all chromosomes of the

combined population and thus define which of them will be allowed into the

next generation. The process is then repeated a fixed number of times or

until a mapping without unschedulable tasks or flows is found.

The advantages of using GA to optimise NoCs performance can be understood

as follows. First, unlike other heuristic algorithms which require specific

knowledge of the target problem, a GA is a model-free heuristic algorithm and

can be used as a general tool. This reduces the entry level for more researchers

to explore this area. Compared with other model-free heuristic methods such

as random search, local search, tabu search and simulated annealing, GA

takes into account the fitness landscape [114] (which can indicate the guiding

ability of a fitness function), and by providing a concept of population, the

GA not only explores solution space in multiple directions at once but also

prevents infinite resource cost. Secondly, GAs can easily be extended to

consider many parameters simultaneously in order to support multi-objective

optimisation problems which are common in reality. One example could be

guaranteeing the timing performance of NoC after remapping, while at the

same time reducing remapping overheard by reducing the number of tasks

which need to be migrated. Thirdly, GAs are intrinsically parallel. Parallel
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computing is easy to be implemented on GA to release its computational

intensities. In addition, multi-factorial architectures can further enhance

the optimisation ability of a GA to solve multiple independent problems in

parallel. Since its framework is modularised, each component can also be

tested individually and reused.

However, GAs are not problem-free. The shortcomings can be listed as follows.

First, GAs cannot guarantee the final result after experiencing a number of

generations. Second, since multi-individuals are introduced in a population,

fitness assignment time will be longer than other conventional approaches,

especially when a complex fitness function is applied. In addition, this aspect

will become worse if multiple objectives are considered. Third, the GAs

configuration, problem representation and calibrated parameters all affect

their performance. Their designs usually require very careful consideration.

2.4.3 GA Improvement

The three disadvantages of GAs discussed in previous subsection 2.4.2 can

affect GAs performance in dealing with NoCs mapping problems. The first

two shortcomings are more critical than the last one, since the third short-

coming could be overcome by a number of experiments, extra self-adaptation

mechanisms, or experienced designers. The first two shortcomings are related

and can be combined into one problem, which is search efficiency. This is

because, by improving the search efficiency of a GA, a larger design space can

be explored. The larger space means more potential solutions and a higher

optimisation success rate. The efficiency of the GA can be improved from

two directions, architecture and implementation, which will be reviewed in

this subsection.

68



Parallel GA

Parallel GAs (PGAs) not only have the advantages of Serial GAs (SGAs),

but also high search efficiency and less prone to the sub-optimal problem.

The taxonomy of PGAs is shown in Figure 2.16.

PGA

Master-Slave 
model

Island model

Single Population
Multiple 

Population

Coarse Grain 
Parallel GA

Fine  Grain 
Parallel GA

HIerarchy or 
Hybrid

Figure 2.16: PGA Taxonomy modified from [2].

The Master-Slave model behaves like an SGA but with fast evaluation. It is

proposed in [47] and further modified as a semi-synchronous and a distributed

asynchronous concurrent model. Two recent examples that consider asynchro-

nisation can be seen in [93] and [59]. Other PGAs have multiple populations.

On the basis of the ratio between their computation and communication,

these PGAs can be classified as either coarse grain parallel GA (cgpGA)

with a high ratio or fine grain parallel GA (fgpGA) with a low ratio. The

hierarchy or hybrid is a group which combines the cgpGA and fgpGA. Another

common GA model (Island Model) is classified into cgpGA. The different

architectures are shown in Figure 2.17. Since the Master-Slave model can

fit our requirements (advantages of GA and high efficiency search) without

introducing other communication mechanisms, it is reviewed with an example.

...

Master

Slaves

      

Master

Slaves       Workers                    
(a) (b) (c) (d) (e) (f)

Figure 8. Different models of PGA: (a) global parallelization, (b) coarse grain, and (c) fine grain.
Many hybrids have been defined by combining PGAs at two levels: (d) coarse and fine grain, (e) coarse
grain and global parallelization, and (f) coarse grain plus coarse grain.

We want to point out that coarse (cgPGA) and fine grain (fgPGA) PGAs are subclasses of the
same kind of parallel GA consisting in a set of communicating sub-algorithms. We propose a change in
the nomenclature to call them distributed and cellular GAs (dGA and cGA), since the grain is usually
intended to refer to their computation/communication ratio, while actual differences can also be found
in the way in which they both structure their population (see Figure 9).

While a distributed GA has a large sub-population (>>1) a cGA has typically only one string in
every sub-algorithm. For a dGA the sub-algorithms are loosely connected, while for a cGA they are
tightly connected. In addition, in a dGA there exist only a few sub-algorithms, while in a cGA there is a
large number of them.

Figure 2.17: PGA Architectures [2]: (a) master-slave model (b) coarse grain,
(c) fine grain; (d), (e) and (f) hybrid.
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In a Master-Slave GA, the master is in charge of breeding offspring, survival

selection and slave loading; the slaves undertake the individual evaluation.

The loading and reloading of fitness functions for a Master-Slave GA with a

population size of 4 and 2 fitness functions is shown in Figure 2.18. Whenever

the master is ready (all individuals have already been generated and all fitness

functions are in idle state), the master will assign two individuals to fitness

function 0 and 1 respectively and launch them simultaneously. The second

round release will only be started when all results have been collected by the

master in order and all fitness functions have returned to idle state again.

Time
First round Second round

Candidates

1

2

3

0

Fitness 0

Fitness 1

Time

Fitness 0

Fitness 1

First round Second round 

Candidates release

Results collection

Figure 2.18: Master-Slave GA’s Fitness Functions’ Loading and Reloading.

Note: Population sieze is 4; number of fitness functions is 2.

Hardware GA

Apart from parallel architectures, researche also tries to implement GAs on

various platforms to increase search efficiency. The authors of [95] present

a hardware implementation of a sequential GA and further refine it in [96].

Although they applied a parallel parent selection, the performance improve-

ment is not very significant and its memory interference component is rather

difficult to implement. In addition, the research also proposes various GA

operators to reduce the search time of GAs. [3] introduces an implementation

of GA operators for a compact GA, which is suitable for a binary coding

style. In [55], [98] and [40], the authors present implementations for either
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both crossover and mutation or only crossover to produce improvements via

hardware.

2.5 Summary

This chapter reviews the techniques related to NoC from the standard part

of architecture, evaluation and optimisation. It can be seen that mapping

can significantly affect an NoC performance with a given architecture and

application. A static mapping strategy can guarantee system performance,

but its requirements may not always be satisfied at design time. In addition,

current mapping methods tend to suffer from a long design period, if the

design space is enlarged. Dynamic mapping can improve system flexibility;

however, pooling system performance feedback or low mapping constructive

ability are the problems it faces in soft real-time systems, high remapping

overheads or lack of considering communication evaluations are the drawbacks

faced by hard real-time systems. Genetic Algorithms (GAs) which are one

of the Evolutionary Algorithms (EAs), as one representative of the search-

based mapping method, dominate the static mapping field and could be

considered for being extended to the dynamic mapping problem, although

current implementations suffer a long search time, which can also be treated

as low search efficiency.
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Chapter 3

Problem Analysis

This chapter provides a description of the research system model and further

suggests the hypothesis to be tested. Based on this hypothesis, a breakdown

of the problem is discussed which is then used as a guideline for the following

chapters.

3.1 System Model

From the literature review (Chapter 2), we note that a single NoC architecture

may not be able to support different kinds of applications. Therefore, it is

crucial to select an appropriate architecture according to the requirements of a

given application at design stage. The selected architecture will further affect

which analysis methods is applied. For example, the timing performance

of Ætheral can be evaluated using Synchronous Data Flow. However, a

priority pre-emptive NoC can be assessed using End-to-End Response Time

Analysis. A suitable mapping strategy should also be adopted based on

application requirements. The chosen strategy directly determines when the

mapping decision will be made and whether the mapping is done statically

or dynamically. In addition, the decision affects the system performance
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after mapping. Therefore, it is necessary to define a system model before

we can further analyse the research problem. The system model used for

conducting this research consists of the application model, NoC platform,

mapping evaluation and mapping algorithm.

3.1.1 Application Model

The applications considered in this research can be divided into several func-

tions which consist of one or a series of real-time tasks (Γ = {Task1, Task2,
Task3, ..., Taskn}). For example, whenever the brake function in a car appli-

cation is enabled, the mechanical brake system and the brake light will react

at the same time. Not all functions are required all the time. Some of them

will only be enabled dynamically according to time, working environment or

user behaviour. The details of the assumptions of the application are listed

as follows:

• all tasks can be launched periodically or sporadically and executed

independently. In other words, a task can be released without receiving

messages such as data or a start signal from other tasks;

• each task can be represented as Taski and described by the following

parameters:

– ci is the Worst-Case Execution Time (WCET) of Taski,

– ti is the period of Taski,

– pi is the priority of Taski,

– di is the deadline of Taski,

– ri is the response time of Taski,

– mi is the working state of Taski to show whether Taski has been

enabled,

– bi is the maximum blocking time of Taski,
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– lep(k) is the set of tasks with the priority lower than or equal to

Taski,

– hp(i) is the set of tasks with higher priority than Taski,

– ui is the utilisation of Taski, it equals to ci
ti

;

• the basic parameters (ci, ti, pi, di) can be obtained at design stage;

• not all tasks have to be launched permanently, some system functionali-

ties are driven by time, working environment or user behaviour;

• system can behave like soft real-time during remapping or mode chang-

ing, but the hard real-time timing performance should be guaranteed

after remapping;

• the system is hard to be abstracted as finite states which describe a

number of tasks should be executed, since various working environment

or user behaviour or there are not enough resources to store pre-designed

static task allocation for all states.

3.1.2 NoC Platform

Expected NoC Platform

The application considered in this research is dynamic (it cannot be fully

predicted in advance) and requires that the expected NoC platform to be

able to dynamically accept and map one or more tasks which are enabled by

the behaviours of system or user. This dynamic task allocation process can

simply accept tasks and directly distribute them to available IPs (processors).

It can also be complex if global remapping (reallocate both the new accepted

tasks and the existing running tasks) is considered. In other words, a task

should be moved to any the IPs if they are available. In addition, the

communication between IPs is facilitated by direct message passing instead

of a shared memory. This is because a shared memory requires the support
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from a memory controller and results in the memory controller not able to

be physically reallocated. The memories used in the proposed NoC platform

are applied locally to support task processing on each IP. Other parameters,

such as number of tasks and IP cores, latency and bandwidth can be justified

by the worst case of running application. This is because although we cannot

fully predict the system runtime working stages, we can know it worst case,

such as all tasks being enabled.

Technique Selection

Following the requirements of the NoC platform, we can select techniques

as follow. From Chapter 2, we know that TDM and packet switching with

priorities are two most popular solution branches for real-time NoC architec-

tures. TDM routers are simple and area efficiency, however their dynamic

performances are not as strong as PSwPri NoCs. This is because each com-

munication path in TDM NoCs has to be pre-designed and stored in slot

tables at each router for hard real-time services. Any change of current task

allocation could result in path changes among many communications. In other

words, the data in each slot table has to be regenerated and reconfigured.

This directly results in a very costly reconfiguration process after remapping.

Furthermore, for hardware resources, more sources have to be reserved for slot

table in TDM NoCs, in order to support its application dynamic character

and this becomes worse with the incrementation of application complexity. In

contrast, PSwPri NoCs typically apply wormhole switching with credit-based

flow control, routing algorithm and arbitration policy [51]. These techniques

are low cost for remapping, since the communication path is generated and

organised automatically, regardless of whether the task allocation has been

changed or not. In addition, it is not necessary to reserve extra slot table, as

long as the computation and communication requirements can be guaranteed.

Therefore, we select PSwPri NoCs architecture as our basic platform and

configure it as follow.
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Topology determines how routers are interconnected in a NoC, such as mesh,

torus, ring, butterfly, octagon, spidergon, star and so on. The research

evaluates the performance of various NoC topologies, e.g. [1], [44] and [38],

and claims that 2D mesh are is one of the most common type, since its

regular structure and grid type shapes are easily extended for large NoCs

and also best suited for the 2D layout on a chip. Thus, for general purpose

(expecting our dynamic mapping algorithm to be widely accepted), the 2D

mesh topology is selected.

Routing and arbitration determine how a packet will be transmitted on an

NoC and how the NoC allocates resources for each packet. Compared with

adaptive routing, deterministic routing is considered to be simple, fast and

easy to evaluate. We select XY routing as it is the most popular in existing

real-time NoCs [51]. Similarly, we decided to use Fixed-Priority arbitration

scheduler [103], because it has a complete analysis for evaluating the NoC

end-to-end response time [58]. Last but not the least, we introduced a virtual

channel to compensate for the disadvantages of wormhole switching.

Selected NoC Platform

Following the discussion above, the NoC considered in this research is a

pre-emptive arbitration NoC which can be described as the listed parameters:

• mesh topology;

• XY routing algorithm;

• virtual channels and credit-based flow control;

• fixed-priority arbitration;

• wormhole switching.
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3.1.3 Mapping Evaluation

On the NoC platform, whether a task allocation satisfies the requirement

criteria of the system can be estimated by End-to-End Response Time Anal-

ysis (E2ERTA) [58]. The calculated end-to-end response time by E2ERTA is

derived from the response time of both computation on IP and the communi-

cation (traffic flow or package transmission over the NoC). Therefore, for a

better understanding, we model these two resources of response time as task

model and flow model respectively, as shown below:

1. Task Model follows the model made for the application. Each task can

be represented as Taski = {ci, ti, pi, di, ri, mi, Bi, lep(k), hp(i),

ui}.

2. Flow Model follows the schedulability analysis in [103]. The traffic flow

set can be described as F = {Flow1, F low2, F low3, ..., F lown} and

each flow can be presented as Flowi = {Ci, Ti, Pi, Di, J
R
i , J

I
i , Ri,

Sid, Sii}.

• Ci is the basic latency of Flowi;

• Ti is the period of Flowi;

• Pi is the priority of Flowi;

• Di is the deadline of Flowi;

• JR
i is the release jitter of Flowi;

• J I
i is the interference jitter of Flowi;

• Ri is the response time of Flowi;

• Sid is the direct interference set of Flowi;

• Sii is the indirect interference set of Flowi;

• Li is used to calculate Ci, if Ci is not given;

• Ui is the utilisation of Flowi, it equals to Ci

Ti
.
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The flows are expected to inherit the priority from its initial Taski, without

considering multiple broadcast for easy evaluation. Sid and Sii respectively

present the direct and indirect interference set of Flowi. The flows in these two

sets affect the worst-case response time of Flowi by pausing the commnucation

of Flowi. The definitions of these can be seen in Section 2.2.2.

3.1.4 Mapping Algorithm

The application focused on in this research is a hard real-time dynamic

application. It requires tasks enabled by the system or users to be accepted

and allocated dynamically on the expected NoC platform. The mapping

process involves remapping existing tasks or global rearrangement when

necessary. Thus, dynamic mapping methods are our natural choice. However,

according to the background review, most current dynamic mapping solutions

pay too much attention to allocate new added tasks for reducing mapping cost

and less focus on remapping or the evaluation of system timing performance.

Although, some researches have been made to improve the current drawbacks,

they are failed in low remapping success rate or low system flexibility or high

resource cost. Therefore, there is no one solution can be accepted by most

people among various dynamic mapping solutions and they are not suitable

for this research. Thus, it is worth to consider to transplant and improve the

solutions used in the most similar application scenarios and adapt them to

the dynamic system, instead of struggling in optimizing the existing dynamic

mapping methods.

Static mapping is the most similar scenario to dynamic mapping problem

which can be treated as several fast static mapping process (discussed in

the following section). Therefore, we could focus on the excellent candidates

in static mapping and consider the possibility of applying them to dynamic

mapping field. From the review, the most common static mapping is search

based mapping solution which can be further classified into heuristic and con-

structive method. Between them, the heuristic one which can be represented
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by GA attracts more attentions because of its strong searching ability and

low entering requirements. Thus, we tentatively select GA as the mapping

solution of this research and discuss the potential advantages of doing so.

The benefits of applying GA can be listed as follow: firstly, the increment

of NoC size and complexity of application directly enlarges the design explore

area and indirectly causes the impossibility of searching mapping exhaustively

and dynamically. Although the optimal solution cannot be guaranteed,

a GA could provide near-optimal or good-enough solutions to satisfy the

system requirements. At the same time, it reduces the entering barriers by

transforming the difficult process of listing all possible solutions into the

relatively simple and fast process of searching.

Second, the search of GA is stochastic without any predefined limitation,

thus, it can maximise the coverage of search area and increase the remapping

success rate. In addition, the concept of population not only provides multiple

alternative solutions at the same time, but can also easily be improved by

use of a parallel architecture such as Master-Slave GA. All these are helpful

means to generate more candidate solutions and provide a higher possibility of

obtaining optimal or good-enough solutions. Moreover, it is easy to manipulate

multi-objective in search-based algorithms. This provides the ability to adjust

the trade-off between timing performance and remapping cost (number of

tasks in migration), in order to reduce the remapping overhead.

Third, GA not resource-hungry. This is of great importance in dynamic

task allocation search because dynamic optimisation is normally executed

with limited resources. No matter it is using the computation abilities of IPs

to execute the searching algorithm, or introducing a dedicated component,

the limitation of resources is the barrier which cannot be avoided. The GA

can maintain its resources cost during its whole searching process. Therefore,

GA could be a good choice for this research. However, this choice is not

problem free. The challenges are discussed in the next section.
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3.2 Problem Analysis and Thesis Hypothesis

The distinctions between dynamic and static mapping can also be seen from

two other aspects. The first is whether all tasks should be enabled at the

beginning and kept activated forever. (In a dynamic system, which task

should be enabled is determined by the current system state, which can be

affected by system behaviours or user behaviours). The second is whether

there is a process for tasks migration. For example, Figure 1.4, shows the tasks

originally allocated on IP3 are migrated to IP6, in order to vacate enough

computation resources to accept the new added task. Both the existing and

new added tasks may require a migration. Therefore, the process of a dynamic

task allocation for NoC can be described as shown in Figure 3.1. It covers

both the mapping algorithm steps and two extra steps (gathering related

tasks and task migration).

Gathering related tasks 

Event Occur 

Application NoC Architecture

Generating candidate task 
allocation 

Task migration

Performance Evaluation

System start

Static mapping algorithm

Figure 3.1: NoC Dynamic Mapping Process.

80



If we use an equation to represent the overall execution time for a dynamic

task allocation, the equation can be written as Equation 3.1, where ET is the

execution time. ETdm, ETgrt, ETma and ETtm represent the execution time

used by overall dynamic mapping, gathering related tasks, mapping algorithm

and task migration respectively.

ETdm = ETgrt + ETma + ETtm (3.1)

Since we have assumed that the basic task parameters (ci, ti, pi, di) can

be known at the design stage, the related tasks for a specific event can be

predicted. Therefore, ETgrt can be treated as zero and Equation 3.1 can be

modified as Equation 3.2.

ETdm = ETma + ETtm (3.2)

3.2.1 Problem Analysis

Based on Equation 3.2, we can analyse the research problem from two steps,

depending on whether the ETtm factor is considered.

Without Considering Task Migration Time

If we assumed that no time is required for migrating tasks over the NoC, the

ETdm will be determined by ETma only. Then, the time allocation of such a

dynamic system can be presented as in Figure 3.2. Although a system like

this is dynamic, during the period between the occurrence of two events (e.g.

from time point 1 to time point 2), the system behaves statically. This is

because in this period before the new event arrives, which task should be

activated has already been determined by the previous system state. In other

words, before the new event arrives, the task allocation could be treated as a
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static mapping process. Therefore, a dynamic task allocation process can be

treated as a series of fast static mapping processes.

dm2 se2dm1 se1dm0 se0

0 1 2 Time

Dynamic 
Mapping

System 
Execution

Execution Time

Event Occur

Figure 3.2: Example of Dynamic Mapping Time Allocation.

With Task Migration Time

If we take task migration time into account, a time slot between dynamic

mapping and system execution would have to be added for transferring the

information (e.g. code, states, data and so on) of tasks over the NoC. Task

migration is a complex problem. In this research, although we do not calculate

the exact task migration time, we can still potentially reduce ETtm. This is

because the more tasks migrated the more time is required. Thus, cutting

down the number of migrated tasks can reduce the ETtm and optimise the

remapping cost.

3.2.2 Thesis Hypothesis

Based on the problem analysis, we can formulate our hypothesis:

An schedulable task allocation can be found dynamically and efficiently

to meet the application’s hard real-time timing requirements and reduce task

migration cost in an NoC based Multi-Processor System-on-Chip.

Considered in light of the system model and problem analysis we have

discussed, this hypothesis can be divided into two steps:
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• first step

– without considering task migration time, by using an accelerated

task dynamic mapper (which can be implemented as a search-

based algorithm such as Genetic Algorithm) for wormhole NoC

with priority-preemptive arbitration, the global remapping overhead

(ETdm) can be significantly reduced and the system hard real-time

performance can be guaranteed after remapping ;

• second step

– taking task migration time into account, with respect to a hard

real-time system timing performance, by minimising the difference

between the new and old task allocations, the number of tasks

migrated in the following task migration process can be reduced,

thus reducing the task migration time cost.

3.3 Problem Breakdown

The main problem we need to alleviate is to efficiently find an acceptable

task mapping to meet the applications hard real-time timing requirements,

even in a worst-case scenario. This can be broken down into the two aspects

timing and efficiency. In our system model, we select the E2ERTA as our

evaluation method, which is a worst-case timing analysis. If any mapping is

able to pass this evaluation, the timing performance can be guaranteed.

However, finding a suitable mapping efficiently is difficult and presents the

main challenge in this research. This is because both exact hard real-time

analysis (e.g. E2ERTA) and dynamic mappers (e.g. search-based algorithm)

are all time-consuming algorithms from the perspective of the state-of-the-art.

An example is shown in [100]. It is a Java implementation of a GA with

E2ERTA as fitness function for NoC static task allocation by using a multiple

core desktop computer. Its searching time can be hours or days for one
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mapping search. Therefore, to alleviate this problem, we have to identify the

processes that cause the searching process to be time-consuming, and then

improve them.

According to our hypothesis, when we do not consider ETtm, ETdm is only

determined by ETma. In other words, the efficiency is directly related to

the ETma. Since we intend to apply exact hard real-time analysis as the

fitness function with search-based algorithm as dynamic mapper to search,

the dynamic mapping searching process could be written as Equation 3.3a

and 3.3b.

ETma = ETdynamic mapper + ETFitness (3.3a)

ETma = ETsearching operation + ETFitness (3.3b)

As a result, to improve the efficiency of dynamic task allocation, we should

consider making improvements to both the fitness function and search-based

algorithm respectively. The Chapter 4 and Chapter 5 will attempt to improve

the fitness from both theoretical and practical points of view. Chapter 6 will

focus on the improvement of the dynamic mapper. After that, Chapter 7 will

combine the improvements together to achieve the research goal.

3.4 Summary

In this chapter, we specified a system model to bound the type of dynamic

application we focused on and selected the NoC platform, evaluation model

and mapping algorithm. Based on our system model, we formulated hypothesis

and analysed it from two steps. We also further discussed the research problem

breakdown, which will be used to guide subsequent chapters.
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Chapter 4

Performance Improved Inexact

End-to-End Response Time

Analysis

As stated in the research problem and its breakdown which were discussed in

Section 1.3 and 3.2, the efficiency of dynamic task allocation using search-

based algorithms for hard real-time applications can be affected by both

the efficiency of the search algorithm and the evaluation efficiency (hard

real-time timing analysis method). However, the influence from evaluation

methods is more serious form two reasons. The first is that, compared to

search operations, fitness functions are more complex in most situations

and have longer execution time. The second one is that, as an evaluation

method, the fitness function has to assess each candidate solution and has

to be loaded a great number of times during the search process. So, even a

tiny improvement in fitness functions execution could lead to a significant

improvement to the overall search time. Therefore, to improve the efficiency

of dynamic task allocation with hard real-time constraints, we can begin by

considering optimisation of the hard real-time timing evaluation method.

However, it is difficult to optimise a hard real-time timing evaluation method,
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such as End-to-End Response Time Analysis (E2ERTA). E2ERTA is based

on a complex iterative calculation. Its execution time is difficult to predict.

In addition, increases in the number of cores in NoCs and in the complexity

of applications (i.e. increasing number of tasks and communication flows)

make E2ERTA calculation significantly more difficult and also imply a high

computation cost. This cost is not very critical in static task allocation

problems, since in most time there are enough computing resources and time

for search for a suitable mapping. In contrast, it is critical in dynamic task

mapping or admission controllers whose working resources and time to respond

are limited. This is because long time analysis directly increases waiting time

before an admission decision can be made. Consequently, it may result in

system errors or even crashes. Therefore, whether the computation time of

E2ERTA can be reduced, and the magnitude of reduction, are important

issues for increasing the efficiency of our dynamic task allocation.

In this chapter, we will analyse how the complexity of E2ERTA arises and

introduce two techniques to modify E2ERTA to a less tight analytical model

(Inexact End-to-End Response Time Analysis). Its performance is evaluated

by experiments on a software platform.

4.1 Complexity of End-to-End Response Time

Analysis

The efficiency of E2ERTA is directly related to its complexity of calculation.

High complexity of calculation would lead to long execution time and further

result in low efficiency in dynamic task allocation search. As reviewed in

Section 2.2.2, the end-to-end response time of a task can be divided into

computation and communication response time.

For calculating the exact value of the end-to-end response time of tasks on

NoCs, the author in [58] combined Equation 2.3 (page 46, computing the
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response time of tasks on IPs) and Equation 2.4 (page 48, calculating the

response time of flows on NoCs) by assuming that the release jitter of a traffic

flow can be replaced by the worst-case response time of the initial task of

the flow (that is, JR
i = ri). By observing the rewritten E2ERTA equation

(Equation 2.5, page 48), we can conclude that the computation of E2ERTA

is based on an iterative calculation. To process this iterative calculation, a

number of intermediate results are needed before we can obtain the final

result. The more intermediate results are required, the longer will be the

computation time. According to the requirement of E2ERTA, the termination

condition of this iterative calculation is either Rn+1
i = Rn

i or Rn+1
i > Di.

This means that for each calculation, the number of iterations is not fixed

and consequently the number of intermediate results is not a constant. We

can make the assumption that we only consider the termination condition as

Rn+1
i = Rn

i and ignore Rn+1
i > Di, since smaller D can terminate the iterative

calculation early. Under this assumption, the lower priority a task has, the

greater number of intermediate results and more computation time it will

suffer. Thus, the complexity of calculation of E2ERTA will be increased along

with increases in the size of the task set. In other words, the execution time

of calculating E2ERTA is caused by its dependence on iterative calculations.

Therefore, to improve its efficiency, we need to alleviate the workload of its

iterative calculations.

4.2 Inexact End-to-End Response Time Anal-

ysis

As discussed above, the particular characteristics of E2ERTA (and mainly its

dependence on iterative calculation) is a barrier to improving its efficiency.

More iterations mean a longer execution time. Therefore, reduction in the

number of iterations required becomes a crucial consideration. In this section,

we will analyse this problem from two perspectives and propose two possible

techniques (Pre-Check and New Lower Bound) to alleviate this problem,
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according to whether the iterative calculation can be avoided. After that,

these two techniques will be assembled with various analysis composites

in order to explore the performance and coverage trade-off of an Inexact

End-to-End Response Time Analysis.

4.2.1 Pre-Check

This subsection will organise and discuss the following questions: what is

Pre-Check; how to calculate the potential boundaries; which pair boundary

should be selected; and what are the limitations of Pre-Check?

Pre-Check Definition

As an exact calculation, E2ERTA can provide accurate worst-case response

time for tasks and flows. However, the cost of this accuracy is a longer

execution time. In reality, the result we are focus on is whether a task or flow

can be scheduled, rather than the exact value of response time. If a method

can identify the schedulability without computing the exact response time

value, the execution time of E2ERTA may be reduced. A possible solution is

to identify a range of the final response time, and this is presented in this

section. It is named Pre-Check (PRE). An example is shown in Figure 4.1. In

this example, the deadline is higher than the upper bound of response time,

so the observed task or flow can be always scheduled.

Potential Boundaries

There are several methods that could be used to identify the boundary of the

final response time. The first one is inspired by Equation 2.5 (page 48). It

can be observed that the calculation of E2ERTA includes a ceiling function

(dxe) which returns the minimum following integer number. In mathematics,

a ceiling function can be replaced by inequalities such as Equation 4.1.
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Value of Response Time 

Iterations 

Response TimeInitial Value

Deadline

Value of Response Time 

Response Time

Upper BoundLower Bound

(a)

(b)

Deadline

Figure 4.1: (a) Example of Original E2ERTA Iterative Calculation, (b)
Example of PRE

x ≤ dxe ≤ x+ 1, x ∈ R (4.1)

Therefore, if this ceiling function could be replaced by applying inequalities,

the upper and lower bounds of the response time of a task or flow can be

found. Taking the flow part as an example, the Equation 2.5 can be modified

as below. X is either the lower bound or upper bound of Ri.

X ≥ Ci +
∑
∀j∈Sid

[
Ri + rj + J I

j

Tj

]
Cj (4.2a)

X ≤ Ci +
∑
∀j∈Sid

[
Ri + rj + J I

j

Tj
+ 1

]
Cj (4.2b)

Since the Ri can take any value in the range [Rlb
i , R

up
i ], we can use Ri to

replace X to calculate the boundary situation. Then Ri exists on both sides

of these two equations and could be rearranged to one side and further obtain

Equation 4.3a and 4.3b. Because
Cj

Tj
equals to Uj and 1−

∑
∀j∈Sid

Cj

Tj
is always

positive, Equation 4.3a and 4.3b can be further modified to obtain Equation
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4.4a and 4.4b.

(1−
∑
∀j∈Sid

Cj

Tj
)Ri ≥ Ci +

∑
∀j∈Sid

[
rj + J I

j

Tj

]
Cj (4.3a)

(1−
∑
∀j∈Sid

Cj

Tj
)Ri ≤ Ci +

∑
∀j∈Sid

[
rj + J I

j

Tj
+ 1

]
Cj (4.3b)

⇓

Rlb
i ≥

Ci +
∑
∀j∈Sid

(
rj + J I

j

)
Uj

1−
∑
∀j∈Sid

Uj

(4.4a)

Rub
i ≤

Ci +
∑
∀j∈Sid

[(
rj + J I

j

)
Uj + Cj

]
1−

∑
∀j∈Sid

Uj

(4.4b)

Apart from only using inequalities to replace a ceiling function, researchers

also tried to apply other methods to find the range of response time. Here

are two techniques. The authors in [10] also tried to use the workload to find

an upper bound of task’s response time, as shown in Equation 2.6 (page 49).

This can be used as a sufficient test for the schedulability test of task. In

[31], the authors explored this problem from considering the lower bound of

tasks’ response time. They pointed out that the lower bound can be found

by using Equation 2.7a, 2.7b and 2.7c (page 50). The Ij(Ri−1) denotes the

worst-case interference due to Taskj ∈ hp(i) occurring during the response

time of Taski−1.

Boundary Selection

According to the discussion before, there are four potential boundaries (two

for upper bound and two for lower bound) that could be used. For different

calculations (task or flow), it is necessary to identify which boundary can be

used. In a task’s response time analysis, rj and J
I
j do not exist and can be
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set as zero. Compared to Equation 2.6 (page 49), Equation 4.4b is pessimistic

after setting rj and J
I
j to zero. Therefore, Equation 2.6 will be selected as

the upper bound of task’s response time. Moving to the lower bound, the

proposed lower bound Equation 4.4a may be less tight than Equation 2.7c

(page 50). This is because Equation 2.7c selects the maximum from a series

of lower bounds. The result of Equation 4.4a is one candidate in this series

and may not be the maximum one. Thus, Equation 2.7c has been selected as

the lower bound of task’s response time. The boundary of tasks’ response

time can be obtained by Equation 4.5a and 4.5b.

rlbi = max
∀k=1...i

rlbi (k) (4.5a)

rubi =
ci +

∑
∀j∈hp(j) cj(1− uj)

1−
∑
∀j∈hp(j) uj

(4.5b)

In a flow’s response time analysis, rj and J
I
j are present. Therefore, Equation

2.6 (page 49) cannot be directly selected as the upper bound of flow’s response

time. In addition, considering the calculation complexity, Equation 4.4a and

4.4b are similar. Partial components among them can be reused. This can

further reduce the execution time. Therefore, Equation 4.4a and 4.4b are

selected as the lower and upper bound of flow’s response time respectively.

Here, what we need to notice is that the boundary obtained by Equation 4.4a

and 4.4b is only the response of communication part instead of end-to-end

response time of a flow. The actual end-to-end response time of a flow should

include both computation and communication, in other words, it should be

ri +Ri. Thus, the using of the flow boundary should consider the related ri.
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Limitation

Although PRE can provide much simpler calculation than the original

E2ERTA, it has one limitation that reduces the efficiency of applying it

to replace E2ERTA. This is because whether PRE can identify the schedu-

lability depends on the deadline distribution. This phenomenon can be

explained by Figure 4.2. A confident result of schedulability can be obtained

when a deadline is allocated such as in case a or c. In case a, the deadline is

always lower than the lower bound, and the observed task or flow is always

unschedulable. In case c, on the contrary, the candidate task or flow can be

always scheduled. However, if the deadline is allocated between the lower

bound and upper bound as seen in case b, the schedulability test is failed. As

a result, the PRE can only be used as a sufficient test of E2ERTA. Therefore,

another method that can compensate the limitation of PRE is needed and

will be discussed in the following section.

Value of Response Time 

Upper BoundLower Bound

(a)

Boundary

Deadline

(b) (c)

Figure 4.2: Example the Limitation of PRE

4.2.2 New Lower Bound

This subsection will discuss a possible technique, New Lower Bound, to reduce

the number of iterations required during E2ERTA calculation.
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New Lower Bound Definition

Normally, the calculation of E2ERTA starts from an initial value and requires

multiple iterations, which are represented by the solid lines in Figure 4.3.

Through these iterations, the real value of response time is approached

constantly until the real value is obtained (and cannot be increased any more)

as long as the value is not higher than the deadline. Although only the final

result can represent the response time, these intermediate iterations have to

be calculated. The calculation of intermediate iterations is the only way to

get the final result, which may be difficult and take a long time. But this

does not mean there is no possibility of reducing the number of iterations

and maintaining the accuracy of calculation at the same time. One possible

solution is using a larger initial value to replace the original ones (ci for task

and Ci for flow). Here, this possible solution is named New Lower Bound

(NLB). An example is shown in Figure 4.3 with dashed lines.

Original Initial Value

TimeResponse Time

New Initial Value

Deadline

Original 
E2ERTA

NLB

Iterations 

Figure 4.3: Example of NLB

Lower Bound Calculation

In [31], the authors applied a lower bound for a task’s response time as the

new initial value to replace the original one (ci) to start response time analysis.

The results show that fewer iterations, and hence shorter computation time,

are required compared to the original response time analysis. This provides

the possibility to select this technique to optimise the task part calculation of

E2ERTA. In addition, although this technique is mainly focused on the tasks’
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aspect, it could still be introduced to flows. This is because the flows’ response

time analysis is inherited from tasks’. They have the same characteristics

(iterative calculation). Therefore, Equations 4.5a and 4.4a could be directly

selected for calculating tasks’ and flows’ new initial values respectively.

Limitation

The main limitation is that the improvement in computation time may not

be stable. In order to explain this situation, we can assume that:

• the total execution time of NLB is ETNLB,

• the execution time used to calculate the lower bound is ETclb,

• the execution time used to compute the following exact calculation is

ETNLB.E2ERTA,

• the execution time used by original E2ERTA is ETO.E2ERTA.

Since the total execution time of NLB consists not only of the time for

executing exact calculation, the total value will be the sum of ETclb and

ETNLB.E2ERTA. In extreme cases, a remarkable improvement in ETNLB.E2ERTA

can be achieved; however, the time spent for ETclb may be very long. In

other words, ETNLB.E2ERTA ≤ ETO.E2ERTA can be guaranteed, but ETclb +

TNLB.E2ERTA ≤ ETO.E2ERTA cannot. Thus, this drawback may cause ETNLB

to be similar or even worse than ETO.E2ERTA in some extreme cases.

We can also understand this limitation from another point of view. We could

get a lower bound of response time of a task or a flow through process NLB.

What can be guaranteed is that the result is not smaller than the original

initial value. That means the lower bound we got from NLB may be the

exact original initial value or slightly bigger than the original initial value (not

big enough to reduce the number of iterations). Thus, when this situation

happens, the performance of NLB may be worse than the original E2ERTA.
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Table 4.1: Analysis Composites List

Index Schemes Details
1 PRE Only using PRE to improve E2ERTA
2 NLB Only using NLB to improve E2ERTA

PRE+ E2ERTA Using PRE to pre-check schedulability.
If there are no exact results, the3

E2ERTA will be used to do exact test.
PRE+NLB Using PRE to pre-check schedulability.

If there are no exact results, PRE will
be abandoned and the NLB will be

4

used to do exact test.
PRE+conditional Using PRE to reduce searching space.

started NLB If PRE cannot further reduce searching
area in five generations, then NLB provides

5

exact test to guide the rest of the searching.

4.2.3 Analysis Composites

As discussed before, if we only apply PRE or NLB to optimise E2ERTA,

the optimisation effect may not be outstanding (either the final results may

not be guaranteed or the execution time may be similar or even worse than

original E2ERTA) in some extreme cases. It seems possible, however, that

the disadvantages of these two techniques could be compensated to a certain

degree if they are assembled with some combination schemes. To explore

performance and coverage trade-off by combining analyses, we propose a

series of schemes which are listed in Table 4.1.

As a sufficient test, PRE cannot guarantee the calculation of response time

analysis. It has to co-operate with an exact test, which could be E2ERTA

or NLB. For example, the PRE could be executed first. If the result has

been found then the following exact test could be ignored; otherwise, the

exact result will be calculated by the following test. Therefore, PRE could

be assembled with either E2ERTA or NLB (scheme 3 and 4) to alleviate its

limitations.

Apart from being used as a sufficient test, PRE could also be used as a fast
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evaluation in a search-based algorithm. Normally, the search area of an NoC

mapping problem is large. Most of the search space does not contain suitable

solutions. In this situation, a graded fitness function which can provide

multiple levels of execution speed and precision could be selected. The fast

but inexact fitness can be applied to quickly reduce the search area. After

that, focusing on a small search space, slow but exact fitness can be applied

for a deep search. PRE is exactly this kind of fast but inexact fitness function.

In addition, the dynamic mapper intended for selection is a search-based

algorithm. Therefore, it is worth considering an assembly scheme such as this

fifth scheme in this research.

In the fifth scheme, the PRE will be executed first to reduce the search area.

If the best candidate cannot be further improved within five generations, it

will be considered that the PRE can no longer guide the optimisation. Then

an exact evaluation (NLB) will be enabled. Any number of generations can

be tolerated, depending on how much confidence we have about PRE. Five is

selected here simply as an example. Certainly, there may be other assembly

schemes. The five we selected is already enough to show the performance of

PRE and NLB. Other schemes could be explored in the future work.

4.2.4 Experiment and Results Analysis

This subsection will propose an experiment for exploring performance and

coverage trade-off of various analysis composites. It is organised as follows:

experiment platform; experiment configuration; and results analysis.

Experiment Platform

The experiment platform established is designed with a search-based algorithm.

There are two reasons why a search-based algorithm has been selected. First,

as a graded fitness function, the fifth scheme is ideally proposed for a search-

based algorithm, since it can provide fast and deep search ability for both large
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and small search area. Second, the limitations of PRE and NLB do not arise

in every instance, but are present in a few extreme cases only, such as a bad

deadline distribution (between the lower bound and upper bound of response

time) and a long execution for obtaining new initial value. The more cases

have been checked, the greater the coverage and higher the accuracy of the

evaluation will be. Therefore, the experiment platform should provide various

cases for these analysis composites. Search-based algorithm will generate

many different candidates during its search process. Thus, it can be used as

a cases provider on this platform.

Table 4.2: Chromosome Representation

Gene index (Task index) 1 2 3 4 ... 7 8 9

Gene value (Processor number) 5 7 5 9 ... 8 1 3

The search-based algorithm applied on this platform is GA, whose optimisation

pipeline has been shown in Figure 2.15 (page 66). It works by manipulating

chromosomes which represent individual solutions to the problem we are

trying to optimise. In this experiment, a chromosome must represent a

specific case which is also a mapping of tasks to cores over an NoC. An

example is shown in Table 4.2, where each gene of the chromosome represents

a task. The content of each gene indicates to which processing element the

current indexed task will be allocated. Therefore, the number of genes on a

chromosome is the number of application tasks we are trying to map.

Experiment Configuration

To measure the performance of our proposed analysis composites in various

situations, we configure our experiments as follows:

• Computer Platform:

– Intel(R) Core(TM) i7-3770 CPU @ 3.4GHZ,
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– Windows 7 64-bit Operating System,

– Java based implementation,

– compiler version: Java 7 version 51,

– Real-time priority (setting the priority of application to real time

in windows task manager for faster response);

• NoC platform configuration:

– the size of NoC is from small to large, 4*4, 6*6, 9*9 and 10*10,

– 10*10 is the largest NoC used in the baseline [101];

• Benchmark configuration:

– Autonomous Vehicle (TB1, 38 tasks, average task utilization is

19.15%),

– Synthetic (TB2, 50 tasks, the average task utilization is 40%) [101],

– Extended Synthetic applications (TB3, 100 tasks, average task

utilization is 41.30%) in Table A.1 and A.2,

– summary of benchmark is shown in Table A.5;

• GA configuration:

– follows the suggested GA setting in [101],

∗ the probability rate of crossover is 0.5%,

∗ the probability rate of mutation rate is 0.01%,

∗ the size of population is 100,

∗ the number of generations is 50.

For a given NoC platform and test bench, we test these five analysis composites

and E2ERTA with the same initial population 100 times respectively, and use

the average results to draw the curves. This approach is determined by two

factors: first, because the random created initial population of GA will cause

the evolution to start from unfair stages and further affect the evolution; and

second, since GA is a stochastic search, one time testing cannot illustrate the

difference among all analysis composites and E2ERTA.
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Results Analysis

Among various experiment configurations, some of their results are similar.

Here only five cases have been selected as examples and are shown in Figure

4.4 to 4.8. More details to show the results distribution of these figures are

shown in 8.1. The similarities among all configurations are listed in Table 4.3.

Table 4.3: Results Similarity

NoC Size Test bench Results
TB1 Figure 4.4.

4*4 TB2 Figure 4.5.
TB3 No mapping result can be found.
TB1 Similar to Figure 4.4 with less search time.

5*5 TB2 Hardly find mapping solution.
TB3 No mapping result can be found.
TB1 Similar to Figure 4.4 with less search time.

6*6 TB2 Figure 4.6.
TB3 No mapping result can be found.
TB1 Similar to Figure 4.4 with less search time.

7*7 TB2 Similar to Figure 4.6 with less search time.
TB3 No mapping result can be found.
TB1 Similar to Figure 4.4 with less search time.

8*8 TB2 Similar to Figure 4.6 with less search time.
TB3 No mapping result can be found.
TB1 Similar to Figure 4.4 with less search time.

9*9 TB2 Similar to Figure 4.6 with less search time.
TB3 Figure 4.7.
TB1 Similar to Figure 4.4 with less search time.

10*10 TB2 Similar to Figure 4.6 with less search time.
TB3 Figure 4.8.

*Note: “No mapping result can be found” means no mapping solutions can ensure all

tasks and flows being scheduled in 50 generations; “Hardly find mapping solution” means

the mapping solutions can be found or cannot (if found, the generations will be very close

to 50).

Table 4.4 illustrates the main information from experiment results. The

number of generations required by PRE is greater than that needed by

E2ERTA. This means the guiding performance of PRE as a fitness function
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is worse than E2ERTA’s. In addition, using PRE alone may cause the

optimisation to get blocked at 20 (number of unshedulable tasks and flows),

which can be seen in the TB2 with 4*4 NoC and Figure 4.5. With the number

of unschedulable tasks and flows decreased, the guiding ability of PRE as a

fitness function is reduced. As it cannot identify the difference among various

candidates, the optimisation can hardly be proceeded further. Therefore, as

discussed in the part on the limitations of PRE, only using PRE as a fitness

function in search-based algorithms is not appropriate.

Figure 4.4: Autonomous Vehicle application on 4*4 NoC.

For other analysis composites, the number of generations required to reach the

optimal is almost the same as with E2ERTA, which means they can provide

the same guiding ability as E2ERTA. But, as the Acc column in Table 4.4

illustrates, they require significantly less search time than E2ERTA. This

indicates that they have better timing performance. There is an exception in

TB3 with 10*10 NoC shown in Figure 4.8. The PRE+E2ERTA seems to spend

more time and generations. The reason for this is that PRE cannot guarantee

the exact evaluation results. When this happens, the E2ERTA has to be

triggered for an exact evaluation. We can notice that this situation happens
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Figure 4.5: Synthetic application on 4*4 NoC.

Figure 4.6: Synthetic application on 6*6 NoC.
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Figure 4.7: Extended Synthetic application on 9*9 NoC.

Figure 4.8: Extended Synthetic application on 10*10 NoC.
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Table 4.4: Results Comparison

Schemes NoC TB obj Acc(s) Gens Per(%)
E2ERTA 4*4 TB1 0 13.27 19 0.00
PRE 4*4 TB1 0 14.09 28 27.95
NLB 4*4 TB1 0 9.85 18 21.65
PRE+E2ERTA 4*4 TB1 0 12.99 27 31.11
PRE+NLB 4*4 TB1 0 9.82 19 26.00
PRE+conditional NLB 4*4 TB1 0 15.17 25 13.12
E2ERTA 4*4 TB2 14 148.55 50 0.00
PRE 4*4 TB2 20 103.82 50 30.11
NLB 4*4 TB2 13 132.71 50 10.66
PRE+E2ERTA 4*4 TB2 14 101.58 50 31.62
PRE+NLB 4*4 TB2 13 115.39 50 23.32
PRE+conditional NLB 4*4 TB2 14 108.43 50 27.01
E2ERTA 6*6 TB2 0 14.47 16 0.00
PRE 6*6 TB2 0 13.83 21 27.18
NLB 6*6 TB2 0 11.98 16 17.21
PRE+E2ERTA 6*6 TB2 0 12.72 17 17.26
PRE+NLB 6*6 TB2 0 11.87 17 22.79
PRE+conditional NLB 6*6 TB2 0 12.53 19 27.08
E2ERTA 9*9 TB3 0 1261.65 49 0.00
PRE 9*9 TB3 0 699.87 44 38.22
NLB 9*9 TB3 0 848.96 44 25.06
PRE+E2ERTA 9*9 TB3 0 740.73 38 24.29
PRE+NLB 9*9 TB3 0 405.46 44 64.21
PRE+conditional NLB 9*9 TB3 0 620.26 39 38.23
E2ERTA 10*10 TB3 0 688.38 33 0.00
PRE 10*10 TB3 0 610.90 34 13.87
NLB 10*10 TB3 0 500.50 34 29.43
PRE+E2ERTA 10*10 TB3 0 719.34 33 -4.50
PRE+NLB 10*10 TB3 0 483.86 40 42.01
PRE+conditional NLB 10*10 TB3 0 598.71 42 31.66

*“TB”: test bench; “obj”: number of unschedulable tasks and flows; “Acc”: accumu-

lated time after the first generation; “Gens”: number of generations used to achieve

the corresponding “obj”; “Per”: improved percentage of each generation compared with

E2ERTA.
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from generation 8 to 15, in which the accumulated time of PRE+E2ERTA

was increased rapidly. Although the following execution speed is faster than

E2ERTA, as can be seen from the drop of the curve, the overall performance

is still affected by that situation.

Apart from PRE+E2ERTA, PRE+conditional NLB also costs more genera-

tions than E2ERTA in some cases, such as Figure 4.4, 4.6 and 4.8. The reason

is that PRE+conditional NLB can tolerate five generations to PRE without

any further optimisation before it starts NLB. Let us assume that there is still

no suitable solution that can be found after five generations have already been

tolerated. Then the NLB will be enabled. This may cause either number of

generation or search time, or even both, to be more than E2ERTA. However,

from the average time used by each generation, the PRE+conditional NLB

is still more efficient than E2ERTA. To summarise, apart from PRE, all the

other analysis composites require fewer generations or less execution time

than E2ERTA in evaluating a mapping solution.

Furthermore, considering the Per column which is calculated by Equation

4.6, a higher percentage means less time is used in each generation by the

analysis composites. It can be seen that the percentage of all five analysis

composites is higher than that of E2ERTA. This shows that all these five

analysis composites are faster than E2ERTA.

This phenomenon is significantly important in this research, which concerns

a problem of dynamic task allocation for hard-real time NoC. Unlike the

state-of-the-art, this research intends to apply a search-based algorithm as

the dynamic mapper for a global task reallocation. As a fitness function

in a search-based algorithm, any optimisation in the execution of E2ERTA

will lead to a remarkable timing advantage to the overall search speed, since

the fitness function will be loaded many times for evaluating each candidate.

This is directly beneficial in the efficiency of dynamic mapping. In addition,

a faster search means more candidates can be evaluated. It will provide a

higher probability in finding a suitable mapping solution within a given time

period.
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Per =
tE2ERTA − tscheme

tE2ERTA

=1− GensE2ERTA ∗ Accscheme

Gensscheme ∗ AccE2ERTA

(4.6)

• GensE2ERTA is the number of generations required by E2ERTA;

• Accscheme is the time spent by the five schemes;

• Gensscheme is the number of generations required by the five schemes;

• AccE2ERTA is the time spent by E2ERTA;

4.3 Summary

In this chapter, we explored the complexity of E2ERTA, analysed the reasons

for this complexity, and tried to alleviate this problem from an inexact view.

Two improving techniques have been proposed and assembled with E2ERTA

in five analysis composites to investigate the performance and coverage trade-

off of an Inexact E2ERTA. Although PRE may have potential deficiency when

only using it as a fitness function in a search-based algorithm, it provides

good performance in search speed and in reducing the search area. The

other four analysis composites considered have the same guiding ability as

E2ERTA but use significantly less search time. This improvement is directly

beneficial in both the search speed and the success possibility of optimisation,

and indirectly in favour of the efficiency aspect of the research problem.

However, the techniques discussed in this section only focus on the complex

iterative calculation of E2ERTA, and improve it from a theoretical direction.

Other possible directions may exist, and one of these will be discussed in the

following chapter 5.
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Chapter 5

Hardware Accelerated Inexact

End-to-End Response Time

Analysis

Following the discussion in Chapter 4, it is clear that the efficiency of fitness

functions can directly affect the search efficiency of applying a search-based

algorithm for dynamic task allocation problems in hard real-time systems. In

Chapter 4, an inexact E2ERTA was proposed to alleviate the complexity of

calculation in E2ERTA from a theoretical point of view, in order to make it

a suitable fitness function in fast mapping searches. However, the question

remains as to whether there are any other issues affecting the efficiency of

E2ERTA. One possible issue is the current implementation method. This is

discussed in this chapter and improved by analysis and accelerator designs.

The chapter begins with an analysis of the existing implementation limitations

and move on to an accelerated architecture implementation. Thereafter, this

architecture will also be further improved by two accelerators, which inherit

the techniques from the previously discussed inexact E2ERTA.
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5.1 Implementation Methods

The efficiency of a start-of-the-art E2ERTA can suffer limitations from the

implementation method. Currently, most E2ERTAs are implemented on a

software platform (SW-E2ERTA) on which the E2ERTA is executed sequen-

tially (such as [101]). The flow chart of a software implementation of an

E2ERTA is shown in Algorithm 1

Algorithm 1 Software Version E2ERTA Working Process

1: procedure top . E2ERTA
Require: Tasks’ allocation, Tasks’ information, Flows’ information;
Ensure: Number of Unscheduled Tasks and Flows.

2: Task Response Time Analysis
3: Flow Response Time Analysis
4: Normalizing Results
5: —————————————————————————————
6: sub procedure 1 . Task Response Time Analysis

Require: Tasks’ allocation, Tasks’ information;
Ensure: Tasks’ Response Time.

7: Get Task Interference
8: Get Task Response Time
9: sub procedure 2 . Flow Response Time Analysis

Require: Tasks’ Response Time, Flows’ information;
Ensure: Flows’s Response Time.
10: Flow Routing
11: Get Flow Basic Latency
12: Get Direct Interference Set
13: Get Indirect Interference Set
14: Get Flow Response Time
15: sub procedure 3 . Normalizing Results
Require: Tasks’ Response Time, Flows’ Response Time;
Ensure: Number of Unscheduled Tasks and Flows.
16: repeat
17: if ri +Ri > Di then
18: Number Unscheduled Tasks and F lows is increased.
19: end if
20: until all tasks have been normalized.

Note: Assuming each task only have one flow and di = Di.
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From the working process, it can be seen that generally the E2ERTA is

executed in a sequential order. Before the final E2ERTA result of a given task

set can be normalised, it is necessary to analyse the response time for tasks

and flows. In other words, line 2 and 3 are necessary. The two sub-procedures

are related as well, but this relationship is not always close. The result of

sub-procedure 1 is only used in the last step (line 14) in sub-procedure 2. In

other steps they are not related to each other. That is to say, theoretically,

sub-procedure 1 and 2 could be partially executed in two parallel arms, but

the existing E2ERTA software implementation architectures are not designed

to support this. The next computing block cannot start until the previous

block has finished. Hence, the existing software implementation architectures

result in a low efficiency of E2ERTA.

20 19 18 15 12 6 3 2 1

Flow 4

42 36 33

0 0 1 0 0 1 0 0 00 1 0

Flow 3 0 0 1 0 0 0 1 0 00 1 1

(a)

Flow 2 1 0 0 1 0 0 0 1 00 0 1

Flow 1 1 1 0 0 1 0 0 0 10 0 0

Link Set

{6,18,36}

{3,18,33,36}

(b)

{2,15,20,33}

{1,12,19,20}

Link 
Number

Figure 5.1: (a) Binary Coding Example, (b) Integer Coding Example

Moreover, the efficiency of operating vectors (bit vector comparison and logic

operations such as ‘and’ and ‘or’) in software is low. For example, if we use

the binary coding style to encode the results of the Routing Algorithm, the

results could be similar to those in Figure 5.1a which follows the example

in Figure 2.8, page 41. The hidden links which are not used are set to 0.

To identify the relationship between Flow3 and Flow4, the SW-E2ERTA is

required to compare these two flows bit by bit. Normally this comparison

procedure will take multiple clock cycles, and the number of clock cycles will

increase along with the size of the NoC. Because a larger size implies more

links, it will result in more computation time. Even if integer coding is used

(an example is presented in Figure 5.1b), the computation time would not

be reduced significantly. A similar phenomenon can also be found in Get
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Indirect Interference Set (line 13) and Get Flow Basic Latency (line 11).

In software field, some programs can be improved by applying advanced

supports such as parallel computing, Single Instruction Multiple Data (SIMD)

and Graphics Processing Unit (GPU). E2ERTA, however, is not one of

such kind of programs. The reason is determined by the characteristics of

E2ERTA and its target (NoCs), and can be understood as follow. E2ERTA is

mainly based on an iterative calculation. Only partial processes of it can be

parallelized. So, fully parallel computing is not realistic for E2ERTA. SIMD

and GPU can be alternative solutions for improving the efficiency of software,

however, they may be inappropriate or over expensive for E2ERTA. The data

size of SIMD or GPU is determined by manufacturers. They are not fully

flexible for users. But the number of links of a NoC can be very variable. This

phenomenon becomes a problem for designers to find a general architecture

for meeting variable size of NoCs. Besides, using SIMD or GPU to enhance

E2ERTA is too expensive. For example, although the logic operations of

vectors can be well finished by SIMD or GPU, the hardware costs of SIMD

or GPU are much more than several logic gates which can also optimise

E2ERTA. Therefore, the existing software implementation and optimisation

would lead to a negative effect on the efficiency of E2ERTA.

5.2 Hardware E2ERTA

In order to alleviate the implementation limitations of E2ERTA, we discuss

using hardware based methods to improve E2ERTA, introducing a hardware

architecture named HW-E2ERTA. In this section, the implementation details

are discussed, followed by the experiment and performance evaluation.
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5.2.1 Architecture of HW-E2ERTA

In the E2ERTA calculation process, not all computation processes have to

be launched sequentially. As discussed in Subsection 5.1, the Task Response

Time Analysis and partial steps of Flow Response Time Analysis can be

loaded simultaneously. Thus, a hardware implemented architecture is a

possible solution for parallelisation of E2ERTA, which is shown in Figure

5.2. In this Figure, the Task and Flow Response Time Analysis can be

released at the same time. In the Flow Response Time Analysis process, the

two steps (Get Direct Interference Set and Get Flow Basic Latency) can be

executed simultaneously, as soon as they receive the results from the Routing

Algorithm. The Get Flow Response Time component will be launched when

the Task Response Time Analysis, Get Indirect Interference and Get Flow

Basic Latency components are finished. Its results and those from Task

Response Time Analysis can then be gathered and organised.

5.2.2 Hardware Accelerated Vector Operator

As mentioned previously, vector operation is also a bottle-neck that needs

to be resolved to make a breakthrough. One possible method is using logic

gates to accelerate the vector operation. An example is shown in Figure 5.3.

In Figure 5.3a, the routing results follow the results in Figure 5.1. The

width of the interference vector is 4. The right end of the interference vector

represents Flow1. The flow with value ‘1’ (Flow3) refers to the fact that this

flow can interrupt the observed flow (Flow4).

For Get Direct Interference Set step, the ‘and’ gate is used to identify the

direct relationship between two flows (shown in Figure 5.3a). The logic ‘and’

operation is applied between the routing results of Flow4 and Flow3. If these

two flows have shared links as labeled in block rectangles, the result is not all

zeros. The relevant bit position is set to ‘1’ in Flow4’s Direct Interference
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Figure 5.2: HW-Architecture of E2ERTA.

Set. Otherwise, the result is all zeros and the relevant bit is set to ‘0’.

When identifying the indirect relationship between two flows, the logic ‘or’

gate and the logic ‘xor’ gate are selected, which is described in Figure 5.3b and

5.3c. The example in Figure 5.3b inherits the sources from Figure 2.8, page 41,

Figure 5.1 and Figure 5.3a. In this example, Flow4’s Direct Interference Set is

one of the inputs of the ‘or’ gate and ‘xor’ gate. If Flow3 can directly interrupt

Flow4, Flow3’s Direct Interference Set will always be checked, regardless of

whether Flow3’s Direct Interference Set is empty (cannot be preempted by

other flows) or not. Therefore, the other input of the ‘or’ gate is Flow3’s

Direct Interference Set. Similar to Get Direct Interference operation, if the

result is not all zeros, the relevant bit will be set to ‘1’ to indicate that the

higher priority flow (Flow2) can indirectly interrupt Flow4. However, if a

flow can preempt both Flow3 and Flow4, the result will remain as 0. This
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Figure 5.3: (a) Example of Get Direct Interference Hardware Implementation
Operation, (b) and (c) Examples of Get Indirect Interference Hardware

Implementation Operation.
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phenomenon is illustrated in Figure 5.3c; Flow2 labelled with dark gray is

the flow that can preempt both Flow3 and Flow4.

5.2.3 Experiment and Results Analysis

To evaluate the performance of HW-E2ERTA (implemented on a FPGA

platform), an experiment is established. In this subsection, the experiment

platform will first be described, followed by the experiment configuration.

The results will be discussed at the end.

Experiment Platform

To evaluate the performance of HW-E2ERTA, an experiment platform is used.

This is an embedded system implemented on Xilinx VC707 development

board shown in Figure 5.4a.

On this platform, first the SW-E2ERTA [58] (as a base line) is fully imple-

mented on a MicroBlaze, exactly following the instructions of [58] in language

C and compiled using the C compiler of GNU version 2.16. After that, the

HW-E2ERTA is implemented with VHDL (Very-High-Speed Integrated Cir-

cuit Hardware Description Language) and compiled by Xilinx Vivado 14.3.

Then, the HW-E2ERTA is mounted on an AXI bus (an on-chip interconnect

link used in Xilinx system-on-chip design) through an AXI bus interference.

The MicroBlaze is the main testing controller on this platform. It is in charge

of benchmark generating, executing SW-E2ERTA, loading and collecting data

from HW-E2ERTA and final results summarizing.

A hardware timer (36-bit) is introduced to gain an accurate execution of the

computation time of SW-E2ERTA in the number of clock cycles. At the same

time, we consider the possibility of an overflow. From the results in Table

4.4, page 103, we estimate the number of clock cycles used by E2ERTA on

the software platform. The worst case (1261.62 seconds) happens when NoC
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Figure 5.4: (a) Experiment Platform, (b) Testing Process.

size is 9*9 and benchmark is TB3. By applying this case through Equation

5.1, we can generally estimate the number of clock cycles as 8.754 ∗ 108. This

value contains not only the partial execution time of other operations such

as mutation, crossover and selection, but also the running time of operating

system (Windows 7) functions. Although this value is not exact, it can still

be used as a reference for us to select the range for the hardware timer. 232

is larger than 8.754 ∗ 108, but not tenfold larger (8.754 ∗ 109). So a single

32-bit counter may be not suitable in all cases. Thus, to enable the use of

more complex applications, another 4-bit timer is added as a backup, thereby

introducing 36-bits of fidelity.
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No.clock cycle = frequency system ∗ execution time

= frequency system ∗ Acc

Gens ∗ Population size

= 3.4 ∗ 109 ∗ 1261.62

49 ∗ 100

= 8.754 ∗ 108

(5.1)

Each test starts with the benchmark generating process and ends when all

processes or components are tested. Figure 5.4b shows the testing process.

The MicroBlaze firstly generates a Synthetic benchmark which includes task

parameters and flow parameters and a random task mapping. Then the

MicroBlaze launches SW-E2ERTA. When SW-E2ERTA has finished, the

MicroBlaze loads the testing data to HW-E2ERTA and enables it. After

all tests have finished, the MicroBlaze collects data from HW-E2ERTA and

organises these results. The results are output through a UART port.

Experiment Configuration

To measure the performance of HW-E2ERTA, the experiments are configured

as follows:

• NoC platform configuration:

– the system clock speed is 50Mhz,

– four NoC size configurations, 3*3, 4*4, 5*5, 10*10, are enough to

show the improvement increasing with the expansion of the NoC

size;

• Benchmark configuration:

– four task set size configurations, 16, 32, 64, 128, are enough to

show the affection form the number of task to evaluation exectuion

115



time,

– the priority of a task is increased with its task index, e.g. the

lowest priority task is Task1,

– the utilisation of task and flow is from 10% to 90%,

– each task is considered to generate one flow which inherits the

priority of the task;

• VHDL compiler is Xilinx Vivado 14.3.

Because each experiment will generate a random mapping and synthetic

benchmark, one time testing does not illustrate the difference between the

HW-E2ERTA and SW-E2ERTA. Therefore, the number of testing times is

increasedto 1,000,000, in order to obtain a better coverage.

Results Analysis

The results from the experiment, are organised as follows: Figure 5.5 shows

comparison over various experiment configurations, while more details are

shown in Table 5.1; in Figure 5.5, the top half and bottom half present the

SW-E2ERTA and HW-E2ERTA respectively. The Y-axis shows the average

numbers of clock cycles used to finish an E2ERTA computation. Because the

numbers are large, they are arranged in log10 scale.

For SW-E2ERTA, it can be seen that the larger the size of NoC or the number

of tasks the SW-E2ERTA has to calculate, the longer the evaluation time

required. However, the influence from utilisation of task and flow is in a

parabola instead of linear. This can be seen from the examples in Table

5.1, which are labelled in gray. The reason for this phenomenon is that the

extremely low or high utilisation can terminate the iterative calculation of

E2ERTA early. We can make an assumption as follows:

• the current observed objective (flow as an example) is i,
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• the number of iterative calculations required by lower, moderate and

higher utilszation are Nlower, Nmoderate and Nhigher respectively,

• the number of clock cycles used to finish a single iterative calculation is

nearly the same or equal to NSic.

When the utilisation is extremely low, the E2ERTA may be terminated by

Rn+1
i = Rn

i within a very few iterations (two or three). The calculation will

become more difficult as the utilisation increases and result in more iterations

being required. However, when the utilisation becomes extremely high, the

calculation complexity of E2ERTA will decrease. This is because E2ERTA

can easily be determined and the observed objective will miss the deadline

by finding Ri ≥ Di within a few iterations. Therefore, we get the inequality

Nlower ≤ Nmoderate ≥ Nhigher and further obtain the total execution time,

which is Nlower ∗NSic ≤ Nmoderate ∗NSic ≥ Nhigher ∗NSic. Thus, the influence

from utilisation follows a parabola style.
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Figure 5.5: The influence from NoC size, Number of Tasks and Utilisation
for E2ERTA

Note: Num, SW and HW refer to Number, on Software Platform and on Hardware

Platform respectively.
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Table 5.1: HW-E2ERTA vs SW-E2ERTA Results Table.

3*3 4*4 5*5 10*10

No. Task U(%) SW HW Improve SW HW Improve SW HW Improve SW HW Improve

10 6.140 3.417 2.723 6.113 3.308 2.805 6.134 3.261 2.873 6.437 3.185 3.252
20 6.136 3.409 2.727 6.113 3.305 2.808 6.135 3.261 2.874 6.438 3.190 3.248
30 6.130 3.398 2.732 6.113 3.301 2.812 6.135 3.256 2.879 6.440 3.186 3.254
40 6.120 3.373 2.747 6.110 3.292 2.818 6.132 3.250 2.882 6.438 3.189 3.249

16 50 6.104 3.339 2.765 6.104 3.278 2.826 6.131 3.244 2.887 6.442 3.188 3.254
60 6.087 3.294 2.793 6.094 3.255 2.839 6.126 3.232 2.894 6.438 3.181 3.257
70 6.073 3.260 2.813 6.084 3.238 2.846 6.121 3.223 2.898 6.436 3.180 3.256
80 6.060 3.230 2.830 6.079 3.227 2.852 6.117 3.209 2.908 6.438 3.181 3.257
90 6.053 3.210 2.843 6.071 3.209 2.862 6.112 3.202 2.910 6.435 3.179 3.256

10 6.544 4.007 2.537 6.496 3.861 2.635 6.526 3.758 2.768 6.898 3.604 3.294
20 6.537 3.998 2.539 6.494 3.859 2.635 6.523 3.750 2.773 6.896 3.598 3.298
30 6.506 3.955 2.551 6.487 3.842 2.645 6.520 3.743 2.777 6.898 3.596 3.302
40 6.466 3.890 2.576 6.469 3.807 2.662 6.513 3.724 2.789 6.897 3.597 3.300

32 50 6.431 3.827 2.604 6.453 3.770 2.683 6.506 3.699 2.807 6.897 3.594 3.303
60 6.399 3.766 2.633 6.432 3.719 2.713 6.494 3.664 2.830 6.896 3.587 3.309
70 6.377 3.714 2.663 6.413 3.669 2.744 6.484 3.630 2.854 6.893 3.578 3.315
80 6.362 3.678 2.684 6.403 3.633 2.770 6.473 3.598 2.875 6.894 3.575 3.319
90 6.347 3.641 2.706 6.391 3.594 2.797 6.470 3.580 2.890 6.891 3.568 3.323

10 7.055 4.608 2.447 6.994 4.462 2.532 7.031 4.364 2.667 7.449 4.088 3.361
20 7.005 4.546 2.459 6.986 4.451 2.535 7.027 4.358 2.669 7.450 4.083 3.367
30 6.929 4.438 2.491 6.955 4.400 2.555 7.016 4.337 2.679 7.448 4.080 3.368
40 6.870 4.341 2.529 6.921 4.333 2.588 7.002 4.295 2.707 7.448 4.074 3.374

64 50 6.828 4.264 2.564 6.891 4.268 2.623 6.984 4.245 2.739 7.450 4.064 3.386
60 6.806 4.212 2.594 6.870 4.211 2.659 6.970 4.198 2.772 7.447 4.045 3.402
70 6.788 4.173 2.615 6.852 4.160 2.692 6.959 4.150 2.809 7.445 4.027 3.418
80 6.774 4.140 2.634 6.839 4.117 2.772 6.948 4.105 2.843 7.444 4.013 3.431
90 6.766 4.119 2.647 6.829 4.086 2.743 6.941 4.074 2.867 7.443 3.996 3.447

10 7.602 5.192 2.410 7.553 5.074 2.479 7.860 4.977 2.883 8.035 4.726 3.309
20 7.445 4.974 2.471 7.503 4.993 2.510 7.840 4.956 2.884 8.036 4.722 3.314
30 7.363 4.834 2.529 7.447 4.879 2.568 7.805 4.887 2.918 8.035 4.715 3.320
40 7.325 4.758 2.567 7.409 4.783 2.626 7.773 4.809 2.964 8.032 4.697 3.335

128 50 7.305 4.714 2.591 7.383 4.712 2.671 7.749 4.739 3.010 8.032 4.673 3.359
60 7.294 4.687 2.607 7.367 4.658 2.709 7.728 4.680 3.048 8.030 4.641 3.389
70 7.288 4.669 2.619 7.359 4.623 2.736 7.715 4.634 3.081 8.028 4.607 3.421
80 7.284 4.657 2.627 7.353 4.598 2.755 7.704 4.597 3.107 8.027 4.574 3.453
90 7.280 4.648 2.632 7.349 4.579 2.770 7.694 4.570 3.124 8.029 4.549 3.480

Average 2.625 2.701 2.865 3.333

Note: SW refers to SW-E2ERTA, HW refers to HW-E2ERTA and

U refers to the utilization of task or flow.
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Similar to SW-E2ERTA, the HW-E2ERTA can also be influenced by NoC size,

number of tasks and utilisation. There are, however, also some differences. If

only the NoC size is considered and the number of tasks and utilisation are

fixed, we find that the larger the size of the NoC, the less evaluation time

is needed. To understand this performance, we can make an assumption as

follows:

• the current observed objective (flow as an example) is i,

• the number of clock cycles used to find both direct and indirect inter-

ference set is Ndi,

• the number of clock cycles used to calculate response time is Ncrt,

• the total number of clock cycles used to finish E2ERTA is NE2ERTA.

Reducing the NoC size can directly affect the Ncrt in both SW-E2ERTA and

HW-E2ERTA, when the number of tasks and utilisation are fixed. A smaller

NoC means limited resources will be shared by more tasks and flows. This

directly causes more iterations to be required during the calculation. In other

words, the calculation will become more complex. For Ndi, reducing the NoC

size can only affect the SW-E2ERTA. A smaller NoC will have fewer links and

require a smaller vector to encode the results of the Routing Algorithm. This

can directly reduce the number of clock cycles used to identify the relation

between flows in bit-by-bit comparison. However, changing the NoC size

will not affect Ndi in HW-E2ERTA, because the method used to identify the

relationship among flows in HW-E2ERTA are logic operations. Regardless of

the size of the analysed NoC, the result will always obtained within a single

clock cycle.

In SW-E2ERTA, with the NoC enlarged, the contention becomes mitigatory.

Therefore, calculation complexity can be alleviated and thus Ncrt goes down;

while Ndi will increase quickly, as there are more links to be checked. The

relationship between the number of links and the size of a 2D mesh based
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Table 5.2: The Influence from Number of Tasks and Utilization Explanation
Table

NumTask U NoC size Ncrt Ndi NE2ERTA

HW - - ⇑ ⇓ - ⇓
- - ⇓ ⇑ - ⇑

SW - - ⇑ ⇓ ⇑ ⇑
- - ⇓ ⇑ ⇓ ⇓

Note: SW, HW, U, NumTask refers to SW-E2ERTA, HW-E2ERTA,

utilization of task or flow and number of task respectively.

NoC can be calculated by Equation 5.2. As the mapping used is randomly

generated, the benefit from mapping improvement is very limited. Although

the Ncrt can be reduced, its magnitude is not as significant as Ndi. Thus, the

influence in SE-E2ERTA is opposite to that of HW-E2ERTA.

Number of links = 4 ∗ size2 − 4 ∗ size (5.2)

Focusing on the Table 5.1, the results show that the hardware version is up to

3020 (103.480) times faster than the software version. If we further compared

with the best software version Inexact E2ERTA, which is illustrated in Chapter

4, the HW-E2ERTA is still much faster than it. This can be seen from the

comparision bellow. The best Inexact E2ERTA achieved in pervious chapter

is PRE+NLB which can improve the software version E2ERTA (implemented

on a PC) by 64.21%, shown in Table 4.4. It is tested on a 9*9 NoC with

TB3 (100 Tasks with average utilisation 41.3%). Its average execution time

of SW-E2ERTA on a PC can be generally estimated by Equation 5.3.

Accumulated time

Number of Generations ∗ Population Size
=

405.6

44 ∗ 100
≈ 92.2milliseconds

(5.3)
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An example with harder configuration can be found in Table 5.1. The HW-

E2ERTA is tested on a 5*5 NoC with 128 number of tasks which average

utilisation is around 50%. The execution time of HW-E2ERTA can be

calculated by Equation 5.4. It shows advantage of HW-E2ERTA.

Number of Clock Cycle

Working Frequency
=

104.712

100 ∗ 106
≈ 1 ∗ 10−0.288 milliseconds (5.4)

5.2.4 Summary

In this section, we propose a hardware accelerated architecture and a vector

processing accelerator to implement E2ERTA in hardware. We compare the

HW-E2ERTA and SW-E2ERTA in terms of number of clock cycles. The

results show that the hardware version is up to 3020 (103.480, by experiments)

times faster than the software version (implemented on MicroBlaze in C

compiled by the C compiler of GNU version 2.16). In addition, we generally

eastimate the execution time of the best Inexact E2ERTA we proposed in

previous chapter, which is implemented on a PC. The comparison between

the estimation and a result of HW-E2ERTA shows the HW-E2ERTA is still

advanced. Furthermore, the benefit brought by the hardware implementation

will increase with the size of the NoC and the complexity of the applications.

5.3 Inexact HW-E2ERTA

As discussed in Section 4.1 and Section 5.1, the efficiency of the E2ERTA can

be affected by both the characteristic of E2ERTA and the implementation

method. Section 4.2 suggested an inexact E2ERTA to alleviate the limitation

of the characteristic of E2ERTA on a software platform, while Section 5.2

tried to accelerate E2ERTA by hardware implementation. However, the

techniques of these two sections can be combined. In this section, we explore
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the possibility of combining the two sections to implement an Inexact HW-

E2ERTA, in order to obtain further optimisation on the E2ERTA. This section

is organised as follows: hardware accelerated inexact components; assembly

schemes; experiments and results analysis.

5.3.1 Hardware Accelerated Inexact Components

The Inexact E2ERTA proposed in Section 4.2 tried to improve E2ERTA

by applying either boundary to the response time or a larger initial value.

However, in hardware implementation, the original equations used in Inexct

E2ERTA (Equation 4.5, page 91 and 4.4, page 90 for task and flow boundaries,

Equation 4.5a and 4.4a for task and flow new initial value) are not suitable for

direct application, considering the hardware resource use. This is because some

of these equations could be replaced by others with less complex computations,

but relatively more uncertentity. Thus, in this subsection, how to select

suitable equations for boundaries and initial values will first be discussed.

The normalisation of the selected equations and how to implement them in

hardware is then introduced.

Boundary Selection

The selected boundaries for a task in the software implementation are Equa-

tions 4.5a and 4.5b. The lower bound found by Equation 4.5a is selected from

a seria of lower bounds, however it increases the complexity of computation.

In contrast, the method for finding the lower bound of flows (Equation 4.4a)

is much simpler. It is oritinted by replacing the celling function in E2ERTA.

By applying this idea, we can find a lower bound equation Equation 5.5a

which is much simllar with Equation 4.4a (rj and J
I
j do not exist and can be

set to zero during task lower bound calculation). Although, the lower bound

found by this idea may not be the max one, the computation complexity can

be reduced. Thus, we can consider using Equation 5.5a as our task lower
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bound in hardware implementation.

Moving to the upper bound, the two calculation methods (Equations 4.5b and

4.4b) are similar. In addition, Equation 4.5b providers a tighter boundary

and so we can keep it as the upper bound. Therefore, our new boundary for

tasks are Equations 5.5a and 5.5b.

rlbi ≥
ci

1−
∑
∀j∈hp(j) uj

(5.5a)

rubi ≤
ci +

∑
∀j∈hp(j) cj(1− uj)

1−
∑
∀j∈hp(j) uj

(5.5b)

The flow boundary can be found using Equations 4.4a and 4.4b. The input

elements of Equation 4.4a are the same as the inputs of 4.4b. Therefore,

combining these two equations can calculate the upper bound and lower bound

simultaneously. Thus, we retain Equations 4.4a and 4.4b as our boundary of

the flow response time.

Equation Normalisation

In order to minimise the cost of hardware resources, it is necessary to design

a reusable calculation unit by abstracting the similarities among Equations

5.5a, 5.5b and Equations 4.4a, 4.4b. We observe that if we do not classify

whether an equation is for task or flow, we can use a general equation to

represent all four of these equations with the assumptions listed below:

• assumption of variables αx and αy:

– αy =
(
rj + J I

j

)
,

– for task upper bound calculation αx = cj(1− uj),

– for flow upper bound calculation αx = αyUj + Cj,
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– for task lower bound calculation αx = αyUj,

– for flow lower bound calculation αx = αyUj;

• Equation 4.4a, 4.4b and 5.5a, 5.5b can be represented by

ri =
ci +

∑
∀j∈hp(j) αx

1−
∑
∀j∈hp(j) uj

(5.6a)

Ri =
Ci +

∑
∀j∈Sid

αx

1−
∑
∀j∈Sid

Uj

(5.6b)

•
∑
∀j∈Sid

and
∑
∀j∈hp(j) are similar and can be implemented by same

structure,

• the calculation process of Equation 5.6 can be divided into four stages:

stage 1 calculate
∑
∀j∈Sid

αx or
∑
∀j∈hp(j) αx,

stage 2
∑
∀j∈Sid

Uj or
∑
∀j∈hp(j) uj,

stage 3 the dividend and divisor,

stage 4 Ri or ri.

It can be seen that the last two stages are common calculations. Thus, we

can abstract the first two stages as a black box (named α box). The data

flow of Equation 5.6 a and b in hardware can be represented as Figure 5.6a,

where the α box is used to deal with accumulation calculations. The α box

will be repeated until all elements j ∈ Sid or hp(j) have been checked. Since

the calculation for task and flow will not be executed at the same time, as

seen in Figure 5.2, page 111, α box can be reused (either for tasks or flows)

in HW-E2ERTA.

α Box Design in Hardware

Figure 5.6b shows the design structure of α box in hardware. The working

process of α box can be divided into three steps. There are two reasons for

this decomposition.
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Figure 5.6: (a) Data flow of Equation. 5.6, (b) α box design structure.

Note: REG refers to register.

• From Figure 5.6b, the results of α box are all from accumulated func-

tions. However, these accumulations involve simple addition, division,

subtraction and multiplication. Therefore, it is worth dividing the

calculation into several steps in order to maximise the possibility of

parallel computing in hardware.

• Based on the decomposition, we can achieve a fast computation by

using a pipelined structure. Normally, there are multiple elements

in Sid or hp(j). Therefore, the accumulation of α box is a repeated

iteration. For example, assuming we have four elements in Sid or hp(j),

then the working process of α box without a pipelined acceleration can

be seen from Figure 5.7a. We have to launch each iteration sequentially.

However, if we follow a pipelined acceleration, we can launch one

iteration at every clock cycle. In Figure 5.7b, we can see that step 1

becomes free and can accept new data when step 2 is working. Thus, a
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pipelined structure can decrease the computational time. In addition,

this improvement will be increased incrementally along with the number

of elements in Sid or hp(j).
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Figure 5.7: (a) Example of sequential α box, (b) Example of pipelined α box.

Note: assume each unit can be finished within one clock cycle.

In addition, the division and multiplication operations are normally slower

than addition and subtraction operations in a high frequency system. To

alleviate this problem we pipelined the division and multiplication operations

as well. At the same time, we also introduced registers on the transmission

lines for some necessary signals such as αyj, Cj and Uj.

5.3.2 Assembly Schemes

The proposed hardware accelerated inexact components can be used in both

hardware implemented PRE and NLB, which can be assembled with HW-

E2ERTA as an Inexact HW-E2ERTA. However, similar to the software
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platform, the hardware implemented PRE is still limited as a sufficient test as

it cannot guarantee the result of response time analysis. It has to co-operate

with other components such as HW-E2ERTA or hardware implemented NLB.

We list some possible assembly schemes in Figure 5.8, which consists of four

parts (a, b, c, and d). In (a) and (c), we put PRE, HW-E2ERTA or NLB in

sequential order. If PRE has indicated the final response time of a task or

a flow, the following HW-E2ERTA or NLB will be skipped. Otherwise, the

HW-E2ERTA or NLB will be applied.

PRE

HW-E2ERTA

PRE

NLB

NLB

(a) (b) (c)

HW-E2ERTA

(d)

Figure 5.8: (a) PRE+HW-E2ERTA, (b) NLB, (c) PRE+NLB, (d) HW-
E2ERTA

5.3.3 Experiment and Results Analysis

To evaluate how well the various assembly schemes of Inexact HW-E2ERTA

improve HW-E2ERTA (designed in Section 5.2), an experiment is established.

This subsection will present, in order, the experiment platform, experiment

configuration, and results.

Experiment Platform

The experiment platform used here inherits the one used in Section 5.2. Simi-

larly, the assembly schemes are mounted on an AXI bus with bus interfaces,

which is shown in Figure 5.9a.
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AXI Bus

MicroBlaze
UART
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HW-

E2ERTA

PRE

HW-
E2ERTA

PRE

NLB

NLB

MUX

PRE NLB

MUX

HW-
E2ERTA

Benchmark generating

Random mapping generating

HW-
E2ERTA

PRE+HW-
E2ERTA

NLB PRE+NLB PRE||E2ERTA PRE||NLB 

(a)

(b)

Summary and output results 
through UART

Figure 5.9: (a) Experiment Platform, (b) Testing Process.

Note: The blocks labeled in gray are parallelism implementation for future

work among HW-E2ERTA and its accelerated components.

As above, each testing starts with benchmark generation until all peripherals

have been evaluated. Figure 5.9b shows the testing process. The MicroBlaze

first generates test data (a random task mapping and a synthetic benchmark

which includes task and flow parameters). The MicroBlaze will then load

the test data to each component and activate all of them simultaneously.

After all peripherals have been evaluated, the MicroBlaze will collect results
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from each hardware peripheral, and output them through UART port after

organisation.

Experiment Configuration

We follow the experiment configuration used in Section 5.2 to test the hardware

accelerated components. We also increase the number of testing times to

1,000,000, in order to obtain a better coverage.

Results Analysis

Figures 5.10, 5.11 and 5.12 show partial results of the experiment, while

more details are shown in Table 5.3. All the Y-axes in these figures show the

numbers of clock cycles that have been used to finish an E2ERTA computation.

Because the numbers are large, they are arranged in log10 scale.

Figures 5.10a and 5.10b present the influence from NoC size, number of tasks

and utilisation for PRE and NLB respectively. From the bar charts, we see

that the tendency of PRE and NLB follows a non-linear style which is similar

with the results of HW-E2ERTA shown in Figure 5.5, page 117. However, if

we compare the averages of PRE, NLB and HW-E2ERTA in Table 5.3, we

see that PRE cannot guarantee the improvement, and that NLB provides the

least improvement.

The reason why NLB obtains the worst results is that it has to calculate the

lower bound first and then start the exact calculation for each computation.

We assume that:

• the number of clock cycles used to calculate the lower bound in NLB is

Nclb,

• the number of clock cycles used to compute the following exact calcula-

tion is Ncec,
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Figure 5.10: (a) The influence from NoC size, Number of Tasks and
Utilisation for PRE, (b) The influence from NoC size, Number of Tasks and

Utilisation for NLB.

Note: PRE refers to PRE + HW-E2ERTA.

• the number of clock cycles used by HW-E2ERTA is NE2ERTA.

Here the total number of clock cycles used by NLB is Nclb + Ncec. We can

guarantee Ncec ≤ NE2ERTA, but we cannot guarantee Nclb +Ncec ≤ NE2ERTA.

Therefore, the use of NLB alone may be slower than HW-E2ERTA.

Since PRE is a sufficient test, only using upper bound and lower bound cannot

guarantee the final results. When PRE succeeds, it can reduce the number

of clock cycles by a greater degree than HW-E2ERTA by avoiding the exact

test (HW-E2ERTA or NLB). However, if it fails, the number of clock cycles
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Figure 5.11: (a) The influence from NoC size, Number of Tasks and
Utilisation for PRE, (b) Hardware versions on 10*10 NoC.

Note: PRE refers to PRE + HW-E2ERTA.

can increase compared to HW-E2ERTA as the subsequent exact calculation

will be launched. Therefore, the performance of PRE may be worse than

HW-E2ERTA.

Next is the PRE+NLB which is shown in Figure 5.11. It has the abilities

inherited from both PRE and NLB. It can avoid the exact test in some

situations and guarantee the final results within a shorter running time than

all others when PRE is failed. We also make the following assumptions:

• the number of clock cycles used to calculate the lower bound and upper

bound is Nulb,
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Figure 5.12: PRE+HW-E2ERTA vs NLB vs PRE+NLB vs E2ERTA.

Note: PRE refers to PRE + HW-E2ERTA.

• the number of clock cycles used to compute the following exact calcula-

tion is Ncec.

For a single test, the total number of clock cycles used by PRE+NLB is either

Nulb or Nulb + Ncec. Theoretically, the PRE+NLB cannot guarantee that

its performance is better than HW-E2ERTA in a single test run. However,

after testing 1,000,000 times, the average number of clock cycles required

by PRE+NLB is around 1 ∗ 103.084, while that for HW-E2ERTA is about

1 ∗ 103.179. We can generally summarise that PRE+NLB is approximately

1.25 times faster than HW-E2ERTA. This can be seen from Figure 5.11b and

Figure 5.12, where the PRE+NLB is always the best.

5.4 Summary

In this chapter, we explore how the efficiency of E2ERTA can be affected

by the existing implementation method. A parallel computation has been

proposed and implemented in hardware, in order to enhance the performance of

E2ERTA. In addition, two hardware accelerated inexact E2ERTA components
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which inherit the technique from Chapter 4 are also introduced. Various

assembly schemes which can explore the trade-off between the performance

and coverage of an Inexact HW-E2ERTA are applied. Similar to the findings of

Chapter 4, applying single hardware implemented inexact E2ERTA component

cannot guarantee a better performance, but combining these two components

can do so.

The improvement achieved in Chapters 4 and 5 are all focused on the efficiency

of E2ERTA, which is one barrier to applying search-based algorithms and

E2ERTA for dynamic task allocation in a hard real-time system. Improve-

ments due to other factors remain to be explored. These will be discussed in

the following chapter.
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Chapter 6

Performance Optimisation of

Genetic Algorithm

In consideration of the research problem described in Section 1.3, apart from

the guarantee of timing performance after remapping, another factor which

can cause a low success rate of dynamic remapping for a hard real-time NoC

is the existing dynamic mappers being limited by their mapping search or

generating ability. They either do not consider running task reallocation, or

are limited by the predefined construction criteria. This can be understood

as follows. First, intense resource competition among tasks or flows will

result in available computation or communication resources on each IP or

link of an NoC being limited. A new added task would be unable to obtain

enough resources to execute or communicate with other tasks and would

easily be rejected if there is no optimisation of the current resource allocation

(e.g. moving some tasks to other IPs and reserving enough resources for the

new task). An example is shown in Figure 1.4, page 24. Second, predefined

construction criteria (e.g. mapping tasks to IPs in a spiral style from centre

to boundaries) can provide a clear guidance for fast mapping candidate

construction. However, this will mean that only a small design space can be

explored and directly results in a low success rate for dynamic remapping. In
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addition, both of these two factors will become worse when the complexity

of application is increased. Exhaustively checking all simulation becomes

impractical with increases in the design space, especially for a dynamic

mapping problem whose working time slot and resources are limited. In

this situation, search-based algorithms could be considered as an alternative

solution, since they can provide a global optimisation ability and a trade-

off between timing performance and remapping cost (number of tasks in

migration) with finite resources. Genetic Algorithm (GA), as a representative

of search-based algorithms, will be considered the new dynamic mapper in

this research to achieve an efficient mapping search.

As discussed in the problem breakdown in Section 3.3, the efficiency of GA

search can be affected by both its fitness function and its search operations

(such as fitness loading, crossover and mutation). Although, in Chapters 4

and 5, we tried to reduce the execution time of E2ERTA which could be

used as the fitness function in GA to evaluate mappings’ hard real-time

performance, the search efficiency will remain low without any optimisation of

GA itself. Therefore, in this chapter, we discuss the possibility of optimising

GA in respect of platform selection, model selection with optimisation, and

accelerator design, in order to propose a parallel GA architecture along with

two accelerated GA operators to enhance the performance of GA search.

6.1 Platform Comparison

As discussed in the review in Section 2.4, a GA can be implemented as a

search tool, in either software or hardware, to optimise a complex problem

such as task allocation in NoCs. Compared with software GA (SWGA), the

hardware version is a dedicated component designed for a specific optimisation

problem. Its architecture is customised. The data transfer and processing

will not be affected by the computation core and bus width, and the efficiency

is therefore much higher than SWGA’s. However, questions to be considered

include how fast a hardware GA (HWGA) can run, and whether an HWGA
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can compensate the disadvantage of applying GA as a dynamic mapper in the

dynamic mapping problem of a hard real-time NoC. These can be answered

by the following experiment and comparison through fitness function selection,

experiment platform, experiment configuration and results analysis.

6.1.1 Fitness Function Selection

The search time of GA can be affected by both the search operation and

its fitness function. Thus, to evaluate accurately how much faster than the

software version an HWGA can run, the influence from fitness function should

be minimised. In other words, the execution time of fitness function should

be fixed or nearly fixed. Therefore, from this point of view, applying E2ERTA

as a fitness function is not suitable in this kind of experiment, because

the execution time of E2ERTA is highly dependent on the task mapping.

Therefore, we propose a simple fitness function (Max One which counts the

number of logic zero in a bit vector) with fixed execution time.

6.1.2 Experiment Platform

This experiment continues to use the platform used in Section 5.2.3, but

with a larger hardware timer (64-bit). On this platform, a sequential GA

was fully implemented on MicroBlaze in language C with the C compiler of

GNU version 2.16. Then, a hardware implemented sequential GA (in VHDL)

was mounted on the AXI bus with an AXI bus interface. Similar to the

experiment process in Section 5.2.3, after initialisation, the MicroBlaze will

first activate the SWGA and then the hardware one. The data is collected

and organised at the end.

137



6.1.3 Experiment Configuration

The experiment follows the following configurations:

• the system clock is 50Mhz;

• the frequency of AXI bus is 100Mhz which also drive the HWGA;

• the same GA configuration could have the same affact to both software

and hardware version of GA,

• we could following the GA configuration used in Chapter 4:

– crossover rate is 0.5%,

– mutation rate is 0.01%,

– max number of generation is 50;

• for fast testing, population size is 6;

• fitness function is the Max One which counts the number of logic zero

in a 256-bit vector;

• number of repeated tests is 1,000,000.
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Figure 6.1: Software VS Hardware GA.
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6.1.4 Results Analysis

The results are shown in Figure 6.1. From Figure 6.1a, it can be seen that

these two implementations achieve the same optimisation of the average final

objective. Their distributions are similar, which means the HWGA has the

same optimisation ability as SWGA. However, the required search time in

HWGA is much less than that in SWGA, if Figure 6.1b is considered. The

values in Figure 6.1b indicate that SWGA is around 1450 times (107.84−4.68)

slower than HWGA. However, whether this improvement can support a

dynamical task allocation search for hard real-time NoCs can be analysed as

follows. As discussed in Section 3.3, the search time of GA could be described

by Equation 3.3b, page 84. Hardware implementation will be beneficial to not

only the search operation but also the fitness. Although we apply Max One to

minimise the affection form fitness function, the improvement form hardware

version Max One cannot be fully avoided, such as data reading and writing.

In other words, in reality this 1450 times advantage is partially contributed to

by the optimisation of the Max One. If we assume this 1450 times advantage

is contributed by search operation alone and use it to estimate the speed we

could achieve in a mapping search with HW-E2ERTA as fitness function with

the same clock used in Chapter 5, the execution time of HWGA and SWGA

could be written as follows:

ETSWGA = ETSWGA search operation + ETSW−E2ERTA (6.1a)

= 1450 ∗ ETHWGA search operation

+10best average improvement (from Table 5.1) ∗ ETHW−E2ERTA

= 1450 ∗ ETHWGA search operation

+103.33 ∗ ETHW−E2ERTA

≈ 1450 ∗ (ETHWGA search operation

+ETHW−E2ERTA)
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ETHWGA = ETHWGA search operation + ETHW−E2ERTA (6.1b)

In addition, normally the fitness function will be much more complex than

the GA search operation, especially for E2ERTA which is based on a se-

ries of iterative calculations. Thus, the difference in the value between

ETHWGA search operation and ETHW−E2ERTA will be very large. If we as-

sume the ETHWGA search operation can be ignored, then we could generally

estimate that the HWGA+HW-E2ERTA can be 1450 times faster than

SWGA+SW-E2ERTA. Moreover, by considering the worst case (1261.65

seconds, SWGA+SW-E2ERTA implemented on PC), which is illustrated in

Table 4.4, page 103, the execution time for this case can be estimated as

0.87 second, if it is searched by HWGA+HW-E2ERTA. This result can be

accepted by some application with loose timing requirements, but not for

those ones whose timing requirements are harsh. Therefore, applying HWGA

alone cannot adequately support the problem in this research. It is necessary

to find another method to further improve the search efficiency of applying

GA for dynamically optimising task allocation in NoCs.

6.1.5 Summary

In this section, an experiment is applied to explore whether using a hardware

GA alone can adequately support the dynamic task allocation search in NoCs

by using GA as the dynamic mapper. From the results, we can generally

conclude that, while HWGA is much faster than the software one, it still

cannot adequately fit the requirements of the problem in this research. It is

necessary to consider the improvement methods from other directions, such

as search structure, which will be done in the following section.
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6.2 Model Selection and Optimisation of HWGA

In line with the literature review (Section 2.4), apart from hardware imple-

mentation, parallelisation is another method to enhance GA search. There

are three models that can be selected: Master-Slave model, Island model and

hybrid model. They can be used to further improve the search efficiency of

HWGA. Among them, the Master-Slave model is most similar to sequential

GA. At the same time, it is relatively easy to implement. As a single pop-

ulation evolution, the resource requirements of the Master-Slave model are

low and do not require other communication infrastructure, whereas other

models do. However, how well it can support a HWGA and whether there

is a possibility to further optimise the search efficiency are the questions

that should be considered. These will be discussed in this section, in the

following order: performance verification of Master-Slave GA (MS GA); then

a Free-Step Master-Slave GA (optimised version).

6.2.1 Performance Verification of Master-Slave GA

The question of the extent to which a Master-Slave model can improve the

search efficiency of HWGA is answered using an experiment in this subsection.

For the Master-Slave model under consideration, its working process is shown

in Figure 2.18, page 70 and described in Section 2.4. The following sections

detail, in order, experiment platform, experiment configuration and results

analysis.

Experiment Platform

The Master-Slave model used here is modified based on the HWGA im-

plemened in Section 6.1.1. The fitness function, GA operators (crossover and

mutation component) and experiment platform are maintained.
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Experiment Configuration

This experiment is configured as follows:

• all GA components are the same as the pervious, only the data loading

method has been changed;

• we can continue using the GA confiuration used in pervious section;

• number of fitness is 2, 3, 4, 5, 6.

Results Analysis

The results are shown in Figure 6.2. From this figure we note that increasing

the number of fitness functions in MS GA can reduce the search time. This

is because the Master-Slave model only changes the methods of how to

distribute candidate solutions to fitness functions, rather than optimising the

fitness function itself. In other words, it can divide a job which is originally

undertaken by one fitness function to several parts and distribute them

to several fitness functions to work simultaneously. Although the working

efficiency of each fitness function is not increased, the overall working time

can be reduced.
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Figure 6.2: HWGA VS MS GA.

However, by considering the results, the execution time of MS GA is not

less than that of HWGA by any significant factor. For example, the average
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execution time of HWGA and MS GA with two fitness functions are around

104.68 and 104.65 respectively, which means the real improvement is around

10(4.68−4.65), instead of 2 as expected. This is because the fitness function

selected for evaluation is Max One, whose execution time is fixed and not

significantly different to the running time used to finish GA search operations

such as mutation, initialisation and replacement. If we use an equation to

estimate the execution time used during the GA search, it can be represented

as Equation 6.2a.

ETHWGA = ETHWGA search operation + ETMax One (6.2a)

= ETInitialisation + ETCrossover + ETMutation

+ETReplacement + Population Size ∗ ETSingle Max One

ETInitialisation = Population Size ∗ ETSingle Max One (6.2b)

ETCrossover = Population Size

ETMutation = Population Size ∗ ETSingle Max One

ETReplacement = (2 ∗ Population Size)2

If we assume other operations (such as system preparation, signal hand shake

for data loading and collecting) can be ignored and consider using ranking

for replacement and single crossover, ETInitialisation, ETCrossover, ETMutation

and ETReplacement can be assigned values as in Equation 6.2b.

Then, the execution time of HWGA and MS GA can be described as

Equation 6.3a and 6.3b. In addition, the ETSingle Max One is nearly equal to

256, since it is a 256-bit Max One. Then the ETHWGA

ETMSGA
≈ 1.1925 ≈ 100.0765. The

theoretical result seems better than our experiment reuslts. This is because

we assume the time used by some operations can be ignored. In fact, when

the time used by these operations is long (compared with Max One), they

will affect the experiment results. In addtion, we can note that the difference
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between Equation 6.3a and 6.3b. is the evaluation part. If we can apply a

fitness function (such as Inexact HW-E2ERTA) which is more complex than

Max One and has much longer execution time than GA search operations,

the execution time of HWGA and MS GA will be mainly determined by

evaluation part.

ETHWGA = 12 ∗ ETSingle Max One + 122 + 6 (6.3a)

+6 ∗ ETSingle Max One

ETMSGA = 12 ∗ ETSingle Max One + 122 + 6 (6.3b)

+6÷ 2 ∗ ETSingle Max One

Moverover, we notice that the improvement curve is non-linear. This is caused

by the candidate distribution strategy of MS GA. From Figure 2.18, page 70,

we can seen that the new round of candidate loading can only occur when the

evaluation of previously loaded candidates has been finished. This will cause

a phenomenon illustrated in Figure 6.3. From Figure 6.3a, we can see that

three rounds of release are needed when the number of fitness functions is 2.

Although we add two more fitness functions in Figure 6.3b, the MS GA still

requires two rounds of release, even there are two fitness functions are idle in

the second round. This phenomenon can happen when the number of fitness

functions is 5 as well. It will directly affect the evaluation time and further

result in improvement curve is non-linear. This phenomenon will not be a

problem when the execution time of fitness is fixed. But, its drawback will

emerge and become worse when the fitness function has variable execution

time. This will be disscussed in the following subsection.
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Figure 6.3: MS GA Low fitness Utilization Phenomenon.

Summary

In this subsection, we implement a sequential HWGA and show its improve-

ment compared with sequential SWGA. By combining the Master-Slaver

model with HWGA, the search efficiency can be further improved. In addi-

tion, we also find a disadvantage of the existing Master-Slaver model: the

distribution strategy can affect the evaluation efficiency, if the fitness function

execution time is variable. Because, Inexact HW-E2ERTA (our expected

fitness function used for mapping evaluation) is a kind of fitness function

with variable execution time, it is necessary to find a method to alleviate this

disadvantage. This will be discussed in the following subsection.
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6.2.2 Free-Step Master-Slave GA

The Master-Slave model can be used to achieve a fast evaluation in GA

search. However, it will suffer a lock-step problem if its fitness function has

variable execution time. This subsection will try to explore which reasons

cause this shortcoming and whether there are some potential solutions that

can be applied to compensate or alleviate it. In order to distinguish between

the state-of-the-art and the proposed architecture, the existing MS GA is

named LS-MS GA. The following parts discuss, in order: problem definition

and analysis, possible architecture description, and performance evaluation.

Lock-Step Problem

The lock-step problem is a shortcoming caused by the distribution strategy of

LS-MS GA. It only has a significant adverse impact on the evaluation time if

the fitness functions’ computation times are variable and depend on different

candidate solutions. Following the example in Figure 2.18, page 70, Figure

6.4 shows this phenomenon. It can be seen that fitness 1 can only store its

results after fitness 0 has been completed and the results have been recorded,

regardless how quickly fitness 1 can be executed. This influence will become

more severe when the size of GA population, the number of fitness functions

and the variability of fitness function execution time are increased.

Architecture Description

Based on the phenomenon of the lock-step problem, we can find that this

problem is caused by the system synchronisation. In each release round,

the master has to synchronise the data for both fitness function execution

and results collection. This blocks the further step of idle fitness functions

getting unevaluated candidate solutions when other fitness functions are still

executing. To alleviate it, the solution is to replace the existing system
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Figure 6.4: LockStepProblem.

Note: Following the example in Figure. 2.18.

synchronisation by introducing an asynchronous model. One possible example

that follows the example in Figure 6.4 is shown in Figure 6.5.
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Figure 6.5: Example of an asynchronous model.

Note: Following the example in Figure 6.4

In this example, the two light grey solid arrows indicate the timing points

of the completion of executing all fitness functions and collecting all results

of Figure 6.4 respectively. From Figure 6.5, we can see that if we can load,

release fitness and collect result individually, the overall execution time of

candidate evaluation can be reduced significantly.
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Architecture Implementation

A possible implementation of this asynchronous model can be describled in

Figure 6.6 and named as Free-Step Master-Slave GA (FS-MS GA).
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Figure 6.6: FS-MS GA Architecture.

The working process of the FS-MS GA is similar to the one of LS-MS GA. In

order to launch fitness functions and collect feedback asynchronously, several

components such as Intermediary Register Bank (IRB), Arbitration, Fitness

Function ID Coder (FFID-Coder) and Combined Population Register Bank

(CPRB) are also introduced. The IRB is used to temporarily store the new

candidate solutions, which can be generated randomly through initialisation or

bred by crossover and mutation in reproduction component, if these solutions

cannot be evaluated immediately. Whenever new chromosomes arrive in IRB,

the Arbitration will try to distribute them to fitness functions according to

the indication from FFID-Coder. The FFID-Coder collects the busy and

done signals from each fitness function. It generates two address signals for

both Arbitration and CPRB to support candidate distributing and results

storing respectively. Several written feedback signals will also be generated

by the FFID-Coder to fitness functions. The CPRB will store both parent

and offspring populations. Its size is twice the parent population’s size. The

replacement will sort the CPRB according to a given strategy, such as ranking

(the better a solution is, the lower address it will be given). The selector will

generate two addresses to select two parent chromosomes from the parent

population for reproduction according to the selection strategy.
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Arbitration and Fitness Function ID Coder

Distributing candidate chromosomes to each fitness function asynchronously

is achieved by the Arbitration and FFID-Coder. The Arbitration is triggered

by the coded fitness ready address and IRB ready signals. Its architecture

is shown in Figure 6.7a. In its working process, the ‘coded fitness ready

address’ can indicate whether there are fitness functions ready to receive new

candidate chromosomes. If there are and the IRB ready signal is valid (there

is at least one candidate chromosome in IRB that has not been evaluated),

the Arbitration will enable the ‘read enable’ signal to read one chromosome

from IRB and distribute it to the right slot of chromosome vector according

to ‘coded fitness ready address’. Otherwise, both the ‘read enable’ signal and

chromosome will be disabled by logic ‘0’ and ‘Zero Vector’ respectively.
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Figure 6.7: (a) Arbitration Architecture, (b) Fitness Function ID Coder
Architecture.

Note: ‘Zero Vector’ consists of logic ‘0’;

IRB refers to Intermediary Register Bank;

CPRB refers to Combined Population Register Bank.
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The FFID-Coder shown in Figure 6.7b collects the ready and done signals from

each fitness function. The ready signals are used to generate a fitness function

ready address which can guide the chromosome distribution in Arbitration.

The done signals will be encoded to indicate to the CPRB to read the result

from which fitness function. Whenever the result has been recorded, the

related bit in the written vector will be set as the acknowledgement back

to the fitness function. If there are more than one fitness functions idle or

finished, the FFID-Coder will code based on priority of fitness functions.

The priority is assigned according to fintness function index, zero is highest.

If there is no fitness functions idle or finished, the FFID-Coder will set all

output signals as invalid.

Experiment and Results Analysis

The evaluation of how well FS-MS GA can improve performance over LS-MS

GA can be analysed on the basis of an experiment, which described in this

part. In order, we deal with fitness function description, experiment platform,

experiment configuration and analysis of results.

Fitness Function

A fitness function with variable execution time is the trigger that causes the

lock-step problem in LS-MS GA. Thus, we proposed a fitness function, which

is Slice Logic One Counter (S-LOC) to imitate this situation. The input of

S-LOC consists of a slice range and a test vector. It can return the number

of Logic ’1’s in a slice of a test vector. A slice can cover from 1-bit to the

whole test vector. Its range is represented by the exponent of a given base.

Therefore, the width of a slice can be represented by Equation 6.4. Since

the finish condition of S-LOC is when all bits in the slice have been checked,

the variation of its execution time can be significant. In addition, we also

continue to use Max One, which is a fitness function with fixed execution

time, to imitate the performance of FS-MS GA with this kind of function.
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Slice = Test V ector (BaseSliceRange+1 − 1 down to 0) (6.4)

Experiment Platform

To evaluate the performance of FS-MS GA, we propose an experiment platform

which is an embedded system based on Xilinx VC709 . On this platform,

we implement the FS-MS GA in VHDL and continue to use the LS-MS GA

evaluated in Section 6.2.1. We mount these two implementations on the AXI

bus with interfaces. The FS-MS GA and LS-MS GA operate simultaneously

with either Max One or S-LOC as their fitness function, since the resources

cost of Max One and S-LOC are low.

AXI Bus

S-LOC
Max 
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LS-MS GA

S-LOC
Max 

One

FS-MS GA

MicroBlaze

(b)

Load GA configuration

Initialization

FS-MS 

Summary and output results 
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UART

Figure 6.8: (a) Experiment Platform, (b) Testing Process.

The testing process has been shown in Figure 6.8b. It starts from loading

GA configuration (number of fitness, crossover rate, mutation rate, size of

population and so on) to testing components by a MicroBlaze. Thereafter,

the FS-MS GA and LS-MS GA will be enabled for search or evaluation, until

the finish condition (either a specific number of generations has been analysed

or at least one suitable candidate has been found) has been achieved. Then,

the MicroBlaze collects data from each component and organises these results.

The results are output through a UART port.

Experiment Configuration

The experiment follows the configuration as follows:
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• the same GA configuration could have same affaction on both FS-MS

GA and LS-MS GA since the GA operations components (crossover

and mutation) are maintained,

• we use the GA configuration in pervious section

– crossover rate is 0.5%,

– mutation rate is 0.01%,

– max number of generation is 50,

– number of repeated tests is 1,000,000;

• various population and number of fitness function will affect the perfor-

mance:

– population size is 6, 8, 16,

– number of fitness functions is 2, 3, 4, 5 when Population is 6,

– number of fitness functions is 2, 4 when population is 8 and 16,

– fitness functions are Max One (256 bits) and S-LOC (259 bits).

Results Analysis

The detailed results are shown in Table 6.1 (No.FF refers to Number of

Fitness Functions; the results in this table are the average number of clock

cycles used by each generation). The percentage improvement of FS-MS GA

over LS-MS GA with both Max One and S-LOC are shown in Figure 6.9 and

6.10 respectively.

From Figure. 6.9, it can be seen that although the FS-MS GA can reduce the

number of clock cycles used for fitness functions, the improvement is slight,

when the fitness function is Max One. In addition, this improvement has an

upper bound which arises when the number of fitness functions is half the

population size. The reason is the same as the phenomenon that is described

in Section 6.2.1 and explained by Figure 6.3.
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Table 6.1: FS-MS GA vs LS-MS GA Results Table.

Max One S-LOC
PopSize No.FF LS-MS FS-MS Improvement(%) LS-MS FS-MS Improvement(%)
6 2 786 777 1.15 107 77 27.65

3 530 520 1.89 97 61 37.1
4 530 520 1.89 101 61 39.82
5 530 520 1.89 102 60 40.82

8 2 1048 1036 1.15 173 112 34.88
4 536 522 2.61 142 81 43.05

16 2 2096 2072 1.15 487 296 39.09
4 1072 1056 1.49 381 118 69.00

1.65 41.43

Note: No.FF refers to number of fitness functions.

It indicates how many fitness functions (same fitness function) will be used.
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Figure 6.9: FS-MS GA vs LS-MS GA with Max One.

Note: No.FF refers to number of fitness functions.

However, for S-LOC the performance can be significantly enhanced, as shown

in Figure 6.10. It can be seen that the improvement of S-LOC is increased with

the number of fitness raised. Taking a population size of 6 as an example, the

improvement is rapid at the beginning and converges afterwards. Therefore,

this improvement has an upper bound, which is determined by the variability

and number of fitness functions against population size.

153



No.FF=2 No.FF=3 No.FF=4 No.FF=5 No.FF=2 No.FF=4 No.FF=2 No.FF=4
0

10

20

30

40

50

60

70
FS-MS GA vs LS-MS GA with S-LOC Over Difference Population Size and Number of Fitness Functions

Number of Fitness Functions

Im
p

ro
v

em
en

t 
in

 P
er

ce
n

ta
ge

 

 

PopSize = 6 PopSize = 8 PopSize = 16

Figure 6.10: FS-MS GA vs LS-MS GA with S-LOC.

Note: No.FF refers to number of fitness functions.

6.2.3 Summary

In this section, we estimate the performance of using a Master-Slave GA

to enhance the search efficiency, in order to apply it as a dynamic mapper

for task mapping problem in hard real-time NoCs. From the results we can

generally expect a linear improvement with the number of fitness, when this

fitness is much complex than GA search. At the same time, we also find a

shortcoming of the existing MS GA affected by its fitness function loading

strategy, when the fitness funtion has variable execution time. Therefore, to

alleviate this disadvantage, we proposed a possible architecture and evaluated

it by experiments. The results show that the overall evaluation time can

be improved in each evolved generation but with an upper bound which

is determined by the variability and number of fitness functions against

population size. In addition, considering the implementation platform, there

are other benefit we can obtain by using hardware charateristics. It will be

discussed in the following section.
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6.3 Accelerated GA Operators

As discussed before, the GA search efficiency can benefit from both HWGA

and the Master-Slave model. The GA operators (crossover and mutation) in

both of them, however, still inherit the processing strategy used in sequential

SWGA. The question focused on in this section is whether there are any

changes that could be made to enhance the efficiency of these two operators,

in order to further accelerate the HWGA or FS-MS GA. This is approached

by considering, in order, strategy limitation analysis, accelerated operators

implementation, and an experiment with results analysis.

6.3.1 Strategy Limitation

The processing strategy of GA operator adapted by HWGA and FS-MS GA

is inherited from sequential SWGA, whose target is to execute it in software

on regular CPUs which are limited by operating bit-vectors (similar to the

example shown in Figure 5.1, page 108) and pipelined architecture. This

subsection will concentrate on attempting to improve these two aspects.

Low Efficiency of Bit-Vector Operation

The low efficiency of bit-vector operation in the existing processing strategy

can be seen in terms of both crossover and mutation. The crossover operator

in GA requires the swap of selected parts of two parent chromosomes (if

the crossover condition has been satisfied), as shown in Figure 6.11a. Since

chromosomes are normally stored as arrays, software will inevitably swap

these two arrays element by element, as presented by the black dash arrows.

Such operations will invariably take several clock cycles of a typical CPU, even

in the case of partial swaps. In addition, the number of clock cycles required

will be further increased along with extensions in the size of chromosomes.

The mutation operator can suffer similar limitations in the existing processing
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strategy. Its working process requires checking each gene to determine whether

the observed gene should be mutated or not and generating a mutated value

if needed. An example is shown in Figure 6.11b. This process also requires

multiple clock cycles of a typical CPU, as well as a scaling up of that time

with the increase of the number of genes.
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Figure 6.11: (a) Vector Operation of Crossover Operation, (b) Vector
Operation of Mutation Operation

Lack of Pipelined Architecture

In addition, the existing processing strategy also lacks provision of an effec-

tive pipelined architecture. This can be seen from the working procedure

of reproduction (producing offspring chromosomes by using crossover and

mutation). Its working procedure can be either applying crossover over the

whole parent population first and then using mutation to generate the final

offspring population, or each time applying crossover and mutation sequen-

tially only over two selected parent chromosomes and repeating this process

until the whole offspring population has been generated. These two kinds of

procedures are illustrated in Algorithm 2.
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Algorithm 2 Reproduction Working Process

1: procedure Type 1
2: for Number of offsprings < Population Size do
3: Select parent chromosomes
4: Crossover
5: for Number of offsprings < Population Size do
6: Mutation
7: End Procedure

———————————————————————

1: procedure Type 2
2: for Number of offsprings < Population Size do
3: Select parent chromosomes
4: Crossover
5: Mutation
6: End Procedure

Regardless which type is selected for use, when one operator is executing,

the other has to be paused. This phenomenon is shown in Figure 6.12a and

6.12b. This will increase the computation time compared with a pipelined

architecture, with the timing difference shown in Figure 6.12c.

It can be seen that reproducing the first offspring chromosome uses the

same amount of time as the two procedures in Algorithm 2. However, after

the first offspring chromosome, in each stage there will be one new candidate

chromosome generated. Assuming the number of clock cycles used by selection,

crossover and mutation are the same and equal to N, and the population size

follows the example in Figure 2.18, page 70, the total numbers of clock cycles

to finish reproduction can be represented by 6 ∗ 2 ∗N for both Type 1 and

2 Algorithm 2. The total number used by pipelined architecture should be

(3 + 3) ∗N . Thus, pipelined architecture can be used to improve the timing

performance of reproduction and this improvement will be significant when

the population size increases.

Both bit-Vector operation and pipelined architecture are shortcomings present

in the current processing strategy GA operators adopted by HWGA and FS-

MS GA. They can affect the execution time of operators themselves and
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Note: Following example of Figure. 2.18.

further influence the overall processing speed. Therefore, modifying the

current processing strategy could be a way to enhance the performance of

GA operators and thus improve the search efficiency of the GA.

6.3.2 Accelerated GA Operators

The bottle-neck of GA operators which is caused by the existing processing

strategy is considered in this subsection, which proposes two hardware ac-

celerators to improve the crossover and mutation operators respectively. In

addition, a pipelined architecture for reproduction is also introduced and

assembled with these two accelerators for an optimisation of the overall

execution time of reproduction.
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Crossover

For crossover operator, we try to swap two parent chromosomes by using a

Crossover Mask and several logic gates (such as ‘NOT’, ‘AND’ and ‘OR’)

according to crossover point and possibility. The Crossover Masks are a series

of pre-designed vectors determined by both the number of genes and the

width of gene (the number of bits to represent one gene). An example of

how the proposed crossover works is shown in Figure 6.13 where each gene is

represented by 1-bit and the total number of genes is 10.

0 0 1 1 1 1 10 0 0

1 0 1 1 0 1 10 1 0

Parent Chromosome 0

0 1 0 1 0 1 01 1 0

Parent Chromosome 1

MUXComparator

Given Crossover 
Probability

Pre-configured 
Crossover rate

Look 
Up 

Table

Crossover 
Point

Crossover Mask
1 1 0 0 0 0 01 1 1

Logic  OR  gate

Logic  AND  gate Logic  AND  gate

Logic  NOT  gate

1 0 0 1 0 1 00 1 0

Crossover Result

NOT Crossover Mask

Figure 6.13: Crossover Component

The crossover point (randomly generated by a Random Number Generator)

will be used as the index of a look-up table which stores the Crossover Masks.

The two parent chromosomes will be transferred through two logic ‘AND’ gates

with Crossover Mask and NOT Crossover Mask respectively. The results of

logic ‘AND’ gates will be applied as the inputs of a logic ‘OR’ gate to generate

the potential crossover result. Whether the final crossover result should be the

swapped result (potential crossover result) or the original parent chromosome

is determined by a comparison between the pre-configured crossover rate and

a given crossover probability, which is also randomly generated by a Random
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Number Generator. If the crossover condition has been satisfied, the final

crossover result will be the swapped result, otherwise the parent chromosome

will be selected.

Since the propagation delay among ROM and combinational logic is slight,

when the frequency of the whole system is not extremely high, the proposed

crossover operation can be finished within one clock cycle no matter where

the crossover point is or how many genes there are. For an extremely high

frequency system, we can introduce a pipelined structure to break down this

working process, in order to allow this operation to be finished within one

clock cycle. Thus, by using this accelerated crossover operator the processing

speed can be improvement significantly when compared with the existing

process strategy which is shown in Figure. 6.11a.

Mutation

Similar to crossover, the idea of accelerating the mutation operator is also

based on mask vectors. The working process of the proposed accelerated

mutation operator, which can be divided into Mutation Template Generator

and Mutating component, is illustrated in Figure. 6.14b and 6.14c.

Mutation Template Generator

In Figure 6.14b, the Mutation Template Generator consists of a Mutation

Possibility Mask and a Mutated Value Mask. These are used to determine

whether each gene of a chromosome should be mutated and provide the

mutated values when needed. Their generating procedure can be described

as follows. In each clock cycle, a given mutation probability (randomly

generated) will be compared with the pre-configured mutation rate (similar

with crossover rate). The result of this comparison will be used to indicate

whether the current gene should be mutated. If the current gene needs to be

changed, one bit logic ‘0’ will be shifted into the Mutation Possibility Mask

and a random generated mutated value will be shifted into the Mutated Value
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Figure 6.14: (a) Crossover Strategy Example, (b) Mutation Template
Generator, (c) Mutating component Example.

Note: Number of gene is 10; width of gene is 1;

the input vectors of Figure 6.14c are from both Figure 6.14a and 6.14b;

the “V” represents the mutated value.

Mask. Otherwise, if the current gene should be maintained, one bit logic ‘1’

and a logic ‘0’ vector (all bits are logic ‘0’ if a gene is represented by multiple

bits) will be shifted into the Mutation Possibility Mask and the Mutated

Value Mask respectively. This process will be repeated until all genes of a

chromosome have been checked.

Mutating component

The mutating component will read the mutation template. In its working

process, shown in Figure 6.14c, the result of the accelerated crossover operator
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will be assigned to a logic ‘AND’ gate with the Mutation Possibility Mask.

Their result will be applied as one input of a logic ‘OR’ gate to calculate

the final offspring with the Mutated Value Mask. Similar to the accelerated

crossover operator, all the operations in this mutating component follow

combinational logic, and the delay among them is only a propagation delay.

Therefore, the mutation operator can be finished within one clock cycle

regardless of how many genes a chromosome has. The accelerated mutation

operator can be much faster than the existing processing strategy , especially

when the number of genes is large.

Further Optimisation

From the Mutation Template Generator (Figure 6.14b), it can be noticed that

only one gene’s template can be generated within one clock cycle. However,

this does not mean that this idea cannot be used to accelerate the mutation

operator. In order to solve this problem, a template FIFO (First-In-First-Out)

is introduced to store mutation templates before the mutation operator is

executed. Since one of the natural characteristics of hardware is parallel

computing, we can easily launch the Mutation Template Generator to pro-

duce and store templates when GA is in another stage, such as candidate

evaluation. In addition, some chromosomes’ templates can be generated when

the mutation operator is executing as well. We can use the following variables

to find the minimum depth of FIFO:

• the population size is m;

• the number of gene is n;

• the minimum depth of FIFO is x.

In this accelerated mutation operator m clock cycles are required to finish the

mutation operation over the whole population, n clock cycles are needed to

generate one template. Currently only x chromosomes’ templates are ready in

FIFO. The worst-case situation can be that the accelerated mutation operation
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and the Mutation Template Generator (to generate the rest templates) are

released at the same point. In other words, the remaining templates have to

be prepared within m clock cycles. Thus, we can get Equation 6.6. Therefore,

the depth of FIFO can be minimised to (n−1)m
n

, in order to reduce the resource

cost.

m ≥ (m− x) ∗ n (6.5)

x ≥ (n− 1)m

n

Reproduction Pipeline

As mentioned above, the existing processing strategy also lacks a pipelined

architecture. To solve this limitation, we assembled the proposed crossover

and mutation operators with a possible pipelined architecture with additional

registers, as presented in Figure 6.15. By applying this architecture, the

first two clock cycles will generate two invalid offspring. However, after that

there will be two valid offsprings reproduced every clock cycle. Therefore, the

execution time of reproduction can be reduced.

FSM

Crossover Operator

Mutation Operator

Register Register

Register Register

Offspring 2Offspring 1Done

Start
Parent 

Chromosome 1
Parent 

Chromosome 2

Figure 6.15: Reproduction Pipeline Architecture.
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6.3.3 Experiment and Results Analysis

The extent to which the proposed accelerated GA operators can alleviate the

shortcoming caused by the existing processing strategy of GA operators can

be assessed by experiments. In this experiment, these two accelerated GA

operators will be evaluated within FS-MS GA on the platform used in Section

6.2.2 and with the same GA configuration, since the GA configuration will

have no affection on accelerated GA operators efficiency.

Results Analysis

Detailed results are shown in Table 6.2 (the results in this table are average

number of clock cycles used by each generation). It can be seen that in all

situations the proposed accelerated reproduction will use a lower number of

clock cycles than existing GA operators.

Table 6.2: Existing GA Operators vs HW Accelerated GA Operators Table.

Max One S-LOC

PopSize No.FF E-GA-O A-GA-O Improvement(%) E-GA-O A-GA-O Improvement(%)

6 2 1539 693 54.97 1576 1394 11.55

3 1543 937 39.27 1564 1358 13.17

4 1540 941 38.90 1561 1359 12.94

5 1537 934 39.23 1558 1361 12.64

8 2 2179 1104 49.33 2097 1853 11.64

4 2196 1561 28.92 2194 1924 12.31

16 2 4138 1824 55.92 4160 3653 12.19

4 4178 2816 32.60 4335 3779 12.83

Note: No.FF refers as number of fitness functions.

E-GA-O and A-GA-O refer as existing GA operations and accelerated GA operations.

The improvement over Max One is shown in Figure 6.16. It can be seen

that the performance will suffer a decrease by changing the number of fitness

function from 2 to 3, but it remains afterwards (does not decline significantly

further after this). This is because Max One is a fixed and relatively slow
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Figure 6.16: Accelerated GA Operators vs Existing GA Operators with Max
One as Fitness Function.

Note: No.FF refers as number of fitness functions.

evaluation method compared with S-LOC. When there are two fitness slaves,

mutation templates are not consumed very fast. The pre-stored templates are

enough to support Max One. However, when the number of fitness functions

increases to 3, the speed at which templates are consumed increases. The

mutation template FIFO will soon be out of stock and make the following

operations pause while waiting for new templates. Fortunately, there is an

upper bound for this pause, because the template consumption speed has an

upper bound. This non-linear phenomenon can be seen from Figures 6.2, 6.9

and can be explained by Figure 6.3.

For S-LOC, the improvement is not significant, and difficult to change along

with the variation of number of fitness functions. This is because it can be

very fast in most situations, and even two fitness functions can already push

it to its upper bound pause.

Therefore, these two accelerated GA operators can make a significant im-

provement to fitness functions that have a long execution time such as Inexact

HW-E2ERTA. These two improvement methods proposed here can be assem-

bled together in a single architecture, as presented here, or applied individually

in the case of platforms with limited hardware resources, since they are not

mutually dependent.
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6.4 Summary

In this chapter, in line with the problem breakdown discussed in Section

3.3, we focused on the search algorithm itself to explore the factors that can

affect its search efficiency. To indicate which type of GA can be used in

this research, we evaluated various GAs step-by-step by using experiments,

from both implementation and model aspects. From the experiments, we

found two limitations in the current Master-Slave GA: lock-step problem and

implementation limitation in GA operators (crossover and mutation). We

then proposed an asynchronous architecture and accelerators to alleviate these

two shortcomings. The results show that by applying these modifications and

accelerators, the search efficiency can be improved. This improvement will

be applied in the next chapter to enhance the dynamic mapping search for

hard real-time NoCs in order to contribute to the resolution of the research

problem in this thesis.
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Chapter 7

Dynamic Mapping in Hard

Real-Time NoCs

As reviewed in Chapter 2, the timing performance of a NoC is improved by

carefully planned task allocation. However, the state-of-the-art responses

cannot adequately address dynamic mapping of task distribution, since they

are either affected by low rates of remapping success or lack a guarantee

for systems timing performance after remapping, especially in hard real-

time systems. Thus, these two reasons motivate this research to focus on

the mapping optimisation of real-time NoCs, in particular, dynamic task

allocation in hard real-time systems.

In order to understand how to find/construct a suitable mapping for a hard

real-time NoC to satisfy the timing requirements efficiently and dynamically,

Section 3.2 divides this problem into two steps, depending to whether task

migration cost is considered. In addition, using a system model, search and

evaluation methods to be used are also suggested. However, these methods

are not problem free due to their complex search and calculation processes.

Therefore, Chapters 4, 5 and 6, propose techniques and implementation

methods to accelerate their execution speed.
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In this chapter, we gather together the improved methods (Inexact HW-

E2ERTA and HW FS-MS GA) to verify their performance through experi-

ments and discussions in applying them to address the hypothesis proposed

in Section 3.2.

7.1 Hypothesis Step One - Fast Static Map-

ping

Following the analysis in Section 3.2, without considering task migration

time after remapping, the remapping overhead can only be affected by the

execution of the dynamic mapping algorithm, which consists of mapping search

or construction and mapping evaluation. In addition, before a new event (e.g.

the change of system working environment) which triggers a system model

change and task remapping occurs, a dynamic task allocation process is treated

as a fast static mapping process. This is because the activated tasks have

already been determined by the last event and the system status is maintained

until a new event happens. Therefore, the first step needed in verificayion

is how quickly the proposed dynamic mapper makes a mapping decision.

The verification can be obtained via the experiment detailed in this section.

This is discussed in the experiment platform, experiment configuration, and

results.

7.1.1 Experiment Platform

To evaluate the performance of the proposed dynamic mapper, an experiment

platform was established which inherits from the one used in Section 5.2.3,

shown in Figure 7.1a. On this platform, we mount the proposed potential

mappers (listed in Table 7.1) on an AXI bus with bus interfaces.

Since the FPGA resources are limited, only one mapper can be executed at any
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Table 7.1: Proposed Potential Dynamic Mappers.

Index Potential Mapper
1 HW LS-MS GA + Inexact HW-E2ERTA
2 HW FS-MS GA + Inexact HW-E2ERTA

Note: HW refer to hardware implementation,

LS-MS and FS-MS refer to Lock-Step Mast-Slave and Free-Step Master-Slave.
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Original 
Mapping 
Searching

Mapping 
Verification 

Figure 7.1: (a) Experiment Platform, (b) Testing Process.

one time. This means that a test set consists of a series of sub-tests. To secure

a fair experiment environment, the synthetic benchmarks which are generated

at run time cannot be used directly, as they may change in different executions.

Therefore, a predefined benchmark (a synthetic benchmark generated offline)

is stored on the platform. Each sub-test begins with the benchmark loading
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process through MicroBlaze to mappers. Thereafter, MicroBlaze will enable

the evaluation and collection of data from mappers. The organised results

are output through a UART port.

7.1.2 Experiment Configuration

To measure the performance of the potential dynamic mappers, the experiment

configuration is divided into four parts, as follows:

• FPGA platform:

– system input clock frequency is 50 Mhz,

– AXI bus operation frequency is 100 Mhz, it is also used by dynamic

mappers,

– the system is compiled by Xilinx Vivado 14.3;

• NoC platform configuration:

– the size of a target NoC is 10*10, since this the largest size we can

test on VC707 platform, with current implementation;

• Benchmark configuration:

– the size of task sets is 128 (the largest task set can be supported

by VC707),

– maximum period is 216−1 clock cycles (much more than the period

used by realy bench mark Autonomous Vehicle, and easy to match

the bit width of Xilinx IP cores such as RAM, divider, multiplier

and so on,

– the utilization of task and flow is from 10% to 90%, average around

40%,

– the number of flows is considered as the size of the task set,

– each task generate one flow, so there is no shared priority,
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– the destination of a flow is selected randomly,

– the priority and deadline of a flow inherit from its originated task;

• GA configuration:

– following the suggested GA configuration in [101],

∗ crossover rate is 0.5%,

∗ mutation rate is 0.01%,

– variours between population size and number of fitness functions

will affact the performance of dynamic mapper,

– following the configuration used in Chapter 6 to cover small,

medium and larger (largest can be supported by VC707) pop-

ulation and number of fitness functions,

∗ population size is 6, 8, 16,

∗ number of fitness functions is 2, 3, 4, 5 when population is 6,

∗ number of fitness functions is 2, 4 when population is 8 and

16, because of the hardware resources limitation,

– dynamic mapping

– max number of generation is 500,

– number of repeated tests is 100,

– selection strategy is modified ranking (keeps species diversity).

The reason for setting the size of NoC to 10*10 and number of tasks to 128

can be explained as follows. First 10*10 and 128 are the largest configurations

can be support by VC707 with current implementation.

Second, from the mapping difficult point of view, the applied bench mark

is not a easy configuration to be mapped. An easy configuration can be a

small NoC with simple application such as 4*4 NoC with Autonomous Vehicle

Application (TB1, 33 tasks and 38 flows, average utilization around 19.15%).

In 4*4 NoC with TB1, the average utilisation on each IP is around 39.50%
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(33
16
∗ 19.15%) which is a low competition on each IP. In addition, the lower

number flows can be organised well with low communication congestion on

the NoC. Therefore, it is relatively easy to find a suitable mapping solution.

This can be seen from Figure 4.4. The search process could be finished

within 28 generations, even with PRE alone, which cannot guarantee the

final evaluation results for an end-to-end response time analysis. Moreover,

the exapmles of moderate configuration can also be seen on large NoCs, such

as Figures 4.7 and 4.8, with the Synthetic Application TB3 (100 tasks and

100 flows, average utilization around 41.30%). Although the average use of

tasks has increased to 41.30%, these examples benefits from the extended

NoC platform (from 4*4 to 9*9 and 10*10). The larger NoC results in the

average use on each IP remaining moderate (50.99% and 41.30%).

Third, compared with hard configurations, the proposed benchmark will be

easier to explore. A hard configuration can be asmall NoC with complex

application such as 4*4 NoC with Synthetic Application TB2 (50 tasks, 50

flows, average utilisation around 29.73%). In a 4*4 NoC with TB2, the

average number of tasks on each IP is around 3.125 (50
16

). This results in the

average usage on each IP being around 92.91% (3.125 ∗ 29.73%). Therefore,

a suitable mapping solution is almost impossible to find. This phenomenon

has been shown in Figure 4.5. No mapping solution was found within 50

generations, and the best result it can achieve is 13 (number of unschedulable

tasks and flows).

Table 7.2: Difficulty of Benchmark Configuration.

Difficulity Average Utilization on Each IP
Hardest 92.91%

Second Hardest 51.20%
Moderate 50.99% and 41.30%

Easy 39.50%

By contrast, the benchmark applied in this experiment (average utilization

on each IP in this benchmark would be 51.20% (128
100
∗ 40%)) is the second

hardest configuration, shown in Talbe 7.2. It keeps the possibility of find a
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suitable mapping and is also a problem that not easy to be solved. Therefore,

we choice this benchmark in our experiment.

Furthermore, the diversity of species was also considered. This is because

directly using ranking to imitate natural selection would result in the sys-

tem making the selection division using only the fitness value of candidate

solutions. The fittest candidates will survive even if they are duplicated:

this happens when two candidates have been selected to produce offsprings,

but the crossover and mutation conditions are not all satisfied, in which

case offsprings will be identical with their parents. This will soon make the

population lose its diversity, especially in a small population like the one used

in this experiment. This means the GA search will fall into a local optimal.

Therefore, instead of only using ranking to imitate natural selection, we rank

all the choromsomes first and then select the unduplicated from them in order

to maintain the diversity of species. This benefits not only the search results

but also search speed, because different candidate solutions may maximise

their evaluation execution variability and maximise the improvement by using

FS-MS GA.

7.1.3 Results

The results of the experiment are shown in Table 7.3. The data not shaded

with grey shows the average number of clock cycles in each generation. The

data shaded with gray shows the number of generations and time taken by

FS-MS GA + Inexact HW-E2ERTA to find a schedulable task allocation.

Focusing on the number of clock cycles of each generation, it can be seen that

the FS-MS GA improves the evaluation efficiency. However, the improvement

is not significant compared with S-LOC, which improves it by around 41.43%

on average, as shown in Table 6.1, page 153. This is because the execution

variability of Inexact HW-E2ERTA is not as great as that of S-LOC, especially

when all candidates tend to be optimal, which is hard to evaluate and extends

the E2ERTA execution. For GA operators, they can be accelerated remarkably,
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Table 7.3: Fast Static Mapping Evaluation

LS-MS FS-MS Improvement (%) FS-MS
PopSize No.FF RD FF Overall RD FF Overall RD FF Overall No.Generation Time (s)

2 793 243840 245639 4 228307 229332 99.49% 6.37% 6.64% 355 0.81
3 792 229760 231572 4 214849 215859 99.49% 6.49% 6.79% 339 0.73

6 4 792 229540 231339 4 214735 215758 99.49% 6.45% 6.74% 358 0.77
5 791 229180 230984 4 213985 214995 99.49% 6.63% 6.92% 334 0.72

8 2 1060 500711 503156 5 471670 473078 99.53% 5.80% 5.98% 310 1.46
4 1059 251672 254131 5 228971 230361 99.53% 9.02% 9.35% 262 0.60

16 2 2115 896560 901937 9 870918 874214 99.57% 2.86% 3.07% 140 1.23
4 2112 812150 817468 9 760172 763397 99.57% 6.40% 6.61% 138 1.06

Note: No.FF refers as number of fitness functions.

The fitness function is Inexact HW-E2ERTA.

since the execution of Inexact HW-E2ERTA is long enough for mutation

accelerator to refill the mutation template FIFO, as explained in Section 6.3.2.

However, the improvement from GA operators is not dominant in the overall

search time, which is determined by the fitness function.

Focusing on search performance, all tests find a suitable mapping solution

before the maximum number of generations (500). Although a greater number

of generations are required than in the similar experiments in Figures 4.7

and 4.8, the search time used is much lower. The experiments in Figures 4.7

and 4.8 are supported by powerful PC (Intel Core i7-3770 CPU @ 3.4GHZ)

and larger population (size=50). Their search time is around 1,200 and

700 seconds. Moreover, their benchmark (average utilization around 50.99%

and 41.30%) is also easier than the one used here (51.20%). Although the

maximum working frequency for FS-MS GA + Inexact E2ERTA is only

100Mhz, the search speed is accelerated significantly. In addition, if the

population size is extended and more fitness functions are introduced, this

improvement could be further increased. For the value of the search time, the

value obtained is around millisecond level, which is also the level used to define

the task deadline in real benchmarks (such as Autonomous Vehicle shown

in Appendix.A). Therefore, the FS-MS GA + Inexact E2ERTA search can

be treated as a real-time task used in real-time NoCs to search for mapping

solutions dynamically.
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7.1.4 Summary

In this subsection, following the first step in the hypothesis, the dynamic

mapping search between the change of two system modes was trated as a

fast static mapping process and combined the improvements achieved in

Chapters 4, 5 and 6 to enhance the mapping search. From the results we can

see that the FS-MS GA + Inexact HW-E2ERTA can significantly accelerate

the mapping search compared with sequential GA and original E2ERTA in

software version. The required search time can be reduced to millisecond

level, which is similar to the deadline in real-time tasks in the real world.

Therefore, it can be used as a dynamic mapper in hard real-time NoC dynamic

mapping problems. In addition, dynamic mapping is a kind of fast static

mapping. Therefore, FS-MS GA + Inexact HW-E2ERTA can also be used

as an accelerated mapping search tool in the static mapping area to explore

large design space (with a larger NoC or more complex applications).

7.2 Hypothesis Step Two - Minimizing Task

Migration Time

Following the analysis in Section 3.2, if task migration time is taken into

account, the remapping overhead will include not only the time used to make

the mapping decision, but also the task migration time. In the previous

section, the mapping algorithm execution time was reduced by applying HW

FS-MS GA + Inexact HW-E2ERTA; however, the task migration cost was

not considered. In this section, we try to reduce the task migration cost after

a mapping decision has been made. This involves some modifications of the

fitness function used in the previous section for task allocation evaluation

(Inexact HW-E2ERTA) by introducing consideration of the number of tasks

which need to be moved based on the new task allocation. This section

discusses fitness function modification, experiment platform, configuration

and result.
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7.2.1 Multiple Objectives Fitness Function

One of the advantages of applying GA as a dynamic mapper is that it can

easily be extended to consider multiple objectives simultaneously. Many

examples of this have been shown in the static mapping literature, such as

[61], [9] and [100]. Therefore, by following this idea, the task migration cost

could be reduced by reducing the number of tasks that are required to be

migrated from the original IPs to new IPs. In other words, it is the attemption

to minimise the mapping differences between the original task allocation and

the new one.

Fitness Function Modification

The methods to introduce multiple objectives in GA optimisation can be

generally divided into NSGA and mathematical formula.

NSGA

In NSGA [32] and [126], the performance of a candidate is represented by

a matrix, an example has been shown in Talbe 7.4. The matrix consits of

various objectives of a candidate. Ranking among candidates is determined

by matrix comparison and pareto classification, which provide comprehensive

evaluation among candidate solutions, ensuring the diversity of species at the

same time. An example can be seen from Table 7.4. The candidate A is the

best, since it has no object which is worse than B and C. A is on the first

pareto front, as shown in Figure 7.2. B and C are equally good candidates.

Although, B is better than C in Physics, it is not as good as C in Math. They

are allocated on the second pareto front. The NSGA selection starts from the

first pareto front, due to the solutions on the first pareto front can dominate

the one on other fronts, and move to the next front if necessory. At the same

time, NSGA keeps the diversity of species by using the distance among the

solutions on the same pareto front. The detials can be seen in [32].
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Table 7.4: Example for NSGA Selection.

Candidate Physics Math
A 80 90
B 80 80
C 60 90

Math

Ph
ys

ic
s

Candidates C

Candidates A

Candidates B

Figure 7.2: Example for Pareto Front.

However, the computation cost is very high. This means that the NSGA is

not suitable in dynamic NoC problems, since these kinds of problems happen

at runtime and are not supported by powerful computational resources, unless

the NSGA can be optimised.

Mathematical Formula

Combining the evaluation of multiple objectives results in a mathematical

formula can be an alternative method. The result of the mathematical

formula represent the fitness of a candidate solution to the problem it targets.

Although this combination may require extra knowledge about the relationship

among the objectives, it requires far fewer resources than NSGA, which makes
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it suitable for use in online optimisations. Therefore, it is selected in this

research.

Implementation

Two potential formulas can be used in this research. One is A + B style,

which is suitable for multi-objective optimisation with equally important

objectives. The other is (A ∗K) +B style, which indicates the importance

among objectives. It can be implemented by (A ∗K) + B or A+ (B ÷K).

In this research the A+B and A+ (B ÷K) are selected and implemented.

By considering the implementation platform, the division is implemented

using the shift function. In other words, the divisor can only be 2k. Since

the timing performance after remapping is considered more important than

task migration cost in this research, the new fitness functions are modified as

follows:

• Inexact HW-E2ERTA + Numbermapping differences;

• Inexact HW-E2ERTA +
Numbermapping differences

2k
.

Potential Limitations

The limitations of the mathematical formula method can be understood as

the effects of the fitness landscape that can indicate the guiding ability of

a fitness function. The reason for this can be explained in the following

example. mcandidate and ncandidate are two candidate solutions for optimising

objectives Aobjective and Bobjective simultaneously. By simply adding the value

of objectives together, we can use variable Z to represent the final fitness

value of mcandidate and ncandidate shown in Equation 7.1 with assumed values.

It can be seen that although mcandidate and ncandidate perform differently in

the view of both Aobjective and Bobjective, their final fitness values are the same.

In this case, this equation cannot identify which solution is better. This
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phenomenon exists in E2ERTA, since the results of E2ERTA are the sum of

number of unschedulable tasks and number of unschedulable flows. It cannot

be distinguished which part makes greater contribution, only considering the

results of E2ERTA. Nevertheless, from the previous experiments, E2ERTA and

its improved versions can still guide the mapping search. However, whether

this influence will become significant through being combined with number

of mapping difference can only be verified with the following experiments. In

addition, this effect could also influence the searching efficiency and extend

the optimisation time.

Z(mcandidate) = Aobjective(mcandidate) +Bobjective(mcandidate) = 1 + 2 = 3(7.1)

Z(ncandidate) = Aobjective(ncandidate) +Bobjective(ncandidate) = 2 + 1 = 3

7.2.2 Experiment Platform

To verify how well the proposed methods can reduce the task migration cost,

an experiment platform (shown in Figure 7.3) is applied. It inherits the one

used in Section 7.1, but only using the HW FS-MS GA + modified fitness

functions. A predefined benchmark is stored on the platform. It is a synthetic

benchmark, which is generated off-line with the assumption that it consists

of pairs of sender and receiver. The pair of tasks are not related. An event

(system model change) will cause the addition or removal of a pair/s of tasks.

Since we consider the mapping difference, we search a schedulable mapping

as the original task allocation before remapping on this platform (adding or

removing tasks from it). As shown in Figure 7.3, each testing starts from the

benchmark loading and mapping search process. Thereafter, the MicroBlaze

will imitate the system change to enable the mapping search and collect data

after it is finished. Another mapping evaluation process will be processed to

verify the success of remapping before the organised data export.
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Figure 7.3: (a) Experiment Platform, (b) Testing Process.

7.2.3 Experiment Configuration

The configuration used in this experiment is listed as follows:

• FPGA Platform:

– System input clock frequency is 50 Mhz,

– AXI bus operation frequency is 100 Mhz, it is also used by the

proposed mappers;

• NoC platform configuration:

– the size of NoC tested are 6*6,
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• Benchmark configuration:

– the size of task sets is 50,

– other parameters follows the configuration used in previous section;

• GA configuration:

– following the GA configuration used in previous section,

– population size is 6,

– number of fitness is 2, 3, 4, 5,

– number of repeated tests is 100,

– terminate condition can be:

∗ maximum generations having been evolved, or

∗ fitness value of best solution is equal to number of newly added

tasks for A+B style, or

∗ fitness value of best solution is smaller than one for A+B÷K
style;

• Fitness Function configuration:

– K is set as 8 as an example;

• Task movement:

– number of original running tasks on NoC is 30,

– the number of adding tasks is 2, 4, 10, 20.

From previous experiment, we see a suitable mapping solution found in a

10*10 NoC with 128 tasks and flows. However, the fitness function it used is

only Inexact HW-E2ERTA, since the task migration time after remapping is

not considered. In this section, the fitness function we used is more complex

than Inexact HW-E2ERTA and makes the dynamic mapping search become

harder. Therefore, an appropiate configuration should make the maximum

utilization on each IP arround the level used in previous experiment (51.20%).
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In addition, the dynamic mapping experiment needs a base task allocation to

imitate the system old state. Thus, we first randomly select 15 pairs of tasks

and allocate them on the NoC and with respect to systems timing constraints.

This will make the congestion level around 33.33% (30
36
∗ 40%) which is smaller

than the easy level in Table 7.2 and gurantee the base task allocation can

be found. Then we add pair/s of tasks (randomly selected) to the base task

allocation. This increases the congestion level on the 6*6 NoC to 35.56%

(32
36
∗40%), 34.78% (34

36
∗40%), 44.44% (40

36
∗40%) and 55.56% (50

36
∗40%), which

covers from the under easy level to over the second hardest level of Table 7.2.

The reason we do not select other size of NoCs such as 4*4, 5*5 and 7*7 is

because the maximum utilization on each IP with them is either too high

or too low. This makes the dynamic mapping search too hard or too easy.

For example, the maximum utilization on each IP with 4*4 NoC is 125%

(50
16
∗ 40%), with 5*5 is 80% (50

25
∗ 40%) and with 7*7 is 40.82% (50

49
∗ 40%).

Thus, we select 6*6 as the size to configure a NoC platform.

7.2.4 Results Analysis

The experiment results shown in Figures 7.4 and 7.4. From Figure 7.4 it

can be seen that both A+B and A+ (B ÷K) styles can find a schedulable

mapping solution at the same time minimising the task migration cost. The

overall remapping time can be reduced to millisecond level.

A + (B ÷K) can achieve better results than A + B style. This is because

although A+ (B ÷K) cannot provide linear guiding ability and is relatively

easier to fall into local optimial, it can distinguish the fitness of candidates

better than A+B. In this example, it always perform better over 100 times

repeated evaluations.

Focusing on the change in the number of fitness functions, it can be noted

that even if more fitness functions are introduced to evaluate candidates in

parallel, the improvement is not significant when there are more than two
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A plus B/K with No.FF= 5

Figure 7.4: The Overall Remapping Time with Different No.FF, No.Task
and Fitness Function Types.

Note: No.FF refers to number of fitness functions (same type, either A+B or A+(B÷K).)

fitness functions, which also happens in Section 6.2.2. This can be understood

as follows. Firstly, although the execution time of Inexact HW-E2ERTA is

variable, its variability is not as significant as the S-LOC used in Section

6.2.2, especially when the mapping search is approaching the optimal or

best enough solution. This is because, after evolution, even if candidates

are neither optimal nor good enough, they have already been improved and

hardly to be evaluated. More execution time has to be spent in order to

process fitness functions. The evaluation becomes slow and the variability

of execution time fades away. Therefore, it will suffer the phenomenon we

have found in Section 6.2.2 with Max One. The higher convergence rate

the evolution can achieve, the quicker it will encounter the bottleneck of

Master-Slave GA. Secondly, the execution time of Inexact HW-E2ERTA is

much longer than the GA operations. The time saved by GA architecture is

limited, especially with a small population. Thus, increasing the number of

fitness functions more than two cannot make a significant improvement.

Another perspective which is worth mentioning is the remapping success rate.

As discussed in literature review, a GA cannot guarantee to find optimal

solutions, it can only provide good enough solutions. This means that the

remapping may fail in some cases. Therefore, the remapping success rate was
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Figure 7.5: Dynamic Mapping Succes Rate with Different No.Task, No.FF
and Fitness Function Types.

calculated over various configurations, which are shown in Figure 7.5. It can be

seen that with increasing numbers of tasks, the remapping success rate reduces.

This is caused by both the enlarged search area (more tasks evoloved) and the

higher fitness requirement (minimising the mapping difference). Regardless

of the experiment in previous section, attention must be paid here to the

mapping difference, which increases the level of difficulty of the evolution.

Therefore, in some cases the remapping may fail. Moreover, the increase in

the number of fitness functions cannot change the remapping success rate

remarkably. This is because the termination of evolution is after a fixed

number of generations, if no good enough solution is found. Increasing the

number of fitness functions can only accelerate the search speed. The search

area is not extended. If there is no good enough solution in the search area,

the remapping success rate cannot be improved. However, if the remapping

time is fixed, the faster the dynmaic mapper can search, the higher success

rate it will achieve. Therefore, in those condition, more fitness functions will

make significant improvement.

This dynamic mapper is not limited to dynamic mapping problem solving. It

can also be used in the static field as an accelerated optimisation tool in the

NoC study.
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7.3 Summary

Dynamic mapping in hard real-time NoCs cannot be adequately supported

by existing mapping algorithms. They are affected by either low remapping

success rates or lack of timing guarantee after remapping. In this chapter,

following the problem analysis carried out in Section 3.2, a global remapping

algorithm to alleviate this problem was proposed. This combined the im-

provements achieved in Chapters 4, 5 and 6 to enhance the mapping search

and evaluation efficiency. The performance of the hypothesis was verified

step-by-step.

In the first step it was shown that the FS-MS GA + Inexact HW-E2ERTA

can be used as a fast mapping optimisation algorithm. This enables not only

the possibility of remapping hard real-time NoCs dynamically, but also a fast

optimisation for large design space which can be caused by extended NoC size

or increased the complexity of application/s. Thereafter, the task migration

cost was taken into account. By reducing the number of tasks needing to be

migrated, the task migration cost can be reduced. Therefore, the research

problem – dynamically finding a schedulable task allocation with respect to

system hard real-time timing requirements in NoC – can be alleviated by

applying the techniques and implementation presented in this chapter.
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Chapter 8

Conclusion and Future Work

The Network-on-Chip (NoC) is an on-chip interconnection architecture to

replace the currently established ones, such as Point-to-Point or shared bus,

in both academic and industry. A hard real-time NoC needs to guarantee

the system timing performance even under the worst-case scenarios. A task

mapping indicates how tasks are distributed on a given NoC platform. A

suitable task mapping can improve or guarantee the system timing perfor-

mance by affecting task execution on IP (Intellectual Property) cores and

message propagations on a NoC. It can be searched or constructed at design

or run-time.

A mapping can be well optimised at design time with static mapping al-

gorithms. It provides guaranteed system performance with foreseeable and

constant information about the application and working environment. How-

ever, the system flexibility and adaptivity will be limited and the design

exploration process will be prolonged if the design space is enlarged by a

larger NoC, more complex application, or both.

A run-time mapping can manage task allocation dynamically. It can enhance

the system flexibility, adaptivity and fault-tolerance. However, the current

dynamic mapping algorithms are affected by low remapping success rates or
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lack of a guarantee for the system timing performance after remapping. This

becomes worse in hard real-time systems.

The research presented in this thesis was based on the hypothesis:

“A schedulable task allocation can be found dynamically and efficiently to meet

the application’s hard real-time timing requirements and reduce task migration

cost in an NoC based Multi-Processor System-on-Chip”.

This research investigated techniques for enhancing both static and dynamic

mapping scenarios.

Chapter 4 focuses on End-to-End Response Time Analysis (E2ERTA), which

is an exact evaluation method for indicating whether a given task allocation

can satisfy system hard real-time timing constraints on a specified priority

pre-emptive arbitration NoC. An inexact analysis method was adapted to

alleviate the calculation complexity, which precludes its application in large

design space exploration in both static and dynamic mapping problems.

Chapter 5 investigates the efficiency of E2ERTA from a practical point of

view and introduces a parallel computation architecture and accelerated

components for the inexact analysis method proposed in Chapter 4 to enable

on-line hard real-time timing analysis. The implementation is undertaken

in hardware describe language (VHDL) and evaluated on an FPGA based

experiment platform.

Chapter 6 concentrates on dynamic mappers. A search-based algorithm (GA)

was proposed to enhance the successful remapping rate. A parallel model

with modification and extra-accelerated GA operators were also suggested to

accelerate the search speed to enable consideration of global task reallocation

at run-time on an NoC platform.

Chapter 7 combines the improvements from both evaluation method and

dynamic mapper to verify the mapping search and evaluation performance in

hard real-time NoC dynamic mapping problems in two steps. The first step

187



is to assess search speed and ability without considering task migration cost.

The performance assessment is supported by an FPGA based experiment

platform. The results indicate that a schedulable mapping solution can be

found quickly (millisecond level). This makes feasible the optimising of task

allocation at run-time for hard real-time NoCs. The second step extends

the requirements from only considering successful remapping to take task

migration costs into account. The results show that the timing performance

and the migration costs can be optimised simultaneously.

8.1 Future Work

The hard real-time NoC dynamic mapping problem can be addressed by

applying the techniques and implementation proposed in this thesis. However,

there are still some issues relating to this area that can be investigated in a

future study.

• Acceleration:

– From the perspective of evaluation method, the proposed HW-

E2ERTA, PRE and NLB can be placed in parallel, as shown in

Figure 8.1. Two kinds of evaluation can be enabled concurrently.

The one finishing first can interrupt the later one.

PRE
HW-

E2ERTA

MUX

PRE NLB

MUX

Figure 8.1: Evaluation Method Parallelism.

– An island model parallel GA can be adapted to enable multi-

population searches in parallel, in order to explore larger design
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space within a fixed search time. In addition, a hierarchy or hybrid

GA model is also a possible direction.

• The priority of tasks and flows in this research is fixed and known

in advance. This will limit the pre-emptive among tasks of flows in

fixed order. Run-time priority assignment could adjust the system

performance for a specific event or system mode and may result in

an easier mapping search. However, it will enlarge the search space.

Therefore, a trade-off analysis may be required.

• Centralised dynamic mapping searches provide better search perfor-

mance by gathering the system information. However, it may increase

the local power consumption and lead to a hot core, which is not easy

to resolve in chip design. In addition, if it is broken or has any faults,

dynamic mapping cannot be achieved. Therefore, distributed methods

could be an alternative direction.

• Timing performance is only one of evaluation criterias for NoCs. There

are other aspects such as power consumption. In some situations, power

is as important as timing, for example, when a hard real-time system

changes to a low battery mode. In this case multi-objective search could

be considered.

• The method used to reduce task migration cost in this research is

minimising the mapping differences between original task allocation and

the newly generated one. This will increase the search time. However,

whether the time used to reduce the mapping differences is less than the

time applied to moving tasks without considering mapping difference in

reality may need to be considered. In addition, the migration methods

or migration routing could also be taken into account.
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Appendix.A

Appendix A illustrates the details of the benchmarks mainly used in Chapter

4 and summarizes their comparisons. Table A.1 and Table A.2 show how TB3

is generated by extending TB2 which can be found in [101]. Table A.3 and

Table A.4 illustrate the Autonomous Vehicle benchmark with details of its

tasks and traffic flows. Table A.5 summarizes the comparisons among these

three benchmarks.
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Table A.1: Extended Synthetic applications (TB3)

Source Destination Computation Time Packet size (in bytes) Period Priority

p50 p28 0.611 1805 0.959 50

p51 p19 0.092 315 0.476 51

p52 p16 0.628 1747 0.761 52

p53 p46 0.210 1232 0.810 53

p54 p56 0.369 942 0.556 54

p55 p37 0.450 1587 0.629 55

p56 p58 0.445 2208 0.882 56

p57 p79 0.482 1243 0.817 57

p58 p35 0.192 1624 0.564 58

p59 p49 0.407 819 0.586 59

p60 p89 0.919 549 0.997 60

p61 p4 0.016 2231 0.273 61

p62 p39 0.571 2397 0.879 62

p63 p93 0.336 904 0.671 63

p64 p54 0.313 870 0.324 64

p65 p63 0.519 325 0.559 65

p66 p21 0.144 1918 0.668 66

p67 p65 0.240 1363 0.797 67

p68 p95 0.521 1898 0.715 68

p69 p51 0.272 1263 0.512 69

p70 p33 0.323 461 0.506 70

p71 p61 0.081 747 0.145 71

p72 p99 0.208 878 0.233 72

p73 p13 0.066 732 0.848 73

p74 p74 0.094 1665 0.456 74

p75 p18 0.094 126 0.142 75

p76 p44 0.218 103 0.582 76

p77 p24 0.077 1134 0.322 77

p78 p24 0.275 2084 0.315 78

p79 p46 0.351 2291 0.404 79

*TB3 follows TB2’s structure but extends TB2’s number of tasks from 50 to 100. The period

is generated randomly. computationtime = period ∗ percentage (randomly generated).

The size of each packet is a randomly selected number between the minimum and maximum

number of packet size in TB2.
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Table A.2: Extended Synthetic applications (TB3)

Source Destination Computation Time Packet size (in bytes) Period Priority

p80 p32 0.279 1816 0.304 80

p81 p60 0.252 1333 0.372 81

p82 p83 0.037 797 0.280 82

p83 p9 0.227 1707 0.351 83

p84 p54 0.263 2046 0.730 84

p85 p71 0.487 277 0.924 85

p86 p16 0.301 68 0.646 86

p87 p24 0.532 1425 0.606 87

p88 p2 0.427 694 0.618 88

p89 p79 0.210 1189 0.220 89

p90 p73 0.255 180 0.328 90

p91 p61 0.072 2090 0.103 91

p92 p25 0.209 2275 0.440 92

p93 p69 0.016 1412 0.158 93

p94 p28 0.060 428 0.267 94

p95 p11 0.013 1859 0.036 95

p96 p66 0.009 1945 0.136 96

p97 p60 0.050 1718 0.268 97

p98 p8 0.119 1696 0.254 98

p99 p18 0.199 99 0.986 99

*TB3 follows TB2’s structure but extends TB2’s number of tasks from 50 to 100. The period

is generated randomly. computationtime = period ∗ percentage (randomly generated).

The size of each packet is a randomly selected number between the minimum and maximum

number of packet size in TB2.
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Table A.3: Autonomous Vehicle Application Tasks

Task Task description Computation time (s) Period (s) Utilization

TPMS Tyre pressure monitoring system 0.005 0.5 1.00%

VIBS Vibration sensor 0.005 0.1 5.00%

SPES Speed sensor 0.005 0.1 5.00%

POSI Position sensor interface 0.005 0.5 1.00%

USOS Ultrasonic sensor 0.005 0.1 5.00%

FBU1 Frame buffer - Left camera, upper-left quadrant 0.01 0.4 2.50%

FBU2 Frame buffer - Left camera, upper-right quadrant 0.01 0.4 2.50%

FBU3 Frame buffer - Left camera, lower-left quadrant 0.01 0.4 2.50%

FBU4 Frame buffer - Left camera, lower-right quadrant 0.01 0.4 2.50%

FBU5 Frame buffer - Right camera, upper-left quadrant 0.01 0.4 2.50%

FBU6 Frame buffer - Right camera, upper-right quadrant 0.01 0.4 2.50%

FBU7 Frame buffer - Right camera, lower-left quadrant 0.01 0.4 2.50%

FBU8 Frame buffer - Right camera, lower-right quadrant 0.01 0.4 2.50%

STAC Stability control 0.01 1 1.00%

TPRC Tyre pressure control 0.001 0.01 10.00%

DIRC Direction control 0.001 0.01 10.00%

OBDB Obstacle database 0.15 0.5 30.00%

BFE1 Background estimation and feature extraction 1 0.02 0.04 50.00%

BFE2 Background estimation and feature extraction 2 0.02 0.04 50.00%

BFE3 Background estimation and feature extraction 3 0.02 0.04 50.00%

BFE4 Background estimation and feature extraction 4 0.02 0.04 50.00%

BFE5 Background estimation and feature extraction 5 0.02 0.04 50.00%

BFE6 Background estimation and feature extraction 6 0.02 0.04 50.00%

BFE7 Background estimation and feature extraction 7 0.01 0.04 25.00%

BFE8 Background estimation and feature extraction 8 0.01 0.04 25.00%

FDF1 Feature data fusion 1 0.01 0.4 2.50%

FDF2 Feature data fusion 2 0.01 0.4 2.50%

STPH Stereo photogrammetry 0.03 0.04 75.00%

THRC Throttle control 0.001 0.01 10.00%

VOD1 Visual odometry 1 0.02 0.04 50.00%

VOD2 Visual odometry 2 0.02 0.04 50.00%

OBMG Obstacle database manager 0.02 1 2.00%

NAVC Navigation control 0.01 0.5 2.00%

Average 19.15%
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Table A.4: Autonomous Vehicle Application Traffic Flows between Tasks

Flow Source Destination Flits Period Flow Source Destination Flits Period

1 POSI NAVC 1024 0.5 20 BFE1 FDF1 2048 0.04

2 NAVC OBDB 2048 0.5 21 BFE2 FDF1 2048 0.04

3 OBDB NAVC 16384 0.5 22 BFE3 FDF1 2048 0.04

4 OBDB OBMG 32768 1 23 BFE4 FDF1 2048 0.04

5 NAVC DIRC 512 0.1 24 BFE5 FDF2 2048 0.04

6 SPES NAVC 512 0.1 25 BFE6 FDF2 2048 0.04

7 NAVC THRC 1024 0.1 26 BFE7 FDF2 2048 0.04

8 FBU3 VOD1 38400 0.04 27 BFE8 FDF2 2048 0.04

9 FBU8 VOD2 38400 0.04 28 FDF1 STPH 8192 0.04

10 VOD1 NAVC 512 0.04 29 FDF2 STPH 8192 0.04

11 VOD2 NAVC 512 0.04 30 STPH OBMG 4096 0.04

12 FBU1 BFE1 38400 0.04 31 POSI OBMG 1024 0.5

13 FBU2 BFE2 38400 0.04 32 USOS OBMG 1024 0.1

14 FBU3 BFE3 38400 0.04 33 OBMG OBDB 4096 1

15 FBU4 BFE4 38400 0.04 34 TPMS STAC 2048 0.5

16 FBU5 BFE5 38400 0.04 35 VIBS STAC 512 0.1

17 FBU6 BFE6 38400 0.04 36 STAC TPRC 2048 1

18 FBU7 BFE7 38400 0.04 37 SPES STAC 1024 0.1

19 FBU8 BFE8 38400 0.04 38 STAC THRC 1024 0.1

Table A.5: Benchmark Summary

Benchmark Task Period(s) Utilisation

1 0.01∼1 19.15%

2 0.01∼1 39.2%

3 0.01∼1 41.3
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Appendix.B

Appendix B provides the data distribution, with boxplots, to show that the

average values used in Figure 4.4 to 4.8 are meaningful.

Figure A.1: Autonomous Vehicle application on 4*4 NoC Boxplot for
Accumulated Time.
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Figure A.2: Autonomous Vehicle application on 4*4 NoC Boxplot for
Number of Unschedulable Tasks and Flows.

Figure A.3: Synthetic application on 4*4 NoC Boxplot for Accumulated
Time.
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Figure A.4: Synthetic application on 4*4 NoC Boxplot for Number of
Unschedulable Tasks and Flows.

Figure A.5: Synthetic application on 6*6 NoC Boxplot for Accumulated
Time.
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Figure A.6: Synthetic application on 6*6 NoC Boxplot for Number of
Unschedulable Tasks and Flows.

Figure A.7: Extended Synthetic application on 9*9 NoC Boxplot for
Accumulated Time.
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Figure A.8: Extended Synthetic application on 9*9 NoC Boxplot for Number
of Unschedulable Tasks and Flows.

Figure A.9: Extended Synthetic application on 10*10 NoC Boxplot for
Accumulated Time.
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Figure A.10: Extended Synthetic application on 10*10 NoC Boxplot for
Number of Unschedulable Tasks and Flows.
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